
DWARF Debugging Information Format
Version 6

DWARF Debugging Information Format
Committee

http://www.dwarfstd.org

July 15 2024

WORKING DRAFT

http://www.dwarfstd.org
http://www.dwarfstd.org
http://www.dwarfstd.org

Copyright
DWARF Debugging Information Format, Version 6

Copyright © 2010, 2017, 2024 DWARF Debugging Information Format
Committee

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts.

A copy of the license is included in the section entitled “GNU Free
Documentation License.”

This document is based in part on the DWARF Debugging Information
Format, Version 2, which contained the following notice:

UNIX International

Programming Languages SIG

Revision: 2.0.0 (July 27, 1993)

Copyright © 1992, 1993 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for
any purpose and without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation, and that the name UNIX International not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. UNIX International makes
no representations about the suitability of this documentation for any
purpose. It is provided “as is” without express or implied warranty.

This document is further based on the DWARF Debugging Information
Format, Version 3 and Version 4, which are subject to the GNU Free
Documentation License.

Trademarks:

• Intel386 is a trademark of Intel Corporation.

• Java is a trademark of Oracle, Inc.

• All other trademarks found herein are property of their respective
owners.

July 15 2024 ***WORKING DRAFT*** Page ii

Foreword

The DWARF Debugging Information Format Committee was originally
organized in 1988 as the Programming Languages Special Interest Group
(PLSIG) of Unix International, Inc., a trade group organized to promote Unix
System V Release 4 (SVR4).

PLSIG drafted a standard for DWARF Version 1, compatible with the
DWARF debugging format used at the time by SVR4 compilers and
debuggers from AT&T. This was published as Revision 1.1.0 on October 6,
1992. PLSIG also designed the DWARF Version 2 format, which followed the
same general philosophy as Version 1, but with significant new functionality
and a more compact, though incompatible, encoding. An industry review
draft of DWARF Version 2 was published as Revision 2.0.0 on July 27, 1993.

Unix International dissolved shortly after the draft of Version 2 was released;
no industry comments were received or addressed, and no final standard
was released. The committee mailing list was hosted by OpenGroup
(formerly XOpen).

The Committee reorganized in October, 1999, and met for the next several
years to address issues that had been noted with DWARF Version 2 as well
as to add a number of new features. In mid-2003, the Committee became a
workgroup under the Free Standards Group (FSG), an industry consortium
chartered to promote open standards. DWARF Version 3 was published on
December 20, 2005, following industry review and comment.

The DWARF Committee withdrew from the Free Standards Group in
February, 2007, when FSG merged with the Open Source Development Labs
to form The Linux Foundation, more narrowly focused on promoting Linux.
The DWARF Committee has been independent since that time.

It is the intention of the DWARF Committee that migrating from an earlier
version of the DWARF standard to the current version should be
straightforward and easily accomplished. Almost all constructs from
DWARF Version 2 onward have been retained unchanged in DWARF
Version 6, although a few have been compatibly superseded by improved
constructs which are more compact and/or more expressive.

This document was created using the LATEX document preparation system.

July 15 2024 ***WORKING DRAFT*** Page iii

The DWARF Debugging Information Format Committee

The DWARF Debugging Information Format Committee is open to compiler
and debugger developers who have experience with source language
debugging and debugging formats, and have an interest in promoting or
extending the DWARF debugging format.

DWARF Committee members contributing to Version 6 are:

Todd Allen Concurrent Real-Time
Pedro Alves Pedro Alves Services
David Anderson, Associate Editor
David Blaikie Google
Ron Brender, Editor
Andrew Cagney
Eric Christopher Google
Cary Coutant, Chair (from March 2023)
John DelSignore Perforce
Jonas Devlieghere Apple
Michael Eager, past Chair (to February 2023) Eager Consulting
Jini Susan George AMD
Tommy Hoffner Untether AI
Jakub Jelínek Red Hat
Simon Marchi EfficiOS
Jason Merrill Red Hat
Markus Metzger Intel
Jeremy Morse Sony
Adrian Prantl Apple
Hafiz Abid Qadeer Mentor Graphics
Paul Robinson Sony
Tom Russell Sony
Fāng-rui Sòng Google
Caroline Tice Google
Tom Tromey Adacore
Tony Tye AMD
Keith Walker Arm
Mark Wielaard Red Hat
Brock Wyma Intel
Jian Xu IBM
Zoran Zaric AMD

For further information about DWARF or the DWARF Committee, see:

http://www.dwarfstd.org

July 15 2024 ***WORKING DRAFT*** Page iv

http://www.dwarfstd.org

How to Use This Document

This document is intended to be usable in online as well as traditional paper
forms. Both online and paper forms include page numbers, a Table of
Contents, a List of Figures, a List of Tables and an Index.

Text in normal font describes required aspects of the DWARF format. Text in
italics is explanatory or supplementary material, and not part of the format
definition itself.

Online Form

In the online form, blue text is used to indicate hyperlinks. Most hyperlinks
link to the definition of a term or construct, or to a cited Section or Figure.
However, attributes in particular are often used in more than one way or
context so that there is no single definition; for attributes, hyperlinks link to
the introductory table of all attributes which in turn contains hyperlinks for
the multiple usages.

The occurrence of a DWARF name in its definition (or one of its definitions
in the case of some attributes) is shown in red text. Other occurrences of the
same name in the same or possibly following paragraphs are generally in
normal text color.)

The Table of Contents, List of Figures, List of Tables and Index provide
hyperlinks to the respective items and places.

Paper Form

In the traditional paper form, the appearance of the hyperlinks and
definitions on a page of paper does not distract the eye because the blue
hyperlinks and the color used for definitions are typically imaged by black
and white printers in a manner nearly indistinguishable from other text.
(Hyperlinks are not underlined for this same reason.)

July 15 2024 ***WORKING DRAFT*** Page v

July 15 2024 ***WORKING DRAFT*** Page vi

CONTENTS

Contents

Contents vii

List of Figures xii

List of Tables xvi

1 Introduction 1
1.1 Purpose and Scope . 1
1.2 Overview . 2
1.3 Objectives and Rationale . 2
1.4 Changes from Version 5 to Version 6 8
1.5 Changes from Version 4 to Version 5 8
1.6 Changes from Version 3 to Version 4 10
1.7 Changes from Version 2 to Version 3 11
1.8 Changes from Version 1 to Version 2 12

2 General Description 15
2.1 The Debugging Information Entry (DIE) 15
2.2 Attribute Types . 17
2.3 Relationship of Debugging Information Entries 25
2.4 Target Addresses . 26
2.5 DWARF Expressions . 26
2.6 Location Descriptions . 39
2.7 Types of Program Entities . 48
2.8 Accessibility of Declarations . 48
2.9 Visibility of Declarations . 48
2.10 Virtuality of Declarations . 49
2.11 Artificial Entries . 49
2.12 Address Classes . 50
2.13 Non-Defining Declarations and Completions 50
2.14 Declaration Coordinates . 51

July 15 2024 ***WORKING DRAFT*** Page vii

CONTENTS

2.15 Identifier Names . 52
2.16 Data Locations and DWARF Procedures 52
2.17 Code Addresses, Ranges and Base Addresses 53
2.18 Entry Address . 57
2.19 Static and Dynamic Values of Attributes 57
2.20 Entity Descriptions . 58
2.21 Byte and Bit Sizes . 58
2.22 Linkage Names . 58
2.23 Template Parameters . 59
2.24 Alignment . 60

3 Program Scope Entries 61
3.1 Unit Entries . 61
3.2 Module, Namespace and Importing Entries 73
3.3 Subroutine and Entry Point Entries 78
3.4 Call Site Entries and Parameters . 93
3.5 Lexical Block Entries . 96
3.6 Label Entries . 97
3.7 With Statement Entries . 97
3.8 Try and Catch Block Entries . 98
3.9 Declarations with Reduced Scope . 99

4 Data Object and Object List 101
4.1 Data Object Entries . 101
4.2 Common Block Entries . 104
4.3 Namelist Entries . 105

5 Type Entries 106
5.1 Base Type Entries . 106
5.2 Unspecified Type Entries . 112
5.3 Type Modifier Entries . 113
5.4 Typedef Entries . 115
5.5 Array Type Entries . 115
5.6 Coarray Type Entries . 117
5.7 Structure, Union, Class and Interface Type Entries 118
5.8 Condition Entries . 129
5.9 Enumeration Type Entries . 129
5.10 Subroutine Type Entries . 131
5.11 String Type Entries . 132
5.12 Set Type Entries . 133
5.13 Subrange Type Entries . 133

July 15 2024 ***WORKING DRAFT*** Page viii

CONTENTS

5.14 Pointer to Member Type Entries . 135
5.15 File Type Entries . 136
5.16 Dynamic Type Entries . 136
5.17 Template Alias Entries . 137
5.18 Dynamic Properties of Types . 137

6 Other Debugging Information 140
6.1 Accelerated Access . 140
6.2 Line Number Information . 154
6.3 Macro Information . 171
6.4 Call Frame Information . 178

7 Data Representation 190
7.1 Extensibility . 190
7.2 Reserved Values . 191
7.3 Relocatable, Split, Executable, Shared, Package and Supplementary

Object Files . 192
7.4 32-Bit and 64-Bit DWARF Formats 203
7.5 Format of Debugging Information 207
7.6 Variable Length Data . 230
7.7 DWARF Expressions and Location Descriptions 231
7.8 Base Type Attribute Encodings . 236
7.9 Accessibility Codes . 238
7.10 Visibility Codes . 238
7.11 Virtuality Codes . 239
7.12 Source Languages . 239
7.13 Address Class Encodings . 241
7.14 Identifier Case . 242
7.15 Calling Convention Encodings . 242
7.16 Inline Codes . 243
7.17 Array Ordering . 243
7.18 Discriminant Lists . 243
7.19 Name Index Table . 244
7.20 Defaulted Member Encodings . 244
7.21 Address Range Table . 245
7.22 Line Number Information . 246
7.23 Macro Information . 248
7.24 Call Frame Information . 250
7.25 Range List Entries for Non-contiguous Address Ranges 251
7.26 String Offsets Table . 252
7.27 Address Table . 253

July 15 2024 ***WORKING DRAFT*** Page ix

CONTENTS

7.28 Range List Table . 254
7.29 Value List and Location List Table . 255
7.30 Dependencies and Constraints . 256
7.31 Integer Representation Names . 257
7.32 Type Signature Computation . 257
7.33 Name Table Hash Function . 261
7.34 Contiguous Tables . 262

A Attributes by Tag (Informative) 264

B Debug Section Relationships (Informative) 286
B.1 Normal DWARF Section Relationships 286
B.2 Split DWARF Section Relationships 287

C Encoding/Decoding (Informative) 296

D Examples (Informative) 300
D.1 General Description Examples . 300
D.2 Aggregate Examples . 306
D.3 Namespace Examples . 333
D.4 Member Function Examples . 337
D.5 Line Number Examples . 341
D.6 Call Frame Information Example . 345
D.7 Inlining Examples . 349
D.8 Constant Expression Example . 358
D.9 Unicode Character Example . 360
D.10 Type-Safe Enumeration Example . 361
D.11 Template Examples . 362
D.12 Template Alias Examples . 364
D.13 Implicit Pointer Examples . 367
D.14 String Type Examples . 371
D.15 Call Site Examples . 373
D.16 Macro Example . 381
D.17 Parameter Default Value Examples 385
D.18 SIMD Lane Example . 387

E Compression (Informative) 390
E.1 Using Compilation Units . 390
E.2 Using Type Units . 400
E.3 Summary of Compression Techniques 413

F Split DWARF Object Files (Informative) 416

July 15 2024 ***WORKING DRAFT*** Page x

CONTENTS

F.1 Overview . 416
F.2 Split DWARF Object File Example 421
F.3 DWARF Package File Example . 434

G Section Version Numbers (Informative) 440

H GNU Free Documentation License 444
H.1 APPLICABILITY AND DEFINITIONS 445
H.2 VERBATIM COPYING . 446
H.3 COPYING IN QUANTITY . 447
H.4 MODIFICATIONS . 448
H.5 COMBINING DOCUMENTS . 450
H.6 COLLECTIONS OF DOCUMENTS 450
H.7 AGGREGATION WITH INDEPENDENT WORKS 450
H.8 TRANSLATION . 451
H.9 TERMINATION . 451
H.10 FUTURE REVISIONS OF THIS LICENSE 452
H.11 RELICENSING . 452

Index 456

July 15 2024 ***WORKING DRAFT*** Page xi

LIST OF FIGURES

List of Figures

5.1 Type modifier examples . 114

6.1 Name Index Layout . 144

7.1 Name Table Hash Function Definition 262

B.1 Debug section relationships . 288
B.2 Split DWARF section relationships . 292

C.1 Algorithm to encode an unsigned integer 296
C.2 Algorithm to encode a signed integer . 297
C.3 Algorithm to decode an unsigned LEB128 integer 297
C.4 Algorithm to decode a signed LEB128 integer 298

D.1 Compilation units and abbreviations table 301
D.2 Fortran array example: source fragment 306
D.3 Fortran array example: descriptor representation 307
D.4 Fortran array example: DWARF description 310
D.5 Fortran scalar coarray: source fragment 313
D.6 Fortran scalar coarray: DWARF description 313
D.7 Fortran array coarray: source fragment 313
D.8 Fortran array coarray: DWARF description 313
D.9 Fortran multidimensional coarray: source fragment 314
D.10 Fortran multidimensional coarray: DWARF description 314
D.11 Declaration of a Fortran 2008 assumed-rank array 315
D.12 One of many possible layouts for an array descriptor 315
D.13 Sample DWARF for the array descriptor in Figure D.12 316
D.14 How to interpret the DWARF from Figure D.13 317
D.15 Fortran dynamic type example: source 318
D.16 Fortran dynamic type example: DWARF description 319
D.17 Anonymous structure example: source fragment 320
D.18 Anonymous structure example: DWARF description 320
D.19 Ada example: source fragment . 321

July 15 2024 ***WORKING DRAFT*** Page xii

LIST OF FIGURES

D.20 Ada example: DWARF description . 322
D.21 Packed record example: source fragment 323
D.22 Packed record example: DWARF description 323
D.23 Big-endian data bit offsets . 326
D.24 Little-endian data bit offsets . 326
D.25 Ada biased bit-field example: Ada source 327
D.26 Ada biased bit-field example: DWARF description 327
D.27 Pascal variant record example: source 328
D.28 Pascal variant record example: DWARF description 329
D.29 Ada variant record example: source . 330
D.30 Ada variant record example: DWARF description 331
D.31 Rust enum example: source . 331
D.32 Rust enum example: DWARF description 332
D.33 Namespace example #1: source fragment 333
D.34 Namespace example #1: DWARF description 334
D.35 Namespace example #2: source fragment 336
D.36 Namespace example #2: DWARF description 336
D.37 Member function example: source fragment 337
D.38 Member function example: DWARF description 337
D.39 Reference- and rvalue-reference-qualification example: source fragment 339
D.40 Reference- and rvalue-reference-qualification example: DWARF description

. 340
D.41 Example line number program header 341
D.42 Example line number special opcode mapping 342
D.43 Line number program example: machine code 343
D.44 Call frame information example: machine code fragments 346
D.45 Inlining examples: pseudo-source fragmment 349
D.46 Inlining example #1: abstract instance 351
D.47 Inlining example #1: concrete instance 352
D.48 Inlining example #2: abstract instance 354
D.49 Inlining example #2: concrete instance 356
D.50 Inlining example #3: abstract instance 357
D.51 Inlining example #3: concrete instance 358
D.52 Constant expressions: C++ source . 358
D.53 Constant expressions: DWARF description 359
D.54 Unicode character example: source . 360
D.55 Unicode character example: DWARF description 360
D.56 Type-safe enumeration example: source 361
D.57 Type-safe enumeration example: DWARF description 361
D.58 C++ template example #1: source . 362
D.59 C++ template example #1: DWARF description 362

July 15 2024 ***WORKING DRAFT*** Page xiii

LIST OF FIGURES

D.60 C++ template example #2: source . 363
D.61 C++ template example #2: DWARF description 363
D.62 C++ template alias example #1: source 364
D.63 C++ template alias example #1: DWARF description 365
D.64 C++ template alias example #2: source 365
D.65 C++ template alias example #2: DWARF description 366
D.66 C implicit pointer example #1: source 367
D.67 C implicit pointer example #1: DWARF description 368
D.68 C implicit pointer example #2: source 369
D.69 C implicit pointer example #2: DWARF description 370
D.70 String type example: source . 371
D.71 String type example: DWARF representation 372
D.72 Call Site Example #1: Source . 373
D.73 Call Site Example #1: Code . 374
D.74 Call site example #1: DWARF encoding 376
D.75 Call site example #2: source . 378
D.76 Call site example #2: code . 379
D.77 Call site example #2: DWARF encoding 380
D.78 Macro example: source . 381
D.79 Macro example: simple DWARF encoding 382
D.80 Macro example: sharable DWARF encoding 383
D.81 Default value example #1: C++ source 385
D.82 Default value example #1: DWARF encoding 385
D.83 Default value example #2: Ada source 386
D.84 Default value example #2: DWARF encoding 386
D.85 SIMD Lane Example: C OpenMP Source 387
D.86 SIMD Lane Example: Pseudo-Assembly Code 388
D.87 SIMD Lane Example: DWARF Encoding 389

E.1 Duplicate elimination example #1: C++ Source 397
E.2 Duplicate elimination example #1: DWARF section group 397
E.3 Duplicate elimination example #1: primary compilation unit 398
E.4 Duplicate elimination example #2: Fortran source 398
E.5 Duplicate elimination example #2: DWARF section group 399
E.6 Duplicate elimination example #2: primary unit 400
E.7 Duplicate elimination example #2: companion source 400
E.8 Duplicate elimination example #2: companion DWARF 401
E.9 Type signature examples: C++ source 402
E.10 Type signature computation #1: DWARF representation 403
E.11 Type signature computation #1: flattened byte stream 404
E.12 Type signature computation #2: DWARF representation 405

July 15 2024 ***WORKING DRAFT*** Page xiv

LIST OF FIGURES

E.13 Type signature example #2: flattened byte stream 407
E.14 Type signature example usage . 410
E.15 Type signature computation grammar 411
E.16 Completing declaration of a member function: DWARF encoding . . . 412

F.1 Split object example: source fragment #1 421
F.2 Split object example: source fragment #2 422
F.3 Split object example: source fragment #3 423
F.4 Split object example: skeleton DWARF description 424
F.5 Split object example: executable file DWARF excerpts 426
F.6 Split object example: demo1.dwo excerpts 428
F.7 Split object example: demo2.dwo DWARF .debug_info.dwo excerpts . . 431
F.8 Split object example: demo2.dwo DWARF .debug_loclists.dwo excerpts 433
F.9 Sections and contributions in example package file demo.dwp 435
F.10 Example CU index section . 437
F.11 Example TU index section . 438

July 15 2024 ***WORKING DRAFT*** Page xv

LIST OF TABLES

List of Tables

2.1 Tag names . 16
2.2 Attribute names . 17
2.3 Classes of attribute value . 23
2.4 Accessibility codes . 48
2.5 Visibility codes . 49
2.6 Virtuality codes . 49

3.1 Language names . 64
3.2 Version Encoding Schemes . 66
3.3 Identifier case codes . 67
3.4 Calling convention codes for subroutines 79
3.5 Inline codes . 86

4.1 Endianity attribute values . 104

5.1 Encoding attribute values . 108
5.2 Decimal sign attribute values . 111
5.3 Type modifier tags . 113
5.4 Array ordering . 116
5.5 Calling convention codes for types . 120
5.6 Defaulted attribute names . 126
5.7 Discriminant descriptor values . 128

6.1 Index attribute encodings . 152
6.3 State machine registers . 156
6.4 Line number program initial state . 158

7.1 DWARF package file section identifier encodings 201
7.2 Unit header unit type encodings . 207
7.3 Tag encodings . 212
7.4 Child determination encodings . 215
7.5 Attribute encodings . 216
7.6 Attribute form encodings . 228

July 15 2024 ***WORKING DRAFT*** Page xvi

LIST OF TABLES

7.7 Examples of unsigned LEB128 encodings 231
7.8 Examples of signed LEB128 encodings 231
7.9 DWARF operation encodings . 232
7.10 Location list entry encoding values . 236
7.11 Base type encoding values . 236
7.12 Decimal sign encodings . 238
7.13 Endianity encodings . 238
7.14 Accessibility encodings . 238
7.15 Visibility encodings . 239
7.16 Virtuality encodings . 239
7.17 Language encodings . 240
7.18 Identifier case encodings . 242
7.19 Calling convention encodings . 242
7.20 Inline encodings . 243
7.21 Ordering encodings . 243
7.22 Discriminant descriptor encodings . 243
7.23 Name index attribute encodings . 244
7.24 Defaulted attribute encodings . 244
7.25 Line number standard opcode encodings 246
7.26 Line number extended opcode encodings 247
7.27 Line number header entry format encodings 247
7.28 Macro information entry type encodings 249
7.29 Call frame instruction encodings . 250
7.30 Range list entry encoding values . 252
7.31 Integer representation names . 257
7.32 Attributes used in type signature computation 258

A.1 Attributes by tag value . 265

D.2 Line number program example: one encoding 344
D.3 Line number program example: alternate encoding 344
D.4 Call frame information example: conceptual matrix 346
D.5 Call frame information example: common information entry encoding 347
D.6 Call frame information example: frame description entry encoding . . 348

F.1 Unit attributes by unit kind . 420

G.1 Section version numbers . 441

July 15 2024 ***WORKING DRAFT*** Page xvii

LIST OF TABLES

(empty page)

July 15 2024 ***WORKING DRAFT*** Page xviii

Change Summary

Change Summary

Note
This change summary is included only in draft versions of this document.

Date Issue Incorporated or Other Change

2/17/2021 Begin DWARF Version 6. Update front matter.
3/10/2021 Remove change bars commands that were lingering from V5 (disabled in public

release). Remove "New in DWARF Version 5" annotations.
3/11/2021 Issue 180613.1, stop using horizontal space to suppress ligatures.
3/14/2021 Issues 171130.1, 200505.1, 200505.2 and 200505.3, minor editorial corrections.
3/23/2021 Issues 200505.4 and 200505.7, editorial corrections. Issue 161206.2, add

non-normative clarification re DW_OP_piece vs DW_OP_bit_piece.
4/14/2021 Remove 2005 from Copyright statement (was then the Free Standards Group).
4/25/2021 Issue 170527.1 re DW_IDX_external for external symbols.
5/2/2021 Start V6 column in version numbers appendix.
5/3/2021 Cleanup some table formatting in the LATEX source.
5/17/2021 Issue 191025.1, DW_OP_bit_piece.
5/21/2021 Issue 180503.1, usage suggestions for LEB128 padding.

Issue 170427.2, extending loclists.
6/17/2021 Issue 200427.1, missing link and related notes for Figure B.1, and Issue 200519.1,

missing notes for Figure B.2. Issue 180426.2, add line number extended op
DW_LNE_padding.

6/30/2021 180326.1, clarify consistency of DWARF 32/64 format within a CU.
7/12/2021 210218.1, index entry shows up in PDF.
8/14/2021 210628.1, clarification of relative paths in DW_AT_comp_dir. 200710.1,

inconsistent description of data representation for the range list table.
9/28/2021 180625.1, inconsistent initial length descriptions.

181019.1, inconsistency in DW_AT_import descriptions.
10/9/2021 171103.1, DW_AT_call_origin should be encoded as reference class.

180426.1, Add DW_FORM_strp_sup to forms allowed in .debug_line
vendor-defined [’producer-defined’ per 231110.2] content descriptions.

10/30/2021 200505.4, Augmentation string is null-terminated. See 3/23/2021.
200505.7, Declarations with reduced scope. See 3/23/2021 and 5/7/2022.

11/21/2021 200709.1, DW_AT_rnglists_base in DW_TAG_skeleton_unit
181205.1, Clarify DW_OP_piece documentation for parts of values that are
optimized out.

July 15 2024 ***WORKING DRAFT*** Page xix

Change Summary

Date Issue Incorporated or Other Change

1/14/2022 200602.1, .debug_macro.dwo refers to .debug_line.dwo? Also, tweak some member
names and affiliations in the Foreword.

1/20/2022 210314.1, Eliminate all indefinite antecedents.
3/12/2022 210113.1, Allow zero-length entries in .debug_aranges.

200609.1, Reserve an address for "not present".
3/26/2022 201007.1, Wide registers in location description expressions.

210310.1, Clarify DW_AT_rnglists_base and DW_FORM_rnglistx in split
DWARF.
210429.1, Clarify description of line number extended opcodes.

4/16/2022 180517.1, Variant parts without a discriminant.
210622.1, Typo in .debug_rnglists section header description.

5/7/2022 210208.2, Standardize DW_AT_GNU_numerator and
DW_AT_GNU_denominator.
200505.4, Augmentation string. Reverses 10/30/2021.

5/30/2022 211101.1, Allow 64-bit string offsets in DWARF-32.
6/15/2022 210419.1, Split DW_AT_language into DW_AT_language_name and

DW_AT_language_version.
7/5/2022 190809.1, Add DW_AT_bias.
7/17/2022 180201.1, Source text embedding.
8/6/2022 210713.1, Fix "file 0".
8/7/2022 211108.2, Allow non-uniform record formats in the file name table.
8/8/2022 211022.1, Empty range list entry.

181003.1, Forbid DW_OP_call_ref and DW_FORM_addr_ref in a .dwo file.
8/14/2022 220427.1, Deprecate the DW_AT_segment attribute.
9/4/2022 181223.1, Add Microsoft SourceLink support.

211108.2, Rework example in D.5 to illustrate DW_LNCT_source and
DW_LNCT_URL.
Review and adjust pagination.

10/12/2022 211108.2, Further rework of the example in D.5.
10/22/2022 211102.1, No DW_FORM_strp in .dwo files.

141117.1, Arbitrary expressions as formal parameter default values.
11/7/2022 220212.1, Disambiguate "ending address offset in location and range lists.
11/8/2022 211004.1, Replace DW_MACRO_define/undefine_sup with sized versions.
11/14/2022 220708.1, Remove edge (fo) from Figure B.2.

220711.1, Name Table index attribute.
220711.2, Name Table Figure 6.1.

11/14/2022 211103.1, Call site entries for optimized out functions.
11/30/2022 Incorporate minor review tweaks.
12/10/2022 et al Additional minor review tweaks.
1/29/2023 210218.2, Generalize complex number support.

220708.2, .debug_c,tu_index missing/incomplete DWARF64 support.

July 15 2024 ***WORKING DRAFT*** Page xx

Change Summary

Date Issue Incorporated or Other Change

221031.1, Future-proof text from 211102.1.
220802.1, Introduce DW_FORM_addr_offset paired form.

4/3/2023 170427.3, Extending loclists with common sublists.
220713.1, Name Table Figure 6.1.
Update committee members list and roles.

6/15/2023 211108.1, Add DW_AT_artificial for DW_TAG_typedef.
220824.1, Use uniform encoding of DWARF expressions in CFI instructions.

6/27/2023 180123,1, Layout of discriminant entries in variant parts.
181026.3, Don’t forbid extensions to the dwp file.
221118.1, Name Table 6.1.1.4.8.
221114.1, DW_FORM_implicit_const and DW_FORM_indirect.

7/10/2023 230223.1, Tidy up location description descriptions.
230414.1, Eliminate last use of "location expression".

8/6/2023 221203.1, Remove suggestion that DW_FORM_sec_offset may not be used for lists
in split units.
230103.1, Clarify that DW_CFA_remember_state includes the current CFA.

10/24/2023 230120.1, DW_OP_call_ref & DW_OP_implicit_pointer correction.
230616.1, New form classes for values vs. location descriptions.
210514.1, Add GPU shading and kernel languages.
210115.1, DW_lang_code for the Netwide Assembler (NASM).
230203.1, C# language ID.
230502.1, New language name Mojo.

11/14/2023 230808.1, DW_OP_entry_value description.
230413.1, Tensor types.

12/3/2023 230329.1, Tables which have a unit_length header field must be contiguous.
230529.1, Bit-precise integer types.

1/15/2024 231230.1, New language code for Ruby.
231013.1, Tombstoning TU entries in .debug_names.
230324.1, Expression operation vendor [’producer’ per 231110.2] extensibility
opcode.

2/18/2024 230412.1, Ambiguity in static and dynamic values of attributes.
3/7/2024 230324.2, Expression operation standard extensibility opcode.
4/24/2024 230120.4, Add the HIP programming language.

240202.1, New language name for Move.
240213.1, New language code for Hylo.
240422.1, Add version scheme for Swift language.
230120.4, Add the HIP Programming Language.
240423.1, Duplicate DW_AT_LNAME 1d.
240424.1, Add versioning scheme for Fortran.
240424.2, C standard release dates for DW_AT_language_version, clarify
semantics.

July 15 2024 ***WORKING DRAFT*** Page xxi

Change Summary

Date Issue Incorporated or Other Change

240429.0, Remove all "incomplete support" related indications from Table 3.1
Language Names.
240115.1, Add vallist class for list of DWARF expressions returning values.

5/13/2024 221203.1, Remove suggestion that DW_FORM_sec_offset may not be used for lists
in split units.
211206.1, Add lane support for SIMD/SIMT machines.

6/14/2024 240118.1, Allow padding in all tables.
231110.2, Change ’vendor’ to ’producer’ for DWARF extensions.

7/5/2024 240320.2, Clarify description of line table compression.
7/9/2024 240616.1, Add language codes for C++23 (no change in this document).

240627.1, Add language codes for Odin.
7/15/2024 Improve indexing of line number state register names.

July 15 2024 ***WORKING DRAFT*** Page xxii

LIST OF TABLES

(empty page)

July 15 2024 ***WORKING DRAFT*** Page xxiii

Chapter 11

Introduction2

This document defines a format for describing programs to facilitate user source3

level debugging. This description can be generated by compilers, assemblers and4

linkage editors. It can be used by debuggers and other tools. The debugging5

information format does not favor the design of any compiler or debugger.6

Instead, the goal is to create a method of communicating an accurate picture of7

the source program to any debugger in a form that is extensible to different8

languages while retaining compatibility.9

The design of the debugging information format is open-ended, allowing for the10

addition of new debugging information to accommodate new languages or11

debugger capabilities while remaining compatible with other languages or12

different debuggers.13

1.1 Purpose and Scope14

The debugging information format described in this document is designed to15

meet the symbolic, source-level debugging needs of different languages in a16

unified fashion by requiring language independent debugging information17

whenever possible. Aspects of individual languages, such as C++ virtual18

functions or Fortran common blocks, are accommodated by creating attributes19

that are used only for those languages. This document is believed to cover most20

debugging information needs of Ada, C, C++, COBOL, and Fortran; it also21

covers the basic needs of various other languages.22

This document describes DWARF Version 5, the fifth generation of debugging23

information based on the DWARF format. DWARF Version 5 extends DWARF24

Version 4 in a compatible manner.25

July 15 2024 ***WORKING DRAFT*** Page 1

Chapter 1. Introduction

The intended audience for this document is the developers of both producers1

and consumers of debugging information, typically compilers, debuggers and2

other tools that need to interpret a binary program in terms of its original source.3

1.2 Overview4

There are two major pieces to the description of the DWARF format in this5

document. The first piece is the informational content of the debugging entries.6

The second piece is the way the debugging information is encoded and7

represented in an object file.8

The informational content is described in Chapters 2 through 6. Chapter 29

describes the overall structure of the information and attributes that are common10

to many or all of the different debugging information entries. Chapters 3, 4 and 511

describe the specific debugging information entries and how they communicate12

the necessary information about the source program to a debugger. Chapter 613

describes debugging information contained outside of the debugging14

information entries. The encoding of the DWARF information is presented in15

Chapter 7.16

This organization closely follows that used in the DWARF Version 4 document.17

Except where needed to incorporate new material or to correct errors, the18

DWARF Version 4 text is generally reused in this document with little or no19

modification.20

In the following sections, text in normal font describes required aspects of the21

DWARF format. Text in italics is explanatory or supplementary material, and not22

part of the format definition itself. The several appendices consist only of23

explanatory or supplementary material, and are not part of the formal definition.24

1.3 Objectives and Rationale25

DWARF has had a set of objectives since its inception which have guided the26

design and evolution of the debugging format. A discussion of these objectives27

and the rationale behind them may help with an understanding of the DWARF28

Debugging Format.29

Although DWARF Version 1 was developed in the late 1980’s as a format to30

support debugging C programs written for AT&T hardware running SVR4,31

DWARF Version 2 and later has evolved far beyond this origin. One difference32

between DWARF and other formats is that the latter are often specific to a33

particular language, architecture, and/or operating system.34

July 15 2024 ***WORKING DRAFT*** Page 2

Chapter 1. Introduction

1.3.1 Language Independence1

DWARF is applicable to a broad range of existing procedural languages and is2

designed to be extensible to future languages. These languages may be3

considered to be "C-like" but the characteristics of C are not incorporated into4

DWARF Version 2 and later, unlike DWARF Version 1 and other debugging5

formats. DWARF abstracts concepts as much as possible so that the description6

can be used to describe a program in any language. As an example, the DWARF7

descriptions used to describe C functions, Pascal subroutines, and Fortran8

subprograms are all the same, with different attributes used to specify the9

differences between these similar programming language features.10

On occasion, there is a feature which is specific to one particular language and11

which doesn’t appear to have more general application. For these, DWARF has a12

description designed to meet the language requirements, although, to the extent13

possible, an effort is made to generalize the attribute. An example of this is the14

DW_TAG_condition debugging information entry, used to describe COBOL level15

88 conditions, which is described in abstract terms rather than COBOL-specific16

terms. Conceivably, this TAG might be used with a different language which had17

similar functionality.18

1.3.2 Architecture Independence19

DWARF can be used with a wide range of processor architectures, whether byte20

or word oriented, with any word or byte size. DWARF can be used with Von21

Neumann architectures, using a single address space for both code and data;22

Harvard architectures, with separate code and data address spaces; and23

potentially for other architectures such as DSPs with their idiosyncratic memory24

organizations. DWARF can be used with common register-oriented architectures25

or with stack architectures.26

DWARF assumes that memory has individual units (words or bytes) which have27

unique addresses which are ordered. (Identifying aliases is an implementation28

issue.)29

1.3.3 Operating System Independence30

DWARF is widely associated with SVR4 Unix and similar operating systems like31

BSD and Linux. DWARF fits well with the section organization of the ELF object32

file format. Nonetheless, DWARF attempts to be independent of either the OS or33

the object file format. There have been implementations of DWARF debugging34

data in COFF, Mach-O and other object file formats.35

July 15 2024 ***WORKING DRAFT*** Page 3

Chapter 1. Introduction

DWARF assumes that any object file format will be able to distinguish the1

various DWARF data sections in some fashion, preferably by name.2

DWARF makes a few assumptions about functionality provided by the3

underlying operating system. DWARF data sections can be read sequentially and4

independently. Each DWARF data section is a sequence of 8-bit bytes, numbered5

starting with zero. The presence of offsets from one DWARF data section into6

other data sections does not imply that the underlying OS must be able to7

position files randomly; a data section could be read sequentially and indexed8

using the offset.9

1.3.4 Compact Data Representation10

The DWARF description is designed to be a compact file-oriented representation.11

There are several encodings which achieve this goal, such as the TAG and12

attribute abbreviations or the line number encoding. References from one section13

to another, especially to refer to strings, allow these sections to be compacted to14

eliminate duplicate data.15

There are multiple schemes for eliminating duplicate data or reducing the size of16

the DWARF debug data associated with a given file. These include COMDAT,17

used to eliminate duplicate function or data definitions, the split DWARF object18

files which allow a consumer to find DWARF data in files other than the19

executable, or the type units, which allow similar type definitions from multiple20

compilations to be combined.21

In most cases, it is anticipated that DWARF debug data will be read by a22

consumer (usually a debugger) and converted into a more efficiently accessed23

internal representation. For the most part, the DWARF data in a section is not the24

same as this internal representation.25

1.3.5 Efficient Processing26

DWARF is designed to be processed efficiently, so that a producer (a compiler)27

can generate the debug descriptions incrementally and a consumer can read only28

the descriptions which it needs at a given time. The data formats are designed to29

be efficiently interpreted by a consumer.30

As mentioned, there is a tension between this objective and the preceding one. A31

DWARF data representation which resembles an internal data representation32

may lead to faster processing, but at the expense of larger data files. This may33

also constrain the possible implementations.34

July 15 2024 ***WORKING DRAFT*** Page 4

Chapter 1. Introduction

1.3.6 Implementation Independence1

DWARF attempts to allow developers the greatest flexibility in designing2

implementations, without mandating any particular design decisions. Issues3

which can be described as quality-of-implementation are avoided.4

1.3.7 Explicit Rather Than Implicit Description5

DWARF describes the source to object translation explicitly rather than using6

common practice or convention as an implicit understanding between producer7

and consumer. For example, where other debugging formats assume that a8

debugger knows how to virtually unwind the stack, moving from one stack9

frame to the next using implicit knowledge about the architecture or operating10

system, DWARF makes this explicit in the Call Frame Information description.11

1.3.8 Avoid Duplication of Information12

DWARF has a goal of describing characteristics of a program once, rather than13

repeating the same information multiple times. The string sections can be14

compacted to eliminate duplicate strings, for example. Other compaction15

schemes or references between sections support this. Whether a particular16

implementation is effective at eliminating duplicate data, or even attempts to, is17

a quality-of-implementation issue.18

1.3.9 Leverage Other Standards19

Where another standard exists which describes how to interpret aspects of a20

program, DWARF defers to that standard rather than attempting to duplicate the21

description. For example, C++ has specific rules for deciding which function to22

call depending name, scope, argument types, and other factors. DWARF23

describes the functions and arguments, but doesn’t attempt to describe how one24

would be selected by a consumer performing any particular operation.25

1.3.10 Limited Dependence on Tools26

DWARF data is designed so that it can be processed by commonly available27

assemblers, linkers, and other support programs, without requiring additional28

functionality specifically to support DWARF data. This may require the29

implementer to be careful that they do not generate DWARF data which cannot30

be processed by these programs. Conversely, an assembler which can generate31

LEB128 (Little-Endian Base 128) values may allow the compiler to generate more32

July 15 2024 ***WORKING DRAFT*** Page 5

Chapter 1. Introduction

compact descriptions, and a linker which understands the format of string1

sections can merge these sections. Whether or not an implementation includes2

these functions is a quality-of-implementation issue, not mandated by the3

DWARF specification.4

1.3.11 Separate Description From Implementation5

DWARF intends to describe the translation of a program from source to object,6

while neither mandating any particular design nor making any other design7

difficult. For example, DWARF describes how the arguments and local variables8

in a function are to be described, but doesn’t specify how this data is collected or9

organized by a producer. Where a particular DWARF feature anticipates that it10

will be implemented in a certain fashion, informative text will suggest but not11

require this design.12

1.3.12 Permissive Rather Than Prescriptive13

The DWARF Standard specifies the meaning of DWARF descriptions. It does not14

specify in detail what a particular producer must generate for any source to15

object conversion. One producer may generate a more complete description than16

another, it may describe features in a different order (unless the standard17

explicitly requires a particular order), or it may use different abbreviations or18

compression methods. Similarly, DWARF does not specify exactly what a19

particular consumer should do with each part of the description, although we20

believe that the potential uses for each description should be evident.21

DWARF is permissive, allowing different producers to generate different22

descriptions for the same source to object conversion, and permitting different23

consumers to provide more or less functionality or information to the user. This24

may result in debugging information being larger or smaller, compilers or25

debuggers which are faster or slower, and more or less functional. These are26

described as differences in quality-of-implementation.27

Each producer conforming to the DWARF standard must follow the format and28

meaning as specified in the standard. As long as the DWARF description29

generated follows this specification, the producer is generating valid DWARF.30

For example, DWARF allows a producer to identify the end of a function31

prologue in the Line Information so that a debugger can stop at this location. A32

producer which does this is generating valid DWARF, as is another which33

doesn’t. As another example, one producer may generate descriptions for34

variables which are moved from memory to a register in a certain range, while35

another may only describe the variable’s location in memory. Both are valid36

July 15 2024 ***WORKING DRAFT*** Page 6

Chapter 1. Introduction

DWARF descriptions, while a consumer using the former would be able to1

provide more accurate values for the variable while executing in that range than2

a consumer using the latter.3

In this document, where the word “may” is used, the producer has the option to4

follow the description or not. Where the text says “may not”, this is prohibited.5

Where the text says “should”, this is advice about best practice, but is not a6

requirement.7

1.3.13 Extensibility8

This document does not attempt to cover all interesting languages or even to9

cover all of the possible debugging information needs for its primary target10

languages. Therefore, the document provides producers and tool developers a11

way to define their owns debugging information tags, attributes, base type12

encodings, location operations, language names, calling conventions and call13

frame instructions by reserving a subset of the valid values for these constructs14

for additions and for defining related naming conventions. Producers may also15

use debugging information entries and attributes defined here in new situations.16

Future versions of this document will not use names or values reserved for17

producer-specific additions. All names and values not reserved for producer18

additions, however, are reserved for future versions of this document.19

Where this specification provides a means for describing the source language,20

implementors are expected to adhere to that specification. For language features21

that are not supported, implementors may use existing attributes in novel ways22

or add producer-defined attributes. Implementors who make extensions are23

strongly encouraged to design them to be compatible with this specification in24

the absence of those extensions.25

July 15 2024 ***WORKING DRAFT*** Page 7

Chapter 1. Introduction

The DWARF format is organized so that a consumer can skip over data which it1

does not recognize. This may allow a consumer to read and process files2

generated according to a later version of this standard or which contain producer3

extensions, albeit possibly in a degraded manner.4

1.4 Changes from Version 5 to Version 65

To be written...6

1.5 Changes from Version 4 to Version 57

The following is a list of the major changes made to the DWARF Debugging8

Information Format since Version 4 was published. The list is not meant to be9

exhaustive.10

• Eliminate the .debug_types section introduced in DWARF Version 4 and11

move its contents into the .debug_info section.12

• Add support for collecting common DWARF information (debugging13

information entries and macro definitions) across multiple executable and14

shared files and keeping it in a single supplementary object file.15

• Replace the line number program header format with a new format that16

provides the ability to use an MD5 hash to validate the source file version17

in use, allows pooling of directory and file name strings and makes18

provision for producer-defined extensions. Also add a string section19

specific to the line number table (.debug_line_str) to properly support the20

common practice of stripping all DWARF sections except for line number21

information.22

• Add a split object file and package representations to allow most DWARF23

information to be kept separate from an executable or shared image. This24

includes new sections .debug_addr, .debug_str_offsets,25

.debug_abbrev.dwo, .debug_info.dwo, .debug_line.dwo,26

.debug_loclists.dwo, .debug_macro.dwo, .debug_str.dwo,27

.debug_str_offsets.dwo, .debug_cu_index and .debug_tu_index together28

with new forms of attribute value for referencing these sections. This29

enhances DWARF support by reducing executable program size and by30

improving link times.31

• Replace the .debug_macinfo macro information representation with with a32

.debug_macro representation that can potentially be much more compact.33

July 15 2024 ***WORKING DRAFT*** Page 8

Chapter 1. Introduction

• Replace the .debug_pubnames and .debug_pubtypes sections with a single1

and more functional name index section, .debug_names.2

• Replace the location list and range list sections (.debug_loc and3

.debug_ranges, respectively) with new sections (.debug_loclists and4

.debug_rnglists) and new representations that save space and processing5

time by eliminating most related object file relocations.6

• Add a new debugging information entry (DW_TAG_call_site), related7

attributes and DWARF expression operators to describe call site8

information, including identification of tail calls and tail recursion.9

• Add improved support for FORTRAN assumed rank arrays10

(DW_TAG_generic_subrange), dynamic rank arrays (DW_AT_rank) and11

co-arrays (DW_TAG_coarray_type).12

• Add new operations that allow support for a DWARF expression stack13

containing typed values.14

• Add improved support for the C++: auto return type, deleted member15

functions (DW_AT_deleted), as well as defaulted constructors and16

destructors (DW_AT_defaulted).17

• Add a new attribute (DW_AT_noreturn), to identify a subprogram that18

does not return to its caller.19

• Add language codes for C 2011, C++ 2003, C++ 2011, C++ 2014, Dylan,20

Fortran 2003, Fortran 2008, Go, Haskell, Julia, Modula 3, Ocaml, OpenCL21

C1, Rust and Swift.22

• Numerous other more minor additions to improve functionality and23

performance.24

DWARF Version 5 is compatible with DWARF Version 4 except as follows:25

• The compilation unit header (in the .debug_info section) has a new26

unit_type field. In addition, the debug_abbrev_offset and address_size27

fields are reordered.28

• New operand forms for attribute values are defined (DW_FORM_addrx,29

DW_FORM_addrx1, DW_FORM_addrx2, DW_FORM_addrx3,30

DW_FORM_addrx4, DW_FORM_data16, DW_FORM_implicit_const,31

DW_FORM_line_strp, DW_FORM_loclistx, DW_FORM_rnglistx,32

DW_FORM_ref_sup4, DW_FORM_ref_sup8, DW_FORM_strp_sup,33

1called simply OpenCL in DWARF Version 5

July 15 2024 ***WORKING DRAFT*** Page 9

Chapter 1. Introduction

DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx31

and DW_FORM_strx4.2

Because a pre-DWARF Version 5 consumer will not be able to interpret these even3

to ignore and skip over them, new forms must be considered incompatible additions.4

• The line number table header is substantially revised.5

• The .debug_loc and .debug_ranges sections are replaced by new6

.debug_loclists and .debug_rnglists sections, respectively. These new7

sections have a new (and more efficient) list structure. Attributes that8

reference the predecessor sections must be interpreted differently to access9

the new sections. The new sections encode the same information as their10

predecessors, except that a new default location list entry is added.11

• In a string type, the DW_AT_byte_size attribute is re-defined to always12

describe the size of the string type. (Previously DW_AT_byte_size13

described the size of the optional string length data field if the14

DW_AT_string_length attribute was also present.) In addition, the15

DW_AT_string_length attribute may now refer directly to an object that16

contains the length value.17

While not strictly an incompatibility, the macro information representation is18

completely new; further, producers and consumers may optionally continue to19

support the older representation. While the two representations cannot both be20

used in the same compilation unit, they can co-exist in executable or shared21

images.22

Similar comments apply to replacement of the .debug_pubnames and23

.debug_pubtypes sections with the new .debug_names section.24

1.6 Changes from Version 3 to Version 425

The following is a list of the major changes made to the DWARF Debugging26

Information Format since Version 3 was published. The list is not meant to be27

exhaustive.28

• Reformulate Section 2.6 (Location Descriptions) to better distinguish29

DWARF location descriptions, which compute the location where a value is30

found (such as an address in memory or a register name) from DWARF31

expressions, which compute a final value (such as an array bound).32

• Add support for bundled instructions on machine architectures where33

instructions do not occupy a whole number of bytes.34

July 15 2024 ***WORKING DRAFT*** Page 10

Chapter 1. Introduction

• Add a new attribute form for section offsets, DW_FORM_sec_offset, to1

replace the use of DW_FORM_data4 and DW_FORM_data8 for section2

offsets.3

• Add an attribute, DW_AT_main_subprogram, to identify the main4

subprogram of a program.5

• Define default array lower bound values for each supported language.6

• Add a new technique using separate type units, type signatures and7

COMDAT sections to improve compression and duplicate elimination of8

DWARF information.9

• Add support for new C++ language constructs, including rvalue references,10

generalized constant expressions, Unicode character types and template11

aliases.12

• Clarify and generalize support for packed arrays and structures.13

• Add new line number table support to facilitate profile based compiler14

optimization.15

• Add additional support for template parameters in instantiations.16

• Add support for strongly typed enumerations in languages (such as C++)17

that have two kinds of enumeration declarations.18

• Add the option for the DW_AT_high_pc value of a program unit or scope19

to be specified as a constant offset relative to the corresponding20

DW_AT_low_pc value.21

DWARF Version 4 is compatible with DWARF Version 3 except as follows:22

• DWARF attributes that use any of the new forms of attribute value23

representation (for section offsets, flag compression, type signature24

references, and so on) cannot be read by DWARF Version 3 consumers25

because the consumer will not know how to skip over the unexpected form26

of data.27

• DWARF frame and line number table sections include additional fields that28

affect the location and interpretation of other data in the section.29

1.7 Changes from Version 2 to Version 330

The following is a list of the major differences between Version 2 and Version 3 of31

the DWARF Debugging Information Format. The list is not meant to be32

exhaustive.33

July 15 2024 ***WORKING DRAFT*** Page 11

Chapter 1. Introduction

• Make provision for DWARF information files that are larger than 4 GBytes.1

• Allow attributes to refer to debugging information entries in other shared2

libraries.3

• Add support for Fortran 90 modules as well as allocatable array and4

pointer types.5

• Add additional base types for C (as revised for 1999).6

• Add support for Java and COBOL.7

• Add namespace support for C++.8

• Add an optional section for global type names (similar to the global section9

for objects and functions).10

• Adopt UTF-8 as the preferred representation of program name strings.11

• Add improved support for optimized code (discontiguous scopes, end of12

prologue determination, multiple section code generation).13

• Improve the ability to eliminate duplicate DWARF information during14

linking.15

DWARF Version 3 is compatible with DWARF Version 2 except as follows:16

• Certain very large values of the initial length fields that begin DWARF17

sections as well as certain structures are reserved to act as escape codes for18

future extension; one such extension is defined to increase the possible size19

of DWARF descriptions (see Section 7.4 on page 203).20

• References that use the attribute form DW_FORM_ref_addr are specified to21

be four bytes in the DWARF 32-bit format and eight bytes in the DWARF22

64-bit format, while DWARF Version 2 specifies that such references have23

the same size as an address on the target system (see Sections 7.4 on24

page 203 and 7.5.4 on page 216).25

• The return_address_register field in a Common Information Entry record26

for call frame information is changed to unsigned LEB representation (see27

Section 6.4.1 on page 179).28

1.8 Changes from Version 1 to Version 229

DWARF Version 2 describes the second generation of debugging information30

based on the DWARF format. While DWARF Version 2 provides new debugging31

information not available in Version 1, the primary focus of the changes for32

July 15 2024 ***WORKING DRAFT*** Page 12

Chapter 1. Introduction

Version 2 is the representation of the information, rather than the information1

content itself. The basic structure of the Version 2 format remains as in Version 1:2

the debugging information is represented as a series of debugging information3

entries, each containing one or more attributes (name/value pairs). The Version 24

representation, however, is much more compact than the Version 15

representation. In some cases, this greater density has been achieved at the6

expense of additional complexity or greater difficulty in producing and7

processing the DWARF information. The definers believe that the reduction in8

I/O and in memory paging should more than make up for any increase in9

processing time.10

The representation of information changed from Version 1 to Version 2, so that11

Version 2 DWARF information is not binary compatible with Version 112

information. To make it easier for consumers to support both Version 1 and13

Version 2 DWARF information, the Version 2 information has been moved to a14

different object file section, .debug_info.15

A summary of the major changes made in DWARF Version 2 compared to the DWARF16

Version 1 may be found in the DWARF Version 2 document.17

July 15 2024 ***WORKING DRAFT*** Page 13

Chapter 1. Introduction

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 14

Chapter 21

General Description2

2.1 The Debugging Information Entry (DIE)3

DWARF uses a series of debugging information entries (DIEs) to define a4

low-level representation of a source program. Each debugging information entry5

consists of an identifying tag and a series of attributes. An entry, or group of6

entries together, provide a description of a corresponding entity in the source7

program. The tag specifies the class to which an entry belongs and the attributes8

define the specific characteristics of the entry.9

The set of tag names is listed in Table 2.1 on the following page. The debugging10

information entries they identify are described in Chapters 3, 4 and 5.11

The debugging information entry descriptions in Chapters 3, 4 and 5 generally include12

mention of most, but not necessarily all, of the attributes that are normally or possibly13

used with the entry. Some attributes, whose applicability tends to be pervasive and14

invariant across many kinds of debugging information entries, are described in this15

section and not necessarily mentioned in all contexts where they may be appropriate.16

Examples include DW_AT_artificial, the declaration coordinates, and17

DW_AT_description, among others.18

The debugging information entries are contained in the .debug_info and/or19

.debug_info.dwo sections of an object file.20

Optionally, debugging information may be partitioned such that the majority of21

the debugging information can remain in individual object files without being22

processed by the linker. See Section 7.3.2 on page 194 and Appendix F on23

page 416 for details.24

July 15 2024 ***WORKING DRAFT*** Page 15

Chapter 2. General Description

Table 2.1: Tag names

DW_TAG_access_declaration
DW_TAG_array_type
DW_TAG_atomic_type
DW_TAG_base_type
DW_TAG_call_site
DW_TAG_call_site_parameter
DW_TAG_catch_block
DW_TAG_class_type
DW_TAG_coarray_type
DW_TAG_common_block
DW_TAG_common_inclusion
DW_TAG_compile_unit
DW_TAG_condition
DW_TAG_const_type
DW_TAG_constant
DW_TAG_dwarf_procedure
DW_TAG_dynamic_type
DW_TAG_entry_point
DW_TAG_enumeration_type
DW_TAG_enumerator
DW_TAG_file_type
DW_TAG_formal_parameter
DW_TAG_friend
DW_TAG_generic_subrange
DW_TAG_immutable_type
DW_TAG_imported_declaration
DW_TAG_imported_module
DW_TAG_imported_unit
DW_TAG_inheritance
DW_TAG_inlined_subroutine
DW_TAG_interface_type
DW_TAG_label
DW_TAG_lexical_block
DW_TAG_member

DW_TAG_module
DW_TAG_namelist
DW_TAG_namelist_item
DW_TAG_namespace
DW_TAG_packed_type
DW_TAG_partial_unit
DW_TAG_pointer_type
DW_TAG_ptr_to_member_type
DW_TAG_reference_type
DW_TAG_restrict_type
DW_TAG_rvalue_reference_type
DW_TAG_set_type
DW_TAG_shared_type
DW_TAG_skeleton_unit
DW_TAG_string_type
DW_TAG_structure_type
DW_TAG_subprogram
DW_TAG_subrange_type
DW_TAG_subroutine_type
DW_TAG_template_alias
DW_TAG_template_type_parameter
DW_TAG_template_value_parameter
DW_TAG_thrown_type
DW_TAG_try_block
DW_TAG_typedef
DW_TAG_type_unit
DW_TAG_union_type
DW_TAG_unspecified_parameters
DW_TAG_unspecified_type
DW_TAG_variable
DW_TAG_variant
DW_TAG_variant_part
DW_TAG_volatile_type
DW_TAG_with_stmt

July 15 2024 ***WORKING DRAFT*** Page 16

Chapter 2. General Description

As a further option, debugging information entries and other debugging1

information that are the same in multiple executable or shared object files may be2

found in a separate supplementary object file that contains supplementary debug3

sections. See Section 7.3.6 on page 202 for further details.4

2.2 Attribute Types5

Each attribute value is characterized by an attribute name. No more than one6

attribute with a given name may appear in any debugging information entry.7

There are no limitations on the ordering of attributes within a debugging8

information entry.9

The attributes are listed in Table 2.2 following.10

Table 2.2: Attribute names

Attribute∗ Usage
DW_AT_abstract_origin Inline instances of inline subprograms

Out-of-line instances of inline subprograms
DW_AT_accessibility Access declaration (C++, Ada)

Accessibility of base or inherited class (C++)
Accessibility of data member or member
function

DW_AT_address_class Pointer or reference types
Subroutine or subroutine type

DW_AT_addr_base Base offset for address table
DW_AT_alignment Non-default alignment of type, subprogram

or variable
DW_AT_allocated Allocation status of types
DW_AT_artificial Objects or types that are not actually declared

in the source
DW_AT_associated Association status of types
DW_AT_base_types Primitive data types of compilation unit
DW_AT_bias Integer bias added to an encoded value
DW_AT_binary_scale Binary scale factor for fixed-point type

Continued on next page
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

July 15 2024 ***WORKING DRAFT*** Page 17

Chapter 2. General Description

Attribute∗ Identifies or Specifies
DW_AT_bit_size Size of a base type in bits

Size of a data member in bits
DW_AT_bit_stride Array element stride (of array type)

Subrange stride (dimension of array type)
Enumeration stride (dimension of array type)

DW_AT_byte_size Size of a data object or data type in bytes
DW_AT_byte_stride Array element stride (of array type)

Subrange stride (dimension of array type)
Enumeration stride (dimension of array type)

DW_AT_call_all_calls All tail and normal calls in a subprogram are
described by call site entries

DW_AT_call_all_source_calls All tail, normal and inlined calls in a
subprogram are described by call site and
inlined subprogram entries

DW_AT_call_all_tail_calls All tail calls in a subprogram are described
by call site entries

DW_AT_call_column Column position of inlined subroutine call
Column position of call site of non-inlined
call

DW_AT_call_data_location Address of the value pointed to by an
argument passed in a call

DW_AT_call_data_value Value pointed to by an argument passed in a
call

DW_AT_call_file File containing inlined subroutine call
File containing call site of non-inlined call

DW_AT_call_line Line number of inlined subroutine call
Line containing call site of non-inlined call

DW_AT_call_origin Subprogram called in a call
DW_AT_call_parameter Parameter entry in a call
DW_AT_call_pc Address of the call instruction in a call
DW_AT_call_return_pc Return address from a call
DW_AT_call_tail_call Call is a tail call

Continued on next page
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

July 15 2024 ***WORKING DRAFT*** Page 18

Chapter 2. General Description

Attribute∗ Identifies or Specifies
DW_AT_call_target Address of called routine in a call
DW_AT_call_target_clobbered Address of called routine, which may be

clobbered, in a call
DW_AT_call_value Argument value passed in a call
DW_AT_calling_convention Calling convention for subprograms

Calling convention for types
DW_AT_common_reference Common block usage
DW_AT_comp_dir Compilation directory
DW_AT_const_expr Compile-time constant object

Compile-time constant function
DW_AT_const_value Constant object

Enumeration literal value
Template value parameter

DW_AT_containing_type Containing type of pointer to member type
DW_AT_count Elements of subrange type
DW_AT_data_bit_offset Base type bit location

Data member bit location
DW_AT_data_location Indirection to actual data
DW_AT_data_member_location Data member location

Inherited member location
DW_AT_decimal_scale Decimal scale factor
DW_AT_decimal_sign Decimal sign representation
DW_AT_decl_column Column position of source declaration
DW_AT_decl_file File containing source declaration
DW_AT_decl_line Line number of source declaration
DW_AT_declaration Incomplete, non-defining, or separate entity

declaration
DW_AT_defaulted Whether a member function has been

declared as default
DW_AT_default_value Default value of parameter
DW_AT_deleted Whether a member has been declared as

deleted

Continued on next page
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

July 15 2024 ***WORKING DRAFT*** Page 19

Chapter 2. General Description

Attribute∗ Identifies or Specifies
DW_AT_description Artificial name or description
DW_AT_digit_count Digit count for packed decimal or numeric

string type
DW_AT_discr Discriminant of variant part
DW_AT_discr_list List of discriminant values
DW_AT_discr_value Discriminant value
DW_AT_dwo_name Name of split DWARF object file
DW_AT_elemental Elemental property of a subroutine
DW_AT_encoding Encoding of base type
DW_AT_endianity Endianity of data
DW_AT_entry_pc Entry address of a scope (compilation unit,

subprogram, and so on)
DW_AT_enum_class Type safe enumeration definition
DW_AT_explicit Explicit property of member function
DW_AT_export_symbols Export (inline) symbols of namespace

Export symbols of a structure, union or class
DW_AT_extension Previous namespace extension or original

namespace
DW_AT_external External subroutine

External variable
DW_AT_frame_base Subroutine frame base address
DW_AT_friend Friend relationship
DW_AT_high_pc Contiguous range of code addresses
DW_AT_identifier_case Identifier case rule
DW_AT_import Imported declaration

Imported unit
Namespace alias
Namespace using declaration
Namespace using directive

DW_AT_inline Abstract instance
Inlined subroutine

DW_AT_is_optional Optional parameter

Continued on next page
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

July 15 2024 ***WORKING DRAFT*** Page 20

Chapter 2. General Description

Attribute∗ Identifies or Specifies
DW_AT_language_name Programming language name
DW_AT_language_version Programming language version
DW_AT_linkage_name Object file linkage name of an entity
DW_AT_location Data object location
DW_AT_loclists_base Location lists base
DW_AT_low_pc Code address or range of addresses

Base address of scope
DW_AT_lower_bound Lower bound of subrange
DW_AT_macros Macro preprocessor information

(#define, #undef, and so on in C, C++ and
similar languages)

DW_AT_main_subprogram Main or starting subprogram
Unit containing main or starting subprogram

DW_AT_mutable Mutable property of member data
DW_AT_name Name of declaration

Path name of compilation source
DW_AT_namelist_item Namelist item
DW_AT_noreturn “no return” property of a subprogram
DW_AT_num_lanes Number of implicitly parallel lanes
DW_AT_object_pointer Object (this, self) pointer of member

function
DW_AT_ordering Array row/column ordering
DW_AT_picture_string Picture string for numeric string type
DW_AT_priority Module priority
DW_AT_producer Compiler identification
DW_AT_prototyped Subroutine prototype
DW_AT_pure Pure property of a subroutine
DW_AT_ranges Non-contiguous range of code addresses
DW_AT_rank Dynamic number of array dimensions
DW_AT_recursive Recursive property of a subroutine
DW_AT_reference &-qualified non-static member function

(C++)

Continued on next page
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

July 15 2024 ***WORKING DRAFT*** Page 21

Chapter 2. General Description

Attribute∗ Identifies or Specifies
DW_AT_return_addr Subroutine return address save location
DW_AT_rnglists_base Base offset for range lists
DW_AT_rvalue_reference &&-qualified non-static member function

(C++)
DW_AT_scale_divisor Denominator of rational scale factor
DW_AT_scale_multiplier Numerator of rational scale factor
DW_AT_sibling Debugging information entry relationship
DW_AT_signature Type signature
DW_AT_small Scale factor for fixed-point type
DW_AT_specification Incomplete, non-defining, or separate

declaration corresponding to a declaration
DW_AT_start_scope Reduced scope of declaration
DW_AT_static_link Location of uplevel frame
DW_AT_stmt_list Line number information for unit
DW_AT_string_length String length of string type
DW_AT_string_length_bit_size Size of string length of string type
DW_AT_string_length_byte_size Size of string length of string type
DW_AT_str_offsets1 String offsets information for unit
DW_AT_tensor Tensor (array) type
DW_AT_threads_scaled Array bound THREADS scale factor (UPC)
DW_AT_trampoline Target subroutine
DW_AT_type Type of call site

Type of string type components
Type of subroutine return
Type of declaration

DW_AT_upper_bound Upper bound of subrange
DW_AT_use_location Member location for pointer to member type
DW_AT_use_UTF8 Compilation unit uses UTF-8 strings
DW_AT_variable_parameter Non-constant parameter flag

Continued on next page
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

1 DW_FORM_str_offsets is new in DWARF Version 6. It replaces DW_AT_str_offsets_base
which is deprecated.

July 15 2024 ***WORKING DRAFT*** Page 22

Chapter 2. General Description

Attribute∗ Identifies or Specifies
DW_AT_virtuality Virtuality attribute
DW_AT_visibility Visibility of declaration
DW_AT_vtable_elem_location Virtual function vtable slot
∗Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

The permissible values for an attribute belong to one or more classes of attribute1

value forms. Each form class may be represented in one or more ways. For2

example, some attribute values consist of a single piece of constant data.3

“Constant data” is the class of attribute value that those attributes may have.4

There are several representations of constant data, including fixed length data of5

one, two, four, eight or 16 bytes in size, and variable length data). The particular6

representation for any given instance of an attribute is encoded along with the7

attribute name as part of the information that guides the interpretation of a8

debugging information entry.9

Attribute value forms belong to one of the classes shown in Table 2.3 following.10

Table 2.3: Classes of attribute value

Attribute Class General Use and Encoding
address Refers to some location in the address space of the

described program.
addrptr Specifies a location in the DWARF section that holds a

series of machine address values. Certain attributes use
one of these addresses by indexing relative to this location.

block An arbitrary number of uninterpreted bytes of data. The
number of data bytes may be implicit from context or
explicitly specified by an initial unsigned LEB128 value
(see Section 7.6 on page 230) that precedes that number of
data bytes.

constant One, two, four, eight or sixteen bytes of uninterpreted data,
or data encoded in the variable length format known as
LEB128 (see Section 7.6 on page 230).

exprval A DWARF expression yielding a value (see Section 2.5 on
page 26). A leading unsigned ULEB128 value (see Section
7.6 on page 230) specifies the number of bytes in the
expression.

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 23

Chapter 2. General Description

Attribute Class General Use and Encoding
flag A small constant that indicates the presence or absence of

an attribute.
lineptr Specifies a location in the DWARF section that holds line

number information.
locdesc A DWARF location description (see Section 2.6 on

page 39). A leading unsigned ULEB128 value (see Section
7.6 on page 230) specifies the number of bytes in the
location description.

vallist, loclist,
loclistsptr

Specifies a location in the DWARF section that holds value
lists and location lists, which describe objects whose
attributes or location can change during their lifetime.

macptr Specifies a location in the DWARF section that holds macro
definition information.

reference Refers to one of the debugging information entries that
describe the program. There are four types of reference.
The first is an offset relative to the beginning of the
compilation unit in which the reference occurs and must
refer to an entry within that same compilation unit. The
second type of reference is the offset of a debugging
information entry in any compilation unit, including one
different from the unit containing the reference. The third
type of reference is an indirect reference to a type
definition using an 8-byte signature for that type. The
fourth type of reference is a reference from within the
.debug_info section of the executable or shared object file
to a debugging information entry in the .debug_info
section of a supplementary object file.

rnglist,
rnglistsptr

Specifies a location in the DWARF section that holds
non-contiguous address ranges.

string A null-terminated sequence of zero or more (non-null)
bytes. Data in this class are generally printable strings.
Strings may be represented directly in the debugging
information entry or as an offset in a separate string table.

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 24

Chapter 2. General Description

Attribute Class General Use and Encoding
stroffsetsptr Specifies a location in the DWARF section that holds a

series of offsets into the DWARF section that holds strings.
Certain attributes use one of these offsets by indexing
relative to this location. The resulting offset is then used to
index into the DWARF string section.

2.3 Relationship of Debugging Information Entries1

A variety of needs can be met by permitting a single debugging information entry to2

“own” an arbitrary number of other debugging entries and by permitting the same3

debugging information entry to be one of many owned by another debugging information4

entry. This makes it possible, for example, to describe the static block structure within a5

source file, to show the members of a structure, union, or class, and to associate6

declarations with source files or source files with shared object files.7

The ownership relationship of debugging information entries is achieved8

naturally because the debugging information is represented as a tree. The nodes9

of the tree are the debugging information entries themselves. The child entries of10

any node are exactly those debugging information entries owned by that node.11

While the ownership relation of the debugging information entries is represented as a12

tree, other relations among the entries exist, for example, a reference from an entry13

representing a variable to another entry representing the type of that variable. If all such14

relations are taken into account, the debugging entries form a graph, not a tree.15

The tree itself is represented by flattening it in prefix order. Each debugging16

information entry is defined either to have child entries or not to have child17

entries (see Section 7.5.3 on page 211). If an entry is defined not to have children,18

the next physically succeeding entry is a sibling. If an entry is defined to have19

children, the next physically succeeding entry is its first child. Additional20

children are represented as siblings of the first child. A chain of sibling entries is21

terminated by a null entry.22

In cases where a producer of debugging information feels that it will be23

important for consumers of that information to quickly scan chains of sibling24

entries, while ignoring the children of individual siblings, that producer may25

attach a DW_AT_sibling attribute to any debugging information entry. The value26

of this attribute is a reference to the sibling entry of the entry to which the27

attribute is attached.28

July 15 2024 ***WORKING DRAFT*** Page 25

Chapter 2. General Description

2.4 Target Addresses1

Addresses, bytes and bits in DWARF use the numbering and direction2

conventions that are appropriate to the current language on the target system.3

Many places in this document refer to the size of an address on the target4

architecture (or equivalently, target machine) to which a DWARF description5

applies. For processors which can be configured to have different address sizes6

or different instruction sets, the intent is to refer to the configuration which is7

either the default for that processor or which is specified by the object file or8

executable file which contains the DWARF information.9

For example, if a particular target architecture supports both 32-bit and 64-bit addresses,10

the compiler will generate an object file which specifies that it contains executable code11

generated for one or the other of these address sizes. In that case, the DWARF debugging12

information contained in this object file will use the same address size.13

2.4.1 Reserved Target Address for Non-Existent Entity14

The target address consisting of the largest representable address value (for15

example, 0xffffffff for a 32-bit address) is reserved to indicate that there is no16

entity designated by that address.17

In some cases a producer may emit machine code or allocate storage for an entity, but a18

linker or other subsequent processing step may remove that entity. In that case, rather19

than be required to rewrite the DWARF description to eliminate the relevant DWARF20

construct that contains the address of that entity, the processing step may simply update21

the address value to the reserved value.22

2.5 DWARF Expressions23

DWARF expressions describe how to compute a value or specify a location. They24

are expressed in terms of DWARF operations that operate on a stack of values.25

A DWARF expression is encoded as a stream of operations, each consisting of an26

opcode followed by zero or more literal operands. The number of operands is27

implied by the opcode.28

In addition to the general operations that are defined here, operations that are29

specific to location descriptions are defined in Section 2.6 on page 39.30

July 15 2024 ***WORKING DRAFT*** Page 26

Chapter 2. General Description

2.5.1 General Operations1

Each general operation represents a postfix operation on a simple stack machine.2

Each element of the stack has a type and a value, and can represent a value of3

any supported base type of the target machine. Instead of a base type, elements4

can have a generic type, which is an integral type that has the size of an address5

on the target machine and unspecified signedness. The value on the top of the6

stack after “executing” the DWARF expression is taken to be the result (the7

address of the object, the value of the array bound, the length of a dynamic8

string, the desired value itself, and so on).9

The generic type is the same as the unspecified type used for stack operations defined in10

DWARF Version 4 and before.11

2.5.1.1 Literal Encodings12

The following operations all push a value onto the DWARF stack. Operations13

other than DW_OP_const_type push a value with the generic type, and if the14

value of a constant in one of these operations is larger than can be stored in a15

single stack element, the value is truncated to the element size and the low-order16

bits are pushed on the stack.17

1. DW_OP_lit0, DW_OP_lit1, . . . , DW_OP_lit3118

The DW_OP_lit<n> operations encode the unsigned literal values from 019

through 31, inclusive.20

2. DW_OP_addr21

The DW_OP_addr operation has a single operand that encodes a machine22

address and whose size is the size of an address on the target machine.23

3. DW_OP_const1u, DW_OP_const2u, DW_OP_const4u, DW_OP_const8u24

The single operand of a DW_OP_const<n>u operation provides a 1, 2, 4, or25

8-byte unsigned integer constant, respectively.26

4. DW_OP_const1s, DW_OP_const2s, DW_OP_const4s, DW_OP_const8s27

The single operand of a DW_OP_const<n>s operation provides a 1, 2, 4, or28

8-byte signed integer constant, respectively.29

5. DW_OP_constu30

The single operand of the DW_OP_constu operation provides an unsigned31

LEB128 integer constant.32

6. DW_OP_consts33

The single operand of the DW_OP_consts operation provides a signed34

LEB128 integer constant.35

July 15 2024 ***WORKING DRAFT*** Page 27

Chapter 2. General Description

7. DW_OP_addrx1

The DW_OP_addrx operation has a single operand that encodes an unsigned2

LEB128 value, which is a zero-based index into the .debug_addr section,3

where a machine address is stored. This index is relative to the value of the4

DW_AT_addr_base attribute of the associated compilation unit.5

8. DW_OP_constx6

The DW_OP_constx operation has a single operand that encodes an unsigned7

LEB128 value, which is a zero-based index into the .debug_addr section,8

where a constant, the size of a machine address, is stored. This index is9

relative to the value of the DW_AT_addr_base attribute of the associated10

compilation unit.11

The DW_OP_constx operation is provided for constants that require link-time12

relocation but should not be interpreted by the consumer as a relocatable address (for13

example, offsets to thread-local storage).14

9. DW_OP_const_type15

The DW_OP_const_type operation takes three operands. The first operand is16

an unsigned LEB128 integer that represents the offset of a debugging17

information entry in the current compilation unit, which must be a18

DW_TAG_base_type entry that provides the type of the constant provided.19

The second operand is 1-byte unsigned integer that specifies the size of the20

constant value, which is the same as the size of the base type referenced by21

the first operand. The third operand is a sequence of bytes of the given size22

that is interpreted as a value of the referenced type.23

While the size of the constant can be inferred from the base type definition, it is24

encoded explicitly into the operation so that the operation can be parsed easily25

without reference to the .debug_info section.26

2.5.1.2 Register Values27

The following operations push a value onto the stack that is either part or all of28

the contents of a register or the result of adding the contents of a register to a29

given signed offset. DW_OP_regval_type pushes the contents of a register30

together with the given base type. DW_OP_regval_bits pushes the partial31

contents of a register together with the generic type. The other operations push32

the result of adding the contents of a register to a given signed offset together33

with the generic type.34

July 15 2024 ***WORKING DRAFT*** Page 28

Chapter 2. General Description

1. DW_OP_fbreg1

The DW_OP_fbreg operation provides a signed LEB128 offset from the2

address specified by the location description in the DW_AT_frame_base3

attribute of the current function.4

This is typically a stack pointer register plus or minus some offset.5

2. DW_OP_breg0, DW_OP_breg1, . . . , DW_OP_breg316

The single operand of the DW_OP_breg<n> operations provides a signed7

LEB128 offset from the contents of the specified register.8

3. DW_OP_bregx9

The DW_OP_bregx operation provides the sum of two values specified by its10

two operands. The first operand is a register number which is specified by an11

unsigned LEB128 number. The second operand is a signed LEB128 offset.12

4. DW_OP_regval_type13

The DW_OP_regval_type operation pushes the contents of a given register14

interpreted as a value of a given type. The first operand is an unsigned15

LEB128 number, which identifies a register whose contents is to be pushed16

onto the stack. The second operand is an unsigned LEB128 number that17

represents the offset of a debugging information entry in the current18

compilation unit, which must be a DW_TAG_base_type entry that provides19

the type of the value contained in the specified register.20

5. DW_OP_regval_bits21

The DW_OP_regval_bits operation takes a single unsigned LEB128 integer22

operand, which gives the number of bits to read. This number must be23

smaller or equal to the bit size of the generic type. It pops the top two stack24

elements and interprets the top element as an unsigned bit offset from the25

least significant bit end and the other as a register number identifying the26

register from which to extract the value. If the extracted value is smaller than27

the size of the generic type, it is zero extended.28

2.5.1.3 Stack Operations29

The following operations manipulate the DWARF stack. Operations that index30

the stack assume that the top of the stack (most recently added entry) has index 0.31

Each entry on the stack has an associated type.32

1. DW_OP_dup33

The DW_OP_dup operation duplicates the value (including its type34

identifier) at the top of the stack.35

July 15 2024 ***WORKING DRAFT*** Page 29

Chapter 2. General Description

2. DW_OP_drop1

The DW_OP_drop operation pops the value (including its type identifier) at2

the top of the stack.3

3. DW_OP_pick4

The single operand of the DW_OP_pick operation provides a 1-byte index. A5

copy of the stack entry (including its type identifier) with the specified index6

(0 through 255, inclusive) is pushed onto the stack.7

4. DW_OP_over8

The DW_OP_over operation duplicates the entry currently second in the9

stack at the top of the stack. This is equivalent to a DW_OP_pick operation,10

with index 1.11

5. DW_OP_swap12

The DW_OP_swap operation swaps the top two stack entries. The entry at13

the top of the stack (including its type identifier) becomes the second stack14

entry, and the second entry (including its type identifier) becomes the top of15

the stack.16

6. DW_OP_rot17

The DW_OP_rot operation rotates the first three stack entries. The entry at the18

top of the stack (including its type identifier) becomes the third stack entry,19

the second entry (including its type identifier) becomes the top of the stack,20

and the third entry (including its type identifier) becomes the second entry.21

7. DW_OP_deref22

The DW_OP_deref operation pops the top stack entry and treats it as an23

address. The popped value must have an integral type. The value retrieved24

from that address is pushed, and has the generic type. The size of the data25

retrieved from the dereferenced address is the size of an address on the target26

machine.27

8. DW_OP_deref_size28

The DW_OP_deref_size operation behaves like the DW_OP_deref operation:29

it pops the top stack entry and treats it as an address. The popped value must30

have an integral type. The value retrieved from that address is pushed, and31

has the generic type. In the DW_OP_deref_size operation, however, the size32

in bytes of the data retrieved from the dereferenced address is specified by33

the single operand. This operand is a 1-byte unsigned integral constant34

whose value may not be larger than the size of the generic type. The data35

retrieved is zero extended to the size of an address on the target machine36

before being pushed onto the expression stack.37

July 15 2024 ***WORKING DRAFT*** Page 30

Chapter 2. General Description

9. DW_OP_deref_type1

The DW_OP_deref_type operation behaves like the DW_OP_deref_size2

operation: it pops the top stack entry and treats it as an address. The popped3

value must have an integral type. The value retrieved from that address is4

pushed together with a type identifier. In the DW_OP_deref_type operation,5

the size in bytes of the data retrieved from the dereferenced address is6

specified by the first operand. This operand is a 1-byte unsigned integral7

constant whose value which is the same as the size of the base type8

referenced by the second operand. The second operand is an unsigned9

LEB128 integer that represents the offset of a debugging information entry in10

the current compilation unit, which must be a DW_TAG_base_type entry that11

provides the type of the data pushed.12

While the size of the pushed value could be inferred from the base type definition, it is13

encoded explicitly into the operation so that the operation can be parsed easily14

without reference to the .debug_info section.15

10. DW_OP_xderef16

The DW_OP_xderef operation provides an extended dereference mechanism.17

The entry at the top of the stack is treated as an address. The second stack18

entry is treated as an “address space identifier” for those architectures that19

support multiple address spaces. Both of these entries must have integral20

type identifiers. The top two stack elements are popped, and a data item is21

retrieved through an implementation-defined address calculation and pushed22

as the new stack top together with the generic type identifier. The size of the23

data retrieved from the dereferenced address is the size of the generic type.24

11. DW_OP_xderef_size25

The DW_OP_xderef_size operation behaves like the DW_OP_xderef26

operation. The entry at the top of the stack is treated as an address. The27

second stack entry is treated as an “address space identifier” for those28

architectures that support multiple address spaces. Both of these entries must29

have integral type identifiers. The top two stack elements are popped, and a30

data item is retrieved through an implementation-defined address calculation31

and pushed as the new stack top. In the DW_OP_xderef_size operation,32

however, the size in bytes of the data retrieved from the dereferenced address33

is specified by the single operand. This operand is a 1-byte unsigned integral34

constant whose value may not be larger than the size of an address on the35

target machine. The data retrieved is zero extended to the size of an address36

on the target machine before being pushed onto the expression stack together37

with the generic type identifier.38

July 15 2024 ***WORKING DRAFT*** Page 31

Chapter 2. General Description

12. DW_OP_xderef_type1

The DW_OP_xderef_type operation behaves like the DW_OP_xderef_size2

operation: it pops the top two stack entries, treats them as an address and an3

address space identifier, and pushes the value retrieved. In the4

DW_OP_xderef_type operation, the size in bytes of the data retrieved from5

the dereferenced address is specified by the first operand. This operand is a6

1-byte unsigned integral constant whose value value which is the same as the7

size of the base type referenced by the second operand. The second operand8

is an unsigned LEB128 integer that represents the offset of a debugging9

information entry in the current compilation unit, which must be a10

DW_TAG_base_type entry that provides the type of the data pushed.11

13. DW_OP_push_object_address12

The DW_OP_push_object_address operation pushes the address of the object13

currently being evaluated as part of evaluation of a user presented14

expression. This object may correspond to an independent variable described15

by its own debugging information entry or it may be a component of an16

array, structure, or class whose address has been dynamically determined by17

an earlier step during user expression evaluation.18

This operator provides explicit functionality (especially for arrays involving19

descriptors) that is analogous to the implicit push of the base address of a structure20

prior to evaluation of a DW_AT_data_member_location to access a data member of a21

structure. For an example, see Appendix D.2 on page 306.22

14. DW_OP_form_tls_address23

The DW_OP_form_tls_address operation pops a value from the stack, which24

must have an integral type identifier, translates this value into an address in25

the thread-local storage for a thread, and pushes the address onto the stack26

together with the generic type identifier. The meaning of the value on the top27

of the stack prior to this operation is defined by the run-time environment. If28

the run-time environment supports multiple thread-local storage blocks for a29

single thread, then the block corresponding to the executable or shared30

library containing this DWARF expression is used.31

Some implementations of C, C++, Fortran, and other languages, support a32

thread-local storage class. Variables with this storage class have distinct values and33

addresses in distinct threads, much as automatic variables have distinct values and34

addresses in each function invocation. Typically, there is a single block of storage35

containing all thread-local variables declared in the main executable, and a separate36

block for the variables declared in each shared library. Each thread-local variable can37

then be accessed in its block using an identifier. This identifier is typically an offset38

into the block and pushed onto the DWARF stack by one of the39

July 15 2024 ***WORKING DRAFT*** Page 32

Chapter 2. General Description

DW_OP_const<n><x> operations prior to the DW_OP_form_tls_address1

operation. Computing the address of the appropriate block can be complex (in some2

cases, the compiler emits a function call to do it), and difficult to describe using3

ordinary DWARF location descriptions. Instead of forcing complex thread-local4

storage calculations into the DWARF expressions, the DW_OP_form_tls_address5

allows the consumer to perform the computation based on the run-time environment.6

15. DW_OP_call_frame_cfa7

The DW_OP_call_frame_cfa operation pushes the value of the CFA, obtained8

from the Call Frame Information (see Section 6.4 on page 178).9

Although the value of DW_AT_frame_base can be computed using other DWARF10

expression operators, in some cases this would require an extensive location list11

because the values of the registers used in computing the CFA change during a12

subroutine. If the Call Frame Information is present, then it already encodes such13

changes, and it is space efficient to reference that.14

16. DW_OP_push_lane15

The DW_OP_push_lane operation pushes a lane index value of the generic16

type, which provides the context of the lane in which the expression is being17

evaluated. See section 3.3.5 on page 83.18

Producers that widen source code into vectorized machine code may use this19

operation to describe the location of a source variable as function of a single lane in20

the widened machine code.21

Consumers supply the lane argument to obtain the location of the instance of that22

source variable that corresponds to the provided lane argument.23

Examples illustrating many of these stack operations are found in Appendix D.1.2 on24

page 302.25

2.5.1.4 Arithmetic and Logical Operations26

The following provide arithmetic and logical operations. Operands of an27

operation with two operands must have the same type, either the same base type28

or the generic type. The result of the operation which is pushed back has the29

same type as the type of the operand(s).30

If the type of the operands is the generic type, except as otherwise specified, the31

arithmetic operations perform addressing arithmetic, that is, unsigned arithmetic32

that is performed modulo one plus the largest representable address.33

Operations other than DW_OP_abs, DW_OP_div, DW_OP_minus,34

DW_OP_mul, DW_OP_neg and DW_OP_plus require integral types of the35

July 15 2024 ***WORKING DRAFT*** Page 33

Chapter 2. General Description

operand (either integral base type or the generic type). Operations do not cause1

an exception on overflow.2

1. DW_OP_abs3

The DW_OP_abs operation pops the top stack entry, interprets it as a signed4

value and pushes its absolute value. If the absolute value cannot be5

represented, the result is undefined.6

2. DW_OP_and7

The DW_OP_and operation pops the top two stack values, performs a8

bitwise and operation on the two, and pushes the result.9

3. DW_OP_div10

The DW_OP_div operation pops the top two stack values, divides the former11

second entry by the former top of the stack using signed division, and pushes12

the result.13

4. DW_OP_minus14

The DW_OP_minus operation pops the top two stack values, subtracts the15

former top of the stack from the former second entry, and pushes the result.16

5. DW_OP_mod17

The DW_OP_mod operation pops the top two stack values and pushes the18

result of the calculation: former second stack entry modulo the former top of19

the stack.20

6. DW_OP_mul21

The DW_OP_mul operation pops the top two stack entries, multiplies them22

together, and pushes the result.23

7. DW_OP_neg24

The DW_OP_neg operation pops the top stack entry, interprets it as a signed25

value and pushes its negation. If the negation cannot be represented, the26

result is undefined.27

8. DW_OP_not28

The DW_OP_not operation pops the top stack entry, and pushes its bitwise29

complement.30

9. DW_OP_or31

The DW_OP_or operation pops the top two stack entries, performs a bitwise32

or operation on the two, and pushes the result.33

10. DW_OP_plus34

The DW_OP_plus operation pops the top two stack entries, adds them35

together, and pushes the result.36

July 15 2024 ***WORKING DRAFT*** Page 34

Chapter 2. General Description

11. DW_OP_plus_uconst1

The DW_OP_plus_uconst operation pops the top stack entry, adds it to the2

unsigned LEB128 constant operand interpreted as the same type as the3

operand popped from the top of the stack and pushes the result.4

This operation is supplied specifically to be able to encode more field offsets in two5

bytes than can be done with “DW_OP_lit<n> DW_OP_plus.”6

12. DW_OP_shl7

The DW_OP_shl operation pops the top two stack entries, shifts the former8

second entry left (filling with zero bits) by the number of bits specified by the9

former top of the stack, and pushes the result.10

13. DW_OP_shr11

The DW_OP_shr operation pops the top two stack entries, shifts the former12

second entry right logically (filling with zero bits) by the number of bits13

specified by the former top of the stack, and pushes the result.14

14. DW_OP_shra15

The DW_OP_shra operation pops the top two stack entries, shifts the former16

second entry right arithmetically (divide the magnitude by 2, keep the same17

sign for the result) by the number of bits specified by the former top of the18

stack, and pushes the result.19

15. DW_OP_xor20

The DW_OP_xor operation pops the top two stack entries, performs a bitwise21

exclusive-or operation on the two, and pushes the result.22

2.5.1.5 Control Flow Operations23

The following operations provide simple control of the flow of a DWARF24

expression.25

1. DW_OP_le, DW_OP_ge, DW_OP_eq, DW_OP_lt, DW_OP_gt, DW_OP_ne26

The six relational operators each:27

• pop the top two stack values, which have the same type, either the same28

base type or the generic type,29

• compare the operands:30

< former second entry >< relational operator >< former top entry >31

• push the constant value 1 onto the stack if the result of the operation is32

true or the constant value 0 if the result of the operation is false. The33

pushed value has the generic type.34

July 15 2024 ***WORKING DRAFT*** Page 35

Chapter 2. General Description

If the operands have the generic type, the comparisons are performed as1

signed operations.2

2. DW_OP_skip3

DW_OP_skip is an unconditional branch. Its single operand is a 2-byte4

signed integer constant. The 2-byte constant is the number of bytes of the5

DWARF expression to skip forward or backward from the current operation,6

beginning after the 2-byte constant.7

3. DW_OP_bra8

DW_OP_bra is a conditional branch. Its single operand is a 2-byte signed9

integer constant. This operation pops the top of stack. If the value popped is10

not the constant 0, the 2-byte constant operand is the number of bytes of the11

DWARF expression to skip forward or backward from the current operation,12

beginning after the 2-byte constant.13

4. DW_OP_call2, DW_OP_call4, DW_OP_call_ref14

DW_OP_call2, DW_OP_call4, and DW_OP_call_ref perform DWARF15

procedure calls during evaluation of a DWARF expression or location16

description. For DW_OP_call2 and DW_OP_call4, the operand is the 2- or17

4-byte unsigned offset, respectively, of a debugging information entry in the18

current compilation unit. The DW_OP_call_ref operator has a single operand.19

In the 32-bit DWARF format, the operand is a 4-byte unsigned value; in the20

64-bit DWARF format, it is an 8-byte unsigned value (see Section 7.4 on21

page 203). The operand is used as the offset of a debugging information entry22

in the .debug_info section of the current executable or shared object file.23

Operand interpretation of DW_OP_call2, DW_OP_call4 and DW_OP_call_ref is24

exactly like that for DW_FORM_ref2, DW_FORM_ref4 and DW_FORM_ref_addr,25

respectively (see Section 7.5.4 on page 216).26

These operations transfer control of DWARF expression evaluation to the27

DW_AT_location attribute of the referenced debugging information entry. If28

there is no such attribute, then there is no effect. Execution of the DWARF29

expression of a DW_AT_location attribute may add to and/or remove from30

values on the stack. Execution returns to the point following the call when31

the end of the attribute is reached. Values on the stack at the time of the call32

may be used as parameters by the called expression and values left on the33

stack by the called expression may be used as return values by prior34

agreement between the calling and called expressions.35

July 15 2024 ***WORKING DRAFT*** Page 36

Chapter 2. General Description

2.5.1.6 Type Conversions1

The following operations provide for explicit type conversion.2

1. DW_OP_convert3

The DW_OP_convert operation pops the top stack entry, converts it to a4

different type, then pushes the result. It takes one operand, which is an5

unsigned LEB128 integer that represents the offset of a debugging6

information entry in the current compilation unit, or value 0 which represents7

the generic type. If the operand is non-zero, the referenced entry must be a8

DW_TAG_base_type entry that provides the type to which the value is9

converted.10

2. DW_OP_reinterpret11

The DW_OP_reinterpret operation pops the top stack entry, reinterprets the12

bits in its value as a value of a different type, then pushes the result. It takes13

one operand, which is an unsigned LEB128 integer that represents the offset14

of a debugging information entry in the current compilation unit, or value 015

which represents the generic type. If the operand is non-zero, the referenced16

entry must be a DW_TAG_base_type entry that provides the type to which17

the value is converted. The type of the operand and result type must have the18

same size in bits.19

2.5.1.7 Special Operations20

There are these special operations currently defined:21

1. DW_OP_nop22

The DW_OP_nop operation is a place holder. It has no effect on the location23

stack or any of its values.24

2. DW_OP_entry_value25

The DW_OP_entry_value operation pushes the value that an expression26

would have had, or a register location would have held, upon entering the27

current subprogram. It has two operands: an unsigned LEB128 length,28

followed by a block containing a DWARF expression or a register location29

description (see Section 2.6.1.1.3 on page 40). The length operand specifies30

the length in bytes of the block. If the block contains a DWARF expression,31

the DWARF expression is evaluated as if it had been evaluated upon entering32

the current subprogram. The DWARF expression assumes no values are33

present on the DWARF stack initially and results in exactly one value being34

pushed on the DWARF stack when completed. If the block contains a register35

location description, DW_OP_entry_value pushes the value that register held36

upon entering the current subprogram.37

July 15 2024 ***WORKING DRAFT*** Page 37

Chapter 2. General Description

DW_OP_push_object_address is not meaningful inside of this DWARF1

operation.2

The register location description provides a more compact form for the case where the3

value was in a register on entry to the subprogram.4

The values needed to evaluate DW_OP_entry_value could be obtained in several5

ways. The consumer could suspend execution on entry to the subprogram, record6

values needed by DW_OP_entry_value expressions within the subprogram, and then7

continue; when evaluating DW_OP_entry_value, the consumer would use these8

recorded values rather than the current values. Or, when evaluating9

DW_OP_entry_value, the consumer could virtually unwind using the Call Frame10

Information (see Section 6.4 on page 178) to recover register values that might have11

been clobbered since the subprogram entry point.12

3. DW_OP_extended13

The DW_OP_extended opcode encodes an extension operation. It has at least14

one operand: a ULEB128 constant identifying the extension operation. The15

remaining operands are defined by the extension opcode, which are named16

using a prefix of DW_OP_EXT. The extension opcode 0 is reserved.17

4. DW_OP_user_extended18

The DW_OP_user_extended opcode encodes a producer extension operation.19

It has at least one operand: a ULEB128 constant identifying a producer20

extension operation. The remaining operands are defined by the producer21

extension. The producer extension opcode 0 is reserved and cannot be used22

by any producer extension.23

The DW_OP_user_extended encoding space can be understood to supplement the24

space defined by DW_OP_lo_user and DW_OP_hi_user that is allocated by the25

standard for the same purpose.26

2.5.2 Value Lists27

Value lists are used in place of DWARF expressions whenever the value of an28

object’s attribute can change during the lifetime of that object.29

Value lists are contained in a separate object file section, along with location lists30

(see 2.6.2 on page 44).31

A value list is indicated by an attribute whose value is of class vallist (see Section32

7.5.5 on page 221).33

July 15 2024 ***WORKING DRAFT*** Page 38

Chapter 2. General Description

A value list consists of a series of value list entries. The representation of a value1

list is the same as for a location list (see 2.6.2 on page 44), except that bounded2

location description and default location description entries are understood to3

provide DWARF expressions that produce values rather than location4

descriptions.5

The DWARF expressions in value list entries, being expressions and not location6

descriptions, may not contain any of the DWARF operations described in Section 2.6.7

The address ranges defined by the bounded expressions of a value list may8

overlap. When they do, the meaning is undefined if the overlapping expressions9

do not produce the same value.10

2.6 Location Descriptions11

Debugging information must provide consumers a way to find the location of program12

variables, determine the bounds of dynamic arrays and strings, and possibly to find the13

base address of a subroutine’s stack frame or the return address of a subroutine.14

Furthermore, to meet the needs of recent computer architectures and optimization15

techniques, debugging information must be able to describe the location of an object16

whose location changes over the object’s lifetime.17

Information about the location of program objects is provided by location18

descriptions. Location descriptions can be either of two forms:19

1. Single location descriptions, which are a language independent representation20

of addressing rules of arbitrary complexity built from DWARF expressions21

(See Section 2.5 on page 26) and/or other DWARF operations specific to22

describing locations. They are sufficient for describing the location of any23

object as long as its lifetime is either static or the same as the lexical block that24

owns it, excluding any prologue or epilogue ranges, and it does not move25

during its lifetime.26

2. Location lists, which are used to describe objects that have a limited lifetime or27

change their location during their lifetime. Location lists are described in28

Section 2.6.2 on page 44 below.29

Location descriptions are distinguished in a context sensitive manner. As the30

value of an attribute, a single location description is encoded using class locdesc31

and a location list is encoded using class loclist (which serves as an index into a32

separate section containing location lists).33

July 15 2024 ***WORKING DRAFT*** Page 39

Chapter 2. General Description

2.6.1 Single Location Descriptions1

A single location description is either:2

1. A simple location description, representing an object which exists in one3

contiguous piece at the given location, or4

2. A composite location description consisting of one or more simple location5

descriptions, each of which is followed by one composition operation. Each6

simple location description describes the location of one piece of the object;7

each composition operation describes which part of the object is located8

there. Each simple location description that is a DWARF expression is9

evaluated independently of any others.10

2.6.1.1 Simple Location Descriptions11

A simple location description represents one contiguous piece or all of an object12

or value.13

2.6.1.1.1 Empty Location Descriptions14

An empty location description consists of a DWARF expression containing no15

operations. It represents a piece or all of an object that is present in the source but16

not in the object code (perhaps due to optimization).17

2.6.1.1.2 Memory Location Descriptions18

A memory location description consists of a non-empty DWARF expression (see19

Section 2.5 on page 26), whose value is the address of a piece or all of an object or20

other entity in memory.21

2.6.1.1.3 Register Location Descriptions22

A register location description consists of a register name operation, which23

represents a piece or all of an object located in a given register.24

Register location descriptions describe an object (or a piece of an object) that resides in a25

register, while the opcodes listed in Section 2.5.1.2 on page 28 are used to describe an26

object (or a piece of an object) that is located in memory at an address that is contained in27

a register (possibly offset by some constant). A register location description must stand28

alone as the entire description of an object or a piece of an object.29

July 15 2024 ***WORKING DRAFT*** Page 40

Chapter 2. General Description

The following DWARF operations can be used to specify a register location.1

Note that the register number represents a DWARF specific mapping of numbers onto2

the actual registers of a given architecture. The mapping should be chosen to gain optimal3

density and should be shared by all users of a given architecture. It is recommended that4

this mapping be defined by the ABI authoring committee for each architecture.5

1. DW_OP_reg0, DW_OP_reg1, ..., DW_OP_reg316

The DW_OP_reg<n> operations encode the names of up to 32 registers,7

numbered from 0 through 31, inclusive. The object addressed is in register n.8

2. DW_OP_regx9

The DW_OP_regx operation has a single unsigned LEB128 literal operand10

that encodes the name of a register.11

These operations name a register location. To fetch the contents of a register, it is12

necessary to use one of the register based addressing operations, such as DW_OP_bregx13

(Section 2.5.1.2 on page 28).14

2.6.1.1.4 Implicit Location Descriptions15

An implicit location description represents a piece or all of an object which has16

no actual location but whose contents are nonetheless either known or known to17

be undefined.18

The following DWARF operations may be used to specify a value that has no19

location in the program but is a known constant or is computed from other20

locations and values in the program.21

1. DW_OP_implicit_value22

The DW_OP_implicit_value operation specifies an immediate value using23

two operands: an unsigned LEB128 length, followed by a sequence of bytes24

of the given length that contain the value.25

2. DW_OP_stack_value26

The DW_OP_stack_value operation specifies that the object does not exist in27

memory but its value is nonetheless known and is at the top of the DWARF28

expression stack. In this form of location description, the DWARF expression29

represents the actual value of the object, rather than its location. The30

DW_OP_stack_value operation terminates the expression.31

July 15 2024 ***WORKING DRAFT*** Page 41

Chapter 2. General Description

3. DW_OP_implicit_pointer1

An optimizing compiler may eliminate a pointer, while still retaining the value that2

the pointer addressed. DW_OP_implicit_pointer allows a producer to describe this3

value.4

The DW_OP_implicit_pointer operation specifies that the object is a pointer5

that cannot be represented as a real pointer, even though the value it would6

point to can be described. In this form of location description, the DWARF7

expression refers to a debugging information entry that represents the actual8

value of the object to which the pointer would point. Thus, a consumer of the9

debug information would be able to show the value of the dereferenced10

pointer, even when it cannot show the value of the pointer itself.11

The DW_OP_implicit_pointer operation has two operands: a reference to a12

debugging information entry that describes the dereferenced object’s value,13

and a signed number that is treated as a byte offset from the start of that14

value. The first operand is a 4-byte unsigned value in the 32-bit DWARF15

format, or an 8-byte unsigned value in the 64-bit DWARF format (see Section16

7.4 on page 203) that is used as the offset of a debugging information entry in17

the .debug_info section of the current executable or shared object file. The18

second operand is a signed LEB128 number.19

The debugging information entry referenced by a DW_OP_implicit_pointer20

operation is typically a DW_TAG_variable or DW_TAG_formal_parameter entry21

whose DW_AT_location attribute gives a second DWARF expression or a location22

list that describes the value of the object, but the referenced entry may be any entry23

that contains a DW_AT_location or DW_AT_const_value attribute (for example,24

DW_TAG_dwarf_procedure). By using the second DWARF expression, a consumer25

can reconstruct the value of the object when asked to dereference the pointer described26

by the original DWARF expression containing the DW_OP_implicit_pointer27

operation.28

DWARF location descriptions are intended to yield the location of a value rather than29

the value itself. An optimizing compiler may perform a number of code transformations30

where it becomes impossible to give a location for a value, but it remains possible to31

describe the value itself. Section 2.6.1.1.3 on page 40 describes operators that can be used32

to describe the location of a value when that value exists in a register but not in memory.33

The operations in this section are used to describe values that exist neither in memory nor34

in a single register.35

July 15 2024 ***WORKING DRAFT*** Page 42

Chapter 2. General Description

2.6.1.2 Composite Location Descriptions1

A composite location description describes an object or value which may be2

contained in part of a register or stored in more than one location. Each piece is3

described by a composition operation, which does not compute a value nor store4

any result on the DWARF stack. There may be one or more composition5

operations in a single composite location description. A series of such operations6

describes the parts of a value in memory address order.7

Each composition operation is immediately preceded by a simple location8

description which describes the location where part of the resultant value is9

contained.10

1. DW_OP_piece11

The DW_OP_piece operation takes a single operand, which is an unsigned12

LEB128 number. The number describes the size in bytes of the piece of the13

object referenced by the preceding simple location description. If the piece is14

located in a register, but does not occupy the entire register, the placement of15

the piece within that register is defined by the ABI.16

Many compilers store a single variable in sets of registers, or store a variable partially17

in memory and partially in registers. DW_OP_piece provides a way of describing18

how large a part of a variable a particular DWARF location description refers to.19

2. DW_OP_bit_piece20

The DW_OP_bit_piece operation takes two operands. The first is an unsigned21

LEB128 number that gives the size in bits of the piece. The second is an22

unsigned LEB128 number that gives the offset in bits from the location23

defined by the preceding DWARF location description.24

Interpretation of the offset depends on the location description. If the location25

description is empty (see Section 2.6.1.1.1 on page 40), the DW_OP_bit_piece26

operation describes a piece consisting of the given number of bits whose27

values are undefined, and the offset is ignored. If the location is a memory28

address (see Section 2.6.1.1.2 on page 40), the DW_OP_bit_piece operation29

describes a sequence of bits relative to the location whose address is on the30

top of the DWARF stack using the bit numbering and direction conventions31

that are appropriate to the current language on the target system. In all other32

cases, the source of the piece is given by either a register location (see Section33

2.6.1.1.3 on page 40) or an implicit value description (see Section 2.6.1.1.4 on34

page 41); the offset is from the least significant bit of the source value.35

A composition operation that follows an empty location description indicates36

that the piece is undefined, for example because it has been optimized away.37

July 15 2024 ***WORKING DRAFT*** Page 43

Chapter 2. General Description

DW_OP_bit_piece is used instead of DW_OP_piece when the piece to be assembled into1

a value or assigned to is not byte-sized or is not at the start of a register or addressable2

unit of memory.3

Whether or not a DW_OP_piece operation is equivalent to any DW_OP_bit_piece4

operation with an offset of 0 is ABI dependent.5

2.6.2 Location Lists6

Location lists are used in place of location descriptions whenever the object7

whose location is being described can change location during its lifetime.8

Location lists are contained in a separate object file section called9

.debug_loclists or .debug_loclists.dwo (for split DWARF object files).10

A location list is indicated by a location or other attribute whose value is of class11

loclist (see Section 7.5.5 on page 221).12

This location list representation, the loclist class, and the related DW_AT_loclists_base13

attribute are new in DWARF Version 5. Together they eliminate most or all of the object14

language relocations previously needed for location lists.15

A location list consists of a series of location list entries. Each location list entry is16

one of the following kinds:17

• Bounded location description. This kind of entry provides a location18

description that specifies the location of an object that is valid over a19

lifetime bounded by a starting and ending address. The starting address is20

the lowest address of the address range over which the location is valid.21

The ending address is the address of the first location past the highest22

address of the address range. When the current PC is within the given23

range, the location description may be used to locate the specified object.24

The location description is valid even if the address range includes25

addresses within a prologue or epilogue range.26

There are several kinds of bounded location description entries which27

differ in the way that they specify the starting and ending addresses.28

The address ranges defined by the bounded location descriptions of a29

location list may overlap. When they do, they describe a situation in which30

an object exists simultaneously in more than one place. If all of the address31

ranges in a given location list do not collectively cover the entire range over32

which the object in question is defined, and there is no following default33

location description, it is assumed that the object is not available for the34

portion of the range that is not covered.35

July 15 2024 ***WORKING DRAFT*** Page 44

Chapter 2. General Description

In the case of a bounded location description where the range is defined by1

a starting address and either an ending address or a length, a starting2

address consisting of the reserved address value (see Section 2.4.1 on3

page 26) indicates a non-existent range, which is equivalent to omitting the4

description.5

• Default location description. This kind of entry provides a location6

description that specifies the location of an object that is valid when no7

bounded location description applies. As with simple location descriptions,8

the lifetime of a default location excludes any prologue or epilogue ranges.9

• Base address. This kind of entry provides an address to be used as the base10

address for beginning and ending address offsets given in certain kinds of11

bounded location description. The applicable base address of a bounded12

location description entry is the address specified by the closest preceding13

base address entry in the same location list. If there is no preceding base14

address entry, then the applicable base address defaults to the base address15

of the compilation unit (see Section 3.1.1 on page 62).16

In the case of a compilation unit where all of the machine code is contained17

in a single contiguous section, no base address entry is needed.18

If the base address is the reserved target address, either explicitly or by19

default, then the range of any bounded location description defined relative20

to that base address is non-existent, which is equivalent to omitting the21

description.22

• End-of-list. This kind of entry marks the end of the location list.23

A location list consists of a sequence of zero or more bounded location24

description or base address entries, optionally followed by a default location25

entry, and terminated by an end-of-list entry.26

Each location list entry begins with a single byte identifying the kind of that27

entry, followed by zero or more operands depending on the kind.28

In the descriptions that follow, these terms are used for operands:29

• A counted location description operand consists of an unsigned ULEB30

integer giving the length of the location description (see Section 2.6.1 on31

page 40) that immediately follows.32

• An address index operand is the index of an address in the .debug_addr33

section. This index is relative to the value of the DW_AT_addr_base34

attribute of the associated compilation unit. The address given by this kind35

of operand is not relative to the compilation unit base address.36

July 15 2024 ***WORKING DRAFT*** Page 45

Chapter 2. General Description

• A target address operand is an address on the target machine. (Its size is1

the same as used for attribute values of class address, specifically,2

DW_FORM_addr.)3

The following entry kinds are defined for use in both split or non-split units:4

1. DW_LLE_end_of_list5

An end-of-list entry contains no further data.6

A series of this kind of entry may be used for padding or alignment purposes.7

2. DW_LLE_base_addressx8

This is a form of base address entry that has one unsigned LEB128 operand.9

The operand value is an address index (into the .debug_addr section) that10

indicates the applicable base address used by subsequent11

DW_LLE_offset_pair entries.12

3. DW_LLE_startx_endx13

This is a form of bounded location description entry (see page 44) that has14

two unsigned LEB128 operands. The operand values are address indices (into15

the .debug_addr section). These indicate the starting and ending addresses,16

respectively, that define the address range for which this location is valid.17

These operands are followed by a counted location description.18

4. DW_LLE_startx_length19

This is a form of bounded location description entry (see page 44) that has20

two unsigned LEB128 operands. The first value is an address index (into the21

.debug_addr section) that indicates the beginning of the address range over22

which the location is valid. The second value is the length of the range. These23

operands are followed by a counted location description.24

5. DW_LLE_offset_pair25

This is a form of bounded location description entry (see page 44) that has26

two unsigned LEB128 operands. The values of these operands are the starting27

and ending offsets, respectively, relative to the applicable base address, that28

define the address range for which this location is valid. These operands are29

followed by a counted location description.30

6. DW_LLE_default_location31

The operand is a counted location description which defines where an object32

is located if no prior location description is valid.33

July 15 2024 ***WORKING DRAFT*** Page 46

Chapter 2. General Description

7. DW_LLE_include_loclistx1

This is a form of list inclusion, that has one unsigned LEB128 operand. The2

value is an index into the .debug_loclists section, interpreted the same way3

as the operand of DW_FORM_loclistx to find a target list of entries, which4

will be regarded as part of the current location list, up to the5

DW_LLE_end_of_list entry.6

The following kinds of location list entries are defined for use only in non-split7

DWARF units:8

7. DW_LLE_base_address9

A base address entry has one target address operand. This address is used as10

the base address when interpreting offsets in subsequent location list entries11

of kind DW_LLE_offset_pair.12

8. DW_LLE_start_end13

This is a form of bounded location description entry (see page 44) that has14

two target address operands. These indicate the starting and ending15

addresses, respectively, that define the address range for which the location is16

valid. These operands are followed by a counted location description.17

9. DW_LLE_start_length18

This is a form of bounded location description entry (see page 44) that has19

one target address operand value and an unsigned LEB128 integer operand20

value. The address is the beginning address of the range over which the21

location description is valid, and the length is the number of bytes in that22

range. These operands are followed by a counted location description.23

10. DW_LLE_include_loclist24

This is a form of list inclusion, that has one offset operand. The value is an25

offset into the .debug_loclists section, like the operand of26

DW_FORM_sec_offset. The offset identifies the first entry of a location list27

whose entries are to be regarded as part of the current location list, up to the28

DW_LLE_end_of_list entry.29

July 15 2024 ***WORKING DRAFT*** Page 47

Chapter 2. General Description

2.7 Types of Program Entities1

Any debugging information entry describing a declaration that has a type has a2

DW_AT_type attribute, whose value is a reference to another debugging3

information entry. The entry referenced may describe a base type, that is, a type4

that is not defined in terms of other data types, or it may describe a user-defined5

type, such as an array, structure or enumeration. Alternatively, the entry6

referenced may describe a type modifier, such as constant, packed, pointer,7

reference or volatile, which in turn will reference another entry describing a type8

or type modifier (using a DW_AT_type attribute of its own). See Chapter 59

following for descriptions of the entries describing base types, user-defined types10

and type modifiers.11

2.8 Accessibility of Declarations12

Some languages, notably C++ and Ada, have the concept of the accessibility of an object13

or of some other program entity. The accessibility specifies which classes of other program14

objects are permitted access to the object in question.15

The accessibility of a declaration is represented by a DW_AT_accessibility16

attribute, whose value is a constant drawn from the set of codes listed in Table17

2.4.18

Table 2.4: Accessibility codes

DW_ACCESS_public
DW_ACCESS_private
DW_ACCESS_protected

2.9 Visibility of Declarations19

Several languages (such as Modula-2) have the concept of the visibility of a declaration.20

The visibility specifies which declarations are to be visible outside of the entity in which21

they are declared.22

The visibility of a declaration is represented by a DW_AT_visibility attribute,23

whose value is a constant drawn from the set of codes listed in Table 2.5 on the24

following page.25

July 15 2024 ***WORKING DRAFT*** Page 48

Chapter 2. General Description

Table 2.5: Visibility codes

DW_VIS_local
DW_VIS_exported
DW_VIS_qualified

2.10 Virtuality of Declarations1

C++ provides for virtual and pure virtual structure or class member functions and for2

virtual base classes.3

The virtuality of a declaration is represented by a DW_AT_virtuality attribute,4

whose value is a constant drawn from the set of codes listed in Table 2.6.5

Table 2.6: Virtuality codes

DW_VIRTUALITY_none
DW_VIRTUALITY_virtual
DW_VIRTUALITY_pure_virtual

2.11 Artificial Entries6

A compiler may wish to generate debugging information entries for objects or types that7

were not actually declared in the source of the application. An example is a formal8

parameter entry to represent the hidden this parameter that most C++ implementations9

pass as the first argument to non-static member functions.10

Any debugging information entry representing the declaration of an object or11

type artificially generated by a compiler and not explicitly declared by the source12

program may have a DW_AT_artificial attribute, which is a flag.13

July 15 2024 ***WORKING DRAFT*** Page 49

Chapter 2. General Description

2.12 Address Classes1

Some systems support different classes of addresses. The address class may affect the way2

a pointer is dereferenced or the way a subroutine is called.3

Any debugging information entry representing a pointer or reference type or a4

subroutine or subroutine type may have a DW_AT_address_class attribute,5

whose value is an integer constant. The set of permissible values is specific to6

each target architecture. The value DW_ADDR_none, however, is common to all7

encodings, and means that no address class has been specified.8

2.13 Non-Defining Declarations and Completions9

A debugging information entry representing a program entity typically10

represents the defining declaration of that entity. In certain contexts, however, a11

debugger might need information about a declaration of an entity that is not also12

a definition, or is otherwise incomplete, to evaluate an expression correctly.13

As an example, consider the following fragment of C code:14

void myfunc ()
{

int x;
{

extern float x;
g(x);

}
}

C scoping rules require that the value of the variable x passed to the function g is the15

value of the global float variable x rather than of the local int variable x.16

2.13.1 Non-Defining Declarations17

A debugging information entry that represents a non-defining or otherwise18

incomplete declaration of a program entity has a DW_AT_declaration attribute,19

which is a flag.20

A non-defining type declaration may nonetheless have children as illustrated in Section21

E.2.3 on page 412.22

July 15 2024 ***WORKING DRAFT*** Page 50

Chapter 2. General Description

2.13.2 Declarations Completing Non-Defining Declarations1

A debugging information entry that represents a declaration that completes2

another (earlier) non-defining declaration may have a DW_AT_specification3

attribute whose value is a reference to the debugging information entry4

representing the non-defining declaration. A debugging information entry with a5

DW_AT_specification attribute does not need to duplicate information provided6

by the debugging information entry referenced by that specification attribute.7

When the non-defining declaration is contained within a type that has been8

placed in a separate type unit (see Section 3.1.4 on page 72), the9

DW_AT_specification attribute cannot refer directly to the entry in the type unit.10

Instead, the current compilation unit may contain a “skeleton” declaration of the11

type, which contains only the relevant declaration and its ancestors as necessary12

to provide the context (including containing types and namespaces). The13

DW_AT_specification attribute would then be a reference to the declaration entry14

within the skeleton declaration tree. The debugging information entry for the15

top-level type in the skeleton tree may contain a DW_AT_signature attribute16

whose value is the type signature (see Section 7.32 on page 257).17

Not all attributes of the debugging information entry referenced by a18

DW_AT_specification attribute apply to the referring debugging information19

entry. For example, DW_AT_sibling and DW_AT_declaration cannot apply to a20

referring entry.21

2.14 Declaration Coordinates22

It is sometimes useful in a debugger to be able to associate a declaration with its23

occurrence in the program source.24

Any debugging information entry representing the declaration of an object,25

module, subprogram or type may have DW_AT_decl_file, DW_AT_decl_line and26

DW_AT_decl_column attributes, each of whose value is an unsigned integer27

constant.28

The value of the DW_AT_decl_file attribute corresponds to a file number from29

the line number information table for the compilation unit containing the30

debugging information entry and represents the source file in which the31

declaration appeared (see Section 6.2 on page 154).32

The value of the DW_AT_decl_line attribute represents the source line number at33

which the first character of the identifier of the declared object appears. The34

value 0 indicates that no source line has been specified.35

July 15 2024 ***WORKING DRAFT*** Page 51

Chapter 2. General Description

The value of the DW_AT_decl_column attribute represents the source column1

number at which the first character of the identifier of the declared object2

appears. The value 0 indicates that no column has been specified.3

2.15 Identifier Names4

Any debugging information entry representing a program entity that has been5

given a name may have a DW_AT_name attribute, whose value of class string6

represents the name. A debugging information entry containing no name7

attribute, or containing a name attribute whose value consists of a name8

containing a single null byte, represents a program entity for which no name was9

given in the source.10

Because the names of program objects described by DWARF are the names as they appear11

in the source program, implementations of language translators that use some form of12

mangled name (as do many implementations of C++) should use the unmangled form of13

the name in the DW_AT_name attribute, including the keyword operator (in names such14

as “operator +”), if present. See also Section 2.22 following regarding the use of15

DW_AT_linkage_name for mangled names. Sequences of multiple whitespace characters16

may be compressed.17

For additional discussion, see the Best Practices section of the DWARF Wiki18

(http: // wiki. dwarfstd. org/ index. php? title= Best_ Practices .)19

2.16 Data Locations and DWARF Procedures20

Any debugging information entry describing a data object (which includes21

variables and parameters) or common blocks may have a DW_AT_location22

attribute, whose value is a location description (see Section 2.6 on page 39).23

A DWARF procedure is represented by any debugging information entry that24

has a DW_AT_location attribute. If a suitable entry is not otherwise available, a25

DWARF procedure can be represented using a debugging information entry with26

the tag DW_TAG_dwarf_procedure together with a DW_AT_location attribute.27

A DWARF procedure is called by a DW_OP_call2, DW_OP_call4 or28

DW_OP_call_ref DWARF expression operator (see Section 2.5.1.5 on page 35).29

July 15 2024 ***WORKING DRAFT*** Page 52

http://wiki.dwarfstd.org/index.php?title=Best_Practices

Chapter 2. General Description

2.17 Code Addresses, Ranges and Base Addresses1

Any debugging information entry describing an entity that has a machine code2

address or range of machine code addresses, which includes compilation units,3

module initialization, subroutines, lexical blocks, try/catch blocks (see Section4

3.8 on page 98), labels and the like, may have5

• A DW_AT_low_pc attribute for a single address,6

• A DW_AT_low_pc and DW_AT_high_pc pair of attributes for a single7

contiguous range of addresses, or8

• A DW_AT_ranges attribute for a non-contiguous range of addresses.9

If a producer emits no machine code for an entity, none of these attributes are10

specified. Equivalently, a producer may emit such an attribute using the reserved11

target address (see Section 2.4.1 on page 26) for the non-existent entity.12

The base address of the scope for any of the debugging information entries listed13

above is given by either the DW_AT_low_pc attribute or the first address in the14

first range entry in the list of ranges given by the DW_AT_ranges attribute. If15

there is no such attribute, the base address is undefined.16

2.17.1 Single Address17

When there is a single address associated with an entity, such as a label or18

alternate entry point of a subprogram, the entry has a DW_AT_low_pc attribute19

whose value is the address for the entity.20

2.17.2 Contiguous Address Range21

When the set of addresses of a debugging information entry can be described as22

a single contiguous range, the entry may have a DW_AT_low_pc and23

DW_AT_high_pc pair of attributes. The value of the DW_AT_low_pc attribute is24

the address of the first instruction associated with the entity. If the value of the25

DW_AT_high_pc is of class address, it is the address of the first location past the26

last instruction associated with the entity; if it is of class constant, the value is an27

unsigned integer offset which when added to the low PC gives the address of the28

first location past the last instruction associated with the entity.29

The high PC value may be beyond the last valid instruction in the executable.30

July 15 2024 ***WORKING DRAFT*** Page 53

Chapter 2. General Description

2.17.3 Non-Contiguous Address Ranges1

Range lists are used when the set of addresses for a debugging information entry2

cannot be described as a single contiguous range. Range lists are contained in a3

separate object file section called .debug_rnglists or .debug_rnglists.dwo (in4

split units).5

A range list is identified by a DW_AT_ranges or other attribute whose value is of6

class rnglist (see Section 7.5.5 on page 221).7

This range list representation, the rnglist class, and the related DW_AT_rnglists_base8

attribute are new in DWARF Version 5. Together they eliminate most or all of the object9

language relocations previously needed for range lists.10

Each range list entry is one of the following kinds:11

• Bounded range. This kind of entry defines an address range that is12

included in the range list. The starting address is the lowest address of the13

address range. The ending address is the address of the first location past14

the highest address of the address range.15

There are several kinds of bounded range entries which specify the starting16

and ending addresses in different ways.17

In the case of a range list entry where the range is defined by a starting18

address and either an ending address or a length, a starting address19

consisting of the reserved address value (see Section 2.4.1 on page 26)20

indicates a non-existent range, which is equivalent to omitting the21

description.22

• Base address. This kind of entry provides an address to be used as the base23

address for the beginning and ending address offsets given in certain24

bounded range entries. The applicable base address of a range list entry is25

determined by the closest preceding base address entry in the same range26

list. If there is no preceding base address entry, then the applicable base27

address defaults to the base address of the compilation unit (see Section28

3.1.1 on page 62).29

In the case of a compilation unit where all of the machine code is contained30

in a single contiguous section, no base address entry is needed.31

If the base address is the reserved target address, either explicitly or by32

default, then the range of any range list entry defined relative to that base33

address is non-existent, which is equivalent to omitting the range list entry.34

• End-of-list. This kind of entry marks the end of the range list.35

July 15 2024 ***WORKING DRAFT*** Page 54

Chapter 2. General Description

Each range list consists of a sequence of zero or more bounded range or base1

address entries, terminated by an end-of-list entry.2

A range list containing only an end-of-list entry describes an empty scope (which3

contains no instructions).4

Bounded range entries in a range list may not overlap. There is no requirement5

that the entries be ordered in any particular way.6

A bounded range entry whose beginning and ending addresses are equal (including zero)7

indicates an empty range and may be ignored.8

Each range list entry begins with a single byte identifying the kind of that entry,9

followed by zero or more operands depending on the kind.10

In the descriptions that follow, the term address index means the index of an11

address in the .debug_addr section. This index is relative to the value of the12

DW_AT_addr_base attribute of the associated compilation unit. The address13

given by this kind of operand is not relative to the compilation unit base address.14

The following entry kinds are defined for use in both split or non-split units:15

1. DW_RLE_end_of_list16

An end-of-list entry contains no further data.17

A series of this kind of entry may be used for padding or alignment purposes.18

2. DW_RLE_base_addressx19

A base address entry has one unsigned LEB128 operand. The operand value20

is an address index (into the .debug_addr section) that indicates the21

applicable base address used by following DW_RLE_offset_pair entries.22

3. DW_RLE_startx_endx23

This is a form of bounded range (see page 54) entry that has two unsigned24

LEB128 operands. The operand values are address indices (into the25

.debug_addr section) that indicate the starting and ending addresses,26

respectively, that define the address range.27

4. DW_RLE_startx_length28

This is a form of bounded range (see page 54) entry that has two unsigned29

ULEB operands. The first value is an address index (into the .debug_addr30

section) that indicates the beginning of the address range. The second value is31

the length of the range.32

July 15 2024 ***WORKING DRAFT*** Page 55

Chapter 2. General Description

5. DW_RLE_offset_pair1

This is a form of bounded range (see page 54) entry that has two unsigned2

LEB128 operands. The values of these operands are the starting and ending3

offsets, respectively, relative to the applicable base address, that define the4

address range.5

6. DW_RLE_include_rnglistx6

This is a form of range inclusion, that has one unsigned LEB128 operand. The7

value is an index into the .debug_rnglists section, interpreted the same way8

as the operand of DW_FORM_rnglistx to find a target list of entries, which9

will be regarded as part of the current range list, up to the10

DW_RLE_end_of_list entry.11

The following kinds of range entry may be used only in non-split units:12

6. DW_RLE_base_address13

A base address entry has one target address operand. This operand is the14

same size as used in DW_FORM_addr. This address is used as the base15

address when interpreting offsets in subsequent location list entries of kind16

DW_RLE_offset_pair.17

7. DW_RLE_start_end18

This is a form of bounded range (see page 54) entry that has two target19

address operands. Each operand is the same size as used in20

DW_FORM_addr. These indicate the starting and ending addresses,21

respectively, that define the address range for which the following location is22

valid.23

8. DW_RLE_start_length24

This is a form of bounded range (see page 54) entry that has one target25

address operand value and an unsigned LEB128 integer length operand26

value. The address is the beginning address of the range over which the27

location description is valid, and the length is the number of bytes in that28

range.29

9. DW_RLE_include_rnglist30

This is a form of list inclusion, that has one offset operand. The value is an31

offset into the .debug_rnglists section, like the operand of a32

DW_FORM_sec_offset location list. The offset identifies the first entry of a33

location list whose entries are to be regarded as part of the current location34

list, up to the DW_RLE_end_of_list entry.35

July 15 2024 ***WORKING DRAFT*** Page 56

Chapter 2. General Description

2.18 Entry Address1

The entry or first executable instruction generated for an entity, if applicable, is often the2

lowest addressed instruction of a contiguous range of instructions. In other cases, the3

entry address needs to be specified explicitly.4

Any debugging information entry describing an entity that has a range of code5

addresses, which includes compilation units, module initialization, subroutines,6

lexical blocks, try/catch blocks, and the like, may have a DW_AT_entry_pc7

attribute to indicate the entry address which is the address of the instruction8

where execution begins within that range of addresses. If the value of the9

DW_AT_entry_pc attribute is of class address that address is the entry address;10

or, if it is of class constant, the value is an unsigned integer offset which, when11

added to the base address of the function, gives the entry address.12

If no DW_AT_entry_pc attribute is present, then the entry address is assumed to13

be the same as the base address of the containing scope.14

2.19 Static and Dynamic Values of Attributes15

Some attributes that apply to types specify a property (such as the lower bound16

of an array) that is an integer value, where the value may be known during17

compilation or may be computed dynamically during execution.18

The value of these attributes is determined based on the class as follows:19

• For a constant, the value of the constant is the value of the attribute.20

• For a reference, the value of the attribute is determined indirectly via a21

reference to another debugging information entry.22

– If the referenced entry describes a constant (e.g., has a23

DW_AT_const_value attribute), the attribute value is the value of that24

constant.25

– If the referenced entry describes a data object (see Section 4.1 on26

page 101) or common block (see Section 4.2 on page 104), the attribute27

value is the value of the data object or common block.28

– If the referenced entry represents a data member (e.g. has either a29

DW_AT_data_member_location or a DW_AT_data_bit_offset30

attribute), the attribute value is the value of the data member.31

• For an exprval, the value is interpreted as a DWARF expression; evaluation32

of the expression yields the value of the attribute.33

July 15 2024 ***WORKING DRAFT*** Page 57

Chapter 2. General Description

Prior to DWARF Version 6, a reference to a DWARF procedure (see Section 2.16 on1

page 52) that is not a data object or common block was allowed. This type of reference2

was removed in DWARF Version 6. Instead, a producer may use a form of class exprval3

or locdesc with a DW_OP_call_ref operator to call the DWARF procedure.4

2.20 Entity Descriptions5

Some debugging information entries may describe entities in the program that are6

artificial, or which otherwise have a “name” that is not a valid identifier in the7

programming language. This attribute provides a means for the producer to indicate the8

purpose or usage of the containing debugging infor9

Generally, any debugging information entry that has, or may have, a10

DW_AT_name attribute, may also have a DW_AT_description attribute whose11

value is a null-terminated string providing a description of the entity.12

It is expected that a debugger will display these descriptions as part of displaying other13

properties of an entity.14

2.21 Byte and Bit Sizes15

Many debugging information entries allow either a DW_AT_byte_size attribute16

or a DW_AT_bit_size attribute, whose integer constant value (see Section 2.19)17

specifies an amount of storage. The value of the DW_AT_byte_size attribute is18

interpreted in bytes and the value of the DW_AT_bit_size attribute is interpreted19

in bits. The DW_AT_string_length_byte_size and DW_AT_string_length_bit_size20

attributes are similar.21

In addition, the integer constant value of a DW_AT_byte_stride attribute is22

interpreted in bytes and the integer constant value of a DW_AT_bit_stride23

attribute is interpreted in bits.24

2.22 Linkage Names25

Some language implementations, notably C++ and similar languages, make use of26

implementation-defined names within object files that are different from the identifier27

names (see Section 2.15 on page 52) of entities as they appear in the source. Such names,28

sometimes known as mangled names, are used in various ways, such as: to encode29

additional information about an entity, to distinguish multiple entities that have the30

same name, and so on. When an entity has an associated distinct linkage name it may31

sometimes be useful for a producer to include this name in the DWARF description of the32

July 15 2024 ***WORKING DRAFT*** Page 58

Chapter 2. General Description

program to facilitate consumer access to and use of object file information about an entity1

and/or information that is encoded in the linkage name itself.2

A debugging information entry may have a DW_AT_linkage_name attribute3

whose value is a null-terminated string containing the object file linkage name4

associated with the corresponding entity.5

2.23 Template Parameters6

In C++, a template is a generic definition of a class, function, member function, or7

typedef (alias). A template has formal parameters that can be types or constant values;8

the class, function, member function, or typedef is instantiated differently for each9

distinct combination of type or value actual parameters. DWARF does not represent the10

generic template definition, but does represent each instantiation.11

A debugging information entry that represents a template instantiation will12

contain child entries describing the actual template parameters. The containing13

entry and each of its child entries reference a template parameter entry in any14

circumstance where the template definition referenced a formal template15

parameter.16

A template type parameter is represented by a debugging information entry with17

the tag DW_TAG_template_type_parameter. A template value parameter is18

represented by a debugging information entry with the tag19

DW_TAG_template_value_parameter. The actual template parameter entries20

appear in the same order as the corresponding template formal parameter21

declarations in the source program.22

A type or value parameter entry may have a DW_AT_name attribute, whose23

value is a null-terminated string containing the name of the corresponding24

formal parameter. The entry may also have a DW_AT_default_value attribute,25

which is a flag indicating that the value corresponds to the default argument for26

the template parameter.27

A template type parameter entry has a DW_AT_type attribute describing the28

actual type by which the formal is replaced.29

A template value parameter entry has a DW_AT_type attribute describing the30

type of the parameterized value. The entry also has an attribute giving the actual31

compile-time or run-time constant value of the value parameter for this32

instantiation. This can be a DW_AT_const_value attribute, whose value is the33

compile-time constant value as represented on the target architecture, or a34

DW_AT_location attribute, whose value is a single location description for the35

run-time constant address.36

July 15 2024 ***WORKING DRAFT*** Page 59

Chapter 2. General Description

2.24 Alignment1

A debugging information entry may have a DW_AT_alignment attribute whose2

value of class constant is a positive, non-zero, integer describing the alignment of3

the entity.4

For example, an alignment attribute whose value is 8 indicates that the entity to which it5

applies occurs at an address that is a multiple of eight (not a multiple of 28 or 256).6

July 15 2024 ***WORKING DRAFT*** Page 60

Chapter 31

Program Scope Entries2

This section describes debugging information entries that relate to different3

levels of program scope: compilation, module, subprogram, and so on. Except4

for separate type entries (see Section 3.1.4 on page 72), these entries may be5

thought of as ranges of text addresses within the program.6

3.1 Unit Entries7

A DWARF object file is an object file that contains one or more DWARF8

compilation units, of which there are these kinds:9

• A full compilation unit describes a complete compilation, possibly in10

combination with related partial compilation units and/or type units.11

• A partial compilation unit describes a part of a compilation (generally12

corresponding to an imported module) which is imported into one or more13

related full compilation units.14

• A type unit is a specialized unit (similar to a compilation unit) that15

represents a type whose description may be usefully shared by multiple16

other units.17

These first three kinds of compilation unit are sometimes called “conventional”18

compilation units–they are kinds of compilation units that were defined prior to DWARF19

Version 5. Conventional compilation units are part of the same object file as the compiled20

code and data (whether relocatable, executable, shared and so on). The word21

“conventional” is usually omitted in these names, unless needed to distinguish them22

from the similar split compilation units below.23

July 15 2024 ***WORKING DRAFT*** Page 61

Chapter 3. Program Scope Entries

• A skeleton compilation unit represents the DWARF debugging information1

for a compilation using a minimal description that identifies a separate split2

compilation unit that provides the remainder (and most) of the description.3

A skeleton compilation acts as a minimal conventional full compilation (see above) that4

identifies and is paired with a corresponding split full compilation (as described below).5

Like the conventional compilation units, a skeleton compilation unit is part of the same6

object file as the compiled code and data.7

• A split compilation unit describes a complete compilation, possibly in8

combination with related type compilation units. It corresponds to a9

specific skeleton compilation unit.10

• A split type unit is a specialized compilation unit that represents a type11

whose description may be usefully shared by multiple other units.12

Split compilation units and split type units may be contained in object files separate from13

those containing the program code and data. These object files are not processed by a14

linker; thus, split units do not depend on underlying object file relocations.15

Either a full compilation unit or a partial compilation unit may be logically incorporated16

into another compilation unit using an imported unit entry (see Section 3.2.5 on17

page 78).18

A partial compilation unit is not defined for use within a split object file.19

In the remainder of this document, the word “compilation” in the phrase “compilation20

unit” is generally omitted, unless it is deemed needed for clarity or emphasis.21

3.1.1 Full and Partial Compilation Unit Entries22

A full compilation unit is represented by a debugging information entry with the23

tag DW_TAG_compile_unit. A partial compilation unit is represented by a24

debugging information entry with the tag DW_TAG_partial_unit.25

In a simple compilation, a single compilation unit with the tag26

DW_TAG_compile_unit represents a complete object file and the tag27

DW_TAG_partial_unit (as well as tag DW_TAG_type_unit) is not used. In a28

compilation employing the DWARF space compression and duplicate29

elimination techniques from Appendix E.1 on page 390, multiple compilation30

units using the tags DW_TAG_compile_unit, DW_TAG_partial_unit and/or31

DW_TAG_type_unit are used to represent portions of an object file.32

July 15 2024 ***WORKING DRAFT*** Page 62

Chapter 3. Program Scope Entries

A full compilation unit typically represents the text and data contributed to an1

executable by a single relocatable object file. It may be derived from several source files,2

including pre-processed header files. A partial compilation unit typically represents a3

part of the text and data of a relocatable object file, in a manner that can potentially be4

shared with the results of other compilations to save space. It may be derived from an5

“include file,” template instantiation, or other implementation-dependent portion of a6

compilation. A full compilation unit can also function in a manner similar to a partial7

compilation unit in some cases. See Appendix E on page 390 for discussion of related8

compression techniques.9

A full or partial compilation unit entry owns debugging information entries that10

represent all or part of the declarations made in the corresponding compilation.11

In the case of a partial compilation unit, the containing scope of its owned12

declarations is indicated by imported unit entries in one or more other13

compilation unit entries that refer to that partial compilation unit (see Section14

3.2.5 on page 78).15

A full or partial compilation unit entry may have the following attributes:16

1. Either a DW_AT_low_pc and DW_AT_high_pc pair of attributes or a17

DW_AT_ranges attribute whose values encode the contiguous or18

non-contiguous address ranges, respectively, of the machine instructions19

generated for the compilation unit (see Section 2.17 on page 53).20

A DW_AT_low_pc attribute may also be specified in combination with21

DW_AT_ranges to specify the default base address for use in location lists22

(see Section 2.6.2 on page 44) and range lists (see Section 2.17.3 on page 54).23

2. A DW_AT_name attribute whose value is a null-terminated string containing24

the full or relative path name (relative to the value of the DW_AT_comp_dir25

attribute, see below) of the primary source file from which the compilation26

unit was derived.27

3. A DW_AT_language_name attribute whose constant value is an integer code28

indicating the source language of the compilation unit. The set of language29

names and their meanings are given in Table 3.1 on the next page.30

The most recent list of approved language names and applicable versions may be31

found at http://dwarfstd.org/languages-v6.html.32

July 15 2024 ***WORKING DRAFT*** Page 63

http://dwarfstd.org/languages-v6.html

Chapter 3. Program Scope Entries

Table 3.1: Language names

Language name Meaning Version Scheme
(See Table 3.2)

DW_LNAME_Ada ISO Ada YYYY
DW_LNAME_Assembly Assembly
DW_LNAME_BLISS BLISS
DW_LNAME_C ISO C YYYYMM
DW_LNAME_C_plus_plus ISO C++ YYYYMM
DW_LNAME_Cobol ISO COBOL YYYY
DW_LNAME_CPP_for_OpenCL C++ for OpenCL VVMM
DW_LNAME_Crystal Crystal
DW_LNAME_C_sharp C#
DW_LNAME_D D
DW_LNAME_Dylan Dylan
DW_LNAME_Fortran ISO Fortran YYYY
DW_LNAME_Go Go
DW_LNAME_GLSL OpenGL Shading

Language
VVMMPP

DW_LNAME_GLSL_ES OpenGL ES Shading
Language

VVMMPP

DW_LNAME_Haskell Haskell
DW_LNAME_HIP HIP Language
DW_LNAME_HLSL High-Level Shading

Language
YYYY

DW_LNAME_Hylo Hylo Language
DW_LNAME_Java Java
DW_LNAME_Julia Julia
DW_LNAME_Kotlin Kotlin
DW_LNAME_Modula2 ISO Modula-2
DW_LNAME_Modula3 Modula-3
DW_LNAME_Mojo Mojo Language
DW_LNAME_Move Move Language YYYYMM
DW_LNAME_ObjC Objective C YYYYMM
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 64

Chapter 3. Program Scope Entries

Language name Meaning Version Scheme
DW_LNAME_ObjC_plus_plus Objective C++ YYYYMM
DW_LNAME_OCaml OCaml
DW_LNAME_Odin Odin YYYYMM
DW_LNAME_OpenCL_C1 OpenCL C VVMM
DW_LNAME_OpenCL_CPP OpenCL C++ VVMM
DW_LNAME_Pascal ISO Pascal YYYY
DW_LNAME_PLI ANSI PL/I
DW_LNAME_Python Python
DW_LNAME_RenderScript RenderScript Kernel

Language
DW_LNAME_Ruby Ruby VVMMPP
DW_LNAME_Rust Rust
DW_LNAME_Swift Swift VVMM
DW_LNAME_SYCL SYCL YYYYRR
DW_LNAME_UPC UPC (Unified Parallel C)
DW_LNAME_Zig Zig

4. A DW_AT_language_version attribute may be specified whose constant1

value is an integer value that indicates the version of the source language.2

This value is encoded using one of several schemes as shown in Table 3.2 on3

the following page. A value of zero is equivalent to omitting this attribute.4

5. A DW_AT_stmt_list attribute whose value is a section offset to the line5

number information for this compilation unit.6

This information is placed in a separate object file section from the debugging7

information entries themselves. The value of the statement list attribute is the8

offset in the .debug_line section of the first byte of the line number9

information for this compilation unit (see Section 6.2 on page 154).10

6. A DW_AT_macros attribute whose value is a section offset to the macro11

information for this compilation unit.12

This information is placed in a separate object file section from the debugging13

information entries themselves. The value of the macro information attribute14

1This is equivalent to DW_LANG_OpenCL in DWARF Version 5

July 15 2024 ***WORKING DRAFT*** Page 65

Chapter 3. Program Scope Entries

Table 3.2: Version Encoding Schemes

Scheme Encoding
YYYY Year in which the language definition was released.
YYYYMM † Year in which the language definition was released

times 100 plus the ordinal number of the month
(from 1 to 12).
For example, 202206 represents June of 2022.

YYYYRR Year in which the language definition was released
times 100 plus the revision number.
For example, 202007 represents version 2020 revision 7
while 202011 represents version 2020 revision 11.

VVMM Major version number times 100 plus the minor
version number.
For example, 306 represents version 3.6 while 312
represents version 3.12.

VVMMPP Major version number times 10,000 plus the minor
version number times 100 plus the patch version
number.
For example, 30607 represents version 3.6.7 while 31215
represents version 3.12.15.

† For the YYYYMM version scheme, to convert a version number to a specific
release, it is good practice to treat the version numbers listed on the
http://dwarfstd.org/languages-v6.html website as the maximum version that
is interpreted as belonging to a specific release. This way producers can emit
version numbers for unreleased upcoming specifications, by using, e.g., the date the
compiler was built.

is the offset in the .debug_macro section of the first byte of the macro1

information for this compilation unit (see Section 6.3 on page 171).2

7. A DW_AT_comp_dir attribute whose value is a null-terminated string3

containing the current working directory of the compilation command that4

produced this compilation unit in whatever form makes sense for the host5

system.6

If a relative path is used in DW_AT_comp_dir, it will be relative to the7

location of the linked image containing the DW_AT_comp_dir entry.8

In some cases a producer may allow the user to specify a relative path for9

DW_AT_comp_dir. There are a few cases in which this is useful, but in general using10

a relative path for DW_AT_comp_dir is discouraged as it will not work well in many11

July 15 2024 ***WORKING DRAFT*** Page 66

http://dwarfstd.org/languages-v6.html

Chapter 3. Program Scope Entries

cases including the following: different relative paths are used within the same build;1

the build system creates multiple linked images in different directories; the final linked2

image is moved before being debugged; .o files that need to be debugged directly.3

8. A DW_AT_producer attribute whose value is a null-terminated string4

containing information about the compiler that produced the compilation5

unit.6

The actual contents of the string will be specific to each producer, but should begin7

with the name of the compiler producer or some other identifying character sequence8

that will avoid confusion with other producer values.9

9. A DW_AT_identifier_case attribute whose integer constant value is a code10

describing the treatment of identifiers within this compilation unit. The set of11

identifier case codes is given in Table 3.3.12

Table 3.3: Identifier case codes

DW_ID_case_sensitive
DW_ID_up_case
DW_ID_down_case
DW_ID_case_insensitive

DW_ID_case_sensitive is the default for all compilation units that do not13

have this attribute. It indicates that names given as the values of14

DW_AT_name attributes in debugging information entries for the15

compilation unit reflect the names as they appear in the source program.16

A debugger should be sensitive to the case of identifier names when doing identifier17

lookups.18

DW_ID_up_case means that the producer of the debugging information for19

this compilation unit converted all source names to upper case. The values of20

the name attributes may not reflect the names as they appear in the source21

program.22

A debugger should convert all names to upper case when doing lookups.23

DW_ID_down_case means that the producer of the debugging information24

for this compilation unit converted all source names to lower case. The values25

of the name attributes may not reflect the names as they appear in the source26

program.27

A debugger should convert all names to lower case when doing lookups.28

July 15 2024 ***WORKING DRAFT*** Page 67

Chapter 3. Program Scope Entries

DW_ID_case_insensitive means that the values of the name attributes reflect1

the names as they appear in the source program but that case is not2

significant.3

A debugger should ignore case when doing lookups.4

10. A DW_AT_base_types attribute whose value is a reference. This attribute5

points to a debugging information entry representing another compilation6

unit. It may be used to specify the compilation unit containing the base type7

entries used by entries in the current compilation unit (see Section 5.1 on8

page 106).9

This attribute provides a consumer a way to find the definition of base types for a10

compilation unit that does not itself contain such definitions. This allows a consumer,11

for example, to interpret a type conversion to a base type correctly.12

11. A DW_AT_use_UTF8 attribute, which is a flag whose presence indicates that13

all strings (such as the names of declared entities in the source program, or14

filenames in the line number table) are represented using the UTF-815

representation.16

12. A DW_AT_main_subprogram attribute, which is a flag, whose presence17

indicates that the compilation unit contains a subprogram that has been18

identified as the starting subprogram of the program. If more than one19

compilation unit contains this flag, any one of them may contain the starting20

function.21

Fortran has a PROGRAM statement which is used to specify and provide a22

user-specified name for the main subroutine of a program. C uses the name “main” to23

identify the main subprogram of a program. Some other languages provide similar or24

other means to identify the main subprogram of a program. The25

DW_AT_main_subprogram attribute may also be used to identify such subprograms26

(see Section 3.3.1 on page 79).27

13. A DW_AT_entry_pc attribute whose value is the address of the first28

executable instruction of the unit (see Section 2.18 on page 57).29

14. A DW_AT_str_offsets attribute, whose value is of class stroffsetsptr. This30

attribute points to the header of the compilation unit’s contribution to the31

.debug_str_offsets (or .debug_str_offsets.dwo) section. Indirect string32

references (using DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2,33

DW_FORM_strx3 or DW_FORM_strx4) within the compilation unit are34

interpreted as indices into the array of offsets following that header.35

July 15 2024 ***WORKING DRAFT*** Page 68

Chapter 3. Program Scope Entries

15. A DW_AT_addr_base attribute, whose value is of class addrptr. This1

attribute points to the beginning of the compilation unit’s contribution to the2

.debug_addr section. Indirect references (using DW_FORM_addrx,3

DW_FORM_addrx1, DW_FORM_addrx2, DW_FORM_addrx3,4

DW_FORM_addrx4, DW_OP_addrx, DW_OP_constx,5

DW_LLE_base_addressx, DW_LLE_startx_endx, DW_LLE_startx_length,6

DW_RLE_base_addressx, DW_RLE_startx_endx or DW_RLE_startx_length)7

within the compilation unit are interpreted as indices relative to this base.8

16. A DW_AT_rnglists_base attribute, whose value is of class rnglistsptr. This9

attribute points to the beginning of the offsets table (immediately following10

the header) of the compilation unit’s contribution to the .debug_rnglists11

section. References to range lists (using DW_FORM_rnglistx) within the12

compilation unit are interpreted relative to this base.13

17. A DW_AT_loclists_base attribute, whose value is of class loclistsptr. This14

attribute points to the beginning of the offsets table (immediately following15

the header) of the compilation unit’s contribution to the .debug_loclists16

section. References to value lists and location lists (using DW_FORM_loclistx)17

within the compilation unit are interpreted relative to this base.18

The base address of a compilation unit is defined as the value of the19

DW_AT_low_pc attribute, if present; otherwise, it is undefined. If the base20

address is undefined, then any DWARF entry or structure defined in terms of the21

base address of that compilation unit is not valid.22

3.1.2 Skeleton Compilation Unit Entries23

When generating a split DWARF object file (see Section 7.3.2 on page 194), the24

compilation unit in the .debug_info section is a "skeleton" compilation unit with25

the tag DW_TAG_skeleton_unit, which contains a DW_AT_dwo_name attribute26

as well as a subset of the attributes of a full or partial compilation unit. In27

general, it contains those attributes that are necessary for the consumer to locate28

the object file where the split full compilation unit can be found, and for the29

consumer to interpret references to addresses in the program.30

A skeleton compilation unit has no children.31

A skeleton compilation unit has the following attributes:32

1. A DW_AT_dwo_name attribute whose value is a null-terminated string33

containing the full or relative path name (relative to the value of the34

DW_AT_comp_dir attribute, see below) of the object file that contains the full35

compilation unit.36

July 15 2024 ***WORKING DRAFT*** Page 69

Chapter 3. Program Scope Entries

The value in the dwo_id field of the unit header for this unit is the same as the1

value in the dwo_id field of the unit header of the corresponding full2

compilation unit (see Section 7.5.1 on page 207).3

The means of determining a compilation unit ID does not need to be similar or related4

to the means of determining a type unit signature. However, it should be suitable for5

detecting file version skew or other kinds of mismatched files and for looking up a full6

split unit in a DWARF package file (see Section 7.3.5 on page 197).7

A skeleton compilation unit may have additional attributes, which are the same8

as for conventional compilation unit entries except as noted, from among the9

following:10

2. Either a DW_AT_low_pc and DW_AT_high_pc pair of attributes or a11

DW_AT_ranges attribute.12

3. A DW_AT_stmt_list attribute.13

4. A DW_AT_comp_dir attribute.14

5. A DW_AT_use_UTF8 attribute.15

This attribute applies to strings referred to by the skeleton compilation unit entry16

itself, and strings in the associated line number information. The representation for17

strings in the object file referenced by the DW_AT_dwo_name attribute is determined18

by the presence of a DW_AT_use_UTF8 attribute in the full compilation unit (see19

Section 3.1.3 on the following page).20

6. A DW_AT_str_offsets attribute, for indirect strings references from the21

corresponding split full compilation unit.22

7. A DW_AT_addr_base attribute.23

8. A DW_AT_rnglists_base attribute, for range list entry references from the24

corresponding split full compilation unit.25

All other attributes of a compilation unit entry (described in Section 3.1.1 on26

page 62) are placed in the split full compilation unit (see 3.1.3 on the following27

page). The attributes provided by the skeleton compilation unit entry do not28

need to be repeated in the full compilation unit entry.29

The DW_AT_addr_base, DW_AT_str_offsets, and DW_AT_rnglists_base attributes30

provide context that may be necessary to interpret the contents of the corresponding split31

DWARF object file.32

The DW_AT_base_types attribute is not defined for a skeleton compilation unit.33

July 15 2024 ***WORKING DRAFT*** Page 70

Chapter 3. Program Scope Entries

3.1.3 Split Full Compilation Unit Entries1

A split full compilation unit is represented by a debugging information entry2

with tag DW_TAG_compile_unit. It is very similar to a conventional full3

compilation unit but is logically paired with a specific skeleton compilation unit4

while being physically separate.5

A split full compilation unit may have the following attributes, which are the6

same as for conventional compilation unit entries except as noted:7

1. A DW_AT_name attribute.8

2. A DW_AT_language_name attribute.9

3. A DW_AT_language_version attribute.10

4. A DW_AT_macros attribute.11

5. A DW_AT_producer attribute.12

6. A DW_AT_identifier_case attribute.13

7. A DW_AT_main_subprogram attribute.14

8. A DW_AT_entry_pc attribute.15

9. A DW_AT_use_UTF8 attribute.16

The following attributes are not part of a split full compilation unit entry but instead are17

inherited (if present) from the corresponding skeleton compilation unit:18

DW_AT_addr_base, DW_AT_comp_dir, DW_AT_high_pc, DW_AT_low_pc,19

DW_AT_ranges and DW_AT_stmt_list.20

The DW_AT_base_types attribute is not defined for a split full compilation unit.21

Use of DW_FORM_sec_offset and other equivalent encodings (for example, the abbrev22

offset in a compilation unit header) are resolved relative to the beginning of the23

contribution of the relevant section within the dwo or dwp file and cannot be used for24

sharing content between multiple compilation units. DW_FORM_sec_offset may not be25

used when a reference to content in the skeleton unit is required (as the value present in26

the dwo file could not be relocated during linking of the skeleton units), such as for the27

addrptr class.28

July 15 2024 ***WORKING DRAFT*** Page 71

Chapter 3. Program Scope Entries

3.1.4 Type Unit Entries1

An object file may contain any number of separate type unit entries, each2

representing a single complete type definition. Each type unit must be uniquely3

identified by an 8-byte signature, stored as part of the type unit, which can be4

used to reference the type definition from debugging information entries in other5

compilation units and type units.6

Conventional and split type units are identical except for the sections in which7

they are represented (see Section 7.3.2 on page 194 for details). Moreover, the8

DW_AT_str_offsets attribute (see below) is not used in a split type unit.9

A type unit is represented by a debugging information entry with the tag10

DW_TAG_type_unit. A type unit entry owns debugging information entries that11

represent the definition of a single type, plus additional debugging information12

entries that may be necessary to include as part of the definition of the type.13

A type unit entry may have the following attributes:14

1. A DW_AT_language_name attribute, whose constant value is an integer15

code indicating the source language used to define the type. The set of16

language names and their meanings are given in Table 3.1 on page 64.17

2. A DW_AT_language_version attribute, whose constant value is an integer18

code indicating the source language version as described in Table 3.2 on19

page 66.20

3. A DW_AT_stmt_list attribute whose value of class lineptr points to the line21

number information for this type unit.22

Because type units do not describe any code, they do not actually need a line number23

table, but the line number headers contain a list of directories and file names that may24

be referenced by the DW_AT_decl_file attribute of the type or part of its description.25

In an object file with a conventional compilation unit entry, the type unit entries may26

refer to (share) the line number table used by the compilation unit. In a type unit27

located in a split compilation unit, the DW_AT_stmt_list attribute refers to a28

“specialized” line number table in the .debug_line.dwo section, which contains29

only the list of directories and file names.30

All type unit entries in a split DWARF object file may (but are not required to) refer31

to the same specialized line number table.32

4. A DW_AT_use_UTF8 attribute, which is a flag whose presence indicates that33

all strings referred to by this type unit entry, its children, and its associated34

specialized line number table, are represented using the UTF-835

representation.36

July 15 2024 ***WORKING DRAFT*** Page 72

Chapter 3. Program Scope Entries

5. A DW_AT_str_offsets attribute, whose value is of class stroffsetsptr. This1

attribute points to the header of the type unit’s contribution to the2

.debug_str_offsets section. Indirect string references (using3

DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or4

DW_FORM_strx4) within the type unit are interpreted as indices into the5

array of offsets following that header.6

A type unit entry for a given type T owns a debugging information entry that7

represents a defining declaration of type T. If the type is nested within enclosing8

types or namespaces, the debugging information entry for T is nested within9

debugging information entries describing its containers; otherwise, T is a direct10

child of the type unit entry.11

A type unit entry may also own additional debugging information entries that12

represent declarations of additional types that are referenced by type T and have13

not themselves been placed in separate type units. Like T, if an additional type U14

is nested within enclosing types or namespaces, the debugging information entry15

for U is nested within entries describing its containers; otherwise, U is a direct16

child of the type unit entry.17

The containing entries for types T and U are declarations, and the outermost18

containing entry for any given type T or U is a direct child of the type unit entry.19

The containing entries may be shared among the additional types and between T20

and the additional types.21

Examples of these kinds of relationships are found in Section E.2.1 on page 402 and22

Section E.2.3 on page 412.23

Types are not required to be placed in type units. In general, only large types such as24

structure, class, enumeration, and union types included from header files should be25

considered for separate type units. Base types and other small types are not usually worth26

the overhead of placement in separate type units. Types that are unlikely to be replicated,27

such as those defined in the main source file, are also better left in the main compilation28

unit.29

3.2 Module, Namespace and Importing Entries30

Modules and namespaces provide a means to collect related entities into a single entity31

and to manage the names of those entities.32

July 15 2024 ***WORKING DRAFT*** Page 73

Chapter 3. Program Scope Entries

3.2.1 Module Entries1

Several languages have the concept of a “module.” A Modula-2 definition module may be2

represented by a module entry containing a declaration attribute (DW_AT_declaration).3

A Fortran 90 module may also be represented by a module entry (but no declaration4

attribute is warranted because Fortran has no concept of a corresponding module body).5

A module is represented by a debugging information entry with the tag6

DW_TAG_module. Module entries may own other debugging information7

entries describing program entities whose declaration scopes end at the end of8

the module itself.9

If the module has a name, the module entry has a DW_AT_name attribute whose10

value is a null-terminated string containing the module name.11

The module entry may have either a DW_AT_low_pc and DW_AT_high_pc pair12

of attributes or a DW_AT_ranges attribute whose values encode the contiguous13

or non-contiguous address ranges, respectively, of the machine instructions14

generated for the module initialization code (see Section 2.17 on page 53). It may15

also have a DW_AT_entry_pc attribute whose value is the address of the first16

executable instruction of that initialization code (see Section 2.18 on page 57).17

If the module has been assigned a priority, it may have a DW_AT_priority18

attribute. The value of this attribute is a reference to another debugging19

information entry describing a variable with a constant value. The value of this20

variable is the actual constant value of the module’s priority, represented as it21

would be on the target architecture.22

3.2.2 Namespace Entries23

C++ has the notion of a namespace, which provides a way to implement name hiding, so24

that names of unrelated things do not accidentally clash in the global namespace when an25

application is linked together.26

A namespace is represented by a debugging information entry with the tag27

DW_TAG_namespace. A namespace extension is represented by a28

DW_TAG_namespace entry with a DW_AT_extension attribute referring to the29

previous extension, or if there is no previous extension, to the original30

DW_TAG_namespace entry. A namespace extension entry does not need to31

duplicate information in a previous extension entry of the namespace nor need it32

duplicate information in the original namespace entry. (Thus, for a namespace33

with a name, a DW_AT_name attribute need only be attached directly to the34

original DW_TAG_namespace entry.)35

July 15 2024 ***WORKING DRAFT*** Page 74

Chapter 3. Program Scope Entries

Namespace and namespace extension entries may own other debugging1

information entries describing program entities whose declarations occur in the2

namespace.3

A namespace may have a DW_AT_export_symbols attribute which is a flag4

which indicates that all member names defined within the namespace may be5

referenced as if they were defined within the containing namespace.6

This may be used to describe an inline namespace in C++.7

If a type, variable, or function declared in a namespace is defined outside of the8

body of the namespace declaration, that type, variable, or function definition9

entry has a DW_AT_specification attribute whose value is a reference to the10

debugging information entry representing the declaration of the type, variable or11

function. Type, variable, or function entries with a DW_AT_specification12

attribute do not need to duplicate information provided by the declaration entry13

referenced by the specification attribute.14

The C++ global namespace (the namespace referred to by ::f, for example) is not15

explicitly represented in DWARF with a namespace entry (thus mirroring the situation16

in C++ source). Global items may be simply declared with no reference to a namespace.17

The C++ compilation unit specific “unnamed namespace” may be represented by a18

namespace entry with no name attribute in the original namespace declaration entry19

(and therefore no name attribute in any namespace extension entry of this namespace).20

C++ states that declarations in the unnamed namespace are implicitly available in the21

containing scope; a producer should make this effect explicit with the22

DW_AT_export_symbols attribute, or by using a DW_TAG_imported_module that is a23

sibling of the namespace entry and references it.24

A compiler emitting namespace information may choose to explicitly represent25

namespace extensions, or to represent the final namespace declaration of a compilation26

unit; this is a quality-of-implementation issue and no specific requirements are given27

here. If only the final namespace is represented, it is impossible for a debugger to interpret28

using declaration references in exactly the manner defined by the C++ language.29

For C++ namespace examples, see Appendix D.3 on page 333.30

July 15 2024 ***WORKING DRAFT*** Page 75

Chapter 3. Program Scope Entries

3.2.3 Imported (or Renamed) Declaration Entries1

Some languages support the concept of importing into or making accessible in a given2

unit certain declarations that occur in a different module or scope. An imported3

declaration may sometimes be given another name.4

An imported declaration is represented by one or more debugging information5

entries with the tag DW_TAG_imported_declaration. When an overloaded entity6

is imported, there is one imported declaration entry for each overloading. Each7

imported declaration entry has a DW_AT_import attribute, whose value is a8

reference to the debugging information entry representing the declaration that is9

being imported.10

An imported declaration may also have a DW_AT_name attribute whose value is11

a null-terminated string containing the name by which the imported entity is to12

be known in the context of the imported declaration entry (which may be13

different than the name of the entity being imported). If no name is present, then14

the name by which the entity is to be known is the same as the name of the entity15

being imported.16

An imported declaration entry with a name attribute may be used as a general17

means to rename or provide an alias for an entity, regardless of the context in18

which the importing declaration or the imported entity occurs.19

A C++ namespace alias may be represented by an imported declaration entry with a20

name attribute whose value is a null-terminated string containing the alias name and a21

DW_AT_import attribute whose value is a reference to the applicable original namespace22

or namespace extension entry.23

A C++ using declaration may be represented by one or more imported declaration entries.24

When the using declaration refers to an overloaded function, there is one imported25

declaration entry corresponding to each overloading. Each imported declaration entry26

has no name attribute but it does have a DW_AT_import attribute that refers to the entry27

for the entity being imported. (C++ provides no means to “rename” an imported entity,28

other than a namespace).29

A Fortran use statement with an “only list” may be represented by a series of imported30

declaration entries, one (or more) for each entity that is imported. An entity that is31

renamed in the importing context may be represented by an imported declaration entry32

with a name attribute that specifies the new local name.33

July 15 2024 ***WORKING DRAFT*** Page 76

Chapter 3. Program Scope Entries

3.2.4 Imported Module Entries1

Some languages support the concept of importing into or making accessible in a given2

unit all of the declarations contained within a separate module or namespace.3

An imported module declaration is represented by a debugging information4

entry with the tag DW_TAG_imported_module. An imported module entry5

contains a DW_AT_import attribute whose value is a reference to the module or6

namespace entry containing the definition and/or declaration entries for the7

entities that are to be imported into the context of the imported module entry.8

An imported module declaration may own a set of imported declaration entries,9

each of which refers to an entry in the module whose corresponding entity is to10

be known in the context of the imported module declaration by a name other11

than its name in that module. Any entity in the module that is not renamed in12

this way is known in the context of the imported module entry by the same name13

as it is declared in the module.14

A C++ using directive may be represented by an imported module entry, with a15

DW_AT_import attribute referring to the namespace entry of the appropriate extension16

of the namespace (which might be the original namespace entry) and no owned entries.17

A Fortran use statement with a “rename list” may be represented by an imported module18

entry with an import attribute referring to the module and owned entries corresponding19

to those entities that are renamed as part of being imported.20

A Fortran use statement with neither a “rename list” nor an “only list” may be21

represented by an imported module entry with an import attribute referring to the22

module and no owned child entries.23

A use statement with an “only list” is represented by a series of individual imported24

declaration entries as described in Section 3.2.3 on the previous page.25

July 15 2024 ***WORKING DRAFT*** Page 77

Chapter 3. Program Scope Entries

A Fortran use statement for an entity in a module that is itself imported by a use1

statement without an explicit mention may be represented by an imported declaration2

entry that refers to the original debugging information entry. For example, given3

module A
integer X, Y, Z
end module

module B
use A
end module

module C
use B, only Q => X
end module

the imported declaration entry for Q within module C refers directly to the variable4

declaration entry for X in module A because there is no explicit representation for X in5

module B.6

A similar situation arises for a C++ using declaration that imports an entity in terms of7

a namespace alias. See Appendix D.3 on page 333 for an example.8

3.2.5 Imported Unit Entries9

The place where a normal or partial compilation unit is imported is represented10

by a debugging information entry with the tag DW_TAG_imported_unit. An11

imported unit entry contains a DW_AT_import attribute whose value is a12

reference to the normal or partial compilation unit entry whose declarations13

logically belong at the place of the imported unit entry.14

An imported unit entry does not necessarily correspond to any entity or construct in the15

source program. It is merely “glue” used to relate a partial unit, or a compilation unit16

used as a partial unit, to a place in some other compilation unit.17

3.3 Subroutine and Entry Point Entries18

The following tags exist to describe debugging information entries for19

subroutines and entry points:20

DW_TAG_subprogram A subroutine or function
DW_TAG_inlined_subroutine A particular inlined instance of a subroutine or

function
DW_TAG_entry_point An alternate entry point

July 15 2024 ***WORKING DRAFT*** Page 78

Chapter 3. Program Scope Entries

3.3.1 General Subroutine and Entry Point Information1

The subroutine or entry point entry has a DW_AT_name attribute whose value is2

a null-terminated string containing the subroutine or entry point name. It may3

also have a DW_AT_linkage_name attribute as described in Section 2.22 on4

page 58.5

If the name of the subroutine described by an entry with the tag6

DW_TAG_subprogram is visible outside of its containing compilation unit, that7

entry has a DW_AT_external attribute, which is a flag.8

Additional attributes for functions that are members of a class or structure are described9

in Section 5.7.8 on page 124.10

A subroutine entry may contain a DW_AT_main_subprogram attribute which is11

a flag whose presence indicates that the subroutine has been identified as the12

starting function of the program. If more than one subprogram contains this flag,13

any one of them may be the starting subroutine of the program.14

See also Section 3.1 on page 61) regarding the related use of this attribute to indicate that15

a compilation unit contains the main subroutine of a program.16

3.3.1.1 Calling Convention Information17

A subroutine entry may contain a DW_AT_calling_convention attribute, whose18

value is an integer constant. The set of calling convention codes for subroutines19

is given in Table 3.4.20

Table 3.4: Calling convention codes for subroutines

DW_CC_normal
DW_CC_program
DW_CC_nocall

If this attribute is not present, or its value is the constant DW_CC_normal, then21

the subroutine may be safely called by obeying the “standard” calling22

conventions of the target architecture. If the value of the calling convention23

attribute is the constant DW_CC_nocall, the subroutine does not obey standard24

calling conventions, and it may not be safe for the debugger to call this25

subroutine.26

Note that DW_CC_normal is also used as a calling convention code for certain types (see27

Table 5.5 on page 120).28

July 15 2024 ***WORKING DRAFT*** Page 79

Chapter 3. Program Scope Entries

If the semantics of the language of the compilation unit containing the1

subroutine entry distinguishes between ordinary subroutines and subroutines2

that can serve as the “main program,” that is, subroutines that cannot be called3

directly according to the ordinary calling conventions, then the debugging4

information entry for such a subroutine may have a calling convention attribute5

whose value is the constant DW_CC_program.6

A common debugger feature is to allow the debugger user to call a subroutine within the7

subject program. In certain cases, however, the generated code for a subroutine will not8

obey the standard calling conventions for the target architecture and will therefore not be9

safe to call from within a debugger.10

The DW_CC_program value is intended to support Fortran main programs which in11

some implementations may not be callable or which must be invoked in a special way. It12

is not intended as a way of finding the entry address for the program.13

3.3.1.2 Miscellaneous Subprogram Properties14

In C there is a difference between the types of functions declared using function prototype15

style declarations and those declared using non-prototype declarations.16

A subroutine entry declared with a function prototype style declaration may17

have a DW_AT_prototyped attribute, which is a flag. The attribute indicates18

whether a subroutine entry point corresponds to a function declaration that19

includes parameter prototype information.20

A subprogram entry may have a DW_AT_elemental attribute, which is a flag.21

The attribute indicates whether the subroutine or entry point was declared with22

the “elemental” keyword or property.23

A subprogram entry may have a DW_AT_pure attribute, which is a flag. The24

attribute indicates whether the subroutine was declared with the “pure”25

keyword or property.26

A subprogram entry may have a DW_AT_recursive attribute, which is a flag. The27

attribute indicates whether the subroutine or entry point was declared with the28

“recursive” keyword or property.29

A subprogram entry may have a DW_AT_noreturn attribute, which is a flag. The30

attribute indicates whether the subprogram was declared with the “noreturn”31

keyword or property indicating that the subprogram can be called, but will never32

return to its caller.33

July 15 2024 ***WORKING DRAFT*** Page 80

Chapter 3. Program Scope Entries

The Fortran language allows the keywords elemental, pure and recursive to be1

included as part of the declaration of a subroutine; these attributes reflect that usage.2

These attributes are not relevant for languages that do not support similar keywords or3

syntax. In particular, the DW_AT_recursive attribute is neither needed nor appropriate4

in languages such as C where functions support recursion by default.5

3.3.1.3 Call Site-Related Attributes6

While subprogram attributes in the previous section provide information about the7

subprogram and its entry point(s) as a whole, the following attributes provide summary8

information about the calls that occur within a subprogram.9

A subroutine entry may have DW_AT_call_all_tail_calls, DW_AT_call_all_calls10

and/or DW_AT_call_all_source_calls attributes, each of which is a flag. These11

flags indicate the completeness of the call site information provided by call site12

entries (see Section 3.4.1 on page 94) within the subprogram.13

The DW_AT_call_all_tail_calls attribute indicates that every tail call that occurs14

in the code for the subprogram is described by a DW_TAG_call_site entry. (There15

may or may not be other non-tail calls to some of the same target subprograms.)16

The DW_AT_call_all_calls attribute indicates that every non-inlined call (either a17

tail call or a normal call) that occurs in the code for the subprogram is described18

by a DW_TAG_call_site entry.19

The DW_AT_call_all_source_calls attribute indicates that every call that occurs in20

the code for the subprogram, including every call inlined into it, is described by21

either a DW_TAG_call_site entry or a DW_TAG_inlined_subroutine entry;22

further, any call that is optimized out is nonetheless also described using a23

DW_TAG_call_site entry that has neither a DW_AT_call_pc nor24

DW_AT_call_return_pc attribute.25

The DW_AT_call_all_source_calls attribute is intended for debugging information26

format consumers that analyze call graphs.27

If the the DW_AT_call_all_source_calls attribute is present then the28

DW_AT_call_all_calls and DW_AT_call_all_tail_calls attributes are also29

implicitly present. Similarly, if the DW_AT_call_all_calls attribute is present then30

the DW_AT_call_all_tail_calls attribute is implicitly present.31

July 15 2024 ***WORKING DRAFT*** Page 81

Chapter 3. Program Scope Entries

3.3.2 Subroutine and Entry Point Return Types1

If the subroutine or entry point is a function that returns a value, then its2

debugging information entry has a DW_AT_type attribute to denote the type3

returned by that function.4

Debugging information entries for C void functions should not have an attribute for the5

return type.6

Debugging information entries for declarations of C++ member functions with an auto7

return type specifier should use an unspecified type entry (see Section 5.2 on page 112).8

The debugging information entry for the corresponding definition should provide the9

deduced return type. This practice causes the description of the containing class to be10

consistent across compilation units, allowing the class declaration to be placed into a11

separate type unit if desired.12

3.3.3 Subroutine and Entry Point Locations13

A subroutine entry may have either a DW_AT_low_pc and DW_AT_high_pc14

pair of attributes or a DW_AT_ranges attribute whose values encode the15

contiguous or non-contiguous address ranges, respectively, of the machine16

instructions generated for the subroutine (see Section 2.17 on page 53).17

A subroutine entry may also have a DW_AT_entry_pc attribute whose value is18

the address of the first executable instruction of the subroutine (see Section 2.1819

on page 57).20

An entry point has a DW_AT_low_pc attribute whose value is the relocated21

address of the first machine instruction generated for the entry point.22

Subroutines and entry points may also have a DW_AT_address_class attribute, if23

appropriate, to specify the addressing mode to be used in calling that subroutine.24

A subroutine entry representing a subroutine declaration that is not also a25

definition does not have code address or range attributes.26

3.3.4 Declarations Owned by Subroutines and Entry Points27

The declarations enclosed by a subroutine or entry point are represented by28

debugging information entries that are owned by the subroutine or entry point29

entry. Entries representing the formal parameters of the subroutine or entry point30

appear in the same order as the corresponding declarations in the source31

program.32

July 15 2024 ***WORKING DRAFT*** Page 82

Chapter 3. Program Scope Entries

There is no ordering requirement for entries for declarations other than formal1

parameters. The formal parameter entries may be interspersed with other entries used by2

formal parameter entries, such as type entries.3

The unspecified (sometimes called “varying”) parameters of a subroutine4

parameter list are represented by a debugging information entry with the tag5

DW_TAG_unspecified_parameters.6

The entry for a subroutine that includes a Fortran common block has a child7

entry with the tag DW_TAG_common_inclusion. The common inclusion entry8

has a DW_AT_common_reference attribute whose value is a reference to the9

debugging information entry for the common block being included (see Section10

4.2 on page 104).11

3.3.5 Low-Level Information12

3.3.5.1 Return Address Location13

A subroutine or entry point entry may have a DW_AT_return_addr attribute,14

whose value is a location description. The location specified is the place where15

the return address for the subroutine or entry point is stored.16

3.3.5.2 Frame Base17

A subroutine or entry point entry may also have a DW_AT_frame_base attribute,18

whose value is a location description that describes the “frame base” for the19

subroutine or entry point. If the location description is a simple register location20

description, the given register contains the frame base address. If the location21

description is a DWARF expression, the result of evaluating that expression is the22

frame base address. Finally, for a location list, this interpretation applies to each23

location description contained in the list of location list entries.24

The use of one of the DW_OP_reg<n> operations in this context is equivalent to using25

DW_OP_breg<n>(0) but more compact. However, these are not equivalent in general.26

The frame base for a subprogram is typically an address relative to the first unit of storage27

allocated for the subprogram’s stack frame. The DW_AT_frame_base attribute can be28

used in several ways:29

1. In subprograms that need location lists to locate local variables, the30

DW_AT_frame_base can hold the needed location list, while all variables’ location31

descriptions can be simpler ones involving the frame base.32

2. It can be used in resolving “up-level” addressing within nested routines. (See also33

DW_AT_static_link, below)34

July 15 2024 ***WORKING DRAFT*** Page 83

Chapter 3. Program Scope Entries

3.3.5.3 Nested subroutines and up-level references1

Some languages support nested subroutines. In such languages, it is possible to reference2

the local variables of an outer subroutine from within an inner subroutine. The3

DW_AT_static_link and DW_AT_frame_base attributes allow debuggers to support this4

same kind of referencing.5

If a subroutine or entry point is nested, it may have a DW_AT_static_link6

attribute, whose value is a location description that computes the frame base of7

the relevant instance of the subroutine that immediately encloses the subroutine8

or entry point.9

In the context of supporting nested subroutines, the DW_AT_frame_base10

attribute value obeys the following constraints:11

1. It computes a value that does not change during the life of the subprogram,12

and13

2. The computed value is unique among instances of the same subroutine.14

For typical DW_AT_frame_base use, this means that a recursive subroutine’s stack15

frame must have non-zero size.16

If a debugger is attempting to resolve an up-level reference to a variable, it uses the17

nesting structure of DWARF to determine which subroutine is the lexical parent and the18

DW_AT_static_link value to identify the appropriate active frame of the parent. It can19

then attempt to find the reference within the context of the parent.20

3.3.5.4 Lanes in SIMD Vectorization21

SIMD instructions process multiple data elements in one instruction. The number of22

data elements that is processed with one instruction is typically referred to as the SIMD23

width. Each individual data element is typically referred to as SIMD lane.24

When generating code for a SIMD architecture, compilers may need to implicitly widen25

the source code to match the SIMD width of the instruction set they are using. Source26

variables are widened into a vector of variables, with one instance per SIMD lane.27

A subroutine that is implicitly vectorized may have a DW_AT_num_lanes28

attribute whose value describes the implicit vectorization factor and the29

corresponding number of lanes in the generated code. The value of this attribute30

is determined as described in Section 2.19 on page 57.31

To refer to individual lanes in such vectorized code, for example to describe the32

location of widened source variables, producers may use the DW_OP_push_lane33

operation (see Section 2.5.1.3 on page 29) to have the consumer supply the34

July 15 2024 ***WORKING DRAFT*** Page 84

Chapter 3. Program Scope Entries

current focus lane for which to evaluate the expression. The pushed lane index1

must be an unsigned integer value between zero (inclusive) and the value of2

DW_AT_num_lanes (exclusive) at the current location.3

If the attribute is omitted, its value is defined by the ABI.4

If the source code had already been vectorized and is not further widened by the compiler,5

the value should be one.6

This value does not only apply to vector instructions. If a loop or function has been7

widened, the entire loop or function body shall be annotated with the vectorization factor.8

3.3.6 Types Thrown by Exceptions9

In C++ a subroutine may declare a set of types which it may validly throw.10

If a subroutine explicitly declares that it may throw an exception of one or more11

types, each such type is represented by a debugging information entry with the12

tag DW_TAG_thrown_type. Each such entry is a child of the entry representing13

the subroutine that may throw this type. Each thrown type entry contains a14

DW_AT_type attribute, whose value is a reference to an entry describing the type15

of the exception that may be thrown.16

3.3.7 Function Template Instantiations17

In C++, a function template is a generic definition of a function that is instantiated18

differently for calls with values of different types. DWARF does not represent the generic19

template definition, but does represent each instantiation.20

A function template instantiation is represented by a debugging information21

entry with the tag DW_TAG_subprogram. With the following exceptions, such22

an entry will contain the same attributes and will have the same types of child23

entries as would an entry for a subroutine defined explicitly using the24

instantiation types and values. The exceptions are:25

1. Template parameters are described and referenced as specified in Section 2.2326

on page 59.27

2. If the compiler has generated a separate compilation unit to hold the template28

instantiation and that compilation unit has a different name from the29

compilation unit containing the template definition, the name attribute for30

the debugging information entry representing that compilation unit is empty31

or omitted.32

July 15 2024 ***WORKING DRAFT*** Page 85

Chapter 3. Program Scope Entries

3. If the subprogram entry representing the template instantiation or any of its1

child entries contain declaration coordinate attributes, those attributes refer to2

the source for the template definition, not to any source generated artificially3

by the compiler for this instantiation.4

3.3.8 Inlinable and Inlined Subroutines5

A declaration or a definition of an inlinable subroutine is represented by a6

debugging information entry with the tag DW_TAG_subprogram. The entry for7

a subroutine that is explicitly declared to be available for inline expansion or that8

was expanded inline implicitly by the compiler has a DW_AT_inline attribute9

whose value is an integer constant. The set of values for the DW_AT_inline10

attribute is given in Table 3.5.11

Table 3.5: Inline codes

Name Meaning
DW_INL_not_inlined Not declared inline nor inlined by the

compiler (equivalent to the absence of the
containing DW_AT_inline attribute)

DW_INL_inlined Not declared inline but inlined by the
compiler

DW_INL_declared_not_inlined Declared inline but not inlined by the
compiler

DW_INL_declared_inlined Declared inline and inlined by the
compiler

In C++, a function or a constructor declared with constexpr is implicitly declared12

inline. The abstract instance (see Section 3.3.8.1) is represented by a debugging13

information entry with the tag DW_TAG_subprogram. Such an entry has a14

DW_AT_inline attribute whose value is DW_INL_inlined.15

3.3.8.1 Abstract Instances16

Any subroutine entry that contains a DW_AT_inline attribute whose value is17

other than DW_INL_not_inlined is known as an abstract instance root. Any18

debugging information entry that is owned (either directly or indirectly) by an19

abstract instance root is known as an abstract instance entry. Any set of abstract20

instance entries that are all children (either directly or indirectly) of some abstract21

instance root, together with the root itself, is known as an abstract instance tree.22

However, in the case where an abstract instance tree is nested within another23

July 15 2024 ***WORKING DRAFT*** Page 86

Chapter 3. Program Scope Entries

abstract instance tree, the entries in the nested abstract instance tree are not1

considered to be entries in the outer abstract instance tree.2

Each abstract instance root is either part of a larger tree (which gives a context for3

the root) or uses DW_AT_specification to refer to the declaration in context.4

For example, in C++ the context might be a namespace declaration or a class declaration.5

Abstract instance trees are defined so that no entry is part of more than one abstract6

instance tree.7

Attributes and children in an abstract instance are shared by all concrete8

instances (see Section 3.3.8.2).9

A debugging information entry that is a member of an abstract instance tree may10

not contain any attributes which describe aspects of the subroutine which vary11

between distinct inlined expansions or distinct out-of-line expansions.12

For example, the DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges,13

DW_AT_entry_pc, DW_AT_location, DW_AT_return_addr and DW_AT_start_scope14

attributes typically should be omitted; however, this list is not exhaustive.15

It would not make sense normally to put these attributes into abstract instance entries16

since such entries do not represent actual (concrete) instances and thus do not actually17

exist at run-time. However, see Appendix D.7.3 on page 353 for a contrary example.18

The rules for the relative location of entries belonging to abstract instance trees19

are exactly the same as for other similar types of entries that are not abstract.20

Specifically, the rule that requires that an entry representing a declaration be a21

direct child of the entry representing the scope of the declaration applies equally22

to both abstract and non-abstract entries. Also, the ordering rules for formal23

parameter entries, member entries, and so on, all apply regardless of whether or24

not a given entry is abstract.25

3.3.8.2 Concrete Instances26

Each inline expansion of a subroutine is represented by a debugging information27

entry with the tag DW_TAG_inlined_subroutine. Each such entry is a direct28

child of the entry that represents the scope within which the inlining occurs.29

Each inlined subroutine entry may have either a DW_AT_low_pc and30

DW_AT_high_pc pair of attributes or a DW_AT_ranges attribute whose values31

encode the contiguous or non-contiguous address ranges, respectively, of the32

machine instructions generated for the inlined subroutine (see Section 2.1733

following). An inlined subroutine entry may also contain a DW_AT_entry_pc34

July 15 2024 ***WORKING DRAFT*** Page 87

Chapter 3. Program Scope Entries

attribute, representing the first executable instruction of the inline expansion (see1

Section 2.18 on page 57).2

An inlined subroutine entry may also have DW_AT_call_file, DW_AT_call_line3

and DW_AT_call_column attributes, each of whose value is an integer constant.4

These attributes represent the source file, source line number, and source column5

number, respectively, of the first character of the statement or expression that6

caused the inline expansion. The call file, call line, and call column attributes are7

interpreted in the same way as the declaration file, declaration line, and8

declaration column attributes, respectively (see Section 2.14 on page 51).9

The call file, call line and call column coordinates do not describe the coordinates of the10

subroutine declaration that was inlined, rather they describe the coordinates of the call.11

An inlined subroutine entry may have a DW_AT_const_expr attribute, which is a12

flag whose presence indicates that the subroutine has been evaluated as a13

compile-time constant. Such an entry may also have a DW_AT_const_value14

attribute, whose value may be of any form that is appropriate for the15

representation of the subroutine’s return value. The value of this attribute is the16

actual return value of the subroutine, represented as it would be on the target17

architecture.18

In C++, if a function or a constructor declared with constexpr is called with constant19

expressions, then the corresponding concrete inlined instance has a DW_AT_const_expr20

attribute, as well as a DW_AT_const_value attribute whose value represents the actual21

return value of the concrete inlined instance.22

Any debugging information entry that is owned (either directly or indirectly) by23

a debugging information entry with the tag DW_TAG_inlined_subroutine is24

referred to as a “concrete inlined instance entry.” Any entry that has the tag25

DW_TAG_inlined_subroutine is known as a “concrete inlined instance root.”26

Any set of concrete inlined instance entries that are all children (either directly or27

indirectly) of some concrete inlined instance root, together with the root itself, is28

known as a “concrete inlined instance tree.” However, in the case where a29

concrete inlined instance tree is nested within another concrete instance tree, the30

entries in the nested concrete inline instance tree are not considered to be entries31

in the outer concrete instance tree.32

July 15 2024 ***WORKING DRAFT*** Page 88

Chapter 3. Program Scope Entries

Concrete inlined instance trees are defined so that no entry is part of more than one1

concrete inlined instance tree. This simplifies later descriptions.2

Each concrete inlined instance tree is uniquely associated with one (and only3

one) abstract instance tree.4

Note, however, that the reverse is not true. Any given abstract instance tree may be5

associated with several different concrete inlined instance trees, or may even be associated6

with zero concrete inlined instance trees.7

Concrete inlined instance entries may omit attributes that are not specific to the8

concrete instance (but present in the abstract instance) and need include only9

attributes that are specific to the concrete instance (but omitted in the abstract10

instance). In place of these omitted attributes, each concrete inlined instance11

entry has a DW_AT_abstract_origin attribute that may be used to obtain the12

missing information (indirectly) from the associated abstract instance entry. The13

value of the abstract origin attribute is a reference to the associated abstract14

instance entry.15

If an entry within a concrete inlined instance tree contains attributes describing16

the declaration coordinates of that entry, then those attributes refer to the file, line17

and column of the original declaration of the subroutine, not to the point at18

which it was inlined. As a consequence, they may usually be omitted from any19

entry that has an abstract origin attribute.20

For each pair of entries that are associated via a DW_AT_abstract_origin21

attribute, both members of the pair have the same tag. So, for example, an entry22

with the tag DW_TAG_variable can only be associated with another entry that23

also has the tag DW_TAG_variable. The only exception to this rule is that the24

root of a concrete instance tree (which must always have the tag25

DW_TAG_inlined_subroutine) can only be associated with the root of its26

associated abstract instance tree (which must have the tag27

DW_TAG_subprogram).28

In general, the structure and content of any given concrete inlined instance tree29

will be closely analogous to the structure and content of its associated abstract30

instance tree. There are a few exceptions:31

1. An entry in the concrete instance tree may be omitted if it contains only a32

DW_AT_abstract_origin attribute and either has no children, or its children33

are omitted. Such entries would provide no useful information. In C-like34

languages, such entries frequently include types, including structure, union,35

class, and interface types; and members of types. If any entry within a36

concrete inlined instance tree needs to refer to an entity declared within the37

July 15 2024 ***WORKING DRAFT*** Page 89

Chapter 3. Program Scope Entries

scope of the relevant inlined subroutine and for which no concrete instance1

entry exists, the reference refers to the abstract instance entry.2

2. Entries in the concrete instance tree which are associated with entries in the3

abstract instance tree such that neither has a DW_AT_name attribute, and4

neither is referenced by any other debugging information entry, may be5

omitted. This may happen for debugging information entries in the abstract6

instance trees that became unnecessary in the concrete instance tree because7

of additional information available there. For example, an anonymous8

variable might have been created and described in the abstract instance tree,9

but because of the actual parameters for a particular inlined expansion, it10

could be described as a constant value without the need for that separate11

debugging information entry.12

3. A concrete instance tree may contain entries which do not correspond to13

entries in the abstract instance tree to describe new entities that are specific to14

a particular inlined expansion. In that case, they will not have associated15

entries in the abstract instance tree, do not contain DW_AT_abstract_origin16

attributes, and must contain all their own attributes directly. This allows an17

abstract instance tree to omit debugging information entries for anonymous18

entities that are unlikely to be needed in most inlined expansions. In any19

expansion which deviates from that expectation, the entries can be described20

in its concrete inlined instance tree.21

3.3.8.3 Out-of-Line Instances of Inlined Subroutines22

Under some conditions, compilers may need to generate concrete executable23

instances of inlined subroutines other than at points where those subroutines are24

actually called. Such concrete instances of inlined subroutines are referred to as25

“concrete out-of-line instances.”26

In C++, for example, taking the address of a function declared to be inline can necessitate27

the generation of a concrete out-of-line instance of the given function.28

The DWARF representation of a concrete out-of-line instance of an inlined29

subroutine is essentially the same as for a concrete inlined instance of that30

subroutine (as described in the preceding section). The representation of such a31

concrete out-of-line instance makes use of DW_AT_abstract_origin attributes in32

exactly the same way as they are used for a concrete inlined instance (that is, as33

references to corresponding entries within the associated abstract instance tree).34

The differences between the DWARF representation of a concrete out-of-line35

instance of a given subroutine and the representation of a concrete inlined36

instance of that same subroutine are as follows:37

July 15 2024 ***WORKING DRAFT*** Page 90

Chapter 3. Program Scope Entries

1. The root entry for a concrete out-of-line instance of a given inlined subroutine1

has the same tag as does its associated (abstract) inlined subroutine entry2

(that is, tag DW_TAG_subprogram rather than3

DW_TAG_inlined_subroutine).4

2. The root entry for a concrete out-of-line instance tree is normally owned by5

the same parent entry that also owns the root entry of the associated abstract6

instance. However, it is not required that the abstract and out-of-line instance7

trees be owned by the same parent entry.8

3.3.8.4 Nested Inlined Subroutines9

Some languages and compilers may permit the logical nesting of a subroutine10

within another subroutine, and may permit either the outer or the nested11

subroutine, or both, to be inlined.12

For a non-inlined subroutine nested within an inlined subroutine, the nested13

subroutine is described normally in both the abstract and concrete inlined14

instance trees for the outer subroutine. All rules pertaining to the abstract and15

concrete instance trees for the outer subroutine apply also to the abstract and16

concrete instance entries for the nested subroutine.17

For an inlined subroutine nested within another inlined subroutine, the18

following rules apply to their abstract and concrete instance trees:19

1. The abstract instance tree for the nested subroutine is described within the20

abstract instance tree for the outer subroutine according to the rules in21

Section 3.3.8.1 on page 86, and without regard to the fact that it is within an22

outer abstract instance tree.23

2. Any abstract instance tree for a nested subroutine is always omitted within24

the concrete instance tree for an outer subroutine.25

3. A concrete instance tree for a nested subroutine is always omitted within the26

abstract instance tree for an outer subroutine.27

4. The concrete instance tree for any inlined or out-of-line expansion of the28

nested subroutine is described within a concrete instance tree for the outer29

subroutine according to the rules in Sections 3.3.8.2 on page 87 or 3.3.8.330

following , respectively, and without regard to the fact that it is within an31

outer concrete instance tree.32

See Appendix D.7 on page 349 for discussion and examples.33

July 15 2024 ***WORKING DRAFT*** Page 91

Chapter 3. Program Scope Entries

3.3.9 Trampolines1

A trampoline is a compiler-generated subroutine that serves as an intermediary in2

making a call to another subroutine. It may adjust parameters and/or the result (if any)3

as appropriate to the combined calling and called execution contexts.4

A trampoline is represented by a debugging information entry with the tag5

DW_TAG_subprogram or DW_TAG_inlined_subroutine that has a6

DW_AT_trampoline attribute. The value of that attribute indicates the target7

subroutine of the trampoline, that is, the subroutine to which the trampoline8

passes control. (A trampoline entry may but need not also have a9

DW_AT_artificial attribute.)10

The value of the trampoline attribute may be represented using any of the11

following forms:12

• If the value is of class reference, then the value specifies the debugging13

information entry of the target subprogram.14

• If the value is of class address, then the value is the relocated address of the15

target subprogram.16

• If the value is of class string, then the value is the (possibly mangled) name17

of the target subprogram.18

• If the value is of class flag, then the value true indicates that the containing19

subroutine is a trampoline but that the target subroutine is not known.20

The target subprogram may itself be a trampoline. (A sequence of trampolines21

necessarily ends with a non-trampoline subprogram.)22

In C++, trampolines may be used to implement derived virtual member functions; such23

trampolines typically adjust the implicit this parameter in the course of passing control.24

Other languages and environments may use trampolines in a manner sometimes known25

as transfer functions or transfer vectors.26

Trampolines may sometimes pass control to the target subprogram using a branch or27

jump instruction instead of a call instruction, thereby leaving no trace of their existence28

in the subsequent execution context.29

This attribute helps make it feasible for a debugger to arrange that stepping into a30

trampoline or setting a breakpoint in a trampoline will result in stepping into or setting31

the breakpoint in the target subroutine instead. This helps to hide the compiler generated32

subprogram from the user.33

July 15 2024 ***WORKING DRAFT*** Page 92

Chapter 3. Program Scope Entries

3.4 Call Site Entries and Parameters1

A call site entry describes a call from one subprogram to another in the source program.2

It provides information about the actual parameters of the call so that they may be more3

easily accessed by a debugger. When used together with call frame information (see4

Section 6.4 on page 178), call site entries can be useful for computing the value of an5

actual parameter passed by a caller, even when the location description for the callee’s6

corresponding formal parameter does not provide a current location for the formal7

parameter.8

The DWARF expression for computing the value of an actual parameter at a call site may9

refer to registers or memory locations. The expression assumes these contain the values10

they would have at the point where the call is executed. After the called subprogram has11

been entered, these registers and memory locations might have been modified. In order to12

recover the values that existed at the point of the call (to allow evaluation of the DWARF13

expression for the actual parameter), a debugger may virtually unwind the subprogram14

activation (see Section 6.4 on page 178). Any register or memory location that cannot be15

recovered is referred to as "clobbered by the call."16

A source call can be compiled into different types of machine code:17

• A normal call uses a call-like instruction which transfers control to the start18

of some subprogram and preserves the call site location for use by the19

callee.20

• A tail call uses a jump-like instruction which transfers control to the start of21

some subprogram, but there is no call site location address to preserve (and22

thus none is available using the virtual unwind information).23

• A tail recursion call is a call to the current subroutine which is compiled as a24

jump to the current subroutine.25

• An inline (or inlined) call is a call to an inlined subprogram, where at least26

one instruction has the location of the inlined subprogram or any of its27

blocks or inlined subprograms.28

There are also different types of “optimized out” calls:29

• An optimized out (normal) call is a call that is in unreachable code that has30

not been emitted (such as, for example, the call to foo in if (0) foo();).31

• An optimized out inline call is a call to an inlined subprogram which either32

did not expand to any instructions or only parts of instructions belong to it33

and for debug information purposes those instructions are given a location34

in the caller.35

July 15 2024 ***WORKING DRAFT*** Page 93

Chapter 3. Program Scope Entries

DW_TAG_call_site entries describe normal and tail calls but not tail recursion1

calls, while DW_TAG_inlined_subroutine entries describe inlined calls (see2

Section 3.3.8 on page 86). Call site entries cannot fully describe tail recursion or3

optimized out calls.4

For optimized out calls there is no code address to use for DW_AT_call_return_pc or5

DW_AT_call_pc attributes; however, the fact that the souce code makes a call to a certain6

function at a specific source code location and whether some of the arguments have7

constant values can be useful for certain consumers.8

3.4.1 Call Site Entries9

A call site is represented by a debugging information entry with the tag10

DW_TAG_call_site. The entry for a call site is owned by the innermost11

debugging information entry representing the scope within which the call is12

present in the source program.13

A scope entry (for example, a lexical block) that would not otherwise be present in the14

debugging information of a subroutine need not be introduced solely to represent the15

immediately containing scope of a call.16

The call site entry may have a DW_AT_call_return_pc attribute which is the17

return address after the call. The value of this attribute corresponds to the return18

address computed by call frame information in the called subprogram (see19

Section 7.24 on page 250).20

On many architectures the return address is the address immediately following the call21

instruction, but on architectures with delay slots it might be an address after the delay22

slot of the call.23

The call site entry may have a DW_AT_call_pc attribute which is the address of24

the call-like instruction for a normal call or the jump-like instruction for a tail call.25

If the call site entry corresponds to a tail call, it has the DW_AT_call_tail_call26

attribute, which is a flag.27

The call site entry may have a DW_AT_call_origin attribute which is a reference.28

For direct calls or jumps where the called subprogram is known it is a reference29

to the called subprogram’s debugging information entry. For indirect calls it may30

be a reference to a DW_TAG_variable, DW_TAG_formal_parameter or31

DW_TAG_member entry representing the subroutine pointer that is called.32

July 15 2024 ***WORKING DRAFT*** Page 94

Chapter 3. Program Scope Entries

The call site may have a DW_AT_call_target attribute which is a DWARF1

expression. For indirect calls or jumps where it is unknown at compile time2

which subprogram will be called the expression computes the address of the3

subprogram that will be called.4

The DWARF expression should not use register or memory locations that might be5

clobbered by the call.6

The call site entry may have a DW_AT_call_target_clobbered attribute which is a7

DWARF expression. For indirect calls or jumps where the address is not8

computable without use of registers or memory locations that might be9

clobbered by the call the DW_AT_call_target_clobbered attribute is used instead10

of the DW_AT_call_target attribute.11

The expression of a call target clobbered attribute may only be valid at the time the call or12

call-like transfer of control is executed.13

The call site entry may have a DW_AT_type attribute referencing a debugging14

information entry for the type of the called function.15

When DW_AT_call_origin is present, DW_AT_type is usually omitted.16

The call site entry may have DW_AT_call_file, DW_AT_call_line and17

DW_AT_call_column attributes, each of whose value is an integer constant.18

These attributes represent the source file, source line number, and source column19

number, respectively, of the first character of the call statement or expression.20

The call file, call line, and call column attributes are interpreted in the same way21

as the declaration file, declaration line, and declaration column attributes,22

respectively (see Section 2.14 on page 51).23

The call file, call line and call column coordinates do not describe the coordinates of the24

subroutine declaration that was called, rather they describe the coordinates of the call.25

3.4.2 Call Site Parameters26

The call site entry may own DW_TAG_call_site_parameter debugging27

information entries representing the parameters passed to the call. Call site28

parameter entries occur in the same order as the corresponding parameters in the29

source. Each such entry has a DW_AT_location attribute which is a location30

description. This location description describes where the parameter is passed31

(usually either some register, or a memory location expressible as the contents of32

the stack register plus some offset).33

July 15 2024 ***WORKING DRAFT*** Page 95

Chapter 3. Program Scope Entries

Each DW_TAG_call_site_parameter entry may have a DW_AT_call_value1

attribute which is a DWARF expression which when evaluated yields the value2

of the parameter at the time of the call.3

If it is not possible to avoid registers or memory locations that might be clobbered by the4

call in the expression, then the DW_AT_call_value attribute should not be provided. The5

reason for the restriction is that the value of the parameter may be needed in the midst of6

the callee, where the call clobbered registers or memory might be already clobbered, and if7

the consumer is not assured by the producer it can safely use those values, the consumer8

can not safely use the values at all.9

For parameters passed by reference, where the code passes a pointer to a location10

which contains the parameter, or for reference type parameters, the11

DW_TAG_call_site_parameter entry may also have a DW_AT_call_data_location12

attribute whose value is a location description and a DW_AT_call_data_value13

attribute whose value is a DWARF expression. The DW_AT_call_data_location14

attribute describes where the referenced value lives during the call. If it is just15

DW_OP_push_object_address, it may be left out. The DW_AT_call_data_value16

attribute describes the value in that location. The expression should not use17

registers or memory locations that might be clobbered by the call, as it might be18

evaluated after virtually unwinding from the called function back to the caller.19

Each call site parameter entry may also have a DW_AT_call_parameter attribute20

which contains a reference to a DW_TAG_formal_parameter entry, DW_AT_type21

attribute referencing the type of the parameter or DW_AT_name attribute22

describing the parameter’s name.23

Examples using call site entries and related attributes are found in Appendix D.15 on24

page 373.25

3.5 Lexical Block Entries26

A lexical block is a bracketed sequence of source statements that may contain any number27

of declarations. In some languages (including C and C++), blocks can be nested within28

other blocks to any depth.29

A lexical block is represented by a debugging information entry with the tag30

DW_TAG_lexical_block.31

The lexical block entry may have either a DW_AT_low_pc and DW_AT_high_pc32

pair of attributes or a DW_AT_ranges attribute whose values encode the33

contiguous or non-contiguous address ranges, respectively, of the machine34

instructions generated for the lexical block (see Section 2.17 on page 53).35

July 15 2024 ***WORKING DRAFT*** Page 96

Chapter 3. Program Scope Entries

A lexical block entry may also have a DW_AT_entry_pc attribute whose value is1

the address of the first executable instruction of the lexical block (see Section 2.182

on page 57).3

If a name has been given to the lexical block in the source program, then the4

corresponding lexical block entry has a DW_AT_name attribute whose value is a5

null-terminated string containing the name of the lexical block.6

This is not the same as a C or C++ label (see Section 3.6).7

The lexical block entry owns debugging information entries that describe the8

declarations within that lexical block. There is one such debugging information9

entry for each local declaration of an identifier or inner lexical block.10

3.6 Label Entries11

A label is a way of identifying a source location. A labeled statement is usually the target12

of one or more “go to” statements.13

A label is represented by a debugging information entry with the tag14

DW_TAG_label. The entry for a label is owned by the debugging information15

entry representing the scope within which the name of the label could be legally16

referenced within the source program.17

The label entry has a DW_AT_low_pc attribute whose value is the address of the18

first executable instruction for the location identified by the label in the source19

program. The label entry also has a DW_AT_name attribute whose value is a20

null-terminated string containing the name of the label.21

3.7 With Statement Entries22

Both Pascal and Modula-2 support the concept of a “with” statement. The with23

statement specifies a sequence of executable statements within which the fields of a record24

variable may be referenced, unqualified by the name of the record variable.25

A with statement is represented by a debugging information entry with the tag26

DW_TAG_with_stmt.27

A with statement entry may have either a DW_AT_low_pc and DW_AT_high_pc28

pair of attributes or a DW_AT_ranges attribute whose values encode the29

contiguous or non-contiguous address ranges, respectively, of the machine30

instructions generated for the with statement (see Section 2.17 on page 53).31

July 15 2024 ***WORKING DRAFT*** Page 97

Chapter 3. Program Scope Entries

A with statement entry may also have a DW_AT_entry_pc attribute whose value1

is the address of the first executable instruction of the with statement (see Section2

2.18 on page 57).3

The with statement entry has a DW_AT_type attribute, denoting the type of4

record whose fields may be referenced without full qualification within the body5

of the statement. It also has a DW_AT_location attribute, describing how to find6

the base address of the record object referenced within the body of the with7

statement.8

3.8 Try and Catch Block Entries9

In C++, a lexical block may be designated as a “catch block.” A catch block is an10

exception handler that handles exceptions thrown by an immediately preceding “try11

block.” A catch block designates the type of the exception that it can handle.12

A try block is represented by a debugging information entry with the tag13

DW_TAG_try_block. A catch block is represented by a debugging information14

entry with the tag DW_TAG_catch_block.15

Both try and catch block entries may have either a DW_AT_low_pc and16

DW_AT_high_pc pair of attributes or a DW_AT_ranges attribute whose values17

encode the contiguous or non-contiguous address ranges, respectively, of the18

machine instructions generated for the block (see Section 2.17 on page 53).19

A try or catch block entry may also have a DW_AT_entry_pc attribute whose20

value is the address of the first executable instruction of the try or catch block21

(see Section 2.18 on page 57).22

Catch block entries have at least one child entry, an entry representing the type of23

exception accepted by that catch block. This child entry has one of the tags24

DW_TAG_formal_parameter or DW_TAG_unspecified_parameters, and will25

have the same form as other parameter entries.26

The siblings immediately following a try block entry are its corresponding catch27

block entries.28

July 15 2024 ***WORKING DRAFT*** Page 98

Chapter 3. Program Scope Entries

3.9 Declarations with Reduced Scope1

Any debugging information entry for a declaration (including objects,2

subprograms, types and modules) whose scope has an address range that is a3

subset of the address range for the lexical scope most closely enclosing the4

declared entity may have a DW_AT_start_scope attribute to specify that reduced5

range of addresses.6

There are two cases:7

1. If the address range for the scope of the entry includes all of addresses for the8

containing scope except for a contiguous sequence of bytes at the beginning9

of the address range for the containing scope, then the address is specified10

using a value of class constant.11

a) If the address range of the containing scope is contiguous, the value of12

this attribute is the offset in bytes of the beginning of the address range13

for the scope of the object from the low PC value of the debugging14

information entry that defines that containing scope.15

b) If the address range of the containing scope is non-contiguous (see 2.17.316

on page 54) the value of this attribute is the offset in bytes of the17

beginning of the address range for the scope of the entity from the18

beginning of the first range list entry for the containing scope that is not a19

base address entry or an end-of-list entry.20

2. Otherwise, the set of addresses for the scope of the entity is specified using a21

value of class rnglistsptr. This value indicates the beginning of a range list22

(see Section 2.17.3 on page 54).23

For example, the scope of a variable may begin somewhere in the midst of a lexical block24

in a language that allows executable code in a block before a variable declaration, or where25

one declaration containing initialization code may change the scope of a subsequent26

declaration.27

Consider the following example C code:28

float x = 99.99;
int myfunc ()
{

float f = x;
float x = 88.99;
return 0;

}

July 15 2024 ***WORKING DRAFT*** Page 99

Chapter 3. Program Scope Entries

C scoping rules require that the value of the variable x assigned to the variable f in the1

initialization sequence is the value of the global variable x, rather than the local x,2

because the scope of the local variable x only starts after the full declarator for the local x.3

Due to optimization, the scope of an object may be non-contiguous and require use of a4

range list even when the containing scope is contiguous. Conversely, the scope of an5

object may not require its own range list even when the containing scope is6

non-contiguous.7

July 15 2024 ***WORKING DRAFT*** Page 100

Chapter 41

Data Object and Object List Entries2

This section presents the debugging information entries that describe individual3

data objects: variables, parameters and constants, and lists of those objects that4

may be grouped in a single declaration, such as a common block.5

4.1 Data Object Entries6

Program variables, formal parameters and constants are represented by7

debugging information entries with the tags DW_TAG_variable,8

DW_TAG_formal_parameter and DW_TAG_constant, respectively.9

The tag DW_TAG_constant is used for languages that have true named constants.10

The debugging information entry for a program variable, formal parameter or11

constant may have the following attributes:12

1. A DW_AT_name attribute, whose value is a null-terminated string13

containing the data object name.14

If a variable entry describes an anonymous object (for example an anonymous15

union), the name attribute is omitted or its value consists of a single zero byte.16

2. A DW_AT_external attribute, which is a flag, if the name of a variable is17

visible outside of its enclosing compilation unit.18

The definitions of C++ static data members of structures or classes are represented by19

variable entries flagged as external. Both file static and local variables in C and C++20

are represented by non-external variable entries.21

3. A DW_AT_declaration attribute, which is a flag that indicates whether this22

entry represents a non-defining declaration of an object.23

July 15 2024 ***WORKING DRAFT*** Page 101

Chapter 4. Data Object and Object List

4. A DW_AT_location attribute, whose value describes the location of a variable1

or parameter at run-time.2

If no location attribute is present in a variable entry representing the3

definition of a variable (that is, with no DW_AT_declaration attribute), or if4

the location attribute is present but has an empty location description (as5

described in Section 2.6 on page 39), the variable is assumed to exist in the6

source code but not in the executable program (but see number 10, below).7

In a variable entry representing a non-defining declaration of a variable, the8

location specified supersedes the location specified by the defining9

declaration but only within the scope of the variable entry; if no location is10

specified, then the location specified in the defining declaration applies.11

This can occur, for example, for a C or C++ external variable (one that is defined and12

allocated in another compilation unit) and whose location varies in the current unit13

due to optimization.14

5. A DW_AT_type attribute describing the type of the variable, constant or15

formal parameter.16

6. If the variable entry represents the defining declaration for a C++ static data17

member of a structure, class or union, the entry has a DW_AT_specification18

attribute, whose value is a reference to the debugging information entry19

representing the declaration of this data member. The referenced entry also20

has the tag DW_TAG_variable and will be a child of some class, structure or21

union type entry.22

If the variable entry represents a non-defining declaration,23

DW_AT_specification may be used to reference the defining declaration of24

the variable. If no DW_AT_specification attribute is present, the defining25

declaration may be found as a global definition either in the current26

compilation unit or in another compilation unit with the DW_AT_external27

attribute.28

Variable entries containing the DW_AT_specification attribute do not need to29

duplicate information provided by the declaration entry referenced by the30

specification attribute. In particular, such variable entries do not need to31

contain attributes for the name or type of the data member whose definition32

they represent.33

7. A DW_AT_variable_parameter attribute, which is a flag, if a formal34

parameter entry represents a parameter whose value in the calling function35

may be modified by the callee. The absence of this attribute implies that the36

parameter’s value in the calling function cannot be modified by the callee.37

July 15 2024 ***WORKING DRAFT*** Page 102

Chapter 4. Data Object and Object List

8. A DW_AT_is_optional attribute, which is a flag, if a parameter entry1

represents an optional parameter.2

9. A DW_AT_default_value attribute for a formal parameter entry. The value of3

this attribute may be a constant, a reference to the debugging information4

entry for a variable, a reference to a debugging information entry for a5

DWARF procedure, or a string containing a source language fragment.6

• If the attribute form is of class constant, that constant is interpreted as a7

value whose type is the same as the type of the formal parameter.8

For a constant form there is no way to express the absence of a default value.9

• If the attribute form is of class reference, and the referenced entry is for a10

variable, the default value of the parameter is the value of the referenced11

variable. If the reference value is 0, no default value has been specified.12

• If the attribute form is of class string, that string is interpreted as an13

expression in the source language, as defined by the compilation unit’s14

DW_AT_language_name and DW_AT_language_version attributes, that15

is to be evaluated according to the rules defined by that source language.16

The source language fragment may be different from the actual source text if the17

latter contains macros which have been expanded.18

10. A DW_AT_const_value attribute for an entry describing a variable or formal19

parameter whose value is constant and not represented by an object in the20

address space of the program, or an entry describing a named constant. (Note21

that such an entry does not have a location attribute.) The value of this22

attribute may be a string or any of the constant data or data block forms, as23

appropriate for the representation of the variable’s value. The value is the24

actual constant value of the variable, represented as it would be on the target25

architecture.26

One way in which a formal parameter with a constant value and no location can arise27

is for a formal parameter of an inlined subprogram that corresponds to a constant28

actual parameter of a call that is inlined.29

July 15 2024 ***WORKING DRAFT*** Page 103

Chapter 4. Data Object and Object List

11. A DW_AT_endianity attribute, whose value is a constant that specifies the1

endianity of the object. The value of this attribute specifies an ABI-defined2

byte ordering for the value of the object. If omitted, the default endianity of3

data for the given type is assumed.4

The set of values and their meaning for this attribute is given in Table 4.1.5

These represent the default encoding formats as defined by the target6

architecture’s ABI or processor definition. The exact definition of these7

formats may differ in subtle ways for different architectures.8

Table 4.1: Endianity attribute values

Name Meaning
DW_END_default Default endian encoding (equivalent to the

absence of a DW_AT_endianity attribute)
DW_END_big Big-endian encoding
DW_END_little Little-endian encoding

12. A DW_AT_const_expr attribute, constant expression attribute which is a flag,9

if a variable entry represents a C++ object declared with the constexpr10

specifier. This attribute indicates that the variable can be evaluated as a11

compile-time constant.12

In C++, a variable declared with constexpr is implicitly const. Such a variable has13

a DW_AT_type attribute whose value is a reference to a debugging information entry14

describing a const qualified type.15

13. A DW_AT_linkage_name attribute for a variable or constant entry as16

described in Section 2.22 on page 58.17

4.2 Common Block Entries18

A Fortran common block may be described by a debugging information entry19

with the tag DW_TAG_common_block.20

The common block entry has a DW_AT_name attribute whose value is a21

null-terminated string containing the common block name. It may also have a22

DW_AT_linkage_name attribute as described in Section 2.22 on page 58.23

A common block entry also has a DW_AT_location attribute whose value24

describes the location of the beginning of the common block.25

The common block entry owns debugging information entries describing the26

variables contained within the common block.27

July 15 2024 ***WORKING DRAFT*** Page 104

Chapter 4. Data Object and Object List

Fortran allows each declarer of a common block to independently define its contents;1

thus, common blocks are not types.2

4.3 Namelist Entries3

At least one language, Fortran 90, has the concept of a namelist. A namelist is an ordered4

list of the names of some set of declared objects. The namelist object itself may be used as5

a replacement for the list of names in various contexts.6

A namelist is represented by a debugging information entry with the tag7

DW_TAG_namelist. If the namelist itself has a name, the namelist entry has a8

DW_AT_name attribute, whose value is a null-terminated string containing the9

namelist’s name.10

Each name that is part of the namelist is represented by a debugging information11

entry with the tag DW_TAG_namelist_item. Each such entry is a child of the12

namelist entry, and all of the namelist item entries for a given namelist are13

ordered as were the list of names they correspond to in the source program.14

Each namelist item entry contains a DW_AT_namelist_item attribute whose15

value is a reference to the debugging information entry representing the16

declaration of the item whose name appears in the namelist.17

July 15 2024 ***WORKING DRAFT*** Page 105

Chapter 51

Type Entries2

This section presents the debugging information entries that describe program3

types: base types, modified types and user-defined types.4

5.1 Base Type Entries5

A base type is a data type that is not defined in terms of other data types. Each6

programming language has a set of base types that are considered to be built into that7

language.8

A base type is represented by a debugging information entry with the tag9

DW_TAG_base_type.10

A base type entry may have a DW_AT_name attribute whose value is a11

null-terminated string containing the name of the base type as recognized by the12

programming language of the compilation unit containing the base type entry.13

A base type entry has a DW_AT_encoding attribute describing how the base type14

is encoded and is to be interpreted. The DW_AT_encoding attribute is described15

in Section 5.1.1 following.16

A base type entry may have a DW_AT_endianity attribute as described in17

Section 4.1 on page 101. If omitted, the encoding assumes the representation that18

is the default for the target architecture.19

A base type entry has a DW_AT_byte_size attribute or a20

DW_AT_bit_size attribute whose integer constant value (see Section 2.21 on21

page 58) is the amount of storage needed to hold a value of the type.22

July 15 2024 ***WORKING DRAFT*** Page 106

Chapter 5. Type Entries

For example, the C type int on a machine that uses 32-bit integers is represented by a1

base type entry with a name attribute whose value is “int”, an encoding attribute whose2

value is DW_ATE_signed and a byte size attribute whose value is 4.3

If the value of an object of the given type does not fully occupy the storage4

described by a byte size attribute, the base type entry may also have a5

DW_AT_bit_size and a DW_AT_data_bit_offset attribute, both of whose values6

are integer constant values (see Section 2.19 on page 57). The bit size attribute7

describes the actual size in bits used to represent values of the given type. The8

data bit offset attribute is the offset in bits from the beginning of the containing9

storage to the beginning of the value. Bits that are part of the offset are padding.10

If this attribute is omitted a default data bit offset of zero is assumed.11

A DW_TAG_base_type entry may have additional attributes that augment12

certain of the base type encodings; these are described in the following section.13

5.1.1 Base Type Encodings14

A base type entry has a DW_AT_encoding attribute describing how the base type15

is encoded and is to be interpreted. The value of this attribute is an integer of16

class constant. The set of values and their meanings for the DW_AT_encoding17

attribute is given in Table 5.1 on the next page.18

In Table 5.1, encodings are shown in groups that have similar characteristics purely for19

presentation purposes. These groups are not part of this DWARF specification.20

5.1.1.1 Simple Encodings21

Types with simple encodings are widely supported in many programming22

languages and are not discussed further.23

For a type with simple encodings, the type entry may have a DW_AT_bias24

attribute whose value is an integer constant which is added to the encoded value25

to determine the value of an object of the type in the source program. If the26

DW_AT_bias is encoded using DW_FORM_data<n>, then the bias value is27

treated as an unsigned integer.28

July 15 2024 ***WORKING DRAFT*** Page 107

Chapter 5. Type Entries

Table 5.1: Encoding attribute values

Name Meaning
Simple encodings

DW_ATE_boolean true or false
DW_ATE_address machine address
DW_ATE_signed signed binary integer
DW_ATE_signed_char signed character
DW_ATE_unsigned unsigned binary integer
DW_ATE_unsigned_char unsigned character

Character encodings
DW_ATE_ASCII ISO/IEC 646:1991 character
DW_ATE_UCS ISO/IEC 10646-1:1993 character (UCS-4)
DW_ATE_UTF ISO/IEC 10646-1:1993 character

Bit-precise integer types
DW_ATE_signed_bitint bit-precise signed integer
DW_ATE_unsigned_bitint bit-precise unsigned integer

Scaled encodings
DW_ATE_signed_fixed signed fixed-point scaled integer
DW_ATE_unsigned_fixed unsigned fixed-point scaled integer

Floating-point encodings
DW_ATE_float binary floating-point number
DW_ATE_complex_float complex binary floating-point number
DW_ATE_imaginary_float imaginary binary floating-point number
DW_ATE_decimal_float IEEE 754R decimal floating-point number

Decimal string encodings
DW_ATE_packed_decimal packed decimal number
DW_ATE_numeric_string numeric string
DW_ATE_edited edited string

Complex integral encodings
DW_ATE_complex_signed complex (signed) binary integral number
DW_ATE_imaginary_signed imaginary (signed) binary integral number
DW_ATE_complex_unsigned complex unsigned binary integral number
DW_ATE_imaginary_unsigned imaginary unsigned binary integral number

July 15 2024 ***WORKING DRAFT*** Page 108

Chapter 5. Type Entries

5.1.1.2 Character Encodings1

DW_ATE_UTF specifies the Unicode string encoding (see the Universal2

Character Set standard, ISO/IEC 10646-1:1993).3

For example, the C++ type char16_t is represented by a base type entry with a name4

attribute whose value is “char16_t”, an encoding attribute whose value is5

DW_ATE_UTF and a byte size attribute whose value is 2.6

DW_ATE_ASCII and DW_ATE_UCS specify encodings for the Fortran 20037

string kinds ASCII (ISO/IEC 646:1991) and ISO 10646 (UCS-4 in ISO/IEC8

10646:2000).9

5.1.2 Bit-precise integer types10

Bit-precise integer types DW_ATE_signed_bitint and DW_ATE_unsigned_bitint11

are supported in C231, where they are known as _BitInt(N) and12

unsigned _BitInt(N), respectively.13

5.1.2.1 Scaled Encodings14

The DW_ATE_signed_fixed and DW_ATE_unsigned_fixed entries describe15

signed and unsigned fixed-point binary data types, respectively.16

The fixed binary type encodings have a DW_AT_digit_count attribute with the17

same interpretation as described for the DW_ATE_packed_decimal and18

DW_ATE_numeric_string base type encodings (see Section 5.1.2.3 on the19

following page).20

For a data type with a decimal scale factor, the fixed binary type entry has a21

DW_AT_decimal_scale attribute with the same interpretation as described for22

the DW_ATE_packed_decimal and DW_ATE_numeric_string base types (see23

Section 5.1.2.3 on the next page).24

For a data type with a binary scale factor, the fixed binary type entry has a25

DW_AT_binary_scale attribute. The DW_AT_binary_scale attribute is an integer26

constant value that represents the exponent of the base two scale factor to be27

applied to an instance of the type. Zero scale puts the binary point immediately28

to the right of the least significant bit. Positive scale moves the binary point to the29

right and implies that additional zero bits on the right are not stored in an30

instance of the type. Negative scale moves the binary point to the left; if the31

absolute value of the scale is larger than the number of bits, this implies32

additional zero bits on the left are not stored in an instance of the type.33

1C23 is an informal name for what will likely become ISO/IEC 9899:2024.

July 15 2024 ***WORKING DRAFT*** Page 109

Chapter 5. Type Entries

For a data type with a rational scale factor, one or both of the following attributes1

may be used:2

• DW_AT_scale_multiplier. This attribute is an integer constant value that3

represents a multiplicative scale factor to be applied to an instance of the4

type.5

• DW_AT_scale_divisor. This attribute is an integer constant value that6

represents the reciprocal of a multiplicative scale factor to be applied to an7

instance of the type.8

If both attributes are present, both are applied, with the result being equivalent to9

a rational scale factor x/y, where x is the value of DW_AT_scale_multiplier and y10

is the value of DW_AT_scale_divisor.11

For a data type with a non-rational scale factor, the fixed binary type entry has a12

DW_AT_small attribute which references a DW_TAG_constant entry. The scale13

factor value is interpreted in accordance with the value defined by the14

DW_TAG_constant entry. The value represented is the product of the integer15

value in memory and the associated constant entry for the type.16

The DW_AT_small attribute is defined with the Ada small attribute in mind.17

If a type entry has attributes that describe more than one kind of scale factor, the18

resulting scale factor for the type is the product of the individual scale factors.19

5.1.2.2 Floating-Point Encodings20

Types with binary floating-point encodings (DW_ATE_float,21

DW_ATE_complex_float and DW_ATE_imaginary_float) are supported in many22

programming languages and are not discussed further.23

DW_ATE_decimal_float specifies floating-point representations that have a24

power-of-ten exponent, such as specified in IEEE 754R.25

5.1.2.3 Decimal String Encodings26

The DW_ATE_packed_decimal and DW_ATE_numeric_string base type27

encodings represent packed and unpacked decimal string numeric data types,28

respectively, either of which may be either signed or unsigned. These base types29

are used in combination with DW_AT_decimal_sign, DW_AT_digit_count and30

DW_AT_decimal_scale attributes.31

July 15 2024 ***WORKING DRAFT*** Page 110

Chapter 5. Type Entries

A DW_AT_decimal_sign attribute is an integer constant that conveys the1

representation of the sign of the decimal type (see Table 5.2). Its integer constant2

value is interpreted to mean that the type has a leading overpunch, trailing3

overpunch, leading separate or trailing separate sign representation or,4

alternatively, no sign at all.5

Table 5.2: Decimal sign attribute values

Name Meaning
DW_DS_unsigned Unsigned
DW_DS_leading_overpunch Sign is encoded in the most significant digit in a

target-dependent manner
DW_DS_trailing_overpunch Sign is encoded in the least significant digit in a

target-dependent manner
DW_DS_leading_separate Decimal type: Sign is a “+” or “-” character to

the left of the most significant digit.
DW_DS_trailing_separate Decimal type: Sign is a “+” or “-” character to

the right of the least significant digit.
Packed decimal type: Least significant nibble
contains a target-dependent value indicating
positive or negative.

The DW_AT_decimal_scale attribute is an integer constant value that represents6

the exponent of the base ten scale factor to be applied to an instance of the type.7

A scale of zero puts the decimal point immediately to the right of the least8

significant digit. Positive scale moves the decimal point to the right and implies9

that additional zero digits on the right are not stored in an instance of the type.10

Negative scale moves the decimal point to the left; if the absolute value of the11

scale is larger than the digit count, this implies additional zero digits on the left12

are not stored in an instance of the type.13

The DW_AT_digit_count attribute is an integer constant value that represents the14

number of digits in an instance of the type.15

The DW_ATE_edited base type is used to represent an edited numeric or16

alphanumeric data type. It is used in combination with a DW_AT_picture_string17

attribute whose value is a null-terminated string containing the target-dependent18

picture string associated with the type.19

July 15 2024 ***WORKING DRAFT*** Page 111

Chapter 5. Type Entries

If the edited base type entry describes an edited numeric data type, the edited1

type entry has a DW_AT_digit_count and a DW_AT_decimal_scale attribute.2

These attributes have the same interpretation as described for the3

DW_ATE_packed_decimal and DW_ATE_numeric_string base types. If the4

edited type entry describes an edited alphanumeric data type, the edited type5

entry does not have these attributes.6

The presence or absence of the DW_AT_digit_count and DW_AT_decimal_scale7

attributes allows a debugger to easily distinguish edited numeric from edited8

alphanumeric, although in principle the digit count and scale are derivable by9

interpreting the picture string.10

5.1.2.4 Complex Integral Encodings11

Complex types with binary integral encodings (DW_ATE_complex_signed,12

DW_ATE_imaginary_signed, DW_ATE_complex_unsigned and13

DW_ATE_imaginary_unsigned) are supported in some programming languages14

(for example, GNU C and Rust) and are not discussed further."15

5.2 Unspecified Type Entries16

Some languages have constructs in which a type may be left unspecified or the17

absence of a type may be explicitly indicated.18

An unspecified (implicit, unknown, ambiguous or nonexistent) type is19

represented by a debugging information entry with the tag20

DW_TAG_unspecified_type. If a name has been given to the type, then the21

corresponding unspecified type entry has a DW_AT_name attribute whose value22

is a null-terminated string containing the name.23

The interpretation of this debugging information entry is intentionally left flexible to24

allow it to be interpreted appropriately in different languages. For example, in C and25

C++ the language implementation can provide an unspecified type entry with the name26

“void” which can be referenced by the type attribute of pointer types and typedef27

declarations for ’void’ (see Sections 5.3 on the next page and 5.4 on page 115,28

respectively). As another example, in Ada such an unspecified type entry can be referred29

to by the type attribute of an access type where the denoted type is incomplete (the name30

is declared as a type but the definition is deferred to a separate compilation unit).31

C++ permits using the auto return type specifier for the return type of a member32

function declaration. The actual return type is deduced based on the definition of the33

function, so it may not be known when the function is declared. The language34

implementation can provide an unspecified type entry with the name auto which can be35

July 15 2024 ***WORKING DRAFT*** Page 112

Chapter 5. Type Entries

referenced by the return type attribute of a function declaration entry. When the function1

is later defined, the DW_TAG_subprogram entry for the definition includes a reference to2

the actual return type.3

5.3 Type Modifier Entries4

A base or user-defined type may be modified in different ways in different5

languages. A type modifier is represented in DWARF by a debugging6

information entry with one of the tags given in Table 5.3.7

Table 5.3: Type modifier tags

Name Meaning
DW_TAG_atomic_type atomic qualified type (for example, in C)
DW_TAG_const_type const qualified type (for example in C, C++)
DW_TAG_immutable_type immutable type (for example, in D)
DW_TAG_packed_type packed type (for example in Ada, Pascal)
DW_TAG_pointer_type pointer to an object of the type being modified
DW_TAG_reference_type reference to (lvalue of) an object of the type

being modified
DW_TAG_restrict_type restrict qualified type
DW_TAG_rvalue_reference_type rvalue reference to an object of the type being

modified (for example, in C++)
DW_TAG_shared_type shared qualified type (for example, in UPC)
DW_TAG_volatile_type volatile qualified type (for example, in C, C++)

If a name has been given to the modified type in the source program, then the8

corresponding modified type entry has a DW_AT_name attribute whose value is9

a null-terminated string containing the name of the modified type.10

Each of the type modifier entries has a DW_AT_type attribute, whose value is a11

reference to a debugging information entry describing a base type, a user-defined12

type or another type modifier.13

July 15 2024 ***WORKING DRAFT*** Page 113

Chapter 5. Type Entries

As examples of how type modifiers are ordered, consider the following C declarations:

const unsigned char * volatile p;

This represents a volatile pointer to a constant character. It is encoded in DWARF as
DW_TAG_variable(p) -->

DW_TAG_volatile_type -->
DW_TAG_pointer_type -->

DW_TAG_const_type -->
DW_TAG_base_type(unsigned char)

On the other hand

volatile unsigned char * const restrict p;

represents a restricted constant pointer to a volatile character. This is encoded as
DW_TAG_variable(p) -->

DW_TAG_restrict_type -->
DW_TAG_const_type -->

DW_TAG_pointer_type -->
DW_TAG_volatile_type -->

DW_TAG_base_type(unsigned char)

Figure 5.1: Type modifier examples

A modified type entry describing a pointer or reference type (using1

DW_TAG_pointer_type, DW_TAG_reference_type or2

DW_TAG_rvalue_reference_type) may have a DW_AT_address_class attribute to3

describe how objects having the given pointer or reference type are dereferenced.4

A modified type entry describing a UPC shared qualified type (using5

DW_TAG_shared_type) may have a DW_AT_count attribute whose value is a6

constant expressing the (explicit or implied) blocksize specified for the type in the7

source. If no count attribute is present, then the “infinite” blocksize is assumed.8

When multiple type modifiers are chained together to modify a base or9

user-defined type, the tree ordering reflects the semantics of the applicable10

language rather than the textual order in the source presentation.11

Examples of modified types are shown in Figure 5.1.12

July 15 2024 ***WORKING DRAFT*** Page 114

Chapter 5. Type Entries

5.4 Typedef Entries1

A named type that is defined in terms of another type definition is represented2

by a debugging information entry with the tag DW_TAG_typedef. The typedef3

entry has a DW_AT_name attribute whose value is a null-terminated string4

containing the name of the typedef.5

The typedef entry may also contain a DW_AT_type attribute whose value is a6

reference to the type named by the typedef. If the debugging information entry7

for a typedef represents a declaration of the type that is not also a definition, it8

does not contain a type attribute.9

Depending on the language, a named type that is defined in terms of another type may be10

called a type alias, a subtype, a constrained type and other terms. A type name declared11

with no defining details may be termed an incomplete, forward or hidden type. While the12

DWARF DW_TAG_typedef entry was originally inspired by the like named construct in13

C and C++, it is broadly suitable for similar constructs (by whatever source syntax) in14

other languages.15

5.5 Array Type Entries16

Many languages share the concept of an “array,” which is a table of components of17

identical type. Furthermore, many architectures contain vector types which mirror the18

language concept of a short single dimension array but have different encoding, a19

different calling convention and different arithmetic and logical operational semantics20

than the source language arrays. Likewise, a few architectures are starting to add matrix21

register types with similar variations in encoding and semantics from normal source22

language array types.23

An array type is represented by a debugging information entry with the tag24

DW_TAG_array_type. If a name has been given to the array type in the source25

program, then the corresponding array type entry has a DW_AT_name attribute26

whose value is a null-terminated string containing the array type name.27

The array type may have a DW_AT_tensor attribute, which is a flag. If present,28

this attribute indicates that the entry describes a vector or matrix type. The array29

dimensions (see below) describe the vector width, and when applicable the30

number of rows.31

The array type entry describing a multidimensional array may have a32

DW_AT_ordering attribute whose integer constant value is interpreted to mean33

either row-major or column-major ordering of array elements. The set of values34

and their meanings for the ordering attribute are listed in Table 5.4 following. If35

July 15 2024 ***WORKING DRAFT*** Page 115

Chapter 5. Type Entries

no ordering attribute is present, the default ordering for the source language1

(which is indicated by the DW_AT_language_name attribute of the enclosing2

compilation unit entry) is assumed.3

Table 5.4: Array ordering

DW_ORD_col_major
DW_ORD_row_major

An array type entry has a DW_AT_type attribute describing the type of each4

element of the array. If DW_AT_tensor is present, the element type must be a5

base type (see Section 5.1 on page 106).6

If the amount of storage allocated to hold each element of an object of the given7

array type is different from the amount of storage that is normally allocated to8

hold an individual object of the indicated element type, then the array type entry9

has either a DW_AT_byte_stride or a DW_AT_bit_stride attribute, whose value10

(see Section 2.19 on page 57) is the size of each element of the array.11

The array type entry may have either a DW_AT_byte_size or a DW_AT_bit_size12

attribute (see Section 2.21 on page 58), whose value is the amount of storage13

needed to hold an instance of the array type.14

If the size of the array can be determined statically at compile time, this value can usually15

be computed by multiplying the number of array elements by the size of each element.16

Each array dimension is described by a debugging information entry with either17

the tag DW_TAG_subrange_type or the tag DW_TAG_enumeration_type. These18

entries are children of the array type entry and are ordered to reflect the19

appearance of the dimensions in the source program (that is, leftmost dimension20

first, next to leftmost second, and so on).21

In languages that have no concept of a “multidimensional array” (for example, C), an22

array of arrays may be represented by a debugging information entry for a23

multidimensional array.24

July 15 2024 ***WORKING DRAFT*** Page 116

Chapter 5. Type Entries

Alternatively, for an array with dynamic rank the array dimensions are described1

by a debugging information entry with the tag DW_TAG_generic_subrange.2

This entry has the same attributes as a DW_TAG_subrange_type entry; however,3

there is just one DW_TAG_generic_subrange entry and it describes all of the4

dimensions of the array. If DW_TAG_generic_subrange is used, the number of5

dimensions must be specified using a DW_AT_rank attribute. See also Section6

5.18.3 on page 139.7

Other attributes especially applicable to arrays are DW_AT_allocated,8

DW_AT_associated and DW_AT_data_location, which are described in Section9

5.18 on page 137. For relevant examples, see also Appendix D.2.1 on page 306.10

5.6 Coarray Type Entries11

In Fortran, a “coarray” is an array whose elements are located in different processes12

rather than in the memory of one process. The individual elements of a coarray can be13

scalars or arrays. Similar to arrays, coarrays have “codimensions” that are indexed using14

a “coindex” or multiple “coindices”.15

A coarray type is represented by a debugging information entry with the tag16

DW_TAG_coarray_type. If a name has been given to the coarray type in the17

source, then the corresponding coarray type entry has a DW_AT_name attribute18

whose value is a null-terminated string containing the array type name.19

A coarray entry has one or more DW_TAG_subrange_type child entries, one for20

each codimension. It also has a DW_AT_type attribute describing the type of21

each element of the coarray.22

In a coarray application, the run-time number of processes in the application is part of the23

coindex calculation. It is represented in the Fortran source by a coindex which is declared24

with a “*” as the upper bound. To express this concept in DWARF, the25

DW_TAG_subrange_type child entry for that index has only a lower bound and no26

upper bound.27

How coarray elements are located and how coindices are converted to process28

specifications is implementation-defined.29

July 15 2024 ***WORKING DRAFT*** Page 117

Chapter 5. Type Entries

5.7 Structure, Union, Class and Interface Type1

Entries2

The languages C, C++, and Pascal, among others, allow the programmer to define types3

that are collections of related components. In C and C++, these collections are called4

“structures.” In Pascal, they are called “records.” The components may be of different5

types. The components are called “members” in C and C++, and “fields” in Pascal.6

The components of these collections each exist in their own space in computer memory.7

The components of a C or C++ “union” all coexist in the same memory.8

Pascal and other languages have a “discriminated union,” also called a “variant record.”9

Here, selection of a number of alternative substructures (“variants”) is based on the10

value of a component that is not part of any of those substructures (the “discriminant”).11

C++ and Java have the notion of “class,” which is in some ways similar to a structure. A12

class may have “member functions” which are subroutines that are within the scope of a13

class or structure.14

The C++ notion of structure is more general than in C, being equivalent to a class with15

minor differences. Accordingly, in the following discussion, statements about C++16

classes may be understood to apply to C++ structures as well.17

5.7.1 Structure, Union and Class Type Entries18

Structure, union, and class types are represented by debugging information19

entries with the tags DW_TAG_structure_type, DW_TAG_union_type, and20

DW_TAG_class_type, respectively. If a name has been given to the structure,21

union, or class in the source program, then the corresponding structure type,22

union type, or class type entry has a DW_AT_name attribute whose value is a23

null-terminated string containing the type name.24

The members of a structure, union, or class are represented by debugging25

information entries that are owned by the corresponding structure type, union26

type, or class type entry and appear in the same order as the corresponding27

declarations in the source program.28

A structure, union, or class type may have a DW_AT_export_symbols attribute29

which indicates that all member names defined within the structure, union, or30

class may be referenced as if they were defined within the containing structure,31

union, or class.32

This may be used to describe anonymous structures, unions and classes in C or C++.33

July 15 2024 ***WORKING DRAFT*** Page 118

Chapter 5. Type Entries

A structure type, union type or class type entry may have either a1

DW_AT_byte_size or a DW_AT_bit_size attribute (see Section 2.21 on page 58),2

whose value is the amount of storage needed to hold an instance of the structure,3

union or class type, including any padding.4

An incomplete structure, union or class type is represented by a structure, union5

or class entry that does not have a byte size attribute and that has a6

DW_AT_declaration attribute.7

If the complete declaration of a type has been placed in a separate type unit (see8

Section 3.1.4 on page 72), an incomplete declaration of that type in the9

compilation unit may provide the unique 8-byte signature of the type using a10

DW_AT_signature attribute.11

If a structure, union or class entry represents the definition of a structure, union12

or class member corresponding to a prior incomplete structure, union or class,13

the entry may have a DW_AT_specification attribute whose value is a reference14

to the debugging information entry representing that incomplete declaration.15

Structure, union and class entries containing the DW_AT_specification attribute16

do not need to duplicate information provided by the declaration entry17

referenced by the specification attribute. In particular, such entries do not need to18

contain an attribute for the name of the structure, union or class they represent if19

such information is already provided in the declaration.20

For C and C++, data member declarations occurring within the declaration of a21

structure, union or class type are considered to be “definitions” of those members, with22

the exception of “static” data members, whose definitions appear outside of the23

declaration of the enclosing structure, union or class type. Function member declarations24

appearing within a structure, union or class type declaration are definitions only if the25

body of the function also appears within the type declaration.26

If the definition for a given member of the structure, union or class does not27

appear within the body of the declaration, that member also has a debugging28

information entry describing its definition. That latter entry has a29

DW_AT_specification attribute referencing the debugging information entry30

owned by the body of the structure, union or class entry and representing a31

non-defining declaration of the data, function or type member. The referenced32

entry will not have information about the location of that member (low and high33

PC attributes for function members, location descriptions for data members) and34

will have a DW_AT_declaration attribute.35

July 15 2024 ***WORKING DRAFT*** Page 119

Chapter 5. Type Entries

Consider a nested class whose definition occurs outside of the containing class definition,1

as in:2

struct A {
struct B;

};
struct A::B { ... };

The two different structs can be described in different compilation units to facilitate3

DWARF space compression (see Appendix E.1 on page 390).4

A structure type, union type or class type entry may have a5

DW_AT_calling_convention attribute, whose value indicates whether a value of6

the type is passed by reference or passed by value. The set of calling convention7

codes for use with types is given in Table 5.5 following.8

Table 5.5: Calling convention codes for types

DW_CC_normal
DW_CC_pass_by_value
DW_CC_pass_by_reference

If this attribute is not present, or its value is DW_CC_normal, the convention to9

be used for an object of the given type is assumed to be unspecified.10

Note that DW_CC_normal is also used as a calling convention code for certain11

subprograms (see Table 3.4 on page 79).12

If unspecified, a consumer may be able to deduce the calling convention based on13

knowledge of the type and the ABI.14

5.7.2 Interface Type Entries15

The Java language defines “interface” types. An interface in Java is similar to a C++ or16

Java class with only abstract methods and constant data members.17

Interface types are represented by debugging information entries with the tag18

DW_TAG_interface_type.19

An interface type entry has a DW_AT_name attribute, whose value is a20

null-terminated string containing the type name.21

The members of an interface are represented by debugging information entries22

that are owned by the interface type entry and that appear in the same order as23

the corresponding declarations in the source program.24

July 15 2024 ***WORKING DRAFT*** Page 120

Chapter 5. Type Entries

5.7.3 Derived or Extended Structures, Classes and Interfaces1

In C++, a class (or struct) may be “derived from” or be a “subclass of” another class. In2

Java, an interface may “extend” one or more other interfaces, and a class may “extend”3

another class and/or “implement” one or more interfaces. All of these relationships may4

be described using the following. Note that in Java, the distinction between extends and5

implements is implied by the entities at the two ends of the relationship.6

A class type or interface type entry that describes a derived, extended or7

implementing class or interface owns debugging information entries describing8

each of the classes or interfaces it is derived from, extending or implementing,9

respectively, ordered as they were in the source program. Each such entry has the10

tag DW_TAG_inheritance.11

An inheritance entry has a DW_AT_type attribute whose value is a reference to12

the debugging information entry describing the class or interface from which the13

parent class or structure of the inheritance entry is derived, extended or14

implementing.15

An inheritance entry for a class that derives from or extends another class or16

struct also has a DW_AT_data_member_location attribute, whose value describes17

the location of the beginning of the inherited type relative to the beginning18

address of the instance of the derived class. If that value is a constant, it is the19

offset in bytes from the beginning of the class to the beginning of the instance of20

the inherited type. Otherwise, the value must be a location description. In this21

latter case, the beginning address of the instance of the derived class is pushed22

on the expression stack before the location description is evaluated and the result23

of the evaluation is the location of the instance of the inherited type.24

The interpretation of the value of this attribute for inherited types is the same as the25

interpretation for data members (see Section 5.7.6 following).26

An inheritance entry may have a DW_AT_accessibility attribute. If no27

accessibility attribute is present, private access is assumed for an entry of a class28

and public access is assumed for an entry of a struct, union or interface.29

If the class referenced by the inheritance entry serves as a C++ virtual base class,30

the inheritance entry has a DW_AT_virtuality attribute.31

For a C++ virtual base, the data member location attribute will usually consist of a32

non-trivial location description.33

July 15 2024 ***WORKING DRAFT*** Page 121

Chapter 5. Type Entries

5.7.4 Access Declarations1

In C++, a derived class may contain access declarations that change the accessibility of2

individual class members from the overall accessibility specified by the inheritance3

declaration. A single access declaration may refer to a set of overloaded names.4

If a derived class or structure contains access declarations, each such declaration5

may be represented by a debugging information entry with the tag6

DW_TAG_access_declaration. Each such entry is a child of the class or structure7

type entry.8

An access declaration entry has a DW_AT_name attribute, whose value is a9

null-terminated string representing the name used in the declaration, including10

any class or structure qualifiers.11

An access declaration entry also has a DW_AT_accessibility attribute describing12

the declared accessibility of the named entities.13

5.7.5 Friends14

Each friend declared by a structure, union or class type may be represented by a15

debugging information entry that is a child of the structure, union or class type16

entry; the friend entry has the tag DW_TAG_friend.17

A friend entry has a DW_AT_friend attribute, whose value is a reference to the18

debugging information entry describing the declaration of the friend.19

5.7.6 Data Member Entries20

A data member (as opposed to a member function) is represented by a21

debugging information entry with the tag DW_TAG_member. The member22

entry for a named member has a DW_AT_name attribute whose value is a23

null-terminated string containing the member name. If the member entry24

describes an anonymous union, the name attribute is omitted or the value of the25

attribute consists of a single zero byte.26

The data member entry has a DW_AT_type attribute to denote the type of that27

member.28

A data member entry may have a DW_AT_accessibility attribute. If no29

accessibility attribute is present, private access is assumed for an member of a30

class and public access is assumed for an member of a structure, union, or31

interface.32

July 15 2024 ***WORKING DRAFT*** Page 122

Chapter 5. Type Entries

A data member entry may have a DW_AT_mutable attribute, which is a flag.1

This attribute indicates whether the data member was declared with the mutable2

storage class specifier.3

The beginning of a data member is described relative to the beginning of the4

object in which it is immediately contained. In general, the beginning is5

characterized by both an address and a bit offset within the byte at that address.6

When the storage for an entity includes all of the bits in the beginning byte, the7

beginning bit offset is defined to be zero.8

The member entry corresponding to a data member that is defined in a structure,9

union or class may have either a DW_AT_data_member_location attribute or a10

DW_AT_data_bit_offset attribute. If the beginning of the data member is the11

same as the beginning of the containing entity then neither attribute is required.12

For a DW_AT_data_member_location attribute there are two cases:13

1. If the value is an integer constant, it is the offset in bytes from the beginning14

of the containing entity. If the beginning of the containing entity has a15

non-zero bit offset then the beginning of the member entry has that same bit16

offset as well.17

2. Otherwise, the value must be a location description. In this case, the18

beginning of the containing entity must be byte aligned. The beginning19

address is pushed on the DWARF stack before the location description is20

evaluated; the result of the evaluation is the base address of the member21

entry.22

The push on the DWARF expression stack of the base address of the containing23

construct is equivalent to execution of the DW_OP_push_object_address operation24

(see Section 2.5.1.3 on page 29); DW_OP_push_object_address therefore is not25

needed at the beginning of a location description for a data member. The result of the26

evaluation is a location—either an address or the name of a register, not an offset to27

the member.28

A DW_AT_data_member_location attribute that has the form of a location29

description is not valid for a data member contained in an entity that is not byte30

aligned because DWARF operations do not allow for manipulating or computing bit31

offsets.32

For a DW_AT_data_bit_offset attribute, the value is an integer constant (see33

Section 2.19 on page 57) that specifies the number of bits from the beginning of34

the containing entity to the beginning of the data member. This value must be35

greater than or equal to zero, but is not limited to less than the number of bits per36

byte.37

July 15 2024 ***WORKING DRAFT*** Page 123

Chapter 5. Type Entries

If the size of a data member is not the same as the size of the type given for the1

data member, the data member has either a DW_AT_byte_size or a2

DW_AT_bit_size attribute whose integer constant value (see Section 2.19 on3

page 57) is the amount of storage needed to hold the value of the data member.4

For showing nested and packed records and arrays, see Appendix D.2.7 on page 323 and5

D.2.8 on page 325.6

5.7.7 Class Variable Entries7

A class variable (“static data member” in C++) is a variable shared by all8

instances of a class. It is represented by a debugging information entry with the9

tag DW_TAG_variable.10

The class variable entry may contain the same attributes and follows the same11

rules as non-member global variable entries (see Section 4.1 on page 101).12

A class variable entry may have a DW_AT_accessibility attribute. If no13

accessibility attribute is present, private access is assumed for an entry of a class14

and public access is assumed for an entry of a structure, union or interface.15

5.7.8 Member Function Entries16

A member function is represented by a debugging information entry with the tag17

DW_TAG_subprogram. The member function entry may contain the same18

attributes and follows the same rules as non-member global subroutine entries19

(see Section 3.3 on page 78).20

In particular, if the member function entry is an instantiation of a member function21

template, it follows the same rules as function template instantiations (see Section 3.3.722

on page 85).23

A member function entry may have a DW_AT_accessibility attribute. If no24

accessibility attribute is present, private access is assumed for an entry of a class25

and public access is assumed for an entry of a structure, union or interface.26

If the member function entry describes a virtual function, then that entry has a27

DW_AT_virtuality attribute.28

If the member function entry describes an explicit member function, then that29

entry has a DW_AT_explicit attribute.30

July 15 2024 ***WORKING DRAFT*** Page 124

Chapter 5. Type Entries

An entry for a virtual function also has a DW_AT_vtable_elem_location attribute1

whose value contains a location description yielding the address of the slot for2

the function within the virtual function table for the enclosing class. The address3

of an object of the enclosing type is pushed onto the expression stack before the4

location description is evaluated.5

If the member function entry describes a non-static member function, then that6

entry has a DW_AT_object_pointer attribute whose value is a reference to the7

formal parameter entry that corresponds to the object for which the function is8

called. The name attribute of that formal parameter is defined by the current9

language (for example, this for C++ or self for Objective C and some other10

languages). That parameter also has a DW_AT_artificial attribute whose value is11

true.12

Conversely, if the member function entry describes a static member function, the13

entry does not have a DW_AT_object_pointer attribute.14

In C++, non-static member functions can have const-volatile qualifiers, which affect the15

type of the first formal parameter (the “this”-pointer).16

If the member function entry describes a non-static member function that has a17

const-volatile qualification, then the entry describes a non-static member18

function whose object formal parameter has a type that has an equivalent19

const-volatile qualification.20

Beginning in C++11, non-static member functions can also have one of the ref-qualifiers,21

& and &&. These do not change the type of the “this”-pointer, but they do affect the22

types of object values on which the function can be invoked.23

The member function entry may have an DW_AT_reference attribute to indicate24

a non-static member function that can only be called on lvalue objects, or the25

DW_AT_rvalue_reference attribute to indicate that it can only be called on26

prvalues and xvalues.27

The lvalue, prvalue and xvalue concepts are defined in the C++11 and later standards.28

If a subroutine entry represents the defining declaration of a member function29

and that definition appears outside of the body of the enclosing class declaration,30

the subroutine entry has a DW_AT_specification attribute, whose value is a31

reference to the debugging information entry representing the declaration of this32

function member. The referenced entry will be a child of some class (or structure)33

type entry.34

July 15 2024 ***WORKING DRAFT*** Page 125

Chapter 5. Type Entries

Subroutine entries containing the DW_AT_specification attribute do not need to1

duplicate information provided by the declaration entry referenced by the2

specification attribute. In particular, such entries do not need to contain a name3

attribute giving the name of the function member whose definition they4

represent. Similarly, such entries do not need to contain a return type attribute,5

unless the return type on the declaration was unspecified (for example, the6

declaration used the C++ auto return type specifier).7

In C++, a member function may be declared as deleted. This prevents the compiler from8

generating a default implementation of a special member function such as a constructor9

or destructor, and can affect overload resolution when used on other member functions.10

If the member function entry has been declared as deleted, then that entry has a11

DW_AT_deleted attribute.12

In C++, a special member function may be declared as defaulted, which explicitly declares13

a default compiler-generated implementation of the function. The declaration may have14

different effects on the calling convention used for objects of its class, depending on15

whether the default declaration is made inside or outside the class.16

If the member function has been declared as defaulted, then the entry has a17

DW_AT_defaulted attribute whose integer constant value indicates whether, and18

if so, how, that member is defaulted. The possible values and their meanings are19

shown in Table 5.6 following.20

Table 5.6: Defaulted attribute names

Defaulted attribute name Meaning
DW_DEFAULTED_no Not declared default
DW_DEFAULTED_in_class Defaulted within the class
DW_DEFAULTED_out_of_class Defaulted outside of the class

An artificial member function (that is, a compiler-generated copy that does not appear in21

the source) does not have a DW_AT_defaulted attribute.22

5.7.9 Class Template Instantiations23

In C++ a class template is a generic definition of a class type that may be instantiated24

when an instance of the class is declared or defined. The generic description of the class25

may include parameterized types, parameterized compile-time constant values, and/or26

parameterized run-time constant addresses. DWARF does not represent the generic27

template definition, but does represent each instantiation.28

July 15 2024 ***WORKING DRAFT*** Page 126

Chapter 5. Type Entries

A class template instantiation is represented by a debugging information entry1

with the tag DW_TAG_class_type, DW_TAG_structure_type or2

DW_TAG_union_type. With the following exceptions, such an entry will contain3

the same attributes and have the same types of child entries as would an entry4

for a class type defined explicitly using the instantiation types and values. The5

exceptions are:6

1. Template parameters are described and referenced as specified in Section 2.237

on page 59.8

2. If the compiler has generated a special compilation unit to hold the template9

instantiation and that special compilation unit has a different name from the10

compilation unit containing the template definition, the name attribute for11

the debugging information entry representing the special compilation unit is12

empty or omitted.13

3. If the class type entry representing the template instantiation or any of its14

child entries contains declaration coordinate attributes, those attributes refer15

to the source for the template definition, not to any source generated16

artificially by the compiler.17

5.7.10 Variant Entries18

A variant part of a structure is represented by a debugging information entry19

with the tag DW_TAG_variant_part and is owned by the corresponding20

structure type entry.21

If the variant part has a discriminant, the discriminant is represented by a22

separate debugging information entry. This entry has the form of a structure data23

member entry. The variant part entry will have a DW_AT_discr attribute whose24

value is a reference to the member entry for the discriminant.25

If the variant part does not have a discriminant (tag field), the variant part entry26

may have a DW_AT_type attribute to represent the tag type.27

A reference to a type supports the Pascal notion of a tagless variant part where the28

omitted tag nonetheless is given a type whose values are used in later parts of the variant29

syntax.30

July 15 2024 ***WORKING DRAFT*** Page 127

Chapter 5. Type Entries

Each variant of a particular variant part is represented by a debugging1

information entry with the tag DW_TAG_variant and is a child of the variant2

part entry. The value that selects a given variant may be represented in one of3

three ways. The variant entry may have a DW_AT_discr_value attribute whose4

value represents the discriminant value selecting this variant. The value of this5

attribute is encoded as an LEB128 number. The number is signed if the tag type6

for the variant part containing this variant is a signed type. The number is7

unsigned if the tag type is an unsigned type.8

Alternatively, the variant entry may contain a DW_AT_discr_list attribute, whose9

value represents a list of discriminant values. This list is represented by any of10

the block forms and may contain a mixture of discriminant values and11

discriminant ranges. Each item on the list is prefixed with a discriminant value12

descriptor that determines whether the list item represents a single label or a13

label range. A single case label is represented as an LEB128 number as defined14

above for the DW_AT_discr_value attribute. A label range is represented by two15

LEB128 numbers, the low value of the range followed by the high value. Both16

values follow the rules for signedness just described. The discriminant value17

descriptor is an integer constant that may have one of the values given in Table18

5.7.19

Table 5.7: Discriminant descriptor values

DW_DSC_label
DW_DSC_range

If a variant entry has neither a DW_AT_discr_value attribute nor a20

DW_AT_discr_list attribute, or if it has a DW_AT_discr_list attribute with 0 size,21

the variant is a default variant.22

The components selected by a particular variant are represented by debugging23

information entries owned by the corresponding variant entry and appear in the24

same order as the corresponding declarations in the source program.25

For examples using variant entries in several languages, see Section D.2.10 on page 328.26

July 15 2024 ***WORKING DRAFT*** Page 128

Chapter 5. Type Entries

5.8 Condition Entries1

COBOL has the notion of a “level-88 condition” that associates a data item, called the2

conditional variable, with a set of one or more constant values and/or value ranges.3

Semantically, the condition is ‘true’ if the conditional variable’s value matches any of the4

described constants, and the condition is ‘false’ otherwise.5

The DW_TAG_condition debugging information entry describes a logical6

condition that tests whether a given data item’s value matches one of a set of7

constant values. If a name has been given to the condition, the condition entry8

has a DW_AT_name attribute whose value is a null-terminated string giving the9

condition name.10

The condition entry’s parent entry describes the conditional variable; normally11

this will be a DW_TAG_variable, DW_TAG_member or12

DW_TAG_formal_parameter entry. If the parent entry has an array type, the13

condition can test any individual element, but not the array as a whole. The14

condition entry implicitly specifies a “comparison type” that is the type of an15

array element if the parent has an array type; otherwise it is the type of the16

parent entry.17

The condition entry owns DW_TAG_constant and/or DW_TAG_subrange_type18

entries that describe the constant values associated with the condition. If any19

child entry has a DW_AT_type attribute, that attribute describes a type20

compatible with the comparison type (according to the source language);21

otherwise the child’s type is the same as the comparison type.22

For conditional variables with alphanumeric types, COBOL permits a source program to23

provide ranges of alphanumeric constants in the condition. Normally a subrange type24

entry does not describe ranges of strings; however, this can be represented using bounds25

attributes that are references to constant entries describing strings. A subrange type26

entry may refer to constant entries that are siblings of the subrange type entry.27

5.9 Enumeration Type Entries28

An “enumeration type” is a scalar that can assume one of a fixed number of symbolic29

values.30

An enumeration type is represented by a debugging information entry with the31

tag DW_TAG_enumeration_type.32

If a name has been given to the enumeration type in the source program, then the33

corresponding enumeration type entry has a DW_AT_name attribute whose34

value is a null-terminated string containing the enumeration type name.35

July 15 2024 ***WORKING DRAFT*** Page 129

Chapter 5. Type Entries

The enumeration type entry may have a DW_AT_type attribute which refers to1

the underlying data type used to implement the enumeration. The entry also2

may have a DW_AT_byte_size attribute or DW_AT_bit_size attribute, whose3

value (see Section 2.21 on page 58) is the amount of storage required to hold an4

instance of the enumeration. If no DW_AT_byte_size or DW_AT_bit_size5

attribute is present, the size for holding an instance of the enumeration is given6

by the size of the underlying data type.7

If an enumeration type has type safe semantics such that8

1. Enumerators are contained in the scope of the enumeration type, and/or9

2. Enumerators are not implicitly converted to another type10

then the enumeration type entry may have a DW_AT_enum_class attribute,11

which is a flag. In a language that offers only one kind of enumeration12

declaration, this attribute is not required.13

In C or C++, the underlying type will be the appropriate integral type determined by the14

compiler from the properties of the enumeration literal values. A C++ type declaration15

written using enum class declares a strongly typed enumeration and is represented using16

DW_TAG_enumeration_type in combination with DW_AT_enum_class.17

Each enumeration literal is represented by a debugging information entry with18

the tag DW_TAG_enumerator. Each such entry is a child of the enumeration19

type entry, and the enumerator entries appear in the same order as the20

declarations of the enumeration literals in the source program.21

Each enumerator entry has a DW_AT_name attribute, whose value is a22

null-terminated string containing the name of the enumeration literal. Each23

enumerator entry also has a DW_AT_const_value attribute, whose value is the24

actual numeric value of the enumerator as represented on the target system.25

If the enumeration type occurs as the description of a dimension of an array type,26

and the stride for that dimension is different than what would otherwise be27

determined, then the enumeration type entry has either a DW_AT_byte_stride or28

DW_AT_bit_stride attribute which specifies the separation between successive29

elements along the dimension as described in Section 2.19 on page 57. The value30

of the DW_AT_bit_stride attribute is interpreted as bits and the value of the31

DW_AT_byte_stride attribute is interpreted as bytes.32

July 15 2024 ***WORKING DRAFT*** Page 130

Chapter 5. Type Entries

5.10 Subroutine Type Entries1

It is possible in C to declare pointers to subroutines that return a value of a specific type.2

In both C and C++, it is possible to declare pointers to subroutines that not only return a3

value of a specific type, but accept only arguments of specific types. The type of such4

pointers would be described with a “pointer to” modifier applied to a user-defined type.5

A subroutine type is represented by a debugging information entry with the tag6

DW_TAG_subroutine_type. If a name has been given to the subroutine type in7

the source program, then the corresponding subroutine type entry has a8

DW_AT_name attribute whose value is a null-terminated string containing the9

subroutine type name.10

If the subroutine type describes a function that returns a value, then the11

subroutine type entry has a DW_AT_type attribute to denote the type returned12

by the subroutine. If the types of the arguments are necessary to describe the13

subroutine type, then the corresponding subroutine type entry owns debugging14

information entries that describe the arguments. These debugging information15

entries appear in the order that the corresponding argument types appear in the16

source program.17

In C there is a difference between the types of functions declared using function prototype18

style declarations and those declared using non-prototype declarations.19

A subroutine entry declared with a function prototype style declaration may20

have a DW_AT_prototyped attribute, which is a flag.21

Each debugging information entry owned by a subroutine type entry22

corresponds to either a formal parameter or the sequence of unspecified23

parameters of the subprogram type:24

1. A formal parameter of a parameter list (that has a specific type) is represented25

by a debugging information entry with the tag DW_TAG_formal_parameter.26

Each formal parameter entry has a DW_AT_type attribute that refers to the27

type of the formal parameter.28

2. The unspecified parameters of a variable parameter list are represented by a29

debugging information entry with the tag DW_TAG_unspecified_parameters.30

C++ const-volatile qualifiers are encoded as part of the type of the “this”-pointer.31

C++11 reference and rvalue-reference qualifiers are encoded using the DW_AT_reference32

and DW_AT_rvalue_reference attributes, respectively. See also Section 5.7.8 on33

page 124.34

July 15 2024 ***WORKING DRAFT*** Page 131

Chapter 5. Type Entries

A subroutine type entry may have the DW_AT_reference or1

DW_AT_rvalue_reference attribute to indicate that it describes the type of a2

member function with reference or rvalue-reference semantics, respectively.3

5.11 String Type Entries4

A “string” is a sequence of characters that have specific semantics and operations that5

distinguish them from arrays of characters. Fortran is one of the languages that has a6

string type. Note that “string” in this context refers to a target machine concept, not the7

class string as used in this document (except for the name attribute).8

A string type is represented by a debugging information entry with the tag9

DW_TAG_string_type. If a name has been given to the string type in the source10

program, then the corresponding string type entry has a DW_AT_name attribute11

whose value is a null-terminated string containing the string type name.12

A string type entry may have a DW_AT_type attribute describing how each13

character is encoded and is to be interpreted. The value of this attribute is a14

reference to a DW_TAG_base_type base type entry. If the attribute is absent, then15

the character is encoded using the system default.16

The Fortran 2003 language standard allows string types that are composed of different17

types of (same sized) characters. While there is no standard list of character kinds, the18

kinds ASCII (see DW_ATE_ASCII), ISO_10646 (see DW_ATE_UCS) and DEFAULT are19

defined.20

The string type entry may have a DW_AT_byte_size attribute or21

DW_AT_bit_size attribute, whose value (see Section 2.21 on page 58) is the22

amount of storage needed to hold a value of the string type.23

The string type entry may also have a DW_AT_string_length attribute whose24

value is either (a) a reference (see Section 2.19) to another debugging information25

entry that provides the value of the length of the string, or (b) a location26

description yielding the location where the length of the string is stored in the27

program. If the DW_AT_string_length attribute is not present, the size of the28

string is assumed to be the amount of storage that is allocated for the string (as29

specified by the DW_AT_byte_size or DW_AT_bit_size attribute).30

The string type entry may also have a DW_AT_string_length_byte_size or31

DW_AT_string_length_bit_size attribute, whose value (see Section 2.21 on32

page 58) is the size of the data to be retrieved from the location referenced by the33

DW_AT_string_length attribute. If no byte or bit size attribute is present, the size34

of the data to be retrieved is the same as the size of an address on the target35

machine.36

July 15 2024 ***WORKING DRAFT*** Page 132

Chapter 5. Type Entries

Prior to DWARF Version 5, the meaning of a DW_AT_byte_size attribute depended on1

the presence of the DW_AT_string_length attribute:2

• If DW_AT_string_length was present, DW_AT_byte_size specified the size of the3

length data to be retrieved from the location specified by the4

DW_AT_string_length attribute.5

• If DW_AT_string_length was not present, DW_AT_byte_size specified the6

amount of storage allocated for objects of the string type.7

In DWARF Version 5, DW_AT_byte_size always specifies the amount of storage8

allocated for objects of the string type.9

5.12 Set Type Entries10

Pascal provides the concept of a “set,” which represents a group of values of ordinal type.11

A set is represented by a debugging information entry with the tag12

DW_TAG_set_type. If a name has been given to the set type, then the set type13

entry has a DW_AT_name attribute whose value is a null-terminated string14

containing the set type name.15

The set type entry has a DW_AT_type attribute to denote the type of an element16

of the set.17

If the amount of storage allocated to hold each element of an object of the given18

set type is different from the amount of storage that is normally allocated to hold19

an individual object of the indicated element type, then the set type entry has20

either a DW_AT_byte_size attribute, or DW_AT_bit_size attribute whose value21

(see Section 2.21 on page 58) is the amount of storage needed to hold a value of22

the set type.23

5.13 Subrange Type Entries24

Several languages support the concept of a “subrange” type. Objects of the subrange type25

can represent only a contiguous subset (range) of values from the type on which the26

subrange is defined. Subrange types may also be used to represent the bounds of array27

dimensions.28

A subrange type is represented by a debugging information entry with the tag29

DW_TAG_subrange_type. If a name has been given to the subrange type, then30

the subrange type entry has a DW_AT_name attribute whose value is a31

null-terminated string containing the subrange type name.32

July 15 2024 ***WORKING DRAFT*** Page 133

Chapter 5. Type Entries

The tag DW_TAG_generic_subrange is used to describe arrays with a dynamic1

rank. See Section 5.5 on page 115.2

The subrange entry may have a DW_AT_type attribute to describe the type of3

object, called the basis type, of whose values this subrange is a subset.4

If the amount of storage allocated to hold each element of an object of the given5

subrange type is different from the amount of storage that is normally allocated6

to hold an individual object of the indicated element type, then the subrange7

type entry has a DW_AT_byte_size attribute or DW_AT_bit_size attribute, whose8

value (see Section 2.19 on page 57) is the amount of storage needed to hold a9

value of the subrange type.10

The subrange entry may have a DW_AT_threads_scaled attribute, which is a11

flag. If present, this attribute indicates whether this subrange represents a UPC12

array bound which is scaled by the runtime THREADS value (the number of UPC13

threads in this execution of the program).14

This allows the representation of a UPC shared array such as15

int shared foo [34* THREADS][10][20];

The subrange entry may have the attributes DW_AT_lower_bound and16

DW_AT_upper_bound to specify, respectively, the lower and upper bound17

values of the subrange. The DW_AT_upper_bound attribute may be replaced by18

a DW_AT_count attribute, whose value describes the number of elements in the19

subrange rather than the value of the last element. The value of each of these20

attributes is determined as described in Section 2.19 on page 57.21

If the lower bound value is missing, the value is assumed to be a22

language-dependent default constant as defined in Table 7.17 on page 240.23

If the upper bound and count are missing, then the upper bound value is24

unknown.25

If the subrange entry has no type attribute describing the basis type, the basis26

type is determined as follows:27

1. If there is a lower bound attribute that references an object, the basis type is28

assumed to be the same as the type of that object.29

2. Otherwise, if there is an upper bound or count attribute that references an30

object, the basis type is assumed to be the same as the type of that object.31

3. Otherwise, the type is assumed to be the same type, in the source language of32

the compilation unit containing the subrange entry, as a signed integer with33

the same size as an address on the target machine.34

July 15 2024 ***WORKING DRAFT*** Page 134

Chapter 5. Type Entries

If the subrange type occurs as the description of a dimension of an array type,1

and the stride for that dimension is different than what would otherwise be2

determined, then the subrange type entry has either a DW_AT_byte_stride or3

DW_AT_bit_stride attribute which specifies the separation between successive4

elements along the dimension as described in Section 2.21 on page 58.5

Note that the stride can be negative.6

5.14 Pointer to Member Type Entries7

In C++, a pointer to a data or function member of a class or structure is a unique type.8

A debugging information entry representing the type of an object that is a pointer9

to a structure or class member has the tag DW_TAG_ptr_to_member_type.10

If the pointer to member type has a name, the pointer to member entry has a11

DW_AT_name attribute, whose value is a null-terminated string containing the12

type name.13

The pointer to member entry has a DW_AT_type attribute to describe the type of14

the class or structure member to which objects of this type may point.15

The entry also has a DW_AT_containing_type attribute, whose value is a16

reference to a debugging information entry for the class or structure to whose17

members objects of this type may point.18

The pointer to member entry has a DW_AT_use_location attribute whose value19

is a location description that computes the address of the member of the class to20

which the pointer to member entry points.21

The method used to find the address of a given member of a class or structure is common22

to any instance of that class or structure and to any instance of the pointer or member23

type. The method is thus associated with the type entry, rather than with each instance of24

the type.25

The DW_AT_use_location description is used in conjunction with the location26

descriptions for a particular object of the given pointer to member type and for a27

particular structure or class instance. The DW_AT_use_location attribute expects28

two values to be pushed onto the DWARF expression stack before the29

DW_AT_use_location description is evaluated. The first value pushed is the30

value of the pointer to member object itself. The second value pushed is the base31

address of the entire structure or union instance containing the member whose32

address is being calculated.33

July 15 2024 ***WORKING DRAFT*** Page 135

Chapter 5. Type Entries

For an expression such as1

object .* mbr_ptr

where mbr_ptr has some pointer to member type, a debugger should:2

1. Push the value of mbr_ptr onto the DWARF expression stack.3

2. Push the base address of object onto the DWARF expression stack.4

3. Evaluate the DW_AT_use_location description given in the type of mbr_ptr.5

5.15 File Type Entries6

Some languages, such as Pascal, provide a data type to represent files.7

A file type is represented by a debugging information entry with the tag8

DW_TAG_file_type. If the file type has a name, the file type entry has a9

DW_AT_name attribute, whose value is a null-terminated string containing the10

type name.11

The file type entry has a DW_AT_type attribute describing the type of the objects12

contained in the file.13

The file type entry also has a DW_AT_byte_size or DW_AT_bit_size attribute,14

whose value (see Section 2.19 on page 57) is the amount of storage need to hold a15

value of the file type.16

5.16 Dynamic Type Entries17

Some languages such as Fortran 90, provide types whose values may be dynamically18

allocated or associated with a variable under explicit program control. However, unlike19

the pointer type in C or C++, the indirection involved in accessing the value of the20

variable is generally implicit, that is, not indicated as part of the program source.21

A dynamic type entry is used to declare a dynamic type that is “just like” another22

non-dynamic type without needing to replicate the full description of that other23

type.24

A dynamic type is represented by a debugging information entry with the tag25

DW_TAG_dynamic_type. If a name has been given to the dynamic type, then the26

dynamic type has a DW_AT_name attribute whose value is a null-terminated27

string containing the dynamic type name.28

July 15 2024 ***WORKING DRAFT*** Page 136

Chapter 5. Type Entries

A dynamic type entry has a DW_AT_type attribute whose value is a reference to1

the type of the entities that are dynamically allocated.2

A dynamic type entry also has a DW_AT_data_location, and may also have3

DW_AT_allocated and/or DW_AT_associated attributes as described in Section4

5.18. A DW_AT_data_location, DW_AT_allocated or DW_AT_associated5

attribute may not occur on a dynamic type entry if the same kind of attribute6

already occurs on the type referenced by the DW_AT_type attribute.7

5.17 Template Alias Entries8

In C++, a template alias is a form of typedef that has template parameters. DWARF does9

not represent the template alias definition but does represent instantiations of the alias.10

A type named using a template alias is represented by a debugging information11

entry with the tag DW_TAG_template_alias. The template alias entry has a12

DW_AT_name attribute whose value is a null-terminated string containing the13

name of the template alias. The template alias entry has child entries describing14

the template actual parameters (see Section 2.23 on page 59).15

5.18 Dynamic Properties of Types16

The DW_AT_data_location, DW_AT_allocated and DW_AT_associated attributes17

described in this section are motivated for use with DW_TAG_dynamic_type entries but18

can be used for any other type as well.19

5.18.1 Data Location20

Some languages may represent objects using descriptors to hold information, including a21

location and/or run-time parameters, about the data that represents the value for that22

object.23

The DW_AT_data_location attribute may be used with any type that provides24

one or more levels of hidden indirection and/or run-time parameters in its25

representation. Its value is a location description. The result of evaluating this26

description yields the location of the data for an object. When this attribute is27

omitted, the address of the data is the same as the address of the object.28

July 15 2024 ***WORKING DRAFT*** Page 137

Chapter 5. Type Entries

This location description will typically begin with DW_OP_push_object_address which1

loads the address of the object which can then serve as a descriptor in subsequent2

calculation. For an example using DW_AT_data_location for a Fortran 90 array, see3

Appendix D.2.1 on page 306.4

5.18.2 Allocation and Association Status5

Some languages, such as Fortran 90, provide types whose values may be dynamically6

allocated or associated with a variable under explicit program control.7

The DW_AT_allocated attribute may be used with any type for which objects of8

the type can be explicitly allocated and deallocated. The presence of the attribute9

indicates that objects of the type are allocatable and deallocatable. The integer10

value of the attribute (see below) specifies whether an object of the type is11

currently allocated or not.12

The DW_AT_associated attribute may optionally be used with any type for13

which objects of the type can be dynamically associated with other objects. The14

presence of the attribute indicates that objects of the type can be associated. The15

integer value of the attribute (see below) indicates whether an object of the type16

is currently associated or not.17

The value of these attributes is determined as described in Section 2.19 on18

page 57. A non-zero value is interpreted as allocated or associated, and zero is19

interpreted as not allocated or not associated.20

For Fortran 90, if the DW_AT_associated attribute is present, the type has the21

POINTER property where either the parent variable is never associated with a dynamic22

object or the implementation does not track whether the associated object is static or23

dynamic. If the DW_AT_allocated attribute is present and the DW_AT_associated24

attribute is not, the type has the ALLOCATABLE property. If both attributes are present,25

then the type should be assumed to have the POINTER property (and not26

ALLOCATABLE); the DW_AT_allocated attribute may then be used to indicate that the27

association status of the object resulted from execution of an ALLOCATE statement28

rather than pointer assignment.29

For examples using DW_AT_allocated for Ada and Fortran 90 arrays, see Appendix D.230

on page 306.31

July 15 2024 ***WORKING DRAFT*** Page 138

Chapter 5. Type Entries

5.18.3 Array Rank1

The Fortran language supports “assumed-rank arrays”. The rank (the number of2

dimensions) of an assumed-rank array is unknown at compile time. The Fortran runtime3

stores the rank in an array descriptor.4

The presence of the attribute indicates that an array’s rank (number of5

dimensions) is dynamic, and therefore unknown at compile time. The value of6

the DW_AT_rank attribute is either an integer constant or a DWARF expression7

whose evaluation yields the dynamic rank.8

The bounds of an array with dynamic rank are described using a9

DW_TAG_generic_subrange entry, which is the dynamic rank array equivalent10

of DW_TAG_subrange_type. The difference is that a11

DW_TAG_generic_subrange entry contains generic lower/upper bound and12

stride expressions that need to be evaluated for each dimension. Before any13

expression contained in a DW_TAG_generic_subrange can be evaluated, the14

dimension for which the expression is to be evaluated needs to be pushed onto15

the stack. The expression will use it to find the offset of the respective field in the16

array descriptor metadata.17

A producer is free to choose any layout for the array descriptor. In particular, the upper18

and lower bounds and stride values do not need to be bundled into a structure or record,19

but could be laid end to end in the containing descriptor, pointed to by the descriptor, or20

even allocated independently of the descriptor.21

Dimensions are enumerated 0 to rank − 1 in source program order.22

For an example in Fortran 2008, see Section D.2.3 on page 315.23

July 15 2024 ***WORKING DRAFT*** Page 139

Chapter 61

Other Debugging Information2

This section describes debugging information that is not represented in the form3

of debugging information entries and is not contained within a .debug_info4

section.5

In the descriptions that follow, these terms are used to specify the representation6

of DWARF sections:7

• initial length, section offset and section length, which are defined in8

Sections 7.2.2 on page 191 and 7.4 on page 203.9

• sbyte, ubyte, uhalf and uword, which are defined in Section 7.31 on10

page 257.11

• MBZ, which indicates that a value or the contents of a field must be zero.12

6.1 Accelerated Access13

A debugger frequently needs to find the debugging information for a program entity14

defined outside of the compilation unit where the debugged program is currently stopped.15

Sometimes the debugger will know only the name of the entity; sometimes only the16

address. To find the debugging information associated with a global entity by name,17

using the DWARF debugging information entries alone, a debugger would need to run18

through all entries at the highest scope within each compilation unit.19

Similarly, in languages in which the name of a type is required to always refer to the same20

concrete type (such as C++), a compiler may choose to elide type definitions in all21

compilation units except one. In this case a debugger needs a rapid way of locating the22

concrete type definition by name. As with the definition of global data objects, this would23

require a search of all the top level type definitions of all compilation units in a program.24

July 15 2024 ***WORKING DRAFT*** Page 140

Chapter 6. Other Debugging Information

To find the debugging information associated with a subroutine, given an address, a1

debugger can use the low and high PC attributes of the compilation unit entries to2

quickly narrow down the search, but these attributes only cover the range of addresses for3

the text associated with a compilation unit entry. To find the debugging information4

associated with a data object, given an address, an exhaustive search would be needed.5

Furthermore, any search through debugging information entries for different compilation6

units within a large program would potentially require the access of many memory pages,7

probably hurting debugger performance.8

To make lookups of program entities (including data objects, functions and9

types) by name or by address faster, a producer of DWARF information may10

provide two different types of tables containing information about the11

debugging information entries owned by a particular compilation unit entry in a12

more condensed format.13

6.1.1 Lookup by Name14

For lookup by name, a name index is maintained in a separate object file section15

named .debug_names.16

The .debug_names section is new in DWARF Version 5, and supersedes the17

.debug_pubnames and .debug_pubtypes sections of earlier DWARF versions. While18

.debug_names and either .debug_pubnames and/or .debug_pubtypes sections cannot19

both occur in the same compilation unit, both may be found in the set of units that make20

up an executable or shared object.21

The index consists primarily of two parts: a list of names, and a list of index22

entries. A name, such as a subprogram name, type name, or variable name, may23

have several defining declarations in the debugging information. In this case, the24

entry for that name in the list of names will refer to a sequence of index entries in25

the second part of the table, each corresponding to one defining declaration in26

the .debug_info section.27

The name index may also contain an optional hash table for faster lookup.28

A relocatable object file may contain a "per-CU" index, which provides an index29

to the names defined in that compilation unit.30

An executable or shareable object file may contain either a collection of "per-CU"31

indexes, simply copied from each relocatable object file, or the linker may32

produce a "per-module" index by combining the per-CU indexes into a single33

index that covers the entire module.34

July 15 2024 ***WORKING DRAFT*** Page 141

Chapter 6. Other Debugging Information

6.1.1.1 Contents of the Name Index1

The name index must contain an entry for each debugging information entry that2

defines a named subprogram, label, variable, type, or namespace, subject to the3

following rules:4

• All non-defining declarations (that is, debugging information entries with a5

DW_AT_declaration attribute) are excluded.6

• DW_TAG_namespace debugging information entries without a7

DW_AT_name attribute are included with the name “(anonymous8

namespace)”.9

• All other debugging information entries without a DW_AT_name attribute10

are excluded.11

• DW_TAG_subprogram, DW_TAG_inlined_subroutine, and12

DW_TAG_label debugging information entries without an address13

attribute (DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, or14

DW_AT_entry_pc) are excluded.15

• DW_TAG_variable debugging information entries with a DW_AT_location16

attribute that includes a DW_OP_addr or DW_OP_form_tls_address17

operator are included; otherwise, they are excluded.18

• If a subprogram or inlined subroutine is included, and has a19

DW_AT_linkage_name attribute, there will be an additional index entry for20

the linkage name.21

For the purposes of determining whether a debugging information entry has a22

particular attribute (such as DW_AT_name), if debugging information entry A23

has a DW_AT_specification or DW_AT_abstract_origin attribute pointing to24

another debugging information entry B, any attributes of B are considered to be25

part of A.26

The intent of the above rules is to provide the consumer with some assurance that looking27

up an unqualified name in the index will yield all relevant debugging information entries28

that provide a defining declaration at global scope for that name.29

A producer may choose to implement additional rules for what names are placed in the30

index, and may communicate those rules to a cooperating consumer via augmentation31

sequence as described below.32

July 15 2024 ***WORKING DRAFT*** Page 142

Chapter 6. Other Debugging Information

6.1.1.2 Structure of the Name Index1

Logically, the name index can be viewed as a list of names, with a list of index2

entries for each name. Each index entry corresponds to a debugging information3

entry that matches the criteria given in the previous section. For example, if one4

compilation unit has a function named fred and another has a struct named5

fred, a lookup for “fred” will find the list containing those two index entries.6

The index section contains eight individual parts, as illustrated in Figure 6.17

following.8

1. A header, describing the layout of the section.9

2. A list of compile units (CUs) referenced by this index.10

3. A list of local type units (TUs) referenced by this index that are present in11

this object file.12

4. A list of foreign type units (TUs) referenced by this index that are not13

present in this object file (that is, that have been placed in a split DWARF14

object file as described in 7.3.2 on page 194).15

5. An optional hash lookup table.16

6. The name table.17

7. An abbreviations table, similar to the one used by the .debug_info section.18

8. The entry pool, containing a list of index entries for each name in the name19

list.20

The formats of the header and the hash lookup table are described in Section21

6.1.1.4 on page 148.22

The list of CUs and the list of local TUs are each an array of offsets, each of which23

is the offset of a compile unit or a type unit in the .debug_info section. For a24

per-CU index, there is a single CU entry, and there may be a TU entry for each25

type unit generated in the same translation unit as the single CU. For a26

per-module index, there will be one CU entry for each compile unit in the27

module, and one TU entry for each unique type unit in the module. Each list is28

indexed starting at 0.29

The list of foreign TUs is an array of 64-bit (DW_FORM_ref_sig8) type30

signatures, representing types referenced by the index whose definitions have31

been placed in a different object file (that is, a split DWARF object). This list may32

be empty. The foreign TU list immediately follows the local TU list and they both33

use the same index, so that if there are N local TU entries, the index for the first34

foreign TU is N .35

July 15 2024 ***WORKING DRAFT*** Page 143

Chapter 6. Other Debugging Information

part 1 of 3

Name Index

Header

CU List

Local TU List

Foreign TU List

Hash Table

Name Table

Abbrev Table

Entry Pool

offset to CU 0

offset to CU 1

. . .

offset to CU k − 1

comp_unit_count (= k)

offset to TU 0

offset to TU 1

. . .

offset to TU t− 1

local_type_unit_count (= t)

signature of TU t

signature of TU t+ 1

. . .

signature of TU t+f−1

foreign_type_unit_count (= f)

Buckets

Hashes

String Offsets

Entry Offsets

Abbreviations

Index Entries

see continued figure on the next pages

.debug_info

Figure 6.1: Name Index Layout

July 15 2024 ***WORKING DRAFT*** Page 144

Chapter 6. Other Debugging Information

part 2 of 3

Buckets
bucket 0

bucket 1

. . .

bucket b− 1

bucket_count (= b)

Hashes
hash value 1

hash value 2

hash value 3

hash value 4

hash value 5

. . .

hash value n

String
Offsets

Entry
Offsets

name_count

(= n)

.debug_str

index entries

Abbreviations
abbrev code m

tag (DW_TAG)

idx attrib name (DW_IDX), form
(DW_FORM). . .

idx attrib name (DW_IDX), form
(DW_FORM)0, 0 (end of abbrev code m)

. . .

0 (end of abbreviations)

padding

abbrev_table_size

(= s)

Figure 6.1: Name Index Layout (continued)

July 15 2024 ***WORKING DRAFT*** Page 145

Chapter 6. Other Debugging Information

part 3 of 3

Index Entries

index entry #1 for “a”

index entry #2 for “a”

. . .

0 (end of entries for “a”)

index entry #1 for “b”

index entry #2 for “b”

. . .

0 (end of entries for “b”)

index entry #1 for “c”

. . .

abbrev code m

idx attrib value

idx attrib value

. . .

idx attrib value

from entry offsets
of name table

from entry offsets
of name table

from entry offsets
of name table

Figure 6.1: Name Index Layout (concluded)

The name table is logically a table with a row for each unique name in the index,1

and two columns. The first column contains a reference to the name, as a string.2

The second column contains the offset within the entry pool of the list of index3

entries for the name.4

The abbreviations table describes the formats of the entries in the entry pool.5

Like the DWARF abbreviations table in the .debug_abbrev section, it defines one6

or more abbreviation codes. Each abbreviation code provides a DWARF tag7

value followed by a list of pairs that defines an attribute and form code used by8

entries with that abbreviation code.9

The entry pool contains all the index entries, grouped by name. The second10

column of the name list points to the first index entry for the name, and all the11

index entries for that name are placed one after the other.12

Each index entry begins with an unsigned LEB128 abbreviation code. The13

abbreviation list for that code provides the DWARF tag value for the entry as14

well as the set of attributes provided by the entry and their forms.15

The standard index attributes (see Table 6.1 on page 152) are:16

• Compilation Unit (CU), a reference to an entry in the list of CUs. In a17

per-CU index, index entries without this index attribute implicitly refer to18

the single CU.19

July 15 2024 ***WORKING DRAFT*** Page 146

Chapter 6. Other Debugging Information

• Type Unit (TU), a reference to an entry in the list of local or foreign TUs.1

• Debugging information entry offset within the CU or TU.2

• Parent debugging information entry, a reference to the index entry for the3

parent. This is represented as the offset of the entry relative to the start of4

the entry pool.5

• Type hash, an 8-byte hash of the type declaration.6

It is possible that an indexed debugging information entry has a parent that is7

not indexed (for example, if its parent does not have a name attribute). In such a8

case, a parent index attribute may point to a nameless index entry (that is, one9

that cannot be reached from any entry in the name table), or it may point to the10

nearest ancestor that does have an index entry.11

A producer may define additional producer-specific index attributes, and a12

consumer will be able to ignore and skip over any index attributes it is not13

prepared to handle.14

When an index entry refers to a foreign type unit, it may have index attributes15

for both CU and (foreign) TU. For such entries, the CU index attribute gives the16

consumer a reference to the CU that may be used to locate a split DWARF object17

file that contains the type unit.18

The type hash index attribute, not to be confused with the type signature for a TU, may19

be provided for type entries whose declarations are not in a type unit, for the convenience20

of link-time or post-link utilities that wish to de-duplicate type declarations across21

compilation units. The type hash, however, is computed by the same method as specified22

for type signatures.23

The last entry for each name is followed by a zero byte that terminates the list.24

There may be gaps between the lists.25

6.1.1.3 Per-CU versus Per-Module Indexes26

In a per-CU index, the CU list may have only a single entry, and index entries may omit27

the CU attribute. (Cross-module or link-time optimization, however, may produce an28

object file with several compile units in one object. A compiler in this case may produce a29

separate index for each CU, or a combined index for all CUs. In the latter case, index30

entries will require the CU attribute.) Most name table entries may have only a single31

index entry for each, but sometimes a name may be used in more than one context and32

will require multiple index entries, each pointing to a different debugging information33

entry.34

July 15 2024 ***WORKING DRAFT*** Page 147

Chapter 6. Other Debugging Information

When linking object files containing per-CU indexes, the linker may choose to1

concatenate the indexes as ordinary sections, or it may choose to combine the input2

indexes into a single per-module index.3

A per-module index will contain a number of CUs, and each index entry contains a CU4

attribute or a TU attribute to identify which CU or TU contains the debugging5

information entry being indexed. When a given name is used in multiple CUs or TUs, it6

will typically have a series of index entries pointing to each CU or TU where it is7

declared. For example, an index entry for a C++ namespace needs to list each occurrence,8

since each CU may contribute additional names to the namespace, and the consumer9

needs to find them all. On the other hand, some index entries do not need to list more10

than one definition; for example, with the one-definition rule in C++, duplicate entries for11

a function may be omitted, since the consumer only needs to find one declaration.12

Likewise, a per-module index needs to list only a single copy of a type declaration13

contained in a type unit.14

For the benefit of link-time or post-link utilities that consume per-CU indexes and15

produce a per-module index, the per-CU index entries provide the tag encoding for the16

original debugging information entry, and may provide a type hash for certain types that17

may benefit from de-duplication. For example, the standard declaration of the typedef18

uint32_t is likely to occur in many CUs, but a combined per-module index needs to19

retain only one; a user declaration of a typedef mytype may refer to a different type at20

each occurrence, and a combined per-module index retains each unique declaration of that21

type.22

6.1.1.4 Data Representation of the Name Index23

The name index is placed in a section named .debug_names, and consists of the24

eight parts described in the following sections.25

6.1.1.4.1 Section Header26

The section header contains the following fields:27

1. unit_length (initial length)28

The length of this contribution to the name index section, not including the29

length field itself (see Section 7.2.2 on page 191).30

2. version (uhalf)31

A version number (see Section 7.19 on page 244). This number is specific to32

the name index table and is independent of the DWARF version number.33

3. padding (uhalf)34

Reserved to DWARF (must be zero).35

July 15 2024 ***WORKING DRAFT*** Page 148

Chapter 6. Other Debugging Information

4. comp_unit_count (uword)1

The number of CUs in the CU list.2

5. local_type_unit_count (uword)3

The number of TUs in the local TU list.4

6. foreign_type_unit_count (uword)5

The number of TUs in the foreign TU list.6

7. bucket_count (uword)7

The number of hash buckets in the hash lookup table. If there is no hash8

lookup table, this field contains 0.9

8. name_count (uword)10

The number of unique names in the index.11

9. abbrev_table_size (uword)12

The size in bytes of the abbreviations table.13

10. augmentation_size (uword)14

The size in bytes of the augmentation sequence. This value must be a15

multiple of four.16

11. augmentation (sequence of ubyte)17

A producer-specific sequence of bytes, which provides additional18

information about the contents of this index. If provided, the sequence begins19

with four bytes which serve as a producer ID. The remainder of the sequence20

is meant to be read by a cooperating consumer, and its contents and21

interpretation are not specified here. The block is padded with zero bytes to a22

multiple of four bytes in length.23

The presence of an unrecognized augmentation producer ID does not make it24

impossible for a consumer to process data in the .debug_names section. The25

augmentation sequence only provides hints to the consumer regarding the26

completeness of the set of names in the index.27

6.1.1.4.2 List of CUs28

The list of CUs immediately follows the header. Each entry in the list is an offset29

of the corresponding compilation unit in the .debug_info section. In the30

DWARF-32 format, a section offset is 4 bytes, while in the DWARF-64 format, a31

section offset is 8 bytes.32

The total number of entries in the list is given by comp_unit_count. There must33

be at least one CU.34

July 15 2024 ***WORKING DRAFT*** Page 149

Chapter 6. Other Debugging Information

6.1.1.4.3 List of Local TUs1

The list of local TUs immediately follows the list of CUs. Each entry in the list is2

an offset of the corresponding type unit in the .debug_info section. In the3

DWARF-32 format, a section offset is 4 bytes, while in the DWARF-64 format, a4

section offset is 8 bytes.5

Any local TU entry with a maximum representable value is considered not6

present. Any index entry referencing such a local TU entry should be ignored.7

The total number of entries in the list is given by local_type_unit_count. This8

list may be empty.9

6.1.1.4.4 List of Foreign TUs10

The list of foreign TUs immediately follows the list of local TUs. Each entry in11

the list is a 8-byte type signature (as described by DW_FORM_ref_sig8).12

The number of entries in the list is given by foreign_type_unit_count. This list13

may be empty.14

6.1.1.4.5 Hash Lookup Table15

The optional hash lookup table immediately follows the list of type signatures.16

The hash lookup table is actually two separate arrays: an array of buckets,17

followed immediately by an array of hashes. The number of entries in the18

buckets array is given by bucket_count, and the number of entries in the hashes19

array is given by name_count. Each array contains 4-byte unsigned integers.20

Symbols are entered into the hash table by first computing a hash value from the21

symbol name. The hash is computed using the "DJB" hash function described in22

Section 7.33 on page 261. Given a hash value for the symbol, the symbol is23

entered into a bucket whose index is the hash value modulo bucket_count. The24

buckets array is indexed starting at 0.25

For the purposes of the hash computation, each symbol name should be folded26

according to the simple case folding algorithm defined in the "Caseless27

Matching" subsection of Section 5.18 ("Case Mappings") of the Unicode Standard,28

Version 9.0.0. The original symbol name, as it appears in the source code, should29

be stored in the name table.30

Thus, two symbols that differ only by case will hash to the same slot, but the consumer31

will be able to distinguish the names when appropriate.32

July 15 2024 ***WORKING DRAFT*** Page 150

Chapter 6. Other Debugging Information

The simple case folding algorithm is further described in the CaseFolding.txt file1

distributed with the Unicode Character Database. That file defines four classes of2

mappings: Common (C), Simple (S), Full (F), and Turkish (T). The hash3

computation specified here uses the C + S mappings only, which do not affect the4

total length of the string, with the addition that Turkish upper case dotted ’İ’ and5

lower case dotless ’ı’ are folded to the Latin lower case ’i’.6

Each bucket contains the index of an entry in the hashes array. The hashes array7

is indexed starting at 1, and an empty bucket is represented by the value 0.8

The hashes array contains a sequence of the full hash values for each symbol. All9

symbols that have the same index into the bucket list follow one another in the10

hashes array, and the indexed entry in the bucket list refers to the first symbol.11

When searching for a symbol, the search starts at the index given by the bucket,12

and continues either until a matching symbol is found or until a hash value from13

a different bucket is found. If two different symbol names produce the same hash14

value, that hash value will occur twice in the hashes array. Thus, if a matching15

hash value is found, but the name does not match, the search continues visiting16

subsequent entries in the hashes table.17

When a matching hash value is found in the hashes array, the index of that entry18

in the hashes array is used to find the corresponding entry in the name table.19

6.1.1.4.6 Name Table20

The name table immediately follows the hash lookup table. It consists of two21

arrays: an array of string offsets, followed immediately by an array of entry22

offsets. The items in both arrays are section offsets: 4-byte unsigned integers for23

the DWARF-32 format or 8-byte unsigned integers for the DWARF-64 format.24

The string offsets in the first array refer to names in the .debug_str (or25

.debug_str.dwo) section. The entry offsets in the second array refer to index26

entries, and are relative to the start of the entry pool area.27

These two arrays are indexed starting at 1, and correspond one-to-one with each28

other. The length of each array is given by name_count.29

If there is a hash lookup table, the hashes array corresponds on a one-to-one30

basis with the string offsets array and with the entry offsets array.31

If there is no hash lookup table, there is no ordering requirement for the name table.32

July 15 2024 ***WORKING DRAFT*** Page 151

Chapter 6. Other Debugging Information

6.1.1.4.7 Abbreviations Table1

The abbreviations table immediately follows the name table. This table consists2

of a series of abbreviation declarations. Its size is given by abbrev_table_size.3

Each abbreviation declaration defines the tag and other attributes for a particular4

form of index entry. Each declaration starts with an unsigned LEB128 number5

representing the abbreviation code itself. It is this code that appears at the6

beginning of an index entry. The abbreviation code must not be 0.7

The abbreviation code is followed by another unsigned LEB128 number that8

encodes the tag of the debugging information entry corresponding to the index9

entry.10

Following the tag encoding is a series of attribute specifications. Each index11

attribute consists of two parts: an unsigned LEB128 number that represents the12

index attribute, and another unsigned LEB128 number that represents the index13

attribute’s form (as described in Section 7.5.4 on page 216). The series of attribute14

specifications ends with an entry containing 0 for the attribute and 0 for the form.15

The index attributes and their meanings are listed in Table 6.1.16

Table 6.1: Index attribute encodings

Index attribute name Meaning
DW_IDX_compile_unit Index of CU
DW_IDX_type_unit Index of TU (local or foreign)
DW_IDX_die_offset Offset of DIE within CU or TU
DW_IDX_parent Index of name table entry for parent
DW_IDX_type_hash Hash of type declaration
DW_IDX_external Whether DW_AT_external is present

on the declaration (flag)

The abbreviations table ends with an entry consisting of a single 0 byte for the17

abbreviation code. The size of the table given by abbrev_table_size may18

include optional padding following the terminating 0 byte.19

6.1.1.4.8 Entry Pool20

The entry pool immediately follows the abbreviations table. Each entry in the21

entry offsets array in the name table (see Section 6.1.1.4.6) points to an offset in22

the entry pool, where a series of index entries for that name is located.23

July 15 2024 ***WORKING DRAFT*** Page 152

Chapter 6. Other Debugging Information

Each index entry in the series begins with an abbreviation code, and is followed1

by the index attribute values described by the abbreviation declaration for that2

code. The last index entry in the series is followed by a terminating entry whose3

abbreviation code is 0.4

Each index entry has a flag indicating whether the corresponding DIE has the5

DW_AT_external attribute with a true value. If the DW_IDX_external attribute is6

missing from an entry, it means that DW_AT_external is false for that DIE.7

Gaps are not allowed between entries in a series (that is, the entries for a single8

name must all be contiguous), but there may be gaps between series.9

For example, a producer/consumer combination may find it useful to maintain alignment.10

The size of the entry pool is the remaining size of the contribution to the index11

section, as defined by the unit_length header field.12

6.1.2 Lookup by Address13

For lookup by address, a table is maintained in a separate object file section14

called .debug_aranges. The table consists of sets of variable length entries, each15

set describing the portion of the program’s address space that is covered by a16

single compilation unit.17

Each set begins with a header containing five values:18

1. unit_length (initial length)19

The length of this contribution to the address lookup section, not including20

the length field itself (see Section 7.2.2 on page 191).21

2. version (uhalf)22

A version number (see Section 7.21 on page 245). This number is specific to23

the address lookup table and is independent of the DWARF version number.24

3. debug_info_offset (section offset)25

The offset from the beginning of the .debug_info section of the compilation26

unit header referenced by the set.27

4. address_size (ubyte)28

The size of an address in bytes on the target architecture.29

5. reserved 1 (ubyte, MBZ)30

1This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 153

Chapter 6. Other Debugging Information

This header is followed by a variable number of address range descriptors. Each1

descriptor is a pair consisting of the beginning address of a range of text or data2

covered by some entry owned by the corresponding compilation unit, followed3

by the length of that range. A particular set is terminated by an entry consisting4

of two zeroes. By scanning the table, a debugger can quickly decide which5

compilation unit to look in to find the debugging information for an object that6

has a given address.7

A range description entry whose address is the reserved address (see Section8

2.4.1 on page 26), indicates a non-existent range, which is equivalent to omitting9

the range description.10

If the range of addresses covered by the text and/or data of a compilation unit is not11

contiguous, then there may be multiple address range descriptors for that compilation12

unit.13

6.2 Line Number Information14

A source-level debugger needs to know how to associate locations in the source files with15

the corresponding machine instruction addresses in the executable or the shared object16

files used by that executable object file. Such an association makes it possible for the17

debugger user to specify machine instruction addresses in terms of source locations. This18

is done by specifying the line number and the source file containing the statement. The19

debugger can also use this information to display locations in terms of the source files and20

to single step from line to line, or statement to statement.21

Line number information generated for a compilation unit is represented in the22

.debug_line section of an object file, and optionally also in the .debug_line_str23

section, and is referenced by a corresponding compilation unit debugging24

information entry (see Section 3.1.1 on page 62) in the .debug_info section.25

Some computer architectures employ more than one instruction set (for example, the26

ARM and MIPS architectures support a 32-bit as well as a 16-bit instruction set).27

Because the instruction set is a function of the program counter, it is convenient to28

encode the applicable instruction set in the .debug_line section as well.29

If space were not a consideration, the information provided in the .debug_line section30

could be represented as a large matrix, with one row for each instruction in the emitted31

object code. The matrix would have columns for:32

• the source file name33

• the source line number34

• the source column number35

July 15 2024 ***WORKING DRAFT*** Page 154

Chapter 6. Other Debugging Information

• whether this instruction is the beginning of a source statement1

• whether this instruction is the beginning of a basic block2

• and so on3

Such a matrix, however, would be impractically large. We shrink it with two techniques.4

First, we delete from the matrix each row whose file, line, source column and5

discriminator is identical with that of its predecessors, except where the instruction is6

marked as a suggested breakpoint location, the end of a prologue region, or the beginning7

of an epilogue region. Second, we design a byte-coded language for a state machine and8

store a stream of bytes in the object file instead of the matrix. This language can be much9

more compact than the matrix. To the line number information a consumer must “run”10

the state machine to generate the matrix for each compilation unit of interest. The concept11

of an encoded matrix also leaves room for expansion. In the future, columns can be added12

to the matrix to encode other things that are related to individual instruction addresses.13

6.2.1 Definitions14

The following terms are used in the description of the line number information15

format:16

state machine The hypothetical machine used by a consumer
of the line number information to expand the
byte-coded instruction stream into a matrix of
line number information.

line number program A series of byte-coded line number information
instructions representing one compilation unit.

basic block A sequence of instructions where only the first
instruction may be a branch target and only the
last instruction may transfer control. A
subprogram invocation is defined to be an exit
from a basic block.
A basic block does not necessarily correspond to a
specific source code construct.

sequence A series of contiguous target machine
instructions. One compilation unit may emit
multiple sequences (that is, not all instructions
within a compilation unit are assumed to be
contiguous).

July 15 2024 ***WORKING DRAFT*** Page 155

Chapter 6. Other Debugging Information

6.2.2 State Machine Registers1

The line number information state machine has a number of registers as shown2

in Table 6.3 following.3

Table 6.3: State machine registers

Register name Meaning
address The program-counter value corresponding to a

machine instruction generated by the compiler.
op_index An unsigned integer representing the index of an

operation within a VLIW instruction. The index of
the first operation is 0. For non-VLIW architectures,
this register will always be 0.

file An unsigned integer indicating the identity of the
source file corresponding to a machine instruction.
Files are numbered beginning at 0.

line An unsigned integer indicating a source line number.
Lines are numbered beginning at 1. The compiler
may emit the value 0 in cases where an instruction
cannot be attributed to any source line.

column An unsigned integer indicating a column number
within a source line. Columns are numbered
beginning at 1. The value 0 is reserved to indicate
that a statement begins at the “left edge” of the line.

is_stmt A boolean indicating that the current instruction is a
recommended breakpoint location. A recommended
breakpoint location is intended to “represent” a line,
a statement and/or a semantically distinct subpart of
a statement.

basic_block A boolean indicating that the current instruction is
the beginning of a basic block.

end_sequence A boolean indicating that the current address is that
of the first byte after the end of a sequence of target
machine instructions. end_sequence terminates a
sequence of lines; therefore other information in the
same row is not meaningful.

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 156

Chapter 6. Other Debugging Information

Register name Meaning
prologue_end A boolean indicating that the current address is one

(of possibly many) where execution should be
suspended for a breakpoint at the entry of a function.

epilogue_begin A boolean indicating that the current address is one
(of possibly many) where execution should be
suspended for a breakpoint just prior to the exit of a
function.

prologue_epilogue A boolean indicating that the current row describes
instructions within a prologue or epilogue range.

isa An unsigned integer whose value encodes the
applicable instruction set architecture for the current
instruction.
The encoding of instruction sets should be shared by all
users of a given architecture. It is recommended that this
encoding be defined by the ABI authoring committee for
each architecture.

discriminator An unsigned integer identifying the block to which
the current instruction belongs. Discriminator values
are assigned arbitrarily by the DWARF producer and
serve to distinguish among multiple blocks that may
all be associated with the same source file, line, and
column. Where only one block exists for a given
source position, the discriminator value is zero.

The address and op_index registers, taken together, form an operation pointer1

that can reference any individual operation within the instruction stream.2

At the beginning of each sequence within a line number program, the state of the3

registers is as show in Table 6.4 on the next page.4

The isa value 0 specifies that the instruction set is the architecturally determined default5

instruction set. This may be fixed by the ABI, or it may be specified by other means, for6

example, by the object file description.7

July 15 2024 ***WORKING DRAFT*** Page 157

Chapter 6. Other Debugging Information

Table 6.4: Line number program initial state

address 0
op_index 0
file 0
line 1
column 0
is_stmt determined by default_is_stmt in the line number

program header
basic_block “false”
end_sequence “false”
prologue_end “false”
epilogue_begin “false”
prologue_epilogue “false”
isa 0
discriminator 0

6.2.3 Line Number Program Instructions1

The state machine instructions in a line number program belong to one of three2

categories:3

1. special opcodes4

These have a ubyte opcode field and no operands.5

Most of the instructions in a line number program are special opcodes.6

2. standard opcodes7

These have a ubyte opcode field which may be followed by zero or more8

LEB128 operands (except for DW_LNS_fixed_advance_pc, see Section 6.2.5.29

on page 168). The opcode implies the number of operands and their10

meanings, but the line number program header also specifies the number of11

operands for each standard opcode.12

One standard opcode (DW_LNS_extended_op) serves as an escape that13

allows additional opcodes without reducing the number of special opcodes.14

July 15 2024 ***WORKING DRAFT*** Page 158

Chapter 6. Other Debugging Information

3. extended opcodes1

These have a multiple byte format. The first byte is DW_LNS_extended_op.2

The next bytes are an unsigned LEB128 integer giving the number of bytes in3

the instruction itself (this does not include the first DW_LNS_extended_op4

byte or the size). The remaining bytes are the instruction itself (which begins5

with a ubyte extended opcode).6

6.2.4 The Line Number Program Header7

The optimal encoding of line number information depends to a certain degree8

upon the architecture of the target machine. The line number program header9

provides information used by consumers in decoding the line number program10

instructions for a particular compilation unit and also provides information used11

throughout the rest of the line number program.12

The line number program for each compilation unit begins with a header13

containing the following fields in order:14

1. unit_length (initial length)15

The size in bytes of the line number information for this compilation unit, not16

including the length field itself (see Section 7.2.2 on page 191).17

2. version (uhalf)18

A version number (see Section 7.22 on page 246). This number is specific to19

the line number information and is independent of the DWARF version20

number.21

3. address_size (ubyte)22

The size of an address in bytes on the target architecture.23

The address_size field supports the common practice of stripping all but the line24

number sections (.debug_line and .debug_line_str) from an executable.25

4. reserved 2 (ubyte, MBZ)26

5. header_length27

The number of bytes following the header_length field to the beginning of28

the first byte of the line number program itself. In the 32-bit DWARF format,29

this is a 4-byte unsigned length; in the 64-bit DWARF format, this field is an30

8-byte unsigned length (see Section 7.4 on page 203).31

2This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 159

Chapter 6. Other Debugging Information

6. minimum_instruction_length (ubyte)1

The size in bytes of the smallest target machine instruction. Line number2

program opcodes that alter the address and op_index registers use this and3

maximum_operations_per_instruction in their calculations.4

7. maximum_operations_per_instruction (ubyte)5

The maximum number of individual operations that may be encoded in an6

instruction. Line number program opcodes that alter the address and7

op_index registers use this and minimum_instruction_length in their8

calculations.9

For non-VLIW architectures, this field is 1, the op_index register is always 0,10

and the operation pointer is simply the address register.11

8. default_is_stmt (ubyte)12

The initial value of the is_stmt register.13

A simple approach to building line number information when machine instructions14

are emitted in an order corresponding to the source program is to set15

default_is_stmt to “true” and to not change the value of the is_stmt register16

within the line number program. One matrix entry is produced for each line that has17

code generated for it. The effect is that every entry in the matrix recommends the18

beginning of each represented line as a breakpoint location. This is the traditional19

practice for unoptimized code.20

A more sophisticated approach might involve multiple entries in the matrix for a line21

number; in this case, at least one entry (often but not necessarily only one) specifies a22

recommended breakpoint location for the line number. DW_LNS_negate_stmt23

opcodes in the line number program control which matrix entries constitute such a24

recommendation and default_is_stmt might be either “true” or “false.” This25

approach might be used as part of support for debugging optimized code.26

9. line_base (sbyte)27

This parameter affects the meaning of the special opcodes. See below.28

10. line_range (ubyte)29

This parameter affects the meaning of the special opcodes. See below.30

11. opcode_base (ubyte)31

The number assigned to the first special opcode.32

Opcode base is typically one greater than the highest-numbered standard opcode33

defined for the specified version of the line number information (12 in DWARF34

Versions 3 through 6, and 9 in Version 2). If opcode_base is less than the typical35

value, then standard opcode numbers greater than or equal to the opcode base are not36

used in the line number table of this unit (and the codes are treated as special37

July 15 2024 ***WORKING DRAFT*** Page 160

Chapter 6. Other Debugging Information

opcodes). If opcode_base is greater than the typical value, then the numbers1

between that of the highest standard opcode and the first special opcode (not2

inclusive) are used for producer-specific extensions.3

12. standard_opcode_lengths (array of ubyte)4

This array specifies the number of LEB128 operands for each of the standard5

opcodes. The first element of the array corresponds to the opcode whose6

value is 1, and the last element corresponds to the opcode whose value is7

opcode_base - 1.8

By increasing opcode_base, and adding elements to this array, new standard9

opcodes can be added, while allowing consumers who do not know about these new10

opcodes to be able to skip them.11

Codes for producer-specific extensions, if any, are described just like standard opcodes.12

13. directory_format_count (ULEB128)13

A count of the number of entries in the following directory_format_table14

field.15

14. directory_format_table (sequence of record format descriptors)16

A sequence of record format descriptors. Each descriptor consists the17

following:18

• A sequence of field descriptors. Each field descriptor consists of a pair of19

unsigned LEB128 values: (a) a content type code (see Sections 6.2.4.1 on20

page 163 and 6.2.4.2 on page 165), and (b) a form code (using the21

attribute form codes).22

• A pair of zero bytes to terminate the descriptor.23

The line number program numbers the record format descriptors24

sequentially, beginning with 0.25

The format declarations describe the layout of the entries in the directories26

field, below.27

15. directories_count (ULEB128)28

A count of the number of entries in the following directories field.29

July 15 2024 ***WORKING DRAFT*** Page 161

Chapter 6. Other Debugging Information

16. directories (sequence of directory entries)1

A sequence of directory entries. Each entry consists of:2

• A format code (ULEB128), which selects a record format descriptor from3

the directory_format_table field, above, by its index.4

• A sequence of fields as described by the selected record format5

descriptor.6

Each directory entry describes a path that was searched for included source7

files in this compilation, including the compilation directory of the8

compilation. (The paths include those directories specified by the user for the9

compiler to search and those the compiler searches without explicit direction.)10

The first path entry is the current directory of the compilation; if that entry is11

specified using a relative path, it is relative to the location of the linked image12

containing the line table entries (assuming the image has not been moved).13

Each additional path entry is either a full path name or is relative to the14

current directory of the compilation.15

The line number program assigns a number (index) to each of the directory16

entries in order, beginning with 0.17

Prior to DWARF Version 5, the current compilation file did not have a specific entry18

in the file_names field. Starting in DWARF Version 5, the current file name has19

index 0.20

Note that if a .debug_line_str section is present, both the compilation unit21

debugging information entry and the line number header can share a single copy of22

the current directory name string.23

17. file_name_format_count (ULEB128)24

A count of the number of format descriptors in the following25

file_name_format_table field.26

18. file_name_format_table (sequence of record format descriptors)27

A sequence of record format descriptors. Each descriptor consists of:28

• A sequence of field descriptors. Each field descriptor consists of a pair of29

unsigned LEB128 values: (a) a content type code (see Sections 6.2.4.1 on30

the following page and 6.2.4.2 on page 165), and (b) a form code (using31

the attribute form codes).32

• A pair of zero bytes to terminate the descriptor.33

The line number program numbers the record format descriptors34

sequentially, beginning with 0.35

July 15 2024 ***WORKING DRAFT*** Page 162

Chapter 6. Other Debugging Information

The format declarations describe the layout of the entries in the file_names1

field, below.2

19. file_names_count (ULEB128)3

A count of the number of file name entries in the following file_names field.4

20. file_names (sequence of file name entries)5

A sequence of file name entries. Each entry consists of:6

• A format code (ULEB128), which selects a record format descriptor from7

the file_name_format_table, by its index.8

• A sequence of fields as described by the selected record format9

descriptor.10

Each file name entry describes a source file that contributes to the line11

number information for this compilation or is used in other contexts, such as12

in a declaration coordinate or a macro file inclusion.13

The first file name entry is the primary source file, whose file name exactly14

matches that given in the DW_AT_name attribute in the compilation unit15

debugging information entry.16

The line number program references file names in this sequence beginning17

with 0, and uses those numbers instead of file names in the line number18

program that follows.19

Prior to DWARF Version 5, the current compilation file name was not represented in20

the file_names field. In DWARF Version 5and after, the current compilation file21

name is explicitly present and has index 0. This is needed to support the common22

practice of stripping all but the line number sections (.debug_line and23

.debug_line_str) from an executable.24

Note that if a .debug_line_str section is present, both the compilation unit25

debugging information entry and the line number header can share a single copy of26

the current file name string.27

6.2.4.1 Standard Content Descriptions28

DWARF-defined content type codes are used to indicate the type of information29

that is represented in one component of an include directory or file name30

description. The following type codes are defined.31

1. DW_LNCT_path32

The component is a null-terminated path name string. If the associated form33

code is DW_FORM_string, then the string occurs immediately in the34

July 15 2024 ***WORKING DRAFT*** Page 163

Chapter 6. Other Debugging Information

containing directories or file_names field. If the form code is1

DW_FORM_line_strp, then the string is included in the .debug_line_str2

section; if the form code is DW_FORM_strp or DW_FORM_strp8, then the3

string is included in the .debug_str section; if the form code is4

DW_FORM_strp_sup or DW_FORM_strp_sup8, then the string is included in5

the supplementary string section. In all cases other than DW_FORM_string,6

the string’s offset occurs immediately in the containing directories or7

file_names field.8

In the 32-bit DWARF format, the representation of a DW_FORM_line_strp9

value is a 4-byte unsigned offset; in the 64-bit DWARF format, it is an 8-byte10

unsigned offset (see Section 7.4 on page 203).11

Note that this use of DW_FORM_line_strp is similar to DW_FORM_strp but refers12

to the .debug_line_str section, not .debug_str. It is needed to support the13

common practice of stripping all but the line number sections (.debug_line and14

.debug_line_str) from an executable.15

In a .debug_line.dwo section, the forms DW_FORM_strx, DW_FORM_strx1,16

DW_FORM_strx2, DW_FORM_strx3 and DW_FORM_strx4 may also be17

used. These refer into the .debug_str_offsets.dwo section (and indirectly18

also the .debug_str.dwo section) because no “.debug_line_str_offsets.dwo”19

or “.debug_line_str.dwo” sections exist or are defined for use in split objects.20

(The form DW_FORM_string may also be used, but this precludes the21

benefits of string sharing.)22

2. DW_LNCT_directory_index23

The unsigned directory index represents an entry in the directories field of24

the header. The index is 0 if the file was found in the current directory of the25

compilation (hence, the first directory in the directories field), 1 if it was26

found in the second directory in the directories field, and so on.27

This content code is always paired with one of the forms DW_FORM_data1,28

DW_FORM_data2 or DW_FORM_udata.29

The optimal form for a producer to use (which results in the minimum size for the set30

of include_index fields) depends not only on the number of directories in the31

directories field, but potentially on the order in which those directories are listed and32

the number of times each is used in the file_names field.33

3. DW_LNCT_timestamp34

DW_LNCT_timestamp indicates that the value is the35

implementation-defined time of last modification of the file, or 0 if not36

available. It is always paired with one of the forms DW_FORM_udata,37

DW_FORM_data4, DW_FORM_data8 or DW_FORM_block.38

July 15 2024 ***WORKING DRAFT*** Page 164

Chapter 6. Other Debugging Information

4. DW_LNCT_size1

DW_LNCT_size indicates that the value is the unsigned size of the file in2

bytes, or 0 if not available. It is paired with one of the forms3

DW_FORM_udata, DW_FORM_data1, DW_FORM_data2, DW_FORM_data44

or DW_FORM_data8.5

5. DW_LNCT_MD56

DW_LNCT_MD5 indicates that the value is a 16-byte MD5 digest of the file7

contents. It is paired with form DW_FORM_data16.8

6. DW_LNCT_source9

DW_LNCT_source specifies a null-terminated UTF-8 string that constitutes10

the source text for the program. It is paired with the same forms as11

DW_LNCT_path.12

When the source field is present, consumers use the embedded source instead of13

accessing the source using the file path provided by the DW_LNCT_path field.14

This is useful for programming languages that support runtime compilation and15

runtime generation of source text. In these cases, the source text does not reside in16

any permanent file. For example, the OpenCL C language supports runtime17

compilation.18

7. DW_LNCT_URL19

DW_LNCT_URL specifies a null-terminated UTF-8 string that identifies20

where the source text for the program is found on the Internet. It is paired21

with the same forms as DW_LNCT_path.22

An example that uses this line number header format is found in Appendix D.5.1 on23

page 341.24

6.2.4.2 Producer-defined Content Descriptions25

Producer-defined content descriptions may be defined using content type codes26

in the range DW_LNCT_lo_user to DW_LNCT_hi_user. Each such code may be27

combined with one or more forms from the set: DW_FORM_block,28

DW_FORM_block1, DW_FORM_block2, DW_FORM_block4, DW_FORM_data1,29

DW_FORM_data2, DW_FORM_data4, DW_FORM_data8, DW_FORM_data16,30

DW_FORM_flag, DW_FORM_line_strp, DW_FORM_sdata,31

DW_FORM_sec_offset, DW_FORM_string, DW_FORM_strp, DW_FORM_strp8,32

DW_FORM_strp_sup, DW_FORM_strp_sup8, DW_FORM_strx,33

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3, DW_FORM_strx4 and34

DW_FORM_udata.35

July 15 2024 ***WORKING DRAFT*** Page 165

Chapter 6. Other Debugging Information

If a consumer encounters a producer-defined content type that it does not understand, it1

should skip the content data as though it were not present.2

6.2.5 The Line Number Program3

As stated before, the goal of a line number program is to build a matrix4

representing one compilation unit, which may have produced multiple5

sequences of target machine instructions. Within a sequence, addresses and6

operation pointers may only increase. (Line numbers may decrease in cases of7

pipeline scheduling or other optimization.)8

6.2.5.1 Special Opcodes9

Each ubyte special opcode has the following effect on the state machine:10

1. Add a signed integer to the line register.11

2. Modify the operation pointer by incrementing the address and op_index12

registers as described below.13

3. Append a row to the matrix using the current values of the state machine14

registers.15

4. Set the basic_block register to “false.”16

5. Set the prologue_end register to “false.”17

6. Set the epilogue_begin register to “false.”18

7. Set the epilogue_epilogue register to “false.”19

8. Set the discriminator register to 0.20

All of the special opcodes do those same things; they differ from one another21

only in what values they add to the line, address and op_index registers.22

Instead of assigning a fixed meaning to each special opcode, the line number program23

uses several parameters in the header to configure the instruction set. There are two24

reasons for this. First, although the opcode space available for special opcodes ranges from25

13 through 255, the lower bound may increase if one adds new standard opcodes. Thus,26

the opcode_base field of the line number program header gives the value of the first27

special opcode. Second, the best choice of special-opcode meanings depends on the target28

architecture. For example, for a RISC machine where the compiler-generated code29

interleaves instructions from different lines to schedule the pipeline, it is important to be30

able to add a negative value to the line register to express the fact that a later instruction31

may have been emitted for an earlier source line. For a machine where pipeline scheduling32

July 15 2024 ***WORKING DRAFT*** Page 166

Chapter 6. Other Debugging Information

never occurs, it is advantageous to trade away the ability to decrease the line register (a1

standard opcode provides an alternate way to decrease the line number) in return for the2

ability to add larger positive values to the address register. To permit this variety of3

strategies, the line number program header defines a line_base field that specifies the4

minimum value which a special opcode can add to the line register and a line_range5

field that defines the range of values it can add to the line register.6

A special opcode value is chosen based on the amount that needs to be added to7

the line, address and op_index registers. The maximum line increment for a8

special opcode is the value of the line_base field in the header, plus the value of9

the line_range field, minus 1 (line base + line range - 1). If the desired line10

increment is greater than the maximum line increment, a standard opcode must11

be used instead of a special opcode. The operation advance represents the12

number of operations to skip when advancing the operation pointer.13

The special opcode is then calculated using the following formula:14

opcode =15

(desired line increment - line_base) +16

(line_range * operation advance) + opcode_base17

If the resulting opcode is greater than 255, a standard opcode must be used18

instead.19

When maximum_operations_per_instruction is 1, the operation advance is simply20

the address increment divided by the minimum_instruction_length.21

To decode a special opcode, subtract the opcode_base from the opcode itself to22

give the adjusted opcode. The operation advance is the result of the adjusted opcode23

divided by the line_range. The new address and op_index values are given by24

adjusted opcode = opcode - opcode_base25

operation advance = adjusted opcode / line_range26

27

new address = address +28

minimum_instruction_length *29

((op_index + operation advance) / maximum_operations_per_instruction)30

31

new op_index =32

(op_index + operation advance) % maximum_operations_per_instruction33

When the maximum_operations_per_instruction field is 1, op_index is always 034

and these calculations simplify to those given for addresses in DWARF Version 3 and35

earlier.36

July 15 2024 ***WORKING DRAFT*** Page 167

Chapter 6. Other Debugging Information

The amount to increment the line register is the line_base plus the result of the1

adjusted opcode modulo the line_range. That is,2

line increment = line_base + (adjusted opcode % line_range)3

See Appendix D.5.2 on page 342 for an example.4

6.2.5.2 Standard Opcodes5

The standard opcodes, their applicable operands and the actions performed by6

these opcodes are as follows:7

1. DW_LNS_copy8

The DW_LNS_copy opcode takes no operands. It appends a row to the9

matrix using the current values of the state machine registers. Then it sets the10

discriminator register to 0, and sets the basic_block, prologue_end,11

epilogue_begin and prologue_epilogue registers to “false.”12

2. DW_LNS_advance_pc13

The DW_LNS_advance_pc opcode takes a single unsigned LEB128 operand14

as the operation advance and modifies the address and op_index registers as15

specified in Section 6.2.5.1 on page 166.16

3. DW_LNS_advance_line17

The DW_LNS_advance_line opcode takes a single signed LEB128 operand18

and adds that value to the line register of the state machine.19

4. DW_LNS_set_file20

The DW_LNS_set_file opcode takes a single unsigned LEB128 operand and21

stores it in the file register of the state machine.22

5. DW_LNS_set_column23

The DW_LNS_set_column opcode takes a single unsigned LEB128 operand24

and stores it in the column register of the state machine.25

6. DW_LNS_negate_stmt26

The DW_LNS_negate_stmt opcode takes no operands. It sets the is_stmt27

register of the state machine to the logical negation of its current value.28

7. DW_LNS_set_basic_block29

The DW_LNS_set_basic_block opcode takes no operands. It sets the30

basic_block register of the state machine to “true.”31

July 15 2024 ***WORKING DRAFT*** Page 168

Chapter 6. Other Debugging Information

8. DW_LNS_const_add_pc1

The DW_LNS_const_add_pc opcode takes no operands. It advances the2

address and op_index registers by the increments corresponding to special3

opcode 255.4

When the line number program needs to advance the address by a small amount, it5

can use a single special opcode, which occupies a single byte. When it needs to6

advance the address by up to twice the range of the last special opcode, it can use7

DW_LNS_const_add_pc followed by a special opcode, for a total of two bytes. Only if8

it needs to advance the address by more than twice that range will it need to use both9

DW_LNS_advance_pc and a special opcode, requiring three or more bytes.10

9. DW_LNS_fixed_advance_pc11

The DW_LNS_fixed_advance_pc opcode takes a single uhalf (unencoded)12

operand and adds it to the address register of the state machine and sets the13

op_index register to 0. This is the only standard opcode whose operand is not14

a variable length number. It also does not multiply the operand by the15

minimum_instruction_length field of the header.16

Some assemblers may not be able emit DW_LNS_advance_pc or special opcodes17

because they cannot encode LEB128 numbers or judge when the computation of a18

special opcode overflows and requires the use of DW_LNS_advance_pc. Such19

assemblers, however, can use DW_LNS_fixed_advance_pc instead, sacrificing20

compression.21

10. DW_LNS_set_prologue_end22

The DW_LNS_set_prologue_end opcode takes no operands. It sets the23

prologue_end register to “true.”24

When a breakpoint is set on entry to a function, it is generally desirable for execution25

to be suspended, not on the very first instruction of the function, but rather at a point26

after the function’s frame has been set up, after any language defined local declaration27

processing has been completed, and before execution of the first statement of the28

function begins. Debuggers generally cannot properly determine where this point is.29

This command allows a compiler to communicate the location(s) to use.30

In the case of optimized code, there may be more than one such location; for example,31

the code might test for a special case and make a fast exit prior to setting up the frame.32

Note that the function to which the prologue end applies cannot be directly33

determined from the line number information alone; the function must be determined34

in combination with the subroutine information entries of the compilation (including35

inlined subroutines).36

July 15 2024 ***WORKING DRAFT*** Page 169

Chapter 6. Other Debugging Information

11. DW_LNS_set_epilogue_begin1

The DW_LNS_set_epilogue_begin opcode takes no operands. It sets the2

epilogue_begin and prologue_epilogue registers to “true.”3

When a breakpoint is set on the exit of a function or execution steps over the last4

executable statement of a function, it is generally desirable to suspend execution after5

completion of the last statement but prior to tearing down the frame (so that local6

variables can still be examined). Debuggers generally cannot properly determine7

where this point is. This command allows a compiler to communicate the location(s)8

to use.9

Note that the function to which the epilogue end applies cannot be directly10

determined from the line number information alone; the function must be determined11

in combination with the subroutine information entries of the compilation (including12

inlined subroutines).13

In the case of a trivial function, both prologue end and epilogue begin may14

occur at the same address.15

12. DW_LNS_set_isa16

The DW_LNS_set_isa opcode takes a single unsigned LEB128 operand and17

stores that value in the isa register of the state machine.18

13. DW_LNS_extended_op19

The DW_LNS_extended_op opcode takes two operands. The first is an20

unsigned LEB128 value that gives the size of the operand that follows. The21

second begins with an extended opcode which is followed by operands22

appropriate to that opcode.23

6.2.5.3 Extended Opcodes24

Extended opcodes are used as part of a DW_LNS_extended_op operation (see25

Section 6.2.3 on page 158).26

The extended opcodes are as follows:27

1. DW_LNE_end_sequence28

The DW_LNE_end_sequence opcode takes no operands. It sets the29

end_sequence register of the state machine to “true” and appends a row to30

the matrix using the current values of the state-machine registers. Then it31

resets the registers to the initial values specified above (see Section 6.2.2 on32

page 156). Every line number program sequence must end with a33

DW_LNE_end_sequence instruction which creates a row whose address is34

that of the byte after the last target machine instruction of the sequence.35

July 15 2024 ***WORKING DRAFT*** Page 170

Chapter 6. Other Debugging Information

2. DW_LNE_set_address1

The DW_LNE_set_address opcode takes a single relocatable address as an2

operand. The size of the operand is the size of an address on the target3

machine. It sets the address register to the value given by the relocatable4

address and sets the op_index register to 0.5

If the address value is the reserved target address (see Section 2.4.1 on6

page 26), no instructions are associated with subsequent rows up to but not7

including the subsequent DW_LNE_set_address or DW_LNE_end_sequence8

opcode, which is equivalent to omitting that sequence of opcodes.9

All of the other line number program opcodes that affect the address register add a10

delta to it. This instruction stores a relocatable value into the address register instead.11

3. DW_LNE_set_discriminator12

The DW_LNE_set_discriminator opcode takes a single parameter, an13

unsigned LEB128 integer. It sets the discriminator register to the new value.14

4. DW_LNE_padding15

The DW_LNE_padding opcode is followed by a single operand which16

consists of a sequence of zero or more arbitrary bytes up to the length17

specified by the unsigned LEB128 integer that precedes all extended opcodes.18

The opcode and operand have no effect on the line number program.19

This permits a producer to pad or overwrite arbitrary parts of a line number program,20

with a minimum of the three bytes needed to encode any extended opcode.21

5. DW_LNE_set_prologue_epilogue22

The DW_LNE_set_prologue_epilogue opcode takes no operands. It sets the23

prologue_epilogue register to "true."24

Appendix D.5.3 on page 343 gives some sample line number programs.25

6.3 Macro Information26

Some languages, such as C and C++, provide a way to replace text in the source program27

with macros defined either in the source file itself, or in another file included by the source28

file. Because these macros are not themselves defined in the target language, it is difficult29

to represent their definitions using the standard language constructs of DWARF. The30

debugging information therefore reflects the state of the source after the macro definition31

has been expanded, rather than as the programmer wrote it. The macro information table32

provides a way of preserving the original source in the debugging information.33

July 15 2024 ***WORKING DRAFT*** Page 171

Chapter 6. Other Debugging Information

As described in Section 3.1.1 on page 62, the macro information for a given1

compilation unit is represented in the .debug_macro section of an object file.2

The macro information for each compilation unit consists of one or more macro3

units. Each macro unit starts with a header and is followed by a series of macro4

information entries or file inclusion entries. Each entry consists of an opcode5

followed by zero or more operands. Each macro unit ends with an entry6

containing an opcode of 0.7

In all macro information entries, the line number of the entry is encoded as an8

unsigned LEB128 integer.9

6.3.1 Macro Information Header10

The macro information header contains the following fields:11

1. version (uhalf)12

A version number (see Section 7.23 on page 248). This number is specific to13

the macro information and is independent of the DWARF version number.14

2. flags (ubyte)15

The bits of the flags field are interpreted as a set of flags, some of which may16

indicate that additional fields follow.17

The following flags, beginning with the least significant bit, are defined:18

• offset_size_flag19

If the offset_size_flag is zero, the header is for a 32-bit DWARF format20

macro section and all offsets are 4 bytes long; if it is one, the header is for21

a 64-bit DWARF format macro section and all offsets are 8 bytes long.22

This flag does not apply to the the following entries:23

DW_MACRO_define_sup4, DW_MACRO_define_sup8,24

DW_MACRO_undef_sup4, DW_MACRO_undef_sup8,25

DW_MACRO_import_sup4 and DW_MACRO_import_sup8.26

• debug_line_offset_flag27

If the debug_line_offset_flag is one, the debug_line_offset field (see28

below) is present. If zero, that field is omitted.29

• opcode_operands_table_flag30

If the opcode_operands_table_flag is one, the opcode_operands_table31

field (see below) is present. If zero, that field is omitted.32

All other flags are reserved by DWARF.33

July 15 2024 ***WORKING DRAFT*** Page 172

Chapter 6. Other Debugging Information

3. debug_line_offset1

An offset in the .debug_line section (if this header is in a .debug_macro2

section) or .debug_line.dwo section (if this header is in a .debug_macro.dwo3

section) of the beginning of the line number information in the containing4

compilation, encoded as a 4-byte offset for a 32-bit DWARF format macro5

section and an 8-byte offset for a 64-bit DWARF format macro section.6

4. opcode_operands_table7

An opcode_operands_table describing the operands of the macro8

information entry opcodes.9

The macro information entries defined in this standard may, but need not, be10

described in the table, while other producer-defined entry opcodes used in11

the section are described there. Producer extension entry opcodes are12

allocated in the range from DW_MACRO_lo_user to DW_MACRO_hi_user.13

Other unassigned codes are reserved for future DWARF standards.14

The table starts with a 1-byte count of the defined opcodes, followed by an15

entry for each of those opcodes. Each entry starts with a 1-byte unsigned16

opcode number, followed by unsigned LEB128 encoded number of operands17

and for each operand there is a single unsigned byte describing the form in18

which the operand is encoded. The allowed forms are: DW_FORM_block,19

DW_FORM_block1, DW_FORM_block2, DW_FORM_block4,20

DW_FORM_data1, DW_FORM_data2, DW_FORM_data4,21

DW_FORM_data8, DW_FORM_data16, DW_FORM_flag,22

DW_FORM_line_strp, DW_FORM_sdata, DW_FORM_sec_offset,23

DW_FORM_string, DW_FORM_strp, DW_FORM_strp8,24

DW_FORM_strp_sup, DW_FORM_strp_sup8, DW_FORM_strx,25

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3, DW_FORM_strx426

and DW_FORM_udata.27

6.3.2 Macro Information Entries28

All macro information entries within a .debug_macro section for a given29

compilation unit appear in the same order in which the directives were30

processed by the compiler (after taking into account the effect of the macro31

import directives).32

The source file in which a macro information entry occurs can be derived by interpreting33

the sequence of entries from the beginning of the .debug_macro section.34

DW_MACRO_start_file and DW_MACRO_end_file indicate changes in the containing35

file.36

July 15 2024 ***WORKING DRAFT*** Page 173

Chapter 6. Other Debugging Information

6.3.2.1 Define and Undefine Entries1

The define and undefine macro entries have multiple forms that use different2

representations of their two operands.3

While described in pairs below, the forms of define and undefine entries may be4

freely intermixed.5

1. DW_MACRO_define, DW_MACRO_undef6

A DW_MACRO_define or DW_MACRO_undef entry has two operands. The7

first operand encodes the source line number of the #define or #undef macro8

directive. The second operand is a null-terminated character string for the9

macro being defined or undefined.10

The contents of the operands are described below (see Sections 6.3.2.2 and11

6.3.2.3 following).12

2. DW_MACRO_define_strp, DW_MACRO_undef_strp13

A DW_MACRO_define_strp or DW_MACRO_undef_strp entry has two14

operands. The first operand encodes the source line number of the #define or15

#undef macro directive. The second operand consists of an offset into a string16

table contained in the .debug_str section of the object file. The size of the17

operand is given in the header offset_size_flag field.18

The contents of the operands are described below (see Sections 6.3.2.2 and19

6.3.2.3 following).20

3. DW_MACRO_define_strx, DW_MACRO_undef_strx21

A DW_MACRO_define_strx or DW_MACRO_undef_strx entry has two22

operands. The first operand encodes the line number of the #define or23

#undef macro directive. The second operand identifies a string; it is24

represented using an unsigned LEB128 encoded value, which is interpreted as25

a zero-based index into an array of offsets in the .debug_str_offsets section.26

The contents of the operands are described below (see Sections 6.3.2.2 and27

6.3.2.3 following).28

4. DW_MACRO_define_sup4, DW_MACRO_define_sup8,29

DW_MACRO_undef_sup4, DW_MACRO_undef_sup830

A DW_MACRO_define_sup4, DW_MACRO_define_sup8,31

DW_MACRO_undef_sup4 or DW_MACRO_undef_sup8 entry has two32

operands. The first operand encodes the line number of the #define or33

#undef macro directive. The second operand identifies a string; it is34

represented as an offset into a string table contained in the .debug_str35

section of the supplementary object file. The size of the operand is 4-bytes for36

July 15 2024 ***WORKING DRAFT*** Page 174

Chapter 6. Other Debugging Information

DW_MACRO_define_sup4 and DW_MACRO_undef_sup4, and 8-bytes for1

DW_MACRO_define_sup8 and DW_MACRO_undef_sup8.2

The contents of the operands are described below (see Sections 6.3.2.2 and3

6.3.2.3 following).4

6.3.2.2 Macro Define String5

In the case of a DW_MACRO_define, DW_MACRO_define_strp,6

DW_MACRO_define_strx, DW_MACRO_define_sup4 or7

DW_MACRO_define_sup8 entry, the value of the second operand is the name of8

the macro symbol that is defined at the indicated source line, followed9

immediately by the macro formal parameter list including the surrounding10

parentheses (in the case of a function-like macro) followed by the definition11

string for the macro. If there is no formal parameter list, then the name of the12

defined macro is followed immediately by its definition string.13

In the case of a function-like macro definition, no whitespace characters appear14

between the name of the defined macro and the following left parenthesis.15

Formal parameters are separated by a comma without any whitespace. Exactly16

one space character separates the right parenthesis that terminates the formal17

parameter list and the following definition string.18

In the case of a “normal” (that is, non-function-like) macro definition, exactly one19

space character separates the name of the defined macro from the following20

definition text.21

6.3.2.3 Macro Undefine String22

In the case of a DW_MACRO_undef, DW_MACRO_undef_strp,23

DW_MACRO_undef_strx, DW_MACRO_undef_sup4 or24

DW_MACRO_undef_sup8 entry, the value of the second string is the name of the25

pre-processor symbol that is undefined at the indicated source line.26

6.3.2.4 Entries for Command Line Options27

A DWARF producer generates a define or undefine entry for each pre-processor28

symbol which is defined or undefined by some means other than such a directive29

within the compiled source text. In particular, pre-processor symbol definitions30

and undefinitions which occur as a result of command line options (when31

invoking the compiler) are represented by their own define and undefine entries.32

July 15 2024 ***WORKING DRAFT*** Page 175

Chapter 6. Other Debugging Information

All such define and undefine entries representing compilation options appear1

before the first DW_MACRO_start_file entry for that compilation unit (see2

Section 6.3.3 following) and encode the value 0 in their line number operands.3

6.3.3 File Inclusion Entries4

6.3.3.1 Source Include Directives5

The following directives describe a source file inclusion directive (#include in6

C/C++) and the ending of an included file.7

1. DW_MACRO_start_file8

A DW_MACRO_start_file entry has two operands. The first operand encodes9

the line number of the source line on which the #include macro directive10

occurs. The second operand encodes a source file name index.11

The source file name index is the file number in the line number information12

table for the compilation unit.13

If a DW_MACRO_start_file entry is present, the header contains a reference14

to the .debug_line section or .debug_line.dwo section of the compilation, as15

appropriate.16

2. DW_MACRO_end_file17

A DW_MACRO_end_file entry has no operands. The presence of the entry18

marks the end of the current source file inclusion.19

When providing macro information in an object file, a producer generates20

DW_MACRO_start_file and DW_MACRO_end_file entries for the source file21

submitted to the compiler for compilation. This DW_MACRO_start_file entry22

has the value 0 in its line number operand and references the file entry in the line23

number information table for the primary source file.24

6.3.3.2 Importation of Macro Units25

The import entries make it possible to replicate macro units. The first form26

supports replication within the current compilation and the second form27

supports replication across separate executable or shared object files.28

Import entries do not reflect the source program and, in fact, are not necessary at all.29

However, they do provide a mechanism that can be used to reduce redundancy in the30

macro information and thereby to save space.31

July 15 2024 ***WORKING DRAFT*** Page 176

Chapter 6. Other Debugging Information

1. DW_MACRO_import1

A DW_MACRO_import entry has one operand, an offset into another part of2

the .debug_macro section that is the beginning of a target macro unit. The size3

of the operand depends on the header offset_size_flag field. The4

DW_MACRO_import entry instructs the consumer to replicate the sequence5

of entries following the target macro header which begins at the given6

.debug_macro offset, up to, but excluding, the terminating entry with opcode7

0, as though the sequence of entries occurs in place of the import operation.8

2. DW_MACRO_import_sup4, DW_MACRO_import_sup89

A DW_MACRO_import_sup4 or DW_MACRO_import_sup8 entry has one10

operand, an offset from the start of the .debug_macro section in the11

supplementary object file. The size of the operand is 4 bytes for12

DW_MACRO_import_sup4 and 8 bytes for DW_MACRO_import_sup8.13

Apart from the different location in which to find the macro unit, this entry14

type is equivalent to DW_MACRO_import.15

These entry types are aimed at sharing duplicate macro units between16

.debug_macro sections from different executable or shared object files.17

From within the .debug_macro section of the supplementary object file,18

DW_MACRO_define_strp and DW_MACRO_undef_strp entries refer to the19

.debug_str section of that same supplementary file; similarly,20

DW_MACRO_import entries refer to the .debug_macro section of that same21

supplementary file.22

6.3.4 Other Entries23

1. DW_MACRO_padding24

The DW_MACRO_padding opcode takes two operands, a byte count and a25

sequence of arbitrary bytes. The byte count is an unsigned unsigned LEB12826

encoded number and does not include the size of the opcode or the byte count27

operand. The opcode and operands have no effect on the macro information.28

This permits a producer to pad the macro information with a minimum of two bytes.29

July 15 2024 ***WORKING DRAFT*** Page 177

Chapter 6. Other Debugging Information

6.4 Call Frame Information1

Debuggers often need to be able to view and modify the state of any subroutine activation2

that is on the call stack. An activation consists of:3

• A code location that is within the subroutine. This location is either the place where4

the program stopped when the debugger got control (for example, a breakpoint), or5

is a place where a subroutine made a call or was interrupted by an asynchronous6

event (for example, a signal).7

• An area of memory that is allocated on a stack called a “call frame.” The call frame8

is identified by an address on the stack. We refer to this address as the Canonical9

Frame Address or CFA. Typically, the CFA is defined to be the value of the stack10

pointer at the call site in the previous frame (which may be different from its value11

on entry to the current frame).12

• A set of registers that are in use by the subroutine at the code location.13

Typically, a set of registers are designated to be preserved across a call. If a callee wishes14

to use such a register, it saves the value that the register had at entry time in its call frame15

and restores it on exit. The code that allocates space on the call frame stack and performs16

the save operation is called the subroutine’s prologue, and the code that performs the17

restore operation and deallocates the frame is called its epilogue. Typically, the prologue18

code is physically at the beginning of a subroutine and the epilogue code is at the end.19

To be able to view or modify an activation that is not on the top of the call frame stack, the20

debugger must virtually unwind the stack of activations until it finds the activation of21

interest. A debugger virtually unwinds a stack in steps. Starting with the current22

activation it virtually restores any registers that were preserved by the current activation23

and computes the predecessor’s CFA and code location. This has the logical effect of24

returning from the current subroutine to its predecessor. We say that the debugger25

virtually unwinds the stack because the actual state of the target process is unchanged.26

The virtual unwind operation needs to know where registers are saved and how to27

compute the predecessor’s CFA and code location. When considering an28

architecture-independent way of encoding this information one has to consider a number29

of special things:30

• Prologue and epilogue code is not always in distinct blocks at the beginning and31

end of a subroutine. It is common to duplicate the epilogue code at the site of each32

return from the code. Sometimes a compiler breaks up the register save/unsave33

operations and moves them into the body of the subroutine to just where they are34

needed.35

July 15 2024 ***WORKING DRAFT*** Page 178

Chapter 6. Other Debugging Information

• Compilers use different ways to manage the call frame. Sometimes they use a frame1

pointer register, sometimes not.2

• The algorithm to compute CFA changes as you progress through the prologue and3

epilogue code. (By definition, the CFA value does not change.)4

• Some subroutines have no call frame.5

• Sometimes a register is saved in another register that by convention does not need6

to be saved.7

• Some architectures have special instructions that perform some or all of the register8

management in one instruction, leaving special information on the stack that9

indicates how registers are saved.10

• Some architectures treat return address values specially. For example, in one11

architecture, the call instruction guarantees that the low order two bits will be zero12

and the return instruction ignores those bits. This leaves two bits of storage that13

are available to other uses that must be treated specially.14

6.4.1 Structure of Call Frame Information15

DWARF supports virtual unwinding by defining an architecture independent16

basis for recording how subprograms save and restore registers during their17

lifetimes. This basis must be augmented on some machines with specific18

information that is defined by an architecture specific ABI authoring committee,19

a hardware vendor, or a compiler producer. The body defining a specific20

augmentation is referred to below as the “augmenter.”21

Abstractly, this mechanism describes a very large table that has the following22

structure:23

LOC CFA R0 R1 ... RN24

L025

L126

...27

LN28

The first column indicates an address for every location that contains code in a29

program. (In shared object files, this is an object-relative offset.) The remaining30

columns contain virtual unwinding rules that are associated with the indicated31

location.32

The CFA column defines the rule which computes the Canonical Frame Address33

value; the rule may indicate either a register and a signed offset that are added34

together, or a DWARF expression that is evaluated.35

July 15 2024 ***WORKING DRAFT*** Page 179

Chapter 6. Other Debugging Information

The remaining columns are labelled by register number. This includes some1

registers that have special designation on some architectures such as the PC and2

the stack pointer register. (The actual mapping of registers for a particular3

architecture is defined by the augmenter.) The register columns contain rules that4

describe whether a given register has been saved and the rule to find the value5

for the register in the previous frame.6

The register rules are:7

undefined A register that has this rule has no recoverable
value in the previous frame. (By convention, it
is not preserved by a callee.)

same value This register has not been modified from the
previous frame. (By convention, it is preserved
by the callee, but the callee has not modified it.)

offset(N) The previous value of this register is saved at
the address CFA+N where CFA is the current
CFA value and N is a signed offset.

val_offset(N) The previous value of this register is the value
CFA+N where CFA is the current CFA value
and N is a signed offset.

register(R) The previous value of this register is stored in
another register numbered R.

expression(E) The previous value of this register is located at
the address produced by executing the DWARF
expression E (see Section 2.5 on page 26).

val_expression(E) The previous value of this register is the value
produced by executing the DWARF expression
E (see Section 2.5 on page 26).

architectural The rule is defined externally to this
specification by the augmenter.

This table would be extremely large if actually constructed as described. Most of the8

entries at any point in the table are identical to the ones above them. The whole table can9

be represented quite compactly by recording just the differences starting at the beginning10

address of each subroutine in the program.11

July 15 2024 ***WORKING DRAFT*** Page 180

Chapter 6. Other Debugging Information

The virtual unwind information is encoded in a self-contained section called1

.debug_frame. Entries in a .debug_frame section are aligned on a multiple of the2

address size relative to the start of the section and come in two forms: a Common3

Information Entry (CIE) and a Frame Description Entry (FDE).4

If the range of code addresses for a function is not contiguous, there may be multiple CIEs5

and FDEs corresponding to the parts of that function.6

A Common Information Entry holds information that is shared among many7

Frame Description Entries. There is at least one CIE in every non-empty8

.debug_frame section. A CIE contains the following fields, in order:9

1. length (initial length)10

A constant that gives the number of bytes of the CIE structure, not including11

the length field itself (see Section 7.2.2 on page 191). The size of the length12

field plus the value of length must be an integral multiple of the address size.13

2. CIE_id (4 or 8 bytes, see Section 7.4 on page 203)14

A constant that is used to distinguish CIEs from FDEs.15

3. version (ubyte)16

A version number (see Section 7.24 on page 250). This number is specific to17

the call frame information and is independent of the DWARF version number.18

4. augmentation (sequence of UTF-8 characters)19

A null-terminated UTF-8 string that identifies the augmentation to this CIE or20

to the FDEs that use it. If a reader encounters an augmentation string that is21

unexpected, then only the following fields can be read:22

• CIE: length, CIE_id, version, augmentation23

• FDE: length, CIE_pointer, initial_location, address_range24

If there is no augmentation, this value is a zero byte.25

The augmentation string allows users to indicate that there is additional26

target-specific information in the CIE or FDE which is needed to virtually unwind a27

stack frame. For example, this might be information about dynamically allocated data28

which needs to be freed on exit from the routine.29

Because the .debug_frame section is useful independently of any .debug_info30

section, the augmentation string always uses UTF-8 encoding.31

5. address_size (ubyte)32

The size of a target address in bytes in this CIE and any FDEs that use it. If a33

compilation unit exists for this frame, its address size must match the address34

size here.35

July 15 2024 ***WORKING DRAFT*** Page 181

Chapter 6. Other Debugging Information

6. reserved 3 (ubyte, MBZ)1

7. code_alignment_factor (unsigned LEB128)2

A constant that is factored out of all advance location instructions (see Section3

6.4.2.1 on the next page). The resulting value is4

operand * code_alignment_factor.5

8. data_alignment_factor (signed LEB128)6

A constant that is factored out of certain offset instructions (see Sections7

6.4.2.2 on page 184 and 6.4.2.3 on page 185). The resulting value is8

operand * data_alignment_factor.9

9. return_address_register (unsigned LEB128)10

An unsigned LEB128 constant that indicates which column in the rule table11

represents the return address of the function. Note that this column might not12

correspond to an actual machine register.13

10. initial_instructions (array of ubyte)14

A sequence of rules that are interpreted to create the initial setting of each15

column in the table.16

The default rule for all columns before interpretation of the initial instructions17

is the undefined rule. However, an ABI authoring body or a compilation18

system authoring body may specify an alternate default value for any or all19

columns.20

11. padding (array of ubyte)21

Enough DW_CFA_nop instructions to make the size of this entry match the22

length value above.23

An FDE contains the following fields, in order:24

1. length (initial length)25

A constant that gives the number of bytes of the header and instruction26

stream for this function, not including the length field itself (see Section 7.2.227

on page 191). The size of the length field plus the value of length must be an28

integral multiple of the address size.29

2. CIE_pointer (4 or 8 bytes, see Section 7.4 on page 203)30

A constant offset into the .debug_frame section that denotes the CIE that is31

associated with this FDE.32

3This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 182

Chapter 6. Other Debugging Information

3. initial_location (target address)1

The address of the first location associated with this table entry.2

4. address_range (target address)3

The number of bytes of program instructions described by this entry.4

5. instructions (array of ubyte)5

A sequence of table defining instructions that are described in Section 6.4.2.6

6. padding (array of ubyte)7

Enough DW_CFA_nop instructions to make the size of this entry match the8

length value above.9

6.4.2 Call Frame Instructions10

Each call frame instruction is defined to take 0 or more operands. Some of the11

operands may be encoded as part of the opcode (see Section 7.24 on page 250).12

The instructions are defined in the following sections.13

Some call frame instructions have operands that are encoded as DWARF14

expressions (see Section 2.5.1 on page 27). The following DWARF operators15

cannot be used in such operands:16

• DW_OP_addrx, DW_OP_call2, DW_OP_call4, DW_OP_call_ref,17

DW_OP_const_type, DW_OP_constx, DW_OP_convert,18

DW_OP_deref_type, DW_OP_regval_type and DW_OP_reinterpret19

operators are not allowed in an operand of these instructions because the20

call frame information must not depend on other debug sections.21

• DW_OP_push_object_address is not meaningful in an operand of these22

instructions because there is no object context to provide a value to push.23

• DW_OP_call_frame_cfa is not meaningful in an operand of these24

instructions because its use would be circular.25

Call frame instructions to which these restrictions apply include26

DW_CFA_def_cfa_expression, DW_CFA_expression and DW_CFA_val_expression.27

6.4.2.1 Row Creation Instructions28

1. DW_CFA_set_loc29

The DW_CFA_set_loc instruction takes a single operand that represents a30

target address. The required action is to create a new table row using the31

specified address as the location. All other values in the new row are initially32

identical to the current row. The new location value is always greater than the33

current one.34

July 15 2024 ***WORKING DRAFT*** Page 183

Chapter 6. Other Debugging Information

2. DW_CFA_advance_loc1

The DW_CFA_advance_loc instruction takes a single operand (encoded with2

the opcode) that represents a constant delta. The required action is to create a3

new table row with a location value that is computed by taking the current4

entry’s location value and adding the value of delta * code_alignment_factor.5

All other values in the new row are initially identical to the current row6

3. DW_CFA_advance_loc17

The DW_CFA_advance_loc1 instruction takes a single ubyte operand that8

represents a constant delta. This instruction is identical to9

DW_CFA_advance_loc except for the encoding and size of the delta operand.10

4. DW_CFA_advance_loc211

The DW_CFA_advance_loc2 instruction takes a single uhalf operand that12

represents a constant delta. This instruction is identical to13

DW_CFA_advance_loc except for the encoding and size of the delta operand.14

5. DW_CFA_advance_loc415

The DW_CFA_advance_loc4 instruction takes a single uword operand that16

represents a constant delta. This instruction is identical to17

DW_CFA_advance_loc except for the encoding and size of the delta operand.18

6.4.2.2 CFA Definition Instructions19

1. DW_CFA_def_cfa20

The DW_CFA_def_cfa instruction takes two unsigned LEB128 operands21

representing a register number and a (non-factored) offset. The required22

action is to define the current CFA rule to use the provided register and offset.23

2. DW_CFA_def_cfa_sf24

The DW_CFA_def_cfa_sf instruction takes two operands: an unsigned25

LEB128 value representing a register number and a signed LEB128 factored26

offset. This instruction is identical to DW_CFA_def_cfa except that the second27

operand is signed and factored. The resulting offset is28

factored_offset * data_alignment_factor.29

3. DW_CFA_def_cfa_register30

The DW_CFA_def_cfa_register instruction takes a single unsigned LEB12831

operand representing a register number. The required action is to define the32

current CFA rule to use the provided register (but to keep the old offset). This33

operation is valid only if the current CFA rule is defined to use a register and34

offset.35

July 15 2024 ***WORKING DRAFT*** Page 184

Chapter 6. Other Debugging Information

4. DW_CFA_def_cfa_offset1

The DW_CFA_def_cfa_offset instruction takes a single unsigned LEB1282

operand representing a (non-factored) offset. The required action is to define3

the current CFA rule to use the provided offset (but to keep the old register).4

This operation is valid only if the current CFA rule is defined to use a register5

and offset.6

5. DW_CFA_def_cfa_offset_sf7

The DW_CFA_def_cfa_offset_sf instruction takes a signed LEB128 operand8

representing a factored offset. This instruction is identical to9

DW_CFA_def_cfa_offset except that the operand is signed and factored. The10

resulting offset is factored_offset * data_alignment_factor. This operation is11

valid only if the current CFA rule is defined to use a register and offset.12

6. DW_CFA_def_cfa_expression13

The DW_CFA_def_cfa_expression instruction takes a single operand encoded14

as an exprval value representing a DWARF expression. The required action is15

to establish that expression as the means by which the current CFA is16

computed.17

See Section 6.4.2 on page 183 regarding restrictions on the DWARF expression18

operators that can be used.19

6.4.2.3 Register Rule Instructions20

1. DW_CFA_undefined21

The DW_CFA_undefined instruction takes a single unsigned LEB128 operand22

that represents a register number. The required action is to set the rule for the23

specified register to “undefined.”24

2. DW_CFA_same_value25

The DW_CFA_same_value instruction takes a single unsigned LEB12826

operand that represents a register number. The required action is to set the27

rule for the specified register to “same value.”28

3. DW_CFA_offset29

The DW_CFA_offset instruction takes two operands: a register number30

(encoded with the opcode) and an unsigned LEB128 constant representing a31

factored offset. The required action is to change the rule for the register32

indicated by the register number to be an offset(N) rule where the value of N33

is factored_offset * data_alignment_factor.34

July 15 2024 ***WORKING DRAFT*** Page 185

Chapter 6. Other Debugging Information

4. DW_CFA_offset_extended1

The DW_CFA_offset_extended instruction takes two unsigned LEB1282

operands representing a register number and a factored offset. This3

instruction is identical to DW_CFA_offset except for the encoding and size of4

the register operand.5

5. DW_CFA_offset_extended_sf6

The DW_CFA_offset_extended_sf instruction takes two operands: an7

unsigned LEB128 value representing a register number and a signed LEB1288

factored offset. This instruction is identical to DW_CFA_offset_extended9

except that the second operand is signed and factored. The resulting offset is10

factored_offset * data_alignment_factor.11

6. DW_CFA_val_offset12

The DW_CFA_val_offset instruction takes two unsigned LEB128 operands13

representing a register number and a factored offset. The required action is to14

change the rule for the register indicated by the register number to be a15

val_offset(N) rule where the value of N is16

factored_offset * data_alignment_factor.17

7. DW_CFA_val_offset_sf18

The DW_CFA_val_offset_sf instruction takes two operands: an unsigned19

LEB128 value representing a register number and a signed LEB128 factored20

offset. This instruction is identical to DW_CFA_val_offset except that the21

second operand is signed and factored. The resulting offset is22

factored_offset * data_alignment_factor.23

8. DW_CFA_register24

The DW_CFA_register instruction takes two unsigned LEB128 operands25

representing register numbers. The required action is to set the rule for the26

first register to be register(R) where R is the second register.27

9. DW_CFA_expression28

The DW_CFA_expression instruction takes two operands: an unsigned29

LEB128 value representing a register number, and an exprval value30

representing a DWARF expression. The required action is to change the rule31

for the register indicated by the register number to be an expression(E) rule32

where E is the DWARF expression. That is, the DWARF expression computes33

the address. The value of the CFA is pushed on the DWARF evaluation stack34

prior to execution of the DWARF expression.35

See Section 6.4.2 on page 183 regarding restrictions on the DWARF expression36

operators that can be used.37

July 15 2024 ***WORKING DRAFT*** Page 186

Chapter 6. Other Debugging Information

10. DW_CFA_val_expression1

The DW_CFA_val_expression instruction takes two operands: an unsigned2

LEB128 value representing a register number, and an exprval value3

representing a DWARF expression. The required action is to change the rule4

for the register indicated by the register number to be a val_expression(E)5

rule where E is the DWARF expression. That is, the DWARF expression6

computes the value of the given register. The value of the CFA is pushed on7

the DWARF evaluation stack prior to execution of the DWARF expression.8

See Section 6.4.2 on page 183 regarding restrictions on the DWARF expression9

operators that can be used.10

11. DW_CFA_restore11

The DW_CFA_restore instruction takes a single operand (encoded with the12

opcode) that represents a register number. The required action is to change13

the rule for the indicated register to the rule assigned it by the14

initial_instructions in the CIE.15

12. DW_CFA_restore_extended16

The DW_CFA_restore_extended instruction takes a single unsigned LEB12817

operand that represents a register number. This instruction is identical to18

DW_CFA_restore except for the encoding and size of the register operand.19

6.4.2.4 Row State Instructions20

The next two instructions provide the ability to stack and retrieve complete register21

states. They may be useful, for example, for a compiler that moves epilogue code into the22

body of a function.23

1. DW_CFA_remember_state24

The DW_CFA_remember_state instruction takes no operands. The required25

action is to push the set of rules for the current CFA and every register onto26

an implicit stack.27

2. DW_CFA_restore_state28

The DW_CFA_restore_state instruction takes no operands. The required29

action is to pop the set of rules off the implicit stack and place them in the30

current row.31

6.4.2.5 Padding Instruction32

1. DW_CFA_nop33

The DW_CFA_nop instruction has no operands and no required actions. It is34

used as padding to make a CIE or FDE an appropriate size.35

July 15 2024 ***WORKING DRAFT*** Page 187

Chapter 6. Other Debugging Information

6.4.3 Call Frame Instruction Usage1

To determine the virtual unwind rule set for a given location (L1), search through the2

FDE headers looking at the initial_location and address_range values to see if L13

is contained in the FDE. If so, then:4

1. Initialize a register set by reading the initial_instructions field of the associated5

CIE. Set L2 to the value of the initial_location field from the FDE header.6

2. Read and process the FDE’s instruction sequence until a DW_CFA_advance_loc,7

DW_CFA_set_loc, or the end of the instruction stream is encountered.8

3. If a DW_CFA_advance_loc or DW_CFA_set_loc instruction is encountered, then9

compute a new location value (L2). If L1 ≥ L2 then process the instruction and go10

back to step 2.11

4. The end of the instruction stream can be thought of as a DW_CFA_set_loc12

(initial_location + address_range) instruction. Note that the FDE is13

ill-formed if L2 is less than L1.14

The rules in the register set now apply to location L1.15

For an example, see Appendix D.6 on page 345.16

6.4.4 Call Frame Calling Address17

When virtually unwinding frames, consumers frequently wish to obtain the address of18

the instruction which called a subroutine. This information is not always provided.19

Typically, however, one of the registers in the virtual unwind table is the Return Address.20

If a Return Address register is defined in the virtual unwind table, and its rule is21

undefined (for example, by DW_CFA_undefined), then there is no return address22

and no call address, and the virtual unwind of stack activations is complete.23

In most cases the return address is in the same context as the calling address, but that24

need not be the case, especially if the producer knows in some way the call never will25

return. The context of the ’return address’ might be on a different line, in a different26

lexical block, or past the end of the calling subroutine. If a consumer were to assume that27

it was in the same context as the calling address, the virtual unwind might fail.28

For architectures with constant-length instructions where the return address29

immediately follows the call instruction, a simple solution is to subtract the length of an30

instruction from the return address to obtain the calling instruction. For architectures31

with variable-length instructions (for example, x86), this is not possible. However,32

subtracting 1 from the return address, although not guaranteed to provide the exact33

calling address, generally will produce an address within the same context as the calling34

address, and that usually is sufficient.35

July 15 2024 ***WORKING DRAFT*** Page 188

Chapter 6. Other Debugging Information

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 189

Chapter 71

Data Representation2

This section describes the binary representation of the debugging information3

entry itself, of the attribute types and of other fundamental elements described4

above.5

7.1 Extensibility6

To reserve a portion of the DWARF name space and ranges of enumeration7

values for use for producer-specific extensions, special labels are reserved for tag8

names, attribute names, base type encodings, location operations, language9

names, calling conventions and call frame instructions.10

The labels denoting the beginning and end of the reserved value range for11

producer-specific extensions consist of the appropriate prefix (DW_AT,12

DW_ATE, DW_CC, DW_CFA, DW_END, DW_IDX, DW_LLE, DW_LNAME,13

DW_LNCT, DW_LNE, DW_MACRO, DW_OP, DW_RLE, DW_TAG, DW_UT)14

followed by _lo_user or _hi_user. Values in the range between prefix_lo_user and15

prefix_hi_user inclusive, are reserved for producer-specific extensions. Producers16

may use values in this range without conflicting with current or future17

system-defined values. All other values are reserved for use by the system.18

For example, for debugging information entry tags, the special labels are19

DW_TAG_lo_user and DW_TAG_hi_user.20

There may also be codes for producer-specific extensions between the number of standard21

line number opcodes and the first special line number opcode. However, since the number22

of standard opcodes varies with the DWARF version, the range for extensions is also23

version dependent. Thus, DW_LNS_lo_user and DW_LNS_hi_user symbols are not24

defined.25

July 15 2024 ***WORKING DRAFT*** Page 190

Chapter 7. Data Representation

Producer-defined tags, attributes, base type encodings, location atoms, language1

names, line number actions, calling conventions and call frame instructions, use2

the form prefix_producer_id_name by historical convention, where producer_id is3

some identifying character sequence chosen so as to avoid conflicts with other4

producers. While this convention is not strictly necessary, it is still5

recommended.6

To ensure that extensions added by one producer may be safely ignored by7

consumers that do not understand those extensions, the following rules must be8

followed:9

1. New attributes are added in such a way that a debugger may recognize the10

format of a new attribute value without knowing the content of that attribute11

value.12

2. The semantics of any new attributes do not alter the semantics of previously13

existing attributes.14

3. The semantics of any new tags do not conflict with the semantics of15

previously existing tags.16

4. New forms of attribute value are not added.17

7.2 Reserved Values18

7.2.1 Error Values19

As a convenience for consumers of DWARF information, the value 0 is reserved20

in the encodings for attribute names, attribute forms, base type encodings,21

location operations, languages, line number program opcodes, macro22

information entries and tag names to represent an error condition or unknown23

value. DWARF does not specify names for these reserved values, because they24

do not represent valid encodings for the given type and do not appear in25

DWARF debugging information.26

7.2.2 Initial Length Values27

An initial length field is one of the fields that occur at the beginning of those28

DWARF sections that have a header (.debug_aranges, .debug_info,29

.debug_line, .debug_loclists, .debug_names and .debug_rnglists) or the30

length field that occurs at the beginning of the CIE and FDE structures in the31

.debug_frame section.32

July 15 2024 ***WORKING DRAFT*** Page 191

Chapter 7. Data Representation

In an initial length field, the values 0xfffffff0 through 0xffffffff are reserved1

by DWARF to indicate some form of extension relative to DWARF Version 2;2

such values must not be interpreted as a length field. The use of one such value,3

0xffffffff, is defined in Section 7.4 on page 203; the use of the other values is4

reserved for possible future extensions.5

7.3 Relocatable, Split, Executable, Shared, Package6

and Supplementary Object Files7

7.3.1 Relocatable Object Files8

A DWARF producer (for example, a compiler) typically generates its debugging9

information as part of a relocatable object file. Relocatable object files are then10

combined by a linker to form an executable file. During the linking process, the11

linker resolves (binds) symbolic references between the various object files, and12

relocates the contents of each object file into a combined virtual address space.13

The DWARF debugging information is placed in several sections (see Appendix14

B on page 286), and requires an object file format capable of representing these15

separate sections. There are symbolic references between these sections, and also16

between the debugging information sections and the other sections that contain17

the text and data of the program itself. Many of these references require18

relocation, and the producer must emit the relocation information appropriate to19

the object file format and the target processor architecture. These references20

include the following:21

• The compilation unit header (see Section 7.5.1 on page 207) in the22

.debug_info section contains a reference to the .debug_abbrev table. This23

reference requires a relocation so that after linking, it refers to that24

contribution to the combined .debug_abbrev section in the executable file.25

• Debugging information entries may have attributes with the form26

DW_FORM_addr (see Section 7.5.4 on page 216). These attributes represent27

locations within the virtual address space of the program, and require28

relocation.29

• A DWARF expression may contain a DW_OP_addr (see Section 2.5.1.1 on30

page 27) which contains a location within the virtual address space of the31

program, and require relocation.32

July 15 2024 ***WORKING DRAFT*** Page 192

Chapter 7. Data Representation

• Debugging information entries may have attributes with the form1

DW_FORM_sec_offset (see Section 7.5.4 on page 216). These attributes refer2

to debugging information in other debugging information sections within3

the object file, and must be relocated during the linking process.4

• Debugging information entries may have attributes with the form5

DW_FORM_ref_addr (see Section 7.5.4 on page 216). These attributes refer6

to debugging information entries that may be outside the current7

compilation unit. These values require both symbolic binding and8

relocation.9

• Debugging information entries may have attributes with the form10

DW_FORM_strp or DW_FORM_strp8 (see Section 7.5.4 on page 216).11

These attributes refer to strings in the .debug_str section. These values12

require relocation.13

• The .debug_macro section may have DW_MACRO_define_strp and14

DW_MACRO_undef_strp entries (see Section 6.3.2.1 on page 174). These15

entries refer to strings in the .debug_str section. These values require16

relocation.17

• Entries in the .debug_addr and .debug_aranges sections may contain18

references to locations within the virtual address space of the program, and19

thus require relocation.20

• Entries in the .debug_loclists and .debug_rnglists sections may contain21

references to locations within the virtual address space of the program22

depending on whether certain kinds of location or range list entries are23

used, and thus require relocation.24

• In the .debug_line section, the operand of the DW_LNE_set_address25

opcode is a reference to a location within the virtual address space of the26

program, and requires relocation.27

• The .debug_str_offsets section contains a list of string offsets, each of28

which is an offset of a string in the .debug_str section. Each of these offsets29

requires relocation. Depending on the implementation, these relocations30

may be implicit (that is, the producer may not need to emit any explicit31

relocation information for these offsets).32

• The debug_info_offset field in the .debug_aranges header and the list of33

compilation units following the .debug_names header contain references to34

the .debug_info section. These references require relocation so that after35

linking they refer to the correct contribution in the combined .debug_info36

section in the executable file.37

July 15 2024 ***WORKING DRAFT*** Page 193

Chapter 7. Data Representation

• Frame descriptor entries in the .debug_frame section (see Section 6.4.1 on1

page 179) contain an initial_location field value within the virtual2

address space of the program and require relocation.3

Note that operands of classes constant and flag do not require relocation. Attribute4

operands that use forms DW_FORM_string, DW_FORM_ref1, DW_FORM_ref2,5

DW_FORM_ref4, DW_FORM_ref8, or DW_FORM_ref_udata also do not need6

relocation.7

7.3.2 Split DWARF Object Files8

A DWARF producer may partition the debugging information such that the9

majority of the debugging information can remain in individual object files10

without being processed by the linker.11

This reduces link time by reducing the amount of information the linker must process.12

7.3.2.1 First Partition (with Skeleton Unit)13

The first partition contains debugging information that must still be processed by14

the linker, and includes the following:15

• The line number tables, frame tables, and accelerated access tables, in the16

usual sections: .debug_line, .debug_line_str, .debug_frame,17

.debug_names and .debug_aranges, respectively.18

• An address table, in the .debug_addr section. This table contains all19

addresses and constants that require link-time relocation, and items in the20

table can be referenced indirectly from the debugging information via the21

DW_FORM_addrx, DW_FORM_addrx1, DW_FORM_addrx2,22

DW_FORM_addrx3 and DW_FORM_addrx4 forms, by the DW_OP_addrx23

and DW_OP_constx operators, and by certain of the DW_LLE_* location list24

and DW_RLE_* range list entries.25

• A skeleton compilation unit, as described in Section 3.1.2 on page 69, in the26

.debug_info section.27

• An abbreviations table for the skeleton compilation unit, in the28

.debug_abbrev section used by the .debug_info section.29

• A string table, in the .debug_str section. The string table is necessary only30

if the skeleton compilation unit uses one of the indirect string forms31

(DW_FORM_strp, DW_FORM_strp8, DW_FORM_strx, DW_FORM_strx1,32

DW_FORM_strx2, DW_FORM_strx3 or DW_FORM_strx4).33

July 15 2024 ***WORKING DRAFT*** Page 194

Chapter 7. Data Representation

• A string offsets table, in the .debug_str_offsets section for strings in the1

.debug_str section. The string offsets table is necessary only if the skeleton2

compilation unit uses one of the indexed string forms (DW_FORM_strx,3

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3,4

DW_FORM_strx4).5

The attributes contained in the skeleton compilation unit can be used by a6

DWARF consumer to find the DWARF object file that contains the second7

partition.8

7.3.2.2 Second Partition (Unlinked or in a .dwo File)9

The second partition contains the debugging information that does not need to10

be processed by the linker. These sections may be left in the object files and11

ignored by the linker (that is, not combined and copied to the executable object12

file), or they may be placed by the producer in a separate DWARF object file. This13

partition includes the following:14

• The full compilation unit, in the .debug_info.dwo section.15

Attributes contained in the full compilation unit may refer to machine16

addresses indirectly using one of the DW_FORM_addrx,17

DW_FORM_addrx1, DW_FORM_addrx2, DW_FORM_addrx3 or18

DW_FORM_addrx4 forms, which access the table of addresses specified by19

the DW_AT_addr_base attribute in the associated skeleton unit. Location20

descriptions may similarly do so using the DW_OP_addrx and21

DW_OP_constx operations.22

• Separate type units, in the .debug_info.dwo section.23

• Abbreviations table(s) for the compilation unit and type units, in the24

.debug_abbrev.dwo section used by the .debug_info.dwo section.25

• Value lists and location lists, in the .debug_loclists.dwo section.26

• Range lists, in the .debug_rnglists.dwo section.27

• A specialized line number table (for the type units, and macro information),28

in the .debug_line.dwo section.29

This table contains only the directory and filename lists needed to interpret30

DW_AT_decl_file attributes in the debugging information entries and31

DW_MACRO_start_file entries in the macro information.32

• Macro information, in the .debug_macro.dwo section.33

• A string table, in the .debug_str.dwo section.34

July 15 2024 ***WORKING DRAFT*** Page 195

Chapter 7. Data Representation

• A string offsets table, in the .debug_str_offsets.dwo section for the strings1

in the .debug_str.dwo section.2

Attributes that refer to the .debug_str.dwo string table do so only3

indirectly through the .debug_str_offsets.dwo section using the forms4

DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx35

or DW_FORM_strx4, or the macro entries DW_MACRO_define_strx or6

DW_MACRO_undef_strx. Direct reference (for example, using forms7

DW_FORM_strp or DW_FORM_strp8, or the macro entries8

DW_MACRO_define_strp or DW_MACRO_undef_strp) is not allowed.9

Except where noted otherwise, all references in this document to a debugging10

information section (for example, .debug_info), apply also to the corresponding11

split DWARF section (for example, .debug_info.dwo).12

Split DWARF object files do not get linked with any other files, therefore13

references between sections must not make use of normal object file relocation14

information. As a result, symbolic references within or between sections (such as15

from using DW_FORM_ref_addr and DW_OP_call_ref) are not possible. Split16

DWARF object files contain at most one compilation unit.17

7.3.3 Executable Objects and .dwo Files18

The relocated addresses in the debugging information for an executable object19

are virtual addresses.20

The sections containing the debugging information are typically not loaded as21

part of the memory image of the program (in ELF terminology, the sections are22

not "allocatable" and are not part of a loadable segment). Therefore, the23

debugging information sections described in this document are typically linked24

as if they were each to be loaded at virtual address 0. Similarly, debugging25

information in a .dwo file is not loaded in the memory image. The absence (or26

non-use) of relocation information in a .dwo file means that sections described in27

this document are effectively linked as if they were each to be loaded at virtual28

address 0. In both cases, references within the debugging information always29

implicitly indicate which section a particular offset refers to. (For example, a30

reference of form DW_FORM_sec_offset may refer to one of several sections,31

depending on the class allowed by a particular attribute of a debugging32

information entry, as shown in Table 7.5 on page 216.)33

July 15 2024 ***WORKING DRAFT*** Page 196

Chapter 7. Data Representation

7.3.4 Shared Object Files1

The relocated addresses in the debugging information for a shared object file are2

offsets relative to the start of the lowest region of memory loaded from that3

shared object file.4

This requirement makes the debugging information for shared object files position5

independent. Virtual addresses in a shared object file may be calculated by adding the6

offset to the base address at which the object file was attached. This offset is available in7

the run-time linker’s data structures.8

As with executable objects, the sections containing debugging information are9

typically not loaded as part of the memory image of the shared object, and are10

typically linked as if they were each to be loaded at virtual address 0.11

7.3.5 DWARF Package Files12

Using split DWARF object files allows the developer to compile, link, and debug an13

application quickly with less link-time overhead, but a more convenient format is needed14

for saving the debug information for later debugging of a deployed application. A15

DWARF package file can be used to collect the debugging information from the object (or16

separate DWARF object) files produced during the compilation of an application.17

The package file is typically placed in the same directory as the application, and is given18

the same name with a “.dwp” extension.19

A DWARF package file is itself an object file, using the same object file format20

(including byte order) as the corresponding application binary. It contains a file21

header, a section table, a number of DWARF debug information sections, and22

two index sections.23

Each DWARF package file contains no more than one of each of the following24

sections, copied from a set of object or DWARF object files, and combined,25

section by section:26

.debug_info.dwo27

.debug_abbrev.dwo28

.debug_line.dwo29

.debug_loclists.dwo30

.debug_rnglists.dwo31

.debug_str_offsets.dwo32

.debug_str.dwo33

.debug_macro.dwo34

July 15 2024 ***WORKING DRAFT*** Page 197

Chapter 7. Data Representation

The string table section in .debug_str.dwo contains all the strings referenced1

from DWARF attributes using any of the forms DW_FORM_strx,2

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or DW_FORM_strx4.3

Any attribute in a compilation unit or a type unit using this form refers to an4

entry in that unit’s contribution to the .debug_str_offsets.dwo section, which5

in turn provides the offset of a string in the .debug_str.dwo section.6

The DWARF package file also contains two index sections that provide a fast way7

to locate debug information by compilation unit ID for compilation units, or by8

type signature for type units:9

.debug_cu_index10

.debug_tu_index11

7.3.5.1 The Compilation Unit (CU) Index Section12

The .debug_cu_index section is a hashed lookup table that maps a compilation13

unit ID to a set of contributions in the various debug information sections. Each14

contribution is stored as an offset within its corresponding section and a size.15

Each compilation unit set may contain contributions from the following sections:16

.debug_info.dwo (required)17

.debug_abbrev.dwo (required)18

.debug_line.dwo19

.debug_loclists.dwo20

.debug_rnglists.dwo21

.debug_str_offsets.dwo22

.debug_macro.dwo23

Note that a compilation unit set is not able to represent .debug_macinfo information24

from DWARF Version 4 or earlier formats.25

7.3.5.2 The Type Unit (TU) Index Section26

The .debug_tu_index section is a hashed lookup table that maps a type signature27

to a set of offsets in the various debug information sections. Each contribution is28

stored as an offset within its corresponding section and a size.29

Each type unit set may contain contributions from the following sections:30

.debug_info.dwo (required)31

.debug_abbrev.dwo (required)32

.debug_line.dwo33

.debug_str_offsets.dwo34

July 15 2024 ***WORKING DRAFT*** Page 198

Chapter 7. Data Representation

7.3.5.3 Format of the CU and TU Index Sections1

Both .debug_cu_index and .debug_tu_index index sections have the same2

format, and serve to map an 8-byte signature to a set of contributions to the3

debug sections. Each index section begins with a header, followed by a hash table4

of signatures, a parallel table of indexes, a table of offsets, and a table of sizes.5

The index sections are aligned at 8-byte boundaries in the DWARF package file.6

The index section header contains the following fields:7

1. version (uhalf)8

A version number. This number is specific to the CU and TU index9

information and is independent of the DWARF version number.10

The version number is 6.11

2. offset_size_flag (uhalf)12

If the offset_size_flag is zero, the header is for a 32-bit DWARF format unit13

index section and all offsets and lengths are 4 bytes long; if it is one, the14

header is for a 64-bit DWARF format unit index section and all offsets and15

lengths are 8 bytes long.16

3. padding (uhalf)17

Reserved to DWARF (must be zero).18

4. section_count (uword)19

The number of entries in the table of section counts that follows. For brevity,20

the contents of this field is referred to as N below.21

5. unit_count (uword)22

The number of compilation units or type units in the index. For brevity, the23

contents of this field is referred to as U below.24

6. slot_count (uword)25

The number of slots in the hash table. For brevity, the contents of this field is26

referred to as S below.27

We assume that U and S do not exceed 232.28

The size of the hash table, S, must be 2k such that: 2k > 3 ∗ U/229

The hash table begins at offset 16 in the section, and consists of an array of S30

8-byte slots. Each slot contains a 64-bit signature.31

The parallel table of indices begins immediately after the hash table (at offset32

16 + 8 ∗ S from the beginning of the section), and consists of an array of S 4-byte33

slots, corresponding 1-1 with slots in the hash table. Each entry in the parallel34

table contains a row index into the tables of offsets and sizes.35

July 15 2024 ***WORKING DRAFT*** Page 199

Chapter 7. Data Representation

Unused slots in the hash table have 0 in both the hash table entry and the parallel1

table entry. While 0 is a valid hash value, the row index in a used slot will always2

be non-zero.3

Given an 8-byte compilation unit ID or type signature X , an entry in the hash4

table is located as follows:5

1. Define REP (X) to be the value of X interpreted as an unsigned 64-bit integer6

in the target byte order.7

2. Calculate a primary hash H = REP (X) &MASK(k), where MASK(k) is a8

mask with the low-order k bits all set to 1.9

3. Calculate a secondary hash H ′ = (((REP (X) >> 32) &MASK(k)) | 1).10

4. If the hash table entry at index H matches the signature, use that entry. If the11

hash table entry at index H is unused (all zeroes), terminate the search: the12

signature is not present in the table.13

5. Let H = (H +H ′)modulo S. Repeat at Step 4.14

Because S > U , and H ′ and S are relatively prime, the search is guaranteed to15

stop at an unused slot or find the match.16

The table of offsets begins immediately following the parallel table (at offset17

16 + 12 ∗ S from the beginning of the section). This table consists of a single18

header row containing N fields, each a 4-byte unsigned integer, followed by U19

data rows, each containing N unsigned integer fields of size specified by the20

index header offset_size_flag field. The fields in the header row provide a21

section identifier referring to a debug section; the available section identifiers are22

shown in Table 7.1 following. Each data row corresponds to a specific CU or TU23

in the package file. In the data rows, each field provides an offset to the debug24

section whose identifier appears in the corresponding field of the header row.25

The data rows are indexed starting at 1.26

Not all sections listed in the table need be included.27

July 15 2024 ***WORKING DRAFT*** Page 200

Chapter 7. Data Representation

Table 7.1: DWARF package file section identifier
encodings

Section identifier Value Section
DW_SECT_INFO 1 .debug_info.dwo
Reserved 2
DW_SECT_ABBREV 3 .debug_abbrev.dwo
DW_SECT_LINE 4 .debug_line.dwo
DW_SECT_LOCLISTS 5 .debug_loclists.dwo
DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
DW_SECT_MACRO 7 .debug_macro.dwo
DW_SECT_RNGLISTS 8 .debug_rnglists.dwo

The offsets provided by the CU and TU index sections are the base offsets for the1

contributions made by each CU or TU to the corresponding section in the2

package file. Each CU and TU header contains a debug_abbrev_offset field,3

used to find the abbreviations table for that CU or TU within the contribution to4

the .debug_abbrev.dwo section for that CU or TU, and are interpreted as relative5

to the base offset given in the index section. Likewise, offsets into6

.debug_line.dwo from DW_AT_stmt_list attributes are interpreted as relative to7

the base offset for .debug_line.dwo, and offsets into other debug sections8

obtained from DWARF attributes are also interpreted as relative to the9

corresponding base offset.10

The table of sizes begins immediately following the table of offsets, and provides11

the sizes of the contributions made by each CU or TU to the corresponding12

section in the package file. This table consists of U data rows, each with N13

unsigned integer fields of size specified by the index header offset_size_flag14

field. Each data row corresponds to the same CU or TU as the corresponding15

data row in the table of offsets described above. Within each data row, the N16

fields also correspond one-to-one with the fields in the corresponding data row17

of the table of offsets. Each field provides the size of the contribution made by a18

CU or TU to the corresponding section in the package file.19

For an example, see Figure F.10 on page 437.20

July 15 2024 ***WORKING DRAFT*** Page 201

Chapter 7. Data Representation

7.3.6 DWARF Supplementary Object Files1

A supplementary object file permits a post-link utility to analyze executable and shared2

object files and collect duplicate debugging information into a single file that can be3

referenced by each of the original files. This is in contrast to split DWARF object files,4

which allow the compiler to split the debugging information between multiple files in5

order to reduce link time and executable size.6

A DWARF supplementary object file is itself an object file, using the same object7

file format, byte order, and size as the corresponding application executables or8

shared libraries. It contains a file header, section table, and a number of DWARF9

debug information sections. Both the supplementary object file and all the10

executable or shared object files that reference entries or strings in that file must11

contain a .debug_sup section that establishes the relationship.12

The .debug_sup section contains:13

1. version (uhalf)14

A 2-byte unsigned integer representing the version of the DWARF15

information for the compilation unit.16

The value in this field is 5.17

2. is_supplementary (ubyte)18

A 1-byte unsigned integer, which contains the value 1 if it is in the19

supplementary object file that other executable or shared object files refer to,20

or 0 if it is an executable or shared object referring to a supplementary object21

file.22

3. sup_filename (null terminated filename string)23

If is_supplementary is 0, this contains either an absolute filename for the24

supplementary object file, or a filename relative to the object file containing25

the .debug_sup section. If is_supplementary is 1, then sup_filename is not26

needed and must be an empty string (a single null byte).27

4. sup_checksum_len (unsigned LEB128)28

Length of the following sup_checksum field; this value can be 0 if no29

checksum is provided.30

5. sup_checksum (array of ubyte)31

An implementation-defined integer constant value that provides unique32

identification of the supplementary file.33

July 15 2024 ***WORKING DRAFT*** Page 202

Chapter 7. Data Representation

Debug information entries that refer to an executable’s or shared object’s1

addresses must not be moved to supplementary files (the addresses will likely2

not be the same). Similarly, entries referenced from within location descriptions3

or using loclistsptr form attributes must not be moved to a supplementary object4

file.5

Executable or shared object file compilation units can use6

DW_TAG_imported_unit with an DW_AT_import attribute that uses form7

DW_FORM_ref_sup4 or DW_FORM_ref_sup8 to import entries from the8

supplementary object file, form DW_FORM_ref_sup4 or DW_FORM_ref_sup8 to9

refer directly to individual entries in the supplementary file, or form10

DW_FORM_strp_sup or DW_FORM_strp_sup8 to refer to strings that are used11

by debug information of multiple executables or shared object files. Within the12

supplementary object file’s debugging sections, forms DW_FORM_ref_sup4,13

DW_FORM_ref_sup8, DW_FORM_strp_sup and DW_FORM_strp_sup8 are not14

used, and all reference forms referring to other sections refer to the local sections15

in the supplementary object file.16

In macro information, DW_MACRO_define_sup4, DW_MACRO_define_sup8,17

DW_MACRO_undef_sup4 and DW_MACRO_undef_sup8 opcodes can refer to18

strings in the .debug_str section of the supplementary object file, while19

DW_MACRO_import_sup4 and DW_MACRO_import_sup8 can refer to20

.debug_macro section entries. Within the .debug_macro section of a21

supplementary object file, DW_MACRO_define_strp and22

DW_MACRO_undef_strp opcodes refer to the local .debug_str section in that23

supplementary file, not the one in the executable or shared object file.24

Forms for both 4- and 8-byte references are provided so that references may use the25

appropriate offset size for the content of the supplementary object file, which might not26

use the same 32-bit or 64-bit DWARF format as a referencing object file.27

7.4 32-Bit and 64-Bit DWARF Formats28

There are two closely-related DWARF formats. In the 32-bit DWARF format, all29

values that represent lengths of DWARF sections and offsets relative to the30

beginning of DWARF sections are represented using four bytes. In the 64-bit31

DWARF format, all values that represent lengths of DWARF sections and offsets32

relative to the beginning of DWARF sections are represented using eight bytes. A33

special convention applies to the initial length field of certain DWARF sections,34

as well as the CIE and FDE structures, so that the 32-bit and 64-bit DWARF35

formats can coexist and be distinguished within a single linked object.36

July 15 2024 ***WORKING DRAFT*** Page 203

Chapter 7. Data Representation

The 32-bit and 64-bit DWARF format conventions must not be intermixed within1

a single compilation unit, except for contributions to the .debug_str_offsets (or2

.debug_str_offsets.dwo) section.3

The exception for the .debug_str_offsets section enables an executable program with4

a mixture of 32-bit and 64-bit DWARF compilation units to refer to any string in the5

merged .debug_str section, even if that section exceeds 4GB in size.6

Except where noted otherwise, all references in this document to a debugging7

information section (for example, .debug_info), apply also to the corresponding8

split DWARF section (for example, .debug_info.dwo).9

Attribute values and section header fields that represent addresses in the target program10

are not affected by the rules that follow.11

The differences between the 32- and 64-bit DWARF formats are detailed in the12

following:13

1. In the 32-bit DWARF format, an initial length field (see Section 7.2.2 on14

page 191). is an unsigned 4-byte integer (which must be less than15

0xfffffff0); in the 64-bit DWARF format, an initial length field is 12 bytes in16

size, and has two parts:17

• The first four bytes have the value 0xffffffff.18

• The following eight bytes contain the actual length represented as an19

unsigned 8-byte integer.20

This representation allows a DWARF consumer to dynamically detect that a21

DWARF section contribution is using the 64-bit format and to adapt its processing22

accordingly.23

July 15 2024 ***WORKING DRAFT*** Page 204

Chapter 7. Data Representation

2. Section offset and section length fields that occur in the headers of DWARF1

sections (other than initial length fields) depend on the choice of DWARF2

format as follows: for the 32-bit DWARF format these are 4-byte unsigned3

integer values; for the 64-bit DWARF format, they are 8-byte unsigned integer4

values.5

Section Name Role
.debug_aranges debug_info_offset offset in .debug_info
.debug_frame/CIE CIE_id CIE distinguished value
.debug_frame/FDE CIE_pointer offset in .debug_frame
.debug_info debug_abbrev_offset offset in .debug_abbrev
.debug_line header_length length of header itself
.debug_names entry in array of CUs offset in .debug_info

or local TUs

The CIE_id field in a CIE structure must be 64 bits because it overlays the6

CIE_pointer in a FDE structure; this implicit union must be accessed to7

distinguish whether a CIE or FDE is present, consequently, these two fields8

must exactly overlay each other (both offset and size).9

3. Within the body of the .debug_info section, certain forms of attribute value10

depend on the choice of DWARF format as follows: for the 32-bit DWARF11

format, the value is a 4-byte unsigned integer; for the 64-bit DWARF format,12

the value is an 8-byte unsigned integer.13

Form Role
DW_FORM_line_strp offset in .debug_line_str
DW_FORM_ref_addr offset in .debug_info
DW_FORM_sec_offset offset in a section other than

.debug_info or .debug_str
DW_FORM_strp offset in .debug_str
DW_FORM_strp_sup offset in .debug_str section of a

supplementary object file
DW_OP_call_ref offset in .debug_info

July 15 2024 ***WORKING DRAFT*** Page 205

Chapter 7. Data Representation

4. Within the body of the .debug_line section, certain forms of content1

description depend on the choice of DWARF format as follows: for the 32-bit2

DWARF format, the value is a 4-byte unsigned integer; for the 64-bit DWARF3

format, the value is a 8-byte unsigned integer.4

Form Role
DW_FORM_line_strp offset in .debug_line_str

5. Within the body of the .debug_names sections, the representation of each5

entry in the array of compilation units (CUs) and the array of local type units6

(TUs), which represents an offset in the .debug_info section, depends on the7

DWARF format as follows: for the 32-bit DWARF format, each entry is a8

4-byte unsigned integer; for the 64-bit DWARF format, it is a 8-byte unsigned9

integer.10

6. In the body of the .debug_str_offsets sections, the size of entries in the11

body depend on the DWARF format as follows: for the 32-bit DWARF format,12

entries are 4-byte unsigned integer values; for the 64-bit DWARF format, they13

are 8-byte unsigned integers.14

7. Within the body of the .debug_loclists and .debug_rnglists sections, the15

offsets that follow the header depend on the DWARF format as follows: for16

the 32-bit DWARF format, offsets are 4-byte unsigned integer values; for the17

64-bit DWARF format, they are 8-byte unsigned integers.18

A DWARF consumer that supports the 64-bit DWARF format must support19

executables in which some compilation units use the 32-bit format and others use20

the 64-bit format provided that the combination links correctly (that is, provided21

that there are no link-time errors due to truncation or overflow). (An22

implementation is not required to guarantee detection and reporting of all such23

errors.)24

It is expected that DWARF producing compilers will not use the 64-bit format by25

default. In most cases, the division of even very large applications into a number of26

executable and shared object files will suffice to assure that the DWARF sections within27

each individual linked object are less than 4 GBytes in size. However, for those cases28

where needed, the 64-bit format allows the unusual case to be handled as well. Even in29

this case, it is expected that only application supplied objects will need to be compiled30

using the 64-bit format; separate 32-bit format versions of system supplied shared31

executable libraries can still be used.32

July 15 2024 ***WORKING DRAFT*** Page 206

Chapter 7. Data Representation

7.5 Format of Debugging Information1

For each compilation unit compiled with a DWARF producer, a contribution is2

made to the .debug_info section of the object file. Each such contribution3

consists of a compilation unit header (see Section 7.5.1.1 on the next page)4

followed by a single DW_TAG_compile_unit or DW_TAG_partial_unit5

debugging information entry, together with its children.6

For each type defined in a compilation unit, a separate contribution may also be7

made to the .debug_info section of the object file. Each such contribution8

consists of a type unit header (see Section 7.5.1.3 on page 210) followed by a9

DW_TAG_type_unit entry, together with its children.10

Each debugging information entry begins with a code that represents an entry in11

a separate abbreviations table. This code is followed directly by a series of12

attribute values.13

The appropriate entry in the abbreviations table guides the interpretation of the14

information contained directly in the .debug_info section.15

Multiple debugging information entries may share the same abbreviation table16

entry. Each compilation unit is associated with a particular abbreviation table,17

but multiple compilation units may share the same table.18

7.5.1 Unit Headers19

Unit headers contain a field, unit_type, whose value indicates the kind of20

compilation unit (see Section 3.1 on page 61). The encodings for the unit type21

enumeration are shown in Table 7.2.22

Table 7.2: Unit header unit type encodings

Unit header unit type encodings Value
DW_UT_compile 0x01
DW_UT_type 0x02
DW_UT_partial 0x03
DW_UT_skeleton 0x04
DW_UT_split_compile 0x05
DW_UT_split_type 0x06
DW_UT_lo_user 0x80
DW_UT_hi_user 0xff

July 15 2024 ***WORKING DRAFT*** Page 207

Chapter 7. Data Representation

All unit headers have the same initial three fields: initial_length, version and1

unit_type.2

7.5.1.1 Full and Partial Compilation Unit Headers3

1. unit_length (initial length)4

A 4-byte or 12-byte unsigned integer representing the length of the5

.debug_info contribution for that compilation unit, not including the length6

field itself (see Section 7.4 on page 203).7

2. version (uhalf)8

A 2-byte unsigned integer representing the version of the DWARF9

information for the compilation unit.10

The value in this field is 5.11

See also Appendix G on page 440 for a summary of all version numbers that apply to12

DWARF sections.13

3. unit_type (ubyte)14

A 1-byte unsigned integer identifying this unit as a compilation unit. The15

value of this field is DW_UT_compile for a (non-split) full compilation unit or16

DW_UT_partial for a (non-split) partial compilation unit (see Section 3.1.1 on17

page 62).18

See Section 7.5.1.2 regarding a split full compilation unit.19

4. address_size (ubyte)20

A 1-byte unsigned integer representing the size in bytes of an address on the21

target architecture.22

5. debug_abbrev_offset (section offset)23

A 4-byte or 8-byte unsigned offset into the .debug_abbrev section. This offset24

associates the compilation unit with a particular set of debugging25

information entry abbreviations. In the 32-bit DWARF format, this is a 4-byte26

unsigned length; in the 64-bit DWARF format, this is an 8-byte unsigned27

length (see Section 7.4 on page 203).28

July 15 2024 ***WORKING DRAFT*** Page 208

Chapter 7. Data Representation

7.5.1.2 Skeleton and Split Compilation Unit Headers1

1. unit_length (initial length)2

A 4-byte or 12-byte unsigned integer representing the length of the3

.debug_info contribution for that compilation unit, not including the length4

field itself (see Section 7.4 on page 203).5

2. version (uhalf)6

A 2-byte unsigned integer representing the version of the DWARF7

information for the compilation unit.8

The value in this field is 5.9

See also Appendix G on page 440 for a summary of all version numbers that apply to10

DWARF sections.11

3. unit_type (ubyte)12

A 1-byte unsigned integer identifying this unit as a compilation unit. The13

value of this field is DW_UT_skeleton for a skeleton compilation unit or14

DW_UT_split_compile for a split (full) compilation unit (see Section 3.1.2 on15

page 69).16

There is no split analog to the partial compilation unit.17

4. address_size (ubyte)18

A 1-byte unsigned integer representing the size in bytes of an address on the19

target architecture.20

5. debug_abbrev_offset (section offset)21

A 4-byte or 8-byte unsigned offset into the .debug_abbrev section. This offset22

associates the compilation unit with a particular set of debugging23

information entry abbreviations. In the 32-bit DWARF format, this is a 4-byte24

unsigned length; in the 64-bit DWARF format, this is an 8-byte unsigned25

length (see Section 7.4 on page 203).26

6. dwo_id (unit ID)27

An 8-byte implementation-defined integer constant value, known as the28

compilation unit ID, that provides unique identification of a skeleton29

compilation unit and its associated split compilation unit in the object file30

named in the DW_AT_dwo_name attribute of the skeleton compilation.31

July 15 2024 ***WORKING DRAFT*** Page 209

Chapter 7. Data Representation

7.5.1.3 Type Unit Headers1

The header for the series of debugging information entries contributing to the2

description of a type that has been placed in its own type unit, within the3

.debug_info section, consists of the following information:4

1. unit_length (initial length)5

A 4-byte or 12-byte unsigned integer representing the length of the6

.debug_info contribution for that type unit, not including the length field7

itself (see Section 7.4 on page 203).8

2. version (uhalf)9

A 2-byte unsigned integer representing the version of the DWARF10

information for the type unit.11

The value in this field is 5.12

3. unit_type (ubyte)13

A 1-byte unsigned integer identifying this unit as a type unit. The value of14

this field is DW_UT_type for a non-split type unit (see Section 3.1.4 on15

page 72) or DW_UT_split_type for a split type unit.16

4. address_size (ubyte)17

A 1-byte unsigned integer representing the size in bytes of an address on the18

target architecture.19

5. debug_abbrev_offset (section offset)20

A 4-byte or 8-byte unsigned offset into the .debug_abbrev section. This offset21

associates the type unit with a particular set of debugging information entry22

abbreviations. In the 32-bit DWARF format, this is a 4-byte unsigned length;23

in the 64-bit DWARF format, this is an 8-byte unsigned length (see Section 7.424

on page 203).25

6. type_signature (8-byte unsigned integer)26

A unique 8-byte signature (see Section 7.32 on page 257) of the type described27

in this type unit.28

An attribute that refers (using DW_FORM_ref_sig8) to the primary type contained29

in this type unit uses this value.30

July 15 2024 ***WORKING DRAFT*** Page 210

Chapter 7. Data Representation

7. type_offset (section offset)1

A 4-byte or 8-byte unsigned offset relative to the beginning of the type unit2

header. This offset refers to the debugging information entry that describes3

the type. Because the type may be nested inside a namespace or other4

structures, and may contain references to other types that have not been5

placed in separate type units, it is not necessarily either the first or the only6

entry in the type unit. In the 32-bit DWARF format, this is a 4-byte unsigned7

length; in the 64-bit DWARF format, this is an 8-byte unsigned length (see8

Section 7.4 on page 203).9

7.5.2 Debugging Information Entry10

Each debugging information entry begins with an unsigned LEB128 number11

containing the abbreviation code for the entry. This code represents an entry12

within the abbreviations table associated with the compilation unit containing13

this entry. The abbreviation code is followed by a series of attribute values.14

On some architectures, there are alignment constraints on section boundaries. To15

make it easier to pad debugging information sections to satisfy such constraints,16

the abbreviation code 0 is reserved. Debugging information entries consisting of17

only the abbreviation code 0 are considered null entries.18

7.5.3 Abbreviations Tables19

The abbreviations tables for all compilation units are contained in a separate20

object file section called .debug_abbrev. As mentioned before, multiple21

compilation units may share the same abbreviations table.22

The abbreviations table for a single compilation unit consists of a series of23

abbreviation declarations. Each declaration specifies the tag and attributes for a24

particular form of debugging information entry. Each declaration begins with an25

unsigned LEB128 number representing the abbreviation code itself. It is this code26

that appears at the beginning of a debugging information entry in the27

.debug_info section. As described above, the abbreviation code 0 is reserved for28

null debugging information entries. The abbreviation code is followed by29

another unsigned LEB128 number that encodes the entry’s tag. The encodings30

for the tag names are given in Table 7.3 on the following page.31

An abbreviations table may be padded at the end with null bytes.32

July 15 2024 ***WORKING DRAFT*** Page 211

Chapter 7. Data Representation

Table 7.3: Tag encodings

Tag name Value
DW_TAG_array_type 0x01
DW_TAG_class_type 0x02
DW_TAG_entry_point 0x03
DW_TAG_enumeration_type 0x04
DW_TAG_formal_parameter 0x05
Reserved 0x06
Reserved 0x07
DW_TAG_imported_declaration 0x08
Reserved 0x09
DW_TAG_label 0x0a
DW_TAG_lexical_block 0x0b
Reserved 0x0c
DW_TAG_member 0x0d
Reserved 0x0e
DW_TAG_pointer_type 0x0f
DW_TAG_reference_type 0x10
DW_TAG_compile_unit 0x11
DW_TAG_string_type 0x12
DW_TAG_structure_type 0x13
Reserved 0x14
DW_TAG_subroutine_type 0x15
DW_TAG_typedef 0x16
DW_TAG_union_type 0x17
DW_TAG_unspecified_parameters 0x18
DW_TAG_variant 0x19
DW_TAG_common_block 0x1a
DW_TAG_common_inclusion 0x1b
DW_TAG_inheritance 0x1c
DW_TAG_inlined_subroutine 0x1d
DW_TAG_module 0x1e
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 212

Chapter 7. Data Representation

Tag name Value
DW_TAG_ptr_to_member_type 0x1f
DW_TAG_set_type 0x20
DW_TAG_subrange_type 0x21
DW_TAG_with_stmt 0x22
DW_TAG_access_declaration 0x23
DW_TAG_base_type 0x24
DW_TAG_catch_block 0x25
DW_TAG_const_type 0x26
DW_TAG_constant 0x27
DW_TAG_enumerator 0x28
DW_TAG_file_type 0x29
DW_TAG_friend 0x2a
DW_TAG_namelist 0x2b
DW_TAG_namelist_item 0x2c
DW_TAG_packed_type 0x2d
DW_TAG_subprogram 0x2e
DW_TAG_template_type_parameter 0x2f
DW_TAG_template_value_parameter 0x30
DW_TAG_thrown_type 0x31
DW_TAG_try_block 0x32
DW_TAG_variant_part 0x33
DW_TAG_variable 0x34
DW_TAG_volatile_type 0x35
DW_TAG_dwarf_procedure 0x36
DW_TAG_restrict_type 0x37
DW_TAG_interface_type 0x38
DW_TAG_namespace 0x39
DW_TAG_imported_module 0x3a
DW_TAG_unspecified_type 0x3b
DW_TAG_partial_unit 0x3c
DW_TAG_imported_unit 0x3d
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 213

Chapter 7. Data Representation

Tag name Value
Reserved 0x3e1

DW_TAG_condition 0x3f
DW_TAG_shared_type 0x40
DW_TAG_type_unit 0x41
DW_TAG_rvalue_reference_type 0x42
DW_TAG_template_alias 0x43
DW_TAG_coarray_type 0x44
DW_TAG_generic_subrange 0x45
DW_TAG_dynamic_type 0x46
DW_TAG_atomic_type 0x47
DW_TAG_call_site 0x48
DW_TAG_call_site_parameter 0x49
DW_TAG_skeleton_unit 0x4a
DW_TAG_immutable_type 0x4b
DW_TAG_lo_user 0x4080
DW_TAG_hi_user 0xffff

Following the tag encoding is a 1-byte value that determines whether a1

debugging information entry using this abbreviation has child entries or not. If2

the value is DW_CHILDREN_yes, the next physically succeeding entry of any3

debugging information entry using this abbreviation is the first child of that4

entry. If the 1-byte value following the abbreviation’s tag encoding is5

DW_CHILDREN_no, the next physically succeeding entry of any debugging6

information entry using this abbreviation is a sibling of that entry. (Either the7

first child or sibling entries may be null entries). The encodings for the child8

determination byte are given in Table 7.4 on the next page (As mentioned in9

Section 2.3 on page 25, each chain of sibling entries is terminated by a null entry.)10

1Code 0x3e is reserved to allow backward compatible support of the DW_TAG_mutable_type
DIE that was defined (only) in DWARF Version 3.

July 15 2024 ***WORKING DRAFT*** Page 214

Chapter 7. Data Representation

Table 7.4: Child determination encodings

Children determination name Value
DW_CHILDREN_no 0x00
DW_CHILDREN_yes 0x01

Finally, the child encoding is followed by a series of attribute specifications. Each1

attribute specification consists of two parts (except for2

DW_FORM_implicit_const, DW_FORM_addrx_offset and DW_FORM_indirect,3

see below). The first part is an unsigned LEB128 number representing the4

attribute’s name. The second part is an unsigned LEB128 number representing5

the attribute’s form. The series of attribute specifications ends with an entry6

containing 0 for the name and 0 for the form.7

For attributes with the form DW_FORM_implicit_const, in addition to the8

attribute name and form values, the attribute specification contains a third part,9

which is a signed LEB128 number. The value of this number is used as the value10

of the attribute.11

For attributes with the form DW_FORM_addrx_offset, following the attribute12

name, the attribute specification contains two unsigned LEB128 numbers, each13

representing a form. The first form must be of class address and the second of14

class constant. Values using this form in the .debug_info section contain a value15

for the first form followed by a value for the second form. The total value of the16

DW_FORM_addrx_offset is then computed by adding those two values together17

(if the first value is an indirect address, that is resolved first before adding it to18

the second value).19

For attributes with the form DW_FORM_indirect, the actual attribute form value20

itself is in the .debug_info section which begins with an unsigned LEB12821

number that specifies the actual form, followed by the value according to that22

form. This allows producers to choose forms for particular attributes23

dynamically, without having to add a new entry to the abbreviations table.24

If the actual attribute form is DW_FORM_implicit_const, the form is (still)25

followed by a signed LEB128 number.26

If the actual attribute form is itself DW_FORM_indirect, the indirection repeats.27

There may be one or more occurrences of DW_FORM_indirect in sequence until28

a non-DW_FORM_indirect form is reached. The sequence of29

DW_FORM_indirect forms does not have any effect other than to use up space.30

The abbreviations for a given compilation unit end with an entry consisting of a31

0 byte for the abbreviation code.32

July 15 2024 ***WORKING DRAFT*** Page 215

Chapter 7. Data Representation

See Appendix D.1.1 on page 300 for a depiction of the organization of the debugging1

information.2

7.5.4 Attribute Encodings3

The encodings for the attribute names are given in Table 7.5 following.4

Table 7.5: Attribute encodings

Attribute name Value Classes
DW_AT_sibling 0x01 reference
DW_AT_location 0x02 locdesc, loclist
DW_AT_name 0x03 string
Reserved 0x04 not applicable
Reserved 0x05 not applicable
Reserved 0x06 not applicable
Reserved 0x07 not applicable
Reserved 0x08 not applicable
DW_AT_ordering 0x09 constant
Reserved 0x0a not applicable
DW_AT_byte_size 0x0b constant, exprval, reference
Reserved 0x0c2 not applicable
DW_AT_bit_size 0x0d constant, exprval, reference
Reserved 0x0e not applicable
Reserved 0x0f not applicable
DW_AT_stmt_list 0x10 lineptr
DW_AT_low_pc 0x11 address
DW_AT_high_pc 0x12 address, constant
Reserved 0x133 not applicable
Reserved 0x14 not applicable
DW_AT_discr 0x15 reference
DW_AT_discr_value 0x16 constant
Continued on next page
2Code 0x0c is reserved to allow backward compatible support of the DW_AT_bit_offset

attribute which was defined in DWARF Version 3 and earlier.
3Code 0x13 is reserved to allow backward compatible support of the DW_AT_language

attribute which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 216

Chapter 7. Data Representation

Attribute name Value Classes
DW_AT_visibility 0x17 constant
DW_AT_import 0x18 reference
DW_AT_string_length 0x19 locdesc, loclist, reference
DW_AT_common_reference 0x1a reference
DW_AT_comp_dir 0x1b string
DW_AT_const_value 0x1c block, constant, string
DW_AT_containing_type 0x1d reference
DW_AT_default_value 0x1e constant, reference, flag, string
Reserved 0x1f not applicable
DW_AT_inline 0x20 constant
DW_AT_is_optional 0x21 flag
DW_AT_lower_bound 0x22 constant, exprval, reference
Reserved 0x23 not applicable
Reserved 0x24 not applicable
DW_AT_producer 0x25 string
Reserved 0x26 not applicable
DW_AT_prototyped 0x27 flag
Reserved 0x28 not applicable
Reserved 0x29 not applicable
DW_AT_return_addr 0x2a locdesc, loclist
Reserved 0x2b not applicable
DW_AT_start_scope 0x2c constant, rnglist
Reserved 0x2d not applicable
DW_AT_bit_stride 0x2e constant, exprval, reference
DW_AT_upper_bound 0x2f constant, exprval, reference
Reserved 0x30 not applicable
DW_AT_abstract_origin 0x31 reference
DW_AT_accessibility 0x32 constant
DW_AT_address_class 0x33 constant
DW_AT_artificial 0x34 flag
DW_AT_base_types 0x35 reference
DW_AT_calling_convention 0x36 constant
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 217

Chapter 7. Data Representation

Attribute name Value Classes
DW_AT_count 0x37 constant, exprval, reference
DW_AT_data_member_location 0x38 constant, locdesc, loclist
DW_AT_decl_column 0x39 constant
DW_AT_decl_file 0x3a constant
DW_AT_decl_line 0x3b constant
DW_AT_declaration 0x3c flag
DW_AT_discr_list 0x3d block
DW_AT_encoding 0x3e constant
DW_AT_external 0x3f flag
DW_AT_frame_base 0x40 locdesc, loclist
DW_AT_friend 0x41 reference
DW_AT_identifier_case 0x42 constant
Reserved 0x434 not applicable
DW_AT_namelist_item 0x44 reference
DW_AT_priority 0x45 reference
Reserved 0x465 not applicable
DW_AT_specification 0x47 reference
DW_AT_static_link 0x48 locdesc, loclist
DW_AT_type 0x49 reference
DW_AT_use_location 0x4a locdesc, loclist
DW_AT_variable_parameter 0x4b flag
DW_AT_virtuality 0x4c constant
DW_AT_vtable_elem_location 0x4d locdesc, loclist
DW_AT_allocated 0x4e constant, exprval, reference
DW_AT_associated 0x4f constant, exprval, reference
DW_AT_data_location 0x50 locdesc
DW_AT_byte_stride 0x51 constant, exprval, reference
DW_AT_entry_pc 0x52 address, constant
DW_AT_use_UTF8 0x53 flag
Continued on next page

4Code 0x43 is reserved to allow backward compatible support of the DW_AT_macro_info
attribute which was defined in DWARF Version 4 and earlier.

5Code 0x46 is reserved to allow backward compatible support of the DW_AT_segment
attribute which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 218

Chapter 7. Data Representation

Attribute name Value Classes
DW_AT_extension 0x54 reference
DW_AT_ranges 0x55 rnglist
DW_AT_trampoline 0x56 address, flag, reference, string
DW_AT_call_column 0x57 constant
DW_AT_call_file 0x58 constant
DW_AT_call_line 0x59 constant
DW_AT_description 0x5a string
DW_AT_binary_scale 0x5b constant
DW_AT_decimal_scale 0x5c constant
DW_AT_small 0x5d reference
DW_AT_decimal_sign 0x5e constant
DW_AT_digit_count 0x5f constant
DW_AT_picture_string 0x60 string
DW_AT_mutable 0x61 flag
DW_AT_threads_scaled 0x62 flag
DW_AT_explicit 0x63 flag
DW_AT_object_pointer 0x64 reference
DW_AT_endianity 0x65 constant
DW_AT_elemental 0x66 flag
DW_AT_pure 0x67 flag
DW_AT_recursive 0x68 flag
DW_AT_signature 0x69 reference
DW_AT_main_subprogram 0x6a flag
DW_AT_data_bit_offset 0x6b constant
DW_AT_const_expr 0x6c flag
DW_AT_enum_class 0x6d flag
DW_AT_linkage_name 0x6e string
DW_AT_string_length_bit_size 0x6f constant
DW_AT_string_length_byte_size 0x70 constant
DW_AT_rank 0x71 constant, exprval
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 219

Chapter 7. Data Representation

Attribute name Value Classes
Reserved 0x726 not applicable
DW_AT_addr_base 0x73 addrptr
DW_AT_rnglists_base 0x74 rnglistsptr
Reserved 0x75 not applicable
DW_AT_dwo_name 0x76 string
DW_AT_reference 0x77 flag
DW_AT_rvalue_reference 0x78 flag
DW_AT_macros 0x79 macptr
DW_AT_call_all_calls 0x7a flag
DW_AT_call_all_source_calls 0x7b flag
DW_AT_call_all_tail_calls 0x7c flag
DW_AT_call_return_pc 0x7d address
DW_AT_call_value 0x7e exprval
DW_AT_call_origin 0x7f reference
DW_AT_call_parameter 0x80 reference
DW_AT_call_pc 0x81 address
DW_AT_call_tail_call 0x82 flag
DW_AT_call_target 0x83 locdesc
DW_AT_call_target_clobbered 0x84 locdesc
DW_AT_call_data_location 0x85 locdesc
DW_AT_call_data_value 0x86 exprval
DW_AT_noreturn 0x87 flag
DW_AT_alignment 0x88 constant
DW_AT_export_symbols 0x89 flag
DW_AT_deleted 0x8a flag
DW_AT_defaulted 0x8b constant
DW_AT_loclists_base 0x8c loclistsptr
DW_AT_scale_multiplier ‡ 0x8d constant
DW_AT_scale_divisor ‡ 0x8e constant
DW_AT_str_offsets ‡ 0x8f stroffsetsptr
Continued on next page

6Code 0x72 is reserved to allow backward compatible support of the DW_AT_str_offsets_base
attribute which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 220

Chapter 7. Data Representation

Attribute name Value Classes
DW_AT_language_name ‡ 0x90 constant
DW_AT_language_version ‡ 0x91 constant
DW_AT_bias ‡ 0x92 constant
DW_AT_tensor ‡ 0x93 flag
DW_AT_num_lanes ‡ 0x94 constant, exprval, vallist
DW_AT_lo_user 0x2000 —
DW_AT_hi_user 0x3fff —
‡ New in DWARF Version 6

7.5.5 Classes and Forms1

Each class is a set of forms which have related representations and which are2

given a common interpretation according to the attribute in which the form is3

used. The attribute form governs how the value of an attribute is encoded. The4

classes and the forms they include are listed below.5

Form DW_FORM_sec_offset is a member of more than one class, namely6

addrptr, lineptr, loclist, loclistsptr, macptr, rnglist, rnglistsptr, and stroffsetsptr;7

as a result, it is not possible for an attribute to allow more than one of these8

classes. The list of classes allowed by the applicable attribute in Table 7.5 on9

page 216 determines the class of the form.10

In the form descriptions that follow, some forms are said to depend in part on the11

value of an attribute of the associated compilation unit:12

• In the case of a split DWARF object file, the associated compilation unit is13

the skeleton compilation unit corresponding to the containing unit.14

• Otherwise, the associated compilation unit is the containing unit.15

Each possible form belongs to one or more of the following classes (see Table 2.316

on page 23 for a summary of the purpose and general usage of each class):17

• address18

Represented as either:19

– An object of appropriate size to hold an address on the target machine20

(DW_FORM_addr). The size is encoded in the compilation unit header21

(see Section 7.5.1.1 on page 208). This address is relocatable in a22

relocatable object file and is relocated in an executable file or shared23

object file.24

July 15 2024 ***WORKING DRAFT*** Page 221

Chapter 7. Data Representation

– An indirect index into a table of addresses (as described in the1

previous bullet) in the .debug_addr section (DW_FORM_addrx,2

DW_FORM_addrx1, DW_FORM_addrx2, DW_FORM_addrx3 and3

DW_FORM_addrx4). The representation of a DW_FORM_addrx value4

is an unsigned LEB128 value, which is interpreted as a zero-based5

index into an array of addresses in the .debug_addr section. The6

representation of a DW_FORM_addrx1, DW_FORM_addrx2,7

DW_FORM_addrx3 or DW_FORM_addrx4 value is a 1-, 2-, 3- or8

4-byte unsigned integer value, respectively, which is similarly9

interpreted. The index is relative to the value of the10

DW_AT_addr_base attribute of the associated compilation unit.11

• addrptr12

This is an offset into the .debug_addr section (DW_FORM_sec_offset). It13

consists of an offset from the beginning of the .debug_addr section to the14

beginning of the list of machine addresses information for the referencing15

entity. It is relocatable in a relocatable object file, and relocated in an16

executable or shared object file. In the 32-bit DWARF format, this offset is a17

4-byte unsigned value; in the 64-bit DWARF format, it is an 8-byte18

unsigned value (see Section 7.4 on page 203).19

• block20

Blocks come in four forms:21

– A 1-byte length followed by 0 to 255 contiguous information bytes22

(DW_FORM_block1).23

– A 2-byte length followed by 0 to 65,535 contiguous information bytes24

(DW_FORM_block2).25

– A 4-byte length followed by 0 to 4,294,967,295 contiguous information26

bytes (DW_FORM_block4).27

– An unsigned LEB128 length followed by the number of bytes specified28

by the length (DW_FORM_block).29

In all forms, the length is the number of information bytes that follow. The30

information bytes may contain any mixture of relocated (or relocatable)31

addresses, references to other debugging information entries or data bytes.32

• constant33

There are eight forms of constants. There are fixed length constant data34

forms for one-, two-, four-, eight- and sixteen-byte values (respectively,35

DW_FORM_data1, DW_FORM_data2, DW_FORM_data4,36

DW_FORM_data8 and DW_FORM_data16). There are variable length37

July 15 2024 ***WORKING DRAFT*** Page 222

Chapter 7. Data Representation

constant data forms encoded using signed LEB128 numbers1

(DW_FORM_sdata) and unsigned LEB128 numbers (DW_FORM_udata).2

There is also an implicit constant (DW_FORM_implicit_const, see Section3

7.5.3 on page 215), whose value is provided as part of an abbreviation4

specification.5

The data in DW_FORM_data1, DW_FORM_data2, DW_FORM_data4,6

DW_FORM_data8 and DW_FORM_data16 can be anything. Depending on7

context, it may be a signed integer, an unsigned integer, a floating-point8

constant, or anything else. A consumer must use context to know how to9

interpret the bits, which if they are target machine data (such as an integer10

or floating-point constant) will be in target machine byte order.11

If one of the DW_FORM_data<n>forms is used to represent a signed or unsigned12

integer, it can be hard for a consumer to discover the context necessary to13

determine which interpretation is intended. Producers are therefore strongly14

encouraged to use DW_FORM_sdata or DW_FORM_udata for signed and15

unsigned integers respectively, rather than DW_FORM_data<n>.16

• exprval17

A DWARF expression that evaluates to a value (see Section 2.5 on page 26).18

This is represented as an unsigned LEB128 length, followed by a byte19

sequence of the specified length (DW_FORM_exprval) containing the20

expression.21

• flag22

A flag is represented explicitly as a single byte of data (DW_FORM_flag) or23

implicitly (DW_FORM_flag_present). In the first case, if the flag has value24

zero, it indicates the absence of the attribute; if the flag has a non-zero25

value, it indicates the presence of the attribute. In the second case, the26

attribute is implicitly indicated as present, and no value is encoded in the27

debugging information entry itself.28

• lineptr29

This is an offset into the .debug_line or .debug_line.dwo section30

(DW_FORM_sec_offset). It consists of an offset from the beginning of the31

.debug_line section to the first byte of the data making up the line number32

list for the compilation unit. It is relocatable in a relocatable object file, and33

relocated in an executable or shared object file. In the 32-bit DWARF34

format, this offset is a 4-byte unsigned value; in the 64-bit DWARF format,35

it is an 8-byte unsigned value (see Section 7.4 on page 203).36

July 15 2024 ***WORKING DRAFT*** Page 223

Chapter 7. Data Representation

• locdesc1

A DWARF location description (see Section 2.6 on page 39). This is2

represented as an unsigned LEB128 length, followed by a byte sequence of3

the specified length (DW_FORM_locdesc) containing the location4

description.5

• loclist6

A location list (see Section 2.6.2 on page 44). This is represented as either:7

– An index into the .debug_loclists section (DW_FORM_loclistx). The8

unsigned ULEB operand identifies an offset location relative to the9

base of that section (the location of the first offset in the section, not the10

first byte of the section). The contents of that location is then added to11

the base to determine the location of the target list of entries.12

– An offset into the .debug_loclists section (DW_FORM_sec_offset).13

The operand consists of a byte offset from the beginning of the14

.debug_loclists section. It is relocatable in a relocatable object file,15

and relocated in an executable or shared object file. In the 32-bit16

DWARF format, this offset is a 4-byte unsigned value; in the 64-bit17

DWARF format, it is an 8-byte unsigned value (see Section 7.4 on18

page 203).19

• loclistsptr20

This is an offset into the .debug_loclists section (DW_FORM_sec_offset).21

The operand consists of a byte offset from the beginning of the22

.debug_loclists section. It is relocatable in a relocatable object file, and23

relocated in an executable or shared object file. In the 32-bit DWARF24

format, this offset is a 4-byte unsigned value; in the 64-bit DWARF format,25

it is an 8-byte unsigned value (see Section 7.4 on page 203).26

• macptr27

This is an offset into the .debug_macro or .debug_macro.dwo section28

(DW_FORM_sec_offset). It consists of an offset from the beginning of the29

.debug_macro or .debug_macro.dwo section to the the header making up30

the macro information list for the compilation unit. It is relocatable in a31

relocatable object file, and relocated in an executable or shared object file. In32

the 32-bit DWARF format, this offset is a 4-byte unsigned value; in the 64-bit33

DWARF format, it is an 8-byte unsigned value (see Section 7.4 on page 203).34

July 15 2024 ***WORKING DRAFT*** Page 224

Chapter 7. Data Representation

• rnglist1

This is represented as either:2

– An index into the .debug_rnglists section (DW_FORM_rnglistx). The3

unsigned ULEB operand identifies an offset location relative to the4

base of that section (the location of the first offset in the section, not the5

first byte of the section). The contents of that location is then added to6

the base to determine the location of the target range list of entries.7

– An offset into the .debug_rnglists section (DW_FORM_sec_offset).8

The operand consists of a byte offset from the beginning of the9

.debug_rnglists section. It is relocatable in a relocatable object file,10

and relocated in an executable or shared object file. In the 32-bit11

DWARF format, this offset is a 4-byte unsigned value; in the 64-bit12

DWARF format, it is an 8-byte unsigned value (see Section 7.4 on13

page 203).14

• rnglistsptr15

This is an offset into the .debug_rnglists section (DW_FORM_sec_offset).16

It consists of a byte offset from the beginning of the .debug_rnglists17

section. It is relocatable in a relocatable object file, and relocated in an18

executable or shared object file. In the 32-bit DWARF format, this offset is a19

4-byte unsigned value; in the 64-bit DWARF format, it is an 8-byte20

unsigned value (see Section 7.4 on page 203).21

• reference22

There are four types of reference.23

– The first type of reference can identify any debugging information24

entry within the containing unit. This type of reference is an offset25

from the first byte of the compilation header for the compilation unit26

containing the reference. There are five forms for this type of reference.27

There are fixed length forms for one, two, four and eight byte offsets28

(respectively, DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4,29

and DW_FORM_ref8). There is also an unsigned variable length offset30

encoded form that uses unsigned LEB128 numbers31

(DW_FORM_ref_udata). Because this type of reference is within the32

containing compilation unit, no relocation of the value is required.33

– The second type of reference can identify any debugging information34

entry within a .debug_info section; in particular, it may refer to an35

entry in a different compilation unit from the unit containing the36

reference, and may refer to an entry in a different shared object file.37

This type of reference (DW_FORM_ref_addr) is an offset from the38

July 15 2024 ***WORKING DRAFT*** Page 225

Chapter 7. Data Representation

beginning of the .debug_info section of the target executable or1

shared object file, or, for references within a supplementary object file,2

an offset from the beginning of the local .debug_info section; it is3

relocatable in a relocatable object file and frequently relocated in an4

executable or shared object file. In the 32-bit DWARF format, this5

offset is a 4-byte unsigned value; in the 64-bit DWARF format, it is an6

8-byte unsigned value (see Section 7.4 on page 203).7

A debugging information entry that may be referenced by another compilation8

unit using DW_FORM_ref_addr must have a global symbolic name.9

For a reference from one executable or shared object file to another, the10

reference is resolved by the debugger to identify the executable or shared object11

file and the offset into that file’s .debug_info section in the same fashion as12

the run time loader, either when the debug information is first read, or when13

the reference is used.14

– The third type of reference can identify any debugging information15

type entry that has been placed in its own type unit. This type of16

reference (DW_FORM_ref_sig8) is the 8-byte type signature (see17

Section 7.32 on page 257) that was computed for the type.18

– The fourth type of reference is a reference from within the .debug_info19

section of the executable or shared object file to a debugging20

information entry in the .debug_info section of a supplementary21

object file. This type of reference (DW_FORM_ref_sup4 or22

DW_FORM_ref_sup8) is a 4- or 8-byte offset (respectively) from the23

beginning of the .debug_info section in the supplementary object file.24

The use of compilation unit relative references will reduce the number of25

link-time relocations and so speed up linking. The use of the second, third and26

fourth type of reference allows for the sharing of information, such as types,27

across compilation units, while the fourth type further allows for sharing of28

information across compilation units from different executables or shared29

object files.30

A reference to any kind of compilation unit identifies the debugging31

information entry for that unit, not the preceding header.32

• string33

A string is a sequence of contiguous non-null bytes followed by one null34

byte. A string may be represented:35

– Immediately in the debugging information entry itself36

(DW_FORM_string),37

July 15 2024 ***WORKING DRAFT*** Page 226

Chapter 7. Data Representation

– As an offset into a string table contained in the .debug_str section of1

the object file (DW_FORM_strp or DW_FORM_strp8), the2

.debug_line_str section of the object file (DW_FORM_line_strp), or3

as an offset into a string table contained in the .debug_str section of a4

supplementary object file (DW_FORM_strp_sup or5

DW_FORM_strp_sup8), DW_FORM_strp_sup offsets from the6

.debug_info section of a supplementary object file refer to the local7

.debug_str section of that same file.8

In the 32-bit DWARF format, the representation of a DW_FORM_strp,9

DW_FORM_line_strp or DW_FORM_strp_sup value is a 4-byte10

unsigned offset; in the 64-bit DWARF format, it is an 8-byte unsigned11

offset (see Section 7.4 on page 203). In both 32-bit and 64-bit formats,12

the representation of a DW_FORM_strp8 or DW_FORM_strp_sup813

value is an 8-byte unsigned offset.14

– As an indirect offset into the string table using an index into a table of15

offsets contained in the .debug_str_offsets section of the object file16

(DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2,17

DW_FORM_strx3 and DW_FORM_strx4). The representation of a18

DW_FORM_strx value is an unsigned LEB128 value, which is19

interpreted as a zero-based index into an array of offsets in the20

.debug_str_offsets section. The representation of a21

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or22

DW_FORM_strx4 value is a 1-, 2-, 3- or 4-byte unsigned integer value,23

respectively, which is similarly interpreted. The offset entries in the24

.debug_str_offsets section are described in Section 7.26 on page 252.25

Any combination of these three forms may be used within a single26

compilation.27

If the DW_AT_use_UTF8 attribute is specified for the compilation, partial,28

skeleton or type unit entry, string values are encoded using the UTF-829

(Unicode Transformation Format-8) from the Universal Character Set30

standard (ISO/IEC 10646-1:1993). Otherwise, the string representation is31

unspecified.32

The Unicode Standard Version 3 is fully compatible with ISO/IEC 10646-1:1993.33

It contains all the same characters and encoding points as ISO/IEC 10646, as well34

as additional information about the characters and their use.35

July 15 2024 ***WORKING DRAFT*** Page 227

Chapter 7. Data Representation

Earlier versions of DWARF did not specify the representation of strings; for1

compatibility, this version also does not. However, the UTF-8 representation is2

strongly recommended.3

• stroffsetsptr4

This is an offset into the .debug_str_offsets section5

(DW_FORM_sec_offset). It consists of an offset from the beginning of the6

.debug_str_offsets section to the header of the string offsets information7

for the referencing entity. It is relocatable in a relocatable object file, and8

relocated in an executable or shared object file. In the 32-bit DWARF9

format, this offset is a 4-byte unsigned value; in the 64-bit DWARF format,10

it is an 8-byte unsigned value (see Section 7.4 on page 203).11

• vallist12

A value list (see Section 2.5.2 on page 38). This class has the same13

representation as class loclist.14

This class is new in DWARF Version 6.15

In no case does an attribute use one of the classes addrptr, lineptr, loclistsptr,16

macptr, rnglistsptr or stroffsetsptr to point into either the .debug_info or17

.debug_str section.18

7.5.6 Form Encodings19

The form encodings are listed in Table 7.6 following.20

Table 7.6: Attribute form encodings

Form name Value Classes
DW_FORM_addr 0x01 address
Reserved 0x02
DW_FORM_block2 0x03 block
DW_FORM_block4 0x04 block
DW_FORM_data2 0x05 constant
DW_FORM_data4 0x06 constant
DW_FORM_data8 0x07 constant
DW_FORM_string 0x08 string
DW_FORM_block 0x09 block
DW_FORM_block1 0x0a block
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 228

Chapter 7. Data Representation

Form name Value Classes
DW_FORM_data1 0x0b constant
DW_FORM_flag 0x0c flag
DW_FORM_sdata 0x0d constant
DW_FORM_strp 0x0e string
DW_FORM_udata 0x0f constant
DW_FORM_ref_addr 0x10 reference
DW_FORM_ref1 0x11 reference
DW_FORM_ref2 0x12 reference
DW_FORM_ref4 0x13 reference
DW_FORM_ref8 0x14 reference
DW_FORM_ref_udata 0x15 reference
DW_FORM_indirect 0x16 (see Section 7.5.3 on page 211)
DW_FORM_sec_offset 0x17 addrptr, lineptr, loclist, loclistsptr,

macptr, rnglist, rnglistsptr, stroffsetsptr
DW_FORM_exprloc 0x18 exprval, locdesc
DW_FORM_flag_present 0x19 flag
DW_FORM_strx 0x1a string
DW_FORM_addrx 0x1b address
DW_FORM_ref_sup4 0x1c reference
DW_FORM_strp_sup 0x1d string
DW_FORM_data16 0x1e constant
DW_FORM_line_strp 0x1f string
DW_FORM_ref_sig8 0x20 reference
DW_FORM_implicit_const 0x21 constant
DW_FORM_loclistx 0x22 loclist, vallist
DW_FORM_rnglistx 0x23 rnglist
DW_FORM_ref_sup8 0x24 reference
DW_FORM_strx1 0x25 string
DW_FORM_strx2 0x26 string
DW_FORM_strx3 0x27 string
DW_FORM_strx4 0x28 string
DW_FORM_addrx1 0x29 address
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 229

Chapter 7. Data Representation

Form name Value Classes
DW_FORM_addrx2 0x2a address
DW_FORM_addrx3 0x2b address
DW_FORM_addrx4 0x2c address
DW_FORM_strp8 ‡ 0x2d string
DW_FORM_strp_sup8 ‡ 0x2e string
‡ New in DWARF Version 6

7.6 Variable Length Data1

Integers may be encoded using “Little-Endian Base 128” (LEB128) numbers.2

LEB128 is a scheme for encoding integers densely that exploits the assumption3

that most integers are small in magnitude.4

This encoding is equally suitable whether the target machine architecture represents data5

in big-endian or little-endian byte order. It is “little-endian” only in the sense that it6

avoids using space to represent the “big” end of an unsigned integer, when the big end is7

all zeroes or sign extension bits.8

Unsigned LEB128 (ULEB128) numbers are encoded as follows: start at the low9

order end of an unsigned integer and chop it into 7-bit chunks. Place each chunk10

into the low order 7 bits of a byte. Typically, several of the high order bytes will11

be zero, which may be discarded. Emit the remaining bytes in a stream, starting12

with the low order byte; set the high order bit on each byte except the last13

emitted byte. The high bit of zero on the last byte indicates to the decoder that it14

has encountered the last byte.15

The integer zero is a special case, consisting of a single zero byte.16

Table 7.7 on the next page gives some examples of unsigned LEB128 numbers.17

The 0x80 in each case is the high order bit of the byte, indicating that an18

additional byte follows.19

The encoding for signed, two’s complement LEB128 (SLEB128) numbers is20

similar, except that the criterion for discarding high order bytes is not whether21

they are zero, but whether they consist entirely of sign extension bits. Consider22

the 4-byte integer -2. The three high level bytes of the number are sign extension,23

thus LEB128 would represent it as a single byte containing the low order 7 bits,24

with the high order bit cleared to indicate the end of the byte stream. Note that25

there is nothing within the LEB128 representation that indicates whether an26

July 15 2024 ***WORKING DRAFT*** Page 230

Chapter 7. Data Representation

encoded number is signed or unsigned. The decoder must know what type of1

number to expect. Table 7.7 gives some examples of unsigned LEB128 numbers2

and Table 7.8 gives some examples of signed LEB128 numbers.3

Some producers may choose to insert padding or alignment bytes by retaining (not4

discarding) one or more high-order bytes that would not affect the decoded value.5

Appendix C on page 296 gives algorithms for encoding and decoding these forms.6

Table 7.7: Examples of unsigned LEB128 encodings

Number First byte Second byte
2 2 —

127 127 —
128 0 + 0x80 1
129 1 + 0x80 1

12857 57 + 0x80 100

Table 7.8: Examples of signed LEB128 encodings

Number First byte Second byte
2 2 —
-2 0x7e —

127 127 + 0x80 0
-127 1 + 0x80 0x7f
128 0 + 0x80 1
-128 0 + 0x80 0x7f
129 1 + 0x80 1
-129 0x7f + 0x80 0x7e

7.7 DWARF Expressions and Location Descriptions7

7.7.1 DWARF Expressions8

A DWARF expression is stored in a block of contiguous bytes. The bytes form a9

sequence of operations. Each operation is a 1-byte code that identifies that10

operation, followed by zero or more bytes of additional data. The encodings for11

the operations are described in Table 7.9 on the next page.12

July 15 2024 ***WORKING DRAFT*** Page 231

Chapter 7. Data Representation

Table 7.9: DWARF operation encodings

No. of
Operation Code Operands Notes
Reserved 0x01 -
Reserved 0x02 -
DW_OP_addr 0x03 1 constant address

(size is target specific)
Reserved 0x04 -
Reserved 0x05 -
DW_OP_deref 0x06 0
Reserved 0x07 -
DW_OP_const1u 0x08 1 1-byte constant
DW_OP_const1s 0x09 1 1-byte constant
DW_OP_const2u 0x0a 1 2-byte constant
DW_OP_const2s 0x0b 1 2-byte constant
DW_OP_const4u 0x0c 1 4-byte constant
DW_OP_const4s 0x0d 1 4-byte constant
DW_OP_const8u 0x0e 1 8-byte constant
DW_OP_const8s 0x0f 1 8-byte constant
DW_OP_constu 0x10 1 ULEB128 constant
DW_OP_consts 0x11 1 SLEB128 constant
DW_OP_dup 0x12 0
DW_OP_drop 0x13 0
DW_OP_over 0x14 0
DW_OP_pick 0x15 1 1-byte stack index
DW_OP_swap 0x16 0
DW_OP_rot 0x17 0
DW_OP_xderef 0x18 0
DW_OP_abs 0x19 0
DW_OP_and 0x1a 0
DW_OP_div 0x1b 0
DW_OP_minus 0x1c 0
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 232

Chapter 7. Data Representation

No. of
Operation Code Operands Notes
DW_OP_mod 0x1d 0
DW_OP_mul 0x1e 0
DW_OP_neg 0x1f 0
DW_OP_not 0x20 0
DW_OP_or 0x21 0
DW_OP_plus 0x22 0
DW_OP_plus_uconst 0x23 1 ULEB128 addend
DW_OP_shl 0x24 0
DW_OP_shr 0x25 0
DW_OP_shra 0x26 0
DW_OP_xor 0x27 0
DW_OP_bra 0x28 1 signed 2-byte constant
DW_OP_eq 0x29 0
DW_OP_ge 0x2a 0
DW_OP_gt 0x2b 0
DW_OP_le 0x2c 0
DW_OP_lt 0x2d 0
DW_OP_ne 0x2e 0
DW_OP_skip 0x2f 1 signed 2-byte constant
DW_OP_lit0 0x30 0
DW_OP_lit1 0x31 0 literals 0 .. 31 =
. . . (DW_OP_lit0 + literal)
DW_OP_lit31 0x4f 0
DW_OP_reg0 0x50 0
DW_OP_reg1 0x51 0 reg 0 .. 31 =
. . . (DW_OP_reg0 + regnum)
DW_OP_reg31 0x6f 0
DW_OP_breg0 0x70 1 SLEB128 offset
DW_OP_breg1 0x71 1 base register 0 .. 31 =
... (DW_OP_breg0 + regnum)
DW_OP_breg31 0x8f 1
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 233

Chapter 7. Data Representation

No. of
Operation Code Operands Notes
DW_OP_regx 0x90 1 ULEB128 register
DW_OP_fbreg 0x91 1 SLEB128 offset
DW_OP_bregx 0x92 2 ULEB128 register,

SLEB128 offset
DW_OP_piece 0x93 1 ULEB128 size of piece
DW_OP_deref_size 0x94 1 1-byte size of data retrieved
DW_OP_xderef_size 0x95 1 1-byte size of data retrieved
DW_OP_nop 0x96 0
DW_OP_push_object_address 0x97 0
DW_OP_call2 0x98 1 2-byte offset of DIE
DW_OP_call4 0x99 1 4-byte offset of DIE
DW_OP_call_ref 0x9a 1 4- or 8-byte offset of DIE
DW_OP_form_tls_address 0x9b 0
DW_OP_call_frame_cfa 0x9c 0
DW_OP_bit_piece 0x9d 2 ULEB128 size,

ULEB128 offset
DW_OP_implicit_value 0x9e 2 ULEB128 size,

block of that size
DW_OP_stack_value 0x9f 0
DW_OP_implicit_pointer 0xa0 4- or 8-byte offset of DIE,

SLEB128 constant offset
DW_OP_addrx 0xa1 1 ULEB128 indirect address
DW_OP_constx 0xa2 1 ULEB128 indirect constant
DW_OP_entry_value 0xa3 2 ULEB128 size,

block of that size
DW_OP_const_type 0xa4 3 ULEB128 type entry offset,

1-byte size,
constant value

DW_OP_regval_type 0xa5 2 ULEB128 register number,
ULEB128 constant offset

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 234

Chapter 7. Data Representation

No. of
Operation Code Operands Notes
DW_OP_deref_type 0xa6 2 1-byte size,

ULEB128 type entry offset
DW_OP_xderef_type 0xa7 2 1-byte size,

ULEB128 type entry offset
DW_OP_convert 0xa8 1 ULEB128 type entry offset
DW_OP_reinterpret 0xa9 1 ULEB128 type entry offset
DW_OP_regval_bits ‡ 0xaa 1 ULEB128 field size,

TOS † integer bit offset,
TOS - 1 integer register number

DW_OP_push_lane ‡ 0xab 0
DW_OP_extended ‡ 0xde 1 +
DW_OP_user_extended ‡ 0xdf 1 +
DW_OP_lo_user 0xe0
DW_OP_hi_user 0xff
‡ New in DWARF Version 6 † TOS indicates parameter on top of stack

7.7.2 Location Descriptions1

A location description is used to compute the location of a variable or other2

entity.3

7.7.3 Location Lists4

Each entry in a location list is either a location list entry, a base address entry, a5

default location entry or an end-of-list entry.6

Each entry begins with an unsigned 1-byte code that indicates the kind of entry7

that follows. The encodings for these constants are given in Table 7.10 on the8

following page.9

July 15 2024 ***WORKING DRAFT*** Page 235

Chapter 7. Data Representation

Table 7.10: Location list entry encoding values

Location list entry encoding name Value
DW_LLE_end_of_list 0x00
DW_LLE_base_addressx 0x01
DW_LLE_startx_endx 0x02
DW_LLE_startx_length 0x03
DW_LLE_offset_pair 0x04
DW_LLE_default_location 0x05
DW_LLE_base_address 0x06
DW_LLE_start_end 0x07
DW_LLE_start_length 0x08
DW_LLE_include_loclist ‡ 0x09
DW_LLE_include_loclistx ‡ 0x0a
DW_LLE_lo_user ‡ 0xc0
DW_LLE_hi_user ‡ 0xff
‡ New in DWARF Version 6

If a producer defines a producer-specific kind of location list entry, the kind code1

must be immediately followed by an unsigned LEB128 value that specifies the2

length of all remaining bytes (not including either the kind or the length itself)3

for that entry.4

7.8 Base Type Attribute Encodings5

The encodings of the constants used in the DW_AT_encoding attribute are given6

in Table 7.11.7

Table 7.11: Base type encoding values

Base type encoding name Value
DW_ATE_address 0x01
DW_ATE_boolean 0x02
DW_ATE_complex_float 0x03
DW_ATE_float 0x04
Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 236

Chapter 7. Data Representation

Base type encoding name Value
DW_ATE_signed 0x05
DW_ATE_signed_char 0x06
DW_ATE_unsigned 0x07
DW_ATE_unsigned_char 0x08
DW_ATE_imaginary_float 0x09
DW_ATE_packed_decimal 0x0a
DW_ATE_numeric_string 0x0b
DW_ATE_edited 0x0c
DW_ATE_signed_fixed 0x0d
DW_ATE_unsigned_fixed 0x0e
DW_ATE_decimal_float 0x0f
DW_ATE_UTF 0x10
DW_ATE_UCS 0x11
DW_ATE_ASCII 0x12
DW_ATE_complex_signed ‡ 0x13
DW_ATE_imaginary_signed ‡ 0x14
DW_ATE_complex_unsigned ‡ 0x15
DW_ATE_imaginary_unsigned ‡ 0x16
DW_ATE_signed_bitint ‡ 0x17
DW_ATE_unsigned_bitint ‡ 0x18
DW_ATE_lo_user 0x80
DW_ATE_hi_user 0xff
‡ New in DWARF Version 6

The encodings of the constants used in the DW_AT_decimal_sign attribute are1

given in Table 7.12 on the following page.2

July 15 2024 ***WORKING DRAFT*** Page 237

Chapter 7. Data Representation

Table 7.12: Decimal sign encodings

Decimal sign code name Value
DW_DS_unsigned 0x01
DW_DS_leading_overpunch 0x02
DW_DS_trailing_overpunch 0x03
DW_DS_leading_separate 0x04
DW_DS_trailing_separate 0x05

The encodings of the constants used in the DW_AT_endianity attribute are given1

in Table 7.13.2

Table 7.13: Endianity encodings

Endian code name Value
DW_END_default 0x00
DW_END_big 0x01
DW_END_little 0x02
DW_END_lo_user 0x40
DW_END_hi_user 0xff

7.9 Accessibility Codes3

The encodings of the constants used in the DW_AT_accessibility attribute are4

given in Table 7.14.5

Table 7.14: Accessibility encodings

Accessibility code name Value
DW_ACCESS_public 0x01
DW_ACCESS_protected 0x02
DW_ACCESS_private 0x03

7.10 Visibility Codes6

The encodings of the constants used in the DW_AT_visibility attribute are given7

in Table 7.15 on the next page.8

July 15 2024 ***WORKING DRAFT*** Page 238

Chapter 7. Data Representation

Table 7.15: Visibility encodings

Visibility code name Value
DW_VIS_local 0x01
DW_VIS_exported 0x02
DW_VIS_qualified 0x03

7.11 Virtuality Codes1

The encodings of the constants used in the DW_AT_virtuality attribute are given2

in Table 7.16.3

Table 7.16: Virtuality encodings

Virtuality code name Value
DW_VIRTUALITY_none 0x00
DW_VIRTUALITY_virtual 0x01
DW_VIRTUALITY_pure_virtual 0x02

The value DW_VIRTUALITY_none is equivalent to the absence of the4

DW_AT_virtuality attribute.5

7.12 Source Languages6

The encodings of the constants used in the DW_AT_language_name attribute are7

given in Table 7.17 on the next page. Table 7.17 on the following page also shows8

the default lower bound, if any, assumed for an omitted DW_AT_lower_bound9

attribute in the context of a DW_TAG_subrange_type debugging information10

entry for each defined language.11

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 239

Chapter 7. Data Representation

Language name Value Default Lower Bound

Table 7.17: Language encodings

Language name Value Default Lower Bound
DW_LNAME_Ada 0x0001 1
DW_LNAME_BLISS 0x0002 0
DW_LNAME_C 0x0003 0
DW_LNAME_C_plus_plus 0x0004 0
DW_LNAME_Cobol 0x0005 1
DW_LNAME_Crystal ‡ 0x0006 0
DW_LNAME_D 0x0007 0
DW_LNAME_Dylan 0x0008 0
DW_LNAME_Fortran 0x0009 1
DW_LNAME_Go 0x000a 0
DW_LNAME_Haskell 0x000b 0
DW_LNAME_Java 0x000c 0
DW_LNAME_Julia 0x000d 1
DW_LNAME_Kotlin ‡ 0x000e 0
DW_LNAME_Modula2 0x000f 1
DW_LNAME_Modula3 0x0010 1
DW_LNAME_ObjC 0x0011 0
DW_LNAME_ObjC_plus_plus 0x0012 0
DW_LNAME_OCaml 0x0013 0
DW_LNAME_OpenCL_C7 0x0014 0
DW_LNAME_Pascal 0x0015 1
DW_LNAME_PLI 0x0016 1
DW_LNAME_Python 0x0017 0
DW_LNAME_RenderScript 0x0018 0
DW_LNAME_Rust 0x0019 0
DW_LNAME_Swift 0x001a 0
DW_LNAME_UPC 0x001b 0
DW_LNAME_Zig ‡ 0x001c 0
Continued on next page

7Formerly DW_LANG_OpenCL in DWARF Version 5.

July 15 2024 ***WORKING DRAFT*** Page 240

Chapter 7. Data Representation

Language name Value Default Lower Bound
DW_LNAME_Assembly ‡ 0x001d 0
DW_LNAME_C_sharp ‡ 0x001e 0
DW_LNAME_Mojo ‡ 0x001f 0
DW_LNAME_GLSL ‡ 0x0020 0
DW_LNAME_GLSL_ES ‡ 0x0021 0
DW_LNAME_HLSL ‡ 0x0022 0
DW_LNAME_OpenCL_CPP ‡ 0x0023 0
DW_LNAME_CPP_for_OpenCL ‡ 0x0024 0
DW_LNAME_SYCL ‡ 0x0025 0
DW_LNAME_Ruby ‡ 0x0026 0
DW_LNAME_Move ‡ 0x0027 0
DW_LNAME_Hylo ‡ 0x0028 0
DW_LNAME_HIP ‡ 0x0029 0
DW_LNAME_Odin ‡ 0x002a 0
DW_LNAME_lo_user 0x8000
DW_LNAME_hi_user 0xffff
‡ Base language is new in DWARF Version 6

7.13 Address Class Encodings1

The value of the common address class encoding DW_ADDR_none is 0.2

July 15 2024 ***WORKING DRAFT*** Page 241

Chapter 7. Data Representation

7.14 Identifier Case1

The encodings of the constants used in the DW_AT_identifier_case attribute are2

given in Table 7.18.3

Table 7.18: Identifier case encodings

Identifier case name Value
DW_ID_case_sensitive 0x00
DW_ID_up_case 0x01
DW_ID_down_case 0x02
DW_ID_case_insensitive 0x03

7.15 Calling Convention Encodings4

The encodings of the constants used in the DW_AT_calling_convention attribute5

are given in Table 7.19.6

Table 7.19: Calling convention encodings

Calling convention name Value
DW_CC_normal 0x01
DW_CC_program 0x02
DW_CC_nocall 0x03
DW_CC_pass_by_reference 0x04
DW_CC_pass_by_value 0x05
DW_CC_lo_user 0x40
DW_CC_hi_user 0xff

July 15 2024 ***WORKING DRAFT*** Page 242

Chapter 7. Data Representation

7.16 Inline Codes1

The encodings of the constants used in the DW_AT_inline attribute are given in2

Table 7.20.3

Table 7.20: Inline encodings

Inline code name Value
DW_INL_not_inlined 0x00
DW_INL_inlined 0x01
DW_INL_declared_not_inlined 0x02
DW_INL_declared_inlined 0x03

7.17 Array Ordering4

The encodings of the constants used in the DW_AT_ordering attribute are given5

in Table 7.21.6

Table 7.21: Ordering encodings

Ordering name Value
DW_ORD_row_major 0x00
DW_ORD_col_major 0x01

7.18 Discriminant Lists7

The descriptors used in the DW_AT_discr_list attribute are encoded as 1-byte8

constants. The defined values are given in Table 7.22.9

Table 7.22: Discriminant descriptor encodings

Descriptor name Value
DW_DSC_label 0x00
DW_DSC_range 0x01

July 15 2024 ***WORKING DRAFT*** Page 243

Chapter 7. Data Representation

7.19 Name Index Table1

The version number in the name index table header is 6.2

The name index attributes and their encodings are listed in Table 7.23.3

Table 7.23: Name index attribute encodings

Attribute name Value Form/Class
DW_IDX_compile_unit 1 constant
DW_IDX_type_unit 2 constant
DW_IDX_die_offset 3 reference
DW_IDX_parent 4 constant
DW_IDX_type_hash 5 DW_FORM_data8
DW_IDX_external ‡ 6 flag
DW_IDX_lo_user 0x2000
DW_IDX_hi_user 0x3fff
‡ New in DWARF Version 6

It is suggested that producers should use the form code DW_FORM_flag_present for the4

DW_IDX_external attribute for abbreviation codes that represent external names.5

The abbreviations table ends with an entry consisting of a single 0 byte for the6

abbreviation code. The size of the table given by abbrev_table_size may7

include optional padding following the terminating 0 byte.8

7.20 Defaulted Member Encodings9

The encodings of the constants used in the DW_AT_defaulted attribute are given10

in Table 7.24 following.11

Table 7.24: Defaulted attribute encodings

Defaulted name Value
DW_DEFAULTED_no 0x00
DW_DEFAULTED_in_class 0x01
DW_DEFAULTED_out_of_class 0x02

July 15 2024 ***WORKING DRAFT*** Page 244

Chapter 7. Data Representation

7.21 Address Range Table1

Each .debug_aranges section contribution begins with a header containing:2

1. unit_length (initial length)3

A 4-byte or 12-byte length containing the length of the set of entries for this4

compilation unit, not including the length field itself (see Section 7.4 on5

page 203).6

2. version (uhalf)7

A 2-byte version identifier representing the version of the DWARF8

information for the address range table.9

This value in this field is 2.10

3. debug_info_offset (section offset)11

A 4-byte or 8-byte offset into the .debug_info section of the compilation unit12

header. In the 32-bit DWARF format, this is a 4-byte unsigned offset; in the13

64-bit DWARF format, this is an 8-byte unsigned offset (see Section 7.4 on14

page 203).15

4. address_size (ubyte)16

A 1-byte unsigned integer containing the size in bytes of an address.17

5. reserved 8 (ubyte, MBZ)18

This header is followed by a series of tuples. Each tuple consists of an address19

and a length. The address and length size are each given by the address_size20

field of the header. The first tuple following the header in each set begins at an21

offset that is a multiple of the size of a single tuple (that is, twice the size of an22

address). The header is padded, if necessary, to that boundary. Each set of tuples23

is terminated by a 0 for the address and a 0 for the length.24

8This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 245

Chapter 7. Data Representation

7.22 Line Number Information1

The version number in the line number program header is 6.2

The boolean values “true” and “false” used by the line number information3

program are encoded as a single byte containing the value 0 for “false,” and a4

non-zero value for “true.”5

The encodings for the standard opcodes are given in Table 7.25.6

Table 7.25: Line number standard opcode encodings

Opcode name Value
DW_LNS_extended_op ‡ 0x00
DW_LNS_copy 0x01
DW_LNS_advance_pc 0x02
DW_LNS_advance_line 0x03
DW_LNS_set_file 0x04
DW_LNS_set_column 0x05
DW_LNS_negate_stmt 0x06
DW_LNS_set_basic_block 0x07
DW_LNS_const_add_pc 0x08
DW_LNS_fixed_advance_pc 0x09
DW_LNS_set_prologue_end 0x0a
DW_LNS_set_epilogue_begin 0x0b
DW_LNS_set_isa 0x0c
‡ New in DWARF Version 6

July 15 2024 ***WORKING DRAFT*** Page 246

Chapter 7. Data Representation

The encodings for the extended opcodes are given in Table 7.26.1

Table 7.26: Line number extended opcode encodings

Opcode name Value
DW_LNE_end_sequence 0x01
DW_LNE_set_address 0x02
Reserved 0x039

DW_LNE_set_discriminator 0x04
DW_LNE_padding ‡ 0x05
DW_LNE_set_prologue_epilogue ‡ 0x06
DW_LNE_lo_user 0x80
DW_LNE_hi_user 0xff
‡ New in DWARF Version 6

The encodings for the line number header entry formats are given in Table 7.27.2

Table 7.27: Line number header entry format
encodings

Line number header entry format name Value
DW_LNCT_path 0x1
DW_LNCT_directory_index 0x2
DW_LNCT_timestamp 0x3
DW_LNCT_size 0x4
DW_LNCT_MD5 0x5
DW_LNCT_source ‡ 0x6
DW_LNCT_URL ‡ 0x7
DW_LNCT_lo_user 0x2000
DW_LNCT_hi_user 0x3fff
‡ New in DWARF Version 6

9Code 0x03 is reserved to allow backward compatible support of the DW_LNE_define_file
operation which was defined in DWARF Version 4 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 247

Chapter 7. Data Representation

7.23 Macro Information1

The version number in the macro information header is 5.2

The source line numbers and source file indices encoded in the macro3

information section are represented as unsigned LEB128 numbers.4

The macro information entry type is encoded as a single unsigned byte. The5

encodings are given in Table 7.28 on the following page.6

July 15 2024 ***WORKING DRAFT*** Page 248

Chapter 7. Data Representation

Table 7.28: Macro information entry type encodings

Macro information entry type name Value
DW_MACRO_padding ‡ 0x00
DW_MACRO_define 0x01
DW_MACRO_undef 0x02
DW_MACRO_start_file 0x03
DW_MACRO_end_file 0x04
DW_MACRO_define_strp 0x05
DW_MACRO_undef_strp 0x06
DW_MACRO_import 0x07
Reserved 0x0810

Reserved 0x0911

Reserved 0x0a12

DW_MACRO_define_strx 0x0b
DW_MACRO_undef_strx 0x0c
DW_MACRO_define_sup4 ‡ 0x0d
DW_MACRO_define_sup8 ‡ 0x0e
DW_MACRO_undef_sup4 ‡ 0x0f
DW_MACRO_undef_sup8 ‡ 0x10
DW_MACRO_import_sup4 ‡ 0x11
DW_MACRO_import_sup8 ‡ 0x12
DW_MACRO_lo_user 0xe0
DW_MACRO_hi_user 0xff
‡ New in DWARF Version 6

10Code 0x08 is reserved to allow backward compatible support of the
DW_MACRO_define_sup entry type that was defined (only) in DWARF Version 5.

11Code 0x09 is reserved to allow backward compatible support of the DW_MACRO_undef_sup
entry type that was defined (only) in DWARF Version 5.

12Code 0x0a is reserved to allow backward compatible support of the
DW_MACRO_import_sup entry type that was defined (only) in DWARF Version 5.

July 15 2024 ***WORKING DRAFT*** Page 249

Chapter 7. Data Representation

7.24 Call Frame Information1

In the 32-bit DWARF format, the value of the CIE id in the CIE header is2

0xffffffff; in the 64-bit DWARF format, the value is 0xffffffffffffffff.3

The value of the CIE version number is 4.4

Call frame instructions are encoded in one or more bytes. The primary opcode is5

encoded in the high order two bits of the first byte (that is, opcode = byte ≫ 6).6

An operand or extended opcode may be encoded in the low order 6 bits.7

Additional operands are encoded in subsequent bytes. The instructions and their8

encodings are presented in Table 7.29.9

Table 7.29: Call frame instruction encodings

High 2 Low 6 Operand 1,

Instruction Bits Bits Operand 2

DW_CFA_advance_loc 0x1 delta

DW_CFA_offset 0x2 register ULEB128 offset

DW_CFA_restore 0x3 register

DW_CFA_nop 0 0

DW_CFA_set_loc 0 0x01 address

DW_CFA_advance_loc1 0 0x02 1-byte delta

DW_CFA_advance_loc2 0 0x03 2-byte delta

DW_CFA_advance_loc4 0 0x04 4-byte delta

DW_CFA_offset_extended 0 0x05 ULEB128 register,
ULEB128 offset

DW_CFA_restore_extended 0 0x06 ULEB128 register

DW_CFA_undefined 0 0x07 ULEB128 register

DW_CFA_same_value 0 0x08 ULEB128 register

DW_CFA_register 0 0x09 ULEB128 register,
ULEB128 offset

DW_CFA_remember_state 0 0x0a

DW_CFA_restore_state 0 0x0b

DW_CFA_def_cfa 0 0x0c ULEB128 register,
ULEB128 offset

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 250

Chapter 7. Data Representation

High 2 Low 6 Operand 1,

Instruction Bits Bits Operand 2

DW_CFA_def_cfa_register 0 0x0d ULEB128 register

DW_CFA_def_cfa_offset 0 0x0e ULEB128 offset

DW_CFA_def_cfa_expression 0 0x0f exprloc

DW_CFA_expression 0 0x10 ULEB128 register,
exprloc

DW_CFA_offset_extended_sf 0 0x11 ULEB128 register,
SLEB128 offset

DW_CFA_def_cfa_sf 0 0x12 ULEB128 register,
SLEB128 offset

DW_CFA_def_cfa_offset_sf 0 0x13 SLEB128 offset

DW_CFA_val_offset 0 0x14 ULEB128 register,
ULEB128 offset

DW_CFA_val_offset_sf 0 0x15 ULEB128 register,
SLEB128 offset

DW_CFA_val_expression 0 0x16 ULEB128 register,
exprloc

DW_CFA_lo_user 0 0x1c

DW_CFA_hi_user 0 0x3f

7.25 Range List Entries for Non-contiguous Address1

Ranges2

Each entry in a range list (see Section 2.17.3 on page 54) is either a range list3

entry, a base address selection entry, or an end-of-list entry.4

Each entry begins with an unsigned 1-byte code that indicates the kind of entry5

that follows. The encodings for these constants are given in Table 7.30 on the next6

page.7

July 15 2024 ***WORKING DRAFT*** Page 251

Chapter 7. Data Representation

Table 7.30: Range list entry encoding values

Range list entry encoding name Value
DW_RLE_end_of_list 0x00
DW_RLE_base_addressx 0x01
DW_RLE_startx_endx 0x02
DW_RLE_startx_length 0x03
DW_RLE_offset_pair 0x04
DW_RLE_base_address 0x05
DW_RLE_start_end 0x06
DW_RLE_start_length 0x07
DW_RLE_include_rnglist ‡ 0x08
DW_RLE_include_rnglistx ‡ 0x09
DW_RLE_lo_user ‡ 0xc0
DW_RLE_hi_user ‡ 0xff
‡ New in DWARF Version 6

If a producer defines a producer-specific kind of range list entry, the kind code1

must be immediately followed by an unsigned LEB128 value that specifies the2

length of all remaining bytes (not including either the kind or the length itself)3

for that entry.4

For a range list to be specified, the base address of the corresponding compilation5

unit must be defined (see Section 3.1.1 on page 62).6

7.26 String Offsets Table7

Each .debug_str_offsets or .debug_str_offsets.dwo section contribution8

begins with a header containing:9

1. unit_length (initial length)10

A 4-byte or 12-byte length containing the length of the set of entries for this11

compilation unit, not including the length field itself (see Section 7.4 on12

page 203).13

The DWARF format used for the string offsets table is not required to match14

the format used by other sections describing the same compilation unit.15

2. version (uhalf)16

A 2-byte version identifier containing the value 5.17

July 15 2024 ***WORKING DRAFT*** Page 252

Chapter 7. Data Representation

3. padding (uhalf)1

Reserved to DWARF (must be zero).2

This header is followed by a series of string table offset entries that have the same3

representation as DW_FORM_strp. For the 32-bit DWARF format, each offset is 44

bytes long; for the 64-bit DWARF format, each offset is 8 bytes long.5

The DW_AT_str_offsets attribute points to the header. The entries following the6

header are indexed sequentially, starting from 0.7

This table may be padded with unused entries. These entries should have all 1 bits as a8

hint that the entries are unused.9

7.27 Address Table10

Each .debug_addr section contribution begins with a header containing:11

1. unit_length (initial length)12

A 4-byte or 12-byte length containing the length of the set of entries for this13

compilation unit, not including the length field itself (see Section 7.4 on14

page 203).15

2. version (uhalf)16

A 2-byte version identifier containing the value 5.17

3. address_size (ubyte)18

A 1-byte unsigned integer containing the size in bytes of an address on the19

target system.20

4. reserved 13 (ubyte, MBZ)21

This header is followed by a series of addresses where the address size is given22

by the address_size field of the header.23

The DW_AT_addr_base attribute points to the first entry following the header.24

The entries are indexed sequentially from this base entry, starting from 0.25

This table may be padded with unused entries. These entries should have all 1 bits as a26

hint that the entries are unused.27

13This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 253

Chapter 7. Data Representation

7.28 Range List Table1

Each .debug_rnglists and .debug_rnglists.dwo section contribution begins2

with a header containing:3

1. unit_length (initial length)4

A 4-byte or 12-byte length containing the length of the set of entries for this5

compilation unit, not including the length field itself (see Section 7.4 on6

page 203).7

2. version (uhalf)8

A 2-byte version identifier containing the value 5.9

3. address_size (ubyte)10

A 1-byte unsigned integer containing the size in bytes of an address on the11

target system.12

4. reserved 14 (ubyte, MBZ)13

5. offset_entry_count (uword)14

A 4-byte count of the number of offsets that follow the header. This count15

may be zero.16

Immediately following the header is an array of offsets. This array is followed by17

a series of range lists.18

If the offset_entry_count is non-zero, there is one offset for each range list. The19

contents of the ith offset is the offset (an unsigned integer) from the beginning of20

the offset array to the location of the ith range list. In the 32-bit DWARF format,21

each offset is 4-bytes in size; in the 64-bit DWARF format, each offset is 8-bytes in22

size (see Section 7.4 on page 203).23

If the offset_entry_count is zero, then DW_FORM_rnglistx cannot be used to access24

a range list; DW_FORM_sec_offset must be used instead. If the offset_entry_count25

is non-zero, then DW_FORM_rnglistx may be used to access a range list.26

Range lists are described in Section 2.17.3 on page 54.27

The DW_AT_rnglists_base attribute points to the first offset following the header.28

The range lists are referenced by the index of the position of their corresponding29

offset in the array of offsets, which indirectly specifies the offset to the target list.30

This table may be padded with unused entries. These entries should have all 1 bits as a31

hint that the entries are unused.32

14This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 254

Chapter 7. Data Representation

7.29 Value List and Location List Table1

Each .debug_loclists or .debug_loclists.dwo section contribution begins with2

a header containing:3

1. unit_length (initial length)4

A 4-byte or 12-byte length containing the length of the set of entries for this5

compilation unit, not including the length field itself (see Section 7.4 on6

page 203).7

2. version (uhalf)8

A 2-byte version identifier containing the value 5.9

3. address_size (ubyte)10

A 1-byte unsigned integer containing the size in bytes of an address on the11

target system.12

4. reserved 15 (ubyte, MBZ)13

5. offset_entry_count (uword)14

A 4-byte count of the number of offsets that follow the header. This count15

may be zero.16

Immediately following the header is an array of offsets. This array is followed by17

a series of value lists and location lists.18

If the offset_entry_count is non-zero, there is one offset for each value list and19

location list. The contents of the ith offset is the offset (an unsigned integer) from20

the beginning of the offset array to the location of the ith value list or location list.21

In the 32-bit DWARF format, each offset is 4-bytes in size; in the 64-bit DWARF22

format, each offset is 8-bytes in size (see Section 7.4 on page 203).23

If the offset_entry_count is zero, then DW_FORM_loclistx cannot be used to access24

a value list or location list; DW_FORM_sec_offset must be used instead. If the25

offset_entry_count is non-zero, then DW_FORM_loclistx may be used to access a26

value list or location list.27

Value lists are described in Section 2.5.2 on page 38. Location lists are described28

in Section 2.6.2 on page 44.29

The DW_AT_loclists_base attribute points to the first offset following the header.30

The value lists and location lists are referenced by the index of the position of31

their corresponding offset in the array of offsets, which indirectly specifies the32

offset to the target list.33

15This allows backward compatible support of the deprecated segment_selector_size field
which was defined in DWARF Version 5 and earlier.

July 15 2024 ***WORKING DRAFT*** Page 255

Chapter 7. Data Representation

7.30 Dependencies and Constraints1

The debugging information in this format is intended to exist in sections of an2

object file, or an equivalent separate file or database, having names beginning3

with the prefix ".debug_" (see Appendix G on page 440 for a complete list of such4

names). Except as specifically specified, this information is not aligned on 2-, 4-5

or 8-byte boundaries. Consequently:6

• For the 32-bit DWARF format and a target architecture with 32-bit7

addresses, an assembler or compiler must provide a way to produce 2-byte8

and 4-byte quantities without alignment restrictions, and the linker must be9

able to relocate a 4-byte address or section offset that occurs at an arbitrary10

alignment.11

• For the 32-bit DWARF format and a target architecture with 64-bit12

addresses, an assembler or compiler must provide a way to produce 2-byte,13

4-byte and 8-byte quantities without alignment restrictions, and the linker14

must be able to relocate an 8-byte address or 4-byte section offset that15

occurs at an arbitrary alignment.16

• For the 64-bit DWARF format and a target architecture with 32-bit17

addresses, an assembler or compiler must provide a way to produce 2-byte,18

4-byte and 8-byte quantities without alignment restrictions, and the linker19

must be able to relocate a 4-byte address or 8-byte section offset that occurs20

at an arbitrary alignment.21

It is expected that this will be required only for very large 32-bit programs or by22

those architectures which support a mix of 32-bit and 64-bit code and data within23

the same executable object.24

• For the 64-bit DWARF format and a target architecture with 64-bit25

addresses, an assembler or compiler must provide a way to produce 2-byte,26

4-byte and 8-byte quantities without alignment restrictions, and the linker27

must be able to relocate an 8-byte address or section offset that occurs at an28

arbitrary alignment.29

July 15 2024 ***WORKING DRAFT*** Page 256

Chapter 7. Data Representation

7.31 Integer Representation Names1

The sizes of the integers used in the lookup by name, lookup by address, line2

number, call frame information and other sections are given in Table 7.31.3

Table 7.31: Integer representation names

Representation name Representation
sbyte signed, 1-byte integer
ubyte unsigned, 1-byte integer
uhalf unsigned, 2-byte integer

uword unsigned, 4-byte integer

7.32 Type Signature Computation4

A type signature is used by a DWARF consumer to resolve type references to the5

type definitions that are contained in type units (see Section 3.1.4 on page 72).6

A type signature is computed only by a DWARF producer; a consumer need only7

compare two type signatures to check for equality.8

The type signature for a type T0 is formed from the MD516 digest of a flattened9

description of the type. The flattened description of the type is a byte sequence10

derived from the DWARF encoding of the type as follows:11

1. Start with an empty sequence S and a list V of visited types, where V is12

initialized to a list containing the type T0 as its single element. Elements in V13

are indexed from 1, so that V[1] is T0.14

2. If the debugging information entry represents a type that is nested inside15

another type or a namespace, append to S the type’s context as follows: For16

each surrounding type or namespace, beginning with the outermost such17

construct, append the letter ’C’, the DWARF tag of the construct, and the18

name (taken from the DW_AT_name attribute) of the type or namespace19

(including its trailing null byte).20

3. Append to S the letter ’D’, followed by the DWARF tag of the debugging21

information entry.22

16MD5 Message Digest Algorithm, R.L. Rivest, RFC 1321, April 1992

July 15 2024 ***WORKING DRAFT*** Page 257

Chapter 7. Data Representation

4. For each of the attributes in Table 7.32 that are present in the debugging1

information entry, in the order listed, append to S a marker letter (see below),2

the DWARF attribute code, and the attribute value.3

Table 7.32: Attributes used in type signature computation

DW_AT_name
DW_AT_accessibility
DW_AT_address_class
DW_AT_alignment
DW_AT_allocated
DW_AT_artificial
DW_AT_associated
DW_AT_binary_scale
DW_AT_bit_size
DW_AT_bit_stride
DW_AT_byte_size
DW_AT_byte_stride
DW_AT_const_expr
DW_AT_const_value
DW_AT_containing_type
DW_AT_count
DW_AT_data_bit_offset
DW_AT_data_location
DW_AT_data_member_location
DW_AT_decimal_scale
DW_AT_decimal_sign
DW_AT_default_value
DW_AT_digit_count
DW_AT_discr
DW_AT_discr_list
DW_AT_discr_value
DW_AT_encoding

DW_AT_endianity
DW_AT_enum_class
DW_AT_explicit
DW_AT_is_optional
DW_AT_location
DW_AT_lower_bound
DW_AT_mutable
DW_AT_ordering
DW_AT_picture_string
DW_AT_prototyped
DW_AT_rank
DW_AT_reference
DW_AT_rvalue_reference
DW_AT_scale_divisor
DW_AT_scale_multiplier
DW_AT_small
DW_AT_string_length
DW_AT_string_length_bit_size
DW_AT_string_length_byte_size
DW_AT_threads_scaled
DW_AT_upper_bound
DW_AT_use_location
DW_AT_use_UTF8
DW_AT_variable_parameter
DW_AT_virtuality
DW_AT_visibility
DW_AT_vtable_elem_location

Note that except for the initial DW_AT_name attribute, attributes are4

appended in order according to the alphabetical spelling of their identifier.5

July 15 2024 ***WORKING DRAFT*** Page 258

Chapter 7. Data Representation

If an implementation defines any producer-specific attributes, any such1

attributes that are essential to the definition of the type are also included at2

the end of the above list, in their own alphabetical suborder.3

An attribute that refers to another type entry T is processed as follows:4

a) If T is in the list V at some V[x], use the letter ’R’ as the marker and use5

the unsigned LEB128 encoding of x as the attribute value.6

b) Otherwise, append type T to the list V, then use the letter ’T’ as the7

marker, process the type T recursively by performing Steps 2 through 7,8

and use the result as the attribute value.9

Other attribute values use the letter ’A’ as the marker, and the value consists10

of the form code (encoded as an unsigned LEB128 value) followed by the11

encoding of the value according to the form code. To ensure reproducibility12

of the signature, the set of forms used in the signature computation is limited13

to the following: DW_FORM_sdata, DW_FORM_flag, DW_FORM_string,14

DW_FORM_exprval, and DW_FORM_block.15

5. If the tag in Step 3 is one of DW_TAG_pointer_type,16

DW_TAG_reference_type, DW_TAG_rvalue_reference_type,17

DW_TAG_ptr_to_member_type, or DW_TAG_friend, and the referenced18

type (via the DW_AT_type or DW_AT_friend attribute) has a DW_AT_name19

attribute, append to S the letter ’N’, the DWARF attribute code (DW_AT_type20

or DW_AT_friend), the context of the type (according to the method in Step21

2), the letter ’E’, and the name of the type. For DW_TAG_friend, if the22

referenced entry is a DW_TAG_subprogram, the context is omitted and the23

name to be used is the ABI-specific name of the subprogram (for example, the24

mangled linker name).25

6. If the tag in Step 3 is not one of DW_TAG_pointer_type,26

DW_TAG_reference_type, DW_TAG_rvalue_reference_type,27

DW_TAG_ptr_to_member_type, or DW_TAG_friend, but has a DW_AT_type28

attribute, or if the referenced type (via the DW_AT_type or DW_AT_friend29

attribute) does not have a DW_AT_name attribute, the attribute is processed30

according to the method in Step 4 for an attribute that refers to another type31

entry.32

7. Visit each child C of the debugging information entry as follows: If C is a33

nested type entry or a member function entry, and has a DW_AT_name34

attribute, append to S the letter ’S’, the tag of C, and its name; otherwise,35

process C recursively by performing Steps 3 through 7, appending the result36

to S. Following the last child (or if there are no children), append a zero byte.37

July 15 2024 ***WORKING DRAFT*** Page 259

Chapter 7. Data Representation

For the purposes of this algorithm, if a debugging information entry S has a1

DW_AT_specification attribute that refers to another entry D (which has a2

DW_AT_declaration attribute), then S inherits the attributes and children of D,3

and S is processed as if those attributes and children were present in the entry S.4

Exception: if a particular attribute is found in both S and D, the attribute in S is5

used and the corresponding one in D is ignored.6

DWARF tag and attribute codes are appended to the sequence as unsigned7

LEB128 values, using the values defined earlier in this chapter.8

A grammar describing this computation may be found in Appendix E.2.2 on page 410.9

An attribute that refers to another type entry is recursively processed or replaced with the10

name of the referent (in Step 4, 5 or 6). If neither treatment applies to an attribute that11

references another type entry, the entry that contains that attribute is not suitable for a12

separate type unit.13

If a debugging information entry contains an attribute from the list above that would14

require an unsupported form, that entry is not suitable for a separate type unit.15

A type is suitable for a separate type unit only if all of the type entries that it contains or16

refers to in Steps 6 and 7 are themselves suitable for a separate type unit.17

Where the DWARF producer may reasonably choose two or more different forms for a18

given attribute, it should choose the simplest possible form in computing the signature.19

(For example, a constant value should be preferred to an expression when possible.)20

Once the string S has been formed from the DWARF encoding, an 16-byte MD521

digest is computed for the string and the last eight bytes are taken as the type22

signature.23

The string S is intended to be a flattened representation of the type that uniquely24

identifies that type (that is, a different type is highly unlikely to produce the same string).25

A debugging information entry is not placed in a separate type unit if any of the26

following apply:27

• The entry has an attribute whose value is a location description, and the location28

description contains a reference to another debugging information entry (for29

example, a DW_OP_call_ref operator), as it is unlikely that the entry will remain30

identical across compilation units.31

• The entry has an attribute whose value refers to a code location or a location list.32

• The entry has an attribute whose value refers to another debugging information33

entry that does not represent a type.34

July 15 2024 ***WORKING DRAFT*** Page 260

Chapter 7. Data Representation

Certain attributes are not included in the type signature:1

• The DW_AT_declaration attribute is not included because it indicates that the2

debugging information entry represents an incomplete declaration, and incomplete3

declarations should not be placed in separate type units.4

• The DW_AT_description attribute is not included because it does not provide any5

information unique to the defining declaration of the type.6

• The DW_AT_decl_file, DW_AT_decl_line, and DW_AT_decl_column attributes7

are not included because they may vary from one source file to the next, and would8

prevent two otherwise identical type declarations from producing the same MD59

digest.10

• The DW_AT_object_pointer attribute is not included because the information it11

provides is not necessary for the computation of a unique type signature.12

Nested types and some types referred to by a debugging information entry are encoded by13

name rather than by recursively encoding the type to allow for cases where a complete14

definition of the type might not be available in all compilation units.15

If a type definition contains the definition of a member function, it cannot be moved as is16

into a type unit, because the member function contains attributes that are unique to that17

compilation unit. Such a type definition can be moved to a type unit by rewriting the18

debugging information entry tree, moving the member function declaration into a19

separate declaration tree, and replacing the function definition in the type with a20

non-defining declaration of the function (as if the function had been defined out of line).21

An example that illustrates the computation of an MD5 digest may be found in22

Appendix E.2 on page 400.23

7.33 Name Table Hash Function24

The hash function used for hashing name strings in the accelerated access name25

index table (see Section 6.1 on page 140) is defined in C as shown in Figure 7.126

following.1727

17 This hash function is sometimes known as the "Bernstein hash function" or the "DJB
hash function" (see, for example, http://en.wikipedia.org/wiki/List_of_hash_functions or
http://stackoverflow.com/questions/10696223/reason-for-5381-number-in-djb-hash-function).

July 15 2024 ***WORKING DRAFT*** Page 261

http://en.wikipedia.org/wiki/List_of_hash_functions
http://stackoverflow.com/questions/10696223/reason-for-5381-number-in-djb-hash-function)

Chapter 7. Data Representation

uint32_t /* must be a 32-bit integer type */
hash(unsigned char *str)
{

uint32_t hash = 5381;
int c;

while (c = *str++)
hash = hash * 33 + c;

return hash;
}

Figure 7.1: Name Table Hash Function Definition

7.34 Contiguous Tables1

Tables within each section must be contiguous with the preceding table in that2

section, or the beginning of the section if there is no preceding table.3

Consumers may prefer to have these tables padded so that each subsequent table is4

"aligned" on a certain boundary, typically 4 or 8 bytes. Every table of information has a5

way for the table as a whole to be padded if the producer wishes to do so. Tables from6

multiple object files that are concatenated by a linker would then each be aligned without7

any special effort by the linker; this alignment may provide performance or other benefits.8

This padding is entirely optional, and does not relax any constraint specified in Section9

7.30 on page 256.10

July 15 2024 ***WORKING DRAFT*** Page 262

Chapter 7. Data Representation

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 263

Appendix A1

Attributes by Tag Value (Informative)2

The table below enumerates the attributes that are most applicable to each type3

of debugging information entry. DWARF does not in general require that a given4

debugging information entry contain a particular attribute or set of attributes.5

Instead, a DWARF producer is free to generate any, all, or none of the attributes6

described in the text as being applicable to a given entry. Other attributes (both7

those defined within this document but not explicitly associated with the entry in8

question, and new, producer-defined ones) may also appear in a given9

debugging information entry. Therefore, the table may be taken as instructive,10

but cannot be considered definitive.11

In the following table, the following special conventions apply:12

1. The DECL pseudo-attribute stands for all three of the declaration coordinates13

DW_AT_decl_column, DW_AT_decl_file and DW_AT_decl_line.14

2. The DW_AT_description attribute can be used on any debugging information15

entry that may have a DW_AT_name attribute. For simplicity, this attribute is16

not explicitly shown.17

3. The DW_AT_sibling attribute can be used on any debugging information18

entry. For simplicity, this attribute is not explicitly shown.19

4. The DW_AT_abstract_origin attribute can be used with almost any20

debugging information entry; the exceptions are mostly the compilation21

unit-like entries. For simplicity, this attribute is not explicitly shown.22

5. The DW_AT_artificial attribute can be used with any declarative debugging23

information entry. For simplicity, this attribute is not shown.24

July 15 2024 ***WORKING DRAFT*** Page 264

Appendix A. Attributes by Tag (Informative)

Table A.1: Attributes by tag value

TAG name Applicable attributes
DW_TAG_access_declaration DECL

DW_AT_accessibility
DW_AT_name

DW_TAG_array_type DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_bit_stride
DW_AT_byte_size
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_ordering
DW_AT_rank
DW_AT_specification
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_atomic_type DECL
DW_AT_alignment
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 265

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_base_type DECL

DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bias
DW_AT_binary_scale
DW_AT_bit_size
DW_AT_byte_size
DW_AT_data_bit_offset
DW_AT_data_location
DW_AT_decimal_scale
DW_AT_decimal_sign
DW_AT_digit_count
DW_AT_encoding
DW_AT_endianity
DW_AT_name
DW_AT_picture_string
DW_AT_scale_divisor
DW_AT_scale_multiplier
DW_AT_small

DW_TAG_call_site DW_AT_call_column
DW_AT_call_file
DW_AT_call_line
DW_AT_call_origin
DW_AT_call_pc
DW_AT_call_return_pc
DW_AT_call_tail_call
DW_AT_call_target
DW_AT_call_target_clobbered
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 266

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_call_site_parameter DW_AT_call_data_location

DW_AT_call_data_value
DW_AT_call_parameter
DW_AT_call_value
DW_AT_location
DW_AT_name
DW_AT_type

DW_TAG_catch_block DECL
DW_AT_entry_pc
DW_AT_high_pc
DW_AT_low_pc
DW_AT_ranges

DW_TAG_class_type DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_byte_size
DW_AT_calling_convention
DW_AT_data_location
DW_AT_declaration
DW_AT_export_symbols
DW_AT_name
DW_AT_signature
DW_AT_specification
DW_AT_start_scope
DW_AT_visibility

DW_TAG_coarray_type DECL
DW_AT_alignment
DW_AT_bit_size
DW_AT_byte_size
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 267

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_common_block DECL

DW_AT_declaration
DW_AT_linkage_name
DW_AT_location
DW_AT_name
DW_AT_visibility

DW_TAG_common_inclusion DECL
DW_AT_common_reference
DW_AT_declaration
DW_AT_visibility

DW_TAG_compile_unit DW_AT_addr_base
DW_AT_base_types
DW_AT_comp_dir
DW_AT_entry_pc
DW_AT_identifier_case
DW_AT_high_pc
DW_AT_language_name
DW_AT_language_version
DW_AT_low_pc
DW_AT_macros
DW_AT_main_subprogram
DW_AT_name
DW_AT_producer
DW_AT_ranges
DW_AT_rnglists_base
DW_AT_stmt_list
DW_AT_str_offsets
DW_AT_use_UTF8

DW_TAG_condition DECL
DW_AT_name

DW_TAG_const_type DECL
DW_AT_alignment
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 268

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_constant DECL

DW_AT_accessibility
DW_AT_const_value
DW_AT_declaration
DW_AT_endianity
DW_AT_external
DW_AT_linkage_name
DW_AT_name
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_dwarf_procedure DW_AT_location

DW_TAG_dynamic_type DECL
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_data_location
DW_AT_name
DW_AT_type

DW_TAG_entry_point DECL
DW_AT_address_class
DW_AT_frame_base
DW_AT_linkage_name
DW_AT_low_pc
DW_AT_name
DW_AT_return_addr
DW_AT_static_link
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 269

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_enumeration_type DECL

DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_bit_stride
DW_AT_byte_size
DW_AT_byte_stride
DW_AT_data_location
DW_AT_declaration
DW_AT_enum_class
DW_AT_name
DW_AT_signature
DW_AT_specification
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_enumerator DECL
DW_AT_const_value
DW_AT_name

DW_TAG_file_type DECL
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_byte_size
DW_AT_data_location
DW_AT_name
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 270

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_formal_parameter DECL

DW_AT_const_value
DW_AT_default_value
DW_AT_endianity
DW_AT_is_optional
DW_AT_location
DW_AT_name
DW_AT_type
DW_AT_variable_parameter

DW_TAG_friend DECL
DW_AT_friend

DW_TAG_generic_subrange DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_bit_stride
DW_AT_byte_size
DW_AT_byte_stride
DW_AT_count
DW_AT_data_location
DW_AT_declaration
DW_AT_lower_bound
DW_AT_name
DW_AT_threads_scaled
DW_AT_type
DW_AT_upper_bound
DW_AT_visibility

DW_TAG_immutable_type DECL
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 271

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_imported_declaration DECL

DW_AT_accessibility
DW_AT_import
DW_AT_name
DW_AT_start_scope

DW_TAG_imported_module DECL
DW_AT_import
DW_AT_start_scope

DW_TAG_imported_unit DW_AT_import

DW_TAG_inheritance DECL
DW_AT_accessibility
DW_AT_data_member_location
DW_AT_type
DW_AT_virtuality

DW_TAG_inlined_subroutine DW_AT_call_column
DW_AT_call_file
DW_AT_call_line
DW_AT_const_expr
DW_AT_entry_pc
DW_AT_high_pc
DW_AT_low_pc
DW_AT_ranges
DW_AT_return_addr
DW_AT_start_scope
DW_AT_trampoline

DW_TAG_interface_type DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_name
DW_AT_signature
DW_AT_start_scope

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 272

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_label DECL

DW_AT_low_pc
DW_AT_name
DW_AT_start_scope

DW_TAG_lexical_block DECL
DW_AT_entry_pc
DW_AT_high_pc
DW_AT_low_pc
DW_AT_name
DW_AT_ranges

DW_TAG_member DECL
DW_AT_accessibility
DW_AT_bit_size
DW_AT_byte_size
DW_AT_data_bit_offset
DW_AT_data_member_location
DW_AT_declaration
DW_AT_mutable
DW_AT_name
DW_AT_type
DW_AT_visibility

DW_TAG_module DECL
DW_AT_accessibility
DW_AT_declaration
DW_AT_entry_pc
DW_AT_high_pc
DW_AT_low_pc
DW_AT_name
DW_AT_priority
DW_AT_ranges
DW_AT_specification
DW_AT_visibility

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 273

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_namelist DECL

DW_AT_accessibility
DW_AT_declaration
DW_AT_name
DW_AT_visibility

DW_TAG_namelist_item DECL
DW_AT_namelist_item

DW_TAG_namespace DECL
DW_AT_export_symbols
DW_AT_extension
DW_AT_name
DW_AT_start_scope

DW_TAG_packed_type DECL
DW_AT_alignment
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 274

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_partial_unit DW_AT_addr_base

DW_AT_base_types
DW_AT_comp_dir
DW_AT_dwo_name
DW_AT_entry_pc
DW_AT_identifier_case
DW_AT_high_pc
DW_AT_language_name
DW_AT_language_version
DW_AT_low_pc
DW_AT_macros
DW_AT_main_subprogram
DW_AT_name
DW_AT_producer
DW_AT_ranges
DW_AT_rnglists_base
DW_AT_stmt_list
DW_AT_str_offsets
DW_AT_use_UTF8

DW_TAG_pointer_type DECL
DW_AT_address_class
DW_AT_alignment
DW_AT_bit_size
DW_AT_byte_size
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 275

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_ptr_to_member_type DECL

DW_AT_address_class
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_containing_type
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_type
DW_AT_use_location
DW_AT_visibility

DW_TAG_reference_type DECL
DW_AT_address_class
DW_AT_alignment
DW_AT_bit_size
DW_AT_byte_size
DW_AT_name
DW_AT_type

DW_TAG_restrict_type DECL
DW_AT_alignment
DW_AT_name
DW_AT_type

DW_TAG_rvalue_reference_type DECL
DW_AT_address_class
DW_AT_alignment
DW_AT_bit_size
DW_AT_byte_size
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 276

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_set_type DECL

DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_byte_size
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_shared_type DECL
DW_AT_count
DW_AT_alignment
DW_AT_name
DW_AT_type

DW_TAG_skeleton_unit DW_AT_addr_base
DW_AT_comp_dir
DW_AT_dwo_name
DW_AT_high_pc
DW_AT_low_pc
DW_AT_ranges
DW_AT_rnglists_base
DW_AT_stmt_list
DW_AT_str_offsets
DW_AT_use_UTF8

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 277

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_string_type DECL

DW_AT_alignment
DW_AT_accessibility
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_byte_size
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_start_scope
DW_AT_string_length
DW_AT_string_length_bit_size
DW_AT_string_length_byte_size
DW_AT_visibility

DW_TAG_structure_type DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_byte_size
DW_AT_calling_convention
DW_AT_data_location
DW_AT_declaration
DW_AT_export_symbols
DW_AT_name
DW_AT_signature
DW_AT_specification
DW_AT_start_scope
DW_AT_visibility

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 278

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_subprogram DECL

DW_AT_accessibility
DW_AT_address_class
DW_AT_alignment
DW_AT_calling_convention
DW_AT_declaration
DW_AT_defaulted
DW_AT_deleted
DW_AT_elemental
DW_AT_entry_pc
DW_AT_explicit
DW_AT_external
DW_AT_frame_base
DW_AT_high_pc
DW_AT_inline
DW_AT_linkage_name
DW_AT_low_pc
DW_AT_main_subprogram
DW_AT_name
DW_AT_noreturn
DW_AT_object_pointer
DW_AT_prototyped
DW_AT_pure
DW_AT_ranges
DW_AT_recursive
DW_AT_reference
DW_AT_return_addr
DW_AT_rvalue_reference
DW_AT_specification
Additional attributes continue on next page

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 279

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_subprogram (cont.) DW_AT_start_scope

DW_AT_static_link
DW_AT_trampoline
DW_AT_type
DW_AT_visibility
DW_AT_virtuality
DW_AT_vtable_elem_location

DW_TAG_subrange_type DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_bit_stride
DW_AT_byte_size
DW_AT_byte_stride
DW_AT_count
DW_AT_data_location
DW_AT_declaration
DW_AT_lower_bound
DW_AT_name
DW_AT_threads_scaled
DW_AT_type
DW_AT_upper_bound
DW_AT_visibility

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 280

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_subroutine_type DECL

DW_AT_accessibility
DW_AT_address_class
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_prototyped
DW_AT_reference
DW_AT_rvalue_reference
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_template_alias DECL
DW_AT_accessibility
DW_AT_allocated
DW_AT_associated
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_signature
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_template_type_parameter DECL
DW_AT_default_value
DW_AT_name
DW_AT_type

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 281

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_template_value_parameter DECL

DW_AT_const_value
DW_AT_default_value
DW_AT_name
DW_AT_type

DW_TAG_thrown_type DECL
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_data_location
DW_AT_name
DW_AT_type

DW_TAG_try_block DECL
DW_AT_entry_pc
DW_AT_high_pc
DW_AT_low_pc
DW_AT_ranges

DW_TAG_typedef DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_data_location
DW_AT_declaration
DW_AT_name
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

DW_TAG_type_unit DW_AT_language_name
DW_AT_language_version
DW_AT_stmt_list
DW_AT_str_offsets
DW_AT_use_UTF8

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 282

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_union_type DECL

DW_AT_accessibility
DW_AT_alignment
DW_AT_allocated
DW_AT_associated
DW_AT_bit_size
DW_AT_byte_size
DW_AT_calling_convention
DW_AT_data_location
DW_AT_declaration
DW_AT_export_symbols
DW_AT_name
DW_AT_signature
DW_AT_specification
DW_AT_start_scope
DW_AT_visibility

DW_TAG_unspecified_parameters DECL

DW_TAG_unspecified_type DECL
DW_AT_name

DW_TAG_variable DECL
DW_AT_accessibility
DW_AT_alignment
DW_AT_const_expr
DW_AT_const_value
DW_AT_declaration
DW_AT_endianity
DW_AT_external
DW_AT_linkage_name
DW_AT_location
DW_AT_name
DW_AT_specification
DW_AT_start_scope
DW_AT_type
DW_AT_visibility

Continued on next page

July 15 2024 ***WORKING DRAFT*** Page 283

Appendix A. Attributes by Tag (Informative)

TAG name Applicable attributes
DW_TAG_variant DECL

DW_AT_accessibility
DW_AT_declaration
DW_AT_discr_list
DW_AT_discr_value

DW_TAG_variant_part DECL
DW_AT_accessibility
DW_AT_declaration
DW_AT_discr
DW_AT_type

DW_TAG_volatile_type DECL
DW_AT_name
DW_AT_type

DW_TAG_with_stmt DECL
DW_AT_accessibility
DW_AT_address_class
DW_AT_declaration
DW_AT_entry_pc
DW_AT_high_pc
DW_AT_location
DW_AT_low_pc
DW_AT_ranges
DW_AT_type
DW_AT_visibility

July 15 2024 ***WORKING DRAFT*** Page 284

Appendix A. Attributes by Tag (Informative)

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 285

Appendix B1

Debug Section Relationships2

(Informative)3

DWARF information is organized into multiple program sections, each of which4

holds a particular kind of information. In some cases, information in one section5

refers to information in one or more of the others. These relationships are6

illustrated by the diagrams and associated notes on the following pages.7

In the figures, a section is shown as a shaded oval with the name of the section8

inside. References from one section to another are shown by an arrow. In the first9

figure, the arrow is annotated with an unshaded box which contains an10

indication of the construct (such as an attribute or form) that encodes the11

reference. In the second figure, this box is left out for reasons of space in favor of12

a label annotation that is explained in the subsequent notes.13

B.1 Normal DWARF Section Relationships14

Figure B.1 following illustrates the DWARF section relations without split15

DWARF object files involved. Similarly, it does not show the relationships16

between the main debugging sections of an executable or sharable file and a17

related supplementary object file.18

July 15 2024 ***WORKING DRAFT*** Page 286

Appendix B. Debug Section Relationships (Informative)

B.2 Split DWARF Section Relationships1

Figure B.2 on page 292 illustrates the DWARF section relationships for split2

DWARF object files. However, it does not show the relationships between the3

main debugging sections of an executable or shareable file and a related4

supplementary object file. For space reasons, the figure omits some details that5

are shown in Figure B.1, such as indirect references using indexing sections (such6

as .debug_str_offsets).7

July 15 2024 ***WORKING DRAFT*** Page 287

Appendix B. Debug Section Relationships (Informative)

.d
eb

ug
_a

ra
ng

es

To
co

m
pi

la
ti

on
un

it
(a

)

.d
eb

ug
_i

nf
o

A To
co

m
pi

la
ti

on
un

it
(b

)

.d
eb

ug
_n

am
es

.d
eb

ug
_f

ra
me

To
ab

br
ev

ia
ti

on
s

(c
)

D
W

_F
O

R
M

_s
tr

p[
8]

(d
)

D
W

_A
T_

st
r_

of
fs

et
s

D
W

_F
O

R
M

_s
tr

x[
1,

2,
3,

4]
(e

)

D
W

_O
P_

ca
ll_

re
f

(f
)

D
W

_F
O

R
M

_r
ef

_a
dd

r

D
W

_A
T_

m
ac

ro
s

(g
)

D
W

_A
T_

st
m

t_
lis

t
(h

)

D
W

_A
T_

ra
ng

es
(i

)
D

W
_A

T_
rn

gl
is

ts
_b

as
e

D
W

_A
T_

lo
ca

ti
on

,e
tc

.
(j)

D
W

_A
T_

ad
dr

_b
as

e
D

W
_F

O
R

M
_a

dd
rx

[1
,2

,3
,4

]
D

W
_O

P_
ad

dr
x

D
W

_O
P_

co
ns

tx
(k

)

.d
eb

ug
_a

bb
re

v

.d
eb

ug
_s

tr

To
st

ri
ng

s
(l

)

.d
eb

ug
_s

tr
_o

ff
se

ts

D
W

_M
A

C
R

O
_d

efi
ne

_s
tr

x
D

W
_M

A
C

R
O

_u
nd

ef
_s

tr
x

(m
)

.d
eb

ug
_m

ac
ro

m
ac

ro
in

fo
he

ad
er

(n
)

D
W

_M
A

C
R

O
_s

ta
rt

_fi
le

.d
eb

ug
_l

in
e

.d
eb

ug
_r

ng
li

st
s

.d
eb

ug
_l

oc
li

st
s

D
W

_O
P_

ad
dr

x
D

W
_O

P_
co

ns
tx

(o
)

D
W

_L
LE

_*
x*

.d
eb

ug
_a

dd
r

D
W

_M
A

C
R

O
_d

efi
ne

_s
tr

p
D

W
_M

A
C

R
O

_u
nd

ef
_s

tr
p

(p
)

D
W

_M
A

C
R

O
_i

m
po

rt
(q

)

A

D
W

_F
O

R
M

_l
in

e_
st

rp
(r

,s
)

.d
eb

ug
_l

in
e_

st
r

D
W

_R
LE

_b
as

e_
ad

dr
es

sx
D

W
_R

LE
_s

ta
rt

x_
en

dx
(t

)
D

W
_R

LE
_s

ta
rt

x_
le

ng
th

Fi
gu

re
B.

1:
D

eb
ug

se
ct

io
n

re
la

ti
on

sh
ip

s

July 15 2024 ***WORKING DRAFT*** Page 288

Appendix B. Debug Section Relationships (Informative)

Notes for Figure B.11

(a) .debug_aranges to .debug_info2

The debug_info_offset value in the header is the offset in the .debug_info3

section of the corresponding compilation unit header (not the compilation4

unit entry).5

(b) .debug_names to .debug_info6

The list of compilation units following the header contains the offsets in the7

.debug_info section of the corresponding compilation unit headers (not the8

compilation unit entries).9

(c) .debug_info to .debug_abbrev10

The debug_abbrev_offset value in the header is the offset in the11

.debug_abbrev section of the abbreviations for that compilation unit.12

(d) .debug_info to .debug_str13

Attribute values of class string may have form DW_FORM_strp or14

DW_FORM_strp8, whose value is the offset in the .debug_str section of15

the corresponding string.16

(e) .debug_info to .debug_str_offsets17

The value of the DW_AT_str_offsets attribute in a DW_TAG_compile_unit,18

DW_TAG_type_unit or DW_TAG_partial_unit DIE is the offset in the19

.debug_str_offsets section of the header of the string offsets information20

for that unit. In addition, attribute values of class string may have one of21

the forms DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2,22

DW_FORM_strx3 or DW_FORM_strx4, whose value is an index into the23

string offsets table.24

(f) .debug_info to .debug_info25

The operand of the DW_OP_call_ref DWARF expression operator is the26

offset of a debugging information entry in the .debug_info section of27

another compilation. Similarly for attribute operands that use28

DW_FORM_ref_addr.29

(g) .debug_info to .debug_macro30

An attribute value of class macptr (specifically form DW_FORM_sec_offset)31

is an offset within the .debug_macro section of the beginning of the macro32

information for the referencing unit.33

(h) .debug_info to .debug_line34

An attribute value of class lineptr (specifically form DW_FORM_sec_offset)35

is an offset in the .debug_line section of the beginning of the line number36

information for the referencing unit.37

July 15 2024 ***WORKING DRAFT*** Page 289

Appendix B. Debug Section Relationships (Informative)

(i) .debug_info to .debug_rnglists1

An attribute value of class rnglist (specifically form DW_FORM_rnglistx or2

DW_FORM_sec_offset) is an index or offset within the .debug_rnglists3

section of a range list.4

(j) .debug_info to .debug_loclists5

An attribute value of class loclist (specifically form DW_FORM_loclistx or6

DW_FORM_sec_offset) is an index or offset within the .debug_loclists7

section of a value list or location list.8

(k) .debug_info to .debug_addr9

The value of the DW_AT_addr_base attribute in the10

DW_TAG_compile_unit or DW_TAG_partial_unit DIE is the offset in the11

.debug_addr section of the machine addresses for that unit.12

DW_FORM_addrx, DW_FORM_addrx1, DW_FORM_addrx2,13

DW_FORM_addrx3, DW_FORM_addrx4, DW_OP_addrx and14

DW_OP_constx contain indices relative to that offset.15

(l) .debug_str_offsets to .debug_str16

Entries in the string offsets table are offsets to the corresponding string text17

in the .debug_str section.18

(m) .debug_macro to .debug_str_offsets19

The second operand of a DW_MACRO_define_strx or20

DW_MACRO_undef_strx macro information entry is an index into the21

string offset table in the .debug_str_offsets section.22

(n) .debug_macro to .debug_line23

The second operand of DW_MACRO_start_file refers to a file entry in the24

.debug_line section relative to the start of that section given in the macro25

information header.26

(o) .debug_loclists to .debug_addr27

DW_OP_addrx and DW_OP_constx operators that occur in the28

.debug_loclists section refer indirectly to the .debug_addr section by way29

of the DW_AT_addr_base attribute in the associated .debug_info section.30

Also, some operands of the DW_LLE_base_addressx,31

DW_LLE_startx_endx and DW_LLE_startx_length value list or location list32

entries have operands that are an index into the .debug_addr section.33

(p) .debug_macro to .debug_str34

The second operand of a DW_MACRO_define_strp or35

DW_MACRO_undef_strp macro information entry is an index into the36

string table in the .debug_str section.37

July 15 2024 ***WORKING DRAFT*** Page 290

Appendix B. Debug Section Relationships (Informative)

(q) .debug_macro to .debug_macro1

The operand of a DW_MACRO_import macro information entry is an2

offset into another part of the .debug_macro section to the header for the3

sequence to be replicated.4

(r) .debug_line to .debug_line_str5

The value of a DW_FORM_line_strp form refers to a string section specific6

to the line number table. This form can be used in a .debug_line section (as7

well as in a .debug_info section).8

(s) .debug_info to .debug_line_str9

The value of a DW_FORM_line_strp form refers to a string section specific10

to the line number table. This form can be used in a .debug_info section (as11

well as in a .debug_line section).112

(t) .debug_rnglists to .debug_addr13

Some operands of DW_RLE_base_addressx, DW_RLE_startx_endx and14

DW_RLE_startx_length range list entries are an an index into the15

.debug_addr section.16

1The circled (A) of the left connects to the circled (A) on the right via hyperspace (a wormhole).

July 15 2024 ***WORKING DRAFT*** Page 291

Appendix B. Debug Section Relationships (Informative)

.d
eb

ug
_a

bb
re
v

.d
eb

ug
_a

dd
r

.d
eb

ug
_a

ra
ng
es

.d
eb

ug
_f

ra
me

.d
eb

ug
_l

in
e

.d
eb

ug
_l

in
e_
st

r

.d
eb

ug
_n

am
es

.d
eb

ug
_r

ng
li
st

s

.d
eb

ug
_s

tr

.d
eb

ug
_s

tr
_o

ff
se

ts

.d
eb

ug
_i

nf
o

(s
ke

le
to

n
C

U
)

.d
eb

ug
_i

nf
o.
dw

o
(o

ne
C

U
,p

os
si

bl
y

m
ul

ti
pl

e
C

O
M

D
A

T
ty

pe
un

it
s)

.d
eb

ug
_a

bb
re
v.

dw
o .d
eb

ug
_l

oc
li
st

s.
dw

o

.d
eb

ug
_r

ng
li

st
s.

dw
o

.d
eb

ug
_l

in
e.

dw
o

.d
eb

ug
_m

ac
ro

.d
wo

.d
eb

ug
_s

tr
.d
wo

.d
eb

ug
_s

tr
_o
ff

se
ts

.d
wo

(c
)

(k
)

(a
)

(h
)

(l
)

(b
) (i

)
(d

)

(e
)

(l
)

(d
id

)
(c

o)

(h
o)

(i
o)

(jo
)

(g
o)

(e
o)

(l
o)

(q
o)

(m
o)

(l
m

o)

Sk
el

et
on

D
W

A
R

F
in

ex
ec

ut
ab

le
Sp

lit
D

W
A

R
F

in
se

pa
ra

te
ob

je
ct

Fi
gu

re
B.

2:
Sp

lit
D

W
A

R
F

se
ct

io
n

re
la

ti
on

sh
ip

s

July 15 2024 ***WORKING DRAFT*** Page 292

Appendix B. Debug Section Relationships (Informative)

Notes for Figure B.21

(a) .debug_aranges to .debug_info2

The debug_info_offset field in the header is the offset in the .debug_info3

section of the corresponding compilation unit header of the skeleton4

.debug_info section (not the compilation unit entry). The5

DW_AT_dwo_name attribute in the .debug_info skeleton connects the6

ranges to the full compilation unit in .debug_info.dwo.7

(b) .debug_names to .debug_info8

The .debug_names section offsets lists provide an offset for the skeleton9

compilation unit and eight byte signatures for the type units that appear10

only in the .debug_info.dwo. The DIE offsets for these compilation units11

and type units refer to the DIEs in the .debug_info.dwo section for the12

respective compilation unit and type units.13

(c) .debug_info skeleton to .debug_abbrev14

The debug_abbrev_offset value in the header is the offset in the15

.debug_abbrev section of the abbreviations for that compilation unit16

skeleton.17

(co) .debug_info.dwo to .debug_abbrev.dwo18

The debug_abbrev_offset value in the header is the offset in the19

.debug_abbrev.dwo section of the abbreviations for that compilation unit.20

(d) .debug_info to .debug_str21

Attribute values of class string may have form DW_FORM_strp or22

DW_FORM_strp8, whose value is an offset in the .debug_str section of the23

corresponding string.24

(did) .debug_info to .debug_info.dwo25

The DW_AT_dwo_name attribute in a skeleton unit identifies the file26

containing the corresponding .dwo (split) data.27

(e) .debug_info to .debug_str_offsets28

Attribute values of class string may have one of the forms DW_FORM_strx,29

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or30

DW_FORM_strx4, whose value is an index into the .debug_str_offsets31

section for the corresponding string.32

(eo).debug_info.dwo to .debug_str_offsets.dwo33

Attribute values of class string may have one of the forms DW_FORM_strx,34

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or35

DW_FORM_strx4, whose value is an index into the36

.debug_str_offsets.dwo section for the corresponding string.37

July 15 2024 ***WORKING DRAFT*** Page 293

Appendix B. Debug Section Relationships (Informative)

(go) .debug_info.dwo to .debug_macro.dwo1

An attribute of class macptr (specifically DW_AT_macros with form2

DW_FORM_sec_offset) is an offset within the .debug_macro.dwo section of3

the beginning of the macro information for the referencing unit.4

(h) .debug_info (skeleton) to .debug_line5

An attribute value of class lineptr (specifically DW_AT_stmt_list with form6

DW_FORM_sec_offset) is an offset within the .debug_line section of the7

beginning of the line number information for the referencing unit.8

(ho) .debug_info.dwo to .debug_line.dwo (skeleton)9

An attribute value of class lineptr (specifically DW_AT_stmt_list with form10

DW_FORM_sec_offset) is an offset within the .debug_line.dwo section of11

the beginning of the line number header information for the referencing12

unit (the line table details are not in .debug_line.dwo but the line header13

with its list of file names is present).14

(i) .debug_info to .debug_rnglists15

An attribute value of class rnglist (specifically form DW_FORM_rnglistx or16

DW_FORM_sec_offset) is an index or offset within the .debug_rnglists17

section of a range list.18

(io) .debug_info.dwo to .debug_rnglists.dwo19

An attribute value of class rnglist (specifically DW_AT_ranges with form20

DW_FORM_rnglistx or DW_FORM_sec_offset) is an index or offset within21

the .debug_rnglists.dwo section of a range list. The format of22

.debug_rnglists.dwo value list or location list entries is restricted to a23

subset of those in .debug_rnglists. See Section 2.17.3 on page 54 for24

details.25

(jo) .debug_info.dwo to .debug_loclists.dwo26

An attribute value of class loclist (specifically with form27

DW_FORM_loclistx or DW_FORM_sec_offset) is an index or offset within28

the .debug_loclists.dwo section of a value list or location list. The format29

of .debug_loclists.dwo location list entries is restricted to a subset of30

those in .debug_loclists. See Section 2.6.2 on page 44 for details.31

(k) .debug_info to .debug_addr32

The value of the DW_AT_addr_base attribute in the33

DW_TAG_compile_unit, DW_TAG_partial_unit or DW_TAG_type_unit34

DIE is the offset in the .debug_addr section of the machine addresses for35

that unit. DW_FORM_addrx, DW_FORM_addrx1, DW_FORM_addrx2,36

DW_FORM_addrx3, DW_FORM_addrx4, DW_OP_addrx and37

DW_OP_constx contain indices relative to that offset.38

July 15 2024 ***WORKING DRAFT*** Page 294

Appendix B. Debug Section Relationships (Informative)

(lmo) .debug_line.dwo to .debug_str_offsets.dwo1

The value of a DW_FORM_line_strp form refers to a string section specific2

to the line number table. This form can be used in a .debug_line.dwo3

section (as well as in a .debug_info.dwo section).4

(lo) .debug_str_offsets.dwo to .debug_str.dwo5

Entries in the string offsets table are offsets to the corresponding string text6

in the .debug_str.dwo section.7

(mo) .debug_macro.dwo to .debug_str_offsets.dwo8

Within the .debug_macro.dwo sections, the second operand of9

DW_MACRO_define_strx and DW_MACRO_undef_strx operations is an10

unsigned LEB128 value interpreted as an index into the11

.debug_str_offsets.dwo section.12

(qo) .debug_macro.dwo to .debug_line.dwo13

Within the .debug_macro.dwo sections, if a DW_MACRO_start_file entry is14

present, the macro header contains an offset into the .debug_line.dwo15

section.16

July 15 2024 ***WORKING DRAFT*** Page 295

Appendix C1

Variable Length Data:2

Encoding/Decoding (Informative)3

Here are algorithms expressed in a C-like pseudo-code to encode and decode4

signed and unsigned numbers in LEB128 representation.5

The encode and decode algorithms given here do not take account of C/C++6

rules that mean that in E1<<E2 the type of E1 should be a sufficiently large7

unsigned type to hold the correct mathematical result. The decode algorithms do8

not take account of or protect from possibly invalid LEB values, such as values9

that are too large to fit in the target type or that lack a proper terminator byte.10

Implementation languages may have additional or different rules.11

do
{

byte = low order 7 bits of value;
value >>= 7;
if (value != 0) /* more bytes to come */

set high order bit of byte;
emit byte;

} while (value != 0);

Figure C.1: Algorithm to encode an unsigned integer

July 15 2024 ***WORKING DRAFT*** Page 296

Appendix C. Encoding/Decoding (Informative)

more = 1;
negative = (value < 0);
size = no. of bits in signed integer;
while(more)
{

byte = low order 7 bits of value;
value >>= 7;
/* the following is unnecessary if the
* implementation of >>= uses an arithmetic rather
* than logical shift for a signed left operand
*/

if (negative)
/* sign extend */
value |= - (1 <<(size - 7));

/* sign bit of byte is second high order bit (0x40) */
if ((value == 0 && sign bit of byte is clear) ||

(value == -1 && sign bit of byte is set))
more = 0;

else
set high order bit of byte;

emit byte;
}

Figure C.2: Algorithm to encode a signed integer

result = 0;
shift = 0;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
if (high order bit of byte == 0)

break;
shift += 7;

}

Figure C.3: Algorithm to decode an unsigned LEB128 integer

July 15 2024 ***WORKING DRAFT*** Page 297

Appendix C. Encoding/Decoding (Informative)

result = 0;
shift = 0;
size = number of bits in signed integer;
while(true)
{

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;
/* sign bit of byte is second high order bit (0x40) */
if (high order bit of byte == 0)

break;
}
if ((shift <size) && (sign bit of byte is set))

/* sign extend */
result |= - (1 << shift);

Figure C.4: Algorithm to decode a signed LEB128 integer

July 15 2024 ***WORKING DRAFT*** Page 298

Appendix C. Encoding/Decoding (Informative)

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 299

Appendix D1

Examples (Informative)2

The following sections provide examples that illustrate various aspects of the3

DWARF debugging information format.4

D.1 General Description Examples5

D.1.1 Compilation Units and Abbreviations Table Example6

Figure D.1 on the following page depicts the relationship of the abbreviations7

tables contained in the .debug_abbrev section to the information contained in8

the .debug_info section. Values are given in symbolic form, where possible.9

The figure corresponds to the following two trivial source files:10

File myfile.c

typedef char* POINTER;

File myfile2.c

typedef char* strp;

July 15 2024 ***WORKING DRAFT*** Page 300

Appendix D. Examples (Informative)

e1:

e2:

Compilation Unit #1:
.debug_info

length
4
a1 (abbreviations table offset)
4

1
"myfile.c"
"Best Compiler Corp, V1.3"
"/home/mydir/src"
DW_LNAME_C
0x0
0x55
DW_FORM_sec_offset
0x0

2
"char"
DW_ATE_unsigned_char
1

3
e1 (debug info offset)

4
"POINTER"
e2 (debug info offset)

0

Compilation Unit #2:
.debug_info

length
4
a1 (abbreviations table offset)
4

...

4
"strp"
e2 (debug info offset)

...

a1:

Abbreviation Table:
.debug_abbrev

1
DW_TAG_compile_unit
DW_CHILDREN_yes
DW_AT_name DW_FORM_string
DW_AT_producer DW_FORM_string
DW_AT_comp_dir DW_FORM_string
DW_AT_language_name DW_FORM_data1
DW_AT_low_pc DW_FORM_addr
DW_AT_high_pc DW_FORM_data1
DW_AT_stmt_list DW_FORM_indirect
0

2
DW_TAG_base_type
DW_CHILDREN_no
DW_AT_name DW_FORM_string
DW_AT_encoding DW_FORM_data1
DW_AT_byte_size DW_FORM_data1
0

3
DW_TAG_pointer_type
DW_CHILDREN_no
DW_AT_type DW_FORM_ref4
0

4
DW_TAG_typedef
DW_CHILDREN_no
DW_AT_name DW_FORM_string
DW_AT_type DW_FORM_ref_addr
0

0

Figure D.1: Compilation units and abbreviations table

July 15 2024 ***WORKING DRAFT*** Page 301

Appendix D. Examples (Informative)

D.1.2 DWARF Stack Operation Examples1

The stack operations defined in Section 2.5.1.3 on page 29. are fairly conventional, but2

the following examples illustrate their behavior graphically.3

Before Operation After
0 17 DW_OP_dup 0 17
1 29 1 17
2 1000 2 29

3 1000

0 17 DW_OP_drop 0 29
1 29 1 1000
2 1000

0 17 DW_OP_pick, 2 0 1000
1 29 1 17
2 1000 2 29

3 1000

0 17 DW_OP_over 0 29
1 29 1 17
2 1000 2 29

3 1000

0 17 DW_OP_swap 0 29
1 29 1 17
2 1000 2 1000

0 17 DW_OP_rot 0 29
1 29 1 1000
2 1000 2 17

July 15 2024 ***WORKING DRAFT*** Page 302

Appendix D. Examples (Informative)

D.1.3 DWARF Location Description Examples1

Following are examples of DWARF operations used to form location2

descriptions:3

DW_OP_reg34

The value is in register 3.5

DW_OP_regx (54)6

The value is in register 54.7

DW_OP_addr (0x80d0045c)8

The value of a static variable is at machine address 0x80d0045c.9

DW_OP_breg11 (44)10

Add 44 to the value in register 11 to get the address of an automatic variable11

instance.12

DW_OP_fbreg (-50)13

Given a DW_AT_frame_base value of “DW_OP_breg31 64,” this example14

computes the address of a local variable that is -50 bytes from a logical15

frame pointer that is computed by adding 64 to the current stack pointer16

(register 31).17

DW_OP_bregx (54, 32)18

DW_OP_deref19

A call-by-reference parameter whose address is in the location beginning 3220

bytes from where register 54 points.21

DW_OP_plus_uconst (4)22

A structure member is four bytes from the start of the structure instance.23

The base address is assumed to be already on the stack.24

July 15 2024 ***WORKING DRAFT*** Page 303

Appendix D. Examples (Informative)

DW_OP_reg31

DW_OP_piece (4)2

DW_OP_reg103

DW_OP_piece (2)4

A variable whose first four bytes reside in register 3 and whose next two5

bytes reside in register 10.6

DW_OP_reg07

DW_OP_piece (4)8

DW_OP_piece (4)9

DW_OP_fbreg (-12)10

DW_OP_piece (4)11

A twelve byte value whose first four bytes reside in register zero, whose12

middle four bytes are unavailable (perhaps due to optimization), and13

whose last four bytes are in memory, 12 bytes before the frame base.14

DW_OP_breg1 (0)15

DW_OP_breg2 (0)16

DW_OP_plus17

DW_OP_stack_value18

Add the contents of r1 and r2 to compute a value. This value is the19

“contents” of an otherwise anonymous location.20

DW_OP_lit121

DW_OP_stack_value22

DW_OP_piece (4)23

DW_OP_breg3 (0)24

DW_OP_breg4 (0)25

DW_OP_plus26

DW_OP_stack_value27

DW_OP_piece (4)28

The object value is found in an anonymous (virtual) location whose value29

consists of two parts, given in memory address order: the 4 byte value 130

followed by the four byte value computed from the sum of the contents of31

r3 and r4.32

July 15 2024 ***WORKING DRAFT*** Page 304

Appendix D. Examples (Informative)

DW_OP_entry_value (2, DW_OP_breg1 0)1

! The first operand gives the number of bytes in the2

! second operand (see Section 2.5.1.7 on page 37).3

The variable’s address is the value that register 1 contained upon entering4

the current subprogram.5

DW_OP_entry_value (1, DW_OP_reg1)6

Same as the previous example but uses the more compact register location7

description as an operand.8

DW_OP_entry_value (2, DW_OP_breg1 0)9

DW_OP_stack_value10

The variables’s value is the value that register 1 contained upon entering the11

current subprogram. This value is the “contents” of an otherwise12

anonymous location.13

DW_OP_entry_value (1, DW_OP_reg1)14

DW_OP_stack_value15

Same as the previous example, but uses the more compact register location16

description.17

DW_OP_entry_value (3, DW_OP_breg4 16 DW_OP_deref)18

DW_OP_stack_value19

Add 16 to the value register 4 had upon entering the current subprogram to20

form an address and then push the value of the memory location at that21

address. This value is the “contents” of an otherwise anonymous location.22

DW_OP_entry_value (1, DW_OP_reg5)23

DW_OP_plus_uconst (16)24

The address of the memory location is calculated by adding 16 to the value25

contained in register 5 upon entering the current subprogram.26

July 15 2024 ***WORKING DRAFT*** Page 305

Appendix D. Examples (Informative)

DW_OP_reg01

DW_OP_bit_piece (1, 31)2

DW_OP_bit_piece (7, 0)3

DW_OP_reg14

DW_OP_piece (1)5

A variable whose first bit resides in the 31st bit of register 0, whose next6

seven bits are undefined and whose second byte resides in register 1.7

D.2 Aggregate Examples8

The following examples illustrate how to represent some of the more9

complicated forms of array and record aggregates using DWARF.10

D.2.1 Fortran Simple Array Example11

Consider the Fortran array source fragment in Figure D.2 following.12

TYPE array_ptr
REAL :: myvar
REAL , DIMENSION (:), POINTER :: ap
END TYPE array_ptr
TYPE(array_ptr), ALLOCATABLE , DIMENSION (:) :: arrayvar
ALLOCATE(arrayvar (20))
DO I = 1, 20

ALLOCATE(arrayvar(i)%ap(i+10))
END DO

Figure D.2: Fortran array example: source fragment

For allocatable and pointer arrays, it is essentially required by theFortran array13

semantics that each array consist of two parts, which we here call 1) the14

descriptor and 2) the raw data. (A descriptor has often been called a dope vector15

in other contexts, although it is often a structure of some kind rather than a16

simple vector.) Because there are two parts, and because the lifetime of the17

descriptor is necessarily longer than and includes that of the raw data, there must18

be an address somewhere in the descriptor that points to the raw data when, in19

fact, there is some (that is, when the “variable” is allocated or associated).20

July 15 2024 ***WORKING DRAFT*** Page 306

Appendix D. Examples (Informative)

For concreteness, suppose that a descriptor looks something like the C structure1

in Figure D.3. Note, however, that it is a property of the design that 1) a debugger2

needs no builtin knowledge of this structure and 2) there does not need to be an3

explicit representation of this structure in the DWARF input to the debugger.4

struct desc {
long el_len; // Element length
void * base; // Address of raw data
int ptr_assoc : 1; // Pointer is associated flag
int ptr_alloc : 1; // Pointer is allocated flag
int num_dims : 6; // Number of dimensions
struct dims_str { // For each dimension ...

long low_bound;
long upper_bound;
long stride;

} dims [63];
};

Figure D.3: Fortran array example: descriptor representation

In practice, of course, a “real” descriptor will have dimension substructures only5

for as many dimensions as are specified in the num_dims component. Let us use6

the notation desc<n> to indicate a specialization of the desc struct in which n is7

the bound for the dims component as well as the contents of the num_dims8

component.9

Because the arrays considered here come in two parts, it is necessary to10

distinguish the parts carefully. In particular, the “address of the variable” or11

equivalently, the “base address of the object” always refers to the descriptor. For12

arrays that do not come in two parts, an implementation can provide a descriptor13

anyway, thereby giving it two parts. (This may be convenient for general runtime14

support unrelated to debugging.) In this case the above vocabulary applies as15

stated. Alternatively, an implementation can do without a descriptor, in which16

case the “address of the variable,” or equivalently the “base address of the17

object”, refers to the “raw data” (the real data, the only thing around that can be18

the object).19

If an object has a descriptor, then the DWARF type for that object will have a20

DW_AT_data_location attribute. If an object does not have a descriptor, then21

usually the DWARF type for the object will not have a DW_AT_data_location22

attribute. (See the following Ada example for a case where the type for an object23

without a descriptor does have a DW_AT_data_location attribute. In that case24

the object doubles as its own descriptor.)25

July 15 2024 ***WORKING DRAFT*** Page 307

Appendix D. Examples (Informative)

The Fortran derived type array_ptr can now be re-described in C-like terms that1

expose some of the representation as in2

struct array_ptr {
float myvar;
desc <1> ap;

};

Similarly for variable arrayvar:3

desc <1> arrayvar;

Recall that desc<1> indicates the 1-dimensional version of desc.4

Finally, the following notation is useful:5

1. sizeof(type): size in bytes of entities of the given type6

2. offset(type, comp): offset in bytes of the comp component within an entity of7

the given type8

The DWARF description is shown in Figure D.4 on page 310.9

Suppose the program is stopped immediately following completion of the do10

loop. Suppose further that the user enters the following debug command:11

debug > print arrayvar (5)%ap(2)

Interpretation of this expression proceeds as follows:12

1. Lookup name arrayvar. We find that it is a variable, whose type is given by13

the unnamed type at 6$. Notice that the type is an array type.14

2. Find the 5th element of that array object. To do array indexing requires15

several pieces of information:16

a) the address of the array data17

b) the lower bounds of the array18

[To check that 5 is within bounds would require the upper bound too, but19

we will skip that for this example.]20

c) the stride21

July 15 2024 ***WORKING DRAFT*** Page 308

Appendix D. Examples (Informative)

For a), check for a DW_AT_data_location attribute. Since there is one, go1

execute the expression, whose result is the address needed. The object2

address used in this case is the object we are working on, namely the variable3

named arrayvar, whose address was found in step 1. (Had there been no4

DW_AT_data_location attribute, the desired address would be the same as5

the address from step 1.)6

For b), for each dimension of the array (only one in this case), go interpret the7

usual lower bound attribute. Again this is an expression, which again begins8

with DW_OP_push_object_address. This object is still arrayvar, from step 1,9

because we have not begun to actually perform any indexing yet.10

For c), the default stride applies. Since there is no DW_AT_byte_stride11

attribute, use the size of the array element type, which is the size of type12

array_ptr (at 3$).13

July 15 2024 ***WORKING DRAFT*** Page 309

Appendix D. Examples (Informative)

part 1 of 2

! Description for type of ’ap’
!
1$: DW_TAG_array_type

! No name, default (Fortran) ordering, default stride
DW_AT_type(reference to REAL)
DW_AT_associated(expression= ! Test ’ptr_assoc’ flag

DW_OP_push_object_address
DW_OP_lit<n> ! where n == offset(ptr_assoc)
DW_OP_plus
DW_OP_deref
DW_OP_lit1 ! mask for ’ptr_assoc’ flag
DW_OP_and)

DW_AT_data_location(expression= ! Get raw data address
DW_OP_push_object_address
DW_OP_lit<n> ! where n == offset(base)
DW_OP_plus
DW_OP_deref) ! Type of index of array ’ap’

2$: DW_TAG_subrange_type
! No name, default stride
DW_AT_type(reference to INTEGER)
DW_AT_lower_bound(expression=

DW_OP_push_object_address
DW_OP_lit<n> ! where n ==

! offset(desc, dims) +
! offset(dims_str, lower_bound)

DW_OP_plus
DW_OP_deref)

DW_AT_upper_bound(expression=
DW_OP_push_object_address
DW_OP_lit<n> ! where n ==

! offset(desc, dims) +
! offset(dims_str, upper_bound)

DW_OP_plus
DW_OP_deref)

! Note: for the m’th dimension, the second operator becomes
! DW_OP_lit<n> where
! n == offset(desc, dims) +
! (m-1)*sizeof(dims_str) +
! offset(dims_str, [lower|upper]_bound)
! That is, the expression does not get longer for each successive
! dimension (other than to express the larger offsets involved).

Figure D.4: Fortran array example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 310

Appendix D. Examples (Informative)

part 2 of 2

3$: DW_TAG_structure_type
DW_AT_name("array_ptr")
DW_AT_byte_size(constant sizeof(REAL) + sizeof(desc<1>))

4$: DW_TAG_member
DW_AT_name("myvar")
DW_AT_type(reference to REAL)
DW_AT_data_member_location(constant 0)

5$: DW_TAG_member
DW_AT_name("ap");
DW_AT_type(reference to 1$)
DW_AT_data_member_location(constant sizeof(REAL))

6$: DW_TAG_array_type
! No name, default (Fortran) ordering, default stride
DW_AT_type(reference to 3$)
DW_AT_allocated(expression= ! Test ’ptr_alloc’ flag

DW_OP_push_object_address
DW_OP_lit<n> ! where n == offset(ptr_alloc)
DW_OP_plus
DW_OP_deref
DW_OP_lit2 ! Mask for ’ptr_alloc’ flag
DW_OP_and)

DW_AT_data_location(expression= ! Get raw data address
DW_OP_push_object_address
DW_OP_lit<n> ! where n == offset(base)
DW_OP_plus
DW_OP_deref)

7$: DW_TAG_subrange_type
! No name, default stride
DW_AT_type(reference to INTEGER)
DW_AT_lower_bound(expression=

DW_OP_push_object_address
DW_OP_lit<n> ! where n == ...
DW_OP_plus
DW_OP_deref)

DW_AT_upper_bound(expression=
DW_OP_push_object_address
DW_OP_lit<n> ! where n == ...
DW_OP_plus
DW_OP_deref)

8$: DW_TAG_variable
DW_AT_name("arrayvar")
DW_AT_type(reference to 6$)
DW_AT_location(expression=

...as appropriate...) ! Assume static allocation

Figure D.4: Fortran array example: DWARF description (concluded)

July 15 2024 ***WORKING DRAFT*** Page 311

Appendix D. Examples (Informative)

Having acquired all the necessary data, perform the indexing operation in the1

usual manner–which has nothing to do with any of the attributes involved up2

to now. Those just provide the actual values used in the indexing step.3

The result is an object within the memory that was dynamically allocated for4

arrayvar.5

3. Find the ap component of the object just identified, whose type is array_ptr.6

This is a conventional record component lookup and interpretation. It7

happens that the ap component in this case begins at offset 4 from the8

beginning of the containing object. Component ap has the unnamed array9

type defined at 1$ in the symbol table.10

4. Find the second element of the array object found in step 3. To do array11

indexing requires several pieces of information:12

a) the address of the array storage13

b) the lower bounds of the array14

[To check that 2 is within bounds we would require the upper bound too,15

but we will skip that for this example]16

c) the stride17

This is just like step 2), so the details are omitted. Recall that because the DWARF18

type 1$ has a DW_AT_data_location, the address that results from step 4) is that19

of a descriptor, and that address is the address pushed by the20

DW_OP_push_object_address operations in 1$ and 2$.21

Note: we happen to be accessing a pointer array here instead of an allocatable22

array; but because there is a common underlying representation, the mechanics23

are the same. There could be completely different descriptor arrangements and24

the mechanics would still be the same—only the stack machines would be25

different.26

D.2.2 Fortran Coarray Examples27

D.2.2.1 Fortran Scalar Coarray Example28

The Fortran scalar coarray example in Figure D.5 on the next page can be29

described as illustrated in Figure D.6 on the following page.30

July 15 2024 ***WORKING DRAFT*** Page 312

Appendix D. Examples (Informative)

INTEGER x[*]

Figure D.5: Fortran scalar coarray: source fragment

10$: DW_TAG_coarray_type
DW_AT_type(reference to INTEGER)
DW_TAG_subrange_type ! Note omitted upper bound
DW_AT_lower_bound(constant 1) ! Can be omitted (default is 1)

11$: DW_TAG_variable
DW_AT_name("x")
DW_AT_type(reference to coarray type at 10$)

Figure D.6: Fortran scalar coarray: DWARF description

D.2.2.2 Fortran Array Coarray Example1

The Fortran (simple) array coarray example in Figure D.7 can be described as2

illustrated in Figure D.8.3

INTEGER x(10) [*]

Figure D.7: Fortran array coarray: source fragment

10$: DW_TAG_array_type
DW_AT_ordering(DW_ORD_col_major)
DW_AT_type(reference to INTEGER)

11$: DW_TAG_subrange_type
! DW_AT_lower_bound(constant 1) ! Omitted (default is 1)

DW_AT_upper_bound(constant 10)

12$: DW_TAG_coarray_type
DW_AT_type(reference to array type at 10$)

13$: DW_TAG_subrange_type ! Note omitted upper & lower bounds

14$: DW_TAG_variable
DW_AT_name("x")
DW_AT_type(reference to coarray type at 12$)

Figure D.8: Fortran array coarray: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 313

Appendix D. Examples (Informative)

D.2.2.3 Fortran Multidimensional Coarray Example1

The Fortran multidimensional coarray of a multidimensional array example in2

Figure D.9 can be described as illustrated in Figure D.10 following.3

INTEGER x(10 ,11 ,12)[2,3,*]

Figure D.9: Fortran multidimensional coarray: source fragment

10$: DW_TAG_array_type ! Note omitted lower bounds (default to 1)
DW_AT_ordering(DW_ORD_col_major)
DW_AT_type(reference to INTEGER)

11$: DW_TAG_subrange_type
DW_AT_upper_bound(constant 10)

12$: DW_TAG_subrange_type
DW_AT_upper_bound(constant 11)

13$: DW_TAG_subrange_type
DW_AT_upper_bound(constant 12)

14$: DW_TAG_coarray_type ! Note omitted lower bounds (default to 1)
DW_AT_type(reference to array_type at 10$)

15$: DW_TAG_subrange_type
DW_AT_upper_bound(constant 2)

16$: DW_TAG_subrange_type
DW_AT_upper_bound(constant 3)

17$: DW_TAG_subrange_type ! Note omitted upper (& lower) bound

18$: DW_TAG_variable
DW_AT_name("x")
DW_AT_type(reference to coarray type at 14$)

Figure D.10: Fortran multidimensional coarray: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 314

Appendix D. Examples (Informative)

D.2.3 Fortran 2008 Assumed-rank Array Example1

Consider the example in Figure D.11, which shows an assumed-rank array in2

Fortran 2008 with supplement 29113:13

SUBROUTINE Foo(x)
REAL :: x(..)

! x has n dimensions

END SUBROUTINE

Figure D.11: Declaration of a Fortran 2008 assumed-rank array

Let’s assume the Fortran compiler used an array descriptor that (in C) looks like4

the one shown in Figure D.12.5

struct array_descriptor {
void *base_addr;
int rank;
struct dim dims [];

}

struct dim {
int lower_bound;
int upper_bound;
int stride;
int flags;

}

Figure D.12: One of many possible layouts for an array descriptor

The DWARF type for the array x can be described as shown in Figure D.13 on the6

following page.7

The layout of the array descriptor is not specified by the Fortran standard unless8

the array is explicitly marked as C-interoperable. To get the bounds of an9

assumed-rank array, the expressions in the DW_TAG_generic_subrange entry10

need to be evaluated for each of the DW_AT_rank dimensions as shown by the11

pseudocode in Figure D.14 on page 317.12

1Technical Specification ISO/IEC TS 29113:2012 Further Interoperability of Fortran with C

July 15 2024 ***WORKING DRAFT*** Page 315

Appendix D. Examples (Informative)

10$: DW_TAG_array_type
DW_AT_type(reference to real)
DW_AT_rank(expression=

DW_OP_push_object_address
DW_OP_lit<n> ! offset of rank in descriptor
DW_OP_plus
DW_OP_deref)

DW_AT_data_location(expression=
DW_OP_push_object_address
DW_OP_lit<n> ! offset of data in descriptor
DW_OP_plus
DW_OP_deref)

11$: DW_TAG_generic_subrange
DW_AT_type(reference to integer)
DW_AT_lower_bound(expression=
! Looks up the lower bound of dimension i.
! Operation ! Stack effect
! (implicit) ! i

DW_OP_lit<n> ! i sizeof(dim)
DW_OP_mul ! dim[i]
DW_OP_lit<n> ! dim[i] offsetof(dim)
DW_OP_plus ! dim[i]+offset
DW_OP_push_object_address ! dim[i]+offsetof(dim) objptr
DW_OP_plus ! objptr.dim[i]
DW_OP_lit<n> ! objptr.dim[i] offsetof(lb)
DW_OP_plus ! objptr.dim[i].lowerbound
DW_OP_deref) ! *objptr.dim[i].lowerbound

DW_AT_upper_bound(expression=
! Looks up the upper bound of dimension i.

DW_OP_lit<n> ! sizeof(dim)
DW_OP_mul
DW_OP_lit<n> ! offsetof(dim)
DW_OP_plus
DW_OP_push_object_address
DW_OP_plus
DW_OP_lit<n> ! offset of upperbound in dim
DW_OP_plus
DW_OP_deref)

DW_AT_byte_stride(expression=
! Looks up the byte stride of dimension i.

...
! (analogous to DW_AT_upper_bound)

)

Figure D.13: Sample DWARF for the array descriptor in Figure D.12

July 15 2024 ***WORKING DRAFT*** Page 316

Appendix D. Examples (Informative)

typedef struct {
int lower , upper , stride;

} dims_t;

typedef struct {
int rank;

struct dims_t *dims;
} array_t;

array_t get_dynamic_array_dims(DW_TAG_array a) {
array_t result;

// Evaluate the DW_AT_rank expression to get the
// number of dimensions.
dwarf_stack_t stack;
dwarf_eval(stack , a.rank_expr);
result.rank = dwarf_pop(stack);
result.dims = new dims_t[rank];

// Iterate over all dimensions and find their bounds.
for (int i = 0; i < result.rank; i++) {

// Evaluate the generic subrange ’s DW_AT_lower
// expression for dimension i.
dwarf_push(stack , i);
assert(stack.size == 1);
dwarf_eval(stack , a.generic_subrange.lower_expr);
result.dims[i]. lower = dwarf_pop(stack);
assert(stack.size == 0);

dwarf_push(stack , i);
dwarf_eval(stack , a.generic_subrange.upper_expr);
result.dims[i]. upper = dwarf_pop(stack);

dwarf_push(stack , i);
dwarf_eval(stack , a.generic_subrange.byte_stride_expr);
result.dims[i]. stride = dwarf_pop(stack);

}
return result;

}

Figure D.14: How to interpret the DWARF from Figure D.13

July 15 2024 ***WORKING DRAFT*** Page 317

Appendix D. Examples (Informative)

D.2.4 Fortran Dynamic Type Example1

Consider the Fortran 90 example of dynamic properties in Figure D.15. This can2

be represented in DWARF as illustrated in Figure D.16 on the next page. Note3

that unnamed dynamic types are used to avoid replicating the full description of4

the underlying type dt that is shared by several variables.5

PROGRAM Sample

TYPE :: dt (l)
INTEGER , LEN :: l
INTEGER :: arr(l)

END TYPE

INTEGER :: n = 4
CONTAINS

SUBROUTINE S()
TYPE (dt(n)) :: t1
TYPE (dt(n)), pointer :: t2
TYPE (dt(n)), allocatable :: t3 , t4

END SUBROUTINE

END Sample

Figure D.15: Fortran dynamic type example: source

July 15 2024 ***WORKING DRAFT*** Page 318

Appendix D. Examples (Informative)

11$: DW_TAG_structure_type
DW_AT_name("dt")
DW_TAG_member

...
...

13$: DW_TAG_dynamic_type ! plain version
DW_AT_data_location (dwarf expression to locate raw data)
DW_AT_type (11$)

14$: DW_TAG_dynamic_type ! ’pointer’ version
DW_AT_data_location (dwarf expression to locate raw data)
DW_AT_associated (dwarf expression to test if associated)
DW_AT_type (11$)

15$: DW_TAG_dynamic_type ! ’allocatable’ version
DW_AT_data_location (dwarf expression to locate raw data)
DW_AT_allocated (dwarf expression to test is allocated)
DW_AT_type (11$)

16$: DW_TAG_variable
DW_AT_name ("t1")
DW_AT_type (13$)
DW_AT_location (dwarf expression to locate descriptor)

17$: DW_TAG_variable
DW_AT_name ("t2")
DW_AT_type (14$)
DW_AT_location (dwarf expression to locate descriptor)

18$: DW_TAG_variable
DW_AT_name ("t3")
DW_AT_type (15$)
DW_AT_location (dwarf expression to locate descriptor)

19$: DW_TAG_variable
DW_AT_name ("t4")
DW_AT_type (15$)
DW_AT_location (dwarf expression to locate descriptor)

Figure D.16: Fortran dynamic type example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 319

Appendix D. Examples (Informative)

D.2.5 C/C++ Anonymous Structure Example1

An example of a C/C++ structure is shown in Figure D.17. For this source, the2

DWARF description in Figure D.18 is appropriate. In this example, b is3

referenced as if it were defined in the enclosing structure foo.4

struct foo {
int a;
struct {

int b;
};

} x;

void bar(void)
{

struct foo t;
t.a = 1;
t.b = 2;

}

Figure D.17: Anonymous structure example: source fragment

1$: DW_TAG_structure_type
DW_AT_name("foo")

2$: DW_TAG_member
DW_AT_name("a")

3$: DW_TAG_structure_type
DW_AT_export_symbols

4$: DW_TAG_member
DW_AT_name("b")

Figure D.18: Anonymous structure example: DWARF description

D.2.6 Ada Example5

Figure D.19 on the following page illustrates two kinds of Ada parameterized6

array, one embedded in a record.7

VEC1 illustrates an (unnamed) array type where the upper bound of the first and8

only dimension is determined at runtime. Ada semantics require that the value9

of an array bound is fixed at the time the array type is elaborated (where10

elaboration refers to the runtime executable aspects of type processing). For the11

purposes of this example, we assume that there are no other assignments to M so12

that it safe for the REC1 type description to refer directly to that variable (rather13

than a compiler-generated copy).14

July 15 2024 ***WORKING DRAFT*** Page 320

Appendix D. Examples (Informative)

M : INTEGER := <exp >;
VEC1 : array (1..M) of INTEGER;
subtype TEENY is INTEGER range 1..100;
type ARR is array (INTEGER range <>) of INTEGER;
type REC2(N : TEENY := 100) is record

VEC2 : ARR (1..N);
end record;

OBJ2B : REC2;

Figure D.19: Ada example: source fragment

REC2 illustrates another array type (the unnamed type of component VEC2) where1

the upper bound of the first and only bound is also determined at runtime. In2

this case, the upper bound is contained in a discriminant of the containing record3

type. (A discriminant is a component of a record whose value cannot be changed4

independently of the rest of the record because that value is potentially used in5

the specification of other components of the record.)6

The DWARF description is shown in Figure D.20 on the next page.7

Interesting aspects about this example are:8

1. The array VEC2 is “immediately” contained within structure REC2 (there is no9

intermediate descriptor or indirection), which is reflected in the absence of a10

DW_AT_data_location attribute on the array type at 28$.11

2. One of the bounds of VEC2 is nonetheless dynamic and part of the same12

containing record. It is described as a reference to a member, and the location13

of the upper bound is determined as for any member. That is, the location is14

determined using an address calculation relative to the base of the containing15

object.16

A consumer must notice that the referenced bound is a member of the same17

containing object and implicitly push the base address of the containing18

object just as for accessing a data member generally.19

3. The lack of a subtype concept in DWARF means that DWARF types serve the20

role of subtypes and must replicate information from the parent type. For this21

reason, DWARF for the unconstrained array type ARR is not needed for the22

purposes of this example and therefore is not shown.23

July 15 2024 ***WORKING DRAFT*** Page 321

Appendix D. Examples (Informative)

11$: DW_TAG_variable
DW_AT_name("M")
DW_AT_type(reference to INTEGER)

12$: DW_TAG_array_type
! No name, default (Ada) order, default stride
DW_AT_type(reference to INTEGER)

13$: DW_TAG_subrange_type
DW_AT_type(reference to INTEGER)
DW_AT_lower_bound(constant 1)
DW_AT_upper_bound(reference to variable M at 11$)

14$: DW_TAG_variable
DW_AT_name("VEC1")
DW_AT_type(reference to array type at 12$)

. . .
21$: DW_TAG_subrange_type

DW_AT_name("TEENY")
DW_AT_type(reference to INTEGER)
DW_AT_lower_bound(constant 1)
DW_AT_upper_bound(constant 100)

. . .
26$: DW_TAG_structure_type

DW_AT_name("REC2")
27$: DW_TAG_member

DW_AT_name("N")
DW_AT_type(reference to subtype TEENY at 21$)
DW_AT_data_member_location(constant 0)

28$: DW_TAG_array_type
! No name, default (Ada) order, default stride
! Default data location
DW_AT_type(reference to INTEGER)

29$: DW_TAG_subrange_type
DW_AT_type(reference to subrange TEENY at 21$)
DW_AT_lower_bound(constant 1)
DW_AT_upper_bound(reference to member N at 27$)

30$: DW_TAG_member
DW_AT_name("VEC2")
DW_AT_type(reference to array "subtype" at 28$)
DW_AT_data_member_location(machine=

DW_OP_lit<n> ! where n == offset(REC2, VEC2)
DW_OP_plus)

. . .
41$: DW_TAG_variable

DW_AT_name("OBJ2B")
DW_AT_type(reference to REC2 at 26$)
DW_AT_location(...as appropriate...)

Figure D.20: Ada example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 322

Appendix D. Examples (Informative)

D.2.7 Pascal Example1

The Pascal source in Figure D.21 following is used to illustrate the representation2

of packed unaligned bit fields.3

TYPE T : PACKED RECORD { bit size is 2 }
F5 : BOOLEAN; { bit offset is 0 }
F6 : BOOLEAN; { bit offset is 1 }
END;

VAR V : PACKED RECORD
F1 : BOOLEAN; { bit offset is 0 }
F2 : PACKED RECORD { bit offset is 1 }

F3 : INTEGER; { bit offset is 0 in F2,
1 in V }

END;
F4 : PACKED ARRAY [0..1] OF T; { bit offset is 33 }
F7 : T; { bit offset is 37 }
END;

Figure D.21: Packed record example: source fragment

The DWARF representation in Figure D.22 is appropriate.4

DW_TAG_packed_type entries could be added to better represent the source, but5

these do not otherwise affect the example and are omitted for clarity. Note that6

this same representation applies to both typical big- and little-endian7

architectures using the conventions described in Section 5.7.6 on page 122.8

part 1 of 2

10$: DW_TAG_base_type
DW_AT_name("BOOLEAN")

...
11$: DW_TAG_base_type

DW_AT_name("INTEGER")
...

20$: DW_TAG_structure_type
DW_AT_name("T")
DW_AT_bit_size(2)
DW_TAG_member

DW_AT_name("F5")
DW_AT_type(reference to 10$)
DW_AT_data_bit_offset(0) ! may be omitted
DW_AT_bit_size(1)

Figure D.22: Packed record example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 323

Appendix D. Examples (Informative)

part 2 of 2

DW_TAG_member
DW_AT_name("F6")
DW_AT_type(reference to 10$)
DW_AT_data_bit_offset(1)
DW_AT_bit_size(1)

21$: DW_TAG_structure_type ! anonymous type for F2
DW_TAG_member

DW_AT_name("F3")
DW_AT_type(reference to 11$)

22$: DW_TAG_array_type ! anonymous type for F4
DW_AT_type(reference to 20$)
DW_TAG_subrange_type

DW_AT_type(reference to 11$)
DW_AT_lower_bound(0)
DW_AT_upper_bound(1)

DW_AT_bit_stride(2)
DW_AT_bit_size(4)

23$: DW_TAG_structure_type ! anonymous type for V
DW_AT_bit_size(39)
DW_TAG_member

DW_AT_name("F1")
DW_AT_type(reference to 10$)
DW_AT_data_bit_offset(0) ! may be omitted
DW_AT_bit_size(1) ! may be omitted

DW_TAG_member
DW_AT_name("F2")
DW_AT_type(reference to 21$)
DW_AT_data_bit_offset(1)
DW_AT_bit_size(32) ! may be omitted

DW_TAG_member
DW_AT_name("F4")
DW_AT_type(reference to 22$)
DW_AT_data_bit_offset(33)
DW_AT_bit_size(4) ! may be omitted

DW_TAG_member
DW_AT_name("F7")
DW_AT_type(reference to 20$) ! type T
DW_AT_data_bit_offset(37)
DW_AT_bit_size(2) ! may be omitted

DW_TAG_variable
DW_AT_name("V")
DW_AT_type(reference to 23$)
DW_AT_location(...)
...

Figure D.22: Packed record example: DWARF description (concluded)

July 15 2024 ***WORKING DRAFT*** Page 324

Appendix D. Examples (Informative)

D.2.8 C/C++ Bit-Field Examples1

Bit fields in C and C++ typically require the use of the DW_AT_data_bit_offset and2

DW_AT_bit_size attributes.3

This Standard uses the following bit numbering and direction conventions in examples.4

These conventions are for illustrative purposes and other conventions may apply on5

particular architectures.6

• For big-endian architectures, bit offsets are counted from high-order to low-order7

bits within a byte (or larger storage unit); in this case, the bit offset identifies the8

high-order bit of the object.9

• For little-endian architectures, bit offsets are counted from low-order to high-order10

bits within a byte (or larger storage unit); in this case, the bit offset identifies the11

low-order bit of the object.12

In either case, the bit so identified is defined as the beginning of the object.13

This section illustrates one possible representation of the following C structure14

definition in both big- and little-endian byte orders:15

struct S {
int j:5;
int k:6;
int m:5;
int n:8;

};

Figures D.23 and D.24 on the following page show the structure layout and data16

bit offsets for example big- and little-endian architectures, respectively. Both17

diagrams show a structure that begins at address A and whose size is four bytes.18

Also, high order bits are to the left and low order bits are to the right.19

Note that data member bit offsets in this example are the same for both big- and20

little-endian architectures even though the fields are allocated in different21

directions (high-order to low-order versus low-order to high-order); the bit22

naming conventions for memory and/or registers of the target architecture may23

or may not make this seem natural.24

July 15 2024 ***WORKING DRAFT*** Page 325

Appendix D. Examples (Informative)

j:0
k:5
m:11
n:16

Addresses increase ->
| A | A + 1 | A + 2 | A + 3 |

Data bit offsets increase ->
+---------------+---------------+---------------+---------------+
0 4	5 10	11 15	16 23	24 31
j	k	m	n	<pad>
+---+

Figure D.23: Big-endian data bit offsets

j:0
k:5
m:11
n:16

<- Addresses increase
| A + 3 | A + 2 | A + 1 | A |

<- Data bit offsets increase
+---------------+---------------+---------------+---------------+
31 24	23 16	15 11	10 5	4 0
<pad>	n	m	k	j
+---+

Figure D.24: Little-endian data bit offsets

D.2.9 Ada Biased Bit-Field Example1

The Ada source in Figure D.25 on the next page demonstrates how a member of a2

record, which normally occupies six bits, can be biased to fit into three bits when3

the range is known. The encoded values [0..7] correspond to the source4

values [50..57] used by the application.5

The DWARF description is shown in Figure D.26 on the following page. The bias6

chosen, which in this case corresponds to the lower bound, is specified in the7

base type at 1$.8

July 15 2024 ***WORKING DRAFT*** Page 326

Appendix D. Examples (Informative)

type SmallRangeType is range 50 .. 57;
type RecordType is record

A : SmallRangeType;
end record;
for RecordType use record

A at 0 range 0 .. 2;
end record;
LocalRecord : RecordType;

Figure D.25: Ada biased bit-field example: Ada source

1$: DW_TAG_base_type
DW_AT_byte_size(1)
DW_AT_encoding(DW_ATE_unsigned)
DW_AT_bias(50)
DW_AT_artificial(1)

2$: DW_TAG_subrange_type
DW_AT_name("SmallRangeType")
DW_AT_lower_bound(50)
DW_AT_upper_bound(57)
DW_AT_type(reference to 1$)

3$: DW_TAG_structure_type
DW_AT_name("RecordType")
DW_AT_byte_size(1)

4$: DW_TAG_member
DW_AT_name("A")
DW_AT_type(reference to 2$)
DW_AT_bit_size(3)
DW_AT_data_bit_offset(0)

5$: DW_TAG_variable
DW_AT_name("LocalRecord")
DW_AT_type(reference to 3$)
DW_AT_location ...

Figure D.26: Ada biased bit-field example: DWARF description

Note that other choices of encoding and bias lead to the same result. For example,1

the DW_ATE_signed encoding can be used in combination with a bias of 54.2

If the valid range of values is completely negative (for example, -57..-50) then3

only signed encoding is valid, and the bias will also need to be negative (-53).4

July 15 2024 ***WORKING DRAFT*** Page 327

Appendix D. Examples (Informative)

D.2.10 Variant Entry Examples1

The following examples illustrate some of the diverse ways that the DWARF2

variant entry constructs are used in various programming languages.3

D.2.10.1 Pascal Variant Entry Example4

A Pascal record example without a variant part is shown in D.2.7 on page 323.5

Here a Pascal record with a variant part is shown in Figure D.27 following. The6

corresponding DWARF representation follows in Figure D.28 on the following7

page.8

RPoint = Record
Case UsePolar : Boolean of

False : (X, Y : Real);
True : (Radius , Theta : Real);
end;

end;

Figure D.27: Pascal variant record example: source

July 15 2024 ***WORKING DRAFT*** Page 328

Appendix D. Examples (Informative)

! Description for type RPoint
!
1$: DW_TAG_structure_type

DW_AT_name("RPoint")
DW_TAG_variant_part

DW_AT_discr (reference to 2$)
2$: DW_TAG_member

DW_AT_name("UsePolar")
DW_AT_type(reference to Boolean)

DW_TAG_variant
DW_AT_discr_value(constant 0)
DW_TAG_member

DW_AT_name("X")
DW_AT_type(reference to Real)
DW_AT_data_member_location(1)

DW_TAG_member
DW_AT_name("Y")
DW_AT_type(reference to Real)
DW_AT_data_member_location(5)

DW_TAG_variant
DW_AT_discr_value(constant 1)
DW_TAG_member

DW_AT_name("Radius")
DW_AT_type(reference to Real)
DW_AT_data_member_location(1)

DW_TAG_member
DW_AT_name("Theta")
DW_AT_type(reference to Real)
DW_AT_data_member_location(5)

Figure D.28: Pascal variant record example: DWARF description

Notice that the "tag" (member UsePolar in this case) is the first child of the1

variant part. A "tagless" version of this example would simply delete "UsePolar :"2

from the second line of the source (so that the tag has no name, hence is not3

visible). In the DWARF description, the member entry and name for UsePolar4

are then deleted, as is the DW_AT_discr attribute, and the remaining type5

attribute is made an attribute of the containing variant part entry.6

July 15 2024 ***WORKING DRAFT*** Page 329

Appendix D. Examples (Informative)

D.2.10.2 Ada Variant Entry Example1

An Ada example variant part is illustrated in Figure D.29 following. The2

corresponding DWARF is shown in Figure D.30 on the next page.3

type R (D : integer) is
record

A : integer;
case D is

when 0 =>
F : float;

when 1 =>
N : integer;

when others =>
null;

end case;
end record;

Figure D.29: Ada variant record example: source

For Ada, note that the tag is not "declared" as part of the variant part construct.4

Rather the variant part refers to a discriminant of the containing type which5

necessarily occurs as an initial member in the sequence of record components.6

This reference is implemented as a DW_AT_discr attribute of the7

DW_TAG_variant_part entry.8

July 15 2024 ***WORKING DRAFT*** Page 330

Appendix D. Examples (Informative)

DW_TAG_structure_type
DW_AT_name("r")

1$: DW_TAG_member ! Discriminant
DW_AT_type(reference to integer)
DW_AT_data_member_location(DW_OP_plus_uconst 0)
DW_AT_name("d")

DW_TAG_member
DW_AT_type(reference to integer)
DW_AT_data_member_location(DW_OP_plus_uconst 4)
DW_AT_name("a")

DW_TAG_variant_part
DW_AT_discr(reference to 1$)
DW_TAG_variant

DW_AT_discr_value(0)
DW_TAG_member

DW_AT_type(reference to float)
DW_AT_data_member_location(DW_OP_plus_uconst 8)
DW_AT_name("f")

DW_TAG_variant
DW_AT_discr_value(1)
DW_TAG_member

DW_AT_type(reference to integer)
DW_AT_data_member_location(DW_OP_plus_uconst 8)
DW_AT_name("n")

DW_TAG_variant
! No members described for the "others" variant

Figure D.30: Ada variant record example: DWARF description

D.2.10.3 Rust Enum Example1

While Rust does not have a variant record concept similar to that in Pascal or2

Ada, it does use a similar mechanism in the implementation of enums. To3

illustrate, consider the enumeration in Figure D.31 following. This can be4

described in DWARF as shown in Figure D.32 on the following page.5

enum Message {
F(f64),
U(u32),
N(i32)

}

Figure D.31: Rust enum example: source

July 15 2024 ***WORKING DRAFT*** Page 331

Appendix D. Examples (Informative)

DW_TAG_structure_type
DW_AT_name("Message")
DW_TAG_variant_part

DW_AT_discr(reference to $1)
$1: DW_TAG_member ! Artificial discriminant

DW_AT_type(reference to u32)
DW_AT_data_member_location(0)
DW_AT_artificial(1)

DW_TAG_variant
DW_AT_discr_value(0)
DW_TAG_member

DW_AT_type(reference to f32)
DW_AT_name("F")
DW_AT_data_member_location(4)

DW_TAG_variant
DW_AT_discr_value(1)
DW_TAG_member

DW_AT_type(reference to u32)
DW_AT_name("U")
DW_AT_data_member_location(4)

DW_TAG_variant
DW_AT_discr_value(2)
DW_TAG_member

DW_AT_type(reference to i32)
DW_AT_name("N")
DW_AT_data_member_location(4)

Figure D.32: Rust enum example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 332

Appendix D. Examples (Informative)

D.3 Namespace Examples1

The C++ example in Figure D.33 is used to illustrate the representation of2

namespaces. The DWARF representation in Figure D.34 on the following page is3

appropriate.4

namespace {
int i;

}
namespace A {

namespace B {
int j;
int myfunc (int a);
float myfunc (float f) { return f - 2.0; }
int myfunc2(int a) { return a + 2; }

}
}
namespace Y {

using A::B::j; // (1) using declaration
int foo;

}
using A::B::j; // (2) using declaration
namespace Foo = A::B; // (3) namespace alias
using Foo:: myfunc; // (4) using declaration
using namespace Foo; // (5) using directive
namespace A {

namespace B {
using namespace Y; // (6) using directive
int k;

}
}
int Foo:: myfunc(int a)
{

i = 3;
j = 4;
return myfunc2 (3) + j + i + a + 2;

}

Figure D.33: Namespace example #1: source fragment

July 15 2024 ***WORKING DRAFT*** Page 333

Appendix D. Examples (Informative)

part 1 of 2

1$: DW_TAG_base_type
DW_AT_name("int")
...

2$: DW_TAG_base_type
DW_AT_name("float")
...

6$: DW_TAG_namespace
! no DW_AT_name attribute
DW_AT_export_symbols ! Implied by C++, but can be explicit
DW_TAG_variable

DW_AT_name("i")
DW_AT_type(reference to 1$)
DW_AT_location ...
...

10$: DW_TAG_namespace
DW_AT_name("A")

20$: DW_TAG_namespace
DW_AT_name("B")

30$: DW_TAG_variable
DW_AT_name("j")
DW_AT_type(reference to 1$)
DW_AT_location ...
...

34$: DW_TAG_subprogram
DW_AT_name("myfunc")
DW_AT_type(reference to 1$)
...

36$: DW_TAG_subprogram
DW_AT_name("myfunc")
DW_AT_type(reference to 2$)
...

38$: DW_TAG_subprogram
DW_AT_name("myfunc2")
DW_AT_low_pc ...
DW_AT_high_pc ...
DW_AT_type(reference to 1$)
...

Figure D.34: Namespace example #1: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 334

Appendix D. Examples (Informative)

part 2 of 2

40$: DW_TAG_namespace
DW_AT_name("Y")
DW_TAG_imported_declaration ! (1) using-declaration

DW_AT_import(reference to 30$)
DW_TAG_variable

DW_AT_name("foo")
DW_AT_type(reference to 1$)
DW_AT_location ...
...

DW_TAG_imported_declaration ! (2) using declaration
DW_AT_import(reference to 30$)

DW_TAG_imported_declaration ! (3) namespace alias
DW_AT_name("Foo")
DW_AT_import(reference to 20$)

DW_TAG_imported_declaration ! (4) using declaration
DW_AT_import(reference to 34$) ! - part 1

DW_TAG_imported_declaration ! (4) using declaration
DW_AT_import(reference to 36$) ! - part 2

DW_TAG_imported_module ! (5) using directive
DW_AT_import(reference to 20$)

DW_TAG_namespace
DW_AT_extension(reference to 10$)
DW_TAG_namespace

DW_AT_extension(reference to 20$)
DW_TAG_imported_module ! (6) using directive

DW_AT_import(reference to 40$)
DW_TAG_variable

DW_AT_name("k")
DW_AT_type(reference to 1$)
DW_AT_location ...
...

60$: DW_TAG_subprogram
DW_AT_specification(reference to 34$)
DW_AT_low_pc ...
DW_AT_high_pc ...
...

Figure D.34: Namespace example #1: DWARF description (concluded)

July 15 2024 ***WORKING DRAFT*** Page 335

Appendix D. Examples (Informative)

As a further namespace example, consider the inlined namespace shown in1

Figure D.35. For this source, the DWARF description in Figure D.36 is2

appropriate. In this example, a may be referenced either as a member of the fully3

qualified namespace A::B, or as if it were defined in the enclosing namespace, A.4

namespace A {
inline namespace B { // (1) inline namespace

int a;
}

}

void foo (void)
{

using A::B::a;
a = 1;

}

void bar (void)
{

using A::a;
a = 2;

}

Figure D.35: Namespace example #2: source fragment

1$: DW_TAG_namespace
DW_AT_name("A")

2$: DW_TAG_namespace
DW_AT_name("B")
DW_AT_export_symbols

3$: DW_TAG_variable
DW_AT_name("a")

Figure D.36: Namespace example #2: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 336

Appendix D. Examples (Informative)

D.4 Member Function Examples1

Consider the member function example fragment in Figure D.37. The DWARF2

representation in Figure D.38 is appropriate.3

class A
{

void func1(int x1);
void func2() const;
static void func3(int x3);

};
void A::func1(int x) {}

Figure D.37: Member function example: source fragment

part 1 of 2

2$: DW_TAG_base_type
DW_AT_name("int")
...

3$: DW_TAG_class_type
DW_AT_name("A")
...

4$: DW_TAG_pointer_type
DW_AT_type(reference to 3$)
...

5$: DW_TAG_const_type
DW_AT_type(reference to 3$)
...

6$: DW_TAG_pointer_type
DW_AT_type(reference to 5$)
...

7$: DW_TAG_subprogram
DW_AT_declaration
DW_AT_name("func1")
DW_AT_object_pointer(reference to 8$)

! References a formal parameter in this
! member function

...

Figure D.38: Member function example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 337

Appendix D. Examples (Informative)

part 2 of 2

8$: DW_TAG_formal_parameter
DW_AT_artificial(true)
DW_AT_name("this")
DW_AT_type(reference to 4$)

! Makes type of ’this’ as ’A*’ =>
! func1 has not been marked const
! or volatile

DW_AT_location ...
...

9$: DW_TAG_formal_parameter
DW_AT_name(x1)
DW_AT_type(reference to 2$)
...

10$: DW_TAG_subprogram
DW_AT_declaration
DW_AT_name("func2")
DW_AT_object_pointer(reference to 11$)
! References a formal parameter in this
! member function
...

11$: DW_TAG_formal_parameter
DW_AT_artificial(true)
DW_AT_name("this")
DW_AT_type(reference to 6$)
! Makes type of ’this’ as ’A const*’ =>
! func2 marked as const
DW_AT_location ...
...

12$: DW_TAG_subprogram
DW_AT_declaration
DW_AT_name("func3")
...

! No object pointer reference formal parameter
! implies func3 is static

13$: DW_TAG_formal_parameter
DW_AT_name(x3)
DW_AT_type(reference to 2$)
...

Figure D.38: Member function example: DWARF description (concluded)

July 15 2024 ***WORKING DRAFT*** Page 338

Appendix D. Examples (Informative)

As a further example illustrating &- and &&-qualification of member functions,1

consider the member function example fragment in Figure D.39. The DWARF2

representation in Figure D.40 on the next page is appropriate.3

class A {
public:

void f() const &&;
};

void g() {
A a;
// The type of pointer is "void (A::*)() const &&".
auto pointer_to_member_function = &A::f;

}

Figure D.39: Reference- and rvalue-reference-qualification example: source
fragment

July 15 2024 ***WORKING DRAFT*** Page 339

Appendix D. Examples (Informative)

100$: DW_TAG_class_type
DW_AT_name("A")
DW_TAG_subprogram

DW_AT_name("f")
DW_AT_rvalue_reference(0x01)
DW_TAG_formal_parameter

DW_AT_type(ref to 200$) ! to const A*
DW_AT_artificial(0x01)

200$: ! const A*
DW_TAG_pointer_type

DW_AT_type(ref to 300$) ! to const A

300$: ! const A
DW_TAG_const_type

DW_AT_type(ref to 100$) ! to class A

400$: ! mfptr
DW_TAG_ptr_to_member_type

DW_AT_type(ref to 500$) ! to functype
DW_AT_containing_type(ref to 100$) ! to class A

500$: ! functype
DW_TAG_subroutine_type

DW_AT_rvalue_reference(0x01)
DW_TAG_formal_parameter

DW_AT_type(ref to 200$) ! to const A*
DW_AT_artificial(0x01)

600$: DW_TAG_subprogram
DW_AT_name("g")
DW_TAG_variable

DW_AT_name("a")
DW_AT_type(ref to 100$) ! to class A

DW_TAG_variable
DW_AT_name("pointer_to_member_function")
DW_AT_type(ref to 400$)

Figure D.40: Reference- and rvalue-reference-qualification example: DWARF
description

July 15 2024 ***WORKING DRAFT*** Page 340

Appendix D. Examples (Informative)

D.5 Line Number Examples1

D.5.1 Line Number Header Example2

Figure D.41 illustrates a line number header (see Section 6.2.4 on page 159).3

There are multiple alternative filename formats, which include the source and4

URL types.5

Field Field Name Value(s)
Number

1 unit_length <unit length>
2 version 6
3 address_size 4 or 8
4 Reserved 0
5 header_length <header length>
6 minimum_instruction_length 1
7 maximum_operations_per_instruction 1
8 default_is_stmt 1 (true)
9 line_base -3

10 line_range 12
11 opcode_base 13
12 standard_opcode_lengths [0,1,1,1,1,0,0,0,0,0,0,1]
13 directory_format_count 1
14 directory_format_table [DW_LNCT_path, DW_FORM_string],

[0, 0]
15 directories_count 1
16 directories [0, <directory path string>]
17 file_name_format_count 3
18 file_name_format_table [DW_LNCT_source, DW_FORM_strp],

[0, 0]
[DW_LNCT_path, DW_FORM_string],
[DW_LNCT_directory_index, DW_FORM_udata],
[DW_LNCT_timestamp, DW_FORM_udata],
[DW_LNCT_size, DW_FORM_udata],
[0, 0],
[DW_LNCT_URL, DW_FORM_strp],
[0, 0]

19 file_names_count 4
20 file_names [0, {<source string offset>}],

[2, {<URL string offset>}],
[1, {<name string 1>, <directory index=0>,

<timestamp 1>, <size 1>}],
[1, {<name string 2>, <directory index=0>,

<timestamp 2>, <size 2>}]

Figure D.41: Example line number program header

July 15 2024 ***WORKING DRAFT*** Page 341

Appendix D. Examples (Informative)

D.5.2 Line Number Special Opcode Example1

Given the example header in Figure D.41 on the preceding page, we can use a2

special opcode whenever two successive rows in the matrix have source line3

numbers differing by any value within the range [-3, 8] and (because of the4

limited number of opcodes available) when the difference between addresses is5

within the range [0, 20]. The resulting opcode mapping is shown in Figure D.42.6

Note in the bottom row of the figure that not all line advances are available for7

the maximum operation advance.8

Line Advance
Operation

Advance -3 -2 -1 0 1 2 3 4 5 6 7 8
--------- ---

0 13 14 15 16 17 18 19 20 21 22 23 24
1 25 26 27 28 29 30 31 32 33 34 35 36
2 37 38 39 40 41 42 43 44 45 46 47 48
3 49 50 51 52 53 54 55 56 57 58 59 60
4 61 62 63 64 65 66 67 68 69 70 71 72
5 73 74 75 76 77 78 79 80 81 82 83 84
6 85 86 87 88 89 90 91 92 93 94 95 96
7 97 98 99 100 101 102 103 104 105 106 107 108
8 109 110 111 112 113 114 115 116 117 118 119 120
9 121 122 123 124 125 126 127 128 129 130 131 132

10 133 134 135 136 137 138 139 140 141 142 143 144
11 145 146 147 148 149 150 151 152 153 154 155 156
12 157 158 159 160 161 162 163 164 165 166 167 168
13 169 170 171 172 173 174 175 176 177 178 179 180
14 181 182 183 184 185 186 187 188 189 190 191 192
15 193 194 195 196 197 198 199 200 201 202 203 204
16 205 206 207 208 209 210 211 212 213 214 215 216
17 217 218 219 220 221 222 223 224 225 226 227 228
18 229 230 231 232 233 234 235 236 237 238 239 240
19 241 242 243 244 245 246 247 248 249 250 251 252
20 253 254 255

Figure D.42: Example line number special opcode mapping

There is no requirement that the expression 255 - line_base + 1 be an integral9

multiple of line_range.10

July 15 2024 ***WORKING DRAFT*** Page 342

Appendix D. Examples (Informative)

D.5.3 Line Number Program Example1

Consider the simple source file and the resulting machine code for the Intel 80862

processor in Figure D.43.3

1: int
2: main()

0x239: push pb
0x23a: mov bp,sp

3: {
4: printf ("Omit needless words\n");

0x23c: mov ax ,0xaa
0x23f: push ax
0x240: call _printf
0x243: pop cx

5: exit (0);
0x244: xor ax,ax
0x246: push ax
0x247: call _exit
0x24a: pop cx

6: }
0x24b: pop bp
0x24c: ret

7: 0x24d:

Figure D.43: Line number program example: machine code

Suppose the line number program header includes the same values and resulting4

encoding illustrated in the previous Section D.5.2 on the previous page.5

Table D.2 on the following page shows one encoding of the line number6

program, which occupies 12 bytes.7

July 15 2024 ***WORKING DRAFT*** Page 343

Appendix D. Examples (Informative)

Table D.2: Line number program example: one
encoding

Opcode Operand Byte Stream
DW_LNS_advance_pc LEB128(0x239) 0x2, 0xb9, 0x04
SPECIAL† (2, 0) 0x12 (1810)
SPECIAL† (2, 3) 0x36 (5410)
SPECIAL† (1, 8) 0x71 (11310)
SPECIAL† (1, 7) 0x65 (10110)
DW_LNS_advance_pc LEB128(2) 0x2, 0x2
DW_LNE_end_sequence 0x0, 0x1, 0x1

† The opcode notation SPECIAL(m,n) indicates the special
opcode generated for a line advance of m and an operation
advance of n.

Table D.3 shows an alternate encoding of the same program using standard1

opcodes to advance the program counter; this encoding occupies 22 bytes.2

Table D.3: Line number program example: alternate
encoding

Opcode Operand Byte Stream
DW_LNS_fixed_advance_pc 0x239 0x9, 0x39, 0x2
SPECIAL† (2, 0) 0x12 (1810)
DW_LNS_fixed_advance_pc 0x3 0x9, 0x3, 0x0
SPECIAL† (2, 0) 0x12 (1810)
DW_LNS_fixed_advance_pc 0x8 0x9, 0x8, 0x0
SPECIAL† (1, 0) 0x11 (1710)
DW_LNS_fixed_advance_pc 0x7 0x9, 0x7, 0x0
SPECIAL† (1, 0) 0x11 (1710)
DW_LNS_fixed_advance_pc 0x2 0x9, 0x2, 0x0
DW_LNE_end_sequence 0x0, 0x1, 0x1

† SPECIAL is defined the same as in the preceding Table D.2.

July 15 2024 ***WORKING DRAFT*** Page 344

Appendix D. Examples (Informative)

D.6 Call Frame Information Example1

The following example uses a hypothetical RISC machine in the style of the2

Motorola 88000.3

• Memory is byte addressed.4

• Instructions are all 4 bytes each and word aligned.5

• Instruction operands are typically of the form:6

<destination.reg>, <source.reg>, <constant>7

• The address for the load and store instructions is computed by adding the8

contents of the source register with the constant.9

• There are eight 4-byte registers:10

R0 always 0
R1 holds return address on call
R2-R3 temp registers (not preserved on call)
R4-R6 preserved on call
R7 stack pointer

• The stack grows in the negative direction.11

• The architectural ABI committee specifies that the stack pointer (R7) is the12

same as the CFA13

Figure D.44 following shows two code fragments from a subroutine called foo14

that uses a frame pointer (in addition to the stack pointer). The first column15

values are byte addresses. <fs> denotes the stack frame size in bytes, namely 12.16

An abstract table (see Section 6.4.1 on page 179) for the foo subroutine is shown17

in Table D.4 following. Corresponding fragments from the .debug_frame section18

are shown in Table D.5 on page 347.19

The following notations apply in Table D.4 on the following page:20

1. R8 is the return address
2. s = same_value rule
3. u = undefined rule
4. rN = register(N) rule
5. cN = offset(N) rule
6. a = architectural rule

July 15 2024 ***WORKING DRAFT*** Page 345

Appendix D. Examples (Informative)

;; start prologue
foo sub R7, R7, <fs > ; Allocate frame
foo+4 store R1 , R7 , (<fs >-4) ; Save the return address
foo+8 store R6 , R7 , (<fs >-8) ; Save R6
foo +12 add R6 , R7, 0 ; R6 is now the Frame ptr
foo +16 store R4 , R6 , (<fs >-12) ; Save a preserved reg

;; This subroutine does not change R5
...
;; Start epilogue (R7 is returned to entry value)

foo +64 load R4 , R6 , (<fs >-12) ; Restore R4
foo +68 load R6 , R7 , (<fs >-8) ; Restore R6
foo +72 load R1 , R7 , (<fs >-4) ; Restore return address
foo +76 add R7 , R7, <fs> ; Deallocate frame
foo +80 jump R1 ; Return
foo +84

Figure D.44: Call frame information example: machine code fragments

Table D.4: Call frame information example: conceptual
matrix

Location CFA R0 R1 R2 R3 R4 R5 R6 R7 R8
foo [R7]+0 s u u u s s s a r1
foo+4 [R7]+fs s u u u s s s a r1
foo+8 [R7]+fs s u u u s s s a c-4
foo+12 [R7]+fs s u u u s s c-8 a c-4
foo+16 [R6]+fs s u u u s s c-8 a c-4
foo+20 [R6]+fs s u u u c-12 s c-8 a c-4
...
foo+64 [R6]+fs s u u u c-12 s c-8 a c-4
foo+68 [R6]+fs s u u u s s c-8 a c-4
foo+72 [R7]+fs s u u u s s s a c-4
foo+76 [R7]+fs s u u u s s s a r1
foo+80 [R7]+0 s u u u s s s a r1

July 15 2024 ***WORKING DRAFT*** Page 346

Appendix D. Examples (Informative)

Table D.5: Call frame information example: common
information entry encoding

Address Value Comment
cie 36 length
cie+4 0xffffffff CIE_id
cie+8 4 version
cie+9 0 augmentation
cie+10 4 address size
cie+11 0 Reserved
cie+12 4 code_alignment_factor, <caf >
cie+13 -4 data_alignment_factor, <daf >
cie+14 8 R8 is the return addr.
cie+15 DW_CFA_def_cfa (7, 0) CFA = [R7]+0
cie+18 DW_CFA_same_value (0) R0 not modified (=0)
cie+20 DW_CFA_undefined (1) R1 scratch
cie+22 DW_CFA_undefined (2) R2 scratch
cie+24 DW_CFA_undefined (3) R3 scratch
cie+26 DW_CFA_same_value (4) R4 preserve
cie+28 DW_CFA_same_value (5) R5 preserve
cie+30 DW_CFA_same_value (6) R6 preserve
cie+32 DW_CFA_same_value (7) R7 preserve
cie+34 DW_CFA_register (8, 1) R8 is in R1
cie+37 DW_CFA_nop padding
cie+38 DW_CFA_nop padding
cie+39 DW_CFA_nop padding
cie+40

July 15 2024 ***WORKING DRAFT*** Page 347

Appendix D. Examples (Informative)

Table D.6: Call frame information example: frame de-
scription entry encoding

Address Value Comment†
fde 40 length
fde+4 cie CIE_ptr
fde+8 foo initial_location
fde+12 84 address_range
fde+16 DW_CFA_advance_loc(1) instructions
fde+17 DW_CFA_def_cfa_offset(12) <fs>
fde+19 DW_CFA_advance_loc(1) 4/<caf>
fde+20 DW_CFA_offset(8,1) -4/<daf>(2nd parameter)
fde+22 DW_CFA_advance_loc(1)
fde+23 DW_CFA_offset(6,2) -8/<daf>(2nd parameter)
fde+25 DW_CFA_advance_loc(1)
fde+26 DW_CFA_def_cfa_register(6)
fde+28 DW_CFA_advance_loc(1)
fde+29 DW_CFA_offset(4,3) -12/<daf>(2nd parameter)
fde+31 DW_CFA_advance_loc(12) 44/<caf>
fde+32 DW_CFA_restore(4)
fde+33 DW_CFA_advance_loc(1)
fde+34 DW_CFA_restore(6)
fde+35 DW_CFA_def_cfa_register(7)
fde+37 DW_CFA_advance_loc(1)
fde+38 DW_CFA_restore(8)
fde+39 DW_CFA_advance_loc(1)
fde+40 DW_CFA_def_cfa_offset(0)
fde+42 DW_CFA_nop padding
fde+43 DW_CFA_nop padding
fde+44

†The following notations apply: <fs> = frame size, <caf> = code alignment1

factor, and <daf> = data alignment factor.2

July 15 2024 ***WORKING DRAFT*** Page 348

Appendix D. Examples (Informative)

D.7 Inlining Examples1

The pseudo-source in Figure D.45 following is used to illustrate the use of2

DWARF to describe inlined subroutine calls. This example involves a nested3

subprogram INNER that makes uplevel references to the formal parameter and4

local variable of the containing subprogram OUTER.5

inline procedure OUTER (OUTER_FORMAL : integer) =
begin
OUTER_LOCAL : integer;
procedure INNER (INNER_FORMAL : integer) =

begin
INNER_LOCAL : integer;
print(INNER_FORMAL + OUTER_LOCAL);
end;

INNER(OUTER_LOCAL);
...
INNER (31);
end;

! Call OUTER
!
OUTER (7);

Figure D.45: Inlining examples: pseudo-source fragmment

There are several approaches that a compiler might take to inlining for this sort6

of example. This presentation considers three such approaches, all of which7

involve inline expansion of subprogram OUTER. (If OUTER is not inlined, the8

inlining reduces to a simpler single level subset of the two level approaches9

considered here.)10

The approaches are:11

1. Inline both OUTER and INNER in all cases12

2. Inline OUTER, multiple INNERs13

Treat INNER as a non-inlinable part of OUTER, compile and call a distinct14

normal version of INNER defined within each inlining of OUTER.15

3. Inline OUTER, one INNER16

Compile INNER as a single normal subprogram which is called from every17

inlining of OUTER.18

This discussion does not consider why a compiler might choose one of these19

approaches; it considers only how to describe the result.20

July 15 2024 ***WORKING DRAFT*** Page 349

Appendix D. Examples (Informative)

In the examples that follow in this section, the debugging information entries are1

given mnemonic labels of the following form2

<io>.<ac>.<n>.<s>3

where4

<io> is either INNER or OUTER to indicate to which subprogram the debugging5

information entry applies,6

<ac> is either AI or CI to indicate “abstract instance” or “concrete instance”7

respectively,8

<n> is the number of the alternative being considered, and9

<s> is a sequence number that distinguishes the individual entries.10

There is no implication that symbolic labels, nor any particular naming11

convention, are required in actual use.12

For conciseness, declaration coordinates and call coordinates are omitted.13

D.7.1 Alternative #1: inline both OUTER and INNER14

A suitable abstract instance for an alternative where both OUTER and INNER are15

always inlined is shown in Figure D.46 on the next page.16

Notice in Figure D.46 that the debugging information entry for INNER (labelled17

INNER.AI.1.1$) is nested in (is a child of) that for OUTER (labelled18

OUTER.AI.1.1$). Nonetheless, the abstract instance tree for INNER is considered19

to be separate and distinct from that for OUTER.20

The call of OUTER shown in Figure D.45 on the preceding page might be described21

as shown in Figure D.47 on page 352.22

D.7.2 Alternative #2: Inline OUTER, multiple INNERs23

In the second alternative we assume that subprogram INNER is not inlinable for24

some reason, but subprogram OUTER is inlinable. Each concrete inlined instance25

of OUTER has its own normal instance of INNER. The abstract instance for OUTER,26

which includes INNER, is shown in Figure D.48 on page 354.27

Note that the debugging information in Figure D.48 differs from that in Figure28

D.46 on the next page in that INNER lacks a DW_AT_inline attribute and therefore29

is not a distinct abstract instance. INNER is merely an out-of-line routine that is30

part of OUTER’s abstract instance. This is reflected in the Figure by the fact that the31

labels for INNER use the substring OUTER instead of INNER.32

July 15 2024 ***WORKING DRAFT*** Page 350

Appendix D. Examples (Informative)

! Abstract instance for OUTER
!

OUTER.AI.1.1$:
DW_TAG_subprogram

DW_AT_name("OUTER")
DW_AT_inline(DW_INL_declared_inlined)
! No low/high PCs

OUTER.AI.1.2$:
DW_TAG_formal_parameter

DW_AT_name("OUTER_FORMAL")
DW_AT_type(reference to integer)
! No location

OUTER.AI.1.3$:
DW_TAG_variable

DW_AT_name("OUTER_LOCAL")
DW_AT_type(reference to integer)
! No location

!
! Abstract instance for INNER
!

INNER.AI.1.1$:
DW_TAG_subprogram

DW_AT_name("INNER")
DW_AT_inline(DW_INL_declared_inlined)
! No low/high PCs

INNER.AI.1.2$:
DW_TAG_formal_parameter

DW_AT_name("INNER_FORMAL")
DW_AT_type(reference to integer)
! No location

INNER.AI.1.3$:
DW_TAG_variable

DW_AT_name("INNER_LOCAL")
DW_AT_type(reference to integer)
! No location

...
0

! No DW_TAG_inlined_subroutine (concrete instance)
! for INNER corresponding to calls of INNER
...
0

Figure D.46: Inlining example #1: abstract instance

July 15 2024 ***WORKING DRAFT*** Page 351

Appendix D. Examples (Informative)

! Concrete instance for call "OUTER(7)"
!
OUTER.CI.1.1$:

DW_TAG_inlined_subroutine
! No name
DW_AT_abstract_origin(reference to OUTER.AI.1.1$)
DW_AT_low_pc(...)
DW_AT_high_pc(...)

OUTER.CI.1.2$:
DW_TAG_formal_parameter

! No name
DW_AT_abstract_origin(reference to OUTER.AI.1.2$)
DW_AT_const_value(7)

OUTER.CI.1.3$:
DW_TAG_variable

! No name
DW_AT_abstract_origin(reference to OUTER.AI.1.3$)
DW_AT_location(...)

!
! No DW_TAG_subprogram (abstract instance) for INNER
!
! Concrete instance for call INNER(OUTER_LOCAL)
!

INNER.CI.1.1$:
DW_TAG_inlined_subroutine

! No name
DW_AT_abstract_origin(reference to INNER.AI.1.1$)
DW_AT_low_pc(...)
DW_AT_high_pc(...)
DW_AT_static_link(...)

INNER.CI.1.2$:
DW_TAG_formal_parameter

! No name
DW_AT_abstract_origin(reference to INNER.AI.1.2$)
DW_AT_location(...)

INNER.CI.1.3$:
DW_TAG_variable

! No name
DW_AT_abstract_origin(reference to INNER.AI.1.3$)
DW_AT_location(...)

...
0

! Another concrete instance of INNER within OUTER
! for the call "INNER(31)"
...
0

Figure D.47: Inlining example #1: concrete instance

July 15 2024 ***WORKING DRAFT*** Page 352

Appendix D. Examples (Informative)

A resulting concrete inlined instance of OUTER is shown in Figure D.49 on1

page 356.2

Notice in Figure D.49 that OUTER is expanded as a concrete inlined instance, and3

that INNER is nested within it as a concrete out-of-line subprogram. Because4

INNER is cloned for each inline expansion of OUTER, only the invariant attributes5

of INNER (for example, DW_AT_name) are specified in the abstract instance of6

OUTER, and the low-level, instance-specific attributes of INNER (for example,7

DW_AT_low_pc) are specified in each concrete instance of OUTER.8

The several calls of INNER within OUTER are compiled as normal calls to the9

instance of INNER that is specific to the same instance of OUTER that contains the10

calls.11

D.7.3 Alternative #3: inline OUTER, one normal INNER12

In the third approach, one normal subprogram for INNER is compiled which is13

called from all concrete inlined instances of OUTER. The abstract instance for14

OUTER is shown in Figure D.50 on page 357.15

The most distinctive aspect of that Figure is that subprogram INNER exists only16

within the abstract instance of OUTER, and not in OUTER’s concrete instance. In the17

abstract instance of OUTER, the description of INNER has the full complement of18

attributes that would be expected for a normal subprogram. While attributes19

such as DW_AT_low_pc, DW_AT_high_pc, DW_AT_location, and so on,20

typically are omitted from an abstract instance because they are not invariant21

across instances of the containing abstract instance, in this case those same22

attributes are included precisely because they are invariant – there is only one23

subprogram INNER to be described and every description is the same.24

A concrete inlined instance of OUTER is illustrated in Figure D.51 on page 358.25

Notice in Figure D.51 that there is no DWARF representation for INNER at all; the26

representation of INNER does not vary across instances of OUTER and the abstract27

instance of OUTER includes the complete description of INNER, so that the28

description of INNER may be (and for reasons of space efficiency, should be)29

omitted from each concrete instance of OUTER.30

July 15 2024 ***WORKING DRAFT*** Page 353

Appendix D. Examples (Informative)

! Abstract instance for OUTER
! abstract instance

OUTER.AI.2.1$:
DW_TAG_subprogram

DW_AT_name("OUTER")
DW_AT_inline(DW_INL_declared_inlined)
! No low/high PCs

OUTER.AI.2.2$:
DW_TAG_formal_parameter

DW_AT_name("OUTER_FORMAL")
DW_AT_type(reference to integer)
! No location

OUTER.AI.2.3$:
DW_TAG_variable

DW_AT_name("OUTER_LOCAL")
DW_AT_type(reference to integer)
! No location

!
! Nested out-of-line INNER subprogram
!

OUTER.AI.2.4$:
DW_TAG_subprogram

DW_AT_name("INNER")
! No DW_AT_inline
! No low/high PCs, frame_base, etc.

OUTER.AI.2.5$:
DW_TAG_formal_parameter

DW_AT_name("INNER_FORMAL")
DW_AT_type(reference to integer)
! No location

OUTER.AI.2.6$:
DW_TAG_variable

DW_AT_name("INNER_LOCAL")
DW_AT_type(reference to integer)
! No location

...
0

...
0

Figure D.48: Inlining example #2: abstract instance

There is one aspect of this approach that is problematical from the DWARF1

perspective. The single compiled instance of INNER is assumed to access up-level2

variables of OUTER; however, those variables may well occur at varying positions3

within the frames that contain the concrete inlined instances. A compiler might4

implement this in several ways, including the use of additional5

July 15 2024 ***WORKING DRAFT*** Page 354

Appendix D. Examples (Informative)

compiler-generated parameters that provide reference parameters for the1

up-level variables, or a compiler-generated static link like parameter that points2

to the group of up-level entities, among other possibilities. In either of these3

cases, the DWARF description for the location attribute of each uplevel variable4

needs to be different if accessed from within INNER compared to when accessed5

from within the instances of OUTER. An implementation is likely to require6

producer-specific DWARF attributes and/or debugging information entries to7

describe such cases.8

Note that in C++, a member function of a class defined within a function9

definition does not require any producer-specific extensions because the C++10

language disallows access to entities that would give rise to this problem.11

(Neither extern variables nor static members require any form of static link for12

accessing purposes.)13

July 15 2024 ***WORKING DRAFT*** Page 355

Appendix D. Examples (Informative)

! Concrete instance for call "OUTER(7)"
!

OUTER.CI.2.1$:
DW_TAG_inlined_subroutine

! No name
DW_AT_abstract_origin(reference to OUTER.AI.2.1$)
DW_AT_low_pc(...)
DW_AT_high_pc(...)

OUTER.CI.2.2$:
DW_TAG_formal_parameter

! No name
DW_AT_abstract_origin(reference to OUTER.AI.2.2$)
DW_AT_location(...)

OUTER.CI.2.3$:
DW_TAG_variable

! No name
DW_AT_abstract_origin(reference to OUTER.AI.2.3$)
DW_AT_location(...)

!
! Nested out-of-line INNER subprogram
!

OUTER.CI.2.4$:
DW_TAG_subprogram

! No name
DW_AT_abstract_origin(reference to OUTER.AI.2.4$)
DW_AT_low_pc(...)
DW_AT_high_pc(...)
DW_AT_frame_base(...)
DW_AT_static_link(...)

OUTER.CI.2.5$:
DW_TAG_formal_parameter

! No name
DW_AT_abstract_origin(reference to OUTER.AI.2.5$)
DW_AT_location(...)

OUTER.CI.2.6$:
DW_TAG_variable

! No name
DW_AT_abstract_origin(reference to OUTER.AT.2.6$)
DW_AT_location(...)

...
0

...
0

Figure D.49: Inlining example #2: concrete instance

July 15 2024 ***WORKING DRAFT*** Page 356

Appendix D. Examples (Informative)

! Abstract instance for OUTER
!

OUTER.AI.3.1$:
DW_TAG_subprogram

DW_AT_name("OUTER")
DW_AT_inline(DW_INL_declared_inlined)
! No low/high PCs

OUTER.AI.3.2$:
DW_TAG_formal_parameter

DW_AT_name("OUTER_FORMAL")
DW_AT_type(reference to integer)
! No location

OUTER.AI.3.3$:
DW_TAG_variable

DW_AT_name("OUTER_LOCAL")
DW_AT_type(reference to integer)
! No location

!
! Normal INNER
!

OUTER.AI.3.4$:
DW_TAG_subprogram

DW_AT_name("INNER")
DW_AT_low_pc(...)
DW_AT_high_pc(...)
DW_AT_frame_base(...)
DW_AT_static_link(...)

OUTER.AI.3.5$:
DW_TAG_formal_parameter

DW_AT_name("INNER_FORMAL")
DW_AT_type(reference to integer)
DW_AT_location(...)

OUTER.AI.3.6$:
DW_TAG_variable

DW_AT_name("INNER_LOCAL")
DW_AT_type(reference to integer)
DW_AT_location(...)

...
0

...
0

Figure D.50: Inlining example #3: abstract instance

July 15 2024 ***WORKING DRAFT*** Page 357

Appendix D. Examples (Informative)

! Concrete instance for call "OUTER(7)"
!

OUTER.CI.3.1$:
DW_TAG_inlined_subroutine

! No name
DW_AT_abstract_origin(reference to OUTER.AI.3.1$)
DW_AT_low_pc(...)
DW_AT_high_pc(...)
DW_AT_frame_base(...)

OUTER.CI.3.2$:
DW_TAG_formal_parameter

! No name
DW_AT_abstract_origin(reference to OUTER.AI.3.2$)
! No type
DW_AT_location(...)

OUTER.CI.3.3$:
DW_TAG_variable

! No name
DW_AT_abstract_origin(reference to OUTER.AI.3.3$)
! No type
DW_AT_location(...)

! No DW_TAG_subprogram for "INNER"
...
0

Figure D.51: Inlining example #3: concrete instance

D.8 Constant Expression Example1

C++ generalizes the notion of constant expressions to include constant expression2

user-defined literals and functions. The constant declarations in Figure D.52 can3

be represented as illustrated in Figure D.53 on the following page.4

constexpr double mass = 9.8;
constexpr int square (int x) { return x * x; }
float arr[square (9)]; // square () called and inlined

Figure D.52: Constant expressions: C++ source

July 15 2024 ***WORKING DRAFT*** Page 358

Appendix D. Examples (Informative)

! For variable mass
!

1$: DW_TAG_const_type
DW_AT_type(reference to "double")

2$: DW_TAG_variable
DW_AT_name("mass")
DW_AT_type(reference to 1$)
DW_AT_const_expr(true)
DW_AT_const_value(9.8)

! Abstract instance for square
!

10$: DW_TAG_subprogram
DW_AT_name("square")
DW_AT_type(reference to "int")
DW_AT_inline(DW_INL_inlined)

11$: DW_TAG_formal_parameter
DW_AT_name("x")
DW_AT_type(reference to "int")

! Concrete instance for square(9)
!

20$: DW_TAG_inlined_subroutine
DW_AT_abstract_origin(reference to 10$)
DW_AT_const_expr(present)
DW_AT_const_value(81)
DW_TAG_formal_parameter

DW_AT_abstract_origin(reference to 11$)
DW_AT_const_value(9)

! Anonymous array type for arr
!

30$: DW_TAG_array_type
DW_AT_type(reference to "float")
DW_AT_byte_size(324) ! 81*4
DW_TAG_subrange_type

DW_AT_type(reference to "int")
DW_AT_upper_bound(reference to 20$)

! Variable arr
!

40$: DW_TAG_variable
DW_AT_name("arr")
DW_AT_type(reference to 30$)

Figure D.53: Constant expressions: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 359

Appendix D. Examples (Informative)

D.9 Unicode Character Example1

The Unicode character encodings in Figure D.54 can be described in DWARF as2

illustrated in Figure D.55.3

// C++ source
//
char16_t chr_a = u’h’;
char32_t chr_b = U’h’;

Figure D.54: Unicode character example: source

! DWARF description
!
1$: DW_TAG_base_type

DW_AT_name("char16_t")
DW_AT_encoding(DW_ATE_UTF)
DW_AT_byte_size(2)

2$: DW_TAG_base_type
DW_AT_name("char32_t")
DW_AT_encoding(DW_ATE_UTF)
DW_AT_byte_size(4)

3$: DW_TAG_variable
DW_AT_name("chr_a")
DW_AT_type(reference to 1$)

4$: DW_TAG_variable
DW_AT_name("chr_b")
DW_AT_type(reference to 2$)

Figure D.55: Unicode character example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 360

Appendix D. Examples (Informative)

D.10 Type-Safe Enumeration Example1

The C++ type-safe enumerations in Figure D.56 can be described in DWARF as2

illustrated in Figure D.57.3

// C++ source
//
enum class E { E1, E2=100 };
E e1;

Figure D.56: Type-safe enumeration example: source

! DWARF description
!
11$: DW_TAG_enumeration_type

DW_AT_name("E")
DW_AT_type(reference to "int")
DW_AT_enum_class(present)

12$: DW_TAG_enumerator
DW_AT_name("E1")
DW_AT_const_value(0)

13$: DW_TAG_enumerator
DW_AT_name("E2")
DW_AT_const_value(100)

14$: DW_TAG_variable
DW_AT_name("e1")
DW_AT_type(reference to 11$)

Figure D.57: Type-safe enumeration example: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 361

Appendix D. Examples (Informative)

D.11 Template Examples1

The C++ template example in Figure D.58 can be described in DWARF as2

illustrated in Figure D.59.3

// C++ source
//
template <class T>
struct wrapper {

T comp;
};
wrapper <int > obj;

Figure D.58: C++ template example #1: source

! DWARF description
!
11$: DW_TAG_structure_type

DW_AT_name("wrapper")
12$: DW_TAG_template_type_parameter

DW_AT_name("T")
DW_AT_type(reference to "int")

13$: DW_TAG_member
DW_AT_name("comp")
DW_AT_type(reference to 12$)

14$: DW_TAG_variable
DW_AT_name("obj")
DW_AT_type(reference to 11$)

Figure D.59: C++ template example #1: DWARF description

The actual type of the component comp is int, but in the DWARF the type4

references the DW_TAG_template_type_parameter for T, which in turn5

references int. This implies that in the original template comp was of type T and6

that was replaced with int in the instance.7

July 15 2024 ***WORKING DRAFT*** Page 362

Appendix D. Examples (Informative)

There exist situations where it is not possible for the DWARF to imply anything1

about the nature of the original template. Consider the C++ template source in2

Figure D.60 and the DWARF that can describe it in Figure D.61.3

// C++ source
//

template <class T>
struct wrapper {

T comp;
};
template <class U>
void consume(wrapper <U> formal)
{

...
}
wrapper <int > obj;
consume(obj);

Figure D.60: C++ template example #2: source

! DWARF description
!
11$: DW_TAG_structure_type

DW_AT_name("wrapper")
12$: DW_TAG_template_type_parameter

DW_AT_name("T")
DW_AT_type(reference to "int")

13$: DW_TAG_member
DW_AT_name("comp")
DW_AT_type(reference to 12$)

14$: DW_TAG_variable
DW_AT_name("obj")
DW_AT_type(reference to 11$)

21$: DW_TAG_subprogram
DW_AT_name("consume")

22$: DW_TAG_template_type_parameter
DW_AT_name("U")
DW_AT_type(reference to "int")

23$: DW_TAG_formal_parameter
DW_AT_name("formal")
DW_AT_type(reference to 11$)

Figure D.61: C++ template example #2: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 363

Appendix D. Examples (Informative)

In the DW_TAG_subprogram entry for the instance of consume, U is described as1

int. The type of formal is wrapper<U> in the source. DWARF only represents2

instantiations of templates; there is no entry which represents wrapper<U> which3

is neither a template parameter nor a template instantiation. The type of formal is4

described as wrapper<int>, the instantiation of wrapper<U>, in the DW_AT_type5

attribute at 23$. There is no description of the relationship between template type6

parameter T at 12$ and U at 22$ which was used to instantiate wrapper<U>.7

A consequence of this is that the DWARF information would not distinguish8

between the existing example and one where the formal parameter of consume9

were declared in the source to be wrapper<int>.10

D.12 Template Alias Examples11

The C++ template alias shown in Figure D.62 can be described in DWARF as12

illustrated in Figure D.63 on the following page.13

// C++ source , template alias example 1
//
template <typename T, typename U>
struct Alpha {

T tango;
U uniform;

};
template <typename V> using Beta = Alpha <V,V>;
Beta <long > b;

Figure D.62: C++ template alias example #1: source

July 15 2024 ***WORKING DRAFT*** Page 364

Appendix D. Examples (Informative)

! DWARF representation for variable ’b’
!
20$: DW_TAG_structure_type

DW_AT_name("Alpha")
21$: DW_TAG_template_type_parameter

DW_AT_name("T")
DW_AT_type(reference to "long")

22$: DW_TAG_template_type_parameter
DW_AT_name("U")
DW_AT_type(reference to "long")

23$: DW_TAG_member
DW_AT_name("tango")
DW_AT_type(reference to 21$)

24$: DW_TAG_member
DW_AT_name("uniform")
DW_AT_type(reference to 22$)

25$: DW_TAG_template_alias
DW_AT_name("Beta")
DW_AT_type(reference to 20$)

26$: DW_TAG_template_type_parameter
DW_AT_name("V")
DW_AT_type(reference to "long")

27$: DW_TAG_variable
DW_AT_name("b")
DW_AT_type(reference to 25$)

Figure D.63: C++ template alias example #1: DWARF description

Similarly, the C++ template alias shown in Figure D.64 can be described in1

DWARF as illustrated in Figure D.65 on the following page.2

// C++ source , template alias example 2
//
template <class TX > struct X { };
template <class TY > struct Y { };
template <class T> using Z = Y<T>;
X<Y<int >> y;
X<Z<int >> z;

Figure D.64: C++ template alias example #2: source

July 15 2024 ***WORKING DRAFT*** Page 365

Appendix D. Examples (Informative)

! DWARF representation for X<Y<int>>
!
30$: DW_TAG_structure_type

DW_AT_name("Y")
31$: DW_TAG_template_type_parameter

DW_AT_name("TY")
DW_AT_type(reference to "int")

32$: DW_TAG_structure_type
DW_AT_name("X")

33$: DW_TAG_template_type_parameter
DW_AT_name("TX")
DW_AT_type(reference to 30$)

!
! DWARF representation for X<Z<int>>
!
40$: DW_TAG_template_alias

DW_AT_name("Z")
DW_AT_type(reference to 30$)

41$: DW_TAG_template_type_parameter
DW_AT_name("T")
DW_AT_type(reference to "int")

42$: DW_TAG_structure_type
DW_AT_name("X")

43$: DW_TAG_template_type_parameter
DW_AT_name("TX")
DW_AT_type(reference to 40$)

!
! Note that 32$ and 42$ are actually the same type
!
50$: DW_TAG_variable

DW_AT_name("y")
DW_AT_type(reference to $32)

51$: DW_TAG_variable
DW_AT_name("z")
DW_AT_type(reference to $42)

Figure D.65: C++ template alias example #2: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 366

Appendix D. Examples (Informative)

D.13 Implicit Pointer Examples1

If the compiler determines that the value of an object is constant (either2

throughout the program, or within a specific range), the compiler may choose to3

materialize that constant only when used, rather than store it in memory or in a4

register. The DW_OP_implicit_value operation can be used to describe such a5

value. Sometimes, the value may not be constant, but still can be easily6

rematerialized when needed. A DWARF expression terminating in7

DW_OP_stack_value can be used for this case. The compiler may also eliminate8

a pointer value where the target of the pointer resides in memory, and the9

DW_OP_stack_value operator may be used to rematerialize that pointer value.10

In other cases, the compiler will eliminate a pointer to an object that itself needs11

to be materialized. Since the location of such an object cannot be represented as a12

memory address, a DWARF expression cannot give either the location or the13

actual value or a pointer variable that would refer to that object. The14

DW_OP_implicit_pointer operation can be used to describe the pointer, and the15

debugging information entry to which its first operand refers describes the value16

of the dereferenced object. A DWARF consumer will not be able to show the17

location or the value of the pointer variable, but it will be able to show the value18

of the dereferenced pointer.19

Consider the C source shown in Figure D.66. Assume that the function foo is not20

inlined, that the argument x is passed in register 5, and that the function foo is21

optimized by the compiler into just an increment of the volatile variable v. Given22

these assumptions a possible DWARF description is shown in Figure D.67 on the23

following page.24

struct S { short a; char b, c; };
volatile int v;
void foo (int x)
{

struct S s = { x, x + 2, x + 3 };
char *p = &s.b;
s.a++;
v++;

}
int main ()
{

foo (v+1);
return 0;

}

Figure D.66: C implicit pointer example #1: source

July 15 2024 ***WORKING DRAFT*** Page 367

Appendix D. Examples (Informative)

1$: DW_TAG_structure_type
DW_AT_name("S")
DW_AT_byte_size(4)

10$: DW_TAG_member
DW_AT_name("a")
DW_AT_type(reference to "short int")
DW_AT_data_member_location(constant 0)

11$: DW_TAG_member
DW_AT_name("b")
DW_AT_type(reference to "char")
DW_AT_data_member_location(constant 2)

12$: DW_TAG_member
DW_AT_name("c")
DW_AT_type(reference to "char")
DW_AT_data_member_location(constant 3)

2$: DW_TAG_subprogram
DW_AT_name("foo")

20$: DW_TAG_formal_parameter
DW_AT_name("x")
DW_AT_type(reference to "int")
DW_AT_location(DW_OP_reg5)

21$: DW_TAG_variable
DW_AT_name("s")
DW_AT_type(reference to S at 1$)
DW_AT_location(expression=

DW_OP_breg5(1) DW_OP_stack_value DW_OP_piece(2)
DW_OP_breg5(2) DW_OP_stack_value DW_OP_piece(1)
DW_OP_breg5(3) DW_OP_stack_value DW_OP_piece(1))

22$: DW_TAG_variable
DW_AT_name("p")
DW_AT_type(reference to "char *")
DW_AT_location(expression=

DW_OP_implicit_pointer(reference to 21$, 2))

Figure D.67: C implicit pointer example #1: DWARF description

In Figure D.67, even though variables s and p are both optimized away1

completely, this DWARF description still allows a debugger to print the value of2

the variable s, namely (2, 3, 4). Similarly, because the variable s does not live3

in memory, there is nothing to print for the value of p, but the debugger should4

still be able to show that p[0] is 3, p[1] is 4, p[-1] is 0 and p[-2] is 2.5

July 15 2024 ***WORKING DRAFT*** Page 368

Appendix D. Examples (Informative)

As a further example, consider the C source shown in Figure D.68. Make the1

following assumptions about how the code is compiled:2

• The function foo is inlined into function main3

• The body of the main function is optimized to just three blocks of4

instructions which each increment the volatile variable v, followed by a5

block of instructions to return 0 from the function6

• Label label0 is at the start of the main function, label1 follows the first v++7

block, label2 follows the second v++ block and label3 is at the end of the8

main function9

• Variable b is optimized away completely, as it isn’t used10

• The string literal "opq" is optimized away as well11

Given these assumptions a possible DWARF description is shown in Figure D.6912

on the next page.13

static const char *b = "opq";
volatile int v;
static inline void foo (int *p)
{

(*p)++;
v++;
p++;
(*p)++;
v++;

}

int main ()
{
label0:

int a[2] = 1, 2 ;
v++;

label1:
foo (a);

label2:
return a[0] + a[1] - 5;

label3:
}

Figure D.68: C implicit pointer example #2: source

July 15 2024 ***WORKING DRAFT*** Page 369

Appendix D. Examples (Informative)

1$: DW_TAG_variable
DW_AT_name("b")
DW_AT_type(reference to "const char *")
DW_AT_location(expression=

DW_OP_implicit_pointer(reference to 2$, 0))
2$: DW_TAG_dwarf_procedure

DW_AT_location(expression=
DW_OP_implicit_value(4, {’o’, ’p’, ’q’, ’\0’}))

3$: DW_TAG_subprogram
DW_AT_name("foo")
DW_AT_inline(DW_INL_declared_inlined)

30$: DW_TAG_formal_parameter
DW_AT_name("p")
DW_AT_type(reference to "int *")

4$: DW_TAG_subprogram
DW_AT_name("main")

40$: DW_TAG_variable
DW_AT_name("a")
DW_AT_type(reference to "int[2]")
DW_AT_location(location list 98$)

41$: DW_TAG_inlined_subroutine
DW_AT_abstract_origin(reference to 3$)

42$: DW_TAG_formal_parameter
DW_AT_abstract_origin(reference to 30$)
DW_AT_location(location list 99$)

! .debug_loclists section
98$: DW_LLE_start_end[<label0 in main> .. <label1 in main>)

DW_OP_lit1 DW_OP_stack_value DW_OP_piece(4)
DW_OP_lit2 DW_OP_stack_value DW_OP_piece(4)

DW_LLE_start_end[<label1 in main> .. <label2 in main>)
DW_OP_lit2 DW_OP_stack_value DW_OP_piece(4)
DW_OP_lit2 DW_OP_stack_value DW_OP_piece(4)

DW_LLE_start_end[<label2 in main> .. <label3 in main>)
DW_OP_lit2 DW_OP_stack_value DW_OP_piece(4)
DW_OP_lit3 DW_OP_stack_value DW_OP_piece(4)

DW_LLE_end_of_list
99$: DW_LLE_start_end[<label1 in main> .. <label2 in main>)

DW_OP_implicit_pointer(reference to 40$, 0)
DW_LLE_start_end[<label2 in main> .. <label3 in main>)

DW_OP_implicit_pointer(reference to 40$, 4)
DW_LLE_end_of_list

Figure D.69: C implicit pointer example #2: DWARF description

July 15 2024 ***WORKING DRAFT*** Page 370

Appendix D. Examples (Informative)

D.14 String Type Examples1

Consider the Fortran 2003 string type example source in Figure D.70 following.2

The DWARF representation in Figure D.71 on the following page is appropriate.3

program character_kind
use iso_fortran_env
implicit none
integer , parameter :: ascii =

selected_char_kind ("ascii")
integer , parameter :: ucs4 =

selected_char_kind (’ISO_10646 ’)
character(kind=ascii , len =26) :: alphabet
character(kind=ucs4 , len =30) :: hello_world
character (len =*), parameter :: all_digits ="0123456789"

alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
hello_world = ucs4_ ’Hello World and Ni Hao -- ’ &

// char (int (z’4F60 ’), ucs4) &
// char (int (z’597D’), ucs4)

write (*,*) alphabet
write (*,*) all_digits

open (output_unit , encoding=’UTF -8’)
write (*,*) trim (hello_world)

end program character_kind

Figure D.70: String type example: source

July 15 2024 ***WORKING DRAFT*** Page 371

Appendix D. Examples (Informative)

1$: DW_TAG_base_type
DW_AT_encoding (DW_ATE_ASCII)

2$: DW_TAG_base_type
DW_AT_encoding (DW_ATE_UCS)
DW_AT_byte_size (4)

3$: DW_TAG_string_type
DW_AT_byte_size (10)

4$: DW_TAG_const_type
DW_AT_type (reference to 3$)

5$: DW_TAG_string_type
DW_AT_type (1$)
DW_AT_string_length (...)
DW_AT_string_length_byte_size (...)
DW_AT_data_location (...)

6$: DW_TAG_string_type
DW_AT_type (2$)
DW_AT_string_length (...)
DW_AT_string_length_byte_size (...)
DW_AT_data_location (...)

7$: DW_TAG_variable
DW_AT_name (alphabet)
DW_AT_type (5$)
DW_AT_location (...)

8$: DW_TAG_constant
DW_AT_name (all_digits)
DW_AT_type (4$)
DW_AT_const_value (...)

9$: DW_TAG_variable
DW_AT_name (hello_world)
DW_AT_type (6$)
DW_AT_location (...)

Figure D.71: String type example: DWARF representation

July 15 2024 ***WORKING DRAFT*** Page 372

Appendix D. Examples (Informative)

D.15 Call Site Examples1

The following examples use a hypothetical machine which:2

• Passes the first argument in register 0, the second in register 1, and the third3

in register 2.4

• Keeps the stack pointer is register 3.5

• Has one call preserved register 4.6

• Returns a function value in register 0.7

D.15.1 Call Site Example #1 (C)8

Consider the C source in Figure D.72 following.9

extern void fn1 (long int , long int , long int);

long int
fn2 (long int a, long int b, long int c)
{

long int q = 2 * a;
fn1 (5, 6, 7);
return 0;

}

long int
fn3 (long int x, long int (*fn4) (long int *))
{

long int v, w, w2, z;
w = (*fn4) (&w2);
v = (*fn4) (&w2);
z = fn2 (1, v + 1, w);
{

int v1 = v + 4;
z += fn2 (w, v * 2, x);

}
return z;

}

Figure D.72: Call Site Example #1: Source

Possible generated code for this source is shown using a suggestive pseudo-10

assembly notation in Figure D.73 on the next page.11

July 15 2024 ***WORKING DRAFT*** Page 373

Appendix D. Examples (Informative)

fn2:
L1:

%reg2 = 7 ! Load the 3rd argument to fn1
%reg1 = 6 ! Load the 2nd argument to fn1
%reg0 = 5 ! Load the 1st argument to fn1

L2:
call fn1
%reg0 = 0 ! Load the return value from the function
return

L3:
fn3:

! Decrease stack pointer to reserve local stack frame
%reg3 = %reg3 - 32
[%reg3] = %reg4 ! Save the call preserved register to

! stack
[%reg3 + 8] = %reg0 ! Preserve the x argument value
[%reg3 + 16] = %reg1 ! Preserve the fn4 argument value
%reg0 = %reg3 + 24 ! Load address of w2 as argument
call %reg1 ! Call fn4 (indirect call)

L6:
%reg2 = [%reg3 + 16] ! Load the fn4 argument value
[%reg3 + 16] = %reg0 ! Save the result of the first call (w)
%reg0 = %reg3 + 24 ! Load address of w2 as argument
call %reg2 ! Call fn4 (indirect call)

L7:
%reg4 = %reg0 ! Save the result of the second call (v)

! into register.
%reg2 = [%reg3 + 16] ! Load 3rd argument to fn2 (w)
%reg1 = %reg4 + 1 ! Compute 2nd argument to fn2 (v + 1)
%reg0 = 1 ! Load 1st argument to fn2
call fn2

L4:
%reg2 = [%reg3 + 8] ! Load the 3rd argument to fn2 (x)
[%reg3 + 8] = %reg0 ! Save the result of the 3rd call (z)
%reg0 = [%reg3 + 16] ! Load the 1st argument to fn2 (w)
%reg1 = %reg4 + %reg4 ! Compute the 2nd argument to fn2 (v * 2)
call fn2

L5:
%reg2 = [%reg3 + 8] ! Load the value of z from the stack
%reg0 = %reg0 + %reg2 ! Add result from the 4th call to it

L8:
%reg4 = [%reg3] ! Restore original value of call preserved

! register
%reg3 = %reg3 + 32 ! Leave stack frame
return

Figure D.73: Call Site Example #1: Code

July 15 2024 ***WORKING DRAFT*** Page 374

Appendix D. Examples (Informative)

The location list for variable a in function fn2 might look like the following1

(where the notation “Range [m .. n)” specifies the range of addresses from m2

through but not including n over which the following location description3

applies):4

! Before the assignment to register 0, the argument a is live in register 0
!
Range [L1 .. L2)

DW_OP_reg0

! Afterwards, it is not. The value can perhaps be looked up in the caller
!
Range [L2 .. L3)

DW_OP_entry_value (1, DW_OP_reg0)
DW_OP_stack_value

End-of-list

Similarly, the variable q in fn2 then might have this location list:5

! Before the assignment to register 0, the value of q can be computed as
! two times the contents of register 0
!
Range [L1 .. L2)

DW_OP_lit2
DW_OP_breg0 0
DW_OP_mul
DW_OP_stack_value

! Afterwards. it is not. It can be computed from the original value of
! the first parameter, multiplied by two
!
Range [L2 .. L3)

DW_OP_lit2
DW_OP_entry_value (1, DW_OP_reg0)
DW_OP_mul
DW_OP_stack_value

End-of-list

Variables b and c each have a location list similar to that for variable a, except for6

a different label between the two ranges and they use DW_OP_reg1 and7

DW_OP_reg2, respectively, instead of DW_OP_reg0.8

The call sites for all the calls in function fn3 are children of the9

DW_TAG_subprogram entry for fn3 (or of its DW_TAG_lexical_block entry if10

July 15 2024 ***WORKING DRAFT*** Page 375

Appendix D. Examples (Informative)

there is any for the whole function). This is shown in Figure D.74.1

part 1 of 2

DW_TAG_call_site
DW_AT_call_return_pc(L6) ! First indirect call to (*fn4) in fn3.
! The address of the call is preserved across the call in memory at
! stack pointer + 16 bytes.
DW_AT_call_target(DW_OP_breg3 16 DW_OP_deref)
DW_TAG_call_site_parameter

DW_AT_location(DW_OP_reg0)
! Value of the first parameter is equal to stack pointer + 24 bytes.
DW_AT_call_value(DW_OP_breg3 24)

DW_TAG_call_site
DW_AT_call_return_pc(L7) ! Second indirect call to (*fn4) in fn3.
! The address of the call is not preserved across the call anywhere, but
! could be perhaps looked up in fn3’s caller.
DW_AT_call_target(DW_OP_entry_value (1, DW_OP_reg1))
DW_TAG_call_site_parameter

DW_AT_location(DW_OP_reg0)
DW_AT_call_value(DW_OP_breg3 24)

DW_TAG_call_site
DW_AT_call_return_pc(L4) ! 3rd call in fn3, direct call to fn2
DW_AT_call_origin(reference to fn2 DW_TAG_subprogram)
DW_TAG_call_site_parameter

DW_AT_call_parameter(reference to formal parameter a in subprogram fn2)
DW_AT_location(DW_OP_reg0)
! First parameter to fn2 is constant 1
DW_AT_call_value(DW_OP_lit1)

DW_TAG_call_site_parameter
DW_AT_call_parameter(reference to formal parameter b in subprogram fn2)
DW_AT_location(DW_OP_reg1)
! Second parameter to fn2 can be computed as the value of the call
! preserved register 4 in the fn3 function plus one
DW_AT_call_value(DW_OP_breg4 1)

DW_TAG_call_site_parameter
DW_AT_call_parameter(reference to formal parameter c in subprogram fn2)
DW_AT_location(DW_OP_reg2)
! Third parameter’s value is preserved in memory at fn3’s stack pointer
! plus 16 bytes
DW_AT_call_value(DW_OP_breg3 16 DW_OP_deref)

Figure D.74: Call site example #1: DWARF encoding

July 15 2024 ***WORKING DRAFT*** Page 376

Appendix D. Examples (Informative)

part 2 of 2

DW_TAG_lexical_block
DW_AT_low_pc(L4)
DW_AT_high_pc(L8)
DW_TAG_variable

DW_AT_name("v1")
DW_AT_type(reference to int)
! Value of the v1 variable can be computed as value of register 4 plus 4
DW_AT_location(DW_OP_breg4 4 DW_OP_stack_value)

DW_TAG_call_site
DW_AT_call_return_pc(L5) ! 4th call in fn3, direct call to fn2
DW_AT_call_target(reference to subprogram fn2)
DW_TAG_call_site_parameter

DW_AT_call_parameter(reference to formal parameter a in subprogram fn2)
DW_AT_location(DW_OP_reg0)
! Value of the 1st argument is preserved in memory at fn3’s stack
! pointer + 16 bytes.
DW_AT_call_value(DW_OP_breg3 16 DW_OP_deref)

DW_TAG_call_site_parameter
DW_AT_call_parameter(reference to formal parameter b in subprogram fn2)
DW_AT_location(DW_OP_reg1)
! Value of the 2nd argument can be computed using the preserved
! register 4 multiplied by 2
DW_AT_call_value(DW_OP_lit2 DW_OP_reg4 0 DW_OP_mul)

DW_TAG_call_site_parameter
DW_AT_call_parameter(reference to formal parameter c in subprogram fn2)
DW_AT_location(DW_OP_reg2)
! Value of the 3rd argument is not preserved, but could be perhaps
! computed from the value passed fn3’s caller.
DW_AT_call_value(DW_OP_entry_value (1, DW_OP_reg0))

Figure D.74 Call site example #1: DWARF encoding (concluded)

July 15 2024 ***WORKING DRAFT*** Page 377

Appendix D. Examples (Informative)

D.15.2 Call Site Example #2 (Fortran)1

Consider the Fortran source in Figure D.75 which is used to illustrate how2

Fortran’s “pass by reference” parameters can be handled.3

subroutine fn4 (n)
integer :: n, x
x = n
n = n / 2
call fn6

end subroutine
subroutine fn5 (n)

interface fn4
subroutine fn4 (n)

integer :: n
end subroutine

end interface fn4
integer :: n, x
call fn4 (n)
x = 5
call fn4 (x)

end subroutine fn5

Figure D.75: Call site example #2: source

July 15 2024 ***WORKING DRAFT*** Page 378

Appendix D. Examples (Informative)

Possible generated code for this source is shown using a suggestive pseudo-1

assembly notation in Figure D.76.2

fn4:
%reg2 = [%reg0] ! Load value of n (passed by reference)
%reg2 = %reg2 / 2 ! Divide by 2
[%reg0] = %reg2 ! Update value of n
call fn6 ! Call some other function
return

fn5:
%reg3 = %reg3 - 8 ! Decrease stack pointer to create stack frame
call fn4 ! Call fn4 with the same argument by reference

! as fn5 has been called with
L9:

[%reg3] = 5 ! Pass value of 5 by reference to fn4
%reg0 = %reg3 ! Put address of the value 5 on the stack

! into 1st argument register
call fn4

L10:
%reg3 = %reg3 + 8 ! Leave stack frame
return

Figure D.76: Call site example #2: code

The location description for variable x in function fn4 might be:3

DW_OP_entry_value 4 DW_OP_breg0 0 DW_OP_deref_size 4
DW_OP_stack_value

The call sites in (just) function fn5 might be as shown in Figure D.77 on the next4

page.5

July 15 2024 ***WORKING DRAFT*** Page 379

Appendix D. Examples (Informative)

DW_TAG_call_site
DW_AT_call_return_pc(L9) ! First call to fn4
DW_AT_call_origin(reference to subprogram fn4)
DW_TAG_call_site_parameter

DW_AT_call_parameter(reference to formal parameter n in subprogram fn4)
DW_AT_location(DW_OP_reg0)
! The value of register 0 at the time of the call can be perhaps
! looked up in fn5’s caller
DW_AT_call_value(DW_OP_entry_value (1, DW_OP_reg0))
! DW_AT_call_data_location(DW_OP_push_object_address) ! left out, implicit
! And the actual value of the parameter can be also perhaps looked up in
! fn5’s caller
DW_AT_call_data_value(

DW_OP_entry_value (4, DW_OP_breg0 0 DW_OP_deref_size 4))

DW_TAG_call_site
DW_AT_call_return_pc(L10) ! Second call to fn4
DW_AT_call_origin(reference to subprogram fn4)
DW_TAG_call_site_parameter

DW_AT_call_parameter(reference to formal parameter n in subprogram fn4)
DW_AT_location(DW_OP_reg0)
! The value of register 0 at the time of the call is equal to the stack
! pointer value in fn5
DW_AT_call_value(DW_OP_breg3 0)
! DW_AT_call_data_location(DW_OP_push_object_address) ! left out, implicit
! And the value passed by reference is constant 5
DW_AT_call_data_value(DW_OP_lit5)

Figure D.77: Call site example #2: DWARF encoding

July 15 2024 ***WORKING DRAFT*** Page 380

Appendix D. Examples (Informative)

D.16 Macro Example1

Consider the C source in Figure D.78 following which is used to illustrate the2

DWARF encoding of macro information (see Section 6.3 on page 171).3

File a.c

#include "a.h"
#define FUNCTION_LIKE_MACRO(x) 4+x
#include "b.h"

File a.h

#define LONGER_MACRO 1
#define B 2
#include "b.h"
#define B 3

File b.h

#undef B
#define D 3
#define FUNCTION_LIKE_MACRO(x) 4+x

Figure D.78: Macro example: source

Two possible encodings are shown. The first, in Figure D.79 on the next page, is4

perhaps the simplest possible encoding. It includes all macro information from5

the main source file (a.c) as well as its two included files (a.h and b.h) in a single6

macro unit. Further, all strings are included as immediate operands of the macro7

operators (that is, there is no string pooling). The size of the macro unit is 1608

bytes.9

The second encoding, in Figure D.80 on page 383, saves space in two ways:10

1. Longer strings are pooled by storing them in the .debug_str section where11

they can be referenced more than once.12

2. Macro information entries contained in included files are represented as13

separate macro units which are then imported for each #include directive.14

The combined size of the three macro units and their referenced strings is 12915

bytes.16

July 15 2024 ***WORKING DRAFT*** Page 381

Appendix D. Examples (Informative)

! *** Section .debug_macro contents
! Macro unit for "a.c"
0$h: Version: 5

Flags: 2
offset_size_flag: 0 ! 4-byte offsets
debug_line_offset_flag: 1 ! Line number offset present
opcode_operands_table_flag: 0 ! No extensions

Offset in .debug_line section: 0 ! Line number offset
0$m: DW_MACRO_start_file, 0, 0 ! Implicit Line: 0, File: 0 "a.c"

DW_MACRO_start_file, 1, 1 ! #include Line: 1, File: 1 "a.h"
DW_MACRO_define, 1, "LONGER_MACRO 1"

! #define Line: 1, String: "LONGER_MACRO 1"
DW_MACRO_define, 2, "B 2" ! #define Line: 2, String: "B 2"
DW_MACRO_start_file, 3, 2 ! #include Line: 3, File: 2 "b.h"
DW_MACRO_undef, 1, "B" ! #undef Line: 1, String: "b"
DW_MACRO_define 2, "D 3" ! #define Line: 2, String: "D 3"
DW_MACRO_define, 3, "FUNCTION_LIKE_MACRO(x) 4+x"

! #define Line: 3,
! String: "FUNCTION_LIKE_MACRO(x) 4+x"

DW_MACRO_end_file ! End "b.h" -> back to "a.h"
DW_MACRO_define, 4, "B 3" ! #define Line: 4, String: "B 3"
DW_MACRO_end_file ! End "a.h" -> back to "a.c"
DW_MACRO_define, 2, "FUNCTION_LIKE_MACRO(x) 4+x"

! #define Line: 2,
! String: "FUNCTION_LIKE_MACRO(x) 4+x"

DW_MACRO_start_file, 3, 2 ! #include Line: 3, File: 2 "b.h"
DW_MACRO_undef, 1, "B" ! #undef Line: 1, String: "b"
DW_MACRO_define, 2, "D 3" ! #define Line: 2, String: "D 3"
DW_MACRO_define, 3, "FUNCTION_LIKE_MACRO(x) 4+x"

! #define Line: 3,
! String: "FUNCTION_LIKE_MACRO(x) 4+x"

DW_MACRO_end_file ! End "b.h" -> back to "a.c"
DW_MACRO_end_file ! End "a.c" -> back to ""
0 ! End macro unit

Figure D.79: Macro example: simple DWARF encoding

July 15 2024 ***WORKING DRAFT*** Page 382

Appendix D. Examples (Informative)

! *** Section .debug_macro contents
! Macro unit for "a.c"
0$h: Version: 5

Flags: 2
offset_size_flag: 0 ! 4-byte offsets
debug_line_offset_flag: 1 ! Line number offset present
opcode_operands_table_flag: 0 ! No extensions

Offset in .debug_line section: 0 ! Line number offset
0$m: DW_MACRO_start_file, 0, 0 ! Implicit Line: 0, File: 0 "a.c"

DW_MACRO_start_file, 1, 1 ! #include Line: 1, File: 1 "a.h"
DW_MACRO_import, i$1h ! Import unit at i$1h (lines 1-2)
DW_MACRO_start_file, 3, 2 ! #include Line: 3, File: 2 "b.h"
DW_MACRO_import, i$2h ! Import unit i$2h (lines all)
DW_MACRO_end_file ! End "b.h" -> back to "a.h"
DW_MACRO_define, 4, "B 3" ! #define Line: 4, String: "B 3"
DW_MACRO_end_file ! End "a.h" -> back to "a.c"
DW_MACRO_define, 2, s$1 ! #define Line: 3,

! String: "FUNCTION_LIKE_MACRO(x) 4+x"
DW_MACRO_start_file, 3, 2 ! #include Line: 3, File: 2 "b.h"
DW_MACRO_import, i$2h ! Import unit i$2h (lines all)
DW_MACRO_end_file ! End "b.h" -> back to "a.c"
DW_MACRO_end_file ! End "a.c" -> back to ""
0 ! End macro unit

! Macro unit for "a.h" lines 1-2
i$1h: Version: 5

Flags: 0
offset_size_flag: 0 ! 4-byte offsets
debug_line_offset_flag: 0 ! No line number offset
opcode_operands_table_flag: 0 ! No extensions

i$1m: DW_MACRO_define_strp, 1, s$2 ! #define Line: 1, String: "LONGER_MACRO 1"
DW_MACRO_define, 2, "B 2" ! #define Line: 2, String: "B 2"
0 ! End macro unit

! Macro unit for "b.h"
i$2h: Version: 5

Flags: 0
offset_size_flag: 0 ! 4-byte offsets
debug_line_offset_flag: 0 ! No line number offset
opcode_operands_table_flag: 0 ! No extensions

i$2m: DW_MACRO_undef, 1, "B" ! #undef Line: 1, String: "B"
DW_MACRO_define, 2, "D 3" ! #define Line: 2, String: "D 3"
DW_MACRO_define_strp, 3, s$1 ! #define Line: 3,

! String: "FUNCTION_LIKE_MACRO(x) 4+x"
0 ! End macro unit

! *** Section .debug_str contents
s$1: String: "FUNCTION_LIKE_MACRO(x) 4+x"
s$2: String: "LONGER_MACRO 1"

Figure D.80: Macro example: sharable DWARF encoding

July 15 2024 ***WORKING DRAFT*** Page 383

Appendix D. Examples (Informative)

A number of observations are worth mentioning:1

• Strings that are the same size as a reference or less are better represented as2

immediate operands. Strings longer than twice the size of a reference are3

better stored in the string table if there are at least two references.4

• There is a trade-off between the size of the macro information of a file and5

the number of times it is included when evaluating whether to create a6

separate macro unit. However, the amount of overhead (the size of a macro7

header) needed to represent a unit as well as the size of the operation to8

import a macro unit are both small.9

• A macro unit need not describe all of the macro information in a file. For10

example, in Figure D.80 the second macro unit (beginning at i$1h) includes11

macros from just the first two lines of file a.h.12

• An implementation may be able to share macro units across object files (not13

shown in this example). To support this, it may be advantageous to create14

macro units in cases where they do not offer an advantage in a single15

compilation of itself.16

• The header of a macro unit that contains a DW_MACRO_start_file17

operation must include a reference to the compilation line number header18

to allow interpretation of the file number operands in those commands.19

However, the presence of those offsets complicates or may preclude sharing20

across compilations.21

July 15 2024 ***WORKING DRAFT*** Page 384

Appendix D. Examples (Informative)

D.17 Parameter Default Value Examples1

The default expressions for parameters x and y in the C++ function declaration in2

Figure D.81 can be described in DWARF as illustrated in Figure D.82.3

void g (int x = 13;
int y = f());

Figure D.81: Default value example #1: C++ source

DW_TAG_subprogram
DW_AT_name ("g")

DW_TAG_formal_parameter
DW_AT_name ("x")
DW_AT_type (reference to type "int")
DW_AT_default_value@DW_FORM_sdata (13)

DW_TAG_formal_parameter
DW_AT_name ("y")
DW_AT_type (reference to type "int")
DW_AT_default_value@DW_FORM_string ("f()")

Figure D.82: Default value example #1: DWARF encoding

In Figure D.82, note the following:4

1. This figure explicitly shows the form used by certain attributes (indicated5

by a trailing @DW_FORM_xxx) when it is critical, while the form is left6

implicit in most other examples.7

2. The string value for y is three characters in length and does not include any8

quotes. (The quotes are an artifact of the presumed dumper tool that9

created this interpretation.)10

3. The default value for x could also be encoded as11

DW_AT_default_value@DW_FORM_string("13"); however, this is generally a12

less convenient form and less efficient for consumers to process. a less13

convenient form and less efficient for consumers to process.14

July 15 2024 ***WORKING DRAFT*** Page 385

Appendix D. Examples (Informative)

A string form in DW_AT_default_value always represents a source code1

fragment, even in languages that have a native string type. For example, the2

default string parameter of the Ada function in Figure D.83 is encoded in3

DWARF as a string containing the Ada string literal, including the source4

quotation marks, as shown in Figure D.84.5

procedure s (x : string := "abc";
y : string := "abcd "+10) is

begin
end s;

Figure D.83: Default value example #2: Ada source

DW_TAG_subprogram
DW_AT_name ("s")

DW_TAG_formal_parameter
DW_AT_name ("x")
DW_AT_type (reference to type "string")
DW_AT_default_value@DW_FORM_data4 (0x61626364) ! Big-endian

DW_TAG_formal_parameter
DW_AT_name ("y")
DW_AT_type (reference to type "string")
DW_AT_default_value@DW_FORM_string (""abcd"+10 ")

Figure D.84: Default value example #2: DWARF encoding

July 15 2024 ***WORKING DRAFT*** Page 386

Appendix D. Examples (Informative)

D.18 SIMD Lane Example1

The following example uses a hypothetical machine with 64-bit scalar registers2

r0, r1, ..., and 256-bit vector registers v0, v1, ... that supports SIMD instructions3

with different SIMD widths. Scalar arguments are passed in scalar registers4

starting with r0 for the first argument.5

Consider the source code in Figure D.85, which is implicitly widened by a6

vectorization factor of 8 to match the 256-bit vector registers of the target7

machine, resulting in the pseudo-code in Figure D.86 on the next page.8

void vec_add (int dst[], int src[], int len) {
#pragma omp simd
for (int i = 0; i < len; ++i)

dst[i] += src[i];
}

Figure D.85: SIMD Lane Example: C OpenMP Source

The machine code contains two instances of the source loop: one instance with9

SIMD width 8 beginning at .l1, and one scalar instance beginning at .l2 to handle10

any remaining elements.11

This function may be described in DWARF as shown in Figure D.87 on page 389.12

July 15 2024 ***WORKING DRAFT*** Page 387

Appendix D. Examples (Informative)

.l0:
move .64b r3, 0 ; i = 0

.l1: ; implicitly 8-wide vectorized loop body
add .64b r4 , r3, 8 ; inext = i + 8
cmp .64b r4 , r2 ; compare inext to len
jmp.ge .l2 ; jump to .l2 if inext >= len
load .256b v0 , [r0+4*r3] ; v0[n] = dst[i+n] for

; n in [0..7]
.l1.1:

load .256b v1 , [r1+4*r3] ; v1[n] = src[i+n] for
; n in [0..7]

.l1.2: ; add 8 elements
add.simd -8 v0, v0 , v1 ; v0[n] = v0[n] + v1[n] for

; n in [0..7]
store .256b [r0+4*r3], v0 ; dst[i+n] = v0[n] for

; n in [0..7]
.l1.3:

mov .64b r3 , r4 ; i = inext
jmp .l1 ; loop back for more

.l2: ; scalar loop body
add .64b r4 , r3, 1 ; inext = i + 1
cmp .64b r4 , r2 ; compare inext to len
jmp.ge .l3 ; jump to .l3 if inext >= len
load .32b r5, [r0+4*r3] ; r5 = dst[i]

.l2.1:
load .32b r6, [r1+4*r3] ; r6 = src[i]

.l2.2: ; add a single element
add .32b r5 , r5, r6 ; r5 = r5 + r6
store .32b [r0+4*r3], r5 ; dst[i] = r5

.l2.3:
mov .64b r3 , r4 ; i = inext
jmp .l2 ; loop back for more

.l3:
return

Figure D.86: SIMD Lane Example: Pseudo-Assembly Code

July 15 2024 ***WORKING DRAFT*** Page 388

Appendix D. Examples (Informative)

DW_TAG_subprogram
DW_AT_name ("vec_add")
DW_AT_num_lanes .vallist.0
...
DW_TAG_variable

DW_AT_name ("i")
DW_AT_type (reference to type int)
DW_AT_location .loclist.1
...

.vallist.0:
range [.l1, .l2)

DW_OP_lit8
end-of-list

.loclist.1:
range [.l0, .l1)

DW_OP_regx r3
range [.l1, .l2)

DW_OP_bregx r3, 0
DW_OP_push_lane
DW_OP_plus
DW_OP_stack_value

range [.l2, .l4)
DW_OP_regx r3

end-of-list

Figure D.87: SIMD Lane Example: DWARF Encoding

July 15 2024 ***WORKING DRAFT*** Page 389

Appendix E1

DWARF Compression and Duplicate2

Elimination (Informative)3

DWARF can use a lot of disk space.4

This is especially true for C++, where the depth and complexity of headers can5

mean that many, many (possibly thousands of) declarations are repeated in every6

compilation unit. C++ templates can also mean that some functions and their7

DWARF descriptions get duplicated.8

This Appendix describes techniques for using the DWARF representation in9

combination with features and characteristics of some common object file10

representations to reduce redundancy without losing information. It is worth11

emphasizing that none of these techniques are necessary to provide a complete12

and accurate DWARF description; they are solely concerned with reducing the13

size of DWARF information.14

The techniques described here depend more directly and more obviously on15

object file concepts and linker mechanisms than most other parts of DWARF.16

While the presentation tends to use the vocabulary of specific systems, this is17

primarily to aid in describing the techniques by appealing to well-known18

terminology. These techniques can be employed on any system that supports19

certain general functional capabilities (described below).20

E.1 Using Compilation Units21

E.1.1 Overview22

The general approach is to break up the debug information of a compilation into23

separate normal and partial compilation units, each consisting of one or more24

July 15 2024 ***WORKING DRAFT*** Page 390

Appendix E. Compression (Informative)

sections. By arranging that a sufficiently similar partitioning occurs in other1

compilations, a suitable system linker can delete redundant groups of sections2

when combining object files.3

The following uses some traditional section naming here but aside from the DWARF4

sections, the names are just meant to suggest traditional contents as a way of explaining5

the approach, not to be limiting.6

A traditional relocatable object output file from a single compilation might7

contain sections named:8

.data9

.text10

.debug_info11

.debug_abbrev12

.debug_line13

.debug_aranges14

A relocatable object file from a compilation system attempting duplicate DWARF15

elimination might contain sections as in:16

.data17

.text18

.debug_info19

.debug_abbrev20

.debug_line21

.debug_aranges22

followed (or preceded, the order is not significant) by a series of section groups:23

==== Section group 124

.debug_info25

.debug_abbrev26

.debug_line27

==== ...28

==== Section group N29

.debug_info30

.debug_abbrev31

.debug_line32

where each section group might or might not contain executable code (.text33

sections) or data (.data sections).34

July 15 2024 ***WORKING DRAFT*** Page 391

Appendix E. Compression (Informative)

A section group is a named set of section contributions within an object file with1

the property that the entire set of section contributions must be retained or2

discarded as a whole; no partial elimination is allowed. Section groups can3

generally be handled by a linker in two ways:4

1. Given multiple identical (duplicate) section groups, one of them is chosen to5

be kept and used, while the rest are discarded.6

2. Given a section group that is not referenced from any section outside of the7

section group, the section group is discarded.8

Which handling applies may be indicated by the section group itself and/or9

selection of certain linker options.10

For example, if a linker determines that section group 1 from A.o and section11

group 3 from B.o are identical, it could discard one group and arrange that all12

references in A.o and B.o apply to the remaining one of the two identical section13

groups. This saves space.14

An important part of making it possible to “redirect” references to the surviving15

section group is the use of consistently chosen linker global symbols for referring16

to locations within each section group. It follows that references are simply to17

external names and the linker already knows how to match up references and18

definitions.19

What is minimally needed from the object file format and system linker (outside20

of DWARF itself, and normal object/linker facilities such as simple relocations)21

are:22

1. A means to reference the .debug_info information of one compilation unit23

from the .debug_info section of another compilation unit24

(DW_FORM_ref_addr provides this).25

2. A means to combine multiple contributions to specific sections (for example,26

.debug_info) into a single object file.27

3. A means to identify a section group (giving it a name).28

4. A means to indicate which sections go together to make up a section group,29

so that the group can be treated as a unit (kept or discarded).30

5. A means to indicate how each section group should be processed by the31

linker.32

The notion of section and section contribution used here corresponds closely to the33

similarly named concepts in the ELF object file representation. The notion of section34

group is an abstraction of common extensions of the ELF representation widely known as35

July 15 2024 ***WORKING DRAFT*** Page 392

Appendix E. Compression (Informative)

“COMDATs” or “COMDAT sections.” (Other object file representations provide1

COMDAT-style mechanisms as well.) There are several variations in the COMDAT2

schemes in common use, any of which should be sufficient for the purposes of the3

DWARF duplicate elimination techniques described here.4

E.1.2 Naming and Usage Considerations5

A precise description of the means of deriving names usable by the linker to6

access DWARF entities is not part of this specification. Nonetheless, an outline of7

a usable approach is given here to make this more understandable and to guide8

implementors.9

Implementations should clearly document their naming conventions.10

In the following, it will be helpful to refer to the examples in Figure E.1 through11

Figure E.8 of Section E.1.3 on page 396.12

Section Group Names13

Section groups must have a section group name. For the subsequent C++14

example, a name like15

<producer-prefix>.<file-designator>.<gid-number>16

will suffice, where17

<producer-prefix> is some string specific to the producer, which has a18

language-designation embedded in the name when appropriate.19

(Alternatively, the language name could be embedded in the20

<gid-number>).21

<file-designator> names the file, such as wa.h in the example.22

<gid-number> is a string generated to identify the specific wa.h header file in23

such a way that24

• a ’matching’ output from another compile generates the same25

<gid-number>, and26

• a non-matching output (say because of #defines) generates a different27

<gid-number>.28

It may be useful to think of a <gid-number>as a kind of “digital signature” that allows a29

fast test for the equality of two section groups.30

So, for example, the section group corresponding to file wa.h above is given the31

name my.compiler.company.cpp.wa.h.123456.32

July 15 2024 ***WORKING DRAFT*** Page 393

Appendix E. Compression (Informative)

Debugging Information Entry Names1

Global labels for debugging information entries (the need for which is explained2

below) within a section group can be given names of the form3

<prefix>.<file-designator>.<gid-number>.<die-number>4

such as5

my.compiler.company.wa.h.123456.9876

where7

<prefix> distinguishes this as a DWARF debug info name, and should identify8

the producer and, when appropriate, the language.9

<file-designator> and <gid-number> are as above.10

<die-number> could be a number sequentially assigned to entities (tokens,11

perhaps) found during compilation.12

In general, every point in the section group .debug_info that could be referenced13

from outside by any compilation unit must normally have an external name14

generated for it in the linker symbol table, whether the current compilation15

references all those points or not.16

The completeness of the set of names generated is a quality-of-implementation issue.17

It is up to the producer to ensure that if <die-numbers> in separate compilations18

would not match properly then a distinct <gid-number> is generated.19

Note that only section groups that are designated as duplicate-removal-applies20

actually require the21

<prefix>.<file-designator>.<gid-number>.<die-number>22

external labels for debugging information entries as all other section group23

sections can use ’local’ labels (section-relative relocations).24

(This is a consequence of separate compilation, not a rule imposed by this25

document.)26

Local labels use references with form DW_FORM_ref4 or DW_FORM_ref8. (These are27

affected by relocations so DW_FORM_ref_udata, DW_FORM_ref1 and28

DW_FORM_ref2 are normally not usable and DW_FORM_ref_addr is not necessary for29

a local label.)30

July 15 2024 ***WORKING DRAFT*** Page 394

Appendix E. Compression (Informative)

E.1.2.1 Use of DW_TAG_compile_unit versus DW_TAG_partial_unit1

A section group compilation unit that uses DW_TAG_compile_unit is like any2

other compilation unit, in that its contents are evaluated by consumers as though3

it were an ordinary compilation unit.4

An #include directive appearing outside any other declarations is a good5

candidate to be represented using DW_TAG_compile_unit. However, an6

#include appearing inside a C++ namespace declaration or a function, for7

example, is not a good candidate because the entities included are not necessarily8

file level entities.9

This also applies to Fortran INCLUDE lines when declarations are included into10

a subprogram or module context.11

Consequently a compiler must use DW_TAG_partial_unit (instead of12

DW_TAG_compile_unit) in a section group whenever the section group contents13

are not necessarily globally visible. This directs consumers to ignore that14

compilation unit when scanning top level declarations and definitions.15

The DW_TAG_partial_unit compilation unit will be referenced from elsewhere16

and the referencing locations give the appropriate context for interpreting the17

partial compilation unit.18

A DW_TAG_partial_unit entry may have, as appropriate, any of the attributes19

assigned to a DW_TAG_compile_unit.20

E.1.2.2 Use of DW_TAG_imported_unit21

A DW_TAG_imported_unit debugging information entry has an22

DW_AT_import attribute referencing a DW_TAG_compile_unit or23

DW_TAG_partial_unit debugging information entry.24

A DW_TAG_imported_unit debugging information entry refers to a25

DW_TAG_compile_unit or DW_TAG_partial_unit debugging information entry26

to specify that the DW_TAG_compile_unit or DW_TAG_partial_unit contents27

logically appear at the point of the DW_TAG_imported_unit entry.28

E.1.2.3 Use of DW_FORM_ref_addr29

Use DW_FORM_ref_addr to reference from one compilation unit’s debugging30

information entries to those of another compilation unit.31

July 15 2024 ***WORKING DRAFT*** Page 395

Appendix E. Compression (Informative)

When referencing into a removable section group .debug_info from another1

.debug_info (from anywhere), the2

<prefix>.<file-designator>.<gid-number>.<die-number>3

name should be used for an external symbol and a relocation generated based on4

that name.5

When referencing into a non-section group .debug_info, from another .debug_info6

(from anywhere) DW_FORM_ref_addr is still the form to be used, but a section-relative7

relocation generated by use of a non-exported name (often called an “internal name”)8

may be used for references within the same object file.9

E.1.3 Examples10

This section provides several examples in order to have a concrete basis for11

discussion.12

In these examples, the focus is on the arrangement of DWARF information into13

sections (specifically the .debug_info section) and the naming conventions used14

to achieve references into section groups. In practice, all of the examples that15

follow involve DWARF sections other than just .debug_info (for example,16

.debug_line, .debug_aranges, or others); however, only the .debug_info section17

is shown to keep the examples compact and easier to read.18

The grouping of sections into a named set is shown, but the means for achieving19

this in terms of the underlying object language is not (and varies from system to20

system).21

E.1.3.1 C++ Example22

The C++ source in Figure E.1 on the following page is used to illustrate the23

DWARF representation intended to allow duplicate elimination.24

Figure E.2 on the next page shows the section group corresponding to the25

included file wa.h.26

Figure E.3 on page 398 shows the “normal” DWARF sections, which are not part27

of any section group, and how they make use of the information in the section28

group shown above.29

This example uses DW_TAG_compile_unit for the section group, implying that30

the contents of the compilation unit are globally visible (in accordance with C++31

language rules). DW_TAG_partial_unit is not needed for the same reason.32

July 15 2024 ***WORKING DRAFT*** Page 396

Appendix E. Compression (Informative)

File wa.h

struct A {
int i;

};

File wa.c

#include "wa.h";
int
f(A &a)
{

return a.i + 2;
}

Figure E.1: Duplicate elimination example #1: C++ Source

==== Section group name:
my.compiler.company.cpp.wa.h.123456

== section .debug_info
DW.cpp.wa.h.123456.1: ! linker global symbol

DW_TAG_compile_unit
DW_AT_language_name(DW_LNAME_C_plus_plus)
... ! other unit attributes

DW.cpp.wa.h.123456.2: ! linker global symbol
DW_TAG_base_type

DW_AT_name("int")
DW.cpp.wa.h.123456.3: ! linker global symbol

DW_TAG_structure_type
DW_AT_name("A")

DW.cpp.wa.h.123456.4: ! linker global symbol
DW_TAG_member
DW_AT_name("i")
DW_AT_type(DW_FORM_ref<n> to DW.cpp.wa.h.123456.2)

! (This is a local reference, so the more
! compact form DW_FORM_ref<n>
! for n = 1,2,4, or 8 can be used)

Figure E.2: Duplicate elimination example #1: DWARF section group

E.1.3.2 C Example1

The C++ example in this Section might appear to be equally valid as a C2

example. However, for C it is prudent to include a DW_TAG_imported_unit in3

the primary unit (see Figure E.3 on the next page) as well as an DW_AT_import4

attribute that refers to the proper unit in the section group.5

July 15 2024 ***WORKING DRAFT*** Page 397

Appendix E. Compression (Informative)

== section .text
[generated code for function f]

== section .debug_info
DW_TAG_compile_unit

.L1: ! local (non-linker) symbol
DW_TAG_reference_type

DW_AT_type(reference to DW.cpp.wa.h.123456.3)
DW_TAG_subprogram

DW_AT_name("f")
DW_AT_type(reference to DW.cpp.wa.h.123456.2)
DW_TAG_variable

DW_AT_name("a")
DW_AT_type(reference to .L1)

...

Figure E.3: Duplicate elimination example #1: primary compilation unit

The C rules for consistency of global (file scope) symbols across compilations are less1

strict than for C++; inclusion of the import unit attribute assures that the declarations of2

the proper section group are considered before declarations from other compilations.3

E.1.3.3 Fortran Example4

For a Fortran example, consider Figure E.4.5

File CommonStuff.fh

IMPLICIT INTEGER(A-Z)
COMMON /Common1/ C(100)
PARAMETER(SEVEN = 7)

File Func.f

FUNCTION FOO (N)
INCLUDE ’CommonStuff.fh ’
FOO = C(N + SEVEN)
RETURN
END

Figure E.4: Duplicate elimination example #2: Fortran source

Figure E.5 on the next page shows the section group corresponding to the6

included file CommonStuff.fh.7

Figure E.6 on page 400 shows the sections for the primary compilation unit.8

A companion main program is shown in Figure E.7 on page 4009

July 15 2024 ***WORKING DRAFT*** Page 398

Appendix E. Compression (Informative)

==== Section group name:

my.f90.company.f90.CommonStuff.fh.654321

== section .debug_info

DW.myf90.CommonStuff.fh.654321.1: ! linker global symbol
DW_TAG_partial_unit

! ...compilation unit attributes, including...
DW_AT_language_name(DW_LNAME_Fortran)
DW_AT_identifier_case(DW_ID_case_insensitive)

DW.myf90.CommonStuff.fh.654321.2: ! linker global symbol
3$: DW_TAG_array_type

! unnamed
DW_AT_type(reference to DW.f90.F90$main.f.2)

! base type INTEGER
DW_TAG_subrange_type

DW_AT_type(reference to DW.f90.F90$main.f.2)
! base type INTEGER)

DW_AT_lower_bound(constant 1)
DW_AT_upper_bound(constant 100)

DW.myf90.CommonStuff.fh.654321.3: ! linker global symbol
DW_TAG_common_block

DW_AT_name("Common1")
DW_AT_location(Address of common block Common1)
DW_TAG_variable

DW_AT_name("C")
DW_AT_type(reference to 3$)
DW_AT_location(address of C)

DW.myf90.CommonStuff.fh.654321.4: ! linker global symbol
DW_TAG_constant

DW_AT_name("SEVEN")
DW_AT_type(reference to DW.f90.F90$main.f.2)

! base type INTEGER
DW_AT_const_value(constant 7)

Figure E.5: Duplicate elimination example #2: DWARF section group

July 15 2024 ***WORKING DRAFT*** Page 399

Appendix E. Compression (Informative)

== section .text
[code for function Foo]

== section .debug_info
DW_TAG_compile_unit

DW_TAG_subprogram
DW_AT_name("Foo")
DW_AT_type(reference to DW.f90.F90$main.f.2)

! base type INTEGER
DW_TAG_imported_unit

DW_AT_import(reference to
DW.myf90.CommonStuff.fh.654321.1)

DW_TAG_common_inclusion ! For Common1
DW_AT_common_reference(reference to

DW.myf90.CommonStuff.fh.654321.3)
DW_TAG_variable ! For function result

DW_AT_name("Foo")
DW_AT_type(reference to DW.f90.F90$main.f.2)

! base type INTEGER

Figure E.6: Duplicate elimination example #2: primary unit

File Main.f

INCLUDE ’CommonStuff.fh ’
C(50) = 8
PRINT *, ’Result = ’, FOO (50 - SEVEN)
END

Figure E.7: Duplicate elimination example #2: companion source

That main program results in an object file that contained a duplicate of the1

section group named my.f90.company.f90.CommonStuff.fh.6543212

corresponding to the included file as well as the remainder of the main3

subprogram as shown in Figure E.8 on the following page.4

This example uses DW_TAG_partial_unit for the section group because the5

included declarations are not independently visible as global entities.6

E.2 Using Type Units7

A large portion of debug information is type information, and in a typical8

compilation environment, many types are duplicated many times. One method9

of controlling the amount of duplication is separating each type into a separate10

COMDAT .debug_info section and arranging for the linker to recognize and11

July 15 2024 ***WORKING DRAFT*** Page 400

Appendix E. Compression (Informative)

== section .debug_info
DW_TAG_compile_unit

DW_AT_name(F90$main)
DW_TAG_base_type

DW_AT_name("INTEGER")
DW_AT_encoding(DW_ATE_signed)
DW_AT_byte_size(...)

DW_TAG_base_type
...

... ! other base types
DW_TAG_subprogram

DW_AT_name("F90$main")
DW_TAG_imported_unit

DW_AT_import(reference to
DW.myf90.CommonStuff.fh.654321.1)

DW_TAG_common_inclusion ! for Common1
DW_AT_common_reference(reference to

DW.myf90.CommonStuff.fh.654321.3)
...

Figure E.8: Duplicate elimination example #2: companion DWARF

eliminate duplicates at the individual type level.1

Using this technique, each substantial type definition is placed in its own2

individual section, while the remainder of the DWARF information (non-type3

information, incomplete type declarations, and definitions of trivial types) is4

placed in the usual debug information section. In a typical implementation, the5

relocatable object file may contain one of each of these debug sections:6

.debug_abbrev7

.debug_info8

.debug_line9

and any number of additional COMDAT .debug_info sections containing type10

units.11

July 15 2024 ***WORKING DRAFT*** Page 401

Appendix E. Compression (Informative)

As discussed in the previous section (Section E.1 on page 390), many linkers1

today support the concept of a COMDAT group or linkonce section. The general2

idea is that a “key” can be attached to a section or a group of sections, and the3

linker will include only one copy of a section group (or individual section) for4

any given key. For COMDAT .debug_info sections, the key is the type signature5

formed from the algorithm given in Section 7.32 on page 257.6

E.2.1 Signature Computation Example7

As an example, consider a C++ header file containing the type definitions shown8

in Figure E.9.9

namespace N {

struct B;

struct C {
int x;
int y;

};

class A {
public:

A(int v);
int v();

private:
int v_;
struct A *next;
struct B *bp;
struct C c;

};
}

Figure E.9: Type signature examples: C++ source

Next, consider one possible representation of the DWARF information that10

describes the type “struct C” as shown in E.10 on the following page.11

In computing a signature for the type N::C, flatten the type description into a12

byte stream according to the procedure outlined in Section 7.32 on page 257. The13

result is shown in Figure E.11 on page 404.14

July 15 2024 ***WORKING DRAFT*** Page 402

Appendix E. Compression (Informative)

DW_TAG_type_unit
DW_AT_language_name : DW_LNAME_C_plus_plus (4)

DW_TAG_namespace
DW_AT_name : "N"

L1:
DW_TAG_structure_type

DW_AT_name : "C"
DW_AT_byte_size : 8
DW_AT_decl_file : 1
DW_AT_decl_line : 5

DW_TAG_member
DW_AT_name : "x"
DW_AT_decl_file : 1
DW_AT_decl_line : 6
DW_AT_type : reference to L2
DW_AT_data_member_location : 0

DW_TAG_member
DW_AT_name : "y"
DW_AT_decl_file : 1
DW_AT_decl_line : 7
DW_AT_type : reference to L2
DW_AT_data_member_location : 4

L2:
DW_TAG_base_type

DW_AT_byte_size : 4
DW_AT_encoding : DW_ATE_signed
DW_AT_name : "int"

Figure E.10: Type signature computation #1: DWARF representation

Running an MD5 hash over this byte stream, and taking the low-order 64 bits,1

yields the final signature: 0xd28081e8 dcf5070a.2

Next, consider a representation of the DWARF information that describes the3

type “class A” as shown in Figure E.12 on page 405.4

In this example, the structure types N::A and N::C have each been placed in5

separate type units. For N::A, the actual definition of the type begins at label L1.6

The definition involves references to the int base type and to two pointer types.7

The information for each of these referenced types is also included in this type8

unit, since base types and pointer types are trivial types that are not worth the9

overhead of a separate type unit. The last pointer type contains a reference to an10

incomplete type N::B, which is also included here as a declaration, since the11

complete type is unknown and its signature is therefore unavailable. There is12

also a reference to N::C, using DW_FORM_ref_sig8 to refer to the type signature13

for that type.14

July 15 2024 ***WORKING DRAFT*** Page 403

Appendix E. Compression (Informative)

// Step 2: ’C’ DW_TAG_namespace "N"
0x43 0x39 0x4e 0x00
// Step 3: ’D’ DW_TAG_structure_type
0x44 0x13
// Step 4: ’A’ DW_AT_name DW_FORM_string "C"
0x41 0x03 0x08 0x43 0x00
// Step 4: ’A’ DW_AT_byte_size DW_FORM_sdata 8
0x41 0x0b 0x0d 0x08
// Step 7: First child ("x")

// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "x"
0x41 0x03 0x08 0x78 0x00
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 0
0x41 0x38 0x0d 0x00
// Step 6: ’T’ DW_AT_type (type #2)
0x54 0x49

// Step 3: ’D’ DW_TAG_base_type
0x44 0x24
// Step 4: ’A’ DW_AT_name DW_FORM_string "int"
0x41 0x03 0x08 0x69 0x6e 0x74 0x00
// Step 4: ’A’ DW_AT_byte_size DW_FORM_sdata 4
0x41 0x0b 0x0d 0x04
// Step 4: ’A’ DW_AT_encoding DW_FORM_sdata DW_ATE_signed
0x41 0x3e 0x0d 0x05
// Step 7: End of DW_TAG_base_type "int"
0x00

// Step 7: End of DW_TAG_member "x"
0x00

// Step 7: Second child ("y")
// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "y"
0x41 0x03 0x08 0x79 0x00
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 4
0x41 0x38 0x0d 0x04
// Step 6: ’R’ DW_AT_type (type #2)
0x52 0x49 0x02
// Step 7: End of DW_TAG_member "y"
0x00

// Step 7: End of DW_TAG_structure_type "C"
0x00

Figure E.11: Type signature computation #1: flattened byte stream

July 15 2024 ***WORKING DRAFT*** Page 404

Appendix E. Compression (Informative)

part 1 of 2

DW_TAG_type_unit
DW_AT_language_name : DW_LNAME_C_plus_plus (4)

DW_TAG_namespace
DW_AT_name : "N"

L1:
DW_TAG_class_type

DW_AT_name : "A"
DW_AT_byte_size : 20
DW_AT_decl_file : 1
DW_AT_decl_line : 10

DW_TAG_member
DW_AT_name : "v_"
DW_AT_decl_file : 1
DW_AT_decl_line : 15
DW_AT_type : reference to L2
DW_AT_data_member_location : 0
DW_AT_accessibility : DW_ACCESS_private

DW_TAG_member
DW_AT_name : "next"
DW_AT_decl_file : 1
DW_AT_decl_line : 16
DW_AT_type : reference to L3
DW_AT_data_member_location : 4
DW_AT_accessibility : DW_ACCESS_private

DW_TAG_member
DW_AT_name : "bp"
DW_AT_decl_file : 1
DW_AT_decl_line : 17
DW_AT_type : reference to L4
DW_AT_data_member_location : 8
DW_AT_accessibility : DW_ACCESS_private

DW_TAG_member
DW_AT_name : "c"
DW_AT_decl_file : 1
DW_AT_decl_line : 18
DW_AT_type : 0xd28081e8 dcf5070a (signature for struct C)
DW_AT_data_member_location : 12
DW_AT_accessibility : DW_ACCESS_private

Figure E.12: Type signature computation #2: DWARF representation

July 15 2024 ***WORKING DRAFT*** Page 405

Appendix E. Compression (Informative)

part 2 of 2

DW_TAG_subprogram
DW_AT_external : 1
DW_AT_name : "A"
DW_AT_decl_file : 1
DW_AT_decl_line : 12
DW_AT_declaration : 1

DW_TAG_formal_parameter
DW_AT_type : reference to L3
DW_AT_artificial : 1

DW_TAG_formal_parameter
DW_AT_type : reference to L2

DW_TAG_subprogram
DW_AT_external : 1
DW_AT_name : "v"
DW_AT_decl_file : 1
DW_AT_decl_line : 13
DW_AT_type : reference to L2
DW_AT_declaration : 1

DW_TAG_formal_parameter
DW_AT_type : reference to L3
DW_AT_artificial : 1

L2:
DW_TAG_base_type

DW_AT_byte_size : 4
DW_AT_encoding : DW_ATE_signed
DW_AT_name : "int"

L3:
DW_TAG_pointer_type

DW_AT_type : reference to L1
L4:

DW_TAG_pointer_type
DW_AT_type : reference to L5

DW_TAG_namespace
DW_AT_name : "N"

L5:
DW_TAG_structure_type

DW_AT_name : "B"
DW_AT_declaration : 1

Figure E.12: Type signature computation #2: DWARF representation (concluded)

July 15 2024 ***WORKING DRAFT*** Page 406

Appendix E. Compression (Informative)

part 1 of 3

// Step 2: ’C’ DW_TAG_namespace "N"
0x43 0x39 0x4e 0x00
// Step 3: ’D’ DW_TAG_class_type
0x44 0x02
// Step 4: ’A’ DW_AT_name DW_FORM_string "A"
0x41 0x03 0x08 0x41 0x00
// Step 4: ’A’ DW_AT_byte_size DW_FORM_sdata 20
0x41 0x0b 0x0d 0x14
// Step 7: First child ("v_")

// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "v_"
0x41 0x03 0x08 0x76 0x5f 0x00
// Step 4: ’A’ DW_AT_accessibility DW_FORM_sdata DW_ACCESS_private
0x41 0x32 0x0d 0x03
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 0
0x41 0x38 0x0d 0x00
// Step 6: ’T’ DW_AT_type (type #2)
0x54 0x49

// Step 3: ’D’ DW_TAG_base_type
0x44 0x24
// Step 4: ’A’ DW_AT_name DW_FORM_string "int"
0x41 0x03 0x08 0x69 0x6e 0x74 0x00
// Step 4: ’A’ DW_AT_byte_size DW_FORM_sdata 4
0x41 0x0b 0x0d 0x04
// Step 4: ’A’ DW_AT_encoding DW_FORM_sdata DW_ATE_signed
0x41 0x3e 0x0d 0x05
// Step 7: End of DW_TAG_base_type "int"
0x00

// Step 7: End of DW_TAG_member "v_"
0x00

// Step 7: Second child ("next")
// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "next"
0x41 0x03 0x08 0x6e 0x65 0x78 0x74 0x00
// Step 4: ’A’ DW_AT_accessibility DW_FORM_sdata DW_ACCESS_private
0x41 0x32 0x0d 0x03
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 4
0x41 0x38 0x0d 0x04

Figure E.13: Type signature example #2: flattened byte stream

July 15 2024 ***WORKING DRAFT*** Page 407

Appendix E. Compression (Informative)

part 2 of 3

// Step 6: ’T’ DW_AT_type (type #3)
0x54 0x49

// Step 3: ’D’ DW_TAG_pointer_type
0x44 0x0f
// Step 5: ’N’ DW_AT_type
0x4e 0x49
// Step 5: ’C’ DW_TAG_namespace "N" ’E’
0x43 0x39 0x4e 0x00 0x45
// Step 5: "A"
0x41 0x00
// Step 7: End of DW_TAG_pointer_type
0x00

// Step 7: End of DW_TAG_member "next"
0x00

// Step 7: Third child ("bp")
// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "bp"
0x41 0x03 0x08 0x62 0x70 0x00
// Step 4: ’A’ DW_AT_accessibility DW_FORM_sdata DW_ACCESS_private
0x41 0x32 0x0d 0x03
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 8
0x41 0x38 0x0d 0x08
// Step 6: ’T’ DW_AT_type (type #4)
0x54 0x49

// Step 3: ’D’ DW_TAG_pointer_type
0x44 0x0f
// Step 5: ’N’ DW_AT_type
0x4e 0x49
// Step 5: ’C’ DW_TAG_namespace "N" ’E’
0x43 0x39 0x4e 0x00 0x45
// Step 5: "B"
0x42 0x00
// Step 7: End of DW_TAG_pointer_type
0x00

// Step 7: End of DW_TAG_member "next"
0x00

// Step 7: Fourth child ("c")
// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "c"
0x41 0x03 0x08 0x63 0x00
// Step 4: ’A’ DW_AT_accessibility DW_FORM_sdata DW_ACCESS_private
0x41 0x32 0x0d 0x03

Figure E.13: Type signature example #2: flattened byte stream (continued)

July 15 2024 ***WORKING DRAFT*** Page 408

Appendix E. Compression (Informative)

part 3 of 3

// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 12
0x41 0x38 0x0d 0x0c
// Step 6: ’T’ DW_AT_type (type #5)
0x54 0x49

// Step 2: ’C’ DW_TAG_namespace "N"
0x43 0x39 0x4e 0x00
// Step 3: ’D’ DW_TAG_structure_type
0x44 0x13
// Step 4: ’A’ DW_AT_name DW_FORM_string "C"
0x41 0x03 0x08 0x43 0x00
// Step 4: ’A’ DW_AT_byte_size DW_FORM_sdata 8
0x41 0x0b 0x0d 0x08
// Step 7: First child ("x")

// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "x"
0x41 0x03 0x08 0x78 0x00
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 0
0x41 0x38 0x0d 0x00
// Step 6: ’R’ DW_AT_type (type #2)
0x52 0x49 0x02
// Step 7: End of DW_TAG_member "x"
0x00

// Step 7: Second child ("y")
// Step 3: ’D’ DW_TAG_member
0x44 0x0d
// Step 4: ’A’ DW_AT_name DW_FORM_string "y"
0x41 0x03 0x08 0x79 0x00
// Step 4: ’A’ DW_AT_data_member_location DW_FORM_sdata 4
0x41 0x38 0x0d 0x04
// Step 6: ’R’ DW_AT_type (type #2)
0x52 0x49 0x02
// Step 7: End of DW_TAG_member "y"
0x00

// Step 7: End of DW_TAG_structure_type "C"
0x00

// Step 7: End of DW_TAG_member "c"
0x00

// Step 7: Fifth child ("A")
// Step 3: ’S’ DW_TAG_subprogram "A"
0x53 0x2e 0x41 0x00

// Step 7: Sixth child ("v")
// Step 3: ’S’ DW_TAG_subprogram "v"
0x53 0x2e 0x76 0x00

// Step 7: End of DW_TAG_structure_type "A"
0x00

Figure E.13: Type signature example #2: flattened byte stream (concluded)

July 15 2024 ***WORKING DRAFT*** Page 409

Appendix E. Compression (Informative)

In computing a signature for the type N::A, flatten the type description into a1

byte stream according to the procedure outlined in Section 7.32 on page 257. The2

result is shown in Figure E.13 on page 407.3

Running an MD5 hash over this byte stream, and taking the low-order 64 bits,4

yields the final signature: 0xd6d160f5 5589f6e9.5

A source file that includes this header file may declare a variable of type N::A,6

and its DWARF information may look like that shown in Figure E.14.7

DW_TAG_compile_unit
...
DW_TAG_subprogram

...
DW_TAG_variable

DW_AT_name : "a"
DW_AT_type : (signature) 0xd6d160f5 5589f6e9
DW_AT_location : ...

...

Figure E.14: Type signature example usage

E.2.2 Type Signature Computation Grammar8

Figure E.15 on the next page presents a semi-formal grammar that may aid in9

understanding how the bytes of the flattened type description are formed during10

the type signature computation algorithm of Section 7.32 on page 257.11

July 15 2024 ***WORKING DRAFT*** Page 410

Appendix E. Compression (Informative)

signature
: opt-context debug-entry attributes children

opt-context // Step 2
: ’C’ tag-code string opt-context
: empty

debug-entry // Step 3
: ’D’ tag-code

attributes // Steps 4, 5, 6
: attribute attributes
: empty

attribute
: ’A’ at-code form-encoded-value // Normal attributes
: ’N’ at-code opt-context ’E’ string // Reference to type by name
: ’R’ at-code back-ref // Back-reference to visited type
: ’T’ at-code signature // Recursive type

children // Step 7
: child children
: ’\0’

child
: ’S’ tag-code string
: signature

tag-code
: <ULEB128>

at-code
: <ULEB128>

form-encoded-value
: DW_FORM_sdata value
: DW_FORM_flag value
: DW_FORM_string string
: DW_FORM_block block

DW_FORM_string
: ’\x08’

DW_FORM_block
: ’\x09’

DW_FORM_flag
: ’\x0c’

DW_FORM_sdata
: ’\x0d’

value
: <SLEB128>

block
: <ULEB128> <fixed-length-block> // The ULEB128 gives the length of the block

back-ref
: <ULEB128>

string
: <null-terminated-string>

empty
:

Figure E.15: Type signature computation grammar

July 15 2024 ***WORKING DRAFT*** Page 411

Appendix E. Compression (Informative)

E.2.3 Declarations Completing Non-Defining Declarations1

Consider a compilation unit that contains a definition of the member function2

N::A::v() from Figure E.9 on page 402. A possible representation of the debug3

information for this function in the compilation unit is shown in Figure E.16.4

DW_TAG_namespace
DW_AT_name : "N"

L1:
DW_TAG_class_type

DW_AT_name : "A"
DW_AT_declaration : true
DW_AT_signature : 0xd6d160f5 5589f6e9

L2:
DW_TAG_subprogram

DW_AT_external : 1
DW_AT_name : "v"
DW_AT_decl_file : 1
DW_AT_decl_line : 13
DW_AT_type : reference to L3
DW_AT_declaration : 1

DW_TAG_formal_parameter
DW_AT_type : reference to L4
DW_AT_artificial : 1

...
L3:

DW_TAG_base_type
DW_AT_byte_size : 4
DW_AT_encoding : DW_ATE_signed
DW_AT_name : "int"

...
L4:

DW_TAG_pointer_type
DW_AT_type : reference to L1

...
DW_TAG_subprogram

DW_AT_specification : reference to L2
DW_AT_decl_file : 2
DW_AT_decl_line : 25
DW_AT_low_pc : ...
DW_AT_high_pc : ...

DW_TAG_lexical_block
...

...

Figure E.16: Completing declaration of a member function: DWARF encoding

July 15 2024 ***WORKING DRAFT*** Page 412

Appendix E. Compression (Informative)

E.3 Summary of Compression Techniques1

E.3.1 #include compression2

C++ has a much greater problem than C with the number and size of the headers3

included and the amount of data in each, but even with C there is substantial4

header file information duplication.5

A reasonable approach is to put each header file in its own section group, using6

the naming rules mentioned above. The section groups are marked to ensure7

duplicate removal.8

All data instances and code instances (even if they came from the header files9

above) are put into non-section group sections such as the base object file10

.debug_info section.11

E.3.2 Eliminating function duplication12

Function templates (C++) result in code for the same template instantiation being13

compiled into multiple archives or relocatable object files. The linker wants to14

keep only one of a given entity. The DWARF description, and everything else for15

this function, should be reduced to just a single copy.16

For each such code group (function template in this example) the compiler17

assigns a name for the group which will match all other instantiations of this18

function but match nothing else. The section groups are marked to ensure19

duplicate removal, so that the second and subsequent definitions seen by the20

static linker are simply discarded.21

References to other .debug_info sections follow the approach suggested above,22

but the naming rule is slightly different in that the <file-designator> should be23

interpreted as a <function-designator>.24

E.3.3 Single-function-per-DWARF-compilation-unit25

Section groups can help make it easy for a linker to completely remove unused26

functions.27

Such section groups are not marked for duplicate removal, since the functions28

are not duplicates of anything.29

Each function is given a compilation unit and a section group. Each such30

compilation unit is complete, with its own text, data, and DWARF sections.31

July 15 2024 ***WORKING DRAFT*** Page 413

Appendix E. Compression (Informative)

There will also be a compilation unit that has the file-level declarations and1

definitions. Other per-function compilation unit DWARF information2

(.debug_info) points to this common file-level compilation unit using3

DW_TAG_imported_unit.4

Section groups can use DW_FORM_ref_addr and internal labels (section-relative5

relocations) to refer to the main object file sections, as the section groups here are6

either deleted as unused or kept. There is no possibility (aside from error) of a7

group from some other compilation being used in place of one of these groups.8

E.3.4 Inlining and out-of-line-instances9

Abstract instances and concrete-out-of-line instances may be put in distinct10

compilation units using section groups. This makes possible some useful11

duplicate DWARF elimination.12

No special provision for eliminating class duplication resulting from template13

instantiation is made here, though nothing prevents eliminating such duplicates using14

section groups.15

E.3.5 Separate Type Units16

Each complete declaration of a globally-visible type can be placed in its own17

separate type section, with a group key derived from the type signature. The18

linker can then remove all duplicate type declarations based on the key.19

July 15 2024 ***WORKING DRAFT*** Page 414

Appendix E. Compression (Informative)

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 415

Appendix F1

Split DWARF Object Files2

(Informative)3

With the traditional DWARF format, debug information is designed with the4

expectation that it will be processed by the linker to produce an output binary5

with complete debug information, and with fully-resolved references to locations6

within the application. For very large applications, however, this approach can7

result in excessively large link times and excessively large output files.8

Several producers have independently developed proprietary approaches that9

allow the debug information to remain in the relocatable object files, so that the10

linker does not have to process the debug information or copy it to the output11

file. These approaches have all required that additional information be made12

available to the debug information consumer, and that the consumer perform13

some minimal amount of relocation in order to interpret the debug info correctly.14

The additional information required, in the form of load maps or symbol tables,15

and the details of the relocation are not covered by the DWARF specification, and16

vary with each producer’s implementation.17

Section 7.3.2 on page 194 describes a platform-independent mechanism that18

allows a producer to split the debugging information into relocatable and19

non-relocatable partitions. This Appendix describes the use of split DWARF20

object files and provides some illustrative examples.21

F.1 Overview22

DWARF Version 5 introduces an optional set of debugging sections that allow the23

compiler to partition the debugging information into a set of (small) sections that24

require link-time relocation and a set of (large) sections that do not. The sections25

July 15 2024 ***WORKING DRAFT*** Page 416

Appendix F. Split DWARF Object Files (Informative)

that require relocation are written to the relocatable object file as usual, and are1

linked into the final executable. The sections that do not require relocation,2

however, can be written to the relocatable object (.o) file but ignored by the3

linker, or they can be written to a separate DWARF object (.dwo) file that need4

not be accessed by the linker.5

The optional set of debugging sections includes the following:6

• .debug_abbrev.dwo - Contains the abbreviations table(s) used by the7

.debug_info.dwo section.8

• .debug_info.dwo - Contains the DW_TAG_compile_unit and9

DW_TAG_type_unit DIEs and their descendants. This is the bulk of the10

debugging information for the compilation unit that is normally found in11

the .debug_info section.12

• .debug_loclists.dwo - Contains the location lists referenced by the13

debugging information entries in the .debug_info.dwo section. This14

contains the value lists and location lists normally found in the15

.debug_loclists section.16

• .debug_str.dwo - Contains the string table for all indirect strings17

referenced by the debugging information in the .debug_info.dwo sections.18

• .debug_str_offsets.dwo - Contains the string offsets table for the strings19

in the .debug_str.dwo section.20

• .debug_macro.dwo - Contains macro definition information, normally21

found in the .debug_macro section.22

• .debug_line.dwo - Contains specialized line number tables for the type23

units in the .debug_info.dwo section. These tables contain only the24

directory and filename lists needed to interpret DW_AT_decl_file attributes25

in the debugging information entries. Actual line number tables remain in26

the .debug_line section, and remain in the relocatable object (.o) files.27

In a .dwo file, there is no benefit to having a separate string section for directories28

and file names because the primary string table will never be stripped.29

Accordingly, no .debug_line_str.dwo section is defined. Content descriptions30

corresponding to DW_FORM_line_strp in an executable file (for example, in the31

skeleton compilation unit) instead use one of the forms DW_FORM_strx,32

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or DW_FORM_strx4.33

This allows directory and file name strings to be merged with general strings and34

across compilations in package files (where they are not subject to potential35

stripping). This merge is facilitated by the requirement that all references to the36

.debug_str.dwo string table are made indirectly through the37

July 15 2024 ***WORKING DRAFT*** Page 417

Appendix F. Split DWARF Object Files (Informative)

.debug_str_offsets.dwo section so that only that section needs to be modified1

during string merging (see Section 7.3.2.2 on page 195).2

In order for the consumer to locate and process the debug information, the3

compiler must produce a small amount of debug information that passes through4

the linker into the output binary. A skeleton .debug_info section for each5

compilation unit contains a reference to the corresponding .o or .dwo file, and6

the .debug_line section (which is typically small compared to the .debug_info7

sections) is linked into the output binary, as is the .debug_addr section.8

The debug sections that continue to be linked into the output binary include the9

following:10

• .debug_abbrev - Contains the abbreviation codes used by the skeleton11

.debug_info section.12

• .debug_addr - Contains references to loadable sections, indexed by13

attributes of one of the forms DW_FORM_addrx, DW_FORM_addrx1,14

DW_FORM_addrx2, DW_FORM_addrx3, DW_FORM_addrx4, or location15

expression DW_OP_addrx opcodes.16

• .debug_aranges - Contains the accelerated range lookup table for the17

compilation unit.18

• .debug_frame - Contains the frame tables.19

• .debug_info - Contains a skeleton skeleton compilation unit DIE, which20

has no children.21

• .debug_line - Contains the line number tables. (These could be moved to22

the .dwo file, but in order to do so, each DW_LNE_set_address opcode23

would need to be replaced by a new opcode that referenced an entry in the24

.debug_addr section. Furthermore, leaving this section in the .o file allows25

many debug info consumers to remain unaware of .dwo files.)26

• .debug_line_str - Contains strings for file names used in combination27

with the .debug_line section.28

• .debug_names - Contains the names for use in building an index section.29

The section header refers to a compilation unit offset, which is the offset of30

the skeleton compilation unit in the .debug_info section.31

• .debug_str - Contains any strings referenced by the skeleton .debug_info32

sections (via DW_FORM_strp, DW_FORM_strp8, DW_FORM_strx,33

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or34

DW_FORM_strx4).35

July 15 2024 ***WORKING DRAFT*** Page 418

Appendix F. Split DWARF Object Files (Informative)

• .debug_str_offsets - Contains the string offsets table for the strings in the1

.debug_str section (if one of the forms DW_FORM_strx, DW_FORM_strx1,2

DW_FORM_strx2, DW_FORM_strx3 or DW_FORM_strx4 is used).3

The skeleton compilation unit DIE may have the following attributes:4

DW_AT_addr_base
DW_AT_comp_dir
DW_AT_dwo_name

DW_AT_high_pc
DW_AT_low_pc
DW_AT_ranges

DW_AT_stmt_list
DW_AT_str_offsets

All other attributes of the compilation unit DIE are moved to the full DIE in the5

.debug_info.dwo section.6

The dwo_id field is present in headers of the skeleton DIE and the header of the7

full DIE, so that a consumer can verify a match.8

Relocations are neither necessary nor useful in .dwo files, because the .dwo files9

contain only debugging information that does not need to be processed by a10

linker. Relocations are rendered unnecessary by these strategies:11

1. Some values needing relocation are kept in the .o file (for example, references12

to the line number program from the skeleton compilation unit).13

2. Some values do not need a relocation because they refer from one .dwo14

section to another .dwo section in the same compilation unit.15

3. Some values that need a relocation to refer to a relocatable program address16

use one of the DW_FORM_addrx, DW_FORM_addrx1, DW_FORM_addrx2,17

DW_FORM_addrx3 or DW_FORM_addrx4 forms, referencing a relocatable18

value in the .debug_addr section (which remains in the .o file).19

Table F.1 on the next page summarizes which attributes are defined for use in the20

various kinds of compilation units (see Section 3.1 on page 61). It compares and21

contrasts both conventional and split object-related kinds.22

The split dwarf object file design depends on having an index of debugging23

information available to the consumer. For name lookups, the consumer can use24

the .debug_names index section (see Section 6.1 on page 140) to locate a skeleton25

compilation unit. The DW_AT_comp_dir and DW_AT_dwo_name attributes in26

the skeleton compilation unit can then be used to locate the corresponding27

DWARF object file for the compilation unit. Similarly, for an address lookup, the28

consumer can use the .debug_aranges table, which will also lead to a skeleton29

compilation unit. For a file and line number lookup, the skeleton compilation30

units can be used to locate the line number tables.31

July 15 2024 ***WORKING DRAFT*** Page 419

Appendix F. Split DWARF Object Files (Informative)

Table F.1: Unit attributes by unit kind

Unit Kind
Conventional Skeleton and Split

Attribute Full & Type Skeleton Split Full Split Type
Partial

DW_AT_addr_base √ √

DW_AT_base_types √

DW_AT_comp_dir √ √

DW_AT_dwo_name √

DW_AT_entry_pc √ √

DW_AT_high_pc √ √

DW_AT_identifier_case √ √

DW_AT_language_name √ √ √ √

DW_AT_language_version √ √ √ √

DW_AT_loclists_base √ √

DW_AT_low_pc √ √

DW_AT_macros √ √

DW_AT_main_subprogram √ √

DW_AT_name √ √

DW_AT_producer √ √

DW_AT_ranges √ √

DW_AT_rnglists_base √ √ √

DW_AT_stmt_list √ √ √ √

DW_AT_str_offsets √ √ √ √

DW_AT_use_UTF8 √ √ √ √ √

July 15 2024 ***WORKING DRAFT*** Page 420

Appendix F. Split DWARF Object Files (Informative)

F.2 Split DWARF Object File Example1

Consider the example source code in Figure F.1, Figure F.2 on the next page and2

Figure F.3 on page 423. When compiled with split DWARF, we will have two3

DWARF object files, demo1.o and demo2.o, and two split DWARF object files,4

demo1.dwo and demo2.dwo.5

In this section, we will use this example to show how the connections between6

the relocatable object file and the split DWARF object file are maintained through7

the linking process. In the next section, we will use this same example to show8

how two or more split DWARF object files are combined into a DWARF package9

file.10

File demo1.cc

#include "demo.h"

bool Box:: contains(const Point& p) const
{

return (p.x() >= ll_.x() && p.x() <= ur_.x() &&
p.y() >= ll_.y() && p.y() <= ur_.y());

}

Figure F.1: Split object example: source fragment #1

July 15 2024 ***WORKING DRAFT*** Page 421

Appendix F. Split DWARF Object Files (Informative)

File demo2.cc

#include "demo.h"

bool Line::clip(const Box& b)
{

float slope = (end_.y() - start_.y()) / (end_.x() - start_.x());
while (1) {

// Trivial acceptance.
if (b.contains(start_) && b.contains(end_)) return true;

// Trivial rejection.
if (start_.x() < b.l() && end_.x() < b.l()) return false;
if (start_.x() > b.r() && end_.x() > b.r()) return false;
if (start_.y() < b.b() && end_.y() < b.b()) return false;
if (start_.y() > b.t() && end_.y() > b.t()) return false;

if (b.contains(start_)) {
// Swap points so that start_ is outside the clipping
// rectangle.
Point temp = start_;
start_ = end_;
end_ = temp;

}

if (start_.x() < b.l())
start_ = Point(b.l(),

start_.y() + (b.l() - start_.x()) * slope);
else if (start_.x() > b.r())

start_ = Point(b.r(),
start_.y() + (b.r() - start_.x()) * slope);

else if (start_.y() < b.b())
start_ = Point(start_.x() + (b.b() - start_.y()) / slope ,

b.b());
else if (start_.y() > b.t())

start_ = Point(start_.x() + (b.t() - start_.y()) / slope ,
b.t());

}
}

Figure F.2: Split object example: source fragment #2

July 15 2024 ***WORKING DRAFT*** Page 422

Appendix F. Split DWARF Object Files (Informative)

File demo.h

class A {
public:

Point(float x, float y) : x_(x), y_(y){}
float x() const { return x_; }
float y() const { return y_; }

private:
float x_;
float y_;

};

class Line {
public:

Line(Point start , Point end) : start_(start), end_(end){}
bool clip(const Box& b);
Point start() const { return start_; }
Point end() const { return end_; }

private:
Point start_;
Point end_;

};

class Box {
public:

Box(float l, float r, float b, float t) : ll_(l, b), ur_(r, t){}
Box(Point ll, Point ur) : ll_(ll), ur_(ur){}
bool contains(const Point& p) const;
float l() const { return ll_.x(); }
float r() const { return ur_.x(); }
float b() const { return ll_.y(); }
float t() const { return ur_.y(); }

private:
Point ll_;
Point ur_;

};

Figure F.3: Split object example: source fragment #3

July 15 2024 ***WORKING DRAFT*** Page 423

Appendix F. Split DWARF Object Files (Informative)

F.2.1 Contents of the Object Files1

The object files each contain the following sections of debug information:2

.debug_abbrev3

.debug_info4

.debug_line5

.debug_str6

.debug_addr7

.debug_names8

.debug_aranges9

The .debug_abbrev section contains just a single entry describing the skeleton10

compilation unit DIE.11

The DWARF description in the .debug_info section contains just a single DIE,12

the skeleton compilation unit, which may look like Figure F.4 following.13

DW_TAG_skeleton_unit
DW_AT_comp_dir: (reference to directory name in .debug_str)
DW_AT_dwo_name: (reference to "demo1.dwo" in .debug_str)
DW_AT_addr_base: (reference to .debug_addr section)
DW_AT_stmt_list: (reference to .debug_line section)

Figure F.4: Split object example: skeleton DWARF description

The DW_AT_comp_dir and DW_AT_dwo_name attributes provide the location14

of the corresponding split DWARF object file that contains the full debug15

information; that file is normally expected to be in the same directory as the16

object file itself.17

The dwo_id field in the header of the skeleton unit provides an ID or key for the18

debug information contained in the DWARF object file. This ID serves two19

purposes: it can be used to verify that the debug information in the split DWARF20

object file matches the information in the object file, and it can be used to find the21

debug information in a DWARF package file.22

The DW_AT_addr_base attribute contains the relocatable offset of this object23

file’s contribution to the .debug_addr section.24

The DW_AT_stmt_list attribute contains the relocatable offset of this file’s25

contribution to the .debug_line table.26

July 15 2024 ***WORKING DRAFT*** Page 424

Appendix F. Split DWARF Object Files (Informative)

The .debug_line section contains the full line number table for the compiled1

code in the object file. As shown in Figure F.1 on page 421, the line number2

program header lists the two file names, demo.h and demo1.cc, and contains line3

number programs for Box::contains, Point::x, and Point::y.4

The .debug_str section contains the strings referenced indirectly by the5

compilation unit DIE and by the line number program.6

The .debug_addr section contains relocatable addresses of locations in the7

loadable text and data that are referenced by debugging information entries in8

the split DWARF object. In the example in F.3 on page 423, demo1.o may have9

three entries:10

Slot Location referenced
0 low PC value for Box::contains
1 low PC value for Point::x
2 low PC value for Point::y

The .debug_names section contains the names defined by the debugging11

information in the split DWARF object file (see Section 6.1.1.1 on page 142), and12

references the skeleton compilation unit. When linked together into a final13

executable, they can be used by a DWARF consumer to lookup a name to find14

one or more skeleton compilation units that provide information about that15

name. From the skeleton compilation unit, the consumer can find the split16

DWARF object file that it can then read to get the full DWARF information.17

The .debug_aranges section contains the PC ranges defined in this compilation18

unit, and allow a DWARF consumer to map a PC value to a skeleton compilation19

unit, and then to a split DWARF object file.20

F.2.2 Contents of the Linked Executable File21

When demo1.o and demo2.o are linked together (along with a main program and22

other necessary library routines that we will ignore here for simplicity), the23

resulting executable file will contain at least the two skeleton compilation units24

in the .debug_info section, as shown in Figure F.5 following.25

Each skeleton compilation unit has a DW_AT_stmt_list attribute, which provides26

the relocated offset to that compilation unit’s contribution in the executable’s27

.debug_line section. In this example, the line number information for demo1.dwo28

begins at offset 120, and for demo2.dwo, it begins at offset 200.29

July 15 2024 ***WORKING DRAFT*** Page 425

Appendix F. Split DWARF Object Files (Informative)

DW_TAG_skeleton_unit
DW_AT_comp_dir: (reference to directory name in .debug_str)
DW_AT_dwo_name: (reference to "demo1.dwo" in .debug_str)
DW_AT_addr_base: 48 (offset in .debug_addr)
DW_AT_stmt_list: 120 (offset in .debug_line)

DW_TAG_skeleton_unit
DW_AT_comp_dir: (reference to directory name in .debug_str)
DW_AT_dwo_name: (reference to "demo2.dwo" in .debug_str)
DW_AT_addr_base: 80 (offset in .debug_addr)
DW_AT_stmt_list: 200 (offset in .debug_line)

Figure F.5: Split object example: executable file DWARF excerpts

Each skeleton compilation unit also has a DW_AT_addr_base attribute, which1

provides the relocated offset to that compilation unit’s contribution in the2

executable’s .debug_addr section. Unlike the DW_AT_stmt_list attribute, the3

offset refers to the first address table slot, not to the section header. In this4

example, we see that the first address (slot 0) from demo1.o begins at offset 48.5

Because the .debug_addr section contains an 8-byte header, the object file’s6

contribution to the section actually begins at offset 40 (for a 64-bit DWARF object,7

the header would be 16 bytes long, and the value for the DW_AT_addr_base8

attribute would then be 56). All attributes in demo1.dwo that use9

DW_FORM_addrx, DW_FORM_addrx1, DW_FORM_addrx2,10

DW_FORM_addrx3 or DW_FORM_addrx4 would then refer to address table11

slots relative to that offset. Likewise, the .debug_addr contribution from12

demo2.dwo begins at offset 72, and its first address slot is at offset 80. Because13

these contributions have been processed by the linker, they contain relocated14

values for the addresses in the program that are referred to by the debug15

information.16

The linked executable will also contain .debug_abbrev, .debug_str,17

.debug_names and .debug_aranges sections, each the result of combining and18

relocating the contributions from the relocatable object files.19

July 15 2024 ***WORKING DRAFT*** Page 426

Appendix F. Split DWARF Object Files (Informative)

F.2.3 Contents of the Split DWARF Object Files1

The split DWARF object files each contain the following sections:2

.debug_abbrev.dwo3

.debug_info.dwo (for the compilation unit)4

.debug_info.dwo (one COMDAT section for each type unit)5

.debug_loclists.dwo6

.debug_line.dwo7

.debug_macro.dwo8

.debug_rnglists.dwo9

.debug_str_offsets.dwo10

.debug_str.dwo11

The .debug_abbrev.dwo section contains the abbreviation declarations for the12

debugging information entries in the .debug_info.dwo section.13

The .debug_info.dwo section containing the compilation unit contains the full14

debugging information for the compile unit, and looks much like a normal15

.debug_info section in a non-split object file, with the following exceptions:16

• The DW_TAG_compile_unit DIE does not need to repeat the17

DW_AT_ranges, DW_AT_low_pc, DW_AT_high_pc, and DW_AT_stmt_list18

attributes that are provided in the skeleton compilation unit.19

• References to strings in the string table use the form code DW_FORM_strx,20

DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3 or21

DW_FORM_strx4, referring to slots in the .debug_str_offsets.dwo22

section.23

• References to relocatable addresses in the object file use one of the form24

codes DW_FORM_addrx, DW_FORM_addrx1, DW_FORM_addrx2,25

DW_FORM_addrx3 or DW_FORM_addrx4, referring to slots in the26

.debug_addr table, relative to the base offset given by DW_AT_addr_base27

in the skeleton compilation unit.28

Figure F.6 following presents excerpts from the .debug_info.dwo section for29

demo1.dwo.30

In the defining declaration for Box::contains at 5$, the DW_AT_low_pc31

attribute is represented using DW_FORM_addrx, which refers to slot 0 in the32

.debug_addr table from demo1.o. That slot contains the relocated address of the33

beginning of the function.34

July 15 2024 ***WORKING DRAFT*** Page 427

Appendix F. Split DWARF Object Files (Informative)

part 1 of 2

DW_TAG_compile_unit
DW_AT_producer [DW_FORM_strx]: (slot 15) (producer string)
DW_AT_language_name: DW_LNAME_C_plus_plus
DW_AT_name [DW_FORM_strx]: (slot 7) "demo1.cc"
DW_AT_comp_dir [DW_FORM_strx]: (slot 4) (directory name)

1$: DW_TAG_class_type
DW_AT_name [DW_FORM_strx]: (slot 12) "Point"
DW_AT_signature [DW_FORM_ref_sig8]: 0x2f33248f03ff18ab
DW_AT_declaration: true

2$: DW_TAG_subprogram
DW_AT_external: true
DW_AT_name [DW_FORM_strx]: (slot 12) "Point"
DW_AT_decl_file: 1
DW_AT_decl_line: 5
DW_AT_linkage_name [DW_FORM_strx]: (slot 16) "_ZN5PointC4Eff"
DW_AT_accessibility: DW_ACCESS_public
DW_AT_declaration: true

...
3$: DW_TAG_class_type

DW_AT_name [DW_FORM_string]: "Box"
DW_AT_signature [DW_FORM_ref_sig8]: 0xe97a3917c5a6529b
DW_AT_declaration: true

...
4$: DW_TAG_subprogram

DW_AT_external: true
DW_AT_name [DW_FORM_strx]: (slot 0) "contains"
DW_AT_decl_file: 1
DW_AT_decl_line: 28
DW_AT_linkage_name [DW_FORM_strx: (slot 8)

"_ZNK3Box8containsERK5Point"
DW_AT_type: (reference to 7$)
DW_AT_accessibility: DW_ACCESS_public
DW_AT_declaration: true

...

Figure F.6: Split object example: demo1.dwo excerpts

Each type unit is contained in its own COMDAT .debug_info.dwo section, and1

looks like a normal type unit in a non-split object, except that the2

DW_TAG_type_unit DIE contains a DW_AT_stmt_list attribute that refers to a3

specialized .debug_line.dwo section. This section contains a normal line4

number program header with a list of include directories and filenames, but no5

line number program. This section is used only as a reference for filenames6

needed for DW_AT_decl_file attributes within the type unit.7

July 15 2024 ***WORKING DRAFT*** Page 428

Appendix F. Split DWARF Object Files (Informative)

part 2 of 2

5$: DW_TAG_subprogram
DW_AT_specification: (reference to 4$)
DW_AT_decl_file: 2
DW_AT_decl_line: 3
DW_AT_low_pc [DW_FORM_addrx]: (slot 0)
DW_AT_high_pc [DW_FORM_data8]: 0xbb
DW_AT_frame_base: DW_OP_call_frame_cfa
DW_AT_object_pointer: (reference to 6$)

6$: DW_TAG_formal_parameter
DW_AT_name [DW_FORM_strx]: (slot 13): "this"
DW_AT_type: (reference to 8$)
DW_AT_artificial: true
DW_AT_location: DW_OP_fbreg(-24)

DW_TAG_formal_parameter
DW_AT_name [DW_FORM_string]: "p"
DW_AT_decl_file: 2
DW_AT_decl_line: 3
DW_AT_type: (reference to 11$)
DW_AT_location: DW_OP_fbreg(-32)

...
7$: DW_TAG_base_type

DW_AT_byte_size: 1
DW_AT_encoding: DW_ATE_boolean
DW_AT_name [DW_FORM_strx]: (slot 5) "bool"

...
8$: DW_TAG_const_type

DW_AT_type: (reference to 9$)
9$: DW_TAG_pointer_type

DW_AT_byte_size: 8
DW_AT_type: (reference to 10$)

10$: DW_TAG_const_type
DW_AT_type: (reference to 3$)

...
11$: DW_TAG_const_type

DW_AT_type: (reference to 12$)
12$: DW_TAG_reference_type

DW_AT_byte_size: 8
DW_AT_type: (reference to 13$)

13$: DW_TAG_const_type
DW_AT_type: (reference to 1$)

...

Figure F.6: Split object example: demo1.dwo DWARF excerpts (concluded)

July 15 2024 ***WORKING DRAFT*** Page 429

Appendix F. Split DWARF Object Files (Informative)

The .debug_str_offsets.dwo section contains an entry for each unique string in1

the string table. Each entry in the table is the offset of the string, which is2

contained in the .debug_str.dwo section.3

In a split DWARF object file, all references to strings go through this table (there4

are no other offsets to .debug_str.dwo in a split DWARF object file). That is,5

there is no use of DW_FORM_strp in a split DWARF object file.6

The offsets in these slots have no associated relocations, because they are not part7

of a relocatable object file. When combined into a DWARF package file, however,8

each slot must be adjusted to refer to the appropriate offset within the merged9

string table (.debug_str.dwo). The tool that builds the DWARF package file must10

understand the structure of the .debug_str_offsets.dwo section in order to11

apply the necessary adjustments. Section F.3 on page 434 presents an example of12

a DWARF package file.13

The .debug_rnglists.dwo section contains range lists referenced by any14

DW_AT_ranges attributes in the split DWARF object. In our example, demo1.o15

would have just a single range list for the compilation unit, with range list entries16

for the function Box::contains and for out-of-line copies of the inline functions17

Point::x and Point::y.18

The .debug_loclists.dwo section contains the value lists and location lists19

referenced by DW_AT_location attributes in the .debug_info.dwo section. This20

section has a similar format to the .debug_loclists section in a non-split object,21

but the section has some small differences as explained in Section 7.7.3 on22

page 235.23

In demo2.dwo as shown in Figure F.7 on the following page, the debugging24

information for Line::clip starting at 2$ describes a local variable slope at 7$25

whose location varies based on the PC. Figure F.8 on page 433 presents some26

excerpts from the .debug_info.dwo section for demo2.dwo.27

July 15 2024 ***WORKING DRAFT*** Page 430

Appendix F. Split DWARF Object Files (Informative)

part 1 of 2

1$: DW_TAG_class_type
DW_AT_name [DW_FORM_strx]: (slot 20) "Line"
DW_AT_signature [DW_FORM_ref_sig8]: 0x79c7ef0eae7375d1
DW_AT_declaration: true
...

2$: DW_TAG_subprogram
DW_AT_external: true
DW_AT_name [DW_FORM_strx]: (slot 19) "clip"
DW_AT_decl_file: 2
DW_AT_decl_line: 16
DW_AT_linkage_name [DW_FORM_strx]: (slot 2) "_ZN4Line4clipERK3Box"
DW_AT_type: (reference to DIE for bool)
DW_AT_accessibility: DW_ACCESS_public
DW_AT_declaration: true

...

Figure F.7: Split object example: demo2.dwo DWARF .debug_info.dwo excerpts

July 15 2024 ***WORKING DRAFT*** Page 431

Appendix F. Split DWARF Object Files (Informative)

part 2 of 2

3$: DW_TAG_subprogram
DW_AT_specification: (reference to 2$)
DW_AT_decl_file: 1
DW_AT_decl_line: 3
DW_AT_low_pc [DW_FORM_addrx]: (slot 32)
DW_AT_high_pc [DW_FORM_data8]: 0x1ec
DW_AT_frame_base: DW_OP_call_frame_cfa
DW_AT_object_pointer: (reference to 4$)

4$: DW_TAG_formal_parameter
DW_AT_name: (indexed string: 0x11): this
DW_AT_type: (reference to DIE for type const Point* const)
DW_AT_artificial: 1
DW_AT_location: 0x0 (location list)

5$: DW_TAG_formal_parameter
DW_AT_name: b
DW_AT_decl_file: 1
DW_AT_decl_line: 3
DW_AT_type: (reference to DIE for type const Box& const)
DW_AT_location [DW_FORM_sec_offset]: 0x2a

6$: DW_TAG_lexical_block
DW_AT_low_pc [DW_FORM_addrx]: (slot 17)
DW_AT_high_pc: 0x1d5

7$: DW_TAG_variable
DW_AT_name [DW_FORM_strx]: (slot 28): "slope"
DW_AT_decl_file: 1
DW_AT_decl_line: 5
DW_AT_type: (reference to DIE for type float)
DW_AT_location [DW_FORM_sec_offset]: 0x49

Figure F.7: Split object example: demo2.dwo DWARF .debug_info.dwo excerpts
(concluded)

July 15 2024 ***WORKING DRAFT*** Page 432

Appendix F. Split DWARF Object Files (Informative)

In Figure F.7 on page 431, the DW_TAG_formal_parameter entries at 4$ and 5$1

refer to the location lists at offset 0x0 and 0x2a, respectively, and the2

DW_TAG_variable entry for slope refers to the location list at offset 0x49. Figure3

F.8 shows a representation of the location lists at those offsets in the4

.debug_loclists.dwo section.5

Entry type Range Counted Location Description
offset (DW_LLE_*) start length length expression

0x00 start_length [9] 0x002f 0x01 DW_OP_reg5 (rdi)
0x09 start_length [11] 0x01b9 0x01 DW_OP_reg3 (rbx)
0x12 start_length [29] 0x0003 0x03 DW_OP_breg12 (r12): -8;

DW_OP_stack_value
0x1d start_length [31] 0x0001 0x03 DW_OP_entry_value:

(DW_OP_reg5 (rdi));
DW_OP_stack_value

0x29 end_of_list
——
0x2a start_length [9] 0x002f 0x01 DW_OP_reg4 (rsi))
0x33 start_length [11] 0x01ba 0x03 DW_OP_reg6 (rbp))
0x3c start_length [30] 0x0003 0x03 DW_OP_entry_value:

(DW_OP_reg4 (rsi));
DW_OP_stack_value

0x48 end_of_list
——
0x49 start_length [10] 0x0004 0x01 DW_OP_reg18 (xmm1)
0x52 start_length [11] 0x01bd 0x02 DW_OP_fbreg: -36
0x5c end_of_list

Figure F.8: Split object example: demo2.dwo DWARF .debug_loclists.dwo
excerpts

In each DW_LLE_start_length entry, the start field is the index of a slot in the6

.debug_addr section, relative to the base offset defined by the compilations unit’s7

DW_AT_addr_base attribute. The .debug_addr slots referenced by these entries8

give the relocated address of a label within the function where the address range9

begins. The following length field gives the length of the address range. The10

location, consisting of its own length and a DWARF expression, is last.11

July 15 2024 ***WORKING DRAFT*** Page 433

Appendix F. Split DWARF Object Files (Informative)

F.3 DWARF Package File Example1

A DWARF package file (see Section 7.3.5 on page 197) is a collection of split2

DWARF object files. In general, it will be much smaller than the sum of the split3

DWARF object files, because the packaging process removes duplicate type units4

and merges the string tables. Aside from those two optimizations, however, each5

compilation unit and each type unit from a split DWARF object file is copied6

verbatim into the package file.7

The package file contains the same set of sections as a split DWARF object file,8

plus two additional sections described below.9

The packaging utility, like a linker, combines sections of the same name by10

concatenation. While a split DWARF object may contain multiple11

.debug_info.dwo sections, one for the compilation unit, and one for each type12

unit, a package file contains a single .debug_info.dwo section. The combined13

.debug_info.dwo section contains each compilation unit and one copy of each14

type unit (discarding any duplicate type signatures).15

As part of merging the string tables, the packaging utility treats the16

.debug_str.dwo and .debug_str_offsets.dwo sections specially. Rather than17

combining them by simple concatenation, it instead builds a new string table18

consisting of the unique strings from each input string table. Because all19

references to these strings use form DW_FORM_strx, the packaging utility only20

needs to adjust the string offsets in each .debug_str_offsets.dwo contribution21

after building the new .debug_str.dwo section.22

Each compilation unit or type unit consists of a set of inter-related contributions23

to each section in the package file. For example, a compilation unit may have24

contributions in .debug_info.dwo, .debug_abbrev.dwo, .debug_line.dwo,25

.debug_str_offsets.dwo, and so on. In order to maintain the ability for a26

consumer to follow references between these sections, the package file contains27

two additional sections: a compilation unit (CU) index, and a type unit (TU)28

index. These indexes allow a consumer to look up a compilation unit (by its29

compilation unit ID) or a type unit (by its type unit signature), and locate each30

contribution that belongs to that unit.31

For example, consider a package file, demo.dwp, formed by combining demo1.dwo32

and demo2.dwo from the previous example (see Appendix F.2 on page 421). For33

an executable file named "demo" (or "demo.exe"), a debugger would typically34

expect to find demo.dwp in the same directory as the executable file. The resulting35

package file would contain the sections shown in Figure F.9 on the following36

page, with contributions from each input file as shown.37

July 15 2024 ***WORKING DRAFT*** Page 434

Appendix F. Split DWARF Object Files (Informative)

Section Source of section contributions
.debug_abbrev.dwo .debug_abbrev.dwo from demo1.dwo

.debug_abbrev.dwo from demo2.dwo

.debug_info.dwo
(for the compilation
units and type units)

compilation unit from demo1.dwo
compilation unit from demo2.dwo
type unit for class Box from demo1.dwo
type unit for class Point from demo1.dwo
type unit for class Line from demo2.dwo

.debug_rnglists.dwo .debug_rnglists.dwo from demo1.dwo
.debug_rnglists.dwo from demo2.dwo

.debug_loclists.dwo .debug_loclists.dwo from demo1.dwo
.debug_loclists.dwo from demo2.dwo

.debug_line.dwo .debug_line.dwo from demo1.dwo
.debug_line.dwo from demo2.dwo

.debug_str_offsets.dwo
.debug_str_offsets.dwo from demo1.dwo,

adjusted
.debug_str_offsets.dwo from demo2.dwo,

adjusted
.debug_str.dwo merged string table generated by package

utility
.debug_cu_index CU index generated by package utility
.debug_tu_index TU index generated by package utility

Figure F.9: Sections and contributions in example package file demo.dwp

The .debug_abbrev.dwo, .debug_rnglists.dwo, .debug_loclists.dwo and1

.debug_line.dwo sections are copied over from the two .dwo files as individual2

contributions to the corresponding sections in the .dwp file. The offset of each3

contribution within the combined section and the size of each contribution is4

recorded as part of the CU and TU index sections.5

The .debug_info.dwo sections corresponding to each compilation unit are copied6

as individual contributions to the combined .debug_info.dwo section, and one7

copy of each type unit is also copied. The type units for class Box and class Point,8

for example, are contained in both demo1.dwo and demo2.dwo, but only one9

instance of each is copied into the package file.10

July 15 2024 ***WORKING DRAFT*** Page 435

Appendix F. Split DWARF Object Files (Informative)

The .debug_str.dwo sections from each file are merged to form a new string1

table with no duplicates, requiring the adjustment of all references to those2

strings. The .debug_str_offsets.dwo sections from the .dwo files are copied as3

individual contributions, but the string table offset in each slot of those4

contributions is adjusted to point to the correct offset in the merged string table.5

The .debug_cu_index and .debug_tu_index sections provide a directory to these6

contributions. Figure F.10 following shows an example CU index section7

containing the two compilation units from demo1.dwo and demo2.dwo. The CU8

index shows that for the compilation unit from demo1.dwo, with compilation unit9

ID 0x044e413b8a2d1b8f, its contribution to the .debug_info.dwo section begins10

at offset 0, and is 325 bytes long. For the compilation unit from demo2.dwo, with11

compilation unit ID 0xb5f0ecf455e7e97e, its contribution to the12

.debug_info.dwo section begins at offset 325, and is 673 bytes long.13

Likewise, we can find the contributions to the related sections. In Figure F.8 on14

page 433, we see that the DW_TAG_variable DIE at 7$ has a reference to a15

location list at offset 0x49 (decimal 73). Because this is part of the compilation16

unit for demo2.dwo, with unit signature 0xb5f0ecf455e7e97e, we see that its17

contribution to .debug_loclists.dwo begins at offset 84, so the location list from18

Figure F.8 on page 433 can be found in demo.dwp at offset 157 (84 + 73) in the19

combined .debug_loclists.dwo section.20

Figure F.11 following shows an example TU index section containing the three21

type units for classes Box, Point, and Line. Each type unit contains contributions22

from .debug_info.dwo, .debug_abbrev.dwo, .debug_line.dwo and23

.debug_str_offsets.dwo. In this example, the type units for classes Box and24

Point come from demo1.dwo, and share the abbreviations table, line number25

table, and string offsets table with the compilation unit from demo1.dwo.26

Likewise, the type unit for class Line shares tables from demo2.dwo.27

The sharing of these tables between compilation units and type units is typical28

for some implementations, but is not required by the DWARF standard.29

July 15 2024 ***WORKING DRAFT*** Page 436

Appendix F. Split DWARF Object Files (Informative)

Section header

Version: 5
Number of columns: 6
Number of used entries: 2
Number of slots: 16

Offset table
slot signature info abbrev loc line str_off rng

14 0xb5f0ecf455e7e97e 325 452 84 52 72 350
15 0x044e413b8a2d1b8f 0 0 0 0 0 0

Size table
slot info abbrev loc line str_off rng

14 673 593 93 52 120 34
15 325 452 84 52 72 15

Figure F.10: Example CU index section

July 15 2024 ***WORKING DRAFT*** Page 437

Appendix F. Split DWARF Object Files (Informative)

Section header

Version: 5
Number of columns: 4
Number of used entries: 3
Number of slots: 32

Offset table
slot signature info abbrev line str_off

11 0x2f33248f03ff18ab 1321 0 0 0
17 0x79c7ef0eae7375d1 1488 452 52 72
27 0xe97a3917c5a6529b 998 0 0 0

Size table
slot info abbrev line str_off

11 167 452 52 72
17 217 593 52 120
27 323 452 52 72

Figure F.11: Example TU index section

July 15 2024 ***WORKING DRAFT*** Page 438

Appendix F. Split DWARF Object Files (Informative)

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 439

Appendix G1

DWARF Section Version Numbers2

(Informative)3

Most DWARF sections have a version number in the section header. This version4

number is not tied to the DWARF standard revision numbers, but instead is5

incremented when incompatible changes to that section are made. The DWARF6

standard that a producer is following is not explicitly encoded in the file. Version7

numbers in the section headers are represented as two-byte unsigned integers.8

Table G.1 on the next page shows what version numbers are in use for each9

section. In that table:10

• “V2” means DWARF Version 2, published July 27, 1993.11

• “V3” means DWARF Version 3, published December 20, 2005.12

• “V4” means DWARF Version 4, published June 10, 2010.13

• “V5” means DWARF Version 5, published February 13, 2017.14

• “V6” means DWARF Version 61, published <to be determined>.15

There are sections with no version number encoded in them; they are only16

accessed via the .debug_info sections and so an incompatible change in those17

sections’ format would be represented by a change in the .debug_info section18

version number.19

1Higher numbers are reserved for future use.

July 15 2024 ***WORKING DRAFT*** Page 440

Appendix G. Section Version Numbers (Informative)

Table G.1: Section version numbers

Section Name V2 V3 V4 V5 V6
.debug_abbrev * * * * *
.debug_addr - - - 5 5
.debug_aranges 2 2 2 2 2
.debug_frame2 1 3 4 4 4
.debug_info 2 3 4 5 5
.debug_line 2 3 4 5 6
.debug_line_str - - - * *
.debug_loc * * * - -
.debug_loclists - - - 5 5
.debug_macinfo * * * - -
.debug_macro - - - 5 5
.debug_names - - - 5 6
.debug_pubnames 2 2 2 - -
.debug_pubtypes - 2 2 - -
.debug_ranges - * * - -
.debug_rnglists - - - 5 5
.debug_str * * * * *
.debug_str_offsets - - - 5 5
.debug_sup - - - 5 5
.debug_types - - 4 - -

(split object sections)
.debug_abbrev.dwo - - - * *
.debug_info.dwo - - - 5 5
.debug_line.dwo - - - 5 5
.debug_loclists.dwo - - - 5 5
.debug_macro.dwo - - - 5 5
.debug_rnglists.dwo - - - 5 5
.debug_str.dwo - - - * *
.debug_str_offsets.dwo - - - 5 5
Continued on next page

2For the .debug_frame section, version 2 is unused.

July 15 2024 ***WORKING DRAFT*** Page 441

Appendix G. Section Version Numbers (Informative)

Section Name V2 V3 V4 V5 V6

(package file sections)
.debug_cu_index - - - 5 6
.debug_tu_index - - - 5 6

Notes:1

• “*” means that a version number is not applicable (the section does not2

include a header or the section’s header does not include a version).3

• “-” means that the section was not defined in that version of the DWARF4

standard.5

• The version numbers for corresponding .debug_<kind> and6

.debug_<kind>.dwo sections are the same.7

July 15 2024 ***WORKING DRAFT*** Page 442

Appendix G. Section Version Numbers (Informative)

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 443

Appendix H

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright ©2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft,” which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

July 15 2024 ***WORKING DRAFT*** Page 444

Appendix H. GNU Free Documentation License

H.1 APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as “you.” You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright
law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or

July 15 2024 ***WORKING DRAFT*** Page 445

Appendix H. GNU Free Documentation License

discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that
is not “Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements,” “Dedications,”
“Endorsements,” or “History.”) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

H.2 VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.

July 15 2024 ***WORKING DRAFT*** Page 446

Appendix H. GNU Free Documentation License

You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section H.3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

H.3 COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

July 15 2024 ***WORKING DRAFT*** Page 447

Appendix H. GNU Free Documentation License

H.4 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections H.2 and H.3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of
the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History,” Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations

July 15 2024 ***WORKING DRAFT*** Page 448

Appendix H. GNU Free Documentation License

given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements,” provided it contains nothing
but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

July 15 2024 ***WORKING DRAFT*** Page 449

Appendix H. GNU Free Documentation License

H.5 COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section H.5 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History;” likewise
combine any sections Entitled “Acknowledgements,” and any sections Entitled
“Dedications.” You must delete all sections Entitled “Endorsements.”

H.6 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of
the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

H.7 AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation

July 15 2024 ***WORKING DRAFT*** Page 450

Appendix H. GNU Free Documentation License

is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section H.3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

H.8 TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section H.4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section H.4) to Preserve its Title (section H.1) will
typically require changing the actual title.

H.9 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

July 15 2024 ***WORKING DRAFT*** Page 451

Appendix H. GNU Free Documentation License

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation of
this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

H.10 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

H.11 RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World
Wide Web server that publishes copyrightable works and also provides
prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Massive Multiauthor Collaboration”
(or “MMC”) contained in the site means any set of copyrightable works thus
published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a

July 15 2024 ***WORKING DRAFT*** Page 452

Appendix H. GNU Free Documentation License

principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as
part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this
MMC, and subsequently incorporated in whole or in part into the MMC, (1) had
no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC
is eligible for relicensing.

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright (C) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

A copy of the license is included in the section entitled “GNU Free
Documentation License.”

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

July 15 2024 ***WORKING DRAFT*** Page 453

Appendix H. GNU Free Documentation License

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

July 15 2024 ***WORKING DRAFT*** Page 454

Appendix H. GNU Free Documentation License

(empty page)

July 15 2024 ***WORKING DRAFT*** Page 455

Index

&-qualified non-static member
function, 21

&&-qualified non-static member
function, 22

<caf>, see code alignment factor
<daf>, see data alignment factor
... parameters, see unspecified

parameters entry
.data, 391
.debug_abbrev.dwo, 8, 195, 197, 198,

201, 292, 293, 417, 427,
434–436, 441

.debug_abbrev, 146, 192, 194, 205,
208–211, 288, 289, 292, 293,
300, 301, 391, 401, 418, 424,
426, 441

example, 300
.debug_addr, 8, 28, 45, 46, 55, 69, 193,

194, 222, 253, 288, 290–292,
294, 418, 419, 424–427, 433,
441

.debug_aranges, 153, 191, 193, 194,
205, 245, 288, 289, 292, 293,
391, 396, 418, 419, 424–426,
441

.debug_cu_index, 8, 198, 199, 435,
436, 442

.debug_frame, 181, 182, 191, 194, 205,
288, 292, 345, 418, 441

.debug_info.dwo, 8, 15, 195–198, 201,
204, 292–295, 417, 419, 427,

428, 430–432, 434–436, 441
.debug_info, 8, 9, 13, 15, 24, 28, 31,

36, 42, 69, 140, 141, 143, 149,
150, 153, 154, 181, 191–194,
196, 204–211, 215, 225–228,
245, 288–294, 300, 301, 391,
392, 394, 396–402, 413, 414,
417, 418, 424, 425, 427, 440,
441

example, 300
.debug_line.dwo, 8, 72, 164, 173, 176,

195, 197, 198, 201, 223, 292,
294, 295, 417, 427, 428,
434–436, 441

.debug_line_str, 8, 154, 159,
162–164, 194, 205, 206, 227,
288, 291, 292, 418, 441

.debug_line, 65, 154, 159, 163, 164,
173, 176, 191, 193, 194, 205,
206, 223, 288–292, 294, 382,
383, 391, 396, 401, 417, 418,
424–426, 441

.debug_loclists.dwo, 8, 44, 195, 197,
198, 201, 255, 292, 294, 417,
427, 430, 433, 435, 436, 441

.debug_loclists, 9, 10, 44, 47, 69,
191, 193, 206, 224, 255, 288,
290, 294, 417, 430, 441

.debug_loc (pre-Version 5), 10, 441

.debug_macinfo (pre-Version 5), 8,
198, 441

July 15 2024 ***WORKING DRAFT*** Page 456

Index

.debug_macro.dwo, 8, 173, 195, 197,
198, 201, 224, 292, 294, 295,
417, 427, 441

.debug_macro, 8, 66, 172, 173, 177,
193, 203, 224, 288–291, 382,
383, 417, 441

.debug_names, 9, 10, 141, 148, 149,
191, 193, 194, 205, 206, 288,
289, 292, 293, 418, 419,
424–426, 441

.debug_pubnames (pre-Version 5), 9,
10, 141, 441

.debug_pubtypes (pre-Version 5), 9,
10, 141, 441

.debug_ranges (pre-Version 5), 10,
441

.debug_rnglists.dwo, 54, 195, 197,
198, 201, 254, 292, 294, 427,
430, 435, 441

.debug_rnglists, 9, 10, 54, 56, 69,
191, 193, 206, 225, 254, 288,
290–292, 294, 441

.debug_str.dwo, 8, 151, 164, 195–198,
292, 295, 417, 427, 430,
434–436, 441

.debug_str_offsets.dwo, 8, 68, 164,
196–198, 201, 204, 252, 292,
293, 295, 417, 418, 427, 430,
434–436, 441

.debug_str_offsets, 8, 68, 73, 174,
193, 195, 204, 206, 227, 228,
252, 287–290, 292, 293, 419,
441

.debug_str, 151, 164, 174, 177,
193–195, 203–205, 227, 228,
288–290, 292, 293, 381, 383,
418, 419, 424–426, 441

.debug_sup, 202, 441

.debug_tu_index, 8, 198, 199, 435,
436, 442

.debug_types (Version 4), 8, 441

.dwo file extension, 417

.dwp file extension, 197

.text, 391, 398, 400
segment_selector_size

(deprecated), 153, 159, 182,
245, 253–255

32-bit DWARF format, 36, 159, 203,
208–211, 222–228, 245, 250,
256

64-bit DWARF format, 36, 159, 203,
208–211, 223–228, 245, 250,
256

abbrev_table_size, 149, 152, 244
abbreviations table, 207

dynamic forms in, 215
example, 300

abstract instance, 20, 414
entry, 86
example, 350, 353
nested, 91
root, 86, 87
tree, 86

abstract origin attribute, 89, 90, 217
accelerated access, 140

by address, 153
by name, 141

Access declaration, 17
access declaration entry, 122
accessibility attribute, 17, 48, 121, 122,

124, 217, 238
Accessibility of base or inherited

class, 17
activation of call frame, 178, 188
Ada, 1, 17, 48, 64, 110, 112, 113, 138,

307, 320, 322, 326, 327, 330,
331

address, see also address class
dereference operator, 30, 31
implicit push for member

operator, 135

July 15 2024 ***WORKING DRAFT*** Page 457

Index

implicit push of base, 32
uplevel, see static link attribute

address, 156, 158, 160
address class, 23, 46, 50, 57, 92, 216,

218–221, 228–230, 241
address class attribute, 82, 114, 217
address index, 45, 55
address of call instruction, 18
address of called routine, 19
address of called routine, which may

be clobbered, 19
address of the value pointed to by an

argument, 18
address register

address register
in line number machine, 156

address size, see also address_size,
see size of an address

address space
multiple, 31

address table, 17
address table base

encoding, 220
address table base attribute, 69
address_range, 181, 183, 188
address_size, 9, 153, 159, 181,

208–210, 245, 253–255, 341
addrptr, see also addrptr class
addrptr class, 23, 69, 71, 220–222, 228,

229
adjusted opcode, 168
alias declaration, see imported

declaration entry
alignment

non-default, 17
alignment attribute, 60, 220
all calls summary attribute, 81, 220
all source calls summary attribute,

81, 220
all tail and normal calls are

described, 18

all tail calls are described, 18
all tail calls summary attribute, 81,

220
all tail, normal and inlined calls are

described, 18
allocated attribute, 138, 218
allocation status of types, 17
anonymous structure, 320
anonymous union, 101, 122
ANSI-defined language names, 63,

239
argument value passed, 19
ARM instruction set architecture, 154
array

assumed-rank, 139, 315
declaration of type, 115
descriptor for, 306
element ordering, 115
element type, 116

Array bound THREADS scale factor,
22

array coarray, see coarray
array element stride (of array type),

18
array row/column ordering, 21
array type entry, 115

examples, 306
artificial attribute, 49, 217
artificial name or description, 20
ASCII (Fortran string kind), 132
ASCII (Fortran string kind), 109
ASCII character, 108
Assembly, 64
associated attribute, 138, 218
associated compilation unit, 221
association status of types, 17
assumed-rank array, see array,

assumed-rank
atomic qualified type entry, 113
attribute duplication, 17
attribute encodings, 216

July 15 2024 ***WORKING DRAFT*** Page 458

Index

attribute ordering, 17
attribute value classes, 23
attributes, 15

list of, 17
augmentation, 149, 181
augmentation sequence, 149
augmentation string, 181
augmentation_size, 149
auto return type, 82, 112, 126

base address, 53
of location list, 45
of range list, 54

base address of scope, 21, 53
base address selection entry

in range list, 251, 252
base type bit location, 19
base type bit size, 18
base type entry, 106
base types attribute, 68, 217
basic block, 155, 156, 166, 168
basic_block, 156, 158, 166, 168
beginning of a data member, 123
beginning of an object, 123, 325
Bernstein hash function, 261
Bias added to an encoded value, 17
bias attribute, 221
big-endian encoding, see endianity

attribute
binary scale attribute, 109, 219
binary scale factor for fixed-point

type, 17
bit fields, 323, 325
bit offset attribute (Version 3), 216
bit size attribute, 106, 107, 124, 136,

216
bit stride attribute, 116, 130, 135, 217
BLISS, 64
block, see also block class, 25, 83, 99,

128, 188
block class, 23, 217, 218, 222, 228

bounded location description, 44, 46,
47

bounded range, 54–56
bucket_count, 149, 150
byte order, 104, 197, 202, 223, 230, 325
byte size attribute, 106, 124, 136, 216
byte stride attribute, 116, 130, 135,

218

C, 1, 12, 21, 32, 50, 64, 68, 80–82, 96,
97, 99–102, 107, 109, 112–116,
118, 119, 130, 131, 136, 171,
176, 261, 315, 320, 325, 367,
373, 381, 397, 398, 413

C++, 1, 9, 11, 12, 17, 21, 22, 32, 48, 49,
52, 58, 59, 64, 74–78, 82, 85–88,
90, 92, 96–98, 101, 102, 104,
109, 112, 113, 115, 118–122,
124–126, 130, 131, 135–137,
148, 171, 176, 320, 325, 333,
355, 358, 361–365, 385, 390,
393, 395–398, 402, 413

C++ for OpenCL, 64
C++11, 125, 131
C-interoperable, 315
C#, 64
call column attribute, 95, 219

of call site entry, 95
call data location attribute, 96, 220
call data value attribute, 96, 220
call file attribute, 95, 219

of call site entry, 95
call is a tail call, 18
call line attribute, 95, 219

of call site entry, 95
call origin attribute, 94, 220
call parameter attribute, 96, 220
call PC attribute, 220
call pc attribute, 94
call return PC attribute, 220
call return pc attribute, 94

July 15 2024 ***WORKING DRAFT*** Page 459

Index

call site
address of called routine, 19
address of called routine, which

may be clobbered, 19
address of the call instruction, 18
address of the value pointed to

by an argument, 18
argument value passed, 19
parameter entry, 18
return address, 18
subprogram called, 18
summary

all tail and normal calls are
described, 18

all tail calls are described, 18
all tail, normal and inlined calls

are described, 18
tail call, 18
value pointed to by an argument,

18
call site entry, 94
call site parameter entry, 95
call site return pc attribute, 94
call site summary information, 81
call tail call attribute, 94, 220
call target attribute, 95, 220
call target clobbered attribute, 95, 220
call type attribute, 95
call value attribute, 96, 220
Calling convention

for subprograms, 19
for types, 19

calling convention attribute, 217
for subprogram, 79
for types, 120

calling convention codes
for subroutines, 79
for types, 120

catch block, 98
catch block entry, 98
Child determination encodings, 215

CIE_id, 181, 205
CIE_pointer, 181, 182, 205
class of attribute value

address, see address class
addrptr, see addrptr class
block, see block class
constant, see constant class
exprloc, see exprloc class
flag, see flag class
lineptr, see lineptr class
loclist, see loclist class
loclistsptr, see loclistsptr class
macptr, see macptr class
reference, see reference class
rnglist, see rnglist class
rnglistsptr, see rnglistsptr class
string, see string class
stroffsetsptr, see stroffsetsptr class

class type entry, 118
class variable entry, 124
coarray, 117

example, 312–314
COBOL, 1, 3, 12, 64
code address or range of addresses,

21
code alignment factor, 182
code_alignment_factor, 182, 184
codimension, see coarray
coindex, see coarray
column, 156, 158
column position of call site of

non-inlined call, 18
column position of inlined

subroutine call, 18
column position of source

declaration, 19
COMDAT, 11, 393, 400–402
common, 83
common block, see Fortran common

block, 101
common block entry, 104

July 15 2024 ***WORKING DRAFT*** Page 460

Index

common block reference attribute, 83,
104

common block usage, 19
common blocks, 52
common information entry, 181
common reference attribute, 217
comp_unit_count, 149
compilation directory, 19
compilation directory attribute, 66,

217
compilation unit, 61

see also type unit, 72
full, 62
partial, 62
skeleton, 69

compilation unit ID, 434, 436
compilation unit set, 198
compilation unit uses UTF-8 strings,

22
compile-time constant function, 19
compile-time constant object, 19
compiler identification, 21
concrete instance

example, 350, 353, 354
nested, 91

concrete out-of-line instance, 414
condition entry, 129
const qualified type entry, 113
constant, see also constant class, 57
constant (data) entry, 101
constant class, 23, 57, 60, 99, 103, 107,

194, 216–222, 228, 229, 244
constant expression attribute, 88, 104,

219
constant object, 19
constant value attribute, 59, 103, 130,

217
constexpr, 86, 88
containing type (of pointer) attribute,

135
containing type attribute, 217

containing type of pointer to member
type, 19

contiguous range of code addresses,
20

conventional compilation unit, see
full compilation unit, partial
compilation unit, type unit

conventional type unit, 72
count attribute, 114, 134, 218

default, 134
counted location description, 45
Crystal, 64

D, 64, 113
data (indirect) location attribute, 137
data alignment factor, 182
data bit offset, 325
data bit offset attribute, 107, 123, 219
data bit size, 325
data location attribute, 218
data member, see member entry

(data)
data member attribute, 218
data member bit location, 19
data member bit size, 18
data member location, 19
data member location attribute, 121,

123
data object entries, 101
data object location, 21
data object or data type size, 18
data_alignment_factor, 182,

184–186
debug_abbrev_offset, 9, 201, 205,

208–210, 289, 293
debug_info_offset, 153, 193, 205,

245
debug_line_offset, 172, 173
debug_line_offset_flag, 172, 382,

383
debugging information entry, 15

July 15 2024 ***WORKING DRAFT*** Page 461

Index

ownership relation, 25, 394
debugging information entry

relationship, 22
decimal scale attribute, 109–112, 219
decimal scale factor, 19
decimal sign attribute, 110, 111
decimal sign representation, 19
DECL, 264–284
declaration attribute, 50, 51, 74, 101,

102, 119, 218
declaration column attribute, 51, 52,

218
declaration coordinates, 15, 51, 89,

264
in concrete instance, 89

declaration file attribute, 51, 218
declaration line attribute, 51, 218
DEFAULT (Fortran string kind), 132
default location description, 45
default value attribute, 103, 217
default value of parameter, 19
default_is_stmt, 158, 160, 341
defaulted attribute, 19, 126, 220
deleted attribute, 126, 220
Deletion of member function, 19
denominator of rational scale factor,

22
derived type (C++), see inheritance

entry
description attribute, 58, 219
descriptor

array, 306
DIE, see debugging information entry
digit count attribute, 109–111, 219
digit count for packed decimal or

numeric string type, 20
directories, 161, 162, 164, 341
directories_count, 161, 341
directory_format_count, 161, 341
directory_format_table, 161, 162,

341

discontiguous address ranges, see
non-contiguous address
ranges

discriminant (entry), 127
discriminant attribute, 127, 216
discriminant list attribute, 128, 218,

243
discriminant of variant part, 20
discriminant value, 20
discriminant value attribute, 128, 216
discriminated union, see variant entry
discriminator, 155, 157, 158, 166,

168, 171
divisor of rational scale factor, 220
DJB hash function, 150, 261
duplication elimination, see DWARF

duplicate elimination
DW_ACCESS_private, 48, 238, 405,

407, 408
DW_ACCESS_protected, 48, 238
DW_ACCESS_public, 48, 238, 428,

431
DW_ADDR_none, 50, 241
DW_AT_abstract_origin, 17, 89, 89,

90, 90, 142, 217, 264, 352, 356,
358, 359, 370

DW_AT_accessibility, 17, 48, 121, 122,
124, 217, 238, 258, 265, 267,
269–274, 277–284, 405, 407,
408, 428, 431

DW_AT_addr_base, 17, 28, 45, 55, 69,
70, 71, 195, 220, 222, 253, 268,
275, 277, 288, 290, 294, 419,
420, 424, 426, 427, 433

DW_AT_address_class, 17, 50, 82,
114, 217, 258, 269, 275, 276,
279, 281, 284

DW_AT_alignment, 17, 60, 220, 258,
265–272, 274–283

DW_AT_allocated, 17, 117, 137, 138,
138, 218, 258, 265–267,

July 15 2024 ***WORKING DRAFT*** Page 462

Index

269–271, 276–278, 280–283,
311, 319

DW_AT_artificial, 15, 17, 49, 92, 125,
217, 258, 264, 327, 332, 338,
340, 406, 412, 429, 432

DW_AT_associated, 17, 117, 137, 138,
138, 218, 258, 265–267,
269–271, 276–278, 280–283,
310, 319

DW_AT_base_types, 17, 68, 70, 71,
217, 268, 275, 420

DW_AT_bias, 17, 107, 221, 266, 327
DW_AT_binary_scale, 17, 109, 109,

219, 258, 266
DW_AT_bit_offset (deprecated), 216
DW_AT_bit_size, 18, 58, 58, 106, 107,

116, 119, 124, 130, 132–134,
136, 216, 258, 265–267, 270,
271, 273, 275–278, 280, 283,
323–325, 327

DW_AT_bit_stride, 18, 58, 116, 130,
130, 135, 217, 258, 265, 270,
271, 280, 324

DW_AT_byte_size, 10, 18, 58, 58, 106,
116, 119, 124, 130, 132–134,
136, 216, 258, 265–267, 270,
271, 273, 275–278, 280, 283,
301, 311, 327, 359, 360, 368,
372, 401, 403–407, 409, 412,
429

DW_AT_byte_stride, 18, 58, 116, 130,
130, 135, 218, 258, 270, 271,
280, 309, 316

DW_AT_call_all_calls, 18, 81, 81, 220
DW_AT_call_all_source_calls, 18, 81,

81, 220
DW_AT_call_all_tail_calls, 18, 81, 81,

220
DW_AT_call_column, 18, 88, 95, 219,

266, 272
DW_AT_call_data_location, 18, 96,

96, 220, 267
DW_AT_call_data_value, 18, 96, 96,

220, 267, 380
DW_AT_call_file, 18, 88, 95, 219, 266,

272
DW_AT_call_line, 18, 88, 95, 219, 266,

272
DW_AT_call_origin, 18, 94, 95, 220,

266, 376, 380
DW_AT_call_parameter, 18, 96, 220,

267, 376, 377, 380
DW_AT_call_pc, 18, 81, 94, 94, 220,

266
DW_AT_call_return_pc, 18, 81, 94,

94, 220, 266, 376, 377, 380
DW_AT_call_tail_call, 18, 94, 220, 266
DW_AT_call_target, 19, 95, 95, 220,

266, 376, 377
DW_AT_call_target_clobbered, 19,

95, 95, 220, 266
DW_AT_call_value, 19, 96, 96, 220,

267, 376, 377, 380
DW_AT_calling_convention, 19, 79,

120, 217, 242, 267, 278, 279,
283

DW_AT_common_reference, 19, 83,
217, 268, 400, 401

DW_AT_comp_dir, 19, 63, 66, 66,
69–71, 217, 268, 275, 277, 301,
419, 420, 424, 426, 428

DW_AT_const_expr, 19, 88, 88, 104,
219, 258, 272, 283, 359

DW_AT_const_value, 19, 42, 57, 59,
88, 103, 130, 217, 258, 269–271,
282, 283, 352, 359, 361, 372,
399

DW_AT_containing_type, 19, 135,
217, 258, 276, 340

DW_AT_count, 19, 114, 134, 218, 258,
271, 277, 280

DW_AT_data_bit_offset, 19, 57, 107,

July 15 2024 ***WORKING DRAFT*** Page 463

Index

123, 123, 219, 258, 266, 273,
323–325, 327

DW_AT_data_location, 19, 117, 137,
137, 138, 218, 258, 265–267,
269–271, 276–278, 280–283,
307, 309–312, 316, 319, 321,
372

DW_AT_data_member_location, 19,
32, 57, 121, 123, 123, 218, 258,
272, 273, 311, 322, 329, 331,
332, 368, 403–405, 407–409

DW_AT_decimal_scale, 19, 109, 110,
111, 112, 219, 258, 266

DW_AT_decimal_sign, 19, 110, 111,
219, 237, 258, 266

DW_AT_decl_column, 19, 51, 52, 218,
261, 264

DW_AT_decl_file, 19, 51, 51, 72, 195,
218, 261, 264, 403, 405, 406,
412, 417, 428, 429, 431, 432

DW_AT_decl_line, 19, 51, 51, 218,
261, 264, 403, 405, 406, 412,
428, 429, 431, 432

DW_AT_declaration, 19, 50, 51, 74,
101, 102, 119, 142, 218, 260,
261, 265, 267–271, 273, 274,
276–284, 337, 338, 406, 412,
428, 431

DW_AT_default_value, 19, 59, 103,
217, 258, 271, 281, 282, 385,
386

DW_AT_defaulted, 9, 19, 126, 126,
220, 244, 279

DW_AT_deleted, 9, 19, 126, 220, 279
DW_AT_description, 15, 20, 58, 219,

261, 264
DW_AT_digit_count, 20, 109, 110,

111, 112, 219, 258, 266
DW_AT_discr, 20, 127, 216, 258, 284,

329–332
DW_AT_discr_list, 20, 128, 128, 218,

243, 258, 284
DW_AT_discr_value, 20, 128, 128,

216, 258, 284, 329, 331, 332
DW_AT_dwo_name, 20, 69, 69, 70,

209, 220, 275, 277, 293, 419,
420, 424, 426

DW_AT_elemental, 20, 80, 219, 279
DW_AT_encoding, 20, 106, 107, 218,

236, 258, 266, 301, 327, 360,
372, 401, 403, 404, 406, 407,
412, 429

DW_AT_endianity, 20, 104, 104, 106,
219, 238, 258, 266, 269, 271,
283

DW_AT_entry_pc, 20, 57, 57, 68, 71,
74, 82, 87, 97, 98, 142, 218, 267,
268, 272, 273, 275, 279, 282,
284, 420

DW_AT_enum_class, 20, 130, 130,
219, 258, 270, 361

DW_AT_explicit, 20, 124, 219, 258,
279

DW_AT_export_symbols, 20, 75, 75,
118, 220, 267, 274, 278, 283,
320, 334, 336

DW_AT_extension, 20, 74, 219, 274,
335

DW_AT_external, 20, 79, 101, 102,
152, 153, 218, 269, 279, 283,
406, 412, 428, 431

DW_AT_frame_base, 20, 29, 33, 83,
83, 84, 218, 269, 279, 303,
356–358, 429, 432

DW_AT_friend, 20, 122, 218, 259, 271
DW_AT_hi_user, 190, 221
DW_AT_high_pc, 11, 20, 53, 53, 63,

70, 71, 74, 82, 87, 96–98, 142,
216, 267, 268, 272, 273, 275,
277, 279, 282, 284, 301, 334,
335, 352, 353, 356–358, 377,
412, 419, 420, 427, 429, 432

July 15 2024 ***WORKING DRAFT*** Page 464

Index

DW_AT_identifier_case, 20, 67, 71,
218, 242, 268, 275, 399, 420

DW_AT_import, 20, 76, 77, 77, 78,
203, 217, 272, 335, 395, 397,
400, 401

DW_AT_inline, 20, 86, 86, 217, 243,
279, 350, 351, 354, 357, 359,
370

DW_AT_is_optional, 20, 103, 217,
258, 271

DW_AT_language (deprecated), 216
DW_AT_language_name, 21, 63, 71,

72, 103, 116, 221, 239, 268, 275,
282, 301, 397, 399, 403, 405,
420, 428

DW_AT_language_version, 21, 65,
71, 72, 103, 221, 268, 275, 282,
420

DW_AT_linkage_name, 21, 52, 59, 79,
104, 142, 219, 268, 269, 279,
283, 428, 431

DW_AT_lo_user, 190, 221
DW_AT_location, 21, 36, 42, 52, 52,

59, 87, 95, 98, 102, 104, 142,
216, 258, 267–269, 271, 283,
284, 288, 311, 319, 322, 324,
327, 334, 335, 338, 352, 353,
356–358, 368, 370, 372, 376,
377, 380, 389, 399, 410, 429,
430, 432

DW_AT_loclists_base, 21, 44, 69, 220,
255, 420

DW_AT_low_pc, 11, 21, 53, 53, 63,
69–71, 74, 82, 87, 96–98, 142,
216, 267–269, 272, 273, 275,
277, 279, 282, 284, 301, 334,
335, 352, 353, 356–358, 377,
412, 419, 420, 427, 429, 432

DW_AT_lower_bound, 21, 134, 217,
239, 258, 271, 280, 310, 311,
313, 316, 322, 324, 327, 399

DW_AT_macro_info (deprecated),
218

DW_AT_macros, 21, 65, 71, 220, 268,
275, 288, 294, 420

DW_AT_main_subprogram, 11, 21,
68, 68, 71, 79, 219, 268, 275,
279, 420

DW_AT_mutable, 21, 123, 219, 258,
273

DW_AT_name, 21, 52, 52, 58, 59, 63,
67, 71, 74, 76, 79, 90, 96, 97,
101, 104–106, 112, 113, 115,
117, 118, 120, 122, 129–133,
135–137, 142, 163, 216,
257–259, 264–284, 301, 311,
313, 314, 319, 320, 322–324,
327, 329, 331, 332, 334–338,
340, 351, 353, 354, 357,
359–363, 365, 366, 368, 370,
372, 377, 385, 386, 389,
397–401, 403–410, 412, 420,
428, 429, 431, 432

DW_AT_namelist_item, 21, 105, 218,
274

DW_AT_noreturn, 9, 21, 80, 220, 279
DW_AT_num_lanes, 21, 84, 85, 221,

389
DW_AT_object_pointer, 21, 125, 125,

219, 261, 279, 337, 338, 429,
432

DW_AT_ordering, 21, 115, 216, 243,
258, 265, 313, 314

DW_AT_picture_string, 21, 111, 219,
258, 266

DW_AT_priority, 21, 74, 218, 273
DW_AT_producer, 21, 67, 71, 217,

268, 275, 301, 420, 428
DW_AT_prototyped, 21, 80, 131, 217,

258, 279, 281
DW_AT_pure, 21, 80, 219, 279
DW_AT_ranges, 21, 53, 53, 54, 63, 70,

July 15 2024 ***WORKING DRAFT*** Page 465

Index

71, 74, 82, 87, 96–98, 142, 219,
267, 268, 272, 273, 275, 277,
279, 282, 284, 288, 294, 419,
420, 427, 430

DW_AT_rank, 9, 21, 117, 139, 139,
219, 258, 265, 315, 316

DW_AT_recursive, 21, 80, 81, 219, 279
DW_AT_reference, 21, 125, 131, 132,

220, 258, 279, 281
DW_AT_return_addr, 22, 83, 87, 217,

269, 272, 279
DW_AT_rnglists_base, 22, 54, 69, 70,

220, 254, 268, 275, 277, 288,
420

DW_AT_rvalue_reference, 22, 125,
131, 132, 220, 258, 279, 281,
340

DW_AT_scale_divisor, 22, 110, 110,
220, 258, 266

DW_AT_scale_multiplier, 22, 110,
110, 220, 258, 266

DW_AT_segment (deprecated), 218
DW_AT_sibling, 22, 25, 51, 216, 264
DW_AT_signature, 22, 51, 119, 219,

267, 270, 272, 278, 281, 283,
412, 428, 431

DW_AT_small, 22, 110, 110, 219, 258,
266

DW_AT_specification, 22, 51, 51, 75,
87, 102, 119, 125, 126, 142, 218,
260, 265, 267, 270, 273, 278,
279, 283, 335, 412, 429, 432

DW_AT_start_scope, 22, 87, 99, 217,
265, 267, 269, 270, 272–274,
277, 278, 280–283

DW_AT_static_link, 22, 83, 84, 84,
218, 269, 280, 352, 356, 357

DW_AT_stmt_list, 22, 65, 70–72, 201,
216, 268, 275, 277, 282, 288,
294, 301, 419, 420, 424–428

DW_AT_str_offsets, 22, 68, 70, 72, 73,

220, 253, 268, 275, 277, 282,
288, 289, 419, 420

DW_AT_str_offsets_base
(deprecated), 22

DW_AT_string_length, 10, 22, 132,
132, 133, 217, 258, 278, 372

DW_AT_string_length_bit_size, 22,
58, 132, 219, 258, 278

DW_AT_string_length_byte_size, 22,
58, 132, 219, 258, 278, 372

DW_AT_tensor, 22, 115, 116, 221
DW_AT_threads_scaled, 22, 134, 219,

258, 271, 280
DW_AT_trampoline, 22, 92, 219, 272,

280
DW_AT_type, 22, 48, 48, 59, 82, 85,

95, 95, 96, 98, 102, 104, 113,
115–117, 121, 122, 127,
129–131, 132, 133–137, 218,
259, 265–277, 280–284, 301,
310, 311, 313, 314, 316, 319,
322–324, 327, 329, 331, 332,
334, 335, 337, 338, 340, 351,
354, 357, 359–366, 368, 370,
372, 377, 385, 386, 389,
397–400, 403–410, 412, 428,
429, 431, 432

DW_AT_upper_bound, 22, 134, 134,
217, 258, 271, 280, 310, 311,
313, 314, 316, 322, 324, 327,
359, 399

DW_AT_use_location, 22, 135, 135,
136, 218, 258, 276

DW_AT_use_UTF8, 22, 68, 70–72,
218, 227, 258, 268, 275, 277,
282, 420

DW_AT_variable_parameter, 22, 102,
218, 258, 271

DW_AT_virtuality, 23, 49, 121, 124,
218, 239, 258, 272, 280

DW_AT_visibility, 23, 48, 217, 238,

July 15 2024 ***WORKING DRAFT*** Page 466

Index

258, 265, 267–271, 273, 274,
276–278, 280–284

DW_AT_vtable_elem_location, 23,
125, 218, 258, 280

DW_ATE_address, 108, 236
DW_ATE_ASCII, 108, 109, 132, 237,

372
DW_ATE_boolean, 108, 236, 429
DW_ATE_complex_float, 108, 110,

236
DW_ATE_complex_signed, 108, 112,

237
DW_ATE_complex_unsigned, 108,

112, 237
DW_ATE_decimal_float, 108, 110,

237
DW_ATE_edited, 108, 111, 237
DW_ATE_float, 108, 110, 236
DW_ATE_hi_user, 190, 237
DW_ATE_imaginary_float, 108, 110,

237
DW_ATE_imaginary_signed, 108,

112, 237
DW_ATE_imaginary_unsigned, 108,

112, 237
DW_ATE_lo_user, 190, 237
DW_ATE_numeric_string, 108, 109,

110, 112, 237
DW_ATE_packed_decimal, 108, 109,

110, 112, 237
DW_ATE_signed, 107, 108, 237, 327,

401, 403, 404, 406, 407, 412
DW_ATE_signed_bitint, 108, 109, 237
DW_ATE_signed_char, 108, 237
DW_ATE_signed_fixed, 108, 109, 237
DW_ATE_UCS, 108, 109, 132, 237,

372
DW_ATE_unsigned, 108, 237, 327
DW_ATE_unsigned_bitint, 108, 109,

237

DW_ATE_unsigned_char, 108, 237,
301

DW_ATE_unsigned_fixed, 108, 109,
237

DW_ATE_UTF, 108, 109, 237, 360
DW_CC_hi_user, 190, 242
DW_CC_lo_user, 190, 242
DW_CC_nocall, 79, 79, 242
DW_CC_normal, 79, 79, 120, 242
DW_CC_pass_by_reference, 120, 242
DW_CC_pass_by_value, 120, 242
DW_CC_program, 79, 80, 80, 242
DW_CFA_advance_loc, 184, 184, 188,

250, 348
DW_CFA_advance_loc1, 184, 184,

250
DW_CFA_advance_loc2, 184, 184,

250
DW_CFA_advance_loc4, 184, 184,

250
DW_CFA_def_cfa, 184, 184, 250, 347
DW_CFA_def_cfa_expression, 183,

185, 185, 251
DW_CFA_def_cfa_offset, 185, 185,

251, 348
DW_CFA_def_cfa_offset_sf, 185, 185,

251
DW_CFA_def_cfa_register, 184, 184,

251, 348
DW_CFA_def_cfa_sf, 184, 184, 251
DW_CFA_expression, 183, 186, 186,

251
DW_CFA_hi_user, 190, 251
DW_CFA_lo_user, 190, 251
DW_CFA_nop, 182, 183, 187, 187,

250, 347, 348
DW_CFA_offset, 185, 185, 186, 250,

348
DW_CFA_offset_extended, 186, 186,

250

July 15 2024 ***WORKING DRAFT*** Page 467

Index

DW_CFA_offset_extended_sf, 186,
186, 251

DW_CFA_register, 186, 186, 250, 347
DW_CFA_remember_state, 187, 187,

250
DW_CFA_restore, 187, 187, 250, 348
DW_CFA_restore_extended, 187, 187,

250
DW_CFA_restore_state, 187, 187, 250
DW_CFA_same_value, 185, 185, 250,

347
DW_CFA_set_loc, 183, 183, 188, 250
DW_CFA_undefined, 185, 185, 188,

250, 347
DW_CFA_val_expression, 183, 187,

187, 251
DW_CFA_val_offset, 186, 186, 251
DW_CFA_val_offset_sf, 186, 186, 251
DW_CHILDREN_no, 214, 215, 301
DW_CHILDREN_yes, 214, 215, 301
DW_DEFAULTED_in_class, 126, 244
DW_DEFAULTED_no, 126, 244
DW_DEFAULTED_out_of_class, 126,

244
DW_DS_leading_overpunch, 111,

238
DW_DS_leading_separate, 111, 238
DW_DS_trailing_overpunch, 111, 238
DW_DS_trailing_separate, 111, 238
DW_DS_unsigned, 111, 238
DW_DSC_label, 128, 243
DW_DSC_range, 128, 243
DW_END_big, 104, 238
DW_END_default, 104, 238
DW_END_hi_user, 190, 238
DW_END_little, 104, 238
DW_END_lo_user, 190, 238
DW_FORM_addr, 46, 56, 192, 221,

228, 301
DW_FORM_addrx, 9, 69, 194, 195,

222, 222, 229, 288, 290, 294,

418, 419, 426, 427, 429, 432
DW_FORM_addrx1, 9, 69, 194, 195,

222, 222, 229, 290, 294, 418,
419, 426, 427

DW_FORM_addrx2, 9, 69, 194, 195,
222, 222, 230, 290, 294, 418,
419, 426, 427

DW_FORM_addrx3, 9, 69, 194, 195,
222, 222, 230, 290, 294, 418,
419, 426, 427

DW_FORM_addrx4, 9, 69, 194, 195,
222, 222, 230, 290, 294, 418,
419, 426, 427

DW_FORM_addrx_offset, 215, 215
DW_FORM_block, 164, 165, 173, 222,

228, 259, 411
DW_FORM_block1, 165, 173, 222, 228
DW_FORM_block2, 165, 173, 222, 228
DW_FORM_block4, 165, 173, 222, 228
DW_FORM_data, 223, 223
DW_FORM_data1, 164, 165, 173, 222,

223, 229, 301
DW_FORM_data16, 9, 165, 173, 222,

223, 229
DW_FORM_data2, 164, 165, 173, 222,

223, 228
DW_FORM_data4, 11, 164, 165, 173,

222, 223, 228, 386
DW_FORM_data8, 11, 164, 165, 173,

222, 223, 228, 244, 429, 432
DW_FORM_data<n>, 107
DW_FORM_exprloc, 229
DW_FORM_exprval, 223, 259
DW_FORM_flag, 165, 173, 223, 229,

259, 411
DW_FORM_flag_present, 223, 229,

244
DW_FORM_implicit_const, 9, 215,

215, 223, 229
DW_FORM_indirect, 215, 215, 229,

301

July 15 2024 ***WORKING DRAFT*** Page 468

Index

DW_FORM_line_strp, 9, 164, 165,
173, 205, 206, 227, 227, 229,
288, 291, 295, 417

DW_FORM_locdesc, 224
DW_FORM_loclistx, 9, 47, 69, 224,

229, 255, 290, 294
DW_FORM_ref1, 194, 225, 229, 394
DW_FORM_ref2, 36, 194, 225, 229,

394
DW_FORM_ref4, 36, 194, 225, 229,

301, 394
DW_FORM_ref8, 194, 225, 229, 394
DW_FORM_ref<n>, 225, 397
DW_FORM_ref_addr, 12, 36, 193,

196, 205, 225, 226, 229, 288,
289, 301, 392, 394–396, 414

DW_FORM_ref_sig8, 143, 150, 210,
226, 229, 403, 428, 431

DW_FORM_ref_sup4, 9, 203, 226, 229
DW_FORM_ref_sup8, 9, 203, 226, 229
DW_FORM_ref_udata, 194, 225, 229,

394
DW_FORM_rnglistx, 9, 56, 69, 225,

229, 254, 290, 294
DW_FORM_sdata, 165, 173, 223, 223,

229, 259, 385, 404, 407–409,
411

DW_FORM_sec_offset, 11, 47, 56, 71,
165, 173, 193, 196, 205, 221,
222–225, 228, 229, 254, 255,
289, 290, 294, 301, 432

DW_FORM_string, 163–165, 173, 194,
226, 228, 259, 301, 341, 385,
386, 404, 407–409, 411, 428,
429

DW_FORM_strp, 164, 165, 173, 193,
194, 196, 205, 227, 227, 229,
253, 288, 289, 293, 341, 418,
430

DW_FORM_strp8, 164, 165, 173, 193,
194, 196, 227, 227, 230, 289,

293, 418
DW_FORM_strp_sup, 9, 164, 165,

173, 203, 205, 227, 227, 229
DW_FORM_strp_sup8, 164, 165, 173,

203, 227, 227, 230
DW_FORM_strx, 10, 68, 73, 164, 165,

173, 194–196, 198, 227, 227,
229, 288, 289, 293, 417–419,
427–429, 431, 432, 434

DW_FORM_strx1, 10, 68, 73, 164, 165,
173, 194–196, 198, 227, 227,
229, 289, 293, 417–419, 427

DW_FORM_strx2, 10, 68, 73, 164, 165,
173, 194–196, 198, 227, 227,
229, 289, 293, 417–419, 427

DW_FORM_strx3, 10, 68, 73, 164, 165,
173, 194–196, 198, 227, 227,
229, 289, 293, 417–419, 427

DW_FORM_strx4, 10, 68, 73, 164, 165,
173, 194–196, 198, 227, 227,
229, 289, 293, 417–419, 427

DW_FORM_udata, 164, 165, 173, 223,
223, 229, 341

DW_ID_case_insensitive, 67, 68, 242,
399

DW_ID_case_sensitive, 67, 67, 242
DW_ID_down_case, 67, 67, 242
DW_ID_up_case, 67, 67, 242
DW_IDX_compile_unit, 152, 244
DW_IDX_die_offset, 152, 244
DW_IDX_external, 152, 153, 244
DW_IDX_hi_user, 190, 244
DW_IDX_lo_user, 190, 244
DW_IDX_parent, 152, 244
DW_IDX_type_hash, 152, 244
DW_IDX_type_unit, 152, 244
DW_INL_declared_inlined, 86, 243,

351, 354, 357, 370
DW_INL_declared_not_inlined, 86,

243
DW_INL_inlined, 86, 86, 243, 359

July 15 2024 ***WORKING DRAFT*** Page 469

Index

DW_INL_not_inlined, 86, 86, 243
DW_LLE_base_address, 47, 236
DW_LLE_base_addressx, 46, 69, 236,

290
DW_LLE_default_location, 46, 236
DW_LLE_end_of_list, 46, 47, 236,

370, 433
DW_LLE_hi_user, 190, 236
DW_LLE_include_loclist, 47, 236
DW_LLE_include_loclistx, 47, 236
DW_LLE_lo_user, 190, 236
DW_LLE_offset_pair, 46, 46, 47, 236
DW_LLE_start_end, 47, 236, 370
DW_LLE_start_length, 47, 236, 433
DW_LLE_startx_endx, 46, 69, 236,

290
DW_LLE_startx_length, 46, 69, 236,

290
DW_LNAME_Ada, 64, 240
DW_LNAME_Assembly, 64, 241
DW_LNAME_BLISS, 64, 240
DW_LNAME_C, 64, 240, 301
DW_LNAME_C_plus_plus, 64, 240,

397, 403, 405, 428
DW_LNAME_C_sharp, 64, 241
DW_LNAME_Cobol, 64, 240
DW_LNAME_CPP_for_OpenCL, 64,

241
DW_LNAME_Crystal, 64, 240
DW_LNAME_D, 64, 240
DW_LNAME_Dylan, 64, 240
DW_LNAME_Fortran, 64, 240, 399
DW_LNAME_GLSL, 64, 241
DW_LNAME_GLSL_ES, 64, 241
DW_LNAME_Go, 64, 240
DW_LNAME_Haskell, 64, 240
DW_LNAME_hi_user, 190, 241
DW_LNAME_HIP, 64, 241
DW_LNAME_HLSL, 64, 241
DW_LNAME_Hylo, 64, 241
DW_LNAME_Java, 64, 240

DW_LNAME_Julia, 64, 240
DW_LNAME_Kotlin, 64, 240
DW_LNAME_lo_user, 190, 241
DW_LNAME_Modula2, 64, 240
DW_LNAME_Modula3, 64, 240
DW_LNAME_Mojo, 64, 241
DW_LNAME_Move, 64, 241
DW_LNAME_ObjC, 64, 240
DW_LNAME_ObjC_plus_plus, 65,

240
DW_LNAME_OCaml, 65, 240
DW_LNAME_Odin, 65, 241
DW_LNAME_OpenCL_C, 65, 240
DW_LNAME_OpenCL_CPP, 65, 241
DW_LNAME_Pascal, 65, 240
DW_LNAME_PLI, 65, 240
DW_LNAME_Python, 65, 240
DW_LNAME_RenderScript, 65, 240
DW_LNAME_Ruby, 65, 241
DW_LNAME_Rust, 65, 240
DW_LNAME_Swift, 65, 240
DW_LNAME_SYCL, 65, 241
DW_LNAME_UPC, 65, 240
DW_LNAME_Zig, 65, 240
DW_LNCT_directory_index, 164,

247, 341
DW_LNCT_hi_user, 165, 190, 247
DW_LNCT_lo_user, 165, 190, 247
DW_LNCT_MD5, 165, 165, 247
DW_LNCT_path, 163, 165, 247, 341
DW_LNCT_size, 165, 165, 247, 341
DW_LNCT_source, 165, 165, 247, 341
DW_LNCT_timestamp, 164, 164, 247,

341
DW_LNCT_URL, 165, 165, 247, 341
DW_LNE_define_file (deprecated),

247
DW_LNE_end_sequence, 170, 170,

171, 247, 344
DW_LNE_hi_user, 190, 247
DW_LNE_lo_user, 190, 247

July 15 2024 ***WORKING DRAFT*** Page 470

Index

DW_LNE_padding, 171, 171, 247
DW_LNE_set_address, 171, 171, 193,

247, 418
DW_LNE_set_discriminator, 171,

171, 247
DW_LNE_set_prologue_epilogue,

171, 171, 247
DW_LNS_advance_line, 168, 168, 246
DW_LNS_advance_pc, 168, 168, 169,

246, 344
DW_LNS_const_add_pc, 169, 169,

246
DW_LNS_copy, 168, 168, 246
DW_LNS_extended_op, 158, 159,

170, 170, 246
DW_LNS_fixed_advance_pc, 158,

169, 169, 246, 344
DW_LNS_hi_user, 190
DW_LNS_lo_user, 190
DW_LNS_negate_stmt, 160, 168, 168,

246
DW_LNS_set_basic_block, 168, 168,

246
DW_LNS_set_column, 168, 168, 246
DW_LNS_set_epilogue_begin, 170,

170, 246
DW_LNS_set_file, 168, 168, 246
DW_LNS_set_isa, 170, 170, 246
DW_LNS_set_prologue_end, 169,

169, 246
DW_MACRO_define, 174, 174, 175,

249, 382, 383
DW_MACRO_define_strp, 174, 174,

175, 177, 193, 196, 203, 249,
288, 290, 383

DW_MACRO_define_strx, 174, 174,
175, 196, 249, 288, 290, 295

DW_MACRO_define_sup
(deprecated), 249

DW_MACRO_define_sup4, 172, 174,
174, 175, 203, 249

DW_MACRO_define_sup8, 172, 174,
174, 175, 203, 249

DW_MACRO_end_file, 173, 176, 176,
249, 382, 383

DW_MACRO_hi_user, 173, 190, 249
DW_MACRO_import, 177, 177, 249,

288, 291, 383
DW_MACRO_import_sup

(deprecated), 249
DW_MACRO_import_sup4, 172, 177,

177, 203, 249
DW_MACRO_import_sup8, 172, 177,

177, 203, 249
DW_MACRO_lo_user, 173, 190, 249
DW_MACRO_padding, 177, 177, 249
DW_MACRO_start_file, 173, 176,

176, 195, 249, 288, 290, 295,
382–384

DW_MACRO_undef, 174, 174, 175,
249, 382, 383

DW_MACRO_undef_strp, 174, 174,
175, 177, 193, 196, 203, 249,
288, 290

DW_MACRO_undef_strx, 174, 174,
175, 196, 249, 288, 290, 295

DW_MACRO_undef_sup
(deprecated), 249

DW_MACRO_undef_sup4, 172, 174,
174, 175, 203, 249

DW_MACRO_undef_sup8, 172, 174,
174, 175, 203, 249

DW_OP_abs, 33, 34, 34, 232
DW_OP_addr, 27, 27, 142, 192, 232,

303
DW_OP_addrx, 28, 28, 69, 183, 194,

195, 234, 288, 290, 294, 418
DW_OP_and, 34, 34, 232, 310, 311
DW_OP_bit_piece, 43, 43, 44, 234, 306
DW_OP_bra, 36, 36, 233
DW_OP_breg0, 29, 233, 375, 380
DW_OP_breg1, 29, 233, 304, 305

July 15 2024 ***WORKING DRAFT*** Page 471

Index

DW_OP_breg31, 29, 233, 303
DW_OP_breg<n>, 29, 83
DW_OP_bregx, 29, 29, 41, 234, 303,

389
DW_OP_call2, 36, 36, 52, 183, 234
DW_OP_call4, 36, 36, 52, 183, 234
DW_OP_call_frame_cfa, 33, 33, 183,

234, 429, 432
DW_OP_call_ref, 36, 36, 52, 58, 183,

196, 205, 234, 260, 288, 289
DW_OP_const1s, 27, 232
DW_OP_const1u, 27, 232
DW_OP_const2s, 27, 232
DW_OP_const2u, 27, 232
DW_OP_const4s, 27, 232
DW_OP_const4u, 27, 232
DW_OP_const8s, 27, 232
DW_OP_const8u, 27, 232
DW_OP_const<n><x>, 27, 33
DW_OP_const<n>s, 27
DW_OP_const<n>u, 27
DW_OP_const_type, 27, 28, 28, 183,

234
DW_OP_consts, 27, 27, 232
DW_OP_constu, 27, 27, 232
DW_OP_constx, 28, 28, 69, 183, 194,

195, 234, 288, 290, 294
DW_OP_convert, 37, 37, 183, 235
DW_OP_deref, 30, 30, 232, 303, 305,

310, 311, 316, 376, 377
DW_OP_deref_size, 30, 30, 31, 234,

380
DW_OP_deref_type, 31, 31, 183, 235
DW_OP_div, 33, 34, 34, 232
DW_OP_drop, 30, 30, 232, 302
DW_OP_dup, 29, 29, 232, 302
DW_OP_entry_value, 37, 37, 38, 234,

305, 375–377, 380, 433
DW_OP_eq, 35, 233
DW_OP_EXT, 38
DW_OP_extended, 38, 38, 235

DW_OP_fbreg, 29, 29, 234, 303, 304,
429, 433

DW_OP_form_tls_address, 32, 32, 33,
142, 234

DW_OP_ge, 35, 233
DW_OP_gt, 35, 233
DW_OP_hi_user, 38, 190, 235
DW_OP_implicit_pointer, 42, 42, 234,

367, 368, 370
DW_OP_implicit_value, 41, 41, 234,

367, 370
DW_OP_le, 35, 233
DW_OP_lit0, 27, 233
DW_OP_lit1, 27, 233, 304, 310, 370,

376
DW_OP_lit31, 27, 233
DW_OP_lit<n>, 27, 35, 310, 311, 316,

322
DW_OP_lo_user, 38, 190, 235
DW_OP_lt, 35, 233
DW_OP_minus, 33, 34, 34, 232
DW_OP_mod, 34, 34, 233
DW_OP_mul, 33, 34, 34, 233, 316,

375, 377
DW_OP_ne, 35, 233
DW_OP_neg, 33, 34, 34, 233
DW_OP_nop, 37, 37, 234
DW_OP_not, 34, 34, 233
DW_OP_or, 34, 34, 233
DW_OP_over, 30, 30, 232, 302
DW_OP_pick, 30, 30, 232, 302
DW_OP_piece, 43, 43, 44, 234, 304,

306, 368, 370
DW_OP_plus, 33, 34, 34, 35, 233, 304,

310, 311, 316, 322, 389
DW_OP_plus_uconst, 35, 35, 233,

303, 305, 331
DW_OP_push_lane, 33, 33, 84, 235,

389
DW_OP_push_object_address, 32,

32, 37, 96, 123, 138, 183, 234,

July 15 2024 ***WORKING DRAFT*** Page 472

Index

309–312, 316
DW_OP_reg0, 41, 233, 304, 306,

375–377, 380
DW_OP_reg1, 41, 233, 305, 306,

375–377
DW_OP_reg31, 41, 233
DW_OP_reg<n>, 41, 83
DW_OP_regval_bits, 28, 29, 29, 235
DW_OP_regval_type, 28, 29, 29, 183,

234
DW_OP_regx, 41, 41, 234, 303, 389
DW_OP_reinterpret, 37, 37, 183, 235
DW_OP_rot, 30, 30, 232, 302
DW_OP_shl, 35, 35, 233
DW_OP_shr, 35, 35, 233
DW_OP_shra, 35, 35, 233
DW_OP_skip, 36, 36, 233
DW_OP_stack_value, 41, 41, 234, 304,

305, 367, 368, 370, 375, 377,
389, 433

DW_OP_swap, 30, 30, 232, 302
DW_OP_user_extended, 38, 38, 235
DW_OP_xderef, 31, 31, 232
DW_OP_xderef_size, 31, 31, 32, 234
DW_OP_xderef_type, 32, 32, 235
DW_OP_xor, 35, 35, 233
DW_ORD_col_major, 116, 243, 313,

314
DW_ORD_row_major, 116, 243
DW_RLE_base_address, 56, 252
DW_RLE_base_addressx, 55, 69, 252,

288, 291
DW_RLE_end_of_list, 55, 56, 252
DW_RLE_hi_user, 190, 252
DW_RLE_include_rnglist, 56, 252
DW_RLE_include_rnglistx, 56, 252
DW_RLE_lo_user, 190, 252
DW_RLE_offset_pair, 55, 56, 56, 252
DW_RLE_start_end, 56, 252
DW_RLE_start_length, 56, 252

DW_RLE_startx_endx, 55, 69, 252,
288, 291

DW_RLE_startx_length, 55, 69, 252,
288, 291

DW_SECT_ABBREV, 201
DW_SECT_INFO, 201
DW_SECT_LINE, 201
DW_SECT_LOCLISTS, 201
DW_SECT_MACRO, 201
DW_SECT_RNGLISTS, 201
DW_SECT_STR_OFFSETS, 201
DW_TAG_access_declaration, 16,

122, 213, 265
DW_TAG_array_type, 16, 115, 212,

265, 310, 311, 313, 314, 316,
322, 324, 359, 399

DW_TAG_atomic_type, 16, 113, 214,
265

DW_TAG_base_type, 16, 28, 29, 31,
32, 37, 106, 107, 114, 132, 213,
266, 301, 323, 327, 334, 337,
360, 372, 397, 401, 403, 404,
406, 407, 412, 429

DW_TAG_call_site, 9, 16, 81, 94, 94,
214, 266, 376, 377, 380

DW_TAG_call_site_parameter, 16,
95, 96, 214, 267, 376, 377, 380

DW_TAG_catch_block, 16, 98, 213,
267

DW_TAG_class_type, 16, 118, 127,
212, 267, 337, 340, 405, 407,
412, 428, 431

DW_TAG_coarray_type, 9, 16, 117,
214, 267, 313, 314

DW_TAG_common_block, 16, 104,
212, 268, 399

DW_TAG_common_inclusion, 16, 83,
212, 268, 400, 401

DW_TAG_compile_unit, 16, 62, 62,
71, 207, 212, 268, 289, 290, 294,
301, 395–398, 400, 401, 410,

July 15 2024 ***WORKING DRAFT*** Page 473

Index

417, 427, 428
DW_TAG_condition, 3, 16, 129, 214,

268
DW_TAG_const_type, 16, 113, 114,

213, 268, 337, 340, 359, 372,
429

DW_TAG_constant, 16, 101, 101, 110,
129, 213, 269, 372, 399

DW_TAG_dwarf_procedure, 16, 42,
52, 213, 269, 370

DW_TAG_dynamic_type, 16, 136,
137, 214, 269, 319

DW_TAG_entry_point, 16, 78, 212,
269

DW_TAG_enumeration_type, 16,
116, 129, 130, 212, 270, 361

DW_TAG_enumerator, 16, 130, 213,
270, 361

DW_TAG_file_type, 16, 136, 213, 270
DW_TAG_formal_parameter, 16, 42,

94, 96, 98, 101, 129, 131, 212,
271, 338, 340, 351, 352, 354,
356–359, 363, 368, 370, 385,
386, 406, 412, 429, 432, 433

DW_TAG_friend, 16, 122, 213, 259,
271

DW_TAG_generic_subrange, 9, 16,
117, 117, 134, 139, 214, 271,
315, 316

DW_TAG_hi_user, 190, 214
DW_TAG_immutable_type, 16, 113,

214, 271
DW_TAG_imported_declaration, 16,

76, 212, 272, 335
DW_TAG_imported_module, 16, 75,

77, 213, 272, 335
DW_TAG_imported_unit, 16, 78, 203,

213, 272, 395, 397, 400, 401,
414

DW_TAG_inheritance, 16, 121, 212,
272

DW_TAG_inlined_subroutine, 16, 78,
81, 87, 88, 89, 91, 92, 94, 142,
212, 272, 351, 352, 356, 358,
359, 370

DW_TAG_interface_type, 16, 120,
213, 272

DW_TAG_label, 16, 97, 142, 212, 273
DW_TAG_lexical_block, 16, 96, 212,

273, 375, 377, 412, 432
DW_TAG_lo_user, 190, 214
DW_TAG_member, 16, 94, 122, 129,

212, 273, 311, 319, 320,
322–324, 327, 329, 331, 332,
362, 363, 365, 368, 397,
403–405, 407–409

DW_TAG_module, 16, 74, 212, 273
DW_TAG_mutable_type

(deprecated), 214
DW_TAG_namelist, 16, 105, 213, 274
DW_TAG_namelist_item, 16, 105,

213, 274
DW_TAG_namespace, 16, 74, 74, 142,

213, 274, 334–336, 403–409,
412

DW_TAG_packed_type, 16, 113, 213,
274, 323

DW_TAG_partial_unit, 16, 62, 62,
207, 213, 275, 289, 290, 294,
395, 396, 399, 400

DW_TAG_pointer_type, 16, 113, 114,
212, 259, 275, 301, 337, 340,
406, 408, 412, 429

DW_TAG_ptr_to_member_type, 16,
135, 213, 259, 276, 340

DW_TAG_reference_type, 16, 113,
114, 212, 259, 276, 398, 429

DW_TAG_restrict_type, 16, 113, 114,
213, 276

DW_TAG_rvalue_reference_type, 16,
113, 114, 214, 259, 276

DW_TAG_set_type, 16, 133, 213, 277

July 15 2024 ***WORKING DRAFT*** Page 474

Index

DW_TAG_shared_type, 16, 113, 114,
214, 277

DW_TAG_skeleton_unit, 16, 69, 214,
277, 424, 426

DW_TAG_string_type, 16, 132, 212,
278, 372

DW_TAG_structure_type, 16, 118,
127, 212, 278, 311, 319, 320,
322–324, 327, 329, 331, 332,
362, 363, 365, 366, 368, 397,
403, 404, 406, 409

DW_TAG_subprogram, 16, 78, 79, 85,
86, 89, 91, 92, 113, 124, 142,
213, 259, 279, 280, 334, 335,
337, 338, 340, 351, 352, 354,
356–359, 363, 364, 368, 370,
375, 385, 386, 389, 398, 400,
401, 406, 409, 410, 412, 428,
429, 431, 432

DW_TAG_subrange_type, 16, 116,
117, 129, 133, 139, 213, 239,
280, 310, 311, 313, 314, 322,
324, 327, 359, 399

DW_TAG_subroutine_type, 16, 131,
212, 281, 340

DW_TAG_template_alias, 16, 137,
214, 281, 365, 366

DW_TAG_template_type_parameter,
16, 59, 213, 281, 362, 363, 365,
366

DW_TAG_template_value_parameter,
16, 59, 213, 282

DW_TAG_thrown_type, 16, 85, 213,
282

DW_TAG_try_block, 16, 98, 213, 282
DW_TAG_type_unit, 16, 62, 72, 207,

214, 282, 289, 294, 403, 405,
417, 428

DW_TAG_typedef, 16, 115, 115, 212,
282, 301

DW_TAG_union_type, 16, 118, 127,

212, 283
DW_TAG_unspecified_parameters,

16, 83, 98, 131, 212, 283
DW_TAG_unspecified_type, 16, 112,

213, 283
DW_TAG_variable, 16, 42, 89, 94,

101, 102, 114, 124, 129, 142,
213, 283, 311, 313, 314, 319,
322, 324, 327, 334–336, 340,
351, 352, 354, 356–363, 365,
366, 368, 370, 372, 377, 389,
398–400, 410, 432, 433, 436

DW_TAG_variant, 16, 128, 212, 284,
329, 331, 332

DW_TAG_variant_part, 16, 127, 213,
284, 329–332

DW_TAG_volatile_type, 16, 113, 114,
213, 284

DW_TAG_with_stmt, 16, 97, 213, 284
DW_UT_compile, 207, 208
DW_UT_hi_user, 190, 207
DW_UT_lo_user, 190, 207
DW_UT_partial, 207, 208
DW_UT_skeleton, 207, 209
DW_UT_split_compile, 207, 209
DW_UT_split_type, 207, 210
DW_UT_type, 207, 210
DW_VIRTUALITY_none, 49, 239
DW_VIRTUALITY_pure_virtual, 49,

239
DW_VIRTUALITY_virtual, 49, 239
DW_VIS_exported, 49, 239
DW_VIS_local, 49, 239
DW_VIS_qualified, 49, 239
DWARF compression, 390, 416
DWARF duplicate elimination, 390,

see also DWARF compression,
see also split DWARF object
file

examples, 396–398, 434

July 15 2024 ***WORKING DRAFT*** Page 475

Index

DWARF expression, 27, see also
location description

arithmetic operations, 33
control flow operations, 35
examples, 302
literal encodings, 27
logical operations, 33
operator encoding, 231
register based addressing, 28
special operations, 37
stack operations, 27, 29

DWARF package file, 434
DWARF package files, 197

section identifier encodings, 201
DWARF procedure, 52
DWARF procedure entry, 52
DWARF Version 1, iii
DWARF Version 2, iii, 2, 12, 13, 160,

192, 440
DWARF Version 3, iii, 11, 12, 160, 167,

214, 216, 440
DWARF Version 4, 1, 2, 8, 10, 11, 27,

160, 198, 218, 247, 440
DWARF Version 5, 1, 8, 9, 44, 54, 61,

65, 133, 141, 153, 159, 160, 162,
163, 182, 216, 218, 220, 240,
245, 249, 253–255, 416, 440

DWARF Version 6, iii, 22, 58, 160, 440
dwo_id, 70, 209, 419, 424
Dylan, 64
dynamic number of array

dimensions, 21

elemental attribute, 80, 219
elemental property of a subroutine,

20
elements of breg subrange type, 19
empty location description, 40
encoding attribute, 106, 107, 218, 236
encoding of base type, 20
end-of-list

of location list, 45
of range list, 54

end-of-list entry
in location list, 235

end_sequence, 156, 158, 170
endianity attribute, 104, 106, 219
endianity of data, 20
entity, 15
entry address, 57
entry address of a scope, 20
entry PC address, 57
entry PC attribute, 218

and abstract instance, 87
for catch block, 98
for inlined subprogram, 87
for lexical block, 97
for module initialization, 74
for subroutine, 82
for try block, 98
for with statement, 98

entry pc attribute, 68
and abstract instance, 87

entry point entry, 78
enum class, see type-safe

enumeration
enum, Rust, 331
enumeration class attribute, 219
enumeration literal, see enumeration

entry
enumeration literal value, 19
enumeration stride (dimension of

array type), 18
enumeration type entry, 130

as array dimension, 116, 130
enumerator entry, 130
epilogue, 178, 187
epilogue begin, 170
epilogue code, 179
epilogue end, 170
epilogue_begin, 157, 158, 166, 168,

170

July 15 2024 ***WORKING DRAFT*** Page 476

Index

epilogue_epilogue, 166
error value, 191
exception thrown, see thrown type

entry
explicit attribute, 124, 219
explicit property of member function,

20
export symbols (of structure, class or

union) attribute, 118
export symbols attribute, 75, 220
export symbols of a namespace, 20
export symbols of a structure, union

or class, 20
exprloc, see also exprloc class
exprval class, 23, 57, 58, 185–187,

216–221, 223, 229
extended opcodes in line number

program, 170
extended type (Java), see inheritance

entry
extensibility, 7, 190
extension attribute, 74, 219
external attribute, 79, 101, 218
external subroutine, 20
external variable, 20

file, 156, 158
file containing call site of non-inlined

call, 18
file containing declaration, 51
file containing inlined subroutine

call, 18
file containing source declaration, 19
file type entry, 136
file_name_format_count, 162, 341
file_name_format_table, 162, 163,

341
file_names, 162–164, 341
file_names_count, 163, 341
flag, see also flag class, 49, 50, 68, 79,

80, 88, 101–103, 123, 130, 131,

134
flag class, 24, 75, 79–81, 92, 94, 104,

194, 217–221, 223, 229, 244
foreign_type_unit_count, 149, 150
formal parameter, 82
formal parameter entry, 101, 129

in catch block, 98
with default value, 103

formal type parameter, see template
type parameter entry

FORTRAN, 9
Fortran, 1, 32, 64, 68, 74, 76–78, 80, 81,

83, 105, 132, 308, 312–314, 378,
395, 398

common block, 83, 104
main program, 80
module (Fortran 90), 74
use statement, 76–78

Fortran 2003, 109, 132, 371
Fortran 90, 12, 74, 136, 138, 306, 308,

318
Fortran 90 array, 138
Fortran array, 306
Fortran array example, 308
Fortran example, 398
frame base attribute, 83, 218
frame description entry, 181
friend attribute, 122, 218
friend entry, 122
friend relationship, 20
full compilation unit, 62
function entry, see subroutine entry
function template instantiation, 85
fundamental type, see base type entry

generic type, 27, 28, 30–37
global namespace, 74, 75, see

namespace (C++), global
GNU C, 112
Go, 64

Haskell, 64

July 15 2024 ***WORKING DRAFT*** Page 477

Index

header_length, 159, 205, 341
hidden indirection, see data location

attribute
high PC attribute, 53, 63, 74, 82, 87,

96–98, 216, 353
and abstract instance, 87

high user attribute encoding, 221
High-Level Shading Language, 64
HIP Language, 64
Hylo Language, 64

identifier case attribute, 67, 218
identifier case rule, 20
identifier names, 52, 58, 67
IEEE 754R decimal floating-point

number, 108
immutable type, 113
implementing type (Java), see

inheritance entry
implicit location description, 41
implicit pointer example, 368, 370
import attribute, 76–78, 217
imported declaration, 20
imported declaration entry, 76
imported module attribute, 77
imported module entry, 77
imported unit, 20
imported unit entry, 62, 78
include_index, 164
incomplete declaration, 50
incomplete structure/union/class,

119
incomplete type, 115, 119
incomplete type (Ada), 112
incomplete, non-defining, or separate

declaration corresponding to
a declaration, 22

incomplete, non-defining, or separate
entity declaration, 19

index attribute, 146
indirection to actual data, 19

inheritance entry, 121
inherited member location, 19
initial length, 140, 148, 153, 159, 181,

182, 191, 192, 204, 205,
208–210, 245, 252–255

initial length field, see initial length
initial_instructions, 182, 188
initial_length, 208
initial_location, 181, 183, 188, 194
inline attribute, 86, 217, 243
inline instances of inline

subprograms, 17
inline namespace, 75, see also export

symbols attribute
inlined call location attributes, 88
inlined subprogram call

examples, 349
inlined subprogram entry, 78, 87

in concrete instance, 87
inlined subroutine, 20
instructions, 183
integer constant, 51, 58, 79, 86, 88,

106, 107, 109, 111, 115, 123,
124

interface type entry, 120
Internet, 165
is optional attribute, 103, 217
is_stmt, 156, 158, 160, 168
is_supplementary, 202
isa, 157, 158, 170
ISO 10646 (Fortran string kind), 109
ISO 10646 character set standard, 109,

132, 227, 371
ISO-defined language names, 63, 239
ISO/IEC 10646-1:1993 character, 108
ISO/IEC 10646-1:1993 character

(UCS-4), 108
ISO/IEC 646:1991 character, 108
ISO_10646 (Fortran string kind), 132

Java, 12, 64, 118, 120, 121

July 15 2024 ***WORKING DRAFT*** Page 478

Index

Julia, 64

Kotlin, 64

label entry, 97
language attribute, 72
language attribute (Version 5), 216
language attribute, encoding, 239
language name attribute, 63, 116, 221
language name encoding, 239
language version attribute, 221
language version encoding schemes,

66
LEB128, 158, 161, 169, 222, 227, 230

examples, 231
signed, 29, 42, 168, 182, 184–186,

215, 231
signed, decoding of, 298
signed, encoding as, 230, 297
unsigned, 27–29, 35, 37, 41, 43,

159, 168, 170, 171, 177, 182,
184–187, 211, 215, 222–225,
230, 231, 248, 259, 260

unsigned, decoding of, 297
unsigned, encoding as, 230, 296

LEB128 encoding
algorithms, 296
examples, 231

length, 181–183
level-88 condition, COBOL, 129
lexical block, 39, 96, 98
lexical block entry, 96
lexical blocks, 57
line, 156, 158
line containing call site of

non-inlined call, 18
line number information, see also

statement list attribute
line number information for unit, 22
line number of inlined subroutine

call, 18

line number of source declaration, 19
line number opcodes

extended opcode encoding, 247
file entry format encoding, 247
standard opcode encoding, 246

line number program, 166
extended opcodes, 170
special opcodes, 166
standard opcodes, 168

line_base, 160, 167, 168, 341, 342
line_range, 160, 167, 168, 341, 342
lineptr, see also lineptr class, 289
lineptr class, 24, 72, 216, 221, 223, 228,

229, 294
linkage name attribute, 59, 219
list of discriminant values, 20
Little-Endian Base 128, see LEB128
little-endian encoding, see endian

attribute
local_type_unit_count, 149, 150
location, 123
location attribute, 36, 52, 98, 102, 104,

216, 353
and abstract instance, 87

location description, 39, see also
DWARF expression, 121, 123,
125, 132, 135, 137

composite, 40
empty, 40
implicit, 41
memory, 40
simple, 40
single, 39
use in location list, 39

location list, 39, 63, 83, 235, 260, 290,
294

location list attribute, 218
location list base attribute, 220
location lists base, 21
location of uplevel frame, 22
location table base attribute, 69

July 15 2024 ***WORKING DRAFT*** Page 479

Index

locdesc class, 24, 39, 58, 216–218, 220,
224, 229

loclist, see also loclist class
loclist class, 24, 39, 44, 216–218, 221,

224, 228, 229, 290, 294
loclistsptr, see also loclistsptr class
loclistsptr class, 24, 69, 220, 221, 224,

228, 229
lookup

by address, 153
by name, 141

low PC attribute, 53, 63, 74, 82, 87,
96–98, 216, 353

and abstract instance, 87
low user attribute encoding, 221
lower bound attribute, 134, 217

default, 134, 239
lower bound of subrange, 21

macptr, see also macptr class, 289
macptr class, 24, 220, 221, 224, 228,

229, 294
macro formal parameter list, 175
macro information, 171
macro information attribute, 65, 220
macro information entry types

encoding, 248
macro preprocessor information, 21
main or starting subprogram, 21
main subprogram attribute, 68, 79,

219
mangled names, 52, 58, 92
maximum_operations_per_instruction,

160, 167, 341
MD5, 165, 257, 260, 261, 403, 410
member entry (data), 122, 123

as discriminant, 127
member function entry, 124
member function example, 337
member location for pointer to

member type, 22

memory location description, 40
minimum_instruction_length, 160,

167, 169, 341
MIPS instruction set architecture, 154
Modula-2, 48, 64, 74, 97

definition module, 74
Modula-3, 64
module entry, 74
module priority, 21
Mojo Language, 64
Move Language, 64
mutable attribute, 123, 219
mutable property of member data, 21

name attribute, 52, 59, 63, 67, 74, 76,
90, 97, 101, 104–106, 112, 113,
115, 118, 120, 122, 129–133,
135–137, 216, 257–259

name index, 141
case folding, 150

name list item attribute, 218
name of declaration, 21
name_count, 149–151
namelist entry, 105
namelist item, 21
namelist item attribute, 105
namelist item entry, 105
names

identifier, 52
mangled, 58

namespace (C++), 74
alias, 76
example, 333
global, 75
unnamed, 75
using declaration, 75, 76, 78
using directive, 77

namespace alias, 20
namespace declaration entry, 75
namespace extension entry, 75
namespace using declaration, 20

July 15 2024 ***WORKING DRAFT*** Page 480

Index

namespace using directive, 20
nested abstract instance, 87
nested concrete inline instance, 88
non-constant parameter flag, 22
non-contiguous address ranges, 54
non-contiguous range of code

addresses, 21
non-default alignment, 17
non-defining declaration, 50
noreturn attribute, 21, 80, 220
Number of lanes attribute, 21
number of lanes attribute, 221
numerator of rational scale factor, 22,

220

object (this, self) pointer of member
function, 21

object file linkage name of an entity,
21

object pointer attribute, 125, 219
Objective C, 64, 125
Objective C++, 65
objects or types that are not actually

declared in the source, 17
OCaml, 65
Odin, 65
offset_entry_count, 254, 255
offset_size_flag, 172, 174, 177,

199–201, 382, 383
op_index, 156–158, 160, 166–169, 171
opcode_base, 160, 161, 167, 341
opcode_operands_table, 172, 173
opcode_operands_table_flag, 172,

382, 383
OpenCL C, 9, 65, 165
OpenCL C++, 65
OpenGL ES Shading Language, 64
OpenGL Shading Language, 64
operation advance, 167, 168, 342
operation pointer, 157, 160, 166, 167
optional parameter, 20, 103

ordering attribute, 104, 216
out-of-line instance, 91, see also

concrete out-of-line instance
out-of-line instances of inline

subprograms, 17

package files, 197
packed qualified type entry, 113
packed type entry, 113
padding, 148, 182, 183, 199, 253
parameter, see this parameter, see

formal parameter entry, see
macro formal parameter list,
see optional parameter
attribute, see template type
parameter entry, see template
value parameter entry, see
unspecified parameters entry,
see variable parameter
attribute

parameter entry, 18
partial compilation unit, 62, 63
Pascal, 65, 97, 113, 118, 133, 136, 328,

329, 331
Pascal example, 323
path name of compilation source, 21
picture string attribute, 219
picture string for numeric string

type, 21
PL/I, 65
pointer or reference types, 17
pointer qualified type entry, 113
pointer to member, 135
pointer to member entry, 135
pointer to member type, 135, 136
pointer to member type entry, 135
pointer type entry, 114
previous namespace extension or

original namespace, 20
primitive data types of compilation

unit, 17

July 15 2024 ***WORKING DRAFT*** Page 481

Index

priority attribute, 74, 218
producer attribute, 67, 217
producer extensibility, see

extensibility
producer id, 191
producer-specific extensions, see

extensibility
PROGRAM statement, 68
programming language name, 21
programming language version, 21
prologue, 178, 179
prologue end, 169, 170
prologue_end, 157, 158, 166, 168, 169
prologue_epilogue, 157, 158, 168,

170, 171
prototyped attribute, 80, 131, 217
pure attribute, 80, 219
pure property of a subroutine, 21
Python, 65

range list, 63, 99, 100, 251, 252, 290,
294

range list base
encoding, 220

ranges attribute, 53, 54, 63, 74, 82, 87,
96–98, 219

and abstract instance, 87
ranges lists, 22
ranges table base attribute, 69
rank attribute, 219
recursive attribute, 80, 219
recursive property of a subroutine, 21
reduced scope of declaration, 22
reference, see also reference class, 51,

57, 68, 75–78, 83, 85, 102, 105,
113, 115, 119, 125, 127, 132,
135

reference attribute, 220
reference class, 24, 92, 94, 103, 104,

132, 216–220, 225, 229, 244
reference qualified type entry, 113

reference type, 114
reference type entry, 113
reference type entry, lvalue, see

reference type entry
reference type entry, rvalue, see

rvalue reference type entry
renamed declaration, see imported

declaration entry
RenderScript, 65
reserved target address, 26
reserved values

error, 191
initial length, 191

restrict qualified type, 113
restricted type entry, 113
return address attribute, 83, 217

and abstract instance, 87
return address from a call, 18
return type of subroutine, 82
return_address_register, 182
rnglist, see also rnglist class
rnglist class, 24, 54, 217, 219, 221, 225,

229, 290, 294
rnglistsptr, see also rnglistsptr class
rnglistsptr class, 24, 69, 99, 220, 221,

225, 228, 229
Ruby, 65
Rust, 65, 112, 331, 332
rvalue reference qualified type entry,

113
rvalue reference type entry, 113
rvaluereference attribute, 220

sbyte, 140, 160, 257
scalar coarray, see coarray
scale factor for fixed-point type, 22
scaled encodings, 109

binary, 109
composition of, 110
decimal, 109
floating-point, 110

July 15 2024 ***WORKING DRAFT*** Page 482

Index

rational, 110
section group, 391–398, 400, 402, 413,

414
name, 393

section length, 140
use in headers, 205

section offset, 11, 140, 208–211, 245
alignment of, 256
in .debug_aranges header, 153,

245
in .debug_info header, 208–211
in class lineptr value, 223
in class loclist value, 224
in class loclistsptr, 224
in class macptr value, 224
in class reference value, 225
in class rnglist value, 225
in class rnglistsptr, 225
in class string value, 227
in FDE header, 182
in macro information attribute, 65
in statement list attribute, 65
use in headers, 205

section_count, 199
self pointer attribute, see object

pointer attribute
set type entry, 133
shared qualified type entry, 113
sibling attribute, 25, 51, 216
signature attribute, 219
signed LEB128, see LEB128, signed
SIMD Vectorization, 84
simple location description, 40
single location description, 39
size of an address, 26, see also

address_size, 27, 30, 31, 132,
153, 159, 210, 245

skeleton compilation unit, 69
SLEB128, 230
slot_count, 199
small attribute, 110, 219

special opcodes in line number
program, 166

specialized .debug_line.dwo section,
428

specialized line number table, 72,
195, 417

specification attribute, 75, 87, 119,
125, 126, 218

split DWARF object file, 69, 70, 72,
143, 147, 194, 197, 221, 287,
416, 421, 424, 425, 427

example, 421
object file name, 20

split DWARF object file name
encoding, 220

split DWARF object file name
attribute, 69

split type unit, 72
standard opcodes in line number

program, 168
standard_opcode_lengths, 161, 341
start scope attribute, 99, 217

and abstract instance, 87
statement list attribute, 65, 72, 216
static link attribute, 218
stride attribute, see bit stride attribute

or byte stride attribute
string, see also string class
string class, 24, 52, 92, 103, 216, 217,

219, 220, 226, 228–230
string length attribute, 132, 217

size of length, 219
size of length data, 132

string length of string type, 22
size of, 22

string length size attribute, 132
string offset section attribute, 68
string offsets attribute, 220
string offsets base attribute, 73
string offsets information, 289
string offsets information for unit, 22

July 15 2024 ***WORKING DRAFT*** Page 483

Index

string type entry, 132
stroffsetsptr, see also stroffsetsptr class
stroffsetsptr class, 25, 68, 73, 220, 221,

228, 229
structure type entry, 118
subprogram called, 18
subprogram entry, 78, 79

as member function, 124
use for template instantiation, 85
use in inlined subprogram, 86

subrange stride (dimension of array
type), 18

subrange type entry, 133
as array dimension, 116

subroutine call site summary
attributes, 81

subroutine entry, 78
subroutine formal parameters, 82
subroutine frame base address, 20
subroutine or subroutine type, 17
subroutine prototype, 21
subroutine return address save

location, 22
subroutine type entry, 131
sup_checksum, 202
sup_checksum_len, 202
sup_filename, 202
supplementary object file, 8, 17, 24,

174, 177, 202, 203, 226, 227,
286, 287

Swift, 65
SYCL, 65

tag, 15
tag names, see debugging

information entry
list of, 23

target address, 183
reserved, 26

target subroutine of trampoline, 22
template alias entry, 137

template alias example, 364, 365
template alias example 1, 365
template alias example 2, 366
template instantiation, 59

and special compilation unit, 127
function, 85

template type parameter entry, 59
template value parameter, 19
template value parameter entry, 59
Tensor (array) type, 22
tensor attribute, 221
this parameter, 49, 92
this pointer attribute, see object

pointer attribute
thread scaled attribute, 219
thread-local storage, 32
threads scaled attribute, 134
thrown exception, see thrown type

entry
thrown type entry, 85
trampoline (subprogram) entry, 92
trampoline attribute, 92, 219
try block, 98
try block entry, 98
try/catch blocks, 57
type

of call site, 22
of declaration, 22
of string type components, 22
of subroutine return, 22

type attribute, 48, 59, 82, 85, 98, 113,
115, 116, 121, 122, 127,
129–131, 133–136, 218

of call site entry, 95
of string type entry, 132

type modifier, see atomic type entry,
see constant type entry, see
packed type entry, see pointer
type entry, see reference type
entry, see restricted type entry,

July 15 2024 ***WORKING DRAFT*** Page 484

Index

see shared type entry, see
volatile type entry

type modifier entry, 113
type safe enumeration definition, 20
type safe enumeration types, 130
type signature, 22, 24, 119, 210, 226,

257, 402, 403
computation, 257
computation grammar, 410
example computation, 402

type unit, 72, see also compilation
unit, 73, 119, 207, 210, 211,
226, 257, 260, 261, 403, 414

specialized .debug_line.dwo
section in, 428

type unit entry, 72
type unit set, 198
type unit signature, 70, 434
type-safe enumeration, 361
type_offset, 211
type_signature, 210
typedef entry, 115

ubyte, 140, 149, 153, 158–161, 166,
172, 181–184, 202, 208–210,
245, 253–255, 257

UCS character, 108
uhalf, 140, 148, 153, 159, 169, 172, 184,

199, 202, 208–210, 245,
252–255, 257

ULEB128, 173, 174, 230
unallocated variable, 102
Unicode, 109, 150, 151, 227, 360, see

also UTF-8
Unified Parallel C, see UPC
union type entry, 118
unit, see compilation unit
unit containing main or starting

subprogram, 21
unit header unit type encodings, 207
unit_count, 199

unit_length, 148, 153, 159, 208–210,
245, 252–255, 341

unit_type, 9, 207–210
unnamed namespace, see namespace

(C++), unnamed
unsigned LEB128, see LEB128,

unsigned
unspecified parameters entry, 83, 131

in catch block, 98
unspecified type entry, 112
unwind, see virtual unwind
UPC, 22, 65, 113, 114, 134
uplevel address, see static link

attribute
upper bound attribute, 134, 217

default unknown, 134
upper bound of subrange, 22
use location attribute, 135
use statement, see Fortran, use

statement
use UTF8 attribute, 22, 68, 218, 227
using declaration, see namespace

(C++), using declaration
using directive, see namespace (C++),

using directive
UTF character, 108
UTF-8, 12, 22, 68, 181, 218, 227
uword, 140, 149, 184, 199, 254, 255,

257

vallist class, 24, 38, 221, 228, 229
value list, 290, 294
value lists, 38
value pointed to by an argument, 18
variable entry, 101
variable length data, see LEB128
variable parameter attribute, 102, 218
variant entry, 128
variant part entry, 127
version, 148, 153, 159, 181, 199, 202,

208–210, 245, 252–255, 341

July 15 2024 ***WORKING DRAFT*** Page 485

Index

version number
address lookup table, 153
address range table, 245
address table, 253
call frame information, 181, 250
compilation unit, 208, 209
CU index information, 199
line number information, 159, 246
location list table, 255
macro information, 248
name index table, 148, 244
range list table, 254
string offsets table, 252
summary by section, 440
TU index information, 199
type unit, 210

virtual function vtable slot, 23
virtual unwind, 178
virtuality attribute, 49, 218
virtuality of member function or base

class, 23
visibility attribute, 48, 217
visibility of declaration, 23
void type, see unspecified type entry
volatile qualified type entry, 113
vtable element location attribute, 125,

218
VVMM language version encoding

scheme, 64–66
VVMMPP language version

encoding scheme, 64–66

with statement entry, 97

YYYY language version encoding
scheme, 64–66

YYYYMM language version
encoding scheme, 64–66

YYYYRR language version encoding
scheme, 65, 66

Zig, 65

July 15 2024 ***WORKING DRAFT*** Page 486

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Purpose and Scope
	1.2 Overview
	1.3 Objectives and Rationale
	1.4 Changes from Version 5 to Version 6
	1.5 Changes from Version 4 to Version 5
	1.6 Changes from Version 3 to Version 4
	1.7 Changes from Version 2 to Version 3
	1.8 Changes from Version 1 to Version 2

	2 General Description
	2.1 The Debugging Information Entry (DIE)
	2.2 Attribute Types
	2.3 Relationship of Debugging Information Entries
	2.4 Target Addresses
	2.5 DWARF Expressions
	2.6 Location Descriptions
	2.7 Types of Program Entities
	2.8 Accessibility of Declarations
	2.9 Visibility of Declarations
	2.10 Virtuality of Declarations
	2.11 Artificial Entries
	2.12 Address Classes
	2.13 Non-Defining Declarations and Completions
	2.14 Declaration Coordinates
	2.15 Identifier Names
	2.16 Data Locations and DWARF Procedures
	2.17 Code Addresses, Ranges and Base Addresses
	2.18 Entry Address
	2.19 Static and Dynamic Values of Attributes
	2.20 Entity Descriptions
	2.21 Byte and Bit Sizes
	2.22 Linkage Names
	2.23 Template Parameters
	2.24 Alignment

	3 Program Scope Entries
	3.1 Unit Entries
	3.2 Module, Namespace and Importing Entries
	3.3 Subroutine and Entry Point Entries
	3.4 Call Site Entries and Parameters
	3.5 Lexical Block Entries
	3.6 Label Entries
	3.7 With Statement Entries
	3.8 Try and Catch Block Entries
	3.9 Declarations with Reduced Scope

	4 Data Object and Object List
	4.1 Data Object Entries
	4.2 Common Block Entries
	4.3 Namelist Entries

	5 Type Entries
	5.1 Base Type Entries
	5.2 Unspecified Type Entries
	5.3 Type Modifier Entries
	5.4 Typedef Entries
	5.5 Array Type Entries
	5.6 Coarray Type Entries
	5.7 Structure, Union, Class and Interface Type Entries
	5.8 Condition Entries
	5.9 Enumeration Type Entries
	5.10 Subroutine Type Entries
	5.11 String Type Entries
	5.12 Set Type Entries
	5.13 Subrange Type Entries
	5.14 Pointer to Member Type Entries
	5.15 File Type Entries
	5.16 Dynamic Type Entries
	5.17 Template Alias Entries
	5.18 Dynamic Properties of Types

	6 Other Debugging Information
	6.1 Accelerated Access
	6.2 Line Number Information
	6.3 Macro Information
	6.4 Call Frame Information

	7 Data Representation
	7.1 Extensibility
	7.2 Reserved Values
	7.3 Relocatable, Split, Executable, Shared, Package and Supplementary Object Files
	7.4 32-Bit and 64-Bit DWARF Formats
	7.5 Format of Debugging Information
	7.6 Variable Length Data
	7.7 DWARF Expressions and Location Descriptions
	7.8 Base Type Attribute Encodings
	7.9 Accessibility Codes
	7.10 Visibility Codes
	7.11 Virtuality Codes
	7.12 Source Languages
	7.13 Address Class Encodings
	7.14 Identifier Case
	7.15 Calling Convention Encodings
	7.16 Inline Codes
	7.17 Array Ordering
	7.18 Discriminant Lists
	7.19 Name Index Table
	7.20 Defaulted Member Encodings
	7.21 Address Range Table
	7.22 Line Number Information
	7.23 Macro Information
	7.24 Call Frame Information
	7.25 Range List Entries for Non-contiguous Address Ranges
	7.26 String Offsets Table
	7.27 Address Table
	7.28 Range List Table
	7.29 Value List and Location List Table
	7.30 Dependencies and Constraints
	7.31 Integer Representation Names
	7.32 Type Signature Computation
	7.33 Name Table Hash Function
	7.34 Contiguous Tables

	A Attributes by Tag (Informative)
	B Debug Section Relationships (Informative)
	B.1 Normal DWARF Section Relationships
	B.2 Split DWARF Section Relationships

	C Encoding/Decoding (Informative)
	D Examples (Informative)
	D.1 General Description Examples
	D.2 Aggregate Examples
	D.3 Namespace Examples
	D.4 Member Function Examples
	D.5 Line Number Examples
	D.6 Call Frame Information Example
	D.7 Inlining Examples
	D.8 Constant Expression Example
	D.9 Unicode Character Example
	D.10 Type-Safe Enumeration Example
	D.11 Template Examples
	D.12 Template Alias Examples
	D.13 Implicit Pointer Examples
	D.14 String Type Examples
	D.15 Call Site Examples
	D.16 Macro Example
	D.17 Parameter Default Value Examples
	D.18 SIMD Lane Example

	E Compression (Informative)
	E.1 Using Compilation Units
	E.2 Using Type Units
	E.3 Summary of Compression Techniques

	F Split DWARF Object Files (Informative)
	F.1 Overview
	F.2 Split DWARF Object File Example
	F.3 DWARF Package File Example

	G Section Version Numbers (Informative)
	H GNU Free Documentation License
	H.1 APPLICABILITY AND DEFINITIONS
	H.2 VERBATIM COPYING
	H.3 COPYING IN QUANTITY
	H.4 MODIFICATIONS
	H.5 COMBINING DOCUMENTS
	H.6 COLLECTIONS OF DOCUMENTS
	H.7 AGGREGATION WITH INDEPENDENT WORKS
	H.8 TRANSLATION
	H.9 TERMINATION
	H.10 FUTURE REVISIONS OF THIS LICENSE
	H.11 RELICENSING

	Index

