DWARF Debugging Information Format
Version 6

DWARF Debugging Information Format
Committee

http://www.dwarfstd.org

November 14, 2024

FWORKING DRAFT***

http://www.dwarfstd.org
http://www.dwarfstd.org
http://www.dwarfstd.org

Copyright
DWARF Debugging Information Format, Version 6

Copyright © 2010, 2017, 2024 DWARF Debugging Information Format *
Committee

Permission is granted to copy, distribute and /or modify this document
under the terms of the GNU Free Documentation License, Version 1.3; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts.

A copy of the license is included in the section entitled “GNU Free
Documentation License.”

This document is based in part on the DWARF Debugging Information
Format, Version 2, which contained the following notice:

UNIX International

Programming Languages SIG

Revision: 2.0.0 (July 27, 1993)

Copyright © 1992, 1993 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for
any purpose and without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation, and that the name UNIX International not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. UNIX International makes
no representations about the suitability of this documentation for any
purpose. It is provided “as is” without express or implied warranty.

This document is further based on the DWARF Debugging Information
Format, Version 3 and Version 4, which are subject to the GNU Free
Documentation License.

Trademarks:
¢ Intel386 is a trademark of Intel Corporation.
e Java is a trademark of Oracle, Inc.

¢ All other trademarks found herein are property of their respective
owners.

November 14, 2024 #**WORKING DRAFT*** Page ii

Foreword

The DWARF Debugging Information Format Committee was originally
organized in 1988 as the Programming Languages Special Interest Group
(PLSIG) of Unix International, Inc., a trade group organized to promote Unix
System V Release 4 (SVR4).

PLSIG drafted a standard for DWARF Version 1, compatible with the
DWARF debugging format used at the time by SVR4 compilers and
debuggers from AT&T. This was published as Revision 1.1.0 on October 6,
1992. PLSIG also designed the DWAREF Version 2 format, which followed the
same general philosophy as Version 1, but with significant new functionality
and a more compact, though incompatible, encoding. An industry review
draft of DWARF Version 2 was published as Revision 2.0.0 on July 27, 1993.

Unix International dissolved shortly after the draft of Version 2 was released;
no industry comments were received or addressed, and no final standard
was released. The committee mailing list was hosted by OpenGroup
(formerly XOpen).

The Committee reorganized in October, 1999, and met for the next several
years to address issues that had been noted with DWARF Version 2 as well
as to add a number of new features. In mid-2003, the Committee became a
workgroup under the Free Standards Group (FSG), an industry consortium
chartered to promote open standards. DWARF Version 3 was published on
December 20, 2005, following industry review and comment.

The DWARF Committee withdrew from the Free Standards Group in
February, 2007, when FSG merged with the Open Source Development Labs
to form The Linux Foundation, more narrowly focused on promoting Linux.
The DWARF Committee has been independent since that time.

It is the intention of the DWARF Committee that migrating from an earlier
version of the DWAREF standard to the current version should be
straightforward and easily accomplished. Almost all constructs from
DWAREF Version 2 onward have been retained unchanged in DWARF
Version 6, although a few have been compatibly superseded by improved
constructs which are more compact and/or more expressive.

This document was created using the IXTEX document preparation system.

November 14, 2024 #**WORKING DRAFT*** Page iii

The DWARF Debugging Information Format Committee

The DWARF Debugging Information Format Committee is open to compiler
and debugger developers who have experience with source language
debugging and debugging formats, and have an interest in promoting or
extending the DWARF debugging format.

DWARF Committee members contributing to Version 6 are:

Todd Allen Concurrent Real-Time

November 14, 2024

Pedro Alves
David Anderson, Associate Editor

Pedro Alves Services

David Blaikie Google |
Ron Brender, Editor L]
Andrew Cagney

Eric Christopher Google

Cary Coutant, Chair (from March 2023)

John DelSignore Perforce

Jonas Devlieghere Apple

Michael Eager, past Chair (to February 2023) Eager Consulting

Jini Susan George AMD

Tommy Hoffner Untether Al]
Jakub Jelinek Red Hat

Simon Marchi EfficiOS |
Jason Merrill Red Hat "
Markus Metzger Intel

Jeremy Morse Sony |
Adprian Prantl Apple

Hafiz Abid Qadeer Mentor Graphics

Paul Robinson Sony

Tom Russell Sony

Fang-rui Song Google

Caroline Tice Google

Tom Tromey Adacore

Tony Tye AMD

Keith Walker Arm

Mark Wielaard Red Hat]
Brock Wyma Intel

Jian Xu IBM

Zoran Zaric AMD |

http://www.dwarfstd.org

For further information about DWARF or the DWARF Committee, see:

#**WORKING DRAFT***

Page iv

http://www.dwarfstd.org

How to Use This Document

This document is intended to be usable in online as well as traditional paper
forms. Both online and paper forms include page numbers, a Table of
Contents, a List of Figures, a List of Tables and an Index.

Text in normal font describes required aspects of the DWARF format. Text in
italics is explanatory or supplementary material, and not part of the format
definition itself.

Online Form

In the online form, blue text is used to indicate hyperlinks. Most hyperlinks
link to the definition of a term or construct, or to a cited Section or Figure.
However, attributes in particular are often used in more than one way or
context so that there is no single definition; for attributes, hyperlinks link to
the introductory table of all attributes which in turn contains hyperlinks for
the multiple usages.

The occurrence of a DWARF name in its definition (or one of its definitions
in the case of some attributes) is shown in red text. Other occurrences of the
same name in the same or possibly following paragraphs are generally in
normal text color.)

The Table of Contents, List of Figures, List of Tables and Index provide
hyperlinks to the respective items and places.

Paper Form

In the traditional paper form, the appearance of the hyperlinks and
definitions on a page of paper does not distract the eye because the blue
hyperlinks and the color used for definitions are typically imaged by black
and white printers in a manner nearly indistinguishable from other text.
(Hyperlinks are not underlined for this same reason.)

November 14, 2024 **WORKING DRAFT*** Page v

November 14, 2024 #**WORKING DRAFT*** Page vi

CONTENTS

Contents

Contents vii
List of Figures xii
List of Tables xvi

1 Introduction

1.1
1.2
1.3

1
Purposeand Scope L L. 1
Overview L 2
Objectives and Rationale 2

8

1.4 Changes from Version 5 to Version6
1.5 Changes from Version 4 to Version5 8
1.6 Changes from Version 3 to Version4 10
1.7 Changes from Version 2 to Version3 11
1.8 Changes from Version 1 to Version2 12
2 General Description 15
2.1 The Debugging Information Entry (DIE) 15
22 AttributeTypes o 17
2.3 Relationship of Debugging Information Entries 25
24 Target Addresses 26
2.5 DWARF Expressions 26
2.6 Location Descriptions 39
2.7 Types of Program Entities 48
2.8 Accessibility of Declarations 48
2.9 Visibility of Declarations 48
2.10 Virtuality of Declarations 49
2.11 Artificial Entries Lo oo 49
212 AddressClasses 50
2.13 Non-Defining Declarations and Completions 50
2.14 Declaration Coordinates 51

November 14, 2024 **WORKING DRAFT*** Page vii

CONTENTS

215 Identifier Names
2.16 Data Locations and DWARF Procedures
2.17 Code Addresses, Ranges and Base Addresses
218 Entry Address o oo
2.19 Static and Dynamic Values of Attributes
2.20 Entity Descriptions
221 Byteand BitSizes 0L
222 LinkageNames
2.23 Template Parameters
224 Alignment Lo oo

3 Program Scope Entries

31 UnitEntries
3.2 Module, Namespace and Importing Entries
3.3 Subroutine and Entry Point Entries
3.4 Call Site Entries and Parameters
3.5 Lexical Block Entries
3.6 LabelEntries
3.7 With Statement Entries
3.8 Try and Catch Block Entries
3.9 Declarations with Reduced Scope

4 Data Object and Object List

41 DataObjectEntries
42 Common Block Entries
43 NamelistEntries

5 Type Entries

51 BaseTypeEntries
5.2 Unspecified Type Entries
53 Type Modifier Entries
54 TypedefEntries
55 Array TypeEntries
5.6 Coarray TypeEntries
5.7 Structure, Union, Class and Interface Type Entries

58 ConditionEntrieso
5.9 Enumeration Type Entries
5.10 Subroutine Type Entries
5.11 String Type Entries
512 SetType Entries
5.13 Subrange Type Entries

November 14, 2024 ***WORKING DRAFT***

Page viii

CONTENTS

5.14 Pointer to Member Type Entries 135
515 FileTypeEntries 136
5.16 Dynamic Type Entries 136
517 Template Alias Entries 137
5.18 Dynamic Propertiesof Types. 137
6 Other Debugging Information 140
6.1 Accelerated Access e 140
6.2 Line Number Information 154
6.3 Macro Information 171
6.4 Call Frame Information 178
7 Data Representation 190
71 Extensibilityo o 190
72 Reserved Values 191
7.3 Relocatable, Split, Executable, Shared, Package and Supplementary
ObjectFiles 192
7.4 32-Bit and 64-Bit DWARF Formats 203
7.5 Format of Debugging Information 206
7.6 Variable LengthData 230
7.7 DWARF Expressions and Location Descriptions 231
7.8 Base Type Attribute Encodings 236
7.9 AccessibilityCodes oo oo 238
7.10 Visibility Codes oo 238
7.11 VirtualityCodes 239
712 Source Languages L L 239
7.13 AddressClassEncodings 241
7.14 Identifier Case e 242
7.15 Calling Convention Encodings 242
716 InlineCodes 243
717 ArrayOrderingo 243
7.18 Discriminant Lists 243
7.19 NamelIndexTable 244
7.20 Defaulted Member Encodings 244
7.21 Line Number Information 245
7.22 Macro Information 247
7.23 Call Frame Information 249
7.24 Range List Entries for Non-contiguous Address Ranges 250
7.25 String Offsets Table 251
726 AddressTable 252
727 RangeListTable 253

November 14, 2024 **WORKING DRAFT*** Page ix

CONTENTS

7.28 Value List and Location List Table
7.29 Dependencies and Constraints.
7.30 Integer Representation Names
7.31 Type Signature Computation
7.32 Name Table Hash Function
7.33 ContiguousTables

A Attributes by Tag (Informative)

B Debug Section Relationships (Informative)
B.1 Normal DWARF Section Relationships
B.2 Split DWAREF Section Relationships

C Encoding/Decoding (Informative)

D Examples (Informative)
D.1 General Description Examples
D.2 AggregateExamples
D.3 Namespace Examples
D.4 Member Function Examples
D.5 Line Number Examples.
D.6 Call Frame Information Example
D.7 Inlining Examples 0 L
D.8 Constant Expression Example
D.9 Unicode Character Example
D.10 Type-Safe Enumeration Example
D.11 Template Examples
D.12 Template Alias Examples
D.13 Implicit Pointer Examples
D.14 String Type Examples
D.15CallSite Examples oo
D.l6MacroExample o oo oL
D.17 Parameter Default Value Examples
D.18SIMD Lane Example

E Compression (Informative)
E.1 Using Compilation Units
E2 UsingTypeUnits
E.3 Summary of Compression Techniques

F Split DWAREF Object Files (Informative)
F1 Overview o o oo

263

285
285
286

295

November 14, 2024 **WORKING DRAFT*** Page x

CONTENTS

E2 Split DWARF Object File Example 420
E3 DWAREF Package File Example 433
G Section Version Numbers (Informative) 439
H GNU Free Documentation License 443
H.1 APPLICABILITY AND DEFINITIONS 444
H.2 VERBATIM COPYING i e 445
H.3 COPYING IN QUANTITY e e 446
H.4 MODIFICATIONS e e e 447
H.5 COMBINING DOCUMENTS 449
H.6 COLLECTIONSOFDOCUMENTS 449
H.7 AGGREGATION WITH INDEPENDENT WORKS 449
H.8 TRANSLATION et e e 450
H.9 TERMINATION e e e e 450
H.1I0FUTURE REVISIONSOF THISLICENSE 451
H.11RELICENSING e e e e 451
Index 455

November 14, 2024 **WORKING DRAFT*** Page xi

LIST OF FIGURES

List of Figures

51 Typemodifierexamples 114
6.1 NamelIndexLayout. 144
7.1 Name Table Hash Function Definition 261
B.1 Debug section relationships 287
B.2 Split DWAREF section relationships 291
C.1 Algorithm to encode an unsigned integer 295
C.2 Algorithm to encode asignedinteger 296
C.3 Algorithm to decode an unsigned LEB128 integer 296
C.4 Algorithm to decode a signed LEB128 integer 297
D.1 Compilation units and abbreviations table 300
D.2 Fortran array example: source fragment 305
D.3 Fortran array example: descriptor representation 306
D.4 Fortran array example: DWARF description 309
D.5 Fortran scalar coarray: source fragment 312
D.6 Fortran scalar coarray: DWARF description 312
D.7 Fortran array coarray: source fragment. 312
D.8 Fortran array coarray: DWARF description 312
D.9 Fortran multidimensional coarray: source fragment 313
D.10 Fortran multidimensional coarray: DWARF description 313
D.11 Declaration of a Fortran 2008 assumed-rank array 314
D.12 One of many possible layouts for an array descriptor 314
D.13 Sample DWAREF for the array descriptor in Figure D.12 315
D.14 How to interpret the DWAREF from Figure D.13 316
D.15 Fortran dynamic type example: source 317
D.16 Fortran dynamic type example: DWARF description 318
D.17 Anonymous structure example: source fragment 319
D.18 Anonymous structure example: DWARF description. 319
D.19 Ada example: source fragment L0 320

November 14, 2024 **WORKING DRAFT*** Page xii

LIST OF FIGURES

D.20 Ada example: DWARF description 321
D.21 Packed record example: source fragment 322
D.22 Packed record example: DWARF description 322
D.23 Big-endian data bitoffsets 00000, 325
D.24 Little-endian data bitoffsets 325
D.25 Ada biased bit-field example: Adasource 326
D.26 Ada biased bit-field example: DWARF description 326
D.27 Pascal variant record example: source 327
D.28 Pascal variant record example: DWARF description 328
D.29 Ada variant record example: source L. 329
D.30 Ada variant record example: DWARF description 330
D.31 Rust enum example: source 330
D.32 Rust enum example: DWARF description 331
D.33 Namespace example #1: source fragment 332
D.34 Namespace example #1: DWARF description 333
D.35 Namespace example #2: source fragment 335
D.36 Namespace example #2: DWARF description 335
D.37 Member function example: source fragment 336
D.38 Member function example: DWARF description 336

D.39 Reference- and rvalue-reference-qualification example: source fragment 338
D.40 Reference- and rvalue-reference-qualification example: DWARF description

... 339
D.41 Example line number program header 340
D.42 Example line number special opcode mapping 341
D.43 Line number program example: machinecode 342
D.44 Call frame information example: machine code fragments 345
D.45 Inlining examples: pseudo-source fragmment 348
D.46 Inlining example #1: abstractinstance 350
D.47 Inlining example #1: concreteinstance 351
D.48 Inlining example #2: abstractinstance 353
D.49 Inlining example #2: concreteinstance 355
D.50 Inlining example #3: abstractinstance 356
D.51 Inlining example #3: concreteinstance 357
D.52 Constant expressions: C++source. 357
D.53 Constant expressions: DWARF description 358
D.54 Unicode character example: source 359
D.55 Unicode character example: DWARF description 359
D.56 Type-safe enumeration example: source 360
D.57 Type-safe enumeration example: DWARF description 360
D.58 C++ template example #1: source 361
D.59 C++ template example #1: DWARF description 361

November 14, 2024 **WORKING DRAFT*** Page xiii

LIST OF FIGURES

D.60 C++ template example #2: source 362
D.61 C++ template example #2: DWARF description 362
D.62 C++ template alias example #1: source 363
D.63 C++ template alias example #1: DWARF description 364
D.64 C++ template alias example #2: source 364
D.65 C++ template alias example #2: DWARF description 365
D.66 C implicit pointer example #1: source 366
D.67 C implicit pointer example #1: DWARF description 367
D.68 C implicit pointer example #2: source 368
D.69 C implicit pointer example #2: DWARF description 369
D.70 String type example: source L. 370
D.71 String type example: DWARF representation 371
D.72 Call Site Example #1: Source L. 372
D.73 Call Site Example #1: Code, 373
D.74 Call site example #1: DWARF encoding 375
D.75 Call site example #2: source 377
D.76 Call site example #2: code 378
D.77 Call site example #2: DWARF encoding 379
D.78 Macro example: source Lo oo 380
D.79 Macro example: simple DWARF encoding 381
D.80 Macro example: sharable DWARF encoding 382
D.81 Default value example #1: C++source 384
D.82 Default value example #1: DWARF encoding 384
D.83 Default value example #2: Adasource 385
D.84 Default value example #2: DWARF encoding 385
D.85 SIMD Lane Example: C OpenMP Source 386
D.86 SIMD Lane Example: Pseudo-Assembly Code 387
D.87 SIMD Lane Example: DWARF Encoding 388
E.1 Duplicate elimination example #1: C++ Source 396
E.2 Duplicate elimination example #1: DWAREF section group 396
E.3 Duplicate elimination example #1: primary compilation unit 397
E.4 Duplicate elimination example #2: Fortran source 397
E.5 Duplicate elimination example #2: DWAREF section group 398
E.6 Duplicate elimination example #2: primary unit 399
E.7 Duplicate elimination example #2: companion source 399
E.8 Duplicate elimination example #2: companion DWARF 400
E.9 Type signature examples: C++source 401
E.10 Type signature computation #1: DWARF representation 402
E.11 Type signature computation #1: flattened byte stream 403
E.12 Type signature computation #2: DWARF representation 404

November 14, 2024 **WORKING DRAFT*** Page xiv

LIST OF FIGURES

E.13 Type signature example #2: flattened byte stream 406
E.14 Type signature exampleusage 409
E.15 Type signature computation grammar 410
E.16 Completing declaration of a member function: DWARF encoding . . . 411
FE1 Split object example: source fragment#1 420
E2 Split object example: source fragment#2 421
E3 Split object example: source fragment#3 422
FE4 Split object example: skeleton DWARF description 423
E5 Split object example: executable file DWARF excerpts 425
F6 Split object example: demol.dwoexcerpts. 427

E7 Split object example: demo2.dwo DWAREF .debug_info.dwo excerpts . . 430
E8 Split object example: demo2.dwo DWARF .debug_loclists.dwo excerpts432

E9 Sections and contributions in example package file demo.dwp 434
F10 Example CUindexsection 436
F11 Example TUindexsection 437

November 14, 2024 **WORKING DRAFT*** Page xv

LIST OF TABLES

List of Tables

21 Tagnames 16
2.2 Attributenames e 17
2.3 C(Classes of attributevalue 23
2.4 Accessibilitycodes oo oo o 48
25 Visibilitycodes. o 49
2.6 Virtualitycodes o 49
3.1 Languagenames 64
3.2 Version Encoding Schemes 66
3.3 Identifiercasecodes. e 67
3.4 Calling convention codes for subroutines 79
3.5 Inlinecodes 86
4.1 Endianity attributevalues 00 0L 104
5.1 Encoding attributevalues 108
52 Decimal sign attribute values 111
53 Typemodifiertags 113
54 Arrayordering. L o 116
5.5 Calling convention codes fortypes 120
5.6 Defaulted attributenames 126
5.7 Discriminant descriptor values, 128
6.1 Indexattributeencodings 153
6.3 Statemachineregisters L L. 156
6.4 Line number program initialstate. 158
7.1 DWAREF package file section identifier encodings 201
7.2 Unit header unit typeencodings 207
73 Tagencodings o 212
74 Child determination encodings 215
7.5 Attributeencodings L Lo oo 216
7.6 Attribute formencodings L 228

November 14, 2024 **WORKING DRAFT*** Page xvi

LIST OF TABLES

7.7 Examples of unsigned LEB128 encodings 231
7.8 Examples of signed LEB128 encodings 231
7.9 DWARF operationencodings 232
7.10 Location list entry encoding values 236
7.11 Base typeencodingvalues 236
7.12 Decimal signencodings 238
7.13 Endianity encodings oL 238
7.14 Accessibilityencodings Lo Lo oo 238
7.15 Visibilityencodings Lo Lo oo 239
7.16 Virtuality encodings L. 239
7.17 Languageencodings 240
7.18 Identifier caseencodings L. 242
7.19 Calling conventionencodings 242
720 Inlineencodings oo 243
7.21 Orderingencodings 243
7.22 Discriminant descriptor encodings 243
7.23 Name index attributeencodings 244
7.24 Defaulted attributeencodings 244
7.25 Line number standard opcode encodings 245
7.26 Line number extended opcode encodings 246
7.27 Line number header entry format encodings 246
7.28 Macro information entry typeencodings 248
7.29 Call frame instructionencodings, 249
7.30 Range list entry encoding values 251
7.31 Integer representationnames 256
7.32 Attributes used in type signature computation 257
Al Attributesbytagvalue o o L. 264
D.2 Line number program example: one encoding 343
D.3 Line number program example: alternate encoding 343
D.4 Call frame information example: conceptual matrix 345
D.5 Call frame information example: common information entry encoding 346
D.6 Call frame information example: frame description entry encoding . . 347
E1 Unitattributes by unitkind, 419
G.1 Sectionversionnumbers oL 440

November 14, 2024 **WORKING DRAFT*** Page xvii

LIST OF TABLES

(empty page)

November 14, 2024 **WORKING DRAFT*** Page xviii

Change Summary

Change Summary

Note
This change summary is included only in draft versions of this document.

Date Issue Incorporated or Other Change

2/17/2021 Begin DWAREF Version 6. Update front matter.

3/10/2021 Remove change bars commands that were lingering from V5 (disabled in public
release). Remove "New in DWARF Version 5" annotations.

3/11/2021 Issue 180613.1, stop using horizontal space to suppress ligatures.

3/14/2021 Issues 171130.1, 200505.1, 200505.2 and 200505.3, minor editorial corrections.

3/23/2021 Issues 200505.4 and 200505.7, editorial corrections. Issue 161206.2, add
non-normative clarification re DW_OP_piece vs DW_OP_bit_piece.

4/14/2021 Remove 2005 from Copyright statement (was then the Free Standards Group).

4/25/2021 Issue 170527.1 re DW_IDX_external for external symbols.

5/2/2021 Start V6 column in version numbers appendix.

5/3/2021 Cleanup some table formatting in the BTEX source.

5/17/2021 Issue 191025.1, DW_OP_bit_piece.

5/21/2021 Issue 180503.1, usage suggestions for LEB128 padding.
Issue 170427.2, extending loclists.

6/17/2021 Issue 200427.1, missing link and related notes for Figure B.1, and Issue 200519.1,

missing notes for Figure B.2. Issue 180426.2, add line number extended op
DW_LNE_padding.

6/30/2021 180326.1, clarify consistency of DWARF 32/64 format within a CU.
7/12/2021 210218.1, index entry shows up in PDF.
8/14/2021 210628.1, clarification of relative paths in DW_AT_comp_dir. 200710.1,
inconsistent description of data representation for the range list table.
9/28/2021 180625.1, inconsistent initial length descriptions.
181019.1, inconsistency in DW_AT _import descriptions.
10/9/2021 171103.1, DW_AT _call_origin should be encoded as reference class.

180426.1, Add DW_FORM_strp_sup to forms allowed in .debug_line
vendor-defined ['producer-defined’ per 231110.2] content descriptions.

10/30/2021 200505.4, Augmentation string is null-terminated. See 3/23/2021.
200505.7, Declarations with reduced scope. See 3/23/2021 and 5/7/2022.
11/21/2021 200709.1, DW_AT _rnglists_base in DW_TAG_skeleton_unit

181205.1, Clarify DW_OP_piece documentation for parts of values that are
optimized out.

November 14, 2024 ***WORKING DRAFT*** Page xix

Change Summary

Date Issue Incorporated or Other Change
1/14/2022 200602.1, .debug_macro.dwo refers to .debug_line.dwo? Also, tweak some member
names and affiliations in the Foreword.
1/20/2022 210314.1, Eliminate all indefinite antecedents.
3/12/2022 210113.1, Allow zero-length entries in .debug_aranges.
200609.1, Reserve an address for "not present”.
3/26/2022 201007.1, Wide registers in location description expressions.
210310.1, Clarify DW_AT _rnglists_base and DW_FORM_rnglistx in split
DWAREFE.
210429.1, Clarify description of line number extended opcodes.
4/16/2022 180517.1, Variant parts without a discriminant.
210622.1, Typo in .debug_rnglists section header description.
5/7/2022 210208.2, Standardize DW_AT_GNU_numerator and
DW_AT_GNU_denominator.
200505.4, Augmentation string. Reverses 10/30/2021.
5/30/2022 211101.1, Allow 64-bit string offsets in DIWARF-32.
6/15/2022 210419.1, Split DW_AT _language into DW_AT_language_name and
DW_AT _language_version.
7/5/2022 190809.1, Add DW_AT _bias.
7/17/2022 180201.1, Source text embedding.
8/6/2022 210713.1, Fix "file 0".
8/7/2022 211108.2, Allow non-uniform record formats in the file name table.
8/8/2022 211022.1, Empty range list entry.
181003.1, Forbid DW_OP_call_ref and DW_FORM_addr_ref in a .dwo file.
8/14/2022 220427.1, Deprecate the DW_AT _segment attribute.
9/4/2022 181223.1, Add Microsoft SourceLink support.
211108.2, Rework example in D.5 to illustrate DW_LNCT _source and
DW_LNCT_URL.
Review and adjust pagination.
10/12/2022 211108.2, Further rework of the example in D.5.
10/22/2022 211102.1, No DW_FORM_strp in .dwo files.
141117.1, Arbitrary expressions as formal parameter default values.
11/7/2022 220212.1, Disambiguate "ending address offset in location and range lists.
11/8/2022 211004.1, Replace DW_MACRO_define/undefine_sup with sized versions.
11/14/2022 220708.1, Remove edge (fo) from Figure B.2.
220711.1, Name Table index attribute.
220711.2, Name Table Figure 6.1.
11/14/2022 211103.1, Call site entries for optimized out functions.
11/30/2022 Incorporate minor review tweaks.
12/10/2022 et al ~ Additional minor review tweaks.
1/29/2023 210218.2, Generalize complex number support.
220708.2, .debug_c,tu_index missing/incomplete DWARF64 support.
November 14, 2024 **WORKING DRAFT*** Page xx

Date

Change Summary

Issue Incorporated or Other Change

4/3/2023

6/15/2023

6/27/2023

7/10/2023

8/6/2023

10/24/2023

11/14/2023
12/3/2023

1/15/2024

2/18/2024
3/7/2024
4/24/2024

November 14, 2024

221031.1, Future-proof text from 211102.1.

220802.1, Introduce DW_FORM_addr_offset paired form.

170427.3, Extending loclists with common sublists.

220713.1, Name Table Figure 6.1.

Update committee members list and roles.

211108.1, Add DW_AT _artificial for DW_TAG_typedef.

220824.1, Use uniform encoding of DWAREF expressions in CFI instructions.
180123,1, Layout of discriminant entries in variant parts.

181026.3, Don'’t forbid extensions to the dwp file.

221118.1, Name Table 6.1.1.4.8.

221114.1, DW_FORM_implicit_const and DW_FORM_indirect.
230223.1, Tidy up location description descriptions.

230414.1, Eliminate last use of "location expression”.

221203.1, Remove suggestion that DW_FORM_sec_offset may not be used for lists
in split units.

230103.1, Clarify that DW_CFA_remember_state includes the current CFA.
230120.1, DW_OP_call_ref & DW_OP_implicit_pointer correction.
230616.1, New form classes for values vs. location descriptions.

210514.1, Add GPU shading and kernel languages.

210115.1, DW_lang_code for the Netwide Assembler (NASM).

230203.1, C# language ID.

230502.1, New language name Mojo.

230808.1, DW_OP_entry_value description.

230413.1, Tensor types.

230329.1, Tables which have a unit_length header field must be contiguous.
230529.1, Bit-precise integer types.

231230.1, New language code for Ruby.

231013.1, Tombstoning TU entries in .debug_names.

230324.1, Expression operation vendor ['producer” per 231110.2] extensibility
opcode.

230412.1, Ambiguity in static and dynamic values of attributes.

230324.2, Expression operation standard extensibility opcode.

230120.4, Add the HIP programming language.

240202.1, New language name for Move.

240213.1, New language code for Hylo.

240422.1, Add version scheme for Swift language.

230120.4, Add the HIP Programming Language.

240423.1, Duplicate DW_AT_LNAME 1d.

240424.1, Add versioning scheme for Fortran.

240424.2, C standard release dates for DW_AT_language_version, clarify
semantics.

#**WORKING DRAFT*** Page xxi

Change Summary

Date Issue Incorporated or Other Change
240429.0, Remove all "incomplete support” related indications from Table 3.1
Language Names.
240115.1, Add vallist class for list of DWAREF expressions returning values.

5/13/2024 221203.1, Remove suggestion that DW_FORM_sec_offset may not be used for lists
in split units.
211206.1, Add lane support for SIMD/SIMT machines.

6/14/2024 240118.1, Allow padding in all tables.
231110.2, Change "vendor” to ‘producer’ for DWARF extensions.

7/5/2024 240320.2, Clarify description of line table compression.

7/9/2024 240616.1, Add language codes for C++23 (no change in this document).
240627.1, Add language codes for Odin.

7/15/2024 Improve indexing of line number state register names.

9/30/2024 240725.1, Add language code for P4.

10/6/2024 240320.1, Add local and indirect strings to name index. Completion of edits to
Figure B.2 is pending.

11/1/2024 Apply trailing whitespace patch from Ben Woodard.

11/9/2024 220724.1, Remove .debug_aranges and require unit-level ranges/high/low.

November 14, 2024 **WORKING DRAFT*** Page xxii

LIST OF TABLES

(empty page)

November 14, 2024 **WORKING DRAFT*** Page xxiii

© S0 N Y 0 xR W

10
11
12
13

14

15
16
17
18
19
20
21
22

23
24
25

Chapter 1

Introduction

This document defines a format for describing programs to facilitate user source
level debugging. This description can be generated by compilers, assemblers and
linkage editors. It can be used by debuggers and other tools. The debugging
information format does not favor the design of any compiler or debugger.
Instead, the goal is to create a method of communicating an accurate picture of
the source program to any debugger in a form that is extensible to different
languages while retaining compatibility. .

The design of the debugging information format is open-ended, allowing for the
addition of new debugging information to accommodate new languages or
debugger capabilities while remaining compatible with other languages or
different debuggers.

1.1 Purpose and Scope

The debugging information format described in this document is designed to
meet the symbolic, source-level debugging needs of different languages in a
unified fashion by requiring language independent debugging information
whenever possible. Aspects of individual languages, such as C++ virtual
functions or Fortran common blocks, are accommodated by creating attributes
that are used only for those languages. This document is believed to cover most
debugging information needs of Ada, C, C++, COBOL, and Fortran; it also
covers the basic needs of various other languages.

This document describes DWARF Version 5, the fifth generation of debugging
information based on the DWARF format. DWARF Version 5 extends DWARF
Version 4 in a compatible manner.

November 14, 2024 #**WORKING DRAFT*** Page 1

X N S O»

10
11
12
13
14
15
16

17
18
19
20

21
22
23
24

25

26
27
28
29

30
31
32
33
34

Chapter 1. Introduction

The intended audience for this document is the developers of both producers
and consumers of debugging information, typically compilers, debuggers and
other tools that need to interpret a binary program in terms of its original source.

1.2 Overview

There are two major pieces to the description of the DWARF format in this
document. The first piece is the informational content of the debugging entries.
The second piece is the way the debugging information is encoded and
represented in an object file.

The informational content is described in Chapters 2 through 6. Chapter 2
describes the overall structure of the information and attributes that are common
to many or all of the different debugging information entries. Chapters 3, 4 and 5
describe the specific debugging information entries and how they communicate
the necessary information about the source program to a debugger. Chapter 6
describes debugging information contained outside of the debugging
information entries. The encoding of the DWARF information is presented in
Chapter 7.

This organization closely follows that used in the DWARF Version 4 document.
Except where needed to incorporate new material or to correct errors, the
DWAREF Version 4 text is generally reused in this document with little or no
modification.

In the following sections, text in normal font describes required aspects of the
DWAREF format. Text in italics is explanatory or supplementary material, and not
part of the format definition itself. The several appendices consist only of
explanatory or supplementary material, and are not part of the formal definition.

1.3 Objectives and Rationale

DWAREF has had a set of objectives since its inception which have guided the
design and evolution of the debugging format. A discussion of these objectives
and the rationale behind them may help with an understanding of the DWARF
Debugging Format.

Although DWAREF Version 1 was developed in the late 1980’s as a format to
support debugging C programs written for AT&T hardware running SVR4,
DWAREF Version 2 and later has evolved far beyond this origin. One difference
between DWARF and other formats is that the latter are often specific to a
particular language, architecture, and /or operating system.

November 14, 2024 #**WORKING DRAFT*** Page 2

© 2 N kxR W ~

—_
(=)

11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26

27
28
29

30

31
32
33
34
35

Chapter 1. Introduction

1.3.1 Language Independence

DWAREF is applicable to a broad range of existing procedural languages and is
designed to be extensible to future languages. These languages may be
considered to be "C-like" but the characteristics of C are not incorporated into
DWAREF Version 2 and later, unlike DWARF Version 1 and other debugging
formats. DWAREF abstracts concepts as much as possible so that the description
can be used to describe a program in any language. As an example, the DWARF
descriptions used to describe C functions, Pascal subroutines, and Fortran
subprograms are all the same, with different attributes used to specify the
differences between these similar programming language features.

On occasion, there is a feature which is specific to one particular language and
which doesn’t appear to have more general application. For these, DWAREF has a
description designed to meet the language requirements, although, to the extent
possible, an effort is made to generalize the attribute. An example of this is the
DW_TAG_condition debugging information entry, used to describe COBOL level
88 conditions, which is described in abstract terms rather than COBOL-specific
terms. Conceivably, this TAG might be used with a different language which had
similar functionality.

1.3.2 Architecture Independence

DWAREF can be used with a wide range of processor architectures, whether byte
or word oriented, with any word or byte size. DWAREF can be used with Von 0
Neumann architectures, using a single address space for both code and data;
Harvard architectures, with separate code and data address spaces; and
potentially for other architectures such as DSPs with their idiosyncratic memory
organizations. DWARF can be used with common register-oriented architectures
or with stack architectures.

DWAREF assumes that memory has individual units (words or bytes) which have
unique addresses which are ordered. (Identifying aliases is an implementation =
issue.)

1.3.3 Operating System Independence

DWAREF is widely associated with SVR4 Unix and similar operating systems like
BSD and Linux. DWAREF fits well with the section organization of the ELF object
file format. Nonetheless, DWAREF attempts to be independent of either the OS or
the object file format. There have been implementations of DWARF debugging
data in COFF, Mach-O and other object file formats.

November 14, 2024 #**WORKING DRAFT*** Page 3

N

© X N Y G kW

10

11

12
13
14
15

16
17
18
19
20
21

22
23
24
25

26

27
28
29
30

31
32
33
34

Chapter 1. Introduction

DWAREF assumes that any object file format will be able to distinguish the
various DWARF data sections in some fashion, preferably by name.

DWARF makes a few assumptions about functionality provided by the
underlying operating system. DWARF data sections can be read sequentially and
independently. Each DWAREF data section is a sequence of 8-bit bytes, numbered
starting with zero. The presence of offsets from one DWARF data section into
other data sections does not imply that the underlying OS must be able to
position files randomly; a data section could be read sequentially and indexed
using the offset.

1.3.4 Compact Data Representation
The DWAREF description is designed to be a compact file-oriented representation.

There are several encodings which achieve this goal, such as the TAG and
attribute abbreviations or the line number encoding. References from one section
to another, especially to refer to strings, allow these sections to be compacted to
eliminate duplicate data.

There are multiple schemes for eliminating duplicate data or reducing the size of
the DWARF debug data associated with a given file. These include COMDAT,
used to eliminate duplicate function or data definitions, the split DWARF object
tiles which allow a consumer to find DWAREF data in files other than the
executable, or the type units, which allow similar type definitions from multiple
compilations to be combined.

In most cases, it is anticipated that DWARF debug data will be read by a
consumer (usually a debugger) and converted into a more efficiently accessed
internal representation. For the most part, the DWARF data in a section is not the
same as this internal representation.

1.3.5 Efficient Processing

DWAREF is designed to be processed efficiently, so that a producer (a compiler)
can generate the debug descriptions incrementally and a consumer can read only
the descriptions which it needs at a given time. The data formats are designed to
be efficiently interpreted by a consumer.

As mentioned, there is a tension between this objective and the preceding one. A
DWAREF data representation which resembles an internal data representation
may lead to faster processing, but at the expense of larger data files. This may
also constrain the possible implementations.

November 14, 2024 #**WORKING DRAFT*** Page 4

© S NS

10
11

12

13
14
15
16
17
18

19

20
21
22
23
24
25

26

27
28
29
30
31
32

Chapter 1. Introduction

1.3.6 Implementation Independence

DWAREF attempts to allow developers the greatest flexibility in designing
implementations, without mandating any particular design decisions. Issues
which can be described as quality-of-implementation are avoided.

1.3.7 Explicit Rather Than Implicit Description

DWAREF describes the source to object translation explicitly rather than using
common practice or convention as an implicit understanding between producer
and consumer. For example, where other debugging formats assume that a
debugger knows how to virtually unwind the stack, moving from one stack
frame to the next using implicit knowledge about the architecture or operating
system, DWARF makes this explicit in the Call Frame Information description.

1.3.8 Avoid Duplication of Information

DWAREF has a goal of describing characteristics of a program once, rather than
repeating the same information multiple times. The string sections can be
compacted to eliminate duplicate strings, for example. Other compaction
schemes or references between sections support this. Whether a particular
implementation is effective at eliminating duplicate data, or even attempts to, is
a quality-of-implementation issue.

1.3.9 Leverage Other Standards

Where another standard exists which describes how to interpret aspects of a
program, DWAREF defers to that standard rather than attempting to duplicate the
description. For example, C++ has specific rules for deciding which function to
call depending name, scope, argument types, and other factors. DWARF
describes the functions and arguments, but doesn’t attempt to describe how one
would be selected by a consumer performing any particular operation.

1.3.10 Limited Dependence on Tools

DWAREF data is designed so that it can be processed by commonly available
assemblers, linkers, and other support programs, without requiring additional
functionality specifically to support DWARF data. This may require the
implementer to be careful that they do not generate DWARF data which cannot
be processed by these programs. Conversely, an assembler which can generate
LEB128 (Little-Endian Base 128) values may allow the compiler to generate more

November 14, 2024 #**WORKING DRAFT*** Page 5

B W N =

© S NS

10
11
12

13

14
15
16
17
18
19
20
21

22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

Chapter 1. Introduction

compact descriptions, and a linker which understands the format of string
sections can merge these sections. Whether or not an implementation includes
these functions is a quality-of-implementation issue, not mandated by the
DWAREF specification.

1.3.11 Separate Description From Implementation

DWAREF intends to describe the translation of a program from source to object,
while neither mandating any particular design nor making any other design
difficult. For example, DWARF describes how the arguments and local variables
in a function are to be described, but doesn’t specify how this data is collected or
organized by a producer. Where a particular DWAREF feature anticipates that it
will be implemented in a certain fashion, informative text will suggest but not
require this design.

1.3.12 Permissive Rather Than Prescriptive

The DWAREF Standard specifies the meaning of DWARF descriptions. It does not
specify in detail what a particular producer must generate for any source to
object conversion. One producer may generate a more complete description than
another, it may describe features in a different order (unless the standard
explicitly requires a particular order), or it may use different abbreviations or
compression methods. Similarly, DWARF does not specify exactly what a
particular consumer should do with each part of the description, although we
believe that the potential uses for each description should be evident.

DWAREF is permissive, allowing different producers to generate different
descriptions for the same source to object conversion, and permitting different
consumers to provide more or less functionality or information to the user. This
may result in debugging information being larger or smaller, compilers or
debuggers which are faster or slower, and more or less functional. These are
described as differences in quality-of-implementation.

Each producer conforming to the DWARF standard must follow the format and
meaning as specified in the standard. As long as the DWAREF description
generated follows this specification, the producer is generating valid DWARFE.
For example, DWARF allows a producer to identify the end of a function
prologue in the Line Information so that a debugger can stop at this location. A
producer which does this is generating valid DWARE, as is another which
doesn’t. As another example, one producer may generate descriptions for
variables which are moved from memory to a register in a certain range, while
another may only describe the variable’s location in memory. Both are valid

November 14, 2024 #**WORKING DRAFT*** Page 6

N G R

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

DWAREF descriptions, while a consumer using the former would be able to

Chapter 1. Introduction

provide more accurate values for the variable while executing in that range than

a consumer using the latter.

In this document, where the word “may” is used, the producer has the option to
follow the description or not. Where the text says “may not”, this is prohibited.

Where the text says “should”, this is advice about best practice, but is not a

requirement.

1.3.13 Extensibility

This document does not attempt to cover all interesting languages or even to
cover all of the possible debugging information needs for its primary target
languages. Therefore, the document provides producers and tool developers a

way to define their owns debugging information tags, attributes, base type

encodings, location operations, language names, calling conventions and call
frame instructions by reserving a subset of the valid values for these constructs
for additions and for defining related naming conventions. Producers may also
use debugging information entries and attributes defined here in new situations.

Future versions of this document will not use names or values reserved for

producer-specific additions. All names and values not reserved for producer

additions, however, are reserved for future versions of this document.

Where this specification provides a means for describing the source language,
implementors are expected to adhere to that specification. For language features
that are not supported, implementors may use existing attributes in novel ways
or add producer-defined attributes. Implementors who make extensions are
strongly encouraged to design them to be compatible with this specification in
the absence of those extensions.

November 14, 2024

#**WORKING DRAFT***

Page 7

B W N =

10

11
12

13
14
15

16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

32
33

Chapter 1. Introduction

The DWAREF format is organized so that a consumer can skip over data which it
does not recognize. This may allow a consumer to read and process files
generated according to a later version of this standard or which contain producer
extensions, albeit possibly in a degraded manner.

1.4 Changes from Version 5 to Version 6

To be written...

1.5 Changes from Version 4 to Version 5

The following is a list of the major changes made to the DWARF Debugging
Information Format since Version 4 was published. The list is not meant to be
exhaustive.

¢ Eliminate the .debug_types section introduced in DWARF Version 4 and
move its contents into the .debug_info section.

* Add support for collecting common DWARF information (debugging
information entries and macro definitions) across multiple executable and
shared files and keeping it in a single supplementary object file.

* Replace the line number program header format with a new format that
provides the ability to use an MD5 hash to validate the source file version
in use, allows pooling of directory and file name strings and makes
provision for producer-defined extensions. Also add a string section
specific to the line number table (.debug_line_str) to properly support the
common practice of stripping all DWARF sections except for line number
information.

¢ Add a split object file and package representations to allow most DWARF
information to be kept separate from an executable or shared image. This
includes new sections .debug_addr, .debug_str_offsets,
.debug_abbrev.dwo, .debug_info.dwo, .debug_line.dwo,
.debug_loclists.dwo, .debug_macro.dwo, .debug_str.dwo,
.debug_str_offsets.dwo, .debug_cu_index and .debug_tu_index together
with new forms of attribute value for referencing these sections. This
enhances DWARF support by reducing executable program size and by
improving link times.

* Replace the .debug_macinfo macro information representation with with a
.debug_macro representation that can potentially be much more compact.

November 14, 2024 #**WORKING DRAFT*** Page 8

S G W N

~N

10
11
12

13
14

15
16
17

18
19

20
21
22

23
24

26
27
28

29
30
31
32
33

Chapter 1. Introduction

* Replace the .debug_pubnames and .debug_pubtypes sections with a single

and more functional name index section, .debug_names.

* Replace the location list and range list sections (.debug_loc and

.debug_ranges, respectively) with new sections (.debug_loclists and
.debug_rnglists) and new representations that save space and processing

time by eliminating most related object file relocations.

* Add a new debugging information entry (DW_TAG_call_site), related

attributes and DWARF expression operators to describe call site
information, including identification of tail calls and tail recursion.

¢ Add improved support for FORTRAN assumed rank arrays

(DW_TAG_generic_subrange), dynamic rank arrays (DW_AT_rank) and
co-arrays (DW_TAG_coarray_type).

* Add new operations that allow support for a DWARF expression stack
containing typed values.

¢ Add improved support for the C++: auto return type, deleted member

functions (DW_AT_deleted), as well as defaulted constructors and

destructors (DW_AT_defaulted).

¢ Add a new attribute (DW_AT_noreturn), to identify a subprogram that
does not return to its caller.

¢ Add language codes for C 2011, C++ 2003, C++ 2011, C++ 2014, Dylan,
Fortran 2003, Fortran 2008, Go, Haskell, Julia, Modula 3, Ocaml, OpenCL

C!, Rust and Swift.

¢ Numerous other more minor additions to improve functionality and

performance.

DWAREF Version 5 is compatible with DWAREF Version 4 except as follows:

* The compilation unit header (in the .debug_info section) has a new

unit_type field. In addition, the debug_abbrev_offset and address_size

fields are reordered.

* New operand forms for attribute values are defined (DW_FORM_addrx,

DW_FORM_addrx1, DW_FORM_addrx2, DW_FORM_addrx3,
DW_FORM_addrx4, DW_FORM_datal6, DW_FORM._implicit_const,
DW_FORM_line_strp, DW_FORM._loclistx, DW_FORM_rnglistx,
DW_FORM_ref_sup4, DW_FORM_ref_sup8, DW_FORM_strp_sup,

lcalled simply OpenCL in DWARF Version 5

November 14, 2024

#**WORKING DRAFT***

Page 9

© 2 N O

10
11

12
13
14
15
16
17

18
19
20
21
22

23
24

25

26
27
28

29
30
31
32

33
34

Chapter 1. Introduction

DW_FORM_strx, DW_FORM_strx1, DW_FORM_strx2, DW_FORM_strx3
and DW_FORM_strx4.

Because a pre-DWAREF Version 5 consumer will not be able to interpret these even
to ignore and skip over them, new forms must be considered incompatible additions.

¢ The line number table header is substantially revised.

® The .debug_loc and .debug_ranges sections are replaced by new
.debug_loclists and .debug_rnglists sections, respectively. These new
sections have a new (and more efficient) list structure. Attributes that
reference the predecessor sections must be interpreted differently to access
the new sections. The new sections encode the same information as their
predecessors, except that a new default location list entry is added.

¢ In a string type, the DW_AT_byte_size attribute is re-defined to always
describe the size of the string type. (Previously DW_AT_byte_size
described the size of the optional string length data field if the
DW_AT_string_length attribute was also present.) In addition, the
DW_AT _string_length attribute may now refer directly to an object that
contains the length value.

While not strictly an incompatibility, the macro information representation is
completely new; further, producers and consumers may optionally continue to
support the older representation. While the two representations cannot both be
used in the same compilation unit, they can co-exist in executable or shared
images.

Similar comments apply to replacement of the .debug_pubnames and
.debug_pubtypes sections with the new .debug_names section.

1.6 Changes from Version 3 to Version 4

The following is a list of the major changes made to the DWARF Debugging
Information Format since Version 3 was published. The list is not meant to be
exhaustive.

* Reformulate Section 2.6 (Location Descriptions) to better distinguish
DWAREF location descriptions, which compute the location where a value is
found (such as an address in memory or a register name) from DWARF
expressions, which compute a final value (such as an array bound).

¢ Add support for bundled instructions on machine architectures where
instructions do not occupy a whole number of bytes.

November 14, 2024 #**WORKING DRAFT*** Page 10

10
11
12

13

14
15

16

17
18

19
20
21

22

23
24
25
26
27

28
29

30

31
32
33

Chapter 1. Introduction

¢ Add a new attribute form for section offsets, DW_FORM_sec_offset, to

replace the use of DW_FORM_data4 and DW_FORM_data8 for section
offsets.

¢ Add an attribute, DW_AT_main_subprogram, to identify the main
subprogram of a program.

* Define default array lower bound values for each supported language.

* Add a new technique using separate type units, type signatures and
COMDAT sections to improve compression and duplicate elimination of
DWAREF information.

¢ Add support for new C++ language constructs, including rvalue references,
generalized constant expressions, Unicode character types and template
aliases.

¢ Clarify and generalize support for packed arrays and structures.

¢ Add new line number table support to facilitate profile based compiler
optimization.

¢ Add additional support for template parameters in instantiations.

¢ Add support for strongly typed enumerations in languages (such as C++)
that have two kinds of enumeration declarations.

¢ Add the option for the DW_AT_high_pc value of a program unit or scope
to be specified as a constant offset relative to the corresponding
DW_AT_low_pc value.

DWAREF Version 4 is compatible with DWAREF Version 3 except as follows:

* DWAREF attributes that use any of the new forms of attribute value
representation (for section offsets, flag compression, type signature
references, and so on) cannot be read by DWARF Version 3 consumers
because the consumer will not know how to skip over the unexpected form
of data.

¢ DWAREF frame and line number table sections include additional fields that
affect the location and interpretation of other data in the section.
1.7 Changes from Version 2 to Version 3

The following is a list of the major differences between Version 2 and Version 3 of
the DWARF Debugging Information Format. The list is not meant to be
exhaustive.

November 14, 2024 #**WORKING DRAFT*** Page 11

10

11

12
13

14
15

16

17
18
19
20

21
22
23
24
25

26
27
28

29

30
31
32

Chapter 1. Introduction

* Make provision for DWARF information files that are larger than 4 GBytes.

¢ Allow attributes to refer to debugging information entries in other shared
libraries.

¢ Add support for Fortran 90 modules as well as allocatable array and
pointer types.

¢ Add additional base types for C (as revised for 1999).
¢ Add support for Java and COBOL.
¢ Add namespace support for C++.

¢ Add an optional section for global type names (similar to the global section
for objects and functions).

¢ Adopt UTF-8 as the preferred representation of program name strings.

¢ Add improved support for optimized code (discontiguous scopes, end of
prologue determination, multiple section code generation).

¢ Improve the ability to eliminate duplicate DWARF information during
linking.

DWAREF Version 3 is compatible with DWARF Version 2 except as follows:

¢ Certain very large values of the initial length fields that begin DWARF
sections as well as certain structures are reserved to act as escape codes for
future extension; one such extension is defined to increase the possible size
of DWAREF descriptions (see Section 7.4 on page 203).

¢ References that use the attribute form DW_FORM_ref_addr are specified to
be four bytes in the DWARF 32-bit format and eight bytes in the DWARF
64-bit format, while DWARF Version 2 specifies that such references have
the same size as an address on the target system (see Sections 7.4 on
page 203 and 7.5.4 on page 216).

® The return_address_register field in a Common Information Entry record
for call frame information is changed to unsigned LEB representation (see
Section 6.4.1 on page 179).

1.8 Changes from Version 1 to Version 2

DWAREF Version 2 describes the second generation of debugging information
based on the DWAREF format. While DWARF Version 2 provides new debugging
information not available in Version 1, the primary focus of the changes for

November 14, 2024 #**WORKING DRAFT*** Page 12

© S NS xR LW N R

—_
(=

11
12
13
14
15

16
17

Chapter 1. Introduction

Version 2 is the representation of the information, rather than the information
content itself. The basic structure of the Version 2 format remains as in Version 1:
the debugging information is represented as a series of debugging information
entries, each containing one or more attributes (name/value pairs). The Version 2
representation, however, is much more compact than the Version 1
representation. In some cases, this greater density has been achieved at the
expense of additional complexity or greater difficulty in producing and
processing the DWAREF information. The definers believe that the reduction in
I/0O and in memory paging should more than make up for any increase in
processing time.

The representation of information changed from Version 1 to Version 2, so that
Version 2 DWAREF information is not binary compatible with Version 1
information. To make it easier for consumers to support both Version 1 and
Version 2 DWARF information, the Version 2 information has been moved to a
different object file section, .debug_info.

A summary of the major changes made in DWARF Version 2 compared to the DWARF
Version 1 may be found in the DWARF Version 2 document.

November 14, 2024 #**WORKING DRAFT*** Page 13

Chapter 1. Introduction

(empty page)

November 14, 2024 #**WORKING DRAFT*** Page 14

© S NS G ™

10
11

12
13
14
15
16
17
18

19
20

21
22
23
24

Chapter 2

General Description

2.1 The Debugging Information Entry (DIE)

DWAREF uses a series of debugging information entries (DIEs) to define a
low-level representation of a source program. Each debugging information entry
consists of an identifying tag and a series of attributes. An entry, or group of
entries together, provide a description of a corresponding entity in the source
program. The tag specifies the class to which an entry belongs and the attributes
define the specific characteristics of the entry.

The set of tag names is listed in Table 2.1 on the following page. The debugging
information entries they identify are described in Chapters 3, 4 and 5.

The debugging information entry descriptions in Chapters 3, 4 and 5 generally include
mention of most, but not necessarily all, of the attributes that are normally or possibly
used with the entry. Some attributes, whose applicability tends to be pervasive and
invariant across many kinds of debugging information entries, are described in this
section and not necessarily mentioned in all contexts where they may be appropriate.
Examples include DW_AT _artificial, the declaration coordinates, and

DW_AT _description, among others.

The debugging information entries are contained in the .debug_info and/or
.debug_info.dwo sections of an object file.

Optionally, debugging information may be partitioned such that the majority of
the debugging information can remain in individual object files without being
processed by the linker. See Section 7.3.2 on page 194 and Appendix F on

page 415 for details.

November 14, 2024 #**WORKING DRAFT*** Page 15

Chapter 2. General Description

Table 2.1: Tag names

DW_TAG_access_declaration
DW_TAG_array_type
DW_TAG_atomic_type
DW_TAG_base_type
DW_TAG_call_site
DW_TAG_call_site_parameter
DW_TAG_catch_block
DW_TAG_class_type
DW_TAG_coarray_type
DW_TAG_common_block
DW_TAG_common_inclusion
DW_TAG_compile_unit
DW_TAG_condition
DW_TAG_const_type
DW_TAG_constant
DW_TAG_dwarf_procedure
DW_TAG_dynamic_type
DW_TAG_entry_point
DW_TAG_enumeration_type
DW_TAG_enumerator
DW_TAG_file_type
DW_TAG_formal_parameter
DW_TAG_friend
DW_TAG_generic_subrange
DW_TAG_immutable_type
DW_TAG_imported_declaration
DW_TAG_imported_module
DW_TAG_imported_unit
DW_TAG_inheritance
DW_TAG_inlined_subroutine
DW_TAG_interface_type
DW_TAG_label
DW_TAG_lexical_block
DW_TAG_member

DW_TAG_module
DW_TAG_namelist
DW_TAG_namelist_item
DW_TAG_namespace
DW_TAG_packed_type
DW_TAG_partial_unit
DW_TAG_pointer_type
DW_TAG_ptr_to_member_type
DW_TAG_reference_type
DW_TAG_restrict_type
DW_TAG_rvalue_reference_type
DW_TAG_set_type
DW_TAG_shared_type
DW_TAG_skeleton_unit
DW_TAG_string_type
DW_TAG_structure_type
DW_TAG_subprogram
DW_TAG_subrange_type
DW_TAG_subroutine_type
DW_TAG_template_alias

DW_TAG_template_type_parameter
DW_TAG_template_value_parameter

DW_TAG_thrown_type
DW_TAG_try_block
DW_TAG_typedef
DW_TAG_type_unit
DW_TAG_union_type
DW_TAG_unspecified_parameters
DW_TAG_unspecified_type
DW_TAG_variable
DW_TAG_variant
DW_TAG_variant_part
DW_TAG_volatile_type
DW_TAG_with_stmt

November 14, 2024

#**WORKING DRAFT***

Page 16

B W N =

© S NS

10

Chapter 2. General Description

As a further option, debugging information entries and other debugging
information that are the same in multiple executable or shared object files may be
found in a separate supplementary object file that contains supplementary debug
sections. See Section 7.3.6 on page 202 for further details.

2.2 Attribute Types

Each attribute value is characterized by an attribute name. No more than one
attribute with a given name may appear in any debugging information entry.
There are no limitations on the ordering of attributes within a debugging
information entry.

The attributes are listed in Table 2.2 following.

Table 2.2: Attribute names

Attribute* Usage

DW_AT_abstract_origin Inline instances of inline subprograms
Out-of-line instances of inline subprograms
DW_AT_accessibility Access declaration (C++, Ada)

Accessibility of base or inherited class (C++)
Accessibility of data member or member

function
DW_AT address_class Pointer or reference types
Subroutine or subroutine type
DW_AT addr_base Base offset for address table
DW_AT _alignment Non-default alignment of type, subprogram
or variable
DW_AT allocated Allocation status of types
DW_AT _artificial Objects or types that are not actually declared
in the source
DW_AT_associated Association status of types
DW_AT _base_types Primitive data types of compilation unit
DW_AT bias Integer bias added to an encoded value
DW_AT _binary_scale Binary scale factor for fixed-point type

Continued on next page

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

November 14, 2024 #**WORKING DRAFT*** Page 17

Chapter 2.

Attribute*

General Description

Identifies or Specifies

DW_AT _bit_size

DW_AT bit_stride

DW_AT _byte_size
DW_AT_byte_stride

DW_AT call all calls

DW _AT call all source_calls

DW_AT call all tail calls

DW_AT call column

DW_AT call data_location
DW_AT call data_value

DW_AT call file
DW_AT call line

DW_AT_call_origin
DW_AT_call_parameter
DW_AT _call_pc
DW_AT_call_return_pc
DW_AT call tail call

Size of a base type in bits

Size of a data member in bits

Array element stride (of array type)
Subrange stride (dimension of array type)
Enumeration stride (dimension of array type)
Size of a data object or data type in bytes
Array element stride (of array type)
Subrange stride (dimension of array type)
Enumeration stride (dimension of array type)

All tail and normal calls in a subprogram are
described by call site entries

All tail, normal and inlined calls in a
subprogram are described by call site and
inlined subprogram entries

All tail calls in a subprogram are described
by call site entries

Column position of inlined subroutine call

Column position of call site of non-inlined
call

Address of the value pointed to by an
argument passed in a call

Value pointed to by an argument passed in a
call

File containing inlined subroutine call

File containing call site of non-inlined call
Line number of inlined subroutine call
Line containing call site of non-inlined call
Subprogram called in a call

Parameter entry in a call

Address of the call instruction in a call
Return address from a call

Call is a tail call

Continued on next page

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

November 14, 2024

#**WORKING DRAFT***

Page 18

Chapter 2.

Attribute*

General Description

Identifies or Specifies

DW_AT call_target
DW_AT _call_target_clobbered

DW_AT call value
DW_AT_calling_convention

DW_AT_common_reference
DW_AT_comp_dir
DW_AT_const_expr

DW_AT const_value

DW_AT_containing_type
DW_AT_count
DW_AT data_bit_offset

DW_AT data_location
DW_AT data_member_location

DW_AT_decimal_scale
DW_AT_decimal_sign
DW_AT decl_column
DW_AT_decl_file
DW_AT_decl_line
DW_AT declaration

DW_AT defaulted

DW_AT default value
DW_AT deleted

Address of called routine in a call

Address of called routine, which may be
clobbered, in a call

Argument value passed in a call
Calling convention for subprograms
Calling convention for types
Common block usage

Compilation directory
Compile-time constant object
Compile-time constant function
Constant object

Enumeration literal value

Template value parameter
Containing type of pointer to member type
Elements of subrange type

Base type bit location

Data member bit location
Indirection to actual data

Data member location

Inherited member location

Decimal scale factor

Decimal sign representation
Column position of source declaration
File containing source declaration
Line number of source declaration

Incomplete, non-defining, or separate entity
declaration

Whether a member function has been
declared as default

Default value of parameter

Whether a member has been declared as
deleted

Continued on next page

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

November 14, 2024

#**WORKING DRAFT***

Page 19

Chapter 2.

Attribute*

General Description

Identifies or Specifies

DW_AT_description
DW_AT_digit_count

DW_AT discr
DW_AT discr_list
DW_AT discr_value
DW_AT dwo_name
DW_AT elemental
DW_AT_encoding
DW_AT_endianity
DW_AT _entry_pc

DW_AT enum_class
DW_AT_explicit
DW_AT_export_symbols

DW_AT extension
DW_AT external

DW_AT_frame_base
DW_AT friend

DW_AT _high pc
DW_AT _identifier_case
DW_AT_import

DW_AT inline

DW_AT _is_optional

Artificial name or description

Digit count for packed decimal or numeric
string type

Discriminant of variant part

List of discriminant values

Discriminant value

Name of split DWAREF object file
Elemental property of a subroutine
Encoding of base type

Endianity of data

Entry address of a scope (compilation unit,
subprogram, and so on)

Type safe enumeration definition

Explicit property of member function
Export (inline) symbols of namespace
Export symbols of a structure, union or class

Previous namespace extension or original
namespace

External subroutine

External variable

Subroutine frame base address
Friend relationship
Contiguous range of code addresses
Identifier case rule

Imported declaration
Imported unit

Namespace alias

Namespace using declaration
Namespace using directive
Abstract instance

Inlined subroutine

Optional parameter

Continued on next page

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

November 14, 2024

#**WORKING DRAFT***

Page 20

Chapter 2.

Attribute*

General Description

Identifies or Specifies

DW_AT_language_name
DW_AT_language_version
DW_AT_linkage name
DW_AT location

DW_AT loclists_base
DW_AT _low_pc

DW_AT lower_bound
DW_AT macros

DW_AT_main_subprogram

DW_AT mutable
DW_AT name

DW_AT namelist_item
DW_AT noreturn
DW_AT num_lanes
DW_AT_object_pointer

DW_AT_ordering
DW_AT_picture_string
DW_AT _priority
DW_AT_producer
DW_AT_prototyped
DW_AT_pure

DW_AT _ranges
DW_AT rank

DW_AT _recursive
DW_AT_reference

Programming language name
Programming language version
Object file linkage name of an entity
Data object location

Location lists base

Code address or range of addresses
Base address of scope

Lower bound of subrange

Macro preprocessor information

(#define, #undef, and so on in C, C++ and
similar languages)

Main or starting subprogram

Unit containing main or starting subprogram
Mutable property of member data

Name of declaration

Path name of compilation source

Namelist item

“no return” property of a subprogram
Number of implicitly parallel lanes |

Object (this, self) pointer of member
function

Array row/column ordering

Picture string for numeric string type
Module priority

Compiler identification

Subroutine prototype

Pure property of a subroutine
Non-contiguous range of code addresses
Dynamic number of array dimensions
Recursive property of a subroutine

&-qualified non-static member function
(C++)

Continued on next page

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

November 14, 2024 #**WORKING DRAFT*** Page 21

Chapter 2.

Attribute*

General Description

Identifies or Specifies

DW_AT return_addr
DW_AT_rnglists_base
DW_AT rvalue_reference

DW_AT _scale_divisor
DW_AT_scale_multiplier
DW_AT_sibling

DW_AT _signature
DW_AT small

DW_AT _specification

DW_AT_start_scope

DW_AT static_link

DW_AT stmt_list
DW_AT_string_length
DW_AT_string_length_bit_size
DW_AT_string_length_byte_size
DW_AT_str_offsets!
DW_AT_tensor

DW_AT threads_scaled
DW_AT_trampoline
DW_AT_type

DW_AT_upper_bound
DW_AT_use_location
DW_AT _use_UTES
DW_AT_variable_parameter

Subroutine return address save location

Base offset for range lists

&&-qualified non-static member function

(C++)

Denominator of rational scale factor

Numerator of rational scale factor

Debugging information entry relationship

Type signature
Scale factor for fixed-point type

Incomplete, non-defining, or separate
declaration corresponding to a declaration

Reduced scope of declaration
Location of uplevel frame

Line number information for unit
String length of string type

Size of string length of string type
Size of string length of string type
String offsets information for unit
Tensor (array) type

Array bound THREADS scale factor (UPC)

Target subroutine

Type of call site

Type of string type components
Type of subroutine return

Type of declaration

Upper bound of subrange

Member location for pointer to member type

Compilation unit uses UTF-8 strings

Non-constant parameter flag

Continued on next page

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

! DW_FORM _str_offsets is new in DWARF Version 6. It replaces DW_AT _str_offsets_base

which is deprecated.

November 14, 2024

#**WORKING DRAFT***

Page 22

© S0 N Y G xR W N R

—_
(=]

Attribute*

Chapter 2. General Description

Identifies or Specifies

DW_AT _virtuality
DW_AT _visibility

Virtuality attribute
Visibility of declaration

DW_AT vtable elem_location Virtual function vtable slot

*Links for attributes come to the left column of this table; links in the right column "fan-out" to one or more descriptions.

The permissible values for an attribute belong to one or more classes of attribute
value forms. Each form class may be represented in one or more ways. For
example, some attribute values consist of a single piece of constant data.
“Constant data” is the class of attribute value that those attributes may have.
There are several representations of constant data, including fixed length data of
one, two, four, eight or 16 bytes in size, and variable length data). The particular
representation for any given instance of an attribute is encoded along with the
attribute name as part of the information that guides the interpretation of a
debugging information entry.

Attribute value forms belong to one of the classes shown in Table 2.3 following.

Table 2.3: Classes of attribute value

Attribute Class

General Use and Encoding

address

addrptr

block

constant

exprval

Refers to some location in the address space of the
described program.

Specifies a location in the DWAREF section that holds a
series of machine address values. Certain attributes use
one of these addresses by indexing relative to this location.

An arbitrary number of uninterpreted bytes of data. The
number of data bytes may be implicit from context or
explicitly specified by an initial unsigned LEB128 value
(see Section 7.6 on page 230) that precedes that number of
data bytes.

One, two, four, eight or sixteen bytes of uninterpreted data,
or data encoded in the variable length format known as
LEB128 (see Section 7.6 on page 230). 0

A DWAREF expression yielding a value (see Section 2.5 on
page 26). A leading unsigned ULEB128 value (see Section
7.6 on page 230) specifies the number of bytes in the
expression.

Continued on next page

November 14, 2024

#**WORKING DRAFT*** Page 23

Chapter 2. General Description

Attribute Class | General Use and Encoding

flag A small constant that indicates the presence or absence of
an attribute.

lineptr Specifies a location in the DWAREF section that holds line
number information.

locdesc A DWAREF location description (see Section 2.6 on

page 39). A leading unsigned ULEB128 value (see Section
7.6 on page 230) specifies the number of bytes in the
location description.

vallist, loclist, | Specifies a location in the DWAREF section that holds value

loclistsptr lists and location lists, which describe objects whose
attributes or location can change during their lifetime.

macptr Specifies a location in the DWAREF section that holds macro
definition information.

reference Refers to one of the debugging information entries that
describe the program. There are four types of reference.
The first is an offset relative to the beginning of the
compilation unit in which the reference occurs and must
refer to an entry within that same compilation unit. The
second type of reference is the offset of a debugging
information entry in any compilation unit, including one
different from the unit containing the reference. The third
type of reference is an indirect reference to a type
definition using an 8-byte signature for that type. The
fourth type of reference is a reference from within the
.debug_info section of the executable or shared object file
to a debugging information entry in the .debug_info
section of a supplementary object file.

rnglist, Specifies a location in the DWAREF section that holds
rnglistsptr non-contiguous address ranges.
string A null-terminated sequence of zero or more (non-null)

bytes. Data in this class are generally printable strings.
Strings may be represented directly in the debugging
information entry or as an offset in a separate string table.

Continued on next page

November 14, 2024 #**WORKING DRAFT*** Page 24

NS o LN

&)

10
11

12
13
14
15

16
17
18
19
20
21
22

23
24
25
26
27
28

Chapter 2. General Description

Attribute Class | General Use and Encoding

stroffsetsptr Specifies a location in the DWAREF section that holds a
series of offsets into the DWAREF section that holds strings.
Certain attributes use one of these offsets by indexing
relative to this location. The resulting offset is then used to
index into the DWAREF string section.

2.3 Relationship of Debugging Information Entries

A variety of needs can be met by permitting a single debugging information entry to
“own” an arbitrary number of other debugging entries and by permitting the same
debugging information entry to be one of many owned by another debugging information
entry. This makes it possible, for example, to describe the static block structure within a
source file, to show the members of a structure, union, or class, and to associate
declarations with source files or source files with shared object files.

The ownership relationship of debugging information entries is achieved
naturally because the debugging information is represented as a tree. The nodes
of the tree are the debugging information entries themselves. The child entries of
any node are exactly those debugging information entries owned by that node.

While the ownership relation of the debugging information entries is represented as a
tree, other relations among the entries exist, for example, a reference from an entry
representing a variable to another entry representing the type of that variable. If all such
relations are taken into account, the debugging entries form a graph, not a tree.

The tree itself is represented by flattening it in prefix order. Each debugging
information entry is defined either to have child entries or not to have child
entries (see Section 7.5.3 on page 211). If an entry is defined not to have children,
the next physically succeeding entry is a sibling. If an entry is defined to have
children, the next physically succeeding entry is its first child. Additional
children are represented as siblings of the first child. A chain of sibling entries is
terminated by a null entry.

In cases where a producer of debugging information feels that it will be
important for consumers of that information to quickly scan chains of sibling
entries, while ignoring the children of individual siblings, that producer may
attach a DW_AT _sibling attribute to any debugging information entry. The value
of this attribute is a reference to the sibling entry of the entry to which the
attribute is attached.

November 14, 2024 #**WORKING DRAFT*** Page 25

© S NS G R

10
11
12
13

14

15
16
17

18
19
20
21
22

23

24
25

26
27
28

29
30

Chapter 2. General Description

2.4 Target Addresses

Addresses, bytes and bits in DWAREF use the numbering and direction
conventions that are appropriate to the current language on the target system.

Many places in this document refer to the size of an address on the target
architecture (or equivalently, target machine) to which a DWARF description
applies. For processors which can be configured to have different address sizes
or different instruction sets, the intent is to refer to the configuration which is
either the default for that processor or which is specified by the object file or
executable file which contains the DWARF information.

For example, if a particular target architecture supports both 32-bit and 64-bit addresses,
the compiler will generate an object file which specifies that it contains executable code
generated for one or the other of these address sizes. In that case, the DWARF debugging
information contained in this object file will use the same address size.

241 Reserved Target Address for Non-Existent Entity

The target address consisting of the largest representable address value (for
example, Oxfff££££f for a 32-bit address) is reserved to indicate that there is no
entity designated by that address.

In some cases a producer may emit machine code or allocate storage for an entity, but a
linker or other subsequent processing step may remove that entity. In that case, rather
than be required to rewrite the DWAREF description to eliminate the relevant DWARF
construct that contains the address of that entity, the processing step may simply update
the address value to the reserved value.

2.5 DWARF Expressions

DWAREF expressions describe how to compute a value or specify a location. They
are expressed in terms of DWAREF operations that operate on a stack of values.

A DWAREF expression is encoded as a stream of operations, each consisting of an
opcode followed by zero or more literal operands. The number of operands is
implied by the opcode.

In addition to the general operations that are defined here, operations that are
specific to location descriptions are defined in Section 2.6 on page 39.

November 14, 2024 #**WORKING DRAFT*** Page 26

[y

© 2 N kxR W

10
11

12

13
14
15
16
17

18
19
20

21
22
23

24
25
26

27
28
29

30
31
32

33
34
35

Chapter 2. General Description

2.5.1 General Operations

Each general operation represents a postfix operation on a simple stack machine.
Each element of the stack has a type and a value, and can represent a value of
any supported base type of the target machine. Instead of a base type, elements
can have a generic type, which is an integral type that has the size of an address
on the target machine and unspecified signedness. The value on the top of the
stack after “executing” the DWARF expression is taken to be the result (the
address of the object, the value of the array bound, the length of a dynamic
string, the desired value itself, and so on).

The generic type is the same as the unspecified type used for stack operations defined in
DWAREF Version 4 and before.

2.5.1.1 Literal Encodings

The following operations all push a value onto the DWAREF stack. Operations
other than DW_OP_const_type push a value with the generic type, and if the
value of a constant in one of these operations is larger than can be stored in a
single stack element, the value is truncated to the element size and the low-order
bits are pushed on the stack.

1. DW_OP_lito, DW_OP _lit1, ..., DW_OP_lit31
The DW_OP_lit<n> operations encode the unsigned literal values from 0
through 31, inclusive.

2. DW_OP_addr
The DW_OP_addr operation has a single operand that encodes a machine
address and whose size is the size of an address on the target machine.

3. DW_OP_constlu, DW_OP_const2u, DW_OP_const4u, DW_OP_const8u
The single operand of a DW_OP_const<n>u operation provides a 1, 2, 4, or
8-byte unsigned integer constant, respectively.

4. DW_OP_constls, DW_OP_const2s, DW_OP_constds, DW_OP_const8s
The single operand of a DW_OP_const<n>s operation provides a 1, 2, 4, or
8-byte signed integer constant, respectively.

5. DW_OP_constu
The single operand of the DW_OP_constu operation provides an unsigned
LEB128 integer constant.

6. DW_OP_consts
The single operand of the DW_OP_consts operation provides a signed
LEB128 integer constant.

November 14, 2024 #**WORKING DRAFT*** Page 27

G R W N =

© S NS

10
11

12
13
14

15
16
17
18
19
20
21
22
23

24
25
26

27

28
29
30
31
32
33
34

7. DW_OP_addrx

Chapter 2. General Description

The DW_OP_addrx operation has a single operand that encodes an unsigned
LEB128 value, which is a zero-based index into the .debug_addr section,
where a machine address is stored. This index is relative to the value of the

DW_AT_addr