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1 About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the
full Ada programming language. It documents the features of the compiler and tools, and
explains how to use them to build Ada applications.

GNAT implements Ada 95, Ada 2005, Ada 2012, and Ada 2022. You may also invoke it
in Ada 83 compatibility mode. By default, GNAT assumes Ada 2012, but you can use a
compiler switch ([Compiling Different Versions of Ada], page 145) to explicitly specify the
language version. Throughout this manual, references to ‘Ada’ without a year suffix apply
to all versions of the Ada language starting with Ada 95.

GNAT supports both the GCC and LLVM back end compilation families. Most GNAT
versions use the GCC back end, but some are now available using the LLVM back end.
In some places in this manual, we distinguish between the two back ends, but in most
cases, everything in this manual applies to both back ends. We refer to GNAT with the
LLVM back end as ‘GNAT LLVM’. See [GNAT with the LLVM Back End], page 177, for
limitations of GNAT LLVM.

1.1 What This Guide Contains

This guide contains the following chapters:

* [Getting Started with GNAT], page 3, describes how to get started compiling and
running Ada programs with the GNAT Ada programming environment.

* [The GNAT Compilation Model], page 6, describes the compilation model used by
GNAT.

* [Building Executable Programs with GNAT], page 76, describes how to use the main
GNAT tools to build executable programs, and it also gives examples of using the GNU
make utility with GNAT.

* [GNAT Utility Programs|, page 178, explains the various utility programs that are
included in the GNAT environment.

* |[GNAT and Program Execution], page 184, covers a number of topics related to run-
ning, debugging, and tuning the performance of programs developed with GNAT.

Appendices cover several additional topics:

* [Platform-Specific Information], page 242, describes the different run-time library im-
plementations and also presents information on how to use GNAT on several specific
platforms.

* [Example of Binder Output File|, page 271, shows the source code for the binder output
file for a sample program.

* [Elaboration Order Handling in GNAT], page 287, describes how GNAT helps you deal
with elaboration order issues.

* [Inline Assembler], page 309, shows how to use the inline assembly facility in an Ada
program.
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1.2 What You Should Know before Reading This Guide

This guide assumes a basic familiarity with the Ada 95 language, as described in the In-
ternational Standard ANSI/ISO/IEC-8652:1995, January 1995. Reference manuals for Ada
95, Ada 2005, and Ada 2012 are included in the GNAT documentation package.

1.3 Related Information

For further information about Ada and related tools, please refer to the following documents:

*

Ada 95 Reference Manual, Ada 2005 Reference Manual, and Ada 2012 Reference Man-
ual, which contain reference material for the several revisions of the Ada language
standard.

GNAT Reference_Manual, which contains all reference material for the GNAT imple-
mentation of Ada.

Using GNAT Studio, which describes the GNAT Studio Integrated Development En-
vironment.

GNAT Studio Tutorial, which introduces the main GNAT Studio features through
examples.

Debugging with GDB, for all details on the use of the GNU source-level debugger.

GNU Emacs Manual, for full information on the extensible editor and programming
environment Emacs.

1.4 Conventions

Following are examples of the typographical and graphic conventions used in this guide:

*

*

*

*

Functions, utility program names, standard names, and classes.
Option flags
File names
Variables
‘Emphasis’
[optional information or parameters|
Examples are described by text
and then shown this way.

Commands that you enter are shown as preceded by a prompt string comprising the $
character followed by a space.

Full file names are shown with the ¢/’ character as the directory separator; e.g., parent-
dir/subdir/myfile.adb. If you are using GNAT on a Windows platform, please note
that you should use the ‘\’ character instead.



2 Getting Started with GNAT

This chapter describes how to use GNAT’s command line interface to build executable Ada
programs. On most platforms a visually oriented Integrated Development Environment is
also available: GNAT Studio. GNAT Studio offers a graphical “look and feel”, support
for development in other programming languages, comprehensive browsing features, and
many other capabilities. For information on GNAT Studio please refer to the GNAT Studio
documentation.

2.1 System Requirements

Even though any machine can run the GNAT toolset and GNAT Studio IDE, to get the
best experience we recommend using a machine with as many cores as possible, allowing
individual compilations to run in parallel. A comfortable setup for a compiler server is a
machine with 24 physical cores or more, with at least 48 GB of memory (2 GB per core).

For a desktop machine, we recommend a minimum of 4 cores (8 is preferred), with at least
2GB per core (so 8 to 16GB).

In addition, for running and smoothly navigating sources in GNAT Studio, we recommend
at least 1.5 GB, plus 3 GB of RAM per million source lines of code. So we recommend at
least 3 GB for 500K lines of code and 7.5 GB for 2 million lines of code.

Using fast, local drives can make a significant difference in build and link times. You should
avoid network drives such as NFS, SMB, or worse, configuration management filesystems
(such as ClearCase dynamic views) as much as possible since these will produce very de-
graded performance (typically 2 to 3 times slower than on fast, local drives). If you cannot
avoid using such slow drives for accessing source code, you should at least configure your
project file so the result of the compilation is stored on a drive local to the machine per-
forming the compilation. You can do this by setting the Object_Dir project file attribute.

2.2 Running GNAT

You need to take three steps to create an executable file from an Ada source file:
* You must compile the source file(s).
* You must bind the file(s) using the GNAT binder.
* You must link all appropriate object files to produce an executable.
You most commonly perform all three steps by using the gnatmake utility program. You

pass it the name of the main program and it automatically performs the necessary compi-
lation, binding, and linking steps.

2.3 Running a Simple Ada Program

You may use any text editor to prepare an Ada program. (If you use Emacs, an optional
Ada mode may be helpful in laying out the program.) The program text is a normal text
file. We will assume in our initial example that you have used your editor to prepare the
following standard format text file named hello.adb:

with Ada.Text_IO; use Ada.Text_I0;
procedure Hello is
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begin
Put_Line ("Hello WORLD!");
end Hello;

With the normal default file naming conventions, GNAT requires that each file contain a
single compilation unit whose file name is the unit name with periods replaced by hyphens;
the extension is ads for a spec and adb for a body. You can override this default file
naming convention by use of the special pragma Source_File_Name (see [Using Other File
Names], page 12). Alternatively, if you want to rename your files according to this default
convention, which is probably more convenient if you will be using GNAT for all your
compilations, then you use can use the gnatchop utility to generate correctly-named source
files (see [Renaming Files with gnatchop], page 20).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):

$ gcc -c hello.adb

gcc is the command used to run the compiler. It is capable of compiling programs in several
languages, including Ada and C. It assumes you have given it an Ada program if the file

extension is either .ads or .adb, in which case it will call the GNAT compiler to compile
the specified file.

The -c switch is required. It tells gcc to only do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so you must
always specify the -c.)

This compile command generates a file hello.o, which is the object file corresponding to
your Ada program. It also generates an ‘Ada Library Information’ file hello.ali, which
contains additional information used to check that an Ada program is consistent.

To build an executable file, use either gnatmake or gprbuild with the name of the main
file: these tools are builders that perform all the necessary build steps in the correct order.
In particular, these builders automatically recompile any sources that have been modified
since they were last compiled, as well as sources that depend on such modified sources, so
that ‘version skew’ is avoided.

$ gnatmake hello.adb
The result is an executable program called hello, which you can run by entering:
$ hello
assuming that the current directory is on the search path for executable programs.
and, if all has gone well, you will see:
Hello WORLD!

appear in response to this command.

2.4 Running a Program with Multiple Units

Consider a slightly more complicated example with three files: a main program and the
spec and body of a package:
package Greetings is
procedure Hello;
procedure Goodbye;
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end Greetings;

with Ada.Text_IO; use Ada.Text_I0;
package body Greetings is
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

procedure Goodbye is
begin
Put_Line ("Goodbye WORLD!");
end Goodbye;
end Greetings;

with Greetings;
procedure Gmain is
begin
Greetings.Hello;
Greetings.Goodbye;
end Gmain;

Following the one-unit-per-file rule, place this program in the following three separate files:

‘greetings.ads’
spec of package Greetings

‘greetings.adb’
body of package Greetings

‘gmain.adb’
body of main program

Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need compile the
body. If you want to submit these files to the compiler for semantic checking and not code
generation, use the —gnatc switch:

$ gcc -c greetings.ads -gnatc

Although you can do the compilation in separate steps, in practice it’s almost always more
convenient to use the gnatmake or gprbuild tools:

$ gnatmake gmain.adb



3 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that
used by other languages such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a centralized program library. The
chapter covers the following material:

* Topics related to source file makeup and naming
* [Source Representation], page 7,
* [Foreign Language Representation], page 8,

* [File Naming Topics and Utilities], page 11,

* [Configuration Pragmas], page 25,
* [Generating Object Files], page 28,
* [Source Dependencies], page 28,
* [The Ada Library Information Files|, page 29,
* [Binding an Ada Program|, page 30,
* [GNAT and Libraries], page 30,
* [Conditional Compilation], page 39,
* [Mixed Language Programming], page 51,
* [GNAT and Other Compilation Models|, page 73,
*
[

Using GNAT Files with External Tools], page 75,

3.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set plus additional characters used for
representing foreign languages (see [Foreign Language Representation], page 8, for support
of non-USA character sets). The format effector characters are represented using their
standard ASCII encodings, as follows:

Character Effect Code

VT Vertical tab 16#0B#
HT Horizontal tab 16#09%#
CR Carriage return 16#0D#
LF Line feed 16#0A#
FF Form feed 16#0C#

Source files are in standard text file format. In addition, GNAT recognizes a wide variety
of stream formats, in which the end of physical lines is marked by any of the following
sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files imported from
other operating systems.
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The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other, legacy, operating systems where this
code is used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package ‘spec’)
and the corresponding body in separate files. An Ada ‘compilation’ (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you place each subunit
or child unit in a separate file.

3.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada as well as several other non-
standard character sets for use in localized versions of the compiler ([Character Set Control],
page 147).

3.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859,
part 1. The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII
coding but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file a-chlatl.ads. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

3.2.2 Other 8-Bit Codes
GNAT also supports several other 8-bit coding schemes:

‘ISO 8859-2 (Latin-2)’

Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.
‘ISO 8859-3 (Latin-3)’

Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.
‘ISO 8859-4 (Latin-4)’

Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.
‘ISO 8859-5 (Cyrillic)’

ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase

equivalence.
‘ISO 8859-15 (Latin-9)’

ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and lower-

case equivalence.

‘IBM PC (code page 437)’
This code page is the normal default for PCs in the US. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
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Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

‘IBM PC (code page 850)’
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

‘Full Upper 8-bit’
Any character in the range 80-FF is allowed in identifiers and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used for
some foreign character sets (e.g., the typical method of representing Chinese
characters on the PC).

‘No Upper-Half’
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file csets.adb in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

3.2.3 Wide_Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

‘Hex Coding’
In this encoding, a wide character is represented by the following five character
sequence:

ESC a b c d

where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide_Character set.

‘Upper-Half Coding’
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, ‘a’ is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

‘Shift JIS Coding’
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. You can only
use characters defined in the JIS code set table with this encoding method.
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‘EUC Coding’
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. You can only use characters defined in the JIS code set table with
this encoding method.

‘UTF-8 Coding’
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#OxxxxXXXXH#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxXXXXX#
16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxXx# 2#10xXXXXXX#

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences the use of these sequences is documented in the
following section on wide wide characters.)

‘Brackets Coding’
In this encoding, a wide character is represented by the following eight character
sequence:

["abcd"]

where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, [‘A345’] is used to represent the wide
character with code 16#A345#. You can also (though you are not required
to) use the Brackets coding for upper half characters. For example, you can
represent the code 16#A3# as ['A3'].

This scheme is compatible with use of the full Wide_Character set, and is also
the method used for wide character encoding in some standard ACATS (Ada
Conformity Assessment Test Suite) test suite distributions.

Note: Some of these coding schemes do not permit the full use of the
Ada character set. For example, neither Shift JIS nor EUC allow the
use of the upper half of the Latin-1 set.

3.2.4 Wide_Wide_Character Encodings

GNAT allows wide wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

‘UTF-8 Coding’
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
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the representation of character codes with values greater than 16#FFFF# is a
is a four, five, or six byte sequence:
16#01_0000#-16#10_FFFF#: 11110xxx 10xxxxxXx 10XXXXXX
10xXXXXXX
16#0020_0000#-16#03FF_FFFF#: 111110xx 10xxxxxXx 10XXXXXX
10xxxxxx 10XXXXXX
16#0400_0000#-16#7FFF_FFFF#: 1111110x 10xxxxxx 10XXXXXX
10xxxxxx 10xxxx%xxX 10XXXXXX
where the xxx bits correspond to the left-padded bits of the 32-bit character
value.

‘Brackets Coding’
In this encoding, a wide wide character is represented by the following ten or
twelve byte character sequence:

["abcdef "]

["abcdefgh"]
where a-h are the six or eight hexadecimal characters (using uppercase letters)
of the wide wide character code. For example, [“1F4567”] is used to represent
the wide wide character with code 16#001F_4567#.
This scheme is compatible with use of the full Wide_Wide_Character set, and

is also the method used for wide wide character encoding in some standard
ACATS (Ada Conformity Assessment Test Suite) test suite distributions.

3.3 File Naming Topics and Utilities

GNAT has a default file naming scheme, but and also provides you with a high degree
of control over how the names and extensions of your source files correspond to the Ada
compilation units that they contain.

3.3.1 File Naming Rules

GNAT determines the default file name by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit, replacing the separating dots
with hyphens, and using lowercase for all letters.

An exception occurs if the file name generated by the above rules starts with one of the
characters a, g, i, or s and the second character is a hyphen. In this case, the character
tilde is used in place of the hypen. This special rule avoids clashes with the standard names
for child units of the packages System, Ada, Interfaces, and GNAT, which use the prefixes
s-, a-, i-, and g-, respectively.

The file extension is .ads for a spec and .adb for a body. The following table shows some
examples of these rules.

Source File Ada Compilation Unit
main.ads Main (spec)

main.adb Main (body)
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arith_functions.ads
arith_functions.adb
func-spec.ads
func-spec.adb
main-sub.adb

a“bad.adb

Arith_Functions (package spec)
Arith_Functions (package body)
Func.Spec (child package spec)

Func.Spec (child package body)
Sub (subunit of Main)

A.Bad (child package body)

12

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available to
shorten such long file names (called file name ‘krunching’). You may find this particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. [Using gnatkr], page 18.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively, you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the gnatchop utility to produce source files that
follow the GNAT naming conventions. (For details see [Renaming Files with gnatchop],
page 20.)

Note: in the case of Windows or Mac OS operating systems, case is not significant. So, for
example, on Windows if the canonical name is main-sub.adb, you can use the file name
Main-Sub.adb instead. However, case is significant for other operating systems, so, for
example, if you want to use other than canonically cased file names on a Unix system, you
need to follow the procedures described in the next section.

3.3.2 Using Other File Names

The previous section described the default rules used by GNAT to determine the file name
in which a given unit resides. It is usually convenient to follow these default rules, and if
you follow them, the compiler knows without being explicitly told where to find all the files
it needs.

However, in some cases, particularly when a program is imported from another Ada compiler
environment, it may be more convenient for you to specify which file names contain which
units. GNAT allows arbitrary file names to be used by means of the Source_File_Name
pragma. The form of this pragma is as shown in the following examples:

pragma Source_File_Name (My_Utilities.Stacks,
Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,
Body_File_Name => "myutilst.ada");

As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
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identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

The source file name pragma is a configuration pragma, which means that normally you will
place it in the gnat.adc file used to hold configuration pragmas that apply to a complete
compilation environment. For more details on how the gnat.adc file is created and used
see [Handling of Configuration Pragmas], page 26.

GNAT allows you to specify completely arbitrary file names using the source file name
pragma. However, if the file name specified has an extension other than .ads or .adb you
must use a special syntax when compiling the file. The name on the command line in this
case must be preceded by the special sequence -x followed by a space and the name of the
language, here ada, as in:

$ gcc -c -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to gnatmake). Note that if the
extension is also non-standard, you must include it in the gnatmake command; it may not
be omitted.

3.3.3 Alternative File Naming Schemes

The previous section described the use of the Source_File_Name pragma to allow arbitrary
names to be assigned to individual source files. However, this approach requires one pragma
for each file and, especially in large systems, can result in very long gnat.adc files, which
can create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than the
standard default naming scheme previously described. An alternative scheme for naming is
specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (
Spec_File_Name => FILE_NAME_PATTERN
[ , Casing => CASING_SPEC]
[ , Dot_Replacement => STRING_LITERAL ] );

pragma Source_File_Name (
Body_File_Name => FILE_NAME_PATTERN
[ , Casing => CASING_SPEC ]
[ , Dot_Replacement => STRING_LITERAL ] ) ;

pragma Source_File_Name (
Subunit_File_Name => FILE_NAME_PATTERN
[ , Casing => CASING_SPEC ]
[ , Dot_Replacement => STRING_LITERAL ] ) ;

FILE_NAME_PATTERN ::= STRING_LITERAL
CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
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all lower-case letters, or mixed-case. If no Casing parameter is used, the default is all
lower-case.

You use the optional Dot_Replacement string to replace any periods that occur in subunit
or child unit names. If you don’t specify a Dot_Replacement argument, separating dots
appear unchanged in the resulting file name. The above syntax indicates that the Casing
argument must appear before the Dot_Replacement argument, but you can write these
arguments in any order.

As indicated, you can specify different naming schemes for bodies, specs, and subunits.
Quite often, the rule for subunits is the same as the rule for bodies, in which case, you need
not provide a separate Subunit_File_Name rule; in this case the Body_File_name rule is
used for subunits as well.

You can also use the separate rule for subunits to implement the rather unusual case of
a compilation environment (e.g., a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

File name translation consists of the following steps:

* If there is a specific Source_File_Name pragma for the given unit, this is always used
and any general pattern rules are ignored.

If there is a pattern type Source_File_Name pragma that applies to the unit, the
resulting file name is used if the file exists. If more than one pattern matches, the
latest one is tried first and the first attempt that results in a reference to a file that
exists is used.

If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, specs end with .1.ada, and bodies end with .2.ada. GNAT will follow this scheme
if the following two pragmas appear:

pragma Source_File_Name
(Spec_File_Name => ".1.ada");

pragma Source_File_Name
(Body_File_Name => ".2.ada");

The default GNAT scheme is equivalent to providing the following default pragmas:

pragma Source_File_Name
(Spec_File_Name => ".ads", Dot_Replacement => "-");
pragma Source_File_Name
(Body_File_Name => ".adb", Dot_Replacement => "-");
Our final example implements a scheme typically used with one of the legacy Ada 83
compilers, where the separator character for subunits was ‘__’ (two underscores), specs
were identified by adding _.ADA, bodies by adding .ADA, and subunits by adding .SEP. All
file names were upper case. Child units were not present, of course, since this was an Ada 83
compiler, but it seems reasonable to extend this scheme to use the same double underscore
separator for child units.
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pragma Source_File_Name
(Spec_File_Name => "_.ADA",
Dot_Replacement => "__",
Casing = Uppercase);

pragma Source_File_Name
(Body_File_Name => ".ADA",
Dot_Replacement => "__",
Casing = Uppercase) ;

pragma Source_File_Name
(Subunit_File_Name => ".SEP",
Dot_Replacement => "__",
Casing = Uppercase);

3.3.4 Handling Arbitrary File Naming Conventions with gnatname

3.3.4.1 Arbitrary File Naming Conventions

The GNAT compiler must know the source file name of a compilation unit in order to
compile it. When using the standard GNAT default file naming conventions (.ads for
specs, .adb for bodies), it does not need additional information.

When the source file names do not follow the standard GNAT default file naming conven-
tions, you must give the GNAT compiler additional information through a configuration
pragmas file ([Configuration Pragmas], page 25) or a project file. When the non-standard
file naming conventions are well-defined, a small number of pragmas Source_File_Name
specifying a naming pattern ([Alternative File Naming Schemes|, page 13) may be suffi-
cient. However, if the file naming conventions are irregular or arbitrary, you must define
a number of pragma Source_File_Name for individual compilation units. To help main-
tain the correspondence between compilation unit names and source file names within the
compiler, GNAT provides a tool gnatname to generate the required pragmas for a set of
files.

3.3.4.2 Running gnatname
The usual form of the gnatname command is:

$ gnatname [ switches ] naming pattern [ naming_patterns ]
[--and [ switches ] naming pattern [ naming patterns ]]

All of the arguments are optional. If invoked without any arguments, gnatname will display
its usage.

When used with at least one naming pattern, gnatname attempts to find all the compilation
units in files that follow at least one of the naming patterns. To find these compilation units,
gnatname uses the GNAT compiler in syntax-check-only mode on all regular files.

One or several ‘Naming Patterns’ may be given as arguments to gnatname. FEach Naming
Pattern is enclosed between double quotes (or single quotes on Windows). A Naming
Pattern is a regular expression similar to the wildcard patterns used in file names by the
Unix shells or the DOS prompt.

You may call gnatname with several sections of directories/patterns. Sections are separated
by the switch —-—and. In each section, you must include at least one pattern. If you don’t
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specify a directory a section, the current directory (or the project directory if P is used) is
used. The options other that the directory switches and the patterns apply globally even if
they are in different sections.

Examples of Naming Patterns are:

"x.[12] .ada"

"x.ad[sb]*"

llbody_*ll "SpeC_*"
For a more complete description of the syntax of Naming Patterns, see the second kind of
regular expressions described in g-regexp.ads (the ‘Glob’ regular expressions).

When invoked without the switch -P, gnatname will create a configuration pragmas file
gnat.adc in the current working directory, with pragmas Source_File_Name for each file
that contains a valid Ada unit.

3.3.4.3 Switches for gnatname

Switches for gnatname must precede any specified Naming Pattern.

You may specify any of the following switches to gnatname:

--version
Display Copyright and version, then exit disregarding, all other options.

--help

If --version was not used, display usage, then exit, disregarding all other
options.

--subdirs="dir'
Actual object, library or exec directories are subdirectories <dir> of the specified
ones.

--no-backup
Do not create a backup copy of an existing project file.

——and

Start another section of directories/patterns.

-c filename'
Create a configuration pragmas file filename (instead of the default gnat.adc).
There may be zero, one, or more space between -c and filename. filename
may include directory information. filename must be writable. You can specify
only one switch —c. When a switch -c is specified, you may not specify switch
-P (see below).

-d~dir'
Look for source files in directory dir. You may put zero, one or more spaces
between -d and dir. dir may end with /**, i.e., you may write it the form
root_dir/#*x*. In this case, the directory root_dir and all of its subdirectories,
recursively, have to be searched for sources. When you specify a -d switch,
the current working directory will is not searched for source files unless you
explicitly specify it with a -d or -D switch. You may specify several switches
-d. If dir is a relative path, it is relative to the directory of the configuration
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pragmas file specified with switch -c, or to the directory of the project file
specified with switch -P or, if you don’t specify either switch -c or switch -P,
it’s relative to the current working directory. The directory you specified with
switch -d must exist and be readable.

-D"filename'

-eL

Look for source files in all directories listed in text file filename. You may
place zero, one or more spaces between -D and filename. filename must be
an existing, readable text file. Each nonempty line in filename must be a
directory. Specifying switch -D is equivalent to specifying as many switches -d
as there are nonempty lines in file.

Follow symbolic links when processing project files.

-f pattern'

-P proj'

Foreign patterns. Using this switch, you can add sources of languages other
than Ada to the list of sources of a project file, but it’s only useful if you also
specify a -P switch. For example,

gnatname -Pprj -f"*.c" "x.ada"

looks for Ada units in all files with the .ada extension, and adds the C files
with extension .c to the list of file for project prj.gpr .

Output usage (help) information. The output is written to stdout.

Create or update project file proj. You may place zero, one or more space
between -P and proj. proj may include directory information. proj

must be writable. There may be only one switch -P. When you specify
switch =P, you may not also include switch -c. On all platforms except
VMS when gnatname is invoked for an existing project file <proj>.gpr-,
gnatname creates a backup copy of the project file in the project directory
with file name <proj>.gpr.saved_x where x is the first non negative
number that creates a unique filename.

Verbose mode. Output detailed explanation of what it’s doing to stdout. This
includes name of the file written, the name of the directories searched, and, for
each file in those directories whose name matches at least one of the Naming
Patterns, an indication of whether the file contains a unit, and, if so, the name
of the unit.

Very verbose mode. In addition to the output produced in verbose mode (a
single -v switch), for each file in the searched directories whose name matches
none of the Naming Patterns, gnatname indicates that there is no match.
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-x pattern'
Excluded patterns. Using this switch, you can exclude some files that otherwise
would match the name patterns. For example,

gnatname -x "*_nt.ada" "*x.ada"

looks for Ada units in all files with the .ada extension, except those whose
names end with _nt.ada.

3.3.4.4 Examples of gnatname Usage
$ gnatname -c /home/me/names.adc -d sources "[a-z]*.adax"

In this example, the directory /home/me must already exist and be writable. In addition,
the directory /home/me/sources (specified by -d sources) must exist and be readable.

Note the optional spaces after -c and -d.

$ gnatname -P/home/me/proj -x "*_nt_body.ada"
-dsources -dsources/plus -Dcommon_dirs.txt "body_x" "spec_x"

Note that you may use several -d switches, even in conjunction with one or several -D
switches. This example illustrates multiple Naming Patterns and one excluded pattern.

3.3.5 File Name Krunching with gnatkr

Here we discuss the method used by the compiler to shorten the default file names chosen
for Ada units so that they do not exceed the maximum length permitted. We also describe
the gnatkr utility, which you can use to determine the result of applying this shortening.

3.3.5.1 About gnatkr

GNAT requires that the file name must be derived from the unit name. The default rule is
as follows:

* Take the unit name and replace all dots by hyphens.

* If such a replacement occurs in the second character position of a name, and the first
character is a, g, s, or i, then replace the dot by the character ~ (tilde) instead of a
hyphen.

This exception avoids clashes with the standard names for children of System, Ada,
Interfaces, and GNAT, which use the prefixes s-, a-, i-, and g-, respectively.

The -gnatk™nn' switch of the compiler activates a ‘krunching’ circuit that limits file names
to nn characters (where nn is a decimal integer).

You can use the gnatkr utility to determine the krunched name for a given file when
krunched to a specified maximum length.

3.3.5.2 Using gnatkr
You invoke the gnatkr command as follows:
$ gnatkr name [ length ]

name is the uncrunched file name, derived from the name of the unit in the default manner
described in the previous section (i.e., in particular all dots are replaced by hyphens). You
may or may not include an extension (defined as a suffix of the form period followed by
arbitrary characters other than period) in the filename. If you do, gnatkr will preserve it
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in the output. For example, when krunching hellofile.ads to eight characters, the result
will be hellofil.ads.

Note: for compatibility with previous versions of gnatkr, you can use dots in the name
instead of hyphens, but gnatkr always interprets the last dot as the start of an extension.
So if you pass gnatkr an argument such as Hello.World.adb, it treats it exactly as if the
first period had been a hyphen, so, for example, krunching to eight characters gives the
result hellworl.adb.

Note that the result is always all lower case. Other characters are folded as required.

length represents the length of the krunched name. The default if you don’t specify it, is 8
characters. A length of zero means unlimited, in other words don’t chop except for system
files where the implied crunching length is always eight characters.

The output is the krunched name. The output has an extension only if the original argument
was a file name with an extension.

3.3.5.3 Krunching Method

The initial file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters, except that a hyphen in the second
character position is replaced by a tilde if the first character is a, i, g, or s. The extension
is .ads for a spec and .adb for a body. Krunching does not affect the extension, but the
file name is shortened to the specified length by following these rules:

* The name is divided into segments separated by hyphens, tildes, or underscores and all
hyphens, tildes, and underscores are eliminated. If this leaves the name short enough,
we are done.

If the name is too long, the longest segment is located (left-most if there are two of
equal length) and shortened by dropping its last character. This is repeated until the
name is short enough.

As an example, consider the krunching of our-strings-wide_fixed.adb to fit the
name into 8 characters, as required by some operating systems:
our-strings-wide_fixed 22
our strings wide fixed 19
our string wide fixed 18
our strin wide fixed 17

our stri wide fixed 16
our stri wide fixe 15
our str wide fixe 14
our str wid fixe 13
our str wid fix 12
ou str wid fix 11
ou st wid fix 10
ou st wi fix 9

ou st wi fi 8

Final file name: oustwifi.adb

* The file names for all predefined units are always krunched to eight characters. The
krunching of these predefined units uses the following special prefix replacements:
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Prefix Replacement
ada- a-
gnat- g-
interfac es- i-
system- s-

These system files have a hyphen in the second character position. That’s is why
normal user files replace such a character with a tilde.

As an example of this special rule, consider ada-strings-wide_fixed.adb, which gets
krunched as follows:

ada-strings-wide_fixed 22
a- strings wide fixed 18
a- string wide fixed 17
a- strin wide fixed 16

a- stri wide fixed 15
a- stri wide fixe 14
a- str wide fixe 13
a- str wid fixe 12
a- str wid fix 11
a- st wid fix 10
a- st wi fix 9

a- st wi fi 8

Final file name: a-stwifi.adb

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names. If file name krunching is used, it’is your responsibility to ensure that no name clashes
occur. The utility program gnatkr is supplied so that you can conveniently determine the
krunched name of a file.

3.3.5.4 Examples of gnatkr Usage

$ gnatkr very_long_unit_name.ads --> velounna.ads

$ gnatkr grandparent-parent-child.ads --> grparchi.ads

$ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads

$ gnatkr grandparent-parent-child --> grparchi

$ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads

$ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads

3.3.6 Renaming Files with gnatchop

This section discusses how to handle files with multiple units by using the gnatchop utility.
You will also find this utility useful in renaming files to meet the standard GNAT default
file naming conventions.
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3.3.6.1 Handling Files with Multiple Units

GNAT’s fundamental compilation model requires that a file submitted to the compiler
contain only one unit and there be a strict correspondence between the file name and the
unit name.

If you want to have your files contain multiple units, perhaps to maintain compatibility
with some other Ada compilation system, you can use gnatname to generate or update your
project files, which can be processed by GNAT.

See [Handling Arbitrary File Naming Conventions with gnatname], page 15, for more details
on how to use gnatname.

Alternatively, if you want to permanently restructure a set of ‘foreign’ files so that they
match the GNAT rules, and do the remaining development using the GNAT structure, you
can simply use gnatchop once, generate the new set of files containing only one unit per
file, and work with them from that point on.

Note that if your file containing multiple units starts with a byte order mark (BOM) speci-
fying UTF-8 encoding, each file generated by gnatchop will start with a copy of this BOM,
meaning that they can be compiled automatically in UTF-8 mode without you needing to
specify an explicit encoding.

3.3.6.2 Operating gnatchop in Compilation Mode

The basic function of gnatchop is to take a file with multiple units and split it into separate
files. The boundary between units is reasonably clear, except for the issue of comments
and pragmas. In default mode, the rule is that any pragmas between units belong to the
previous unit, except that configuration pragmas always belong to the following unit. Any
comments belong to the following unit. These rules almost always result in the right choice
of the split point without you needing to mark it explicitly and you’ll likely find this default
to be what you want. In this default mode, you may not submit a file containing only
configuration pragmas, or one that ends in configuration pragmas, to gnatchop.

However, using a special switch to activate ‘compilation mode’, gnatchop can perform
another function, which is to provide exactly the semantics required by the RM for the
handling of configuration pragmas in a compilation. In the absence of configuration pragmas
at the main file level, this switch has no effect, but it causes such configuration pragmas to
be handled in a very different manner.

First, in compilation mode, if you give gnatchop a file that consists of only configuration
pragmas, it appends this file to the gnat.adc file in the current directory. This behavior
provides the required behavior described in the RM for the actions to be taken on submitting
such a file to the compiler, namely that these pragmas should apply to all subsequent
compilations in the same compilation environment. Using GNAT, the current directory,
possibly containing a gnat . adc file is the representation of a compilation environment. For
more information on the gnat.adc file, see [Handling of Configuration Pragmas|, page 26.

Second, in compilation mode, if you give gnatchop a file that starts with configuration
pragmas and contains one or more units, then configuration pragmas are prepended to each
of the chopped files. This behavior provides the required behavior described in the RM for
the actions to be taken on compiling such a file, namely that the pragmas apply to all units
in the compilation, but not to subsequently compiled units.
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Finally, if configuration pragmas appear between units, they are appended to the previous
unit. This results in the previous unit being illegal, since the compiler does not accept
configuration pragmas that follow a unit. This provides the required RM behavior that
forbids configuration pragmas other than those preceding the first compilation unit of a
compilation.

For most purposes, you will use gnatchop in default mode. You only use the compilation
mode described above if you need precisely accurate behavior with respect to compila-
tions and you have files that contain multiple units and configuration pragmas. In this
circumstance, the use of gnatchop with the compilation mode switch provides the required
behavior. This is the mode in which GNAT processes the ACVC tests.

3.3.6.3 Command Line for gnatchop
You call gnatchop as follows:

$ gnatchop switches file_name [file_name ...]
[directory]

The only required argument is the file name of the file to be chopped. There are no
restrictions on the form of this file name. The file itself contains one or more Ada units,
in normal GNAT format, concatenated together. As shown, more than one file may be
presented to be chopped.

When run in default mode, gnatchop generates one output file in the current directory for
each unit in each of the files.

directory, if specified, gives the name of the directory to which the output files will be
written. If you don’t specify it, all files are written to the current directory.

For example, given a file called hellofiles containing

procedure Hello;

with Ada.Text_IO; use Ada.Text_I0;
procedure Hello is
begin
Put_Line ("Hello");
end Hello;

the command
$ gnatchop hellofiles

generates two files in the current directory, one called hello.ads containing the single line
that is the procedure spec, and the other called hello.adb containing the remaining text.
The original file is not affected. You can compile these generated files in the normal manner.

When you invoke gnatchop on a file that is empty or contains only empty lines and/or
comments, gnatchop will complete normally, but won’t produce any new file.

For example, given a file called toto.txt containing
-— Just a comment
the command

$ gnatchop toto.txt
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will not produce any new file and will result in the following warnings:

toto.txt:1:01: warning: empty file, contains no compilation units

no
no

compilation units found
source files written

3.3.6.4 Switches for gnatchop

gnatchop recognizes the following switches:

—--version

--help

-gnat xxx'

-k mm'

Display copyright and version, then exit, disregarding all other options.

If --version is not present, display usage, then exit, disregarding all other
options.

Causes gnatchop to operate in compilation mode, in which configuration prag-
mas are handled according to strict RM rules. See the previous section for a
full description of this mode.

This passes the given —gnat~xxx' switch to gcc which is used to parse the given
file. Not all ‘xxx’ options make sense, but, for example, the use of -gnati2
allows gnatchop to process a source file that uses Latin-2 coding for identifiers.

Causes gnatchop to generate a brief help summary to the standard output file
showing usage information.

Limit generated file names to the specified number mm of characters. This
is useful if the resulting set of files is required to be interoperable with
systems which limit the length of file names. You may not place any
space between the -k and the numeric value. You can omit the numeric
value, in which case gnatchop will use a default of -k8, suitable for use
with DOS-like file systems. If you don’t specify a -k switch, there is no
limit on the length of file names.

P

-r

Causes the file modification time stamp of the input file to be preserved and used
for the time stamp of the output file(s). You may find this useful for preserving
coherency of time stamps in an environment where gnatchop is used as part of
a standard build process.

Causes output of informational messages indicating the set of generated files to
be suppressed. Warnings and error messages are unaffected.
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Generate Source_Reference pragmas. Use this switch if the output files are
regarded as temporary and development is to be done from of the original
unchopped file. This switch causes Source_Reference pragmas to be inserted
into each of the generated files to refer back to the original file name and
line number. The result is that all error messages refer back to the original
unchopped file. In addition, the debugging information placed into the object
file (when the -g switch of gcc or gnatmake is specified) also refers back to this
original file so that tools like profilers and debuggers will give information in
terms of the original unchopped file.

If the original file to be chopped itself contains a Source_Reference pragma
referencing a third file, gnatchop respects these pragmas and the generated
Source_Reference pragmas in the chopped file refer to the original file, with
appropriate line numbers. This is particularly useful when gnatchop is used
in conjunction with gnatprep to compile files that contain preprocessing state-
ments and multiple units.

Causes gnatchop to operate in verbose mode. It outputs the version number
and copyright notice as well as exact copies of the commands spawned to obtain
the information needed to control chopping.

Overwrite existing file names. Normally, gnatchop treats it as a fatal error if
there’s already a file with the same name as a file it would otherwise output.
This can happen either if you’ve previously chopped that file or if the files to be
chopped contain duplicated units. This switch bypasses this check and causes
all but the last instance of such duplicated units to be skipped.

--GCC="xxxx'
Specify the path of the GNAT parser to be used. When this switch is used,
gnatchop makes no attempt to add a prefix to the GNAT parser executable,
so it must include the full pathname.

3.3.6.5 Examples of gnatchop Usage

$ gnatchop -w hello_s.ada prerelease/files

Chops the source file hello_s.ada. The output files are placed in the directory
prerelease/files, overwriting any files with matching names in that directory (no files
in the current directory are modified).

$ gnatchop archive
Chops the source file archive into the current directory. One useful application of gnatchop
is in sending sets of sources around, for example in email messages. The required sources
are simply concatenated (for example, using a Unix cat command) and gnatchop is used
at the other end to reconstitute the original files.

$ gnatchop filel file2 file3 direc
Chops all units in files filel, file2, file3, placing the resulting files in the directory
direc. Note that if any units occur more than once anywhere within this set of files,
gnatchop generates an error message, and doesn’t write any files. To override this check,
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use the —w switch, in which case the last occurrence in the last file will be the one that is
output and gnatchop will skip earlier duplicate occurrences for the same unit.

3.4 Configuration Pragmas

Configuration pragmas supported by GNAT consist of those pragmas described as
such in the Ada Reference Manual and the implementation-dependent pragmas that
are configuration pragmas. See the Implementation_Defined_Pragmas chapter in the
GNAT_Reference_Manual for details on these additional GNAT-specific configuration
pragmas.  Most notably, the pragma Source_File_Name, which allows specifying
non-default names for source files, is a configuration pragma. The following is a complete
list of configuration pragmas recognized by GNAT:

Ada_83

Ada_95

Ada_05

Ada_2005

Ada_12

Ada_2012

Ada_2022
Aggregate_Individually_Assign
Allow_Integer_Address
Annotate

Assertion_Policy
Assume_No_Invalid_Values
C_Pass_By_Copy
Check_Float_0Overflow
Check_Name

Check_Policy
Component_Alignment
Convention_Identifier
Debug_Policy
Default_Scalar_Storage_Order
Default_Storage_Pool
Detect_Blocking
Disable_Atomic_Synchronization
Discard_Names
Elaboration_Checks

Eliminate
Enable_Atomic_Synchronization
Extend_System
Extensions_Allowed
External_Name_Casing
Fast_Math

Favor_Top_Level
Ignore_Pragma
Implicit_Packing
Initialize_Scalars
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Interrupt_State
Interrupts_System_By_Default
License

Locking_Policy
No_Component_Reordering
No_Heap_Finalization
No_Strict_Aliasing
Normalize_Scalars
Optimize_Alignment
Overflow_Mode
Overriding_Renamings
Partition_Elaboration_Policy
Persistent_BSS
Prefix_Exception_Messages
Priority_Specific_Dispatching
Profile

Profile_Warnings
Queuing_Policy
Rename_Pragma

Restrictions
Restriction_Warnings
Reviewable
Short_Circuit_And_Or
Source_File_Name
Source_File_Name_Project
SPARK_Mode

Style_Checks

Suppress
Suppress_Exception_Locations
Task_Dispatching_Policy
Unevaluated_Use_0f_01d
Unsuppress

Use_VADS_Size
User_Aspect_Definition
Validity_Checks
Warning_As_Error

Warnings
Wide_Character_Encoding

3.4.1 Handling of Configuration Pragmas

You can place configuration pragmas either appear at the start of a compilation unit or in a
configuration pragma file that applies to all compilations performed in a given compilation
environment.

Configuration pragmas placed before a library level package specification are not propagated
to the corresponding package body (see RM 10.1.5(8)); they must be added explicitly to
the package body.
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GNAT includes the gnatchop utility to provide an automatic way to handle configuration
pragmas that follows the semantics for compilations (that is, files with multiple units)
described in the RM. See [Operating gnatchop in Compilation Mode], page 21, for details.
However, for most purposes, you will find it more convenient to edit the gnat.adc file that
contains configuration pragmas directly, as described in the following section.

In the case of Restrictions pragmas appearing as configuration pragmas in individual
compilation units, the exact handling depends on the type of restriction.

Restrictions that require partition-wide consistency (like No_Tasking) are recognized wher-
ever they appear and can be freely inherited, e.g. from a ‘with’ed unit to the ‘with’ing unit.
This makes sense since the binder will always insist on seeing consistent us, so any unit not
conforming to any restrictions anywhere in the partition will be rejected and it’s better for
you to find that out at compile time rather than bind time.

For restrictions that do not require partition-wide consistency, e.g. SPARK or No_
Implementation_Attributes, the restriction normally applies only to the unit in which
the pragma appears, and not to any other units.

The exception is No_Elaboration_Code, which always applies to the entire object file from
a compilation, i.e. to the body, spec, and all subunits. You can apply this restriction in a
configuration pragma file or you can ace it in the body and/or the spec (in either case it
applies to all the relevant units). You can place it on a subunit only if you have previously
placed it in the body of spec.

3.4.2 The Configuration Pragmas Files

In GNAT, a compilation environment is defined by the current directory at the time that
a compile command is given. This current directory is searched for a file whose name
is gnat.adc. If this file is present, it is expected to contain one or more configuration
pragmas that will be applied to the current compilation. However, if you specify the switch
-gnatA, GNAT ignores gnat.adc. When used, GNAT adds gnat.adc to the dependencies
so that if gnat.adc is modified later, the source will be recompiled on a future invocation
of gnatmake.

You can add configuration pragmas into the gnat.adc file either by running gnatchop on
a source file consisting only of configuration pragmas or, more conveniently, by directly
editing the gnat.adc file, which is a standard format source file.

Besides gnat .adc, you may apply additional files containing configuration pragmas to the
current compilation using the -gnatec="path' switch, where path must designate an ex-
isting file that contains only configuration pragmas. These configuration pragmas are in
addition to those found in gnat.adc (provided gnat.adc is present and you do not use
switch —gnatA). You can specify multiple -gnatec= switches.

GNAT will add files containing configuration pragmas specified with switches -gnatec=
to the dependencies, unless they are temporary files. A file is considered temporary if its
name ends in .tmp or .TMP. Certain tools follow this naming convention because they pass
information to gcc via temporary files that are immediately deleted; it doesn’t make sense
to depend on a file that no longer exists. Such tools include gprbuild, gnatmake, and
gnatcheck.

By default, configuration pragma files are stored by their absolute paths in ALI files. You
can use the —gnateb switch to request they be stored instead by just their basename.
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If you are using project file, they provide a separate mechanism using project attributes.

3.5 Generating Object Files

An Ada program consists of a set of source files and the first step in compiling the program
is generating the corresponding object files. You generate these by compiling a subset of
these source files. The files you need to compile are the following:

* If a package spec has no body, compile the package spec to produce the object file for

the package.

If a package has both a spec and a body, compile the body to produce the object file
for the package. You need not compile the source file for the package spec in this case
because there’s only one object file, which contains the code for both the spec and body
of the package.

For a subprogram, compile the subprogram body to produce the object file for the
subprogram. You need not compile the spec, if such a file is present.

In the case of subunits, only compile the parent unit. GNAT generates a single object
file for the entire subunit tree, which includes all the subunits.

Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

Compile generic units in the same manner as any other units. The object files in this
case are small dummy files that contain, at most, the flag used for elaboration check-
ing. This is because GNAT always handles generic instantiation by means of macro
expansion. However, you still must compile generic units for dependency checking and
elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate all the object
files for a program. See the following section on dependencies for more details on computing
that set of files. Each object file has the same name as the corresponding source file, except
that the extension is .o, as usual.

You may wish to compile other files for the purpose of checking their syntactic and semantic
correctness. For example, in the case where a package has a separate spec and body, you
would not normally compile the spec. However, it is convenient in practice to compile
the spec to make sure it is error-free before compiling clients of this spec because such
compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking cor-
rectness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the -gnatc switch.

3.6 Source Dependencies

Each object file obviously depends on at least the source file which is compiled to produce
it. Here we are using “depends” in the sense of a typical make utility; in other words, an
object file depends on a source file if changes to the source file require the object file to be
recompiled. In addition to this basic dependency, a given object may depend on additional
source files as follows:

* If a file being compiled ‘with’s a unit X, the object file depends on the file containing the
spec of unit X. This includes files that are ‘with’ed implicitly either because they are
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parents of ‘with’ed child units or are run-time units required by the language constructs
used in a particular unit.

If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

If a file being compiled contains a call to a subprogram for which pragma Inline applies
and you have activated inlining with the -gnatn switch, the object file depends on the
file containing the body of this subprogram as well as on the file containing the spec.
Note that for inlining to actually occur as a result of the use of this switch, you must
compile in optimizing mode.

The use of —~gnatN activates inlining optimization that is performed by the front end
of the compiler. This inlining does not require that the code generation be optimized.
Like -gnatn, the use of this switch generates additional dependencies.

When using a gcc or LLVM based back end, the use of —~gnatN is deprecated and the
use of —gnatn is preferred. Historically front end inlining was more extensive than back
end inlining, but that is no longer the case.

If an object file 0 depends on the proper body of a subunit through inlining or instanti-
ation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of 0.

The object file for a parent unit depends on all its subunit body files.

The previous two rules means that, for purposes of computing dependencies and re-
compilation, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A ‘with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A depends on the body of C, in
file c.adb.

The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as dictated by the Ada language standard. However,
it is a superset of what the standard describes, because it includes generic, inline, and
subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if any of
the source files on which it depends are modified. For example, if the make utility is
used to control compilation, the rule for an Ada object file must mention all the source
files on which the object file depends, according to the above definition. Invoking
gnatmake will cause it to determine the necessary recompilations.

3.7 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the actual object
file that has a .o extension. The second is a text file containing full dependency information.
It has the same name as the source file, but an .ali extension. This file is known as the
Ada Library Information (ALI) file. The following information is contained in that file:

* Version information (indicates which version of GNAT was used to compile the unit(s)
in question)
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Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

List of arguments used in the compilation command

Attributes of the unit, including the configuration pragmas used, an indication of
whether the compilation was successful, and the exception model used.

A list of relevant restrictions applying to the unit (used for consistency checking).
Categorization information (e.g., use of pragma Pure).

* Information on all ‘with’ed units, including presence of Elaborate or Elaborate_All
pragmas.

Information from any Linker_Options pragmas used in the unit
Information on the use of Body_Version or Version attributes in the unit.

Dependency information. This is a list of files, together with time stamp and checksum
information. These are files on which the unit depends in the sense that the modification
of any of these units requires the recompilation of the unit in question.

Cross-reference data. Contains information on all entities referenced in the unit. Used
by some tools to provide cross-reference information.

For a full detailed description of the format of the ALI file, see the source of the spec of unit
Lib.Writ, contained in file 1ib-writ.ads in the GNAT compiler sources.

3.8 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that you can link an inconsistent version of a program, in which two units have
included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It is
given the name of the main program unit and from this determines the set of units required
by the program by reading the corresponding ALI files. It generates error messages if the
program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program in Ada that contains calls to
the elaboration procedures of those compilation unit that require them, followed by a call
to the main program. This Ada program is compiled to generate the object file for the main
program. The name of the Ada file is b~xxx.adb (with the corresponding spec b~xxx.ads)
where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object from
the main program from the bind step as well as the object files for the Ada units of the
program.
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3.9 GNAT and Libraries

This section describes how to build and use libraries with GNAT and how to recompile
the GNAT run-time library. You should be familiar with the Project Manager facility (see
the ‘GNAT_Project_Manager’ chapter of the GPRbuild User’s Guide) before reading this
chapter.

3.9.1 Introduction to Libraries in GNAT

A library is, conceptually, a collection of objects which does not have its own main thread of
execution but instead provides certain services to the applications that use it. A library can
be either statically linked with the application, in which case its code is directly included
in the application, or, on platforms that support it, be dynamically linked, in which case
its code is shared by all applications making use of this library.

GNAT supports both types of libraries. In the static case, you can provide the compiled code
in different ways. The simplest approach is to directly provide the set of objects resulting
from compilation of the library source files. Alternatively, you can group the objects into
an archive using whatever commands are provided by the operating system.

In the GNAT environment, a library has these components:
* Source files,
* ALI files (see [The Ada Library Information Files|, page 29), and

* Object files, an archive, or a shared library.

A GNAT library may expose all its source files, which is useful for documentation purposes.
Alternatively, it may expose only the units needed by an external user to make use of the
library, in other words, the specs reflecting the library services along with all the units
needed to compile those specs, which can include generic bodies or any body implementing
an inlined routine. In the case of ‘stand-alone libraries’ those exposed units are called
‘interface units’ ([Stand-alone Ada Libraries], page 35).

All compilation units comprising an application, including those in a library, need to be
elaborated in an order partially defined by Ada’s semantics. GNAT computes the elabora-
tion order from the ALT files and this is why they constitute a mandatory part of GNAT
libraries. ‘Stand-alone libraries’ are the exception to this rule because a specific library
elaboration routine is produced independently of the application(s) using the library.

3.9.2 General Ada Libraries
3.9.2.1 Building a library

The easiest way to build a library is to use the Project Manager, which supports a special
type of project called a ‘Library Project’ (see the ‘Library Projects’ section in the ‘GNAT
Project Manager’ chapter of the GPRbuild User’s Guide).

A project is considered a library project when two project-level attributes are defined in it:
Library_Name and Library_Dir. In order to control different aspects of library configura-
tion, you can specify additional optional project-level attributes:

*

Library_Kind
This attribute controls whether the library is to be static or dynamic
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Library_Version
This attribute specifies the library version. Its value is used during dynamic
linking of shared libraries to determine if the currently installed versions
of the binaries are compatible.

* Library_Options
*

Library_GCC
These attributes specify additional low-level options to be used during
library generation and the commands used to generate the library.

The GNAT Project Manager takes complete care of the library maintenance task, including
recompilation of the source files for which objects do not exist or are not up to date, assembly
of the library archive, and installation of the library (i.e., copying associated source, object
and ALI files to the specified location).
Here’s a simple library project file:
project My_Lib is
for Source_Dirs use ("srcl", "src2");
for Object_Dir use "obj"
for Library_Name use "mylib";
for Library_Dir use "1lib";
for Library_Kind use "dynamic";
end My_lib;

and the compilation command to build and install the library:
$ gnatmake -Pmy_lib

It’s complex to manually perform all the steps required to produce a library, so we recom-
mend you use the GNAT Project Manager for this task. In case this is not desired, we
discuss the necessary steps below.

There are various possibilities for compiling the units that make up the library: for example
with a Makefile ([Using the GNU make Utility], page 172) or with a conventional script.
For simple libraries, you can also create a dummy main program that depends upon all the
packages that comprise the interface of the library. You can then pass this dummy main
program to gnatmake, which will ensure all necessary objects are built.

After the above has been accomplished, you should follow the standard procedure of the
underlying operating system to produce the static or shared library.

Here’s an example of such a dummy program:

with My_Lib.Servicel;
with My_Lib.Service2;
with My_Lib.Service3;
procedure My_Lib_Dummy is
begin

null;
end;
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Here are the generic commands that will build an archive or a shared library.

# compiling the library
$ gnatmake -c my_lib_dummy.adb

+*

we don't need the dummy object itself
$ rm my_lib_dummy.o my_lib_dummy.ali

# create an archive with the remaining objects
ar rc libmy_lib.a *.o
# some systems may require "ranlib" to be run as well

&

**

or create a shared library
gcc —shared -o libmy_lib.so *.o
# some systems may require the code to have been compiled with -fPIC

&

+*

remove the object files that are now in the library
$ rm x.0

# Make the ALI files read-only so that gnatmake will not try to
# regenerate the objects that are in the library
$ chmod -w *.ali

Please note that the library must have a name of the form 1ib xxx'.a or 1ib xxx'.so (or
lib xxx'.d1l1l on Windows) in order to be accessed by the -1 xxx' switch at link time.

3.9.2.2 Installing a library

If you use project files, library installation is part of the library build process (see the
‘Installing a Library with Project Files’ section of the ‘GNAT Project Manager’ chapter of
the GPRbuild User’s Guide).

When you're not able to use project files for some reason, you can also install the library so
that the sources needed to use the library are on the Ada source path and the ALI files &
libraries be on the Ada Object path (see [Search Paths and the Run-Time Library (RTL)],
page 89), but we don’t recommend doing this. Alternatively, the system administrator can
place general-purpose libraries in the default compiler paths, by specifying the libraries’
location in the configuration files ada_source_path and ada_object_path. These config-
uration files must be located in the GNAT installation tree at the same place as the gcc
spec file. The location of the gcc spec file can be determined as follows:

$ gcc -v
The configuration files mentioned above have a simple format: each line must contain one
unique directory name. Those names are added to the corresponding path in their order

of appearance in the file. The names can be either absolute or relative; in the latter case,
they are relative to where theses files are located.

The files ada_source_path and ada_object_path might not be present in a GNAT instal-
lation, in which case, GNAT looks for its run-time library in the directories adainclude
(for the sources) and adalib (for the objects and ALI files). When the files exist, the com-
piler does not look in adainclude and adalib, and thus the ada_source_path file must
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contain the location for the GNAT run-time sources (which can simply be adainclude). In
the same way, the ada_object_path file must contain the location for the GNAT run-time
objects (which can simply be adalib).

You can also specify a new default path to the run-time library at compilation time with the
--RTS=rts-path switch. You can thus choose the run-time library you want your program
to be compiled with. This switch is recognized by gcc, gnatmake, gnatbind, gnatls, and
all project aware tools.

You can install a library before or after the standard GNAT library by selecting the ordering
the lines in the configuration files. In general, a library must be installed before the GNAT
library if it redefines any part of it.

3.9.2.3 Using a library

Once again, the project facility greatly simplifies the use of libraries. In this context, using
a library is just a matter of adding a ‘with’ clause in your project. For example, to make
use of the library My_Lib shown in examples in earlier sections, you can write:

with "my_1ib";

project My_Proj is

end My_Proj;

Even if you have a third-party, non-Ada library, you can still use GNAT’s Project Manager
facility to provide a wrapper for it. For example, the following project, when ‘with’ed by
your main project, will link with the third-party library liba.a:

project Liba is
for Externally_Built use "true";
for Source_Files use ();
for Library_Dir use "1lib";
for Library_Name use "a";
for Library_Kind use "static";
end Liba;

This is an alternative to the use of pragma Linker_Options. It is especially interesting in
the context of systems with several interdependent static libraries where finding a proper
linker order is not easy and best be left to the tools having visibility over project dependence
information.

In order to use an Ada library manually, you need to make sure that this library is on both
your source and object path (see [Search Paths and the Run-Time Library (RTL)], page 89,
and [Search Paths for gnatbind], page 169). Furthermore, when the objects are grouped in
an archive or a shared library, you need to specify the desired library at link time.

For example, you can use the library mylib installed in /dir/my_lib_src and /dir/my_
1ib_obj with the following commands:

$ gnatmake -al/dir/my_lib_src -a0/dir/my_lib_obj my_appl \\
-largs -lmy_lib

This can be expressed more simply:

$ gnatmake my_appl
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when the following conditions are met:

* /dir/my_lib_src has been added by the user to the environment variable
ADA_INCLUDE_PATH, or by the administrator to the file ada_source_path

* /dir/my_lib_obj has been added by the wuser to the environment variable
ADA_OBJECTS_PATH, or by the administrator to the file ada_object_path

* a pragma Linker_Options has been added to one of the sources. For example:

pragma Linker_Options ("-lmy_lib");

Note that you may also load a library dynamically at run time given its filename, as il-
lustrated in the GNAT plugins example in the directory share/examples/gnat/plugins
within the GNAT install area.

3.9.3 Stand-alone Ada Libraries

3.9.3.1 Introduction to Stand-alone Libraries

A Stand-alone Library (abbreviated ‘SAL’) is a library that contains the necessary code
to elaborate the Ada units that are included in the library. In contrast with an ordinary
library, which consists of all sources, objects and ALI files of the library, a SAL may specify
a restricted subset of compilation units to serve as a library interface. In this case, the fully
self-sufficient set of files will normally consist of an objects archive, the sources of interface
units’ specs, and the ALT files of interface units. If an interface spec contains a generic unit
or an inlined subprogram, you must also provide the body’s source; if the units that must
be provided in the source form depend on other units, you must also provide the source and
ALT files of those units.

The main purpose of a SAL is to minimize the recompilation overhead of client applications
when a new version of the library is installed. Specifically, if the interface sources have
not changed, client applications don’t need to be recompiled. If, furthermore, a SAL is
provided in the shared form and its version, controlled by Library_Version attribute, is
not changed, the clients also do not need to be relinked.

SALs also allow the library providers to minimize the amount of library source text exposed
to the clients. Such ‘information hiding” might be useful or necessary for various reasons.

Stand-alone libraries are also well suited to be used in an executable whose main routine is
not written in Ada.

3.9.3.2 Building a Stand-alone Library

GNAT’s Project facility provides a simple way of building and installing stand-alone li-
braries; see the ‘Stand-alone Library Projects’ section in the ‘GNAT Project Manager’
chapter of the GPRbuild User’s Guide. To be a Stand-alone Library Project, in addition to
the two attributes that make a project a Library Project (Library_Name and Library_Dir;
see the ‘Library Projects’ section in the ‘GNAT Project Manager’ chapter of the ‘GPRbuild
User’s Guide’), you must define the attribute Library_Interface. For example:

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Interface use ("intl", "intl.child");

Attribute Library_Interface has a non-empty string list value, each string in the list
designating a unit contained in an immediate source of the project file.
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When a Stand-alone Library is built, the binder is first invoked to build a package whose
name depends on the library name (b~dummy.ads/b in the example above). This binder-
generated package includes initialization and finalization procedures whose names depend
on the library name (dummyinit and dummyfinal in the example above). The object cor-
responding to this package is included in the library.

You must ensure timely (e.g., prior to any use of interfaces in the SAL) calling of these
procedures if a static SAL is built, or if a shared SAL is built with the project-level attribute
Library_Auto_Init set to "false".

For a Stand-Alone Library, only the ALI files of the Interface Units (those that are listed
in attribute Library_Interface) are copied to the Library Directory. As a consequence,
only the Interface Units may be imported from Ada units outside of the library. If other
units are imported, the binding phase will fail.

You can also build an encapsulated library where not only the code to elaborate and finalize
the library is embedded but also ensure that the library is linked only against static libraries.
That means that an encapsulated library only depends on system libraries: all other code,
including the GNAT runtime, is embedded. To build an encapsulated library you must set
attribute Library_Standalone to encapsulated:

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Kind use "dynamic";

for Library_Interface use ("intl", "intl.child");
for Library_Standalone use "encapsulated";

The default value for this attribute is standard in which case a stand-alone library is built.

You may specify the attribute Library_Src_Dir for a Stand-Alone Library. Library_Src_
Dir has a single string value. Its value must be the path (absolute or relative to the project
directory) of an existing directory. This directory cannot be the object directory or one of
the source directories, but it can be the same as the library directory. The sources of the
Interface Units of the library that are needed by an Ada client of the library are copied
to the designated directory, called the Interface Copy directory, when the library is built.
These sources include the specs of the Interface Units, but they may also include bodies
and subunits when pragmas Inline or Inline_Always are used or when there is a generic
unit in the spec. Before the sources are copied to the Interface Copy directory, the building
process makes an attempt to delete all files in the Interface Copy directory.

Building stand-alone libraries by hand is somewhat tedious, but for those occasions when
it is necessary here are the steps that you need to perform:

* Compile all library sources.

* Invoke the binder with the switch -n (No Ada main program), with all the ALI files
of the interfaces, and with the switch -L to give specific names to the init and final
procedures. For example:

$ gnatbind -n intl.ali int2.ali -Lsall
Compile the binder generated file:
$ gcc -c b int2.adb

Link the dynamic library with all the necessary object files, passing to the linker the
names of the init (and possibly final) procedures for automatic initialization (and
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finalization). You should place the built library in a different directory than the object
files.

* Copy the ALI files of the interface to the library directory, add in this copy an indication
that it is an interface to a SAL (i.e., add a word SL on the line in the ALI file that
starts with letter ‘P’) and make the modified copy of the ALI file read-only.

Using SALs is not different from using other libraries (see [Using a library|, page 34).

3.9.3.3 Creating a Stand-alone Library to be used in a non-Ada
context

It’s easy for you to adapt the SAL build procedure discussed above for use of a SAL in a
non-Ada context.

The only extra step required is to ensure that library interface subprograms are compatible
with the main program, by means of pragma Export or pragma Convention.

Here’s an example of simple library interface for use with C main program:

package My_Package is

procedure Do_Something;
pragma Export (C, Do_Something, "do_something");

procedure Do_Something Else;
pragma Export (C, Do_Something_Else, "do_something else");

end My_Package;
On the C side, you must provide a ‘foreign’ view of the library interface; remember that it
should contain elaboration routines in addition to interface subprograms.
The example below shows the content of mylib_interface.h (note that there is no rule
for the naming of this file, any name can be used)

/* the library elaboration procedure */

extern void mylibinit (void);

/* the library finalization procedure */
extern void mylibfinal (void);

/* the interface exported by the library */
extern void do_something (void);
extern void do_something_else (void);

Libraries built as explained above can be used from any program, provided the elaboration
procedures (named mylibinit in the previous example) are called before any library services
are used. Any number of libraries can be called from a single executable as long as the
elaboration procedure of each library is called.

Below is an example of a C program that uses the mylib library.

#include "mylib_interface.h"

int



Chapter 3: The GNAT Compilation Model 38

main (void)

{
/* First, elaborate the library before using it */
mylibinit ();
/* Main program, using the library exported entities */
do_something ();
do_something_else ();
/* Library finalization at the end of the program */
mylibfinal ();
return O;

X

Note that invoking any library finalization procedure generated by gnatbind shuts down
the Ada run-time environment. Consequently, the finalization of all Ada libraries must be
performed at the end of the program. No call to these libraries or to the Ada run-time
library should be made after the finalization phase.

Information on limitations of binding Ada code in non-Ada contexts can be found under
[Binding with Non-Ada Main Programs], page 167.

Note also that you must take special care with multi-tasking applications. In that case, the
initialization and finalization routines are not protected against concurrent access. If you
need such requirement, you must ensure it at the application level using a specific operating
system services like a mutex or a critical-section.

3.9.3.4 Restrictions in Stand-alone Libraries

You should use the pragmas listed below with caution inside libraries, since they can create
incompatibilities with other Ada libraries:

* pragma Locking_Policy

* pragma Partition_Elaboration_Policy

* pragma Queuing_Policy

* pragma Task_Dispatching Policy

* pragma Unreserve_All_Interrupts

When using a library that contains such pragmas, the user of the library must ensure that
all libraries use the same pragmas with the same values. Otherwise, Program_Error will be
raised during the elaboration of the conflicting libraries. You should document the usage
of these pragmas and its consequences for the user.

Similarly, the traceback in the exception occurrence mechanism should be enabled or dis-
abled in a consistent manner across all libraries. Otherwise, Program_Error will be raised
during the elaboration of the conflicting libraries.

If you use the Version or Body_Version attributes inside a library, you need to perform
a gnatbind step that specifies all ALI files in all libraries so that version identifiers can be
properly computed. In practice these attributes are rarely used, so this is unlikely to be a
consideration.
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3.9.4 Rebuilding the GNAT Run-Time Library

You may need to recompile the GNAT library in various debugging or experimentation
contexts. The GNAT distribution provides a project file called libada.gpr to do that; it
can be found in the directory containing the GNAT library. The location of this directory
depends on the way the GNAT environment has been installed and can be determined by
means of the command:

$ gnatls -v
The last entry in the source search path usually contains the GNAT library (the adainclude
directory).
This project file contains its own documentation and, in particular, the set of instructions
needed to rebuild a new library and to use it.
Note that rebuilding the GNAT Run-Time is only recommended for temporary experiments
or debugging and is not supported for other purposes.

3.10 Conditional Compilation

This section presents some guidelines for modeling conditional compilation in Ada and
describes the gnatprep preprocessor utility.

3.10.1 Modeling Conditional Compilation in Ada

You may want to arrange for a single source program to serve multiple purposes, where it
is compiled in different ways to achieve these different goals. Some examples of the need
for this feature are

* Adapting a program to a different hardware environment

* Adapting a program to a different target architecture

* Turning debugging features on and off

* Arranging for a program to compile with different compilers

In C, or C++, the typical approach is to use the preprocessor defined as part of the language.
The Ada language does not contain such a feature. This is not an oversight, but rather a
very deliberate design decision, based on the experience that overuse of the preprocessing
features in C and C++ can result in programs that are extremely difficult to maintain. For
example, if we have ten switches that can be on or off, this means that there are a thousand
separate programs, any one of which might not even be syntactically correct, and, even if
syntactically correct, might not work correctly. Testing all combinations can quickly become
impossible.

Nevertheless, the need to tailor programs certainly exists and in this section we will discuss
how this can be achieved using Ada in general and GNAT in particular.

3.10.1.1 Use of Boolean Constants

In the case where the difference is simply which code sequence is executed, the cleanest
solution is to use Boolean constants to control which code is executed.

FP_Initialize_Required : constant Boolean := True;

if FP_Initialize_Required then
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end if;
Not only will the code inside the if statement not be executed if the constant Boolean
is False, but it will also be completely deleted from the program. However, the code
is only deleted after the if statement block has been checked for syntactic and semantic
correctness. (In contrast, with preprocessors the code is deleted before the compiler ever
gets to see it, so it is not checked until the switch is turned on.)

Typically the Boolean constants will be in a separate package, something like:

package Config is

FP_Initialize_Required : constant Boolean := True;
Reset_Available : constant Boolean := False;
end Config;

You would write the Config package multiple forms for various targets, with an appropriate
script selecting the version of Config needed. Then, any other unit requiring conditional
compilation can do a ‘with’ of Config to make the constants visible.

3.10.1.2 Debugging - A Special Case

A common use of conditional code is to execute statements (for example dynamic checks,
or output of intermediate results) under control of a debug switch, so that the debugging
behavior can be turned on and off. You can do this by using a Boolean constant to control
whether the debug code is active:

if Debugging then
Put_Line ("got to the first stage!");
end if;

or
if Debugging and then Temperature > 999.0 then

raise Temperature_Crazy;
end if;

Since this is a common case, GNAT provides special features to deal with this in a convenient
manner. For the case of tests, Ada 2005 has added a pragma Assert that you can use for
such tests. This pragma is modeled on the Assert pragma that has always been available
in GNAT, so you can use this feature with GNAT even if you are not using Ada 2005
features. The use of pragma Assert is described in the GNAT_Reference_Manual, but as
an example, the last test could be written:

pragma Assert (Temperature <= 999.0, "Temperature Crazy");
or simply
pragma Assert (Temperature <= 999.0);

In both cases, if assertions are active and the temperature is excessive, the exception
Assert_Failure is raised with the exception message using the specified string in the
first case or a string indicating the location of the pragma in the second case.

You can turn assertions on and off by using the Assertion_Policy pragma.
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This is an Ada 2005 pragma that is implemented in all modes by GNAT. Alternatively, you
can use the —gnata switch to enable assertions from the command line, which also applies
to all versions of Ada.

For the example above with the Put_Line, the GNAT-specific pragma Debug can be used:
pragma Debug (Put_Line ("got to the first stage!"));

If debug pragmas are enabled, the argument, which must be of the form of a procedure call,
is executed (in this case, Put_Line is called). You can specify only one call, but you can of
course include a special debugging procedure containing any code you like in the program
and call it in a pragma Debug argument as needed.

One advantage of pragma Debug over the if Debugging then construct is that pragma
Debug can appear in declarative contexts, such as at the very beginning of a procedure,
before local declarations have been elaborated.

You can enable debug pragmas using either the —gnata switch that also controls assertions,
or with a separate Debug_Policy pragma.

The latter pragma is new in the Ada 2005 versions of GNAT (but it can be used in Ada 95
and Ada 83 programs as well) and is analogous to pragma Assertion_Policy to control
assertions.

Assertion_Policy and Debug_Policy are configuration pragmas, and thus can appear in
gnat .adc if you are not using a project file or in the file designated to contain configuration
pragmas in a project file. They then apply to all subsequent compilations. In practice the
use of the —gnata switch is often the most convenient method of controlling the status of
these pragmas.

Note that a pragma is not a statement, so in contexts where a statement sequence is required,
you can’t just write a pragma on its own. You have to add a null statement.

if ... then
. —— some statements
else
pragma Assert (Num_Cases < 10);
null;
end if;

3.10.1.3 Conditionalizing Declarations

In some cases it may be necessary to conditionalize declarations to meet different require-
ments. For example we might want a bit string whose length is set to meet some hardware
message requirement.

This may be possible using declare blocks controlled by conditional constants:

if Small_Machine then
declare
X : Bit_String (1 .. 10);
begin

end;
else
declare
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X : Large_Bit_String (1 .. 1000);
begin

end;
end if;
Note that in this approach, both declarations are analyzed by the compiler so this can only
be used where both declarations are legal, even though one of them will not be used.

Another approach is to define integer constants, e.g., Bits_Per_Word, or Boolean constants,
e.g., Little_Endian, and then write declarations that are parameterized by these constants.
For example

for Rec use
Fieldl at O range Boolean'Pos (Little_Endian) * 10 .. Bits_Per_Word;
end record;

If Bits_Per_Word is set to 32, this generates either

for Rec use
Fieldl at O range O .. 32;
end record;

for the big endian case, or

for Rec use record
Fieldl at O range 10 .. 32;
end record;

for the little endian case. Since a powerful subset of Ada expression notation is usable for
creating static constants, clever use of this feature can often solve quite difficult problems in
conditionalizing compilation (note incidentally that in Ada 95, the little endian constant was
introduced as System.Default_Bit_Order, so you don’t need to define this one yourself).

3.10.1.4 Use of Alternative Implementations

In some cases, none of the approaches described above are adequate. This can occur, for
example, if the set of declarations required is radically different for two different configura-
tions.

In this situation, the official Ada way of dealing with conditionalizing such code is to write
separate units for the different cases. As long as this doesn’t result in excessive duplication
of code, you can do this without creating maintenance problems. The approach is to share
common code as far as possible and then isolate the code and declarations that are different.
Subunits are often a convenient method for breaking out a piece of a unit that you need
to be conditionalized, with separate files for different versions of the subunit for different
targets, where the build script selects the right one to give to the compiler.

As an example, consider a situation where a new feature in Ada 2005 allows something
to be done in a really nice way. But your code must be able to compile with an Ada 95
compiler. Conceptually you want to say:
if Ada_2005 then
. neat Ada 2005 code
else
. not quite as neat Ada 95 code
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end if;
where Ada_2005 is a Boolean constant.

But this won’t work when Ada_2005 is set to False, since the then clause will be illegal
for an Ada 95 compiler. (Recall that although such unreachable code would eventually be
deleted by the compiler, it still needs to be legal. If it uses features introduced in Ada 2005,
it’s still illegal in Ada 95.)

So instead, we write
procedure Insert is separate;

Then we have two files for the subunit Insert, with the two sets of code. If the package
containing this is called File_Queries, then we might have two files

* file_queries-insert-2005.adb

* file_queries-insert-95.adb

and the build script renames the appropriate file to file_queries-insert.adb and then
carries out the compilation.

This can also be done with project files’ naming schemes. For example:
for body ("File_Queries.Insert") use "file_queries-insert-2005.ada";

Note also that with project files, you should use a different extension than ads / adb for
alternative versions. Otherwise, a naming conflict may arise through another commonly
used feature: declaring as part of the project a set of directories containing all the sources
obeying the default naming scheme.

The use of alternative units is certainly feasible in all situations, and for example the Ada

part of the GNAT run-time is conditionalized based on the target architecture using this

approach. As a specific example, consider the implementation of the AST feature in VMS.

There is one spec: s-asthan.ads which is the same for all architectures, and three bodies:
*

s—asthan.adb
used for all non-VMS operating systems

s-asthan-vms-alpha.adb

used for VMS on the Alpha

s—-asthan-vms-ia64.adb
used for VMS on the ia64

The dummy version s-asthan.adb simply raises exceptions noting that this operating sys-
tem feature is not available and the two remaining versions interface with the corresponding
versions of VMS to provide VMS-compatible AST handling. The GNAT build script knows
the architecture and operating system, and automatically selects the right version, renaming
it if necessary to s-asthan.adb before the run-time build.

Another style for arranging alternative implementations is through Ada’s access-to-
subprogram facility. In case some functionality is to be conditionally included, you can
declare an access-to-procedure variable Ref that is initialized to designate a ‘do nothing’
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procedure, and then invoke Ref.all when appropriate. Then, in, some library package,
set Ref to Proc'Access for some procedure Proc that performs the relevant processing.
The initialization only occurs if the library package is included in the program. The same
idea can also be implemented using tagged types and dispatching calls.

3.10.1.5 Preprocessing

Although it is quite possible to conditionalize code without the use of C-style preprocessing,
as described in the cases above, it is nevertheless convenient in some cases to use the C
approach. Moreover, older Ada compilers have often provided some preprocessing capability,
so legacy code may depend on this approach, even though it is not standard.

To accommodate such use, GNAT provides a preprocessor (modeled to a large extent on the
various preprocessors that have been used with legacy code on other compilers, to enable
easier transition).

You can use the preprocessor used in two different modes. You can use it separately from
the compiler to generate a separate output source file, which you then feed to the compiler as
a separate step. This is the gnatprep utility, whose use is fully described in [Preprocessing
with gnatprep], page 44.

The preprocessing language allows such constructs as

#if DEBUG or else (PRIORITY > 4) then

sequence of declarations
#else

completely different sequence of declarations
#end if;

The values of the symbols DEBUG and PRIORITY can be defined either on the command line
or in a separate file.

The other way of running the preprocessor is even closer to the C style and often more
convenient. In this approach, the preprocessing is integrated into the compilation process.
You pass the compiler the preprocessor input, which includes #if lines etc, and the compiler
carries out the preprocessing internally and compiles the resulting output. For more details
on this approach, see [Integrated Preprocessing], page 48.

3.10.2 Preprocessing with gnatprep

This section discusses how to you can use GNAT’s gnatprep utility for simple preprocessing.
Although designed for use with GNAT, gnatprep does not depend on any special GNAT
features. For further discussion of conditional compilation in general, see [Conditional
Compilation|, page 39.

3.10.2.1 Preprocessing Symbols

Preprocessing symbols are defined in ‘definition files” and referenced in the sources to be pre-
processed. A preprocessing symbol is an identifier, following normal Ada (case-insensitive)
rules for its syntax, with the restriction that all characters need to be in the ASCII set (no
accented letters).

3.10.2.2 Using gnatprep

To call gnatprep use:
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$ gnatprep [ switches ] infile outfile [ deffile ]

where
*
‘switches’
is an optional sequence of switches as described in the next section.
*
‘infile’
is the full name of the input file, which is an Ada source file containing
preprocessor directives.
*
‘outfile’
is the full name of the output file, which is an Ada source in standard Ada
form. When used with GNAT, this file name will normally have an ads or
adb suffix.
*
deffile

is the full name of a text file containing definitions of preprocessing symbols
to be referenced by the preprocessor. You can omit this argument and
instead use the -D switch.

3.10.2.3 Switches for gnatprep

—--version

--help

Display copyright and version, then exit, disregarding all other options.

If ——version was not used, display usage and then exit, disregarding all other
options.

Causes both preprocessor lines and the lines deleted by preprocessing to be
replaced by blank lines in the output source file, preserving line numbers in the
output file.

Causes both preprocessor lines and the lines deleted by preprocessing to be
retained in the output source as comments marked with the special string "--!
". This option also results in line numbers being preserved in the output file.

Causes comments to be scanned. Normally comments are ignored by gnatprep.
If you specify this option, gnatprep scans comments and any $symbol substitu-
tions performed as in program text. You will find this particularly useful when
structured comments are used (e.g., for programs written in a pre-2014 version
of the SPARK Ada subset). This switch is not available when doing integrated
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preprocessing (it would be useless in this context since comments are always
ignored by the compiler).

-D~symbol' [="value']

-r

-u

Defines a new preprocessing symbol with the specified value. If you don’t specify
a value, the symbol is defined to be True. You can use this switch instead of
providing a definition file.

Causes gnatprep to generate a Source_Reference pragma that references the
original input file, so that error messages will use the file name of this original
file. The use of this switch implies that preprocessor lines are not to be removed
from the file, so the -b and -c are always enabled.

If the file to be preprocessed contains multiple units, you must call gnatchop on
the the output file from gnatprep. If a Source_Reference pragma is present
in the preprocessed file, it will be respected by gnatchop -r so that the fi-
nal chopped files will correctly refer to the original input source file passed to
gnatprep.

Causes a sorted list of symbol names and values to be listed on the standard
output file.

Use LF as line terminators when writing files. By default the line terminator
of the host (LF under unix, CR/LF under Windows) is used.

Causes undefined symbols to be treated as having the value False in the context
of a preprocessor test. If you don’t specify this switch, gnatprep will treat an
undefined symbol in a #if or #elsif test as an error.

Verbose mode: generates more output about what is done.

Note: if you don’t specify either -b or -c, then preprocessor lines and deleted lines are
completely removed from the output, unless you specify -r, in which case gnatprep enables
the -b switch.

3.10.2.4 Form of Definitions File

The definitions file contains lines of the form:

symbol := value

where symbol is a preprocessing symbol, and value is one of the following:

* Empty, corresponding to a null substitution,

* A string literal using normal Ada syntax, or

* Any sequence of characters from the set {letters, digits, period, underline}.

You may also place comment lines in the definitions file, starting with the usual -- and
comments may be added to the end of each definition line.
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3.10.2.5 Form of Input Text for gnatprep
The input text contains preprocessor conditional inclusion lines as well as general symbol
substitution sequences.
Preprocessor conditional inclusion commands have the form:
#if <expression> [then]

lines
#elsif <expression> [then]

lines
#elsif <expression> [then]

lines
#else

lines
#end if;

In this example, <expression> is defined by the following grammar:

<expression> ::= <symbol>
<expression> ::= <symbol> = "<value>"
<expression> ::= <symbol> = <symbol>
<expression> ::= <symbol> = <integer>
<expression> ::= <symbol> > <integer>
<expression> ::= <symbol> >= <integer>
<expression> ::= <symbol> < <integer>
<expression> ::= <symbol> <= <integer>
<expression> ::= <symbol> 'Defined
<expression> ::= not <expression>
<expression> ::= <expression> and <expression>
<expression> ::= <expression> or <expression>
<expression> ::= <expression> and then <expression>
<expression> ::= <expression> or else <expression>
<expression> ::= ( <expression> )

For the first test, (<expression> ::= <symbol>), the symbol must have either the value true
or false. The right-hand of the symbol definition must be one of the (case-insensitive) literals
True or False. If the value is true, the corresponding lines are included and if the value is
false, they are excluded.

When comparing a symbol to an integer, the integer is any non negative literal integer as
defined in the Ada Reference Manual, such as 3, 16#4FF# or 2#11#. The symbol value
must also be a non negative integer. Integer values in the range 0 .. 2**31-1 are supported.
The test (<expression> ::= <symbol>'Defined) is true only if the symbol has been defined
in the definition file or by a -D switch on the command line. Otherwise, the test is false.

The equality tests are case insensitive, as are all the preprocessor lines.

If the symbol referenced is not defined in the symbol definitions file, the result depends on
whether or not you have specified the —u switch. If you have, the symbol is treated as if it
had the value false and the test fails. If not, it’s an error to reference an undefined symbol.
It’s also an error to reference a symbol that you have defined with a value other than True
or False.
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The use of the not operator inverts the sense of this logical test. You can’t combine the not
operator with the or or and operators without parentheses. For example, you can’t write
“if not X or Y then” allowed, but can write either “if (not X) or Y then” or “if not (X or
Y) then”.

The then keyword is optional, as shown.

You must place the # in the first non-blank character on a line, i.e., it must be preceded
only by spaces or horizontal tabs, but otherwise the format is free form. You may place
spaces or tabs between the # and the keyword. The keywords and the symbols are case
insensitive, as in normal Ada code. You can write comments on a preprocessor line, but
other than that, you can’t place any other tokens on a preprocessor line. You can have any
number of elsif clauses, including none at all. The else is optional, as in Ada.

You obtain symbol substitution outside of preprocessor lines by using the sequence:
$symbol

anywhere within a source line, except in a comment or within a string literal. The identifier
following the $ must match one of the symbols defined in the symbol definition file and the
resulting output substitutes the value of the symbol in place of $symbol in the output file.

Note that although you can’t substitute strings within a string literal, you can have a symbol
whose defined value is a string literal. So instead of setting XYZ to hello and writing:

Header : String := "$XYZ";
you should set XYZ to "hello" and write:
Header : String := $XYZ;

and then the substitution will occur as desired.

3.10.3 Integrated Preprocessing

As noted above, a file to be preprocessed consists of Ada source code in which preprocessing
lines have been inserted. However, instead of using gnatprep to explicitly preprocess a file
as a separate step before compilation, you can carry out the preprocessing implicitly as
part of compilation. Such ‘integrated preprocessing’, which is the common style with C, is
performed when you pass either or both of the following switches to the compiler:

* —gnatep, which specifies the ‘preprocessor data file’. This file dic-

tates how the source files will be preprocessed (e.g., which symbol
definition files apply to which sources).

* -gnateD, which defines values for preprocessing symbols.
Integrated preprocessing applies only to Ada source files; it’s not available for configuration
pragma files.

With integrated preprocessing, GNAT doesn’t write the output from the preprocessor, by
default, to any external file. Instead it’s passed internally to the compiler. To preserve
the result of preprocessing in a file, either run gnatprep in standalone mode or supply the
-gnateG switch to the compiler.

When using project files:

* you should use the builder switch -x if any Ada source is compiled
with gnatep= so that the compiler finds the ‘preprocessor data file’.
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*you should place the preprocessing data file and the symbol definition
files in the source directories of the project.

Note that the gnatmake switch -m will almost always trigger recompilation for sources
that are preprocessed, because gnatmake cannot compute the checksum of the source after
preprocessing.

The actual preprocessing function is described in detail in [Preprocessing with gnatprep],
page 44. This section explains the switches that relate to integrated preprocessing.

-gnatep="preprocessor_data_file'
This switch specifies the file name (without directory information) of the pre-
processor data file. Either place this file in one of the source directories, or,
when using project files, reference the project file’s directory via the project_
name'Project_Dir project attribute; e.g:
project Prj is
package Compiler is
for Switches ("Ada") use
("-gnatep=" & Prj'Project_Dir & "prep.def");
end Compiler;
end Prj;

A preprocessor data file is a text file that contains ‘preprocessor control lines’. A
preprocessor control line directs the preprocessing of either a particular source
file, or, analogous to others in Ada, all sources not specified elsewhere in the
preprocessor data file. A preprocessor control line can optionally identify a
‘definition file’ that assigns values to preprocessor symbols, as well as a list of
switches that relate to preprocessing. You can also include empty lines and
comments (using Ada syntax), with no semantic effect.

Here’s an example of a preprocessor data file:

"toto.adb" '"prep.def" -u
-- Preprocess toto.adb, using definition file prep.def
-- Undefined symbols are treated as False

* —c -DVERSION=V101

-— Preprocess all other sources without using a definition file
-- Suppressed lined are commented

-- Symbol VERSION has the value V101

"tata.adb" "prep2.def" -s
-- Preprocess tata.adb, using definition file prep2.def
-- List all symbols with their values

A preprocessor control line has the following syntax:

<preprocessor_control_line> ::=
<preprocessor_input> [ <definition_file_name> ] { <switch> }

<preprocessor_input> ::= <source_file_name> | 'x'
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<definition_file_name> ::= <string_literal>
<source_file_name> := <string_literal>

<switch> := (See below for list)

Thus, you start each preprocessor control line either a literal string or the
character “*’:

* A literal string is the file name (without directory information) of the source
file that will be input to the preprocessor.

* The character ‘*’ is a wild-card indicator; the additional parameters on
the line indicate the preprocessing for all the sources that are not specified
explicitly on other lines (the order of the lines is not significant).

You cannot have two lines with the same file name or two lines starting with
the “*’ character.

After the file name or ‘*’, you can place an optional literal string to specify the
name of the definition file to be used for preprocessing ([Form of Definitions
File], page 46). The definition files are found by the compiler in one of the
source directories. In some cases, when compiling a source in a directory other
than the current directory, if the definition file is in the current directory, you
may need to add the current directory as a source directory through the -I
switch; otherwise the compiler would not find the definition file.

Finally, switches similar to those of gnatprep may optionally appear:

-b
Causes both preprocessor lines and the lines deleted by preprocess-
ing to be replaced by blank lines, preserving the line number. This
switch is always implied; however, if specified after -c it cancels
the effect of -c.

-c

Causes both preprocessor lines and the lines deleted by preprocess-
ing to be retained as comments marked with the special string ‘—/’.

-D”symbol'="new_value'
Define or redefine symbol to have new_value as its value. You can
write symbol as either an Ada identifier or any Ada reserved word
aside from if, else, elsif, end, and, or and then. You can write
new_value as a literal string, an Ada identifier or any Ada reserved
word. A symbol declared with this switch replaces a symbol with
the same name defined in a definition file.

Causes a sorted list of symbol names and values to be listed on the
standard output file.

-u
Causes undefined symbols to be treated as having the value FALSE
in the context of a preprocessor test. If you don’t specify this
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switch, an undefined symbol in a #if or #elsif test is treated as
an error.

-gnateD  symbol' [="new_value']

-gnateG

Define or redefine symbol to have new_value as its value. If you don’t specify a
value, the value of symbol is True. You write symbol as an identifier, following
normal Ada (case-insensitive) rules for its syntax, and new_value as either an
arbitrary string between double quotes or any sequence (including an empty
sequence) of characters from the set (letters, digits, period, underline). Ada
reserved words may be used as symbols, with the exceptions of if, else, elsif,
end, and, or and then.

Examples:

-gnateDToto=Tata
-gnateDFoo
-gnateDFoo=\"Foo-Bar\"

A symbol declared with this switch on the command line replaces a symbol
with the same name either in a definition file or specified with a switch -D in
the preprocessor data file.

This switch is similar to switch -D of gnatprep.

When  integrated  preprocessing is  performed ~on  source file
filename.extension, create or overwrite filename.extension.prep
to contain the result of the preprocessing. For example if the source file is
foo.adb then the output file is foo.adb.prep.

3.11 Mixed Language Programming

This section describes how to develop a mixed-language program, with a focus on combining
Ada with C or C++.

3.11.1 Interfacing to C

Interfacing Ada with a foreign language such as C involves using compiler directives to
import and/or export entity definitions in each language — using extern statements in C,
for example, and the Import, Export, and Convention pragmas in Ada. A full treatment
of these topics is provided in Appendix B, section 1 of the Ada Reference Manual.

There are two ways to build a program using GNAT that contains some Ada sources and
some foreign language sources, depending on whether or not the main subprogram is written
in Ada. Here’s an example with the main subprogram in Ada:

/*x filel.c */
#include <stdio.h>

void print_num (int num)

{

printf ("num is %d.\\n", num);
return;
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}
/x file2.c */

/* num_from_Ada is declared in my_main.adb */
extern int num_from_Ada;

int get_num (void)
{

return num_from_Ada;
}

-- my_main.adb
procedure My_Main is

-- Declare then export an Integer entity called num_from_Ada
My_Num : Integer := 10;
pragma Export (C, My_Num, "num_from_Ada");

-- Declare an Ada function spec for Get_Num, then use
-— C function get_num for the implementation.
function Get_Num return Integer;

pragma Import (C, Get_Num, "get_num");

-- Declare an Ada procedure spec for Print_Num, then use
-— C function print_num for the implementation.
procedure Print_Num (Num : Integer);

pragma Import (C, Print_Num, "print_num");

begin
Print_Num (Get_Num);
end My_Main;

To build this example:
* First compile the foreign language files to generate object files:

$ gcc -c filel.c
$ gcc -c file2.c

* Then compile the Ada units to produce a set of object files and ALI files:
$ gnatmake -c my_main.adb
* Run the Ada binder on the Ada main program:
$ gnatbind my_main.ali
* Link the Ada main program, the Ada objects, and the other language objects:

$ gnatlink my_main.ali filel.o file2.o

You can merge the last three steps into a single command:
$ gnatmake my_main.adb -largs filel.o file2.o

If the main program is in a language other than Ada, you may have more than one entry
point into the Ada subsystem. You must use a special binder option to generate callable
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routines that initialize and finalize the Ada units ([Binding with Non-Ada Main Programs],
page 167). You must insert calls to the initialization and finalization routines in the main
program or some other appropriate point in the code. You must place the call to initialize
the Ada units so that it occurs before the first Ada subprogram is called and must place
the call to finalize the Ada units so it occurs after the last Ada subprogram returns. The
binder places the initialization and finalization subprograms into the b~xxx.adb file, where
they can be accessed by your C sources. To illustrate, we have the following example:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern int add (int, int);

extern int sub (int, int);

int main (int argc, char *argv[])

{
int a = 21, b = 7;
adainit();
/* Should print "21 + 7 = 28" x/
printf ("%d + %d = %d\\n", a, b, add (a, b));
/* Should print "21 - 7 = 14" x/
printf ("%d - %d = %d\\n", a, b, sub (a, b));
adafinal () ;
}

-- unitl.ads

package Unitl is
function Add (A, B : Integer) return Integer;
pragma Export (C, Add, "add");

end Unitl;

-- unitl.adb
package body Unitl is
function Add (A, B : Integer) return Integer is
begin
return A + B;
end Add;
end Unitl;

-- unit2.ads

package Unit2 is
function Sub (A, B : Integer) return Integer;
pragma Export (C, Sub, "sub");

end Unit2;

-- unit2.adb
package body Unit2 is
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function Sub (A, B : Integer) return Integer is
begin
return A - B;
end Sub;
end Unit2;

The build procedure for this application is similar to the last example’s:

* First, compile the foreign language files to generate object files:

$ gcc -c main.c
* Next, compile the Ada units to produce a set of object files and ALI files:

$ gnatmake -c unitl.adb
$ gnatmake -c unit2.adb

Run the Ada binder on every generated ALI file. Make sure to use the -n option to
specify a foreign main program:
$ gnatbind -n unitl.ali unit2.ali

* Link the Ada main program, the Ada objects and the foreign language objects. You
need only list the last ALI file here:

$ gnatlink unit2.ali main.o -o exec_file

This procedure yields a binary executable called exec_file.

Depending on the circumstances (for example when your non-Ada main object does not
provide symbol main), you may also need to instruct the GNAT linker not to include the
standard startup objects by passing the -nostartfiles switch to gnatlink.

3.11.2 Calling Conventions

GNAT follows standard calling sequence conventions and will interface to any other language
that also follows these conventions. The following Convention identifiers are recognized by
GNAT:

Ada

This indicates that the standard Ada calling sequence is used and all Ada data
items may be passed without any limitations in the case where GNAT is used
to generate both the caller and callee. You can also mix GNAT generated code
and code generated by another Ada compiler. In this case, you should restrict
the data types to simple cases, including primitive types. Whether complex
data types can be passed depends on the situation. It is probably safe to pass
simple arrays, such as arrays of integers or floats. Records may or may not work,
depending on whether both compilers lay them out identically. Complex struc-
tures involving variant records, access parameters, tasks, or protected types,
are unlikely to be able to be passed.

If output from two different compilers is mixed, you are responsible for dealing
with elaboration issues. Probably the safest approach is to write the main
program in the version of Ada other than GNAT, so it takes care of its own
elaboration requirements, and call the GNAT-generated adainit procedure to
ensure elaboration of the GNAT components. Consult the documentation of
the other Ada compiler for further details on elaboration.
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Assembler
Specifies assembler as the convention. In practice this has the same effect as
convention Ada (but is not equivalent in the sense of being considered the same
convention).

Asm

Equivalent to Assembler.

COBOL

Data is passed according to the conventions described in section B.4 of the Ada
Reference Manual.

Data is passed according to the conventions described in section B.3 of the Ada
Reference Manual.

A note on interfacing to a C ‘varargs’ function:

In C, varargs allows a function to take a variable number
of arguments. There is no direct equivalent in this to Ada.
One approach that you can use is to create a C wrapper for
each different profile and then interface to this C wrapper.
For example, to print an int value using printf, create a
C function printfi that takes two arguments, a pointer to
a string and an int, and calls printf. Then in the Ada
program, use pragma Import to interface to printfi.

It may work on some platforms to directly interface to a
varargs function by providing a specific Ada profile for a
particular call. However, this does not work on all platforms
since there is no guarantee that the calling sequence for a
two-argument normal C function is the same as for calling a
varargs C function with the same two arguments.

Default
Equivalent to C.

External

Equivalent to C.

C_Plus_Plus (or CPP)
This stands for C++. For most purposes, this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for
further details.

Fortran
Data is passed according to the conventions described in section B.5 of the Ada

Reference Manual.

Intrinsic
This applies to an intrinsic operation, as defined in the Ada Reference Manual.
If a pragma Import (Intrinsic) applies to a subprogram, it means the body
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of the subprogram is provided by the compiler itself, usually by means of an
efficient code sequence, and that you don’t supply an explicit body for it. In an
application program, the pragma may be applied to the following sets of names:

* Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_
Arithmetic. The corresponding subprogram declaration must have two
formal parameters. The first must be a signed integer type or a modular
type with a binary modulus and the second parameter must be of type Nat-
ural. The return type must be the same as the type of the first argument.
The size of this type can only be 8, 16, 32, or 64.

Binary arithmetic operators: ‘+’, -’ “*’ ¢/’ The corresponding operator

declaration must have parameters and result type that have the same root
numeric type (for example, all three are long_float types). This simplifies
the definition of operations that use type checking to perform dimensional
checks:

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)
return Velocity;

pragma Import (Intrinsic, "/");

You often program this common idiom with a generic definition and an
explicit body. The pragma makes it simpler to introduce such declara-
tions. It incurs no overhead in compilation time or code size because it is
implemented as a single machine instruction.

General subprogram entities. This is used to bind an Ada subprogram
declaration to a compiler builtin by name with back ends where such in-
terfaces are available. A typical example is the set of __builtin functions
exposed by the gcc back end, as in the following example:

function builtin_sqrt (F : Float) return Float;
pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");

Most of the gcc builtins are accessible this way, and as for other import
conventions (e.g. C), it is the user’s responsibility to ensure that the Ada
subprogram profile matches the underlying builtin expectations.

Stdcall
This is relevant only to Windows implementations of GNAT and specifies that
the Stdcall calling sequence is used, as defined by the NT API. To simplify
building cross-platform bindings, this convention is handled as a C calling con-
vention on non-Windows platforms.

DLL
This is equivalent to Stdcall.

Win32

This is equivalent to Stdcall.
Stubbed
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This is a special convention that indicates that the compiler should provide a
stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that you can use to
parameterize conventions and allow additional synonyms. For example, if you have legacy
code in which the convention identifier Fortran77 was used for Fortran, you can use the
configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on, you can use the identifier Fortran77 as a convention identifier (for
example in an Import pragma) with the same meaning as Fortran.

3.11.3 Building Mixed Ada and C++ Programs

If you are inexperienced with mixed-language development, you may find that building an
application containing both Ada and C++ code can be a challenge. This section gives a few
hints that should make this task easier.

3.11.3.1 Interfacing to C++

GNAT supports interfacing with the G++ compiler (or any C++ compiler gener-
ating code that is compatible with the G++ Application Binary Interface —see
‘http://itanium-cxx-abi.github.io/cxx-abi/abi.html’).

You can do interfacing at three levels: simple data, subprograms, and classes. In the
first two cases, GNAT offers a specific Convention C_Plus_Plus (or CPP) that behaves
exactly like Convention C. Usually, C++ mangles the names of subprograms. To generate
proper mangled names automatically, see [Generating Ada Bindings for C and C++ headers],
page 69). You can also address this problem addressed manually in two ways:

* by modifying the C++ code in order to force a C convention using the extern "C"
syntax.

* by figuring out the mangled name (using e.g. nm or by looking at the assembly code
generated by the C++ compiler) and using it as the Link_Name argument of the pragma
Import.

You can achieve interfacing at the class level by using the GNAT specific pragmas such as
CPP_Constructor. See the GNAT_Reference_Manual for additional information.

3.11.3.2 Linking a Mixed C++ & Ada Program

Usually the linker, of the C++ development system must be used to link mixed applications
because most C++ systems resolve elaboration issues (such as calling constructors on global
class instances) transparently during the link phase. GNAT has been adapted to ease the
use of a foreign linker for the last phase. We consider three cases:

* Using GNAT and G++ (GNU C++ compiler) from the same GCC installation: You can
call the C++ linker by using the C++ specific driver called g++.
If the C++ code uses inline functions that you plan to call from Ada, you need to
compile your C++ code with the -fkeep-inline-functions so g++ doesn’t delete these
functions.
$ g++ -c -fkeep-inline-functions filel.C
$ g++ -c -fkeep-inline-functions file2.C
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$ gnatmake ada_unit -largs filel.o file2.o —--LINK=g++

* Using GNAT and G++ from two different GCC installations: If both compilers are on
the PATH, you may use the previous method. However, environment variables such as
C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT, and GCC_ROOT affect both com-
pilers at the same time and may make one of the two compilers operate improperly if set
during invocation of the wrong compiler. It is also very important that the linker uses
the proper 1libgcc.a gcc library — that is, the one from the C++ compiler installation.
You can replace the implicit link command as suggested in the gnatmake command
from the former example with an explicit link command with the full-verbosity option
in order to verify which library is used:

$ gnatbind ada_unit
$ gnatlink -v -v ada_unit filel.o file2.o0 --LINK=c++

If there’s a problem due to interfering environment variables, you can work around it
by using an intermediate script. The following example shows the proper script to use
when GNAT has not been installed at its default location and g++ has been installed
at its default location:

$ cat ./my_script

#!/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

c++ $x

$ gnatlink -v -v ada_unit filel.o file2.o0 --LINK=./my_script

Using a non-GNU C++ compiler: You can use the commands previously described
used to insure that the C++ linker is used. Nonetheless, you need to add a few more
parameters to the link command line, depending on the exception mechanism used.

If you are using the setjmp / longjmp exception mechanism, you need only inclue the
paths to the libgcc libraries:
$ cat ./my_script
#!/bin/sh
CC $* gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a
$ gnatlink ada_unit filel.o file2.o --LINK=./my_script
where CC is the name of the non-GNU C++ compiler.

If you are using the “zero cost” exception mechanism and the platform supports auto-
matic registration of exception tables (e.g., Solaris), you need to include paths to more
objects:

$ cat ./my_script

#!/bin/sh

CC gcc -print-file-name=crtbegin.o $* \\

gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a \\

gcc -print-file-name=crtend.o

$ gnatlink ada_unit filel.o file2.o0 --LINK=./my_script
If you are using the “zero cost exception” mechanism is used and the platform doesn’t
support automatic registration of exception tables (e.g., HP-UX or AIX), the simple
approach described above won’t work and a you will need to preform a pre-linking
phase using GNAT.
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Another alternative is to use the gprbuild multi-language builder which has a large knowl-
edge base and knows how to link Ada and C++ code together automatically in most cases.

3.11.3.3 A Simple Example

The following example, provided as part of the GNAT examples, shows how to achieve
procedural interfacing between Ada and C++ in both directions. The C++ class A has two
methods. The first method is exported to Ada by the means of an extern C wrapper
function. The second method calls an Ada subprogram. On the Ada side, the C++ calls
are modelled by a limited record with a layout comparable to the C++ class. The Ada
subprogram, in turn, calls the C++ method. So, starting from the C++ main program,
execution passes back and forth between the two languages.
Here are the compilation commands:

$ gnatmake -c simple_cpp_interface

$ g++ -c cpp_main.C

$ g++ -c ex7.C

$ gnatbind -n simple_cpp_interface

$ gnatlink simple_cpp_interface -o cpp_main --LINK=g++ -lstdc++ ex7.0 cpp_main.o
Here are the corresponding sources:

//cpp_main.C
#include "ex7.h"

extern "C" {
void adainit (void);
void adafinal (void);
void methodl (A *t);
}

void methodl (A *t)
{

t->methodl ();
}

int main ()

{
A obj;
adainit ;
obj.method2 (3030);
adafinal ();

}

//ex7.h

class Origin {
public:
int o_value;

};
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class A : public Origin {
public:
void methodl (void);
void method2 (int v);
AQ;
int a_value;

};
//ex7.C

#include "ex7.h"
#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::methodl (void)
{
a_value = 2020;
printf ("in A::methodl, a_value = %d \\n",a_value);

}

void A::method2 (int v)

{
ada_method2 (this, v);
printf ("in A::method2, a_value = %d \\n",a_value);
}
A::A(void)
{

a_value = 1010;
printf ("in A::A, a_value = %d \\n",a_value);

}

-— simple_cpp_interface.ads
with System;
package Simple_Cpp_Interface is
type A is limited
record
Vptr : System.Address;
0_Value : Integer;
A_Value : Integer;
end record;
pragma Convention (C, A);

procedure Methodl (This : in out A);
pragma Import (C, Methodl);

procedure Ada_Method2 (This : in out A; V : Integer);

60
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pragma Export (C, Ada_Method?2);

end Simple_Cpp_Interface;

-- simple_cpp_interface.adb
package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is
begin

Methodl (This);

This.A_Value := V;
end Ada_Method?2;

end Simple_Cpp_Interface;

3.11.3.4 Interfacing with C++ constructors

To interface with C++ constructors GNAT provides the pragma CPP_Constructor (see the
GNAT_Reference_Manual for additional information). In this section, we present some
common uses of C++ constructors in mixed-languages programs in GNAT.

Let us assume we need to interface with the following C++ class:

class Root {
public:
int a_value;
int b_value;
virtual int Get_Value ();
Root () ; // Default constructor
Root(int v); // 1st non-default constructor
Root(int v, int w); // 2nd non-default constructor
+
For this purpose, we can write the following package spec (further information on how
to build this spec is available in [Interfacing with C++ at the Class Level], page 63, and
[Generating Ada Bindings for C and C++ headers|, page 69).

with Interfaces.C; use Interfaces.C;
package Pkg_Root is
type Root is tagged limited record
A_Value : int;
B_Value : int;
end record;
pragma Import (CPP, Root);

function Get_Value (Obj : Root) return int;
pragma Import (CPP, Get_Value);

function Constructor return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEv");

function Constructor (v : Integer) return Root;
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pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ei");

function Constructor (v, w : Integer) return Root;
pragma Cpp_Constructor (Constructor, "_ZN4RootClEii");
end Pkg_Root;

On the Ada side, the constructor is represented by a function (whose name is arbitrary)
that returns the classwide type corresponding to the imported C++ class. Although the
constructor is described as a function, it’s typically a procedure with an extra implicit
argument (the object being initialized) at the implementation level. GNAT issues the
appropriate call, whatever it is, to get the object properly initialized.

Constructors can only appear in the following contexts:

* On the right side of an initialization of an object of type.

* On the right side of an initialization of a record component of type.

* In an Ada 2005 limited aggregate.

* In an Ada 2005 nested limited aggregate.

* In an Ada 2005 limited aggregate that initializes an object built in place by an extended

return statement.

In a declaration of an object whose type is a class imported from C++, either the default
C++ constructor is implicitly called by GNAT or you must explicitly call the required C++
constructor in the expression that initializes the object. For example:

Obj1l : Root;

Obj2 : Root := Constructor;

0bj3 : Root := Constructor (v => 10);

Obj4 : Root := Constructor (30, 40);

The first two declarations are equivalent: in both cases the default C++ constructor is
invoked (in the former case the call to the constructor is implicit and in the latter case
the call is explicit in the object declaration). 0bj3 is initialized by the C++ non-default
constructor that takes an integer argument and 0bj4 is initialized by the non-default C++
constructor that takes two integers.

Let’s derive the imported C++ class in the Ada side. For example:

type DT is new Root with record
C_Value : Natural := 2009;
end record;

In this case, you must initialize the components DT inherited from the C++ side by a C++
constructor and the additional Ada components of type DT are initialized by GNAT. The
initialization of such an object is done either by default, or by means of a function returning
an aggregate of type DT, or by means of an extension aggregate.

0bj5 : DT;
0bj6 : DT := Function_Returning DT (50);
0bj7 : DT := (Comstructor (30,40) with C_Value => 50);

The declaration of Obj5 invokes the default constructors: the C++ default constructor of
the parent type takes care of the initialization of the components inherited from Root and
GNAT takes care of the default initialization of the additional Ada components of type DT
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(that is, C_Value is initialized to value 2009). The order of invocation of the constructors is
consistent with the order of elaboration required by Ada and C++. That is, the constructor
of the parent type is always called before the constructor of the derived type.

Let’s now consider a record that has components whose type is imported from C++. For
example:

type Recl is limited record
Datal : Root := Constructor (10);
Value : Natural := 1000;

end record;

type Rec2 (D : Integer := 20) is limited record
Rec : Recli;
Data2 : Root := Constructor (D, 30);

end record;

The initialization of an object of type Rec2 calls the non-default C++ constructors specified
for the imported components. For example:

0bj8 : Rec2 (40);

Using Ada 2005, we can use limited aggregates to initialize an object invoking C++ con-
structors that differ from those specified in the type declarations. For example:

0bj9 : Rec2 := (Rec => (Datal => Constructor (15, 16),
others => <>),
others => <>);

The above declaration uses an Ada 2005 limited aggregate to initialize 0bj9 and the C++
constructor that has two integer arguments is invoked to initialize the Datal component
instead of the constructor specified in the declaration of type Recl. In Ada 2005, the box in
the aggregate indicates that unspecified components are initialized using the expression (if
any) available in the component declaration. That is, in this case discriminant D is initialized
to value 20, Value is initialized to value 1000, and the non-default C++ constructor that
handles two integers takes care of initializing component Data2 with values 20, 30.

In Ada 2005, we can use the extended return statement to build the Ada equivalent to C++
non-default constructors. For example:

function Constructor (V : Integer) return Rec2 is
begin
return Obj : Rec2 := (Rec => (Datal => Constructor (V, 20),
others => <>),
others => <>) do
—-- Further actions required for construction of
-- objects of type Rec2

end record;
end Constructor;
In this example, we use the extended return statement construct to build in place the
returned object whose components are initialized by means of a limited aggregate. We
could also place any further action associated with the constructor inside the construct.
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3.11.3.5 Interfacing with C++ at the Class Level

In this section, we demonstrate the GNAT features for interfacing with C++ by means of
an example making use of Ada 2005 abstract interface types. This example consists of a
classification of animals; classes have been used to model our main classification of animals
and interfaces provide support for the management of secondary classifications. We first
demonstrate a case in which the types and constructors are defined on the C++ side and
imported from the Ada side and then the reverse case.

The root of our derivation is the Animal class, with a single private attribute (the Age of the
animal), a constructor, and two public primitives to set and get the value of this attribute.

class Animal {
public:
virtual void Set_Age (int New_Age);
virtual int Age ();
Animal () {Age_Count = 0;1};
private:
int Age_Count;
+
Abstract interface types are defined in C++ by means of classes with pure virtual functions
and no data members. In our example we use two interfaces that provide support for the
common management of Carnivore and Domestic animals:

class Carnivore {
public:

virtual int Number_0Of_Teeth () = O;
};

class Domestic {
public:
virtual void Set_Owner (char* Name) = 0;
};
Using these declarations, we can now say that a Dog is an animal that is both Carnivore
and Domestic, that is:
class Dog : Animal, Carnivore, Domestic {
public:
virtual int Number_0f_Teeth ();
virtual void Set_Owner (char* Name) ;

Dog(); // Constructor
private:
int Tooth_Count;
char *0wner;
};
In the following examples we assume that the previous declarations are located in a file
named animals.h. The following package demonstrates how to import these C++ declara-
tions from the Ada side:

with Interfaces.C.Strings; use Interfaces.C.Strings;
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package Animals is
type Carnivore is limited interface;
pragma Convention (C_Plus_Plus, Carnivore);
function Number_0f_Teeth (X : Carnivore)
return Natural is abstract;

type Domestic is limited interface;
pragma Convention (C_Plus_Plus, Domestic);
procedure Set_Owner

X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged limited record
Age : Natural;

end record;

pragma Import (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);
pragma Import (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;
pragma Import (C_Plus_Plus, Age);

function New_Animal return Animal;
pragma CPP_Constructor (New_Animal);
pragma Import (CPP, New_Animal, "_ZN6AnimalC1Ev");

type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : Natural;
Owner : Chars_Ptr;

end record;

pragma Import (C_Plus_Plus, Dog);

function Number_0f_Teeth (A : Dog) return Natural;
pragma Import (C_Plus_Plus, Number_0f_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
pragma Import (C_Plus_Plus, Set_Owner);

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");
end Animals;

Thanks to the compatibility between GNAT run-time structures and the C++ ABI, inter-
facing with these C++ classes is easy. The only requirement is that you must declare all the
primitives and components exactly in the same order in the two languages.
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Regarding the abstract interfaces, we must indicate to the GNAT compiler, by means of
a pragma Convention (C_Plus_Plus), that the convention used to pass the arguments to
the called primitives will be the same as for C++. For the imported classes, we use pragma
Import with convention C_Plus_Plus to indicate they have been defined on the C++ side;
this is required because the dispatch table associated with these tagged types will be built
in the C++ side and therefore will not contain the predefined Ada primitives which Ada
would otherwise expect.

As the reader can see, there is no need to indicate the C++ mangled names associated
with each subprogram because it is assumed that all the calls to these primitives will be
dispatching calls. The only exception is the constructor, which we must register with the
compiler by means of pragma CPP_Constructor and we need to provide its associated C++
mangled name because the Ada compiler generates direct calls to it.

With the above packages, we can now declare objects of type Dog on the Ada side and
dispatch calls to the corresponding subprograms on the C++ side. We can also extend the
tagged type Dog with further fields and primitives and override some of its C++ primitives
on the Ada side. For example, here we have a type derivation defined on the Ada side that
inherits all the dispatching primitives of the ancestor from the C++ side.

with Animals; use Animals;
package Vaccinated_Animals is

type Vaccinated_Dog is new Dog with null record;

function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;
end Vaccinated_Animals;

It is important to note that, because of the ABI compatibility, we don’t need to add any
further information to indicate either the object layout or the dispatch table entry associated
with each dispatching operation.

Now let’s define all the types and constructors on the Ada side and export them to C++,
using the same hierarchy of our previous example:

with Interfaces.C.Strings;
use Interfaces.C.Strings;
package Animals is
type Carnivore is limited interface;
pragma Convention (C_Plus_Plus, Carnivore);
function Number_0f_Teeth (X : Carnivore)
return Natural is abstract;

type Domestic is limited interface;
pragma Convention (C_Plus_Plus, Domestic);
procedure Set_Owner

(X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record
Age : Natural;
end record;
pragma Convention (C_Plus_Plus, Animal);
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procedure Set_Age (X : in out Animal; Age : Integer);
pragma Export (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;
pragma Export (C_Plus_Plus, Age);

function New_Animal return Animal'Class;
pragma Export (C_Plus_Plus, New_Animal);

type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : Natural;
Owner : String (1 .. 30);

end record;

pragma Convention (C_Plus_Plus, Dog);

function Number_0f_Teeth (A : Dog) return Natural;
pragma Export (C_Plus_Plus, Number_0f_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
pragma Export (C_Plus_Plus, Set_Owner);

function New_Dog return Dog'Class;
pragma Export (C_Plus_Plus, New_Dog);
end Animals;

Compared with our previous example the only differences are the use of pragma Convention
(instead of pragma Import) and the use of pragma Export to indicate to the GNAT compiler
that the primitives will be available to C++. Thanks to the ABI compatibility, on the C++
side there is nothing else to be done; as explained above, the only requirement is that all
the primitives and components are declared in exactly the same order.

For completeness, let us see a brief C++ main program that uses the declarations available
in animals.h (presented in our first example) to import and use the declarations from the
Ada side, properly initializing and finalizing the Ada run-time system along the way:

#include "animals.h"
#include <iostream>
using namespace std;

void Check_Carnivore (Carnivore *obj) {...
void Check_Domestic (Domestic *obj)  {..
void Check_Animal (Animal *obj) {...
void Check_Dog (Dog *obj) {

L R

extern "C" {
void adainit (void);
void adafinal (void);
Dog* new_dog ();
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}

void test ()

{
Dog *obj = new_dog(); // Ada constructor
Check_Carnivore (obj); // Check secondary DT
Check_Domestic (obj); // Check secondary DT

Check_Animal (obj); // Check primary DT
Check_Dog (obj); // Check primary DT
}
int main O
{
adainit (); test(); adafinal ();
return O;
}

3.11.4 Partition-Wide Settings

When building a mixed-language application, you must be aware that Ada enforces some
partition-wide settings that may implicitly impact the behavior of the other languages.

This is the case for certain signals that are reserved to the implementation to implement
proper Ada semantics (such as the behavior of abort statements). It means that the Ada
part of the application may override signal handlers that were previously installed by either
the system or by other user code.

If your application requires that either system or user signals be preserved, you need to
instruct the Ada part not to install its own signal handler. You do this using pragma
Interrupt_State that provides a general mechanism for overriding such uses of interrupts.

Additionally, you can use pragma Interrupts_System_By_Default to default all interrupts
to System.

The set of interrupts for which the Ada run-time library sets a specific signal handler is the
following:

* Ada.Interrupts.Names.SIGSEGV
* Ada.Interrupts.Names.SIGBUS
*  Ada.Interrupts.Names.SIGFPE
*  Ada.Interrupts.Names.SIGILL
*  Ada.Interrupts.Names.SIGABRT

You can instruct the run-time library not to install its signal handler for a particular signal
by using the configuration pragma Interrupt_State in the Ada code. For example:

pragma Interrupt_State (Ada.Interrupts.Names.SIGSEGV, System);
pragma Interrupt_State (Ada.Interrupts.Names.SIGBUS, System);
pragma Interrupt_State (Ada.Interrupts.Names.SIGFPE, System);
pragma Interrupt_State (Ada.Interrupts.Names.SIGILL, System);
pragma Interrupt_State (Ada.Interrupts.Names.SIGABRT, System);
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Obviously, if the Ada run-time system cannot set these handlers it comes with the draw-
back of not fully preserving Ada semantics. SIGSEGV, SIGBUS, SIGFPE and SIGILL are
used to raise corresponding Ada exceptions in the application, while SIGABRT is used to
asynchronously abort an action or a task.

3.11.5 Generating Ada Bindings for C and C++ headers

GNAT includes a binding generator for C and C++ headers, which is intended to do 95% of
the tedious work of generating Ada specs from C or C++ header files.

This capability is not intended to generate 100% correct Ada specs and it will in some cases
require you to make manual adjustments, although it can often be used out of the box in
practice.

Some of the known limitations include:

* only very simple character constant macros are translated into Ada constants. Function

macros (macros with arguments) are partially translated as comments, to be completed
manually if needed.

some extensions (e.g. vector types) are not supported
pointers to pointers are mapped to System.Address

identifiers with names that are identical except for casing may generate compilation
errors (e.g. shm_get vs SHM_GET).

The code is generated using Ada 2012 syntax, which makes it easier to interface with other
languages. In most cases, you can still use the generated binding even if your code is
compiled using earlier versions of Ada (e.g. -gnat95).

3.11.5.1 Running the Binding Generator

The binding generator is part of the gcc compiler and you can invoke it via the ~-fdump-ada-
spec switch, which generates Ada spec files for the header files specified on the command
line and all header files needed by these files transitively. For example:

$ gcc -c -fdump-ada-spec -C /usr/include/time.h
$ gcc -c *.ads

generates, under GNU/Linux, the following files: time_h.ads, bits_time_h.ads,
stddef_h.ads, bits_types_h.ads which correspond to the files /usr/include/time.h,
and /usr/include/bits/time.h and then compile these Ada specs. The name of the Ada
specs is consistent with the relative path under /usr/include/ of the header files. This
behavior is specific to paths ending with /include/; in all the other cases, the name of
the Ada specs is derived from the simple name of the header files instead.

The -C switch tells gcc to extract comments from headers, and attempt to generate corre-
sponding Ada comments.

If you want to generate a single Ada file and not the transitive closure, you can use instead
the -fdump-ada-spec-slim switch.

You can optionally specify a parent unit, of which all generated units will be children, using
-fada-spec-parent="unit'.

The simple gce-based command works only for C headers. For C++ headers you need to
use either the g++ command or the combination gcc -x c++.
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In some cases, the generated bindings will be more complete or more meaningful when
defining some macros, which you can do via the -D switch. This is for example the case
with X1ib.h under GNU/Linux:

$ gcc -c -fdump-ada-spec -DXLIB_ILLEGAL_ACCESS -C /usr/include/X11/X1ib.h

The above generates more complete bindings than a call without the -DXLIB_ILLEGAL_
ACCESS switch.

In other cases, you can’t parse a header file in a stand-alone manner because other include
files need to be included first. In this case, the solution is to create a small header file
including the needed #include and possible #define directives. For example, to generate
Ada bindings for readline/readline.h, you need to first include stdio.h, so you can
create a file with the following two lines in e.g. readlinel.h:

#include <stdio.h>
#include <readline/readline.h>

and then generate Ada bindings from this file:

$ gcc -c -fdump-ada-spec readlinel.h

3.11.5.2 Generating Bindings for C++ Headers

Generating bindings for C++ headers is done using the same options, but with the g++
compiler. Note that generating Ada spec from C++ headers is a much more complex job
and support for C++ headers is much more limited that support for C headers. As a result,
you will need to modify the resulting bindings by hand more extensively when using C++
headers.

In this mode, C++ classes are mapped to Ada tagged types, constructors are mapped using
the CPP_Constructor pragma, and when possible, multiple inheritance of abstract classes
are mapped to Ada interfaces (see the ‘Interfacing to C++’ section in the GNAT Reference
Manual for additional information on interfacing to C++).

For example, given the following C++ header file:

class Carnivore {
public:

virtual int Number_0Of_Teeth () = O;
};

class Domestic {
public:
virtual void Set_Owner (char* Name) = O;

};

class Animal {
public:

int Age_Count;

virtual void Set_Age (int New_Age);
};

class Dog : Animal, Carnivore, Domestic {
public:
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int Tooth_Count;
char *0wner;

virtual int Number_0f_Teeth ();
virtual void Set_Owner (char* Name);

Dog() ;
};

The corresponding Ada code is generated:

package Class_Carnivore is
type Carnivore is limited interface;
pragma Import (CPP, Carnivore) ;

function Number_0f_Teeth (this : access Carnivore) return int is abstract;
end;
use Class_Carnivore;

package Class_Domestic is
type Domestic is limited interface;
pragma Import (CPP, Domestic);

procedure Set_Owner
(this : access Domestic;
Name : Interfaces.C.Strings.chars_ptr) is abstract;
end;
use Class_Domestic;

package Class_Animal is
type Animal is tagged limited record
Age_Count : aliased int;
end record;
pragma Import (CPP, Animal);

procedure Set_Age (this : access Animal; New_Age : int);
pragma Import (CPP, Set_Age, "_ZN6Animal7Set_AgeEi");
end;
use Class_Animal;

package Class_Dog is
type Dog is new Animal and Carnivore and Domestic with record
Tooth_Count : aliased int;
Owner : Interfaces.C.Strings.chars_ptr;
end record;
pragma Import (CPP, Dog);

function Number_0f_Teeth (this : access Dog) return int;
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pragma Import (CPP, Number_0f_Teeth, "_ZN3DoglSNumber_0f_TeethEv");

procedure Set_Owner
(this : access Dog; Name : Interfaces.C.Strings.chars_ptr);
pragma Import (CPP, Set_Owner, "_ZN3Dog9Set_OwnerEPc");

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogClEv");
end;
use Class_Dog;

3.11.5.3 Switches

-fdump-ada-spec
Generate Ada spec files for the given header files transitively (including all
header files that these headers depend upon).

-fdump-ada-spec-slim
Only generate Ada spec files for the header files specified on the command line.

-fada-spec-parent="unit'
Specifies that all files generated by -fdump-ada-spec are to be child units of
the specified parent unit.

Extract comments from headers and generate Ada comments in the Ada spec
files.

3.11.6 Generating C Headers for Ada Specifications

GNAT includes a C header generator for Ada specifications that supports Ada types that
have a direct mapping to C types. This specifically includes support for:

* Scalar types

* Constrained arrays

*

Records (untagged)

*

Composition of the above types

* Constant declarations

* Object declarations

* Subprogram declarations

3.11.6.1 Running the C Header Generator

The C header generator is part of the GNAT compiler and can be invoked via the —gnatceg
switch, which generates a .h file corresponding to the given input file (Ada spec or body).
Note that only spec files are processed, so giving a spec or a body file as input is equivalent.
For example:

$ gcc -c -gnatceg packl.ads
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generates a self-contained file called packl.h including common definitions from the Ada
Standard package followed by the definitions included in packl.ads as well as all the other
units withed by this file.

For instance, given the following Ada files:

package Pack2 is
type Int is range 1 .. 10;
end Pack2;

with Pack2;

package Packl is
type Rec is record
Fieldl, Field2 : Pack2.Int;
end record;

Global : Rec := (1, 2);

procedure Procl (R : Rec);
procedure Proc2 (R : in out Rec);
end Packl;

The above gcc command generates the following packl.h file:

/* Standard definitions skipped */
#ifndef PACK2_ADS

#define PACK2_ADS

typedef short_short_integer pack2__TintB;
typedef pack2__TintB pack2__int;

#endif /* PACK2_ADS */

#ifndef PACK1_ADS
#define PACK1_ADS
typedef struct _packl__rec {
pack2__int fieldil;
pack2__int field2;
} packl__rec;
extern packl__rec packl__global;
extern void packl__procl(const packl__rec r);
extern void packl__proc2(packl__rec *r);
#endif /* PACK1_ADS x/

You can then include packl.h from a C source file and use the types, call subprograms,
reference objects, and constants.

3.12 GNAT and Other Compilation Models

This section compares the GNAT model with the approaches taken in other environments:
first the C/C++ model and then the mechanism that has been used in other Ada systems,
in particular those traditionally used for Ada 83.
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3.12.1 Comparison between GNAT and C/C++ Compilation
Models

The GNAT compilation model is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they
are compiled when they are used. The Ada ‘with’ is similar in effect to the #include of a
C header.

One notable difference is that, in Ada, you may compile specs separately to check them for
semantic and syntactic accuracy. This is not always possible with C headers because they
are fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example.
The binder satisfies the Ada requirement that it be impossible to construct an inconsistent
program when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There are
also elaboration issues in C++ that are handled automatically. This automatic handling
has the advantage of being simpler to use, but the C++ programmer has no control over
elaboration. Where gnatbind might complain there was no valid order of elaboration, a
C++ compiler would simply construct a program that malfunctioned at run time.

3.12.2 Comparison between GNNAT and Conventional Ada Library
Models

This section is intended for Ada programmers who have used an Ada compiler implementing
the traditional Ada library model, as described in the Ada Reference Manual.

In GNAT, there is no ‘library’ in the normal sense. Instead, the set of source files themselves
acts as the library. Compiling Ada programs does not generate any centralized information,
but rather an object file and a .ali file, which are of interest only to the binder and linker.
In a traditional system, the compiler reads information not only from the source file being
compiled but also from the centralized library. This means that the effect of a compilation
depends on what has been previously compiled. In particular:

* When a unit is ‘with’ed, the unit seen by the compiler corresponds to the version of
the unit most recently compiled into the library.

* Inlining is effective only if the necessary body has already been compiled into the
library.

* Compiling a unit may obsolete other units in the library.

In GNAT, compiling one unit never affects the compilation of any other units because the
compiler reads only source files. Only changes to source files can affect the results of a
compilation. In particular:

* When a unit is ‘with’ed, the unit seen by the compiler corresponds to the source version
of the unit that is currently accessible to the compiler.

* Inlining requires the appropriate source files for the package or subprogram bodies to
be available to the compiler. Inlining is always effective, independent of the order in
which units are compiled.
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* Compiling a unit never affects any other compilations. The editing of sources may
cause previous compilations to be out of date if they depended on the source file being
modified.

The most important result of these differences is that order of compilation is never significant
in GNAT. There is no situation in which you are required to do one compilation before
another. What shows up as order of compilation requirements in the traditional Ada library
becomes, in GNAT, simple source dependencies; in other words, there is only a set of rules
saying what source files must be present when a file is compiled.

3.13 Using GNAT Files with External Tools

This section explains how files that are produced by GNAT may be used with tools designed
for other languages.

3.13.1 Using Other Utility Programs with GNAT

The object files generated by GNAT are in standard system format and, in particular, the
debugging information uses this format. This means programs generated by GNAT can be
used with existing utilities that depend on these formats.

In general, any utility program that works with C will also often work with Ada programs
generated by GNAT. This includes software utilities such as gprof (a profiling program),
gdb (the FSF debugger), and utilities such as Purify.

3.13.2 The External Symbol Naming Scheme of GNAT

To interpret the output from GNAT when using tools that are originally intended for use
with other languages, you need to understand the conventions used to generate link names
from the Ada entity names.

All link names are in all lowercase. With the exception of library procedure names, the
mechanism used is simply to use the full expanded Ada name with dots replaced by double
underscores. For example, suppose we have the following package spec:

package QRS is
MN : Integer;
end QRS;

The variable MN has a full expanded Ada name of QRS.MN, so the corresponding link name
is qrs__mn. Of course if you use a pragma Export, you maye override this:

package Exports is
Varl : Integer;
pragma Export (Varl, C, External_Name => "varl_name");
Var2 : Integer;
pragma Export (Var2, C, Link_Name => "var2_link_name");
end Exports;

In this case, the link name for Varl is whatever link name the C compiler would assign
for the C function vari_name. This typically would be either varl_name or _varl_name,
depending on operating system conventions, but other possibilities exist. The link name for
Var2 is var2_link_name, and this is not operating system dependent.
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One exception occurs for library level procedures. A potential ambiguity arises between the
required name _main for the C main program, and the name we would otherwise assign to
an Ada library level procedure called Main (which might well not be the main program).

To avoid this ambiguity, GNAT adds the prefix _ada_ to such names. So if we have a library
level procedure such as:

procedure Hello (S : String);

the external name of this procedure is _ada_hello.
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4 Building Executable Programs with GNAT

This chapter describes first the gnatmake tool ([Building with gnatmake|, page 77), which
automatically determines the set of sources needed by an Ada compilation unit and exe-
cutes the necessary (re)compilations, binding and linking. It also explains how to use each
tool individually: the compiler (gcc, see [Compiling with gec], page 87), binder (gnatbind,
see [Binding with gnatbind], page 156), and linker (gnatlink, see [Linking with gnatlink],
page 170) to build executable programs. Finally, this chapter provides examples of how to
make use of the general GNU make mechanism in a GNAT context (see [Using the GNU
make Utility], page 172).

4.1 Building with gnatmake

A typical development cycle when working on an Ada program consists of the following
steps:

1. Edit some sources to fix bugs;
2. Add enhancements;

3. Compile all sources affected;
4. Rebind and relink; and

5. Test.

The third step in particular can be tricky, because not only do the modified files have to be
compiled, but any files depending on these files must also be recompiled. The dependency
rules in Ada can be quite complex, especially in the presence of overloading, use clauses,
generics and inlined subprograms.

gnatmake automatically takes care of the third and fourth steps of this process. It deter-
mines which sources need to be compiled, compiles them, and binds and links the resulting
object files.

Unlike some other Ada make programs, the dependencies are always accurately recomputed
from the new sources. The source based approach of the GNAT compilation model makes
this possible. This means that if changes to the source program cause corresponding changes
in dependencies, they will always be tracked exactly correctly by gnatmake.

Note that for advanced forms of project structure, we recommend creating a project file
as explained in the ‘GNAT_Project_Manager’ chapter in the ‘GPRbuild User’s Guide’, and
using the gprbuild tool which supports building with project files and works similarly to
gnatmake.

4.1.1 Running gnatmake
The usual form of the gnatmake command is
$ gnatmake [<switches>] <file_name> [<file_names>] [<mode_switches>]

The only required argument is one file_name, which specifies a compilation unit that is a
main program. Several file_names can be specified: this will result in several executables
being built. If switches are present, they can be placed before the first file_name, between
file_names or after the last file_name. If mode_switches are present, they must always
be placed after the last file_name and all switches.
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If you are using standard file extensions (.adb and .ads), then the extension may be omitted
from the file_name arguments. However, if you are using non-standard extensions, then it
is required that the extension be given. A relative or absolute directory path can be specified
in a file_name, in which case, the input source file will be searched for in the specified
directory only. Otherwise, the input source file will first be searched in the directory where
gnatmake was invoked and if it is not found, it will be search on the source path of the
compiler as described in [Search Paths and the Run-Time Library (RTL)], page 89.

All gnatmake output (except when you specify -M) is sent to stderr. The output produced
by the -M switch is sent to stdout.

4.1.2 Switches for gnatmake
You may specify any of the following switches to gnatmake:

--version
Display Copyright and version, then exit disregarding all other options.

--help

If —-version was not used, display usage, then exit disregarding all other op-
tions.

-P project'
Build GNAT project file project using GPRbuild. When this switch is present,
all other command-line switches are treated as GPRbuild switches and not
gnatmake switches.

-—-GCC="compiler_name'

Program used for compiling. The default is gcc. You need to use quotes around
compiler_name if compiler_name contains spaces or other separator characters.
As an example --GCC="foo -x -y" will instruct gnatmake to use foo -x -y as
your compiler. A limitation of this syntax is that the name and path name of
the executable itself must not include any embedded spaces. Note that switch
-c is always inserted after your command name. Thus in the above example
the compiler command that will be used by gnatmake will be foo -¢ -x -y. If
several ——GCC=compiler_name are used, only the last compiler_name is taken
into account. However, all the additional switches are also taken into account.
Thus, --GCC="foo -x -y" --GCC="bar -z -t" is equivalent to --GCC="bar -x
-y -z -t".

--GNATBIND="binder_name'

Program used for binding. The default is gnatbind. You need to use quotes
around binder_name if binder_name contains spaces or other separator char-
acters. As an example ——~GNATBIND="bar -x -y" will instruct gnatmake to use
bar -x -y as your binder. Binder switches that are normally appended by
gnatmake to gnatbind are now appended to the end of bar -x -y. A limita-
tion of this syntax is that the name and path name of the executable itself must
not include any embedded spaces.

-—GNATLINK="1linker_name'
Program used for linking. The default is gnatlink. You need to use quotes
around linker_name if linker_name contains spaces or other separator charac-
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ters. As an example ——GNATLINK="1an -x -y" will instruct gnatmake to use lan
-x -y as your linker. Linker switches that are normally appended by gnatmake
to gnatlink are now appended to the end of lan -x -y. A limitation of this
syntax is that the name and path name of the executable itself must not include
any embedded spaces.

—--create-map-file

When linking an executable, create a map file. The name of the map file has
the same name as the executable with extension “.map”.

-—create—-map-file="mapfile'

When linking an executable, create a map file with the specified name.

--create-missing-dirs

When using project files (-P project'), automatically create missing object
directories, library directories and exec directories.

--single-compile-per-obj-dir

Disallow simultaneous compilations in the same object directory when project
files are used.

—-subdirs="subdir'

Actual object directory of each project file is the subdirectory subdir of the
object directory specified or defaulted in the project file.

—--unchecked-shared-lib-imports

By default, shared library projects are not allowed to import static library
projects. When this switch is used on the command line, this restriction is
relaxed.

—--source-info="source info file'

Specify a source info file. This switch is active only when project files are used.
If the source info file is specified as a relative path, then it is relative to the
object directory of the main project. If the source info file does not exist, then
after the Project Manager has successfully parsed and processed the project
files and found the sources, it creates the source info file. If the source info file
already exists and can be read successfully, then the Project Manager will get
all the needed information about the sources from the source info file and will
not look for them. This reduces the time to process the project files, especially
when looking for sources that take a long time. If the source info file exists but
cannot be parsed successfully, the Project Manager will attempt to recreate it.
If the Project Manager fails to create the source info file, a message is issued,
but gnatmake does not fail. gnatmake “trusts” the source info file. This means
that if the source files have changed (addition, deletion, moving to a different
source directory), then the source info file need to be deleted and recreated.

Consider all files in the make process, even the GNAT internal system files (for
example, the predefined Ada library files), as well as any locked files. Locked
files are files whose ALI file is write-protected. By default, gnatmake does not
check these files, because the assumption is that the GNAT internal files are
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properly up to date, and also that any write protected ALI files have been
properly installed. Note that if there is an installation problem, such that one
of these files is not up to date, it will be properly caught by the binder. You
may have to specify this switch if you are working on GNAT itself. The switch
-a is also useful in conjunction with -f if you need to recompile an entire
application, including run-time files, using special configuration pragmas, such
as a Normalize_Scalars pragma.

By default gnatmake -a compiles all GNAT internal files with gcc -c -gnatpg
rather than gcc -c.

Bind only. Can be combined with -c to do compilation and binding, but no link.
Can be combined with -1 to do binding and linking. When not combined with
-c all the units in the closure of the main program must have been previously
compiled and must be up to date. The root unit specified by file_name may
be given without extension, with the source extension or, if no GNAT Project
File is specified, with the ALI file extension.

Compile only. Do not perform binding, except when -b is also specified. Do
not perform linking, except if both -b and -1 are also specified. If the root
unit specified by file_name is not a main unit, this is the default. Otherwise
gnatmake will attempt binding and linking unless all objects are up to date and
the executable is more recent than the objects.

Use a temporary mapping file. A mapping file is a way to communicate to the
compiler two mappings: from unit names to file names (without any directory
information) and from file names to path names (with full directory informa-
tion). A mapping file can make the compiler’s file searches faster, especially if
there are many source directories, or the sources are read over a slow network
connection. If -P is used, a mapping file is always used, so -C is unnecessary;
in this case the mapping file is initially populated based on the project file. If
-C is used without -P, the mapping file is initially empty. Each invocation of
the compiler will add any newly accessed sources to the mapping file.

Use a specific mapping file. The file, specified as a path name (absolute or
relative) by this switch, should already exist, otherwise the switch is ineffective.
The specified mapping file will be communicated to the compiler. This switch is
not compatible with a project file (-P‘file‘) or with multiple compiling processes
(-jnnn, when nnn is greater than 1).

Display progress for each source, up to date or not, as a single line:
completed x out of y (zz%)

If the file needs to be compiled this is displayed after the invocation of the
compiler. These lines are displayed even in quiet output mode.
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Put all object files and ALI file in directory dir. If the -D switch is not used,
all object files and ALI files go in the current working directory.

This switch cannot be used when using a project file.

Indicates that the main source is a multi-unit source and the rank of the unit
in the source file is nnn. nnn needs to be a positive number and a valid index
in the source. This switch cannot be used when gnatmake is invoked for several
mains.

Follow all symbolic links when processing project files. This should be used
if your project uses symbolic links for files or directories, but is not needed in
other cases.

This also assumes that no directory matches the naming scheme for files (for
instance that you do not have a directory called “sources.ads” when using the
default GNAT naming scheme).

When you do not have to use this switch (i.e., by default), gnatmake is able
to save a lot of system calls (several per source file and object file), which can
result in a significant speed up to load and manipulate a project file, especially
when using source files from a remote system.

Output the commands for the compiler, the binder and the linker on standard
output, instead of standard error.

Force recompilations. Recompile all sources, even though some object files may
be up to date, but don’t recompile predefined or GNAT internal files or locked
files (files with a write-protected ALI file), unless the -a switch is also specified.

When using project files, if some errors or warnings are detected during parsing
and verbose mode is not in effect (no use of switch -v), then error lines start
with the full path name of the project file, rather than its simple file name.

Enable debugging. This switch is simply passed to the compiler and to the
linker.

In normal mode, gnatmake compiles all object files and ALI files into the current
directory. If the -i switch is used, then instead object files and ALI files that
already exist are overwritten in place. This means that once a large project is
organized into separate directories in the desired manner, then gnatmake will
automatically maintain and update this organization. If no ALI files are found
on the Ada object path (see [Search Paths and the Run-Time Library (RTL)],
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_J"

—-m

page 89), the new object and ALI files are created in the directory containing
the source being compiled. If another organization is desired, where objects
and sources are kept in different directories, a useful technique is to create
dummy ALI files in the desired directories. When detecting such a dummy file,
gnatmake will be forced to recompile the corresponding source file, and it will
be put the resulting object and ALI files in the directory where it found the
dummy file.

Use n processes to carry out the (re)compilations. On a multiprocessor machine
compilations will occur in parallel. If n is 0, then the maximum number of
parallel compilations is the number of core processors on the platform. In
the event of compilation errors, messages from various compilations might get
interspersed (but gnatmake will give you the full ordered list of failing compiles
at the end). If this is problematic, rerun the make process with n set to 1 to
get a clean list of messages.

Keep going. Continue as much as possible after a compilation error. To ease
the programmer’s task in case of compilation errors, the list of sources for which
the compile fails is given when gnatmake terminates.

If gnatmake is invoked with several file_names and with this switch, if there
are compilation errors when building an executable, gnatmake will not attempt
to build the following executables.

Link only. Can be combined with -b to binding and linking. Linking will not
be performed if combined with —c but not with -b. When not combined with
-b all the units in the closure of the main program must have been previously
compiled and must be up to date, and the main program needs to have been
bound. The root unit specified by file_name may be given without extension,
with the source extension or, if no GNAT Project File is specified, with the ALI
file extension.

Specify that the minimum necessary amount of recompilations be performed.
In this mode gnatmake ignores time stamp differences when the only modifica-
tions to a source file consist in adding/removing comments, empty lines, spaces
or tabs. This means that if you have changed the comments in a source file or
have simply reformatted it, using this switch will tell gnatmake not to recompile
files that depend on it (provided other sources on which these files depend have
undergone no semantic modifications). Note that the debugging information
may be out of date with respect to the sources if the -m switch causes a com-
pilation to be switched, so the use of this switch represents a trade-off between
compilation time and accurate debugging information.

Check if all objects are up to date. If they are, output the object dependences
to stdout in a form that can be directly exploited in a Makefile. By default,
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-n

P

-u

-V

each source file is prefixed with its (relative or absolute) directory name. This
name is whatever you specified in the various -al and -I switches. If you use
gnatmake -M -q (see below), only the source file names, without relative paths,
are output. If you just specify the -M switch, dependencies of the GNAT internal
system files are omitted. This is typically what you want. If you also specify
the -a switch, dependencies of the GNAT internal files are also listed. Note
that dependencies of the objects in external Ada libraries (see switch —aL>dir'
in the following list) are never reported.

Don’t compile, bind, or link. Checks if all objects are up to date. If they
are not, the full name of the first file that needs to be recompiled is printed.
Repeated use of this option, followed by compiling the indicated source file, will
eventually result in recompiling all required units.

“exec_name'

Output executable name. The name of the final executable program will be
exec_name. If the -o switch is omitted the default name for the executable will
be the name of the input file in appropriate form for an executable file on the
host system.

This switch cannot be used when invoking gnatmake with several file_names.

Same as --create-missing-dirs

Quiet. When this flag is not set, the commands carried out by gnatmake are
displayed.

Recompile if compiler switches have changed since last compilation. All com-
piler switches but -I and -o are taken into account in the following way: orders
between different ‘first letter’ switches are ignored, but orders between same
switches are taken into account. For example, -0 -02 is different than -02 -0,
but -g -0 is equivalent to -0 -g.

This switch is recommended when Integrated Preprocessing is used.

Unique. Recompile at most the main files. It implies -c. Combined with -f, it
is equivalent to calling the compiler directly. Note that using -u with a project
file and no main has a special meaning.

When used without a project file or with one or several mains on the command
line, is equivalent to -u. When used with a project file and no main on the
command line, all sources of all project files are checked and compiled if not up
to date, and libraries are rebuilt, if necessary.
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-vP x'

Verbose. Display the reason for all recompilations gnatmake decides are neces-
sary, with the highest verbosity level.

Verbosity level Low. Display fewer lines than in verbosity Medium.

Verbosity level Medium. Potentially display fewer lines than in verbosity High.

Verbosity level High. Equivalent to -v.

Indicate the verbosity of the parsing of GNAT project files. See [Switches
Related to Project Files|, page 335.

Indicate that sources that are not part of any Project File may be compiled.
Normally, when using Project Files, only sources that are part of a Project
File may be compile. When this switch is used, a source outside of all Project
Files may be compiled. The ALI file and the object file will be put in the object
directory of the main Project. The compilation switches used will only be those
specified on the command line. Even when -x is used, mains specified on the
command line need to be sources of a project file.

-X"name'="value'

Indicate that external variable name has the value value. The Project Manager
will use this value for occurrences of external (name) when parsing the project
file. [Switches Related to Project Files], page 335.

No main subprogram. Bind and link the program even if the unit name given
on the command line is a package name. The resulting executable will execute
the elaboration routines of the package and its closure, then the finalization
routines.

GCC switches

Any uppercase or multi-character switch that is not a gnatmake switch is passed to gcc
(e.g., -0, -gnato, etc.)

Source and library search path switches

-al~dir'

—-alL dir'

When looking for source files also look in directory dir. The order in which
source files search is undertaken is described in [Search Paths and the Run-Time
Library (RTL)], page 89.

Consider dir as being an externally provided Ada library. Instructs gnatmake
to skip compilation units whose .ALI files have been located in directory dir.
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This allows you to have missing bodies for the units in dir and to ignore out
of date bodies for the same units. You still need to specify the location of the
specs for these units by using the switches —aI dir' or -I"dir'. Note: this
switch is provided for compatibility with previous versions of gnatmake. The
easier method of causing standard libraries to be excluded from consideration
is to write-protect the corresponding ALI files.

-a0~dir'
When searching for library and object files, look in directory dir. The order
in which library files are searched is described in [Search Paths for gnatbind],
page 169.

-Adir'
Equivalent to —aL>dir' -aI dir'.

-I*dir’
Equivalent to -a0~dir' -aI dir'.

_I_
Do not look for source files in the directory containing the source file named in
the command line. Do not look for ALI or object files in the directory where
gnatmake was invoked.

-L dir'
Add directory dir to the list of directories in which the linker will search for
libraries. This is equivalent to -largs -L dir'. Furthermore, under Windows,
the sources pointed to by the libraries path set in the registry are not searched
for.

-nostdinc
Do not look for source files in the system default directory.

-nostdlib

Do not look for library files in the system default directory.

--RTS="rts-path'
Specifies the default location of the run-time library. GNAT looks for the run-
time in the following directories, and stops as soon as a valid run-time is found
(adainclude or ada_source_path, and adalib or ada_object_path present):

* ‘<current directory>/$rts_path’

* ‘<default-search-dir>/$rts_path’

* ‘<default-search-dir> /rts-$rts_path’

* The selected path is handled like a normal RTS path.

4.1.3 Mode Switches for gnatmake

The mode switches (referred to as mode_switches) allow the inclusion of switches that are
to be passed to the compiler itself, the binder or the linker. The effect of a mode switch is
to cause all subsequent switches up to the end of the switch list, or up to the next mode
switch, to be interpreted as switches to be passed on to the designated component of GNAT.
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—-cargs “switches'
Compiler switches. Here switches is a list of switches that are valid switches
for gcc. They will be passed on to all compile steps performed by gnatmake.

-bargs “switches'
Binder switches. Here switches is a list of switches that are valid switches for
gnatbind. They will be passed on to all bind steps performed by gnatmake.

-largs “switches'
Linker switches. Here switches is a list of switches that are valid switches for
gnatlink. They will be passed on to all link steps performed by gnatmake.

-margs ~switches'
Make switches. The switches are directly interpreted by gnatmake, regardless
of any previous occurrence of -cargs, -bargs or -largs.

4.1.4 Notes on the Command Line

This section contains some additional useful notes on the operation of the gnatmake com-
mand.

* If gnatmake finds no ALI files, it recompiles the main program and all other units

required by the main program. This means that gnatmake can be used for the initial
compile, as well as during subsequent steps of the development cycle.

If you enter gnatmake foo.adb, where foo is a subunit or body of a generic unit,
gnatmake recompiles foo.adb (because it finds no ALI) and stops, issuing a warning.

In gnatmake the switch -I is used to specify both source and library file paths. Use
-al instead if you just want to specify source paths only and -a0 if you want to specify
library paths only.

gnatmake will ignore any files whose ALI file is write-protected. This may conveniently
be used to exclude standard libraries from consideration and in particular it means
that the use of the -f switch will not recompile these files unless -a is also specified.

gnatmake has been designed to make the use of Ada libraries particularly convenient.
Assume you have an Ada library organized as follows: ‘obj-dir’ contains the objects
and ALI files for of your Ada compilation units, whereas ‘include-dir’ contains the specs
of these units, but no bodies. Then to compile a unit stored in main.adb, which uses
this Ada library you would just type:
$ gnatmake -al include-dir® -alL’obj-dir® main

Using gnatmake along with the -m (minimal recompilation) switch provides a mech-
anism for avoiding unnecessary recompilations. Using this switch, you can update the
comments/format of your source files without having to recompile everything. Note,
however, that adding or deleting lines in a source files may render its debugging info
obsolete. If the file in question is a spec, the impact is rather limited, as that debugging
info will only be useful during the elaboration phase of your program. For bodies the
impact can be more significant. In all events, your debugger will warn you if a source
file is more recent than the corresponding object, and alert you to the fact that the
debugging information may be out of date.
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4.1.5 How gnatmake Works

Generally gnatmake automatically performs all necessary recompilations and you don’t need
to worry about how it works. However, it may be useful to have some basic understanding
of the gnatmake approach and in particular to understand how it uses the results of previous
compilations without incorrectly depending on them.

First a definition: an object file is considered ‘up to date’ if the corresponding ALI file exists
and if all the source files listed in the dependency section of this ALI file have time stamps
matching those in the ALI file. This means that neither the source file itself nor any files
that it depends on have been modified, and hence there is no need to recompile this file.

gnatmake works by first checking if the specified main unit is up to date. If so, no com-
pilations are required for the main unit. If not, gnatmake compiles the main program to
build a new ALI file that reflects the latest sources. Then the ALI file of the main unit is
examined to find all the source files on which the main program depends, and gnatmake
recursively applies the above procedure on all these files.

This process ensures that gnatmake only trusts the dependencies in an existing ALI file if
they are known to be correct. Otherwise it always recompiles to determine a new, guar-
anteed accurate set of dependencies. As a result the program is compiled ‘upside down’
from what may be more familiar as the required order of compilation in some other Ada
systems. In particular, clients are compiled before the units on which they depend. The
ability of GNAT to compile in any order is critical in allowing an order of compilation to
be chosen that guarantees that gnatmake will recompute a correct set of new dependencies
if necessary.

When invoking gnatmake with several file_names, if a unit is imported by several of the
executables, it will be recompiled at most once.

Note: when using non-standard naming conventions ([Using Other File Names|, page 12),
changing through a configuration pragmas file the version of a source and invoking gnatmake
to recompile may have no effect, if the previous version of the source is still accessible by
gnatmake. It may be necessary to use the switch -f.

4.1.6 Examples of gnatmake Usage

gnatmake hello.adb
Compile all files necessary to bind and link the main program hello.adb (con-
taining unit Hello) and bind and link the resulting object files to generate an
executable file hello.

gnatmake mainl main2 main3
Compile all files necessary to bind and link the main programs mainl.adb
(containing unit Mainl), main2.adb (containing unit Main2) and main3.adb
(containing unit Main3) and bind and link the resulting object files to generate
three executable files maini, main2 and main3.

gnatmake -q Main_Unit -cargs -02 -bargs -1
Compile all files necessary to bind and link the main program unit Main_Unit
(from file main_unit.adb). All compilations will be done with optimization
level 2 and the order of elaboration will be listed by the binder. gnatmake will
operate in quiet mode, not displaying commands it is executing.
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4.2 Compiling with gcc

This section discusses how to compile Ada programs using the gcc command. It also
describes the set of switches that can be used to control the behavior of the compiler.

4.2.1 Compiling Programs

The first step in creating an executable program is to compile the units of the program
using the gcc command. You must compile the following files:

* the body file (.adb) for a library level subprogram or generic subprogram
* the spec file (.ads) for a library level package or generic package that has no body
* the body file (.adb) for a library level package or generic package that has a body

You need ‘not’ compile the following files

* the spec of a library unit which has a body

* subunits

because they are compiled as part of compiling related units. GNAT compiles package specs
when the corresponding body is compiled, and subunits when the parent is compiled.

If you attempt to compile any of these files, you will get one of the following error messages
(where £££ is the name of the file you compiled):

cannot generate code for file ~“fff "~ (package spec)
to check package spec, use —gnatc

cannot generate code for file ~“fff "~ (missing subunits)
to check parent unit, use -gnatc

cannot generate code for file ~“fff "~ (subprogram spec)
to check subprogram spec, use -gnatc

cannot generate code for file ~“fff "~ (subunit)
to check subunit, use -gnatc

As indicated by the above error messages, if you want to submit one of these files to the
compiler to check for correct semantics without generating code, then use the —-gnatc switch.

The basic command for compiling a file containing an Ada unit is:
$ gcc -c [switches] <file name>

where file name is the name of the Ada file (usually having an extension .ads for a spec
or .adb for a body). You specify the -c switch to tell gcc to compile, but not link, the
file. The result of a successful compilation is an object file, which has the same name as the
source file but an extension of .o and an Ada Library Information (ALI) file, which also
has the same name as the source file, but with .ali as the extension. GNAT creates these
two output files in the current directory, but you may specify a source file in any directory
using an absolute or relative path specification containing the directory information.

gcce is actually a driver program that looks at the extensions of the file arguments and
loads the appropriate compiler. For example, the GNU C compiler is cc1, and the Ada
compiler is gnat1. These programs are in directories known to the driver program (in some
configurations via environment variables you set), but need not be in your path. The gcc
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driver also calls the assembler and any other utilities needed to complete the generation of
the required object files.

It is possible to supply several file names on the same gcc command. This causes gcc to
call the appropriate compiler for each file. For example, the following command lists two
separate files to be compiled:

$ gcc -c x.adb y.adb

calls gnat1 (the Ada compiler) twice to compile x.adb and y.adb. The compiler generates
two object files x.0 and y.o and the two ALI files x.ali and y.ali.

Any switches apply to all the files listed, see [Compiler Switches|, page 90, for a list of
available gcc switches.

4.2.2 Search Paths and the Run-Time Library (RTL)

With the GNAT source-based library system, the compiler must be able to find source files
for units that are needed by the unit being compiled. Search paths are used to guide this
process.

The compiler compiles one source file whose name must be given explicitly on the command
line. In other words, no searching is done for this file. To find all other source files that are
needed (the most common being the specs of units), the compiler examines the following
directories, in the following order:

* The directory containing the source file of the main unit being compiled (the file name
on the command line).

* Each directory named by an -I switch given on the gcc command line, in the order

given.

* Each of the directories listed in the text file whose name is given by the ADA_PRJ_
INCLUDE_FILE environment variable. ADA_PRJ_INCLUDE_FILE is normally set by gnat-
make or by the gnat driver when project files are used. It should not normally be set
by other means.

* FEach of the directories listed in the value of the ADA_INCLUDE_PATH environment vari-
able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version).

* The content of the ada_source_path file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
source files. See also [Installing a library], page 33.

Specifying the switch —I- inhibits the use of the directory containing the source file named
in the command line. You can still have this directory on your search path, but in this case
it must be explicitly requested with a -I switch.

Specifying the switch -nostdinc inhibits the search of the default location for the GNAT
Run Time Library (RTL) source files.

The compiler outputs its object files and ALI files in the current working directory. Caution:
The object file can be redirected with the -o switch; however, gcc and gnat1 have not been
coordinated on this so the ALI file will not go to the right place. Therefore, you should
avoid using the -o switch.

The packages Ada, System, and Interfaces and their children make up the GNAT RTL,
together with the simple System.I0 package used in the "Hello World" example. The
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sources for these units are needed by the compiler and are kept together in one directory.
Not all of the bodies are needed, but all of the sources are kept together anyway. In a
normal installation, you need not specify these directory names when compiling or binding.
FEither the environment variables or the built-in defaults cause these files to be found.

In addition to the language-defined hierarchies (System, Ada and Interfaces), the GNAT
distribution provides a fourth hierarchy, consisting of child units of GNAT. This is a collection
of generally useful types, subprograms, etc. See the GNAT_Reference_Manual for further
details.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.2.3 Order of Compilation Issues

If, in our earlier example, there was a spec for the hello procedure, it would be contained
in the file hello.ads; yet this file would not have to be explicitly compiled. This is the
result of the model we chose to implement library management. Some of the consequences
of this model are as follows:

* There is no point in compiling specs (except for package specs with no bodies) because
these are compiled as needed by clients. If you attempt a useless compilation, you
will receive an error message. It is also useless to compile subunits because they are
compiled as needed by the parent.

There are no order of compilation requirements: performing a compilation never obso-
letes anything. The only way you can obsolete something and require recompilations
is to modify one of the source files on which it depends.

* There is no library as such, apart from the ALI files ([The Ada Library Information
Files], page 29, for information on the format of these files). For now we find it
convenient to create separate ALI files, but eventually the information therein may
be incorporated into the object file directly.

When you compile a unit, the source files for the specs of all units that it ‘with’s, all its
subunits, and the bodies of any generics it instantiates must be available (reachable by
the search-paths mechanism described above), or you will receive a fatal error message.

4.2.4 Examples

The following are some typical Ada compilation command line examples:
$ gcc -c xyz.adb

Compile body in file xyz.adb with all default options.
$ gcc -c -02 -gnata xyz-def.adb

Compile the child unit package in file xyz-def.adb with extensive optimizations, and
pragma Assert/Debug statements enabled.

$ gcc -c -gnatc abc-def.adb

Compile the subunit in file abc-def . adb in semantic-checking-only mode.
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4.3 Compiler Switches

The gcc command accepts switches that control the compilation process. These switches
are fully described in this section: first an alphabetical listing of all switches with a brief
description, and then functionally grouped sets of switches with more detailed information.

More switches exist for GCC than those documented here, especially for specific targets.
However, their use is not recommended as they may change code generation in ways that
are incompatible with the Ada run-time library, or can cause inconsistencies between com-
pilation units.

4.3.1 Alphabetical List of All Switches

-b “target'
Compile your program to run on target, which is the name of a system con-
figuration. You must have a GNAT cross-compiler built if target is not the
same as your host system.

-B*dir'
Load compiler executables (for example, gnatl, the Ada compiler) from dir
instead of the default location. Only use this switch when multiple versions
of the GNAT compiler are available. See the “Options for Directory Search”
section in the Using the GNU Compiler Collection (GCC) manual for further
details. You would normally use the -b or -V switch instead.

-c

Compile. Always use this switch when compiling Ada programs.

Note: for some other languages when using gcc, notably in the case of C and
C++, it is possible to use use gcc without a —c switch to compile and link in one
step. In the case of GNAT, you cannot use this approach, because the binder
must be run and gcc cannot be used to run the GNAT binder.

-fcallgraph-info[=su,da]

Makes the compiler output callgraph information for the program, on a per-
file basis. The information is generated in the VCG format. It can be deco-
rated with additional, per-node and/or per-edge information, if a list of comma-
separated markers is additionally specified. When the su marker is specified,
the callgraph is decorated with stack usage information; it is equivalent to
-fstack-usage. When the da marker is specified, the callgraph is decorated
with information about dynamically allocated objects.

-fdiagnostics-format=json
Makes GNAT emit warning and error messages as JSON. Inhibits printing of
text warning and errors messages except if ~gnatv or —gnatl are present. Uses
absolute file paths when used along -gnatef.

—-fdump-scos
Generates SCO (Source Coverage Obligation) information in the ALI file. This
information is used by advanced coverage tools. See unit SCOs in the compiler
sources for details in files scos.ads and scos.adb.
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-fgnat-encodings=[all|gdb|minimal]
This switch controls the balance between GNAT encodings and standard
DWARF emitted in the debug information.

-flto[="n']

Enables Link Time Optimization. This switch must be used in conjunction
with the -0x switches (but not with the -gnatn switch since it is a full replace-
ment for the latter) and instructs the compiler to defer most optimizations
until the link stage. The advantage of this approach is that the compiler can
do a whole-program analysis and choose the best interprocedural optimization
strategy based on a complete view of the program, instead of a fragmentary
view with the usual approach. This can also speed up the compilation of big
programs and reduce the size of the executable, compared with a traditional
per-unit compilation with inlining across units enabled by the -gnatn switch.
The drawback of this approach is that it may require more memory and that
the debugging information generated by -g with it might be hardly usable. The
switch, as well as the accompanying -0x switches, must be specified both for
the compilation and the link phases. If the n parameter is specified, the opti-
mization and final code generation at link time are executed using n parallel
jobs by means of an installed make program.

-fno-inline
Suppresses all inlining, unless requested with pragma Inline_Always. The
effect is enforced regardless of other optimization or inlining switches. Note
that inlining can also be suppressed on a finer-grained basis with pragma No_
Inline.

-fno-inline-functions
Suppresses automatic inlining of subprograms, which is enabled if -03 is used.

-fno-inline-small-functions
Suppresses automatic inlining of small subprograms, which is enabled if -02 is
used.

-fno-inline-functions-called-once
Suppresses inlining of subprograms local to the unit and called once from within
it, which is enabled if -01 is used.

-fno-ivopts
Suppresses high-level loop induction variable optimizations, which are enabled
if -01 is used. These optimizations are generally profitable but, for some specific
cases of loops with numerous uses of the iteration variable that follow a common
pattern, they may end up destroying the regularity that could be exploited at
a lower level and thus producing inferior code.

-fno-strict-aliasing
Causes the compiler to avoid assumptions regarding non-aliasing of objects of
different types. See [Optimization and Strict Aliasing], page 214, for details.

-fno-strict-overflow
Causes the compiler to avoid assumptions regarding the rules of signed integer
overflow. These rules specify that signed integer overflow will result in a Con-
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straint_Error exception at run time and are enforced in default mode by the
compiler, so this switch should not be necessary in normal operating mode. It
might be useful in conjunction with -gnatoO for very peculiar cases of low-level
programming.

-fstack-check

Activates stack checking. See [Stack Overflow Checking], page 231, for details.

-fstack-usage

-gnat05

-gnatil2

-gnat2005

-gnat2012

-gnat2022

-gnat83

-gnat95

-gnata

Makes the compiler output stack usage information for the program, on a per-
subprogram basis. See [Static Stack Usage Analysis|, page 232, for details.

Generate debugging information. This information is stored in the object file
and copied from there to the final executable file by the linker, where it can
be read by the debugger. You must use the —g switch if you plan on using the
debugger.

Allow full Ada 2005 features.

Allow full Ada 2012 features.
Allow full Ada 2005 features (same as -gnat05)
Allow full Ada 2012 features (same as -gnat12)

Allow full Ada 2022 features

Enforce Ada 83 restrictions.

Enforce Ada 95 restrictions.

Note: for compatibility with some Ada 95 compilers which support only the
overriding keyword of Ada 2005, the -gnatd.D switch can be used along with
-gnat95 to achieve a similar effect with GNAT.

-gnatd.D instructs GNAT to consider overriding as a keyword and handle its
associated semantic checks, even in Ada 95 mode.

Assertions enabled. Pragma Assert and pragma Debug to be activated. Note
that these pragmas can also be controlled using the configuration pragmas
Assertion_Policy and Debug_Policy. It also activates pragmas Check,
Precondition, and Postcondition. Note that these pragmas can also be
controlled using the configuration pragma Check_Policy. In Ada 2012, it
also activates all assertions defined in the RM as aspects: preconditions,
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-gnatA

-gnatb

-gnatB

-gnatc

-gnatC

-gnatd

-gnatD

-gnateA

postconditions, type invariants and (sub)type predicates. In all Ada modes,
corresponding pragmas for type invariants and (sub)type predicates are also
activated. The default is that all these assertions are disabled, and have no
effect, other than being checked for syntactic validity, and in the case of
subtype predicates, constructions such as membership tests still test predicates
even if assertions are turned off.

Avoid processing gnat.adc. If a gnat.adc file is present, it will be ignored.

Generate brief messages to stderr even if verbose mode set.

Assume no invalid (bad) values except for ‘Valid attribute use ([Validity Check-
ing], page 131).

Check syntax and semantics only (no code generation attempted). When the
compiler is invoked by gnatmake, if the switch -gnatc is only given to the
compiler (after -cargs or in package Compiler of the project file), gnatmake
will fail because it will not find the object file after compilation. If gnatmake
is called with -gnatc as a builder switch (before -cargs or in package Builder
of the project file) then gnatmake will not fail because it will not look for the
object files after compilation, and it will not try to build and link.

Generate CodePeer intermediate format (no code generation attempted). This
switch will generate an intermediate representation suitable for use by CodePeer
(.scil files). This switch is not compatible with code generation (it will, among
other things, disable some switches such as -gnatn, and enable others such as
-gnata).

Specify debug options for the compiler. The string of characters after the
-gnatd specifies the specific debug options. The possible characters are 0-9,
a-z, A-Z, optionally preceded by a dot or underscore. See compiler source
file debug.adb for details of the implemented debug options. Certain debug
options are relevant to application programmers, and these are documented at
appropriate points in this user’s guide.

Create expanded source files for source level debugging. This switch also sup-
presses generation of cross-reference information (see -gnatx). Note that this
switch is not allowed if a previous -gnatR switch has been given, since these
two switches are not compatible.

Check that the actual parameters of a subprogram call are not aliases of one
another. To qualify as aliasing, their memory locations must be identical or
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overlapping, at least one of the corresponding formal parameters must be of
mode OUT or IN OUT, and at least one of the corresponding formal parameters
must have its parameter passing mechanism not specified.

type Rec_Typ is record
Data : Integer := O;
end record;

function Self (Val : Rec_Typ) return Rec_Typ is
begin

return Val;
end Self;

procedure Detect_Aliasing (Val_1 : in out Rec_Typ; Val_2
begin

null;
end Detect_Aliasing;

0Obj : Rec_Typ;

Detect_Aliasing (Obj, 0Obj);
Detect_Aliasing (Obj, Self (0bj));
In the example above, the first call to Detect_Aliasing fails with a Program_
Error at run time because the actuals for Val_1 and Val_2 denote the same ob-
ject. The second call executes without raising an exception because Self (Obj)
produces an anonymous object which does not share the memory location of
Obj.
-gnateb
Store configuration files by their basename in ALI files. This switch is used
for instance by gprbuild for distributed builds in order to prevent issues where
machine-specific absolute paths could end up being stored in ALI files.
-gnatec="path'
Specify a configuration pragma file (the equal sign is optional) ([The Configu-
ration Pragmas Files|, page 27).
-gnateC
Generate CodePeer messages in a compiler-like format. This switch is only
effective if ~gnatcC is also specified and requires an installation of CodePeer.
-gnated
Disable atomic synchronization
-gnateDsymbol [="value']
Defines a symbol, associated with value, for preprocessing. ([Integrated Pre-
processing], page 48).
-gnateE

Generate extra information in exception messages. In particular, display extra
column information and the value and range associated with index and range

: Rec_Typ) is
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check failures, and extra column information for access checks. In cases where
the compiler is able to determine at compile time that a check will fail, it gives
a warning, and the extra information is not produced at run time.

-gnatef

Display full source path name in brief error messages and absolute paths in
-fdiagnostics-format=json’s output.

-gnateF

Check for overflow on all floating-point operations, including those for uncon-
strained predefined types. See description of pragma Check_Float_Overflow
in GNAT RM.

-gnateg -gnatceg

The -gnatc switch must always be specified before this switch, e.g.
-gnatceg. Generate a C header from the Ada input file. See [Gener-
ating C Headers for Ada Specifications], page 72, for more information.

-gnateG

Save result of preprocessing in a text file.

-gnateH

Set the threshold from which the RM 13.5.1(13.3/2) clause applies to 64. This
is useful only on 64-bit plaforms where this threshold is 128, but used to be 64
in earlier versions of the compiler.

-gnatei ' nnn'
Set maximum number of instantiations during compilation of a single unit to
nnn. This may be useful in increasing the default maximum of 8000 for the rare
case when a single unit legitimately exceeds this limit.

-gnatel nnn'
Indicates that the source is a multi-unit source and that the index of the unit
to compile is nnn. nnn needs to be a positive number and need to be a valid
index in the multi-unit source.

-gnatel

This switch can be used with the static elaboration model to issue info mes-
sages showing where implicit pragma Elaborate and pragma Elaborate_All
are generated. This is useful in diagnosing elaboration circularities caused by
these implicit pragmas when using the static elaboration model. See the section
in this guide on elaboration checking for further details. These messages are not
generated by default, and are intended only for temporary use when debugging
circularity problems.

-gnatel
This switch turns off the info messages about implicit elaboration pragmas.
-gnatem="path'

Specify a mapping file (the equal sign is optional) ([Units to Sources Mapping
Files|, page 155).
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-gnatep="file'
Specify a preprocessing data file (the equal sign is optional) ([Integrated Pre-
processing|, page 48).

-gnateP

Turn categorization dependency errors into warnings. Ada requires that units
that WITH one another have compatible categories, for example a Pure unit
cannot WITH a Preelaborate unit. If this switch is used, these errors become
warnings (which can be ignored, or suppressed in the usual manner). This can
be useful in some specialized circumstances such as the temporary use of special
test software.

-gnateS
Synonym of -fdump-scos, kept for backwards compatibility.

-gnatet="path'
Generate target dependent information. The format of the output file is de-
scribed in the section about switch -gnateT.

-gnateT="path'
Read target dependent information, such as endianness or sizes and alignments
of base type. If this switch is passed, the default target dependent information
of the compiler is replaced by the one read from the input file. This is used by
tools other than the compiler, e.g. to do semantic analysis of programs that
will run on some other target than the machine on which the tool is run.

The following target dependent values should be defined, where Nat denotes a
natural integer value, Pos denotes a positive integer value, and fields marked
with a question mark are boolean fields, where a value of 0 is False, and a value
of 1 is True:

Bits_BE : Nat; -- Bits stored big-endian?
Bits_Per_Unit : Pos; -- Bits in a storage unit

Bits_Per_Word : Pos; -- Bits in a word

Bytes_BE : Nat; -- Bytes stored big-endian?

Char_Size : Pos; —-- Standard.Character'Size
Double_Float_Alignment : Nat; -- Alignment of double float
Double_Scalar_Alignment : Nat; -- Alignment of double length scalar
Double_Size : Pos; -- Standard.Long_Float'Size

Float_Size : Pos; -- Standard.Float'Size

Float_Words_BE : Nat; -- Float words stored big-endian?
Int_Size : Pos; -- Standard.Integer'Size
Long_Double_Size : Pos; -- Standard.Long_Long_Float'Size
Long_Long_Long_Size : Pos; -- Standard.Long_Long_Long_Integer'Size
Long_Long_Size : Pos; -- Standard.Long_Long_Integer'Size
Long_Size : Pos; -- Standard.Long_Integer'Size
Maximum_Alignment : Pos; -- Maximum permitted alignment
Max_Unaligned_Field : Pos; -- Maximum size for unaligned bit field
Pointer_Size : Pos; -- System.Address'Size

Short_Enums : Nat; -- Foreign enums use short size?



Chapter 4: Building Executable Programs with GNAT 98

Short_Size : Pos; -- Standard.Short_Integer'Size
Strict_Alignment : Nat; -- Strict alignment?
System_Allocator_Alignment : Nat; -- Alignment for malloc calls
Wchar_T_Size : Pos; —- Interfaces.C.wchar_t'Size
Words_BE : Nat; -- Words stored big-endian?

Bits_Per_Unit is the number of bits in a storage unit, the equivalent of GCC
macro BITS_PER_UNIT documented as follows: Define this macro to be the
number of bits in an addressable storage unit (byte); normally 8.

Bits_Per_Word is the number of bits in a machine word, the equivalent of
GCC macro BITS_PER_WORD documented as follows: Number of bits in a word;
normally 32.

Double_Float_Alignment, if not zero, is the maximum alignment that the
compiler can choose by default for a 64-bit floating-point type or object.

Double_Scalar_Alignment, if not zero, is the maximum alignment that the
compiler can choose by default for a 64-bit or larger scalar type or object.

Maximum_Alignment is the maximum alignment that the compiler can choose by
default for a type or object, which is also the maximum alignment that can be
specified in GNAT. It is computed for GCC back ends as BIGGEST_ALIGNMENT
/ BITS_PER_UNIT where GCC macro BIGGEST_ALIGNMENT is documented as
follows: Biggest alignment that any data type can require on this machine, in
bits.

Max_Unaligned_Field is the maximum size for unaligned bit field, which is 64
for the majority of GCC targets (but can be different on some targets).

Strict_Alignment is the equivalent of GCC macro STRICT_ALIGNMENT docu-
mented as follows: Define this macro to be the value 1 if instructions will fail
to work if given data not on the nominal alignment. If instructions will merely
go slower in that case, define this macro as 0.
System_Allocator_Alignment is the guaranteed alignment of data returned
by calls to malloc.
The format of the input file is as follows. First come the values of the variables
defined above, with one line per value:

name value
where name is the name of the parameter, spelled out in full, and cased as in
the above list, and value is an unsigned decimal integer. Two or more blanks
separates the name from the value.
All the variables must be present, in alphabetical order (i.e. the same order as
the list above).
Then there is a blank line to separate the two parts of the file. Then come
the lines showing the floating-point types to be registered, with one line per
registered mode:

name digs float_rep size alignment
where name is the string name of the type (which can have single spaces embed-
ded in the name, e.g. long double), digs is the number of digits for the floating-
point type, float_rep is the float representation (I for IEEE-754-Binary, which
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-gnateu

-gnateV

-gnateY

is the only one supported at this time), size is the size in bits, alignment is
the alignment in bits. The name is followed by at least two blanks, fields are
separated by at least one blank, and a LF character immediately follows the
alignment field.

Here is an example of a target parameterization file:

Bits_BE 0
Bits_Per_Unit 8
Bits_Per_Word 64
Bytes_BE 0
Char_Size 8
Double_Float_Alignment 0
Double_Scalar_Alignment 0
Double_Size 64
Float_Size 32
Float_Words_BE 0
Int_Size 64
Long_Double_Size 128
Long_Long_Long_Size 128
Long_Long_Size 64
Long_Size 64
Maximum_Alignment 16
Max_Unaligned_Field 64
Pointer_Size 64
Short_Size 16
Strict_Alignment 0
System_Allocator_Alignment 16
Wchar_T_Size 32
Words_BE 0
float 15 I 64 64

double 15 I 64 64

long double 18 I 80 128

TF 33 I 128 128

Ignore unrecognized validity, warning, and style switches that appear after this
switch is given. This may be useful when compiling sources developed on a later
version of the compiler with an earlier version. Of course the earlier version
must support this switch.

Check that all actual parameters of a subprogram call are valid according to
the rules of validity checking ([Validity Checking], page 131).

Ignore all STYLE_CHECKS pragmas. Full legality checks are still carried out,
but the pragmas have no effect on what style checks are active. This allows all
style checking options to be controlled from the command line.



Chapter 4: Building Executable Programs with GNAT 100

-gnatk

-gnatf

-gnatF

-gnatg

-gnatG=nn

-gnath

-gnatH

-gnati c'

-gnatl

-gnatj nn'

-gnatJ

Dynamic elaboration checking mode enabled. For further details see [Elabora-
tion Order Handling in GNAT], page 287.

Full errors. Multiple errors per line, all undefined references, do not attempt to
suppress cascaded errors.

Externals names are folded to all uppercase.

Internal GNAT implementation mode. This should not be used for applica-
tions programs, it is intended only for use by the compiler and its run-time
library. For documentation, see the GNAT sources. Note that -gnatg implies
-gnatw.ge and -gnatyg so that all standard warnings and all standard style
options are turned on. All warnings and style messages are treated as errors.

List generated expanded code in source form.
Output usage information. The output is written to stdout.

Legacy elaboration-checking mode enabled. When this switch is in effect, the
pre-18.x access-before-elaboration model becomes the de facto model. For fur-
ther details see [Elaboration Order Handling in GNAT], page 287.

Identifier character set (¢ = 1/2/3/4/5/9/p/8/f/n/w). For details of the pos-
sible selections for c, see [Character Set Control], page 147.

Ignore representation clauses. When this switch is used, representation
clauses are treated as comments. This is useful when initially porting code
where you want to ignore rep clause problems, and also for compiling foreign
code (particularly for use with ASIS). The representation clauses that are
ignored are: enumeration_representation_clause, record_representation_clause,
and attribute_definition_clause for the following attributes:  Address,
Alignment, Bit_Order, Component_Size, Machine_Radix, Object_Size,
Scalar_Storage_Order, Size, Small, Stream_Size, and Value_Size. Pragma
Default_Scalar_Storage_Order is also ignored. Note that this option should be
used only for compiling — the code is likely to malfunction at run time.

Reformat error messages to fit on nn character lines

Permissive elaboration-checking mode enabled. When this switch is in effect,
the post-18.x access-before-elaboration model ignores potential issues with:

- Accept statements
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-gnatk="n'
-gnatl
-gnatL
-gnatm="n'
-gnatn[12]
-gnatN

-gnatoO

- Activations of tasks defined in instances

- Assertion pragmas

- Calls from within an instance to its enclosing context
- Calls through generic formal parameters

- Calls to subprograms defined in instances

- Entry calls

- Indirect calls using ‘Access

- Requeue statements

- Select statements

- Synchronous task suspension

and does not emit compile-time diagnostics or run-time checks. For further
details see [Elaboration Order Handling in GNAT], page 287.

Limit file names to n (1-999) characters (k = krunch).

Output full source listing with embedded error messages.

Used in conjunction with -gnatG or -gnatD to intersperse original source lines
(as comment lines with line numbers) in the expanded source output.

Limit number of detected error or warning messages to n where n is in the range
1..999999. The default setting if no switch is given is 9999. If the number of
warnings reaches this limit, then a message is output and further warnings are
suppressed, but the compilation is continued. If the number of error messages
reaches this limit, then a message is output and the compilation is abandoned.
The equal sign here is optional. A value of zero means that no limit applies.

Activate inlining across units for subprograms for which pragma Inline is
specified. This inlining is performed by the GCC back end. An optional digit
sets the inlining level: 1 for moderate inlining across units or 2 for full inlining
across units. If no inlining level is specified, the compiler will pick it based on
the optimization level.

Activate front end inlining for subprograms for which pragma Inline is spec-
ified. This inlining is performed by the front end and will be visible in the
-gnatG output.

When using a gce-based back end, then the use of —~gnatN is deprecated, and the
use of —gnatn is preferred. Historically front end inlining was more extensive
than the gee back end inlining, but that is no longer the case.
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-gnato??

-gnatp

-gnat-p

-gnatq

-gnat(Q

-gnatr

Suppresses overflow checking. This causes the behavior of the compiler to match
the default for older versions where overflow checking was suppressed by default.
This is equivalent to having pragma Suppress (Overflow_Check) in a config-
uration pragma file.

Set default mode for handling generation of code to avoid intermediate arith-
metic overflow. Here 77 is two digits, a single digit, or nothing. Each digit is
one of the digits 1 through 3:

Digit Interpretation

‘1 All intermediate overflows checked against base type (STRICT)
‘2’ Minimize intermediate overflows (MINIMIZED)

‘3 Eliminate intermediate overflows (ELIMINATED)

If only one digit appears, then it applies to all cases; if two digits are given, then
the first applies outside assertions, pre/postconditions, and type invariants, and
the second applies within assertions, pre/postconditions, and type invariants.

If no digits follow the -gnato, then it is equivalent to -gnatol1, causing all
intermediate overflows to be handled in strict mode.

This switch also causes arithmetic overflow checking to be performed (as though
pragma Unsuppress (Overflow_Check) had been specified).

The default if no option -gnato is given is that overflow handling is in STRICT
mode (computations done using the base type), and that overflow checking is
enabled.

Note that division by zero is a separate check that is not controlled by this
switch (divide-by-zero checking is on by default).

See also [Specifying the Desired Mode|, page 225.

Suppress all checks. See [Run-Time Checks], page 142, for details. This switch
has no effect if cancelled by a subsequent -gnat-p switch.

Cancel effect of previous -gnatp switch.

Don’t quit. Try semantics, even if parse errors.

Don’t quit. Generate ALI and tree files even if illegalities. Note that code
generation is still suppressed in the presence of any errors, so even with -gnatQ
no object file is generated.

Treat pragma Restrictions as Restriction_Warnings.
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-gnatR[011121314] [e] [h] [m] [j] [s]

-gnats

-gnatS

Output representation information for declared types, objects and subprograms.
Note that this switch is not allowed if a previous —gnatD switch has been given,
since these two switches are not compatible.

Syntax check only.

Print package Standard.

-gnatT nnn'

-gnatu

-gnatU

-gnatv

-gnatV

All compiler tables start at nnn times usual starting size.

List units for this compilation.

Tag all error messages with the unique string ‘error:’

Verbose mode. Full error output with source lines to stdout.

Control level of validity checking ([Validity Checking], page 131).

-gnatw” xxx'

-gnatW e'

-gnatx

-gnatX

—-gnatXo0

-gnaty

-gnatz'm'

-I"dir'

Warning mode where xxx is a string of option letters that denotes the exact
warnings that are enabled or disabled ([Warning Message Control], page 109).

Wide character encoding method (e=n/h/u/s/e/8).

Suppress generation of cross-reference information.

Enable core GNAT implementation extensions and latest Ada version.

Enable all GNAT implementation extensions and latest Ada version.

Enable built-in style checks ([Style Checking], page 135).

Distribution stub generation and compilation (m=r/c for receiver/caller stubs).

Direct GNAT to search the dir directory for source files needed by the current
compilation (see [Search Paths and the Run-Time Library (RTL)], page 89).
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Except for the source file named in the command line, do not look for source
files in the directory containing the source file named in the command line (see
[Search Paths and the Run-Time Library (RTL)], page 89).

-o “file'
This switch is used in gcc to redirect the generated object file and its associated
ALI file. Beware of this switch with GNAT, because it may cause the object

file and ALI file to have different names which in turn may confuse the binder
and the linker.

-nostdinc
Inhibit the search of the default location for the GNAT Run Time Library
(RTL) source files.

-nostdlib
Inhibit the search of the default location for the GNAT Run Time Library
(RTL) ALI files.

_O [\ n' ]
n controls the optimization level:
‘n’ Effect

‘0’ No optimization, the default setting if no -0 appears.

‘1 Moderate optimization, same as -0 without an operand. A good compromise be
tween code quality and compilation time.

‘2’ Extensive optimization, should improve execution time, possibly at the cost of sub
stantially increased compilation time.

‘3 Full optimization, may further improve execution time, possibly at the cost of sub
stantially larger generated code.

‘s’ Optimize for size (code and data) rather than speed.
‘7’ Optimize aggressively for size (code and data) rather than speed.
‘g’ Optimize for debugging experience rather than speed.

See also [Optimization Levels|, page 207.

-pass-exit-codes
Catch exit codes from the compiler and use the most meaningful as exit status.

-—RTS="rts—-path'
Specifies the default location of the run-time library. Same meaning as the
equivalent gnatmake flag ([Switches for gnatmake|, page 78).
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Used in place of —c to cause the assembler source file to be generated, using .s
as the extension, instead of the object file. This may be useful if you need to
examine the generated assembly code.

-fverbose—-asm

_V‘

-W

Used in conjunction with -S to cause the generated assembly code file to be
annotated with variable names, making it significantly easier to follow.

Show commands generated by the gcc driver. Normally used only for debug-
ging purposes or if you need to be sure what version of the compiler you are
executing.

ver'

Execute ver version of the compiler. This is the gcc version, not the GNAT
version.

Turn off warnings generated by the back end of the compiler. Use of this switch
also causes the default for front end warnings to be set to suppress (as though
-gnatws had appeared at the start of the options).

You may combine a sequence of GNAT switches into a single switch. For example, the
combined switch

-gnatofi3

is equivalent to specifying the following sequence of switches:

-gnato —-gnatf -gnatid

The following restrictions apply to the combination of switches in this manner:

*

*

*

The switch -gnatc if combined with other switches must come first in the string.
The switch -gnats if combined with other switches must come first in the string.

The switches -gnatzc and -gnatzr may not be combined with any other switches, and
only one of them may appear in the command line.

The switch -gnat-p may not be combined with any other switch.

Once a ‘y’ appears in the string (that is a use of the -gnaty switch), then all further
characters in the switch are interpreted as style modifiers (see description of -gnaty).

Once a ‘d’ appears in the string (that is a use of the -gnatd switch), then all further
characters in the switch are interpreted as debug flags (see description of -gnatd).

Once a ‘w’ appears in the string (that is a use of the -gnatw switch), then all further
characters in the switch are interpreted as warning mode modifiers (see description of
-gnatw).

Once a ‘V’ appears in the string (that is a use of the -gnatV switch), then all fur-
ther characters in the switch are interpreted as validity checking options ([Validity
Checking], page 131).

3 ) 3 )

Option ‘em’, ‘ec’, ‘ep’, ‘1=’ and ‘R’ must be the last options in a combined list of
options.
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4.3.2 Output and Error Message Control

The standard default format for error messages is called ‘brief format’. Brief format mes-
sages are written to stderr (the standard error file) and have the following form:

e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:4:20: ";" should be "is"

The first integer after the file name is the line number in the file, and the second integer is
the column number within the line. GNAT Studio can parse the error messages and point
to the referenced character. The following switches provide control over the error message
format:

-gnatv
The v stands for verbose. The effect of this setting is to write long-format error
messages to stdout (the standard output file). The same program compiled
with the -gnatv switch would generate:
3. funcion X (Q : Integer)
|
>>> Incorrect spelling of keyword "function"
4. return Integer;
|
>>> ";" should be "is"
The vertical bar indicates the location of the error, and the >>> prefix can be
used to search for error messages. When this switch is used the only source
lines output are those with errors.
-gnatl

The 1 stands for list. This switch causes a full listing of the file to be generated.
In the case where a body is compiled, the corresponding spec is also listed, along
with any subunits. Typical output from compiling a package body p.adb might
look like:

Compiling: p.adb

1. package body p is
2 procedure a;
3. procedure a is separate;
4. begin
5 null
I

>>> missing ";"
6. end;
Compiling: p.ads

1. package p is
2. pragma Elaborate_Body
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>>> missing ";"
3. end p;
Compiling: p-a.adb
1. separate p
I

>>> missing " ("

2. procedure a is

3. begin
4. null
I
>>> missing ";"
5. end;

When you specify the -gnatv or -gnatl switches and standard output is redi-
rected, a brief summary is written to stderr (standard error) giving the number
of error messages and warning messages generated.

—-gnatl="fname'
This has the same effect as —gnatl except that the output is written to a file
instead of to standard output. If the given name fname does not start with
a period, then it is the full name of the file to be written. If fname is an
extension, it is appended to the name of the file being compiled. For example,
if file xyz.adb is compiled with —gnatl=.1st, then the output is written to file
xyz.adb.lst.

-gnatU

This switch forces all error messages to be preceded by the unique string ‘error:’.
This means that error messages take a few more characters in space, but allows
easy searching for and identification of error messages.

-gnatb

The b stands for brief. This switch causes GNAT to generate the brief format
error messages to stderr (the standard error file) as well as the verbose format

message or full listing (which as usual is written to stdout, the standard output
file).

-gnatm="n'
The m stands for maximum. n is a decimal integer in the range of 1 to 999999 and
limits the number of error or warning messages to be generated. For example,
using -gnatm2 might yield
e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:5:35: missing ".."
fatal error: maximum number of errors detected
compilation abandoned



Chapter 4: Building Executable Programs with GNAT 108

-gnatf

-gnatjnn

-gnatq

The default setting if no switch is given is 9999. If the number of warnings
reaches this limit, then a message is output and further warnings are suppressed,
but the compilation is continued. If the number of error messages reaches this
limit, then a message is output and the compilation is abandoned. A value of
zero means that no limit applies.

Note that the equal sign is optional, so the switches ~gnatm2 and -gnatm=2 are
equivalent.

The £ stands for full. Normally, the compiler suppresses error messages that are
likely to be redundant. This switch causes all error messages to be generated.
In particular, in the case of references to undefined variables. If a given variable
is referenced several times, the normal format of messages is

e.adb:7:07: "V" is undefined (more references follow)

where the parenthetical comment warns that there are additional references to
the variable V. Compiling the same program with the —gnatf switch yields

e.adb:7:07: "V" is undefined
e.adb:8:07: "V" is undefined
e.adb:8:12: "V" is undefined
e.adb:8:16: "V" is undefined
e.adb:9:07: "V" is undefined

e.adb:9:12: "V" is undefined

The -gnatf switch also generates additional information for some error mes-
sages. Some examples are:

* Details on possibly non-portable unchecked conversion
* List possible interpretations for ambiguous calls
* Additional details on incorrect parameters

In normal operation mode (or if -gnatjoO is used), then error messages with
continuation lines are treated as though the continuation lines were separate
messages (and so a warning with two continuation lines counts as three warn-
ings, and is listed as three separate messages).

If the -gnatjnn switch is used with a positive value for nn, then messages
are output in a different manner. A message and all its continuation lines are
treated as a unit, and count as only one warning or message in the statistics
totals. Furthermore, the message is reformatted so that no line is longer than
nn characters.

The q stands for quit (really ‘don’t quit’). In normal operation mode, the com-
piler first parses the program and determines if there are any syntax errors. If
there are, appropriate error messages are generated and compilation is imme-
diately terminated. This switch tells GNAT to continue with semantic analysis
even if syntax errors have been found. This may enable the detection of more
errors in a single run. On the other hand, the semantic analyzer is more likely
to encounter some internal fatal error when given a syntactically invalid tree.
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-gnat(Q

In normal operation mode, the ALI file is not generated if any illegalities are
detected in the program. The use of -gnatQ forces generation of the ALT file.
This file is marked as being in error, so it cannot be used for binding purposes,
but it does contain reasonably complete cross-reference information, and thus
may be useful for use by tools (e.g., semantic browsing tools or integrated de-
velopment environments) that are driven from the ALI file. This switch implies
-gnatq, since the semantic phase must be run to get a meaningful ALI file.

When -gnatQ is used and the generated ALT file is marked as being in error,
gnatmake will attempt to recompile the source when it finds such an ALI file,
including with switch -gnatc.

Note that -gnatQ has no effect if —gnats is specified, since ALI files are never
generated if -gnats is set.

4.3.3 Warning Message Control

In addition to error messages, which correspond to illegalities as defined in the Ada Refer-
ence Manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning message
to alert you to a possible error. Second, if the compiler detects a situation that is sure to
raise an exception at run time, it generates a warning message. The following shows an
example of warning messages:

e.adb:4:24: warning: creation of object may raise Storage_Error
e.adb:10:17: warning: static value out of range
e.adb:10:17: warning: "Constraint_Error" will be raised at run time

GNAT considers a large number of situations as appropriate for the generation of warning
messages. As always, warnings are not definite indications of errors. For example, if you
do an out-of-range assignment with the deliberate intention of raising a Constraint_Error
exception, then the warning that may be issued does not indicate an error. Some of the
situations for which GNAT issues warnings (at least some of the time) are given in the
following list. This list is not complete, and new warnings are often added to subsequent
versions of GNAT. The list is intended to give a general idea of the kinds of warnings that
are generated.

* Possible infinitely recursive calls

* Out-of-range values being assigned

* Possible order of elaboration problems

Size not a multiple of alignment for a record type
* Assertions (pragma Assert) that are sure to fail
* Unreachable code

Address clauses with possibly unaligned values, or where an attempt is made to overlay
a smaller variable with a larger one.

* Fixed-point type declarations with a null range
* Direct_IO or Sequential_IO instantiated with a type that has access values

* Variables that are never assigned a value
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Variables that are referenced before being initialized
Task entries with no corresponding accept statement
Duplicate accepts for the same task entry in a select
Objects that take too much storage

Unchecked conversion between types of differing sizes
Missing return statement along some execution path in a function
Incorrect (unrecognized) pragmas

Incorrect external names

Allocation from empty storage pool

Potentially blocking operation in protected type
Suspicious parenthesization of expressions
Mismatching bounds in an aggregate

Attempt to return local value by reference

Premature instantiation of a generic body

Attempt to pack aliased components

Out of bounds array subscripts

Wrong length on string assignment

Violations of style rules if style checking is enabled
Unused ‘with’ clauses

Bit_Order usage that does not have any effect
Standard.Duration used to resolve universal fixed expression
Dereference of possibly null value

Declaration that is likely to cause storage error
Internal GNAT unit ‘with’ed by application unit
Values known to be out of range at compile time

Unreferenced or unmodified variables. Note that a special exemption applies to vari-
ables which contain any of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED, in
any casing. Such variables are considered likely to be intentionally used in a situa-
tion where otherwise a warning would be given, so warnings of this kind are always
suppressed for such variables.

Address overlays that could clobber memory

Unexpected initialization when address clause present

Bad alignment for address clause

Useless type conversions

Redundant assignment statements and other redundant constructs
Useless exception handlers

Accidental hiding of name by child unit

Access before elaboration detected at compile time

A range in a for loop that is known to be null or might be null
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The following section lists compiler switches that are available to control the handling of
warning messages. It is also possible to exercise much finer control over what warnings
are issued and suppressed using the GNAT pragma Warnings (see the description of the
pragma in the GNAT_Reference_manual).

-gnatwa

-gnatwA

‘Activate most optional warnings.’

This switch activates most optional warning messages. See the remaining list
in this section for details on optional warning messages that can be individually
controlled. The warnings that are not turned on by this switch are:

* —gnatwd (implicit dereferencing)

* -gnatw.d (tag warnings with -gnatw switch)

* -gnatwh (hiding)

* -gnatw.h (holes in record layouts)

* —gnatw.j (late primitives of tagged types)

* -gnatw.k (redefinition of names in standard)

* -gnatwl (elaboration warnings)

* -gnatw.1l (inherited aspects)

* —gnatw.n (atomic synchronization)

* -gnatwo (address clause overlay)

* -gnatw.o (values set by out parameters ignored)
* -gnatw.q (questionable layout of record types)
* -gnatw_q (ignored equality)

* —gnatw_r (out-of-order record representation clauses)
* -gnatw.s (overridden size clause)

* -gnatw_s (ineffective predicate test)

* —gnatwt (tracking of deleted conditional code)

* —gnatw.u (unordered enumeration)

* —gnatw.w (use of Warnings Off)

*

-gnatw.y (reasons for package needing body)

All other optional warnings are turned on.

‘Suppress all optional errors.’

This switch suppresses all optional warning messages, see remaining list in
this section for details on optional warning messages that can be individually
controlled. Note that unlike switch -gnatws, the use of switch -gnatwA does
not suppress warnings that are normally given unconditionally and cannot be
individually controlled (for example, the warning about a missing exit path in
a function). Also, again unlike switch -gnatws, warnings suppressed by the use
of switch —gnatwA can be individually turned back on. For example the use of
switch —~gnatwA followed by switch —gnatwd will suppress all optional warnings
except the warnings for implicit dereferencing.
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‘Activate warnings on failing assertions.’

This switch activates warnings for assertions where the compiler can tell at
compile time that the assertion will fail. Note that this warning is given even
if assertions are disabled. The default is that such warnings are generated.

‘Suppress warnings on failing assertions.’

This switch suppresses warnings for assertions where the compiler can tell at
compile time that the assertion will fail.

‘Activate warnings on anonymous allocators.’

This switch activates warnings for allocators of anonymous access types, which
can involve run-time accessibility checks and lead to unexpected accessibility
violations. For more details on the rules involved, see RM 3.10.2 (14).

‘Suppress warnings on anonymous allocators.’

This switch suppresses warnings for anonymous access type allocators.

‘Activate warnings on bad fixed values.’

This switch activates warnings for static fixed-point expressions whose value
is not an exact multiple of Small. Such values are implementation dependent,
since an implementation is free to choose either of the multiples that surround
the value. GNAT always chooses the closer one, but this is not required be-
havior, and it is better to specify a value that is an exact multiple, ensuring
predictable execution. The default is that such warnings are not generated.

‘Suppress warnings on bad fixed values.’

This switch suppresses warnings for static fixed-point expressions whose value
is not an exact multiple of Small.

‘Activate warnings on biased representation.’

This switch activates warnings when a size clause, value size clause, component
clause, or component size clause forces the use of biased representation for an
integer type (e.g. representing a range of 10..11 in a single bit by using 0/1 to
represent 10/11). The default is that such warnings are generated.

‘Suppress warnings on biased representation.’

This switch suppresses warnings for representation clauses that force the use of
biased representation.
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-gnatwc

-gnatwC

-gnatw.c

-gnatw.C

-gnatw_c

-gnatw_C

‘Activate warnings on conditionals.’

This switch activates warnings for boolean expressions that are known to be
True or False at compile time. The default is that such warnings are not
generated. Note that this warning does not get issued for the use of boolean
constants whose values are known at compile time, since this is a standard
technique for conditional compilation in Ada, and this would generate too many
false positive warnings.

This warning option also activates a special test for comparisons using the
operators ‘>="and’ <=’. If the compiler can tell that only the equality condition
is possible, then it will warn that the >’ or ‘<’ part of the test is useless and
that the operator could be replaced by ‘=’". An example would be comparing a
Natural variable <= 0.

This warning option also generates warnings if one or both tests is optimized
away in a membership test for integer values if the result can be determined at
compile time. Range tests on enumeration types are not included, since it is
common for such tests to include an end point.

This warning can also be turned on using -gnatwa.

‘Suppress warnings on conditionals.’

This switch suppresses warnings for conditional expressions used in tests that
are known to be True or False at compile time.

‘Activate warnings on missing component clauses.’

This switch activates warnings for record components where a record represen-
tation clause is present and has component clauses for the majority, but not
all, of the components. A warning is given for each component for which no
component clause is present.

‘Suppress warnings on missing component clauses.’

This switch suppresses warnings for record components that are missing a com-
ponent clause in the situation described above.

‘Activate warnings on unknown condition in Compile_Time_Warning.’

This switch activates warnings on a pragma Compile_Time_Warning or Com-
pile_Time_Error whose condition has a value that is not known at compile time.
The default is that such warnings are generated.

‘Suppress warnings on unknown condition in Compile_Time_Warning.’

This switch suppresses warnings on a pragma Compile_Time_Warning or Com-
pile_Time_Error whose condition has a value that is not known at compile time.
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-gnatwd

-gnatwD

-gnatw.d

-gnatw.D

-gnatwe

‘Activate warnings on implicit dereferencing.’

If this switch is set, then the use of a prefix of an access type in an indexed
component, slice, or selected component without an explicit .all will generate
a warning. With this warning enabled, access checks occur only at points where
an explicit .all appears in the source code (assuming no warnings are generated
as a result of this switch). The default is that such warnings are not generated.

‘Suppress warnings on implicit dereferencing.’
This switch suppresses warnings for implicit dereferences in indexed compo-
nents, slices, and selected components.

‘Activate tagging of warning and info messages.’
If this switch is set, then warning messages are tagged, with one of the following
strings:
- ‘[-gnatw?]’ Used to tag warnings controlled by the switch
-gnatwx where x is a letter a-z.

- ‘[-gnatw.?]’” Used to tag warnings controlled by the
switch -gnatw.x where x is a letter a-z.

- ‘[-gnatel]’ Used to tag elaboration information
(info) messages generated when the static model of
elaboration is used and the -gnatel switch is set.

- ‘[restriction warning]’ Used to tag warning messages for
restriction violations, activated by use of the pragma
Restriction_Warnings.

- ‘[warning-as-error]” Used to tag warning messages that
have been converted to error messages by use of the
pragma Warning_As_Error. Note that such warnings are
prefixed by the string “error: “ rather than “warning: “.

- ‘[enabled by default]’ Used to tag all other warnings that
are always given by default, unless warnings are com-
pletely suppressed using pragma ‘Warnings(Off)’ or the
switch -gnatws.

‘Deactivate tagging of warning and info messages messages.’

If this switch is set, then warning messages return to the default mode in which
warnings and info messages are not tagged as described above for -~gnatw.d.

‘Treat warnings and style checks as errors.’

This switch causes warning messages and style check messages to be treated as
errors. The warning string still appears, but the warning messages are counted
as errors, and prevent the generation of an object file. Note that this is the only
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-gnatw switch that affects the handling of style check messages. Note also that
this switch has no effect on info (information) messages, which are not treated
as errors if this switch is present.

‘Activate every optional warning.’

This switch activates all optional warnings, including those which are not acti-
vated by -gnatwa. The use of this switch is not recommended for normal use.
If you turn this switch on, it is almost certain that you will get large numbers of
useless warnings. The warnings that are excluded from -gnatwa are typically
highly specialized warnings that are suitable for use only in code that has been
specifically designed according to specialized coding rules.

‘Treat all run-time exception warnings as errors.’

This switch causes warning messages regarding errors that will be raised during
run-time execution to be treated as errors.

‘Activate warnings on unreferenced formals.’

This switch causes a warning to be generated if a formal parameter is not
referenced in the body of the subprogram. This warning can also be turned on
using -gnatwu. The default is that these warnings are not generated.

‘Suppress warnings on unreferenced formals.’

This switch suppresses warnings for unreferenced formal parameters. Note that
the combination -gnatwu followed by -gnatwF has the effect of warning on
unreferenced entities other than subprogram formals.

‘Activate warnings on unrecognized pragmas.’

This switch causes a warning to be generated if an unrecognized pragma is
encountered. Apart from issuing this warning, the pragma is ignored and has
no effect. The default is that such warnings are issued (satisfying the Ada
Reference Manual requirement that such warnings appear).

‘Suppress warnings on unrecognized pragmas.’

This switch suppresses warnings for unrecognized pragmas.

‘Warnings used for GNAT sources.’

This switch sets the warning categories that are used by the standard GNAT
style. Currently this is equivalent to -gnatwlao.q.s.CI.V.X.Z but more warn-
ings may be added in the future without advanced notice.
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‘Activate warnings on hiding.’

This switch activates warnings on hiding declarations that are considered po-
tentially confusing. Not all cases of hiding cause warnings; for example an
overriding declaration hides an implicit declaration, which is just normal code.
The default is that warnings on hiding are not generated.

‘Suppress warnings on hiding.’

This switch suppresses warnings on hiding declarations.

‘Activate warnings on holes/gaps in records.’

This switch activates warnings on component clauses in record representation
clauses that leave holes (gaps) in the record layout. If a record representation
clause does not specify a location for every component of the record type, then
the warnings generated (or not generated) are unspecified. For example, there
may be gaps for which either no warning is generated or a warning is generated
that incorrectly describes the location of the gap. This undesirable situation
can sometimes be avoided by adding (and specifying the location for) unused
fill fields.

‘Suppress warnings on holes/gaps in records.’

This switch suppresses warnings on component clauses in record representation
clauses that leave holes (haps) in the record layout.

‘Activate warnings on implementation units.’

This switch activates warnings for a ‘with’ of an internal GNAT implementation
unit, defined as any unit from the Ada, Interfaces, GNAT, or System hierarchies
that is not documented in either the Ada Reference Manual or the GNAT
Programmer’s Reference Manual. Such units are intended only for internal
implementation purposes and should not be ‘with’ed by user programs. The
default is that such warnings are generated

‘Disable warnings on implementation units.’

This switch disables warnings for a ‘with’ of an internal GNAT implementation
unit.

‘Activate warnings on overlapping actuals.’

This switch enables a warning on statically detectable overlapping actuals in a
subprogram call, when one of the actuals is an in-out parameter, and the types
of the actuals are not by-copy types. This warning is off by default.
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-gnatwj

-gnatwJ

-gnatw. j

-gnatw.J

-gnatwk

-gnatwK

‘Disable warnings on overlapping actuals.’

This switch disables warnings on overlapping actuals in a call.

‘Activate warnings on obsolescent features (Annex J).’

If this warning option is activated, then warnings are generated for calls to
subprograms marked with pragma Obsolescent and for use of features in An-
nex J of the Ada Reference Manual. In the case of Annex J, not all features
are flagged. In particular, uses of package ASCII are not flagged, since these
are very common and would generate many annoying positive warnings. The
default is that such warnings are not generated.

In addition to the above cases, warnings are also generated for GNAT features
that have been provided in past versions but which have been superseded (typ-
ically by features in the new Ada standard). For example, pragma Ravenscar
will be flagged since its function is replaced by pragma Profile(Ravenscar),
and pragma Interface_Name will be flagged since its function is replaced by
pragma Import.

Note that this warning option functions differently from the restriction No_
Obsolescent_Features in two respects. First, the restriction applies only to
annex J features. Second, the restriction does flag uses of package ASCII.

‘Suppress warnings on obsolescent features (Annex J).’

This switch disables warnings on use of obsolescent features.

‘Activate warnings on late declarations of tagged type primitives.’

This switch activates warnings on visible primitives added to a tagged type
after deriving a private extension from it.

‘Suppress warnings on late declarations of tagged type primitives.’

This switch suppresses warnings on visible primitives added to a tagged type
after deriving a private extension from it.

‘Activate warnings on variables that could be constants.’

This switch activates warnings for variables that are initialized but never mod-
ified, and then could be declared constants. The default is that such warnings
are not given.

‘Suppress warnings on variables that could be constants.’

This switch disables warnings on variables that could be declared constants.
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‘Activate warnings on redefinition of names in standard.’

This switch activates warnings for declarations that declare a name that is
defined in package Standard. Such declarations can be confusing, especially
since the names in package Standard continue to be directly visible, meaning
that use visibility on such redeclared names does not work as expected. Names
of discriminants and components in records are not included in this check.

‘Suppress warnings on redefinition of names in standard.’

This switch disables warnings for declarations that declare a name that is de-
fined in package Standard.

‘Activate warnings for elaboration pragmas.’

This switch activates warnings for possible elaboration problems, including sus-
picious use of Elaborate pragmas, when using the static elaboration model,
and possible situations that may raise Program_Error when using the dynamic
elaboration model. See the section in this guide on elaboration checking for
further details. The default is that such warnings are not generated.

‘Suppress warnings for elaboration pragmas.’

This switch suppresses warnings for possible elaboration problems.

‘List inherited aspects as info messages.’

This switch causes the compiler to list inherited invariants, preconditions,
and postconditions from Type_Invariant’Class, Invariant’Class, Pre’Class, and
Post’Class aspects. Also list inherited subtype predicates.

‘Suppress listing of inherited aspects as info messages.’

This switch suppresses listing of inherited aspects.

‘Activate warnings on implicitly limited types.’

This switch causes the compiler trigger warnings on record types that do not
have a limited keyword but contain a component that is a limited type.

‘Suppress warnings on implicitly limited types.’

This switch suppresses warnings on implicitly limited types.

‘Activate warnings on modified but unreferenced variables.’

This switch activates warnings for variables that are assigned (using an initial-
ization value or with one or more assignment statements) but whose value is
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never read. The warning is suppressed for volatile variables and also for vari-
ables that are renamings of other variables or for which an address clause is
given. The default is that these warnings are not given.

‘Disable warnings on modified but unreferenced variables.’

This switch disables warnings for variables that are assigned or initialized, but
never read.

‘Activate warnings on suspicious modulus values.’

This switch activates warnings for modulus values that seem suspicious. The
cases caught are where the size is the same as the modulus (e.g. a modulus
of 7 with a size of 7 bits), and modulus values of 32 or 64 with no size clause.
The guess in both cases is that 2**x was intended rather than x. In addition
expressions of the form 2*x for small x generate a warning (the almost cer-
tainly accurate guess being that 2**x was intended). This switch also activates
warnings for negative literal values of a modular type, which are interpreted as
large positive integers after wrap-around. The default is that these warnings
are given.

‘Disable warnings on suspicious modulus values.’

This switch disables warnings for suspicious modulus values.

‘Set normal warnings mode.’

This switch sets normal warning mode, in which enabled warnings are issued
and treated as warnings rather than errors. This is the default mode. the switch
-gnatwn can be used to cancel the effect of an explicit ~gnatws or -gnatwe. It
also cancels the effect of the implicit -gnatwe that is activated by the use of
-gnatg.

‘Activate warnings on atomic synchronization.’

This switch activates warnings when an access to an atomic variable requires the
generation of atomic synchronization code. These warnings are off by default.

‘Suppress warnings on atomic synchronization.’

This switch suppresses warnings when an access to an atomic variable requires
the generation of atomic synchronization code.

‘Activate warnings on address clause overlays.’

This switch activates warnings for possibly unintended initialization effects of
defining address clauses that cause one variable to overlap another. The default
is that such warnings are generated.
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-gnatw0

-gnatw.o

-gnatw.0

-gnatwp

-gnatwP

-gnatw.p

-gnatw.P

‘Suppress warnings on address clause overlays.’

This switch suppresses warnings on possibly unintended initialization effects of
defining address clauses that cause one variable to overlap another.

‘Activate warnings on modified but unreferenced out parameters.’

This switch activates warnings for variables that are modified by using them as
actuals for a call to a procedure with an out mode formal, where the resulting
assigned value is never read. It is applicable in the case where there is more
than one out mode formal. If there is only one out mode formal, the warning
is issued by default (controlled by -gnatwu). The warning is suppressed for
volatile variables and also for variables that are renamings of other variables or
for which an address clause is given. The default is that these warnings are not
given.

‘Disable warnings on modified but unreferenced out parameters.’

This switch suppresses warnings for variables that are modified by using them
as actuals for a call to a procedure with an out mode formal, where the resulting
assigned value is never read.

‘Activate warnings on ineffective pragma Inlines.’

This switch activates warnings for failure of front end inlining (activated by
-gnatN) to inline a particular call. There are many reasons for not being able
to inline a call, including most commonly that the call is too complex to inline.
The default is that such warnings are not given. Warnings on ineffective inlining
by the gce back end can be activated separately, using the gee switch -Winline.

‘Suppress warnings on ineffective pragma Inlines.’

This switch suppresses warnings on ineffective pragma Inlines. If the inlining
mechanism cannot inline a call, it will simply ignore the request silently.

‘Activate warnings on parameter ordering.’

This switch activates warnings for cases of suspicious parameter ordering when
the list of arguments are all simple identifiers that match the names of the
formals, but are in a different order. The warning is suppressed if any use of
named parameter notation is used, so this is the appropriate way to suppress
a false positive (and serves to emphasize that the “misordering” is deliberate).
The default is that such warnings are not given.

‘Suppress warnings on parameter ordering.’

This switch suppresses warnings on cases of suspicious parameter ordering.
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‘Activate warnings for pedantic checks.’

This switch activates warnings for the failure of certain pedantic checks. The
only case currently supported is a check that the subtype_marks given for cor-
responding formal parameter and function results in a subprogram declaration
and its body denote the same subtype declaration. The default is that such
warnings are not given.

‘Suppress warnings for pedantic checks.’
This switch suppresses warnings on violations of pedantic checks.

‘Activate warnings on questionable missing parentheses.’

This switch activates warnings for cases where parentheses are not used and
the result is potential ambiguity from a readers point of view. For example
(not a > b) when a and b are modular means ((not a) > b) and very likely the
programmer intended (not (a > b)). Similarly (-x mod 5) means (-(x mod 5))
and quite likely ((-x) mod 5) was intended. In such situations it seems best to
follow the rule of always parenthesizing to make the association clear, and this
warning switch warns if such parentheses are not present. The default is that
these warnings are given.

‘Suppress warnings on questionable missing parentheses.’

This switch suppresses warnings for cases where the association is not clear and
the use of parentheses is preferred.

‘Activate warnings on questionable layout of record types.’

This switch activates warnings for cases where the default layout of a record
type, that is to say the layout of its components in textual order of the source
code, would very likely cause inefficiencies in the code generated by the compiler,
both in terms of space and speed during execution. One warning is issued for
each problematic component without representation clause in the nonvariant
part and then in each variant recursively, if any.

The purpose of these warnings is neither to prescribe an optimal layout nor
to force the use of representation clauses, but rather to get rid of the most
blatant inefficiencies in the layout. Therefore, the default layout is matched
against the following synthetic ordered layout and the deviations are flagged on
a component-by-component basis:

* first all components or groups of components whose length is fixed and a
multiple of the storage unit,

* then the remaining components whose length is fixed and not a multiple
of the storage unit,

* then the remaining components whose length doesn’t depend on discrimi-
nants (that is to say, with variable but uniform length for all objects),
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-gnatw.Q

-gnatw_q

-gnatw_Q

-gnatwr

* then all components whose length depends on discriminants,

* finally the variant part (if any),

for the nonvariant part and for each variant recursively, if any.

The exact wording of the warning depends on whether the compiler is allowed
to reorder the components in the record type or precluded from doing it by
means of pragma No_Component_Reordering.

The default is that these warnings are not given.

‘Suppress warnings on questionable layout of record types.’

This switch suppresses warnings for cases where the default layout of a record
type would very likely cause inefficiencies.

‘Activate warnings for ignored equality operators.’

This switch activates warnings for a user-defined “=” function that does not
compose (i.e. is ignored for a predefined “=” for a composite type containing
a component whose type has the user-defined “=" as primitive). Note that the
user-defined “=" must be a primitive operator in order to trigger the warning.
See RM-4.5.2(14/3-15/5, 21, 24/3, 32.1/1) for the exact Ada rules on compos-
ability of “=".

The default is that these warnings are not given.

‘Suppress warnings for ignored equality operators.’

‘Activate warnings on redundant constructs.’

This switch activates warnings for redundant constructs. The following is the
current list of constructs regarded as redundant:

* Assignment of an item to itself.

* Type conversion that converts an expression to its own type.

* Use of the attribute Base where typ'Base is the same as typ.

Use of pragma Pack when all components are placed by a record represen-
tation clause.

Exception handler containing only a reraise statement (raise with no
operand) which has no effect.

Use of the operator abs on an operand that is known at compile time to
be non-negative

Comparison of an object or (unary or binary) operation of boolean type to
an explicit True value.

* Import of parent package.

The default is that warnings for redundant constructs are not given.
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‘Suppress warnings on redundant constructs.’

This switch suppresses warnings for redundant constructs.

‘Activate warnings for object renaming function.’

This switch activates warnings for an object renaming that renames a function
call, which is equivalent to a constant declaration (as opposed to renaming the
function itself). The default is that these warnings are given.

‘Suppress warnings for object renaming function.’

This switch suppresses warnings for object renaming function.

‘Activate warnings for out-of-order record representation clauses.’

This switch activates warnings for record representation clauses, if the order
of component declarations, component clauses, and bit-level layout do not all
agree. The default is that these warnings are not given.

‘Suppress warnings for out-of-order record representation clauses.’

‘Suppress all warnings.’

This switch completely suppresses the output of all warning messages from the
GNAT front end, including both warnings that can be controlled by switches
described in this section, and those that are normally given unconditionally.
The effect of this suppress action can only be cancelled by a subsequent use of
the switch -gnatwn.

Note that switch -gnatws does not suppress warnings from the gcc back end.
To suppress these back end warnings as well, use the switch -w in addition to
-gnatws. Also this switch has no effect on the handling of style check messages.

‘Activate warnings on overridden size clauses.’

This switch activates warnings on component clauses in record representation
clauses where the length given overrides that specified by an explicit size clause
for the component type. A warning is similarly given in the array case if a spec-
ified component size overrides an explicit size clause for the array component

type.

‘Suppress warnings on overridden size clauses.’

This switch suppresses warnings on component clauses in record representation
clauses that override size clauses, and similar warnings when an array compo-
nent size overrides a size clause.
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‘Activate warnings on ineffective predicate tests.’

This switch activates warnings on Static_Predicate aspect specifications that
test for values that do not belong to the parent subtype. Not all such ineffective
tests are detected.

‘Suppress warnings on ineffective predicate tests.’

This switch suppresses warnings on Static_Predicate aspect specifications that
test for values that do not belong to the parent subtype.

‘Activate warnings for tracking of deleted conditional code.’

This switch activates warnings for tracking of code in conditionals (IF and
CASE statements) that is detected to be dead code which cannot be executed,
and which is removed by the front end. This warning is off by default. This
may be useful for detecting deactivated code in certified applications.

‘Suppress warnings for tracking of deleted conditional code.’

This switch suppresses warnings for tracking of deleted conditional code.

‘Activate warnings on suspicious contracts.’

This switch activates warnings on suspicious contracts. This includes warn-
ings on suspicious postconditions (whether a pragma Postcondition or a Post
aspect in Ada 2012) and suspicious contract cases (pragma or aspect Contract_
Cases). A function postcondition or contract case is suspicious when no post-
condition or contract case for this function mentions the result of the function.
A procedure postcondition or contract case is suspicious when it only refers
to the pre-state of the procedure, because in that case it should rather be ex-
pressed as a precondition. This switch also controls warnings on suspicious
cases of expressions typically found in contracts like quantified expressions and
uses of Update attribute. The default is that such warnings are generated.

‘Suppress warnings on suspicious contracts.’

This switch suppresses warnings on suspicious contracts.

‘Activate warnings on unused entities.’

This switch activates warnings to be generated for entities that are declared but
not referenced, and for units that are ‘with’ed and not referenced. In the case of
packages, a warning is also generated if no entities in the package are referenced.
This means that if a with’ed package is referenced but the only references are
in use clauses or renames declarations, a warning is still generated. A warning
is also generated for a generic package that is ‘with’ed but never instantiated.
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In the case where a package or subprogram body is compiled, and there is a
‘with’ on the corresponding spec that is only referenced in the body, a warning
is also generated, noting that the ‘with’ can be moved to the body. The default
is that such warnings are not generated. This switch also activates warnings on
unreferenced formals (it includes the effect of -gnatwf).

‘Suppress warnings on unused entities.’

This switch suppresses warnings for unused entities and packages. It also turns
off warnings on unreferenced formals (and thus includes the effect of ~gnatwF).

‘Activate warnings on unordered enumeration types.’

This switch causes enumeration types to be considered as conceptually un-
ordered, unless an explicit pragma Ordered is given for the type. The effect
is to generate warnings in clients that use explicit comparisons or subranges,
since these constructs both treat objects of the type as ordered. (A ‘client’ is
defined as a unit that is other than the unit in which the type is declared, or
its body or subunits.) Please refer to the description of pragma Ordered in the
GNAT Reference Manual for further details. The default is that such warnings
are not generated.

‘Deactivate warnings on unordered enumeration types.’

This switch causes all enumeration types to be considered as ordered, so that
no warnings are given for comparisons or subranges for any type.

‘Activate warnings on unassigned variables.’

This switch activates warnings for access to variables which may not be properly
initialized. The default is that such warnings are generated. This switch will
also be emitted when initializing an array or record object via the following
aggregate:

Array_Or_Record : XXX := (others => <>);

unless the relevant type fully initializes all components.

‘Suppress warnings on unassigned variables.’

This switch suppresses warnings for access to variables which may not be prop-
erly initialized.

‘Activate warnings for non-default bit order.’

This switch activates warning messages about the effects of non-default bit-
order on records to which a component clause is applied. The effect of specifying
non-default bit ordering is a bit subtle (and changed with Ada 2005), so these
messages, which are given by default, are useful in understanding the exact
consequences of using this feature.
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‘Suppress warnings for non-default bit order.’

This switch suppresses warnings for the effects of specifying non-default bit
order on record components with component clauses.

‘Activate warnings on wrong low bound assumption.’

This switch activates warnings for indexing an unconstrained string parameter
with a literal or S’Length. This is a case where the code is assuming that the
low bound is one, which is in general not true (for example when a slice is
passed). The default is that such warnings are generated.

‘Suppress warnings on wrong low bound assumption.’

This switch suppresses warnings for indexing an unconstrained string parameter
with a literal or S’Length. Note that this warning can also be suppressed in a
particular case by adding an assertion that the lower bound is 1, as shown in
the following example:

procedure K (S : String) is
pragma Assert (S'First = 1);

‘Activate warnings on Warnings Off pragmas.’

This switch activates warnings for use of pragma Warnings (0ff, entity)
where either the pragma is entirely useless (because it suppresses no warnings),
or it could be replaced by pragma Unreferenced or pragma Unmodified. Also
activates warnings for the case of Warnings (Off, String), where either there is
no matching Warnings (On, String), or the Warnings (Off) did not suppress
any warning. The default is that these warnings are not given.

‘Suppress warnings on unnecessary Warnings Off pragmas.’
This switch suppresses warnings for use of pragma Warnings (0ff, ...).

‘Activate warnings on Export/Import pragmas.’

This switch activates warnings on Export/Import pragmas when the compiler
detects a possible conflict between the Ada and foreign language calling se-
quences. For example, the use of default parameters in a convention C proce-
dure is dubious because the C compiler cannot supply the proper default, so a
warning is issued. The default is that such warnings are generated.

‘Suppress warnings on Export/Import pragmas.’
This switch suppresses warnings on Export/Import pragmas. The sense of this
is that you are telling the compiler that you know what you are doing in writing
the pragma, and it should not complain at you.
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‘Activate warnings for No_Exception_Propagation mode.’

This switch activates warnings for exception usage when pragma Restrictions
(No_Exception_Propagation) is in effect. Warnings are given for implicit or
explicit exception raises which are not covered by a local handler, and for ex-
ception handlers which do not cover a local raise. The default is that these
warnings are given for units that contain exception handlers.

‘Disable warnings for No_Exception_Propagation mode.’

This switch disables warnings for exception usage when pragma Restrictions
(No_Exception_Propagation) is in effect.

‘Activate warnings for Ada compatibility issues.’

For the most part, newer versions of Ada are upwards compatible with older
versions. For example, Ada 2005 programs will almost always work when com-
piled as Ada 2012. However there are some exceptions (for example the fact
that some is now a reserved word in Ada 2012). This switch activates several
warnings to help in identifying and correcting such incompatibilities. The de-
fault is that these warnings are generated. Note that at one point Ada 2005
was called Ada 0Y, hence the choice of character.

‘Disable warnings for Ada compatibility issues.’

This switch suppresses the warnings intended to help in identifying incompati-
bilities between Ada language versions.

‘Activate information messages for why package spec needs body.’

There are a number of cases in which a package spec needs a body. For example,
the use of pragma Elaborate_Body, or the declaration of a procedure specifi-
cation requiring a completion. This switch causes information messages to be
output showing why a package specification requires a body. This can be useful
in the case of a large package specification which is unexpectedly requiring a
body. The default is that such information messages are not output.

‘Disable information messages for why package spec needs body.’

This switch suppresses the output of information messages showing why a pack-
age specification needs a body.

‘Activate warnings on unchecked conversions.’

This switch activates warnings for unchecked conversions where the types are
known at compile time to have different sizes. The default is that such warn-
ings are generated. Warnings are also generated for subprogram pointers with
different conventions.
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‘Suppress warnings on unchecked conversions.’

This switch suppresses warnings for unchecked conversions where the types are
known at compile time to have different sizes or conventions.

‘Activate warnings for size not a multiple of alignment.’

This switch activates warnings for cases of array and record types with specified
Size and Alignment attributes where the size is not a multiple of the alignment,
resulting in an object size that is greater than the specified size. The default is
that such warnings are generated.

‘Suppress warnings for size not a multiple of alignment.’

This switch suppresses warnings for cases of array and record types with spec-
ified Size and Alignment attributes where the size is not a multiple of the
alignment, resulting in an object size that is greater than the specified size.
The warning can also be suppressed by giving an explicit Object_Size value.

The warnings controlled by the —gnatw switch are generated by the front end
of the compiler. The GCC back end can provide additional warnings and they
are controlled by the -W switch. For example, -Wunused activates back end
warnings for entities that are declared but not referenced.

-Wuninitialized

Similarly, -Wuninitialized activates the back end warning for uninitialized
variables. This switch must be used in conjunction with an optimization level
greater than zero.

-Wstack-usage="1len'

-Wall

-Werror

Warn if the stack usage of a subprogram might be larger than len bytes. See
[Static Stack Usage Analysis|, page 232, for details.

This switch enables most warnings from the GCC back end. The code generator
detects a number of warning situations that are missed by the GNAT front end,
and this switch can be used to activate them. The use of this switch also sets the
default front-end warning mode to -gnatwa, that is, most front-end warnings
are activated as well.

Conversely, this switch suppresses warnings from the GCC back end. The use
of this switch also sets the default front-end warning mode to -gnatws, that is,
front-end warnings are suppressed as well.

This switch causes warnings from the GCC back end to be treated as errors.
The warning string still appears, but the warning messages are counted as
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errors, and prevent the generation of an object file. The use of this switch also
sets the default front-end warning mode to -gnatwe, that is, front-end warning
messages and style check messages are treated as errors as well.
A string of warning parameters can be used in the same parameter. For example:
-gnatwaGe
will turn on all optional warnings except for unrecognized pragma warnings, and also specify
that warnings should be treated as errors.

When no switch -gnatw is used, this is equivalent to:
*

-gnatw.a
* -gnatwB
* -gnatw.b
* —gnatwC
* -gnatw.C
* —gnatwD
* -gnatw.D
* -gnatwF
* -gnatw.F
* -gnatwg
* -gnatwH
* -gnatw.H
* -gnatwi
* —gnatwJ
* -gnatw.J
* -gnatwK
* -gnatw.K
* -gnatwL
* -gnatw.L
* -gnatwM
* —gnatw.m
* —gnatwn
* -gnatw.N
* —gnatwo
* -gnatw.0
* -gnatwP
* -gnatw.P
* -gnatwq
* -gnatw.Q
* —gnatwR

-gnatw.R
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* -gnatw.S
* -gnatwT
* -gnatw.t
* —gnatwU
* -gnatw.U
* -gnatwv
* —gnatw.v
* -gnatww
* -gnatw.W
* -gnatwx
* -gnatw.X
* —gnatwy
* -gnatw.Y
* -gnatwz
* -gnatw.z

4.3.4 Info message Control
In addition to the warning messages, the compiler can also generate info messages. In order
to control the generation of these messages, the following switch is provided:
-gnatis
‘Suppress all info messages.’

This switch completely suppresses the output of all info messages from the
GNAT front end.

4.3.5 Debugging and Assertion Control

-gnata
The -gnata option is equivalent to the following Assertion_Policy pragma:
pragma Assertion_Policy (Check);
Which is a shorthand for:

pragma Assertion_Policy
-- Ada RM assertion pragmas

(Assert => Check,
Static_Predicate => Check,
Dynamic_Predicate => Check,
Pre => Check,
Pre'Class => Check,
Post => Check,
Post'Class => Check,
Type_Invariant => Check,
Type_Invariant'Class => Check,

Default_Initial_Condition => Check,
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-— GNAT specific assertion pragmas

Assert_And_Cut => Check,
Assume => Check,
Contract_Cases => Check,
Debug => Check,
Ghost => Check,
Initial_Condition => Check,
Loop_Invariant => Check,
Loop_Variant => Check,
Postcondition => Check,
Precondition => Check,
Predicate => Check,
Refined_Post => Check,
Subprogram_Variant => Check);

The pragmas Assert and Debug normally have no effect and are ignored. This
switch, where a stands for ‘assert’, causes pragmas Assert and Debug to be
activated. This switch also causes preconditions, postconditions, subtype pred-
icates, and type invariants to be activated.

The pragmas have the form:

pragma Assert (<Boolean-expression> [, <static-string-expression>])
pragma Debug (<procedure call>)

pragma Type_Invariant (<type-local-name>, <Boolean-expression>)
pragma Predicate (<type-local-name>, <Boolean-expression>)

pragma Precondition (<Boolean-expression>, <string-expression>)
pragma Postcondition (<Boolean-expression>, <string-expression>)

The aspects have the form:

with [Pre|Post|Type_Invariant|Dynamic_Predicate|Static_Predicatel
=> <Boolean-expression>;

The Assert pragma causes Boolean-expression to be tested. If the result
is True, the pragma has no effect (other than possible side effects from eval-
uating the expression). If the result is False, the exception Assert_Failure
declared in the package System.Assertions is raised (passing static-string-
expression, if present, as the message associated with the exception). If no
string expression is given, the default is a string containing the file name and
line number of the pragma.

The Debug pragma causes procedure to be called. Note that pragma Debug
may appear within a declaration sequence, allowing debugging procedures to
be called between declarations.

For the aspect specification, the Boolean-expression is evaluated. If the result
is True, the aspect has no effect. If the result is False, the exception Assert_
Failure is raised.

4.3.6 Validity Checking

The Ada Reference Manual defines the concept of invalid values (see RM 13.9.1). The
primary source of invalid values is uninitialized variables. A scalar variable that is left
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uninitialized may contain an invalid value; the concept of invalid does not apply to access
or composite types.

It is an error to read an invalid value, but the RM does not require run-time checks to
detect such errors, except for some minimal checking to prevent erroneous execution (i.e.
unpredictable behavior). This corresponds to the -gnatVd switch below, which is the de-
fault. For example, by default, if the expression of a case statement is invalid, it will raise
Constraint_Error rather than causing a wild jump, and if an array index on the left-hand
side of an assignment is invalid, it will raise Constraint_Error rather than overwriting an
arbitrary memory location.

The -gnatVa may be used to enable additional validity checks, which are not required by the
RM. These checks are often very expensive (which is why the RM does not require them).
These checks are useful in tracking down uninitialized variables, but they are not usually
recommended for production builds, and in particular we do not recommend using these
extra validity checking options in combination with optimization, since this can confuse
the optimizer. If performance is a consideration, leading to the need to optimize, then the
validity checking options should not be used.

The other —gnatV x' switches below allow finer-grained control; you can enable whichever
validity checks you desire. However, for most debugging purposes, ~gnatVa is sufficient, and
the default -gnatVd (i.e. standard Ada behavior) is usually sufficient for non-debugging
use.

The -gnatB switch tells the compiler to assume that all values are valid (that is, within their
declared subtype range) except in the context of a use of the Valid attribute. This means
the compiler can generate more efficient code, since the range of values is better known
at compile time. However, an uninitialized variable can cause wild jumps and memory
corruption in this mode.

The -gnatV x' switch allows control over the validity checking mode as described below.
The x argument is a string of letters that indicate validity checks that are performed or not
performed in addition to the default checks required by Ada as described above.

-gnatVa
‘All validity checks.’
All validity checks are turned on. That is, -gnatVa is equivalent to
gnatVcdefimoprst.

-gnatVc
‘Validity checks for copies.’
The right-hand side of assignments, and the (explicit) initializing values of
object declarations are validity checked.

-gnatVd

‘Default (RM) validity checks.’

Some validity checks are required by Ada (see RM 13.9.1 (9-11)); these (and
only these) validity checks are enabled by default. For case statements (and
case expressions) that lack a “when others =>" choice, a check is made that
the value of the selector expression belongs to its nominal subtype. If it does
not, Constraint_Error is raised. For assignments to array components (and
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for indexed components in some other contexts), a check is made that each
index expression belongs to the corresponding index subtype. If it does not,
Constraint_Error is raised. Both these validity checks may be turned off using
switch -gnatVD. They are turned on by default. If -gnatVD is specified, a
subsequent switch -gnatVd will leave the checks turned on. Switch -gnatVD
should be used only if you are sure that all such expressions have valid values. If
you use this switch and invalid values are present, then the program is erroneous,
and wild jumps or memory overwriting may occur.

‘Validity checks for scalar components.’

In the absence of this switch, assignments to scalar components of enclosing
record or array objects are not validity checked, even if validity checks for
assignments generally (-gnatVc) are turned on. Specifying this switch enables
such checks. This switch has no effect if the —gnatVc switch is not specified.

‘Validity checks for floating-point values.’

Specifying this switch enables validity checking for floating-point values in the
same contexts where validity checking is enabled for other scalar values. In
the absence of this switch, validity checking is not performed for floating-point
values. This takes precedence over other statements about performing validity
checking for scalar objects in various scenarios. One way to look at it is that if
this switch is not set, then whenever any of the other rules in this section use
the word “scalar” they really mean “scalar and not floating-point”. If -~gnatVf
is specified, then validity checking also applies for floating-point values, and
NaNs and infinities are considered invalid, as well as out-of-range values for
constrained types. The exact contexts in which floating-point values are checked
depends on the setting of other options. For example, ~gnatVif or -gnatVfi
(the order does not matter) specifies that floating-point parameters of mode in
should be validity checked.

‘Validity checks for “in‘‘ mode parameters.’

Arguments for parameters of mode in are validity checked in function and
procedure calls at the point of call.

‘Validity checks for “in out‘“ mode parameters.’

Arguments for parameters of mode in out are validity checked in procedure
calls at the point of call. The 'm' here stands for modify, since this concerns
parameters that can be modified by the call. Note that there is no specific
option to test out parameters, but any reference within the subprogram will be
tested in the usual manner, and if an invalid value is copied back, any reference
to it will be subject to validity checking.

‘No validity checks.’
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This switch turns off all validity checking, including the default checking for
case statements and left hand side subscripts. Note that the use of the switch
-gnatp suppresses all run-time checks, including validity checks, and thus im-
plies —gnatVn. When this switch is used, it cancels any other -gnatV previously
issued.

‘Validity checks for operator and attribute operands.’

Scalar arguments for predefined operators and for attributes are validity
checked. This includes all operators in package Standard, the shift operators
defined as intrinsic in package Interfaces and operands for attributes such
as Pos. Checks are also made on individual component values for composite
comparisons, and on the expressions in type conversions and qualified
expressions. Checks are also made on explicit ranges using .. (e.g., slices,
loops etc).

‘Validity checks for parameters.’

This controls the treatment of formal parameters within a subprogram (as op-
posed to -gnatVi and -gnatVm, which control validity testing of actual pa-
rameters of a call). If either of these call options is specified, then normally
an assumption is made within a subprogram that the validity of any incoming
formal parameters of the corresponding mode(s) has already been checked at
the point of call and does not need rechecking. If -gnatVp is set, then this
assumption is not made and so their validity may be checked (or rechecked)
within the subprogram. If neither of the two call-related options is specified,
then this switch has no effect.

‘Validity checks for function returns.’

The expression in simple return statements in functions is validity checked.

‘Validity checks for subscripts.’

All subscript expressions are checked for validity, whatever context they occur in
(in default mode some subscripts are not validity checked; for example, validity
checking may be omitted in some cases involving a read of a component of an
array).

‘Validity checks for tests.’

Expressions used as conditions in if, while or exit statements are checked, as
well as guard expressions in entry calls.

The -gnatV switch may be followed by a string of letters to turn on a series of validity
checking options. For example, —~gnatVcr specifies that in addition to the default validity
checking, copies and function return expressions are to be validity checked. In order to make
it easier to specify the desired combination of effects, the upper case letters CDOFIMORST may
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be used to turn off the corresponding lower case option. Thus —gnatVaM turns on all validity
checking options except for checking of in out parameters.

The specification of additional validity checking generates extra code (and in the case of
-gnatVa the code expansion can be substantial). However, these additional checks can be
very useful in detecting uninitialized variables, incorrect use of unchecked conversion, and
other errors leading to invalid values. The use of pragma Initialize_Scalars is useful
in conjunction with the extra validity checking, since this ensures that wherever possible
uninitialized variables have invalid values.

See also the pragma Validity_Checks which allows modification of the validity checking
mode at the program source level, and also allows for temporary disabling of validity checks.

4.3.7 Style Checking

The -gnaty switch causes the compiler to enforce specified style rules. A limited set of
style rules has been used in writing the GNAT sources themselves. This switch allows user
programs to activate all or some of these checks. If the source program fails a specified style
check, an appropriate message is given, preceded by the character sequence ‘(style)’. This
message does not prevent successful compilation (unless the -~gnatwe switch is used).

Note that this is by no means intended to be a general facility for checking arbitrary coding
standards. It is simply an embedding of the style rules we have chosen for the GNAT
sources. If you are starting a project which does not have established style standards, you
may find it useful to adopt the entire set of GNAT coding standards, or some subset of
them.

The string x is a sequence of letters or digits indicating the particular style checks to be
performed. The following checks are defined:

-gnaty0
‘Specify indentation level.’

If a digit from 1-9 appears in the string after ~gnaty then proper indentation
is checked, with the digit indicating the indentation level required. A value of
zero turns off this style check. The rule checks that the following constructs
start on a column that is one plus a multiple of the alignment level:

* beginnings of declarations (except record component declarations) and

statements;

beginnings of the structural components of compound statements;

end keyword that completes the declaration of a program unit declaration
or body or that completes a compound statement.

Full line comments must be aligned with the -- starting on a column that is
one plus a multiple of the alignment level, or they may be aligned the same way
as the following non-blank line (this is useful when full line comments appear
in the middle of a statement), or they may be aligned with the source line on
the previous non-blank line.

-gnatya
‘Check attribute casing.’
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Attribute names, including the case of keywords such as digits used as at-
tributes names, must be written in mixed case, that is, the initial letter and
any letter following an underscore must be uppercase. All other letters must
be lowercase.

‘Use of array index numbers in array attributes.’

When using the array attributes First, Last, Range, or Length, the index
number must be omitted for one-dimensional arrays and is required for multi-
dimensional arrays.

‘Blanks not allowed at statement end.’

Trailing blanks are not allowed at the end of statements. The purpose of this
rule, together with h (no horizontal tabs), is to enforce a canonical format for
the use of blanks to separate source tokens.

‘Check Boolean operators.’

The use of AND/OR operators is not permitted except in the cases of modular
operands, array operands, and simple stand-alone boolean variables or boolean
constants. In all other cases and then/or else are required.

‘Check comments, double space.’
Comments must meet the following set of rules:

* The -- that starts the column must either start in column one, or else at
least one blank must precede this sequence.

* Comments that follow other tokens on a line must have at least one blank
following the -- at the start of the comment.

* Full line comments must have at least two blanks following the —- that
starts the comment, with the following exceptions.

* A line consisting only of the —— characters, possibly preceded by blanks is
permitted.

* A comment starting with ——x where x is a special character is permitted.
This allows proper processing of the output from specialized tools such as
gnatprep (where --! is used) and in earlier versions of the SPARK anno-
tation language (where —-# is used). For the purposes of this rule, a special
character is defined as being in one of the ASCII ranges 16#21#. . . 16#2F#
or 16#3A#...16#3F#. Note that this usage is not permitted in GNAT
implementation units (i.e., when -gnatg is used).

* A line consisting entirely of minus signs, possibly preceded by blanks, is
permitted. This allows the construction of box comments where lines of
minus signs are used to form the top and bottom of the box.
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-gnatyC

-gnatyd

—-gnatyD

-gnatye

-gnatyf

—gnatyg

-gnatyh

-gnatyi

* A comment that starts and ends with —- is permitted as long as at least one
blank follows the initial ——. Together with the preceding rule, this allows
the construction of box comments, as shown in the following example:

—-— This is a box comment --—
-- with two text lines. --

‘Check comments, single space.’

This is identical to ¢ except that only one space is required following the —- of
a comment instead of two.

‘Check no DOS line terminators present.’

All lines must be terminated by a single ASCIL.LF character (in particular the
DOS line terminator sequence CR/LF is not allowed).

‘Check declared identifiers in mixed case.’

Declared identifiers must be in mixed case, as in This_Is_An_Identifier. Use
-gnatyr in addition to ensure that references match declarations.

‘Check end/exit labels.’

Optional labels on end statements ending subprograms and on exit statements
exiting named loops, are required to be present.

‘No form feeds or vertical tabs.’

Neither form feeds nor vertical tab characters are permitted in the source text.

‘GNAT style mode.’

The set of style check switches is set to match that used by the GNAT sources.
This may be useful when developing code that is eventually intended to be
incorporated into GNAT. Currently this is equivalent to -gnatyydISuxz) but
additional style switches may be added to this set in the future without advance
notice.

‘No horizontal tabs.’

Horizontal tab characters are not permitted in the source text. Together with
the b (no blanks at end of line) check, this enforces a canonical form for the
use of blanks to separate source tokens.

‘Check if-then layout.’
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-gnatyl

-gnatyk

-gnatyl

The keyword then must appear either on the same line as corresponding if, or
on a line on its own, lined up under the if.

‘check mode IN keywords.’

Mode in (the default mode) is not allowed to be given explicitly. in out is fine,
but not in on its own.

‘Check keyword casing.’

All keywords must be in lower case (with the exception of keywords such as
digits used as attribute names to which this check does not apply). A single
error is reported for each line breaking this rule even if multiple casing issues
exist on a same line.

‘Check layout.’

Layout of statement and declaration constructs must follow the recommenda-
tions in the Ada Reference Manual, as indicated by the form of the syntax
rules. For example an else keyword must be lined up with the corresponding
if keyword.

There are two respects in which the style rule enforced by this check option
are more liberal than those in the Ada Reference Manual. First in the case of
record declarations, it is permissible to put the record keyword on the same
line as the type keyword, and then the end in end record must line up under
type. This is also permitted when the type declaration is split on two lines.
For example, any of the following three layouts is acceptable:

type q is record
a : integer;
b : integer;
end record;

type q is
record
a : integer;
b : integer;
end record;

type q is
record
a : integer;
b : integer;
end record;
Second, in the case of a block statement, a permitted alternative is to put the
block label on the same line as the declare or begin keyword, and then line
the end keyword up under the block label. For example both the following are
permitted:
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-gnatyL

-gnatym

-gnatyM

-gnatyn

Block : declare

A : Integer := 3;
begin

Proc (A, A);
end Block;

Block :
declare
A : Integer := 3;
begin
Proc (A, A);
end Block;

The same alternative format is allowed for loops. For example, both of the
following are permitted:

Clear : while J < 10 loop
A (3) :=0;
end loop Clear;

Clear :
while J < 10 loop
A (J) :=0;
end loop Clear;

‘Set maximum nesting level.’

The maximum level of nesting of constructs (including subprograms, loops,
blocks, packages, and conditionals) may not exceed the given value ‘nnn’. A
value of zero disconnects this style check.

‘Check maximum line length.’

The length of source lines must not exceed 79 characters, including any trailing
blanks. The value of 79 allows convenient display on an 80 character wide
device or window, allowing for possible special treatment of 80 character lines.
Note that this count is of characters in the source text. This means that a tab
character counts as one character in this count and a wide character sequence
counts as a single character (however many bytes are needed in the encoding).

‘Set maximum line length.’

The length of lines must not exceed the given value ‘nnn’. The maximum value
that can be specified is 32767. If neither style option for setting the line length
is used, then the default is 255. This also controls the maximum length of
lexical elements, where the only restriction is that they must fit on a single line.

‘Check casing of entities in Standard.’
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Any identifier from Standard must be cased to match the presentation in the
Ada Reference Manual (for example, Integer and ASCII.NUL).

‘Turn off all style checks.’
All style check options are turned off.

‘Check order of subprogram bodies.’

All subprogram bodies in a given scope (e.g., a package body) must be in
alphabetical order. The ordering rule uses normal Ada rules for comparing
strings, ignoring casing of letters, except that if there is a trailing numeric
suffix, then the value of this suffix is used in the ordering (e.g., Junk2 comes
before Junk10).

‘Check that overriding subprograms are explicitly marked as such.’

This applies to all subprograms of a derived type that override a primitive op-
eration of the type, for both tagged and untagged types. In particular, the dec-
laration of a primitive operation of a type extension that overrides an inherited
operation must carry an overriding indicator. Another case is the declaration of
a function that overrides a predefined operator (such as an equality operator).

‘Check pragma casing.’
Pragma names must be written in mixed case, that is, the initial letter and
any letter following an underscore must be uppercase. All other letters must

be lowercase. An exception is that SPARK_Mode is allowed as an alternative
for Spark_Mode.

‘Check references.’

All identifier references must be cased in the same way as the corresponding
declaration. No specific casing style is imposed on identifiers. The only require-
ment is for consistency of references with declarations.

‘Check separate specs.’

Separate declarations (‘specs’) are required for subprograms (a body is not al-
lowed to serve as its own declaration). The only exception is that parameterless
library level procedures are not required to have a separate declaration. This
exception covers the most frequent form of main program procedures.

‘Check no statements after then/else.’

No statements are allowed on the same line as a then or else keyword following
the keyword in an if statement. or else and and then are not affected, and a
special exception allows a pragma to appear after else.
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-gnatyt

-gnatyu

-gnatyx

-gnatyy

‘Check token spacing.’
The following token spacing rules are enforced:
* The keywords abs and not must be followed by a space.
* The token => must be surrounded by spaces.
* The token <> must be preceded by a space or a left parenthesis.

Binary operators other than ** must be surrounded by spaces. There is
no restriction on the layout of the ** binary operator.

Colon must be surrounded by spaces.
Colon-equal (assignment, initialization) must be surrounded by spaces.

* Comma must be the first non-blank character on the line, or be immediately
preceded by a non-blank character, and must be followed by a space.

* If the token preceding a left parenthesis ends with a letter or digit, then a
space must separate the two tokens.

* If the token following a right parenthesis starts with a letter or digit, then
a space must separate the two tokens.

* A right parenthesis must either be the first non-blank character on a line,
or it must be preceded by a non-blank character.

* A semicolon must not be preceded by a space, and must not be followed
by a non-blank character.
* A unary plus or minus may not be followed by a space.
* A vertical bar must be surrounded by spaces.
Exactly one blank (and no other white space) must appear between a not token
and a following in token.

‘Check unnecessary blank lines.’

Unnecessary blank lines are not allowed. A blank line is considered unnecessary
if it appears at the end of the file, or if more than one blank line occurs in
sequence.

‘Check extra parentheses.’

Unnecessary extra levels of parentheses (C-style) are not allowed around con-
ditions (or selection expressions) in if, while, case, and exit statements, as
well as part of ranges.

‘Set all standard style check options.’

This is equivalent to gnaty3aAbcefhiklmnprst, that is all checking options en-
abled with the exception of ~gnatyB, ~gnatyd, -gnatyI, —~gnatyLnnn, -gnatyo,
-gnaty0, -gnatyS, -gnatyu, and -gnatyx.
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-gnatyz
‘Check extra parentheses (operator precedence).’

Extra levels of parentheses that are not required by operator precedence rules
are flagged. See also -gnatyx.

-gnaty-
‘Remove style check options.’

This causes any subsequent options in the string to act as canceling the corre-
sponding style check option. To cancel maximum nesting level control, use the
L parameter without any integer value after that, because any digit following
‘" in the parameter string of the -gnaty option will be treated as canceling the
indentation check. The same is true for the M parameter. y and N parameters
are not allowed after ‘- .

-gnaty+
‘Enable style check options.’

This causes any subsequent options in the string to enable the corresponding
style check option. That is, it cancels the effect of a previous -, if any.

In the above rules, appearing in column one is always permitted, that is, counts as meeting
either a requirement for a required preceding space, or as meeting a requirement for no
preceding space.

Appearing at the end of a line is also always permitted, that is, counts as meeting either a
requirement for a following space, or as meeting a requirement for no following space.

If any of these style rules is violated, a message is generated giving details on the violation.
The initial characters of such messages are always ‘(style)’. Note that these messages are
treated as warning messages, so they normally do not prevent the generation of an object
file. The -gnatwe switch can be used to treat warning messages, including style messages,
as fatal errors.

The switch -gnaty on its own (that is not followed by any letters or digits) is equivalent to
the use of —gnatyy as described above, that is all built-in standard style check options are
enabled.

The switch -gnatyN clears any previously set style checks.

4.3.8 Run-Time Checks

By default, the following checks are suppressed: stack overflow checks, and checks for access
before elaboration on subprogram calls. All other checks, including overflow checks, range
checks and array bounds checks, are turned on by default. The following gcc switches refine
this default behavior.

-gnatp
This switch causes the unit to be compiled as though pragma Suppress (A11_
checks) had been present in the source. Validity checks are also eliminated
(in other words -gnatp also implies -gnatVn. Use this switch to improve the
performance of the code at the expense of safety in the presence of invalid data
or program bugs.
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-gnat-p

-gnato??

Note that when checks are suppressed, the compiler is allowed, but not required,
to omit the checking code. If the run-time cost of the checking code is zero
or near-zero, the compiler will generate it even if checks are suppressed. In
particular, if the compiler can prove that a certain check will necessarily fail, it
will generate code to do an unconditional ‘raise’, even if checks are suppressed.
The compiler warns in this case. Another case in which checks may not be
eliminated is when they are embedded in certain run-time routines such as
math library routines.

Of course, run-time checks are omitted whenever the compiler can prove that
they will not fail, whether or not checks are suppressed.

Note that if you suppress a check that would have failed, program execution
is erroneous, which means the behavior is totally unpredictable. The program
might crash, or print wrong answers, or do anything else. It might even do
exactly what you wanted it to do (and then it might start failing mysteriously
next week or next year). The compiler will generate code based on the assump-
tion that the condition being checked is true, which can result in erroneous
execution if that assumption is wrong.

The checks subject to suppression include all the checks defined by the Ada
standard, as well as all implementation-defined checks, including any checks
introduced using pragma Check_Name.

If the code depends on certain checks being active, you can use pragma
Unsuppress either as a configuration pragma or as a local pragma to make
sure that a specified check is performed even if gnatp is specified.

The -gnatp switch has no effect if a subsequent -gnat-p switch appears.

This switch cancels the effect of a previous gnatp switch.

This switch controls the mode used for computing intermediate arithmetic in-
teger operations, and also enables overflow checking. For a full description
of overflow mode and checking control, see the ‘Overflow Check Handling in
GNAT’ appendix in this User’s Guide.

Overflow checks are always enabled by this switch. The argument controls the
mode, using the codes

‘1 = STRICT’
In STRICT mode, intermediate operations are always done us-
ing the base type, and overflow checking ensures that the result
is within the base type range.

‘2 = MINIMIZED’
In MINIMIZED mode, overflows in intermediate operations are
avoided where possible by using a larger integer type for the compu-
tation (typically Long_Long_Integer). Overflow checking ensures
that the result fits in this larger integer type.
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-gnatE

‘3 = ELIMINATED’
In ELIMINATED mode, overflows in intermediate operations are
avoided by using multi-precision arithmetic. In this case, overflow
checking has no effect on intermediate operations (since overflow is
impossible).

If two digits are present after ~gnato then the first digit sets the mode for ex-
pressions outside assertions, and the second digit sets the mode for expressions
within assertions. Here assertions is used in the technical sense (which includes
for example precondition and postcondition expressions).

If one digit is present, the corresponding mode is applicable to both expressions
within and outside assertion expressions.

If no digits are present, the default is to enable overflow checks and set STRICT
mode for both kinds of expressions. This is compatible with the use of -gnato
in previous versions of GNAT.

Note that the -gnato?? switch does not affect the code generated for any
floating-point operations; it applies only to integer semantics. For floating-
point, GNAT has the Machine_0Overflows attribute set to False and the nor-
mal mode of operation is to generate IEEE NaN and infinite values on overflow
or invalid operations (such as dividing 0.0 by 0.0).

The reason that we distinguish overflow checking from other kinds of range
constraint checking is that a failure of an overflow check, unlike for example
the failure of a range check, can result in an incorrect value, but cannot cause
random memory destruction (like an out of range subscript), or a wild jump
(from an out of range case value). Overflow checking is also quite expensive in
time and space, since in general it requires the use of double length arithmetic.

Note again that the default is -gnato11l (equivalent to -gnatol), so overflow
checking is performed in STRICT mode by default.

Enables dynamic checks for access-before-elaboration on subprogram calls and
generic instantiations. Note that —gnatE is not necessary for safety, because in
the default mode, GNAT ensures statically that the checks would not fail. For
full details of the effect and use of this switch, [Compiling with gcc], page 87.

—-fstack-check

Activates stack overflow checking. For full details of the effect and use of this
switch see [Stack Overflow Checking], page 231.

The setting of these switches only controls the default setting of the checks. You may modify
them using either Suppress (to remove checks) or Unsuppress (to add back suppressed
checks) pragmas in the program source.

4.3.9 Using gcc for Syntax Checking

-gnats

The s stands for ‘syntax’.
Run GNAT in syntax checking only mode. For example, the command
$ gcc -c -gnats x.adb
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compiles file x.adb in syntax-check-only mode. You can check a series of files
in a single command , and can use wildcards to specify such a group of files.
Note that you must specify the —-c (compile only) flag in addition to the -gnats
flag.

You may use other switches in conjunction with -gnats. In particular, -gnatl
and -gnatv are useful to control the format of any generated error messages.

When the source file is empty or contains only empty lines and/or comments,
the output is a warning:

$ gcc -c -gnats -x ada toto.txt
toto.txt:1:01: warning: empty file, contains no compilation units

$

Otherwise, the output is simply the error messages, if any. No object file or ALI
file is generated by a syntax-only compilation. Also, no units other than the
one specified are accessed. For example, if a unit X ‘with’s a unit Y, compiling
unit X in syntax check only mode does not access the source file containing unit
Y.

Normally, GNAT allows only a single unit in a source file. However, this restric-
tion does not apply in syntax-check-only mode, and it is possible to check a file
containing multiple compilation units concatenated together. This is primarily
used by the gnatchop utility ([Renaming Files with gnatchop|, page 20).

4.3.10 Using gcc for Semantic Checking

-gnatc

The ¢ stands for ‘check’. Causes the compiler to operate in semantic check
mode, with full checking for all illegalities specified in the Ada Reference Man-
ual, but without generation of any object code (no object file is generated).

Because dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:

* The needed source files must be accessible (see [Search Paths and the Run-
Time Library (RTL)], page 89).

* Each file must contain only one compilation unit.

* The file name and unit name must match ([File Naming Rules], page 11).

The output consists of error messages as appropriate. No object file is gener-
ated. An ALI file is generated for use in the context of cross-reference tools,
but this file is marked as not being suitable for binding (since no object file is
generated). The checking corresponds exactly to the notion of legality in the
Ada Reference Manual.

Any unit can be compiled in semantics-checking-only mode, including units that
would not normally be compiled (subunits, and specifications where a separate
body is present).
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4.3.11 Compiling Different Versions of Ada

The switches described in this section allow you to explicitly specify the version of the Ada
language that your programs are written in. The default mode is Ada 2012, but you can
also specify Ada 95, Ada 2005 mode, or indicate Ada 83 compatibility mode.

-gnat83 (Ada 83 Compatibility Mode)

Although GNAT is primarily an Ada 95 / Ada 2005 compiler, this switch speci-
fies that the program is to be compiled in Ada 83 mode. With -gnat83, GNAT
rejects most post-Ada 83 extensions and applies Ada 83 semantics where this
can be done easily. It is not possible to guarantee this switch does a perfect
job; some subtle tests, such as are found in earlier ACVC tests (and that have
been removed from the ACATS suite for Ada 95), might not compile correctly.
Nevertheless, this switch may be useful in some circumstances, for example
where, due to contractual reasons, existing code needs to be maintained using
only Ada 83 features.

With few exceptions (most notably the need to use <> on unconstrained generic
formal parameters, the use of the new Ada 95 / Ada 2005 reserved words, and
the use of packages with optional bodies), it is not necessary to specify the
-gnat83 switch when compiling Ada 83 programs, because, with rare excep-
tions, Ada 95 and Ada 2005 are upwardly compatible with Ada 83. Thus a
correct Ada 83 program is usually also a correct program in these later ver-
sions of the language standard. For further information please refer to the
‘Compatibility and Porting Guide’ chapter in the GNAT Reference Manual.

-gnat95 (Ada 95 mode)
This switch directs the compiler to implement the Ada 95 version of the lan-
guage. Since Ada 95 is almost completely upwards compatible with Ada 83,
Ada 83 programs may generally be compiled using this switch (see the descrip-
tion of the -gnat83 switch for further information about Ada 83 mode). If
an Ada 2005 program is compiled in Ada 95 mode, uses of the new Ada 2005
features will cause error messages or warnings.

This switch also can be used to cancel the effect of a previous -gnat83,
-gnat05/2005, or —~gnat12/2012 switch earlier in the command line.

-gnat05 or -gnat2005 (Ada 2005 mode)
This switch directs the compiler to implement the Ada 2005 version of the
language, as documented in the official Ada standards document. Since Ada
2005 is almost completely upwards compatible with Ada 95 (and thus also with
Ada 83), Ada 83 and Ada 95 programs may generally be compiled using this
switch (see the description of the -gnat83 and -gnat95 switches for further
information).

-gnat12 or -gnat2012 (Ada 2012 mode)
This switch directs the compiler to implement the Ada 2012 version of the
language (also the default). Since Ada 2012 is almost completely upwards
compatible with Ada 2005 (and thus also with Ada 83, and Ada 95), Ada 83
and Ada 95 programs may generally be compiled using this switch (see the
description of the -gnat83, -gnat95, and -gnat05/2005 switches for further
information).
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-gnat2022 (Ada 2022 mode)
This switch directs the compiler to implement the Ada 2022 version of the
language.

-gnatX0 (Enable GNAT Extensions)
This switch directs the compiler to implement the latest version of the language
(currently Ada 2022) and also to enable certain GNAT implementation exten-
sions that are not part of any Ada standard. For a full list of these extensions,
see the GNAT reference manual, Pragma Extensions_Allowed.

-gnatX (Enable core GNAT Extensions)
This switch is similar to -gnatX0 except that only some, not all, of the GNAT-
defined language extensions are enabled. For a list of the extensions enabled
by this switch, see the GNAT reference manual Pragma Extensions_Allowed
and the description of that pragma’s “On” (as opposed to “All”) argument.

4.3.12 Character Set Control

-gnati-c'
Normally GNAT recognizes the Latin-1 character set in source program identi-
fiers, as described in the Ada Reference Manual. This switch causes GNAT to
recognize alternate character sets in identifiers. c is a single character indicating
the character set, as follows:

‘r ISO 8859-1 (Latin-1) identifiers

‘2’ ISO 8859-2 (Latin-2) letters allowed in identifiers

‘3 ISO 8859-3 (Latin-3) letters allowed in identifiers

Y ISO 8859-4 (Latin-4) letters allowed in identifiers

‘5’ ISO 8859-5 (Cyrillic) letters allowed in identifiers

‘9’ ISO 8859-15 (Latin-9) letters allowed in identifiers

‘P’ IBM PC letters (code page 437) allowed in identifiers

‘8’ IBM PC letters (code page 850) allowed in identifiers

‘£’ Full upper-half codes allowed in identifiers

‘n’ No upper-half codes allowed in identifiers

‘w’ Wide-character codes (that is, codes greater than 255) allowed in
identifiers

See [Foreign Language Representation|, page 8, for full details on the imple-
mentation of these character sets.
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-gnatW'e'

Specify the method of encoding for wide characters. e is one of the following:

‘h’ Hex encoding (brackets coding also recognized)

‘o’ Upper half encoding (brackets encoding also recognized)
‘s’ Shift /JIS encoding (brackets encoding also recognized)
‘e’ EUC encoding (brackets encoding also recognized)

‘8’ UTF-8 encoding (brackets encoding also recognized)

‘b’ Brackets encoding only (default value)

For full details on these encoding methods see [Wide_Character Encodings],
page 9. Note that brackets coding is always accepted, even if one of the other
options is specified, so for example -gnatW8 specifies that both brackets and
UTF-8 encodings will be recognized. The units that are with’ed directly or
indirectly will be scanned using the specified representation scheme, and so if
one of the non-brackets scheme is used, it must be used consistently throughout
the program. However, since brackets encoding is always recognized, it may be
conveniently used in standard libraries, allowing these libraries to be used with
any of the available coding schemes.

Note that brackets encoding only applies to program text. Within comments,
brackets are considered to be normal graphic characters, and bracket sequences
are never recognized as wide characters.

If no —gnatW? parameter is present, then the default representation is normally
Brackets encoding only. However, if the first three characters of the file are
16#EF# 16#BB# 16#BF# (the standard byte order mark or BOM for UTF-
8), then these three characters are skipped and the default representation for
the file is set to UTF-8.

Note that the wide character representation that is specified (explicitly or
by default) for the main program also acts as the default encoding used for
Wide_Text_I0O files if not specifically overridden by a WCEM form parameter.

When no -gnatW? is specified, then characters (other than wide characters represented
using brackets notation) are treated as 8-bit Latin-1 codes. The codes recognized are the
Latin-1 graphic characters, and ASCII format effectors (CR, LF, HT, VT). Other lower
half control characters in the range 16#400#..16#1F# are not accepted in program text or
in comments. Upper half control characters (16#80#..16#9F#) are rejected in program
text, but allowed and ignored in comments. Note in particular that the Next Line (NEL)
character whose encoding is 16485+ is not recognized as an end of line in this default mode.
If your source program contains instances of the NEL character used as a line terminator,
you must use UTF-8 encoding for the whole source program. In default mode, all lines
must be ended by a standard end of line sequence (CR, CR/LF, or LF).
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Note that the convention of simply accepting all upper half characters in comments means
that programs that use standard ASCII for program text, but UTF-8 encoding for comments
are accepted in default mode, providing that the comments are ended by an appropriate
(CR, or CR/LF, or LF) line terminator. This is a common mode for many programs with
foreign language comments.

4.3.13 File Naming Control

-gnatk™n'
Activates file name ‘krunching’. n, a decimal integer in the range 1-999, indi-
cates the maximum allowable length of a file name (not including the .ads or
.adb extension). The default is not to enable file name krunching.

For the source file naming rules, [File Naming Rules], page 11.

4.3.14 Subprogram Inlining Control

-gnatn[12]
The n here is intended to suggest the first syllable of the word ‘inline’. GNAT
recognizes and processes Inline pragmas. However, for inlining to actually
occur, optimization must be enabled and, by default, inlining of subprograms
across units is not performed. If you want to additionally enable inlining of
subprograms specified by pragma Inline across units, you must also specify
this switch.

In the absenc