GNAT Reference Manual

GNAT Reference Manual , Sep 12, 2025
AdaCore
Copyright (© 2008-2025, Free Software Foundation

Table of Contents

1 About This Guide............................... 2
1.1 What This Reference Manual Contains.......................... 2
1.2 Conventionst e 3
1.3 Related Information......... ... o i 3

2 Implementation Defined Pragmas.............. 5
2.1 Pragma Abort_Defer........o 5
2.2 Pragma Abstract_State......... ... 5
2.3 Pragma Ada_83 6
2.4 Pragma Ada_-95 ... 7
2.5 Pragma Ada_05o 7
2.6 Pragma Ada_2005t 7
2.7 Pragma Ada_12 8
2.8 Pragma Ada_2012t 8
2.9 Pragma Ada_2022 8
2.10 Pragma Aggregate_Individually_Assign 9
2.11 Pragma Allow_Integer Addressc.cooiiiiiiean... 9
2.12 Pragma Always_Terminatesoooiiiiiiiiia... 10
2.13 Pragma Annotateo 10
214 Pragma ASSertot 10
2.15 Pragma Assert_And_Cut i 11
2.16 Pragma Assertion_Policy i 11
217 Pragma ASSUIME.ovtttt it 13
2.18 Pragma Assume_No_Invalid_Values........................... 13
2.19 Pragma Async_Readers.......... ..., 14
2.20 Pragma Async Writersot 14
2.21 Pragma Attribute_Definition 14
2.22 Pragma C_Pass_By_Copy......ccoooiiiiiiiiiiiiiiiiiii .. 15
2.23 Pragma Check 15
2.24 Pragma Check_Float_Overflow...................., 16
2.25 Pragma Check_Name..........o .. 16
2.26 Pragma Check_Policyo 17
2.27 Pragma Comment........ ..ottt 18
2.28 Pragma Common_Object..........cooiiiiiiiiii ... 18
2.29 Pragma Compile_Time_Error.............. 18
2.30 Pragma Compile_Time_Warning.........................oo... 19
2.31 Pragma Complete_Representation 19
2.32 Pragma Complex_Representation............................. 19
2.33 Pragma Component_Alignment............................... 19
2.34 Pragma Constant_After_Elaboration.......................... 21
2.35 Pragma Contract_Casescoouiiiiiiiiiiiin.. 21
2.36 Pragma Convention_Identifier 22
237 Pragma CPP_Class........coooiiiiiiiiiii i 22

2.38
2.39
2.40
241
2.42
2.43
2.44
2.45
2.46
247
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84

Pragma CPP_Constructor............c.oooiiiiiiiiiiii... 23
Pragma CPP_Virtual........ i 23
Pragma CPP_Vtable........ i 24
Pragma CPU. 24
Pragma Deadline_Floor............. ... i i 24
Pragma Debug ... 24
Pragma Debug_Policyc i 24
Pragma Default_Initial_Condition 25
Pragma Default_Scalar_Storage_Order........................ 25
Pragma Default_Storage_Pool 26
Pragma Depends........ ..o 26
Pragma Detect_Blockingo il 27
Pragma Disable_Atomic_Synchronization 27
Pragma Dispatching_Domain............... 27
Pragma Effective_Reads..........o il 27
Pragma Effective_Writes. ..., 27
Pragma Elaboration_Checks.......... 28
Pragma Eliminate........... .o i i 28
Pragma Enable_Atomic_Synchronization...................... 30
Pragma Exceptional _Casesccoiiiiiiiiiiieiiinnnn. 30
Pragma Exit_Cases. ... 30
Pragma Export_Function.......... L 31
Pragma Export_Object..... ... oo i 32
Pragma Export_Procedure............. i 32
Pragma Export_Valued_Procedure............................ 33
Pragma Extend_System i 34
Pragma Extensions_Allowed, 35
Pragma Extensions_Visible............ oL 35
Pragma External 35
Pragma External Name_Casing..................cooooii.... 35
Pragma Fast_Math...... i i 36
Pragma Favor_Top_Levelo i i i, 37
Pragma Finalize_Storage_Only............ oo 37
Pragma Float_Representation 37
Pragma Ghost. 38
Pragma Global........ ... i 38
Pragma Ident 38
Pragma Ignore_Pragma.............. ... i 38
Pragma Implementation_Defined 39
Pragma Implemented........... ... i 39
Pragma Implicit_Packing............ L. 40
Pragma Import_Function............ i i 40
Pragma Import_Object........ .o 41
Pragma Import_Procedure..................... 42
Pragma Import_Valued_Procedure............................ 42
Pragma Independent i 43

Pragma Independent_Components..................ccovvnnan. 44

ii

2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99
2.100
2.101
2.102
2.103
2.104
2.105
2.106
2.107
2.108
2.109
2.110
2.111
2.112
2.113
2.114
2.115
2.116
2.117
2.118
2.119
2.120
2.121
2.122
2.123
2.124
2.125
2.126
2.127
2.128
2.129
2.130
2.131

Pragma Initial_Condition........... 44
Pragma Initialize_Scalars.............o i, 44
Pragma Initializes......... ..o 45
Pragma Inline_ Always. ... 46
Pragma Inline_Generic i 46
Pragma Interface.......... ... i 46
Pragma Interface_Name it 47
Pragma Interrupt_Handler............, 47
Pragma Interrupt_State i i 47
Pragma Interrupts_System_By_Default 48
Pragma Invariant........ ... oo i i 48
Pragma Keep_-Names..........ccooi i 49
Pragma License e 49
Pragma Link_ With..... oo 50
Pragma Linker_Aliaso i 50
Pragma Linker_Constructor 51
Pragma Linker_Destructor............... oo .. 51
Pragma Linker_Section............ i i, 52
Pragma Lock_Free o o i i 53
Pragma Loop_Invariant 53
Pragma Loop_Optimize, 54
Pragma Loop_Variant oot 55
Pragma Machine_Attribute..........., 55
Pragma Main 56
Pragma Main_Storageccovvirineiiiiieeniinennnnn.. 56
Pragma Max_Queue_Length......... 56
Pragma No_ Body i 56
Pragma No_Caching.......... ... i, 57
Pragma No_Component_Reordering 57
Pragma No_Elaboration_Code_All........................... o7
Pragma No_Heap_Finalization................... o7
Pragma No_Inline.......... ... oo i i i, 58
Pragma No_Raise i 58
Pragma No_Return......... oo i it 58
Pragma No_Strict_Aliasingt 58
Pragma No_Tagged_Streams............ ..., 59
Pragma Normalize_Scalars 59
Pragma Obsolescent......... ... 60
Pragma Optimize_Alignment 62
Pragma Ordered ... 63
Pragma Overflow_Mode, 64
Pragma Overriding_Renamings.............................. 65
Pragma Part _Of. 65
Pragma Partition_Elaboration_Policy........................ 65
Pragma Passiveo i i 65
Pragma Persistent _BSS........ ... 66

Pragma Post ... 66

iii

2.132
2.133
2.134
2.135
2.136
2.137
2.138
2.139
2.140
2.141
2.142
2.143
2.144
2.145
2.146
2.147
2.148
2.149
2.150
2.151
2.152
2.153
2.154
2.155
2.156
2.157
2.158
2.159
2.160
2.161
2.162
2.163
2.164
2.165
2.166
2.167
2.168
2.169
2.170
2.171
2.172
2.173
2.174
2.175
2.176
2.177
2.178

Pragma Postcondition............ ... o it 66
Pragma Post_Class. ... 69
Pragma Pre. ... 69
Pragma Precondition............. ... i 69
Pragma Predicate........ ... i 70
Pragma Predicate_Failureol 71
Pragma Preelaborable_Initialization 71
Pragma Prefix_Exception_Messages.............coovveee.... 71
Pragma Pre_Class. ... 71
Pragma Priority_Specific_Dispatching.................... ... 72
Pragma Profile...... 72
Pragma Profile_Warnings.............. ...t 75
Pragma Program_Exit..............o o i 75
Pragma Propagate_Exceptions.......................oo ... 75
Pragma Provide_Shift_Operators 75
Pragma Psect_Object i 76
Pragma Pure_Function...........l 76
Pragma Rational o 77
Pragma Ravenscaro, 77
Pragma Refined_Dependsot 77
Pragma Refined_Global 78
Pragma Refined_Post........... ..o o i 78
Pragma Refined_State......... i 78
Pragma Relative_Deadline.............o il 79
Pragma Remote_Access . Typecoiiiiiiiiiiiiin... 79
Pragma Rename_Pragma............. i i 79
Pragma Restricted_Run_Time............................... 80
Pragma Restriction-Warningst 80
Pragma Reviewable i i 80
Pragma Secondary_Stack_Size................. 81
Pragma Share_Generico, 82
Pragma Shared....... i 82
Pragma Short_Circuit_And_Or 82
Pragma Short_Descriptors. ..., 83
Pragma Side_Effects........o 83
Pragma Simple_Storage_Pool_Type.......................... 83
Pragma Source_File_Name, 84
Pragma Source_File_Name_Project 85
Pragma Source_Referencel 85
Pragma SPARK Modeo, 86
Pragma Static_Elaboration_Desired.......................... 87
Pragma Stream_Convert i 87
Pragma Style_Checks.........o i 88
Pragma Subprogram_Variant................. 90
Pragma Subtitle........ 91
Pragma Suppress.ooui i 91

Pragma Suppress_ All. 92

iv

2.179 Pragma Suppress_Debug_Info 92
2.180 Pragma Suppress_Exception_Locations 92
2.181 Pragma Suppress_Initialization.................... 92
2.182 Pragma Task_ Name........ ..., 93
2.183 Pragma Task_Storageooiiiiiiiiiiiiiiiiiii 94
2.184 Pragma Test_Caseouuiiiinii i 94
2.185 Pragma Thread_Local_Storage 95
2.186 Pragma Time_Slice.........ccoiiuiiiiiiiiii i, 95
2.187 Pragma Title.o 95
2.188 Pragma Type_Invariant, 96
2.189 Pragma Type_Invariant_Class, 96
2.190 Pragma Unchecked Union................ ..o, 96
2.191 Pragma Unevaluated_-Use_Of_Old 96
2.192 Pragma User_Aspect_Definition 97
2.193 Pragma Unimplemented_Unit, 98
2.194 Pragma Universal_Aliasingcoiiiiiiiii... 98
2.195 Pragma Unmodified........ ... 98
2.196 Pragma Unreferenced 98
2.197 Pragma Unreferenced_Objects.................ooooiiiii... 99
2.198 Pragma Unreserve_All_Interrupts............................ 99
2.199 Pragma UnSUppPresscoveeeeninnniiiiiieeeaeanaann 100
2.200 Pragma Unused........ ..o, 100
2.201 Pragma Use_.VADS_Size.......cooouiiiiiiiiiii . 101
2.202 Pragma Validity_Checks..............c.ooiiiiiiiii., 101
2.203 Pragma Volatile........... 102
2.204 Pragma Volatile_Full_Accessooiiiiiiiiin 102
2.205 Pragma Volatile_ Function..................... 102
2.206 Pragma Warning_As_Frror........... 102
2.207 Pragma Warnings..........ccooeiiiiiiiiiiiiieeeennnnn. 104
2.208 Pragma Weak _External 106
2.209 Pragma Wide_Character_Encoding......................... 107

Implementation Defined Aspects............ 108
3.1 Aspect Abstract_State............. i 108
3.2 Aspect Always_Terminatescooiiiiiiiiieiiaan... 108
3.3 Aspect Annotate 108
3.4 Aspect Async_Readers............co i 109
3.5 Aspect Async_ Writers....... ..o 109
3.6 Aspect Constant_After_Elaboration........................... 109
3.7 Aspect Contract_Casesoueeiieii i 109
3.8 Aspect Depends...... ... 109
3.9 Aspect Default_Initial_Condition 109
3.10 Aspect DImensionouiiuiiiiii i 109
3.11 Aspect Dimension_System...............c.coiiiiiiiiiii.... 110
3.12 Aspect Disable_Controlled............ oL, 111
3.13 Aspect Effective_Reads.......... 111

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60

Aspect Effective_.Writes 111
Aspect Exceptional_Cases ..., 111
Aspect Exit_Cases . ..o 111
Aspect Extensions_Visible............ i 111
Aspect Favor_Top_Level.................... 111
Aspect Ghost ... vii i 111
Aspect Ghost_Predicate................ 111
Aspect Global. 112
Aspect Initial_Condition......... i, 112
Aspect Initializes........ 112
Aspect Inline_Always. ... 112
Aspect Invariant 112
Aspect Invariant’Class.ooiiiii i 112
Aspect Tterable. 112
Aspect Linker_Section..............cooiiiiiiiii .. 113
Aspect Local_Restrictionsooii .. 113
Aspect Lock_Free 114
Aspect Max_Queue_Length................ 114
Aspect No_Caching ... 114
Aspect No_Elaboration_Code_All............................ 114
Aspect No_Inline........ ... i 114
Aspect No_Raise 114
Aspect No_Tagged_Streams ..., 114
Aspect No_Task_Parts............cooiiiiiiiiiiiii ... 114
Aspect Object_Size.o 114
Aspect Obsolescent 115
Aspect Part_Of 115
Aspect Persistent _BSS 115
Aspect Potentially Invalid............. 115
Aspect Predicate............... 115
Aspect Program_Exit 115
Aspect Pure_Function............ ... 115
Aspect Refined_Depends ... 115
Aspect Refined_Global 115
Aspect Refined_Post i 115
Aspect Refined_State.............. 115
Aspect Relaxed_Initialization......................ooian.. 115
Aspect Remote_Access_Typecoovviiiiiiiii .. 116
Aspect Scalar_Storage_Order........................o.... 116
Aspect Secondary_Stack_Size........... ... L. 116
Aspect Sharedo 116
Aspect Side_Effects ... 116
Aspect Simple_Storage_Pool............ 116
Aspect Simple_Storage_Pool_Type............c.cooiviiii..t. 116
Aspect SPARK Mode 116
Aspect Subprogram_Variant............... 116

Aspect Suppress_Debug_Info................................ 116

vi

3.61 Aspect Suppress_Initialization............................... 116
3.62 Aspect Test_Caseo.ueiiii 116
3.63 Aspect Thread_Local_Storagecoiiiii... 117
3.64 Aspect Universal_Aliasing, 117
3.65 Aspect Unmodified........... ... i 117
3.66 Aspect Unreferencedccooiiiiiiiiii .. 117
3.67 Aspect Unreferenced_Objects........ ..., 117
3.68 Aspect User_ASpectot 117
3.69 Aspect Value_Size. ... 117
3.70 Aspect Volatile_Full_Accessc.covviiiiiiiiiinennnnn... 117
3.71 Aspect Volatile_Function.......................t 117
3.72 Aspect Warningscouiineiie i, 117

Implementation Defined Attributes......... 118
4.1 Attribute Abort_Signal 118
4.2 Attribute Address_Size ... 118
4.3 Attribute Asm_Input..........c i 118
4.4 Attribute Asm_Output ... 118
4.5 Attribute Atomic_Always_Lock_Free............. 119
4.6 Attribute Bit..... ... 119
4.7 Attribute Bit_Position........... ... i 119
4.8 Attribute Code_Address.........ooiiiiin i 119
4.9 Attribute Compiler_Version................oooiiiiiiiii.. 120
4.10 Attribute Constrained................coiiiiiiiiii. 120
4.11 Attribute Default_Bit_Order........................ooiat. 120
4.12 Attribute Default_Scalar_Storage_Order 120
4.13 Attribute Deref ... 120
4.14 Attribute Descriptor_Size. ...t 120
4.15 Attribute Elaborated.............. 121
4.16 Attribute Elab_Body ... 121
4.17 Attribute Elab_Spec....... 121
4.18 Attribute Elab_Subp_Body 121
4.19 Attribute Emax...... 121
4.20 Attribute Enabled.......... 122
4.21 Attribute Enum_Rep....... ... i 122
4.22 Attribute Enum_Val............. 122
4.23 Attribute Epsilon 123
4.24 Attribute Fast_Math 123
4.25 Attribute Finalization_Size 123
4.26 Attribute Fixed_Value............ 123
4.27 Attribute From_Any 123
4.28 Attribute Has_Access_Values................. ..., 123
4.29 Attribute Has_Discriminants ..., 124
4.30 Attribute Has_Tagged_Values................................ 124
4.31 Attribute Img. ... 124
4.32 Attribute Initialized........... ... i 124

vii

4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77
4.78

Attribute Integer_Value i 124
Attribute Invalid_Value.............. 125
Attribute Largeo 125
Attribute Library_Level i 125
Attribute Loop_Entryo 125
Attribute Machine_Size........... 126
Attribute Mantissao 126
Attribute Maximum_Alignment.............................. 126
Attribute Max_Integer_Size. ..., 126
Attribute Mechanism_Code.............. 126
Attribute Null_Parameter 126
Attribute Object_Size 126
Attribute Old o 127
Attribute Passed_By_Reference.............. 128
Attribute Pool_Address ... 128
Attribute Range_Length....... L. 128
Attribute Restriction_Set.......... L. 128
Attribute Result 129
Attribute Round 129
Attribute Safe_Emax........ 129
Attribute Safe_Large...... ... i 129
Attribute Safe_Small 129
Attribute Scalar_Storage_Order.............................. 129
Attribute Simple_Storage_Pool 132
Attribute Small 133
Attribute Small_Denominator 133
Attribute Small_Numerator................ ..., 133
Attribute Storage_Unit........ ..., 133
Attribute Stub_Type 133
Attribute System_Allocator_Alignment 134
Attribute Target_Name.......... ... i, 134
Attribute To_Address ...t 134
Attribute To_Anyo 134
Attribute Type_Classt 134
Attribute Type_Key. ... 135
Attribute TypeCode.o 135
Attribute Unconstrained_Array..............ccoiiiiiiiia... 135
Attribute Universal_Literal _String........................... 135
Attribute Unrestricted_Access ..., 135
Attribute Update ... 138
Attribute Valid_Value........ i i 139
Attribute Valid_Scalars............ i i 140
Attribute VADS_Size. .. .o 140
Attribute Value_Size 140
Attribute Wchar_T_Size.......... ..., 140
Attribute Word_Size 141

viii

5 Standard and Implementation

Defined Restrictions 142
5.1 Partition-Wide Restrictions................ ... L. 142
5.1.1 Immediate_Reclamation, 142
5.1.2 Max_Asynchronous_Select_Nesting....................... 142
5.1.3 Max_Entry_Queue_Length.............. 142
5.1.4 Max_Protected_Entries............ ... il 142
5.1.5 Max_Select_Alternatives.............ccoiiiiiiiiienann.. 142
5.1.6 Max_Storage_At_Blocking 143
5.1.7 Max_Task_ Entries...........cooiiiii . 143
5.1.8 Max_Taskso 143
5.1.9 No_Abort_Statementsciiiiiii .. 143
5.1.10 No_Access_Parameter_Allocators 143
5.1.11 No_Access_Subprograms.ceuueenieenieennenn. 143
5.1.12 No_Allocatorsooiiiii e 143
5.1.13 No_Anonymous_Allocators, 143
5.1.14 No_Asynchronous_Control.................., 143
5.1.15 No_Calendar ...t 143
5.1.16 No_CoeXtensionsuuuutteiiieeiieenaieeann 143
5.1.17 No_Default_Initializationo ... 144
5.1.18 No_Delay . ..o 144
5.1.19 No_Dependencec.ouiiiiiiiiiiiiiinnnnnnnnn. 144
5.1.20 No_Direct_Boolean_Operators 144
5.1.21 No_Dispatch ... 144
5.1.22 No_Dispatching_Calls........... i, 144
5.1.23 No_Dynamic_Attachment............................... 146
5.1.24 No_Dynamic_Prioritieso 146
5.1.25 No_Entry_Calls_In_Elaboration_Code................... 146
5.1.26 No_Enumeration . Maps...........ccooiiiiiiiiiiiii... 146
5.1.27 No_Exception_Handlers............... 146
5.1.28 No_Exception_Propagation 146
5.1.29 No_Exception_Registration 147
5.1.30 No_Exceptionsc.oiiiiiiiiiiiiiiiiiiiin. 147
5.1.31 No_Finalization 147
5.1.32 No_Fixed_Point, 147
5.1.33 No_Floating_ Point......... o i it 147
5.1.34 No_Implicit_Conditionals 147
5.1.35 No_Implicit_Dynamic_Code.......................o.... 148
5.1.36 No_Implicit_Heap_Allocations 148
5.1.37 No_Implicit_Protected_Object_Allocations 148
5.1.38 No_Implicit_Task_Allocations........................... 148
5.1.39 No_Initialize_Scalars................ ..., 148
5.1.40 NoO_LO. . oo 148
5.1.41 No_Local_Allocators.ccoiiiiiiiiiiiiiiina.. 148
5.1.42 No_Local_Protected_Objects...............ooiiiiiii.t. 148
5.1.43 No_Local_Tagged_Types........ccovueiiiiiiiiiiiiiea... 148

ix

5.1.44 No_Local_Timing Events................ 149
5.1.45 No_Long_Long_Integers..............., 149
5.1.46 No_Multiple_Elaboration 149
5.1.47 No_Nested_Finalization................... ..o, 149
5.1.48 No_Protected_Type_Allocators 149
5.1.49 No_Protected_Types........coooiiiiiiiiiiiiii .. 149
5.1.50 No_Recursionccuuiiiiinneeiiiiiiiiannnn. 149
5.1.51 No_Reentrancy...........ccooiiiiiiiiiiiiiiiiiiiinnan. 149
5.1.52 No_Relative_Delay ..., 149
5.1.53 No_Requeue_Statements................................ 149
5.1.54 No_Secondary_Stack................ooiiiiiiiiL, 150
5.1.55 No_Select_Statements, 150
5.1.56 No_Specific_Termination_Handlers...................... 150
5.1.57 No_Specification_of_Aspectcoooiiiiiii... 150
5.1.58 No_Standard_Allocators_After_Elaboration 150
5.1.59 No_Standard_Storage_Pools 150
5.1.60 No_Stream_Optimizations 150
5.1.61 NO_SEreamso 150
5.1.62 No_Tagged_Type_Registration.......................... 151
5.1.63 No_Task_Allocatorsc.cooiiiiiiiiiiiian.. 151
5.1.64 No_Task_At_Interrupt_Priority 151
5.1.65 No_Task_Attributes_Package 151
5.1.66 No_Task_Hierarchy............. ... i iiiiiii.. 151
5.1.67 No_Task_Terminationoooiiiiiiii... 151
5.1.68 No_Taskingouiiiiiii e 151
5.1.69 No_Terminate_Alternatives............................. 151
5.1.70 No_Unchecked_Accesscooiiiiiiiiiiiiiia... 152
5.1.71 No_Unchecked_Conversion................ccoooovea... 152
5.1.72 No_Unchecked_Deallocation 152
5.1.73 No_Use_Of_Attribute........... ..o, 152
5.1.74 No_Use_ Of_Entity.........c..ooiiiiiiiiii i, 152
5.1.75 No_Use_Of Pragmacooiiiiiiiiiiiiia... 152
5.1.76 Pure_Barrierso 152
5.1.77 Simple_Barriers ... 153
5.1.78 Static_Priorities............ciii 153
5.1.79 Static_Storage_Size........ ... 153
5.2 Program Unit Level Restrictions.............................. 153
5.2.1 No_Elaboration_-Code..............ccooiiiiiiiiiiiii.. 153
5.2.2 No_Dynamic_Accessibility_Checks 154
5.2.3 No_Dynamic_Sized_Objects. ... 154
5.2.4 No_Entry_Queueo, 155
5.2.5 No_Implementation_Aspect_Specifications................ 155
5.2.6 No_Implementation_Attributes........................... 155
5.2.7 No_Implementation_Identifiers........................... 155
5.2.8 No_Implementation_Pragmas............................ 155
5.2.9 No_Implementation_Restrictions......................... 155
5.2.10 No_Implementation_Units.........................o.on. 155

5.2.11 No_Implicit_Aliasingc.cooeiiiiiiiiiiiii... 155
5.2.12 No_Implicit_Loops.........coo i 156
5.2.13 No_Obsolescent_Features............................... 156
5.2.14 No_Wide_Characters..................cooiiiiiiii. 156
5.2.15 Static_Dispatch_Tables........................ 156
5.2.16 SPARK 05 ... oo 156

6 Implementation Advice....................... 157
6.1 RM 1.1.3(20): Error Detection............c.cooviiiiiiiinan... 157
6.2 RM 1.1.3(31): Child UnitS.oueeeeeneenenenananannn.. 157
6.3 RM 1.1.5(12): Bounded Errorsooll 157
6.4 RM 2.8(16): PIAgIMas ... o.veeeeeeeaeee e 157
6.5 RM 2.8(17-19): Pragmascooiiiiiiiiiiiian.... 158
6.6 RM 3.5.2(5): Alternative Character Sets...................... 158
6.7 RM 3.5.4(28): Integer Types.covvuiuininiiiiiiinnan.. 159
6.8 RM 3.5.4(29): Integer Types......coovuiuiiniiiiniiinenn.. 159
6.9 RM 3.5.5(8): Enumeration Values 159
6.10 RM 3.5.7(17): Float Types..... ..ot 159
6.11 RM 3.6.2(11): Multidimensional Arrays...................... 160
6.12 RM 9.6(30-31): Duration’Small.............. ..., 160
6.13 RM 10.2.1(12): Consistent Representation................... 160
6.14 RM 11.4.1(19): Exception Information....................... 160
6.15 RM 11.5(28): Suppression of Checks......................... 161
6.16 RM 13.1 (21-24): Representation Clauses.................... 161
6.17 RM 13.2(6-8): Packed Types..........ooviiiiiiiiiiiian,. 161
6.18 RM 13.3(14-19): Address Clauses..............cooovininn... 162
6.19 RM 13.3(29-35): Alignment Clauses 162
6.20 RM 13.3(42-43): Size Clauses............ccoiviiiiiiiann.... 163
6.21 RM 13.3(50-56): Size Clauses.ouvnriuenineananenean.. 163
6.22 RM 13.3(71-73): Component Size Clauses 164
6.23 RM 13.4(9-10): Enumeration Representation Clauses 164
6.24 RM 13.5.1(17-22): Record Representation Clauses 164
6.25 RM 13.5.2(5): Storage Place Attributes...................... 165
6.26 RM 13.5.3(7-8): Bit Ordering.............cooiiiiiiiian... 165
6.27 RM 13.7(37): Address as Private.................. ..., 165
6.28 RM 13.7.1(16): Address Operations 165
6.29 RM 13.9(14-17): Unchecked Conversion...................... 165
6.30 RM 13.11(23-25): Implicit Heap Usage 166
6.31 RM 13.11.2(17): Unchecked Deallocation 166
6.32 RM 13.13.2(1.6): Stream Oriented Attributes................ 166
6.33 RM A.1(52): Names of Predefined Numeric Types........... 167
6.34 RM A.3.2(49): Ada.Characters.Handling.................. 167
6.35 RM A.4.4(106): Bounded-Length String Handling 167
6.36 RM A.5.2(46-47): Random Number Generation.............. 167
6.37 RM A.10.7(23): Get_Immediate...............ovvununennn... 168
6.38 RM A.18: Containersc..oiuiuiiiiinianinnennenn.. 168

xi

6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65

RM B.1(39-41): Pragma Export...........ccooviiiianinn.. 168
RM B.2(12-13): Package Interfaces.............cocuveuenn.. 169
RM B.3(63-71): Interfacing with C.......................... 169
RM B.4(95-98): Interfacing with COBOL.................... 170
RM B.5(22-26): Interfacing with Fortran 170
RM C.1(3-5): Access to Machine Operations................. 171
RM C.1(10-16): Access to Machine Operations 171
RM C.3(28): Interrupt Support.............cooeiuiiinan... 172
RM C.3.1(20-21): Protected Procedure Handlers............. 172
RM C.3.2(25): Package Interrupts......................... 172
RM C.4(14): Pre-elaboration Requirements.................. 172
RM C.5(8): Pragma Discard_Names................c.oouen... 172
RM C.7.2(30): The Package Task_Attributes 172
RM D.3(17): Locking Policiesoooiiiiii... 173
RM D.4(16): Entry Queuing Policies 173
RM D.6(9-10): Preemptive Abortc.ooviiiiiin... 173
RM D.7(21): Tasking Restrictions........................... 173
RM D.8(47-49): Monotonic Time..................oooi.... 173
RM E.5(28-29): Partition Communication Subsystem........ 174
RM F(7): COBOL Supportcoooiiiiiiaanan... 174
RM F.1(2): Decimal Radix Supportc.oooiiua.. 174
BRM G: NUMETICS . oo vttt 174
RM G.1.1(56-58): Complex Types........ovvuiniiueninen... 175
RM G.1.2(49): Complex Elementary Functions 175
RM G.2.4(19): Accuracy Requirements...................... 176
RM G.2.6(15): Complex Arithmetic Accuracy 176
RM H.6(15/2): Pragma Partition_Elaboration_Policy 176

Implementation Defined Characteristics.... 177

Intrinsic Subprograms........................ 196
8.1 Intrinsic Operatorsottt 196
8.2 Compilation_-ISO_Dateo 196
8.3 Compilation_Date.......... ..o 196
8.4 Compilation_Time......... ... 196
8.5 Enclosing Entity o 197
8.6 Exception_Information L 197
8.7 Exception_-Messagec.uuuiiiiiiiiiiiiiiiiiiiiiiiiee., 197
8.8 Exception.Name 197
8.9 File .. o 197
810 Line .o 197
8.11 Shifts and Rotateso 198

8.12

Source_Location.t 198

xii

xiii

9 Representation Clauses and Pragmas....... 199
9.1 Alignment Clausesouuuttit i 199
9.2 Size Clatsesvvt 200
9.3 Storage_Size Clausesoovrit i 201
9.4 Size of Variant Record Objects ...t 202
9.5 Biased Representation............. ... o i i 204
9.6 Value_Size and Object_Size Clauses................cooviiuo... 204
9.7 Component_Size Clauses ..ottt 207
9.8 Bit_Order Clausesvuuuriteiiie i 208
9.9 Effect of Bit_Order on Byte Ordering......................... 209
9.10 Pragma Pack for Arrays.............. i 213
9.11 Pragma Pack for Records.............. oL 215
9.12 Record Representation Clauses, 216
9.13 Handling of Records with Holes 217
9.14 Enumeration Clauses.ouuiiiiiiiiiiiieniaann. 218
9.15 Address ClatSes. . ..ottt 219
9.16 Use of Address Clauses for Memory-Mapped I/O 224
9.17 Effect of Convention on Representation...................... 224
9.18 Conventions and Anonymous Access Types.................. 225
9.19 Determining the Representations chosen by GNAT........... 227

10 Standard Library Routines................. 230

11 The Implementation of Standard I/0...... 241
11.1 Standard I/O Packages............cooviiiiiiiiiiiiiian... 241
11.2 FORM Stringsoovnutitii e 242
11.3 Direct IO ..o 242
11.4 Sequential IO i 242
115 Text IO . .o e 243

11.5.1 Stream Pointer Positioning, 244
11.5.2 Reading and Writing Non-Regular Files................. 244
11.5.3 Get_-Immediate...........cooiiiiii i 245
11.5.4 Treating Text_1O Files as Streams...................... 245
11.5.5 Text_IO EXtensionsouiiiiiiiiiinenninaann. 245
11.5.6 Text_IO Facilities for Unbounded Strings............... 245
11.6 Wide_Text_IOo 246
11.6.1 Stream Pointer Positioning 248
11.6.2 Reading and Writing Non-Regular Files................. 249
11.7 Wide_Wide_Text_ IO 249
11.7.1 Stream Pointer Positioning 250
11.7.2 Reading and Writing Non-Regular Files................. 250
11.8 Stream_TO 251
11.9 Text Translation ..o, 251
11.10 Shared Fileso 251

11.11 Filenames encodingoouiiiuiiiiiineennnnnnnn. 252

11.12 File content encoding ...t 252
11.13 Open Modes ... ovvee e 253
11.14 Operations on C Streams. 253
11.15 Interfacing to C Streams il 256

12 The GNAT Library.......................... 259
12.1 Ada.Characters.Latin_9 (a-chlat9.ads).................. 259
12.2 Ada.Characters.Wide_Latin_1 (a-cwilal.ads)............ 259
12.3 Ada.Characters.Wide_Latin_9 (a-cwila9.ads)............ 259
12.4 Ada.Characters.Wide_Wide_Latin_1 (a-chzlal.ads)...... 259
12.5 Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)...... 260
12.6 Ada.Containers.Bounded_Holders (a-coboho.ads)......... 260
12.7 Ada.Command_Line.Environment (a-colien.ads)........... 260
12.8 Ada.Command_Line.Remove (a-colire.ads)................. 260
12.9 Ada.Command_Line.Response_File (a-clrefi.ads)......... 260
12.10 Ada.Direct_I0.C_Streams (a-diocst.ads)................ 260
12.11 Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads).... 260
12.12 Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)... 260
12.13 Ada.Exceptions.Traceback (a-exctra.ads)............... 261
12.14 Ada.Sequential_IO0.C_Streams (a-siocst.ads)........... 261
12.15 Ada.Streams.Stream_I0.C_Streams (a-ssicst.ads)...... 261
12.16 Ada.Strings.Unbounded.Text_I0 (a-suteio.ads)......... 261
12.17

Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads).. 261
12.18 Ada.Strings.Wide_Wide_Unbounded.Wide_

Wide_Text_IO0 (a-szuzti.ads)........covviiiniinininininannn 261
12.19 Ada.Task_Initialization (a-tasini.ads)................ 261
12.20 Ada.Text_I0.C_Streams (a-tiocst.ads).................. 261
12.21 Ada.Text_IO0.Reset_Standard_Files (a-tirsfi.ads)..... 261
12.22 Ada.Wide_Characters.Unicode (a-wichun.ads)........... 262
12.23 Ada.Wide_Text_I0.C_Streams (a-wtcstr.ads)............ 262
12.24 Ada.Wide_Text_I0.Reset_Standard_Files (a-wrstfi.ads)..262
12.25 Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)..... 262
12.26 Ada.Wide_Wide_Text_IO0.C_Streams (a-ztcstr.ads)...... 262
12.27 Ada.Wide_Wide_Text_I0.Reset_

Standard_Files (a-zrstfi.ads)ocoiiiiiiiiinia., 262
12.28 GNAT.Altivec (g-altive.ads)...........coovviuiuiunnnn... 262
12.29 GNAT.Altivec.Conversions (g-altcon.ads)............... 262
12.30 GNAT.Altivec.Vector_Operations (g-alveop.ads)....... 263
12.31 GNAT.Altivec.Vector_Types (g-alvety.ads)............. 263
12.32 GNAT.Altivec.Vector_Views (g-alvevi.ads)............. 263
12.33 GNAT.Array_Split (g-arrspl.ads)...........c.covoeuvnenn. 263
12.34 GNAT.AWK (g=awk.adS)ovririeieieniiaaaaiaaeaenes 263
12.35 GNAT.Binary_Search (g-binsea.ads)...................... 263
12.36 GNAT.Bind_Environment (g-binenv.ads).................. 263
12.37 GNAT.Branch_Prediction (g-brapre.ads)................. 263

xiv

12.38
12.39
12.40
12.41
12.42
12.43
12.44
12.45
12.46
12.47
12.48
12.49
12.50
12.51
12.52
12.53
12.54
12.55
12.56
12.57
12.58
12.59
12.60
12.61
12.62
12.63
12.64
12.65
12.66
12.67
12.68
12.69
12.70
12.71
12.72
12.73
12.74
12.75
12.76
12.77
12.78
12.79
12.80
12.81
12.82
12.83
12.84

GNAT.
GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.

GNAT
GNAT

Bounded_Buffers (g-boubuf.ads) 263
Bounded_Mailboxes (g-boumai.ads)................. 263
Bubble_Sort (g-bubsor.ads)................ouuun... 264
Bubble_Sort_A (g-busora.ads)...................... 264
.Bubble_Sort_G (g-busorg.ads)...................... 264
Byte_Order_Mark (g-byorma.ads) 264
Byte_Swapping (g-bytswa.ads)...................... 264
C_Time (g-c_time.ads).........oovviriiiininininnn.. 264
.Calendar (g-calend.ads)..........c.cooueueuenannn... 264
Calendar.Time_IO (g-catiio.ads).................. 264
CRC32 (g=crec32.ads) «ovvviitiiiiiiiiaaieen. 264
Case_Util (g-casuti.ads)cooviuiuininannnn. 264
LCGI (g=CL.adS) . vvvieeiiie e 265
CGI.Cookie (g-cgic00.ads)oovvuiuininenennn... 265
CGI.Debug (g-cgideb.ads)ovvvrinineenennnn.n. 265
Command_Line (g-comlin.ads)....................... 265
Compiler_Version (g-comver.ads).................. 265
Ctrl_C (g—ctrl_c.ads).....ovvvuriiieniinninennnn. 265
Current_Exception (g-curexc.ads)................. 265
.Debug_Pools (g-debpo0.ads)ouvurvreninnnn.. 265
Debug_Utilities (g-debuti.ads)................... 265
Decode_String (g-decstr.ads)..............coounn.. 266
Decode_UTF8_String (g-deutst.ads)................ 266
.Directory_Operations (g-dirope.ads) 266
Directory_Operations.Iteration (g-diopit.ads).. 266
Dynamic_HTables (g-dynhta.ads) 266
Dynamic_Tables (g-dyntab.ads) 266
.Encode_String (g-encstr.ads)...................... 266
Encode_UTF8_String (g-enutst.ads)................ 266
Exception_Actions (g-excact.ads)................. 267
Exception_Traces (g-exctra.ads).................. 267
Exceptions (g-except.ads)..........cooviuininnn... 267
Expect (g-expect.ads)......coovuiriiiniiiininian... 267
Expect.TTY (g-exptty.ads)covvuinrinininnnn.. 267
Float_Control (g-flocon.ads)............coovvuen... 267
Formatted_String (g-forstr.ads).................. 267
Generic_Fast_Math_Functions (g-gfmafu.ads)..... 267
Heap_Sort (g-heasor.ads)cooovuennn.. 268
.Heap_Sort_A (g-hesora.ads)........................ 268
Heap_Sort_G (g-hesorg.ads)...........covvuiunn... 268
HTable (g-htable.ads).........oovvuriininininennn.. 268
I0 (8=10.@dS) o overetet e 268
.I0_Aux (g-10_aux.ads)....c.ouiiiiiiiiiiia, 268
Lock_Files (g-locfil.ads)..........coouiuenennn... 268
MBBS_Discrete_Random (g-mbdira.ads) 269
.MBBS_Float_Random (g-mbflra.ads)................. 269
\MD5 (gmd5.ads) ...t 269

XV

12.85
12.86
12.87
12.88
12.89
12.90
12.91
12.92
12.93
12.94
12.95
12.96
12.97
12.98
12.99
12.100
12.101
12.102
12.103
12.104
12.105
12.106
12.107
12.108
12.109
12.110
12.111
12.112
12.113
12.114
12.115
12.116
12.117
12.118
12.119
12.120
12.121
12.122
12.123
12.124
12.125
12.126
12.127
12.128
12.129
12.130
12.131

GNAT.Memory_Dump (g-memdum.ads)c.ooueeerennn... 269
GNAT.Most_Recent_Exception (g-moreex.ads)............ 269
GNAT.0S_Lib (g-08_1ib.ads) .. .cuverinenrininiiiennannn. 269
GNAT.Perfect_Hash_Generators (g-pehage.ads).......... 269
GNAT.Random_Numbers (g-rannum.ads) 269
GNAT.Regexp (g-Tegexp.ads)ovuiuininininininananannn. 270
GNAT.Registry (g-regist.ads)........ccoovviririnnnnnnn... 270
GNAT.Regpat (g-regpat.ads)........covvriuiniininennnn.n. 270
GNAT.Rewrite_Data (g-rewdat.ads)....................... 270
GNAT.Secondary_Stack_Info (g-sestin.ads)............. 270
GNAT.Semaphores (g-semaph.ads)c.covuvueenn... 270
GNAT.Serial_Communications (g-sercom.ads)............ 270
GNAT.SHAL (g-shal.ads)........ouiuiiiininiiiiiiiianann. 270
GNAT.SHA224 (g-sha224.ads)..........coovuinininanann... 270
GNAT.SHA256 (g-sha256.ads)...........ccooiuininenannn... 271
GNAT.SHA384 (g-sha384.adS).......cuvuirirannnannnnnnnn. 271
GNAT.SHA512 (g-5hab12.ads)........oeeeeeenenee i, 271
GNAT.Signals (g-signal.ads)........cocoveuenunnanennnnn. 271
GNAT.Sockets (g-socket.ads)...........ooviiinininn.. 271
GNAT.Source_Info (g-souinf.ads)...........c.couvuenn... 271
GNAT.Spelling_Checker (g-speche.ads)................. 271
GNAT.Spelling_Checker_Generic (g-spchge.ads)........ 271
GNAT.Spitbol.Patterns (g-spipat.ads)................. 271
GNAT.Spitbol (g-spitbo.ads).......coovviuininnininnnn.. 272
GNAT.Spitbol.Table_Boolean (g-sptabo.ads)........... 272
GNAT.Spitbol.Table_Integer (g-sptain.ads)........... 272
GNAT.Spitbol.Table_VString (g-sptavs.ads)........... 272
GNAT.SSE (g-55€.2dS) .. evtviririiiieiaiiaaiaeaeaennn. 272
GNAT.SSE.Vector_Types (g-ssvety.ads)................. 272
GNAT.String_Hash (g-strhas.ads)....................... 272
GNAT.Strings (g-string.ads)...........coovviiiinininen.. 272
GNAT.String_Split (g-strspl.ads)..............ooou.... 272
GNAT.Table (g-table.ads)oouvvuinininenenannnn. 273
GNAT.Task_Lock (g-tasloc.ads)cooovuununen... 273
GNAT.Time_Stamp (g-timsta.ads)........................ 273
GNAT.Threads (g-thread.ads)............cooviiirenennnn.. 273
GNAT.Traceback (g-traceb.ads)coevvnin... 273
GNAT.Traceback.Symbolic (g-trasym.ads)............... 273
GNAT.UTF_32 (g-utf_32.ads).......covererinanannn.n.. 273
GNAT.UTF_32_Spelling_Checker (g-u3spch.ads)......... 273
GNAT.Wide_Spelling_Checker (g-wispch.ads)........... 274
GNAT.Wide_String Split (g-wistsp.ads)................ 274
GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)..... 274
GNAT.Wide_Wide_String_Split (g-zistsp.ads).......... 274
Interfaces.C.Extensions (i-cexten.ads)............... 274
Interfaces.C.Streams (i-cstrea.ads).................. 274

Interfaces.Packed_Decimal (i-pacdec.ads)............ 274

xvi

Xvii

12.132 Interfaces.VxWorks (i-vxwork.ads)..................... 274
12.133 Interfaces.VxWorks.IO (i-vxwoio.ads)................. 274
12.134 System.Address_Image (s-addima.ads).................. 274
12.135 System.Assertions (s-assert.ads)...................... 275
12.136 System.Atomic_Counters (s-atocou.ads)................ 275
12.137 System.Memory (S—memory.ads)coooeuinininnn. 275
12.138 System.Multiprocessors (s-multip.ads)................ 275
12.139
System.Multiprocessors.Dispatching_Domains (s-mudido.ads)..275
12.140 System.Partition_Interface (s-parint.ads)........... 275
12.141 System.Pool_Global (s-pooglo.ads)...........c.ccuvnn... 275
12.142 System.Pool_Local (s-p00loc.ads)..........ovvueunnn... 275
12.143 System.Restrictions (s-restri.ads)................... 276
12.144 System.Rident (s-rident.ads)o.ia.. 276
12.145 System.Strings.Stream_Ops (s-ststop.ads)............ 276
12.146 System.Unsigned_Types (s-unstyp.ads)................. 276
12.147 System.Wch_Cnv (s-wchenv.ads) ..o.ovvvvninininnnannn... 276
12.148 System.Wch_Con (s-wchcon.ads)co.vuereninnnn... 276
13 Interfacing to Other Languages 277
13.1 Interfacing to C.... ..o e 277
13.2 Interfacing to CH+4. ...t 278
13.3 Interfacing to COBOL....... i 281
13.4 Interfacing to Fortran il 281
13.5 Interfacing to non-GNAT Adacode.......................... 281
14 Specialized Needs Annexes 283

15 Implementation of Specific Ada Features.. 284

15.1 Machine Code Insertionsccooiiiiiiiiiiiia... 284
15.2 GNAT Implementation of Tasking........................... 286
15.2.1 Mapping Ada Tasks onto the Underlying Kernel Threads. . 286
15.2.2 Ensuring Compliance with the Real-Time Annex........ 287
15.2.3 Support for Locking Policies............................ 287
15.3 GNAT Implementation of Shared Passive Packages 288
15.4 Code Generation for Array Aggregates....................... 289
15.4.1 Static constant aggregates with static bounds........... 289
15.4.2 Constant aggregates with unconstrained nominal types.. 290
15.4.3 Aggregates with static bounds.......................... 290
15.4.4 Aggregates with nonstatic bounds 290
15.4.5 Aggregates in assignment statements 290
15.5 The Size of Discriminated Records with Default Discriminants. . 291
15.6 Image Values For Nonscalar Types 292

15.7 Strict Conformance to the Ada Reference Manual............ 292

xviii

16 Implementation of Ada 2022 Features..... 294
17 GNAT language extensions................. 327
17.1 How to activate the extended GNAT Ada superset........... 327
17.2 Curated Extensionsco i 327
17.2.1 Local Declarations Without Block 327
17.2.2 Deep delta Aggregates.oviiiiiiiiiiinin.. 329
17.2.2.1 Syntax ..ot 329
17.2.2.2 Legality Rules.......... ... i i, 330
17.2.2.3 Dynamic SemanticS............ccoviiieiiiiieen... 330
17.2.2.4 Examples.t 331
17.2.3 Fixed lower bounds for array types and subtypes........ 331
17.2.4 Prefixed-view notation for calls to primitive
subprograms of untagged types............. .. i 332
17.2.5 Expression defaults for generic formal functions......... 333
17.2.6 String interpolation, 333
17.2.7 Constrained attribute for generic objects................ 334
17.2.8 Static aspect on intrinsic functions 334
17.2.9 First Controlling Parameter 335
17.2.10 Unsigned_Base_Range aspect 336
17.2.11 Generalized Finalization.............., 336
17.2.11.1 Finalizable tagged types................ 338
17.2.11.2 Composite tyPes. .. vvve et 338
17.2.11.3 Interoperability with controlled types............. 338
17.3 Experimental Language Extensions.......................... 339
17.3.1 Conditional when constructs............................ 339
17.3.2 TImplicit With ... 340
17.3.3 Storage Model. 340
17.3.3.1 Aspect Storage_Model_Type....................... 340
17.3.3.2 Aspect Designated_Storage_-Model 342
17.3.3.3 Legacy Storage Pools....................., 343
17.3.4 Attribute Super ... 344
17.3.5 Simpler Accessibility Model............................. 345
17.3.5.1 Stand-alone objects........... il 345
17.3.5.2 Subprogram parametersccoeuieaian... 346
17.3.5.3 Functionresults 347
17.3.6 Case pattern matching il 350
17.3.7 Mutably Tagged Types with Size’Class Aspect.......... 352
17.3.8 No_Raise aspect ..., 354
17.3.9 Inference of Dependent Types in Generic Instantiations.. 354
17.3.10 External_Initialization Aspect 355
17.3.11 Finally constructcoii i 355
17.3. 111 Synbax ...ooi 355
17.3.11.2 Legality Rules.......... ... i it 356
17.3.11.3 Dynamic Semantics..............cooviieiiiean... 356

17.3.12 Continue statementouuueeneinneaan.. 356

xix

17.3.13 Destructors ... 356

18 Security Hardening Features 358
18.1 Register Scrubbing.......... ... i 358
18.2 Stack Scrubbing.......... . 358
18.3 Hardened Conditionals i, 360
18.4 Hardened Booleans..........o i i 362
18.5 Control Flow Redundancy................oooiiiiiiiin... 363
19 Obsolescent Features........................ 366
19.1 pragma No_Run_Time........ ... 366
19.2 pragma Ravenscar............. ..o i 366
19.3 pragma Restricted_Run_-Time 366
19.4 pragma Task_ Info....... i i 366
19.5 package System.Task_Info (s-tasinf.ads) 366
20 Compatibility and Porting Guide 367
20.1 Writing Portable Fixed-Point Declarations................... 367
20.2 Compatibility with Ada 83 i 368
20.2.1 Legal Ada 83 programs that are illegal in Ada 95 368
20.2.2 More deterministic semantics.............ol 370
20.2.3 Changed semantics..........ooiieiiiiieeniinennnn... 370
20.2.4 Other language compatibility issues..................... 370

20.3 Compatibility between Ada 95 and Ada 2005................ 371
20.4 Implementation-dependent characteristics.................... 372
20.4.1 Implementation-defined pragmas........................ 372
20.4.2 Implementation-defined attributes...................... 372
20.4.3 LAbrariesoue e 372
20.4.4 Elaboration order i 372
20.4.5 Target-specific aspects. ... 373

20.5 Compatibility with Other Ada Systems...................... 373
20.6 Representation Clauses.c.ooiiiiiiiiiiiinnnnn.... 374
20.7 Compatibility with HP Ada 83 375
21 GNU Free Documentation License......... 376

‘GNAT, The GNU Ada Development Environment’

GCC version 16.0.0
AdaCore

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “GNAT
Reference Manual”, and with no Back-Cover Texts. A copy of the license is included in the
section entitled [GNU Free Documentation License|, page 375.

1 About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the Ada language standard.

GNAT implements Ada 95, Ada 2005, Ada 2012 and Ada 2022, and it may also be invoked
in Ada 83 compatibility mode. By default, GNAT assumes Ada 2012, but you can override
with a compiler switch to explicitly specify the language version. (Please refer to the ‘GNAT
User’s Guide’ for details on these switches.) Throughout this manual, references to ‘Ada’
without a year suffix apply to all the Ada versions of the language.

Ada is designed to be highly portable. In general, a program will have the same effect
even when compiled by different compilers on different platforms. However, since Ada is
designed to be used in a wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

1.1 What This Reference Manual Contains

This reference manual contains the following chapters:

* [Implementation Defined Pragmas|, page 4, lists GNAT implementation-dependent

pragmas, which can be used to extend and enhance the functionality of the compiler.

[Implementation Defined Attributes|, page 117, lists GNAT implementation-dependent
attributes, which can be used to extend and enhance the functionality of the compiler.

* [Standard and Implementation Defined Restrictions|, page 141, lists GNAT
implementation-dependent restrictions, which can be used to extend and enhance the
functionality of the compiler.

[Implementation Advice], page 156, provides information on generally desirable be-
havior which are not requirements that all compilers must follow since it cannot be
provided on all systems, or which may be undesirable on some systems.
[Implementation Defined Characteristics], page 176, provides a guide to minimizing
implementation dependent features.

[Intrinsic Subprograms|, page 195, describes the intrinsic subprograms implemented by
GNAT, and how they can be imported into user application programs.
[Representation Clauses and Pragmas|, page 198, describes in detail the way that

GNAT represents data, and in particular the exact set of representation clauses and
pragmas that is accepted.

[Standard Library Routines|, page 229, provides a listing of packages and a brief de-
scription of the functionality that is provided by Ada’s extensive set of standard library
routines as implemented by GNAT.

* [The Implementation of Standard I/O], page 240, details how the GNAT implementa-
tion of the input-output facilities.

[The GNAT Library|, page 258, is a catalog of packages that complement the Ada
predefined library.

Chapter 1: About This Guide 3

*

[Interfacing to Other Languages|, page 276, describes how programs written in Ada
using GNAT can be interfaced to other programming languages.

[Specialized Needs Annexes|, page 282, describes the GNAT implementation of all of
the specialized needs annexes.

[Implementation of Specific Ada Features], page 283, discusses issues related to GNAT’s
implementation of machine code insertions, tasking, and several other features.

[Implementation of Ada 2022 Features|, page 293, describes the status of the GNAT
implementation of the Ada 2022 language standard.

[Security Hardening Features], page 357, documents GNAT extensions aimed at secu-
rity hardening.

[Obsolescent Features|, page 365, documents implementation dependent features, in-
cluding pragmas and attributes, which are considered obsolescent, since there are other
preferred ways of achieving the same results. These obsolescent forms are retained for
backwards compatibility.

[Compatibility and Porting Guide], page 366, presents some guidelines for developing
portable Ada code, describes the compatibility issues that may arise between GNAT
and other Ada compilation systems (including those for Ada 83), and shows how GNAT
can expedite porting applications developed in other Ada environments.

[GNU Free Documentation License], page 375, contains the license for this document.

This reference manual assumes a basic familiarity with the Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995. 1t does not require knowledge of
the new features introduced by Ada 2005 or Ada 2012. All three reference manuals are
included in the GNAT documentation package.

1.2 Conventions

Following are examples of the typographical and graphic conventions used in this guide:

*

*

*

Functions, utility program names, standard names, and classes.
Option flags
File names
Variables
‘Emphasis’
[optional information or parameters]
Examples are described by text
and then shown this way.

Commands that are entered by the user are shown as preceded by a prompt string
comprising the $ character followed by a space.

1.3 Related Information

See the following documents for further information on GNAT:

*

GNAT User’s Guide for Native Platforms, which provides information on how to use
the GNAT development environment.

Chapter 1: About This Guide 4

* Ada 95 Reference Manual, the Ada 95 programming language standard.

* Ada 95 Annotated Reference Manual, which is an annotated version of the Ada 95
standard. The annotations describe detailed aspects of the design decision, and in
particular contain useful sections on Ada 83 compatibility.

* Ada 2005 Reference Manual, the Ada 2005 programming language standard.

* Ada 2005 Annotated Reference Manual, which is an annotated version of the Ada 2005
standard. The annotations describe detailed aspects of the design decision.

* Ada 2012 Reference Manual, the Ada 2012 programming language standard.

* DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

* DEC Ada, Language Reference Manual, part number AA-PYZAB-TK, which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

2 Implementation Defined Pragmas

Ada defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada Reference Manual.

In addition, Ada allows implementations to define additional pragmas whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
pragmas, which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas might not be portable to other compilers (al-
though GNAT implements this set of pragmas on all platforms). Therefore if portability
to other compilers is an important consideration, the use of these pragmas should be mini-
mized.

2.1 Pragma Abort_Defer

Syntax:
pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence
of statements (but not for the declarations or handlers, if any, associated with this state-
ment sequence). This can also be useful for adding a polling point in Ada code, where
asynchronous abort of tasks is checked when leaving the statement sequence, and is lighter
than, for example, using delay 0.0;, since with zero-cost exception handling, propagat-
ing exceptions (implicitly used to implement task abort) cannot be done reliably in an
asynchronous way.

An example of usage would be:

-- Add a polling point to check for task aborts

begin
pragma Abort_Defer;
end;

2.2 Pragma Abstract_State

Syntax:
pragma Abstract_State (ABSTRACT_STATE_LIST);

ABSTRACT_STATE_LIST ::
null
| STATE_NAME_WITH_OPTIONS
| (STATE_NAME_WITH_OPTIONS {, STATE_NAME WITH_OPTIONS})

STATE_NAME_WITH_OPTIONS ::
STATE_NAME
| (STATE_NAME with OPTION_LIST)

Chapter 2: Implementation Defined Pragmas 6

OPTION_LIST ::= OPTION {, OPTION}

OPTION ::=
SIMPLE_OPTION
| NAME_VALUE_OPTION

SIMPLE_OPTION ::= Ghost | Synchronous
NAME_VALUE_OPTION ::=
Part_0f => ABSTRACT_STATE
| External [=> EXTERNAL_PROPERTY_LIST]
EXTERNAL_PROPERTY_LIST ::=
EXTERNAL_PROPERTY
| (EXTERNAL_PROPERTY {, EXTERNAL_PROPERTY})

EXTERNAL_PROPERTY ::=

Async_Readers [=> static_boolean EXPRESSION]
| Async_Writers [=> static_boolean_EXPRESSION]
| Effective_Reads [=> static_boolean_EXPRESSION]
| Effective_Writes [=> static_boolean_EXPRESSION]

others => static_boolean_EXPRESSION

STATE_NAME ::= defining_identifier
ABSTRACT_STATE ::= name

For the semantics of this pragma, see the entry for aspect Abstract_State in the SPARK
2014 Reference Manual, section 7.1.4.

2.3 Pragma Ada_83

Syntax:
pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies,
regardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the keywords added by Ada 95 and
Ada 2005 are not recognized, optional package bodies are allowed, and generics may name
types with unknown discriminants without using the (<>) notation. In addition, some but
not all of the additional restrictions of Ada 83 are enforced.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

Ada 83 mode is intended for two purposes. Firstly, it allows existing Ada 83 code to be
compiled and adapted to GNAT with less effort. Secondly, it aids in keeping code backwards

Chapter 2: Implementation Defined Pragmas 7

compatible with Ada 83. However, there is no guarantee that code that is processed correctly
by GNAT in Ada 83 mode will in fact compile and execute with an Ada 83 compiler, since
GNAT does not enforce all the additional checks required by Ada 83.

2.4 Pragma Ada_95

Syntax:
pragma Ada_95;

A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

2.5 Pragma Ada_05

Syntax:

pragma Ada_05;
pragma Ada_05 (local_NAME);

A configuration pragma that establishes Ada 2005 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This pragma is useful when
writing a reusable component that itself uses Ada 2005 features, but which is intended to
be usable from either Ada 83 or Ada 95 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

The one argument form (which is not a configuration pragma) is used for managing the
transition from Ada 95 to Ada 2005 in the run-time library. If an entity is marked as
Ada_2005 only, then referencing the entity in Ada_83 or Ada_95 mode will generate a
warning. In addition, in Ada_83 or Ada_95 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2005
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.6 Pragma Ada_2005

Syntax:
pragma Ada_2005;

This configuration pragma is a synonym for pragma Ada_05 and has the same syntax and
effect.

Chapter 2: Implementation Defined Pragmas 8

2.7 Pragma Ada_12

Syntax:

pragma Ada_12;

pragma Ada_12 (local_NAME);
A configuration pragma that establishes Ada 2012 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically for
the Ada and System packages and their children, so you need not specify it in these contexts.
This pragma is useful when writing a reusable component that itself uses Ada 2012 features,
but which is intended to be usable from Ada 83, Ada 95, or Ada 2005 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

The one argument form, which is not a configuration pragma, is used for managing the
transition from Ada 2005 to Ada 2012 in the run-time library. If an entity is marked
as Ada_2012 only, then referencing the entity in any pre-Ada_2012 mode will generate a
warning. In addition, in any pre-Ada_2012 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2012
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.8 Pragma Ada_2012

Syntax:
pragma Ada_2012;

This configuration pragma is a synonym for pragma Ada_12 and has the same syntax and
effect.

2.9 Pragma Ada_2022

Syntax:

pragma Ada_2022;
pragma Ada_2022 (local_NAME);

A configuration pragma that establishes Ada 2022 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada
2022 features, but which is intended to be usable from Ada 83, Ada 95, Ada 2005 or Ada
2012 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

The one argument form, which is not a configuration pragma, is used for managing the
transition from Ada 2012 to Ada 2022 in the run-time library. If an entity is marked
as Ada_2022 only, then referencing the entity in any pre-Ada_2022 mode will generate a

Chapter 2: Implementation Defined Pragmas 9

warning. In addition, in any pre-Ada_2012 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2022
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.10 Pragma Aggregate_Individually_Assign

Syntax:
pragma Aggregate_Individually_Assign;

Where possible, GNAT will store the binary representation of a record aggregate in memory
for space and performance reasons. This configuration pragma changes this behavior so that
record aggregates are instead always converted into individual assignment statements.

2.11 Pragma Allow_Integer_Address

Syntax:
pragma Allow_Integer_Address;

In almost all versions of GNAT, System.Address is a private type in accordance with the
implementation advice in the RM. This means that integer values, in particular integer liter-
als, are not allowed as address values. If the configuration pragma Allow_Integer_Address
is given, then integer expressions may be used anywhere a value of type System.Address
is required. The effect is to introduce an implicit unchecked conversion from the integer
value to type System.Address. The reverse case of using an address where an integer type
is required is handled analogously. The following example compiles without errors:

pragma Allow_Integer_Address;
with System; use System;
package AddrAsInt is
X : Integer;
Y : Integer;
for X'Address use 16#1240#;
for Y use at 16#3230#;
: Address := 16#4000#;
: constant Address := 4000;
: constant Address := Address (X + Y);
: Integer := y'Address;
: constant Integer := Integer (Y'Address);
type R is new integer;
RR : R := 1000;
Z : Integer;
for Z'Address use RR;
end AddrAsInt;

Note that pragma Allow_Integer_Address is ignored if System.Address is not a private
type. In implementations of GNAT where System.Address is a visible integer type, this
pragma serves no purpose but is ignored rather than rejected to allow common sets of
sources to be used in the two situations.

s < B B

Chapter 2: Implementation Defined Pragmas 10

2.12 Pragma Always_Terminates

Syntax:
pragma Always_Terminates [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Always_Terminates in the
SPARK 2014 Reference Manual, section 6.1.11.

2.13 Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}] [, entity => local_NAME]);

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. IDENTIFIER identifies the type of annotation.
GNAT verifies that it is an identifier, but does not otherwise analyze it. The second optional
identifier is also left unanalyzed, and by convention is used to control the action of the tool
to which the annotation is addressed. The remaining ARG arguments can be either string
literals or more generally expressions. String literals (and concatenations of string literals)
are assumed to be either of type Standard.String or else Wide_String or Wide_Wide_
String depending on the character literals they contain. All other kinds of arguments are
analyzed as expressions, and must be unambiguous. The last argument if present must have
the identifier Entity and GNAT verifies that a local name is given.

The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler, except to generate corresponding note lines in the generated ALI file.
For the format of these note lines, see the compiler source file lib-writ.ads. This pragma is
intended for use by external tools, including ASIS. The use of pragma Annotate does not
affect the compilation process in any way. This pragma may be used as a configuration
pragma.

2.14 Pragma Assert

Syntax:

pragma Assert (
boolean_EXPRESSION
[, string_ EXPRESSION]);

The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:

if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION) ;
end if;
end if;

The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message

Chapter 2: Implementation Defined Pragmas 11

is file:nnn, where file is the name of the source file containing the assert, and nnn is the
line number of the assert.

Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.

Assert checks can be either checked or ignored. By default they are ignored. They will be
checked if either the command line switch ‘-gnata’ is used, or if an Assertion_Policy or
Check_Policy pragma is used to enable Assert_Checks.

If assertions are ignored, then there is no run-time effect (and in particular, any side effects
from the expression will not occur at run time). (The expression is still analyzed at compile
time, and may cause types to be frozen if they are mentioned here for the first time).

If assertions are checked, then the given expression is tested, and if it is False then
System.Assertions.Raise_Assert_Failure is called which results in the raising of
Assert_Failure with the given message.

You should generally avoid side effects in the expression arguments of this pragma, because
these side effects will turn on and off with the setting of the assertions mode, resulting in
assertions that have an effect on the program. However, the expressions are analyzed for
semantic correctness whether or not assertions are enabled, so turning assertions on and off
cannot affect the legality of a program.

Note that the implementation defined policy DISABLE, given in a pragma Assertion_
Policy, can be used to suppress this semantic analysis.

Note: this is a standard language-defined pragma in versions of Ada from 2005 on.
In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an
implementation-defined addition.

2.15 Pragma Assert_And_Cut

Syntax:
pragma Assert_And_Cut (

boolean_EXPRESSION

[, string_ EXPRESSION]);
The effect of this pragma is identical to that of pragma Assert, except that in an
Assertion_Policy pragma, the identifier Assert_And_Cut is used to control whether it is
ignored or checked (or disabled).
The intention is that this be used within a subprogram when the given test expresion sums
up all the work done so far in the subprogram, so that the rest of the subprogram can be
verified (informally or formally) using only the entry preconditions, and the expression in
this pragma. This allows dividing up a subprogram into sections for the purposes of testing
or formal verification. The pragma also serves as useful documentation.

2.16 Pragma Assertion_Policy

Syntax:
pragma Assertion_Policy (CHECK | DISABLE | IGNORE | SUPPRESSIBLE);

pragma Assertion_Policy (

Chapter 2: Implementation Defined Pragmas 12

ASSERTION_KIND => POLICY_IDENTIFIER
{, ASSERTION_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND

RM_ASSERTION_KIND ::= Assert
Static_Predicate
Dynamic_Predicate
Pre
Pre'Class
Post
Post'Class
Type_Invariant
Type_Invariant'Class
Default_Initial_Condition

ID_ASSERTION_KIND ::= Assertions |
Assert_And_Cut |
Assume |
Contract_Cases [
Debug |
Ghost [
Initial_Condition |
Invariant [
Invariant'Class [
Loop_Invariant |
Loop_Variant [
Postcondition |
Precondition [
Predicate [
Refined_Post [
Statement_Assertions |
Subprogram_Variant

POLICY_IDENTIFIER ::= Check | Disable | Ignore | Suppressible

This is a standard Ada 2012 pragma that is available as an implementation-defined pragma
in earlier versions of Ada. The assertion kinds RM_ASSERTION_KIND are those defined in
the Ada standard. The assertion kinds ID_ASSERTION_KIND are implementation defined
additions recognized by the GNAT compiler.

The pragma applies in both cases to pragmas and aspects with matching names, e.g. Pre
applies to the Pre aspect, and Precondition applies to both the Precondition pragma and
the aspect Precondition. Note that the identifiers for pragmas Pre_Class and Post_Class
are Pre’Class and Post’Class (not Pre_Class and Post_Class), since these pragmas are in-
tended to be identical to the corresponding aspects.

If the policy is CHECK, then assertions are enabled, i.e. the corresponding pragma or aspect
is activated. If the policy is IGNORE, then assertions are ignored, i.e. the corresponding

Chapter 2: Implementation Defined Pragmas 13

pragma or aspect is deactivated. This pragma overrides the effect of the ‘-gnata’ switch on
the command line. If the policy is SUPPRESSIBLE, then assertions are enabled by default,
however, if the ‘-gnatp’ switch is specified all assertions are ignored.

The implementation defined policy DISABLE is like IGNORE except that it completely disables
semantic checking of the corresponding pragma or aspect. This is useful when the pragma
or aspect argument references subprograms in a with’ed package which is replaced by a
dummy package for the final build.

The implementation defined assertion kind Assertions applies to all assertion kinds. The
form with no assertion kind given implies this choice, so it applies to all assertion kinds
(RM defined, and implementation defined).

The implementation defined assertion kind Statement_Assertions applies to Assert,
Assert_And_Cut, Assume, Loop_Invariant, and Loop_Variant.

2.17 Pragma Assume

Syntax:

pragma Assume (
boolean_EXPRESSION
[, string_EXPRESSION]);

The effect of this pragma is identical to that of pragma Assert, except that in an
Assertion_Policy pragma, the identifier Assume is used to control whether it is ignored
or checked (or disabled).

The intention is that this be used for assumptions about the external environment. So
you cannot expect to verify formally or informally that the condition is met, this must be
established by examining things outside the program itself. For example, we may have code
that depends on the size of Long_Long_Integer being at least 64. So we could write:

pragma Assume (Long_Long_Integer'Size >= 64);

This assumption cannot be proved from the program itself, but it acts as a useful run-time
check that the assumption is met, and documents the need to ensure that it is met by
reference to information outside the program.

2.18 Pragma Assume_No_Invalid_Values

Syntax:
pragma Assume_No_Invalid_Values (On | 0ff);

This is a configuration pragma that controls the assumptions made by the compiler about
the occurrence of invalid representations (invalid values) in the code.

The default behavior (corresponding to an Off argument for this pragma), is to assume that
values may in general be invalid unless the compiler can prove they are valid. Consider the
following example:

V1 : Integer range 1 .. 10;
V2 : Integer range 11 .. 20;

for J in V2 .. V1 loop

Chapter 2: Implementation Defined Pragmas 14

end loop;

if V1 and V2 have valid values, then the loop is known at compile time not to execute since
the lower bound must be greater than the upper bound. However in default mode, no such
assumption is made, and the loop may execute. If Assume_No_Invalid_Values (On) is
given, the compiler will assume that any occurrence of a variable other than in an explicit
'Valid test always has a valid value, and the loop above will be optimized away.

The use of Assume_No_Invalid_Values (On) is appropriate if you know your code is free of
uninitialized variables and other possible sources of invalid representations, and may result
in more efficient code. A program that accesses an invalid representation with this pragma
in effect is erroneous, so no guarantees can be made about its behavior.

It is peculiar though permissible to use this pragma in conjunction with validity checking
(-gnatVa). In such cases, accessing invalid values will generally give an exception, though
formally the program is erroneous so there are no guarantees that this will always be the
case, and it is recommended that these two options not be used together.

2.19 Pragma Async_Readers
Syntax:
pragma Async_Readers [(static_boolean_EXPRESSION) 1;

For the semantics of this pragma, see the entry for aspect Async_Readers in the SPARK
2014 Reference Manual, section 7.1.2.

2.20 Pragma Async_Writers
Syntax:
pragma Async_Writers [(static_boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Async_Writers in the SPARK
2014 Reference Manual, section 7.1.2.

2.21 Pragma Attribute_Definition
Syntax:

pragma Attribute_Definition
([Attribute =>] ATTRIBUTE_DESIGNATOR,
[Entity =>] LOCAL_NAME,
[Expression =>] EXPRESSION | NAME);

If Attribute is a known attribute name, this pragma is equivalent to the attribute definition
clause:

for Entity'Attribute use Expression;

If Attribute is not a recognized attribute name, the pragma is ignored, and a warning is
emitted. This allows source code to be written that takes advantage of some new attribute,
while remaining compilable with earlier compilers.

Chapter 2: Implementation Defined Pragmas 15

2.22 Pragma C_Pass_By_Copy
Syntax:

pragma C_Pass_By_Copy
([Max_Size =>] static_integer_ EXPRESSION);

Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C_Pass_By_Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

* The size of the record type does not exceed the value specified for Max_Size.
* The record type has Convention C.

* The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy; i.e., in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

You can also pass records by copy by specifying the convention C_Pass_By_Copy for the
record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

2.23 Pragma Check

Syntax:

pragma Check (
[Name =>] CHECK_KIND,
[Check =>] Boolean_EXPRESSION
[, [Message =>] string_ EXPRESSION]);

CHECK_KIND ::= IDENTIFIER |
Pre'Class |
Post'Class |
Type_Invariant'Class |
Invariant'Class

This pragma is similar to the predefined pragma Assert except that an extra identifier
argument is present. In conjunction with pragma Check_Policy, this can be used to define
groups of assertions that can be independently controlled. The identifier Assertion is
special, it refers to the normal set of pragma Assert statements.

Checks introduced by this pragma are normally deactivated by default. They can be acti-
vated either by the command line option ‘-gnata’, which turns on all checks, or individually
controlled using pragma Check_Policy.

The identifiers Assertions and Statement_Assertions are not permitted as check kinds,
since this would cause confusion with the use of these identifiers in Assertion_Policy and
Check_Policy pragmas, where they are used to refer to sets of assertions.

Chapter 2: Implementation Defined Pragmas 16

2.24 Pragma Check_Float_Overflow

Syntax:
pragma Check_Float_0Overflow;

In Ada, the predefined floating-point types (Short_Float, Float, Long_Float, Long_Long_
Float) are defined to be ‘unconstrained’. This means that even though each has a well-
defined base range, an operation that delivers a result outside this base range is not required
to raise an exception. This implementation permission accommodates the notion of infinities
in IEEE floating-point, and corresponds to the efficient execution mode on most machines.
GNAT will not raise overflow exceptions on these machines; instead it will generate infinities
and NaN’s as defined in the IEEE standard.

Generating infinities, although efficient, is not always desirable. Often the preferable ap-
proach is to check for overflow, even at the (perhaps considerable) expense of run-time
performance. This can be accomplished by defining your own constrained floating-point
subtypes — i.e., by supplying explicit range constraints — and indeed such a subtype can
have the same base range as its base type. For example:

subtype My_Float is Float range Float'Range;

Here My_Float has the same range as Float but is constrained, so operations on My_Float
values will be checked for overflow against this range.

This style will achieve the desired goal, but it is often more convenient to be able to
simply use the standard predefined floating-point types as long as overflow checking could
be guaranteed. The Check_Float_0Overflow configuration pragma achieves this effect. If
a unit is compiled subject to this configuration pragma, then all operations on predefined
floating-point types including operations on base types of these floating-point types will be
treated as though those types were constrained, and overflow checks will be generated. The
Constraint_Error exception is raised if the result is out of range.

This mode can also be set by use of the compiler switch ‘-gnateF’.

2.25 Pragma Check_Name

Syntax:
pragma Check_Name (check_name_IDENTIFIER);

This is a configuration pragma that defines a new implementation defined check name
(unless IDENTIFIER matches one of the predefined check names, in which case the pragma
has no effect). Check names are global to a partition, so if two or more configuration
pragmas are present in a partition mentioning the same name, only one new check name is
introduced.

An implementation defined check name introduced with this pragma may be used in only
three contexts: pragma Suppress, pragma Unsuppress, and as the prefix of a Check_
Name 'Enabled attribute reference. For any of these three cases, the check name must
be visible. A check name is visible if it is in the configuration pragmas applying to the
current unit, or if it appears at the start of any unit that is part of the dependency set of
the current unit (e.g., units that are mentioned in with clauses).

Check names introduced by this pragma are subject to control by compiler switches (in
particular -gnatp) in the usual manner.

Chapter 2: Implementation Defined Pragmas 17

2.26 Pragma Check_Policy

Syntax:

pragma Check_Policy
([Name =>] CHECK_KIND,
[Policy =>] POLICY_IDENTIFIER);

pragma Check_Policy (
CHECK_KIND => POLICY_IDENTIFIER
{, CHECK_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
CHECK_KIND ::= IDENTIFIER |
Pre'Class |
Post'Class |
|

Type_Invariant'Class
Invariant'Class

The identifiers Name and Policy are not allowed as CHECK_KIND values. This
avoids confusion between the two possible syntax forms for this pragma.

POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE

This pragma is used to set the checking policy for assertions (specified by aspects or prag-
mas), the Debug pragma, or additional checks to be checked using the Check pragma. It
may appear either as a configuration pragma, or within a declarative part of package. In
the latter case, it applies from the point where it appears to the end of the declarative
region (like pragma Suppress).

The Check_Policy pragma is similar to the predefined Assertion_Policy pragma, and if
the check kind corresponds to one of the assertion kinds that are allowed by Assertion_
Policy, then the effect is identical.

If the first argument is Debug, then the policy applies to Debug pragmas, disabling their
effect if the policy is OFF, DISABLE, or IGNORE, and allowing them to execute with normal
semantics if the policy is ON or CHECK. In addition if the policy is DISABLE, then the
procedure call in Debug pragmas will be totally ignored and not analyzed semantically.
Finally the first argument may be some other identifier than the above possibilities, in which
case it controls a set of named assertions that can be checked using pragma Check. For
example, if the pragma:

pragma Check_Policy (Critical_Error, OFF);
is given, then subsequent Check pragmas whose first argument is also Critical_Error will
be disabled.
The check policy is OFF to turn off corresponding checks, and ON to turn on corresponding
checks. The default for a set of checks for which no Check_Policy is given is OFF unless
the compiler switch ‘-gnata’ is given, which turns on all checks by default.
The check policy settings CHECK and IGNORE are recognized as synonyms for ON and OFF.
These synonyms are provided for compatibility with the standard Assertion_Policy

Chapter 2: Implementation Defined Pragmas 18

pragma. The check policy setting DISABLE causes the second argument of a corresponding
Check pragma to be completely ignored and not analyzed.

2.27 Pragma Comment

Syntax:
pragma Comment (static_string EXPRESSION) ;

This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the
pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

2.28 Pragma Common_QObject

Syntax:

pragma Common_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object LOCAL_NAME is assigned to the area
designated by the External argument. You may define a record to correspond to a series
of fields. The Size argument is syntax checked in GNAT, but otherwise ignored.

Common_0bject is not supported on all platforms. If no support is available, then the code
generator will issue a message indicating that the necessary attribute for implementation
of this pragma is not available.

2.29 Pragma Compile_Time_Error
Syntax:

pragma Compile_Time_Error
(boolean_ EXPRESSION, static_string EXPRESSION);

This pragma can be used to generate additional compile time error messages. It is partic-
ularly useful in generics, where errors can be issued for specific problematic instantiations.
The first parameter is a boolean expression. The pragma ensures that the value of an ex-
pression is known at compile time, and has the value False. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g., the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are not met, an
error message is generated using the value given as the second argument. This string value
may contain embedded ASCIL.LF characters to break the message into multiple lines.

Chapter 2: Implementation Defined Pragmas 19

2.30 Pragma Compile_Time_Warning
Syntax:

pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string EXPRESSION);

Same as pragma Compile_Time_Error, except a warning is issued instead of an error mes-
sage. If switch ‘-gnatw_C’ is used, a warning is only issued if the value of the expression is
known to be True at compile time, not when the value of the expression is not known at
compile time. Note that if this pragma is used in a package that is with’ed by a client, the
client will get the warning even though it is issued by a with’ed package (normally warnings
in with’ed units are suppressed, but this is a special exception to that rule).

One typical use is within a generic where compile time known characteristics of formal
parameters are tested, and warnings given appropriately. Another use with a first param-
eter of True is to warn a client about use of a package, for example that it is not fully
implemented.

In previous versions of the compiler, combining ‘-gnatwe’ with Compile_Time_Warning
resulted in a fatal error. Now the compiler always emits a warning. You can use [Pragma
Compile_Time_Error], page 18, to force the generation of an error.

2.31 Pragma Complete_Representation
Syntax:

pragma Complete_Representation;

This pragma must appear immediately within a record representation clause. Typical place-
ments are before the first component clause or after the last component clause. The effect is
to give an error message if any component is missing a component clause. This pragma may
be used to ensure that a record representation clause is complete, and that this invariant is
maintained if fields are added to the record in the future.

2.32 Pragma Complex_Representation

Syntax:

pragma Complex_Representation
([Entity =>] LOCAL_NAME);

The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gce to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,
there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

2.33 Pragma Component_Alignment

Syntax:
pragma Component_Alignment (

Chapter 2: Implementation Defined Pragmas 20

[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=
Component_Size

| Component_Size_4

| Storage_Unit

| Default

Specifies the alignment of components in array or record types. The meaning of the Form
argument is as follows:

‘Component_Size’
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

‘Component_Size_4’
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

‘Storage_Unit’
Specifies that array or record components are byte aligned, i.e., aligned on
boundaries determined by the value of the constant System.Storage_Unit.

‘Default’

Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. The
Default choice is the same as Component_Size (natural alignment).

If the Name parameter is present, type_LOCAL_NAME must refer to a local record or array
type, and the specified alignment choice applies to the specified type. The use of Component_
Alignment together with a pragma Pack causes the Component_Alignment pragma to be
ignored. The use of Component_Alignment together with a record representation clause is
only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for
configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component_Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

Chapter 2: Implementation Defined Pragmas 21

2.34 Pragma Constant_After_Elaboration

Syntax:
pragma Constant_After_Elaboration [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Constant_After_Elaboration
in the SPARK 2014 Reference Manual, section 3.3.1.

2.35 Pragma Contract_Cases

Syntax:
pragma Contract_Cases (CONTRACT_CASE {, CONTRACT_CASE});

CONTRACT_CASE ::= CASE_GUARD => CONSEQUENCE
CASE_GUARD ::= boolean_EXPRESSION | others
CONSEQUENCE ::= boolean_EXPRESSION

The Contract_Cases pragma allows defining fine-grain specifications that can complement
or replace the contract given by a precondition and a postcondition. Additionally, the
Contract_Cases pragma can be used by testing and formal verification tools. The compiler
checks its validity and, depending on the assertion policy at the point of declaration of the
pragma, it may insert a check in the executable. For code generation, the contract cases

pragma Contract_Cases (
Condl => Predil,
Cond2 => Pred2);

are equivalent to

Cl1 : constant Boolean := Condl; -- evaluated at subprogram entry
C2 : constant Boolean := Cond2; -- evaluated at subprogram entry
pragma Precondition ((C1 and not C2) or (C2 and not C1));

pragma Postcondition (if C1 then Predl);

pragma Postcondition (if C2 then Pred2);

The precondition ensures that one and only one of the case guards is satisfied on entry
to the subprogram. The postcondition ensures that for the case guard that was True on
entry, the corresponding consequence is True on exit. Other consequence expressions are
not evaluated.

A precondition P and postcondition Q can also be expressed as contract cases:
pragma Contract_Cases (P => Q);

The placement and visibility rules for Contract_Cases pragmas are identical to those de-
scribed for preconditions and postconditions.

The compiler checks that boolean expressions given in case guards and consequences
are valid, where the rules for case guards are the same as the rule for an expression in
Precondition and the rules for consequences are the same as the rule for an expression
in Postcondition. In particular, attributes '0ld and 'Result can only be used within
consequence expressions. The case guard for the last contract case may be others, to

Chapter 2: Implementation Defined Pragmas 22

denote any case not captured by the previous cases. The following is an example of use
within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;

pragma Contract_Cases (((Arg in 0.0 .. 99.0) => Sqgrt'Result < 10.0,
Arg >= 100.0 => Sqrt'Result >= 10.0,
others => Sqrt'Result = 0.0));

end Math_Functions;
The meaning of contract cases is that only one case should apply at each call, as determined

by the corresponding case guard evaluating to True, and that the consequence for this case
should hold when the subprogram returns.

2.36 Pragma Convention_Identifier

Syntax:

pragma Convention_Identifier (
[Name =>] IDENTIFIER,
[Convention =>] convention_IDENTIFIER);

This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention in
other pragmas (including for example pragma Import or another Convention_Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:

pragma Convention_Identifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding
the need to modify the sources. As another example, you could use this to parameterize
convention requirements according to systems. Suppose you needed to use Stdcall on
windows systems, and C on some other system, then you could define a convention identifier
Library and use a single Convention_Identifier pragma to specify which convention
would be used system-wide.

2.37 Pragma CPP_Class

Syntax:
pragma CPP_Class ([Entity =>] LOCAL_NAME);

The argument denotes an entity in the current declarative region that is declared as a record
type. It indicates that the type corresponds to an externally declared C++ class type, and
is to be laid out the same way that C++ would lay out the type. If the C++ class has virtual
primitives then the record must be declared as a tagged record type.

Types for which CPP_Class is specified do not have assignment or equality operators defined
(such operations can be imported or declared as subprograms as required). Initialization
is allowed only by constructor functions (see pragma CPP_Constructor). Such types are
implicitly limited if not explicitly declared as limited or derived from a limited type, and
an error is issued in that case.

Chapter 2: Implementation Defined Pragmas 23

See [Interfacing to C++], page 278, for related information.

Note: Pragma CPP_Class is currently obsolete. It is supported for backward compatibility
but its functionality is available using pragma Import with Convention = CPP.

2.38 Pragma CPP_Constructor

Syntax:

pragma CPP_Constructor ([Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_ EXPRESSION]
[, [Link_Name =>] static_string EXPRESSION]);

This pragma identifies an imported function (imported in the usual way with pragma
Import) as corresponding to a C++ constructor. If External_Name and Link_Name are
not specified then the Entity argument is a name that must have been previously men-
tioned in a pragma Import with Convention = CPP. Such name must be of one of the
following forms:

* ‘function’ Fname ‘return’ T¢
* ‘“unction’ Fname ‘return’ T’Class
* ‘function’ Fname (...) ‘return’ T°

* ‘function’ Fname (...) ‘return’ T’Class

where T is a limited record type imported from C++ with pragma Import and Convention
= CPP.

The first two forms import the default constructor, used when an object of type T is created
on the Ada side with no explicit constructor. The latter two forms cover all the non-default
constructors of the type. See the GNAT User’s Guide for details.

If no constructors are imported, it is impossible to create any objects on the Ada side and
the type is implicitly declared abstract.

Pragma CPP_Constructor is intended primarily for automatic generation using an auto-
matic binding generator tool (such as the -~fdump-ada-spec GCC switch). See [Interfacing
to C++], page 278, for more related information.

Note: The use of functions returning class-wide types for constructors is currently obsolete.
They are supported for backward compatibility. The use of functions returning the type T
leave the Ada sources more clear because the imported C++ constructors always return an
object of type T; that is, they never return an object whose type is a descendant of type T.

2.39 Pragma CPP_Virtual

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It is retained for compatibility purposes. It
used to be required to ensure compatibility with C++, but is no longer required for that
purpose because GNAT generates the same object layout as the G++ compiler by default.

See [Interfacing to C++], page 278, for related information.

Chapter 2: Implementation Defined Pragmas 24

2.40 Pragma CPP_Vtable

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It used to be required to ensure compatibility
with C++, but is no longer required for that purpose because GNAT generates the same
object layout as the G++ compiler by default.

See [Interfacing to C++], page 278, for related information.

2.41 Pragma CPU

Syntax:
pragma CPU (EXPRESSION) ;

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.42 Pragma Deadline_Floor

Syntax:

pragma Deadline_Floor (time_span_EXPRESSION);
This pragma applies only to protected types and specifies the floor deadline inherited by a
task when the task enters a protected object. It is effective only when the EDF scheduling
policy is used.

2.43 Pragma Debug

Syntax:
pragma Debug ([CONDITION,]PROCEDURE_CALL_WITHOUT_SEMICOLON);

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART

The procedure call argument has the syntactic form of an expression, meeting the syntactic
requirements for pragmas.

If debug pragmas are not enabled or if the condition is present and evaluates to False,
this pragma has no effect. If debug pragmas are enabled, the semantics of the pragma is
exactly equivalent to the procedure call statement corresponding to the argument with a
terminating semicolon. Pragmas are permitted in sequences of declarations, so you can use
pragma Debug to intersperse calls to debug procedures in the middle of declarations. Debug
pragmas can be enabled either by use of the command line switch ‘-gnata’ or by use of the
pragma Check_Policy with a first argument of Debug.

2.44 Pragma Debug_Policy

Syntax:
pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF);

This pragma is equivalent to a corresponding Check_Policy pragma with a first argument
of Debug. It is retained for historical compatibility reasons.

Chapter 2: Implementation Defined Pragmas 25

2.45 Pragma Default_Initial_Condition

Syntax:
pragma Default_Initial_Condition [(null | boolean_EXPRESSION) 1;

For the semantics of this pragma, see the entry for aspect Default_Initial_Condition in
the SPARK 2014 Reference Manual, section 7.3.3.

2.46 Pragma Default_Scalar_Storage_Order

Syntax:
pragma Default_Scalar_Storage_Order (High_Order_First | Low_Order_First);

Normally if no explicit Scalar_Storage_Order is given for a record type or array type, then
the scalar storage order defaults to the ordinary default for the target. But this default
may be overridden using this pragma. The pragma may appear as a configuration pragma,
or locally within a package spec or declarative part. In the latter case, it applies to all
subsequent types declared within that package spec or declarative part.

The following example shows the use of this pragma:

pragma Default_Scalar_Storage_Order (High Order_First);
with System; use System;
package DSSO1 is
type H1 is record
a : Integer;
end record;

type L2 is record
a : Integer;
end record;
for L2'Scalar_Storage_0Order use Low_Order_First;

type L2a is new L2;
package Inner is
type H3 is record
a : Integer;
end record;
pragma Default_Scalar_Storage_Order (Low_0Order_First);
type L4 is record
a : Integer;
end record;
end Inner;

type H4a is new Inner.L4;

type H5 is record

Chapter 2: Implementation Defined Pragmas 26

a : Integer;
end record;
end DSSO01;

In this example record types with names starting with ‘L’ have Low_Order_First scalar
storage order, and record types with names starting with ‘H” have High_Order_First.
Note that in the case of H4a, the order is not inherited from the parent type. Only an
explicitly set Scalar_Storage_Order gets inherited on type derivation.

If this pragma is used as a configuration pragma which appears within a configuration
pragma file (as opposed to appearing explicitly at the start of a single unit), then the
binder will require that all units in a partition be compiled in a similar manner, other than
run-time units, which are not affected by this pragma. Note that the use of this form is
discouraged because it may significantly degrade the run-time performance of the software,
instead the default scalar storage order ought to be changed only on a local basis.

2.47 Pragma Default_Storage_Pool

Syntax:
pragma Default_Storage_Pool (storage_pool_NAME | null);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.48 Pragma Depends

Syntax:
pragma Depends (DEPENDENCY_RELATION) ;

DEPENDENCY_RELATION ::=
null
| (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})
DEPENDENCY_CLAUSE ::=
QUTPUT_LIST =>[+] INPUT_LIST
| NULL_DEPENDENCY_CLAUSE
NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})

INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})

OUTPUT ::
INPUT

NAME | FUNCTION_RESULT
NAME

where FUNCTION_RESULT is a function Result attribute_reference

For the semantics of this pragma, see the entry for aspect Depends in the SPARK 2014
Reference Manual, section 6.1.5.

Chapter 2: Implementation Defined Pragmas 27

2.49 Pragma Detect_Blocking

Syntax:
pragma Detect_Blocking;

This is a standard pragma in Ada 2005, that is available in all earlier versions of Ada as an
implementation-defined pragma.

This is a configuration pragma that forces the detection of potentially blocking operations
within a protected operation, and to raise Program_Error if that happens.

2.50 Pragma Disable_Atomic_Synchronization

Syntax:
pragma Disable_Atomic_Synchronization [(Entity)];

pragma Enable_Atomic_Synchronization [(Entity)];

Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchro-
nization points in the case of multiple tasks. Particularly in the case of multi-processors
this may require special handling, e.g. the generation of memory barriers. This synchro-
nization is performed by default, but can be turned off using pragma Disable_Atomic_
Synchronization. The Enable_Atomic_Synchronization pragma turns it back on.

The placement and scope rules for these pragmas are the same as those for pragma
Suppress. In particular they can be used as configuration pragmas, or in a declaration
sequence where they apply until the end of the scope. If an Entity argument is present,
the action applies only to that entity.

2.51 Pragma Dispatching_Domain
Syntax:
pragma Dispatching Domain (EXPRESSION) ;

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.52 Pragma Effective_Reads
Syntax:
pragma Effective_Reads [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Effective_Reads in the SPARK
2014 Reference Manual, section 7.1.2.

2.53 Pragma Effective_Writes
Syntax:
pragma Effective_Writes [(static_boolean_ EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Effective_Writes in the SPARK
2014 Reference Manual, section 7.1.2.

Chapter 2: Implementation Defined Pragmas 28

2.54 Pragma Elaboration_Checks

Syntax:
pragma Elaboration_Checks (Dynamic | Static);

This is a configuration pragma which specifies the elaboration model to be used during
compilation. For more information on the elaboration models of GNAT, consult the chapter
on elaboration order handling in the ‘GNAT User’s Guide’.

The pragma may appear in the following contexts:

* Configuration pragmas file

* Prior to the context clauses of a compilation unit’s initial declaration
Any other placement of the pragma will result in a warning and the effects of the offending
pragma will be ignored.

If the pragma argument is Dynamic, then the dynamic elaboration model is in effect. If the
pragma argument is Static, then the static elaboration model is in effect.

2.55 Pragma Eliminate

Syntax:
pragma Eliminate (
[Unit_Name =>] IDENTIFIER | SELECTED_COMPONENT ,
[Entity =>] IDENTIFIER |

SELECTED_COMPONENT |
STRING_LITERAL
SOURCE_TRACE]);

Il
\4

[, Source_Location

SOURCE_TRACE ::= STRING_LITERAL

This pragma indicates that the given entity is not used in the program to be compiled and
built, thus allowing the compiler to eliminate the code or data associated with the named
entity. Any reference to an eliminated entity causes a compile-time or link-time error.

The pragma has the following semantics, where U is the unit specified by the Unit_Name
argument and E is the entity specified by the Entity argument:

* E must be a subprogram that is explicitly declared either:
* Within U, or
* Within a generic package that is instantiated in U, or

* As an instance of generic subprogram instantiated in U.

Otherwise the pragma is ignored.

* If E is overloaded within U then, in the absence of a Source_Location argument, all
overloadings are eliminated.

* If E is overloaded within U and only some overloadings are to be eliminated, then each
overloading to be eliminated must be specified in a corresponding pragma Eliminate
with a Source_Location argument identifying the line where the declaration appears,
as described below.

* If E is declared as the result of a generic instantiation, then a Source_Location argu-
ment is needed, as described below.

Chapter 2: Implementation Defined Pragmas 29

Pragma Eliminate allows a program to be compiled in a system-independent manner, so
that unused entities are eliminated but without needing to modify the source text. Normally
the required set of Eliminate pragmas is constructed automatically using the gnatelim
tool.

Any source file change that removes, splits, or adds lines may make the set of Eliminate
pragmas invalid because their Source_Location argument values may get out of date.

Pragma Eliminate may be used where the referenced entity is a dispatching operation. In
this case all the subprograms to which the given operation can dispatch are considered to
be unused (are never called as a result of a direct or a dispatching call).

The string literal given for the source location specifies the line number of the declaration
of the entity, using the following syntax for SOURCE_TRACE:

SOURCE_TRACE ::= SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET]
LBRACKET pi= [
RBRACKET pi= 1]

SOURCE_REFERENCE ::

FILE_NAME : LINE_NUMBER

LINE_NUMBER DIGIT {DIGIT}
Spaces around the colon in a SOURCE_REFERENCE are optional.

The source trace that is given as the Source_Location must obey the following rules (or
else the pragma is ignored), where U is the unit U specified by the Unit_Name argument and
E is the subprogram specified by the Entity argument:

* FILE_NAME is the short name (with no directory information) of the Ada source file for
U, using the required syntax for the underlying file system (e.g. case is significant if the
underlying operating system is case sensitive). If U is a package and E is a subprogram
declared in the package specification and its full declaration appears in the package
body, then the relevant source file is the one for the package specification; analogously
if U is a generic package.

If E is not declared in a generic instantiation (this includes generic subprogram in-
stances), the source trace includes only one source line reference. LINE_NUMBER gives
the line number of the occurrence of the declaration of E within the source file (as a
decimal literal without an exponent or point).

If E is declared by a generic instantiation, its source trace (from left to right) starts
with the source location of the declaration of E in the generic unit and ends with the
source location of the instantiation, given in square brackets. This approach is applied
recursively with nested instantiations: the rightmost (nested most deeply in square
brackets) element of the source trace is the location of the outermost instantiation,
and the leftmost element (that is, outside of any square brackets) is the location of the
declaration of E in the generic unit.

Examples:

pragma Eliminate (PkgO, Proc);
-- Eliminate (all overloadings of) Proc in PkgO

Chapter 2: Implementation Defined Pragmas 30

pragma Eliminate (Pkgl, Proc,
Source_Location => "pkgl.ads:8");
-- Eliminate overloading of Proc at line 8 in pkgl.ads

—-- Assume the following file contents:
-— gen_pkg.ads
- 1: generic
2 type T is private;
-- 3: package Gen_Pkg is
4 procedure Proc(N : T);

-- ... end Gen_Pkg;

- q.adb

- 1: with Gen_Pkg;

-— 2: procedure (is

-- 3: package Inst_Pkg is new Gen_Pkg(Integer);
- ... -- No calls on Inst_Pkg.Proc

-- ... end Q;

-— The following pragma eliminates Inst_Pkg.Proc from Q
pragma Eliminate (Q, Proc,
Source_Location => "gen_pkg.ads:4[q.adb:3]1");

2.56 Pragma Enable_Atomic_Synchronization

Syntax:
pragma Enable_Atomic_Synchronization [(Entity)];

Reenables atomic synchronization; see pragma Disable_Atomic_Synchronization for de-
tails.

2.57 Pragma Exceptional_Cases

Syntax:
pragma Exceptional_Cases (EXCEPTIONAL_CASE_LIST);

EXCEPTIONAL_CASE_LIST ::
EXCEPTIONAL_CASE
CONSEQUENCE

For the semantics of this aspect, see the SPARK 2014 Reference Manual, section 6.1.9.

EXCEPTIONAL_CASE {, EXCEPTIONAL_CASE}
exception_choice {'|' exception_choice} => CONSEQUENCE
Boolean_expression

2.58 Pragma Exit_Cases

Syntax:
pragma Exit_Cases (EXIT_CASE_LIST);

EXIT_CASE_LIST ::= EXIT_CASE {, EXIT_CASE}

Chapter 2: Implementation Defined Pragmas 31

EXIT_CASE = GUARD => EXIT_KIND

EXIT_KIND = Normal_Return
| Exception_Raised
| (Exception_Raised => exception_name)
| Program_Exit

GUARD = Boolean_expression

For the semantics of this aspect, see the SPARK 2014 Reference Manual, section 6.1.10.

2.59 Pragma Export_Function

Syntax:
pragma Export_Function (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
L

[Result_Mechanism =>] MECHANISM_NAME]) ;

-

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in conjunction with a separate
pragma Export, which must precede the pragma Export_Function. GNAT does not require
a separate pragma Export, but if none is present, Convention Ada is assumed, which is
usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma

Chapter 2: Implementation Defined Pragmas 32

Export_Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.

The internal_name must uniquely designate the function to which the pragma applies.
If more than one function name exists of this name in the declarative part you must use
the Parameter_Types and Result_Type parameters to achieve the required unique desig-
nation. The subtype_marks in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an 'Access attribute can be used to match an anonymous
access parameter.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.60 Pragma Export_Object

Syntax:

pragma Export_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point of

view of portability), but it is not required. Size is syntax checked, but otherwise ignored
by GNAT.

2.61 Pragma Export_Procedure

Syntax:
pragma Export_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

| nn

PARAMETER_TYPES ::=
null

Chapter 2: Implementation Defined Pragmas 33

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.62 Pragma Export_Valued_Procedure

Syntax:
pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_ EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::

Chapter 2: Implementation Defined Pragmas 34

MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export_Procedure except that the first parameter of LOCAL_
NAME, which must be present, must be of mode out, and externally the subprogram is treated
as a function with this parameter as the result of the function. GNAT provides for this
capability to allow the use of out and in out parameters in interfacing to external functions
(which are not permitted in Ada functions). GNAT does not require a separate pragma
Export, but if none is present, Convention Ada is assumed, which is almost certainly not
what is wanted since the whole point of this pragma is to interface with foreign language
functions, so it is usually appropriate to use this pragma in conjunction with a Export or
Convention pragma that specifies the desired foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.63 Pragma Extend_System

Syntax:
pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions
that are present in the Ada RM. However, other implementations, notably the DEC Ada
83 implementation, provide many extensions to package System.

For each such implementation accommodated by this pragma, GNAT provides a package
Aux_xxx, e.g., Aux_DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal
way and access entities either by selection or using a use clause. In this case no special
processing is required.

However, if existing code contains references such as System.xxx where ‘xxx’ is an entity
in the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend_System is a configuration pragma whose single argument
is the name of the package containing the extended definition (e.g., Aux_DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux_xxx where Aux_xxx is the pragma
argument for any entity referenced in package System, but not found in package System.

You can use this pragma either to access a predefined System extension supplied with the
compiler, for example Aux_DEC or you can construct your own extension unit following the
above definition. Note that such a package is a child of System and thus is considered part
of the implementation. To compile it you will have to use the ‘-gnatg’ switch for compiling
System units, as explained in the GNAT User’s Guide.

Chapter 2: Implementation Defined Pragmas 35

2.64 Pragma Extensions_Allowed

Syntax:
pragma Extensions_Allowed (On | 0ff | All_Extensions);

This configuration pragma enables (via the “On” or “All_Extensions” argument) or disables
(via the “Off” argument) the implementation extension mode; the pragma takes precedence
over the -gnatX and -gnatX0 command switches.

If an argument of "On" is specified, the latest version of the Ada language is implemented
(currently Ada 2022) and, in addition, a curated set of GNAT specific extensions are rec-
ognized. (See the list here [here], page 327)

An argument of "A11_Extensions" has the same effect except that some extra experimental
extensions are enabled (See the list here [here|, page 338)

2.65 Pragma Extensions_Visible

Syntax:
pragma Extensions_Visible [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Extensions_Visible in the
SPARK 2014 Reference Manual, section 6.1.7.

2.66 Pragma External

Syntax:
pragma External (
[Convention =>] convention_IDENTIFIER,
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_ EXPRESSION]
[, [Link_Name =>] static_string EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined in the
Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma Export before the latter was
standardized.

2.67 Pragma External_Name_Casing
Syntax:

pragma External_Name_Casing (
Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);
This pragma provides control over the casing of external names associated with Import and
Export pragmas. There are two cases to consider:
* Tmplicit external names
Implicit external names are derived from identifiers. The most common case arises
when a standard Ada Import or Export pragma is used with only two arguments, as
in:

pragma Import (C, C_Routine);

Chapter 2: Implementation Defined Pragmas 36

Since Ada is a case-insensitive language, the spelling of the identifier in the Ada source
program does not provide any information on the desired casing of the external name,
and so a convention is needed. In GNAT the default treatment is that such names are
converted to all lower case letters. This corresponds to the normal C style in many
environments. The first argument of pragma External_Name_Casing can be used to
control this treatment. If Uppercase is specified, then the name will be forced to all
uppercase letters. If Lowercase is specified, then the normal default of all lower case
letters will be used.

This same implicit treatment is also used in the case of extended DEC Ada 83 compat-
ible Import and Export pragmas where an external name is explicitly specified using
an identifier rather than a string.

Explicit external names

Explicit external names are given as string literals. The most common case arises when
a standard Ada Import or Export pragma is used with three arguments, as in:

pragma Import (C, C_Routine, "C_routine");

In this case, the string literal normally provides the exact casing required for the
external name. The second argument of pragma External_Name_Casing may be used
to modify this behavior. If Uppercase is specified, then the name will be forced to
all uppercase letters. If Lowercase is specified, then the name will be forced to all
lowercase letters. A specification of As_Is provides the normal default behavior in
which the casing is taken from the string provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can be used
as a configuration pragma in the gnat.adc file, in which case it applies to all subsequent
compilations, or it can be used as a program unit pragma, in which case it only applies
to the current unit, or it can be used more locally to control individual Import/Export
pragmas.

It was primarily intended for use with OpenVMS systems, where many compilers convert
all symbols to upper case by default. For interfacing to such compilers (e.g., the DEC C
compiler), it may be convenient to use the pragma:

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

2.68 Pragma Fast_Math

Syntax:
pragma Fast_Math;

This is a configuration pragma which activates a mode in which speed is considered more
important for floating-point operations than absolutely accurate adherence to the require-
ments of the standard. Currently the following operations are affected:

‘Complex Multiplication’
The normal simple formula for complex multiplication can result in intermediate
overflows for numbers near the end of the range. The Ada standard requires
that this situation be detected and corrected by scaling, but in Fast_Math mode
such cases will simply result in overflow. Note that to take advantage of this you

Chapter 2: Implementation Defined Pragmas 37

must instantiate your own version of Ada.Numerics.Generic_Complex_Types
under control of the pragma, rather than use the preinstantiated versions.

2.69 Pragma Favor_Top_Level
Syntax:
pragma Favor_Top_Level (type_LOCAL_NAME);

The argument of pragma Favor_Top_Level must be a named access-to-subprogram
type. This pragma is an efficiency hint to the compiler, regarding the use of 'Access
or 'Unrestricted_Access on nested (non-library-level) subprograms. The pragma
means that nested subprograms are not used with this type, or are rare, so that the
generated code should be efficient in the top-level case. When this pragma is used,
dynamically generated trampolines may be used on some targets for nested subprograms.
See restriction No_Implicit_Dynamic_Code.

2.70 Pragma Finalize_Storage_Only
Syntax:
pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);

The argument of pragma Finalize_Storage_0Only must denote a local type which is derived
from Ada.Finalization.Controlled or Limited_Controlled. The pragma suppresses the
call to Finalize for declared library-level objects of the argument type. This is mostly
useful for types where finalization is only used to deal with storage reclamation since in
most environments it is not necessary to reclaim memory just before terminating execution,
hence the name. Note that this pragma does not suppress Finalize calls for library-level
heap-allocated objects (see pragma No_Heap_Finalization).

2.71 Pragma Float_Representation
Syntax:
pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]) ;

FLOAT_REP ::= VAX_Float | IEEE_Float

In the one argument form, this pragma is a configuration pragma which allows control over
the internal representation chosen for the predefined floating point types declared in the
packages Standard and System. This pragma is only provided for compatibility and has no
effect.

The two argument form specifies the representation to be used for the specified floating-
point type. The argument must be IEEE_Float to specify the use of IEEE format, as
follows:

* For a digits value of 6, 32-bit IEEE short format will be used.
* For a digits value of 15, 64-bit IEEE long format will be used.

* No other value of digits is permitted.

Chapter 2: Implementation Defined Pragmas 38

2.72 Pragma Ghost
Syntax:
pragma Ghost [(static_boolean_ EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Ghost in the SPARK 2014
Reference Manual, section 6.9.

2.73 Pragma Global
Syntax:

pragma Global (GLOBAL_SPECIFICATION);

GLOBAL_SPECIFICATION ::=
null
| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})

MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST
MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})
GLOBAL_ITEM ::= NAME

For the semantics of this pragma, see the entry for aspect Global in the SPARK 2014
Reference Manual, section 6.1.4.

2.74 Pragma Ident
Syntax:

pragma Ident (static_string EXPRESSION);

This pragma is identical in effect to pragma Comment. It is provided for compatibility with
other Ada compilers providing this pragma.

2.75 Pragma Ignore_Pragma
Syntax:
pragma Ignore_Pragma (pragma_IDENTIFIER);

This is a configuration pragma that takes a single argument that is a simple identifier. Any
subsequent use of a pragma whose pragma identifier matches this argument will be silently
ignored. Any preceding use of a pragma whose pragma identifier matches this argument
will be parsed and then ignored. This may be useful when legacy code or code intended for
compilation with some other compiler contains pragmas that match the name, but not the
exact implementation, of a GNAT pragma. The use of this pragma allows such pragmas to
be ignored, which may be useful in CodePeer mode, or during porting of legacy code.

Chapter 2: Implementation Defined Pragmas 39

2.76 Pragma Implementation_Defined

Syntax:
pragma Implementation_Defined (local_NAME);

This pragma marks a previously declared entity as implementation-defined. For an over-
loaded entity, applies to the most recent homonym.

pragma Implementation_Defined;

The form with no arguments appears anywhere within a scope, most typically a package
spec, and indicates that all entities that are defined within the package spec are Implemen-
tation_Defined.

This pragma is used within the GNAT runtime library to identify implementation-defined
entities introduced in language-defined units, for the purpose of implementing the
No_Implementation_Identifiers restriction.

2.77 Pragma Implemented

Syntax:
pragma Implemented (procedure_LOCAL_NAME, implementation_kind);

implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any

This is an Ada 2012 representation pragma which applies to protected, task and synchro-
nized interface primitives. The use of pragma Implemented provides a way to impose a
static requirement on the overriding operation by adhering to one of the three implemen-
tation kinds: entry, protected procedure or any of the above. This pragma is available in
all earlier versions of Ada as an implementation-defined pragma.

type Synch_Iface is synchronized interface;
procedure Prim_Op (0Obj : in out Iface) is abstract;
pragma Implemented (Prim_Op, By_Protected_Procedure);

protected type Prot_1 is new Synch_Iface with
procedure Prim_Op; -- Legal
end Prot_1;

protected type Prot_2 is new Synch_Iface with
entry Prim_Op; -— TIllegal
end Prot_2;

task type Task_Typ is new Synch_Iface with
entry Prim_Op; -- TIllegal
end Task_Typ;

When applied to the procedure_or_entry_NAME of a requeue statement, pragma Imple-
mented determines the runtime behavior of the requeue. Implementation kind By_Entry
guarantees that the action of requeueing will proceed from an entry to another entry. Im-
plementation kind By_Protected_Procedure transforms the requeue into a dispatching call,
thus eliminating the chance of blocking. Kind By_Any shares the behavior of By_Entry and
By_Protected_Procedure depending on the target’s overriding subprogram kind.

Chapter 2: Implementation Defined Pragmas 40

2.78 Pragma Implicit_Packing

Syntax:

pragma Implicit_Packing;
This is a configuration pragma that requests implicit packing for packed arrays for which
a size clause is given but no explicit pragma Pack or specification of Component_Size is
present. It also applies to records where no record representation clause is present. Consider
this example:

type R is array (0 .. 7) of Boolean;
for R'Size use 8;

In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause does not
change the layout of a composite object. So the Size clause in the above example is normally
rejected, since the default layout of the array uses 8-bit components, and thus the array
requires a minimum of 64 bits.

If this declaration is compiled in a region of code covered by an occurrence of the configura-
tion pragma Implicit_Packing, then the Size clause in this and similar examples will cause
implicit packing and thus be accepted. For this implicit packing to occur, the type in ques-
tion must be an array of small components whose size is known at compile time, and the Size
clause must specify the exact size that corresponds to the number of elements in the array
multiplied by the size in bits of the component type (both single and multi-dimensioned
arrays can be controlled with this pragma).

Similarly, the following example shows the use in the record case

type r is record
a, b, c,d, e, £, g, h : boolean;
chr : character;
end record;
for r'size use 16;

Without a pragma Pack, each Boolean field requires 8 bits, so the minimum size is 72 bits,
but with a pragma Pack, 16 bits would be sufficient. The use of pragma Implicit_Packing
allows this record declaration to compile without an explicit pragma Pack.

2.79 Pragma Import_Function

Syntax:
pragma Import_Function (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

Chapter 2: Implementation Defined Pragmas 41

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::
Value
| Reference

This pragma is used in conjunction with a pragma Import to specify additional information
for an imported function. The pragma Import (or equivalent pragma Interface) must
precede the Import_Function pragma and both must appear in the same declarative part
as the function specification.

The Internal argument must uniquely designate the function to which the pragma applies.
If more than one function name exists of this name in the declarative part you must use the
Parameter_Types and Result_Type parameters to achieve the required unique designation.
Subtype marks in these parameters must exactly match the subtypes in the corresponding
function specification, using positional notation to match parameters with subtype marks.
The form with an 'Access attribute can be used to match an anonymous access parameter.

You may optionally use the Mechanism and Result_Mechanism parameters to specify pass-
ing mechanisms for the parameters and result. If you specify a single mechanism name, it
applies to all parameters. Otherwise you may specify a mechanism on a parameter by pa-
rameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

2.80 Pragma Import_Object
Syntax:

pragma Import_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]) ;

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

Chapter 2: Implementation Defined Pragmas 42

This pragma designates an object as imported, and apart from the extended rules for
external symbols, is identical in effect to the use of the normal Import pragma applied
to an object. Unlike the subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a portability point of view). size
is syntax checked, but otherwise ignored by GNAT.

2.81 Pragma Import_Procedure

Syntax:
pragma Import_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Import_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted

2.82 Pragma Import_Valued_Procedure

Syntax:
pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]

[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

Chapter 2: Implementation Defined Pragmas 43

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Import_Procedure except that the first parameter of LOCAL_
NAME, which must be present, must be of mode out, and externally the subprogram is treated
as a function with this parameter as the result of the function. The purpose of this capability
is to allow the use of out and in out parameters in interfacing to external functions (which
are not permitted in Ada functions). You may optionally use the Mechanism parameters to
specify passing mechanisms for the parameters. If you specify a single mechanism name,
it applies to all parameters. Otherwise you may specify a mechanism on a parameter by
parameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

Note that it is important to use this pragma in conjunction with a separate pragma Import
that specifies the desired convention, since otherwise the default convention is Ada, which
is almost certainly not what is required.

2.83 Pragma Independent
Syntax:

pragma Independent (component_LOCAL_NAME) ;

This pragma is standard in Ada 2012 mode (which also provides an aspect of the same
name). It is also available as an implementation-defined pragma in all earlier versions. It
specifies that the designated object or all objects of the designated type must be indepen-
dently addressable. This means that separate tasks can safely manipulate such objects. For
example, if two components of a record are independent, then two separate tasks may access
these two components. This may place constraints on the representation of the object (for
instance prohibiting tight packing).

Chapter 2: Implementation Defined Pragmas 44

2.84 Pragma Independent_Components

Syntax:
pragma Independent_Components (Local_NAME) ;

This pragma is standard in Ada 2012 mode (which also provides an aspect of the same
name). It is also available as an implementation-defined pragma in all earlier versions. It
specifies that the components of the designated object, or the components of each object of
the designated type, must be independently addressable. This means that separate tasks can
safely manipulate separate components in the composite object. This may place constraints
on the representation of the object (for instance prohibiting tight packing).

2.85 Pragma Initial_Condition

Syntax:
pragma Initial_Condition (boolean_EXPRESSION) ;

For the semantics of this pragma, see the entry for aspect Initial_Condition in the
SPARK 2014 Reference Manual, section 7.1.6.

2.86 Pragma Initialize_Scalars

Syntax:

pragma Initialize_Scalars
[(TYPE_VALUE_PAIR {, TYPE_VALUE_PAIR}) 1;

TYPE_VALUE_PAIR ::=
SCALAR_TYPE => static_EXPRESSION

SCALAR_TYPE :=
Short_Float

| Float

| Long_Float

| Long_Long_Flat

| Signed_8

| Signed_16

| Signed_32

| Signed_64

| Unsigned_8

| Unsigned_16

| Unsigned_32

| Unsigned_64

This pragma is similar to Normalize_Scalars conceptually but has two important differ-
ences.

First, there is no requirement for the pragma to be used uniformly in all units of a partition.
In particular, it is fine to use this just for some or all of the application units of a partition,
without needing to recompile the run-time library. In the case where some units are compiled
with the pragma, and some without, then a declaration of a variable where the type is
defined in package Standard or is locally declared will always be subject to initialization,

Chapter 2: Implementation Defined Pragmas 45

as will any declaration of a scalar variable. For composite variables, whether the variable
is initialized may also depend on whether the package in which the type of the variable is
declared is compiled with the pragma.

The other important difference is that the programmer can control the value used for ini-
tializing scalar objects. This effect can be achieved in several different ways:

* At compile time, the programmer can specify the invalid value for a particular family
of scalar types using the optional arguments of the pragma.

The compile-time approach is intended to optimize the generated code for the pragma,
by possibly using fast operations such as memset. Note that such optimizations require
using values where the bytes all have the same binary representation.

At bind time, the programmer has several options:

* Initialization with invalid values (similar to Normalize_Scalars, though for Initial-

ize_Scalars it is not always possible to determine the invalid values in complex
cases like signed component fields with nonstandard sizes).

* Initialization with high values.

* Initialization with low values.

* Initialization with a specific bit pattern.

See the GNAT User’s Guide for binder options for specifying these cases.

The bind-time approach is intended to provide fast turnaround for testing with different
values, without having to recompile the program.

At execution time, the programmer can specify the invalid values using an environment
variable. See the GNAT User’s Guide for details.

The execution-time approach is intended to provide fast turnaround for testing with
different values, without having to recompile and rebind the program.

Note that pragma Initialize_Scalars is particularly useful in conjunction with the en-
hanced validity checking that is now provided in GNAT, which checks for invalid values
under more conditions. Using this feature (see description of the ‘-gnatV’ flag in the GNAT
User’s Guide) in conjunction with pragma Initialize_Scalars provides a powerful new
tool to assist in the detection of problems caused by uninitialized variables.

Note: the use of Initialize_Scalars has a fairly extensive effect on the generated code.
This may cause your code to be substantially larger. It may also cause an increase in
the amount of stack required, so it is probably a good idea to turn on stack checking (see
description of stack checking in the GNAT User’s Guide) when using this pragma.

2.87 Pragma Initializes

Syntax:
pragma Initializes (INITIALIZATION_LIST);

INITIALIZATION_LIST ::=
null
| (INITIALIZATION_ITEM {, INITIALIZATION_ITEM})

Chapter 2: Implementation Defined Pragmas 46

INITIALIZATION_ITEM ::= name [=> INPUT_LIST]

INPUT_LIST ::=
null
| INPUT
| (INPUT {, INPUT}H)

INPUT ::= name

For the semantics of this pragma, see the entry for aspect Initializes in the SPARK 2014
Reference Manual, section 7.1.5.

2.88 Pragma Inline_Always

Syntax:

pragma Inline_Always (NAME [, NAME]);
Similar to pragma Inline except that inlining is unconditional. Inline_Always instructs the
compiler to inline every direct call to the subprogram or else to emit a compilation error,
independently of any option, in particular ‘-gnatn’ or ‘-gnatN’ or the optimization level. It
is an error to take the address or access of NAME. It is also an error to apply this pragma to

a primitive operation of a tagged type. Thanks to such restrictions, the compiler is allowed
to remove the out-of-line body of NAME.

2.89 Pragma Inline_Generic

Syntax:
pragma Inline_Generic (GNAME {, GNAME});

GNAME ::= generic_unit_NAME | generic_instance_NAME

This pragma is provided for compatibility with Dec Ada 83. It has no effect in GNAT
(which always inlines generics), other than to check that the given names are all names of
generic units or generic instances.

2.90 Pragma Interface

Syntax:
pragma Interface (
[Convention =>] convention_identifier,
[Entity =>] local_NAME
[, [External_Name =>] static_string_expression]
[, [Link_Name =>] static_string_expression]);

This pragma is identical in syntax and semantics to the standard Ada pragma Import.
It is provided for compatibility with Ada 83. The definition is upwards compatible both
with pragma Interface as defined in the Ada 83 Reference Manual, and also with some
extended implementations of this pragma in certain Ada 83 implementations. The only
difference between pragma Interface and pragma Import is that there is special circuitry
to allow both pragmas to appear for the same subprogram entity (normally it is illegal to

Chapter 2: Implementation Defined Pragmas 47

have multiple Import pragmas). This is useful in maintaining Ada 83/Ada 95 compatibility
and is compatible with other Ada 83 compilers.

2.91 Pragma Interface_Name

Syntax:
pragma Interface_Name (
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string EXPRESSION]
[, [Link_Name =>] static_string EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for an interfaced
subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma
for this purpose. You must provide at least one of External_Name or Link_Name.

2.92 Pragma Interrupt_Handler

Syntax:
pragma Interrupt_Handler (procedure_LOCAL_NAME) ;

This program unit pragma is supported for parameterless protected procedures as described
in Annex C of the Ada Reference Manual.

2.93 Pragma Interrupt_State

Syntax:

pragma Interrupt_State
([Name =>] value,
[State =>] SYSTEM | RUNTIME | USER);

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for an Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution. Additionally, signals such as SIGSEGV, SIGABRT, SIGFPE and SIGILL are often
mapped to specific Ada exceptions, or used to implement run-time functions such as the
abort statement and stack overflow checking.

Pragma Interrupt_State provides a general mechanism for overriding such uses of in-
terrupts. It subsumes the functionality of pragma Unreserve_All_Interrupts. Pragma
Interrupt_State is not available on Windows. On all other platforms than VxWorks, it
applies to signals; on VxWorks, it applies to vectored hardware interrupts and may be used
to mark interrupts required by the board support package as reserved.

Interrupts can be in one of three states:
* System

The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may
not install a handler. As a result you are guaranteed standard system default action if
this interrupt is raised. This also allows installing a low level handler via C APIs such
as sigaction(), outside of Ada control.

Chapter 2: Implementation Defined Pragmas 48

* Runtime

The interrupt is reserved (no Ada handler can be installed). The run time is allowed
to install a handler for internal control purposes, but is not required to do so.

* User

The interrupt is unreserved. The user may install an Ada handler via Ada.Interrupts
and pragma Interrupt_Handler or Attach_Handler to provide some other action.

These states are the allowed values of the State parameter of the pragma. The Name
parameter is a value of the type Ada.Interrupts.Interrupt_ID. Typically, it is a name
declared in Ada.Interrupts.Names.

This is a configuration pragma, and the binder will check that there are no inconsistencies
between different units in a partition in how a given interrupt is specified. It may appear
anywhere a pragma is legal.

The effect is to move the interrupt to the specified state.

By declaring interrupts to be SYSTEM, you guarantee the standard system action, such as
a core dump.

By declaring interrupts to be USER, you guarantee that you can install a handler.

Note that certain signals on many operating systems cannot be caught and handled by
applications. In such cases, the pragma is ignored. See the operating system documentation,
or the value of the array Reserved declared in the spec of package System.0S_Interface.
Overriding the default state of signals used by the Ada runtime may interfere with an

application’s runtime behavior in the cases of the synchronous signals, and in the case of
the signal used to implement the abort statement.

2.94 Pragma Interrupts_System_By_Default

Syntax:
pragma Interrupts_System_By_Default;

Default all interrupts to the System state as defined above in pragma Interrupt_State.
This is a configuration pragma.

2.95 Pragma Invariant

Syntax:

pragma Invariant
([Entity =>] private_type_LOCAL_NAME,
[Check =>] EXPRESSION
[, [Message =>] String_Expression]);

This pragma provides exactly the same capabilities as the Type_Invariant aspect defined in
AT05-0146-1, and in the Ada 2012 Reference Manual. The Type_Invariant aspect is fully
implemented in Ada 2012 mode, but since it requires the use of the aspect syntax, which
is not available except in 2012 mode, it is not possible to use the Type_Invariant aspect in
earlier versions of Ada. However the Invariant pragma may be used in any version of Ada.
Also note that the aspect Invariant is a synonym in GNAT for the aspect Type_Invariant,
but there is no pragma Type_Invariant.

Chapter 2: Implementation Defined Pragmas 49

The pragma must appear within the visible part of the package specification, after the type
to which its Entity argument appears. As with the Invariant aspect, the Check expression
is not analyzed until the end of the visible part of the package, so it may contain forward
references. The Message argument, if present, provides the exception message used if the
invariant is violated. If no Message parameter is provided, a default message that identifies
the line on which the pragma appears is used.

It is permissible to have multiple Invariants for the same type entity, in which case they are
and’ed together. It is permissible to use this pragma in Ada 2012 mode, but you cannot
have both an invariant aspect and an invariant pragma for the same entity.

For further details on the use of this pragma, see the Ada 2012 documentation of the
Type_Invariant aspect.

2.96 Pragma Keep_Names
Syntax:
pragma Keep_Names ([0On =>] enumeration_first_subtype_LOCAL_NAME) ;

The LOCAL_NAME argument must refer to an enumeration first subtype in the current declar-
ative part. The effect is to retain the enumeration literal names for use by Image and Value
even if a global Discard_Names pragma applies. This is useful when you want to generally
suppress enumeration literal names and for example you therefore use a Discard_Names
pragma in the gnat.adc file, but you want to retain the names for specific enumeration

types.

2.97 Pragma License
Syntax:
pragma License (Unrestricted | GPL | Modified_GPL | Restricted);

This pragma is provided to allow automated checking for appropriate license conditions with
respect to the standard and modified GPL. A pragma License, which is a configuration
pragma that typically appears at the start of a source file or in a separate gnat.adc file,
specifies the licensing conditions of a unit as follows:

* Unrestricted This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada Reference
Manual.

* GPL This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be withed by a restricted unit.

* Modified_GPL This is used for a unit licensed under the GNAT modified GPL that
includes a special exception paragraph that specifically permits the inclusion of the
unit in programs without requiring the entire program to be released under the GPL.

Restricted This is used for a unit that is restricted in that it is not permitted to depend
on units that are licensed under the GPL. Typical examples are proprietary code that
is to be released under more restrictive license conditions. Note that restricted units
are permitted to with units which are licensed under the modified GPL (this is the
whole point of the modified GPL).

Chapter 2: Implementation Defined Pragmas 50

Normally a unit with no License pragma is considered to have an unknown license, and no
checking is done. However, standard GNAT headers are recognized, and license information
is derived from them as follows.

A GNAT license header starts with a line containing 78 hyphens. The following comment
text is searched for the appearance of any of the following strings.

If the string ‘GNU General Public License’ is found, then the unit is assumed to have GPL
license, unless the string ‘As a special exception’ follows, in which case the license is assumed
to be modified GPL.

If one of the strings ‘This specification is adapted from the Ada Semantic Interface’ or ‘This
specification is derived from the Ada Reference Manual’ is found then the unit is assumed
to be unrestricted.

These default actions means that a program with a restricted license pragma will automat-
ically get warnings if a GPL unit is inappropriately withed. For example, the program:

with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is

end Secret_Stuff
if compiled with pragma License (Restricted) in a gnat . adc file will generate the warning:

1. with Sem_Ch3;
I

>>> license of withed unit "Sem_Ch3" is incompatible

2. with GNAT.Sockets;
3. procedure Secret_Stuff is

Here we get a warning on Sem_Ch3 since it is part of the GNAT compiler and is licensed
under the GPL, but no warning for GNAT.Sockets which is part of the GNAT run time,
and is therefore licensed under the modified GPL.

2.98 Pragma Link_With

Syntax:
pragma Link _With (static_string EXPRESSION {,static_string EXPRESSION});

This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly
the same effect as pragma Linker_Options except that spaces occurring within one of the
string expressions are treated as separators. For example, in the following case:

pragma Link _With ("-labc -ldef");

results in passing the strings -labc and -1def as two separate arguments to the linker. In
addition pragma Link_With allows multiple arguments, with the same effect as successive
pragmas.

2.99 Pragma Linker_Alias

Syntax:
pragma Linker_Alias (

Chapter 2: Implementation Defined Pragmas 51

[Entity =>] LOCAL_NAME,
[Target =>] static_string EXPRESSION) ;

LOCAL_NAME must refer to an object that is declared at the library level. This pragma
establishes the given entity as a linker alias for the given target. It is equivalent to __
attribute__((alias)) in GNU C and causes LOCAL_NAME to be emitted as an alias for the
symbol static_string EXPRESSION in the object file, that is to say no space is reserved
for LOCAL_NAME by the assembler and it will be resolved to the same address as static_
string EXPRESSION by the linker.

The actual linker name for the target must be used (e.g., the fully encoded name with
qualification in Ada, or the mangled name in C++), or it must be declared using the C
convention with pragma Import or pragma Export.

Not all target machines support this pragma. On some of them it is accepted only if pragma
Weak_External has been applied to LOCAL_NAME.

-- Example of the use of pragma Linker_Alias

package p is
i : Integer := 1;
pragma Export (C, i);

new_name_for_i : Integer;
pragma Linker_Alias (new_name_for_i, "i");
end p;

2.100 Pragma Linker_Constructor

Syntax:
pragma Linker_Constructor (procedure_LOCAL_NAME) ;

procedure_LOCAL_NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as an initialization
routine by the linker. It is equivalent to __attribute__((constructor)) in GNU C and
causes procedure_LOCAL_NAME to be invoked before the entry point of the executable is
called (or immediately after the shared library is loaded if the procedure is linked in a
shared library), in particular before the Ada run-time environment is set up.

Because of these specific contexts, the set of operations such a procedure can perform
is very limited and the type of objects it can manipulate is essentially restricted to the
elementary types. In particular, it must only contain code to which pragma Restrictions
(No_Elaboration_Code) applies.

This pragma is used by GNAT to implement auto-initialization of shared Stand Alone
Libraries, which provides a related capability without the restrictions listed above. Where
possible, the use of Stand Alone Libraries is preferable to the use of this pragma.

2.101 Pragma Linker_Destructor

Syntax:
pragma Linker_Destructor (procedure_LOCAL_NAME);

Chapter 2: Implementation Defined Pragmas 52

procedure_LOCAL_NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as a finalization
routine by the linker. It is equivalent to __attribute__((destructor)) in GNU C and
causes procedure_LOCAL_NAME to be invoked after the entry point of the executable has
exited (or immediately before the shared library is unloaded if the procedure is linked in a
shared library), in particular after the Ada run-time environment is shut down.

See pragma Linker_Constructor for the set of restrictions that apply because of these
specific contexts.

2.102 Pragma Linker_Section
Syntax:

pragma Linker_Section (
[(Entity =>] LOCAL_NAME,
[Section =>] static_string EXPRESSION);

LOCAL_NAME must refer to an object, type, or subprogram that is declared at the library
level. This pragma specifies the name of the linker section for the given entity. It is
equivalent to __attribute__((section)) in GNU C and causes LOCAL_NAME to be placed
in the static_string_ EXPRESSION section of the executable (assuming the linker doesn’t
rename the section). GNAT also provides an implementation defined aspect of the same
name.

In the case of specifying this aspect for a type, the effect is to specify the corresponding
section for all library-level objects of the type that do not have an explicit linker section
set. Note that this only applies to whole objects, not to components of composite objects.

In the case of a subprogram, the linker section applies to all previously declared matching
overloaded subprograms in the current declarative part which do not already have a linker
section assigned. The linker section aspect is useful in this case for specifying different linker
sections for different elements of such an overloaded set.

Note that an empty string specifies that no linker section is specified. This is not quite the
same as omitting the pragma or aspect, since it can be used to specify that one element
of an overloaded set of subprograms has the default linker section, or that one object of a
type for which a linker section is specified should has the default linker section.

The compiler normally places library-level entities in standard sections depending on the
class: procedures and functions generally go in the .text section, initialized variables in
the .data section and uninitialized variables in the .bss section.

Other, special sections may exist on given target machines to map special hardware, for
example I/0 ports or flash memory. This pragma is a means to defer the final layout of the
executable to the linker, thus fully working at the symbolic level with the compiler.

Some file formats do not support arbitrary sections so not all target machines support this
pragma. The use of this pragma may cause a program execution to be erroneous if it is used
to place an entity into an inappropriate section (e.g., a modified variable into the .text
section). See also pragma Persistent_BSS.

-- Example of the use of pragma Linker_Section

package I0_Card is

Chapter 2: Implementation Defined Pragmas 53

Port_A : Integer;
pragma Volatile (Port_A);
pragma Linker_Section (Port_A, ".bss.port_a");

Port_B : Integer;
pragma Volatile (Port_B);
pragma Linker_Section (Port_B, ".bss.port_b");

type Port_Type is new Integer with Linker_Section => ".bss";
PA : Port_Type with Linker_Section => ".bss.PA";
PB : Port_Type; —— ends up in linker section ".bss"

procedure Q with Linker_Section => "(Qsection";
end I0_Card;

2.103 Pragma Lock_Free

Syntax:
pragma Lock_Free [(static_boolean_EXPRESSION)];

This pragma may be specified for protected types or objects. It specifies that the imple-
mentation of protected operations must be implemented without locks. Compilation fails
if the compiler cannot generate lock-free code for the operations.

The current conditions required to support this pragma are:
* Protected type declarations may not contain entries

* Protected subprogram declarations may not have nonelementary parameters

In addition, each protected subprogram body must satisfy:

* May reference only one protected component

* May not reference nonconstant entities outside the protected subprogram scope

* May not contain address representation items, allocators, or quantified expressions

* May not contain delay, goto, loop, or procedure-call statements

* May not contain exported and imported entities

* May not dereferenced access values

* Function calls and attribute references must be static

If the Lock_Free aspect is specified to be True for a protected unit and the Ceiling_Locking
locking policy is in effect, then the run-time actions associated with the Ceiling_Locking
locking policy (described in Ada RM D.3) are not performed when a protected operation
of the protected unit is executed.

2.104 Pragma Loop_Invariant
Syntax:
pragma Loop_Invariant (boolean_ EXPRESSION);

Chapter 2: Implementation Defined Pragmas 54

The effect of this pragma is similar to that of pragma Assert, except that in an Assertion_
Policy pragma, the identifier Loop_Invariant is used to control whether it is ignored or
checked (or disabled).

Loop_Invariant can only appear as one of the items in the sequence of statements of a
loop body, or nested inside block statements that appear in the sequence of statements of
a loop body. The intention is that it be used to represent a “loop invariant” assertion, i.e.
something that is true each time through the loop, and which can be used to show that the
loop is achieving its purpose.

Multiple Loop_Invariant and Loop_Variant pragmas that apply to the same loop should
be grouped in the same sequence of statements.

To aid in writing such invariants, the special attribute Loop_Entry may be used to refer to
the value of an expression on entry to the loop. This attribute can only be used within the
expression of a Loop_Invariant pragma. For full details, see documentation of attribute
Loop_Entry.

2.105 Pragma Loop_Optimize

Syntax:
pragma Loop_Optimize (OPTIMIZATION_HINT {, OPTIMIZATION_HINT});

OPTIMIZATION_HINT ::= Ivdep | No_Unroll | Unroll | No_Vector | Vector

This pragma must appear immediately within a loop statement. It allows the programmer
to specify optimization hints for the enclosing loop. The hints are not mutually exclusive
and can be freely mixed, but not all combinations will yield a sensible outcome.

There are five supported optimization hints for a loop:

* Ivdep

The programmer asserts that there are no loop-carried dependencies which would pre-
vent consecutive iterations of the loop from being executed simultaneously.

* No_Unroll

The loop must not be unrolled. This is a strong hint: the compiler will not unroll a
loop marked with this hint.

* Unroll

The loop should be unrolled. This is a weak hint: the compiler will try to apply
unrolling to this loop preferably to other optimizations, notably vectorization, but
there is no guarantee that the loop will be unrolled.

* No_Vector

The loop must not be vectorized. This is a strong hint: the compiler will not vectorize
a loop marked with this hint.

Vector

The loop should be vectorized. This is a weak hint: the compiler will try to apply
vectorization to this loop preferably to other optimizations, notably unrolling, but
there is no guarantee that the loop will be vectorized.

Chapter 2: Implementation Defined Pragmas 55

These hints do not remove the need to pass the appropriate switches to the compiler in
order to enable the relevant optimizations, that is to say ‘-funroll-loops’ for unrolling and
‘-ftree-vectorize’ for vectorization.

2.106 Pragma Loop_Variant

Syntax:
pragma Loop_Variant (LOOP_VARIANT_ITEM {, LOOP_VARIANT_ITEM });
LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
CHANGE_DIRECTION ::= Increases | Decreases

Loop_Variant can only appear as one of the items in the sequence of statements of a loop
body, or nested inside block statements that appear in the sequence of statements of a loop
body. It allows the specification of quantities which must always decrease or increase in
successive iterations of the loop. In its simplest form, just one expression is specified, whose
value must increase or decrease on each iteration of the loop.

In a more complex form, multiple arguments can be given which are interpreted in a nesting
lexicographic manner. For example:

pragma Loop_Variant (Increases => X, Decreases => Y);

specifies that each time through the loop either X increases, or X stays the same and Y
decreases. A Loop_Variant pragma ensures that the loop is making progress. It can be
useful in helping to show informally or prove formally that the loop always terminates.

Loop_Variant is an assertion whose effect can be controlled using an Assertion_Policy
with a check name of Loop_Variant. The policy can be Check to enable the loop variant
check, Ignore to ignore the check (in which case the pragma has no effect on the program),
or Disable in which case the pragma is not even checked for correct syntax.

Multiple Loop_Invariant and Loop_Variant pragmas that apply to the same loop should
be grouped in the same sequence of statements.

The Loop_Entry attribute may be used within the expressions of the Loop_Variant pragma
to refer to values on entry to the loop.

2.107 Pragma Machine_Attribute

Syntax:
pragma Machine_Attribute (
[Entity =>] LOCAL_NAME,
[Attribute_Name =>] static_string_ EXPRESSION
[, [Info =>] static_EXPRESSION {, static_EXPRESSION}]);

Machine-dependent attributes can be specified for types and/or declarations. This
pragma is semantically equivalent to __attribute__((attribute_name)) (if info is not
specified) or __attribute__((attribute_name(info))) or __attribute__((attribute_
name (info,...))) in GNU C, where ‘attribute_name’ is recognized by the compiler
middle-end or the TARGET_ATTRIBUTE_TABLE machine specific macro. Note that a string
literal for the optional parameter info or the following ones is transformed by default
into an identifier, which may make this pragma unusable for some attributes. For further
information see GNU Compiler Collection (GCC) Internals.

Chapter 2: Implementation Defined Pragmas 56

2.108 Pragma Main

Syntax:
pragma Main
(MAIN_OPTION [, MAIN_OPTION]);

MAIN_OPTION ::=

[Stack_Size =>] static_integer_EXPRESSION
| [Task_Stack_Size_Default =>] static_integer_EXPRESSION
| [Time_Slicing_ FEnabled =>] static_boolean_ EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.

2.109 Pragma Main_Storage

Syntax:

pragma Main_Storage
(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
| [TOP_GUARD =>] static_SIMPLE_EXPRESSION
This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.

2.110 Pragma Max_Queue_Length

Syntax:

pragma Max_Queue_Length (static_integer_ EXPRESSION);
This pragma is used to specify the maximum callers per entry queue for individual protected
entries and entry families. It accepts a single integer (-1 or more) as a parameter and must
appear after the declaration of an entry.
A value of -1 represents no additional restriction on queue length.

2.111 Pragma No_Body

Syntax:

pragma No_Body;
There are a number of cases in which a package spec does not require a body, and in fact
a body is not permitted. GNAT will not permit the spec to be compiled if there is a body
around. The pragma No_Body allows you to provide a body file, even in a case where no
body is allowed. The body file must contain only comments and a single No_Body pragma.
This is recognized by the compiler as indicating that no body is logically present.

This is particularly useful during maintenance when a package is modified in such a way
that a body needed before is no longer needed. The provision of a dummy body with a
No_Body pragma ensures that there is no interference from earlier versions of the package
body.

Chapter 2: Implementation Defined Pragmas 57

2.112 Pragma No_Caching

Syntax:
pragma No_Caching [(static_boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect No_Caching in the SPARK 2014
Reference Manual, section 7.1.2.

2.113 Pragma No_Component_Reordering

Syntax:
pragma No_Component_Reordering [([Entity =>] type_LOCAL_NAME)];

type_LOCAL_NAME must refer to a record type declaration in the current declarative part.
The effect is to preclude any reordering of components for the layout of the record, i.e.
the record is laid out by the compiler in the order in which the components are declared
textually. The form with no argument is a configuration pragma which applies to all record
types declared in units to which the pragma applies and there is a requirement that this
pragma be used consistently within a partition.

2.114 Pragma No_Elaboration_Code_All

Syntax:
pragma No_Elaboration_Code_All [(program_unit_NAME)];

This is a program unit pragma (there is also an equivalent aspect of the same name) that
establishes the restriction No_Elaboration_Code for the current unit and any extended
main source units (body and subunits). It also has the effect of enforcing a transitive
application of this aspect, so that if any unit is implicitly or explicitly with’ed by the
current unit, it must also have the No_Elaboration_Code_All aspect set. It may be applied
to package or subprogram specs or their generic versions.

2.115 Pragma No_Heap_Finalization

Syntax:

pragma No_Heap_Finalization [(first_subtype_LOCAL_NAME)];
Pragma No_Heap_Finalization may be used as a configuration pragma or as a type-specific
pragma.
In its configuration form, the pragma must appear within a configuration file such as
gnat.adc, without an argument. The pragma suppresses the call to Finalize for heap-
allocated objects created through library-level named access-to-object types in cases where
the designated type requires finalization actions.
In its type-specific form, the argument of the pragma must denote a library-level named
access-to-object type. The pragma suppresses the call to Finalize for heap-allocated ob-
jects created through the specific access type in cases where the designated type requires
finalization actions.
It is still possible to finalize such heap-allocated objects by explicitly deallocating them.
A library-level named access-to-object type declared within a generic unit will lose its No_
Heap_Finalization pragma when the corresponding instance does not appear at the library
level.

Chapter 2: Implementation Defined Pragmas 58

2.116 Pragma No_Inline

Syntax:

pragma No_Inline (NAME {, NAME});
This pragma suppresses inlining for the callable entity or the instances of the generic sub-
program designated by NAME, including inlining that results from the use of pragma Inline.
This pragma is always active, in particular it is not subject to the use of option ‘-gnatn’
or ‘-gnatN’. It is illegal to specify both pragma No_Inline and pragma Inline_Always for
the same NAME.

2.117 Pragma No_Raise

Syntax:

pragma No_Raise (subprogram_LOCAL_NAME {, subprogram_LOCAL_NAME});
Fach subprogram_LOCAL_NAME argument must refer to one or more subprogram declarations
in the current declarative part. A subprogram to which this pragma is applied may not
raise an exception that is not caught within it. An implementation-defined check named

Raise_Check is associated with the pragma, and Program_FError is raised upon its failure
(see RM 11.5(19/5)).

2.118 Pragma No_Return

Syntax:
pragma No_Return (procedure_LOCAL_NAME {, procedure_LOCAL_NAME});

Fach procedure_LOCAL_NAME argument must refer to one or more procedure declarations in
the current declarative part. A procedure to which this pragma is applied may not contain
any explicit return statements. In addition, if the procedure contains any implicit returns
from falling off the end of a statement sequence, then execution of that implicit return will
cause Program_Error to be raised.

One use of this pragma is to identify procedures whose only purpose is to raise an exception.
Another use of this pragma is to suppress incorrect warnings about missing returns in
functions, where the last statement of a function statement sequence is a call to such a
procedure.

Note that in Ada 2005 mode, this pragma is part of the language. It is available in all
earlier versions of Ada as an implementation-defined pragma.

2.119 Pragma No_Strict_Aliasing

Syntax:

pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];
type_LOCAL_NAME must refer to an access type declaration in the current declarative part.
The effect is to inhibit strict aliasing optimization for the given type. The form with no
arguments is a configuration pragma which applies to all access types declared in units to
which the pragma applies. For a detailed description of the strict aliasing optimization, and

the situations in which it must be suppressed, see the section on Optimization and Strict
Aliasing in the GNAT User’s Guide.

This pragma currently has no effects on access to unconstrained array types.

Chapter 2: Implementation Defined Pragmas 59

2.120 Pragma No_Tagged_Streams

Syntax:
pragma No_Tagged_Streams [([Entity =>] tagged_type_LOCAL_NAME)];

Normally when a tagged type is introduced using a full type declaration, part of the process-
ing includes generating stream access routines to be used by stream attributes referencing
the type (or one of its subtypes or derived types). This can involve the generation of signif-
icant amounts of code which is wasted space if stream routines are not needed for the type
in question.

The No_Tagged_Streams pragma causes the generation of these stream routines to be
skipped, and any attempt to use stream operations on types subject to this pragma will be
statically rejected as illegal.

There are two forms of the pragma. The form with no arguments must appear in a declar-
ative sequence or in the declarations of a package spec. This pragma affects all subsequent
root tagged types declared in the declaration sequence, and specifies that no stream routines
be generated. The form with an argument (for which there is also a corresponding aspect)
specifies a single root tagged type for which stream routines are not to be generated.

Once the pragma has been given for a particular root tagged type, all subtypes and derived
types of this type inherit the pragma automatically, so the effect applies to a complete
hierarchy (this is necessary to deal with the class-wide dispatching versions of the stream
routines).

When pragmas Discard_Names and No_Tagged_Streams are simultaneously applied to a
tagged type its Expanded_Name and External_Tag are initialized with empty strings. This
is useful to avoid exposing entity names at binary level but has a negative impact on the
debuggability of tagged types.

2.121 Pragma Normalize_Scalars

Syntax:
pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The effect is to
cause all scalar objects that are not otherwise initialized to be initialized. The initial values
are implementation dependent and are as follows:

‘Standard.Character’
Objects whose root type is Standard.Character are initialized to Character’Last
unless the subtype range excludes NUL (in which case NUL is used). This choice
will always generate an invalid value if one exists.

‘Standard.Wide_Character’
Objects whose root type is Standard.Wide_Character are initialized to
Wide_Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if one exists.

‘Standard.Wide_Wide_Character’
Objects whose root type is Standard.Wide_Wide_Character are initialized to
the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL

Chapter 2: Implementation Defined Pragmas 60

(in which case NUL is used). This choice will always generate an invalid value
if one exists.

‘Integer types’
Objects of an integer type are treated differently depending on whether negative
values are present in the subtype. If no negative values are present, then all one
bits is used as the initial value except in the special case where zero is excluded
from the subtype, in which case all zero bits are used. This choice will always
generate an invalid value if one exists.

For subtypes with negative values present, the largest negative number is used,
except in the unusual case where this largest negative number is in the subtype,
and the largest positive number is not, in which case the largest positive value
is used. This choice will always generate an invalid value if one exists.

‘Floating-Point Types’
Objects of all floating-point types are initialized to all 1-bits. For standard
IEEE format, this corresponds to a NaN (not a number) which is indeed an
invalid value.

‘Fixed-Point Types’
Objects of all fixed-point types are treated as described above for integers,
with the rules applying to the underlying integer value used to represent the
fixed-point value.

‘Modular types’
Objects of a modular type are initialized to all one bits, except in the special
case where zero is excluded from the subtype, in which case all zero bits are
used. This choice will always generate an invalid value if one exists.

‘Enumeration types’
Objects of an enumeration type are initialized to all one-bits, i.e., to the value
2 ** typ'Size - 1 unless the subtype excludes the literal whose Pos value is
zero, in which case a code of zero is used. This choice will always generate an
invalid value if one exists.

2.122 Pragma Obsolescent

Syntax:
pragma Obsolescent;

pragma Obsolescent (
[Message =>] static_string_ EXPRESSION
[, [Version =>] Ada_05]);

pragma Obsolescent (

[Entity =>] NAME
[, [Message =>] static_string EXPRESSION
[, [Version =>] Ada_05]]);

This pragma can occur immediately following a declaration of an entity, including the case
of a record component. If no Entity argument is present, then this declaration is the one

Chapter 2: Implementation Defined Pragmas 61

to which the pragma applies. If an Entity parameter is present, it must either match the
name of the entity in this declaration, or alternatively, the pragma can immediately follow
an enumeration type declaration, where the Entity argument names one of the enumeration
literals.

This pragma is used to indicate that the named entity is considered obsolescent and should
not be used. Typically this is used when an API must be modified by eventually remov-
ing or modifying existing subprograms or other entities. The pragma can be used at an
intermediate stage when the entity is still present, but will be removed later.

The effect of this pragma is to output a warning message on a reference to an entity thus
marked that the subprogram is obsolescent if the appropriate warning option in the compiler
is activated. If the Message parameter is present, then a second warning message is given
containing this text. In addition, a reference to the entity is considered to be a violation of
pragma Restrictions (No_Obsolescent_Features).

This pragma can also be used as a program unit pragma for a package, in which case the
entity name is the name of the package, and the pragma indicates that the entire package is
considered obsolescent. In this case a client withing such a package violates the restriction,
and the with clause is flagged with warnings if the warning option is set.

If the Version parameter is present (which must be exactly the identifier Ada_05, no other
argument is allowed), then the indication of obsolescence applies only when compiling in
Ada 2005 mode. This is primarily intended for dealing with the situations in the predefined
library where subprograms or packages have become defined as obsolescent in Ada 2005
(e.g., in Ada.Characters.Handling), but may be used anywhere.

The following examples show typical uses of this pragma:

package p is
pragma Obsolescent (p, Message => "use pp instead of p");
end p;

package q is
procedure qg2;
pragma Obsolescent ("use g2new instead");

type R is new integer;

pragma Obsolescent
(Entity => R,
Message => "use RR in Ada 2005",
Version => Ada_05);

type M is record
F1 : Integer;
F2 : Integer;
pragma Obsolescent;
F3 : Integer;

end record;

type E is (a, bc, 'd', quack);

Chapter 2: Implementation Defined Pragmas 62

pragma Obsolescent (Entity => bc)
pragma Obsolescent (Entity => 'd')

function "+"
(a, b : character) return character;
pragma Obsolescent (Entity => "+");
end;
Note that, as for all pragmas, if you use a pragma argument identifier, then all subsequent
parameters must also use a pragma argument identifier. So if you specify Entity => for the
Entity argument, and a Message argument is present, it must be preceded by Message =>.

2.123 Pragma Optimize_Alignment

Syntax:
pragma Optimize_Alignment (TIME | SPACE | OFF);

This is a configuration pragma which affects the choice of default alignments for types
and objects where no alignment is explicitly specified. There is a time/space trade-off
in the selection of these values. Large alignments result in more efficient code, at the
expense of larger data space, since sizes have to be increased to match these alignments.
Smaller alignments save space, but the access code is slower. The normal choice of default
alignments for types and individual alignment promotions for objects (which is what you
get if you do not use this pragma, or if you use an argument of OFF), tries to balance these
two requirements.

Specifying SPACE causes smaller default alignments to be chosen in two cases. First any
packed record is given an alignment of 1. Second, if a size is given for the type, then the
alignment is chosen to avoid increasing this size. For example, consider:
type R is record
X : Integer;
Y : Character;
end record;

for R'Size use 5x%8;

In the default mode, this type gets an alignment of 4, so that access to the Integer field X
are efficient. But this means that objects of the type end up with a size of 8 bytes. This
is a valid choice, since sizes of objects are allowed to be bigger than the size of the type,
but it can waste space if for example fields of type R appear in an enclosing record. If the
above type is compiled in Optimize_Alignment (Space) mode, the alignment is set to 1.

However, there is one case in which SPACE is ignored. If a variable length record (that
is a discriminated record with a component which is an array whose length depends on a
discriminant), has a pragma Pack, then it is not in general possible to set the alignment of
such a record to one, so the pragma is ignored in this case (with a warning).

Specifying SPACE also disables alignment promotions for standalone objects, which oc-
cur when the compiler increases the alignment of a specific object without changing the
alignment of its type.

Specifying SPACE also disables component reordering in unpacked record types, which can
result in larger sizes in order to meet alignment requirements.

Chapter 2: Implementation Defined Pragmas 63

Specifying TIME causes larger default alignments to be chosen in the case of small types
with sizes that are not a power of 2. For example, consider:

type R is record
A : Character;
B : Character;
C : Boolean;
end record;

pragma Pack (R);

for R'Size use 17;
The default alignment for this record is normally 1, but if this type is compiled in Optimize_
Alignment (Time) mode, then the alignment is set to 4, which wastes space for objects of
the type, since they are now 4 bytes long, but results in more efficient access when the
whole record is referenced.

As noted above, this is a configuration pragma, and there is a requirement that all units in
a partition be compiled with a consistent setting of the optimization setting. This would
normally be achieved by use of a configuration pragma file containing the appropriate
setting. The exception to this rule is that units with an explicit configuration pragma in
the same file as the source unit are excluded from the consistency check, as are all predefined
units. The latter are compiled by default in pragma Optimize_Alignment (Off) mode if no
pragma appears at the start of the file.

2.124 Pragma Ordered

Syntax:

pragma Ordered (enumeration_first_subtype_LOCAL_NAME) ;
Most enumeration types are from a conceptual point of view unordered. For example,
consider:

type Color is (Red, Blue, Green, Yellow);
By Ada semantics Blue > Red and Green > Blue, but really these relations make no sense;
the enumeration type merely specifies a set of possible colors, and the order is unimportant.

For unordered enumeration types, it is generally a good idea if clients avoid comparisons
(other than equality or inequality) and explicit ranges. (A ‘client’ is a unit where the type
is referenced, other than the unit where the type is declared, its body, and its subunits.)
For example, if code buried in some client says:

if Current_Color < Yellow then ...
if Current_Color in Blue .. Green then ...

then the client code is relying on the order, which is undesirable. It makes the code hard to
read and creates maintenance difficulties if entries have to be added to the enumeration type.
Instead, the code in the client should list the possibilities, or an appropriate subtype should
be declared in the unit that declares the original enumeration type. E.g., the following
subtype could be declared along with the type Color:

subtype RBG is Color range Red .. Green;
and then the client could write:

if Current_Color in RBG then ...

Chapter 2: Implementation Defined Pragmas 64

if Current_Color = Blue or Current_Color = Green then ...

However, some enumeration types are legitimately ordered from a conceptual point of view.
For example, if you declare:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

then the ordering imposed by the language is reasonable, and clients can depend on it,
writing for example:

if D in Mon .. Fri then ...
if D < Wed then ...

The pragma ‘Ordered’ is provided to mark enumeration types that are conceptually ordered,
alerting the reader that clients may depend on the ordering. GNAT provides a pragma to
mark enumerations as ordered rather than one to mark them as unordered, since in our
experience, the great majority of enumeration types are conceptually unordered.

The types Boolean, Character, Wide_Character, and Wide_Wide_Character are consid-
ered to be ordered types, so each is declared with a pragma Ordered in package Standard.

Normally pragma Ordered serves only as documentation and a guide for coding standards,
but GNAT provides a warning switch ‘-gnatw.u’ that requests warnings for inappropriate
uses (comparisons and explicit subranges) for unordered types. If this switch is used, then
any enumeration type not marked with pragma Ordered will be considered as unordered,
and will generate warnings for inappropriate uses.

Note that generic types are not considered ordered or unordered (since the template can be
instantiated for both cases), so we never generate warnings for the case of generic enumer-
ated types.

For additional information please refer to the description of the ‘-gnatw.u’ switch in the
GNAT User’s Guide.

2.125 Pragma Overflow_Mode

Syntax:

pragma Overflow_Mode
([General =>] MODE
[, [Assertions =>] MODE]);

MODE ::= STRICT | MINIMIZED | ELIMINATED

This pragma sets the current overflow mode to the given setting. For details of the meaning
of these modes, please refer to the ‘Overflow Check Handling in GNAT’ appendix in the
GNAT User’s Guide. If only the General parameter is present, the given mode applies to
all expressions. If both parameters are present, the General mode applies to expressions
outside assertions, and the Eliminated mode applies to expressions within assertions.

The case of the MODE parameter is ignored, so MINIMIZED, Minimized and minimized all
have the same effect.

The Overflow_Mode pragma has the same scoping and placement rules as pragma Suppress,
o it can occur either as a configuration pragma, specifying a default for the whole program,
or in a declarative scope, where it applies to the remaining declarations and statements in
that scope.

Chapter 2: Implementation Defined Pragmas 65

The pragma Suppress (Overflow_Check) suppresses overflow checking, but does not affect
the overflow mode.

The pragma Unsuppress (Overflow_Check) unsuppresses (enables) overflow checking, but
does not affect the overflow mode.

2.126 Pragma Overriding_Renamings
Syntax:

pragma Overriding_Renamings;

This is a GNAT configuration pragma to simplify porting legacy code accepted by the
Rational Ada compiler. In the presence of this pragma, a renaming declaration that renames
an inherited operation declared in the same scope is legal if selected notation is used as in:

pragma Overriding Renamings;

package R is
function F (..);

function F (..) renames R.F;
end R;

even though RM 8.3 (15) stipulates that an overridden operation is not visible within the
declaration of the overriding operation.

2.127 Pragma Part_Of

Syntax:
pragma Part_0f (ABSTRACT_STATE);

ABSTRACT_STATE ::= NAME

For the semantics of this pragma, see the entry for aspect Part_0f in the SPARK 2014
Reference Manual, section 7.2.6.

2.128 Pragma Partition_Elaboration_Policy

Syntax:
pragma Partition_Elaboration_Policy (POLICY_IDENTIFIER);

POLICY_IDENTIFIER ::= Concurrent | Sequential

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.129 Pragma Passive

Syntax:
pragma Passive [(Semaphore | No)J;

Syntax checked, but otherwise ignored by GNAT. This is recognized for compatibility with
DEC Ada 83 implementations, where it is used within a task definition to request that a

Chapter 2: Implementation Defined Pragmas 66

task be made passive. If the argument Semaphore is present, or the argument is omitted,
then DEC Ada 83 treats the pragma as an assertion that the containing task is passive and
that optimization of context switch with this task is permitted and desired. If the argument
No is present, the task must not be optimized. GNAT does not attempt to optimize any
tasks in this manner (since protected objects are available in place of passive tasks).

For more information on the subject of passive tasks, see the section ‘Passive Task Opti-
mization’ in the GNAT Users Guide.

2.130 Pragma Persistent_BSS

Syntax:
pragma Persistent_BSS [(object_LOCAL_NAME)]

This pragma allows selected objects to be placed in the .persistent_bss section. On some
targets the linker and loader provide for special treatment of this section, allowing a program
to be reloaded without affecting the contents of this data (hence the name persistent).

There are two forms of usage. If an argument is given, it must be the local name of a
library-level object, with no explicit initialization and whose type is potentially persistent.
If no argument is given, then the pragma is a configuration pragma, and applies to all
library-level objects with no explicit initialization of potentially persistent types.

A potentially persistent type is a scalar type, or an untagged, non-discriminated record,
all of whose components have no explicit initialization and are themselves of a potentially
persistent type, or an array, all of whose constraints are static, and whose component type
is potentially persistent.

If this pragma is used on a target where this feature is not supported, then the pragma will
be ignored. See also pragma Linker_Section.

2.131 Pragma Post
Syntax:

pragma Post (Boolean_ Expression);

The Post pragma is intended to be an exact replacement for the language-defined Post as-
pect, and shares its restrictions and semantics. It must appear either immediately following
the corresponding subprogram declaration (only other pragmas may intervene), or if there
is no separate subprogram declaration, then it can appear at the start of the declarations
in a subprogram body (preceded only by other pragmas).

2.132 Pragma Postcondition
Syntax:

pragma Postcondition (
[Check =>] Boolean_Expression
[, [Message =>] String_ Expression]);

The Postcondition pragma allows specification of automatic postcondition checks for sub-
programs. These checks are similar to assertions, but are automatically inserted just prior to
the return statements of the subprogram with which they are associated (including implicit
returns at the end of procedure bodies and associated exception handlers).

Chapter 2: Implementation Defined Pragmas 67

In addition, the boolean expression which is the condition which must be true may contain
references to function’Result in the case of a function to refer to the returned value.

Postcondition pragmas may appear either immediately following the (separate) declara-
tion of a subprogram, or at the start of the declarations of a subprogram body. Only other
pragmas may intervene (that is appear between the subprogram declaration and its post-
conditions, or appear before the postcondition in the declaration sequence in a subprogram
body). In the case of a postcondition appearing after a subprogram declaration, the for-
mal arguments of the subprogram are visible, and can be referenced in the postcondition
expressions.

The postconditions are collected and automatically tested just before any return (implicit
or explicit) in the subprogram body. A postcondition is only recognized if postconditions
are active at the time the pragma is encountered. The compiler switch ‘gnata’ turns on all
postconditions by default, and pragma Check_Policy with an identifier of Postcondition
can also be used to control whether postconditions are active.

The general approach is that postconditions are placed in the spec if they represent func-
tional aspects which make sense to the client. For example we might have:

function Direction return Integer;
pragma Postcondition
(Direction'Result = +1
or else
Direction'Result = -1);

which serves to document that the result must be +1 or -1, and will test that this is the
case at run time if postcondition checking is active.

Postconditions within the subprogram body can be used to check that some internal aspect
of the implementation, not visible to the client, is operating as expected. For instance if a
square root routine keeps an internal counter of the number of times it is called, then we
might have the following postcondition:

Sqrt_Calls : Natural := O;

function Sqrt (Arg : Float) return Float is
pragma Postcondition
(Sgrt_Calls = Sqrt_Calls'Old + 1);

end Sqrt

As this example, shows, the use of the 01d attribute is often useful in postconditions to
refer to the state on entry to the subprogram.

Note that postconditions are only checked on normal returns from the subprogram. If an
abnormal return results from raising an exception, then the postconditions are not checked.

If a postcondition fails, then the exception System.Assertions.Assert_Failure is raised.
If a message argument was supplied, then the given string will be used as the exception
message. If no message argument was supplied, then the default message has the form
“Postcondition failed at file_name:line”. The exception is raised in the context of the sub-
program body, so it is possible to catch postcondition failures within the subprogram body
itself.

Chapter 2: Implementation Defined Pragmas 68

Within a package spec, normal visibility rules in Ada would prevent forward references
within a postcondition pragma to functions defined later in the same package. This would
introduce undesirable ordering constraints. To avoid this problem, all postcondition prag-
mas are analyzed at the end of the package spec, allowing forward references.

The following example shows that this even allows mutually recursive postconditions as in:

package Parity_Functions is
function 0dd (X : Natural) return Boolean;
pragma Postcondition
(0dd'Result =
x=1
or else
(x /= 0 and then Even (X - 1))));

function Even (X : Natural) return Boolean;
pragma Postcondition
(Even'Result =
(x=0
or else
(x /=1 and then 0dd (X - 1))));

end Parity_Functions;

There are no restrictions on the complexity or form of conditions used within
Postcondition pragmas. The following example shows that it is even possible to verify
performance behavior.

package Sort is

Performance : constant Float;
-- Performance constant set by implementation
-- to match target architecture behavior.

procedure Treesort (Arg : String);

-- Sorts characters of argument using N*logN sort

pragma Postcondition

(Float (Clock - Clock'01ld) <=
Float (Arg'Length) *
log (Float (Arg'Length)) *
Performance) ;
end Sort;

Note: postcondition pragmas associated with subprograms that are marked as
Inline_Always, or those marked as Inline with front-end inlining (-gnatN option set)
are accepted and legality-checked by the compiler, but are ignored at run-time even if
postcondition checking is enabled.

Note that pragma Postcondition differs from the language-defined Post aspect (and cor-
responding Post pragma) in allowing multiple occurrences, allowing occurences in the body
even if there is a separate spec, and allowing a second string parameter, and the use of the

Chapter 2: Implementation Defined Pragmas 69

pragma identifier Check. Historically, pragma Postcondition was implemented prior to
the development of Ada 2012, and has been retained in its original form for compatibility
purposes.

2.133 Pragma Post_Class
Syntax:

pragma Post_Class (Boolean_Expression);

The Post_Class pragma is intended to be an exact replacement for the language-defined
Post'Class aspect, and shares its restrictions and semantics. It must appear either im-
mediately following the corresponding subprogram declaration (only other pragmas may
intervene), or if there is no separate subprogram declaration, then it can appear at the start
of the declarations in a subprogram body (preceded only by other pragmas).

Note: This pragma is called Post_Class rather than Post'Class because the latter would
not be strictly conforming to the allowed syntax for pragmas. The motivation for providing
pragmas equivalent to the aspects is to allow a program to be written using the pragmas,
and then compiled if necessary using an Ada compiler that does not recognize the pragmas
or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this
pragma is Post'Class, not Post_Class.

2.134 Pragma Pre
Syntax:

pragma Pre (Boolean_Expression);

The Pre pragma is intended to be an exact replacement for the language-defined Pre aspect,
and shares its restrictions and semantics. It must appear either immediately following the
corresponding subprogram declaration (only other pragmas may intervene), or if there is
no separate subprogram declaration, then it can appear at the start of the declarations in
a subprogram body (preceded only by other pragmas).

2.135 Pragma Precondition
Syntax:

pragma Precondition (
[Check =>] Boolean_Expression
[, [Message =>] String Expression]);
The Precondition pragma is similar to Postcondition except that the corresponding
checks take place immediately upon entry to the subprogram, and if a precondition fails,
the exception is raised in the context of the caller, and the attribute ‘Result cannot be used
within the precondition expression.

Otherwise, the placement and visibility rules are identical to those described for postcon-
ditions. The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;
pragma Precondition (Arg >= 0.0)

Chapter 2: Implementation Defined Pragmas 70

end Math_Functions;

Precondition pragmas may appear either immediately following the (separate) declara-
tion of a subprogram, or at the start of the declarations of a subprogram body. Only other
pragmas may intervene (that is appear between the subprogram declaration and its post-
conditions, or appear before the postcondition in the declaration sequence in a subprogram
body).

Note: precondition pragmas associated with subprograms that are marked as Inline_Always,
or those marked as Inline with front-end inlining (-gnatN option set) are accepted and
legality-checked by the compiler, but are ignored at run-time even if precondition checking
is enabled.

Note that pragma Precondition differs from the language-defined Pre aspect (and corre-
sponding Pre pragma) in allowing multiple occurrences, allowing occurences in the body
even if there is a separate spec, and allowing a second string parameter, and the use of
the pragma identifier Check. Historically, pragma Precondition was implemented prior to
the development of Ada 2012, and has been retained in its original form for compatibility
purposes.

2.136 Pragma Predicate

Syntax:

pragma Predicate
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

This pragma (available in all versions of Ada in GNAT) encompasses both the Static_
Predicate and Dynamic_Predicate aspects in Ada 2012. A predicate is regarded as static
if it has an allowed form for Static_Predicate and is otherwise treated as a Dynamic_
Predicate. Otherwise, predicates specified by this pragma behave exactly as described in
the Ada 2012 reference manual. For example, if we have

type R is range 1 .. 10;

subtype S is R;

pragma Predicate (Entity => S, Check => S not in 4 .. 6);

subtype Q is R

pragma Predicate (Entity => Q, Check => F(Q) or G(Q));
the effect is identical to the following Ada 2012 code:

type R is range 1 .. 10;
subtype S is R with

Static_Predicate => S not in 4 .. 6;
subtype Q is R with

Dynamic_Predicate => F(Q) or G(Q);

Note that there are no pragmas Dynamic_Predicate or Static_Predicate. That is be-
cause these pragmas would affect legality and semantics of the program and thus do not
have a neutral effect if ignored. The motivation behind providing pragmas equivalent to
corresponding aspects is to allow a program to be written using the pragmas, and then com-
piled with a compiler that will ignore the pragmas. That doesn’t work in the case of static

Chapter 2: Implementation Defined Pragmas 71

and dynamic predicates, since if the corresponding pragmas are ignored, then the behavior
of the program is fundamentally changed (for example a membership test A in B would not
take into account a predicate defined for subtype B). When following this approach, the use
of predicates should be avoided.

2.137 Pragma Predicate_Failure
Syntax:

pragma Predicate_Failure
([Entity =>] type_LOCAL_NAME,
[Message =>] String_ Expression);
The Predicate_Failure pragma is intended to be an exact replacement for the language-
defined Predicate_Failure aspect, and shares its restrictions and semantics.

2.138 Pragma Preelaborable_Initialization

Syntax:
pragma Preelaborable_Initialization (DIRECT_NAME);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.139 Pragma Prefix_Exception_Messages
Syntax:

pragma Prefix_Exception_Messages;

This is an implementation-defined configuration pragma that affects the behavior of raise
statements with a message given as a static string constant (typically a string literal). In
such cases, the string will be automatically prefixed by the name of the enclosing entity
(giving the package and subprogram containing the raise statement). This helps to identify
where messages are coming from, and this mode is automatic for the run-time library.

The pragma has no effect if the message is computed with an expression other than a static
string constant, since the assumption in this case is that the program computes exactly the
string it wants. If you still want the prefixing in this case, you can always call GNAT . Source_
Info.Enclosing_Entity and prepend the string manually.

2.140 Pragma Pre_Class
Syntax:

pragma Pre_Class (Boolean_Expression);

The Pre_Class pragma is intended to be an exact replacement for the language-defined
Pre'Class aspect, and shares its restrictions and semantics. It must appear either im-
mediately following the corresponding subprogram declaration (only other pragmas may
intervene), or if there is no separate subprogram declaration, then it can appear at the start
of the declarations in a subprogram body (preceded only by other pragmas).

Note: This pragma is called Pre_Class rather than Pre'Class because the latter would
not be strictly conforming to the allowed syntax for pragmas. The motivation for providing

Chapter 2: Implementation Defined Pragmas 72

pragmas equivalent to the aspects is to allow a program to be written using the pragmas,
and then compiled if necessary using an Ada compiler that does not recognize the pragmas
or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this
pragma is Pre'Class, not Pre_Class.

2.141 Pragma Priority_Specific_Dispatching

Syntax:
pragma Priority_Specific_Dispatching (
POLICY_IDENTIFIER,
first_priority_EXPRESSION,
last_priority_EXPRESSION)

POLICY_IDENTIFIER ::=
EDF_Across_Priorities |
FIFO_Within_Priorities |
Non_Preemptive_Within_Priorities |
Round_Robin_Within_Priorities
This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.142 Pragma Profile

Syntax:
pragma Profile (Ravenscar | Restricted | Rational | Jorvik |
GNAT_Extended_Ravenscar | GNAT_Ravenscar_EDF);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as
an implementation-defined pragma. This is a configuration pragma that establishes
a set of configuration pragmas that depend on the argument. Ravenscar is standard
in Ada 2005. Jorvik is standard in Ada 202x. The other possibilities (Restricted,
Rational, GNAT_Extended_Ravenscar, GNAT_Ravenscar_EDF) are implementation-defined.
GNAT_Extended_Ravenscar is an alias for Jorvik.

The set of configuration pragmas is defined in the following sections.
* Pragma Profile (Ravenscar)

The Ravenscar profile is standard in Ada 2005, but is available in all earlier versions
of Ada as an implementation-defined pragma. This profile establishes the following set
of configuration pragmas:

* Task_Dispatching Policy (FIFO_Within_Priorities)
[RM D.2.2] Tasks are dispatched following a preemptive priority-ordered scheduling
policy.
Locking Policy (Ceiling_Locking)
[RM D.3] While tasks and interrupts execute a protected action, they inherit the
ceiling priority of the corresponding protected object.
Detect_Blocking

This pragma forces the detection of potentially blocking operations within a pro-
tected operation, and to raise Program_FError if that happens.

Chapter 2: Implementation Defined Pragmas 73

plus the following set of restrictions:

* Max_Entry_Queue_Length => 1

No task can be queued on a protected entry.
Max_Protected_Entries =>1
* Max_Task_Entries => 0

No rendezvous statements are allowed.
* No_Abort_Statements
No_Dynamic_Attachment
No_Dynamic_Priorities
No_Implicit_Heap_Allocations
* No_Local_Protected_Objects
No_Local_Timing_Events
No_Protected_Type_Allocators
No_Relative_Delay
No_Requeue_Statements
* No_Select_Statements
No_Specific_Termination_Handlers
* No_Task_Allocators
No_Task_Hierarchy

* No_Task_Termination

* Simple_Barriers

The Ravenscar profile also includes the following restrictions that specify that there
are no semantic dependencies on the corresponding predefined packages:

* No_Dependence => Ada.Asynchronous_Task_Control

* No_Dependence => Ada.Calendar

* No_Dependence => Ada.Execution_Time.Group_Budget

* No_Dependence => Ada.Execution_Time.Timers

* No_Dependence => Ada.Task_Attributes

* No_Dependence => System.Multiprocessors.Dispatching_Domains

This set of configuration pragmas and restrictions correspond to the definition
of the ‘Ravenscar Profile’ for limited tasking, devised and published by the
International Real-Time Ada Workshop, 1997. A description is also available at
‘http://www-users.cs.york.ac.uk/ “burns/ravenscar.ps’.

The original definition of the profile was revised at subsequent IRTAW
meetings. It has been included in the ISO Guide for the Use of the Ada
Programming Language in High Integrity Systems, and was made part of
the Ada 2005 standard. The formal definition given by the Ada Rapporteur
Group (ARG) can be found in two Ada Issues (AI-249 and AI-305) available
at ‘http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt’ and
‘http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt’ .

Chapter 2: Implementation Defined Pragmas 74

The above set is a superset of the restrictions provided by pragma Profile
(Restricted), it includes six additional restrictions (Simple_Barriers, No_Select_
Statements, No_Calendar, No_Implicit_Heap_Allocations, No_Relative_Delay
and No_Task_Termination). This means that pragma Profile (Ravenscar), like the
pragma Profile (Restricted), automatically causes the use of a simplified, more
efficient version of the tasking run-time library.

* Pragma Profile (Jorvik)

Jorvik is the new profile added to the Ada 202x draft standard, previously implemented
under the name GNAT_Extended_Ravenscar.

The No_Implicit_Heap_Allocations restriction has been replaced by No_Implicit_
Task_Allocations and No_Implicit_Protected_Object_Allocations.

The Simple_Barriers restriction has been replaced by Pure_Barriers.

The Max_Protected_Entries, Max_Entry_Queue_Length, and No_Relative_Delay
restrictions have been removed.

Details on the rationale for Jorvik and implications for use may be found in A New
Ravenscar-Based Profile by P. Rogers, J. Ruiz, T. Gingold and P. Bernardi, in Reliable
Software Technologies — Ada Europe 2017, Springer-Verlag Lecture Notes in Computer
Science, Number 10300.

* Pragma Profile (GNAT_Ravenscar_EDF)

This profile corresponds to the Ravenscar profile but using EDF_Across_Priority as the
Task_Scheduling_Policy.

* Pragma Profile (Restricted)

This profile corresponds to the GNAT restricted run time. It establishes the following
set of restrictions:
* No_Abort_Statements

* No_Entry_Queue

* No_Task_Hierarchy

* No_Task_Allocators
No_Dynamic_Priorities
No_Terminate_Alternatives
No_Dynamic_Attachment
No_Protected_Type_Allocators
* No_Local_Protected_Objects
No_Requeue_Statements
No_Task_Attributes_Package
Max_Asynchronous_Select_Nesting = 0
Max_Task_Entries =0
Max_Protected_Entries =1

EE S O T

Max_Select_Alternatives =0

This set of restrictions causes the automatic selection of a simplified version of the run
time that provides improved performance for the limited set of tasking functionality
permitted by this set of restrictions.

Chapter 2: Implementation Defined Pragmas 75

* Pragma Profile (Rational)

The Rational profile is intended to facilitate porting legacy code that compiles with the
Rational APEX compiler, even when the code includes non- conforming Ada constructs.
The profile enables the following three pragmas:

* pragma Implicit_Packing
* pragma Overriding_Renamings

* pragma Use_VADS_Size
2.143 Pragma Profile_Warnings
Syntax:
pragma Profile_Warnings (Ravenscar | Restricted | Rational);

This is an implementation-defined pragma that is similar in effect to pragma Profile except
that instead of generating Restrictions pragmas, it generates Restriction_Warnings
pragmas. The result is that violations of the profile generate warning messages instead of
error messages.

2.144 Pragma Program_Exit
Syntax:
pragma Program_Exit [(boolean_ EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Program_Exit in the SPARK
2014 Reference Manual, section 6.1.10.

2.145 Pragma Propagate_Exceptions
Syntax:
pragma Propagate_Exceptions;

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is ignored. It is retained for compatibility purposes. It used to be
used in connection with optimization of a now-obsolete mechanism for implementation of
exceptions.

2.146 Pragma Provide_Shift_Operators
Syntax:

pragma Provide_Shift_Operators (integer_first_subtype_LOCAL_NAME);

This pragma can be applied to a first subtype local name that specifies either an unsigned or
signed type. It has the effect of providing the five shift operators (Shift_Left, Shift_Right,
Shift_Right_Arithmetic, Rotate_Left and Rotate_Right) for the given type. It is similar
to including the function declarations for these five operators, together with the pragma
Import (Intrinsic, . ..) statements.

Chapter 2: Implementation Defined Pragmas 76

2.147 Pragma Psect_Object
Syntax:

pragma Psect_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

This pragma is identical in effect to pragma Common_Object.

2.148 Pragma Pure_Function
Syntax:

pragma Pure_Function ([Entity =>] function_LOCAL_NAME) ;

This pragma appears in the same declarative part as a function declaration (or a set of
function declarations if more than one overloaded declaration exists, in which case the
pragma applies to all entities). It specifies that the function Entity is to be considered
pure for the purposes of code generation. This means that the compiler can assume that
there are no side effects, and in particular that two identical calls produce the same result
in the same context. It also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checks to try to ensure that this promise is
met, so Pure_Function can be used with functions that are conceptually pure, even if they
do modify global variables. For example, a square root function that is instrumented to
count the number of times it is called is still conceptually pure, and can still be optimized,
even though it modifies a global variable (the count). Memo functions are another example
(where a table of previous calls is kept and consulted to avoid re-computation).

Note also that the normal rules excluding optimization of subprograms in pure units (when
parameter types are descended from System.Address, or when the full view of a param-
eter type is limited), do not apply for the Pure_Function case. If you explicitly specify
Pure_Function, the compiler may optimize away calls with identical arguments, and if that
results in unexpected behavior, the proper action is not to use the pragma for subprograms
that are not (conceptually) pure.

Note: Most functions in a Pure package are automatically pure, and there is no need to
use pragma Pure_Function for such functions. One exception is any function that has at
least one formal of type System.Address or a type derived from it. Such functions are not
considered pure by default, since the compiler assumes that the Address parameter may
be functioning as a pointer and that the referenced data may change even if the address
value does not. Similarly, imported functions are not considered to be pure by default, since
there is no way of checking that they are in fact pure. The use of pragma Pure_Function
for such a function will override these default assumption, and cause the compiler to treat
a designated subprogram as pure in these cases.

Chapter 2: Implementation Defined Pragmas 77

Note: If pragma Pure_Function is applied to a renamed function, it applies to the under-
lying renamed function. This can be used to disambiguate cases of overloading where some
but not all functions in a set of overloaded functions are to be designated as pure.

If pragma Pure_Function is applied to a library-level function, the function is also con-
sidered pure from an optimization point of view, but the unit is not a Pure unit in the
categorization sense. So for example, a function thus marked is free to with non-pure units.

2.149 Pragma Rational

Syntax:
pragma Rational;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Rational);

2.150 Pragma Ravenscar

Syntax:
pragma Ravenscar;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Ravenscar);

which is the preferred method of setting the Ravenscar profile.

2.151 Pragma Refined_Depends

Syntax:
pragma Refined_Depends (DEPENDENCY_RELATION);

DEPENDENCY_RELATION ::=
null
| (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})
DEPENDENCY_CLAUSE ::=
OUTPUT_LIST =>[+] INPUT_LIST
| NULL_DEPENDENCY_CLAUSE
NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})
INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})

OUTPUT ::
INPUT

NAME | FUNCTION_RESULT
NAME

Chapter 2: Implementation Defined Pragmas 78

where FUNCTION_RESULT is a function Result attribute_reference

For the semantics of this pragma, see the entry for aspect Refined_Depends in the SPARK
2014 Reference Manual, section 6.1.5.

2.152 Pragma Refined_Global

Syntax:
pragma Refined_Global (GLOBAL_SPECIFICATION);

GLOBAL_SPECIFICATION ::=
null
| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})

MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST

MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
GLOBAL_LIST GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})

GLOBAL_ITEM NAME

For the semantics of this pragma, see the entry for aspect Refined_Global in the SPARK
2014 Reference Manual, section 6.1.4.

2.153 Pragma Refined_Post

Syntax:
pragma Refined_Post (boolean_EXPRESSION);

For the semantics of this pragma, see the entry for aspect Refined_Post in the SPARK
2014 Reference Manual, section 7.2.7.

2.154 Pragma Refined_State

Syntax:
pragma Refined_State (REFINEMENT_LIST);

REFINEMENT_LIST ::=
(REFINEMENT_CLAUSE {, REFINEMENT_CLAUSE})

REFINEMENT_CLAUSE ::= state_NAME => CONSTITUENT_LIST

CONSTITUENT_LIST ::=
null
| CONSTITUENT
| (CONSTITUENT {, CONSTITUENT})

CONSTITUENT ::= object_NAME | state_NAME

For the semantics of this pragma, see the entry for aspect Refined_State in the SPARK
2014 Reference Manual, section 7.2.2.

Chapter 2: Implementation Defined Pragmas 79

2.155 Pragma Relative_Deadline

Syntax:
pragma Relative_Deadline (time_span_EXPRESSION) ;

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.156 Pragma Remote_Access_Type
Syntax:
pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME);

This pragma appears in the formal part of a generic declaration. It specifies an exception
to the RM rule from E.2.2(17/2), which forbids the use of a remote access to class-wide
type as actual for a formal access type.

When this pragma applies to a formal access type Entity, that type is treated as a remote
access to class-wide type in the generic. It must be a formal general access type, and its
designated type must be the class-wide type of a formal tagged limited private type from
the same generic declaration.

In the generic unit, the formal type is subject to all restrictions pertaining to remote access
to class-wide types. At instantiation, the actual type must be a remote access to class-wide

type.

2.157 Pragma Rename_Pragma
Syntax:

pragma Rename_Pragma (
[New_Name =>] IDENTIFIER,
[Renamed =>] pragma_IDENTIFIER);

This pragma provides a mechanism for supplying new names for existing pragmas. The
New_Name identifier can subsequently be used as a synonym for the Renamed pragma. For
example, suppose you have code that was originally developed on a compiler that supports
Inline_Only as an implementation defined pragma. And suppose the semantics of pragma
Inline_Only are identical to (or at least very similar to) the GNAT implementation defined
pragma Inline_Always. You could globally replace Inline_Only with Inline_Always.

However, to avoid that source modification, you could instead add a configuration pragma:

pragma Rename_Pragma (
New_Name => Inline_Only,
Renamed => Inline_Always);
Then GNAT will treat “pragma Inline_Only ...” as if you had written “pragma In-

”

line_Always ...".

Pragma Inline_Only will not necessarily mean the same thing as the other Ada compiler;
it’s up to you to make sure the semantics are close enough.

Chapter 2: Implementation Defined Pragmas 80

2.158 Pragma Restricted_Run_Time
Syntax:

pragma Restricted_Run_Time;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Restricted);

which is the preferred method of setting the restricted run time profile.

2.159 Pragma Restriction_Warnings
Syntax:

pragma Restriction_Warnings
(restriction_IDENTIFIER {, restriction_IDENTIFIER});

This pragma allows a series of restriction identifiers to be specified (the list of allowed
identifiers is the same as for pragma Restrictions). For each of these identifiers the
compiler checks for violations of the restriction, but generates a warning message rather
than an error message if the restriction is violated.

One use of this is in situations where you want to know about violations of a restriction,
but you want to ignore some of these violations. Consider this example, where you want
to set Ada_95 mode and enable style checks, but you want to know about any other use of
implementation pragmas:

pragma Restriction_Warnings (No_Implementation_Pragmas);

pragma Warnings (0ff, "violation of No_Implementation_Pragmas");
pragma Ada_95;

pragma Style_Checks ("2bfhkM160");

pragma Warnings (On, "violation of No_Implementation_Pragmas");

By including the above lines in a configuration pragmas file, the Ada_95 and Style_Checks
pragmas are accepted without generating a warning, but any other use of implementation
defined pragmas will cause a warning to be generated.

2.160 Pragma Reviewable
Syntax:

pragma Reviewable;

This pragma is an RM-defined standard pragma, but has no effect on the program being
compiled, or on the code generated for the program.

To obtain the required output specified in RM H.3.1, the compiler must be run with various
special switches as follows:

* “Where compiler-generated run-time checks remain’

The switch ‘-gnatGL’ may be used to list the expanded code in pseudo-Ada form.
Runtime checks show up in the listing either as explicit checks or operators marked
with {} to indicate a check is present.

Chapter 2: Implementation Defined Pragmas 81

* ‘An identification of known exceptions at compile time’

If the program is compiled with ‘-gnatwa’, the compiler warning messages will indicate
all cases where the compiler detects that an exception is certain to occur at run time.

* ‘Possible reads of uninitialized variables’
The compiler warns of many such cases, but its output is incomplete.
A supplemental static analysis tool may be used to obtain a comprehensive list of all possible
points at which uninitialized data may be read.
* “Where run-time support routines are implicitly invoked’

In the output from ‘-gnatGL’, run-time calls are explicitly listed as calls to the relevant
run-time routine.

* ‘Object code listing’
This may be obtained either by using the ‘-S’ switch, or the objdump utility.

* ‘Constructs known to be erroneous at compile time’
These are identified by warnings issued by the compiler (use ‘-gnatwa’).

* ‘Stack usage information’
Static stack usage data (maximum per-subprogram) can be obtained via the ‘-fstack-
usage’ switch to the compiler. Dynamic stack usage data (per task) can be obtained
via the ‘-u’ switch to gnatbind

* ‘Object code listing of entire partition’
This can be obtained by compiling the partition with ‘-S’, or by applying objdump to
all the object files that are part of the partition.

* ‘A description of the run-time model’
The full sources of the run-time are available, and the documentation of these routines
describes how these run-time routines interface to the underlying operating system
facilities.

*

‘Control and data-flow information’

A supplemental static analysis tool may be used to obtain complete control and data-flow
information, as well as comprehensive messages identifying possible problems based on this
information.

2.161 Pragma Secondary_Stack_Size

Syntax:
pragma Secondary_Stack_Size (integer_ EXPRESSION);

This pragma appears within the task definition of a single task declaration or a task type
declaration (like pragma Storage_Size) and applies to all task objects of that type. The
argument specifies the size of the secondary stack to be used by these task objects, and
must be of an integer type. The secondary stack is used to handle functions that return a
variable-sized result, for example a function returning an unconstrained String.

Note this pragma only applies to targets using fixed secondary stacks, like VxWorks 653
and bare board targets, where a fixed block for the secondary stack is allocated from the
primary stack of the task. By default, these targets assign a percentage of the primary stack

Chapter 2: Implementation Defined Pragmas 82

for the secondary stack, as defined by System.Parameter.Sec_Stack_Percentage. With
this pragma, an integer _EXPRESSION of bytes is assigned from the primary stack instead.

For most targets, the pragma does not apply as the secondary stack grows on demand:
allocated as a chain of blocks in the heap. The default size of these blocks can be modified
via the -D binder option as described in GNAT User’s Guide.

Note that no check is made to see if the secondary stack can fit inside the primary stack.

Note the pragma cannot appear when the restriction No_Secondary_Stack is in effect.

2.162 Pragma Share_Generic

Syntax:
pragma Share_Generic (GNAME {, GNAME});

GNAME ::= generic_unit_NAME | generic_instance_NAME

This pragma is provided for compatibility with Dec Ada 83. It has no effect in GNAT
(which does not implement shared generics), other than to check that the given names are
all names of generic units or generic instances.

2.163 Pragma Shared

This pragma is provided for compatibility with Ada 83. The syntax and semantics are
identical to pragma Atomic.

2.164 Pragma Short_Circuit_And_Or

Syntax:
pragma Short_Circuit_And_Or;

This configuration pragma causes the predefined AND and OR operators of type Stan-
dard.Boolean to have short-circuit semantics. That is, they behave like AND THEN and
OR ELSE; the right-hand side is not evaluated if the left-hand side determines the result.
This may be useful in the context of certification protocols requiring the use of short-
circuited logical operators.

There is no requirement that all units in a partition use this option. However, mixing of
short-circuit and non-short-circuit semantics can be confusing. Therefore, the recommended
use is to put the pragma in a configuration file that applies to the whole program. Alter-
natively, if you have a legacy library that should not use this pragma, you can put it in a
separate library project that does not use the pragma. In any case, fine-grained mixing of
the different semantics is not recommended. If pragma Short_Circuit_And_Or is specified,
then it is illegal to rename the predefined Boolean AND and OR, or to pass them to generic
formal functions; this corresponds to the fact that AND THEN and OR ELSE cannot be
renamed nor passed as generic formal functions.

Note that this pragma has no effect on other logical operators — predefined operators of
modular types, array-of-boolean types and types derived from Standard.Boolean, nor user-
defined operators.

See also the pragma Unevaluated_Use_0f_01d and the restriction No_Direct_Boolean_
Operators, which may be useful in conjunction with Short_Circuit_And_Or.

Chapter 2: Implementation Defined Pragmas 83

2.165 Pragma Short_Descriptors

Syntax:
pragma Short_Descriptors;

This pragma is provided for compatibility with other Ada implementations. It is recognized
but ignored by all current versions of GNAT.

2.166 Pragma Side_Effects

Syntax:
pragma Side_Effects [(static_boolean EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Side_Effects in the SPARK
Reference Manual, section 6.1.12.

2.167 Pragma Simple_Storage_Pool_Type

Syntax:
pragma Simple_Storage_Pool_Type (type_LOCAL_NAME) ;

A type can be established as a ‘simple storage pool type’ by applying the representation
pragma Simple_Storage_Pool_Type to the type. A type named in the pragma must be
a library-level immutably limited record type or limited tagged type declared immediately
within a package declaration. The type can also be a limited private type whose full type
is allowed as a simple storage pool type.

For a simple storage pool type SSP, nonabstract primitive subprograms Allocate,
Deallocate, and Storage_Size can be declared that are subtype conformant with the
following subprogram declarations:

procedure Allocate

(Pool : in out SSP;

Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count) ;

procedure Deallocate
(Pool : in out SSP;

Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

function Storage_Size (Pool : SSP)
return System.Storage_Elements.Storage_Count;

Procedure Allocate must be declared, whereas Deallocate and Storage_Size are op-
tional. If Deallocate is not declared, then applying an unchecked deallocation has no
effect other than to set its actual parameter to null. If Storage_Size is not declared, then
the Storage_Size attribute applied to an access type associated with a pool object of type
SSP returns zero. Additional operations can be declared for a simple storage pool type
(such as for supporting a mark/release storage-management discipline).

Chapter 2: Implementation Defined Pragmas 84

An object of a simple storage pool type can be associated with an access type by specifying
the attribute [Simple_Storage_Pool], page 132. For example:

My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;

for Acc'Simple_Storage_Pool use My_Pool;
See attribute [Simple_Storage_Pool], page 132, for further details.

2.168 Pragma Source_File_Name

Syntax:
pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Spec_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Body_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

Use this to override the normal naming convention. It is a configuration pragma, and so has
the usual applicability of configuration pragmas (i.e., it applies to either an entire partition,
or to all units in a compilation, or to a single unit, depending on how it is used). unit_name
is mapped to file_name_literal. The identifier for the second argument is required, and
indicates whether this is the file name for the spec or for the body.

The optional Index argument should be used when a file contains multiple units, and when
you do not want to use gnatchop to separate then into multiple files (which is the recom-
mended procedure to limit the number of recompilations that are needed when some sources
change). For instance, if the source file source.ada contains

package B is
end B;
with B;

procedure A is
begin

end A;
you could use the following configuration pragmas:

pragma Source_File_Name

(B, Spec_File_Name => "source.ada", Index => 1);
pragma Source_File_Name

(A, Body_File_Name => "source.ada", Index => 2);

Note that the gnatname utility can also be used to generate those configuration pragmas.

Chapter 2: Implementation Defined Pragmas 85

Another form of the Source_File_Name pragma allows the specification of patterns defining
alternative file naming schemes to apply to all files.

pragma Source_File_Name
([Spec_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Body_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Subunit_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The first argument is a pattern that contains a single asterisk indicating the point at which
the unit name is to be inserted in the pattern string to form the file name. The second
argument is optional. If present it specifies the casing of the unit name in the resulting file
name string. The default is lower case. Finally the third argument allows for systematic
replacement of any dots in the unit name by the specified string literal.

Note that Source_File_Name pragmas should not be used if you are using project files.
The reason for this rule is that the project manager is not aware of these pragmas, and so
other tools that use the project file would not be aware of the intended naming conven-
tions. If you are using project files, file naming is controlled by Source_File_Name_Project
pragmas, which are usually supplied automatically by the project manager. A pragma
Source_File_Name cannot appear after a [Pragma Source_File_Name_Project], page 85.

For more details on the use of the Source_File_Name pragma, see the sections on Using
Other File Names and Alternative File Naming Schemes in the GNAT User’s Guide.

2.169 Pragma Source_File_Name_Project

This pragma has the same syntax and semantics as pragma Source_File_Name. It is
only allowed as a stand-alone configuration pragma. It cannot appear after a [Pragma
Source_File_Name], page 84, and most importantly, once pragma Source_File_Name_Project
appears, no further Source_File_Name pragmas are allowed.

The intention is that Source_File_Name_Project pragmas are always generated by the
Project Manager in a manner consistent with the naming specified in a project file, and when
naming is controlled in this manner, it is not permissible to attempt to modify this naming
scheme using Source_File_Name or Source_File_Name_Project pragmas (which would not
be known to the project manager).

2.170 Pragma Source_Reference

Syntax:

Chapter 2: Implementation Defined Pragmas 86

pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);

This pragma must appear as the first line of a source file. integer_literal is the logical
line number of the line following the pragma line (for use in error messages and debugging
information). string_literal is a static string constant that specifies the file name to
be used in error messages and debugging information. This is most notably used for the
output of gnatchop with the ‘-r’ switch, to make sure that the original unchopped source
file is the one referred to.

The second argument must be a string literal, it cannot be a static string expression other
than a string literal. This is because its value is needed for error messages issued by all
phases of the compiler.

2.171 Pragma SPARK_Mode

Syntax:
pragma SPARK_Mode [(On | 0ff)] ;

In general a program can have some parts that are in SPARK 2014 (and follow all the rules
in the SPARK Reference Manual), and some parts that are full Ada 2012.

The SPARK_Mode pragma is used to identify which parts are in SPARK 2014 (by default
programs are in full Ada). The SPARK_Mode pragma can be used in the following places:

* As a configuration pragma, in which case it sets the default mode for all units compiled
with this pragma.

Immediately following a library-level subprogram spec

Immediately within a library-level package body

Immediately following the private keyword of a library-level package spec
Immediately following the begin keyword of a library-level package body

L S O

Immediately within a library-level subprogram body

Normally a subprogram or package spec/body inherits the current mode that is active at
the point it is declared. But this can be overridden by pragma within the spec or body as
above.

The basic consistency rule is that you can’t turn SPARK_Mode back On, once you have
explicitly (with a pragma) turned if 0ff. So the following rules apply:
If a subprogram spec has SPARK_Mode 0ff, then the body must also have SPARK_Mode
Off.
For a package, we have four parts:

* the package public declarations

* the package private part

* the body of the package

* the elaboration code after begin

For a package, the rule is that if you explicitly turn SPARK_Mode 0ff for any part, then all
the following parts must have SPARK_Mode 0ff. Note that this may require repeating a
pragma SPARK_Mode (0ff) in the body. For example, if we have a configuration pragma
SPARK_Mode (0On) that turns the mode on by default everywhere, and one particular
package spec has pragma SPARK_Mode (0ff), then that pragma will need to be repeated
in the package body.

Chapter 2: Implementation Defined Pragmas 87

2.172 Pragma Static_Elaboration_Desired
Syntax:

pragma Static_Elaboration_Desired;

This pragma is used to indicate that the compiler should attempt to initialize statically
the objects declared in the library unit to which the pragma applies, when these objects
are initialized (explicitly or implicitly) by an aggregate. In the absence of this pragma,
aggregates in object declarations are expanded into assignments and loops, even when the
aggregate components are static constants. When the aggregate is present the compiler
builds a static expression that requires no run-time code, so that the initialized object
can be placed in read-only data space. If the components are not static, or the aggregate
has more that 100 components, the compiler emits a warning that the pragma cannot be
obeyed. (See also the restriction No_Implicit_Loops, which supports static construction of
larger aggregates with static components that include an others choice.)

2.173 Pragma Stream_Convert
Syntax:

pragma Stream_Convert (
[Entity =>] type_LOCAL_NAME,
[Read =>] function_NAME,
[Write =>] function_NAME);

This pragma provides an efficient way of providing user-defined stream attributes. Not only
is it simpler to use than specifying the attributes directly, but more importantly, it allows
the specification to be made in such a way that the predefined unit Ada.Streams is not
loaded unless it is actually needed (i.e. unless the stream attributes are actually used); the
use of the Stream_Convert pragma adds no overhead at all, unless the stream attributes
are actually used on the designated type.

The first argument specifies the type for which stream functions are provided. The second
parameter provides a function used to read values of this type. It must name a function
whose argument type may be any subtype, and whose returned type must be the type given
as the first argument to the pragma.

The meaning of the Read parameter is that if a stream attribute directly or indirectly
specifies reading of the type given as the first parameter, then a value of the type given as
the argument to the Read function is read from the stream, and then the Read function is
used to convert this to the required target type.

Similarly the Write parameter specifies how to treat write attributes that directly or in-
directly apply to the type given as the first parameter. It must have an input parameter
of the type specified by the first parameter, and the return type must be the same as the
input type of the Read function. The effect is to first call the Write function to convert to
the given stream type, and then write the result type to the stream.

The Read and Write functions must not be overloaded subprograms. If necessary renamings
can be supplied to meet this requirement. The usage of this attribute is best illustrated by a
simple example, taken from the GNAT implementation of package Ada.Strings.Unbounded:

function To_Unbounded (S : String) return Unbounded_String
renames To_Unbounded_String;

Chapter 2: Implementation Defined Pragmas 88

pragma Stream_Convert
(Unbounded_String, To_Unbounded, To_String);

The specifications of the referenced functions, as given in the Ada Reference Manual are:

function To_Unbounded_String (Source : String)
return Unbounded_String;

function To_String (Source : Unbounded_String)
return String;

The effect is that if the value of an unbounded string is written to a stream, then the
representation of the item in the stream is in the same format that would be used for
Standard.String'Output, and this same representation is expected when a value of this
type is read from the stream. Note that the value written always includes the bounds, even
for Unbounded_String’Write, since Unbounded_String is not an array type.

Note that the Stream_Convert pragma is not effective in the case of a derived type of a
non-limited tagged type. If such a type is specified then the pragma is silently ignored, and
the default implementation of the stream attributes is used instead.

2.174 Pragma Style_Checks

Syntax:

pragma Style_Checks (string LITERAL | ALL_CHECKS |
On | Off [, LOCAL_NAME]);

This pragma is used in conjunction with compiler switches to control the built in style
checking provided by GNAT. The compiler switches, if set, provide an initial setting for
the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that
a pragma is legal, including use as a configuration pragma (including use in the gnat.adc
file).

The form with a string literal specifies which style options are to be activated. These are
additive, so they apply in addition to any previously set style check options. The codes for
the options are the same as those used in the ‘-gnaty’ switch to ‘gec’ or ‘gnatmake’. For
example the following two methods can be used to enable layout checking and to change
the maximum nesting level value:

*
-— switch on layout checks
pragma Style_Checks ("1");
-- set the number of maximum allowed nesting levels to 15
pragma Style_Checks ("L15");
*

gcc —-c -gnatyl -gnatyL15 ...
The string literal values can be cumulatively switched on and off by prefixing the value with
+ or -, where:

* 4+ is equivalent to no prefix. It applies the check referenced by the literal value;

Chapter 2: Implementation Defined Pragmas

*

- switches the referenced check off.

allow misaligned block by disabling layout check

pragma Style_Checks ("-1");
declare

msg : constant String := "Hello";

begin

Put_Line (msg);
end;

enable the layout check again

pragma Style_Checks ("1");
declare

msg : constant String := "Hello";

begin

Put_Line (msg);
end;

89

The code above contains two layout errors, however, only the last line is picked up by the

compiler.

Similarly, the switches containing a numeric value can be applied in sequence.

In the

example below, the permitted nesting level is reduced in in the middle block and the compiler
raises a warning on the highlighted line.

-— Permit 3 levels of nesting
pragma Style_Checks ("L3");

procedure Main is
begin

if True then
if True then
null;
end if;
end if;
-- Reduce permitted nesting levels to 2.
-- Note that "+L2" and "L2" are equivalent.
pragma Style_Checks ("+L2");
if True then
if True then
null;
end if;
end if;
-- Disable checking permitted nesting levels.
-- Note that the number after "-L" is insignificant,
-- "-L", "-L3" and "-Lx" are all equivalent.
pragma Style_Checks ("-L3");
if True then
if True then
null;

Chapter 2: Implementation Defined Pragmas 90

end if;
end if;
end Main;
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of the
gnaty switch with no options. See the GNAT User’s Guide for details.)

Note: the behavior is slightly different in GNAT mode (-gnatg used). In this case, ALL_
CHECKS implies the standard set of GNAT mode style check options (i.e. equivalent to
-gnatyg).

The forms with 0ff and On can be used to temporarily disable style checks as shown in the
following example:

pragma Style_Checks ("k"); -- requires keywords in lower case

pragma Style_Checks (0ff); -- turn off style checks

NULL; -- this will not generate an error message
pragma Style_Checks (On); -- turn style checks back on

NULL; -- this will generate an error message

Finally the two argument form is allowed only if the first argument is On or 0ff. The effect
is to turn of semantic style checks for the specified entity, as shown in the following example:

pragma Style_Checks ("r"); -- require consistency of identifier casing
Arg : Integer;

Rfl : Integer := ARG; -- incorrect, wrong case

pragma Style_Checks (0ff, Arg);

Rf2 : Integer := ARG; -- 0K, no error

2.175 Pragma Subprogram_Variant

Syntax:
pragma Subprogram_Variant (SUBPROGRAM_VARIANT_LIST);

SUBPROGRAM_VARIANT_LIST ::=
STRUCTURAL_SUBPROGRAM_VARIANT_ITEM
| NUMERIC_SUBPROGRAM_VARIANT_ITEMS

NUMERIC_SUBPROGRAM_VARIANT_ITEMS ::=
NUMERIC_SUBPROGRAM_VARIANT_ITEM {, NUMERIC_SUBPROGRAM_VARIANT_ITEM}

NUMERIC_SUBPROGRAM_VARIANT_ITEM ::=
CHANGE_DIRECTION => EXPRESSION

STRUCTURAL_SUBPROGRAM_VARIANT_ITEM ::=
STRUCTURAL => EXPRESSION

CHANGE_DIRECTION ::= Increases | Decreases

The Subprogram_Variant pragma is intended to be an exact replacement for the
implementation-defined Subprogram_Variant aspect, and shares its restrictions and
semantics.

Chapter 2: Implementation Defined Pragmas 91

2.176 Pragma Subtitle

Syntax:
pragma Subtitle ([Subtitle =>] STRING_LITERAL);

This pragma is recognized for compatibility with other Ada compilers but is ignored by
GNAT.

2.177 Pragma Suppress

Syntax:
pragma Suppress (Identifier [, [On =>] Namel]);

This is a standard pragma, and supports all the check names required in the RM. It is in-
cluded here because GNAT recognizes some additional check names that are implementation
defined (as permitted by the RM):

* Alignment_Check can be used to suppress alignment checks on addresses used in ad-

dress clauses. Such checks can also be suppressed by suppressing range checks, but
the specific use of Alignment_Check allows suppression of alignment checks without
suppressing other range checks. Note that Alignment_Check is suppressed by default
on machines (such as the x86) with non-strict alignment.

Atomic_Synchronization can be used to suppress the special memory synchronization
instructions that are normally generated for access to Atomic variables to ensure correct
synchronization between tasks that use such variables for synchronization purposes.

Duplicated_Tag_Check Can be used to suppress the check that is generated for a
duplicated tag value when a tagged type is declared.

Container_Checks Can be used to suppress all checks within Ada.Containers and
instances of its children, including Tampering_Check.

Tampering_Check Can be used to suppress tampering check in the containers.

Predicate_Check can be used to control whether predicate checks are active. It is
applicable only to predicates for which the policy is Check. Unlike Assertion_Policy,
which determines if a given predicate is ignored or checked for the whole program, the
use of Suppress and Unsuppress with this check name allows a given predicate to be
turned on and off at specific points in the program.

Validity_Check can be used specifically to control validity checks. If Suppress is
used to suppress validity checks, then no validity checks are performed, including those
specified by the appropriate compiler switch or the Validity_Checks pragma.

Additional check names previously introduced by use of the Check_Name pragma are
also allowed.

Note that pragma Suppress gives the compiler permission to omit checks, but does not
require the compiler to omit checks. The compiler will generate checks if they are essentially
free, even when they are suppressed. In particular, if the compiler can prove that a certain
check will necessarily fail, it will generate code to do an unconditional ‘raise’, even if checks
are suppressed. The compiler warns in this case.

Of course, run-time checks are omitted whenever the compiler can prove that they will not
fail, whether or not checks are suppressed.

Chapter 2: Implementation Defined Pragmas 92

2.178 Pragma Suppress_All

Syntax:
pragma Suppress_All;

This pragma can appear anywhere within a unit. The effect is to apply Suppress (A11l_
Checks) to the unit in which it appears. This pragma is implemented for compatibility
with DEC Ada 83 usage where it appears at the end of a unit, and for compatibility with
Rational Ada, where it appears as a program unit pragma. The use of the standard Ada
pragma Suppress (Al1l_Checks) as a normal configuration pragma is the preferred usage
in GNAT.

2.179 Pragma Suppress_Debug_Info

Syntax:
pragma Suppress_Debug_Info ([Entity =>] LOCAL_NAME);

This pragma can be used to suppress generation of debug information for the specified
entity. It is intended primarily for use in debugging the debugger, and navigating around
debugger problems.

2.180 Pragma Suppress_Exception_Locations

Syntax:
pragma Suppress_Exception_Locations;

In normal mode, a raise statement for an exception by default generates an exception
message giving the file name and line number for the location of the raise. This is useful for
debugging and logging purposes, but this entails extra space for the strings for the messages.
The configuration pragma Suppress_Exception_Locations can be used to suppress the
generation of these strings, with the result that space is saved, but the exception message for
such raises is null. This configuration pragma may appear in a global configuration pragma
file, or in a specific unit as usual. It is not required that this pragma be used consistently
within a partition, so it is fine to have some units within a partition compiled with this
pragma and others compiled in normal mode without it.

2.181 Pragma Suppress_Initialization

Syntax:
pragma Suppress_Initialization ([Entity =>] variable_or_subtype_LOCAL_NAME) ;

Here variable_or_subtype_LOCAL_NAME is the name introduced by a type declaration or
subtype declaration or the name of a variable introduced by an object declaration.

In the case of a type or subtype this pragma suppresses any implicit or explicit initialization
for all variables of the given type or subtype, including initialization resulting from the use
of pragmas Normalize_Scalars or Initialize_Scalars.

This is considered a representation item, so it cannot be given after the type is frozen. It
applies to all subsequent object declarations, and also any allocator that creates objects of
the type.

Chapter 2: Implementation Defined Pragmas 93

If the pragma is given for the first subtype, then it is considered to apply to the base type
and all its subtypes. If the pragma is given for other than a first subtype, then it applies
only to the given subtype. The pragma may not be given after the type is frozen.

Note that this includes eliminating initialization of discriminants for discriminated types,
and tags for tagged types. In these cases, you will have to use some non-portable mechanism
(e.g. address overlays or unchecked conversion) to achieve required initialization of these
fields before accessing any object of the corresponding type.

For the variable case, implicit initialization for the named variable is suppressed, just as
though its subtype had been given in a pragma Suppress_Initialization, as described above.

2.182 Pragma Task_Name

Syntax
pragma Task_Name (string_EXPRESSION) ;

This pragma appears within a task definition (like pragma Priority) and applies to the
task in which it appears. The argument must be of type String, and provides a name to be
used for the task instance when the task is created. Note that this expression is not required
to be static, and in particular, it can contain references to task discriminants. This facility
can be used to provide different names for different tasks as they are created, as illustrated
in the example below.

The task name is recorded internally in the run-time structures and is accessible to tools
like the debugger. In addition the routine Ada.Task_Identification.Image will return
this string, with a unique task address appended.

-- Example of the use of pragma Task_Name

with Ada.Task_Identification;
use Ada.Task_Identification;
with Text_IO0; use Text_IO;
procedure t3 is

type Astring is access String;

task type Task_Typ (Name : access String) is
pragma Task_Name (Name.all);
end Task_Typ;

task body Task_Typ is

Nam : constant String := Image (Current_Task);
begin

Put_Line ("-->" & Nam (1 .. 14) & "<--");
end Task_Typ;

type Ptr_Task is access Task_Typ;
Task_Var : Ptr_Task;

begin

Chapter 2: Implementation Defined Pragmas 94

Task_Var :=
new Task_Typ (new String'("This is task 1"));
Task_Var :=
new Task_Typ (new String'("This is task 2"));
end;

2.183 Pragma Task_Storage

Syntax:

pragma Task_Storage (
[Task_Type =>] LOCAL_NAME,
[Top_Guard =>] static_integer_ EXPRESSION) ;

This pragma specifies the length of the guard area for tasks. The guard area is an additional
storage area allocated to a task. A value of zero means that either no guard area is created
or a minimal guard area is created, depending on the target. This pragma can appear
anywhere a Storage_Size attribute definition clause is allowed for a task type.

2.184 Pragma Test_Case

Syntax:
pragma Test_Case (
[Name =>] static_string_Expression
, [Mode =>] (Nominal | Robustness)

[, Requires => Boolean_Expression]
[, Ensures => Boolean_Expression]);

The Test_Case pragma allows defining fine-grain specifications for use by testing tools.
The compiler checks the validity of the Test_Case pragma, but its presence does not lead
to any modification of the code generated by the compiler.

Test_Case pragmas may only appear immediately following the (separate) declaration of a
subprogram in a package declaration, inside a package spec unit. Only other pragmas may
intervene (that is appear between the subprogram declaration and a test case).

The compiler checks that boolean expressions given in Requires and Ensures are valid,
where the rules for Requires are the same as the rule for an expression in Precondition
and the rules for Ensures are the same as the rule for an expression in Postcondition. In
particular, attributes '01d and 'Result can only be used within the Ensures expression.
The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;

pragma Test_Case (Name => "Test 1",
Mode => Nominal,
Requires => Arg < 10000.0,
Ensures => Sqrt'Result < 10.0);

end Math_Functions;

Chapter 2: Implementation Defined Pragmas 95

The meaning of a test case is that there is at least one context where Requires holds
such that, if the associated subprogram is executed in that context, then Ensures holds
when the subprogram returns. Mode Nominal indicates that the input context should also
satisfy the precondition of the subprogram, and the output context should also satisfy its
postcondition. Mode Robustness indicates that the precondition and postcondition of the
subprogram should be ignored for this test case.

2.185 Pragma Thread_Local_Storage

Syntax:
pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);

This pragma specifies that the specified entity, which must be a variable declared in a library-
level package, is to be marked as “Thread Local Storage” (TLS). On systems supporting
this (which include Windows, Solaris, GNU /Linux, and VxWorks), this causes each thread
(and hence each Ada task) to see a distinct copy of the variable.

The variable must not have default initialization, and if there is an explicit initialization, it
must be either null for an access variable, a static expression for a scalar variable, or a fully
static aggregate for a composite type, that is to say, an aggregate all of whose components
are static, and which does not include packed or discriminated components.

This provides a low-level mechanism similar to that provided by the Ada.Task_Attributes
package, but much more efficient and is also useful in writing interface code that will interact
with foreign threads.

If this pragma is used on a system where TLS is not supported, then an error message will
be generated and the program will be rejected.

2.186 Pragma Time_Slice

Syntax:
pragma Time_Slice (static_duration_EXPRESSION) ;

For implementations of GNAT on operating systems where it is possible to supply a time
slice value, this pragma may be used for this purpose. It is ignored if it is used in a system
that does not allow this control, or if it appears in other than the main program unit.

2.187 Pragma Title
Syntax:
pragma Title (TITLING_OPTION [, TITLING OPTION]);

TITLING_OPTION ::=
[Title =>] STRING_LITERAL,
| [Subtitle =>] STRING_LITERAL

Syntax checked but otherwise ignored by GNAT. This is a listing control pragma used in
DEC Ada 83 implementations to provide a title and/or subtitle for the program listing.
The program listing generated by GNAT does not have titles or subtitles.

Chapter 2: Implementation Defined Pragmas 96

Unlike other pragmas, the full flexibility of named notation is allowed for this pragma,
i.e., the parameters may be given in any order if named notation is used, and named and
positional notation can be mixed following the normal rules for procedure calls in Ada.

2.188 Pragma Type_Invariant

Syntax:

pragma Type_Invariant
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);
The Type_Invariant pragma is intended to be an exact replacement for the language-
defined Type_Invariant aspect, and shares its restrictions and semantics. It differs from
the language defined Invariant pragma in that it does not permit a string parameter, and
it is controlled by the assertion identifier Type_Invariant rather than Invariant.

2.189 Pragma Type_Invariant_Class

Syntax:

pragma Type_Invariant_Class
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);
The Type_Invariant_Class pragma is intended to be an exact replacement for the
language-defined Type_Invariant'Class aspect, and shares its restrictions and semantics.

Note: This pragma is called Type_Invariant_Class rather than Type_Invariant'Class
because the latter would not be strictly conforming to the allowed syntax for pragmas. The
motivation for providing pragmas equivalent to the aspects is to allow a program to be
written using the pragmas, and then compiled if necessary using an Ada compiler that does
not recognize the pragmas or aspects, but is prepared to ignore the pragmas. The assertion
policy that controls this pragma is Type_Invariant'Class, not Type_Invariant_Class.

2.190 Pragma Unchecked_Union

Syntax:
pragma Unchecked_Union (first_subtype_LOCAL_NAME);

This pragma is used to specify a representation of a record type that is equivalent to a C
union. It was introduced as a GNAT implementation defined pragma in the GNAT Ada 95
mode. Ada 2005 includes an extended version of this pragma, making it language defined,
and GNAT fully implements this extended version in all language modes (Ada 83, Ada 95,
and Ada 2005). For full details, consult the Ada 2012 Reference Manual, section B.3.3.

2.191 Pragma Unevaluated_Use_0Of_Old

Syntax:
pragma Unevaluated_Use_0f_0ld (Error | Warn | Allow);

This pragma controls the processing of attributes Old and Loop_Entry. If either of these
attributes is used in a potentially unevaluated expression (e.g. the then or else parts of an

Chapter 2: Implementation Defined Pragmas 97

if expression), then normally this usage is considered illegal if the prefix of the attribute is
other than an entity name. The language requires this behavior for Old, and GNAT copies
the same rule for Loop_Entry.

The reason for this rule is that otherwise, we can have a situation where we save the Old
value, and this results in an exception, even though we might not evaluate the attribute.
Consider this example:

package UnevalOld is
K : Character;
procedure U (A : String; C : Boolean) -- ERROR
with Post => (if C then A(1)'0ld = K else True);
end;

If procedure U is called with a string with a lower bound of 2, and C false, then an exception
would be raised trying to evaluate A(1) on entry even though the value would not be actually
used.

Although the rule guarantees against this possibility, it is sometimes too restrictive. For
example if we know that the string has a lower bound of 1, then we will never raise an
exception. The pragma Unevaluated_Use_0f_01d can be used to modify this behavior.
If the argument is Error then an error is given (this is the default RM behavior). If the
argument is Warn then the usage is allowed as legal but with a warning that an exception
might be raised. If the argument is Allow then the usage is allowed as legal without
generating a warning.

This pragma may appear as a configuration pragma, or in a declarative part or package
specification. In the latter case it applies to uses up to the end of the corresponding
statement sequence or sequence of package declarations.

2.192 Pragma User_Aspect_Definition
Syntax:

pragma User_Aspect_Definition
(Identifier {, Identifier [(Identifier {, Identifier})]});

This configuration pragma defines a new aspect, making it available for subsequent use
in a User_Aspect aspect specification. The first identifier is the name of the new aspect.
Any subsequent arguments specify the names of other aspects. A subsequent name for
which no parenthesized arguments are given shall denote either a Boolean-valued non-
representation aspect or an aspect that has been defined by another User_Aspect_Definition
pragma. A name for which one or more arguments are given shall be either Annotate or
Local_Restrictions (and the arguments shall be appropriate for the named aspect).

This pragma, together with the User_Aspect aspect, provides a mechanism for avoiding
textual duplication if some set of aspect specifications is needed in multiple places. This is
somewhat analogous to how profiles allow avoiding duplication of Restrictions pragmas.

The visibility rules for an aspect defined by a User_Aspect_Definition pragma are the same
as for a check name introduced by a Check_Name pragma. If multiple definitions are visible

for some aspect at some point, then the definitions must agree. A predefined aspect cannot
be redefined.

Chapter 2: Implementation Defined Pragmas 98

2.193 Pragma Unimplemented_Unit

Syntax:

pragma Unimplemented_Unit;
If this pragma occurs in a unit that is processed by the compiler, GNAT aborts with the mes-
sage xxx is not supported in this configuration, where xxx is the name of the current

compilation unit. This pragma is intended to allow the compiler to handle unimplemented
library units in a clean manner.

The abort only happens if code is being generated. Thus you can use specs of unimplemented
packages in syntax or semantic checking mode.

2.194 Pragma Universal_Aliasing

Syntax:
pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];

type_LOCAL_NAME must refer to a type declaration in the current declarative part. The
effect is to inhibit strict type-based aliasing optimizations for the given type. For a detailed
description of the strict type-based aliasing optimizations and the situations in which they
need to be suppressed, see the section on Optimization and Strict Aliasingin the GNAT
User’s Guide.

2.195 Pragma Unmodified

Syntax:
pragma Unmodified (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, in out param-
eters) whose names are listed are deliberately not assigned in the current source unit. This
suppresses warnings about the entities being referenced but not assigned, and in addition
a warning will be generated if one of these entities is in fact assigned in the same unit as
the pragma (or in the corresponding body, or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not modified,
even though the spec suggests that it might be.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSE, TMP, TEMP in any
casing. Such names are typically to be used in cases where such warnings are expected. Thus
it is never necessary to use pragma Unmodified for such variables, though it is harmless to
do so.

2.196 Pragma Unreferenced

Syntax:
pragma Unreferenced (LOCAL_NAME {, LOCAL_NAME});
pragma Unreferenced (library_unit_NAME {, library_unit_NAME});

This pragma signals that the entities whose names are listed are deliberately not referenced
in the current source unit after the occurrence of the pragma. This suppresses warnings
about the entities being unreferenced, and in addition a warning will be generated if one of

Chapter 2: Implementation Defined Pragmas 99

these entities is in fact subsequently referenced in the same unit as the pragma (or in the
corresponding body, or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not referenced
in some particular subprogram implementation and that this is deliberate. It can also be
useful in the case of objects declared only for their initialization or finalization side effects.

If LOCAL_NAME identifies more than one matching homonym in the current scope, then the
entity most recently declared is the one to which the pragma applies. Note that in the case
of accept formals, the pragma Unreferenced may appear immediately after the keyword do
which allows the indication of whether or not accept formals are referenced or not to be
given individually for each accept statement.

The left hand side of an assignment does not count as a reference for the purpose of this
pragma. Thus it is fine to assign to an entity for which pragma Unreferenced is given.
However, use of an entity as an actual for an out parameter does count as a reference unless
warnings for unread output parameters are enabled via —gnatw.o.

Note that if a warning is desired for all calls to a given subprogram, regardless of whether
they occur in the same unit as the subprogram declaration, then this pragma should not
be used (calls from another unit would not be flagged); pragma Obsolescent can be used
instead for this purpose, see [Pragma Obsolescent], page 60.

The second form of pragma Unreferenced is used within a context clause. In this case the
arguments must be unit names of units previously mentioned in with clauses (similar to the
usage of pragma Elaborate_A11). The effect is to suppress warnings about unreferenced
units and unreferenced entities within these units.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any casing. Such
names are typically to be used in cases where such warnings are expected. Thus it is never
necessary to use pragma Unreferenced for such variables, though it is harmless to do so.

2.197 Pragma Unreferenced_Objects

Syntax:
pragma Unreferenced_Objects (local_subtype_NAME {, local_subtype_NAME});

This pragma signals that for the types or subtypes whose names are listed, objects which
are declared with one of these types or subtypes may not be referenced, and if no references
appear, no warnings are given.

This is particularly useful for objects which are declared solely for their initialization and
finalization effect. Such variables are sometimes referred to as RAII variables (Resource
Acquisition Is Initialization). Using this pragma on the relevant type (most typically a
limited controlled type), the compiler will automatically suppress unwanted warnings about
these variables not being referenced.

2.198 Pragma Unreserve_All_Interrupts
Syntax:

pragma Unreserve_All_TInterrupts;

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical

Chapter 2: Implementation Defined Pragmas 100

example is the SIGINT interrupt used in many systems for a Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution.

If the pragma Unreserve_All_Interrupts appears anywhere in any unit in a program,
then all such interrupts are unreserved. This allows the program to handle these interrupts,
but disables their standard functions. For example, if this pragma is used, then pressing
Ctrl-C will not automatically interrupt execution. However, a program can then handle
the SIGINT interrupt as it chooses.

For a full list of the interrupts handled in a specific implementation, see the source code for
the spec of Ada.Interrupts.Names in file a-intnam.ads. This is a target dependent file
that contains the list of interrupts recognized for a given target. The documentation in this
file also specifies what interrupts are affected by the use of the Unreserve_Al11_Interrupts
pragma.

For a more general facility for controlling what interrupts can be handled, see pragma

Interrupt_State, which subsumes the functionality of the Unreserve_All_Interrupts
pragma.

2.199 Pragma Unsuppress

Syntax:
pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

This pragma undoes the effect of a previous pragma Suppress. If there is no corresponding
pragma Suppress in effect, it has no effect. The range of the effect is the same as for pragma
Suppress. The meaning of the arguments is identical to that used in pragma Suppress.

One important application is to ensure that checks are on in cases where code depends on
the checks for its correct functioning, so that the code will compile correctly even if the
compiler switches are set to suppress checks. For example, in a program that depends on
external names of tagged types and wants to ensure that the duplicated tag check occurs
even if all run-time checks are suppressed by a compiler switch, the following configuration
pragma will ensure this test is not suppressed:

pragma Unsuppress (Duplicated_Tag_Check);

This pragma is standard in Ada 2005. It is available in all earlier versions of Ada as an
implementation-defined pragma.

Note that in addition to the checks defined in the Ada RM, GNAT recognizes a number
of implementation-defined check names. See the description of pragma Suppress for full
details.

2.200 Pragma Unused

Syntax:
pragma Unused (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, and in out
parameters) whose names are listed deliberately do not get assigned or referenced in the
current source unit after the occurrence of the pragma in the current source unit. This
suppresses warnings about the entities that are unreferenced and/or not assigned, and, in

Chapter 2: Implementation Defined Pragmas 101

addition, a warning will be generated if one of these entities gets assigned or subsequently
referenced in the same unit as the pragma (in the corresponding body or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not modified
or referenced, even though the spec suggests that it might be.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any casing. Such
names are typically to be used in cases where such warnings are expected. Thus it is never
necessary to use pragma Unused for such variables, though it is harmless to do so.

2.201 Pragma Use_VADS_Size

Syntax:
pragma Use_VADS_Size;

This is a configuration pragma. In a unit to which it applies, any use of the ‘Size attribute is
automatically interpreted as a use of the ‘VADS_Size attribute. Note that this may result in
incorrect semantic processing of valid Ada 95 or Ada 2005 programs. This is intended to aid
in the handling of existing code which depends on the interpretation of Size as implemented
in the VADS compiler. See description of the VADS_Size attribute for further details.

2.202 Pragma Validity_Checks

Syntax:
pragma Validity_Checks (string LITERAL | ALL_CHECKS | On | 0Off);

This pragma is used in conjunction with compiler switches to control the built-in validity
checking provided by GNAT. The compiler switches, if set provide an initial setting for the
switches, and this pragma may be used to modify these settings, or the settings may be
provided entirely by the use of the pragma. This pragma can be used anywhere that a
pragma is legal, including use as a configuration pragma (including use in the gnat.adc
file).

The form with a string literal specifies which validity options are to be activated. The
validity checks are first set to include only the default reference manual settings, and then
a string of letters in the string specifies the exact set of options required. The form of this
string is exactly as described for the ‘-gnatVx’ compiler switch (see the GNAT User’s Guide
for details). For example the following two methods can be used to enable validity checking
for mode in and in out subprogram parameters:

*

pragma Validity_Checks ("im");

$ gcc -c -gnatVim ...
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of
the gnatVa switch).

The forms with 0ff and On can be used to temporarily disable validity checks as shown in
the following example:

pragma Validity_Checks ("c"); -- validity checks for copies

Chapter 2: Implementation Defined Pragmas 102

pragma Validity_Checks (0ff); -- turn off validity checks

A := B; -- B will not be validity checked
pragma Validity_Checks (On); -- turn validity checks back on

A :=C; -— C will be validity checked

2.203 Pragma Volatile

Syntax:
pragma Volatile (LOCAL_NAME);

This pragma is defined by the Ada Reference Manual, and the GNAT implementation is
fully conformant with this definition. The reason it is mentioned in this section is that a
pragma of the same name was supplied in some Ada 83 compilers, including DEC Ada 83.
The Ada 95 / Ada 2005 implementation of pragma Volatile is upwards compatible with the
implementation in DEC Ada 83.

2.204 Pragma Volatile_Full_Access

Syntax:
pragma Volatile_Full_Access (LOCAL_NAME);

This is similar in effect to pragma Volatile, except that any reference to the object is
guaranteed to be done only with instructions that read or write all the bits of the object.
Furthermore, if the object is of a composite type, then any reference to a subcomponent of
the object is guaranteed to read and/or write all the bits of the object.

The intention is that this be suitable for use with memory-mapped I/O devices on some
machines. Note that there are two important respects in which this is different from pragma
Atomic. First a reference to a Volatile_Full_Access object is not a sequential action in
the RM 9.10 sense and, therefore, does not create a synchronization point. Second, in the
case of pragma Atomic, there is no guarantee that all the bits will be accessed if the reference
is not to the whole object; the compiler is allowed (and generally will) access only part of
the object in this case.

2.205 Pragma Volatile_Function

Syntax:
pragma Volatile_Function [(static_boolean_EXPRESSION) 1;

For the semantics of this pragma, see the entry for aspect Volatile_Function in the
SPARK 2014 Reference Manual, section 7.1.2.

2.206 Pragma Warning_As_Error

Syntax:
pragma Warning As_Error (static_string_ EXPRESSION);

This configuration pragma allows the programmer to specify a set of warnings that will be
treated as errors. Any warning that matches the pattern given by the pragma argument will
be treated as an error. This gives more precise control than -gnatwe, which treats warnings
as errors.

Chapter 2: Implementation Defined Pragmas 103

This pragma can apply to regular warnings (messages enabled by -gnatw) and to style
warnings (messages that start with “(style)”, enabled by -gnaty).

The pattern may contain asterisks, which match zero or more characters in the message. For
example, you can use pragma Warning_As_Error ("bits of*unused") to treat the warning
message warning: 960 bits of "a" unused as an error. All characters other than asterisk
are treated as literal characters in the match. The match is case insensitive; for example
XY7Z matches xyz.

Note that the pattern matches if it occurs anywhere within the warning message string (it
is not necessary to put an asterisk at the start and the end of the message, since this is
implied).

Another possibility for the static_string. EXPRESSION which works whether or not error
tags are enabled (‘-gnatw.d’) is to use a single ‘-gnatw’ tag string, enclosed in brackets,
as shown in the example below, to treat one category of warnings as errors. Note that if
you want to treat multiple categories of warnings as errors, you can use multiple pragma
Warning_As_Error.

The above use of patterns to match the message applies only to warning messages generated
by the front end. This pragma can also be applied to warnings provided by the back end
and mentioned in [Pragma Warnings|, page 104. By using a single full “Wxxx’ switch in
the pragma, such warnings can also be treated as errors.

The pragma can appear either in a global configuration pragma file (e.g. gnat.adc), or at
the start of a file. Given a global configuration pragma file containing:

pragma Warning_ As_Error ("[-gnatwjl");

which will treat all obsolescent feature warnings as errors, the following program compiles
as shown (compile options here are ‘-gnatwa.d -gnatl -gnatj55’).

1. pragma Warning_As_Error ("*never assigned*");
2. function Warnerr return String is
3. X : Integer;
I
>>> error: variable "X" is never read and
never assigned [-gnatwv] [warning-as-error]

4. Y : Integer;
I
>>> warning: variable "Y" is assigned but
never read [-gnatwu]

5. begin
6. Y := 0;
7. return %ABCY%;

>>> error: use of "%" is an obsolescent
feature (RM J.2(4)), use """ instead
[-gnatwj] [warning-as-error]

8. end;

Chapter 2: Implementation Defined Pragmas 104

8 lines: No errors, 3 warnings (2 treated as errors)

Note that this pragma does not affect the set of warnings issued in any way, it merely
changes the effect of a matching warning if one is produced as a result of other warnings
options. As shown in this example, if the pragma results in a warning being treated as an
error, the tag is changed from “warning:” to “error:” and the string “[warning-as-error|” is
appended to the end of the message.

2.207 Pragma Warnings
Syntax:
pragma Warnings ([TOOL_NAME,] DETAILS [, REASON]);

DETAILS ::= On | Off

DETAILS ::= On | Off, local_NAME

DETAILS ::= static_string_EXPRESSION

DETAILS ::= On | Off, static_string EXPRESSION
TOOL_NAME ::= GNAT | GNATprove

REASON ::= Reason => STRING_LITERAL {& STRING_LITERAL}

Note: in Ada 83 mode, a string literal may be used in place of a static string expression
(which does not exist in Ada 83).

Note if the second argument of DETAILS is a local_NAME then the second form is always
understood. If the intention is to use the fourth form, then you can write NAME & "" to force
the interpretation as a ‘static_string_ EXPRESSION’.

Note: if the first argument is a valid TOOL_NAME, it will be interpreted that way. The use
of the TOOL_NAME argument is relevant only to users of SPARK and GNATprove, see last
part of this section for details.

Normally warnings are enabled, with the output being controlled by the command line
switch. Warnings (0f£) turns off generation of warnings until a Warnings (On) is encountered
or the end of the current unit. If generation of warnings is turned off using this pragma,
then some or all of the warning messages are suppressed, regardless of the setting of the
command line switches.

The Reason parameter may optionally appear as the last argument in any of the forms of this
pragma. It is intended purely for the purposes of documenting the reason for the Warnings
pragma. The compiler will check that the argument is a static string but otherwise ignore
this argument. Other tools may provide specialized processing for this string.

The form with a single argument (or two arguments if Reason present), where the first
argument is ON or OFF may be used as a configuration pragma.

If the LOCAL_NAME parameter is present, warnings are suppressed for the specified entity.
This suppression is effective from the point where it occurs till the end of the extended
scope of the variable (similar to the scope of Suppress). This form cannot be used as a
configuration pragma.

Chapter 2: Implementation Defined Pragmas 105

In the case where the first argument is other than ON or OFF, the third form with a single
static_string_ EXPRESSION argument (and possible reason) provides more precise control
over which warnings are active. The string is a list of letters specifying which warnings
are to be activated and which deactivated. The code for these letters is the same as the
string used in the command line switch controlling warnings. For a brief summary, use the
gnatmake command with no arguments, which will generate usage information containing
the list of warnings switches supported. For full details see the section on Warning Message
Control in the GNAT User’s Guide. This form can also be used as a configuration pragma.

The warnings controlled by the —gnatw switch are generated by the front end of the compiler.
The GCC back end can provide additional warnings and they are controlled by the -W switch.
Such warnings can be identified by the appearance of a string of the form [-W{xxx}] in the
message which designates the -W™xxx' switch that controls the message. The form with a
single ‘static_string_ EXPRESSION’ argument also works for these warnings, but the string
must be a single full -W™xxx' switch in this case. The above reference lists a few examples
of these additional warnings.

The specified warnings will be in effect until the end of the program or another pragma
Warnings is encountered. The effect of the pragma is cumulative. Initially the set of
warnings is the standard default set as possibly modified by compiler switches. Then each
pragma Warning modifies this set of warnings as specified. This form of the pragma may
also be used as a configuration pragma.

The fourth form, with an On|0ff parameter and a string, is used to control individual
messages, based on their text. The string argument is a pattern that is used to match
against the text of individual warning messages (not including the initial “warning: “ tag).

The pattern may contain asterisks, which match zero or more characters in the message. For
example, you can use pragma Warnings (0ff, "bits of*unused") to suppress the warn-
ing message warning: 960 bits of "a" unused. No other regular expression notations are
permitted. All characters other than asterisk in these three specific cases are treated as
literal characters in the match. The match is case insensitive, for example XYZ matches
XyZ.

Note that the pattern matches if it occurs anywhere within the warning message string (it
is not necessary to put an asterisk at the start and the end of the message, since this is
implied).

The above use of patterns to match the message applies only to warning messages generated
by the front end. This form of the pragma with a string argument can also be used to control
warnings provided by the back end and mentioned above. By using a single full -W™ xxx'
switch in the pragma, such warnings can be turned on and off.

There are two ways to use the pragma in this form. The OFF form can be used as a
configuration pragma. The effect is to suppress all warnings (if any) that match the pattern
string throughout the compilation (or match the -W switch in the back end case).

The second usage is to suppress a warning locally, and in this case, two pragmas must
appear in sequence:

pragma Warnings (0ff, Pattern);
code where given warning is to be suppressed
pragma Warnings (On, Pattern);

Chapter 2: Implementation Defined Pragmas 106

In this usage, the pattern string must match in the Off and On pragmas, and (if ‘-gnatw.w’
is given) at least one matching warning must be suppressed.

Note: if the ON form is not found, then the effect of the OFF form extends until the end
of the file (pragma Warnings is purely textual, so its effect does not stop at the end of the
enclosing scope).

Note: to write a string that will match any warning, use the string "#*x". It will not
work to use a single asterisk or two asterisks since this looks like an operator name. This
form with three asterisks is similar in effect to specifying pragma Warnings (0ff) except (if
-gnatw.w is given) that a matching pragma Warnings (On, "***") will be required. This
can be helpful in avoiding forgetting to turn warnings back on.

Note: the debug flag -gnatd.i can be used to cause the compiler to entirely ignore all
WARNINGS pragmas. This can be useful in checking whether obsolete pragmas in existing
programs are hiding real problems.

Note: pragma Warnings does not affect the processing of style messages. See separate entry
for pragma Style_Checks for control of style messages.

Users of the formal verification tool GNATprove for the SPARK subset of Ada may use the
version of the pragma with a TOOL_NAME parameter.

If present, TOOL_NAME is the name of a tool, currently either GNAT for the compiler or
GNATprove for the formal verification tool. A given tool only takes into account pragma
Warnings that do not specify a tool name, or that specify the matching tool name. This
makes it possible to disable warnings selectively for each tool, and as a consequence to
detect useless pragma Warnings with switch -gnatw.w.

2.208 Pragma Weak_External

Syntax:
pragma Weak_External ([Entity =>] LOCAL_NAME);

LOCAL_NAME must refer to an object that is declared at the library level. This pragma
specifies that the given entity should be marked as a weak symbol for the linker. It is
equivalent to __attribute__((weak)) in GNU C and causes LOCAL_NAME to be emitted as
a weak symbol instead of a regular symbol, that is to say a symbol that does not have to
be resolved by the linker if used in conjunction with a pragma Import.

When a weak symbol is not resolved by the linker, its address is set to zero. This is useful in
writing interfaces to external modules that may or may not be linked in the final executable,
for example depending on configuration settings.

If a program references at run time an entity to which this pragma has been applied, and
the corresponding symbol was not resolved at link time, then the execution of the program
is erroneous. It is not erroneous to take the Address of such an entity, for example to guard
potential references, as shown in the example below.

Some file formats do not support weak symbols so not all target machines support this
pragma.

-- Example of the use of pragma Weak_External

package External_Module is

Chapter 2: Implementation Defined Pragmas 107

key : Integer;

pragma Import (C, key);

pragma Weak_External (key);

function Present return boolean;
end External_Module;

with System; use System;
package body External_Module is
function Present return boolean is
begin
return key'Address /= System.Null_Address;
end Present;
end External_Module;

2.209 Pragma Wide_Character_Encoding

Syntax:
pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL);

This pragma specifies the wide character encoding to be used in program source text ap-
pearing subsequently. It is a configuration pragma, but may also be used at any point that
a pragma is allowed, and it is permissible to have more than one such pragma in a file,
allowing multiple encodings to appear within the same file.

However, note that the pragma cannot immediately precede the relevant wide character,
because then the previous encoding will still be in effect, causing “illegal character” errors.

The argument can be an identifier or a character literal. In the identifier case, it is one
of HEX, UPPER, SHIFT_JIS, EUC, UTF8, or BRACKETS. In the character literal case it is
correspondingly one of the characters h, u, s, e, 8, or b.
Note that when the pragma is used within a file, it affects only the encoding within that
file, and does not affect withed units, specs, or subunits.

108

3 Implementation Defined Aspects

Ada defines (throughout the Ada 2012 reference manual, summarized in Annex K) a set
of aspects that can be specified for certain entities. These language defined aspects are
implemented in GNAT in Ada 2012 mode and work as described in the Ada 2012 Reference
Manual.

In addition, Ada 2012 allows implementations to define additional aspects whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
aspects which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT reference manual describes these additional aspects.

Note that any program using these aspects may not be portable to other compilers (although
GNAT implements this set of aspects on all platforms). Therefore if portability to other
compilers is an important consideration, you should minimize the use of these aspects.

Note that for many of these aspects, the effect is essentially similar to the use of a pragma
or attribute specification with the same name applied to the entity. For example, if we
write:

type R is range 1 .. 100
with Value_Size => 10;

then the effect is the same as:

type R is range 1 .. 100;
for R'Value_Size use 10;

and if we write:

type R is new Integer
with Shared => True;

then the effect is the same as:

type R is new Integer;
pragma Shared (R);

In the documentation below, such cases are simply marked as being boolean aspects equiv-
alent to the corresponding pragma or attribute definition clause.

3.1 Aspect Abstract_State
This aspect is equivalent to [pragma Abstract_State|, page 5.

3.2 Aspect Always_Terminates

This boolean aspect is equivalent to [pragma Always_Terminates|, page 9.

3.3 Aspect Annotate

There are three forms of this aspect (where ID is an identifier, and ARG is a general
expression), corresponding to [pragma Annotate|, page 10.

‘Annotate => ID’
Equivalent to pragma Annotate (ID, Entity => Name) ;

Chapter 3: Implementation Defined Aspects 109

‘Annotate => (ID)’
Equivalent to pragma Annotate (ID, Entity => Name) ;

‘Annotate => (ID ,ID {, ARG})’
Equivalent to pragma Annotate (ID, ID {, ARG}, Entity => Name);

3.4 Aspect Async_Readers

This boolean aspect is equivalent to [pragma Async_Readers], page 14.

3.5 Aspect Async_Writers

This boolean aspect is equivalent to [pragma Async_Writers|, page 14.

3.6 Aspect Constant_After_Elaboration
This aspect is equivalent to [pragma Constant_After_Elaboration], page 20.

3.7 Aspect Contract_Cases

This aspect is equivalent to [pragma Contract_Cases], page 21, the sequence of clauses being
enclosed in parentheses so that syntactically it is an aggregate.

3.8 Aspect Depends
This aspect is equivalent to [pragma Depends], page 26.

3.9 Aspect Default_Initial_Condition
This aspect is equivalent to [pragma Default_Initial_Condition], page 24.

3.10 Aspect Dimension

The Dimension aspect is used to specify the dimensions of a given subtype of a dimensioned
numeric type. The aspect also specifies a symbol used when doing formatted output of
dimensioned quantities. The syntax is:
with Dimension =>
([Symbol =>] SYMBOL, DIMENSION_VALUE {, DIMENSION_Value})

SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL

DIMENSION_VALUE ::=

RATIONAL
| others => RATIONAL
| DISCRETE_CHOICE_LIST => RATIONAL

RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]

This aspect can only be applied to a subtype whose parent type has a Dimension_System
aspect. The aspect must specify values for all dimensions of the system. The rational

Chapter 3: Implementation Defined Aspects 110

values are the powers of the corresponding dimensions that are used by the compiler to
verify that physical (numeric) computations are dimensionally consistent. For example, the
computation of a force must result in dimensions (L => 1, M => 1, T => -2). For further
examples of the usage of this aspect, see package System.Dim.Mks. Note that when the
dimensioned type is an integer type, then any dimension value must be an integer literal.

3.11 Aspect Dimension_System

The Dimension_System aspect is used to define a system of dimensions that will be used in
subsequent subtype declarations with Dimension aspects that reference this system. The
syntax is:

with Dimension_System => (DIMENSION {, DIMENSION});

DIMENSION ::= ([Unit_Name =>] IDENTIFIER,
[(Unit_Symbol =>] SYMBOL,
[Dim_Symbol =>] SYMBOL)

SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL

This aspect is applied to a type, which must be a numeric derived type (typically a floating-
point type), that will represent values within the dimension system. Each DIMENSION cor-
responds to one particular dimension. A maximum of 7 dimensions may be specified.
Unit_Name is the name of the dimension (for example Meter). Unit_Symbol is the short-
hand used for quantities of this dimension (for example m for Meter). Dim_Symbol gives the
identification within the dimension system (typically this is a single letter, e.g. L standing
for length for unit name Meter). The Unit_Symbol is used in formatted output of dimen-
sioned quantities. The Dim_Symbol is used in error messages when numeric operations have
inconsistent dimensions.

GNAT provides the standard definition of the International MKS system in the run-time
package System.Dim.Mks. You can easily define similar packages for cgs units or British
units, and define conversion factors between values in different systems. The MKS system
is characterized by the following aspect:

type Mks_Type is new Long_Long_Float with
Dimension_System => (

(Unit_Name => Meter, Unit_Symbol => 'm', Dim_Symbol => 'L'),
(Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => 'M'),
(Unit_Name => Second, Unit_Symbol => 's', Dim_Symbol => 'T'),
(Unit_Name => Ampere, Unit_Symbol => 'A', Dim_Symbol => 'I'),
(Unit_Name => Kelvin, Unit_Symbol => 'K', Dim_Symbol => '@'),
(Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => 'N'),

(Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => 'J'));

Note that in the above type definition, we use the at symbol (@) to represent a theta
character (avoiding the use of extended Latin-1 characters in this context).

See section ‘Performing Dimensionality Analysis in GNAT’ in the GNAT Users Guide for
detailed examples of use of the dimension system.

Chapter 3: Implementation Defined Aspects 111

3.12 Aspect Disable_Controlled

The aspect Disable_Controlled is defined for controlled record types. If active, this
aspect causes suppression of all related calls to Initialize, Adjust, and Finalize. The
intended use is for conditional compilation, where for example you might want a record to
be controlled or not depending on whether some run-time check is enabled or suppressed.

3.13 Aspect Effective_Reads
This aspect is equivalent to [pragma Effective_Reads], page 27.

3.14 Aspect Effective_Writes
This aspect is equivalent to [pragma Effective_Writes], page 27.

3.15 Aspect Exceptional_Cases

This aspect may be specified for procedures and functions with side effects; it can be used to
list exceptions that might be propagated by the subprogram with side effects in the context
of its precondition, and associate them with a specific postcondition.

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.9.

3.16 Aspect Exit_Cases

This aspect may be specified for procedures and functions with side effects; it can be used to
partition the input state into a list of cases and specify, for each case, how the subprogram
is allowed to terminate (i.e. return normally or propagate an exception).

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.10.

3.17 Aspect Extensions_Visible

This aspect is equivalent to [pragma Extensions_Visible], page 35.

3.18 Aspect Favor_Top_Level

This boolean aspect is equivalent to [pragma Favor_Top_Level|, page 37.

3.19 Aspect Ghost
This aspect is equivalent to [pragma Ghost|, page 37.

3.20 Aspect Ghost_Predicate
This aspect introduces a subtype predicate that can reference ghost entities. The subtype
cannot appear as a subtype_mark in a membership test.

For the detailed semantics of this aspect, see the entry for subtype predicates in the SPARK
Reference Manual, section 3.2.4.

Chapter 3: Implementation Defined Aspects 112

3.21 Aspect Global
This aspect is equivalent to [pragma Global], page 38.

3.22 Aspect Initial_Condition

This aspect is equivalent to [pragma Initial_Condition], page 44.

3.23 Aspect Initializes

This aspect is equivalent to [pragma Initializes|, page 45.

3.24 Aspect Inline_Always

This boolean aspect is equivalent to [pragma Inline_Always|, page 46.

3.25 Aspect Invariant

This aspect is equivalent to [pragma Invariant], page 48. It is a synonym for the lan-
guage defined aspect Type_Invariant except that it is separately controllable using pragma
Assertion_Policy.

3.26 Aspect Invariant’Class

This aspect is equivalent to [pragma Type_Invariant_Class|, page 96. It is a synonym for
the language defined aspect Type_Invariant'Class except that it is separately controllable
using pragma Assertion_Policy.

3.27 Aspect Iterable

This aspect provides a light-weight mechanism for loops and quantified expressions over
container types, without the overhead imposed by the tampering checks of standard Ada
2012 iterators. The value of the aspect is an aggregate with six named components, of which
the last three are optional: First, Next, Has_Element, Element, Last, and Previous.
When only the first three components are specified, only the for .. in form of iteration
over cursors is available. When Element is specified, both this form and the for .. of
form of iteration over elements are available. If the last two components are specified,
reverse iterations over the container can be specified (analogous to what can be done over
predefined containers that support the Reverse_Iterator interface). The following is a
typical example of use:

type List is private with

Iterable => (First => First_Cursor,
Next => Advance,
Has_Element => Cursor_Has_Element
[,Element => Get_Element]
[,Last => Last_Cursor]
[,Previous => Retreat]);

* The values of First and Last are primitive operations of the container type that return
a Cursor, which must be a type declared in the container package or visible from it.
For example:

Chapter 3: Implementation Defined Aspects 113

function First_Cursor (Cont : Container) return Cursor;
function Last_Cursor (Cont : Container) return Cursor;

* The values of Next and Previous are primitive operations of the container type that
take both a container and a cursor and yield a cursor. For example:

function Advance (Cont : Container; Position : Cursor) return Cursor;
function Retreat (Cont : Container; Position : Cursor) return Cursor;

* The value of Has_Element is a primitive operation of the container type that takes
both a container and a cursor and yields a boolean. For example:

function Cursor_Has_Element (Cont : Container; Position : Cursor) return Boolean;

* The value of Element is a primitive operation of the container type that takes both a
container and a cursor and yields an Element_Type, which must be a type declared in
the container package or visible from it. For example:

function Get_Element (Cont : Container; Position : Cursor) return Element_Type;

This aspect is used in the GNAT-defined formal container packages.

3.28 Aspect Linker_Section

This aspect is equivalent to [pragma Linker_Section], page 52.

3.29 Aspect Local_Restrictions

This aspect may be specified for a subprogram (and for other declarations as described
below). It is used to specify that a particular subprogram does not violate one or more
local restrictions, nor can it call a subprogram that is not subject to the same requirement.
Positional aggregate syntax (with parentheses, not square brackets) may be used to specify
more than one local restriction, as in

procedure Do_Something
with Local_Restrictions => (Some_Restriction, Another_Restriction);

Parentheses are currently required even in the case of specifying a single local restriction
(this requirement may be relaxed in the future). Supported local restrictions currently
include (only) No_Heap_Allocations and No_Secondary_Stack. No_Secondary_Stack corre-
sponds to the GNAT-defined (global) restriction of the same name. No_Heap_Allocations
corresponds to the conjunction of the Ada-defined restrictions No_Allocators and
No_Implicit_Heap_Allocations.

Additional requirements are imposed in order to ensure that restriction violations cannot
be achieved via overriding dispatching operations, calling through an access-to-subprogram
value, calling a generic formal subprogram, or calling through a subprogram renaming. For
a dispatching operation, an overrider must be subject to (at least) the same restrictions
as the overridden inherited subprogram; similarly, the actual subprogram corresponding to
a generic formal subprogram in an instantiation must be subject to (at least) the same
restrictions as the formal subprogram. A call through an access-to-subprogram value is
conservatively assumed to violate all local restrictions; tasking-related constructs (notably
entry calls) are treated similarly. A renaming-as-body is treated like a subprogram body
containing a call to the renamed subprogram.

The Local_Restrictions aspect can be specified for a package specification, in which case
the aspect specification also applies to all eligible entities declared with the package. This

Chapter 3: Implementation Defined Aspects 114

includes types. Default initialization of an object of a given type is treated like a call to
an implicitly-declared initialization subprogram. Such a “call” is subject to the same local
restriction checks as any other call. If a type is subject to a local restriction, then any
violations of that restriction within the default initialization expressions (if any) of the type
are rejected. This may include “calls” to the default initialization subprograms of other
types.

Local _Restrictions aspect specifications are additive (for example, in the case of a declara-
tion that occurs within nested packages that each have a Local_Restrictions specification).

3.30 Aspect Lock_Free

This boolean aspect is equivalent to [pragma Lock_Free], page 53.

3.31 Aspect Max_Queue_Length
This aspect is equivalent to [pragma Max_Queue_Length], page 56.

3.32 Aspect No_Caching
This boolean aspect is equivalent to [pragma No_Caching], page 56.

3.33 Aspect No_Elaboration_Code_All

This aspect is equivalent to [pragma No_Elaboration_Code_All], page 57, for a program
unit.

3.34 Aspect No_Inline

This boolean aspect is equivalent to [pragma No_Inline|, page 57.

3.35 Aspect No_Raise

This boolean aspect is equivalent to [pragma No_Raise|, page 58.

3.36 Aspect No_Tagged_Streams

This aspect is equivalent to [pragma No_Tagged_Streams|, page 58, with an argument spec-
ifying a root tagged type (thus this aspect can only be applied to such a type).

3.37 Aspect No_Task_Parts

Applies to a type. If True, requires that the type and any descendants do not have
any task parts. The rules for this aspect are the same as for the language-defined
No_Controlled_Parts aspect (see RM-H.4.1), replacing “controlled” with “task”.

If No_Task_Parts is True for a type T, then the compiler can optimize away certain tasking-
related code that would otherwise be needed for T’Class, because descendants of T might
contain tasks.

3.38 Aspect Object_Size
This aspect is equivalent to [attribute Object_Size|, page 126.

Chapter 3: Implementation Defined Aspects 115

3.39 Aspect Obsolescent

This aspect is equivalent to [pragma Obsolescent], page 60. Note that the evaluation of this
aspect happens at the point of occurrence, it is not delayed until the freeze point.

3.40 Aspect Part_Of
This aspect is equivalent to [pragma Part_Of], page 65.

3.41 Aspect Persistent_BSS
This boolean aspect is equivalent to [pragma Persistent_BSS], page 66.

3.42 Aspect Potentially_Invalid

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
13.9.1.

3.43 Aspect Predicate

This aspect is equivalent to [pragma Predicate], page 70. It is thus similar to the language
defined aspects Dynamic_Predicate and Static_Predicate except that whether the re-
sulting predicate is static or dynamic is controlled by the form of the expression. It is also
separately controllable using pragma Assertion_Policy.

3.44 Aspect Program_Exit

This boolean aspect is equivalent to [pragma Program_Exit], page 75.

3.45 Aspect Pure_Function

This boolean aspect is equivalent to [pragma Pure_Function], page 76.

3.46 Aspect Refined_Depends
This aspect is equivalent to [pragma Refined_Depends], page 77.

3.47 Aspect Refined_Global
This aspect is equivalent to [pragma Refined_Global], page 78.

3.48 Aspect Refined_Post
This aspect is equivalent to [pragma Refined_Post|, page 78.

3.49 Aspect Refined_State
This aspect is equivalent to [pragma Refined_State], page 78.

3.50 Aspect Relaxed_Initialization

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.10.

Chapter 3: Implementation Defined Aspects 116

3.51 Aspect Remote_Access_Type
This aspect is equivalent to [pragma Remote_Access_Type|, page 79.

3.52 Aspect Scalar_Storage_Order
This aspect is equivalent to a [attribute Scalar_Storage_Order|, page 129.

3.53 Aspect Secondary_Stack_Size
This aspect is equivalent to [pragma Secondary_Stack_Size], page 81.

3.54 Aspect Shared

This boolean aspect is equivalent to [pragma Shared], page 82, and is thus a synonym for
aspect Atomic.

3.55 Aspect Side_Effects
This aspect is equivalent to [pragma Side_Effects], page 83.

3.56 Aspect Simple_Storage_Pool
This aspect is equivalent to [attribute Simple_Storage_Pool], page 132.

3.57 Aspect Simple_Storage_Pool_Type
This boolean aspect is equivalent to [pragma Simple_Storage_Pool_Type|, page 83.

3.58 Aspect SPARK_Mode

This aspect is equivalent to [pragma SPARK_Mode|, page 86, and may be specified for
either or both of the specification and body of a subprogram or package.

3.59 Aspect Subprogram_Variant

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.8.

3.60 Aspect Suppress_Debug_Info
This boolean aspect is equivalent to [pragma Suppress_Debug_Info|, page 92.

3.61 Aspect Suppress_Initialization

This boolean aspect is equivalent to [pragma Suppress_Initialization], page 92.

3.62 Aspect Test_Case
This aspect is equivalent to [pragma Test_Case], page 94.

Chapter 3: Implementation Defined Aspects 117

3.63 Aspect Thread_Local_Storage
This boolean aspect is equivalent to [pragma Thread_Local_Storage], page 95.

3.64 Aspect Universal_Aliasing

This boolean aspect is equivalent to [pragma Universal_Aliasing], page 98.

3.65 Aspect Unmodified
This boolean aspect is equivalent to [pragma Unmodified], page 98.

3.66 Aspect Unreferenced

This boolean aspect is equivalent to [pragma Unreferenced], page 98.

When using the -gnat2022 switch, this aspect is also supported on formal parameters,
which is in particular the only form possible for expression functions.

3.67 Aspect Unreferenced_Objects

This boolean aspect is equivalent to [pragma Unreferenced_Objects], page 99.

3.68 Aspect User_Aspect

This aspect takes an argument that is the name of an aspect defined by a
User_Aspect_Definition configuration pragma. A User_Aspect aspect specification is
semantically equivalent to replicating the set of aspect specifications associated with the
named pragma-defined aspect.

3.69 Aspect Value_Size
This aspect is equivalent to [attribute Value_Size], page 140.

3.70 Aspect Volatile_Full_Access
This boolean aspect is equivalent to [pragma Volatile_Full_Access], page 102.

3.71 Aspect Volatile_Function

This boolean aspect is equivalent to [pragma Volatile_Function], page 102.

3.72 Aspect Warnings

This aspect is equivalent to the two argument form of [pragma Warnings], page 104, where
the first argument is ON or OFF and the second argument is the entity.

118

4 Implementation Defined Attributes

Ada defines (throughout the Ada reference manual, summarized in Annex K), a set of
attributes that provide useful additional functionality in all areas of the language. These
language defined attributes are implemented in GNAT and work as described in the Ada
Reference Manual.

In addition, Ada allows implementations to define additional attributes whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT reference manual describes these additional attributes.
It also describes additional implementation-dependent features of standard language-defined
attributes.

Note that any program using these attributes may not be portable to other compilers
(although GNAT implements this set of attributes on all platforms). Therefore if portability
to other compilers is an important consideration, you should minimize the use of these
attributes.

4.1 Attribute Abort_Signal

Standard'Abort_Signal (Standard is the only allowed prefix) provides the entity for the
special exception used to signal task abort or asynchronous transfer of control. Normally this
attribute should only be used in the tasking runtime (it is highly peculiar, and completely
outside the normal semantics of Ada, for a user program to intercept the abort exception).

4.2 Attribute Address_Size

Standard'Address_Size (Standard is the only allowed prefix) is a static constant giving
the number of bits in an Address. It is the same value as System.Address’Size, but has
the advantage of being static, while a direct reference to System.Address’Size is nonstatic
because Address is a private type.

4.3 Attribute Asm_Input

The Asm_Input attribute denotes a function that takes two parameters. The first is a string,
the second is an expression of the type designated by the prefix. The first (string) argument
is required to be a static expression, and is the constraint for the parameter, (e.g., what
kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constant are the same as those used in the RTL, and
are dependent on the configuration file used to built the GCC back end. [Machine Code
Insertions|, page 284,

4.4 Attribute Asm_Output

The Asm_Output attribute denotes a function that takes two parameters. The first is a
string, the second is the name of a variable of the type designated by the attribute prefix.
The first (string) argument is required to be a static expression and designates the constraint
for the parameter (e.g., what kind of register is required). The second argument is the
variable to be updated with the result. The possible values for constraint are the same as

Chapter 4: Implementation Defined Attributes 119

those used in the RTL, and are dependent on the configuration file used to build the GCC
back end. If there are no output operands, then this argument may either be omitted, or
explicitly given as No_Output_Operands. [Machine Code Insertions|, page 284,

4.5 Attribute Atomic_Always_Lock_Free

The prefix of the Atomic_Always_Lock_Free attribute is a type. The result indicates
whether atomic operations are supported by the target for the given type.

4.6 Attribute Bit

obj'Bit, where obj is any object, yields the bit offset within the storage unit (byte) that
contains the first bit of storage allocated for the object. The value of this attribute is of the
type ‘universal_integer’ and is always a nonnegative number smaller than System.Storage_
Unit.

For an object that is a variable or a constant allocated in a register, the value is zero. (The
use of this attribute does not force the allocation of a variable to memory).

For an object that is a formal parameter, this attribute applies to either the matching actual
parameter or to a copy of the matching actual parameter.

For an access object the value is zero. Note that obj.all'Bit is subject to an Access_
Check for the designated object. Similarly for a record component X.C'Bit is subject to a
discriminant check and X(I) .Bit and X(I1..I2)'Bit are subject to index checks.

This attribute is designed to be compatible with the DEC Ada 83 definition and implemen-
tation of the Bit attribute.

4.7 Attribute Bit_Position

R.C'Bit_Position, where R is a record object and C is one of the fields of the record type,
yields the bit offset within the record contains the first bit of storage allocated for the object.
The value of this attribute is of the type ‘universal_integer’. The value depends only on the
field C and is independent of the alignment of the containing record R.

4.8 Attribute Code_Address

The 'Address attribute may be applied to subprograms in Ada 95 and Ada 2005, but
the intended effect seems to be to provide an address value which can be used to call the
subprogram by means of an address clause as in the following example:

procedure K is ...

procedure L;
for L'Address use K'Address;
pragma Import (Ada, L);

A call to L is then expected to result in a call to K. In Ada 83, where there were no access-
to-subprogram values, this was a common work-around for getting the effect of an indirect
call. GNAT implements the above use of Address and the technique illustrated by the
example code works correctly.

Chapter 4: Implementation Defined Attributes 120

However, for some purposes, it is useful to have the address of the start of the generated
code for the subprogram. On some architectures, this is not necessarily the same as the
Address value described above. For example, the Address value may reference a subpro-
gram descriptor rather than the subprogram itself.

The 'Code_Address attribute, which can only be applied to subprogram entities, always
returns the address of the start of the generated code of the specified subprogram, which
may or may not be the same value as is returned by the corresponding 'Address attribute.

4.9 Attribute Compiler_Version

Standard'Compiler_Version (Standard is the only allowed prefix) yields a static string
identifying the version of the compiler being used to compile the unit containing the at-
tribute reference.

4.10 Attribute Constrained

In addition to the usage of this attribute in the Ada RM, GNAT also permits the use of
the 'Constrained attribute in a generic template for any type, including types without
discriminants. The value of this attribute in the generic instance when applied to a scalar
type or a record type without discriminants is always True. This usage is compatible with
older Ada compilers, including notably DEC Ada.

4.11 Attribute Default_Bit_Order

Standard'Default_Bit_Order (Standard is the only allowed prefix), provides the value
System.Default_Bit_Order as a Pos value (0 for High_Order_First, 1 for Low_Order_
First). This is used to construct the definition of Default_Bit_Order in package System.

4.12 Attribute Default_Scalar_Storage_Order

Standard'Default_Scalar_Storage_Order (Standard is the only allowed prefix), provides
the current value of the default scalar storage order (as specified using pragma Default_
Scalar_Storage_Order, or equal to Default_Bit_Order if unspecified) as a System.Bit_
Order value. This is a static attribute.

4.13 Attribute Deref

The attribute typ'Deref (expr) where expr is of type System.Address yields the variable
of type typ that is located at the given address. It is similar to (totyp (expr).all), where
totyp is an unchecked conversion from address to a named access-to-typ type, except that
it yields a variable, so it can be used on the left side of an assignment.

4.14 Attribute Descriptor_Size

Nonstatic attribute Descriptor_Size returns the size in bits of the descriptor allocated for
a type. The result is non-zero only for unconstrained array types and the returned value is
of type universal integer. In GNAT, an array descriptor contains bounds information and
is located immediately before the first element of the array.

type Unconstr_Array is array (Short_Short_Integer range <>) of Positive;

Chapter 4: Implementation Defined Attributes 121

Put_Line ("Descriptor size = " & Unconstr_Array'Descriptor_Size'Img) ;

The attribute takes into account any padding due to the alignment of the component type.
In the example above, the descriptor contains two values of type Short_Short_Integer
representing the low and high bound. But, since Positive has an alignment of 4, the size
of the descriptor is 2 * Short_Short_Integer'Size rounded up to the next multiple of 32,
which yields a size of 32 bits, i.e. including 16 bits of padding.

4.15 Attribute Elaborated

The prefix of the 'Elaborated attribute must be a unit name. The value is a Boolean which
indicates whether or not the given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic elaboration checking, but it
can also be used in user programs. The value will always be True once elaboration of all
units has been completed. An exception is for units which need no elaboration, the value
is always False for such units.

4.16 Attribute Elab_Body

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the body of the referenced unit. This
is used in the main generated elaboration procedure by the binder and is not normally used
in any other context. However, there may be specialized situations in which it is useful
to be able to call this elaboration procedure from Ada code, e.g., if it is necessary to do
selective re-elaboration to fix some error.

4.17 Attribute Elab_Spec

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the spec of the referenced unit. This is
used in the main generated elaboration procedure by the binder and is not normally used in
any other context. However, there may be specialized situations in which it is useful to be
able to call this elaboration procedure from Ada code, e.g., if it is necessary to do selective
re-elaboration to fix some error.

4.18 Attribute Elab_Subp_Body

This attribute can only be applied to a library level subprogram name and is only allowed
in CodePeer mode. It returns the entity for the corresponding elaboration procedure for
elaborating the body of the referenced subprogram unit. This is used in the main generated
elaboration procedure by the binder in CodePeer mode only and is unrecognized otherwise.

4.19 Attribute Emax

The Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Chapter 4: Implementation Defined Attributes 122

4.20 Attribute Enabled

The Enabled attribute allows an application program to check at compile time to see if
the designated check is currently enabled. The prefix is a simple identifier, referencing any
predefined check name (other than A11_Checks) or a check name introduced by pragma
Check_Name. If no argument is given for the attribute, the check is for the general state
of the check, if an argument is given, then it is an entity name, and the check indicates
whether an Suppress or Unsuppress has been given naming the entity (if not, then the
argument is ignored).

Note that instantiations inherit the check status at the point of the instantiation, so a useful
idiom is to have a library package that introduces a check name with pragma Check_Name,
and then contains generic packages or subprograms which use the Enabled attribute to see
if the check is enabled. A user of this package can then issue a pragma Suppress or pragma
Unsuppress before instantiating the package or subprogram, controlling whether the check
will be present.

4.21 Attribute Enum_Rep

Note that this attribute is now standard in Ada 202x and is available as an implementation
defined attribute for earlier Ada versions.

For every enumeration subtype S, S'Enum_Rep denotes a function with the following spec:
function S'Enum_Rep (Arg : S'Base) return <Universal_Integer>;

It is also allowable to apply Enum_Rep directly to an object of an enumeration type or to
a non-overloaded enumeration literal. In this case S'Enum_Rep is equivalent to typ'Enum_
Rep(S) where typ is the type of the enumeration literal or object.

The function returns the representation value for the given enumeration value. This will be
equal to value of the Pos attribute in the absence of an enumeration representation clause.
This is a static attribute (i.e., the result is static if the argument is static).

S'Enum_Rep can also be used with integer types and objects, in which case it simply returns
the integer value. The reason for this is to allow it to be used for (<>) discrete formal
arguments in a generic unit that can be instantiated with either enumeration types or
integer types. Note that if Enum_Rep is used on a modular type whose upper bound exceeds
the upper bound of the largest signed integer type, and the argument is a variable, so that
the universal integer calculation is done at run time, then the call to Enum_Rep may raise
Constraint_Error.

4.22 Attribute Enum_Val

Note that this attribute is now standard in Ada 202x and is available as an implementation
defined attribute for earlier Ada versions.

For every enumeration subtype S, S'Enum_Val denotes a function with the following spec:
function S'Enum_Val (Arg : <Universal_Integer>) return S'Base;

The function returns the enumeration value whose representation matches the argument, or
raises Constraint_Error if no enumeration literal of the type has the matching value. This
will be equal to value of the Val attribute in the absence of an enumeration representation
clause. This is a static attribute (i.e., the result is static if the argument is static).

Chapter 4: Implementation Defined Attributes 123

4.23 Attribute Epsilon

The Epsilon attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.24 Attribute Fast_Math

Standard'Fast_Math (Standard is the only allowed prefix) yields a static Boolean value
that is True if pragma Fast_Math is active, and False otherwise.

4.25 Attribute Finalization_Size

The prefix of attribute Finalization_Size must be an object or a non-class-wide type.
This attribute returns the size of any hidden data reserved by the compiler to handle
finalization-related actions. The type of the attribute is ‘universal_integer’.

Finalization_Size yields a value of zero for a type with no controlled parts, an object
whose type has no controlled parts, or an object of a class-wide type whose tag denotes a
type with no controlled parts.

Note that only heap-allocated objects contain finalization data.

4.26 Attribute Fixed_Value

For every fixed-point type S, S'Fixed_Value denotes a function with the following specifi-
cation:

function S'Fixed_Value (Arg : <Universal_Integer>) return S;
The value returned is the fixed-point value V such that:
V = Arg * S'Small

The effect is thus similar to first converting the argument to the integer type used to
represent S, and then doing an unchecked conversion to the fixed-point type. The difference
is that there are full range checks, to ensure that the result is in range. This attribute is
primarily intended for use in implementation of the input-output functions for fixed-point
values.

4.27 Attribute From_Any

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.28 Attribute Has_Access_Values

The prefix of the Has_Access_Values attribute is a type. The result is a Boolean value
which is True if the is an access type, or is a composite type with a component (at any
nesting depth) that is an access type, and is False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has access values.

Chapter 4: Implementation Defined Attributes 124

4.29 Attribute Has_Discriminants

The prefix of the Has_Discriminants attribute is a type. The result is a Boolean value
which is True if the type has discriminants, and False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has discriminants.

4.30 Attribute Has_Tagged_Values

The prefix of the Has_Tagged_Values attribute is a type. The result is a Boolean value
which is True if the type is a composite type (array or record) that is either a tagged type
or has a subcomponent that is tagged, and is False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has access values.

4.31 Attribute Img

The Img attribute differs from Image in that, while both can be applied directly to an
object, Img cannot be applied to types.

Example usage of the attribute:
Put_Line ("X = " & X'Img);
which has the same meaning as the more verbose:
Put_Line ("X = " & T'Image (X));
where T is the (sub)type of the object X.

Note that technically, in analogy to Image, X'Img returns a parameterless function that
returns the appropriate string when called. This means that X'Img can be renamed as a
function-returning-string, or used in an instantiation as a function parameter.

4.32 Attribute Initialized

For the syntax and semantics of this attribute, see the SPARK 2014 Reference Manual,
section 6.10.

4.33 Attribute Integer_Value

For every integer type S, S'Integer_Value denotes a function with the following spec:
function S'Integer_Value (Arg : <Universal_Fixed>) return S;

The value returned is the integer value V, such that:
Arg = V * T'Small

where T is the type of Arg. The effect is thus similar to first doing an unchecked conversion
from the fixed-point type to its corresponding implementation type, and then converting the
result to the target integer type. The difference is that there are full range checks, to ensure
that the result is in range. This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

Chapter 4: Implementation Defined Attributes 125

4.34 Attribute Invalid_Value

For every scalar type S, S’Invalid_Value returns an undefined value of the type. If possi-
ble this value is an invalid representation for the type. The value returned is identical to
the value used to initialize an otherwise uninitialized value of the type if pragma Initial-
ize_Scalars is used, including the ability to modify the value with the binder -Sxx flag and
relevant environment variables at run time.

4.35 Attribute Large

The Large attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.36 Attribute Library_Level

P'Library_Level, where P is an entity name, returns a Boolean value which is True if
the entity is declared at the library level, and False otherwise. Note that within a generic
instantiation, the name of the generic unit denotes the instance, which means that this
attribute can be used to test if a generic is instantiated at the library level, as shown in this
example:

generic

package Gen is
pragma Compile_Time_Error
(not Gen'Library_Level,
"Gen can only be instantiated at library level");

end Gen;

4.37 Attribute Loop_Entry

Syntax:
X'Loop_Entry [(loop_name)]

The Loop_Entry attribute is used to refer to the value that an expression had upon entry
to a given loop in much the same way that the 01d attribute in a subprogram postcondition
can be used to refer to the value an expression had upon entry to the subprogram. The
relevant loop is either identified by the given loop name, or it is the innermost enclosing
loop when no loop name is given.

A Loop_Entry attribute can only occur within an Assert, Assert_And_Cut, Assume, Loop_
Variant or Loop_Invariant pragma. In addition, such a pragma must be one of the items
in the sequence of statements of a loop body, or nested inside block statements that appear
in the sequence of statements of a loop body. A common use of Loop_Entry is to compare
the current value of objects with their initial value at loop entry, in a Loop_Invariant
pragma.

The effect of using X'Loop_Entry is the same as declaring a constant initialized with the
initial value of X at loop entry. This copy is not performed if the loop is not entered, or if
the corresponding pragmas are ignored or disabled.

Chapter 4: Implementation Defined Attributes 126

4.38 Attribute Machine_Size

This attribute is identical to the Object_Size attribute. It is provided for compatibility
with the DEC Ada 83 attribute of this name.

4.39 Attribute Mantissa

The Mantissa attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.40 Attribute Maximum_Alignment

Standard'Maximum_Alignment (Standard is the only allowed prefix) provides the maximum
useful alignment value for the target. This is a static value that can be used to specify the
alignment for an object, guaranteeing that it is properly aligned in all cases.

4.41 Attribute Max_Integer_Size

Standard'Max_Integer_Size (Standard is the only allowed prefix) provides the size of the
largest supported integer type for the target. The result is a static constant.

4.42 Attribute Mechanism_Code

func'Mechanism_Code yields an integer code for the mechanism used for the result of func-
tion func, and subprog'Mechanism_Code (n) yields the mechanism used for formal param-
eter number ‘n’ (a static integer value, with 1 meaning the first parameter) of subprogram
subprog. The code returned is:
617

by copy (value)
(27

by reference

4.43 Attribute Null_Parameter

A reference T'Null_Parameter denotes an imaginary object of type or subtype T allocated
at machine address zero. The attribute is allowed only as the default expression of a formal
parameter, or as an actual expression of a subprogram call. In either case, the subprogram
must be imported.

The identity of the object is represented by the address zero in the argument list, indepen-
dent of the passing mechanism (explicit or default).

This capability is needed to specify that a zero address should be passed for a record or
other composite object passed by reference. There is no way of indicating this without the
Null_Parameter attribute.

4.44 Attribute Object_Size

The size of an object is not necessarily the same as the size of the type of an object. This is
because by default object sizes are increased to be a multiple of the alignment of the object.

Chapter 4: Implementation Defined Attributes 127

For example, Natural'Size is 31, but by default objects of type Natural will have a size
of 32 bits. Similarly, a record containing an integer and a character:

type Rec is record
I : Integer;
C : Character;
end record;
will have a size of 40 (that is Rec'Size will be 40). The alignment will be 4, because of the
integer field, and so the default size of record objects for this type will be 64 (8 bytes).
If the alignment of the above record is specified to be 1, then the object size will be 40 (5
bytes). This is true by default, and also an object size of 40 can be explicitly specified in
this case.
A consequence of this capability is that different object sizes can be given to subtypes that
would otherwise be considered in Ada to be statically matching. But it makes no sense
to consider such subtypes as statically matching. Consequently, GNAT adds a rule to the
static matching rules that requires object sizes to match. Consider this example:

1. procedure BadAVConvert is

2. type R is new Integer;
3. subtype R1 is R range 1 .. 10;
4. subtype R2 is R range 1 .. 10;
5. for R1'Object_Size use 8;
6. for R2'0Object_Size use 16;
7. type R1P is access all R1i;
8. type R2P is access all R2;
9. R1PV : R1P := new R1'(4);
10. R2PV : R2P;
11. begin
12. R2PV := R2P (R1PV);
I
>>> target designated subtype not compatible with
type "R1" defined at line 3
13. end;

In the absence of lines 5 and 6, types R1 and R2 statically match and hence the conversion
on line 12 is legal. But since lines 5 and 6 cause the object sizes to differ, GNAT considers
that types R1 and R2 are not statically matching, and line 12 generates the diagnostic shown
above.

Similar additional checks are performed in other contexts requiring statically matching
subtypes.

4.45 Attribute Old

In addition to the usage of 01d defined in the Ada 2012 RM (usage within Post as-
pect), GNAT also permits the use of this attribute in implementation defined pragmas
Postcondition, Contract_Cases and Test_Case. Also usages of 01d which would be ille-
gal according to the Ada 2012 RM definition are allowed under control of implementation
defined pragma Unevaluated_Use_0f_01d.

Chapter 4: Implementation Defined Attributes 128

4.46 Attribute Passed_By_Reference

typ'Passed_By_Reference for any subtype typ returns a value of type Boolean value that
is True if the type is normally passed by reference and False if the type is normally passed
by copy in calls. For scalar types, the result is always False and is static. For non-scalar
types, the result is nonstatic.

4.47 Attribute Pool_Address

X'Pool_Address for any object X returns the address of X within its storage pool. This is the
same as X'Address, except that for an unconstrained array whose bounds are allocated just
before the first component, X'Pool_Address returns the address of those bounds, whereas
X'Address returns the address of the first component.

Here, we are interpreting ‘storage pool’ broadly to mean wherever the object is
allocated, which could be a user-defined storage pool, the global heap, on the stack, or
in a static memory area. For an object created by new, Ptr.all'Pool_Address is what is
passed to Allocate and returned from Deallocate.

4.48 Attribute Range_Length

typ'Range_Length for any discrete type typ yields the number of values represented by
the subtype (zero for a null range). The result is static for static subtypes. Range_Length
applied to the index subtype of a one dimensional array always gives the same result as
Length applied to the array itself.

4.49 Attribute Restriction_Set

This attribute allows compile time testing of restrictions that are currently in effect. It
is primarily intended for specializing code in the run-time based on restrictions that are
active (e.g. don’t need to save fpt registers if restriction No_Floating_Point is known to be
in effect), but can be used anywhere.

There are two forms:

System'Restriction_Set (partition_boolean_restriction_NAME)
System'Restriction_Set (No_Dependence => library_unit_NAME);

In the case of the first form, the only restriction names allowed are parameterless restric-
tions that are checked for consistency at bind time. For a complete list see the subtype
System.Rident.Partition_Boolean_Restrictions.

The result returned is True if the restriction is known to be in effect, and False if the
restriction is known not to be in effect. An important guarantee is that the value of a
Restriction_Set attribute is known to be consistent throughout all the code of a partition.

This is trivially achieved if the entire partition is compiled with a consistent set of restriction
pragmas. However, the compilation model does not require this. It is possible to compile
one set of units with one set of pragmas, and another set of units with another set of
pragmas. It is even possible to compile a spec with one set of pragmas, and then WITH the
same spec with a different set of pragmas. Inconsistencies in the actual use of the restriction
are checked at bind time.

Chapter 4: Implementation Defined Attributes 129

In order to achieve the guarantee of consistency for the Restriction_Set pragma, we consider
that a use of the pragma that yields False is equivalent to a violation of the restriction.

So for example if you write

if System'Restriction_Set (No_Floating_ Point) then

else

end if;
And the result is False, so that the else branch is executed, you can assume that this
restriction is not set for any unit in the partition. This is checked by considering this use of
the restriction pragma to be a violation of the restriction No_Floating_Point. This means

that no other unit can attempt to set this restriction (if some unit does attempt to set it,
the binder will refuse to bind the partition).

Technical note: The restriction name and the unit name are intepreted entirely syntactically,
as in the corresponding Restrictions pragma, they are not analyzed semantically, so they
do not have a type.

4.50 Attribute Result

function'Result can only be used with in a Postcondition pragma for a function. The
prefix must be the name of the corresponding function. This is used to refer to the result
of the function in the postcondition expression. For a further discussion of the use of this
attribute and examples of its use, see the description of pragma Postcondition.

4.51 Attribute Round

In addition to the usage of this attribute in the Ada RM, GNAT also permits the use of
the 'Round attribute for ordinary fixed point types.

4.52 Attribute Safe_Emax

The Safe_Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.53 Attribute Safe_Large

The Safe_Large attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

4.54 Attribute Safe_Small

The Safe_Small attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

4.55 Attribute Scalar_Storage_Order

For every array or record type S, the representation attribute Scalar_Storage_Order de-
notes the order in which storage elements that make up scalar components are ordered

Chapter 4: Implementation Defined Attributes 130

within S. The value given must be a static expression of type System.Bit_Order. The
following is an example of the use of this feature:

-— Component type definitioms

subtype Yr_Type is Natural range O .. 127;
subtype Mo_Type is Natural range 1 .. 12;
subtype Da_Type is Natural range 1 .. 31;

-— Record declaration

type Date is record
Years_Since_1980 : Yr_Type;
Month : Mo_Type;
Day_0f _Month : Da_Type;

end record;

-- Record representation clause

for Date use record

Years_Since_1980 at O range O .. 6;
Month at O range 7 .. 10;
Day_0f_Month at 0 range 11 .. 15;

end record;
—-- Attribute definition clauses

for Date'Bit_Order use System.High Order_First;

for Date'Scalar_Storage_Order use System.High Order_First;

-- If Scalar_Storage_Order is specified, it must be consistent with
-- Bit_Order, so it's best to always define the latter explicitly if
-- the former is used.

Other properties are as for the standard representation attribute Bit_Order defined by Ada
RM 13.5.3(4). The default is System.Default_Bit_Order.

For a record type T, if T'Scalar_Storage_Order is specified explicitly, it shall be equal
to T'Bit_Order. Note: this means that if a Scalar_Storage_Order attribute definition
clause is not confirming, then the type’s Bit_0rder shall be specified explicitly and set to
the same value.

Derived types inherit an explicitly set scalar storage order from their parent types. This
may be overridden for the derived type by giving an explicit scalar storage order for it.
However, for a record extension, the derived type must have the same scalar storage order
as the parent type.

A component of a record type that is itself a record or an array and that does not start and
end on a byte boundary must have have the same scalar storage order as the record type.
A component of a bit-packed array type that is itself a record or an array must have the
same scalar storage order as the array type.

Chapter 4: Implementation Defined Attributes 131

No component of a type that has an explicit Scalar_Storage_0Order attribute definition
may be aliased.

A confirming Scalar_Storage_Order attribute definition clause (i.e. with a value equal to
System.Default_Bit_Order) has no effect.

If the opposite storage order is specified, then whenever the value of a scalar component of
an object of type S is read, the storage elements of the enclosing machine scalar are first
reversed (before retrieving the component value, possibly applying some shift and mask
operatings on the enclosing machine scalar), and the opposite operation is done for writes.

In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar components are relaxed.
Instead, the following rules apply:

* the underlying storage elements are those at positions (position + first_bit /
storage_element_size) .. (position + (last_bit + storage_element_size - 1)
/ storage_element_size)

the sequence of underlying storage elements shall have a size no greater than the largest
machine scalar

the enclosing machine scalar is defined as the smallest machine scalar starting at a po-
sition no greater than position + first_bit / storage_element_size and covering
storage elements at least up to position + (last_bit + storage_element_size - 1)
/ storage_element_size

* the position of the component is interpreted relative to that machine scalar.

If no scalar storage order is specified for a type (either directly, or by inheritance in the case
of a derived type), then the default is normally the native ordering of the target, but this
default can be overridden using pragma Default_Scalar_Storage_Order.

If a component of T is itself of a record or array type, the specfied Scalar_Storage_Order
does ‘not’ apply to that nested type: an explicit attribute definition clause must be provided
for the component type as well if desired.

Representation changes that explicitly or implicitly toggle the scalar storage order are not
supported and may result in erroneous execution of the program, except when performed
by means of an instance of Ada.Unchecked_Conversion.

In particular, overlays are not supported and a warning is given for them:

type Rec_LE is record
I : Integer;
end record;

for Rec_LE use record
I at O range O .. 31;
end record;

for Rec_LE'Bit_Order use System.Low_Order_First;
for Rec_LE'Scalar_Storage_Order use System.Low_Order_First;

type Rec_BE is record
I : Integer;
end record;

Chapter 4: Implementation Defined Attributes 132

for Rec_BE use record
I at 0 range O .. 31;
end record;

for Rec_BE'Bit_Order use System.High Order_First;
for Rec_BE'Scalar_Storage_Order use System.High Order_First;

R_LE : Rec_LE;

R_BE : Rec_BE;
for R_BE'Address use R_LE'Address;

warning: overlay changes scalar storage order [enabled by default]

In most cases, such representation changes ought to be replaced by an instantiation of a
function or procedure provided by GNAT.Byte_Swapping.

Note that the scalar storage order only affects the in-memory data representation. It has
no effect on the representation used by stream attributes.

Note that debuggers may be unable to display the correct value of scalar components of a
type for which the opposite storage order is specified.

4.56 Attribute Simple_Storage_Pool

For every nonformal, nonderived access-to-object type Acc, the representation attribute
Simple_Storage_Pool may be specified via an attribute_definition_clause (or by specifying
the equivalent aspect):

My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;

for Acc'Simple_Storage_Pool use My_Pool;

The name given in an attribute_definition_clause for the Simple_Storage_Pool
attribute shall denote a variable of a ‘simple storage pool type’ (see pragma
Simple_Storage_Pool_Type).

The use of this attribute is only allowed for a prefix denoting a type for which it has been
specified. The type of the attribute is the type of the variable specified as the simple storage
pool of the access type, and the attribute denotes that variable.

It is illegal to specify both Storage_Pool and Simple_Storage_Pool for the same access
type.

If the Simple_Storage_Pool attribute has been specified for an access type, then applying
the Storage_Pool attribute to the type is flagged with a warning and its evaluation raises
the exception Program_Error.

If the Simple_Storage_Pool attribute has been specified for an access type S, then the
evaluation of the attribute S'Storage_Size returns the result of calling Storage_Size
(S'Simple_Storage_Pool), which is intended to indicate the number of storage elements

Chapter 4: Implementation Defined Attributes 133

reserved for the simple storage pool. If the Storage_Size function has not been defined for
the simple storage pool type, then this attribute returns zero.

If an access type S has a specified simple storage pool of type SSP, then the evaluation of an
allocator for that access type calls the primitive Allocate procedure for type SSP, passing
S'Simple_Storage_Pool as the pool parameter. The detailed semantics of such allocators
is the same as those defined for allocators in section 13.11 of the Ada Reference Manual,
with the term ‘simple storage pool’ substituted for ‘storage pool’.

If an access type S has a specified simple storage pool of type SSP, then a call to an instance
of the Ada.Unchecked_Deallocation for that access type invokes the primitive Deallocate
procedure for type SSP, passing S'Simple_Storage_Pool as the pool parameter. The de-
tailed semantics of such unchecked deallocations is the same as defined in section 13.11.2
of the Ada Reference Manual, except that the term ‘simple storage pool’ is substituted for
‘storage pool’.

4.57 Attribute Small

The Small attribute is defined in Ada 95 (and Ada 2005) only for fixed-point types. GNAT
also allows this attribute to be applied to floating-point types for compatibility with Ada 83.
See the Ada 83 reference manual for an exact description of the semantics of this attribute
when applied to floating-point types.

4.58 Attribute Small_Denominator

typ'Small_Denominator for any fixed-point subtype typ yields the denominator in the
representation of typ'Small as a rational number with coprime factors (i.e. as an irreducible
fraction).

4.59 Attribute Small_Numerator

typ'Small_Numerator for any fixed-point subtype typ yields the numerator in the repre-
sentation of typ'Small as a rational number with coprime factors (i.e. as an irreducible
fraction).

4.60 Attribute Storage_Unit

Standard'Storage_Unit (Standard is the only allowed prefix) provides the same value as
System.Storage_Unit.

4.61 Attribute Stub_Type

The GNAT implementation of remote access-to-classwide types is organized as described
in AARM section E.4 (20.t): a value of an RACW type (designating a remote object) is
represented as a normal access value, pointing to a “stub” object which in turn contains the
necessary information to contact the designated remote object. A call on any dispatching
operation of such a stub object does the remote call, if necessary, using the information in
the stub object to locate the target partition, etc.

For a prefix T that denotes a remote access-to-classwide type, T'Stub_Type denotes the
type of the corresponding stub objects.

Chapter 4: Implementation Defined Attributes 134

By construction, the layout of T'Stub_Type is identical to that of type RACW_Stub_Type
declared in the internal implementation-defined unit System.Partition_Interface. Use
of this attribute will create an implicit dependency on this unit.

4.62 Attribute System_Allocator_Alignment

Standard'System_Allocator_Alignment (Standard is the only allowed prefix) provides
the observable guaranteed to be honored by the system allocator (malloc). This is a static
value that can be used in user storage pools based on malloc either to reject allocation with
alignment too large or to enable a realignment circuitry if the alignment request is larger
than this value.

4.63 Attribute Target_Name

Standard'Target_Name (Standard is the only allowed prefix) provides a static string value
that identifies the target for the current compilation. For GCC implementations, this is
the standard gcc target name without the terminating slash (for example, GNAT 5.0 on
windows yields “i586-pc-mingw32msv”).

4.64 Attribute To_Address

The System'To_Address (System is the only allowed prefix) denotes a function identical
to System.Storage_Elements.To_Address except that it is a static attribute. This means
that if its argument is a static expression, then the result of the attribute is a static ex-
pression. This means that such an expression can be used in contexts (e.g., preelaborable
packages) which require a static expression and where the function call could not be used
(since the function call is always nonstatic, even if its argument is static). The argument
must be in the range -(2**(m-1)) .. 2**m-1, where m is the memory size (typically 32
or 64). Negative values are intepreted in a modular manner (e.g., -1 means the same as
16#FFFF_FFFF# on a 32 bits machine).

4.65 Attribute To_Any

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.66 Attribute Type_Class

typ ' Type_Class for any type or subtype typ yields the value of the type class for the full
type of typ. If typ is a generic formal type, the value is the value for the corresponding
actual subtype. The value of this attribute is of type System.Aux_DEC.Type_Class, which
has the following definition:

type Type_Class is
(Type_Class_Enumeration,
Type_Class_Integer,
Type_Class_Fixed_Point,
Type_Class_Floating_Point,
Type_Class_Array,

Chapter 4: Implementation Defined Attributes 135

Type_Class_Record,
Type_Class_Access,
Type_Class_Task,
Type_Class_Address);

Protected types yield the value Type_Class_Task, which thus applies to all concurrent
types. This attribute is designed to be compatible with the DEC Ada 83 attribute of the
same name.

4.67 Attribute Type_Key

The Type_Key attribute is applicable to a type or subtype and yields a value of type Stan-
dard.String containing encoded information about the type or subtype. This provides im-
proved compatibility with other implementations that support this attribute.

4.68 Attribute TypeCode

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.69 Attribute Unconstrained_Array

The Unconstrained_Array attribute can be used with a prefix that denotes any type or
subtype. It is a static attribute that yields True if the prefix designates an unconstrained
array, and False otherwise. In a generic instance, the result is still static, and yields the
result of applying this test to the generic actual.

4.70 Attribute Universal_Literal_String

The prefix of Universal_Literal_String must be a named number. The static result is
the string consisting of the characters of the number as defined in the original source. This
allows the user program to access the actual text of named numbers without intermediate
conversions and without the need to enclose the strings in quotes (which would preclude
their use as numbers).

For example, the following program prints the first 50 digits of pi:

with Text_I0; use Text_IO;
with Ada.Numerics;
procedure Pi is
begin
Put (Ada.Numerics.Pi'Universal_Literal_String);
end;

4.71 Attribute Unrestricted_Access

The Unrestricted_Access attribute is similar to Access except that all accessibility and
aliased view checks are omitted. This is a user-beware attribute.

For objects, it is similar to Address, for which it is a desirable replacement where the value
desired is an access type. In other words, its effect is similar to first applying the Address
attribute and then doing an unchecked conversion to a desired access type.

Chapter 4: Implementation Defined Attributes 136

For subprograms, P'Unrestricted_Access may be used where P'Access would be illegal,
to construct a value of a less-nested named access type that designates a more-nested sub-
program. This value may be used in indirect calls, so long as the more-nested subprogram
still exists; once the subprogram containing it has returned, such calls are erroneous. For
example:

package body P is

type Less_Nested is access procedure;
Global : Less_Nested;

procedure P1 is
begin

Global.all;
end P1;

procedure P2 is
Local_Var : Integer;

procedure More_Nested is

begin
. Local_Var ...
end More_Nested;
begin
Global := More_Nested'Unrestricted_Access;
P1;
end P2;

end P;

When P1 is called from P2, the call via Global is OK, but if P1 were called after P2 returns,
it would be an erroneous use of a dangling pointer.

For objects, it is possible to use Unrestricted_Access for any type. However, if the result is
of an access-to-unconstrained array subtype, then the resulting pointer has the same scope
as the context of the attribute, and must not be returned to some enclosing scope. For
instance, if a function uses Unrestricted_Access to create an access-to-unconstrained-
array and returns that value to the caller, the result will involve dangling pointers. In
addition, it is only valid to create pointers to unconstrained arrays using this attribute if
the pointer has the normal default ‘fat’ representation where a pointer has two components,
one points to the array and one points to the bounds. If a size clause is used to force ‘thin’
representation for a pointer to unconstrained where there is only space for a single pointer,
then the resulting pointer is not usable.

In the simple case where a direct use of Unrestricted_Access attempts to make a thin pointer
for a non-aliased object, the compiler will reject the use as illegal, as shown in the following
example:

with System; use System;
procedure SliceUA2 is
type A is access all String;

Chapter 4: Implementation Defined Attributes 137

for A'Size use Standard'Address_Size;

procedure P (Arg : A) is

begin
null;
end P;
X : String := "hello world!";
X2 : aliased String := "hello world!";
AV : A := X'Unrestricted_Access; -- ERROR

I
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

begin
P (X'Unrestricted_Access); -- ERROR
I
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

P (X(7 .. 12)'Unrestricted_Access); -- ERROR
I
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

P (X2'Unrestricted_Access); -- 0K
end;

but other cases cannot be detected by the compiler, and are considered to be erroneous.
Consider the following example:

with System; use System;
with System; use System;
procedure SliceUA is

type AF is access all String;

type A is access all String;
for A'Size use Standard'Address_Size;

procedure P (Arg : A) is
begin
if Arg'Length /= 6 then
raise Program_ Error;
end if;
end P;

X : String := "hello world!";

Chapter 4: Implementation Defined Attributes 138

Y : AF := X (7 .. 12)'Unrestricted_Access;

begin
P (A (Y);
end;

A normal unconstrained array value or a constrained array object marked as aliased has
the bounds in memory just before the array, so a thin pointer can retrieve both the data
and the bounds. But in this case, the non-aliased object X does not have the bounds before
the string. If the size clause for type A were not present, then the pointer would be a fat
pointer, where one component is a pointer to the bounds, and all would be well. But with
the size clause present, the conversion from fat pointer to thin pointer in the call loses the
bounds, and so this is erroneous, and the program likely raises a Program_Error exception.

In general, it is advisable to completely avoid mixing the use of thin pointers and the use
of Unrestricted_Access where the designated type is an unconstrained array. The use of
thin pointers should be restricted to cases of porting legacy code that implicitly assumes
the size of pointers, and such code should not in any case be using this attribute.

Another erroneous situation arises if the attribute is applied to a constant. The resulting
pointer can be used to access the constant, but the effect of trying to modify a constant in
this manner is not well-defined. Consider this example:

P : constant Integer := 4;
type R is access all Integer;
RV : R := P'Unrestricted_Access;

RV.all := 3;
Here we attempt to modify the constant P from 4 to 3, but the compiler may or may not
notice this attempt, and subsequent references to P may yield either the value 3 or the value
4 or the assignment may blow up if the compiler decides to put P in read-only memory.
One particular case where Unrestricted_Access can be used in this way is to modify the
value of an in parameter:

procedure K (S : in String) is

type R is access all Character;

RV : R := S (3)'Unrestricted_Access;
begin

RV.all := 'a';
end;

In general this is a risky approach. It may appear to “work” but such uses of Unrestricted_
Access are potentially non-portable, even from one version of GNAT to another, so are best
avoided if possible.

4.72 Attribute Update

The Update attribute creates a copy of an array or record value with one or more modified
components. The syntax is:

PREFIX'Update (RECORD_COMPONENT_ASSOCIATION_LIST)
PREFIX'Update (ARRAY_COMPONENT_ASSOCIATION {, ARRAY_COMPONENT_ASSOCIATION })

Chapter 4: Implementation Defined Attributes 139

PREFIX'Update (MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION
{, MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION })

MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION ::
INDEX_EXPRESSION_LIST_LIST
INDEX_EXPRESSION_LIST

INDEX_EXPRESSION_LIST_LIST => EXPRI
INDEX_EXPRESSION_LIST {| INDEX_EXPI
(EXPRESSION {, EXPRESSION })

where PREFIX is the name of an array or record object, the association list in parentheses
does not contain an others choice and the box symbol <> may not appear in any expression.
The effect is to yield a copy of the array or record value which is unchanged apart from
the components mentioned in the association list, which are changed to the indicated value.
The original value of the array or record value is not affected. For example:

type Arr is Array (1 .. 5) of Integer;

(1,2,3,4,5);
Avari'Update (2 => 10, 3 .. 4 => 20);

yields a value for Avar2 of 1,10,20,20,5 with Avarl begin unmodified. Similarly:

Avarl : Arr :
Avar2 : Arr :

type Rec is A, B, C : Integer;

Rvarl : Rec :
Rvar2 : Rec :

(A=>1, B=>2, C=>3);

Rvarl'Update (B => 20);

yields a value for Rvar2 of (A => 1, B => 20, C => 3), with Rvarl being unmodifed. Note
that the value of the attribute reference is computed completely before it is used. This
means that if you write:

Avarl := Avarl'Update (1 => 10, 2 => Function_Call);

then the value of Avar1l is not modified if Function_Call raises an exception, unlike the
effect of a series of direct assignments to elements of Avarl. In general this requires that
two extra complete copies of the object are required, which should be kept in mind when
considering efficiency.

The Update attribute cannot be applied to prefixes of a limited type, and cannot reference
discriminants in the case of a record type. The accessibility level of an Update attribute
result object is defined as for an aggregate.

In the record case, no component can be mentioned more than once. In the array case, two
overlapping ranges can appear in the association list, in which case the modifications are
processed left to right.

Multi-dimensional arrays can be modified, as shown by this example:
A : array (1 .. 10, 1 .. 10) of Integer;

A := A'Update ((1, 2) => 20, (3, 4) => 30);
which changes element (1,2) to 20 and (3,4) to 30.

4.73 Attribute Valid_Value

The 'Valid_Value attribute is defined for enumeration types other than those in package
Standard or types derived from those types. This attribute is a function that takes a String,

Chapter 4: Implementation Defined Attributes 140

and returns Boolean. T'Valid_Value (S) returns True if and only if T'Value (S) would
not raise Constraint_Error.

4.74 Attribute Valid_Scalars

The 'Valid_Scalars attribute is intended to make it easier to check the validity of scalar
subcomponents of composite objects. The attribute is defined for any prefix P which denotes
an object. Prefix P can be any type except for tagged private or Unchecked_Union types.
The value of the attribute is of type Boolean.

P'Valid_Scalars yields True if and only if the evaluation of C'Valid yields True for every
scalar subcomponent C of P, or if P has no scalar subcomponents. Attribute 'Valid_Scalars
is equivalent to attribute 'Valid for scalar types.

It is not specified in what order the subcomponents are checked, nor whether any more are
checked after any one of them is determined to be invalid. If the prefix P is of a class-wide
type T'Class (where T is the associated specific type), or if the prefix P is of a specific
tagged type T, then only the subcomponents of T are checked; in other words, components
of extensions of T are not checked even if T'Class (P) 'Tag /= T'Tag.

The compiler will issue a warning if it can be determined at compile time that the prefix of
the attribute has no scalar subcomponents.

Note: Valid_Scalars can generate a lot of code, especially in the case of a large variant
record. If the attribute is called in many places in the same program applied to objects
of the same type, it can reduce program size to write a function with a single use of the
attribute, and then call that function from multiple places.

4.75 Attribute VADS_Size

The 'VADS_Size attribute is intended to make it easier to port legacy code which relies
on the semantics of 'Size as implemented by the VADS Ada 83 compiler. GNAT makes
a best effort at duplicating the same semantic interpretation. In particular, 'VADS_Size
applied to a predefined or other primitive type with no Size clause yields the Object_Size
(for example, Natural'Size is 32 rather than 31 on typical machines). In addition 'VADS_
Size applied to an object gives the result that would be obtained by applying the attribute
to the corresponding type.

4.76 Attribute Value_Size

type'Value_Size is the number of bits required to represent a value of the given subtype.
It is the same as type'Size, but, unlike Size, may be set for non-first subtypes.

4.77 Attribute Wchar_T _Size

Standard'Wchar_T_Size (Standard is the only allowed prefix) provides the size in bits
of the C wchar_t type primarily for constructing the definition of this type in package
Interfaces.C. The result is a static constant.

Chapter 4: Implementation Defined Attributes 141

4.78 Attribute Word_Size

Standard'Word_Size (Standard is the only allowed prefix) provides the value
System.Word_Size. The result is a static constant.

142

5 Standard and Implementation Defined
Restrictions

All Ada Reference Manual-defined Restriction identifiers are implemented:
* language-defined restrictions (see 13.12.1)
* tasking restrictions (see D.7)
* high integrity restrictions (see H.4)

GNAT implements additional restriction identifiers. All restrictions, whether language de-
fined or GNAT-specific, are listed in the following.

5.1 Partition-Wide Restrictions

There are two separate lists of restriction identifiers. The first set requires consistency
throughout a partition (in other words, if the restriction identifier is used for any compilation
unit in the partition, then all compilation units in the partition must obey the restriction).

5.1.1 Immediate_Reclamation

[RM H.4] This restriction ensures that, except for storage occupied by objects created by
allocators and not deallocated via unchecked deallocation, any storage reserved at run time
for an object is immediately reclaimed when the object no longer exists.

5.1.2 Max_Asynchronous_Select_Nesting

[RM D.7] Specifies the maximum dynamic nesting level of asynchronous selects. Violations
of this restriction with a value of zero are detected at compile time. Violations of this
restriction with values other than zero cause Storage_Error to be raised.

5.1.3 Max_Entry_Queue_Length

[RM D.7] This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most the specified number of tasks waiting on the entry at any
one time, and so no queue is required. Note that this restriction is checked at run time.
Violation of this restriction results in the raising of Program_Error exception at the point
of the call.

The restriction Max_Entry_Queue_Depth is recognized as a synonym for Max_Entry_Queue_
Length. This is retained for historical compatibility purposes (and a warning will be gen-
erated for its use if warnings on obsolescent features are activated).

5.1.4 Max_Protected_Entries

[RM D.7] Specifies the maximum number of entries per protected type. The bounds of
every entry family of a protected unit shall be static, or shall be defined by a discriminant
of a subtype whose corresponding bound is static.

5.1.5 Max_Select_Alternatives

[RM D.7] Specifies the maximum number of alternatives in a selective accept.

Chapter 5: Standard and Implementation Defined Restrictions 143

5.1.6 Max_Storage_At_Blocking

[RM D.7] Specifies the maximum portion (in storage elements) of a task’s Storage_Size that
can be retained by a blocked task. A violation of this restriction causes Storage_Error to
be raised.

5.1.7 Max_Task_Entries

[RM D.7] Specifies the maximum number of entries per task. The bounds of every entry
family of a task unit shall be static, or shall be defined by a discriminant of a subtype whose
corresponding bound is static.

5.1.8 Max_Tasks

[RM D.7] Specifies the maximum number of task that may be created, not counting the
creation of the environment task. Violations of this restriction with a value of zero are
detected at compile time. Violations of this restriction with values other than zero cause
Storage_Error to be raised.

5.1.9 No_Abort_Statements
[RM D.7] There are no abort_statements, and there are no calls to Task_Identification. Abort_Task.

5.1.10 No_Access_Parameter_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator as the actual parameter to an access parameter.

5.1.11 No_Access_Subprograms

[RM H.4] This restriction ensures at compile time that there are no declarations of access-
to-subprogram types.

5.1.12 No_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator.

5.1.13 No_Anonymous_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator of anonymous access type.

5.1.14 No_Asynchronous_Control

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined package Asynchronous_Task_Control.

5.1.15 No_Calendar

[GNAT] This restriction ensures at compile time that there are no semantic dependences
on package Calendar.

5.1.16 No_Coextensions

[RM H.4] This restriction ensures at compile time that there are no coextensions. See 3.10.2.

Chapter 5: Standard and Implementation Defined Restrictions 144

5.1.17 No_Default_Initialization

[GNAT] This restriction prohibits any instance of default initialization of variables or com-
ponents. The binder implements a consistency check that prevents any unit without the
restriction from with’ing a unit with the restriction (this allows the generation of initial-
ization procedures to be skipped, since you can be sure that no call is ever generated to
an initialization procedure in a unit with the restriction active). If used in conjunction
with Initialize_Scalars or Normalize_Scalars, the effect is to prohibit all cases of variables
declared without a specific initializer (including the case of OUT scalar parameters).

5.1.18 No_Delay

[RM H.4] This restriction ensures at compile time that there are no delay statements and
no semantic dependences on package Calendar.

5.1.19 No_Dependence

[RM 13.12.1] This restriction ensures at compile time that there are no dependences on
a library unit. For GNAT, this includes implicit implementation dependences on units of
the runtime library that are created by the compiler to support specific constructs of the
language. Here are some examples:

* System.Arith_64: 64-bit arithmetics for 32-bit platforms,

* System.Arith_128: 128-bit arithmetics for 64-bit platforms,

* System.Memory: heap memory allocation routines,
System.Memory_Compare: memory comparison routine (aka memcmp for C),
System.Memory_Copy: memory copy routine (aka memcpy for C),

* System.Memory_Move: memoy move routine (aka memmove for C),
* System.Memory_Set: memory set routine (aka memset for C),
* System.Stack_Checking[.0Operations]: stack checking without MMU,

System.GCC: support routines from the GCC library.
5.1.20 No_Direct_Boolean_Operators

[GNAT] This restriction ensures that no logical operators (and/or/xor) are used on operands
of type Boolean (or any type derived from Boolean). This is intended for use in safety critical
programs where the certification protocol requires the use of short-circuit (and then, or else)
forms for all composite boolean operations.

5.1.21 No_Dispatch

[RM H.4] This restriction ensures at compile time that there are no occurrences of T'Class,
for any (tagged) subtype T.

5.1.22 No_Dispatching_Calls

[GNAT] This restriction ensures at compile time that the code generated by the compiler
involves no dispatching calls. The use of this restriction allows the safe use of record ex-
tensions, classwide membership tests and other classwide features not involving implicit
dispatching. This restriction ensures that the code contains no indirect calls through a
dispatching mechanism. Note that this includes internally-generated calls created by the

Chapter 5: Standard and Implementation Defined Restrictions 145

compiler, for example in the implementation of class-wide objects assignments. The mem-
bership test is allowed in the presence of this restriction, because its implementation requires
no dispatching. This restriction is comparable to the official Ada restriction No_Dispatch
except that it is a bit less restrictive in that it allows all classwide constructs that do not
imply dispatching. The following example indicates constructs that violate this restriction.

package Pkg is
type T is tagged record
Data : Natural;
end record;
procedure P (X : T);

type DT is new T with record
More_Data : Natural;
end record;
procedure Q (X : DT);
end Pkg;

with Pkg; use Pkg;
procedure Example is
procedure Test (0 : T'Class) is

N : Natural := 0'Size; -- Error: Dispatching call
C : T'Class := 0; -- Error: implicit Dispatching Call
begin
if 0 in DT'Class then -- OK : Membership test
Q (DT (@) -- 0K : Type conversion plus direct call
else
P (0); -- Error: Dispatching call
end if;
end Test;
Obj : DT;
begin
P (0Obj); -- 0K : Direct call
P (T (0bj)); -- 0K : Type conversion plus direct call
P (T'Class (0bj)); -- Error: Dispatching call
Test (Obj); -- 0K : Type conversion
if Obj in T'Class then -- OK : Membership test
null;
end if;

end Example;

Chapter 5: Standard and Implementation Defined Restrictions 146

5.1.23 No_Dynamic_Attachment

[RM D.7] This restriction ensures that there is no call to any of the operations defined
in package Ada.Interrupts (Is_Reserved, Is_Attached, Current_Handler, Attach_Handler,
Exchange_Handler, Detach_Handler, and Reference).

The restriction No_Dynamic_Interrupts is recognized as a synonym for No_Dynamic_
Attachment. This is retained for historical compatibility purposes (and a warning will be
generated for its use if warnings on obsolescent features are activated).

5.1.24 No_Dynamic_Priorities

[RM D.7] There are no semantic dependencies on the package Dynamic_Priorities.

5.1.25 No_Entry_Calls_In_Elaboration_Code

[GNAT] This restriction ensures at compile time that no task or protected entry calls are
made during elaboration code. As a result of the use of this restriction, the compiler can
assume that no code past an accept statement in a task can be executed at elaboration
time.

5.1.26 No_Enumeration_Maps

[GNAT] This restriction ensures at compile time that no operations requiring enumeration
maps are used (that is Image and Value attributes applied to enumeration types).

5.1.27 No_Exception_Handlers

[GNAT] This restriction ensures at compile time that there are no explicit exception han-
dlers. It also indicates that no exception propagation will be provided. In this mode,
exceptions may be raised but will result in an immediate call to the last chance handler, a
routine that the user must define with the following profile:

procedure Last_Chance_Handler
(Source_Location : System.Address; Line : Integer);
pragma Export (C, Last_Chance_Handler,
"__gnat_last_chance_handler");

The Source_Location parameter is a C null-terminated string representing a message to be
associated with the exception (typically the source location of the raise statement generated
by the compiler). The Line parameter when nonzero represents the line number in the source
program where the raise occurs.

5.1.28 No_Exception_Propagation

[GNAT] This restriction guarantees that exceptions are never propagated to an outer sub-
program scope. The only case in which an exception may be raised is when the handler
is statically in the same subprogram, so that the effect of a raise is essentially like a goto
statement. Any other raise statement (implicit or explicit) will be considered unhandled.
Exception handlers are allowed, but may not contain an exception occurrence identifier (ex-
ception choice). In addition, use of the package GNAT.Current_Exception is not permitted,
and reraise statements (raise with no operand) are not permitted.

Chapter 5: Standard and Implementation Defined Restrictions 147

5.1.29 No_Exception_Registration

[GNAT] This restriction ensures at compile time that no stream operations for types Excep-
tion_Id or Exception_Occurrence are used. This also makes it impossible to pass exceptions
to or from a partition with this restriction in a distributed environment. If this restric-
tion is active, the generated code is simplified by omitting the otherwise-required global
registration of exceptions when they are declared.

5.1.30 No_Exceptions

[RM H.4] This restriction ensures at compile time that there are no raise statements and no
exception handlers and also suppresses the generation of language-defined run-time checks.

5.1.31 No_Finalization

[GNAT] This restriction disables the language features described in chapter 7.6 of the Ada
2005 RM as well as all form of code generation performed by the compiler to support these
features. The following types are no longer considered controlled when this restriction is in
effect:

* Ada.Finalization.Controlled

* Ada.Finalization.Limited_Controlled

* Derivations from Controlled or Limited_Controlled

* (Class-wide types

* Protected types

* Task types

* Array and record types with controlled components

The compiler no longer generates code to initialize, finalize or adjust an object or a nested
component, either declared on the stack or on the heap. The deallocation of a controlled
object no longer finalizes its contents.

5.1.32 No_Fixed_Point

[RM H.4] This restriction ensures at compile time that there are no occurrences of fixed
point types and operations.

5.1.33 No_Floating_Point

[RM H.4| This restriction ensures at compile time that there are no occurrences of floating
point types and operations.

5.1.34 No_Implicit_Conditionals

[GNAT] This restriction ensures that the generated code does not contain any implicit
conditionals, either by modifying the generated code where possible, or by rejecting any
construct that would otherwise generate an implicit conditional. Note that this check does
not include run time constraint checks, which on some targets may generate implicit con-
ditionals as well. To control the latter, constraint checks can be suppressed in the normal
manner. Constructs generating implicit conditionals include comparisons of composite ob-
jects and the Max/Min attributes.

Chapter 5: Standard and Implementation Defined Restrictions 148

5.1.35 No_Implicit_Dynamic_Code

[GNAT] This restriction prevents the compiler from building ‘trampolines’. This is a struc-
ture that is built on the stack and contains dynamic code to be executed at run time.
On some targets, a trampoline is built for the following features: Access, Unrestricted_
Access, or Address of a nested subprogram; nested task bodies; primitive operations of
nested tagged types. Trampolines do not work on machines that prevent execution of stack
data. For example, on windows systems, enabling DEP (data execution protection) will
cause trampolines to raise an exception. Trampolines are also quite slow at run time.

On many targets, trampolines have been largely eliminated. Look at the version of sys-
tem.ads for your target — if it has Always_Compatible_Rep equal to False, then trampo-
lines are largely eliminated. In particular, a trampoline is built for the following features:
Address of a nested subprogram; Access or Unrestricted_Access of a nested subprogram,
but only if pragma Favor_Top_Level applies, or the access type has a foreign-language con-
vention; primitive operations of nested tagged types.

5.1.36 No_Implicit_Heap_Allocations

[RM D.7] No constructs are allowed to cause implicit heap allocation.

5.1.37 No_Implicit_Protected_Object_Allocations

[GNAT] No constructs are allowed to cause implicit heap allocation of a protected object.

5.1.38 No_Implicit_Task_Allocations

[GNAT] No constructs are allowed to cause implicit heap allocation of a task.

5.1.39 No_Initialize_Scalars

[GNAT] This restriction ensures that no unit in the partition is compiled with pragma
Initialize_Scalars. This allows the generation of more efficient code, and in particular elim-
inates dummy null initialization routines that are otherwise generated for some record and
array types.

5.1.40 No_IO

[RM H.4] This restriction ensures at compile time that there are no dependences on any of
the library units Sequential 10, Direct_I1O, Text_10, Wide_Text_10, Wide_Wide_Text_I10,
or Stream_IO.

5.1.41 No_Local_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator in subprograms, generic subprograms, tasks, and entry bodies.

5.1.42 No_Local_Protected_Objects

[RM D.7] This restriction ensures at compile time that protected objects are only declared
at the library level.

5.1.43 No_Local_Tagged_Types

[GNAT] This restriction ensures at compile time that tagged types are only declared at the
library level.

Chapter 5: Standard and Implementation Defined Restrictions 149

5.1.44 No_Local_Timing_Events

[RM D.7] All objects of type Ada.Real_Time.Timing_Events.Timing_Event are declared at
the library level.

5.1.45 No_Long_Long_Integers

[GNAT] This partition-wide restriction forbids any explicit reference to type Stan-
dard.Long_Long_Integer, and also forbids declaring range types whose implicit base type
is Long_Long_Integer, and modular types whose size exceeds Long_Integer’Size.

5.1.46 No_Multiple_Elaboration

[GNAT] When this restriction is active and the static elaboration model is used, and -
fpreserve-control-flow is not used, the compiler is allowed to suppress the elaboration counter
normally associated with the unit, even if the unit has elaboration code. This counter is
typically used to check for access before elaboration and to control multiple elaboration
attempts. If the restriction is used, then the situations in which multiple elaboration is
possible, including non-Ada main programs and Stand Alone libraries, are not permitted
and will be diagnosed by the binder.

5.1.47 No_Nested_Finalization
[RM D.7] All objects requiring finalization are declared at the library level.

5.1.48 No_Protected_Type_Allocators

[RM D.7] This restriction ensures at compile time that there are no allocator expressions
that attempt to allocate protected objects.

5.1.49 No_Protected_Types

[RM H.4] This restriction ensures at compile time that there are no declarations of protected
types or protected objects.

5.1.50 No_Recursion

[RM H.4] A program execution is erroneous if a subprogram is invoked as part of its exe-
cution.

5.1.51 No_Reentrancy

[RM H.4] A program execution is erroneous if a subprogram is executed by two tasks at the
same time.

5.1.52 No_Relative_Delay

[RM D.7] This restriction ensures at compile time that there are no delay relative statements
and prevents expressions such as delay 1.23; from appearing in source code.

5.1.53 No_Requeue_Statements

[RM D.7] This restriction ensures at compile time that no requeue statements are permitted
and prevents keyword requeue from being used in source code.

Chapter 5: Standard and Implementation Defined Restrictions 150

The restriction No_Requeue is recognized as a synonym for No_Requeue_Statements. This
is retained for historical compatibility purposes (and a warning will be generated for its use
if warnings on oNobsolescent features are activated).

5.1.54 No_Secondary_Stack

[GNAT] This restriction ensures at compile time that the generated code does not contain
any reference to the secondary stack. The secondary stack is used to implement func-
tions returning unconstrained objects (arrays or records) on some targets. Suppresses the
allocation of secondary stacks for tasks (excluding the environment task) at run time.

5.1.55 No_Select_Statements

[RM D.7] This restriction ensures at compile time no select statements of any kind are
permitted, that is the keyword select may not appear.

5.1.56 No_Specific_Termination_Handlers

[RM D.7] There are no calls to Ada.Task_Termination.Set_Specific_.Handler or to
Ada.Task_Termination.Specific_Handler.

5.1.57 No_Specification_of_Aspect

[RM 13.12.1] This restriction checks at compile time that no aspect specification, attribute
definition clause, or pragma is given for a given aspect.

5.1.58 No_Standard_Allocators_After_Elaboration

[RM D.7] Specifies that an allocator using a standard storage pool should never be evalu-
ated at run time after the elaboration of the library items of the partition has completed.
Otherwise, Storage_Error is raised.

5.1.59 No_Standard_Storage_Pools

[GNAT] This restriction ensures at compile time that no access types use the standard
default storage pool. Any access type declared must have an explicit Storage_Pool attribute
defined specifying a user-defined storage pool.

5.1.60 No_Stream_Optimizations

[GNAT] This restriction affects the performance of stream operations on types String,
Wide_String and Wide_Wide_String. By default, the compiler uses block reads and writes
when manipulating String objects due to their superior performance. When this restriction
is in effect, the compiler performs all IO operations on a per-character basis.

5.1.61 No_Streams

[GNAT] This restriction ensures at compile/bind time that there are no stream objects
created and no use of stream attributes. This restriction does not forbid dependences on
the package Ada.Streams. So it is permissible to with Ada.Streams (or another package
that does so itself) as long as no actual stream objects are created and no stream attributes
are used.

Note that the use of restriction allows optimization of tagged types, since they do not
need to worry about dispatching stream operations. To take maximum advantage of this

Chapter 5: Standard and Implementation Defined Restrictions 151

space-saving optimization, any unit declaring a tagged type should be compiled with the
restriction, though this is not required.

When pragmas Discard_Names and Restrictions (No_Streams) simultaneously apply to
a tagged type, its Expanded_Name and External_Tag are also initialized with empty strings.
In particular, both these pragmas can be applied as configuration pragmas to avoid exposing
entity names at binary level for the entire partition.

5.1.62 No_Tagged_Type_Registration

[GNAT] If this restriction is active, then class-wide streaming attributes are not supported.
In addition, the subprograms in Ada.Tags are not supported. If this restriction is active,
the generated code is simplified by omitting the otherwise-required global registration of
tagged types when they are declared. This restriction may be necessary in order to also
apply the No_Elaboration_Code restriction.

5.1.63 No_Task_Allocators

[RM D.7] There are no allocators for task types or types containing task subcomponents.

5.1.64 No_Task_At_Interrupt_Priority

[GNAT] This restriction ensures at compile time that there is no Interrupt_Priority aspect
or pragma for a task or a task type. As a consequence, the tasks are always created with a
priority below that an interrupt priority.

5.1.65 No_Task_Attributes_Package

[GNAT] This restriction ensures at compile time that there are no implicit or explicit
dependencies on the package Ada.Task_Attributes.

The restriction No_Task_Attributes is recognized as a synonym for No_Task_Attributes_
Package. This is retained for historical compatibility purposes (and a warning will be
generated for its use if warnings on obsolescent features are activated).

5.1.66 No_Task_Hierarchy

[RM D.7] All (non-environment) tasks depend directly on the environment task of the
partition.

5.1.67 No_Task_Termination

[RM D.7] Tasks that terminate are erroneous.

5.1.68 No_Tasking

[GNAT] This restriction prevents the declaration of tasks or task types throughout the
partition. It is similar in effect to the use of Max_Tasks => 0 except that violations are
caught at compile time and cause an error message to be output either by the compiler or
binder.

5.1.69 No_Terminate_Alternatives

[RM D.7] There are no selective accepts with terminate alternatives.

Chapter 5: Standard and Implementation Defined Restrictions 152

5.1.70 No_Unchecked_Access

[RM H.4] This restriction ensures at compile time that there are no occurrences of the
Unchecked_Access attribute.

5.1.71 No_Unchecked_Conversion

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined generic function Unchecked_Conversion.

5.1.72 No_Unchecked_Deallocation

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined generic procedure Unchecked_Deallocation.

5.1.73 No_Use_Of_Attribute

[RM 13.12.1] This is a standard Ada 2012 restriction that is GNAT defined in earlier versions
of Ada.

5.1.74 No_Use_Of_Entity

GNAT] This restriction ensures at compile time that there are no references to the entity
p
given in the form

No_Use_0f _Entity => Name
where Name is the fully qualified entity, for example
No_Use_0f_Entity => Ada.Text_IO0.Put_Line

5.1.75 No_Use_Of_Pragma

[RM 13.12.1] This is a standard Ada 2012 restriction that is GNAT defined in earlier versions
of Ada.

5.1.76 Pure_Barriers

[GNAT] This restriction ensures at compile time that protected entry barriers are restricted
to:

* components of the protected object (excluding selection from dereferences),

* constant declarations,

* named numbers,
enumeration literals,
integer literals,

real literals,

* % X *

character literals,

implicitly defined comparison operators,
uses of the Standard.”not” operator,
short-circuit operator,

* the Count attribute

This restriction is a relaxation of the Simple_Barriers restriction, but still ensures absence
of side effects, exceptions, and recursion during the evaluation of the barriers.

Chapter 5: Standard and Implementation Defined Restrictions 153

5.1.77 Simple_Barriers

[RM D.7] This restriction ensures at compile time that barriers in entry declarations for
protected types are restricted to either static boolean expressions or references to simple
boolean variables defined in the private part of the protected type. No other form of entry
barriers is permitted.

The restriction Boolean_Entry_Barriers is recognized as a synonym for Simple_Barriers.
This is retained for historical compatibility purposes (and a warning will be generated for
its use if warnings on obsolescent features are activated).

5.1.78 Static_Priorities

[GNAT] This restriction ensures at compile time that all priority expressions are static, and
that there are no dependences on the package Ada.Dynamic_Priorities.

5.1.79 Static_Storage_Size

[GNAT] This restriction ensures at compile time that any expression appearing in a Stor-
age_Size pragma or attribute definition clause is static.

5.2 Program Unit Level Restrictions

The second set of restriction identifiers does not require partition-wide consistency. The
restriction may be enforced for a single compilation unit without any effect on any of the
other compilation units in the partition.

5.2.1 No_Elaboration_Code

[GNAT] This restriction ensures at compile time that no elaboration code is generated. Note
that this is not the same condition as is enforced by pragma Preelaborate. There are cases
in which pragma Preelaborate still permits code to be generated (e.g., code to initialize a
large array to all zeroes), and there are cases of units which do not meet the requirements
for pragma Preelaborate, but for which no elaboration code is generated. Generally, it
is the case that preelaborable units will meet the restrictions, with the exception of large
aggregates initialized with an others_clause, and exception declarations (which generate
calls to a run-time registry procedure). This restriction is enforced on a unit by unit basis,
it need not be obeyed consistently throughout a partition.

In the case of aggregates with others, if the aggregate has a dynamic size, there is no
way to eliminate the elaboration code (such dynamic bounds would be incompatible with
Preelaborate in any case). If the bounds are static, then use of this restriction actually
modifies the code choice of the compiler to avoid generating a loop, and instead generate
the aggregate statically if possible, no matter how many times the data for the others clause
must be repeatedly generated.

It is not possible to precisely document the constructs which are compatible with this
restriction, since, unlike most other restrictions, this is not a restriction on the source
code, but a restriction on the generated object code. For example, if the source contains a
declaration:

Val : constant Integer := X;

where X is not a static constant, it may be possible, depending on complex optimization
circuitry, for the compiler to figure out the value of X at compile time, in which case this

Chapter 5: Standard and Implementation Defined Restrictions 154

initialization can be done by the loader, and requires no initialization code. It is not possible
to document the precise conditions under which the optimizer can figure this out.

Note that this the implementation of this restriction requires full code generation. If it is
used in conjunction with “semantics only” checking, then some cases of violations may be
missed.

When this restriction is active, we are not requesting control-flow preservation with -
fpreserve-control-flow, and the static elaboration model is used, the compiler is allowed
to suppress the elaboration counter normally associated with the unit. This counter is
typically used to check for access before elaboration and to control multiple elaboration
attempts.

5.2.2 No_Dynamic_Accessibility_Checks

[GNAT] No dynamic accessibility checks are generated when this restriction is in effect. In-
stead, dangling references are prevented via more conservative compile-time checking. More
specifically, existing compile-time checks are enforced but with more conservative assump-
tions about the accessibility levels of the relevant entities. These conservative assumptions
eliminate the need for dynamic accessibility checks.

These new rules for computing (at compile-time) the accessibility level of an anonymous
access type T are as follows:

* If T is a function result type then, from the caller’s perspective, its level is that of the
innermost master enclosing the function call. From the callee’s perspective, the level
of parameters and local variables of the callee is statically deeper than the level of T.

For any other accessibility level L such that the level of parameters and local variables
of the callee is statically deeper than L, the level of T (from the callee’s perspective) is
also statically deeper than L.

* If T is the type of a formal parameter then, from the caller’s perspective, its level is at
least as deep as that of the type of the corresponding actual parameter (whatever that
actual parameter might be). From the callee’s perspective, the level of parameters and
local variables of the callee is statically deeper than the level of T.

* If T is the type of a discriminant then its level is that of the discriminated type.
* If T is the type of a stand-alone object then its level is the level of the object.
* In all other cases, the level of T is as defined by the existing rules of Ada.

5.2.3 No_Dynamic_Sized_Objects

[GNAT] This restriction disallows certain constructs that might lead to the creation of
dynamic-sized composite objects (or array or discriminated type). An array subtype indi-
cation is illegal if the bounds are not static or references to discriminants of an enclosing
type. A discriminated subtype indication is illegal if the type has discriminant-dependent
array components or a variant part, and the discriminants are not static. In addition, array
and record aggregates are illegal in corresponding cases. Note that this restriction does
not forbid access discriminants. It is often a good idea to combine this restriction with
No_Secondary_Stack.

Chapter 5: Standard and Implementation Defined Restrictions 155

5.2.4 No_Entry_Queue

[GNAT] This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most one task waiting on the entry at any one time, and so no
queue is required. This restriction is not checked at compile time. A program execution is
erroneous if an attempt is made to queue a second task on such an entry.

5.2.5 No_Implementation_Aspect_Specifications

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined aspects are
present. With this restriction, the only aspects that can be used are those defined in the
Ada Reference Manual.

5.2.6 No_Implementation_Attributes

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined attributes are
present. With this restriction, the only attributes that can be used are those defined in the
Ada Reference Manual.

5.2.7 No_Implementation_Identifiers

[RM 13.12.1] This restriction checks at compile time that no implementation-defined iden-
tifiers (marked with pragma Implementation_Defined) occur within language-defined pack-
ages.

5.2.8 No_Implementation_Pragmas

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined pragmas are
present. With this restriction, the only pragmas that can be used are those defined in the
Ada Reference Manual.

5.2.9 No_Implementation_Restrictions

[GNAT] This restriction checks at compile time that no GNAT-defined restriction identifiers
(other than No_Implementation_Restrictions itself) are present. With this restriction,
the only other restriction identifiers that can be used are those defined in the Ada Reference
Manual.

5.2.10 No_Implementation_Units

[RM 13.12.1] This restriction checks at compile time that there is no mention in the context
clause of any implementation-defined descendants of packages Ada, Interfaces, or System.

5.2.11 No_Implicit_Aliasing

[GNAT] This restriction, which is not required to be partition-wide consistent, requires an
explicit aliased keyword for an object to which ‘Access, ‘Unchecked_Access, or ‘Address
is applied, and forbids entirely the use of the ‘Unrestricted_Access attribute for objects.
Note: the reason that Unrestricted_Access is forbidden is that it would require the pre-
fix to be aliased, and in such cases, it can always be replaced by the standard attribute
Unchecked_Access which is preferable.

Chapter 5: Standard and Implementation Defined Restrictions 156

5.2.12 No_Implicit_Loops

[GNAT] This restriction ensures that the generated code of the unit marked with this
restriction does not contain any implicit for loops, either by modifying the generated code
where possible, or by rejecting any construct that would otherwise generate an implicit
for loop. If this restriction is active, it is possible to build large array aggregates with all
static components without generating an intermediate temporary, and without generating a
loop to initialize individual components. Otherwise, a loop is created for arrays larger than
about 5000 scalar components. Note that if this restriction is set in the spec of a package,
it will not apply to its body.

5.2.13 No_Obsolescent_Features

[RM 13.12.1] This restriction checks at compile time that no obsolescent features are used,
as defined in Annex J of the Ada Reference Manual.

5.2.14 No_Wide_Characters

[GNAT] This restriction ensures at compile time that no uses of the types Wide_Character
or Wide_String or corresponding wide wide types appear, and that no wide or wide wide
string or character literals appear in the program (that is literals representing characters
not in type Character).

5.2.15 Static_Dispatch_Tables

[GNAT] This restriction checks at compile time that all the artifacts associated with dispatch
tables can be placed in read-only memory.

5.2.16 SPARK_05

[GNAT] This restriction no longer has any effect and is superseded by SPARK 2014, whose
restrictions are checked by the tool GNATprove. To check that a codebase respects SPARK
2014 restrictions, mark the code with pragma or aspect SPARK_Mode, and run the tool
GNATprove at Stone assurance level, as follows:

gnatprove -P project.gpr --mode=stone
or equivalently:

gnatprove -P project.gpr --mode=check_all

157

6 Implementation Advice

The main text of the Ada Reference Manual describes the required behavior of all Ada
compilers, and the GNAT compiler conforms to these requirements.

In addition, there are sections throughout the Ada Reference Manual headed by the phrase
‘Implementation advice’. These sections are not normative, i.e., they do not specify re-
quirements that all compilers must follow. Rather they provide advice on generally desir-
able behavior. They are not requirements, because they describe behavior that cannot be
provided on all systems, or may be undesirable on some systems.

As far as practical, GNAT follows the implementation advice in the Ada Reference Manual.
Each such RM section corresponds to a section in this chapter whose title specifies the
RM section number and paragraph number and the subject of the advice. The contents
of each section consists of the RM text within quotation marks, followed by the GNAT
interpretation of the advice. Most often, this simply says ‘followed’, which means that
GNAT follows the advice. However, in a number of cases, GNAT deliberately deviates from
this advice, in which case the text describes what GNAT does and why.

6.1 RM 1.1.3(20): Error Detection

“If an implementation detects the use of an unsupported Specialized
Needs Annex feature at run time, it should raise Program_Error if fea-
sible.”

Not relevant. All specialized needs annex features are either supported, or diagnosed at
compile time.

6.2 RM 1.1.3(31): Child Units

“If an implementation wishes to provide implementation-defined exten-
sions to the functionality of a language-defined library unit, it should
normally do so by adding children to the library unit.”

Followed.

6.3 RM 1.1.5(12): Bounded Errors
“If an implementation detects a bounded error or erroneous execution, it
should raise Program_Error.”

Followed in all cases in which the implementation detects a bounded error or erroneous
execution. Not all such situations are detected at runtime.

6.4 RM 2.8(16): Pragmas

“Normally, implementation-defined pragmas should have no semantic ef-
fect for error-free programs; that is, if the implementation-defined prag-
mas are removed from a working program, the program should still be
legal, and should still have the same semantics.”

The following implementation defined pragmas are exceptions to this rule:

Chapter 6: Implementation Advice 158

Pragma Explanation
‘Abort_Defer’ Affects semantics
‘Ada_83’ Affects legality
‘Assert’ Affects semantics
‘CPP_Class’ Affects semantics
‘CPP_Constructor’ Affects semantics
‘Debug’ Affects semantics
‘Interface_Name’ Affects semantics
‘Machine_Attribute’ Affects semantics
‘Unimplemented_Unit’ Affects legality
‘Unchecked_Union’ Affects semantics

In each of the above cases, it is essential to the purpose of the pragma that this advice not
be followed. For details see [Implementation Defined Pragmas|, page 4.

6.5 RM 2.8(17-19): Pragmas

“Normally, an implementation should not define pragmas that can make
an illegal program legal, except as follows:

* A pragma used to complete a declaration, such as a pragma Import;

* A pragma used to configure the environment by adding, removing,
or replacing library_items.”

See [RM 2.8(16); Pragmas]|, page 157.

6.6 RM 3.5.2(5): Alternative Character Sets

“If an implementation supports a mode with alternative interpretations
for Character and Wide_Character, the set of graphic characters of
Character should nevertheless remain a proper subset of the set of
graphic characters of Wide_Character. Any character set ‘localizations’
should be reflected in the results of the subprograms defined in the
language-defined package Characters.Handling (see A.3) available in
such a mode. In a mode with an alternative interpretation of Character,
the implementation should also support a corresponding change in what
is a legal identifier_letter.”

Chapter 6: Implementation Advice 159

Not all wide character modes follow this advice, in particular the JIS and IEC modes reflect
standard usage in Japan, and in these encoding, the upper half of the Latin-1 set is not
part of the wide-character subset, since the most significant bit is used for wide character
encoding. However, this only applies to the external forms. Internally there is no such
restriction.

6.7 RM 3.5.4(28): Integer Types

“An implementation should support Long_Integer in addition to
Integer if the target machine supports 32-bit (or longer) arithmetic. No
other named integer subtypes are recommended for package Standard.
Instead, appropriate named integer subtypes should be provided in the
library package Interfaces (see B.2).”

Long_Integer is supported. Other standard integer types are supported so this advice is
not fully followed. These types are supported for convenient interface to C, and so that all
hardware types of the machine are easily available.

6.8 RM 3.5.4(29): Integer Types

“An implementation for a two’s complement machine should support
modular types with a binary modulus up to System.Max_Int*2+2.
An implementation should support a non-binary modules up to
Integer'Last.”

Followed.

6.9 RM 3.5.5(8): Enumeration Values

“For the evaluation of a call on S'Pos for an enumeration subtype, if
the value of the operand does not correspond to the internal code for any
enumeration literal of its type (perhaps due to an un-initialized variable),
then the implementation should raise Program_Error. This is particu-
larly important for enumeration types with noncontiguous internal codes
specified by an enumeration_representation_clause.”

Followed.

6.10 RM 3.5.7(17): Float Types

“An implementation should support Long_Float in addition to Float
if the target machine supports 11 or more digits of precision. No other
named floating point subtypes are recommended for package Standard.
Instead, appropriate named floating point subtypes should be provided
in the library package Interfaces (see B.2).”

Short_Float and Long_Long_Float are also provided. The former provides improved com-
patibility with other implementations supporting this type. The latter corresponds to the
highest precision floating-point type supported by the hardware. On most machines, this
will be the same as Long_Float, but on some machines, it will correspond to the IEEE
extended form. The notable case is all x86 implementations, where Long_Long_Float cor-
responds to the 80-bit extended precision format supported in hardware on this processor.

Chapter 6: Implementation Advice 160

Note that the 128-bit format on SPARC is not supported, since this is a software rather
than a hardware format.

6.11 RM 3.6.2(11): Multidimensional Arrays

“An implementation should normally represent multidimensional arrays
in row-major order, consistent with the notation used for multidimen-
sional array aggregates (see 4.3.3). However, if a pragma Convention
(Fortran, ...) applies to a multidimensional array type, then column-
major order should be used instead (see B.5, ‘Interfacing with Fortran’).”

Followed.

6.12 RM 9.6(30-31): Duration’Small

“Whenever possible in an implementation, the value of Duration'Small
should be no greater than 100 microseconds.”

Followed. (Duration'Small = 10**(-9)).

“The time base for delay_relative_statements should be monotonic;
it need not be the same time base as used for Calendar.Clock.”

Followed.

6.13 RM 10.2.1(12): Consistent Representation

“In an implementation, a type declared in a pre-elaborated package

should have the same representation in every elaboration of a given

version of the package, whether the elaborations occur in distinct

executions of the same program, or in executions of distinct programs

or partitions that include the given version.”
Followed, except in the case of tagged types. Tagged types involve implicit pointers to a
local copy of a dispatch table, and these pointers have representations which thus depend
on a particular elaboration of the package. It is not easy to see how it would be possible to
follow this advice without severely impacting efficiency of execution.

6.14 RM 11.4.1(19): Exception Information

“Exception_Message by default and Exception_Information should
produce information wuseful for debugging. Exception_Message
should be short, about one line. Exception_Information can be
long. Exception_Message should not include the Exception_Name.
Exception_Information should include both the Exception_Name and
the Exception_Message.”

Followed. For each exception that doesn’t have a specified Exception_Message, the com-
piler generates one containing the location of the raise statement. This location has the
form ‘file_name:line’, where file_name is the short file name (without path information)
and line is the line number in the file. Note that in the case of the Zero Cost Exception
mechanism, these messages become redundant with the Exception_Information that con-
tains a full backtrace of the calling sequence, so they are disabled. To disable explicitly the
generation of the source location message, use the Pragma Discard_Names.

Chapter 6: Implementation Advice 161

6.15 RM 11.5(28): Suppression of Checks

“The implementation should minimize the code executed for checks that
have been suppressed.”

Followed.

6.16 RM 13.1 (21-24): Representation Clauses

“The recommended level of support for all representation items is quali-
fied as follows:

An implementation need not support representation items containing
nonstatic expressions, except that an implementation should support a
representation item for a given entity if each nonstatic expression in the
representation item is a name that statically denotes a constant declared
before the entity.”

Followed. In fact, GNAT goes beyond the recommended level of support by allowing non-
static expressions in some representation clauses even without the need to declare constants
initialized with the values of such expressions. For example:

X : Integer;
Y : Float;
for Y'Address use X'Address;

is accepted directly by GNAT.

“An implementation need not support a specification for the Size for
a given composite subtype, nor the size or storage place for an object
(including a component) of a given composite subtype, unless the con-
straints on the subtype and its composite subcomponents (if any) are all
static constraints.”

Followed. Size Clauses are not permitted on nonstatic components, as described above.

“An aliased component, or a component whose type is by-reference,
should always be allocated at an addressable location.”

Followed.

6.17 RM 13.2(6-8): Packed Types

“If a type is packed, then the implementation should try to minimize
storage allocated to objects of the type, possibly at the expense of speed
of accessing components, subject to reasonable complexity in addressing
calculations.

The recommended level of support pragma Pack is:

For a packed record type, the components should be packed as tightly
as possible subject to the Sizes of the component subtypes, and subject
to any ‘record_representation_clause’ that applies to the type; the imple-
mentation may, but need not, reorder components or cross aligned word
boundaries to improve the packing. A component whose Size is greater
than the word size may be allocated an integral number of words.”

Chapter 6: Implementation Advice 162

Followed. Tight packing of arrays is supported for all component sizes up to 64-bits. If
the array component size is 1 (that is to say, if the component is a boolean type or an
enumeration type with two values) then values of the type are implicitly initialized to zero.
This happens both for objects of the packed type, and for objects that have a subcomponent
of the packed type.

6.18 RM 13.3(14-19): Address Clauses

“For an array X, X'Address should point at the first component of the
array, and not at the array bounds.”

Followed.
“The recommended level of support for the Address attribute is:
X'Address should produce a useful result if X is an object that is aliased or
of a by-reference type, or is an entity whose Address has been specified.”
Followed. A valid address will be produced even if none of those conditions have been met.
If necessary, the object is forced into memory to ensure the address is valid.
“An implementation should support Address clauses for imported sub-
programs.”
Followed.
“Objects (including subcomponents) that are aliased or of a by-reference
type should be allocated on storage element boundaries.”
Followed.
“If the Address of an object is specified, or it is imported or exported,

then the implementation should not perform optimizations based on as-
sumptions of no aliases.”

Followed.

6.19 RM 13.3(29-35): Alignment Clauses

“The recommended level of support for the Alignment attribute for sub-
types is:
An implementation should support specified Alignments that are factors
and multiples of the number of storage elements per word, subject to the
following:”

Followed.

“An implementation need not support specified Alignments for combina-
tions of Sizes and Alignments that cannot be easily loaded and stored by
available machine instructions.”

Followed.

“An implementation need not support specified Alignments that are
greater than the maximum Alignment the implementation ever returns
by default.”

Followed.

Chapter 6: Implementation Advice 163

“The recommended level of support for the Alignment attribute for ob-
jects is:

Same as above, for subtypes, but in addition:”
Followed.

“For stand-alone library-level objects of statically constrained subtypes,
the implementation should support all alignments supported by the target
linker. For example, page alignment is likely to be supported for such
objects, but not for subtypes.”

Followed.

6.20 RM 13.3(42-43): Size Clauses
“The recommended level of support for the Size attribute of objects is:

A Size clause should be supported for an object if the specified Size is at
least as large as its subtype’s Size, and corresponds to a size in storage
elements that is a multiple of the object’s Alignment (if the Alignment
is nonzero).”

Followed.

6.21 RM 13.3(50-56): Size Clauses

“If the Size of a subtype is specified, and allows for efficient independent
addressability (see 9.10) on the target architecture, then the Size of the
following objects of the subtype should equal the Size of the subtype:

Aliased objects (including components).”
Followed.

“Size clause on a composite subtype should not affect the internal layout
of components.”

Followed. But note that this can be overridden by use of the implementation pragma
Implicit_Packing in the case of packed arrays.

“The recommended level of support for the Size attribute of subtypes is:

The Size (if not specified) of a static discrete or fixed point subtype
should be the number of bits needed to represent each value belonging to
the subtype using an unbiased representation, leaving space for a sign bit
only if the subtype contains negative values. If such a subtype is a first
subtype, then an implementation should support a specified Size for it
that reflects this representation.”

Followed.

“For a subtype implemented with levels of indirection, the Size should
include the size of the pointers, but not the size of what they point at.”

Followed.

Chapter 6: Implementation Advice

6.22 RM 13.3(71-73): Component Size Clauses

“The recommended level of support for the Component_Size attribute is:

An implementation need not support specified Component_Sizes that
are less than the Size of the component subtype.”

Followed.

“An implementation should support specified Component_Sizes that are
factors and multiples of the word size. For such Component_Sizes, the
array should contain no gaps between components. For other Compo-
nent_Sizes (if supported), the array should contain no gaps between com-
ponents when packing is also specified; the implementation should forbid
this combination in cases where it cannot support a no-gaps representa-
tion.”

Followed.

6.23 RM 13.4(9-10): Enumeration Representation Clauses

“The recommended level of support for enumeration representation
clauses is:

An implementation need not support enumeration representation clauses
for boolean types, but should at minimum support the internal codes in
the range System.Min_Int .. System.Max_Int.”

Followed.

6.24 RM 13.5.1(17-22): Record Representation Clauses

“The recommended level of support for ‘record_representation_clause’s
is:

An implementation should support storage places that can be extracted
with a load, mask, shift sequence of machine code, and set with a load,
shift, mask, store sequence, given the available machine instructions and
run-time model.”

Followed.

“A storage place should be supported if its size is equal to the Size of
the component subtype, and it starts and ends on a boundary that obeys
the Alignment of the component subtype.”

Followed.

“If the default bit ordering applies to the declaration of a given type,
then for a component whose subtype’s Size is less than the word size,
any storage place that does not cross an aligned word boundary should
be supported.”

Followed.

“An implementation may reserve a storage place for the tag field of a
tagged type, and disallow other components from overlapping that place.”

Chapter 6: Implementation Advice 165

Followed. The storage place for the tag field is the beginning of the tagged record, and its
size is Address’Size. GNAT will reject an explicit component clause for the tag field.

“An implementation need not support a ‘component_clause’ for a com-
ponent of an extension part if the storage place is not after the storage
places of all components of the parent type, whether or not those storage
places had been specified.”

Followed. The above advice on record representation clauses is followed, and all mentioned
features are implemented.

6.25 RM 13.5.2(5): Storage Place Attributes

“If a component is represented using some form of pointer (such as an
offset) to the actual data of the component, and this data is contiguous
with the rest of the object, then the storage place attributes should reflect
the place of the actual data, not the pointer. If a component is allocated
discontinuously from the rest of the object, then a warning should be
generated upon reference to one of its storage place attributes.”

Followed. There are no such components in GNAT.

6.26 RM 13.5.3(7-8): Bit Ordering

“The recommended level of support for the non-default bit ordering is:

The implementation should support the nondefault bit ordering in addi-
tion to the default bit ordering.”

Followed.

6.27 RM 13.7(37): Address as Private

“Address should be of a private type.”
Followed.

6.28 RM 13.7.1(16): Address Operations

“Operations in System and its children should reflect the target envi-
ronment semantics as closely as is reasonable. For example, on most
machines, it makes sense for address arithmetic to ‘wrap around’. Oper-
ations that do not make sense should raise Program_Error.”

Followed. Address arithmetic is modular arithmetic that wraps around. No operation raises
Program_Error, since all operations make sense.

6.29 RM 13.9(14-17): Unchecked Conversion

“The Size of an array object should not include its bounds; hence, the
bounds should not be part of the converted data.”
Followed.

“The implementation should not generate unnecessary run-time checks
to ensure that the representation of S is a representation of the target

Chapter 6: Implementation Advice 166

type. It should take advantage of the permission to return by reference
when possible. Restrictions on unchecked conversions should be avoided
unless required by the target environment.”

Followed. There are no restrictions on unchecked conversion. A warning is generated if the
source and target types do not have the same size since the semantics in this case may be
target dependent.

“The recommended level of support for unchecked conversions is:

Unchecked conversions should be supported and should be reversible in
the cases where this clause defines the result. To enable meaningful
use of unchecked conversion, a contiguous representation should be used
for elementary subtypes, for statically constrained array subtypes whose
component subtype is one of the subtypes described in this paragraph,
and for record subtypes without discriminants whose component subtypes
are described in this paragraph.”

Followed.

6.30 RM 13.11(23-25): Implicit Heap Usage

“An implementation should document any cases in which it dynamically
allocates heap storage for a purpose other than the evaluation of an al-
locator.”

Followed, the only other points at which heap storage is dynamically allocated are as follows:
* At initial elaboration time, to allocate dynamically sized global objects.
* To allocate space for a task when a task is created.
* To extend the secondary stack dynamically when needed. The secondary stack is used
for returning variable length results.

“A default (implementation-provided) storage pool for an access-to-
constant type should not have overhead to support deallocation of
individual objects.”

Followed.

“A storage pool for an anonymous access type should be created at the
point of an allocator for the type, and be reclaimed when the designated
object becomes inaccessible.”

Followed.

6.31 RM 13.11.2(17): Unchecked Deallocation

“For a standard storage pool, Free should actually reclaim the storage.”
Followed.

6.32 RM 13.13.2(1.6): Stream Oriented Attributes

“If not specified, the value of Stream_Size for an elementary type should
be the number of bits that corresponds to the minimum number of stream
elements required by the first subtype of the type, rounded up to the

Chapter 6: Implementation Advice 167

nearest factor or multiple of the word size that is also a multiple of the
stream element size.”

Followed, except that the number of stream elements is 1, 2, 3, 4 or 8. The Stream_Size
may be used to override the default choice.

The default implementation is based on direct binary representations and is therefore target-
and endianness-dependent. To address this issue, GNAT also supplies an alternate imple-
mentation of the stream attributes Read and Write, which uses the target-independent
XDR standard representation for scalar types. This XDR alternative can be enabled via
the binder switch -xdr.

6.33 RM A.1(52): Names of Predefined Numeric Types

“If an implementation provides additional named predefined integer
types, then the names should end with Integer as in Long_Integer. If
an implementation provides additional named predefined floating point
types, then the names should end with Float as in Long_Float.”

Followed.

6.34 RM A.3.2(49): Ada.Characters.Handling

“If an implementation provides a localized definition of Character
or Wide_Character, then the effects of the subprograms in
Characters.Handling should reflect the localizations. See also 3.5.2.”

Followed. GNAT provides no such localized definitions.

6.35 RM A.4.4(106): Bounded-Length String Handling

“Bounded string objects should not be implemented by implicit pointers
and dynamic allocation.”

Followed. No implicit pointers or dynamic allocation are used.

6.36 RM A.5.2(46-47): Random Number Generation

“Any storage associated with an object of type Generator should be
reclaimed on exit from the scope of the object.”

Followed.

“If the generator period is sufficiently long in relation to the number of
distinct initiator values, then each possible value of Initiator passed to
Reset should initiate a sequence of random numbers that does not, in a
practical sense, overlap the sequence initiated by any other value. If this
is not possible, then the mapping between initiator values and generator
states should be a rapidly varying function of the initiator value.”

Followed. The generator period is sufficiently long for the first condition here to hold true.

Chapter 6: Implementation Advice 168

6.37 RM A.10.7(23): Get_Immediate

“The Get_Immediate procedures should be implemented with unbuffered
input. For a device such as a keyboard, input should be available if a
key has already been typed, whereas for a disk file, input should always
be available except at end of file. For a file associated with a keyboard-
like device, any line-editing features of the underlying operating system
should be disabled during the execution of Get_Immediate.”

Followed on all targets except VxWorks. For VxWorks, there is no way to provide this
functionality that does not result in the input buffer being flushed before the Get _Immediate
call. A special unit Interfaces.Vxworks.IO0 is provided that contains routines to enable
this functionality.

6.38 RM A.18: Containers

All implementation advice pertaining to Ada.Containers and its child units (that is, all
implementation advice occurring within section A.18 and its subsections) is followed except
for A.18.24(17):

“Bounded ordered set objects should be implemented without implicit
pointers or dynamic allocation.

The implementations of the two Reference_Preserving_Key functions of the generic pack-
age Ada.Containers.Bounded_Ordered_Sets each currently make use of dynamic allocation;
other operations on bounded ordered set objects follow the implementation advice.

6.39 RM B.1(39-41): Pragma Export

“If an implementation supports pragma Export to a given language, then
it should also allow the main subprogram to be written in that language.
It should support some mechanism for invoking the elaboration of the
Ada library units included in the system, and for invoking the finaliza-
tion of the environment task. On typical systems, the recommended
mechanism is to provide two subprograms whose link names are adainit
and adafinal. adainit should contain the elaboration code for library
units. adafinal should contain the finalization code. These subprograms
should have no effect the second and subsequent time they are called.”

Followed.

“Automatic elaboration of pre-elaborated packages should be provided
when pragma Export is supported.”

Followed when the main program is in Ada. If the main program is in a foreign language,
then adainit must be called to elaborate pre-elaborated packages.

“For each supported convention ‘L’ other than Intrinsic, an imple-
mentation should support Import and Export pragmas for objects of
‘L’-compatible types and for subprograms, and pragma Convention for
‘L’-eligible types and for subprograms, presuming the other language has
corresponding features. Pragma Convention need not be supported for
scalar types.”

Followed.

Chapter 6: Implementation Advice 169

6.40 RM B.2(12-13): Package Interfaces

“For each implementation-defined convention identifier, there should be
a child package of package Interfaces with the corresponding name. This
package should contain any declarations that would be useful for interfac-
ing to the language (implementation) represented by the convention. Any
declarations useful for interfacing to any language on the given hardware
architecture should be provided directly in Interfaces.”
Followed.

“An implementation supporting an interface to C, COBOL, or Fortran
should provide the corresponding package or packages described in the
following clauses.”

Followed. GNAT provides all the packages described in this section.

6.41 RM B.3(63-71): Interfacing with C

“An implementation should support the following interface correspon-
dences between Ada and C.”

Followed.

“An Ada procedure corresponds to a void-returning C function.”
Followed.

“An Ada function corresponds to a non-void C function.”
Followed.

“An Ada in scalar parameter is passed as a scalar argument to a C
function.”

Followed.

“An Ada in parameter of an access-to-object type with designated type
T is passed as a t* argument to a C function, where t is the C type
corresponding to the Ada type T.”

Followed.

“An Ada access T parameter, or an Ada out or in out parameter of an
elementary type T, is passed as a t* argument to a C function, where
t is the C type corresponding to the Ada type T. In the case of an
elementary out or in out parameter, a pointer to a temporary copy is
used to preserve by-copy semantics.”

Followed.

“An Ada parameter of a record type T, of any mode, is passed as a t*
argument to a C function, where t is the C structure corresponding to
the Ada type T.”

Followed. This convention may be overridden by the use of the C_Pass_By_Copy pragma,
or Convention, or by explicitly specifying the mechanism for a given call using an extended
import or export pragma.

“An Ada parameter of an array type with component type T, of any

mode, is passed as a t* argument to a C function, where t is the C type

corresponding to the Ada type T.”

Chapter 6: Implementation Advice

Followed.

“An Ada parameter of an access-to-subprogram type is passed as a
pointer to a C function whose prototype corresponds to the designated
subprogram’s specification.”

Followed.

6.42 RM B.4(95-98): Interfacing with COBOL

“An Ada implementation should support the following interface corre-
spondences between Ada and COBOL.”

Followed.

“An Ada access T parameter is passed as a BY REFERENCE data item of
the COBOL type corresponding to T.”

Followed.

“An Ada in scalar parameter is passed as a BY CONTENT data item of the
corresponding COBOL type.”

Followed.
“Any other Ada parameter is passed as a BY REFERENCE data item of the

COBOL type corresponding to the Ada parameter type; for scalars, a
local copy is used if necessary to ensure by-copy semantics.”

Followed.

6.43 RM B.5(22-26): Interfacing with Fortran

“An Ada implementation should support the following interface corre-
spondences between Ada and Fortran:”

Followed.

“An Ada procedure corresponds to a Fortran subroutine.”
Followed.

“An Ada function corresponds to a Fortran function.”
Followed.

“An Ada parameter of an elementary, array, or record type T is passed
as a T argument to a Fortran procedure, where T is the Fortran type
corresponding to the Ada type T, and where the INTENT attribute of
the corresponding dummy argument matches the Ada formal parameter
mode; the Fortran implementation’s parameter passing conventions are
used. For elementary types, a local copy is used if necessary to ensure
by-copy semantics.”
Followed.
“An Ada parameter of an access-to-subprogram type is passed as a refer-

ence to a Fortran procedure whose interface corresponds to the designated
subprogram’s specification.”

Followed.

170

Chapter 6: Implementation Advice

6.44 RM C.1(3-5): Access to Machine Operations

“The machine code or intrinsic support should allow access to all opera-
tions normally available to assembly language programmers for the target
environment, including privileged instructions, if any.”

Followed.

“The interfacing pragmas (see Annex B) should support interface to as-
sembler; the default assembler should be associated with the convention
identifier Assembler.”

Followed.

“If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location, and should ensure that it is
retained by the linking process, even if not otherwise referenced from the
Ada code. The implementation should assume that any call to a machine
code or assembler subprogram is allowed to read or update every object
that is specified as exported.”

Followed.

6.45 RM C.1(10-16): Access to Machine Operations

“The implementation should ensure that little or no overhead is associ-
ated with calling intrinsic and machine-code subprograms.”

Followed for both intrinsics and machine-code subprograms.

“It is recommended that intrinsic subprograms be provided for conve-
nient access to any machine operations that provide special capabilities
or efficiency and that are not otherwise available through the language
constructs.”

Followed. A full set of machine operation intrinsic subprograms is provided.

“Atomic read-modify-write operations—e.g., test and set, compare and
swap, decrement and test, enqueue/dequeue.”

Followed on any target supporting such operations.

“Standard numeric functions—e.g.:, sin, log.”
Followed on any target supporting such operations.

“String manipulation operations—e.g.:, translate and test.”
Followed on any target supporting such operations.

“Vector operations—e.g.:, compare vector against thresholds.”
Followed on any target supporting such operations.

“Direct operations on 1/O ports.”

Followed on any target supporting such operations.

171

Chapter 6: Implementation Advice 172

6.46 RM C.3(28): Interrupt Support

“If the Ceiling_Locking policy is not in effect, the implementation
should provide means for the application to specify which interrupts are
to be blocked during protected actions, if the underlying system allows
for a finer-grain control of interrupt blocking.”

Followed. The underlying system does not allow for finer-grain control of interrupt blocking.

6.47 RM C.3.1(20-21): Protected Procedure Handlers

“Whenever possible, the implementation should allow interrupt handlers
to be called directly by the hardware.”

Followed on any target where the underlying operating system permits such direct calls.

“Whenever practical, violations of any implementation-defined restric-
tions should be detected before run time.”

Followed. Compile time warnings are given when possible.

6.48 RM C.3.2(25): Package Interrupts

“If implementation-defined forms of interrupt handler procedures are sup-
ported, such as protected procedures with parameters, then for each such
form of a handler, a type analogous to Parameterless_Handler should
be specified in a child package of Interrupts, with the same operations
as in the predefined package Interrupts.”

Followed.

6.49 RM C.4(14): Pre-elaboration Requirements

“It is recommended that pre-elaborated packages be implemented in such
a way that there should be little or no code executed at run time for
the elaboration of entities not already covered by the Implementation
Requirements.”

Followed. Executable code is generated in some cases, e.g., loops to initialize large arrays.

6.50 RM C.5(8): Pragma Discard_Names

“If the pragma applies to an entity, then the implementation should re-
duce the amount of storage used for storing names associated with that
entity.”

Followed.

6.51 RM C.7.2(30): The Package Task_Attributes

“Some implementations are targeted to domains in which memory use at
run time must be completely deterministic. For such implementations, it
is recommended that the storage for task attributes will be pre-allocated
statically and not from the heap. This can be accomplished by either
placing restrictions on the number and the size of the task’s attributes,

Chapter 6: Implementation Advice 173

or by using the pre-allocated storage for the first N attribute objects, and
the heap for the others. In the latter case, N should be documented.”

Not followed. This implementation is not targeted to such a domain.

6.52 RM D.3(17): Locking Policies
“The implementation should use names that end with _Locking for lock-
ing policies defined by the implementation.”

Followed. Two implementation-defined locking policies are defined, whose names
(Inheritance_Locking and Concurrent_Readers_Locking) follow this suggestion.

6.53 RM D.4(16): Entry Queuing Policies

“Names that end with _Queuing should be used for all implementation-
defined queuing policies.”

Followed. No such implementation-defined queuing policies exist.

6.54 RM D.6(9-10): Preemptive Abort

“Even though the ‘abort_statement’ is included in the list of potentially
blocking operations (see 9.5.1), it is recommended that this statement
be implemented in a way that never requires the task executing the
‘abort_statement’ to block.”

Followed.

“On a multi-processor, the delay associated with aborting a task on an-
other processor should be bounded; the implementation should use peri-
odic polling, if necessary, to achieve this.”

Followed.

6.55 RM D.7(21): Tasking Restrictions

“When feasible, the implementation should take advantage of the speci-
fied restrictions to produce a more efficient implementation.”

GNAT currently takes advantage of these restrictions by providing an optimized run time
when the Ravenscar profile and the GNAT restricted run time set of restrictions are spec-
ified. See pragma Profile (Ravenscar) and pragma Profile (Restricted) for more
details.

6.56 RM D.8(47-49): Monotonic Time

“When appropriate, implementations should provide configuration mech-
anisms to change the value of Tick.”

Such configuration mechanisms are not appropriate to this implementation and are thus
not supported.

“It is recommended that Calendar.Clock and Real_Time.Clock be im-
plemented as transformations of the same time base.”

Chapter 6: Implementation Advice 174

Followed.

“It is recommended that the best time base which exists in the underlying
system be available to the application through Clock. Best may mean
highest accuracy or largest range.”

Followed.

6.57 RM E.5(28-29): Partition Communication Subsystem

“Whenever possible, the PCS on the called partition should allow for
multiple tasks to call the RPC-receiver with different messages and should
allow them to block until the corresponding subprogram body returns.”

A separately supplied PCS that can be used with GNAT when combined with the PolyORB
product.

“The Write operation on a stream of type Params_Stream_Type should
raise Storage_Error if it runs out of space trying to write the Item into
the stream.”

6.58 RM F(7): COBOL Support

“If COBOL (respectively, C) is widely supported in the target
environment, implementations supporting the Information Systems
Annex should provide the child package Interfaces.COBOL (respec-
tively, Interfaces.C) specified in Annex B and should support a
convention_identifier of COBOL (respectively, C) in the interfacing
pragmas (see Annex B), thus allowing Ada programs to interface with
programs written in that language.”

Followed.

6.59 RM F.1(2): Decimal Radix Support

“Packed decimal should be used as the internal representation for objects
of subtype S when S’Machine_Radix = 10.”

Not followed. GNAT ignores S’Machine_Radix and always uses binary representations.

6.60 RM G: Numerics

“If Fortran (respectively, C) is widely supported in the target environ-
ment, implementations supporting the Numerics Annex should provide
the child package Interfaces.Fortran (respectively, Interfaces.C)
specified in Annex B and should support a convention_identifier
of Fortran (respectively, C) in the interfacing pragmas (see Annex B),
thus allowing Ada programs to interface with programs written in that
language.”

Followed.

Chapter 6: Implementation Advice 175

6.61 RM G.1.1(56-58): Complex Types

“Because the usual mathematical meaning of multiplication of a complex
operand and a real operand is that of the scaling of both components
of the former by the latter, an implementation should not perform this
operation by first promoting the real operand to complex type and then
performing a full complex multiplication. In systems that, in the future,
support an Ada binding to TEC 559:1989, the latter technique will not
generate the required result when one of the components of the complex
operand is infinite. (Explicit multiplication of the infinite component
by the zero component obtained during promotion yields a NaN that
propagates into the final result.) Analogous advice applies in the case of
multiplication of a complex operand and a pure-imaginary operand, and
in the case of division of a complex operand by a real or pure-imaginary
operand.”

Not followed.

“Similarly, because the usual mathematical meaning of addition of a com-
plex operand and a real operand is that the imaginary operand remains
unchanged, an implementation should not perform this operation by first
promoting the real operand to complex type and then performing a full
complex addition. In implementations in which the Signed_Zeros at-
tribute of the component type is True (and which therefore conform to
IEC 559:1989 in regard to the handling of the sign of zero in predefined
arithmetic operations), the latter technique will not generate the required
result when the imaginary component of the complex operand is a neg-
atively signed zero. (Explicit addition of the negative zero to the zero
obtained during promotion yields a positive zero.) Analogous advice ap-
plies in the case of addition of a complex operand and a pure-imaginary
operand, and in the case of subtraction of a complex operand and a real
or pure-imaginary operand.”
Not followed.

“Implementations in which Real'Signed_Zeros is True should attempt
to provide a rational treatment of the signs of zero results and result
components. As one example, the result of the Argument function should
have the sign of the imaginary component of the parameter X when the
point represented by that parameter lies on the positive real axis; as
another, the sign of the imaginary component of the Compose_From_
Polar function should be the same as (respectively, the opposite of) that
of the Argument parameter when that parameter has a value of zero and
the Modulus parameter has a nonnegative (respectively, negative) value.”

Followed.

6.62 RM G.1.2(49): Complex Elementary Functions

“Implementations in which Complex_Types.Real'Signed_Zeros is True
should attempt to provide a rational treatment of the signs of zero results
and result components. For example, many of the complex elementary

Chapter 6: Implementation Advice

functions have components that are odd functions of one of the parameter
components; in these cases, the result component should have the sign
of the parameter component at the origin. Other complex elementary
functions have zero components whose sign is opposite that of a parameter
component at the origin, or is always positive or always negative.”

Followed.

6.63 RM G.2.4(19): Accuracy Requirements

“The versions of the forward trigonometric functions without a Cycle
parameter should not be implemented by calling the corresponding ver-
sion with a Cycle parameter of 2.0*Numerics.Pi, since this will not
provide the required accuracy in some portions of the domain. For the
same reason, the version of Log without a Base parameter should not be
implemented by calling the corresponding version with a Base parameter
of Numerics.e.”

Followed.

6.64 RM G.2.6(15): Complex Arithmetic Accuracy

“The version of the Compose_From_Polar function without a Cycle pa-
rameter should not be implemented by calling the corresponding version
with a Cycle parameter of 2.0*Numerics.Pi, since this will not provide
the required accuracy in some portions of the domain.”

Followed.

6.65 RM H.6(15/2): Pragma Partition_Elaboration_Policy

“If the partition elaboration policy is Sequential and the Environment
task becomes permanently blocked during elaboration then the partition
is deadlocked and it is recommended that the partition be immediately
terminated.”

Not followed.

176

177

7 Implementation Defined Characteristics

In addition to the implementation dependent pragmas and attributes, and the implementa-
tion advice, there are a number of other Ada features that are potentially implementation
dependent and are designated as implementation-defined. These are mentioned throughout
the Ada Reference Manual, and are summarized in Annex M.

A requirement for conforming Ada compilers is that they provide documentation describing
how the implementation deals with each of these issues. In this chapter you will find each
point in Annex M listed, followed by a description of how GNAT handles the implementation
dependence.

You can use this chapter as a guide to minimizing implementation dependent features in
your programs if portability to other compilers and other operating systems is an important
consideration. The numbers in each entry below correspond to the paragraph numbers in
the Ada Reference Manual.

* “Whether or not each recommendation given in Implementation Advice is followed.

See 1.1.2(37).”

See [Implementation Advice|, page 156.

* “Capacity limitations of the implementation. See 1.1.3(3).”

The complexity of programs that can be processed is limited only by the total amount of

available virtual memory, and disk space for the generated object files.

* “Variations from the standard that are impractical to avoid given the implementation’s

execution environment. See 1.1.3(6).”

There are no variations from the standard.

* “Which code_statements cause external interactions. See 1.1.3(10).”

Any ‘code_statement’ can potentially cause external interactions.

* “The coded representation for the text of an Ada program. See 2.1(4).”

See separate section on source representation.

* “The semantics of an Ada program whose text is not in Normalization Form C. See

2.1(4).”

See separate section on source representation.

* “The representation for an end of line. See 2.2(2).”

See separate section on source representation.

* “Maximum supported line length and lexical element length. See 2.2(15).”

The maximum line length is 255 characters and the maximum length of a lexical element
is also 255 characters. This is the default setting if not overridden by the use of compiler
switch ‘-gnaty’ (which sets the maximum to 79) or ‘-gnatyMnn’ which allows the maximum
line length to be specified to be any value up to 32767. The maximum length of a lexical
element is the same as the maximum line length.

* “Implementation defined pragmas. See 2.8(14).”

See [Implementation Defined Pragmas], page 4.
* “Effect of pragma Optimize. See 2.8(27).”

Chapter 7: Implementation Defined Characteristics 178

Pragma Optimize, if given with a Time or Space parameter, checks that the optimization
flag is set, and aborts if it is not.

* “The message string associated with the Assertion_Error exception raised by the failure

of a predicate check if there is no applicable Predicate_Failure aspect. See 3.2.4(31).”

In the case of a Dynamic_Predicate aspect, the string is “Dynamic_Predicate failed at
<source position>”, where “<source position>” might be something like “foo.adb:123”. The
Static_Predicate case is handled analogously.

* “The predefined integer types declared in Standard. See 3.5.4(25).”

Type Representation

‘Short_Short_Integer’ 8-bit signed

‘Short_Integer’ 16-bit signed

‘Integer’ 32-bit signed

‘Long_Integer’ 64-bit signed (on most 64-bit targets, depending

on the C definition of long) 32-bit signed (on all
other targets)

‘Long_Long_Integer’ 64-bit signed

‘Long_Long_Long_Integer’ 128-bit signed (on 64-bit targets) 64-bit signed
(on 32-bit targets)

* “Any nonstandard integer types and the operators defined for them. See 3.5.4(26).”

There are no nonstandard integer types.

* “Any nonstandard real types and the operators defined for them. See 3.5.6(8).”

There are no nonstandard real types.

* “What combinations of requested decimal precision and range are supported for floating

point types. See 3.5.7(7).”

The precision and range are defined by the IEEE Standard for Floating-Point Arithmetic
(IEEE 754-2019).

* “The predefined floating point types declared in Standard. See 3.5.7(16).”

Type Representation
‘Short_Float’ IEEE Binary32 (Single)
‘Float’ IEEE Binary32 (Single)

‘Long_Float’ IEEE Binary64 (Double)

Chapter 7: Implementation Defined Characteristics 179

‘Long_Long_Float’ IEEE Binary64 (Double) on non-x86 architectures IEEE
80-bit Extended on x86 architecture

The default rounding mode specified by the IEEE 754 Standard is assumed both for static

and dynamic computations (that is, round to nearest, ties to even). The input routines

yield correctly rounded values for Short_Float, Float, and Long_Float at least. The output

routines can compute up to twice as many exact digits as the value of T'Digits for any

type, for example 30 digits for Long_Float; if more digits are requested, zeros are printed.
* “The small of an ordinary fixed point type. See 3.5.9(8).”

The small is the largest power of two that does not exceed the delta.

* “What combinations of small, range, and digits are supported for fixed point types.

See 3.5.9(10).”

For an ordinary fixed point type, on 32-bit platforms, the small must lie in 2.0**(-80) ..
2.0**80 and the range in -9.0E+36 .. 9.0E+36; any combination is permitted that does not
result in a mantissa larger than 63 bits.

On 64-bit platforms, the small must lie in 2.0%*(-127) .. 2.0**127 and the range in -1.0E+76
.. 1.0E+76; any combination is permitted that does not result in a mantissa larger than 63
bits, and any combination is permitted that results in a mantissa between 64 and 127 bits
if the small is the ratio of two integers that lie in 1 .. 2.0**127.

If the small is the ratio of two integers with 64-bit magnitude on 32-bit platforms and
128-bit magnitude on 64-bit platforms, which is the case if no small clause is provided,
then the operations of the fixed point type are entirely implemented by means of integer
instructions. In the other cases, some operations, in particular input and output, may be
implemented by means of floating-point instructions and may be affected by accuracy issues
on architectures other than x86.

For a decimal fixed point type, on 32-bit platforms, the small must lie in 1.0E-18 .. 1.0E+18
and the digits in 1 .. 18. On 64-bit platforms, the small must lie in 1.0E-38 .. 1.0E+38 and
the digits in 1 .. 38.

* “The result of Tags.Expanded_Name for types declared within an unnamed

‘block_statement’. See 3.9(10).”

Block numbers of the form Bnnn, where ‘nnn’ is a decimal integer are allocated.

* “The sequence of characters of the value returned by Tags.Expanded_Name

(respectively, Tags.Wide_Expanded_Name) when some of the graphic characters
of Tags.Wide_Wide_Expanded_Name are not defined in Character (respectively,
Wide_Character). See 3.9(10.1).”

This is handled in the same way as the implementation-defined behavior referenced in
A.4.12(34).

* “Implementation-defined attributes. See 4.1.4(12).”

See [Implementation Defined Attributes|, page 117.

* “The value of the parameter to Empty for some container aggregates. See 4.3.5(40).”

Chapter 7: Implementation Defined Characteristics 180

As per the suggestion given in the Annotated Ada RM, the default value of the formal
parameter is used if one exists and zero is used otherwise.

* “The maximum number of chunks for a parallel reduction expression without a

chunk_specification. See 4.5.10(21).”

Feature unimplemented.

* “Rounding of real static expressions which are exactly half-way between two machine

numbers. See 4.9(38).”

Round to even is used in all such cases.

* “The maximum number of chunks for a parallel generalized iterator without a

chunk_specification. See 5.5.2(10).”

Feature unimplemented.

* “The number of chunks for an array component iterator. See 5.5.2(11).”

Feature unimplemented.
* “Any extensions of the Global aspect. See 6.1.2(43).”

Feature unimplemented.

* “The circumstances the implementation passes in the null value for a view conversion

of an access type used as an out parameter. See 6.4.1(19).”

Difficult to characterize.
* “Any extensions of the Default_Initial_Condition aspect. See 7.3.3(11).”

SPARK allows specifying ‘null’ as the Default_Initial_Condition aspect of a type. See the
SPARK reference manual for further details.

* “Any implementation-defined time types. See 9.6(6).”

There are no implementation-defined time types.
* “The time base associated with relative delays. See 9.6(20).”

See 9.6(20). The time base used is that provided by the C library function gettimeofday.
* “The time base of the type Calendar.Time. See 9.6(23).”

The time base used is that provided by the C library function gettimeofday.

* “The time zone used for package Calendar operations. See 9.6(24).”

The time zone used by package Calendar is the current system time zone setting for local
time, as accessed by the C library function localtime.

* “Any limit on ‘delay_until_statements’ of ‘select_statements’. See 9.6(29).”

There are no such limits.

* “The result of Calendar.Formatting.Image if its argument represents more than 100

hours. See 9.6.1(86).”

Calendar.Time_Error is raised.

* “Implementation-defined conflict check policies. See 9.10.1(5).”

There are no implementation-defined conflict check policies.

* “The representation for a compilation. See 10.1(2).”

Chapter 7: Implementation Defined Characteristics 181

A compilation is represented by a sequence of files presented to the compiler in a single
invocation of the ‘gcc’ command.

* “Any restrictions on compilations that contain multiple compilation_units. See

10.1(4).”

No single file can contain more than one compilation unit, but any sequence of files can be
presented to the compiler as a single compilation.

* “The mechanisms for creating an environment and for adding and replacing compilation

units. See 10.1.4(3).”

See separate section on compilation model.

* “The manner of explicitly assigning library units to a partition. See 10.2(2).”

If a unit contains an Ada main program, then the Ada units for the partition are determined
by recursive application of the rules in the Ada Reference Manual section 10.2(2-6). In
other words, the Ada units will be those that are needed by the main program, and then
this definition of need is applied recursively to those units, and the partition contains the
transitive closure determined by this relationship. In short, all the necessary units are
included, with no need to explicitly specify the list. If additional units are required, e.g.,
by foreign language units, then all units must be mentioned in the context clause of one of
the needed Ada units.

If the partition contains no main program, or if the main program is in a language other
than Ada, then GNAT provides the binder options ‘-z’ and ‘-n’ respectively, and in this
case a list of units can be explicitly supplied to the binder for inclusion in the partition (all
units needed by these units will also be included automatically). For full details on the use
of these options, refer to ‘GNAT Make Program gnatmake’ in the GNAT User’s Guide.

* “The implementation-defined means, if any, of specifying which compilation units are

needed by a given compilation unit. See 10.2(2).”

The units needed by a given compilation unit are as defined in the Ada Reference Manual
section 10.2(2-6). There are no implementation-defined pragmas or other implementation-
defined means for specifying needed units.

* “The manner of designating the main subprogram of a partition. See 10.2(7).”

The main program is designated by providing the name of the corresponding ALT file as the
input parameter to the binder.

* “The order of elaboration of ‘library_items’. See 10.2(18).”

The first constraint on ordering is that it meets the requirements of Chapter 10 of the
Ada Reference Manual. This still leaves some implementation-dependent choices, which are
resolved by analyzing the elaboration code of each unit and identifying implicit elaboration-
order dependencies.

* “Parameter passing and function return for the main subprogram. See 10.2(21).”

The main program has no parameters. It may be a procedure, or a function returning an
integer type. In the latter case, the returned integer value is the return code of the program
(overriding any value that may have been set by a call to Ada.Command_Line.Set_Exit_
Status).

* “The mechanisms for building and running partitions. See 10.2(24).”

Chapter 7: Implementation Defined Characteristics 182

GNAT itself supports programs with only a single partition. The PolyORB product (which
also includes an implementation of the PCS) provides a completely flexible method for
building and running programs consisting of multiple partitions. See the separate PolyORB
user guide for details.

* “The details of program execution, including program termination. See 10.2(25).”

See separate section on compilation model.

* “The semantics of any non-active partitions supported by the implementation. See
10.2(28).”

Passive partitions are supported on targets where shared memory is provided by the oper-
ating system. See the PolyORB user guide for further details.

* “The information returned by Exception_Message. See 11.4.1(10).”

Exception message returns the null string unless a specific message has been passed by the
program.

* “The result of Exceptions.Exception_Name for types declared within an unnamed
‘block_statement’. See 11.4.1(12).”

Blocks have implementation defined names of the form Bnnn where ‘nnn’ is an integer.

* “The information returned by Exception_Information. See 11.4.1(13).”

Exception_Information returns a string in the following format:

Exception_Name: nnnnn
Message: mmmmm

PID: ppp

Load address: Oxhhhh

Call stack traceback locations:
Oxhhhh Oxhhhh Oxhhhh ... Oxhhh

where

* nnnn is the fully qualified name of the exception in all upper case

letters. This line is always present.

* mmmm is the message (this line present only if message is non-null)

* ppp is the Process Id value as a decimal integer (this line is present

only if the Process Id is nonzero). Currently we are not making use
of this field.

* The Load address line, the Call stack traceback locations line and
the following values are present only if at least one traceback location
was recorded. The Load address indicates the address at which the
main executable was loaded; this line may not be present if operating
system hasn’t relocated the main executable. The values are given in
C style format, with lower case letters for a-f, and only as many digits
present as are necessary. The line terminator sequence at the end of
each line, including the last line is a single LF character (16#0A#).

* “The sequence of characters of the value returned by Exceptions.Exception_Name (re-
spectively, Exceptions.Wide_Exception_Name) when some of the graphic characters
of Exceptions.Wide_Wide_Exception_Name are not defined in Character (respectively,
Wide_Character). See 11.4.1(12.1).”

Chapter 7: Implementation Defined Characteristics 183

This is handled in the same way as the implementation-defined behavior referenced in
A.4.12(34).

* “The information returned by Exception_Information. See 11.4.1(13).”

The exception name and the source location at which the exception was raised are included.

* “Implementation-defined policy_identifiers and assertion_aspect_marks allowed in a

pragma Assertion_Policy. See 11.4.2(9).”

Implementation-defined assertion_aspect_marks include Assert_And_Cut, Assume,
Contract_Cases, Debug, Ghost, Initial_Condition, Loop-Invariant, Loop_Variant,
Postcondition, Precondition, Predicate, Refined_Post, Statement_Assertions, and
Subprogram_Variant. Implementation-defined policy_identifiers include Disable and
Suppressible.

* “The default assertion policy. See 11.4.2(10).”

The default assertion policy is Ignore, although this can be overridden via compiler switches
such as “-gnata”.

* “Implementation-defined check names. See 11.5(27).”

The implementation-defined check names include Alignment_Check, Container_Checks,
Duplicated_Tag_Check, Predicate_Check, Raise_Check, Tampering_Check, and Valid-
ity_Check. In addition, a user program can add implementation-defined check names by
means of the pragma Check_Name. See the description of pragma Suppress for details.

* “Existence and meaning of second parameter of pragma Unsuppress. See 11.5(27.1).”

The legality rules for and semantics of the second parameter of pragma Unsuppress match
those for the second argument of pragma Suppress.

* “The cases that cause conflicts between the representation of the ancestors of a
type_declaration. See 13.1(13.1).”

No such cases exist.

* “The interpretation of each representation aspect. See 13.1(20).”

See separate section on data representations.

* “Any restrictions placed upon the specification of representation aspects. See 13.1(20).”

See separate section on data representations.

* “Implementation-defined aspects, including the syntax for specifying such aspects and

the legality rules for such aspects. See 13.1.1(38).”
See [Implementation Defined Aspects], page 107.
* “The set of machine scalars. See 13.3(8.1).”

See separate section on data representations.
* “The meaning of Size for indefinite subtypes. See 13.3(48).”

The Size attribute of an indefinite subtype is not less than the Size attribute of any object
of that type.

* “The meaning of Object_Size for indefinite subtypes. See 13.3(58).”

Chapter 7: Implementation Defined Characteristics 184

The Object_Size attribute of an indefinite subtype is not less than the Object_Size attribute
of any object of that type.

* “The default external representation for a type tag. See 13.3(75).”

The default external representation for a type tag is the fully expanded name of the type
in upper case letters.

* “What determines whether a compilation unit is the same in two different partitions.

See 13.3(76).”

A compilation unit is the same in two different partitions if and only if it derives from the
same source file.

* “Implementation-defined components. See 13.5.1(15).”

The only implementation defined component is the tag for a tagged type, which contains a
pointer to the dispatching table.
* “If Word_Size = Storage_Unit, the default bit ordering. See 13.5.3(5).”

Word_Size does not equal Storage_Unit in this implementation.

* “The contents of the visible part of package System. See 13.7(2).”

See the definition of package System in system.ads. Note that two declarations are added
to package System.

Max_Priority : constant Positive := Priority'Last;
Max_Interrupt_Priority : constant Positive := Interrupt_Priority'Last;

* “The range of Storage Elements.Storage Offset, the modulus of Stor-
age_Elements.Storage_Element, and the declaration of Storage_Elements.Integer_Address.
See 13.7.1(11).”

See the definition of package System.Storage_Elements in s-stoele.ads.

* “The contents of the visible part of package System.Machine_Code, and the meaning

of ‘code_statements’. See 13.8(7).”

See the definition and documentation in file s-maccod.ads.

* “The result of unchecked conversion for instances with scalar result types whose result

is not defined by the language. See 13.9(11).”

Unchecked conversion between types of the same size results in an uninterpreted transmis-
sion of the bits from one type to the other. If the types are of unequal sizes, then in the
case of discrete types, a shorter source is first zero or sign extended as necessary, and a
shorter target is simply truncated on the left. For all non-discrete types, the source is first
copied if necessary to ensure that the alignment requirements of the target are met, then a
pointer is constructed to the source value, and the result is obtained by dereferencing this
pointer after converting it to be a pointer to the target type. Unchecked conversions where
the target subtype is an unconstrained array are not permitted. If the target alignment
is greater than the source alignment, then a copy of the result is made with appropriate
alignment

* “The result of unchecked conversion for instances with nonscalar result types whose

result is not defined by the language. See 13.9(11).”

Chapter 7: Implementation Defined Characteristics 185

See preceding definition for the scalar result case.

* “Whether or not the implementation provides user-accessible names for the standard

pool type(s). See 13.11(17).”

There are 3 different standard pools used by the compiler when Storage_Pool is not spec-
ified depending whether the type is local to a subprogram or defined at the library level
and whether Storage_Size” “is specified or not. See documentation in the runtime
library units ~~System.Pool_Global, System.Pool_Size and System.Pool_Local in
files s-poosiz.ads, s-pooglo.ads and s-pooloc.ads for full details on the default pools
used. All these pools are accessible by means of withing these units.

* “The meaning of Storage_Size when neither the Storage_Size nor the Storage_Pool is

specified for an access type. See 13.11(18).”

Storage_Size is measured in storage units, and refers to the total space available for an
access type collection, or to the primary stack space for a task.

* “The effect of specifying aspect Default_Storage_Pool on an instance of a language-

defined generic unit. See 13.11.3(5).”

Instances of language-defined generic units are treated the same as other instances with
respect to the Default_Storage_Pool aspect.

* “Implementation-defined restrictions allowed in a pragma Restrictions. See

13.12(8.7).”

See [Standard and Implementation Defined Restrictions], page 141.

* “The consequences of violating limitations on Restrictions pragmas. See 13.12(9).”

Restrictions that can be checked at compile time are enforced at compile time; violations are
illegal. For other restrictions, any violation during program execution results in erroneous
execution.

* “Implementation-defined usage profiles allowed in a pragma Profile. See 13.12(15).”

See [Implementation Defined Pragmas]|, page 4.

* “The contents of the stream elements read and written by the Read and Write attributes

of elementary types. See 13.13.2(9).”

The representation is the in-memory representation of the base type of the type, using
the number of bits corresponding to the type'Size value, and the natural ordering of the
machine.

* “The names and characteristics of the numeric subtypes declared in the visible part of

package Standard. See A.1(3).”

See items describing the integer and floating-point types supported.
* “The values returned by Strings.Hash. See A.4.9(3).”

This hash function has predictable collisions and is subject to equivalent substring attacks.
It is not suitable for construction of a hash table keyed on possibly malicious user input.

* “The value returned by a call to a Text_Buffer Get procedure if any character in the

returned sequence is not defined in Character. See A.4.12(34).”

Chapter 7: Implementation Defined Characteristics 186

The contents of a buffer is represented internally as a UTF_8 string. The
value return by Text_Buffer.Get is the result of passing that UTF_8 string to
UTF_Encoding.Strings.Decode.

* “The value returned by a call to a Text_Buffer Wide_Get procedure if any character in
the returned sequence is not defined in Wide_Character. See A.4.12(34).”

The contents of a buffer is represented internally as a UTF_8 string. The value
return by Text_Buffer. Wide_Get is the result of passing that UTF_8 string to
UTF _Encoding. Wide_Strings.Decode.

* “The accuracy actually achieved by the elementary functions. See A.5.1(1).”

The elementary functions correspond to the functions available in the C library. Only fast
math mode is implemented.

* “The sign of a =zero result from some of the operators or functions in
Numerics.Generic_Elementary_Functions, when Float_Type'Signed_Zeros is
True. See A.5.1(46).”

The sign of zeroes follows the requirements of the IEEE 754 standard on floating-point.

* “The value of Numerics.Float_Random.Max_Image_Width. See A.5.2(27).”

Maximum image width is 6864, see library file s-rannum. ads.
* “The value of Numerics.Discrete_Random.Max_Image_Width. See A.5.2(27).”

Maximum image width is 6864, see library file s-rannum. ads.

* “The string representation of a random number generator’s state. See A.5.2(38).”

The value returned by the Image function is the concatenation of the fixed-width decimal
representations of the 624 32-bit integers of the state vector.

* “The values of the Model_Mantissa, Model_Emin, Model_Epsilon, Model, Safe_First,

and Safe_Last attributes, if the Numerics Annex is not supported. See A.5.3(72).”
Running the compiler with ‘-gnatS’ to produce a listing of package Standard displays the
values of these attributes.

* “The value of Buffer_Size in Storage_I0. See A.9(10).”

All type representations are contiguous, and the Buffer_Size is the value of type'Size
rounded up to the next storage unit boundary.

* “External files for standard input, standard output, and standard error See A.10(5).”
These files are mapped onto the files provided by the C streams libraries. See source file
i-cstrea.ads for further details.

* “The accuracy of the value produced by Put. See A.10.9(36).”

If more digits are requested in the output than are represented by the precision of the value,

zeroes are output in the corresponding least significant digit positions.

* “Current size for a stream file for which positioning is not supported. See A.12.1(1.1).”

Positioning is supported.

* “The meaning of Argument_Count, Argument, and Command_Name. See A.15(1).”

Chapter 7: Implementation Defined Characteristics 187

These are mapped onto the argv and argc parameters of the main program in the natural
manner.

* “The interpretation of file names and directory names. See A.16(46).”

These names are interpreted consistently with the underlying file system.

* “The maxium value for a file size in Directories. See A.16(87).”

Directories.File_Size’Last is equal to Long_Long_Integer’Last .

* “The result for Directories.Size for a directory or special file. See A.16(93).”

Name_Error is raised.

* “The result for Directories.Modification_Time for a directory or special file. See

A.16(93).7

Name_Error is raised.

* “The interpretation of a nonnull search pattern in Directories. See A.16(104).”

When the Pattern parameter is not the null string, it is interpreted according to the syntax
of regular expressions as defined in the GNAT.Regexp package.
See [GNAT.Regexp (g-regexp.ads)|, page 269.

* “The results of a Directories search if the contents of the directory are altered while a

search is in progress. See A.16(110).”

The effect of a call to Get_Next_Entry is determined by the current state of the directory.

* “The definition and meaning of an environment variable. See A.17(1).”

This definition is determined by the underlying operating system.

* “The circumstances where an environment variable cannot be defined. See A.17(16).”

There are no such implementation-defined circumstances.
* “Environment names for which Set has the effect of Clear. See A.17(17).”

There are no such names.

* “The wvalue of Containers.Hash_Type’Modulus. The wvalue of Contain-
ers.Count_Type'Last. See A.18.1(7).”

Containers.Hash_Type’Modulus is 2**32. Containers.Count_Type'Last is 2**31 - 1.

* “Implementation-defined convention names. See B.1(11).”

The following convention names are supported

Convention Name Interpretation
‘Ada’ Ada
‘Ada_Pass_By_Copy’ Allowed for any types except by-reference types such as limited records. (

vention Ada, but causes any parameters with this convention to be passed 1

‘Ada_Pass_By_Reference’ Allowed for any types except by-copy types such as scalars. Compatible
but causes any parameters with this convention to be passed by reference.

Chapter 7: Implementation Defined Characteristics 188

‘Assembler’
‘Asm’
‘Assembly’
(o

‘C_Pass_By_Copy’

‘COBOL’

‘C_Plus_Plus (or CPP)’
‘Default’

‘External’

‘Fortran’

‘Intrinsic’

‘Stdcall’

‘DLL’

‘Win32’

‘Stubbed’

*

Assembly language
Synonym for Assembler
Synonym for Assembler

C

Allowed only for record types, like C, but also notes that record is to be
than reference.

COBOL

C++

Treated the same as C
Treated the same as C
Fortran

For support of pragma Import with convention Intrinsic, see separate sect
programs.

Stdcall (used for Windows implementations only). This convention corres;
(previously called Pascal convention) C/C++ convention under Windows.
convention cleans the stack before exit. This pragma cannot be applied to a

Synonym for Stdcall
Synonym for Stdcall

Stubbed is a special convention used to indicate that the body of the subpr
ignored. Any call to the subprogram is converted into a raise of the Program_
pragma Import specifies convention stubbed then no body need be present a
is useful during development for the inclusion of subprograms whose body has
In addition, all otherwise unrecognized convention names are also treated
with convention C. In all implementations, use of such other names results 1

“The meaning of link names. See B.1(36).”

Link names are the actual names used by the linker.

*

“The manner of choosing link names when neither the link name nor the address of an

imported or exported entity is specified. See B.1(36).”

Chapter 7: Implementation Defined Characteristics 189

The default linker name is that which would be assigned by the relevant external language,
interpreting the Ada name as being in all lower case letters.

* “The effect of pragma Linker_Options. See B.1(37).”

The string passed to Linker_Options is presented uninterpreted as an argument to the link
command, unless it contains ASCIL.NUL characters. NUL characters if they appear act as
argument separators, so for example

pragma Linker_Options ("-labc" & ASCII.NUL & "-ldef");

causes two separate arguments -labc and -1def to be passed to the linker. The order of
linker options is preserved for a given unit. The final list of options passed to the linker
is in reverse order of the elaboration order. For example, linker options for a body always
appear before the options from the corresponding package spec.

* “The contents of the visible part of package Interfaces and its language-defined de-

scendants. See B.2(1).”

See files with prefix i~ in the distributed library.

* “Implementation-defined children of package Interfaces. The contents of the visible

part of package Interfaces. See B.2(11).”

See files with prefix i- in the distributed library.

* “The definitions of certain types and constants in Interfaces.C. See B.3(41).”

See source file i-c.ads.

* “The types Floating, Long_Floating, Binary, Long_Binary, Decimal_ Element, and

COBOL_Character; and the initialization of the variables Ada_To_COBOL and COBOL_To_
Ada, in Interfaces.COBOL. See B.4(50).”

COBOL Ada

‘Floating’ Float

‘Long_Floating’ (Floating) Long_Float
‘Binary’ Integer

‘Long_Binary’ Long_Long_Integer
‘Decimal_Element’ Character
‘COBOL_Character’ Character

For initialization, see the file i-cobol.ads in the distributed library.

* “The types Fortran_Integer, Real, Double_Precision, and Character_Set in

Interfaces.Fortran. See B.5(17).”

See source file i-fortra.ads. These types are derived, respectively, from Integer, Float,
Long_Float, and Character.

* “Implementation-defined intrinsic subprograms. See C.1(1).”

Chapter 7: Implementation Defined Characteristics 190

See separate section on Intrinsic Subprograms.

* “Any restrictions on a protected procedure or its containing type when an aspect

Attach_handler or Interrupt_Handler is specified. See C.3.1(17).”

There are no such restrictions.

* “Any other forms of interrupt handler supported by the Attach_Handler and Inter-

rupt_Handler aspects. See C.3.1(19).”

There are no such forms.

* “The semantics of some attributes and functions of an entity for which aspect Dis-

card_Names is True. See C.5(7).”

If Discard_Names is True for an enumeration type, the Image attribute provides the image
of the Pos of the literal, and Value accepts Pos values.

If both of the aspects‘‘Discard_Names‘‘ and No_Tagged_Streams are true for a tagged type,
its Expanded_Name and External_Tag values are empty strings. This is useful to avoid
exposing entity names at binary level.

* “The modulus and size of Test_and_Set_Flag. See C.6.3(8).”

The modulus is 2**8. The size is 8.

* “The value used to represent the set value for Atomic_Test_and_Set. See C.6.3(10).”

The value is 1.
* “The result of the Task_Identification.Image attribute. See C.7.1(7).”

The result of this attribute is a string that identifies the object or component that denotes
a given task. If a variable Var has a task type, the image for this task will have the form
Var_XXXXXXXX, where the suffix ‘XXXXXXXX’ is the hexadecimal representation of the
virtual address of the corresponding task control block. If the variable is an array of tasks,
the image of each task will have the form of an indexed component indicating the position
of a given task in the array, e.g., Group(5) _XXXXXXX. If the task is a component of a
record, the image of the task will have the form of a selected component. These rules are
fully recursive, so that the image of a task that is a subcomponent of a composite object
corresponds to the expression that designates this task.

If a task is created by an allocator, its image depends on the context. If the allocator is
part of an object declaration, the rules described above are used to construct its image, and
this image is not affected by subsequent assignments. If the allocator appears within an
expression, the image includes only the name of the task type.

If the configuration pragma Discard_Names is present, or if the restriction
No_Implicit_Heap_Allocation is in effect, the image reduces to the numeric suffix, that is to
say the hexadecimal representation of the virtual address of the control block of the task.

* “The value of Current_Task when in a protected entry or interrupt handler. See

C.7.1(17).”

Protected entries or interrupt handlers can be executed by any convenient thread, so the
value of Current_Task is undefined.

* “Granularity of locking for Task_Attributes. See C.7.2(16).”

Chapter 7: Implementation Defined Characteristics 191

No locking is needed if the formal type Attribute has the size and alignment of either Integer
or System.Address and the bit representation of Initial_Value is all zeroes. Otherwise,
locking is performed.

* “The declarations of Any_Priority and Priority. See D.1(11).”

See declarations in file system. ads.

* “Implementation-defined execution resources. See D.1(15).”

There are no implementation-defined execution resources.

* “Whether, on a multiprocessor, a task that is waiting for access to a protected object

keeps its processor busy. See D.2.1(3).”

On a multi-processor, a task that is waiting for access to a protected object does not keep
its processor busy.

* “The affect of implementation defined execution resources on task dispatching. See

D.2.1(9).”

Tasks map to threads in the threads package used by GNAT. Where possible and appro-
priate, these threads correspond to native threads of the underlying operating system.

* “Implementation-defined task dispatching policies. See D.2.2(3).”

There are no implementation-defined task dispatching policies.
* “The value of Default_Quantum in Dispatching.Round_Robin. See D.2.5(4).”

The value is 10 milliseconds.

* “Implementation-defined ‘policy_identifiers’ allowed in a pragma Locking_Policy. See

D.3(4).”

The two implementation defined policies permitted in GNAT are Inheritance_Locking
and Concurrent_Readers_Locking. On targets that support the Inheritance_Locking
policy, locking is implemented by inheritance, i.e., the task owning the lock operates at a
priority equal to the highest priority of any task currently requesting the lock. On tar-
gets that support the Concurrent_Readers_Locking policy, locking is implemented with a
read/write lock allowing multiple protected object functions to enter concurrently.

* “Default ceiling priorities. See D.3(10).”

The ceiling priority of protected objects of the type System.Interrupt_Priority'Last as
described in the Ada Reference Manual D.3(10),

* “The ceiling of any protected object used internally by the implementation. See

D.3(16).”

The ceiling priority of internal protected objects is System.Priority'Last.

* “Implementation-defined queuing policies. See D.4(1).”

There are no implementation-defined queuing policies.

* “Implementation-defined admission policies. See D.4.1(1).”

There are no implementation-defined admission policies.

* “Any operations that implicitly require heap storage allocation. See D.7(8).”

Chapter 7: Implementation Defined Characteristics 192

The only operation that implicitly requires heap storage allocation is task creation.

* “When restriction No_Dynamic_CPU_Assignment applies to a partition, the processor

on which a task with a CPU value of a Not_A_Specific. CPU will execute. See D.7(10).”

Unknown.

* “When restriction No_Task_Termination applies to a partition, what happens when a

task terminates. See D.7(15.1).”

Execution is erroneous in that case.
* “The behavior when restriction Max_Storage_At_Blocking is violated. See D.7(17).”

Execution is erroneous in that case.

* “The behavior when restriction Max_Asynchronous_Select_Nesting is violated. See

D.7(18).”
Execution is erroneous in that case.
* “The behavior when restriction Max_Tasks is violated. See D.7(19).”

Execution is erroneous in that case.

* “Whether the use of pragma Restrictions results in a reduction in program code or

data size or execution time. See D.7(20).”

Yes it can, but the precise circumstances and properties of such reductions are difficult to
characterize.

* “The value of Barrier_Limit’Last in Synchronous_Barriers. See D.10.1(4).”

Synchronous_Barriers.Barrier_Limit’Last is Integer’Last .

* “When an aborted task that is waiting on a Synchronous_Barrier is aborted. See

D.10.1(13).”

Difficult to characterize.

* “The value of Min_Handler_Ceiling in Execution_Time.Group_Budgets. See
D.14.2(7).”

See source file a-etgrbu.ads.
* “The value of CPU_Range’Last in System.Multiprocessors. See D.16(4).”

See source file s-multip.ads.

* “The processor on which the environment task executes in the absence of a value for

the aspect CPU. See D.16(13).”

Unknown.

* “The means for creating and executing distributed programs. See E(5).”

The PolyORB product provides means creating and executing distributed programs. See
the PolyORB user guide for further details.

* “Any events that can result in a partition becoming inaccessible. See E.1(7).”

See the PolyORB user guide for full details on such events.

* “The scheduling policies, treatment of priorities, and management of shared resources

between partitions in certain cases. See E.1(11).”

Chapter 7: Implementation Defined Characteristics 193

See the PolyORB user guide for full details on these aspects of multi-partition execution.

* “Whether the execution of the remote subprogram is immediately aborted as a result

of cancellation. See E.4(13).”
See the PolyORB user guide for details on the effect of abort in a distributed application.
* “The range of type System.RPC.Partition_Id. See E.5(14).”

System.RPC.Partition_ID’Last is Integer’Last. See source file s-rpc.ads.
* “Implementation-defined interfaces in the PCS. See E.5(26).”

See the PolyORB user guide for a full description of all implementation defined interfaces.

* “The values of named numbers in the package Decimal. See F.2(7).”

Named Number Value
‘Max_Scale’ +18
‘Min_Scale’ -18
‘Min_Delta’ 1.0E-18
‘Max_Delta’ 1.0E+18
‘Max_Decimal_Digits’ 18

* “The value of Max_Picture_Length in the package Text_I0.Editing. See F.3.3(16).”
64

“The value of Max_Picture_Length in the package Wide_Text_IO.Editing. See
F.3.4(5).”

64

“The accuracy actually achieved by the complex elementary functions and by other
complex arithmetic operations. See G.1(1).”

*

*

Standard library functions are used for the complex arithmetic operations. Only fast math
mode is currently supported.

* “The sign of a zero result (or a component thereof) from any operator or function

in Numerics.Generic_Complex_Types, when Real'Signed_Zeros is True. See
G.1.1(53).”

The signs of zero values are as recommended by the relevant implementation advice.

* “The sign of a zero result (or a component thereof) from any operator or function

in Numerics.Generic_Complex_Elementary_Functions, when Real'Signed_Zeros is
True. See G.1.2(45).”
The signs of zero values are as recommended by the relevant implementation advice.

* “Whether the strict mode or the relaxed mode is the default. See G.2(2).”

Chapter 7: Implementation Defined Characteristics 194

The strict mode is the default. There is no separate relaxed mode. GNAT provides a highly
efficient implementation of strict mode.

* “The result interval in certain cases of fixed-to-float conversion. See G.2.1(10).”

For cases where the result interval is implementation dependent, the accuracy is that pro-
vided by performing all operations in 64-bit IEEE floating-point format.

* “The result of a floating point arithmetic operation in overflow situations, when the

Machine_Overflows attribute of the result type is False. See G.2.1(13).”

Infinite and NaN values are produced as dictated by the IEEE floating-point standard. Note
that on machines that are not fully compliant with the IEEE floating-point standard, such
as Alpha, the ‘-mieee’ compiler flag must be used for achieving IEEE conforming behavior
(although at the cost of a significant performance penalty), so infinite and NaN values are
properly generated.

* “The result interval for division (or exponentiation by a negative exponent), when

the floating point hardware implements division as multiplication by a reciprocal. See

G.2.1(16).”

Not relevant, division is IEEE exact.

* “The definition of close result set, which determines the accuracy of certain fixed point

multiplications and divisions. See G.2.3(5).”

Operations in the close result set are performed using IEEE long format floating-point
arithmetic. The input operands are converted to floating-point, the operation is done in
floating-point, and the result is converted to the target type.

* “Conditions on a ‘universal_real’ operand of a fixed point multiplication or division for

which the result shall be in the perfect result set. See G.2.3(22).”

The result is only defined to be in the perfect result set if the result can be computed by a
single scaling operation involving a scale factor representable in 64 bits.

* “The result of a fixed point arithmetic operation in overflow situations, when the

Machine_Overflows attribute of the result type is False. See G.2.3(27).”

Not relevant, Machine_0Overflows is True for fixed-point types.

* “The result of an elementary function reference in overflow situations, when the

Machine_Overflows attribute of the result type is False. See G.2.4(4).”

IEEE infinite and Nan values are produced as appropriate.

* “The value of the angle threshold, within which certain elementary functions, complex

arithmetic operations, and complex elementary functions yield results conforming to a
maximum relative error bound. See G.2.4(10).”

Information on this subject is not yet available.

* “The accuracy of certain elementary functions for parameters beyond the angle thresh-

old. See G.2.4(10).”

Information on this subject is not yet available.

* “The result of a complex arithmetic operation or complex elementary function reference

in overflow situations, when the Machine_0Overflows attribute of the corresponding real
type is False. See G.2.6(5).”

Chapter 7: Implementation Defined Characteristics 195

IEEE infinite and Nan values are produced as appropriate.

* “The accuracy of certain complex arithmetic operations and certain complex elemen-
tary functions for parameters (or components thereof) beyond the angle threshold. See
G.2.6(8).”

Information on those subjects is not yet available.

* “The accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigen-

values and Eigensystem for type Real Matrix. See G.3.1(81).”

Information on those subjects is not yet available.

* “The accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigen-
values and Eigensystem for type Complex_Matrix. See G.3.2(149).”

Information on those subjects is not yet available.
* “The consequences of violating No_Hidden_Indirect_Globals. See H.4(23.9).”

Execution is erroneous in that case.

196

8 Intrinsic Subprograms

GNAT allows a user application program to write the declaration:
pragma Import (Intrinsic, name);

providing that the name corresponds to one of the implemented intrinsic subprograms in
GNAT, and that the parameter profile of the referenced subprogram meets the requirements.
This chapter describes the set of implemented intrinsic subprograms, and the requirements
on parameter profiles. Note that no body is supplied; as with other uses of pragma Import,
the body is supplied elsewhere (in this case by the compiler itself). Note that any use of this
feature is potentially non-portable, since the Ada standard does not require Ada compilers
to implement this feature.

8.1 Intrinsic Operators

All the predefined numeric operators in package Standard in pragma Import
(Intrinsic,..) declarations. In the binary operator case, the operands must have the
same size. The operand or operands must also be appropriate for the operator. For
example, for addition, the operands must both be floating-point or both be fixed-point,
and the right operand for "**" must have a root type of Standard.Integer'Base. You
can use an intrinsic operator declaration as in the following example:

type Intl is new Integer;
type Int2 is new Integer;

function "+" (X1 : Intl; X2 : Int2) return Intil;
function "+" (X1 : Intl; X2 : Int2) return Int2;
pragma Import (Intrinsic, "+");

This declaration would permit ‘mixed mode’ arithmetic on items of the differing types Int1
and Int2. It is also possible to specify such operators for private types, if the full views are
appropriate arithmetic types.

8.2 Compilation_ISO_Date

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source_Info. The only useful use of the intrinsic import in this case is the one
in this unit, so an application program should simply call the function GNAT.Source_
Info.Compilation_ISO_Date to obtain the date of the current compilation (in local time
format YYYY-MM-DD).

8.3 Compilation_Date
Same as Compilation_ISO_Date, except the string is in the form MMM DD YYYY.

8.4 Compilation_Time

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source_Info. The only useful use of the intrinsic import in this case is the one

Chapter 8: Intrinsic Subprograms 197

in this unit, so an application program should simply call the function GNAT.Source_
Info.Compilation_Time to obtain the time of the current compilation (in local time
format HH:MM:SS).

8.5 Enclosing_Entity

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source_Info. The only useful use of the intrinsic import in this case is the one
in this unit, so an application program should simply call the function GNAT.Source_
Info.Enclosing Entity to obtain the name of the current subprogram, package, task,
entry, or protected subprogram.

8.6 Exception_Information

This intrinsic subprogram is used in the implementation of the library package
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Information to obtain the exception information
associated with the current exception.

8.7 Exception_Message

This intrinsic subprogram is used in the implementation of the library package
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Message to obtain the message associated with the
current exception.

8.8 Exception_Name

This intrinsic subprogram is used in the implementation of the library package
GNAT.Current_Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current_Exception.Exception_Name to obtain the name of the current exception.

8.9 File
This intrinsic subprogram is used in the implementation of the library package
GNAT.Source_Info. The only useful use of the intrinsic import in this case is

the one in this unit, so an application program should simply call the function
GNAT.Source_Info.File to obtain the name of the current file.

8.10 Line
This intrinsic subprogram is used in the implementation of the library package
GNAT.Source_Info. The only useful use of the intrinsic import in this case is

the one in this unit, so an application program should simply call the function
GNAT.Source_Info.Line to obtain the number of the current source line.

Chapter 8: Intrinsic Subprograms 198

8.11 Shifts and Rotates

In standard Ada, the shift and rotate functions are available only for the predefined modular
types in package Interfaces. However, in GNAT it is possible to define these functions
for any integer type (signed or modular), as in this example:

function Shift_Left
(Value : T;
Amount : Natural) return T
with Import, Convention => Intrinsic;

The function name must be one of Shift_Left, Shift_Right, Shift_Right_Arithmetic, Ro-
tate_Left, or Rotate_Right. T must be an integer type. T’Size must be 8, 16, 32 or 64 bits;
if T is modular, the modulus must be 2**8, 2**16, 2**32 or 2**64. The result type must be
the same as the type of Value. The shift amount must be Natural. The formal parameter
names can be anything.

A more convenient way of providing these shift operators is to use the Pro-
vide_Shift_Operators pragma, which provides the function declarations and corresponding
pragma Import’s for all five shift functions. For signed types the semantics of these
operators is to interpret the bitwise result of the corresponding operator for modular type.
In particular, shifting a negative number may change its sign bit to positive.

8.12 Source_Location

This intrinsic subprogram is used in the implementation of the library routine GNAT . Source_
Info. The only useful use of the intrinsic import in this case is the one in this unit, so an
application program should simply call the function GNAT.Source_Info.Source_Location
to obtain the current source file location.

199

9 Representation Clauses and Pragmas

This section describes the representation clauses accepted by GNAT, and their effect on the
representation of corresponding data objects.

GNAT fully implements Annex C (Systems Programming). This means that all the im-
plementation advice sections in chapter 13 are fully implemented. However, these sections
only require a minimal level of support for representation clauses. GNAT provides much
more extensive capabilities, and this section describes the additional capabilities provided.

9.1 Alignment Clauses

GNAT requires that all alignment clauses specify 0 or a power of 2, and all default alignments
are always a power of 2. Specifying 0 is the same as specifying 1.

The default alignment values are as follows:
* ‘Elementary Types’.

For elementary types, the alignment is the minimum of the actual size of objects of the
type divided by Storage_Unit, and the maximum alignment supported by the target.
(This maximum alignment is given by the GNAT-specific attribute Standard'Maximum_
Alignment; see [Attribute Maximum_Alignment|, page 126.)

For example, for type Long_Float, the object size is 8 bytes, and the default alignment
will be 8 on any target that supports alignments this large, but on some targets, the
maximum alignment may be smaller than 8, in which case objects of type Long_Float
will be maximally aligned.

‘Arrays’.

For arrays, the alignment is equal to the alignment of the component type for the
normal case where no packing or component size is given. If the array is packed, and
the packing is effective (see separate section on packed arrays), then the alignment
will be either 4, 2, or 1 for long packed arrays or arrays whose length is not known at
compile time, depending on whether the component size is divisible by 4, 2, or is odd.
For short packed arrays, which are handled internally as modular types, the alignment
will be as described for elementary types, e.g. a packed array of length 31 bits will
have an object size of four bytes, and an alignment of 4.

* ‘Records’.

For the normal unpacked case, the alignment of a record is equal to the maximum
alignment of any of its components. For tagged records, this includes the implicit
access type used for the tag. If a pragma Pack is used and all components are packable
(see separate section on pragma Pack), then the resulting alignment is 1, unless the
layout of the record makes it profitable to increase it.
A special case is when:

* the size of the record is given explicitly, or a full record representation clause is

given, and
* the size of the record is 2, 4, or 8 bytes.

In this case, an alignment is chosen to match the size of the record. For example, if we
have:

type Small is record

Chapter 9: Representation Clauses and Pragmas 200

A, B : Character;
end record;
for Small'Size use 16;

then the default alignment of the record type Small is 2, not 1. This leads to more
efficient code when the record is treated as a unit, and also allows the type to specified
as Atomic on architectures requiring strict alignment.

An alignment clause may specify a larger alignment than the default value up to some
maximum value dependent on the target (obtainable by using the attribute reference
Standard'Maximum_Alignment). It may also specify a smaller alignment than the default
value for enumeration, integer and fixed point types, as well as for record types, for
example

type V is record
A : Integer;
end record;

for V'alignment use 1;

The default alignment for the type V is 4, as a result of the Integer field in the record, but
it is permissible, as shown, to override the default alignment of the record with a smaller
value.

Note that according to the Ada standard, an alignment clause applies only to the first
named subtype. If additional subtypes are declared, then the compiler is allowed to choose
any alignment it likes, and there is no way to control this choice. Consider:

type R is range 1 .. 10_000;
for R'Alignment use 1;
subtype RS is R range 1 .. 1000;

The alignment clause specifies an alignment of 1 for the first named subtype R but this does
not necessarily apply to RS. When writing portable Ada code, you should avoid writing
code that explicitly or implicitly relies on the alignment of such subtypes.

For the GNAT compiler, if an explicit alignment clause is given, this value is also used
for any subsequent subtypes. So for GNAT, in the above example, you can count on the
alignment of RS being 1. But this assumption is non-portable, and other compilers may
choose different alignments for the subtype RS.

9.2 Size Clauses

The default size for a type T is obtainable through the language-defined attribute T'Size
and also through the equivalent GNAT-defined attribute T'Value_Size. For objects of type
T, GNAT will generally increase the type size so that the object size (obtainable through the
GNAT-defined attribute T'Object_Size) is a multiple of T'Alignment * Storage_Unit.

For example:

type Smallint is range 1 .. 6;

type Rec is record
Y1 : integer;
Y2 : boolean;

Chapter 9: Representation Clauses and Pragmas 201

end record;

In this example, Smallint'Size = Smallint'Value_Size = 3, as specified by the RM
rules, but objects of this type will have a size of 8 (Smallint'Object_Size = 8), since
objects by default occupy an integral number of storage units. On some targets, notably
older versions of the Digital Alpha, the size of stand alone objects of this type may be 32,
reflecting the inability of the hardware to do byte load/stores.

Similarly, the size of type Rec is 40 bits (Rec'Size = Rec'Value_Size = 40), but the
alignment is 4, so objects of this type will have their size increased to 64 bits so that it

is a multiple of the alignment (in bits). This decision is in accordance with the specific
Implementation Advice in RM 13.3(43):

“A Size clause should be supported for an object if the specified Size is
at least as large as its subtype’s Size, and corresponds to a size in storage
elements that is a multiple of the object’s Alignment (if the Alignment
is nonzero).”

An explicit size clause may be used to override the default size by increasing it. For example,
if we have:

type My_Boolean is new Boolean;
for My_Boolean'Size use 32;

then values of this type will always be 32-bit long. In the case of discrete types, the size can
be increased up to 64 bits on 32-bit targets and 128 bits on 64-bit targets, with the effect
that the entire specified field is used to hold the value, sign- or zero-extended as appropriate.
If more than 64 bits or 128 bits resp. is specified, then padding space is allocated after the
value, and a warning is issued that there are unused bits.

Similarly the size of records and arrays may be increased, and the effect is to add padding
bits after the value. This also causes a warning message to be generated.

The largest Size value permitted in GNAT is 2**31-1. Since this is a Size in bits, this
corresponds to an object of size 256 megabytes (minus one). This limitation is true on all
targets. The reason for this limitation is that it improves the quality of the code in many
cases if it is known that a Size value can be accommodated in an object of type Integer.

9.3 Storage_Size Clauses

For tasks, the Storage_Size clause specifies the amount of space to be allocated for the
task stack. This cannot be extended, and if the stack is exhausted, then Storage_Error
will be raised (if stack checking is enabled). Use a Storage_Size attribute definition clause,
or a Storage_Size pragma in the task definition to set the appropriate required size. A
useful technique is to include in every task definition a pragma of the form:

pragma Storage_Size (Default_Stack_Size);

Then Default_Stack_Size can be defined in a global package, and modified as required.
Any tasks requiring stack sizes different from the default can have an appropriate alternative
reference in the pragma.

You can also use the ‘-d’ binder switch to modify the default stack size.

For access types, the Storage_Size clause specifies the maximum space available for allo-
cation of objects of the type. If this space is exceeded then Storage_Error will be raised by

Chapter 9: Representation Clauses and Pragmas 202

an allocation attempt. In the case where the access type is declared local to a subprogram,
the use of a Storage_Size clause triggers automatic use of a special predefined storage pool
(System.Pool_Size) that ensures that all space for the pool is automatically reclaimed on
exit from the scope in which the type is declared.

A special case recognized by the compiler is the specification of a Storage_Size of zero
for an access type. This means that no items can be allocated from the pool, and this is
recognized at compile time, and all the overhead normally associated with maintaining a
fixed size storage pool is eliminated. Consider the following example:

procedure p is
type R is array (Natural) of Character;
type P is access all R;
for P'Storage_Size use 0;
-- Above access type intended only for interfacing purposes

y : P;

procedure g (m : P);
pragma Import (C, g);

begin
y := new R;
end;
As indicated in this example, these dummy storage pools are often useful in connection
with interfacing where no object will ever be allocated. If you compile the above example,
you get the warning:

p.adb:16:09: warning: allocation from empty storage pool
p-adb:16:09: warning: Storage_Error will be raised at run time

Of course in practice, there will not be any explicit allocators in the case of such an access
declaration.

9.4 Size of Variant Record Objects

In the case of variant record objects, there is a question whether Size gives information
about a particular variant, or the maximum size required for any variant. Consider the
following program

with Text_I0; use Text_IO0;
procedure q is
type R1 (A : Boolean := False) is record
case A is
when True => X : Character;
when False => null;
end case;
end record;

Chapter 9: Representation Clauses and Pragmas 203

V1l : R1 (False);
V2 : Ri;

begin
Put_Line (Integer'Image (V1'Size));
Put_Line (Integer'Image (V2'Size));
end q;

Here we are dealing with a variant record, where the True variant requires 16 bits, and
the False variant requires 8 bits. In the above example, both V1 and V2 contain the False
variant, which is only 8 bits long. However, the result of running the program is:

8
16

The reason for the difference here is that the discriminant value of V1 is fixed, and will
always be False. It is not possible to assign a True variant value to V1, therefore 8 bits is
sufficient. On the other hand, in the case of V2, the initial discriminant value is False (from
the default), but it is possible to assign a True variant value to V2, therefore 16 bits must
be allocated for V2 in the general case, even fewer bits may be needed at any particular
point during the program execution.

As can be seen from the output of this program, the 'Size attribute applied to such an
object in GNAT gives the actual allocated size of the variable, which is the largest size of
any of the variants. The Ada Reference Manual is not completely clear on what choice
should be made here, but the GNAT behavior seems most consistent with the language in
the RM.

In some cases, it may be desirable to obtain the size of the current variant, rather than the
size of the largest variant. This can be achieved in GNAT by making use of the fact that
in the case of a subprogram parameter, GNAT does indeed return the size of the current
variant (because a subprogram has no way of knowing how much space is actually allocated
for the actual).

Consider the following modified version of the above program:

with Text_IO0; use Text_IO0;
procedure q is
type R1 (A : Boolean := False) is record
case A is
when True => X : Character;
when False => null;
end case;
end record;

V2 : Ri;

function Size (V : R1) return Integer is
begin

return V'Size;
end Size;

Chapter 9: Representation Clauses and Pragmas 204

begin
Put_Line (Integer'Image (V2'Size));
Put_Line (Integer'Image (Size (V2)));
V2 := (True, 'x');
Put_Line (Integer'Image (V2'Size));
Put_Line (Integer'Image (Size (V2)));

end q;

The output from this program is

16
8

16
16

Here we see that while the 'Size attribute always returns the maximum size, regardless
of the current variant value, the Size function does indeed return the size of the current
variant value.

9.5 Biased Representation

In the case of scalars with a range starting at other than zero, it is possible in some cases
to specify a size smaller than the default minimum value, and in such cases, GNAT uses
an unsigned biased representation, in which zero is used to represent the lower bound, and
successive values represent successive values of the type.

For example, suppose we have the declaration:
type Small is range -7 .. -4;
for Small'Size use 2;

Although the default size of type Small is 4, the Size clause is accepted by GNAT and
results in the following representation scheme:

-7 is represented as 2#00#
-6 is represented as 2#01#
-5 is represented as 2#10#
-4 is represented as 2#11#

Biased representation is only used if the specified Size clause cannot be accepted in any
other manner. These reduced sizes that force biased representation can be used for all
discrete types except for enumeration types for which a representation clause is given.

9.6 Value_Size and Object_Size Clauses

In Ada 95 and Ada 2005, T'Size for a type T is the minimum number of bits required to hold
values of type T. Although this interpretation was allowed in Ada 83, it was not required,
and this requirement in practice can cause some significant difficulties. For example, in most
Ada 83 compilers, Natural'Size was 32. However, in Ada 95 and Ada 2005, Natural'Size
is typically 31. This means that code may change in behavior when moving from Ada 83
to Ada 95 or Ada 2005. For example, consider:

type Rec is record
A : Natural;

Chapter 9: Representation Clauses and Pragmas 205

B : Natural;
end record;

for Rec use record

A at 0 range O .. Natural'Size - 1;

B at 0 range Natural'Size .. 2 * Natural'Size - 1;
end record;

In the above code, since the typical size of Natural objects is 32 bits and Natural'Size is
31, the above code can cause unexpected inefficient packing in Ada 95 and Ada 2005, and
in general there are cases where the fact that the object size can exceed the size of the type
causes surprises.

To help get around this problem GNAT provides two implementation defined attributes,
Value_Size and Object_Size. When applied to a type, these attributes yield the size of
the type (corresponding to the RM defined size attribute), and the size of objects of the
type respectively.

The Object_Size is used for determining the default size of objects and components. This
size value can be referred to using the Object_Size attribute. The phrase ‘is used’ here
means that it is the basis of the determination of the size. The backend is free to pad this
up if necessary for efficiency, e.g., an 8-bit stand-alone character might be stored in 32 bits
on a machine with no efficient byte access instructions such as the Alpha.

The default rules for the value of Object_Size for discrete types are as follows:

* The Object_Size for base subtypes reflect the natural hardware size in bits (run the
compiler with ‘-gnatS’ to find those values for numeric types). Enumeration types and
fixed-point base subtypes have 8, 16, 32, or 64 bits for this size, depending on the range
of values to be stored.

* The Object_Size of a subtype is the same as the Object_Size of the type from which
it is obtained.

* The Object_Size of a derived base type is copied from the parent base type, and the
Object_Size of a derived first subtype is copied from the parent first subtype.

The Value_Size attribute is the (minimum) number of bits required to store a value of
the type. This value is used to determine how tightly to pack records or arrays with
components of this type, and also affects the semantics of unchecked conversion (unchecked
conversions where the Value_Size values differ generate a warning, and are potentially
target dependent).

The default rules for the value of Value_Size are as follows:

* The Value_Size for a base subtype is the minimum number of bits required to store
all values of the type (including the sign bit only if negative values are possible).

* If a subtype statically matches the first subtype of a given type, then it has by default
the same Value_Size as the first subtype. (This is a consequence of RM 13.1(14): “if
two subtypes statically match, then their subtype-specific aspects are the same”.)

* All other subtypes have a Value_Size corresponding to the minimum number of bits
required to store all values of the subtype. For dynamic bounds, it is assumed that the
value can range down or up to the corresponding bound of the ancestor

Chapter 9: Representation Clauses and Pragmas 206

The RM defined attribute Size corresponds to the Value_Size attribute.

The Size attribute may be defined for a first-named subtype. This sets the Value_Size
of the first-named subtype to the given value, and the Object_Size of this first-named
subtype to the given value padded up to an appropriate boundary. It is a consequence
of the default rules above that this Object_Size will apply to all further subtypes. On
the other hand, Value_Size is affected only for the first subtype, any dynamic subtypes
obtained from it directly, and any statically matching subtypes. The Value_Size of any
other static subtypes is not affected.

Value_Size and Object_Size may be explicitly set for any subtype using an attribute
definition clause. Note that the use of these attributes can cause the RM 13.1(14) rule
to be violated. If two access types reference aliased objects whose subtypes have differing
Object_Size values as a result of explicit attribute definition clauses, then it is illegal to
convert from one access subtype to the other. For a more complete description of this
additional legality rule, see the description of the Object_Size attribute.

To get a feel for the difference, consider the following examples (note that in each case the
base is Short_Short_Integer with a size of 8):

Type or subtype declaration Object_Size Value_Size
type x1 is range O .. 5; 8 3

type x2 is range 0 .. 5; for x2'size use 12; 16 12
subtype x3 is x2 range 0 .. 3; 16 2

subtype x4 is x2'base range 0 .. 10; 8 4

dynamic : x2'Base range —-64 .. +63;
subtype x5 is x2 range O .. dynamic; 16 3*

subtype x6 is x2'base range 0 .. dynamic; 8 *

Note: the entries marked “*’ are not actually specified by the Ada Reference Manual, which

has nothing to say about size in the dynamic case. What GNAT does is to allocate sufficient
bits to accommodate any possible dynamic values for the bounds at run-time.

So far, so good, but GNAT has to obey the RM rules, so the question is under what
conditions must the RM Size be used. The following is a list of the occasions on which the
RM Size must be used:

* Component size for packed arrays or records

* Value of the attribute Size for a type

* Warning about sizes not matching for unchecked conversion
For record types, the Object_Size is always a multiple of the alignment of the type (this
is true for all types). In some cases the Value_Size can be smaller. Consider:

type R is record

Chapter 9: Representation Clauses and Pragmas 207

X : Integer;
Y : Character;
end record;

On a typical 32-bit architecture, the X component will occupy four bytes and the Y com-
ponent will occupy one byte, for a total of 5 bytes. As a result R'Value_Size will be 40
(bits) since this is the minimum size required to store a value of this type. For example, it
is permissible to have a component of type R in an array whose component size is specified
to be 40 bits.

However, R'Object_Size will be 64 (bits). The difference is due to the alignment require-
ment for objects of the record type. The X component will require four-byte alignment
because that is what type Integer requires, whereas the Y component, a Character, will
only require 1-byte alignment. Since the alignment required for X is the greatest of all the
components’ alignments, that is the alignment required for the enclosing record type, i.e.,
4 bytes or 32 bits. As indicated above, the actual object size must be rounded up so that
it is a multiple of the alignment value. Therefore, 40 bits rounded up to the next multiple
of 32 yields 64 bits.

For all other types, the Object_Size and Value_Size are the same (and equivalent to the
RM attribute Size). Only Size may be specified for such types.

Note that Value_Size can be used to force biased representation for a particular subtype.
Consider this example:

type R is (A, B, C, D, E, F);
subtype RAB is R range A .. B;
subtype REF is R range E .. F;

By default, RAB has a size of 1 (sufficient to accommodate the representation of A and B, 0
and 1), and REF has a size of 3 (sufficient to accommodate the representation of E and F, 4
and 5). But if we add the following Value_Size attribute definition clause:

for REF'Value_Size use 1;

then biased representation is forced for REF, and 0 will represent E and 1 will represent F. A
warning is issued when a Value_Size attribute definition clause forces biased representation.
This warning can be turned off using -gnatw.B.

9.7 Component_Size Clauses

Normally, the value specified in a component size clause must be consistent with the subtype
of the array component with regard to size and alignment. In other words, the value specified
must be at least equal to the size of this subtype, and must be a multiple of the alignment
value.

In addition, component size clauses are allowed which cause the array to be packed, by
specifying a smaller value. A first case is for component size values in the range 1 through
63 on 32-bit targets, and 1 through 127 on 64-bit targets. The value specified may not be
smaller than the Size of the subtype. GNAT will accurately honor all packing requests in
this range. For example, if we have:

type r is array (1 .. 8) of Natural;
for r'Component_Size use 31;

Chapter 9: Representation Clauses and Pragmas 208

then the resulting array has a length of 31 bytes (248 bits = 8 * 31). Of course access to
the components of such an array is considerably less efficient than if the natural component
size of 32 is used. A second case is when the subtype of the component is a record type
padded because of its default alignment. For example, if we have:

type r is record
i : Integer;
j : Integer;
b : Boolean;
end record;

type a is array (1 .. 8) of r;
for a'Component_Size use 72;

then the resulting array has a length of 72 bytes, instead of 96 bytes if the alignment of the
record (4) was obeyed.

Note that there is no point in giving both a component size clause and a pragma Pack for
the same array type. if such duplicate clauses are given, the pragma Pack will be ignored.

9.8 Bit_Order Clauses

For record subtypes, GNAT permits the specification of the Bit_Order attribute. The
specification may either correspond to the default bit order for the target, in which case
the specification has no effect and places no additional restrictions, or it may be for the
non-standard setting (that is the opposite of the default).

In the case where the non-standard value is specified, the effect is to renumber bits within
each byte, but the ordering of bytes is not affected. There are certain restrictions placed
on component clauses as follows:

* Components fitting within a single storage unit.

These are unrestricted, and the effect is merely to renumber bits. For example if we are
on a little-endian machine with Low_Order_First being the default, then the following
two declarations have exactly the same effect:

type R1 is record

A : Boolean;

B : Integer range 1 .. 120;
end record;

for R1 use record
A at 0 range O .. O;
B at O range 1 .. 7;
end record;

type R2 is record

A : Boolean;

B : Integer range 1 .. 120;
end record;

for R2'Bit_Order use High_ Order_First;

Chapter 9: Representation Clauses and Pragmas 209

for R2 use record
A at O range 7 .. 7;
B at 0 range 0 .. 6;
end record;

The useful application here is to write the second declaration with the Bit_Order
attribute definition clause, and know that it will be treated the same, regardless of
whether the target is little-endian or big-endian.

Components occupying an integral number of bytes.

These are components that exactly fit in two or more bytes. Such component declara-
tions are allowed, but have no effect, since it is important to realize that the Bit_Order
specification does not affect the ordering of bytes. In particular, the following attempt
at getting an endian-independent integer does not work:

type R2 is record
A : Integer;
end record;

for R2'Bit_Order use High_ Order_First;

for R2 use record
A at 0 range O .. 31;
end record;

This declaration will result in a little-endian integer on a little-endian machine, and a
big-endian integer on a big-endian machine. If byte flipping is required for interoper-
ability between big- and little-endian machines, this must be explicitly programmed.
This capability is not provided by Bit_Order.

Components that are positioned across byte boundaries.

but do not occupy an integral number of bytes. Given that bytes are not reordered,
such fields would occupy a non-contiguous sequence of bits in memory, requiring non-
trivial code to reassemble. They are for this reason not permitted, and any component
clause specifying such a layout will be flagged as illegal by GNAT.

Since the misconception that Bit_Order automatically deals with all endian-related incom-
patibilities is a common one, the specification of a component field that is an integral num-
ber of bytes will always generate a warning. This warning may be suppressed using pragma
Warnings (0ff) if desired. The following section contains additional details regarding the
issue of byte ordering.

9.9 Effect of Bit_Order on Byte Ordering

In this section we will review the effect of the Bit_Order attribute definition clause on byte
ordering. Briefly, it has no effect at all, but a detailed example will be helpful. Before
giving this example, let us review the precise definition of the effect of defining Bit_Order.
The effect of a non-standard bit order is described in section 13.5.3 of the Ada Reference
Manual:

Chapter 9: Representation Clauses and Pragmas 210

“2 A bit ordering is a method of interpreting the meaning of the storage
place attributes.”

To understand the precise definition of storage place attributes in this context, we visit
section 13.5.1 of the manual:

“13 A record_representation_clause (without the mod_clause) specifies
the layout. The storage place attributes (see 13.5.2) are taken from the
values of the position, first_bit, and last_bit expressions after normalizing
those values so that first_bit is less than Storage_Unit.”

The critical point here is that storage places are taken from the values after normalization,
not before. So the Bit_0Order interpretation applies to normalized values. The interpreta-
tion is described in the later part of the 13.5.3 paragraph:

“2 A bit ordering is a method of interpreting the meaning of the storage
place attributes. High_Order_First (known in the vernacular as ‘big en-
dian’) means that the first bit of a storage element (bit 0) is the most
significant bit (interpreting the sequence of bits that represent a com-
ponent as an unsigned integer value). Low_Order_First (known in the
vernacular as ‘little endian’) means the opposite: the first bit is the least
significant.”

Note that the numbering is with respect to the bits of a storage unit. In other words, the
specification affects only the numbering of bits within a single storage unit.

We can make the effect clearer by giving an example.

Suppose that we have an external device which presents two bytes, the first byte presented,
which is the first (low addressed byte) of the two byte record is called Master, and the
second byte is called Slave.

The left most (most significant) bit is called Control for each byte, and the remaining 7 bits
are called V1, V2, ... V7, where V7 is the rightmost (least significant) bit.

On a big-endian machine, we can write the following representation clause

type Data is record
Master_Control : Bit;

Master_Vi1 . Bit;
Master_V2 . Bit;
Master_V3 : Bit;
Master_V4 : Bit;
Master_V5 : Bit;
Master_V6 : Bit;
Master_V7 . Bit;
Slave_Control : Bit;
Slave_V1 : Bit;
Slave_V2 : Bit;
Slave_V3 : Bit;
Slave_V4 . Bit;
Slave_V5 : Bit;
Slave_V6 : Bit;
Slave_V7 : Bit;

end record;

Chapter 9: Representation Clauses and Pragmas 211

for Data use record

Master_Control at O range O .. O;
Master_V1 at O range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at O range 7 .. 7;
Slave_Control at 1 range O .. O;
Slave_V1 at 1 range 1 .. 1;
Slave_V2 at 1 range 2 .. 2;
Slave_V3 at 1 range 3 .. 3;
Slave_V4 at 1 range 4 .. 4;
Slave_V5 at 1 range 5 .. 5;
Slave_V6 at 1 range 6 .. 6;
Slave_V7 at 1 range 7 .. 7;

end record;

Now if we move this to a little endian machine, then the bit ordering within the byte is
backwards, so we have to rewrite the record rep clause as:

for Data use record

Master_Control at O range 7 .. 7;
Master_V1 at 0 range 6 .. 6;
Master_V2 at 0 range 5 .. 5;
Master_V3 at 0 range 4 .. 4;
Master_V4 at 0 range 3 .. 3;
Master_V5 at 0 range 2 .. 2;
Master_V6 at O range 1 .. 1;
Master_V7 at 0 range O .. O;
Slave_Control at 1 range 7 .. 7;
Slave_V1 at 1 range 6 .. 6;
Slave_V2 at 1 range 5 .. 5;
Slave_V3 at 1 range 4 .. 4;
Slave_V4 at 1 range 3 .. 3;
Slave_V5 at 1 range 2 .. 2;
Slave_V6 at 1 range 1 .. 1;
Slave_V7 at 1 range O .. O;

end record;

It is a nuisance to have to rewrite the clause, especially if the code has to be maintained on
both machines. However, this is a case that we can handle with the Bit_0rder attribute if it
is implemented. Note that the implementation is not required on byte addressed machines,
but it is indeed implemented in GNAT. This means that we can simply use the first record
clause, together with the declaration

for Data'Bit_Order use High_Order_First;

Chapter 9: Representation Clauses and Pragmas 212

and the effect is what is desired, namely the layout is exactly the same, independent of
whether the code is compiled on a big-endian or little-endian machine.

The important point to understand is that byte ordering is not affected. A Bit_Order
attribute definition never affects which byte a field ends up in, only where it ends up in that
byte. To make this clear, let us rewrite the record rep clause of the previous example as:

for Data'Bit_Order use High Order_First;
for Data use record

Master_Control at O range O .. O;
Master_V1 at O range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at O range 7 .. 7;
Slave_Control at O range 8 .. 8;
Slave_V1 at 0 range 9 .. 9;
Slave_V2 at 0 range 10 .. 10;
Slave_V3 at 0 range 11 11;
Slave_V4 at 0 range 12 .. 12;
Slave_V5 at 0 range 13 .. 13;
Slave_V6 at 0 range 14 .. 14;
Slave_V7 at 0 range 15 .. 15;

end record;
This is exactly equivalent to saying (a repeat of the first example):

for Data'Bit_Order use High_ Order_First;
for Data use record

Master_Control at O range O .. O;
Master_V1 at O range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at O range 7 .. 7;
Slave_Control at 1 range O .. O;
Slave_V1 at 1 range 1 .. 1;
Slave_V2 at 1 range 2 .. 2;
Slave_V3 at 1 range 3 .. 3;
Slave_V4 at 1 range 4 .. 4;
Slave_V5 at 1 range 5 .. 5;
Slave_V6 at 1 range 6 .. 6;
Slave_V7 at 1 range 7 .. 7;

end record;

Why are they equivalent? Well take a specific field, the Slave_V2 field. The storage place
attributes are obtained by normalizing the values given so that the First_Bit value is less

Chapter 9: Representation Clauses and Pragmas 213

than 8. After normalizing the values (0,10,10) we get (1,2,2) which is exactly what we
specified in the other case.

Now one might expect that the Bit_Order attribute might affect bit numbering within the
entire record component (two bytes in this case, thus affecting which byte fields end up in),
but that is not the way this feature is defined, it only affects numbering of bits, not which
byte they end up in.

Consequently it never makes sense to specify a starting bit number greater than 7 (for a
byte addressable field) if an attribute definition for Bit_Order has been given, and indeed
it may be actively confusing to specify such a value, so the compiler generates a warning
for such usage.

If you do need to control byte ordering then appropriate conditional values must be used.
If in our example, the slave byte came first on some machines we might write:

Master_Byte_First constant Boolean := ...;

Master_Byte : constant Natural :=

1 - Boolean'Pos (Master_Byte_First);
Slave_Byte : constant Natural :=

Boolean'Pos (Master_Byte_First);

for Data'Bit_Order use High Order_First;
for Data use record

Master_Control at Master_Byte range 0 .. O;
Master_V1 at Master_Byte range 1 .. 1;
Master_V2 at Master_Byte range 2 .. 2;
Master_V3 at Master_Byte range 3 .. 3;
Master_V4 at Master_Byte range 4 .. 4;
Master_V5 at Master_Byte range 5 .. 5;
Master_V6 at Master_Byte range 6 .. 6;
Master_V7 at Master_Byte range 7 .. 7;
Slave_Control at Slave_Byte range O .. O;
Slave_V1 at Slave_Byte range 1 .. 1;
Slave_V2 at Slave_Byte range 2 .. 2;
Slave_V3 at Slave_Byte range 3 .. 3;
Slave_V4 at Slave_Byte range 4 .. 4;
Slave_V5 at Slave_Byte range 5 .. 5;
Slave_V6 at Slave_Byte range 6 .. 6;
Slave_V7 at Slave_Byte range 7 .. 7;

end record;

Now to switch between machines, all that is necessary is to set the boolean constant Master_
Byte_First in an appropriate manner.

9.10 Pragma Pack for Arrays

Pragma Pack applied to an array has an effect that depends upon whether the component
type is ‘packable’. For a component type to be ‘packable’, it must be one of the following
cases:

Chapter 9: Representation Clauses and Pragmas 214

* Any elementary type.
* Any small packed array type with a static size.

* Any small simple record type with a static size.

For all these cases, if the component subtype size is in the range 1 through 63 on 32-bit
targets, and 1 through 127 on 64-bit targets, then the effect of the pragma Pack is exactly
as though a component size were specified giving the component subtype size.

All other types are non-packable, they occupy an integral number of storage units and the
only effect of pragma Pack is to remove alignment gaps.

For example if we have:

type r is range O .. 17;

type ar is array (1 .. 8) of r;
pragma Pack (ar);

Then the component size of ar will be set to 5 (i.e., to r'size, and the size of the array ar
will be exactly 40 bits).

Note that in some cases this rather fierce approach to packing can produce unexpected
effects. For example, in Ada 95 and Ada 2005, subtype Natural typically has a size of 31,
meaning that if you pack an array of Natural, you get 31-bit close packing, which saves a
few bits, but results in far less efficient access. Since many other Ada compilers will ignore
such a packing request, GNAT will generate a warning on some uses of pragma Pack that
it guesses might not be what is intended. You can easily remove this warning by using
an explicit Component_Size setting instead, which never generates a warning, since the
intention of the programmer is clear in this case.

GNAT treats packed arrays in one of two ways. If the size of the array is known at compile
time and is at most 64 bits on 32-bit targets, and at most 128 bits on 64-bit targets, then
internally the array is represented as a single modular type, of exactly the appropriate
number of bits. If the length is greater than 64 bits on 32-bit targets, and greater than 128
bits on 64-bit targets, or is not known at compile time, then the packed array is represented
as an array of bytes, and its length is always a multiple of 8 bits.

Note that to represent a packed array as a modular type, the alignment must be suitable for
the modular type involved. For example, on typical machines a 32-bit packed array will be
represented by a 32-bit modular integer with an alignment of four bytes. If you explicitly
override the default alignment with an alignment clause that is too small, the modular
representation cannot be used. For example, consider the following set of declarations:

type R is range 1 .. 3;

type S is array (1 .. 31) of R;
for S'Component_Size use 2;

for S'Size use 62;

for S'Alignment use 1;

If the alignment clause were not present, then a 62-bit modular representation would be
chosen (typically with an alignment of 4 or 8 bytes depending on the target). But the default
alignment is overridden with the explicit alignment clause. This means that the modular
representation cannot be used, and instead the array of bytes representation must be used,
meaning that the length must be a multiple of 8. Thus the above set of declarations will

Chapter 9: Representation Clauses and Pragmas 215

result in a diagnostic rejecting the size clause and noting that the minimum size allowed is
64.

One special case that is worth noting occurs when the base type of the component size
is 8/16/32 and the subtype is one bit less. Notably this occurs with subtype Natural.
Consider:

type Arr is array (1 .. 32) of Natural;
pragma Pack (Arr);

In all commonly used Ada 83 compilers, this pragma Pack would be ignored, since typically
Natural'Size is 32 in Ada 83, and in any case most Ada 83 compilers did not attempt 31
bit packing.
In Ada 95 and Ada 2005, Natural'Size is required to be 31. Furthermore, GNAT really
does pack 31-bit subtype to 31 bits. This may result in a substantial unintended performance
penalty when porting legacy Ada 83 code. To help prevent this, GNAT generates a warning
in such cases. If you really want 31 bit packing in a case like this, you can set the component
size explicitly:

type Arr is array (1 .. 32) of Natural;

for Arr'Component_Size use 31;

Here 31-bit packing is achieved as required, and no warning is generated, since in this case
the programmer intention is clear.

9.11 Pragma Pack for Records

Pragma Pack applied to a record will pack the components to reduce wasted space from
alignment gaps and by reducing the amount of space taken by components. We distin-
guish between ‘packable’ components and ‘non-packable’ components. Components of the
following types are considered packable:

* Components of an elementary type are packable unless they are aliased, independent

or atomic.

Small packed arrays, where the size is statically known, are represented internally as
modular integers, and so they are also packable.

* Small simple records, where the size is statically known, are also packable.

For all these cases, if the 'Size value is in the range 1 through 64 on 32-bit targets,
and 1 through 128 on 64-bit targets, the components occupy the exact number of bits
corresponding to this value and are packed with no padding bits, i.e. they can start on an
arbitrary bit boundary.

All other types are non-packable, they occupy an integral number of storage units and the
only effect of pragma Pack is to remove alignment gaps.

For example, consider the record

type Rbl is array (1 .. 13) of Boolean;
pragma Pack (Rbl);

type Rb2 is array (1 .. 65) of Boolean;
pragma Pack (Rb2);

Chapter 9: Representation Clauses and Pragmas 216

type AF is new Float with Atomic;

type X2 is record
L1 : Boolean;
L2 : Duration;

L3 : AF;
L4 : Boolean;
L5 : Rbil;
L6 : Rb2;

end record;
pragma Pack (X2);

The representation for the record X2 is as follows on 32-bit targets:

for X2'Size use 224;
for X2 use record

Ll at O range O .. O;
L2 at O range 1 .. 64;
L3 at 12 range O .. 31;
L4 at 16 range O .. O;
L5 at 16 range 1 .. 13;
L6 at 18 range O .. 71;

end record;

Studying this example, we see that the packable fields L1 and L2 are of length equal to their
sizes, and placed at specific bit boundaries (and not byte boundaries) to eliminate padding.
But L3 is of a non-packable float type (because it is aliased), so it is on the next appropriate
alignment boundary.

The next two fields are fully packable, so L4 and L5 are minimally packed with no gaps.
However, type Rb2 is a packed array that is longer than 64 bits, so it is itself non-packable
on 32-bit targets. Thus the L6 field is aligned to the next byte boundary, and takes an
integral number of bytes, i.e., 72 bits.

9.12 Record Representation Clauses

Record representation clauses may be given for all record types, including types obtained by
record extension. Component clauses are allowed for any static component. The restrictions
on component clauses depend on the type of the component.

For all components of an elementary type, the only restriction on component clauses is that
the size must be at least the 'Size value of the type (actually the Value_Size). There are
no restrictions due to alignment, and such components may freely cross storage boundaries.

Packed arrays with a size up to and including 64 bits on 32-bit targets, and up to and
including 128 bits on 64-bit targets, are represented internally using a modular type with
the appropriate number of bits, and thus the same lack of restriction applies. For example,
if you declare:

type R is array (1 .. 49) of Boolean;
pragma Pack (R);
for R'Size use 49;

Chapter 9: Representation Clauses and Pragmas 217

then a component clause for a component of type R may start on any specified bit boundary,
and may specify a value of 49 bits or greater.

For packed bit arrays that are longer than 64 bits on 32-bit targets, and longer than 128 bits
on 64-bit targets, there are two cases. If the component size is a power of 2 (1,2,4,8,16,32,64
bits), including the important case of single bits or boolean values, then there are no lim-
itations on placement of such components, and they may start and end at arbitrary bit
boundaries.

If the component size is not a power of 2 (e.g., 3 or 5), then an array of this type must
always be placed on on a storage unit (byte) boundary and occupy an integral number of
storage units (bytes). Any component clause that does not meet this requirement will be
rejected.

Any aliased component, or component of an aliased type, must have its normal alignment
and size. A component clause that does not meet this requirement will be rejected.

The tag field of a tagged type always occupies an address sized field at the start of the record.
No component clause may attempt to overlay this tag. When a tagged type appears as a
component, the tag field must have proper alignment

In the case of a record extension T1, of a type T, no component clause applied to the type
T1 can specify a storage location that would overlap the first T'Object_Size bits of the
record.

For all other component types, including non-bit-packed arrays, the component can be
placed at an arbitrary bit boundary, so for example, the following is permitted:

type R is array (1 .. 10) of Boolean;
for R'Size use 80;

type Q is record
G, H : Boolean;
L, M : R;

end record;

for Q use record

G at 0 range O . 0;
H at 0 range 1 . 1;
L at 0 range 2 . 81;

R at 0 range 82 .. 161;
end record;

9.13 Handling of Records with Holes

As a result of alignment considerations, records may contain “holes” or gaps which do not
correspond to the data bits of any of the components. Record representation clauses can
also result in holes in records.

GNAT does not attempt to clear these holes, so in record objects, they should be considered
to hold undefined rubbish. The generated equality routine just tests components so does not
access these undefined bits, and assignment and copy operations may or may not preserve
the contents of these holes (for assignments, the holes in the target will in practice contain

Chapter 9: Representation Clauses and Pragmas 218

either the bits that are present in the holes in the source, or the bits that were present in
the target before the assignment).

If it is necessary to ensure that holes in records have all zero bits, then record objects
for which this initialization is desired should be explicitly set to all zero values using
Unchecked_Conversion or address overlays. For example

type HRec is record
C : Character;
I : Integer;
end record;
On typical machines, integers need to be aligned on a four-byte boundary, resulting in three
bytes of undefined rubbish following the 8-bit field for C. To ensure that the hole in a
variable of type HRec is set to all zero bits, you could for example do:

type Base is record
Dummyl, Dummy2 : Integer := O;
end record;

BaseVar : Base;
RealVar : Hrec;
for RealVar'Address use BaseVar'Address;

Now the 8-bytes of the value of RealVar start out containing all zero bits. A safer approach
is to just define dummy fields, avoiding the holes, as in:

type HRec is record
C : Character;

Dummyl : Short_Short_Integer := 0;
Dummy2 : Short_Short_Integer := O;
Dummy3 : Short_Short_Integer := O;

I : Integer;
end record;

And to make absolutely sure that the intent of this is followed, you can use representation
clauses:

for Hrec use record

C at 0 range O .. 7;
Dummyl at 1 range O .. 7;
Dummy2 at 2 range O .. 7;
Dummy3 at 3 range O .. 7;
I at 4 range O .. 31;

end record;
for Hrec'Size use 64;

9.14 Enumeration Clauses

The only restriction on enumeration clauses is that the range of values must be representable.
For the signed case, if one or more of the representation values are negative, all values must
be in the range:

System.Min_Int .. System.Max_Int

Chapter 9: Representation Clauses and Pragmas 219

For the unsigned case, where all values are nonnegative, the values must be in the range:
0 .. System.Max_Binary_Modulus;

A ‘confirming’ representation clause is one in which the values range from 0 in sequence,
i.e., a clause that confirms the default representation for an enumeration type. Such a
confirming representation is permitted by these rules, and is specially recognized by the
compiler so that no extra overhead results from the use of such a clause.

If an array has an index type which is an enumeration type to which an enumeration clause
has been applied, then the array is stored in a compact manner. Consider the declarations:
type r is (A, B, C);
for r use (A => 1, B=>5, C => 10);
type t is array (r) of Character;

The array type t corresponds to a vector with exactly three elements and has a default size
equal to 3*Character'Size. This ensures efficient use of space, but means that accesses
to elements of the array will incur the overhead of converting representation values to the
corresponding positional values, (i.e., the value delivered by the Pos attribute).

9.15 Address Clauses

The reference manual allows a general restriction on representation clauses, as found in RM
13.1(22):
“An implementation need not support representation items containing
nonstatic expressions, except that an implementation should support a
representation item for a given entity if each nonstatic expression in the
representation item is a name that statically denotes a constant declared
before the entity.”

In practice this is applicable only to address clauses, since this is the only case in which
a nonstatic expression is permitted by the syntax. As the AARM notes in sections 13.1
(22.a-22.h):

22.a Reason: This is to avoid the following sort of thing:
22.b X : Integer := F(...); Y : Address := G(. . .); for X’Address use Y;

22.c In the above, we have to evaluate the initialization expression for X
before we know where to put the result. This seems like an unreasonable
implementation burden.

22.d The above code should instead be written like this:

22.eY : constant Address := G(. . .); X : Integer := F(. . .); for X’Address
use Y;

22.f This allows the expression ‘Y’ to be safely evaluated before X is
created.
22.g The constant could be a formal parameter of mode in.

22.h An implementation can support other nonstatic expressions if it
wants to. Expressions of type Address are hardly ever static, but their
value might be known at compile time anyway in many cases.

GNAT does indeed permit many additional cases of nonstatic expressions. In particular,
if the type involved is elementary there are no restrictions (since in this case, holding a

Chapter 9: Representation Clauses and Pragmas 220

temporary copy of the initialization value, if one is present, is inexpensive). In addition,
if there is no implicit or explicit initialization, then there are no restrictions. GNAT will
reject only the case where all three of these conditions hold:

* The type of the item is non-elementary (e.g., a record or array).

* There is explicit or implicit initialization required for the object. Note that access
values are always implicitly initialized.

* The address value is nonstatic. Here GNAT is more permissive than the RM, and allows
the address value to be the address of a previously declared stand-alone variable, as
long as it does not itself have an address clause.

Anchor : Some_Initialized_Type;

Overlay : Some_Initialized_Type;

for Overlay'Address use Anchor'Address;
However, the prefix of the address clause cannot be an array component, or a component
of a discriminated record.

As noted above in section 22.h, address values are typically nonstatic. In particular the
To_Address function, even if applied to a literal value, is a nonstatic function call. To avoid
this minor annoyance, GNAT provides the implementation defined attribute ‘To_Address.
The following two expressions have identical values:

To_Address (16#1234_0000%#)
System'To_Address (16#1234_0000#) ;

except that the second form is considered to be a static expression, and thus when used as
an address clause value is always permitted.

Additionally, GNAT treats as static an address clause that is an unchecked_conversion of
a static integer value. This simplifies the porting of legacy code, and provides a portable
equivalent to the GNAT attribute To_Address.

Another issue with address clauses is the interaction with alignment requirements. When an
address clause is given for an object, the address value must be consistent with the alignment
of the object (which is usually the same as the alignment of the type of the object). If an
address clause is given that specifies an inappropriately aligned address value, then the
program execution is erroneous.

Since this source of erroneous behavior can have unfortunate effects on machines with strict
alignment requirements, GNAT checks (at compile time if possible, generating a warning,
or at execution time with a run-time check) that the alignment is appropriate. If the run-
time check fails, then Program_Error is raised. This run-time check is suppressed if range
checks are suppressed, or if the special GNAT check Alignment_Check is suppressed, or if
pragma Restrictions (No_Elaboration_Code) is in effect. It is also suppressed by default
on non-strict alignment machines (such as the x86).

In some cases, GNAT does not support an address specification (using either form of aspect
specification syntax) for the declaration of an object that has an indefinite nominal subtype.
An object declaration has an indefinite nominal subtype if it takes its bounds (for an array
type), discriminant values (for a discriminated type whose discriminants lack defaults), or
tag (for a class-wide type) from its initial value, as in

X : String := Some_Function_Call;

-- String has no constraint, so bounds for X come from function call

Chapter 9: Representation Clauses and Pragmas 221

This restriction does not apply if the size of the object’s initial value is known at compile
time and the type of the object is not class-wide.

An address clause cannot be given for an exported object. More understandably the real
restriction is that objects with an address clause cannot be exported. This is because such
variables are not defined by the Ada program, so there is no external object to export.

It is permissible to give an address clause and a pragma Import for the same object. In
this case, the variable is not really defined by the Ada program, so there is no external
symbol to be linked. The link name and the external name are ignored in this case. The
reason that we allow this combination is that it provides a useful idiom to avoid unwanted
initializations on objects with address clauses.

When an address clause is given for an object that has implicit or explicit initialization, then
by default initialization takes place. This means that the effect of the object declaration
is to overwrite the memory at the specified address. This is almost always not what the
programmer wants, so GNAT will output a warning:

with System;
package G is
type R is record
M : Integer := 0;
end record;

Ext : R;
for Ext'Address use System'To_Address (16#1234_1234#);
I
>>> warning: implicit initialization of "Ext" may
modify overlaid storage
>>> warning: use pragma Import for "Ext" to suppress
initialization (RM B(24))

end G;

As indicated by the warning message, the solution is to use a (dummy) pragma Import to
suppress this initialization. The pragma tell the compiler that the object is declared and ini-
tialized elsewhere. The following package compiles without warnings (and the initialization
is suppressed):

with System;
package G is
type R is record
M : Integer := 0;
end record;

Ext : R;
for Ext'Address use System'To_Address (16#1234_1234#) ;
pragma Import (Ada, Ext);

end G;

A final issue with address clauses involves their use for overlaying variables, as in the
following example:

Chapter 9: Representation Clauses and Pragmas 222

A : Integer;
B : Integer;
for B'Address use A'Address;

or alternatively, using the form recommended by the RM:

A : Integer;
Addr : constant Address := A'Address;
B : Integer;

for B'Address use Addr;

In both of these cases, A and B become aliased to one another via the address clause. This use
of address clauses to overlay variables, achieving an effect similar to unchecked conversion
was erroneous in Ada 83, but in Ada 95 and Ada 2005 the effect is implementation defined.
Furthermore, the Ada RM specifically recommends that in a situation like this, B should
be subject to the following implementation advice (RM 13.3(19)):

“19 If the Address of an object is specified, or it is imported or exported,
then the implementation should not perform optimizations based on as-
sumptions of no aliases.”

GNAT follows this recommendation, and goes further by also applying this recommendation
to the overlaid variable (A in the above example) in this case. This means that the overlay
works “as expected”, in that a modification to one of the variables will affect the value of
the other.

More generally, GNAT interprets this recommendation conservatively for address clauses:
in the cases other than overlays, it considers that the object is effectively subject to pragma
Volatile and implements the associated semantics.

Note that when address clause overlays are used in this way, there is an issue of unintentional
initialization, as shown by this example:

package Overwrite_Record is
type R is record
A : Character :
B : Character :
end record;
X : Short_Integer := 3;
Y : R;
for Y'Address use X'Address;
|
>>> warning: default initialization of "Y" may
modify "X", use pragma Import for "Y" to
suppress initialization (RM B.1(24))

ICI;
IAI;

end Overwrite_Record;
Here the default initialization of Y will clobber the value of X, which justifies the warning.
The warning notes that this effect can be eliminated by adding a pragma Import which
suppresses the initialization:
package Overwrite_Record is
type R is record
A : Character := 'C';

Chapter 9: Representation Clauses and Pragmas 223

B : Character := 'A';
end record;
X : Short_Integer := 3;
Y : R;
for Y'Address use X'Address;
pragma Import (Ada, Y);
end Overwrite_Record;

Note that the use of pragma Initialize_Scalars may cause variables to be initialized
when they would not otherwise have been in the absence of the use of this pragma. This
may cause an overlay to have this unintended clobbering effect. The compiler avoids this
for scalar types, but not for composite objects (where in general the effect of Initialize_
Scalars is part of the initialization routine for the composite object):

pragma Initialize_Scalars;
with Ada.Text_I0; use Ada.Text_IO;
procedure Overwrite_Array is

type Arr is array (1 .. 5) of Integer;

X : Arr := (others => 1);

A : Arr;

for A'Address use X'Address;

|

>>> warning: default initialization of "A" may

modify "X", use pragma Import for "A" to

suppress initialization (RM B.1(24))

begin
if X /= Arr'(others => 1) then
Put_Line ("X was clobbered");
else
Put_Line ("X was not clobbered");
end if;
end Overwrite_Array;

The above program generates the warning as shown, and at execution time, prints X was
clobbered. If the pragma Import is added as suggested:

pragma Initialize_Scalars;
with Ada.Text_IO0; wuse Ada.Text_IO;
procedure Overwrite_Array is
type Arr is array (1 .. 5) of Integer;
X : Arr := (others => 1);
A : Arr;
for A'Address use X'Address;
pragma Import (Ada, A);
begin
if X /= Arr'(others => 1) then
Put_Line ("X was clobbered");
else
Put_Line ("X was not clobbered");

Chapter 9: Representation Clauses and Pragmas 224

end if;
end Overwrite_Array;
then the program compiles without the warning and when run will generate the output X
was not clobbered.

9.16 Use of Address Clauses for Memory-Mapped 1/0

A common pattern is to use an address clause to map an atomic variable to a location in
memory that corresponds to a memory-mapped I/O operation or operations, for example:
type Mem_Word is record
A,B,C,D : Byte;
end record;
pragma Atomic (Mem_Word) ;
for Mem_Word_Size use 32;

Mem : Mem_Word;
for Mem'Address use some-address;

Temp := Mem;

Temp.A := 32;
Mem := Temp;

For a full access (reference or modification) of the variable (Mem) in this case, as in the above
examples, GNAT guarantees that the entire atomic word will be accessed, in accordance
with the RM C.6(15) clause.

A problem arises with a component access such as:
Mem.A := 32;

Note that the component A is not declared as atomic. This means that it is not clear what
this assignment means. It could correspond to full word read and write as given in the first
example, or on architectures that supported such an operation it might be a single byte
store instruction. The RM does not have anything to say in this situation, and GNAT does
not make any guarantee. The code generated may vary from target to target. GNAT will
issue a warning in such a case:

Mem.A := 32;
>>> warning: access to non-atomic component of atomic array,
may cause unexpected accesses to atomic object

It is best to be explicit in this situation, by either declaring the components to be atomic if
you want the byte store, or explicitly writing the full word access sequence if that is what
the hardware requires. Alternatively, if the full word access sequence is required, GNAT also
provides the pragma Volatile_Full_Access which can be used in lieu of pragma Atomic
and will give the additional guarantee.

9.17 Effect of Convention on Representation

Normally the specification of a foreign language convention for a type or an object has no
effect on the chosen representation. In particular, the representation chosen for data in

Chapter 9: Representation Clauses and Pragmas 225

GNAT generally meets the standard system conventions, and for example records are laid
out in a manner that is consistent with C. This means that specifying convention C (for
example) has no effect.

There are three exceptions to this general rule:
* ‘Convention Fortran and array subtypes’.

If pragma Convention Fortran is specified for an array subtype, then in accordance with
the implementation advice in section 3.6.2(11) of the Ada Reference Manual, the array
will be stored in a Fortran-compatible column-major manner, instead of the normal
default row-major order.

‘Convention C and enumeration types’

GNAT normally stores enumeration types in 8, 16, or 32 bits as required to accommo-
date all values of the type. For example, for the enumeration type declared by:

type Color is (Red, Green, Blue);

8 bits is sufficient to store all values of the type, so by default, objects of type Color will
be represented using 8 bits. However, normal C convention is to use 32 bits for all enum
values in C, since enum values are essentially of type int. If pragma Convention C is
specified for an Ada enumeration type, then the size is modified as necessary (usually
to 32 bits) to be consistent with the C convention for enum values.

Note that this treatment applies only to types. If Convention C is given for an enu-
meration object, where the enumeration type is not Convention C, then Object_Size
bits are allocated. For example, for a normal enumeration type, with less than 256
elements, only 8 bits will be allocated for the object. Since this may be a surprise in
terms of what C expects, GNAT will issue a warning in this situation. The warning
can be suppressed by giving an explicit size clause specifying the desired size.

‘Convention C/Fortran and Boolean types’

In C, the usual convention for boolean values, that is values used for conditions, is that
zero represents false, and nonzero values represent true. In Ada, the normal convention
is that two specific values, typically 0/1, are used to represent false/true respectively.

Fortran has a similar convention for LOGICAL values (any nonzero value represents
true).

To accommodate the Fortran and C conventions, if a pragma Convention specifies C
or Fortran convention for a derived Boolean, as in the following example:

type C_Switch is new Boolean;
pragma Convention (C, C_Switch);

then the GNAT generated code will treat any nonzero value as true. For truth values
generated by GNAT, the conventional value 1 will be used for True, but when one of
these values is read, any nonzero value is treated as True.

9.18 Conventions and Anonymous Access Types

The RM is not entirely clear on convention handling in a number of cases, and in particular,
it is not clear on the convention to be given to anonymous access types in general, and in
particular what is to be done for the case of anonymous access-to-subprogram.

Chapter 9: Representation Clauses and Pragmas 226

In GNAT, we decide that if an explicit Convention is applied to an object or component,
and its type is such an anonymous type, then the convention will apply to this anonymous
type as well. This seems to make sense since it is anomolous in any case to have a different
convention for an object and its type, and there is clearly no way to explicitly specify a
convention for an anonymous type, since it doesn’t have a name to specify!

Furthermore, we decide that if a convention is applied to a record type, then this convention
is inherited by any of its components that are of an anonymous access type which do not
have an explicitly specified convention.

The following program shows these conventions in action:

package ConvComp is
type Foo is range 1 .. 10;
type Tl is record
A : access function (X : Foo) return Integer;
B : Integer;
end record;
pragma Convention (C, T1);

type T2 is record
A : access function (X : Foo) return Integer;
pragma Convention (C, A);
B : Integer;

end record;

pragma Convention (COBOL, T2);

type T3 is record
A : access function (X : Foo) return Integer;
pragma Convention (COBOL, A);
B : Integer;

end record;

pragma Convention (C, T3);

type T4 is record
A : access function (X : Foo) return Integer;
B : Integer;

end record;

pragma Convention (COBOL, T4);

function F (X : Foo) return Integer;
pragma Convention (C, F);

function F (X : Foo) return Integer is (13);

TVl : T1 := (F'Access, 12); -- OK
TV2 : T2 := (F'Access, 13); -- OK
TV3 : T3 := (F'Access, 13); -- ERROR

Chapter 9: Representation Clauses and Pragmas 227

I
>>> subprogram "F" has wrong convention
>>> does not match access to subprogram declared at line 17
38. TV4 : T4 := (F'Access, 13); -- ERROR
I
>>> subprogram "F" has wrong convention
>>> does not match access to subprogram declared at line 24
39. end ConvComp;

9.19 Determining the Representations chosen by GNAT

Although the descriptions in this section are intended to be complete, it is often easier to
simply experiment to see what GNAT accepts and what the effect is on the layout of types
and objects.

As required by the Ada RM, if a representation clause is not accepted, then it must be
rejected as illegal by the compiler. However, when a representation clause or pragma is
accepted, there can still be questions of what the compiler actually does. For example, if
a partial record representation clause specifies the location of some components and not
others, then where are the non-specified components placed? Or if pragma Pack is used on
a record, then exactly where are the resulting fields placed? The section on pragma Pack
in this chapter can be used to answer the second question, but it is often easier to just see
what the compiler does.
For this purpose, GNAT provides the option ‘-gnatR’. If you compile with this option,
then the compiler will output information on the actual representations chosen, in a format
similar to source representation clauses. For example, if we compile the package:
package q is
type r (x : boolean) is tagged record
case X is
when True => S : String (1 .. 100);
when False => null;
end case;
end record;

type r2 is new r (false) with record
y2 : integer;
end record;

for r2 use record
y2 at 16 range O .. 31;
end record;

type x is record
y : character;
end record;

type x1 is array (1 .. 10) of x;
for x1'component_size use 11;

Chapter 9: Representation Clauses and Pragmas 228

type ia is access integer;

type Rbl is array (1 .. 13) of Boolean;
pragma Pack (rbil);

type Rb2 is array (1 .. 65) of Boolean;
pragma Pack (rb2);

type x2 is record
11 : Boolean;
12 : Duration;

13 : Float;
14 : Boolean;
15 : Rbil;

16 : Rb2;

end record;
pragma Pack (x2);
end q;

using the switch ‘-gnatR’ we obtain the following output:

Representation information for unit q

for r'Size use 77;

for r'Alignment use 4;

for r use record
X at 4 range O .. 7;
_tag at 0 range O .. 31;
s at 5 range O .. 799;

end record;

for r2'Size use 160;
for r2'Alignment use 4;
for r2 use record

X at 4 range O .. 7;
_tag at 0 range O .. 31;
_parent at O range O .. 63;
y2 at 16 range O .. 31;

end record;

for x'Size use 8;
for x'Alignment use 1;
for x use record

y at O range O .. 7;
end record;

Chapter 9: Representation Clauses and Pragmas 229

for x1'Size use 112;
for x1'Alignment use 1;
for x1'Component_Size use 11;

for rbl'Size use 13;
for rbl'Alignment use 2;
for rbl'Component_Size use 1;

for rb2'Size use 72;
for rb2'Alignment use 1;
for rb2'Component_Size use 1;

for x2'Size use 224;
for x2'Alignment use 4;
for x2 use record

11 at O range O .. O;
12 at O range 1 .. 64;
13 at 12 range O .. 31;
14 at 16 range O .. O;
15 at 16 range 1 .. 13;
16 at 18 range O .. 71;

end record;

The Size values are actually the Object_Size, i.e., the default size that will be allocated for
objects of the type. The 77 size for type r indicates that we have a variant record, and the
actual size of objects will depend on the discriminant value.

The Alignment values show the actual alignment chosen by the compiler for each record or
array type.

The record representation clause for type r shows where all fields are placed, including the
compiler generated tag field (whose location cannot be controlled by the programmer).
The record representation clause for the type extension r2 shows all the fields present,
including the parent field, which is a copy of the fields of the parent type of r2, i.e., rl.

The component size and size clauses for types rbl and rb2 show the exact effect of pragma
Pack on these arrays, and the record representation clause for type x2 shows how pragma
Pack affects this record type.

In some cases, it may be useful to cut and paste the representation clauses generated by the
compiler into the original source to fix and guarantee the actual representation to be used.

230

10 Standard Library Routines

The Ada Reference Manual contains in Annex A a full description of an extensive set of
standard library routines that can be used in any Ada program, and which must be provided
by all Ada compilers. They are analogous to the standard C library used by C programs.

GNAT implements all of the facilities described in annex A, and for most purposes the
description in the Ada Reference Manual, or appropriate Ada text book, will be sufficient
for making use of these facilities.

In the case of the input-output facilities, [The Implementation of Standard I/0], page 240,
gives details on exactly how GNAT interfaces to the file system. For the remaining packages,
the Ada Reference Manual should be sufficient. The following is a list of the packages
included, together with a brief description of the functionality that is provided.

For completeness, references are included to other predefined library routines defined in
other sections of the Ada Reference Manual (these are cross-indexed from Annex A). For
further details see the relevant package declarations in the run-time library. In particular, a
few units are not implemented, as marked by the presence of pragma Unimplemented_Unit,
and in this case the package declaration contains comments explaining why the unit is not
implemented.

Ada ‘(A.2)
This is a parent package for all the standard library packages. It is usually
included implicitly in your program, and itself contains no useful data or rou-
tines.

Ada.Assertions ‘(11.4.2)’
Assertions provides the Assert subprograms, and also the declaration of the
Assertion_Error exception.

Ada.Asynchronous_Task_Control ‘(D.11)’
Asynchronous_Task_Control provides low level facilities for task synchroniza-
tion. It is typically not implemented. See package spec for details.

Ada.Calendar ‘(9.6)’
Calendar provides time of day access, and routines for manipulating times and
durations.

Ada.Calendar.Arithmetic ‘(9.6.1)’
This package provides additional arithmetic operations for Calendar.

Ada.Calendar.Formatting ‘(9.6.1)’
This package provides formatting operations for Calendar.

Ada.Calendar.Time_Zones ‘(9.6.1)’
This package provides additional Calendar facilities for handling time zones.

Ada.Characters ‘(A.3.1)
This is a dummy parent package that contains no useful entities

Ada.Characters.Conversions ‘(A.3.2)’
This package provides character conversion functions.

Chapter 10: Standard Library Routines

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada

Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.
Ada.

Ada

.Containers.

231

Characters.Handling ‘(A.3.2)’
This package provides some basic character handling capabilities, including
classification functions for classes of characters (e.g., test for letters, or digits).

Characters.Latin_1 ‘(A.3.3)’
This package includes a complete set of definitions of the characters that ap-
pear in type CHARACTER. It is useful for writing programs that will run in
international environments. For example, if you want an upper case E with an
acute accent in a string, it is often better to use the definition of UC_E_Acute in
this package. Then your program will print in an understandable manner even
if your environment does not support these extended characters.

Command_Line ‘(A.15)’
This package provides access to the command line parameters and the name
of the current program (analogous to the use of argc and argv in C), and
also allows the exit status for the program to be set in a system-independent
manner.

Complex_Text_I0 ‘(G.1.3)’
This package provides text input and output of complex numbers.

Containers ‘(A.18.1)
A top level package providing a few basic definitions used by all the following
specific child packages that provide specific kinds of containers.

Containers.Bounded_Priority_Queues ‘(A.18.31)’

Bounded_Synchronized_Queues ‘(A.18.29)

Containers.
Containers.
Containers.
Containers
Containers.
Containers.
Containers.
Containers
Containers.
Containers.
Containers
Containers.
Containers.
Containers.
Containers.
Containers.

Containers.

.Containers.

Doubly_Linked_Lists ‘(A.18.3)’
Generic_Array_Sort ‘(A.18.26)
Generic_Constrained_Array_Sort ‘(A.18.26)

.Generic_Sort ‘(A.18.26)

Hashed_Maps ‘(A.18.5)
Hashed_Sets ‘(A.18.8)
Indefinite_Doubly_Linked_Lists ‘(A.18.12)’

.Indefinite_Hashed_Maps ‘(A.18.13)

Indefinite_Hashed_Sets ‘(A.18.15)
Indefinite_Holders ‘(A.18.18)

.Indefinite_Multiway_Trees ‘(A.18.17)

Indefinite_Ordered_Maps ‘(A.18.14)
Indefinite_Ordered_Sets ‘(A.18.16)’
Indefinite_Vectors ‘(A.18.11)’
Multiway_Trees ‘(A.18.10)’

Ordered_Maps ‘(A.18.6)

Ordered_Sets ‘(A.18.9)’
Synchronized_Queue_Interfaces ‘(A.18.27)’

Chapter 10: Standard Library Routines 232

Ada.
Ada.
Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada

Ada.

Ada

Ada.

Ada.

Ada.

Ada.

Ada.

Containers.Unbounded_Priority_Queues ‘(A.18.30)’
Containers.Unbounded_Synchronized_Queues ‘(A.18.28)’
Containers.Vectors ‘(A.18.2)’

Directories ‘(A.16)’
This package provides operations on directories.

Directories.Hierarchical_File_Names ‘(A.16.1)’
This package provides additional directory operations handling hierarchical file
names.

Directories.Information ‘(A.16)’
This is an implementation defined package for additional directory operations,
which is not implemented in GNAT.

Decimal ‘(F.2)’
This package provides constants describing the range of decimal numbers im-

plemented, and also a decimal divide routine (analogous to the COBOL verb
DIVIDE ... GIVING ... REMAINDER .. .)

Direct_IO0 ‘(A.8.4)
This package provides input-output using a model of a set of records of fixed-
length, containing an arbitrary definite Ada type, indexed by an integer record
number.

Dispatching ‘(D.2.1)’
A parent package containing definitions for task dispatching operations.

.Dispatching.EDF ‘(D.2.6)’

Not implemented in GNAT.

Dispatching.Non_Preemptive ‘(D.2.4)’
Not implemented in GNAT.

.Dispatching.Round_Robin ‘(D.2.5)’

Not implemented in GNAT.

Dynamic_Priorities ‘(D.5)’
This package allows the priorities of a task to be adjusted dynamically as the
task is running.

Environment_Variables ‘(A.17)’
This package provides facilities for accessing environment variables.

Exceptions ‘(11.4.1)
This package provides additional information on exceptions, and also contains
facilities for treating exceptions as data objects, and raising exceptions with
associated messages.

Execution_Time ‘(D.14)’
This package provides CPU clock functionalities. It is not implemented on all
targets (see package spec for details).

Execution_Time.Group_Budgets ‘(D.14.2)’
Not implemented in GNAT.

Chapter 10: Standard Library Routines 233

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Execution_Time.Timers ‘(D.14.1)”
Not implemented in GNAT.

Finalization ‘(7.6)’
This package contains the declarations and subprograms to support the use of
controlled types, providing for automatic initialization and finalization (analo-
gous to the constructors and destructors of C++).

Float_Text_I0 ‘(A.10.9)
A library level instantiation of Text_10.Float_IO for type Float.

Float_Wide_Text_I0 ‘(A.10.9)’
A library level instantiation of Wide_Text_10.Float_IO for type Float.

Float_Wide_Wide_Text_IO ‘(A.10.9)’
A library level instantiation of Wide_Wide_Text_10.Float_IO for type Float.

Integer_Text_IO0 ‘(A.10.9)
A library level instantiation of Text_IO.Integer_1O for type Integer.

Integer_Wide_Text_IO0 ‘(A.10.9)’
A library level instantiation of Wide_Text_1O.Integer_I1O for type Integer.

Integer_Wide_Wide_Text_IO0 ‘(A.10.9)’
A library level instantiation of Wide_Wide_Text_I1O.Integer_IO for type Integer.

Interrupts ‘(C.3.2)’
This package provides facilities for interfacing to interrupts, which includes the
set of signals or conditions that can be raised and recognized as interrupts.

Interrupts.Names ‘(C.3.2)
This package provides the set of interrupt names (actually signal or condition
names) that can be handled by GNAT.

I0_Exceptions ‘(A.13)’
This package defines the set of exceptions that can be raised by use of the
standard 10 packages.

Iterator_Interfaces ‘(5.5.1)’
This package provides a generic interface to generalized iterators.

Locales ‘(A.19)’
This package provides declarations providing information (Language and Coun-
try) about the current locale.

Numerics
This package contains some standard constants and exceptions used throughout
the numerics packages. Note that the constants pi and e are defined here, and
it is better to use these definitions than rolling your own.

Numerics.Complex_Arrays ‘(G.3.2)’
Provides operations on arrays of complex numbers.

Numerics.Complex_Elementary_Functions
Provides the implementation of standard elementary functions (such as log
and trigonometric functions) operating on complex numbers using the stan-

Chapter 10: Standard Library Routines 234

dard Float and the Complex and Imaginary types created by the package
Numerics.Complex_Types.

Ada.Numerics.Complex_Types
This is a predefined instantiation of Numerics.Generic_Complex_Types using
Standard.Float to build the type Complex and Imaginary.

Ada.Numerics.Discrete_Random
This generic package provides a random number generator suitable for gener-
ating uniformly distributed values of a specified discrete subtype. It should not
be used as a cryptographic pseudo-random source.

Ada.Numerics.Float_Random
This package provides a random number generator suitable for generating uni-
formly distributed floating point values in the unit interval. It should not be
used as a cryptographic pseudo-random source.

Ada.Numerics.Generic_Complex_Elementary_Functions
This is a generic version of the package that provides the implementation of
standard elementary functions (such as log and trigonometric functions) for an
arbitrary complex type.

The following predefined instantiations of this package are provided:

* Short_Float
Ada.Numerics.Short_Complex_Elementary_Functions

* Float
Ada.Numerics.Complex_Elementary_Functions

* Long_Float
Ada.Numerics.Long_Complex_Elementary_Functions

Ada.Numerics.Generic_Complex_Types

This is a generic package that allows the creation of complex types, with asso-
ciated complex arithmetic operations.

The following predefined instantiations of this package exist

* Short_Float
Ada.Numerics.Short_Complex_Complex_Types

* Float
Ada.Numerics.Complex_Complex_Types

* Long_Float
Ada.Numerics.Long_Complex_Complex_Types

Ada.Numerics.Generic_Elementary_Functions

This is a generic package that provides the implementation of standard elemen-
tary functions (such as log an trigonometric functions) for an arbitrary float

type.
The following predefined instantiations of this package exist
* Short_Float

Ada.Numerics.Short_Elementary_Functions

Chapter 10: Standard Library Routines 235

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

* Float
Ada.Numerics.Elementary_Functions
* Long_Float

Ada.Numerics.Long_Elementary_Functions

Numerics.Generic_Real_Arrays ‘(G.3.1)’
Generic operations on arrays of reals

Numerics.Real_Arrays ‘(G.3.1)’
Preinstantiation of Ada.Numerics.Generic_Real_Arrays (Float).

Real_Time ‘(D.8)’
This package provides facilities similar to those of Calendar, but operating with
a finer clock suitable for real time control. Note that annex D requires that there
be no backward clock jumps, and GNAT generally guarantees this behavior,
but of course if the external clock on which the GNAT runtime depends is
deliberately reset by some external event, then such a backward jump may
occur.

Real_Time.Timing_Events ‘(D.15)’
This package allows procedures to be executed at a specified time without the
use of a task or a delay statement.

Sequential_IO0 ‘(A.8.1)’
This package provides input-output facilities for sequential files, which can con-
tain a sequence of values of a single type, which can be any Ada type, including
indefinite (unconstrained) types.

Storage_I0 ‘(A.9)’
This package provides a facility for mapping arbitrary Ada types to and from
a storage buffer. It is primarily intended for the creation of new IO packages.

Streams ‘(13.13.1)’
This is a generic package that provides the basic support for the concept of
streams as used by the stream attributes (Input, Output, Read and Write).

Streams.Stream_I0 ‘(A.12.1)’
This package is a specialization of the type Streams defined in package
Streams together with a set of operations providing Stream_10 capability.
The Stream_IO model permits both random and sequential access to a file
which can contain an arbitrary set of values of one or more Ada types.

Strings ‘(A.4.1)
This package provides some basic constants used by the string handling pack-
ages.

Strings.Bounded ‘(A.4.4)’
This package provides facilities for handling variable length strings. The
bounded model requires a maximum length. It is thus somewhat more limited
than the unbounded model, but avoids the use of dynamic allocation or
finalization.

Chapter 10: Standard Library Routines 236

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Strings.Bounded.Equal_Case_Insensitive ‘(A.4.10)
Provides case-insensitive comparisons of bounded strings

Strings.Bounded.Hash ‘(A.4.9)’
This package provides a generic hash function for bounded strings

Strings.Bounded.Hash_Case_Insensitive ‘(A.4.9)’
This package provides a generic hash function for bounded strings that converts
the string to be hashed to lower case.

Strings.Bounded.Less_Case_Insensitive ‘(A.4.10)’
This package provides a comparison function for bounded strings that works in
a case insensitive manner by converting to lower case before the comparison.

Strings.Fixed ‘(A.4.3)’
This package provides facilities for handling fixed length strings.

Strings.Fixed.Equal_Case_Insensitive ‘(A.4.10)’
This package provides an equality function for fixed strings that compares the
strings after converting both to lower case.

Strings.Fixed.Hash_Case_Insensitive ‘(A.4.9)’
This package provides a case insensitive hash function for fixed strings that
converts the string to lower case before computing the hash.

Strings.Fixed.Less_Case_Insensitive ‘(A.4.10)’
This package provides a comparison function for fixed strings that works in a
case insensitive manner by converting to lower case before the comparison.

Strings.Hash ‘(A.4.9)’
This package provides a hash function for strings.

Strings.Hash_Case_Insensitive ‘(A.4.9)’
This package provides a hash function for strings that is case insensitive. The
string is converted to lower case before computing the hash.

Strings.Less_Case_Insensitive ‘(A.4.10)’
This package provides a comparison function for\strings that works in a case
insensitive manner by converting to lower case before the comparison.

Strings.Maps ‘(A.4.2)’
This package provides facilities for handling character mappings and arbitrarily
defined subsets of characters. For instance it is useful in defining specialized
translation tables.

Strings.Maps.Constants ‘(A.4.6)’
This package provides a standard set of predefined mappings and predefined
character sets. For example, the standard upper to lower case conversion table
is found in this package. Note that upper to lower case conversion is non-trivial
if you want to take the entire set of characters, including extended characters
like E with an acute accent, into account. You should use the mappings in this
package (rather than adding 32 yourself) to do case mappings.

Chapter 10: Standard Library Routines 237

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.
Ada.

Ada.

Ada.
Ada.
Ada.

Ada.

Ada.
Ada.
Ada.

Ada.

Ada.

Strings.Unbounded ‘(A.4.5)’
This package provides facilities for handling variable length strings. The un-
bounded model allows arbitrary length strings, but requires the use of dynamic
allocation and finalization.

Strings.Unbounded.Equal_Case_Insensitive ‘(A.4.10)’
Provides case-insensitive comparisons of unbounded strings

Strings.Unbounded.Hash ‘(A.4.9)’
This package provides a generic hash function for unbounded strings

Strings.Unbounded.Hash_Case_Insensitive ‘(A.4.9)’
This package provides a generic hash function for unbounded strings that con-
verts the string to be hashed to lower case.

Strings.Unbounded.Less_Case_Insensitive ‘(A.4.10)’
This package provides a comparison function for unbounded strings that works
in a case insensitive manner by converting to lower case before the comparison.

Strings.UTF_Encoding ‘(A.4.11)’
This package provides basic definitions for dealing with UTF-encoded strings.

Strings.UTF_Encoding.Conversions ‘(A.4.11)’
This package provides conversion functions for UTF-encoded strings.

Strings.UTF_Encoding.Strings ‘(A.4.11)’

Strings.UTF_Encoding.Wide_Strings ‘(A.4.11)’

Strings.UTF_Encoding.Wide_Wide_Strings ‘(A.4.11)’
These packages provide facilities for handling UTF encodings for Strings,
Wide_Strings and Wide_Wide_Strings.

Strings.Wide_Bounded ‘(A.4.7)’

Strings.Wide_Fixed ‘(A.4.7)

Strings.Wide_Maps ‘(A.4.7)’

Strings.Wide_Unbounded ‘(A.4.7)’
These packages provide analogous capabilities to the corresponding packages
without Wide_ in the name, but operate with the types Wide_String and Wide_
Character instead of String and Character. Versions of all the child packages
are available.

Strings.Wide_Wide_Bounded ‘(A.4.7)’

Strings.Wide_Wide_Fixed ‘(A.4.7)’

Strings.Wide_Wide_Maps ‘(A.4.7)’

Strings.Wide_Wide_Unbounded ‘(A.4.7)’
These packages provide analogous capabilities to the corresponding packages

without Wide_ in the name, but operate with the types Wide_Wide_String
and Wide_Wide_Character instead of String and Character.

Synchronous_Barriers ‘(D.10.1)’
This package provides facilities for synchronizing tasks at a low level with bar-
riers.

Chapter 10: Standard Library Routines 238

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada

Ada.

Synchronous_Task_Control ‘(D.10)’
This package provides some standard facilities for controlling task communica-
tion in a synchronous manner.

Synchronous_Task_Control.EDF ‘(D.10)’
Not implemented in GNAT.

Tags

This package contains definitions for manipulation of the tags of tagged values.

Tags.Generic_Dispatching_Constructor ‘(3.9)’
This package provides a way of constructing tagged class-wide values given only
the tag value.

Task_Attributes ‘(C.7.2)
This package provides the capability of associating arbitrary task-specific data
with separate tasks.

Task_Identification ‘(C.7.1)’
This package provides capabilities for task identification.

Task_Termination ‘(C.7.3)’
This package provides control over task termination.

Text_I0
This package provides basic text input-output capabilities for character, string
and numeric data. The subpackages of this package are listed next. Note
that although these are defined as subpackages in the RM, they are actually
transparently implemented as child packages in GNAT, meaning that they are
only loaded if needed.

Text_I0.Decimal_IO0
Provides input-output facilities for decimal fixed-point types

Text_I0.Enumeration_IO
Provides input-output facilities for enumeration types.

.Text_I0.Fixed_IO

Provides input-output facilities for ordinary fixed-point types.

Text_I0.Float_IO
Provides input-output facilities for float types. The following predefined instan-
tiations of this generic package are available:

* Short_Float
Short_Float_Text_I0

* Float
Float_Text_I0

* Long_Float
Long_Float_Text_IO

Chapter 10: Standard Library Routines 239

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Ada.

Text_I0.Integer_IO
Provides input-output facilities for integer types. The following predefined in-
stantiations of this generic package are available:
* Short_Short_Integer
Ada.Short_Short_Integer_Text_IO
Short_Integer
Ada.Short_Integer_Text_IO
Integer
Ada.Integer_Text_IO
Long_Integer
Ada.Long_Integer_Text_IO
Long_Long_Integer
Ada.Long_Long_Integer_Text_IO

Text_I0.Modular_IO
Provides input-output facilities for modular (unsigned) types.

Text_I0.Bounded_IO0 (A.10.11)
Provides input-output facilities for bounded strings.

Text_I0.Complex_IO0 (G.1.3)
This package provides basic text input-output capabilities for complex data.

Text_I0.Editing (F.3.3)
This package contains routines for edited output, analogous to the use of pic-

tures in COBOL. The picture formats used by this package are a close copy of
the facility in COBOL.

Text_I0.Text_Streams (A.12.2)
This package provides a facility that allows Text_IO files to be treated as
streams, so that the stream attributes can be used for writing arbitrary data,
including binary data, to Text_IO files.

Text_I0.Unbounded_I0 (A.10.12)
This package provides input-output facilities for unbounded strings.

Unchecked_Conversion (13.9)
This generic package allows arbitrary conversion from one type to another of
the same size, providing for breaking the type safety in special circumstances.

If the types have the same Size (more accurately the same Value_Size), then
the effect is simply to transfer the bits from the source to the target type
without any modification. This usage is well defined, and for simple types
whose representation is typically the same across all implementations, gives a
portable method of performing such conversions.

If the types do not have the same size, then the result is implementation defined,
and thus may be non-portable. The following describes how GNAT handles such
unchecked conversion cases.

If the types are of different sizes, and are both discrete types, then the effect
is of a normal type conversion without any constraint checking. In particular

Chapter 10: Standard Library Routines 240

if the result type has a larger size, the result will be zero or sign extended. If
the result type has a smaller size, the result will be truncated by ignoring high
order bits.

If the types are of different sizes, and are not both discrete types, then the
conversion works as though pointers were created to the source and target, and
the pointer value is converted. The effect is that bits are copied from successive
low order storage units and bits of the source up to the length of the target
type.

A warning is issued if the lengths differ, since the effect in this case is implemen-
tation dependent, and the above behavior may not match that of some other
compiler.

A pointer to one type may be converted to a pointer to another type using
unchecked conversion. The only case in which the effect is undefined is when
one or both pointers are pointers to unconstrained array types. In this case, the
bounds information may get incorrectly transferred, and in particular, GNAT
uses double size pointers for such types, and it is meaningless to convert between
such pointer types. GNAT will issue a warning if the alignment of the target
designated type is more strict than the alignment of the source designated type
(since the result may be unaligned in this case).

A pointer other than a pointer to an unconstrained array type may be converted
to and from System.Address. Such usage is common in Ada 83 programs, but
note that Ada.Address_To_Access_Conversions is the preferred method of per-
forming such conversions in Ada 95 and Ada 2005. Neither unchecked con-
version nor Ada.Address_To_Access_Conversions should be used in conjunction
with pointers to unconstrained objects, since the bounds information cannot be
handled correctly in this case.

Ada.Unchecked_Deallocation ‘(13.11.2)’
This generic package allows explicit freeing of storage previously allocated by
use of an allocator.

Ada.Wide_Text_IO ‘(A.11)’
This package is similar to Ada.Text_I0, except that the external file supports
wide character representations, and the internal types are Wide_Character
and Wide_String instead of Character and String. The corresponding set
of nested packages and child packages are defined.

Ada.Wide_Wide_Text_IO0 ‘(A.11)’
This package is similar to Ada.Text_I0, except that the external file supports
wide character representations, and the internal types are Wide_Character
and Wide_String instead of Character and String. The corresponding set
of nested packages and child packages are defined.

For packages in Interfaces and System, all the RM defined packages are available in GNAT,
see the Ada 2012 RM for full details.

241

11 The Implementation of Standard 1/0

GNAT implements all the required input-output facilities described in A.6 through A.14.
These sections of the Ada Reference Manual describe the required behavior of these packages
from the Ada point of view, and if you are writing a portable Ada program that does not
need to know the exact manner in which Ada maps to the outside world when it comes to
reading or writing external files, then you do not need to read this chapter. As long as your
files are all regular files (not pipes or devices), and as long as you write and read the files
only from Ada, the description in the Ada Reference Manual is sufficient.

However, if you want to do input-output to pipes or other devices, such as the keyboard or
screen, or if the files you are dealing with are either generated by some other language, or
to be read by some other language, then you need to know more about the details of how
the GNAT implementation of these input-output facilities behaves.

In this chapter we give a detailed description of exactly how GNAT interfaces to the file
system. As always, the sources of the system are available to you for answering questions
at an even more detailed level, but for most purposes the information in this chapter will
suffice.

Another reason that you may need to know more about how input-output is implemented
arises when you have a program written in mixed languages where, for example, files are
shared between the C and Ada sections of the same program. GNAT provides some addi-
tional facilities, in the form of additional child library packages, that facilitate this sharing,
and these additional facilities are also described in this chapter.

11.1 Standard I/O Packages

The Standard 1/O packages described in Annex A for
* Ada.Text_10
* Ada.Text_10.Complex_I1O
* Ada.Text_I10.Text_Streams
* Ada.Wide_Text_IO
* Ada.Wide_Text_I0.Complex_I10
* Ada.Wide_Text_I0.Text_Streams
* Ada.Wide_Wide_Text_IO
* Ada.Wide_Wide_Text_I0.Complex_IO
* Ada.Wide_Wide_Text_I0.Text_Streams
* Ada.Stream_IO
* Ada.Sequential _1I0
* Ada.Direct_IO

are implemented using the C library streams facility; where
* All files are opened using fopen.

*All input/output operations use fread/fwrite.

Chapter 11: The Implementation of Standard I/0O 242

There is no internal buffering of any kind at the Ada library level. The only buffering is
that provided at the system level in the implementation of the library routines that support
streams. This facilitates shared use of these streams by mixed language programs. Note
though that system level buffering is explicitly enabled at elaboration of the standard 1/O
packages and that can have an impact on mixed language programs, in particular those
using I/O before calling the Ada elaboration routine (e.g., adainit). It is recommended to
call the Ada elaboration routine before performing any I/O or when impractical, flush the
common I/0 streams and in particular Standard_Output before elaborating the Ada code.

11.2 FORM Strings
The format of a FORM string in GNAT is:

"keyword=value, keyword=value,. .. ,keyword=value"

where letters may be in upper or lower case, and there are no spaces between values. The
order of the entries is not important. Currently the following keywords defined.

TEXT_TRANSLATION=[YES|NO|TEXT|BINARY | USTEXT | WTEXT |U16TEXT]
SHARED=[YES | NO]

WCEM=[nlh|ulslel8|b]

ENCODING=[UTF8|8BITS]

The use of these parameters is described later in this section. If an unrecognized keyword
appears in a form string, it is silently ignored and not considered invalid.

11.3 Direct_IO

Direct_IO can only be instantiated for definite types. This is a restriction of the Ada
language, which means that the records are fixed length (the length being determined by
type'Size, rounded up to the next storage unit boundary if necessary).

The records of a Direct_10 file are simply written to the file in index sequence, with the
first record starting at offset zero, and subsequent records following. There is no control
information of any kind. For example, if 32-bit integers are being written, each record takes
4-bytes, so the record at index K starts at offset (K-1)*4.

There is no limit on the size of Direct_IO files, they are expanded as necessary to accom-
modate whatever records are written to the file.

11.4 Sequential _10

Sequential IO may be instantiated with either a definite (constrained) or indefinite (uncon-
strained) type.

For the definite type case, the elements written to the file are simply the memory images of
the data values with no control information of any kind. The resulting file should be read
using the same type, no validity checking is performed on input.

For the indefinite type case, the elements written consist of two parts. First is the size of
the data item, written as the memory image of a Interfaces.C.size_t value, followed by
the memory image of the data value. The resulting file can only be read using the same
(unconstrained) type. Normal assignment checks are performed on these read operations,
and if these checks fail, Data_Error is raised. In particular, in the array case, the lengths

Chapter 11: The Implementation of Standard I/0O 243

must match, and in the variant record case, if the variable for a particular read operation
is constrained, the discriminants must match.

Note that it is not possible to use Sequential_IO to write variable length array items, and
then read the data back into different length arrays. For example, the following will raise
Data_Error:

package I0 is new Sequential_IO0 (String);
F : I0.File_Type;
S : String (1..4);

I0.Create (F)

I0.Write (F, "hello!")
I0.Reset (F, Mode=>In_File);
I0.Read (F, 8S);

Put_Line (S);

On some Ada implementations, this will print hell, but the program is clearly incorrect,
since there is only one element in the file, and that element is the string hello!.

In Ada 95 and Ada 2005, this kind of behavior can be legitimately achieved using Stream_IO,
and this is the preferred mechanism. In particular, the above program fragment rewritten
to use Stream_IO will work correctly.

11.5 Text_IO

Text_10 files consist of a stream of characters containing the following special control char-
acters:

LF (line feed, 16#0A#) Line Mark
FF (form feed, 16#0C#) Page Mark

A canonical Text_lIO file is defined as one in which the following conditions are met:

* The character LF is used only as a line mark, i.e., to mark the end of the line.

* The character FF is used only as a page mark, i.e., to mark the end of a page and

consequently can appear only immediately following a LF (line mark) character.

* The file ends with either LF (line mark) or LF-FF (line mark, page mark). In the former
case, the page mark is implicitly assumed to be present.

A file written using Text_IO will be in canonical form provided that no explicit LF or FF
characters are written using Put or Put_Line. There will be no FF character at the end of
the file unless an explicit New_Page operation was performed before closing the file.

A canonical Text_IO file that is a regular file (i.e., not a device or a pipe) can be read using
any of the routines in Text_I0. The semantics in this case will be exactly as defined in the
Ada Reference Manual, and all the routines in Text_IO are fully implemented.

A text file that does not meet the requirements for a canonical Text_IO file has one of the
following;:

* The file contains FF characters not immediately following a LF character.

* The file contains LF or FF characters written by Put or Put_Line, which are not logically
considered to be line marks or page marks.

Chapter 11: The Implementation of Standard I/0O 244

* The file ends in a character other than LF or FF, i.e., there is no explicit line mark or
page mark at the end of the file.

Text_10 can be used to read such non-standard text files but subprograms to do with line
or page numbers do not have defined meanings. In particular, a FF character that does not
follow a LF character may or may not be treated as a page mark from the point of view of
page and line numbering. Every LF character is considered to end a line, and there is an
implied LF character at the end of the file.

11.5.1 Stream Pointer Positioning

Ada.Text_IO0 has a definition of current position for a file that is being read. No inter-
nal buffering occurs in Text_1O, and usually the physical position in the stream used to
implement the file corresponds to this logical position defined by Text_IO. There are two
exceptions:

* After a call to End_0f_Page that returns True, the stream is positioned past the LF
(line mark) that precedes the page mark. Text_IO maintains an internal flag so that
subsequent read operations properly handle the logical position which is unchanged by
the End_0f_Page call.

* After a call to End_0f_File that returns True, if the Text_IO file was positioned before
the line mark at the end of file before the call, then the logical position is unchanged,
but the stream is physically positioned right at the end of file (past the line mark, and
past a possible page mark following the line mark. Again Text_IO maintains internal
flags so that subsequent read operations properly handle the logical position.

These discrepancies have no effect on the observable behavior of Text_IO, but if a single
Ada stream is shared between a C program and Ada program, or shared (using shared=yes
in the form string) between two Ada files, then the difference may be observable in some
situations.

11.5.2 Reading and Writing Non-Regular Files

A non-regular file is a device (such as a keyboard), or a pipe. Text_IO can be used for reading
and writing. Writing is not affected and the sequence of characters output is identical to the
normal file case, but for reading, the behavior of Text_IO is modified to avoid undesirable
look-ahead as follows:

An input file that is not a regular file is considered to have no page marks. Any Ascii.FF
characters (the character normally used for a page mark) appearing in the file are considered
to be data characters. In particular:

* Get_Line and Skip_Line do not test for a page mark following a line mark. If a page
mark appears, it will be treated as a data character.

This avoids the need to wait for an extra character to be typed or entered from the
pipe to complete one of these operations.

* End_0f_Page always returns False
* End_0f_File will return False if there is a page mark at the end of the file.
Output to non-regular files is the same as for regular files. Page marks may be written to

non-regular files using New_Page, but as noted above they will not be treated as page marks
on input if the output is piped to another Ada program.

Chapter 11: The Implementation of Standard I/0O 245

Another important discrepancy when reading non-regular files is that the end of file indica-
tion is not ‘sticky’. If an end of file is entered, e.g., by pressing the EQT key, then end of file
is signaled once (i.e., the test End_0f _File will yield True, or a read will raise End_Error),
but then reading can resume to read data past that end of file indication, until another end
of file indication is entered.

11.5.3 Get_Immediate

Get_Immediate returns the next character (including control characters) from the input file.
In particular, Get_Immediate will return LF or FF characters used as line marks or page
marks. Such operations leave the file positioned past the control character, and it is thus
not treated as having its normal function. This means that page, line and column counts
after this kind of Get_Immediate call are set as though the mark did not occur. In the case
where a Get_Immediate leaves the file positioned between the line mark and page mark
(which is not normally possible), it is undefined whether the FF character will be treated
as a page mark.

11.5.4 Treating Text_IO Files as Streams

The package Text_I0.Streams allows a Text_I0 file to be treated as a stream. Data
written to a Text_IO0 file in this stream mode is binary data. If this binary data contains
bytes 16#0A# (LF) or 16#0C+# (FF), the resulting file may have non-standard format.
Similarly if read operations are used to read from a Text_IO file treated as a stream, then
LF and FF characters may be skipped and the effect is similar to that described above for
Get_Immediate.

11.5.5 Text_10 Extensions

A package GNAT.IO_Aux in the GNAT library provides some useful extensions to the
standard Text_I0 package:

* function File_Exists (Name : String) return Boolean; Determines if a file of the given

name exists.
* function Get_Line return String; Reads a string from the standard input file. The value
returned is exactly the length of the line that was read.

* function Get_Line (File : Ada.Text_10.File_Type) return String; Similar, except that
the parameter File specifies the file from which the string is to be read.

11.5.6 Text_IO Facilities for Unbounded Strings

The package Ada.Strings.Unbounded.Text_I0 in library files a-suteio.ads/adb contains
some GNAT-specific subprograms useful for Text_IO operations on unbounded strings:

* function Get_Line (File : File_Type) return Unbounded-String; Reads a line from the
specified file and returns the result as an unbounded string.

* procedure Put (File : File_Type; U : Unbounded_String); Writes the value of the given
unbounded string to the specified file Similar to the effect of Put (To_String (U))
except that an extra copy is avoided.

* procedure Put_Line (File : File_Type; U : Unbounded_String); Writes the value of the
given unbounded string to the specified file, followed by a New_Line. Similar to the
effect of Put_Line (To_String (U)) except that an extra copy is avoided.

Chapter 11: The Implementation of Standard I/0O 246

In the above procedures, File is of type Ada.Text_I0.File_Type and is optional. If the
parameter is omitted, then the standard input or output file is referenced as appropriate.

The package Ada.Strings.Wide_Unbounded.Wide_Text_IO in library files a-swuwti.ads
and a-swuwti.adb provides similar extended Wide_Text_IO functionality for unbounded
wide strings.

The package Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO0 in library files a-
szuzti.ads and a-szuzti.adb provides similar extended Wide_Wide_Text_IO0 functional-
ity for unbounded wide wide strings.

11.6 Wide_Text_10

Wide_Text_I0 is similar in most respects to Text_10, except that both input and output
files may contain special sequences that represent wide character values. The encoding
scheme for a given file may be specified using a FORM parameter:

WCEM="x"

as part of the FORM string (WCEM = wide character encoding method), where x is one
of the following characters

Character Encoding

‘W’ Hex ESC encoding
‘o’ Upper half encoding
‘s’ Shift-JIS encoding
‘e’ EUC Encoding

‘8’ UTF-8 encoding

‘b’ Brackets encoding

The encoding methods match those that can be used in a source program, but there is
no requirement that the encoding method used for the source program be the same as the
encoding method used for files, and different files may use different encoding methods.

The default encoding method for the standard files, and for opened files for which no WCEM
parameter is given in the FORM string matches the wide character encoding specified for
the main program (the default being brackets encoding if no coding method was specified
with -gnatW).

‘Hex Coding’
In this encoding, a wide character is represented by a five character sequence:
ESC abcd

where a, b, c, d are the four hexadecimal characters (using upper case
letters) of the wide character code. For example, ESC A345 is used

Chapter 11: The Implementation of Standard I/0O 247

to represent the wide character with code 16#A345#. This scheme is
compatible with use of the full Wide_Character set.

‘Upper Half Coding’
The wide character with encoding 16#abcd#, where the upper bit is on (i.e.,
a is in the range 8-F) is represented as two bytes 16#ab# and 16#cd#. The
second byte may never be a format control character, but is not required to be
in the upper half. This method can be also used for shift-JIS or EUC where
the internal coding matches the external coding.

‘Shift JIS Coding’
A wide character is represented by a two character sequence 16#ab# and
16#cd+#, with the restrictions described for upper half encoding as described
above. The internal character code is the corresponding JIS character accord-
ing to the standard algorithm for Shift-JIS conversion. Only characters defined
in the JIS code set table can be used with this encoding method.

‘EUC Coding’
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal char-
acter code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

‘UTF-8 Coding’
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxXXXXH#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxXXXXX#
16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxXx# 2#10xXXXXXX#

where the xxx bits correspond to the left-padded bits of the 16-bit char-
acter value. Note that all lower half ASCII characters are represented as
ASCII bytes and all upper half characters and other wide characters are
represented as sequences of upper-half (The full UTF-8 scheme allows
for encoding 31-bit characters as 6-byte sequences, but in this imple-
mentation, all UTF-8 sequences of four or more bytes length will raise a
Constraint_Error, as will all invalid UTF-8 sequences.)

‘Brackets Coding’
In this encoding, a wide character is represented by the following eight character
sequence:

[nabcdu]

where a, b, ¢, d are the four hexadecimal characters (using uppercase
letters) of the wide character code. For example, ["A345"] is used to
represent the wide character with code 16#A345#. This scheme is com-
patible with use of the full Wide_Character set. On input, brackets coding
can also be used for upper half characters, e.g., ["C1"] for lower case a.

Chapter 11: The Implementation of Standard I/0O 248

However, on output, brackets notation is only used for wide characters
with a code greater than 16#FF#.

Note that brackets coding is not normally used in the context of
Wide_Text_10 or Wide_Wide_Text_IO, since it is really just designed as
a portable way of encoding source files. In the context of Wide_Text_1O
or Wide_Wide_Text_IO, it can only be used if the file does not contain
any instance of the left bracket character other than to encode wide
character values using the brackets encoding method. In practice it is
expected that some standard wide character encoding method such as
UTF-8 will be used for text input output.

If brackets notation is used, then any occurrence of a left bracket in
the input file which is not the start of a valid wide character sequence
will cause Constraint_Error to be raised. It is possible to encode a left
bracket as [“5B”] and Wide_Text_IO and Wide_Wide_Text_IO input will
interpret this as a left bracket.

However, when a left bracket is output, it will be output as a left bracket
and not as [“5B”]. We make this decision because for normal use of
Wide_Text_I0 for outputting messages, it is unpleasant to clobber left
brackets. For example, if we write:

Put_Line ("Start of output [first runl");

we really do not want to have the left bracket in this message clobbered
so that the output reads:

Start of output ["5B"]first run]

In practice brackets encoding is reasonably useful for normal Put_Line
use since we won'’t get confused between left brackets and wide character
sequences in the output. But for input, or when files are written out
and read back in, it really makes better sense to use one of the standard
encoding methods such as UTF-8.

For the coding schemes other than UTF-8, Hex, or Brackets encoding, not all wide character
values can be represented. An attempt to output a character that cannot be represented
using the encoding scheme for the file causes Constraint_Error to be raised. An invalid wide
character sequence on input also causes Constraint_Error to be raised.

11.6.1 Stream Pointer Positioning

Ada.Wide_Text_I0 is similar to Ada.Text_I0 in its handling of stream pointer positioning
([Text_10O], page 243). There is one additional case:

If Ada.Wide_Text_I0.Look_Ahead reads a character outside the normal lower ASCII set,
i.e. a character in the range:

Wide_Character'Val (16#0080#) .. Wide_Character'Val (16#FFFF#)

then although the logical position of the file pointer is unchanged by the Look_Ahead call,
the stream is physically positioned past the wide character sequence. Again this is to
avoid the need for buffering or backup, and all Wide_Text_IO0 routines check the internal
indication that this situation has occurred so that this is not visible to a normal program
using Wide_Text_IO0. However, this discrepancy can be observed if the wide text file shares
a stream with another file.

Chapter 11: The Implementation of Standard I/0O 249

11.6.2 Reading and Writing Non-Regular Files

As in the case of Text_IO, when a non-regular file is read, it is assumed that the file
contains no page marks (any form characters are treated as data characters), and End_0f _
Page always returns False. Similarly, the end of file indication is not sticky, so it is possible
to read beyond an end of file.

11.7 Wide_Wide_Text_I10

Wide_Wide_Text_IO0 is similar in most respects to Text_IO, except that both input and
output files may contain special sequences that represent wide wide character values. The
encoding scheme for a given file may be specified using a FORM parameter:

WCEM="x"
as part of the FORM string (WCEM = wide character encoding method), where x is one
of the following characters

Character Encoding

‘W’ Hex ESC encoding
‘u’ Upper half encoding
‘s’ Shift-JIS encoding
‘e’ EUC Encoding

‘8’ UTF-8 encoding

‘b’ Brackets encoding

The encoding methods match those that can be used in a source program, but there is
no requirement that the encoding method used for the source program be the same as the
encoding method used for files, and different files may use different encoding methods.
The default encoding method for the standard files, and for opened files for which no WCEM
parameter is given in the FORM string matches the wide character encoding specified for
the main program (the default being brackets encoding if no coding method was specified
with -gnatW).

‘UTF-8 Coding’

A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, three, or four byte sequence:

16#000000#-16#00007f#: 2#O0xxxxxxxX#

16#000080#-16#0007ff#: 2#110xxxxx# 2#10xxxXXX#

16#000800#-16#00ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xXXXXX#

16#010000#-16#10ffff#: 2#11110xxx# 2#10xxxxxx# 2#10xxxxxx# 2#10xxXXXX#

where the xxx bits correspond to the left-padded bits of the 21-bit char-

acter value. Note that all lower half ASCII characters are represented as

Chapter 11: The Implementation of Standard I/0O 250

ASCII bytes and all upper half characters and other wide characters are
represented as sequences of upper-half characters.

‘Brackets Coding’
In this encoding, a wide wide character is represented by the following eight
character sequence if is in wide character range

["abcd"]
and by the following ten character sequence if not
["abcdef "]

where a, b, ¢, d, e, and £ are the four or six hexadecimal characters
(using uppercase letters) of the wide wide character code. For exam-
ple, ["01A345"] is used to represent the wide wide character with code
16#01A345%#.

This scheme is compatible with use of the full Wide_Wide_Character set.
On input, brackets coding can also be used for upper half characters, e.g.,
["C1"] for lower case a. However, on output, brackets notation is only
used for wide characters with a code greater than 16#FF#.

If is also possible to use the other Wide_Character encoding methods, such as Shift-JIS, but
the other schemes cannot support the full range of wide wide characters. An attempt to
output a character that cannot be represented using the encoding scheme for the file causes
Constraint_Error to be raised. An invalid wide character sequence on input also causes
Constraint_Error to be raised.

11.7.1 Stream Pointer Positioning

Ada.Wide_Wide_Text_I0 is similar to Ada.Text_I0 in its handling of stream pointer posi-
tioning ([Text_IO], page 243). There is one additional case:

If Ada.Wide_Wide_Text_I0.Look_Ahead reads a character outside the normal lower ASCII
set, i.e. a character in the range:

Wide_Wide_Character'Val (16#0080#) .. Wide_Wide_Character'Val (16#10FFFF#)

then although the logical position of the file pointer is unchanged by the Look_Ahead call,
the stream is physically positioned past the wide character sequence. Again this is to avoid
the need for buffering or backup, and all Wide_Wide_Text_IO routines check the internal
indication that this situation has occurred so that this is not visible to a normal program
using Wide_Wide_Text_I0. However, this discrepancy can be observed if the wide text file
shares a stream with another file.

11.7.2 Reading and Writing Non-Regular Files

As in the case of Text_IO, when a non-regular file is read, it is assumed that the file
contains no page marks (any form characters are treated as data characters), and End_0f _
Page always returns False. Similarly, the end of file indication is not sticky, so it is possible
to read beyond an end of file.

Chapter 11: The Implementation of Standard I/0O 251

11.8 Stream_IO

A stream file is a sequence of bytes, where individual elements are written to the file as
described in the Ada Reference Manual. The type Stream_Element is simply a byte. There
are two ways to read or write a stream file.

* The operations Read and Write directly read or write a sequence of stream elements
with no control information.

* The stream attributes applied to a stream file transfer data in the manner described
for stream attributes.

11.9 Text Translation

Text_Translation=xxx may be used as the Form parameter passed to Text_IO.Create and
Text_10.0Open. Text_Translation=xxx has no effect on Unix systems. Possible values are:

* Yes or Text is the default, which means to translate LF to/from CR/LF on Windows
Systems.

No disables this translation; i.e. it uses binary mode. For output files,
Text_Translation=No may be used to create Unix-style files on Windows.

* wtext translation enabled in Unicode mode. (corresponds to _.O_WTEXT).
* u8text translation enabled in Unicode UTF-8 mode. (corresponds to O_-USTEXT).
* ul6text translation enabled in Unicode UTF-16 mode. (corresponds to-O_U16TEXT).

11.10 Shared Files

Section A.14 of the Ada Reference Manual allows implementations to provide a wide variety
of behavior if an attempt is made to access the same external file with two or more internal

f