The GNU Modula-2 Compiler

For ccc version 16.0.0 (pre-release)

(GCC)

Gaius Mulley

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Overview of GNU Modula-2.................... 1
1.1 What is GNU Modula-2 ... 1
1.2 Why use GNU Modula-2 oo 1
1.3 How to get source code using git..............ocoiiiiiiiii.. 1
1.4 GNU Modula-2 Features.c.ooiiiiiiiiiiienn... 1

2 Using GNU Modula-2........................... 3
2.1 Example compile and link 3
2.2 Compiler Optionst 3
2.3 Elementary data types...... ... 10
2.4 Permanently accessible base procedures. 11

2.4.1 Standard procedures and functions common to PIM and ISO.. 11
2.4.2 IS0 specific standard procedures and functions............ 16
2.5 Behavior of the high procedure function........................ 17
2.6 GNU Modula-2 supported dialects...............ccooiiiia.. 18
2.6.1 Integer division, remainder and modulus 19
2.7 Module Search Path........ i i 19
2.8 FException implementation, 20
2.9 How to detect run time problems at compile time.............. 20
2.10 GNU Modula-2 language extensionsc...... 23
2.10.1 Optional procedure parameter 26
2.11 Type compatibility 27
2.11.1 Expression compatibility............. ...l 28
2.11.2 Assignment compatibilityl 28
2.11.3 Parameter compatibility oo 29
2.12 Exception handling............ .o i i 29
2.13 Unbounded by reference..............cooiii i, 32
2.14 Building a shared library i 34
2.15 How to produce swig interface files 34
2.15.1 Limitations of automatic generated of Swig files.......... 35
2.16 How to produce a Python module 36
2.17 Interfacing GNU Modula-2 to C.......t 40
2.18 Interface to assembly language..........., 41
2.19 Data type alignment 42
2.20 Packing data types...... ..o 44
2.21 Accessing GNU Modula-2 Built-ins, 45
2.22 The PIM system module i 52
2.23 The ISO system module........ ... 56
2.24 Release map.o 61
2.25 Documentation......... ... 61
2.26 Regression tests for gm2 in the repository..................... 61
2.27 LAmitations.ooouiiur i 61

2.28 ODJECHIVES. « ottt et e 61

229 FAQ .+ .o oot 62
2.29.1 Why use the C++ exception mechanism in GCC, rather
than a bespoke Modula-2 mechanism? 62
2,30 ComMUDNILY . . .vvt ettt e e 62
2.31 Other languages for GCC......... ... i .. 62
2.32 License of GNU Modula-2 ... 62
GNU General Public License 63
Contributing to GNU Modula-2.......... i, 73
3 EBNF of GNU Modula-2...................... 75
4 PIM and ISO library definitions.............. 84
4.1 Base libraries.oooiiii e 84
4.1.1 gm2-libs/ARRAYOFCHAR, 84
4.1.2 gm2-libs/ASCITo 85
4.1.3 gm2-1Ibs/ATES ..o 86
4.1.4 gm?2-libs/Assertion........... ... oo 87
4.1.5 gm2-libs/Break.......... ... 88
4.1.6 gm2-libs/Builtins.......... ..o i 89
4.1.7 gm2-libs/CFileSysOpooouinii i 95
4.1.8 gm2-libs/CHAR 97
4.1.9 gm2-libs/COROUTINESt 98
4.1.10 gm2-libs/CmdATES ..ot 99
4.1.11 gm2-libs/Debugooviuiii 100
4.1.12 gm2-libs/DynamicStrings...........coovuiiiiiiin... 101
4.1.13 gm2-libs/Environment.............oooiiuiiiniiia... 109
4.1.14 gm2-libs/FIO ... 110
4.1.15 gm2-1ibs/FileSysOpoovviriii i 117
4.1.16 gm2-libs/FormatStrings ...t 118
4117 @m2-Bibs/FPulO .o 120
4.1.18 gm2-1ibs/GetOpt .. .o.vviri i 121
4.1.19 gm2-libs/IOo 124
4.1.20 gm2-libs/Indexingcoooiiiiiiiiiiiiii 126
4.1.21 gm2-libs/LMathlib0o 129
4.1.22 gm2-libs/LegacyReall 130
4.1.23 gm?2-libs/M2Dependent........ ... 131
4.1.24 gm2-libs/M2EXCEPTION, 133
4.1.25 gm2-libs/M2RTSo 134
4.1.26 gm2-libs/MathLibO......... ... 138
4.1.27 gm2-libs/MemUtils........ ... 139
4.1.28 gm2-libs/NumberIO 140
4.1.29 gm2-libs/OptLib 142
4.1.30 gm2-libs/PushBackInput, 144
4.1.31 gm2-libs/RTExceptions.c..oovuiiiiiiiiiinia.. 147

ii

4.1.32 gm2-libs/RTint.......ooviiii e 151
4.1.33 gm2-1ibs/SATES. ..o\t 154
4.1.34 gm2-libs/SCmAATESt 155
4.1.35 gm2-libs/SEnvironment............o 156
4.1.36 gm2-libs/SFIOo 157
4.1.37 gm2-libs/SMathLib0.... ..., 159
4.1.38 gm2-libs/SYSTEM 160
4.1.39 gm2-libs/Scan..... ... 164
4.1.40 gm2-libs/Selective....... i 166
4141 gm2-libs/StdIO.o 168
4.1.42 gm2-1ibs/Storageovviiii 170
4.1.43 gm2-libs/StrCase.... ... 171
4.1.44 gm2-libs/StrIO o 172
4.1.45 gm2-libs/Strlib ... 173
4.1.46 gm2-libs/Stringoovuiiiiiii 175
4.1.47 gm2-libs/StringConvert. ..o, 176
4.1.48 gm2-libs/StringFileSysOp ...t 183
4.1.49 gm2-libs/SysExceptionsc.coiiiiiiiiiiii. 184
4.1.50 gm2-1ibs/SysStorageo.vueiiiiiiii i 185
4.1.51 gm2-libs/TimeString 187
4.1.52 gm2-1ibs/UnixArgsovuitiii i 188
4.1.53 gm2-libs/cbuiltin.......... ..o oo 189
4.1.54 gm2-1ibs/cgetopt ... o.vvii 194
4.1.55 gm2-libs/cxxabi... ... 196
4.1.56 gm2-libs/dtoa...... ..o 197
4.1.57 gm2-libs/errnoo. o 198
4.1.58 gm2-libs/gdbif. 199
4.1.59 gm2-libs/ldtoa ... 200
4.1.60 gm2-libs/libc.. ... 201
4.1.61 gm2-libs/libm ... 213
4.1.62 gm?2-libs/sckt... ... 215
4.1.63 gm2-libs/termioso.iiiiii 218
4.1.64 gm2-IDS/WIAPC. .\ttt 223
4.2 PIM and Logitech 3.0 Compatible 227
4.2.1 gm2-libs-log/BitBlockOpso, 227
4.2.2 gm2-libs-log/BitByteOpsoooviiiiiiiii 230
4.2.3 gm2-libs-log/BitWordOps.........ooviiiiiiiiiiiiia. 233
4.2.4 gm2-libs-log/BlockOps..... ... 236
4.2.5 gm2-libs-log/Breako 238
4.2.6 gm2-libs-log/CardinallO. ..., 239
4.2.7 gm2-libs-log/Conversionsc.coevuiiiiiiinia... 242
4.2.8 gm2-libs-log/DebugPMD i 243
4.2.9 gm2-libs-log/DebugTracecccooviiiiiiiiiiin... 244
4.2.10 gm2-libs-log/Delayccooiiiiiiiiiiii i 245
4.2.11 gm2-libs-log/Display........cooiiiiiiiiiiii.. 246
4212 gm2-libs-log/ErrorCode ... 247
4.2.13 gm2-libs-log/FileSystem ... 248

iii

4.2.14 gm2-libs-log/FloatingUtilities................. ... 254
4.2.15 gm2-libs-log/InOut ... 256
4.2.16 gm2-libs-log/Keyboard ..., 260
4217 gm2-libs-log/LonglOo i 261
4.2.18 gm2-libs-log/NumberConversion 262
4.2.19 gm2-libs-log/Random., 263
4.2.20 gm2-libs-log/RealConversions.ooovien... 265
4.2.21 gm2-libs-log/ReallnOut.t 268
4.2.22 gm2-libs-log/Strings 271
4.2.23 gm2-libs-log/Termbase ... 273
4.2.24 gm2-libs-log/Terminal ..., 275
4.2.25 gm2-libs-log/TimeDate..... ..., 277
4.3 PIM coroutine SUppOrtcovuiiiiiiii i 279
4.3.1 gm2-libs-coroutines/Executive 279
4.3.2 gm2-libs-coroutines/KeyBoardLEDs 282
4.3.3 gm2-libs-coroutines/SYSTEM 283
4.3.4 gm2-libs-coroutines/TimerHandler 289
4.4 M2 ISO Libraries.oouueit i 291
4.4.1 gm2-libs-iso/COROUTINES ..., 292
442 gm2-libs-iso/ChanConsts oo 295
4.4.3 gm?2-libs-iso/CharClass ... 297
4.4.4 gm2-libs-iso/ClientSocketo, 298
4.4.5 gm2-libs-iso/ComplexMath, 299
4.4.6 gm2-libs-iso/ConvStringlong, 301
4.4.7 gm2-libs-iso/ConvStringReal 302
4.4.8 gm2-libs-iso/ConvStringShort.............. ..., 303
4.4.9 gm2-1ibs-i80/ConvTyPesvueuiiiiiiii i, 304
4410 gm2-libs-iso/EXCEPTIONS ..., 305
4.4.11 gm2-libs-iso/ErrnoCategorycovviiiiioa.. 307
4.4.12 gm?2-libs-iso/GeneralUserExceptions 309
4.4.13 gm2-libs-iso/IOChancooviiiiiiiin 310
4.4.14 gm2-libs-iso/IOConStSot 314
4.4.15 gm2-libs-iso/IOLink 315
4416 gm2-libs-iso/IOResult il 318
4.417 gm2-libs-iso/LongComplexMath 319
4418 gm2-libs-iso/LongConv ..ot 321
4419 gm2-libs-iso/LonglO. 323
4.4.20 gm2-libs-iso/LongMath..........l 325
4421 gm2-libs-iso/LongStr ... 327
4.4.22 gm2-libs-iso/LongWholelO 329
4.4.23 gm2-libs-iso/LowlLongooiiiiiiiiiiii ... 330
4.4.24 gm2-libs-iso/LowReal..........l 332
4.4.25 gm2-libs-iso/LowShort............. oo 334
4.4.26 gm2-libs-iso/M2EXCEPTIONt 336
4.4.27 gm?2-libs-iso/M2RTS.o i 337
4.4.28 gm2-libs-iso/MemStream, 341
4.4.29 gm2-libs-iso/Preemptive..... ..., 343

iv

4.4.30
4.4.31
4.4.32
4.4.33
4.4.34
4.4.35
4.4.36
4.4.37
4.4.38
4.4.39
4.4.40
4.4.41
4.4.42
4.4.43
4.4.44
4.4.45
4.4.46
4.4.47
4.4.48
4.4.49
4.4.50
4.4.51
4.4.52
4.4.53
4.4.54
4.4.55
4.4.56
4.4.57
4.4.58
4.4.59
4.4.60
4.4.61
4.4.62
4.4.63
4.4.64
4.4.65
4.4.66
4.4.67
4.4.68
4.4.69
4.4.70
4.4.71
4.4.72
4.4.73
4.4.74
4.4.75
4.4.76

gm2-1ibs-180/Processes 344

gm2-libs-iso/ProgramArgs, 348
gm?2-1ibs-i80/RTco.o 349
gm?2-libs-iso/RTdata...................o i, 351
gm2-libs-iso/RTentity., 353
gm2-libs-iso/RTfio............oo i 354
gm2-libs-iso/RTgen.vei i 356
gm2-libs-iso/RTgenif i 359
gm?2-libs-iso/RTio ... 362
gm?2-libs-iso/RandomNumber........................... 364
gm2-libs-iso/RawlIO 367
gm?2-libs-iso/RealConv..............ooooiiiiiiiiiiia., 368
gm?2-libs-iso/ReallO ... 370
gm?2-libs-iso/RealMath 372
gm?2-libs-iso/RealStr..................... ... 374
gm2-libs-iso/RndFile ... 376
gm?2-libs-iso/SIOResult, 379
gm2-libs-iso/SLonglOo 380
gm2-libs-iso/SLongWholelO, 382
gm2-libs-iso/SRawlO 383
gm?2-libs-iso/SReallO 384
gm?2-libs-iso/SShortIO 386
gm?2-libs-iso/SShortWholeIO....................... 388
gm?2-libs-iso/STextIO.......... il 389
gm2-1libs-iso/SWholeIOot 391
gm?2-1ibs-iso/SYSTEM ...t 392
gm?2-libs-iso/Semaphoresol 397
gm2-libs-iso/SeqFile........o i 398
gm2-libs-iso/ShortComplexMath........................ 401
gm2-libs-iso/ShortConv......... 403
gm?2-libs-iso/ShortIOo 405
gm?2-libs-iso/ShortMath 407
gm?2-libs-iso/ShortStr...........o i 409
gm?2-libs-iso/ShortWholelO............................. 411
gm?2-libs-iso/SimpleCipher.......... ..., 412
gm?2-libs-iso/StdChans., 413
gm2-1ibs-iS0/Storageot 415
gm?2-libs-iso/StreamFile o oL 417
gm2-libs-iso/StringChano 418
gm2-1ibs-180/Stringsot 419
gm2-libs-iso/SysClock 423
gm2-libs-iso/TERMINATION ...t 425
gm?2-libs-iso/TermFile 426
gm?2-libs-iso/TextIO i 428
gm2-libs-iso/TextUtil. ... i, 430
gm?2-libs-iso/WholeConv........... ..., 431

gm?2-libs-iso/WholelO, 433

4.4.77
4.4.78
4.4.79
4.4.80

gm2-libs-iso/WholeStr............., 434
gm?2-libs-iso/wrapclock o i 435
gm2-libs-iso/wrapsocko i 438
gm2-libs-iso/wraptime.o 441

4.5 IndiCes . ..o 445

vi

1 Overview of GNU Modula-2

1.1 What is GNU Modula-2

GNU Modula-2 is a front end (https://gcc.gnu.org/frontends.html) for the GNU Com-
piler Collection (GCC (https://gcc.gnu.org)). The GNU Modula-2 compiler is compliant
with the PIM2, PIM3, PIM4 and ISO dialects. Also implemented are a complete set of free
ISO libraries and PIM libraries.

1

1.2 Why use GNU Modula-2

There are a number of advantages of using GNU Modula-2 rather than translate an existing
project into another language.

The first advantage is of maintainability of the original sources and the ability to debug
the original project source code using a combination of gm2 and gdb.

The second advantage is that gcc runs on many processors and platforms. gm2 builds
and runs on powerpc64le, amd64, 1386, aarch64 to name but a few processors.

gm?2 can produce swig interface headers to allow access from Python and other scripting
languages. It can also be used with C/C++ and generate shared libraries.

The compiler provides semantic analysis and run time checking (full ISO Modula-2
checking is implemented) and there is a plugin which can, under certain conditions, detect
run time errors at compile time.

The compiler supports PIM2, PIM3, PIM4 and ISO dialects of Modula-2, work is under-
way to implement M2R10. Many of the GCC builtins are available and access to assembly
programming is achieved using the same syntax as that used by GCC.

The gm2 driver allows third party libraries to be installed alongside gm2 libraries. See
Section 2.7 [Module Search Path], page 19.

1.3 How to get source code using git
GNU Modula-2 is now in the GCC git tree (https://gcc.gnu.org/git.html).

1.4 GNU Modula-2 Features

e the compiler currently complies with Programming in Modula-2 Edition 2, 3, 4 and ISO
Modula-2. Users can switch on specific language features by using: ‘~fpim’, ‘~-fpim2’,
‘~fpim3’, ‘~fpimé’ or ‘~fiso’.

! The four Modula-2 dialects supported are defined in the following references:
PIM2: 'Programming in Modula-2’, 2nd Edition, Springer Verlag, 1982, 1983 by Niklaus Wirth (PIM2).
PIM3: 'Programming in Modula-2’, 3rd Corrected Edition, Springer Verlag, 1985 (PIM3).

PIM4: 'Programming in Modula-2’, 4th Edition, Springer Verlag, 1988 (PIM4 (https://freepages.
modula2.org/report4/modula-2.html)).

ISO: the ISO Modula-2 language as defined in 'ISO/IEC Information technology - programming languages
- part 1: Modula-2 Language, ISO/IEC 10514-1 (1996)

https://gcc.gnu.org/frontends.html
https://gcc.gnu.org
https://gcc.gnu.org/git.html
https://freepages.modula2.org/report4/modula-2.html
https://freepages.modula2.org/report4/modula-2.html

Chapter 1: Overview of GNU Modula-2 2

e the option ‘~fswig’ will automatically create a swig interface file which corresponds to
the definition module of the file being compiled.

e exception handling is compatible with C++ and swig. Modula-2 code can be used with
C or C++ code.

e Python can call GNU Modula-2 modules via swig.
e shared libraries can be built.

e fixed sized types are now available from ‘SYSTEM’.
e variables can be declared at addresses.

e much better dwarf-2 debugging support and when used with ‘gdb’ the programmer
can display RECORDs, ARRAYs, SETs, subranges and constant char literals in Modula-2
syntax.

e supports sets of any ordinal size (memory permitting).

e casy interface to C, and varargs can be passed to C routines.

e many Logitech libraries have been implemented and can be accessed via:
‘~flibs=m2log,m2pim,m2iso’.

e coroutines have been implemented in the PIM style and these are accessible from SY'S-
TEM. A number of supporting libraries (executive and file descriptor mapping to in-
terrupt vector libraries are available through the ‘~flibs=m2iso,m2pim’ switch).

e can be built as a cross compiler (for embedded microprocessors such as the AVR and
the ARM).

2 Using GNU Modula-2

This document contains the user and design issues relevant to the Modula-2 front end to
gcc.

2.1 Example compile and link

The gm2 command is the GNU compiler for the Modula-2 language and supports many
of the same options as gcc. See Section “Option Summary” in Using the GNU Compiler
Collection (GCC). This manual only documents the options specific to gm2.

This section describes how to compile and link a simple hello world program. It provides
a few examples of using the different options mentioned in see Section 2.2 [Compiler options],
page 3. Assuming that you have a file called hello.mod in your current directory which
contains:

MODULE hello ;
FROM StrI0 IMPORT WriteString, Writeln ;

BEGIN
WriteString ('hello world') ; Writeln
END hello.

You can compile and link it by: ‘gm2 -g hello.mod’. The result will be an ‘a.out’ file
created in your directory.

You can split this command into two steps if you prefer. The compile step can be
achieved by: ‘gm2 -g -c -fscaffold-main hello.mod’ and the link via: ‘gm2 -g hello.o’.
1

2.2 Compiler options

This section describes the compiler options specific to GNU Modula-2 for generic flags
details See Section “Invoking GCC” in gcc.

For any given input file, the file name suffix determines what kind of compilation is done.
The following kinds of input file names are supported:

file.mod Modula-2 implementation or program source files. See the ‘~fmod=" option if
you wish to compile a project which uses a different source file extension.

file.def Modula-2 definition module source files. Definition modules are not compiled
separately, in GNU Modula-2 definition modules are parsed as required when
program or implementation modules are compiled. See the ‘-fdef=’ option if
you wish to compile a project which uses a different source file extension.

¢

1 To see all the compile actions taken by ‘gm2’ users can also add the ‘-v’ flag at the command line, for

example:
‘gm2 -v -g -I. hello.mod’
This displays the sub processes initiated by ‘gm2’ which can be useful when trouble shooting.

Chapter 2: Using GNU Modula-2 4

You can specify more than one input file on the gm2 command line,

-g create debugging information so that debuggers such as gdb can inspect and
control executable.

-I used to specify the search path for definition and implementation modules. An
example is: gm2 -g -c -I.:../../libs foo.mod. If this option is not specified
then the default path is added which consists of the current directory followed
by the appropriate language dialect library directories.

-fauto-init
turns on auto initialization of pointers to NIL. Whenever a block is created all
pointers declared within this scope will have their addresses assigned to NIL.

-fbounds turns on run time subrange, array index and indirection via NIL pointer check-
ing.

-fcase turns on compile time checking to check whether a CASE statement requires an
ELSE clause when on was not specified.

-fcpp preprocess the source with ‘cpp -lang-asm -traditional-cpp’ For further de-
tails about these options See Section “Invocation” in cpp. If ‘~fcpp’ is supplied
then all definition modules and implementation modules which are parsed will
be prepossessed by ‘cpp’.

-fdebug-builtins
call a real function, rather than the builtin equivalent. This can be useful for
debugging parameter values to a builtin function as it allows users to single
step code into an intrinsic function.

-fdef= recognize the specified suffix as a definition module filename. The default im-
plementation and module filename suffix is .def. If this option is used GNU
Modula-2 will still fall back to this default if a requested definition module is
not found.

-fdump-system-exports
display all inbuilt system items. This is an internal command line option.

-fexceptions
turn on exception handling code. By default this option is on. Exception
handling can be disabled by ‘-fno-exceptions’ and no references are made to
the run time exception libraries.

-fextended-opaque
allows opaque types to be implemented as any type. This is a GNU Modula-2
extension and it requires that the implementation module defining the opaque
type is available so that it can be resolved when compiling the module which
imports the opaque type.

-ffloatvalue
turns on run time checking to check whether a floating point number is about
to exceed range.

Chapter 2: Using GNU Modula-2 5

-fgen-modu

—-findex

-fiso

—-flibs=

-static-1i

-fm2-debug

-fm2-dump=

-fm2-dump-

-fm2-dump-

-fm2-dump-

-fm2-dump-

le-list=filename

attempt to find all modules when linking and generate a module list. If the
filename is ‘-’ then the contents are not written and only used to force the
linking of all module ctors. This option cannot be used if ‘~fuse-list=’ is
enabled.

generate code to check whether array index values are out of bounds. Array
index checking can be disabled via ‘~fno-index’.

turn on ISO standard features. Currently this enables the ISO SYSTEM module
and alters the default library search path so that the ISO libraries are searched
before the PIM libraries. It also effects the behavior of DIV and MOD operators.
See Section 2.6 [Dialect], page 18.

modifies the default library search path. The libraries supplied are: m2pim,
m2iso, m2min, m2log and m2cor. These map onto the Programming in Modula-
2 base libraries, ISO standard libraries, minimal library support, Logitech com-
patible library and Programming in Modula-2 with coroutines. Multiple li-
braries can be specified and are comma separated with precedence going to
the first in the list. It is not necessary to use -flibs=m2pim or -flibs=m2iso
if you also specify -fpim, -fpim2, -fpim3, -fpim4 or -fiso. Unless you are using
-flibs=m2min you should include m2pim as the they provide the base modules
which all other dialects utilize. The option ‘~fno-libs=-" disables the ‘gm2’
driver from modifying the search and library paths.

bgm2
On systems that provide the m2 runtimes as both shared and static libraries,
this option forces the use of the static version.

-trace=
turn on trace debugging using a comma separated list: ‘line,token,quad,all’.
This is an internal command line option.

enable dumping of modula-2 internal representation of data structures using a
comma separated list. The list can contain: ‘quad,gimple,decl,all’.

decl=filestem
dump the modula-2 representation of a symbol to the filestem specified. This
option only takes effect if the ‘~fm2-dump-filter’ is specified.

gimple=filestem
dump modula-2 gimple representation to the filestem specified.

quad=filestem
dump quadruple representation to the filestem specified.

filter=‘rules’

filter the language dumps ‘-fdump-lang-decl’, ‘-fdump-lang-gimple’
and‘-fdump-lang-quad’ on ‘rules’. ‘rules’ must be a comma separated
list which can take three forms: the full decl textual name of a procedure,
‘[libname.]module.ident’ or ‘[filename:]module.ident’. This is an

Chapter 2: Using GNU Modula-2 6

internal command line option. Currently it only filters on procedure
names and regexp matching is not implemented. Three examples of
its use following the previous forms could be: -fm2-dump-filter=_
M2_hello_init, -fm2-dump-filter=m2pim.StrI0.WriteString and
-fm2-dump-filter=StrLib.mod:StrI0.WriteString.

-fm2-file-offset-bits=
force the type SYSTEM.COFF_T to be built using the specified number of bits. If
this option is not used then default is CSSIZE_T bits.

-fm2-g improve the debugging experience for new programmers at the expense of gen-
erating nop instructions if necessary to ensure single stepping precision over all
code related keywords. An example of this is in termination of a list of nested
IF statements where multiple END keywords are mapped onto a sequence of nop
instructions.

-fm2-lower-case
render keywords in error messages using lower case.

-fm2-pathname=
specify the module mangled prefix name for all modules in the following include
paths.

-fm2-pathnamel
for internal use only: used by the driver to copy the user facing ‘-I’ option.

-fm2-pathname-root=pathroot
add search paths derived from the specified pathroot. See Section 2.7 [Module
Search Path], page 19, for examples.

-fm2-pathname-rootI

for internal wuse only: used by the driver to copy every user
‘~fm2-pathname-root=" facing option in order with all other ‘-T’
options.

-fm2-plugin

insert plugin to identify run time errors at compile time (default on).

-fm2-prefix=
specify the module mangled prefix name. All exported symbols from a definition
module will have the prefix name.

-fm2-statistics
generates quadruple information: number of quadruples generated, number of
quadruples remaining after optimization and number of source lines compiled.

-fm2-strict-type
experimental flag to turn on the new strict type checker.

-fm2-strict-type-reason
provides more detail why the types are incompatible.

-fm2-whole-program
compile all implementation modules and program module at once. Notice that
you need to take care if you are compiling different dialect modules (particu-

Chapter 2:

—-fmod=

-fnil

—-fpim

-fpim2

-fpim3

-fpim4

Using GNU Modula-2 7

larly with the negative operands to modulus). But this option, when coupled
together with -03, can deliver huge performance improvements.

recognize the specified suffix as implementation and module filenames. The
default implementation and module filename suffix is .mod. If this option is
used GNU Modula-2 will still fall back to this default if it needs to read an
implementation module and the specified suffixed filename does not exist.

generate code to detect accessing data through a NIL value pointer. Derefer-
encing checking through a NIL pointer can be disabled by ‘~fno-nil’.

turn on PIM standard features. Currently this enables the PIM SYSTEM module
and determines which identifiers are pervasive (declared in the base module).
If no other ‘-fpim[234]° switch is used then division and modulus operators
behave as defined in PIM4. See Section 2.6 [Dialect], page 18.

turn on PIM-2 standard features. Currently this removes SIZE from being a
pervasive identifier (declared in the base module). It places SIZE in the SYSTEM
module. It also effects the behavior of DIV and MOD operators. See Section 2.6
[Dialect], page 18.

turn on PIM-3 standard features. Currently this only effects the behavior of
DIV and MOD operators. See Section 2.6 [Dialect], page 18.

turn on PIM-4 standard features. Currently this only effects the behavior of
DIV and MOD operators. See Section 2.6 [Dialect], page 18.

-fpositive-mod-floor-div

-fpthread

-frange

—-freturn

forces the DIV and MOD operators to behave as defined by PIM4. All modulus
results are positive and the results from the division are rounded to the floor.
See Section 2.6 [Dialect], page 18.

link against the pthread library. By default this option is on. It can be dis-
abled by ‘~fno-pthread’. GNU Modula-2 uses the GCC pthread libraries to
implement coroutines (see the SYSTEM implementation module).

generate code to check the assignment range, return value range set range and
constructor range. Range checking can be disabled via ‘~fno-range’.

generate code to check that functions always exit with a RETURN and do not fall
out at the end. Return checking can be disabled via ‘-fno-return’.

-fruntime-modules=

specify, wusing a comma separated list, the run time modules and
their order. These modules will initialized first before any other
modules in the application dependency. By default the run time
modules list is set to m2iso:RTentity,m2iso:Storage,m2iso:SYSTEM,
m2iso:M2RTS,m2iso:RTExceptions,m2iso:I0Link. Note that these modules
will only be linked into your executable if they are required. Adding a long
list of dependent modules will not effect the size of the executable it merely
states the initialization order should they be required.

Chapter 2: Using GNU Modula-2 8

-fscaffold-dynamic
the option ensures that ‘gm2’ will generate a dynamic scaffold infrastructure
when compiling implementation and program modules. By default this
option is on. Use ‘-fno-scaffold-dynamic’ to turn it off or select
‘~fno-scaffold-static’.

-fscaffold-c
generate a C source scaffold for the current module being compiled.

-fscaffold-c++
generate a C++ source scaffold for the current module being compiled.

-fscaffold-main
force the generation of the ‘main’ function. This is not necessary if the ‘-c’ is
omitted.

-fscaffold-static
the option ensures that ‘gm2’ will generate a static scaffold within the pro-
gram module. The static scaffold consists of sequences of calls to all dependent
module initialization and finalization procedures. The static scaffold is useful
for debugging and single stepping the initialization blocks of implementation
modules.

-fshared generate a shared library from the module.

-fsoft-check-all
turns on all run time checks. This is the same as invoking GNU Modula-2 us-
ing the command options -fnil -frange -findex -fwholevalue -fwholediv
-fcase -freturn.

-fsources
displays the path to the source of each module. This option can be used at
compile time to check the correct definition module is being used.

-fswig generate a swig interface file.

-funbounded-by-reference

enable optimization of unbounded parameters by attempting to pass non VAR
unbounded parameters by reference. This optimization avoids the implicit copy
inside the callee procedure. GNU Modula-2 will only allow unbounded param-
eters to be passed by reference if, inside the callee procedure, they are not
written to, no address is calculated on the array and it is not passed as a VAR
parameter. Note that it is possible to write code to break this optimization,
therefore this option should be used carefully. For example it would be possible
to take the address of an array, pass the address and the array to a procedure,
read from the array in the procedure and write to the location using the address
parameter.

Due to the dangerous nature of this option it is not enabled when the ‘-0’
option is specified.

-fuse-list=filename
if ‘~fscaffold-static’ is enabled then use the file filename for the initial-
ization order of modules. Whereas if ‘-fscaffold-dynamic’ is enabled then

Chapter 2: Using GNU Modula-2 9

use this file to force linking of all module ctors. This option cannot be used if
‘~fgen-module-list=’is enabled.

-fwholediv
generate code to detect whole number division by zero or modulus by zero.

-fwholevalue
generate code to detect whole number overflow and underflow.

-Wcase-enum
generate a warning if a CASE statement selects on an enumerated type expression
and the statement is missing one or more CASE labels. No warning is issued if
the CASE statement has a default ELSE clause. The option ‘-Wall’ will turn on
this flag.

-Wuninit-variable-checking
issue a warning if a variable is used before it is initialized. The checking only
occurs in the first basic block in each procedure. It does not check parameters,
array types or set types.

-Wuninit-variable-checking=all,known,cond

issue a warning if a variable is used before it is initialized. The checking will
only occur in the first basic block in each procedure if ‘known’ is specified.
If ‘cond’ or ‘all’ is specified then checking continues into conditional
branches of the flow graph. All checking will stop when a procedure
call is invoked or the top of a loop is encountered. The option ‘-Wall’
will turn on this flag with ‘-Wuninit-variable-checking=known’. The
‘~Wuninit-variable-checking=all’ will increase compile time.

-fwideset
turn on access to the runtime support library module ‘M2WIDESET’. By default
this option is on. Wideset provision can be disabled by ‘~fno-wideset’ and no
reference will be made to the run time ‘M2WIDESET’ library.

This section describes the linking related options. There are three linking strategies avail-
able which are dynamic scaffold, static scaffold and user defined. The dynamic scaffold is
enabled by default and each module will register itself to the run time ‘M2RTS’ via a construc-
tor. The static scaffold mechanism will invoke each modules ‘_init’ and ‘_finish’ function
in turn via a sequence of calls from within ‘main’. Lastly the user defined strategy can be
implemented by turning off the dynamic and static options via ‘~fno-scaffold-dynamic’
and ‘-fno-scaffold-static’.

In the simple test below:

$ gm2 hello.mod

the driver will add the options ‘-fscaffold-dynamic’ and ‘-fgen-module-list=-’
which generate a list of application modules and also creates the ‘main’ function with calls
to ‘M2RTS’. It can be useful to add the option ‘-fsources’ which displays the source files
as they are parsed and summarizes whether the source file is required for compilation or
linking.

If you wish to split the above command line into a compile and link then you could use
these steps:

$ gm2 -c -fscaffold-main hello.mod

Chapter 2: Using GNU Modula-2 10

$ gm2 hello.o

The ‘-fscaffold-main’ informs the compiler to generate the ‘main’ function and scaf-
fold. You can enable the environment variable ‘GCC_M2LINK_RTFLAG’ to trace the construc-
tion and destruction of the application. The values for ‘GCC_M2LINK_RTFLAG’ are shown in
the table below:

value | meaning

all turn on all flags below

module trace modules as they register themselves
hex display the hex address of the init/fini functions
warning | show any warnings

dep trace module dependency resolution
post generate module list after dependency resolution
force generate a module list after dependency and forced

I
|
|
|
pre | generate module list prior to dependency resolution
I
|
|
|

ordering is complete
The values can be combined using a comma separated list.

One of the advantages of the dynamic scaffold is that the driver behaves in a similar
way to the other front end drivers. For example consider a small project consisting of
4 definition implementation modules (‘a.def’, ‘a.mod’, ‘b.def’, ‘b.mod’, ‘c.def’, ‘c.mod’,
‘d.def’, ‘d.mod’) and a program module ‘program.mod’.

To link this project we could:

$ gm2 -g -c a.mod
$ gm2 -g -c b.mod
$ gm2 -g -c c.mod
$ gm2 -g -c d.mod
$ gm2 -g program.mod a.o b.o c.o d.o

The module initialization sequence is defined by the ISO standard to follow the import
graph traversal. The initialization order is the order in which the corresponding separate
modules finish the processing of their import lists.

However, if required, you can override this using ‘-fruntime-modules=a,b,c,d’ for
example which forces the initialization sequence to ‘a’, ‘b’, ‘c’ and ‘d’.

2.3 Elementary data types

This section describes the elementary data types supported by GNU Modula-2. It also
describes the relationship between these data types and the equivalent C data types.

The following data types are supported: INTEGER, LONGINT, SHORTINT, CARDINAL,
LONGCARD, SHORTCARD, BOOLEAN, REAL, LONGREAL, SHORTREAL, COMPLEX, LONGCOMPLEX,
SHORTCOMPLEX and CHAR.

An equivalence table is given below:
GNU Modula-2 GNU C

INTEGER int
LONGINT long long int

Chapter 2: Using GNU Modula-2

11

SHORTINT short int

CARDINAL unsigned int
LONGCARD long long unsigned int
SHORTCARD short unsigned int
BOOLEAN bool

REAL double

LONGREAL long double
SHORTREAL float

CHAR char

SHORTCOMPLEX complex float
COMPLEX complex double
LONGCOMPLEX complex long double

Note that GNU Modula-2 also supports fixed sized data types which are exported from
the SYSTEM module. See Section 2.22 [The PIM system module], page 52. See Section 2.23
[The ISO system module|, page 56.

2.4 Permanently accessible base procedures.

This section describes the procedures and functions which are always visible.

2.4.1 Standard procedures and functions common to PIM and
ISO

The following procedures are implemented and conform with Programming in Modula-2
and ISO Modula-2: NEW, DISPOSE, INC, DEC, INCL, EXCL and HALT. The standard functions
are: ABS, CAP, CHR, FLOAT, HIGH, LFLOAT, LTRUNC, MIN, MAX, ODD, SFLOAT, STRUNC TRUNC
and VAL. All these functions and procedures (except HALT, NEW, DISPOSE and, under non
constant conditions, LENGTH) generate in-line code for efficiency.

(*
ABS - returns the positive value of i.

*)

PROCEDURE ABS (i: <any signed type>) : <any signed type> ;

(*
CAP - returns the capital of character ch providing
ch lies within the range 'a'..'z'. Otherwise ch
is returned unaltered.
*)

PROCEDURE CAP (ch: CHAR) : CHAR ;

(*

CHR - converts a value of a <whole number type> into a CHAR.

Chapter 2: Using GNU Modula-2

CHR(x) is shorthand for VAL(CHAR, x).
*)

PROCEDURE CHR (x: <whole number type>) : CHAR ;

(*
DISPOSE - the procedure DISPOSE is replaced by:
DEALLOCATE(p, TSIZE(p~)) ;
The user is expected to import the procedure DEALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type which has been
initialized by a call to NEW.

Out: the area of memory
holding p~ is returned to the system.
Note that the underlying procedure DEALLOCATE
procedure in module Storage will assign p to NIL.

*)

PROCEDURE DISPOSE (VAR p:<any pointer type>) ;

(*
DEC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
DEC, v will have its predecessor value. If two
parameters are supplied then the value v will have its
n'th predecessor. For these reasons the value of n
must be >=0.
*)
PROCEDURE DEC (VAR v: <any base type>; [n: <any base type> = 1]) ;
(*
EXCL - excludes bit element e from a set type s.

*)

PROCEDURE EXCL (VAR s: <any set type>; e: <element of set type s>) ;

(*
FLOAT - will return a REAL number whose value is the same as o.

*)

PROCEDURE FLOAT (o: <any whole number type>) : REAL ;

(*

12

Chapter 2: Using GNU Modula-2 13

FLOATS - will return a SHORTREAL number whose value is the same as o.
*)

PROCEDURE FLOATS (o: <any whole number type>) : REAL ;

(*
FLOATL - will return a LONGREAL number whose value is the same as o.

*)

PROCEDURE FLOATL (o: <any whole number type>) : REAL ;

(*
HALT - will call the HALT procedure inside the module M2RTS.
Users can replace M2RTS.
*)

PROCEDURE HALT ;

(*
HIGH - returns the last accessible index of an parameter declared as
ARRAY OF CHAR. Thus

PROCEDURE foo (a: ARRAY OF CHAR) ;
VAR
c: CARDINAL ;
BEGIN
c := HIGH(a)
END foo ;

BEGIN
foo('hello')
END

will cause the local variable c¢ to contain the value 5

*)

PROCEDURE HIGH (a: ARRAY OF CHAR) : CARDINAL ;

(*
INC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
INC, v will have its successor value. If two
parameters are supplied then the value v will have its
n'th successor. For these reasons the value of n
must be >=0.

PROCEDURE

(*
INCL -
*)

PROCEDURE

(*
LFLOAT
*)

PROCEDURE

(*

LTRUNC

*)

PROCEDURE

(*
MIN -
*)

PROCEDURE

(*
MAX -
*)

PROCEDURE

(*
NEW -

Chapter 2: Using GNU Modula-2 14

INC (VAR v: <any base type>; [n: <any base type> = 1]) ;

includes bit element e to a set type s.

INCL (VAR s: <any set type>; e: <element of set type s>) ;

- will return a LONGREAL number whose value is the same as o.

LFLOAT (o: <any whole number type>) : LONGREAL ;

- will return a LONG<type> number whose value is the
same as o. PIM2, PIM3 and ISO Modula-2 will return
a LONGCARD whereas PIM4 returns LONGINT.

LTRUNC (o: <any floating point type>) : LONG<type> ;

returns the lowest legal value of an ordinal type.

MIN (t: <ordinal type>) : <ordinal type> ;

returns the largest legal value of an ordinal type.

MAX (t: <ordinal type>) : <ordinal type> ;

the procedure NEW is replaced by:

ALLOCATE(p, TSIZE(p™)) ;

The user is expected to import the procedure ALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type.
Out: variable p is set to some allocated memory

Chapter 2: Using GNU Modula-2 15

which is large enough to hold all the contents of p~.
*)

PROCEDURE NEW (VAR p:<any pointer type>) ;

€
0DD - returns TRUE if the value is not divisible by 2.
*)

PROCEDURE ODD (x: <whole number type>) : BOOLEAN ;

(*
SFLOAT - will return a SHORTREAL number whose value is the same
as o.

*)

PROCEDURE SFLOAT (o: <any whole number type>) : SHORTREAL ;

(*
STRUNC - will return a SHORT<type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE STRUNC (o: <any floating point type>) : SHORT<type> ;

(*

TRUNC - will return a <type> number whose value is the same as o.
PIM2, PIM3 and ISO Modula-2 will return a CARDINAL
whereas PIM4 returns INTEGER.

*)

PROCEDURE TRUNC (o: <any floating point type>) : <type> ;

(*
TRUNCS - will return a <type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE TRUNCS (o: <any floating point type>) : <type> ;

(*

TRUNCL - will return a <type> number whose value is the same

Chapter 2: Using GNU Modula-2 16

as o. PIM2, PIM3 and ISO Modula-2 will return a
LONGCARD whereas PIM4 returns LONGINT.
*)

PROCEDURE TRUNCL (o: <any floating point type>) : <type> ;

(*
VAL - converts data i of <any simple data type 2> to
<any simple data type 1> and returns this value.
No range checking is performed during this conversion.

*)

PROCEDURE VAL (<any simple data type 1>,
i: <any simple data type 2>) : <any simple data type 1> ;

2.4.2 1ISO specific standard procedures and functions
The standard function LENGTH is specific to ISO Modula-2 and is defined as:

(*
IM - returns the imaginary component of a complex type.
The return value will the same type as the imaginary field
within the complex type.

*)

PROCEDURE IM (c: <any complex type>) : <floating point type> ;

(*
INT - returns an INTEGER value which has the same value as V.
This function is equivalent to: VAL(INTEGER, v).
*)

PROCEDURE INT (v: <any ordinal type>) : INTEGER ;

(*
LENGTH - returns the length of string a.
*)

PROCEDURE LENGTH (a: ARRAY OF CHAR) : CARDINAL ;

This function is evaluated at compile time, providing that string a is a constant. If a
cannot be evaluated then a call is made to M2RTS.Length.

(*
0DD - returns a BOOLEAN indicating whether the whole number
value, v, is odd.

Chapter 2: Using GNU Modula-2 17

*)

PROCEDURE ODD (v: <any whole number type>) : BOOLEAN ;

(*
RE - returns the real component of a complex type.
The return value will the same type as the real field
within the complex type.

*)

PROCEDURE RE (c: <any complex type>) : <floating point type> ;

2.5 Behavior of the high procedure function

This section describes the behavior of the standard procedure function HIGH and it includes
a table of parameters with the expected return result. The standard procedure function will
return the last accessible indice of an ARRAY. If the parameter to HIGH is a static array then
the result will be a CARDINAL value matching the upper bound in the ARRAY declaration.

The section also describes the behavior of a string literal actual parameter and how it
relates to HIGH. The PIM2, PIM3, PIM4 and ISO standard is silent on the issue of whether
a nul is present in an ARRAY OF CHAR actual parameter.

If the first parameter to HIGH is an unbounded ARRAY the return value from HIGH will
be the last accessible element in the array. If a constant string literal is passed as an actual
parameter then it will be nul terminated. The table and example code below describe the
effect of passing an actual parameter and the expected HIGH value.

MODULE examplel ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR

x: CARDINAL ;
BEGIN

x := HIGH (a) ;

END test ;

BEGIN
test ('') ;
test ('1') ;
test ('12') ;
test ('123') ;
END examplel.

Actual parameter | HIGH (a) | a[HIGH (a)] = nul

Chapter 2: Using GNU Modula-2 18

v | 0 | TRUE
1! | 1 | TRUE
12! | 2 | TRUE
'123' | 3 | TRUE

A constant string literal will be passed to an ARRAY OF CHAR with an appended nul CHAR.
Thus if the constant string literal '' is passed as an actual parameter (in examplel) then
the result from HIGH(a) will be 0.

MODULE example2 ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR

x: CARDINAL ;
BEGIN

x := HIGH (a) ;

END test ;

VAR
str0: ARRAY [0..0] OF CHAR ;
strl: ARRAY [0..1] OF CHAR ;

str2: ARRAY [0..2] OF CHAR ;
str3: ARRAY [0..3] OF CHAR ;

BEGIN

str0 := 'a' ; (* No room for the nul terminator. *)
test (str0) ;

strl := 'ab' ; (* No room for the nul terminator. x*)
test (strl) ;

str2 := 'ab' ; (* Terminated with a nul. *)

test (str2) ;

str2 := 'abc' ; (* Terminated with a nul. x*)

test (str3) ;
END example2.

Actual parameter | HIGH (a) | al[HIGH (a)] = nul

str0 | O | FALSE
stri | 1 | FALSE
atr2 | 2 | TRUE
str3 | 3 | TRUE

2.6 GNU Modula-2 supported dialects

This section describes the dialects understood by GNU Modula-2. It also describes the
differences between the dialects and any command line switches which determine dialect
behaviour.

The GNU Modula-2 compiler is compliant with four dialects of Modula-2. The lan-
guage as defined in ’Programming in Modula-2’ 2nd Edition, Springer Verlag, 1982, 1983

Chapter 2: Using GNU Modula-2 19

by Niklaus Wirth (PIM2), 'Programming in Modula-2’, 3rd Corrected Edition, Springer
Verlag, 1985 (PIM3) and 'Programming in Modula-2’, 4th Edition, Springer Verlag, 1988
(PIM4) https://freepages.modula2.org/report4d/modula-2.html and the ISO Modula-

2 language as defined in ISO/IEC Information technology - programming languages - part
1: Modula-2 Language, ISO/IEC 10514-1 (1996) (ISO).

The command line switches ‘~fpim2’, ‘-fpim3’, ‘~fpim4’ and ‘-fiso’ can be used to
force mutually exclusive features. However by default the compiler will not aggressively fail

if a non mutually exclusive feature is used from another dialect. For example it is possible
to specify ‘-fpim2’ and still utilize ‘DEFINITION’ ‘MODULES’ which have no export list.

Some dialect differences will force a compile time error, for example in PIM2 the user
must IMPORT SIZE from the module SYSTEM, whereas in PIM3 and PIM4 SIZE is a pervasive
function. Thus compiling PIM4 source code with the ‘~fpim2’ switch will cause a compile
time error. This can be fixed quickly with an additional IMPORT or alternatively by compiling
with the ‘-fpim4’ switch.

However there are some very important differences between the dialects which are mu-
tually exclusive and therefore it is vital that users choose the dialects with care when these
language features are used.

2.6.1 Integer division, remainder and modulus

The most dangerous set of mutually exclusive features found in the four dialects supported
by GNU Modula-2 are the INTEGER division, remainder and modulus arithmetic operators.
It is important to note that the same source code can be compiled to give different run time
results depending upon these switches! The reference manual for the various dialects of
Modula-2 are quite clear about this behavior and sadly there are three distinct definitions.

The table below illustrates the problem when a negative operand is used.

Pim2/3 Pim4 IS0
lval rval DIV MOD DIV MOD DIV MOD / REM
31 10 3 1 3 1 3 1 3 1
-31 10 -3 -1 -4 9 -4 9 -3 -1
31 -10 -3 1 -3 1 Exception -3 1
-31 -10 3 -1 4 9 Exception 3 -1

See also P24 of PIM2, P27 of PIM3, P29 of PIM4 and P201 of the ISO Standard. At
present all dialect division, remainder and modulus are implemented as above, apart from
the exception calling in the ISO dialect. Instead of exception handling the results are the
same as the PIM4 dialect. This is a temporary implementation situation.

2.7 Module Search Path

This section describes the default module search path and how this might be changed. By
default the compiler will search the current directory, local include dir, prefix include dir,
gce version specific modules and lastly native system header dir. The exact location and
whether all these directories are used depends upon the configuration options used when
building GCC.

The ‘-1’ option option can be used to introduce new directories in the module search path
and for convenience the options ‘-f1ibs=" and ‘-fm2-pathname-root=" are also provided.

https://freepages.modula2.org/report4/modula-2.html

Chapter 2: Using GNU Modula-2 20

The site wide modules are typically located at prefix/include/m2 whereas the version
specific modules are located in libsubdir/m2. Both of these /m2 directories are organized
such that the non dialect specific modules are at the top and dialect specific modules are
in subdirectories.

The ‘~fm2-pathname-root=’ option is equivalent to adding a ‘-I’ path for every library
dialect. For example if the library dialect order is selected by ‘~flibs=pim,iso,log’ and
‘~fm2-pathname-root=foo’ is supplied then this is equivalent to the following pairs of
options:

-fm2-pathname=m2pim -Ifoo/m2/m2pim
-fm2-pathname=m2iso -Ifoo/m2/m2iso
-fm2-pathname=m2log -Ifoo/m2/m2log
-fm2-pathname=- -Ifoo/m2

The option ‘-fsources’ will show the source module, path and pathname for each mod-
ule parsed.

2.8 Exception implementation

This section describes how exceptions are implemented in GNU Modula-2 and how com-
mand line switches affect their behavior. The option ‘~fsoft-check-all’ enables all soft-
ware checking of nil dereferences, division by zero etc. Additional code is produced to check
these conditions and exception handlers are invoked if the conditions prevail.

Without ‘-fsoft-check-all’ these exceptions will be caught by hardware (assuming
the hardware support exists) and a signal handler is invoked. The signal handler will
in turn THROW an exception which will be caught by the appropriate Modula-2 handler.
However the action of throwing an exception from within a signal handler is implementation
defined (according to the C++ documentation). For example on the x86_64 architecture this
works whereas on the i686 architecture it does not. Therefore to ensure portability it is
recommended to use ‘-fsoft-check-all’.

2

2.9 How to detect run time problems at compile time

Consider the following program:

MODULE assignvalue ; (*!m2iso+gm2x*)

PROCEDURE bad () : INTEGER ;
VAR
i: INTEGER ;
BEGIN
i=-1;
RETURN i
END bad ;

VAR

2 ‘_fsoft-check-all’ can be effectively combined with ‘-02’ to semantically analyze source code for pos-

sible run time errors at compile time.

Chapter 2: Using GNU Modula-2 21

foo: CARDINAL ;
BEGIN
(* The m2rte plugin will detect this as an error, post
optimization. *)
foo := bad ()
END assignvalue.

here we see that the programmer has overlooked that the return value from ‘bad’ will
cause an overflow to ‘foo’. If we compile the code with the following options:

$ gm2 -g -fsoft-check-all -02 -fm2-plugin -c assignvalue.mod
assignvalue.mod:16:0:inevitable that this error will occur at run time,
assignment will result in an overflow

The gm2 semantic plugin is automatically run and will generate a warning message for
every exception call which is known as reachable. It is highly advised to run the optimizer
(‘-02’ or ‘-03’) with ‘-fsoft-check-all’ so that the compiler is able to run the optimizer
and perform variable and flow analysis before the semantic plugin is invoked.

The ‘-Wuninit-variable-checking’ can be used to identify uninitialized variables
within the first basic block in a procedure. The checking is limited to variables so long as
they are not an array or set or a variant record or var parameter.

The following example detects whether a sub component within a record is uninitialized.
MODULE testlarge2 ;

TYPE
color = RECORD
r, g, b: CARDINAL ;
END ;
pixel = RECORD

fg, bg: color ;
END ;

PROCEDURE test ;
VAR

p: pixel ;
BEGIN

p

fg.r =1
p.-fg.g := 2 ;
p-fg.g 3 ; (* Deliberate typo should be p.fg.b. *)

p-bg := p.fg ; (* Accessing an uninitialized field. x*)
END test ;

0o 0’ 09

BEGIN
test
END testlarge2.

$ gm2 -c -Wuninit-variable-checking testlarge2.mod
testlarge2.mod:19:13: warning: In procedure ‘test’: attempting to

Chapter 2: Using GNU Modula-2 22

access expression before it has been initialized
19 | p-bg := p.fg ; (* Accessing an uninitialized field. x*)

I ~

The following example detects if an individual field is uninitialized.

MODULE testwithnoptr ;

TYPE
Vec = RECORD
x, y: CARDINAL ;
END ;

PROCEDURE test ;
VAR
p: Vec ;
BEGIN
WITH p DO
x =1 ;
x := 2 (x Deliberate typo, user meant y. *)
END ;
IF p.y = 2
THEN
END
END test ;

BEGIN
test
END testwithnoptr.
The following example detects a record is uninitialized via a pointer variable in a ‘WITH’
block.
$ gm2 -g -c -Wuninit-variable-checking testwithnoptr.mod
testwithnoptr.mod:21:8: warning: In procedure ‘test’: attempting to
access expression before it has been initialized
21 | IF p.y = 2

MODULE testnew6 ;
FROM Storage IMPORT ALLOCATE ;

TYPE
PtrToVec = POINTER TO RECORD
x, y: INTEGER ;
END ;

PROCEDURE test ;
VAR
p: PtrToVec ;

Chapter 2: Using GNU Modula-2 23

x := 2 (% Deliberate typo, user meant y. *)
END
IF po.y = 2
THEN
END
END test ;

BEGIN
test
END testnew6.

$ gm2 -g -c -Wuninit-variable-checking testnew6.mod
testnew6.mod:19:9: warning: In procedure ‘test’: attempting to
access expression before it has been initialized

19 | IF p~.y = 2

2.10 GNU Modula-2 language extensions

This section introduces the GNU Modula-2 language extensions. The GNU Modula-2 com-
piler allows abstract data types to be any type, not just restricted to a pointer type providing
the ‘~fextended-opaque’ option is supplied See Section 2.2 [Compiler options|, page 3.

Declarations can be made in any order, whether they are types, constants, procedures,
nested modules or variables.

GNU Modula-2 also allows programmers to interface to C and assembly language.

GNU Modula-2 provides support for the special tokens __LINE__, __FILE
__FUNCTION__ and __DATE__. Support for these tokens will occur even if the ‘~fcpp’
option is not supplied. A table of these identifiers and their data type and values is given
below:

——

Scope GNU Modula-2 token Data type and example value

anywhere __LINE__ Constant Literal compatible
with CARDINAL, INTEGER and WORD.
Example 1234

anywhere __FILE__ Constant string compatible
with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example
"hello.mod"

procedure __FUNCTION__ Constant string compatible

Chapter 2: Using GNU Modula-2

module __FUNCTION__
anywhere __DATE__
anywhere __COLUMN__

24

with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example

"calc"

Example
"module hello initialization"

Constant string compatible

with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example

"Thu Apr 29 10:07:16 BST 2004"

Gives a constant literal number
determining the left hand column
where the first _ appears in

__COLUMN__. The left most column
is 1.

The preprocessor ‘cpp’ can be invoked via the ‘~fcpp’ command line option. This in
turn invokes ‘cpp’ with the following arguments ‘~traditional -lang-asm’. These options
preserve comments and all quotations. ‘gm2’ treats a ‘#’ character in the first column as a
preprocessor directive unless ‘~fno-cpp’ is supplied.

For example here is a module which calls FatalError via the macro ERROR.

MODULE cpp ;

FROM SYSTEM IMPORT ADR, SIZE ;

FROM libc IMPORT exit, printf, malloc ;

PROCEDURE FatalError (a, file: ARRAY OF CHAR;
line: CARDINAL;
func: ARRAY OF CHAR) ;

BEGIN

printf ("%s:%d:fatal error, %s, in %s\n",
ADR (file), line, ADR (a), ADR (func)) ;

exit (1)
END FatalError ;

#define ERROR(X) FatalError(X

VAR
pc: POINTER TO CARDINAL;
BEGIN

pc := malloc (SIZE (CARDINAL))

IF pc = NIL

FILE

LINE FUNCTION__)

—_ - —_ -

Chapter 2: Using GNU Modula-2 25

THEN
ERROR ('out of memory')
END
END cpp.

Another use for the C preprocessor in Modula-2 might be to turn on debugging

code.

For example the library module FormatStrings.mod uses procedures from

DynamicStrings.mod and to track down memory leaks it was useful to track the source
file and line where each string was created. Here is a section of FormatStrings.mod which
shows how the debugging code was enabled and disabled by adding -fcpp to the command

line.

FROM DynamicStrings IMPORT String, InitString, InitStringChar, Mark,
ConCat, Slice, Index, char,
Assign, Length, Mult, Dup, ConCatChar,
PushAllocation, PopAllocationExemption,
InitStringDB, InitStringCharStarDB,
InitStringCharDB, MultDB, DupDB, SliceDB ;

(*

#define InitString(X) InitStringDB(X FILE LINE__)

b _— —_—— —_—

#define InitStringCharStar(X) InitStringCharStarDB(X, __FILE__, \
__LINE_.)
#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)
#define Dup(X) DupDB(X, __FILE__, __LINE__)
#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)
*)
PROCEDURE doDSdbEnter ;
BEGIN
PushAllocation

END doDSdbEnter ;

PROCEDURE doDSdbExit (s: String) ;
BEGIN

s := PopAllocationExemption (TRUE, s)
END doDSdbExit ;

PROCEDURE DSdbEnter ;
BEGIN
END DSdbEnter ;

PROCEDURE DSdbExit (s: String) ;

BEGIN
END DSdbExit ;

(*

Chapter 2: Using GNU Modula-2 26

#define DBsbEnter doDBsbEnter
#define DBsbExit doDBsbExit
*)

PROCEDURE Sprintfl (s: String; w: ARRAY OF BYTE) : String ;
BEGIN

DSdbEnter ;

s := FormatString (HandleEscape (s), w) ;

DSdbExit (s) ;

RETURN s
END Sprintfl ;

It is worth noting that the overhead of this code once —-fcpp is not present and -O2 is
used will be zero since the local empty procedures DSdbEnter and DSdbExit will be thrown
away by the optimization passes of the GCC backend.

2.10.1 Optional procedure parameter

GNU Modula-2 allows the last parameter to a procedure or function parameter to be op-
tional. For example in the ISO library COROUTINES.def the procedure NEWCOROUTINE is
defined as having an optional fifth argument (initProtection) which, if absent, is auto-
matically replaced by NIL.

PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
size: CARDINAL; VAR cr: COROUTINE;
[initProtection: PROTECTION = NIL]);

(* Creates a new coroutine whose body is given by procBody,
and returns the identity of the coroutine in cr.
workspace is a pointer to the work space allocated to
the coroutine; size specifies the size of this workspace
in terms of SYSTEM.LOC.

The optional fifth argument may contain a single parameter
which specifies the initial protection level of the coroutine.

*)

The implementation module COROUTINES.mod implements this procedure using the fol-
lowing syntax:

PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
size: CARDINAL; VAR cr: COROUTINE;
[initProtection: PROTECTION]);

BEGIN

END NEWCOROUTINE ;

Note that it is illegal for this declaration to contain an initializer value for
initProtection. However it is necessary to surround this parameter with the brackets
[and]. This serves to remind the programmer that the last parameter was declared as
optional in the definition module.

Chapter 2: Using GNU Modula-2 27

Local procedures can be declared to have an optional final parameter in which case the
initializer is mandatory in the implementation or program module.

GNU Modula-2 also provides additional fixed sized data types which are all exported
from the SYSTEM module. See Section 2.22 [The PIM system module], page 52. See Sec-
tion 2.23 [The ISO system module], page 56.

2.11 Type compatibility

This section discuss the issues surrounding assignment, expression and parameter compat-
ibility, their effect of the additional fixed sized datatypes and also their effect of run time
checking. The data types supported by the compiler are:

GNU Modula-2 scope switches
INTEGER pervasive
LONGINT pervasive
SHORTINT pervasive
CARDINAL pervasive
LONGCARD pervasive
SHORTCARD pervasive
BOOLEAN pervasive

BITSET pervasive

REAL pervasive
LONGREAL pervasive
SHORTREAL pervasive

CHAR pervasive
SHORTCOMPLEX pervasive
COMPLEX pervasive
LONGCOMPLEX pervasive

LoC SYSTEM -fiso
BYTE SYSTEM

WORD SYSTEM

ADDRESS SYSTEM

The following extensions are supported for
most architectures (please check SYSTEM.def).

INTEGERS SYSTEM
INTEGER16 SYSTEM
INTEGER32 SYSTEM
INTEGER64 SYSTEM
CARDINALS8 SYSTEM
CARDINAL16 SYSTEM
CARDINAL32 SYSTEM
CARDINALG64 SYSTEM
BITSET8 SYSTEM
BITSET16 SYSTEM

Chapter 2: Using GNU Modula-2 28

BITSET32 SYSTEM
WORD16 SYSTEM
WORD32 SYSTEM
WORD64 SYSTEM
REAL32 SYSTEM
REAL64 SYSTEM
REAL96 SYSTEM
REAL128 SYSTEM
COMPLEX32 SYSTEM
COMPLEX64 SYSTEM
COMPLEX96 SYSTEM
COMPLEX128 SYSTEM

The Modula-2 language categorizes compatibility between entities of possibly differing
types into three sub components: expressions, assignments, and parameters. Parameter
compatibility is further divided into two sections for pass by reference and pass by value
compatibility.

For more detail on the Modula-2 type compatibility see the Modula-2 ISO standard
BS ISO/IEC 10514-1:1996 page 121-125. For detail on the PIM type compatibility see
Programming in Modula-2 Edition 4 page 29, (Elementary Data Types).

2.11.1 Expression compatibility

Modula-2 restricts the types of expressions to the same type. Expression compatibility is a
symmetric relation.

For example two sub expressions of INTEGER and CARDINAL are not expression compatible
(https://freepages.modula2.org/report4/modula-2.html and ISO Modula-2).

In GNU Modula-2 this rule is also extended across all fixed sized data types (imported
from SYSTEM).

2.11.2 Assignment compatibility

This section discusses the assignment issues surrounding assignment compatibility of ele-
mentary types (INTEGER, CARDINAL, REAL and CHAR for example). The information here is
found in more detail in the Modula-2 ISO standard BS ISO/IEC 10514-1:1996 page 122.

Assignment compatibility exists between the same sized elementary types.

Same type family of different sizes are also compatible as long as the MAX (type) and
MIN (type) is known. So for example this includes the INTEGER family, CARDINAL family and
the REAL family.

The reason for this is that when the assignment is performed the compiler will check to
see that the expression (on the right of the :=) lies within the range of the designator type
(on the left hand side of the :=). Thus these ordinal types can be assignment compatible.
However it does mean that WORD32 is not compatible with WORD16 as WORD32 does not have
a minimum or maximum value and therefore cannot be checked. The compiler does not
know which of the two bytes from WORD32 should be copied into WORD16 and which two
should be ignored. Currently the types BITSET8, BITSET16 and BITSET32 are assignment
incompatible. However this restriction maybe lifted when further run time checking is
achieved.

https://freepages.modula2.org/report4/modula-2.html

Chapter 2: Using GNU Modula-2 29

Modula-2 does allow INTEGER to be assignment compatible with WORD as they are the
same size. Likewise GNU Modula-2 allows INTEGER16 to be compatible with WORD16 and
the same for the other fixed sized types and their sized equivalent in either WORDn, BYTE or
LOC types. However it prohibits assignment between WORD and WORD32 even though on many
systems these sizes will be the same. The reasoning behind this rule is that the extended
fixed sized types are meant to be used by applications requiring fixed sized data types and
it is more portable to forbid the blurring of the boundaries between fixed sized and machine
dependent sized types.

Intermediate code run time checking is always generated by the front end. However
this intermediate code is only translated into actual code if the appropriate command line
switches are specified. This allows the compiler to perform limited range checking at compile
time. In the future it will allow the extensive GCC optimizations to propagate constant
values through to the range checks which if they are found to exceed the type range will
result in a compile time error message.

2.11.3 Parameter compatibility

Parameter compatibility is divided into two areas, pass by value and pass by reference (VAR).
In the case of pass by value the rules are exactly the same as assignment. However in the
second case, pass by reference, the actual parameter and formal parameter must be the
same size and family. Furthermore INTEGER and CARDINALS are not treated as compatible
in the pass by reference case.

The types BYTE, LOC, WORD and WORDn derivatives are assignment and parameter com-
patible with any data type of the same size.

2.12 Exception handling

This section gives an example of exception handling and briefly describes its runtime be-
havior. The module below is written in the ISO dialect of Modula-2 and can be compiled
with the command line:

$ gm2 -g -fiso -fsoft-check-all lazyunique.mod

The option ‘~fsoft-check-all’ generates checks for NIL pointer access violation. In
turn this will call the exception handler.

Chapter 2: Using GNU Modula-2

MODULE lazyunique ; (*!m2iso+gm2%)

FROM Storage IMPORT ALLOCATE ;
FROM libc IMPORT printf, exit ;

TYPE
List = POINTER TO RECORD
next : List ;
value: INTEGER ;
END ;

Array = ARRAY [0..3] OF INTEGER ;

CONST
Unsorted = Array {0, 2, 1, 1} ;

VAR
head: List ;

PROCEDURE Display ;
VAR
p: List ;
BEGIN
p := head” .next ;
printf ("\nunique data\n");
printf ("=s=s=s=======\n");
WHILE p # NIL DO
printf ("%d\n", p~.value);
p := p~ .next
END
END Display ;

PROCEDURE Add (VAR p: List; val: INTEGER) ;

BEGIN
NEW (p) ;
WITH p~ DO
value := val ;
next := NIL
END

END Add ;

30

Chapter 2: Using GNU Modula-2

PROCEDURE Unique (val: INTEGER) ;
VAR
p: List ;
BEGIN
printf ("new value %d\n", val);
p := head ;
(* The following line may cause an exception accessing next or
value. *)
WHILE p~.next”.value # val DO
p := p~ .next
END
EXCEPT
(* Now fixup. Determine the source of the exception and retry.
IF head = NIL
THEN
printf ("list was empty, add sentinal\n");
Add (head, -1) ;
RETRY (* Jump back to the begin statement. *)
ELSIF p~.next = NIL
THEN
printf ("growing the list\n");
Add (p~.next, val) ;
RETRY (* Jump back to the begin statement. *)
ELSE
printf ("should never reach here!\n");
END
END Unique ;

PROCEDURE unique ;
VAR
i: CARDINAL ;
BEGIN
FOR i := 0 TO HIGH (Unsorted) DO
Unique (Unsorted[i])
END ;
Display
END unique ;

BEGIN
head := NIL ;
unique

END lazyunique.

Chapter 2: Using GNU Modula-2 32

new value 0O

list was empty, add sentinal
new value O
growing the list
new value 0

new value 2
growing the list
new value 2

new value 1
growing the list
new value 1

new value 1

unique data

2.13 Unbounded by reference

This section documents a GNU Modula-2 compiler switch which implements a language
optimization surrounding the implementation of unbounded arrays. In GNU Modula-2
the unbounded array is implemented by utilizing an internal structure struct {dataType
xaddress, unsigned int high}. So given the Modula-2 procedure declaration:

PROCEDURE foo (VAR a: ARRAY OF dataType) ;
BEGIN
IF a[2]= (* etc *)
END foo ;
it is translated into GCC trees, which can be represented in their C form thus:

void foo (struct {dataType *address, unsigned int high} a)
{

if (a.address[2] == /* etc */
}

Whereas if the procedure foo was declared as:

PROCEDURE foo (a: ARRAY OF dataType) ;
BEGIN
IF a[2]= (* etc *)
END foo ;
then it is implemented by being translated into the following GCC trees, which can be
represented in their C form thus:

void foo (struct {dataType *address, unsigned int high} a)
{
dataType *copyContents = (dataType *)alloca (a.high+1);
memcpy (copyContents, a.address, a.high+1);
a.address = copyContents;

Chapter 2: Using GNU Modula-2 33

if (a.address[2] == /* etc */
}

This implementation works, but it makes a copy of each non VAR unbounded array when
a procedure is entered. If the unbounded array is not changed during procedure foo then
this implementation will be very inefficient. In effect Modula-2 lacks the REF keyword of
Ada. Consequently the programmer maybe tempted to sacrifice semantic clarity for greater
efficiency by declaring the parameter using the VAR keyword in place of REF.

The -funbounded-by-reference switch instructs the compiler to check and see if the
programmer is modifying the content of any unbounded array. If it is modified then a copy
will be made upon entry into the procedure. Conversely if the content is only read and never
modified then this non VAR unbounded array is a candidate for being passed by reference.
It is only a candidate as it is still possible that passing this parameter by reference could
alter the meaning of the source code. For example consider the following case:

PROCEDURE StrConCat (VAR a: ARRAY OF CHAR; b, c: ARRAY OF CHAR) ;
BEGIN

(* code which performs string a := b + c *)
END StrConCat ;

PROCEDURE foo ;

VAR

a: ARRAY [0..3] OF CHAR ;
BEGIN

a:="'q' ;

StrConCat(a, a, a)
END foo ;

In the code above we see that the same parameter, a, is being passed three times to
StrConCat. Clearly even though parameters b and c are never modified it would be incorrect
to implement them as pass by reference. Therefore the compiler checks to see if any non
VAR parameter is type compatible with any VAR parameter and if so it generates run time
procedure entry checks to determine whether the contents of parameters b or ¢ matches the
contents of a. If a match is detected then a copy is made and the address in the unbounded
structure is modified.

The compiler will check the address range of each candidate against the address range
of any VAR parameter, providing they are type compatible. For example consider:

PROCEDURE foo (a: ARRAY OF BYTE; VAR f: REAL) ;
BEGIN

f := 3.14 ;

IF a[0]=BYTE(0)

THEN

(* etc *)

END

END foo ;

PROCEDURE bar ;

Chapter 2: Using GNU Modula-2 34

BEGIN
r := 2.0 ;
foo(r, r)
END bar ;

Here we see that although parameter, a, is a candidate for the passing by reference, it
would be incorrect to use this transformation. Thus the compiler detects that parameters,
a and f are type compatible and will produce run time checking code to test whether the
address range of their respective contents intersect.

2.14 Building a shared library

This section describes building a tiny shared library implemented in Modula-2 and built
with 1ibtool. Suppose a project consists of two definition modules and two implementation
modules and a program module a.def, a.mod, b.def, b.mod and c.mod. The first step is to
compile the modules using position independent code. This can be achieved by the following
three commands:

libtool --tag=CC --mode=compile gm2 -g -c a.mod -o a.lo
libtool --tag=CC --mode=compile gm2 -g -c b.mod -o b.lo
libtool --tag=CC --mode=compile gm2 -g -c c.mod -o c.lo

The second step is to generate the shared library initialization and finalization routines.
We can do this by asking gm?2 to generate a list of dependent modules and then use this to
generate the scaffold. We also must compile the scaffold.

gm2 -c -g -fmakelist c.mod
gm2 -c -g -fmakeinit -fshared c.mod
libtool --tag=CC --mode=compile g++ -g -c c_m2.cpp -o c_m2.lo

The third step is to link all these .1lo files.

libtool --mode=link gcc -g c_m2.lo a.lo b.lo c.lo \
-L$(prefix)/1ib64 \
-rpath “pwd® -1lgm2 -lstdc++ -1lm -o libabc.la
At this point the shared library libabc.so will have been created inside the directory
.1ibs.

2.15 How to produce swig interface files

This section describes how Modula-2 implementation modules can be called from Python
(and other scripting languages such as TCL and Perl). GNU Modula-2 can be instructed to
create a swig interface when it is compiling an implementation module. Swig then uses the
interface file to generate all the necessary wrapping to that the desired scripting language
may access the implementation module.

Here is an example of how you might call upon the services of the Modula-2 library
module NumberIO from Python3.

The following commands can be used to generate the Python3 module:

export src=‘directory to the sources’
export prefix=‘directory to where the compiler is installed’
gm2 -I${src} -c -g -fswig ${src}/../../../gm2-1ibs/NumberIO.mod

Chapter 2: Using GNU Modula-2 35

gm2 -I${src} -c -g -fmakelist ${src}/../../../gm2-1libs/NumberIO.mod

gm2 -I${src} -c -g -fmakeinit -fshared \
${src}/../../../gn2-1ibs/NumberI0.mod

swig —-c++ -python3 NumberIO.i

libtool --mode=compile g++ -g -c¢ -I${src} NumberIO_m2.cpp \
-0 NumberIO_m2.lo

libtool --tag=CC --mode=compile gm2 -g -c \
-I${src}../../../gm2-1ibs \
${src}/../../../gn2-1ibs/NumberI0.mod -o NumberIO.lo

libtool --tag=CC --mode=compile g++ -g -c NumberIO_wrap.cxx \
-I/usr/include/python3 -o NumberIO_wrap.lo

libtool --mode=link gcc -g NumberIO_m2.lo NumberIO_wrap.lo \
-L${prefix}/1ib64 \
-rpath “pwd® -1gm2 -lstdc++ -1lm -o libNumberIO.la

cp .libs/1libNumberI0.so _NumberIO.so

The first four commands, generate the swig interface file NumberI0.i and python wrap
files NumberIO_wrap.cxx and NumberIO.py. The next three 1libtool commnads compile
the C++ and Modula-2 source code into .1lo objects. The last 1ibtool command links all
the .1o files into a .1la file and includes all shared library dependencies.

Now it is possible to run the following Python script (called testnum.py):

import NumberIO

print ("1234 x 2 =", NumberIO.NumberIO_StrToInt("1234")*2)
like this:

$ python3 testnum.py
1234 x 2 = 2468

See Section 2.16 [Producing a Python module], page 36, for another example which uses
the UNQUALIFIED keyword to reduce the module name clutter from the viewport of Python3.

2.15.1 Limitations of automatic generated of Swig files

This section discusses the limitations of automatically generating swig files. From the
previous example we see that the module NumberIO had a swig interface file NumberIO.1
automatically generated by the compiler. If we consider three of the procedure definitions in
NumberIO.def we can see the success and limitations of the automatic interface generation.

PROCEDURE StrToHex (a: ARRAY OF CHAR; VAR x: CARDINAL) ;
PROCEDURE StrToInt (a: ARRAY OF CHAR; VAR x: INTEGER)
PROCEDURE ReadInt (VAR x: CARDINAL) ;

Below are the swig interface prototypes:

I

Chapter 2: Using GNU Modula-2 36

extern void NumberIO_StrToHex (char *_m2_address_a,
int _m2_high_a, unsigned int *QUTPUT);
/* parameters: x is known to be an OUTPUT */
extern void NumberIO_StrToInt (char *_m2_address_a,
int _m2_high_a, int *0UTPUT);
/* parameters: x is guessed to be an OUTPUT */
extern void NumberIO_ReadInt (int *x);
/* parameters: x is unknown */

In the case of StrToHex it can be seen that the compiler detects that the last parameter
is an output. It explicitly tells swig this by using the parameter name OUTPUT and in the
following comment it informs the user that it knows this to be an output parameter. In
the second procedure StrTolInt it marks the final parameter as an output, but it tells the
user that this is only a guess. Finally in ReadInt it informs the user that it does not know
whether the parameter, x, is an output, input or an inout parameter.

The compiler decides whether to mark a parameter as either: INPUT, OUTPUT or INOUT
if it is read before written or visa versa in the first basic block. At this point it will write
output that the parameter is known. If it is not read or written in the first basic block
then subsequent basic blocks are searched and the result is commented as a guess. Finally
if no read or write occurs then the parameter is commented as unknown. However, clearly
it is possible to fool this mechanism. Nevertheless automatic generation of implementation
module into swig interface files was thought sufficiently useful despite these limitations.

In conclusion it would be wise to check all parameters in any automatically generated
swig interface file. Furthermore you can force the automatic mechanism to generate correct
interface files by reading or writing to the VAR parameter in the first basic block of a
procedure.

2.16 How to produce a Python module

This section describes how it is possible to produce a Python module from Modula-2 code.
There are a number of advantages to this approach, it ensures your code reaches a wider
audience, maybe it is easier to initialize your application in Python.

The example application here is a pedagogical two dimensional gravity next event sim-
ulation. The Python module needs to have a clear API which should be placed in a single
definition module. Furthermore the API should only use fundamental pervasive data types
and strings. Below the API is contained in the file twoDsim.def:

DEFINITION MODULE twoDsim ;

EXPORT UNQUALIFIED gravity, box, poly3, polyb, poly6, mass,
fix, circle, pivot, velocity, accel, fps,
replayRate, simulateFor ;

(*

gravity - turn on gravity at: g m"2

*)

PROCEDURE gravity (g: REAL) ;

Chapter 2: Using GNU Modula-2

(*
box - place a box in the world at (x0,y0), (x0+i,y0+j)
*)

PROCEDURE box (x0, yO, i, j: REAL) : CARDINAL ;

(*
poly3 - place a triangle in the world at:
(x0,y0), (x1,y1), (x2,y2)
*)

PROCEDURE poly3 (x0, yO, x1, yl1, x2, y2: REAL) : CARDINAL ;

(*
polyb - place a pentagon in the world at:
(x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4)
*)

PROCEDURE poly5 (x0, yO0, x1, yi,
x2, y2, x3, y3, x4, y4: REAL) : CARDINAL ;

(*
poly6 - place a hexagon in the world at:
(x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4) , (x5,y5)
*)

PROCEDURE poly6 (x0, yO, x1, yi,
x2, y2, x3, y3,
x4, y4, x5, y5: REAL) : CARDINAL ;

(*
mass - specify the mass of an object and return the, id.

*)
PROCEDURE mass (id: CARDINAL; m: REAL) : CARDINAL ;
(*
fix - fix the object to the world.
*)

PROCEDURE fix (id: CARDINAL) : CARDINAL ;

37

Chapter 2: Using GNU Modula-2

(*
circle - adds a circle to the world. Center
defined by: x0, yO radius, r.
*)

PROCEDURE circle (x0, yO, r: REAL) : CARDINAL ;
(*
velocity - give an object, id, a velocity, vx, vy.
*)
PROCEDURE velocity (id: CARDINAL; vx, vy: REAL) : CARDINAL
€
accel - give an object, id, an acceleration, ax, ay.
*)
PROCEDURE accel (id: CARDINAL; ax, ay: REAL) : CARDINAL ;
(*
fps - set frames per second.
*)
PROCEDURE fps (f: REAL) ;
(*
replayRate - set frames per second during replay.
*)
PROCEDURE replayRate (f: REAL) ;
(*
simulateFor - render for, t, seconds.
*)

PROCEDURE simulateFor (t: REAL) ;

END twoDsim.

I

38

Chapter 2: Using GNU Modula-2

39

The keyword UNQUALIFIED can be used to ensure that the compiler will provide exter-
nally accessible functions gravity, box, poly3, poly5, poly6, mass, fix, circle, pivot,
velocity, accel, fps, replayRate, simulateFor rather than name mangled alternatives.
Hence in our Python3 application we could write:

#!/usr/bin/env python3
from twoDsim import x*

b = box (0.0, 0.0, 1.0, 1.0)
b = fix (b)
cl = circle (0.7, 0.7, 0.05)
cl = mass (c1, 0.01)
c2 = circle (0.7, 0.1, 0.05)
c2 = mass (c2, 0.01)
c2 = fix (c2)
gravity (-9.81)
fps (24.0%4.0)
replayRate (24.0)
print ("creating frames")
try:

simulateFor (1.0)

print ("all done")
except:

print ("exception raised")

which accesses the various functions defined and implemented by the module twoDsim.
The Modula-2 source code is compiled via:

$ gm2 -g -fiso -c -fswig twoDsim.mod

$ gmn2 -g -fiso -c -fmakelist
$ gm2 -g -fiso -c -fmakeinit

twoDsim.mod
twoDsim.mod

The first command both compiles the source file creating twoDsim.o and produces a
swig interface file swig.i. We now use swig and g++ to produce and compile the interface

wrappers:

$ libtool --mode=compile g++

$ swig -c++ -python3 twoDsim.

$ libtool --mode=compile g++
-I/usr/include/python3 -o
$ libtool --mode=compile gm2
libtool --mode=compile gm2
$ libtool --mode=compile gm2
twoDsim.mod -o twoDsim.lo

>

$ libtool --mode=link gcc -g
roots.lo deviceGnuPic.lo \
-L${prefix}/1ib64 \

-g -c twoDsim_m2.cpp -o twoDsim_m2.lo
i

-c -fPIC twoDsim_wrap.cxx \
twoDsim_wrap.lo

—-g —fPIC —fiso -c deviceGnuPic.mod
-g —fPIC -fiso -c roots.mod

-g -fPIC -fiso -c -fswig \

Finally the application is linked into a shared library:

twoDsim_m2.lo twoDsim_wrap.lo \

-rpath “pwd® -1gm2 -lstdc++ -1lm -o libtwoDsim.la

Chapter 2: Using GNU Modula-2 40

cp .libs/libtwoDsim.so _twoDsim.so

The library name must start with _ to comply with the Python3 module naming scheme.

2.17 Interfacing GNU Modula-2 to C

The GNU Modula-2 compiler tries to use the C calling convention wherever possible however
some parameters have no C equivalent and thus a language specific method is used. For
example unbounded arrays are passed as a struct {void *address, unsigned int high}
and the contents of these arrays are copied by callee functions when they are declared as
non VAR parameters. The VAR equivalent unbounded array parameters need no copy, but
still use the struct representation.

The recommended method of interfacing GNU Modula-2 to C is by telling the definition
module that the implementation is in the C language. This is achieved by using the tokens
DEFINITION MODULE FOR "C". Here is an example 1ibprintf.def.

DEFINITION MODULE FOR "C" libprintf ;
EXPORT UNQUALIFIED printf ;
PROCEDURE printf (a: ARRAY OF CHAR; ...) : [INTEGER] ;

END libprintf.

the UNQUALIFIED keyword in the definition module informs GNU Modula-2 not to prefix
the module name to exported references in the object file.

The printf declaration states that the first parameter semantically matches ARRAY OF
CHAR but since the module is for the C language it will be mapped onto char *. The token

. indicates a variable number of arguments (varargs) and all parameters passed here are
mapped onto their C equivalents. Arrays and constant strings are passed as pointers. Lastly
[INTEGER] states that the caller can ignore the function return result if desired.

The hello world program can be rewritten as:
MODULE hello ;

FROM libprintf IMPORT printf ;

BEGIN
printf ("hello world\n")
END hello.

and it can be compiled by:
‘gm2 -g hello.mod -1c’

In reality the ‘-1c¢’ is redundant as libc is always included in the linking process. It
is shown here to emphasize that the C library or object file containing printf must be
present. The search path for modules can be changed by using ‘-I’.

If a procedure function is declared using varargs then some parameter values are con-
verted. The table below summarizes the default conversions and default types used.

Actual Parameter | Default conversion | Type of actual

Chapter 2: Using GNU Modula-2 41

| | value passed

123 | none | long long int
"hello world" | none I const char *
a: ARRAY OF CHAR | ADR (a) | char *

a: ARRAY [0..5] OF CHAR| ADR (a) | char *

3.14 | none | long double

If you wish to pass int values then you should explicitly convert the constants using
one of the conversion mechanisms. For example: INTEGER(10) or VAL(INTEGER, 10) or
CAST (INTEGER, 10).

2.18 Interface to assembly language

The interface for GNU Modula-2 to assembly language is almost identical to GNU C. The
only alterations are that the keywords asm and volatile are in capitals, following the
Modula-2 convention.

A simple, but highly non optimal, example is given below. Here we want to add the two
CARDINALs foo and bar together and return the result. The target processor is assumed to
be executing the x86_64 instruction set.

PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;

VAR
myout: CARDINAL ;
BEGIN
ASM VOLATILE ("movl %1,%%eax; addl %2,%%eax; movl %%eax,%0"
"=rm" (myout) (* outputs *)
"rm" (foo), "rm" (bar) (* inputs *)
"eax") ; (* we trash *)
RETURN(myout)
END Example ;

For a full description of this interface we refer the reader to the GNU C manual.
See Section “Extensions to the C Language Family” in gcc.

The same example can be written using the newer extensions of naming the operands
rather than using numbered arguments.
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;
VAR
myout: CARDINAL ;
BEGIN
ASM VOLATILE (
"movl %[left],%keax; addl %[right],%%eax; movl %%eax,’%[output]"

[output] "=rm" (myout) (* outputs *)
[left] "rm" (foo), [right] "rm" (bar) (* inputs *)
"eax") ; (* we trash *)
RETURN (myout)
END Example ;

Both examples generate exactly the same code. It is worth noting that the specifier “rm”
indicates that the operand can be either a register or memory. Of course you must choose

Chapter 2: Using GNU Modula-2 42

an instruction which can take either, but this allows the compiler to make more efficient
choices depending upon the optimization level.

2.19 Data type alignment

GNU Modula-2 allows you to specify alignment for types and variables. The syntax for
alignment is to use the ISO pragma directives <* bytealignment (expression) and *>.
These directives can be used after type and variable declarations.

The ebnf of the alignment production is:

Alignment := [ByteAlignment] =:
ByteAlignment := '<x*' AttributeExpression '*>' =
AlignmentExpression := "(" ConstExpression ")" =

The Alignment ebnf statement may be used during construction of types, records, record
fields, arrays, pointers and variables. Below is an example of aligning a type so that the
variable bar is aligned on a 1024 address.

MODULE align ;

TYPE
foo = INTEGER <* bytealignment (1024) *> ;

VAR
z : INTEGER ;
bar: foo ;
BEGIN
END align.

The next example aligns a variable on a 1024 byte boundary.
MODULE align2 ;

VAR

x : CHAR ;

z : ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;
BEGIN
END align2.

Here the example aligns a pointer on a 1024 byte boundary.
MODULE align4 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

VAR

x : CHAR ;

z : POINTER TO INTEGER <* bytealignment(1024) *> ;
BEGIN

IF ADR(z) MOD 1024=0
THEN

Chapter 2: Using GNU Modula-2 43

exit (0)
ELSE
exit (1)
END
END align4.

In example alignb record field y is aligned on a 1024 byte boundary.
MODULE alignb ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
rec = RECORD
x: CHAR ;
y: CHAR <* bytealignment(1024) *> ;
END ;
VAR
r: rec ;
BEGIN
IF ADR(r.y) MOD 1024=0
THEN
exit (0)
ELSE
exit (1)
END
END alignb.

In the example below module align6 declares foo as an array of 256 INTEGERs. The
array foo is aligned on a 1024 byte boundary.

MODULE align6 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
foo = ARRAY [0..255] OF INTEGER <* bytealignment(1024) x> ;

VAR
x : CHAR ;
z : foo ;
BEGIN
IF ADR(z) MOD 1024=0
THEN
exit (0)
ELSE
exit (1)
END

Chapter 2: Using GNU Modula-2 44

END align6.

2.20 Packing data types

The pragma <* bytealignment (0) *> can be used to specify that the fields within a RECORD
are to be packed. Currently this only applies to fields which are declared as subranges,
ordinal types and enumerated types. Here is an example of how two subranges might be
packed into a byte.

TYPE
bits3c = [0..7] ;
bits3i = [-4..3] ;

byte = RECORD
<* bytealignment(0) *>

X: bits3c ;
<* bitsunused(2) *>
y: bits3i ;

END ;

Notice that the user has specified that in between fields x and y there are two bits
unused.

Now the user wishes to create a record with byte numbers zero and one occupied and then
an INTEGER32 field which is four byte aligned. In this case byte numbers two and three will
be unused. The pragma bytealignment can be issued at the start of the record indicating
the default alignment for the whole record and this can be overridden by individual fields
if necessary.

rec = RECORD
<* bytealignment (1) *> ;
a, b: byte ;
x: INTEGER32 <* bytealignment(4) *> ;
END ;

In the following example the user has specified that a record has two fields p and q but
that there are three bytes unused between these fields.

header = RECORD
<* bytealignment(1l) *>

p: byte ;
<* bytesunused(3) *>
q: byte ;

END ;

The pragma <* bytesunused(x) *> can only be used if the current field is on a byte
boundary. There is also a SYSTEM pseudo procedure function TBITSIZE(T) which returns
the minimum number of bits necessary to represent type T.

Another example of packing record bit fields is given below:
MODULE align21 ;

FROM 1libc IMPORT exit ;

Chapter 2: Using GNU Modula-2 45

TYPE
colour = (red, blue, green, purple, white, black) ;

soc PACKEDSET OF colour ;
rec = RECORD
<* bytealignment(0) *>
X: socC ;
y: [-1..1] ;
END ;

VAR
r: rec ;
v: CARDINAL ;
BEGIN
v := SIZE(r) ;
IF SIZE(r)#1
THEN
exit (1)
END ;
r.x := soc{blue} ;
IF r.x#soc{blue}
THEN
exit (2)
END
END align21.

Here we see that the total size of this record is one byte and consists of a six bit set type
followed by a 2 bit integer subrange.

2.21 Accessing GNU Modula-2 Built-ins

This section describes the built-in constants and functions defined in GNU Modula-2. The
following compiler constants can be accessed using the __ATTRIBUTE__ __BUILTIN__ key-
words. These are not part of the Modula-2 language and they may differ depending upon
the target architecture but they provide a method whereby common libraries can interface
to a different underlying architecture.

The built-in constants are: BITS_PER_UNIT, BITS_PER_WORD, BITS_PER_CHAR and
UNITS_PER_WORD. They are integrated into GNU Modula-2 by an extension to the
ConstFactor rule:

ConstFactor := ConstQualidentOrSet | Number | ConstString |

"(" ConstExpression ")" | "NOT" ConstFactor |
ConstAttribute =:
ConstAttribute := "__ATTRIBUTE__" "__BUILTIN__" "(" "(" Ident ")" ")" =:

Here is an example taken from the ISO library SYSTEM.def:

Chapter 2: Using GNU Modula-2 46

CONST
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

Built-in functions are transparent to the end user. All built-in functions are declared
in DEFINITION MODULEs and are imported as and when required. Built-in functions are
declared in definition modules by using the __BUILTIN__ keyword. Here is a section of the
ISO library LongMath.def which demonstrates this feature.

PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
(* Returns the square root of x *)

This indicates that the function sqrt will be implemented using the gce built-in maths
library. If gee cannot utilize the built-in function (for example if the programmer requested
the address of sqrt) then code is generated to call the alternative function implemented in
the IMPLEMENTATION MODULE.

Sometimes a function exported from the DEFINITION MODULE will have a different name
from the built-in function within gee. In such cases the mapping between the GNU Modula-
2 function name and the gcc name is expressed using the keywords __ATTRIBUTE__ __
BUILTIN__ ((Ident)). For example the function sqrt in LongMath.def maps onto the gcc
built-in function sqrtl and this is expressed as:

PROCEDURE __ATTRIBUTE BUILTIN__ ((sqrtl)) sqrt
(x: LONGREAL)
(* Returns the positive square root of x *)

: LONGREAL;

The following module Builtins.def enumerates the list of built-in functions which can
be accessed in GNU Modula-2. It also serves to define the parameter and return value for
each function:

DEFINITION MODULE Builtins ;

FROM SYSTEM IMPORT ADDRESS ;

(* Floating point intrinsic procedure functions. %)
PROCEDURE __BUILTIN__ isnanf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnan (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanl (x: LONGREAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinitef (x: SHORTREAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinite (x: REAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinitel (x: LONGREAL) INTEGER ;
PROCEDURE __BUILTIN__ sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sinl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ cosl (x: LONGREAL) : LONGREAL ;

Chapter 2: Using GNU Modula-2 47

PROCEDURE __BUILTIN__ sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sqrtl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ atan2 (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ atan2l (x, y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ fabsf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ fabs (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ fabsl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ loglOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ loglO (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl0l (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ explOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ expl0 (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl0l (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ ilogbf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogb (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogbl (x: LONGREAL) : INTEGER ;
PROCEDURE __BUILTIN__ huge_val () : REAL ;
PROCEDURE __BUILTIN__ huge_valf () : SHORTREAL ;
PROCEDURE __BUILTIN__ huge_vall () : LONGREAL ;
PROCEDURE __BUILTIN__ modf (x: REAL; VAR y: REAL) : REAL ;
PROCEDURE __BUILTIN__ modff (x: SHORTREAL;

VAR y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ signbit (r: REAL) INTEGER ;
PROCEDURE __BUILTIN__ signbitf (s: SHORTREAL) INTEGER ;
PROCEDURE __BUILTIN__ signbitl (1: LONGREAL) : INTEGER ;
PROCEDURE __BUILTIN__ nextafter (x, y: REAL) : REAL ;

Chapter 2: Using GNU Modula-2 48

PROCEDURE __BUILTIN__ nextafterf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ nextafterl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ nexttoward (x: REAL; y: LONGREAL) : REAL ;

PROCEDURE __BUILTIN__ nexttowardf (x: SHORTREAL; y: LONGREAL) : SHORTREAL ;Jj
PROCEDURE __BUILTIN__ nexttowardl (x, y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ scalbln (x: REAL; n: LONGINT) : REAL ;

PROCEDURE __BUILTIN__ scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbn (x: REAL; n: INTEGER) : REAL ;
PROCEDURE __BUILTIN__ scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL ;

PROCEDURE __BUILTIN__ isgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isgreaterequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isless (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islessequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islessgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isunordered (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ iseqsig (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isnormal (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormalf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormall (1: LONGREAL) : INTEGER ;

Chapter 2: Using GNU Modula-2

PROCEDURE __BUILTIN__ isinf_sign (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signl (1: LONGREAL) : INTEGER ;

(* Complex arithmetic intrincic procedure functions. *)

PROCEDURE __BUILTIN__ cabsf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ cabs (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cabsl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ cargf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ carg (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cargl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ conjf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ conj (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ conjl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cpowerf (base: SHORTCOMPLEX;

exp: SHORTREAL) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cpower (base: COMPLEX; exp: REAL) : COMPLEX ;
PROCEDURE __BUILTIN__ cpowerl (base: LONGCOMPLEX;

exp: LONGREAL) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ csqrtf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csqrt (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csqrtl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cexp (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ cexpl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ clnf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cln (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ clnl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ csinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csin (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csinl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ccos (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ctan (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

(* memory

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_

Chapter 2: Using GNU Modula-2

carcsinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
carcsin (z: COMPLEX) : COMPLEX ;

carcsinl (z: LONGCOMPLEX) : LONGCOMPLEX ;
carccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
carccos (z: COMPLEX) : COMPLEX ;

carccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;
carctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
carctan (z: COMPLEX) : COMPLEX ;

carctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

and string intrincic procedure functions *)

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_

__BUILTIN_

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_

alloca (i: CARDINAL) : ADDRESS ;
memcpy (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
index (s: ADDRESS; c: INTEGER) : ADDRESS ;
rindex (s: ADDRESS; c: INTEGER) : ADDRESS ;
memcmp (s1, s2: ADDRESS;

nbytes: CARDINAL) INTEGER ;
memset (s: ADDRESS; c: INTEGER;

nbytes: CARDINAL) : ADDRESS ;
memmove (s1, s2: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcat (dest, src: ADDRESS) : ADDRESS ;
strncat (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcpy (dest, src: ADDRESS) : ADDRESS ;
strncpy (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcmp (s1, s2: ADDRESS) INTEGER ;
strncmp (s1, s2: ADDRESS;

nbytes: CARDINAL) : INTEGER ;

strlen (s: ADDRESS) INTEGER ;
strstr (haystack, needle: ADDRESS)
strpbrk (s, accept: ADDRESS)
strspn (s, accept: ADDRESS) : CARDINAL ;
strcspn (s, accept: ADDRESS) : CARDINAL ;
strchr (s: ADDRESS; c: INTEGER) : ADDRESS ;
strrchr (s: ADDRESS; c: INTEGER) : ADDRESS ;

: ADDRESS ;
: ADDRESS ;

clz (value: CARDINAL) : INTEGER ;
c¢l1z1l (value: LONGCARD) : INTEGER ;
ctz (value: CARDINAL) : INTEGER ;
ctzll (value: LONGCARD) INTEGER ;

50

Chapter 2: Using GNU Modula-2 51

(*
longjmp - this GCC builtin restricts the val to always 1.
*)
(* do not use these two builtins, as gcc, only really
anticipates that the Ada front end should use them
and it only uses them in its runtime exception handling.
We leave them here in the hope that someday they will
behave more like their libc counterparts. *)

PROCEDURE __BUILTIN__ longjmp (env: ADDRESS; val: INTEGER) ;
PROCEDURE __BUILTIN__ setjmp (env: ADDRESS) : INTEGER ;

(*
frame_address - returns the address of the frame.
The current frame is obtained if level is O,
the next level up if level is 1 etc.

*)

PROCEDURE __BUILTIN__ frame_address (level: CARDINAL) : ADDRESS ;

(*
return_address - returns the return address of function.
The current function return address is
obtained if level is O,
the next level up if level is 1 etc.

*)

PROCEDURE __BUILTIN__ return_address (level: CARDINAL) : ADDRESS ;

(*
alloca_trace - this is a no-op which is used for internal debugging.

*)

PROCEDURE alloca_trace (returned: ADDRESS; nBytes: CARDINAL) : ADDRESS ;

END Builtins.

Although this module exists and will result in the generation of in-line code if optimiza-
tion flags are passed to GNU Modula-2, users are advised to utilize the same functions from
more generic libraries. The built-in mechanism will be applied to these generic libraries
where appropriate. Note for the mathematical routines to be in-lined you need to specify
the ‘~ffast-math -0’ options.

Chapter 2: Using GNU Modula-2 52

2.22 The PIM system module
DEFINITION MODULE SYSTEM ;

EXPORT QUALIFIED BITSPERBYTE, BYTESPERWORD,
ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, COFF_T, CARDINAL64, (xii
Target specific data types. *)
ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE ;
(* SIZE is also exported if -fpim2 is used. *)

CONST
BITSPERBYTE = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
BYTESPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINALG64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. *)

(* The following types are supported on this target:
TYPE

(* Target specific data types. *)
*)

(*
all the functions below are declared internally to gm2

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE SIZE (v: <type>) : ZType;
(* Returns the number of BYTES used to store a v of
any specified <type>. Only available if -fpim2 is used.
*)

Chapter 2: Using GNU Modula-2 53

PROCEDURE TSIZE (<type>) : CARDINAL;
(* Returns the number of BYTES used to store a value of the
specified <type>.
*)

PROCEDURE ROTATE (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up/right
or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
*)

PROCEDURE SHIFT (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up/left
or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.

*)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
(*

THROW is a GNU extension and was not part of the PIM or ISO
standards. It throws an exception which will be caught by the
EXCEPT block (assuming it exists). This is a compiler builtin
function which interfaces to the GCC exception handling runtime
system.
GCC uses the term throw, hence the naming distinction between
the GCC builtin and the Modula-2 runtime library procedure Raise.
The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.

*)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
(* Returns the minimum number of bits necessary to represent
<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.
*)
*)

(* The following procedures are invoked by GNU Modula-2 to
shift non word sized set types. They are not strictly part
of the core PIM Modula-2, however they are used
to implement the SHIFT procedure defined above,

Chapter 2: Using GNU Modula-2

which are in turn used by the Logitech compatible libraries.

Users will access these procedures by using the procedure
SHIFT above and GNU Modula-2 will map SHIFT onto one of
the following procedures.

(*
ShiftVal - is a runtime procedure whose job is to implement
the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will
inline a SHIFT of a single WORD sized set and will only
call this routine for larger sets.

*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: INTEGER) ;

(*
ShiftLeft - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
ShiftRight - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
RotateVal - is a runtime procedure whose job is to implement
the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
inline a ROTATE of a single WORD (or less)
sized set and will only call this routine for larger

54

Chapter 2: Using GNU Modula-2 55

sets.

*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: INTEGER) ;

(*
RotateLeft - performs the rotate left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

(*
RotateRight - performs the rotate right for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

END SYSTEM.

The different dialects of Modula-2 PIM-[234] and ISO Modula-2 declare the function
SIZE in different places. PIM-[34] and ISO Modula-2 declare SIZE as a pervasive function
(declared in the base module). PIM-2 defined SIZE in the SYSTEM module (as shown above).

GNU Modula-2 allows users to specify the dialect of Modula-2 by using the -fiso and
-fpim2 command line switches.

The data types CSIZE_T, CSSIZE_T and COFF_T are also exported from the SYSTEM
module. The type CSIZE_T is unsigned and is mapped onto the target C data type size_t
whereas the type CSSIZE_T is mapped onto the signed C data type ssize_t. The default
size for the signed type COFF_T is the same as CSSIZE_T and this can be overridden by the
-fm2-file-offset-bits= command line option.

It is anticipated that these should only be used to provide cross platform definition
modules for C libraries.

Chapter 2: Using GNU Modula-2 56

There are also a variety of fixed sized INTEGER and CARDINAL types. The variety of the
fixed sized types will depend upon the target architecture.

2.23 The ISO system module
DEFINITION MODULE SYSTEM;

(* Gives access to system programming facilities that are probably
non portable. *)

(* The constants and types define underlying properties of storage *)

EXPORT QUALIFIED BITSPERLOC, LOCSPERWORD,
LOC, BYTE, WORD, ADDRESS, CSIZE_T, CSSIZE_T, COFF_T, (x
Target specific data types. *)
ADDADR, SUBADR, DIFADR, MAKEADR, ADR, ROTATE,
SHIFT, CAST, TSIZE,

(* Internal GM2 compiler functions *)
ShiftVal, ShiftLeft, ShiftRight,
RotateVal, RotateLeft, RotateRight,
THROW, TBITSIZE ;

CONST
(* <implementation-defined constant> ; *)
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
(* <implementation-defined constant> ; *)
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* <implementation-defined constant> ; *)
LOCSPERBYTE = 8 DIV BITSPERLOC ;

(x Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINALG64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. *)

(*

All the data types and procedures below are declared internally.

Chapter 2: Using GNU Modula-2 57

TYPE
(* Target specific data types. *)

TYPE
LOC; (* A system basic type. Values are the uninterpreted
contents of the smallest addressable unit of storage *)
ADDRESS = POINTER TO LOC;
WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)

TYPE
BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr + offset), or may raise
an exception if this address is not valid.

*)

PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr - offset), or may raise an
exception if this address is not valid.

*)

PROCEDURE DIFADR (addrl, addr2: ADDRESS): INTEGER;
(* Returns the difference between addresses (addrl - addr2),
or may raise an exception if the arguments are invalid
or address space is non-contiguous.

*)

PROCEDURE MAKEADR (high: <some type>; ...): ADDRESS;
(* Returns an address constructed from a list of values whose
types are implementation-defined, or may raise an
exception if this address is not valid.

In GNU Modula-2, MAKEADR can take any number of arguments
which are mapped onto the type ADDRESS. The first parameter
maps onto the high address bits and subsequent parameters map
onto lower address bits. For example:

a := MAKEADR(BYTE(OFEH), BYTE(ODCH), BYTE(OBAH), BYTE(098H),
BYTE(076H) , BYTE(054H), BYTE(032H), BYTE(O10H)) ;

then the value of, a, on a 64 bit machine is: OFEDCBA9876543210H

Chapter 2: Using GNU Modula-2 58

The parameters do not have to be the same type, but constants
must be typed.
*)

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE ROTATE (val: <a packedset type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up/right
or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
*)

PROCEDURE SHIFT (val: <a packedset type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up/left
or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.

*)

PROCEDURE CAST (<targettype>; val: <anytype>): <targettype>;
(* CAST is a type transfer function. Given the expression
denoted by val, it returns a value of the type <targettype>.
An invalid value for the target value or a
physical address alignment problem may raise an exception.

*)

PROCEDURE TSIZE (<type>; ...): CARDINAL;
(* Returns the number of LOCS used to store a value of the
specified <type>. The extra parameters, if present,
are used to distinguish variants in a variant record.

*)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
(%

THROW is a GNU extension and was not part of the PIM or ISO
standards. It throws an exception which will be caught by the
EXCEPT block (assuming it exists). This is a compiler builtin
function which interfaces to the GCC exception handling runtime
system.
GCC uses the term throw, hence the naming distinction between
the GCC builtin and the Modula-2 runtime library procedure Raise.
The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.

Chapter 2: Using GNU Modula-2

99

*)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
(* Returns the minimum number of bits necessary to represent
<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.
*)
*)

(* The following procedures are invoked by GNU Modula-2 to
shift non word set types. They are not part of ISO Modula-2
but are used to implement the SHIFT procedure defined above. *)

(*
ShiftVal - is a runtime procedure whose job is to implement
the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will
inline a SHIFT of a single WORD sized set and will only
call this routine for larger sets.

*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: INTEGER) ;

(*
ShiftLeft - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL,;
ShiftCount: CARDINAL) ;

(*
ShiftRight - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;

Chapter 2: Using GNU Modula-2 60

SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
RotateVal - is a runtime procedure whose job is to implement
the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
inline a ROTATE of a single WORD (or less)
sized set and will only call this routine for larger
sets.

*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: INTEGER) ;

(*
Rotateleft - performs the rotate left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

(*
RotateRight - performs the rotate right for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

END SYSTEM.

The data types CSIZE_T, CSSIZE_T and COFF_T are also exported from the SYSTEM
module. The type CSIZE_T is unsigned and is mapped onto the target C data type size_t
whereas the type CSSIZE_T is mapped onto the signed C data type ssize_t. The default

Chapter 2: Using GNU Modula-2 61

size for the signed type COFF_T is the same as CSSIZE_T and this can be overridden by the
-fm2-file-offset-bits= command line option.

It is anticipated that these should only be used to provide cross platform definition
modules for C libraries.

There are also a variety of fixed sized INTEGER and CARDINAL types. The variety of the
fixed sized types will depend upon the target architecture.

2.24 Release map

GNU Modula-2 is now part of GCC and therefore will adopt the GCC release schedule. It
is intended that GNU Modula-2 implement more of the GCC builtins (vararg access) and
GCC features.

There is an intention to implement the ISO generics and the M2R10 dialect of Modula-2.
It will also implement all language changes. If you wish to see something different please
email gm2@nongnu.org with your ideas.

2.25 Documentation

The GNU Modula-2 documentation is available online at https://gcc.gnu.org/
onlinedocs/ in the PDF| info, and HTML file formats.

2.26 Regression tests for gm2 in the repository

The regression testsuite can be run from the gce build directory:

$ cd build-gcc
$ make check -j 24

which runs the complete testsuite for all compilers using 24 parallel invocations of the
compiler. Individual language testsuites can be run by specifying the language, for example
the Modula-2 testsuite can be run using:

$ cd build-gcc
$ make check-m2 -j 24

Finally the results of the testsuite can be emailed to the gce-testresults (https://gec.
gnu.org/lists.html) list using the test_summary script found in the gcc source tree:

$ ‘directory to the sources’/contrib/test_summary

2.27 Limitations

The Logitech compatibility library is incomplete. The primary modules for this platform
exist, though for a comprehensive list of completed modules please check the documentation.

2.28 Objectives

e The intention of GNU Modula-2 is to provide a production Modula-2 front end to GCC.

e It should support all Niklaus Wirth PIM Dialects [234] and also ISO Modula-2 including
a re-implementation of all the ISO modules.

e There should be an easy interface to C.

mailto:gm2@nongnu.org
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/lists.html
https://gcc.gnu.org/lists.html

Chapter 2: Using GNU Modula-2 62

e Exploit the features of GCC.

e Listen to the requests of the users.

2.29 FAQ

2.29.1 Why use the C++ exception mechanism in GCC, rather
than a bespoke Modula-2 mechanism?

The C++ mechanism is tried and tested, it also provides GNU Modula-2 with the ability to
link with C++ modules and via swig it can raise Python exceptions.

2.30 Community

You can subscribe to the GNU Modula-2 mailing by sending an email to: gm2-
subscribe@nongnu.org or by https://lists.nongnu.org/mailman/listinfo/gm2. The
mailing list contents can be viewed https://lists.gnu.org/archive/html/gm2/.

2.31 Other languages for GCC

These exist and can be found on the frontends web page on the GCC web site (https://
gcc.gnu.org/frontends.html).

2.32 License of GNU Modula-2

GNU Modula-2 is free software, the compiler is held under the GPL v3 http://www.gnu.
org/licenses/gpl-3.0.txt, its libraries (pim, iso and Logitech compatible) are under the
GPL v3 with the GCC run time library exception clause.

Under Section 7 of GPL version 3, you are granted additional permissions described
in the GCC Runtime Library Exception, version 3.1, as published by the Free Software
Foundation.

You should have received a copy of the GNU General Public License and a copy of the
GCC Runtime Library Exception along with this program; see the files COPYING3 and
COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>.

More information on how these licenses work is available http://www.gnu.org/
licenses/licenses.html on the GNU web site.

mailto:gm2-subscribe@nongnu.org
mailto:gm2-subscribe@nongnu.org
https://lists.nongnu.org/mailman/listinfo/gm2
https://lists.gnu.org/archive/html/gm2/
https://gcc.gnu.org/frontends.html
https://gcc.gnu.org/frontends.html
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html

63

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://www.fsf.org

GNU General Public License 64

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 65

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

GNU General Public License 66

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 67

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

GNU General Public License 68

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 69

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

GNU General Public License 70

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 71

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

GNU General Public License 72

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 73

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUTI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

Contributing to GNU Modula-2

Please do and please read the GNU Emacs info under

* Standards: (standards). GNU coding standards.
* Intellectual Property:: Keeping Free Software Free

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

GNU General Public License 74

* Reading Non-Free Code:: Referring to Proprietary Programs
* Contributions:: Accepting Contributions

You might consider joining the GM2 Mailing list before you start coding. The mailing list
may be subscribed via a web interface https://lists.nongnu.org/mailman/listinfo/
gm2 or via email gm2-subscribe@nongnu.org.

Many thanks and enjoy your coding!

https://lists.nongnu.org/mailman/listinfo/gm2
https://lists.nongnu.org/mailman/listinfo/gm2
mailto:gm2-subscribe@nongnu.org

75

3 EBNF of GNU Modula-2

This chapter contains the EBNF of GNU Modula-2. This grammar currently supports both
PIM and ISO dialects. The rules here are automatically extracted from the crammer files
in GNU Modula-2 and serve to document the syntax of the extensions described earlier and
how they fit in with the base language.

Note that the first six productions are built into the lexical analysis phase.

Ident := is a builtin and checks for an identifier
Integer_:= is a builtin and checks for an integer

Real := i; a builtin and checks for an real constant
string_:= is a builtin and checks for an string constant
FileUnit_ = (DefinitionModule |

ImplementationOrProgramModule)

ProgramModule := 'MODULE' Ident [Priority] ';' {
Import } Block Ident '.'

ImplementationModule := 'IMPLEMENTATION' 'MODULE' Ident

[Priority 1 ';' { Import
} Block
Ident '.'
ImplementationOrProgramModule := ImplementationModule |
ProgramModule
Number := Integer | Real
Qualident := Ident { '.' Ident }

ConstantDeclaration := Ident '=' ConstExpression

ConstExpression := SimpleConstExpr [Relation SimpleConstExpr]
Relation := '=' | '"#' | '<>' | '<' | '<='" |

1> | I>=1 | "IN
SimpleConstExpr := UnaryOrConstTerm { AddOperator

ConstTerm }

UnaryOrConstTerm := '+' ConstTerm |

Chapter 3: EBNF of GNU Modula-2

AddOperator :=
ConstTerm := ;o
MulOperator_:=
ConstFactor :;
ConstString :;
ComponentElem;n
ComponentValue
ArraySetRecordV
Constructor :=
ConstSetOrQua;i

ConstActualParameters

ConstAttribute

ConstAttributeE

ByteAlignment

= [

Alignment

TypeDeclaration :

ConstTerm |
ConstTerm

(] I 1 I 'OR'

nstFactor { MulOperator ConstFactor }
'k«' | '/' | 'DIV' | 'MOD' |

'REM' | 'AND' | '&'

Number | ConstString |

ConstSetOrQualidentOrFunction |
'(' ConstExpression ')' |

'NOT' ConstFactor |

ConstAttribute

string

t := ConstExpression ['..' ConstExpression]
1= ;omponentElement ['BY' ConstExpression]
a;ue := ComponentValue { ',' ComponentValue 1}
[;rraySetRecordValue I
dentOrFunction := Constructor |

Qualident [Constructor |
ConstActualParameters

:= '(" [ExpList 1 ')'
= '__ATTRIBUTE__' '__BUILTIN__' '('
'(' ConstAttributeExpression ')'
I)|
xpression := Ident | '<' Qualident
',' Ident '>!'
= '<x' AttributeExpression '*>'
ByteAlignment]

Ident '=' Type Alignment

]

76

Chapter 3: EBNF of GNU Modula-2

Type := SimpleType | ArrayType | RecordType |
SetType | PointerType | ProcedureType

SimpleType := Qualident [SubrangeType 1 |
Enumeration | SubrangeType

Enumeration := '(' IdentList ')'

IdentList := Ident { ',' Ident 1}

SubrangeType := '[' ConstExpression '..' ConstExpression

l]l

ArrayType := 'ARRAY' SimpleType { ',' SimpleType 1}
'OF' Type

RecordType := 'RECORD' [DefaultRecordAttributes 1]

FieldListSequence 'END'

DefaultRecordAttributes '<x' AttributeExpression
I*>l

RecordFieldPragma := ['<*' FieldPragmaExpression {
',' FieldPragmaExpression } '*>']

FieldPragmaExpression := Ident ['(' ConstExpression
D]

AttributeExpression := Ident '(' ConstExpression ')'

FieldListSequence := FieldListStatement { ';' FieldListStatement }

FieldListStatement [FieldList]

FieldlList IdentList ':' Type RecordFieldPragma |
'"CASE' CaseTag 'OF' Varient { '|' Varient 1}

['ELSE' FieldListSequence] 'END'

TagIdent := [Ident 1]

CaseTag := Tagldent [':' Qualident]

Chapter 3: EBNF of GNU Modula-2 78

Varient [VarientCaseLabellList ':' FieldListSequence]

VarientCaselLabellList VarientCaselLabels { ',' VarientCaselLabels 1}

VarientCaseLabels ConstExpression ['..' ConstExpression]

CaselLabellist := Caselabels { ',' Caselabels 1}

Caselabels ConstExpression ['..' ConstExpression]

SetType ('SET' | 'PACKEDSET') 'OF' SimpleType

PointerType := 'POINTER' 'TO' Type

ProcedureType '"PROCEDURE' [FormalTypeList 1]

'(" ('")' FormalReturn |
ProcedureParameters ')' FormalReturn)

FormalTypelList

FormalReturn : !

Il
—

:' OptReturnType]

'['" Qualident ']' |
Qualident

OptReturnType

ProcedureParameters := ProcedureParameter { ',' ProcedureParameter }

ProcedureParameter := '...' | 'VAR' FormalType |

FormalType

VarIdent := Ident ['[' ConstExpression ']' 1]

VariableDeclaration := VarIdentList ':' Type Alignment

VarIdentList VarIdent { ',' VarIdent }

Designator := Qualident { SubDesignator 1}

SubDesignator := '.' Ident | '[' ExpList ']' |

1=~

ExplList := Expression { ',' Expression 1}

Chapter 3: EBNF of GNU Modula-2 79

Expression := SimpleExpression [Relation SimpleExpression]

]
—
+

l.

] Term { AddOperator
Term }

SimpleExpression :

Term := Factor { MulOperator Factor }

Factor := Number | string | SetOrDesignatorOrFunction |
'(' Expression ')' |
'NOT' Factor | ConstAttribute

(Qualident [Comnstructor |
SimpleDes
[ActualParameters]] |
Constructor)

SetOrDesignatorOrFunction :

SimpleDes := { '.' Ident | '[' ExpList ']' |
1~ }
ActualParameters := '(' [ExpList 1 ')'
Statement := [AssignmentOrProcedureCall |
IfStatement | CaseStatement |
WhileStatement | RepeatStatement |
LoopStatement | ForStatement |
WithStatement | AsmStatement |
'"EXIT' | 'RETURN' [Expression] |
RetryStatement]
RetryStatement := 'RETRY'
AssignmentOrProcedureCall := Designator (':=' Expression |
ActualParameters |
)
StatementSequence := Statement { ';' Statement }
IfStatement := 'IF' Expression 'THEN' StatementSequence
{ 'ELSIF' Expression 'THEN' StatementSequence }
['ELSE' StatementSequence] 'END'
CaseStatement := 'CASE' Expression 'OF' Case { '|'

Case }

Chapter 3: EBNF of GNU Modula-2

['ELSE' StatementSequence] 'END'

Case := [CaselabellList ':' StatementSequence]
WhileStatement := 'WHILE' Expression 'DO' StatementSequence
'"END'
RepeatStatement := 'REPEAT' StatementSequence 'UNTIL'
Expression

ForStatement := 'FOR' Ident ':=' Expression 'TO' Expression

['BY' ConstExpression] 'DO' StatementSequence

'"END'
LoopStatement := 'LOOP' StatementSequence 'END'
WithStatement := 'WITH' Designator 'DO' StatementSequence

'"END'
ProcedureDeclaration := ProcedureHeading ';' (ProcedureBlock

Ident
)
DefineBuiltinProcedure := ['__ATTRIBUTE__' '__BUILTIN__'
|(| I(I Ident |)| |)| I
'__INLINE__' 1]
ProcedureHeading := 'PROCEDURE' DefineBuiltinProcedure
(Ident [FormalParameters] AttributeNoReturn

AttributeNoReturn := ['<x' Ident '*>']
AttributeUnused := ['<x' Ident '*>']
Builtin := ['__BUILTIN__' | '__INLINE__']

'"PROCEDURE' Builtin (Ident
[DefFormalParameters
AttributeNoReturn)

DefProcedureHeading :

ProcedureBlock := { Declaration 1} ['BEGIN' BlockBody]
'"END'

]

80

Chapter 3: EBNF of GNU Modula-2 81

Block := { Declaration } InitialBlock FinalBlock
'"END'
InitialBlock := ['BEGIN' BlockBody 1]

FinalBlock := ['FINALLY' BlockBody]

BlockBody := NormalPart ['EXCEPT' ExceptionalPart]

NormalPart := StatementSequence
ExceptionalPart := StatementSequence
Declaration := 'CONST' { ConstantDeclaration ';' } |

'"TYPE' { TypeDeclaration ';' } |

'"VAR' { VariableDeclaration ';' } |

ProcedureDeclaration ';' |

ModuleDeclaration ';'
DefFormalParameters := '(' [DefMultiFPSection] ')'

FormalReturn
DefMultiFPSection := DefExtendedFP |
FPSection [';' DefMultiFPSection]

FormalParameters := '(' [MultiFPSection] ')' FormalReturn
MultiFPSection := ExtendedFP | FPSection [';' MultiFPSection]
FPSection := NonVarFPSection | VarFPSection
DefExtendedFP := DefOptArg | '...'
ExtendedFP := OptArg | '...'
VarFPSection := 'VAR' IdentList ':' FormalType [AttributeUnused]
NonVarFPSection := IdentList ':' FormalType [AttributeUnused]
OptArg := '[' Ident ':' FormalType ['=' ConstExpression]

I]I

Chapter 3: EBNF of GNU Modula-2

DefOptArg := '[' Ident ':' FormalType '=' ConstExpression
|]|
FormalType := { 'ARRAY' 'OF' } Qualident
ModuleDeclaration := 'MODULE' Ident [Priority] ';'
{ Import 1} [Export 1] Block
Ident
Priority := '[' ConstExpression ']
Export := 'EXPORT' ('QUALIFIED' IdentList |

'"UNQUALIFIED' IdentList |
IdentList) ';'

Import := 'FROM' Ident 'IMPORT' IdentList ';'
'IMPORT' IdentList ';'

DefinitionModule := 'DEFINITION' 'MODULE' ['FOR' string
] Ident
"5' { Import } [Export 1 {
Definition } 'END' Ident '.'

Definition := 'CONST' { ConstantDeclaration ';' } |

'"TYPE' { Ident (';' | '=' Type Alignment
) 1|

'"VAR' { VariableDeclaration ';' } |
DefProcedureHeading ';'

AsmStatement := 'ASM' ['VOLATILE'] '(' AsmOperands

I)l

NamedOperand := '[' Ident ']'

AsmOperandName := [NamedOperand]

AsmOperands := string [':' AsmList [':' AsmList [

":' TrashList] 1 1]

AsmList [AsmElement] { ',' AsmElement 1}

AsmElement := AsmOperandName string '(' Expression

l)l

82

Chapter 3: EBNF of GNU Modula-2

TrashlList := [string 1 { ',' string 1}

83

84

4 PIM and ISO library definitions
This chapter contains M2F, PIM and ISO libraries.

4.1 Base libraries

These are the base libraries for the GNU Modula-2 compiler. These modules originally
came from the M2F compiler and have been cleaned up and extended. They provide a
basic interface to the underlying operating system via libc. They also include a number of
libraries to allow access to compiler built-ins. Perhaps the largest difference to PIM and
ISO libraries is the DynamicString module which declares the type String. The heavy use
of this opaque data type results in a number of equivalent modules that can either handle
ARRAY OF CHAR or String.

These modules have been extensively tested and are used throughout building the GNU
Modula-2 compiler.

4.1.1 gm?2-libs/ARRAYOFCHAR
DEFINITION MODULE ARRAYOFCHAR ;

FROM FIO IMPORT File ;
(*
Description: provides write procedures for ARRAY OF CHAR.
*)
PROCEDURE Write (f: File; str: ARRAY OF CHAR) ;

PROCEDURE Writeln (f: File) ;

END ARRAYOFCHAR.

Chapter 4: PIM and ISO library definitions

4.1.2 gm2-libs/ASCII
DEFINITION MODULE ASCII ;

EXPORT QUALIFIED
nul, soh, stx, etx, eot, enq, ack, bel,
bs , ht , n1 , vt , np , cr , so , si ,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em , sub, esc, fs , gs , rs , us ,
sp , (* All the above are in order *)
1f, £ff, eof, del, tab, EOL ;

(*
Note that 1f, eof and EOL are added.
*)

CONST

nul=000C; soh=001C; stx=002C; etx=003C;
eot=004C; eng=005C; ack=006C; bel=007C;
bs =010C; ht =011C; nl =012C; vt =013C;
np =014C; cr =015C; so =016C; si =017C;
d1e=020C; dc1=021C; dc2=022C; dc3=023C;
dc4=024C; nak=025C; syn=026C; etb=027C;
can=030C; em =031C; sub=032C; esc=033C;
fs =034C; gs =035C; rs =036C; us =037C;
sp =040C; (* All the above are in order *)
1f =n1 ; ff =np ; eof=eot ; tab=ht ;
del=177C; EOL=nl ;

END ASCII.

85

Chapter 4: PIM and ISO library definitions 86

4.1.3 gm2-libs/Args
DEFINITION MODULE Args ;

EXPORT QUALIFIED GetArg, Narg ;
(*
GetArg - returns the nth argument from the command line.

The success of the operation is returned.

*)
PROCEDURE GetArg (VAR a: ARRAY OF CHAR; n: CARDINAL) : BOOLEAN ;
(*
Narg - returns the number of arguments available from
command line.

*)

PROCEDURE Narg () : CARDINAL ;

END Args.

Chapter 4: PIM and ISO library definitions

4.1.4 gm2-libs/Assertion
DEFINITION MODULE Assertion ;

EXPORT QUALIFIED Assert ;
(*
Assert - tests the boolean Condition, if it fails then HALT
is called.

*)

PROCEDURE Assert (Condition: BOOLEAN) ;

END Assertion.

87

Chapter 4: PIM and ISO library definitions

4.1.5 gm2-libs/Break
DEFINITION MODULE Break ;

END Break.

88

Chapter 4: PIM and ISO library definitions

4.1.6 gm2-libs/Builtins
DEFINITION MODULE Builtins ;

FROM SYSTEM IMPORT ADDRESS ;

(* Floating point intrinsic procedure functions. *)

PROCEDURE __BUILTIN__ isnanf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnan (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanl (x: LONGREAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinitef (x: SHORTREAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinite (x: REAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinitel (x: LONGREAL) INTEGER ;
PROCEDURE __BUILTIN__ sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sinl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ cosl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sqrtl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ atan2 (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ atan2l (x, y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ fabsf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ fabs (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ fabsl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ logl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ expl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ loglOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ loglO (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl0l (x: LONGREAL) : LONGREAL ;

Chapter 4: PIM and ISO library definitions 90

PROCEDURE __BUILTIN__ explOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ explO (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl0l (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ ilogbf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogb (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogbl (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ huge_val () : REAL ;
PROCEDURE __BUILTIN__ huge_valf () : SHORTREAL ;
PROCEDURE __BUILTIN__ huge_vall () : LONGREAL ;

PROCEDURE __BUILTIN__ modf (x: REAL; VAR y: REAL) : REAL ;
PROCEDURE __BUILTIN__ modff (x: SHORTREAL;
VAR y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ signbit (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ signbitf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ signbitl (1: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ nextafter (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ nextafterf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ nextafterl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ nexttoward (x: REAL; y: LONGREAL) : REAL ;
PROCEDURE __BUILTIN__ nexttowardf (x: SHORTREAL; y: LONGREAL) : SHORTREAL ;J]
PROCEDURE __BUILTIN__ nexttowardl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbln (x: REAL; n: LONGINT) : REAL ;
PROCEDURE __BUILTIN__ scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbn (x: REAL; n: INTEGER) : REAL ;
PROCEDURE __BUILTIN__ scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL ;

PROCEDURE __BUILTIN__ isgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isgreaterequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isless (x, y: REAL) : INTEGER ;

Chapter 4: PIM and ISO library definitions

PROCEDURE __BUILTIN__ islessf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islessequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequall (x, y: LONGREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isunordered (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ iseqsig (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isnormal (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormalf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormall (1: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isinf_sign (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signl (1: LONGREAL) : INTEGER ;

(* Complex arithmetic intrincic procedure functions. *)

PROCEDURE __BUILTIN__ cabsf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ cabs (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cabsl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ cargf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ carg (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cargl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ conjf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ conj (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ conjl (z: LONGCOMPLEX) : LONGCOMPLEX ;
PROCEDURE __BUILTIN__ cpowerf (base: SHORTCOMPLEX;

exp: SHORTREAL) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cpower (base: COMPLEX; exp: REAL) : COMPLEX ;
PROCEDURE __BUILTIN__ cpowerl (base: LONGCOMPLEX;

exp: LONGREAL) : LONGCOMPLEX ;

Chapter 4: PIM and ISO library definitions

PROCEDURE __BUILTIN__ csqrtf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csqrt (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csqrtl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cexp (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ cexpl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ clnf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cln (z: COMPLEX) : COMPLEX ;

PROCEDURE __BUILTIN__ clnl (z: LONGCOMPLEX) : LONGCOMPLEX ;
PROCEDURE __BUILTIN__ csinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csin (z: COMPLEX) : COMPLEX ;

PROCEDURE __BUILTIN__ csinl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ccos (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ctan (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ carcsinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ carcsin (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ carcsinl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ carccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ carccos (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ carccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ carctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ carctan (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ carctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

(* memory and string intrincic procedure functions *)

PROCEDURE __BUILTIN__ alloca (i: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ memcpy (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ index (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE __BUILTIN__ rindex (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE __BUILTIN__ memcmp (sl, s2: ADDRESS;

nbytes: CARDINAL) : INTEGER ;
PROCEDURE __BUILTIN__ memset (s: ADDRESS; c: INTEGER;

nbytes: CARDINAL) : ADDRESS ;

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

(*

__BUILTIN__

__BUILTIN__
__BUILTIN__

__BUILTIN__
__BUILTIN__

__BUILTIN__
__BUILTIN__

__BUILTIN__
__BUILTIN__
__BUILTIN__
__BUILTIN__
__BUILTIN__
__BUILTIN__
__BUILTIN__

__BUILTIN__
__BUILTIN__
__BUILTIN__
__BUILTIN__

Chapter 4: PIM and ISO library definitions

memmove (s1, s2: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcat (dest, src: ADDRESS) : ADDRESS ;
strncat (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcpy (dest, src: ADDRESS) : ADDRESS ;
strncpy (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcmp (s1, s2: ADDRESS) : INTEGER ;
strncmp (s1, s2: ADDRESS;

nbytes: CARDINAL) : INTEGER ;
strlen (s: ADDRESS) : INTEGER ;
strstr (haystack, needle: ADDRESS) : ADDRESS ;
strpbrk (s, accept: ADDRESS) : ADDRESS ;
strspn (s, accept: ADDRESS) : CARDINAL ;
strcspn (s, accept: ADDRESS) : CARDINAL ;
strchr (s: ADDRESS; c: INTEGER) : ADDRESS ;
strrchr (s: ADDRESS; c: INTEGER) : ADDRESS ;

clz (value: CARDINAL) : INTEGER ;
clzll (value: LONGCARD) : INTEGER ;
ctz (value: CARDINAL) : INTEGER ;
ctzll (value: LONGCARD) : INTEGER ;

longjmp - this GCC builtin restricts the val to always 1.

*)

(* do not use these two builtins, as gcc, only really
anticipates that the Ada front end should use them
and it only uses them in its runtime exception handling.
We leave them here in the hope that someday they will
behave more like their libc counterparts. *)

PROCEDURE __BUILTIN__ longjmp (env: ADDRESS; val: INTEGER) ;
PROCEDURE __BUILTIN__ setjmp (env: ADDRESS) : INTEGER ;

(*

frame_address - returns the address of the frame.
The current frame is obtained if level is O,
the next level up if level is 1 etc.

*)

PROCEDURE __BUILTIN__ frame_address (level: CARDINAL) : ADDRESS ;

(*

93

Chapter 4: PIM and ISO library definitions 94

return_address - returns the return address of function.
The current function return address is
obtained if level is O,
the next level up if level is 1 etc.

*)
PROCEDURE __BUILTIN__ return_address (level: CARDINAL) : ADDRESS ;
(*
alloca_trace — this is a no-op which is used for internal debugging.
*)

PROCEDURE alloca_trace (returned: ADDRESS; nBytes: CARDINAL) : ADDRESS ;

END Builtins.

Chapter 4: PIM and ISO library definitions

4.1.7 gm2-libs/CFileSysOp
DEFINITION MODULE CFileSysOp ;

FROM SYSTEM IMPORT ADDRESS ;

(*
Description: provides access to filesystem operations.
The implementation module is written in C
and the parameters behave as their C
counterparts.

*)

TYPE
AccessMode = SET OF AccessStatus ;
AccessStatus = (F_OK, R_OK, W_OK, X_0K, A_FAIL) ;

PROCEDURE Unlink (filename: ADDRESS) : INTEGER ;

b

(*

Access - test access to a path or file. The behavior is
the same as defined in access(2). Except that
on A_FAIL is only used during the return result
indicating the underlying C access has returned
-1 (and errno can be checked).

*)

PROCEDURE Access (pathname: ADDRESS; mode: AccessMode) : AccessMode ;

(* Return TRUE if the caller can see the existance of the file or
directory on the filesystem. *)

(*
IsDir - return true if filename is a regular directory.

*)

PROCEDURE IsDir (dirname: ADDRESS) : BOOLEAN

3

(*
IsFile - return true if filename is a regular file.

*)

95

Chapter 4: PIM and ISO library definitions

PROCEDURE IsFile (filename: ADDRESS)

(*

: BOOLEAN ;

Exists - return true if pathname exists.

*)

PROCEDURE Exists (pathname: ADDRESS)

END CFileSysOp.

: BOOLEAN

b

)

96

Chapter 4: PIM and ISO library definitions

4.1.8 gm2-libs/CHAR
DEFINITION MODULE CHAR ;

FROM FIO IMPORT File ;
(*
Write a single character ch to file f.
*)
PROCEDURE Write (f: File; ch: CHAR) ;

PROCEDURE Writeln (f: File) ;

END CHAR.

97

Chapter 4: PIM and ISO library definitions

4.1.9 gm2-libs/COROUTINES
DEFINITION MODULE FOR "C" COROUTINES ;

CONST
UnassignedPriority = 0 ;

TYPE
INTERRUPTSOURCE = CARDINAL ;
PROTECTION = [UnassignedPriority..7] ;

END COROUTINES.

98

Chapter 4: PIM and ISO library definitions

4.1.10 gm2-libs/CmdArgs
DEFINITION MODULE CmdArgs ;

EXPORT QUALIFIED GetArg, Narg ;

(*
GetArg - returns the nth argument from the command line, CmdLine
the success of the operation is returned.

*)

PROCEDURE GetArg (CmdLine: ARRAY OF CHAR;
n: CARDINAL; VAR Argi: ARRAY OF CHAR) : BOOLEAN ;

(*
Narg - returns the number of arguments available from
command line, CmdLine.

*)

PROCEDURE Narg (CmdLine: ARRAY OF CHAR) : CARDINAL ;

END CmdArgs.

99

Chapter 4: PIM and ISO library definitions 100

4.1.11 gm?2-libs/Debug
DEFINITION MODULE Debug ;

(*

Description: provides some simple debugging routines.

*)

EXPORT QUALIFIED Halt, DebugString ;

(%
Halt - writes a message in the format:
Module:Function:Line:Message

It then terminates by calling HALT.
*)

PROCEDURE Halt (Message,
Module,
Function: ARRAY OF CHAR ;
LineNo : CARDINAL) ;

(*
DebugString - writes a string to the debugging device (Scn.Write).
It interprets \n as carriage return, linefeed.

*)

PROCEDURE DebugString (a: ARRAY OF CHAR) ;

END Debug.

Chapter 4: PIM and ISO library definitions 101

4.1.12 gm2-libs/DynamicStrings
DEFINITION MODULE DynamicStrings ;

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED String,
InitString, KillString, Fin, InitStringCharStar,
InitStringChar, Index, RIndex, ReverseIndex,
Mark, Length, ConCat, ConCatChar, Assign, Dup, Add,
Equal, EqualCharStar, EqualArray, ToUpper, ToLower,
CopyOut, Mult, Slice, ReplaceChar,
RemoveWhitePrefix, RemoveWhitePostfix, RemoveComment,
char, string,
InitStringDB, InitStringCharStarDB, InitStringCharDB,
MultDB, DupDB, SliceDB,
PushAllocation, PopAllocation, PopAllocationExemption ;

TYPE
String ;

(*
InitString - creates and returns a String type object.
Initial contents are, a.

*)

PROCEDURE InitString (a: ARRAY OF CHAR) : String ;

(*
KillString - frees String, s, and its contents.
NIL is returned.

*)
PROCEDURE KillString (s: String) : String ;
(*
Fin - finishes with a string, it calls KillString with, s.
The purpose of the procedure is to provide a short cut
to calling KillString and then testing the return result.

*)

PROCEDURE Fin (s: String) ;

(*

Chapter 4: PIM and ISO library definitions 102

InitStringCharStar - initializes and returns a String to contain
the C string.
*)

PROCEDURE InitStringCharStar (a: ADDRESS) : String ;

(*
InitStringChar - initializes and returns a String to contain the
single character, ch.

*)

PROCEDURE InitStringChar (ch: CHAR) : String ;

(*
Mark - marks String, s, ready for garbage collection.

*)

PROCEDURE Mark (s: String) : String ;

(*
Length - returns the length of the String, s.
*)

PROCEDURE Length (s: String) : CARDINAL ;

(*
ConCat - returns String, a, after the contents of, b,
have been appended.

*)
PROCEDURE ConCat (a, b: String) : String ;
(*
ConCatChar - returns String, a, after character, ch,

has been appended.
*)

PROCEDURE ConCatChar (a: String; ch: CHAR) : String ;

(*

Assign - assigns the contents of, b, into, a.

Chapter 4: PIM and ISO library definitions 103

String, a, is returned.

*)

PROCEDURE Assign (a, b: String) : String ;

(*
ReplaceChar - returns string s after it has changed all
occurances of from to to.

*)

PROCEDURE ReplaceChar (s: String; from, to: CHAR) : String ;

(*
Dup - duplicate a String, s, returning the copy of s.

*)

PROCEDURE Dup (s: String) : String ;

(%
Add - returns a new String which contains the contents of a and b.

*)

PROCEDURE Add (a, b: String) : String ;

(*
Equal - returns TRUE if String, a, and, b, are equal.
*)

PROCEDURE Equal (a, b: String) : BOOLEAN ;

(*
EqualCharStar - returns TRUE if contents of String, s, is
the same as the string, a.

*)

PROCEDURE EqualCharStar (s: String; a: ADDRESS) : BOOLEAN ;

(*
EqualArray - returns TRUE if contents of String, s, is the
same as the string, a.

*)

Chapter 4: PIM and ISO library definitions 104

PROCEDURE EqualArray (s: String; a: ARRAY OF CHAR) : BOOLEAN ;

(*
Mult - returns a new string which is n concatenations of String, s.
If n<=0 then an empty string is returned.

*)

PROCEDURE Mult (s: String; n: CARDINAL) : String ;

(*
Slice - returns a new string which contains the elements

low..high-1
strings start at element O
Slice(s, 0, 2) will return elements 0, 1 but not 2
Slice(s, 1, 3) will return elements 1, 2 but not 3
Slice(s, 2, 0) will return elements 2..max
Slice(s, 3, -1) will return elements 3..max-1
Slice(s, 4, -2) will return elements 4..max-2

*)

PROCEDURE Slice (s: String; low, high: INTEGER) : String ;

(*
Index - returns the indice of the first occurance of, ch, in
String, s. -1 is returned if, ch, does not exist.
The search starts at position, o.

*)

PROCEDURE Index (s: String; ch: CHAR; o: CARDINAL) : INTEGER ;

(*
RIndex - returns the indice of the last occurance of, ch,
in String, s. The search starts at position, o.
-1 is returned if ch is not found. The search
is performed left to right.

*)

PROCEDURE RIndex (s: String; ch: CHAR; o: CARDINAL) : INTEGER ;

(*

Chapter 4: PIM and ISO library definitions 105

Reverselndex - returns the indice of the last occurance of ch
in String s. The search starts at position o
and searches from right to left. The start position
may be indexed negatively from the right (-1 is the
last index).
The return value if ch is found will always be positive.]]
-1 is returned if ch is not found.

*)

PROCEDURE ReverseIndex (s: String; ch: CHAR; o: INTEGER) : INTEGER ;

(*

RemoveComment - assuming that, comment, is a comment delimiter
which indicates anything to its right is a comment
then strip off the comment and also any white space
on the remaining right hand side.

It leaves any white space on the left hand side
alone.

*)

PROCEDURE RemoveComment (s: String; comment: CHAR) : String ;

€
RemoveWhitePrefix - removes any leading white space from String, s.
A new string is returned.

*)

PROCEDURE RemoveWhitePrefix (s: String) : String ;

(*
RemoveWhitePostfix - removes any leading white space from String, s.
A new string is returned.

*)

PROCEDURE RemoveWhitePostfix (s: String) : String ;

(*
ToUpper - returns string, s, after it has had its lower case
characters replaced by upper case characters.
The string, s, is not duplicated.

*)

PROCEDURE ToUpper (s: String) : String ;

Chapter 4: PIM and ISO library definitions 106

(*
ToLower - returns string, s, after it has had its upper case
characters replaced by lower case characters.
The string, s, is not duplicated.

*)

PROCEDURE ToLower (s: String) : String ;

(*
CopyOut - copies string, s, to a.

*)

PROCEDURE CopyOut (VAR a: ARRAY OF CHAR; s: String) ;

(*
char - returns the character, ch, at position, i, in String, s.
As Slice the index can be negative so:

char(s, 0) will return the first character
char(s, 1) will return the second character
char(s, -1) will return the last character
char(s, -2) will return the penultimate character

a nul character is returned if the index is out of range.

*)

PROCEDURE char (s: String; i: INTEGER) : CHAR ;

(*
string - returns the C style char * of String, s.

*)

PROCEDURE string (s: String) : ADDRESS ;

(*
to easily debug an application using this library one could use
use the following macro processing defines:

#define InitString(X) InitStringDB(X, __FILE LINE__)
#define InitStringCharStar(X) InitStringCharStarDB(X, \
__FILE LINE__)

—_ ==

—_ ——

Chapter 4: PIM and ISO library definitions 107

#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)

#define Dup(X) DupDB(X, __FILE__, __LINE__)

#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)

and then invoke gm2 with the -fcpp flag.
*)

(*
InitStringDB - the debug version of InitString.
*)

PROCEDURE InitStringDB (a: ARRAY OF CHAR;
file: ARRAY OF CHAR; line: CARDINAL) : String ;

(*
InitStringCharStarDB - the debug version of InitStringCharStar.
*)

PROCEDURE InitStringCharStarDB (a: ADDRESS;
file: ARRAY OF CHAR;
line: CARDINAL) : String ;

(%
InitStringCharDB - the debug version of InitStringChar.
*)

PROCEDURE InitStringCharDB (ch: CHAR;
file: ARRAY OF CHAR;
line: CARDINAL) : String ;

(*
MultDB - the debug version of MultDB.
*)

PROCEDURE MultDB (s: String; n: CARDINAL;
file: ARRAY OF CHAR; line: CARDINAL) : String ;

€
DupDB - the debug version of Dup.
*)

Chapter 4: PIM and ISO library definitions 108

PROCEDURE DupDB (s: String;
file: ARRAY OF CHAR; line: CARDINAL) : String ;

(*
SliceDB - debug version of Slice.

*)

PROCEDURE SliceDB (s: String; low, high: INTEGER;
file: ARRAY OF CHAR; line: CARDINAL) : String ;

(*
PushAllocation - pushes the current allocation/deallocation lists.

*)

PROCEDURE PushAllocation ;

(*
PopAllocation - test to see that all strings are deallocated since
the last push. Then it pops to the previous
allocation/deallocation lists.

If halt is true then the application terminates
with an exit code of 1.

*)

PROCEDURE PopAllocation (halt: BOOLEAN) ;

(*
PopAllocationExemption - test to see that all strings are
deallocated, except string e since
the last push.
Post-condition: it pops to the previous
allocation/deallocation lists.

If halt is true then the application
terminates with an exit code of 1.

The string, e, is returned unmodified,

*)

PROCEDURE PopAllocationExemption (halt: BOOLEAN; e: String) : String ;

END DynamicStrings.

Chapter 4: PIM and ISO library definitions 109

4.1.13 gm?2-libs/Environment
DEFINITION MODULE Environment ;

EXPORT QUALIFIED GetEnvironment, PutEnvironment ;

(*
GetEnvironment - gets the environment variable Env and places
a copy of its value into string, dest.
It returns TRUE if the string Env was found in

the processes environment.

*)

PROCEDURE GetEnvironment (Env: ARRAY OF CHAR;
VAR dest: ARRAY OF CHAR) : BOOLEAN ;

(*

PutEnvironment - change or add an environment variable definition

EnvDef.
TRUE is returned if the environment variable was

set or changed successfully.

*)

PROCEDURE PutEnvironment (EnvDef: ARRAY OF CHAR) : BOOLEAN ;

END Environment.

Chapter 4: PIM and ISO library definitions

4.1.14 gm2-libs/FI0

DEF

(*

FRO

EXP

TYP

INITION MODULE FIO ;

Provides a simple buffered file input/output library. *)

M SYSTEM IMPORT ADDRESS, BYTE ;

ORT QUALIFIED (* types *)
File,
(* procedures *)
OpenToRead, OpenToWrite, OpenForRandom, Close,
EOF, EOLN, WasEOLN, IsNoError, Exists, IsActive,
exists, openToRead, openToWrite, openForRandom,
SetPositionFromBeginning,
SetPositionFromEnd,
FindPosition,
ReadChar, ReadString,
WriteChar, WriteString, Writeline,
WriteCardinal, ReadCardinal,
UnReadChar,
WriteNBytes, ReadNBytes,
FlushBuffer,
GetUnixFileDescriptor,
GetFileName, getFileName, getFileNameLength,
FlushOutErr,
(* variables *)
StdIn, StdOut, StdErr ;

E
File = CARDINAL ;

110

(* the following variables are initialized to their UNIX equivalents *)

VAR

(*

*)

PRO

(*

StdIn, StdOut, StdErr: File ;

IsNoError - returns a TRUE if no error has occured on file, f.

CEDURE IsNoError (f: File) : BOOLEAN ;

Chapter 4: PIM and ISO library definitions 111

IsActive - returns TRUE if the file, f, is still active.
*)

PROCEDURE IsActive (f: File) : BOOLEAN ;

(*
Exists - returns TRUE if a file named, fname exists for reading.

*)

PROCEDURE Exists (fname: ARRAY OF CHAR) : BOOLEAN

I

(*
OpenToRead - attempts to open a file, fname, for reading and
it returns this file.
The success of this operation can be checked by
calling IsNoError.

*)

PROCEDURE OpenToRead (fname: ARRAY OF CHAR) : File

I

(*
OpenToWrite - attempts to open a file, fname, for write and
it returns this file.
The success of this operation can be checked by
calling IsNoError.

*)

PROCEDURE OpenToWrite (fname: ARRAY OF CHAR) : File

3

(*
OpenForRandom - attempts to open a file, fname, for random access

read or write and it returns this file.
The success of this operation can be checked by
calling IsNoError.
towrite, determines whether the file should be
opened for writing or reading.
newfile, determines whether a file should be
created if towrite is TRUE or whether the
previous file should be left alone,
allowing this descriptor to seek
and modify an existing file.

Chapter 4: PIM and ISO library definitions 112

PROCEDURE OpenForRandom (fname: ARRAY OF CHAR;
towrite, newfile: BOOLEAN) : File ;

(*
Close - close a file which has been previously opened using:
OpenToRead, OpenToWrite, OpenForRandom.
It is correct to close a file which has an error status.

*)

PROCEDURE Close (f: File) ;

(* the following functions are functionally equivalent to the above
except they allow C style names.
*)

PROCEDURE exists (fname: ADDRESS; flength: CARDINAL) : BOOLEAN ;
PROCEDURE openToRead (fname: ADDRESS; flength: CARDINAL) : File ;
PROCEDURE openToWrite (fname: ADDRESS; flength: CARDINAL) : File ;
PROCEDURE openForRandom (fname: ADDRESS; flength: CARDINAL;

towrite, newfile: BOOLEAN) : File ;

(*
FlushBuffer - flush contents of the FIO file, f, to libc.
*)

PROCEDURE FlushBuffer (f: File) ;

(%
ReadNBytes - reads nBytes of a file into memory area, dest, returning
the number of bytes actually read.
This function will consume from the buffer and then
perform direct libc reads. It is ideal for large reads.

*)

PROCEDURE ReadNBytes (f: File; nBytes: CARDINAL;
dest: ADDRESS) : CARDINAL ;

(*
ReadAny - reads HIGH (a) + 1 bytes into, a. All input
is fully buffered, unlike ReadNBytes and thus is more
suited to small reads.

Chapter 4: PIM and ISO library definitions 113

PROCEDURE ReadAny (f: File; VAR a: ARRAY OF BYTE) ;

(*
WriteNBytes - writes nBytes from memory area src to a file
returning the number of bytes actually written.
This function will flush the buffer and then
write the nBytes using a direct write from libc.
It is ideal for large writes.

*)

PROCEDURE WriteNBytes (f: File; nBytes: CARDINAL;
src: ADDRESS) : CARDINAL ;

(*
WriteAny - writes HIGH (a) + 1 bytes onto, file, f. All output
is fully buffered, unlike WriteNBytes and thus is more
suited to small writes.

*)

PROCEDURE WriteAny (f: File; VAR a: ARRAY OF BYTE) ;

(*
WriteChar - writes a single character to file, f.

*)

PROCEDURE WriteChar (f: File; ch: CHAR) ;

(*
EOF - tests to see whether a file, f, has reached end of file.
*)

PROCEDURE EQF (f: File) : BOOLEAN ;

(*
EOLN - tests to see whether a file, f, is about to read a newline.
It does NOT consume the newline. It reads the next character
and then immediately unreads the character.

*)

PROCEDURE EOLN (f: File) : BOOLEAN ;

Chapter 4: PIM and ISO library definitions 114

(*
WasEOLN - tests to see whether a file, f, has just read a newline
character.

*)

PROCEDURE WasEOLN (f: File) : BOOLEAN ;

(*
ReadChar - returns a character read from file, f.
Sensible to check with IsNoError or EOF after calling
this function.

*)

PROCEDURE ReadChar (f: File) : CHAR ;

(*
UnReadChar - replaces a character, ch, back into file, f.
This character must have been read by ReadChar
and it does not allow successive calls. It may
only be called if the previous read was successful,
end of file or end of line seen.

*)

PROCEDURE UnReadChar (f: File ; ch: CHAR) ;

(*
WritelLine - writes out a linefeed to file, f.

*)

PROCEDURE WriteLine (f: File) ;

(*
WriteString - writes a string to file, f.

*)

PROCEDURE WriteString (f: File; a: ARRAY OF CHAR) ;

(*
ReadString - reads a string from file, f, into string, a.
It terminates the string if HIGH is reached or
if a newline is seen or an error occurs.

Chapter 4: PIM and ISO library definitions 115

*)

PROCEDURE ReadString (f: File; VAR a: ARRAY OF CHAR) ;

(*
WriteCardinal - writes a CARDINAL to file, f.
It writes the binary image of the CARDINAL.
to file, f.
*)

PROCEDURE WriteCardinal (f: File; c: CARDINAL) ;

(*
ReadCardinal - reads a CARDINAL from file, f.
It reads a bit image of a CARDINAL
from file, f.

*)

PROCEDURE ReadCardinal (f: File) : CARDINAL ;

(*
GetUnixFileDescriptor - returns the UNIX file descriptor of a file.
Useful when combining FIO.mod with select
(in Selective.def - but note the comments in
Selective about using read/write primatives)

*)
PROCEDURE GetUnixFileDescriptor (f: File) : INTEGER ;
(*
SetPositionFromBeginning - sets the position from the beginning
of the file.
*)
PROCEDURE SetPositionFromBeginning (f: File; pos: LONGINT) ;
(*
SetPositionFromEnd - sets the position from the end of the file.

*)

PROCEDURE SetPositionFromEnd (f: File; pos: LONGINT) ;

Chapter 4: PIM and ISO library definitions 116

(*
FindPosition - returns the current absolute position in file, f.

*)
PROCEDURE FindPosition (f: File) : LONGINT ;
(*
GetFileName - assigns, a, with the filename associated with, f.
*)
PROCEDURE GetFileName (f: File; VAR a: ARRAY OF CHAR) ;
(*
getFileName - returns the address of the filename associated with, f.
*)
PROCEDURE getFileName (f: File) : ADDRESS ;
(*
getFileNamelLength - returns the number of characters associated with

filename, f.

*)
PROCEDURE getFileNameLength (f: File) : CARDINAL ;
(*
FlushOutErr - flushes, StdOut, and, StdErr.
*)

PROCEDURE FlushOutErr ;

END FIO.

Chapter 4: PIM and ISO library definitions 117

4.1.15 gm?2-libs/FileSysOp
DEFINITION MODULE FileSysOp ;

FROM CFileSysOp IMPORT AccessMode ;

(*
Description: provides access to filesystem operations using
Modula-2 base types.
*)

PROCEDURE Exists (filename: ARRAY OF CHAR) : BOOLEAN ;

PROCEDURE IsDir (dirname: ARRAY OF CHAR) : BOOLEAN ;

PROCEDURE IsFile (filename: ARRAY OF CHAR) : BOOLEAN ;

PROCEDURE Unlink (filename: ARRAY OF CHAR) : BOOLEAN ;

PROCEDURE Access (pathname: ARRAY OF CHAR; mode: AccessMode) : AccessMode ;]

END FileSysOp.

Chapter 4: PIM and ISO library definitions 118

4.1.16 gm2-libs/FormatStrings
DEFINITION MODULE FormatStrings ;

FROM SYSTEM IMPORT BYTE ;

FROM DynamicStrings IMPORT String ;

EXPORT QUALIFIED SprintfO, Sprintfl, Sprintf2, Sprintf3, Sprintf4,
HandleEscape ;

(*
Sprintf0 - returns a String containing, fmt, after it has had its
escape sequences translated.

*)

PROCEDURE Sprintf0O (fmt: String) : String ;

(*
Sprintfl - returns a String containing, fmt, together with
encapsulated entity, w. It only formats the
first %s or %d with n.

*)
PROCEDURE Sprintfl (fmt: String; w: ARRAY OF BYTE) : String ;
(*
Sprintf2 - returns a string, fmt, which has been formatted.
*)
PROCEDURE Sprintf2 (fmt: String; wl, w2: ARRAY OF BYTE) : String ;
(*
Sprintf3 - returns a string, fmt, which has been formatted.
*)
PROCEDURE Sprintf3 (fmt: String; wl, w2, w3: ARRAY OF BYTE) : String ;
(*
Sprintf4 - returns a string, fmt, which has been formatted.
*)

PROCEDURE Sprintf4 (fmt: String;
wl, w2, w3, w4: ARRAY OF BYTE) : String ;

Chapter 4: PIM and ISO library definitions 119

(*
HandleEscape - translates \a, \b, \e, \f, \n, \r, \x[hex] \[octal]
into their respective ascii codes. It also converts
\[any] into a single [any] character.
*)

PROCEDURE HandleEscape (s: String) : String ;

END FormatStrings.

Chapter 4: PIM and ISO library definitions

120

4.1.17 gm2-libs/FpulO

DEFINITION MODULE FpulIO ;

EXPORT QUALIFIED ReadReal, WriteReal, StrToReal, RealToStr,

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END FpulO.

ReadLongReal, WriteLongReal, StrToLongReal,
LongRealToStr,

ReadLongInt, WriteLongInt, StrTolLongInt,
LongIntToStr ;

ReadReal (VAR x: REAL) ;

WriteReal (x: REAL; TotalWidth, FractionWidth: CARDINAL) ;

StrToReal (a: ARRAY OF CHAR ; VAR x: REAL) ;

RealToStr (x: REAL; TotalWidth, FractionWidth: CARDINAL;
VAR a: ARRAY OF CHAR) ;

ReadLongReal (VAR x: LONGREAL) ;
WriteLongReal (x: LONGREAL;
TotalWidth, FractionWidth: CARDINAL) ;
StrToLongReal (a: ARRAY OF CHAR ; VAR x: LONGREAL) ;
LongRealToStr (x: LONGREAL;
TotalWidth, FractionWidth: CARDINAL;
VAR a: ARRAY OF CHAR) ;

ReadLongInt (VAR x: LONGINT) ;

WriteLongInt (x: LONGINT; n: CARDINAL) ;

StrToLongInt (a: ARRAY OF CHAR ; VAR x: LONGINT) ;
LongIntToStr (x: LONGINT; n: CARDINAL; VAR a: ARRAY OF CHAR)

b

Chapter 4: PIM and ISO library definitions 121

4.1.18 gm?2-libs/GetOpt
DEFINITION MODULE GetOpt ;

FROM SYSTEM IMPORT ADDRESS ;
FROM DynamicStrings IMPORT String ;

CONST
no_argument = 0 ;
required_argument = 1 ;
optional_argument = 2 ;

TYPE
LongOptions ;
PtrToInteger = POINTER TO INTEGER ;

(*
GetOpt - call C getopt and fill in the parameters:
optarg, optind, opterr and optopt.
*)

PROCEDURE GetOpt (argc: INTEGER; argv: ADDRESS; optstring: String;
VAR optarg: String;
VAR optind, opterr, optopt: INTEGER) : CHAR ;

(*
InitLongOptions - creates and returns a LongOptions empty array.

*)

PROCEDURE InitLongOptions () : LongOptions ;

(*

AddLongOption - appends long option {name, has_arg, flag, vall} to the
array of options and new long options array is
returned.

The old array, lo, should no longer be used.

(from man 3 getopt)
The meanings of the different fields are:

name is the name of the long option.
has_arg

is: no_argument (or 0) if the option does not take an
argument; required_argument (or 1) if the option

Chapter 4: PIM and ISO library definitions 122

requires an argument; or optional_argument (or 2) if
the option takes an optional argument.

flag specifies how results are returned for a long option.
If flag is NULL, then getopt_long() returns val.
(For example, the calling program may set val to the
equivalent short option character). Otherwise,
getopt_long() returns O, and flag points to a
variable which is set to val if the option is found,
but left unchanged if the option is not found.

val is the value to return, or to load into the variable
pointed to by flag.

The last element of the array must be filled with zeros.

*)

PROCEDURE AddLongOption (lo: LongOptions; index: CARDINAL;
name: String; has_arg: INTEGER;
VAR flag: INTEGER; val: INTEGER) : LongOptions ;[}

(*
KillLongOptions - returns NIL and also frees up memory
associated with, lo.

*)

PROCEDURE KillLongOptions (lo: LongOptions) : LongOptions ;

(*

GetOptLong - works like GetOpt but will accept long options (using
two dashes). If the program only accepts long options
then optstring should be an empty string, not NIL.

*)

PROCEDURE GetOptLong (argc: INTEGER; argv: ADDRESS;
optstring: String; longopts: LongOptions;
VAR longindex: INTEGER) : INTEGER ;

(*
GetOptLongOnly - works like GetOptLong except that a single dash
can be used for a long option.

*)

PROCEDURE GetOptLongOnly (argc: INTEGER; argv: ADDRESS;

Chapter 4: PIM and ISO library definitions 123

optstring: String; longopts: LongOptions;
VAR longindex: INTEGER) : INTEGER ;

END GetOpt.

Chapter 4: PIM and ISO library definitions 124

4.1.19 gm2-libs/IO
DEFINITION MODULE IO ;

(*
Description: provides Read, Write, Errors procedures that map onto UNIXJ]
file descriptors 0, 1 and 2. This is achieved by using
FI0 if we are in buffered mode and using libc.write
if not.

*)

EXPORT QUALIFIED Read, Write, Error,
UnBufferedMode, BufferedMode,
EchoOn, EchoOff ;

PROCEDURE Read (VAR ch: CHAR) ;
PROCEDURE Write (ch: CHAR) ;
PROCEDURE Error (ch: CHAR) ;

(*
UnBufferedMode - places file descriptor, fd, into an unbuffered mode.

*)

PROCEDURE UnBufferedMode (fd: INTEGER; input: BOOLEAN) ;

(*
BufferedMode - places file descriptor, fd, into a buffered mode.

*)

PROCEDURE BufferedMode (fd: INTEGER; input: BOOLEAN) ;

(*
EchoOn - turns on echoing for file descriptor, fd. This
only really makes sence for a file descriptor opened
for terminal input or maybe some specific file descriptor
which is attached to a particular piece of hardware.

*)

PROCEDURE EchoOn (fd: INTEGER; input: BOOLEAN) ;

(%
EchoOff - turns off echoing for file descriptor, fd. This

Chapter 4: PIM and ISO library definitions 125

only really makes sence for a file descriptor opened
for terminal input or maybe some specific file descriptor
which is attached to a particular piece of hardware.

*)

PROCEDURE EchoOff (fd: INTEGER; input: BOOLEAN) ;

END IO.

Chapter 4: PIM and ISO library definitions 126

4.1.20 gm2-libs/Indexing
DEFINITION MODULE Indexing ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
Index ;
IndexProcedure = PROCEDURE (ADDRESS) ;

(*
InitIndexTuned - creates a dynamic array with low indice.
minsize is the initial number of elements the
array is allocated and growfactor determines how
it will be resized once it becomes full.

*)

PROCEDURE InitIndexTuned (low, minsize, growfactor: CARDINAL) : Index ;

(*
InitIndex - creates and returns an Index.

*)

PROCEDURE InitIndex (low: CARDINAL) : Index ;

(*
KillIndex - returns Index to free storage.

*)

PROCEDURE KillIndex (i: Index) : Index ;

(*
DebugIndex - turns on debugging within an index.

*)

PROCEDURE DebugIndex (i: Index) : Index ;

(*
InBounds - returns TRUE if indice, n, is within the bounds
of the dynamic array.

*)

Chapter 4: PIM and ISO library definitions 127

PROCEDURE InBounds (i: Index; n: CARDINAL) : BOOLEAN ;

(*
HighIndice - returns the last legally accessible indice of this array.|}
*)
PROCEDURE HighIndice (i: Index) : CARDINAL ;
(*
LowIndice - returns the first legally accessible indice of this array.|}
*)
PROCEDURE LowIndice (i: Index) : CARDINAL ;
(*
PutIndice - places, a, into the dynamic array at position il[n]
*)
PROCEDURE PutIndice (i: Index; n: CARDINAL; a: ADDRESS) ;
(*
GetIndice - retrieves, element i[n] from the dynamic array.
*)
PROCEDURE GetIndice (i: Index; n: CARDINAL) : ADDRESS ;
(*
IsIndiceInIndex - returns TRUE if, a, is in the index, 1i.
*)
PROCEDURE IsIndiceInIndex (i: Index; a: ADDRESS) : BOOLEAN ;
(*
RemoveIndiceFromIndex - removes, a, from Index, i.

*)

PROCEDURE RemovelIndiceFromIndex (i: Index; a: ADDRESS) ;

(*

Chapter 4: PIM and ISO library definitions 128

DeleteIndice - delete i[j] from the array.
*)

PROCEDURE DeleteIndice (i: Index; j: CARDINAL) ;
(*
IncludeIndiceIntoIndex - if the indice is not in the index, then

add it at the end.
*)

PROCEDURE IncludeIndiceIntoIndex (i: Index; a: ADDRESS) ;
(*

ForeachIndiceInIndexDo - for each j indice of i, call procedure p(i[j1)}J}
*)
PROCEDURE ForeachIndiceInIndexDo (i: Index; p: IndexProcedure) ;
(*

IsEmpty - return TRUE if the array has no entries it.
*)
PROCEDURE IsEmpty (i: Index) : BOOLEAN ;
(*

FindIndice - returns the indice containing a.

It returns zero if a is not found in array i.

*)

PROCEDURE FindIndice (i: Index; a: ADDRESS) : CARDINAL ;

END Indexing.

Chapter 4: PIM and ISO library definitions 129

4.1.21 gm?2-libs/LMathLib0
DEFINITION MODULE LMathLibO ;

CONST
pi = 3.1415926535897932384626433832795028841972;
expl = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: LONGREAL) : LONGREAL ;
PROCEDURE exp (x: LONGREAL) : LONGREAL ;

PROCEDURE 1n (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ sin (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ cos (x: LONGREAL) : LONGREAL ;
PROCEDURE tan (x: LONGREAL) : LONGREAL ;

PROCEDURE arctan (x: LONGREAL) : LONGREAL ;

PROCEDURE entier (x: LONGREAL) : INTEGER ;

END LMathLibO.

Chapter 4: PIM and ISO library definitions

4.1.22 gm?2-libs/LegacyReal
DEFINITION MODULE LegacyReal ;

TYPE
REAL = SHORTREAL ;

END LegacyReal.

130

Chapter 4: PIM and ISO library definitions 131

4.1.23 gm2-libs/M2Dependent
DEFINITION MODULE M2Dependent ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
ArgCVEnvP = PROCEDURE (INTEGER, ADDRESS, ADDRESS) ;

PROCEDURE ConstructModules (applicationmodule, libname,
overrideliborder: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

PROCEDURE DeconstructModules (applicationmodule, libname: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

(*
RegisterModule - adds module name to the list of outstanding
modules which need to have their dependencies
explored to determine initialization order.

*)

PROCEDURE RegisterModule (modulename, libname: ADDRESS;
init, fini: ArgCVEnvP;
dependencies: PROC) ;

(*
RequestDependant - used to specify that modulename:libname
is dependant upon
module dependantmodule:dependantlibname

*)

PROCEDURE RequestDependant (modulename, libname,
dependantmodule, dependantlibname: ADDRESS) ;Jj

(%
InstallTerminationProcedure - installs a procedure, p, which will
be called when the procedure
ExecuteTerminationProcedures
is invoked. It returns TRUE is the
procedure is installed.

Chapter 4: PIM and ISO library definitions 132

PROCEDURE InstallTerminationProcedure (p: PROC) : BOOLEAN ;

I

(*
ExecutelInitialProcedures - executes the initial procedures installed
by InstallInitialProcedure.

*)

PROCEDURE ExecutelInitialProcedures ;

(*
InstallInitialProcedure - installs a procedure to be executed just
before the BEGIN code section of the main
program module.

*)
PROCEDURE InstallInitialProcedure (p: PROC) : BOOLEAN ;
(%
ExecuteTerminationProcedures - calls each installed termination procedure]]
in reverse order.

*)

PROCEDURE ExecuteTerminationProcedures ;

END M2Dependent.

Chapter 4: PIM and ISO library definitions 133

4.1.24 gm2-libs/M2EXCEPTION
DEFINITION MODULE M2EXCEPTION;

(* This enumerated list of exceptions must match the exceptions in gm2-libs-iso tof}
allow mixed module dialect projects. *)

TYPE
M2Exceptions =
(indexException, rangeException, caseSelectException, invalidLocation
functionException, wholeValueException, wholeDivException, realValueExcept
realDivException, complexValueException, complexDivException, protException,]]
sysException, coException, exException
)3

(* If the program or coroutine is in the exception state then return the enumeration]]
value representing the exception cause. If it is not in the exception state thenji
raises and exception (exException). *)

PROCEDURE M2Exception () : M2Exceptions;

(* Returns TRUE if the program or coroutine is in the exception state.
Returns FALSE if the program or coroutine is not in the exception state. =*)|Ji

PROCEDURE IsM2Exception () : BOOLEAN;

END M2EXCEPTION.

Chapter 4: PIM and ISO library definitions 134

4.1.25 gm2-libs/M2RTS
DEFINITION MODULE M2RTS ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
ArgCVEnvP = PROCEDURE (INTEGER, ADDRESS, ADDRESS) ;

PROCEDURE ConstructModules (applicationmodule, libname,
overrideliborder: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

PROCEDURE DeconstructModules (applicationmodule, libname: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

(*
RegisterModule - adds module name to the list of outstanding
modules which need to have their dependencies
explored to determine initialization order.

*)

PROCEDURE RegisterModule (name, libname: ADDRESS;
init, fini: ArgCVEnvP;
dependencies: PROC) ;

(*
RequestDependant - used to specify that modulename is dependant upon
module dependantmodule.

*)

PROCEDURE RequestDependant (modulename, libname,
dependantmodule, dependantlibname: ADDRESS) ;|j

(*
InstallTerminationProcedure - installs a procedure, p, which will
be called when the procedure
ExecuteTerminationProcedures
is invoked. It returns TRUE is the
procedure is installed.

*)

Chapter 4: PIM and ISO library definitions 135

PROCEDURE InstallTerminationProcedure (p: PROC) : BOOLEAN

I

(*
ExecuteInitialProcedures - executes the initial procedures installed

by InstallInitialProcedure.
*)

PROCEDURE ExecuteInitialProcedures ;

(*
InstallInitialProcedure - installs a procedure to be executed just
before the BEGIN code section of the main
program module.

*)

PROCEDURE InstallInitialProcedure (p: PROC) : BOOLEAN ;

I

(*
ExecuteTerminationProcedures - calls each installed termination procedure]]
in reverse order.

*)

PROCEDURE ExecuteTerminationProcedures ;

(*
Terminate - provides compatibility for pim. It call exit with
the exitcode provided in a prior call to ExitOnHalt
(or zero if ExitOnHalt was never called). It does
not call ExecuteTerminationProcedures.

*)

PROCEDURE Terminate <* noreturn *> ;

(*

HALT - terminate the current program. The procedure Terminate
is called before the program is stopped. The parameter
exitcode is optional. If the parameter is not supplied
HALT will call libc 'abort', otherwise it will exit with
the code supplied. Supplying a parameter to HALT has the
same effect as calling ExitOnHalt with the same code and
then calling HALT with no parameter.

Chapter 4: PIM and ISO library definitions 136

PROCEDURE HALT ([exitcode: INTEGER = -1]) <* noreturn *> ;

(*
Halt - provides a more user friendly version of HALT, which takes
four parameters to aid debugging. It writes an error message
to stderr and calls exit (1).

*)

PROCEDURE Halt (description, filename, function: ARRAY OF CHAR;
line: CARDINAL) <* noreturn *> ;

€
HaltC - provides a more user friendly version of HALT, which takes
four parameters to aid debugging. It writes an error message
to stderr and calls exit (1).

*)

PROCEDURE HaltC (description, filename, function: ADDRESS;
line: CARDINAL) <* noreturn *> ;

(*
ExitOnHalt - if HALT is executed then call exit with the exit code, e.ll
*)

PROCEDURE ExitOnHalt (e: INTEGER) ;

(%
ErrorMessage - emits an error message to stderr and then calls exit (1).]

*)

PROCEDURE ErrorMessage (message: ARRAY OF CHAR;
filename: ARRAY OF CHAR;
line: CARDINAL;
function: ARRAY OF CHAR) <* noreturn *> ;

(*
Length - returns the length of a string, a. This is called whenever
the user calls LENGTH and the parameter cannot be calculated
at compile time.

Chapter 4: PIM and ISO library definitions

PROCEDURE

(*

137

Length (a: ARRAY OF CHAR) : CARDINAL ;

The following are the runtime exception handler routines.

*)

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END M2RTS.

AssignmentException (filename: ADDRESS; line, column: CARDINAL; scope, messa
ReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message:

IncException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADD
DecException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADD
InclException (filename: ADDRESS; line, column: CARDINAL; scope, message: AD
ExclException (filename: ADDRESS; line, column: CARDINAL; scope, message: AD
ShiftException (filename: ADDRESS; line, column: CARDINAL; scope, message: A
RotateException (filename: ADDRESS; line, column: CARDINAL; scope, message:

StaticArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; sc
DynamicArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; s
ForLoopBeginException (filename: ADDRESS; line, column: CARDINAL; scope, mes
ForLoopToException (filename: ADDRESS; line, column: CARDINAL; scope, messag
ForLoopEndException (filename: ADDRESS; line, column: CARDINAL; scope, messa
PointerNilException (filename: ADDRESS; line, column: CARDINAL; scope, messa
NoReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message
CaseException (filename: ADDRESS; line, column: CARDINAL; scope, message: AD
WholeNonPosDivException (filename: ADDRESS; line, column: CARDINAL; scope, m
WholeNonPosModException (filename: ADDRESS; line, column: CARDINAL; scope, m
WholeZeroDivException (filename: ADDRESS; line, column: CARDINAL; scope, mes
WholeZeroRemException (filename: ADDRESS; line, column: CARDINAL; scope, mes
WholeValueException (filename: ADDRESS; line, column: CARDINAL; scope, messa
RealValueException (filename: ADDRESS; line, column: CARDINAL; scope, messag
ParameterException (filename: ADDRESS; line, column: CARDINAL; scope, messag
NoException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDR

Chapter 4: PIM and ISO library definitions 138

4.1.26 gm?2-libs/MathLib0
DEFINITION MODULE MathLibO ;

CONST
pi = 3.1415926535897932384626433832795028841972;
expl = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;
PROCEDURE exp (x: REAL) : REAL ;

PROCEDURE 1n (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;
PROCEDURE tan (x: REAL) : REAL ;

PROCEDURE arctan (x: REAL) : REAL ;
PROCEDURE entier (x: REAL) : INTEGER ;

END MathLibO.

Chapter 4: PIM and ISO library definitions 139

4.1.27 gm2-libs/MemUtils
DEFINITION MODULE MemUtils ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED MemCopy, MemZero ;

(*

MemCopy - copys a region of memory to the required destination.
*)
PROCEDURE MemCopy (from: ADDRESS; length: CARDINAL; to: ADDRESS) ;
(*

MemZero - sets a region of memory: a..atlength to zero.

*)

PROCEDURE MemZero (a: ADDRESS; length: CARDINAL) ;

END MemUtils.

Chapter 4: PIM and ISO library definitions 140

4.1.28 gm2-libs/NumberIO
DEFINITION MODULE NumberIO ;

EXPORT QUALIFIED ReadCard, WriteCard, ReadHex, WriteHex, ReadInt, WriteInt,|}
CardToStr, StrToCard, StrToHex, HexToStr, StrTolInt, IntToStr,Hl
ReadOct, WriteOct, OctToStr, StrToOlct,
ReadBin, WriteBin, BinToStr, StrToBin,
StrToBinInt, StrToHexInt, StrToOctInt ;

PROCEDURE ReadCard (VAR x: CARDINAL) ;

PROCEDURE WriteCard (x, n: CARDINAL) ;

PROCEDURE ReadHex (VAR x: CARDINAL) ;

PROCEDURE WriteHex (x, n: CARDINAL) ;

PROCEDURE ReadInt (VAR x: INTEGER) ;

PROCEDURE WriteInt (x: INTEGER ; n: CARDINAL) ;

PROCEDURE CardToStr (x, n: CARDINAL ; VAR a: ARRAY OF CHAR) ;

PROCEDURE StrToCard (a: ARRAY OF CHAR ; VAR x: CARDINAL) ;

PROCEDURE HexToStr (x, n: CARDINAL ; VAR a: ARRAY OF CHAR) ;

PROCEDURE StrToHex (a: ARRAY OF CHAR ; VAR x: CARDINAL) ;

PROCEDURE IntToStr (x: INTEGER ; n: CARDINAL ; VAR a: ARRAY OF CHAR) ;

PROCEDURE StrToInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;

PROCEDURE ReadOct (VAR x: CARDINAL) ;

PROCEDURE WriteOct (x, n: CARDINAL) ;

PROCEDURE 0OctToStr (x, n: CARDINAL ; VAR a: ARRAY OF CHAR) ;

PROCEDURE StrToOct (a: ARRAY OF CHAR ; VAR x: CARDINAL) ;

PROCEDURE ReadBin (VAR x: CARDINAL) ;

PROCEDURE WriteBin (x, n: CARDINAL) ;

Chapter 4: PIM and ISO library definitions 141

PROCEDURE BinToStr (x, n: CARDINAL ; VAR a: ARRAY OF CHAR) ;
PROCEDURE StrToBin (a: ARRAY OF CHAR ; VAR x: CARDINAL) ;

PROCEDURE StrToBinInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;
PROCEDURE StrToHexInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;

PROCEDURE StrToOctInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;

END NumberIO.

Chapter 4: PIM and ISO library definitions 142

4.1.29 gm?2-libs/OptLib
DEFINITION MODULE OptLib ;

FROM SYSTEM IMPORT ADDRESS ;
FROM DynamicStrings IMPORT String ;

TYPE
Option ;

(%
InitOption - constructor for Option.

*)

PROCEDURE InitOption (argc: INTEGER; argv: ADDRESS) : Option ;

(*
KillOption - deconstructor for Option.

*)

PROCEDURE KillOption (o: Option) : Option ;

(*
Dup - duplicate the option array inside, o.
Notice that this does not duplicate all the contents
(strings) of argv.
Shallow copy of the top level indices.
*)

PROCEDURE Dup (o: Option) : Option ;

(*
Slice - return a new option which has elements [low:high] from the
options, o.

*)

PROCEDURE Slice (o: Option; low, high: INTEGER) : Option ;

€
IndexStrCmp - returns the index in the argv array which matches
string, s. -1 is returned if the string is not found.

*)

Chapter 4: PIM and ISO library definitions 143

PROCEDURE IndexStrCmp (o: Option; s: String) : INTEGER ;

(*
IndexStrNCmp - returns the index in the argv array where the first
characters are matched by string, s.
-1 is returned if the string is not found.

*)
PROCEDURE IndexStrNCmp (o: Option; s: String) : INTEGER ;
(*

ConCat - returns the concatenation of a and b.
*)
PROCEDURE ConCat (a, b: Option) : Option ;
(*

GetArgv - return the argv component of option.
*)
PROCEDURE GetArgv (o: Option) : ADDRESS ;
(*

GetArgc - return the argc component of option.
*)

PROCEDURE GetArgc (o: Option) : INTEGER ;

END OptLib.

Chapter 4: PIM and ISO library definitions 144

4.1.30 gm2-libs/PushBackInput
DEFINITION MODULE PushBackInput ;

FROM FI0O IMPORT File ;
FROM DynamicStrings IMPORT String ;

EXPORT QUALIFIED Open, PutCh, GetCh, Error, WarnError, WarnString,
Close, SetDebug, GetExitStatus, PutStr,
PutString, GetColumnPosition, GetCurrentLine ;

(*
Open - opens a file for reading.

*)

PROCEDURE Open (a: ARRAY OF CHAR) : File ;

(*
GetCh - gets a character from either the push back stack or
from file, f.

*)

PROCEDURE GetCh (f: File) : CHAR ;

(*
PutCh - pushes a character onto the push back stack, it also
returns the character which has been pushed.

*)

PROCEDURE PutCh (ch: CHAR) : CHAR ;

(*
PutString - pushes a string onto the push back stack.
*)

PROCEDURE PutString (a: ARRAY OF CHAR) ;

(*
PutStr - pushes a dynamic string onto the push back stack.
The string, s, is not deallocated.

*)

Chapter 4: PIM and ISO library definitions 145

PROCEDURE PutStr (s: String) ;

(*
Error - emits an error message with the appropriate file, line combination.|}

*)

PROCEDURE Error (a: ARRAY OF CHAR) ;

(*
WarnError - emits an error message with the appropriate file, line combination.|}
It does not terminate but when the program finishes an exit status of]}
1 will be issued.

*)

PROCEDURE WarnError (a: ARRAY OF CHAR) ;

(*
WarnString - emits an error message with the appropriate file, line combination.|}
It does not terminate but when the program finishes an exit status off}
1 will be issued.

*)
PROCEDURE WarnString (s: String) ;
(*
Close - closes the opened file.
*)
PROCEDURE Close (f: File) ;
(*
GetExitStatus - returns the exit status which will be 1 if any warnings were issued
*)
PROCEDURE GetExitStatus () : CARDINAL ;
(*
SetDebug - sets the debug flag on or off.

*)

PROCEDURE SetDebug (d: BOOLEAN) ;

Chapter 4: PIM and ISO library definitions 146

(*
GetColumnPosition - returns the column position of the current character.|]
*)
PROCEDURE GetColumnPosition () : CARDINAL ;
(*
GetCurrentline - returns the current line number.

*)

PROCEDURE GetCurrentLine () : CARDINAL ;

END PushBackInput.

Chapter 4: PIM and ISO library definitions 147

4.1.31 gm2-libs/RTExceptions
DEFINITION MODULE RTExceptions ;

(* Runtime exception handler routines. This should
be considered as a system module for GNU Modula-2
and allow the compiler to interface with exception
handling. *)

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED EHBlock,
Raise, SetExceptionBlock, GetExceptionBlock,
GetTextBuffer, GetTextBufferSize, GetNumber,
InitExceptionBlock, KillExceptionBlock,
PushHandler, PopHandler,
BaseExceptionsThrow, DefaultErrorCatch,
IsInExceptionState, SetExceptionState,
SwitchExceptionState, GetBaseExceptionBlock,
SetExceptionSource, GetExceptionSource ;

TYPE
EHBlock ;
ProcedureHandler = PROCEDURE ;

(*
Raise - invoke the exception handler associated with, number,
in the active EHBlock. It keeps a record of the number
and message in the EHBlock for later use.

*)

PROCEDURE Raise (number: CARDINAL;
file: ADDRESS; line: CARDINAL;
column: CARDINAL; function: ADDRESS;
message: ADDRESS) <* noreturn *> ;

(*
SetExceptionBlock - sets, source, as the active EHB.

*)
PROCEDURE SetExceptionBlock (source: EHBlock) ;
(*

GetExceptionBlock - returns the active EHB.
*)

Chapter 4: PIM and ISO library definitions 148

PROCEDURE GetExceptionBlock () : EHBlock ;

(*
GetTextBuffer - returns the address of the EHB buffer.
*)

PROCEDURE GetTextBuffer (e: EHBlock) : ADDRESS ;
(*
GetTextBufferSize - return the size of the EHB text buffer.
*)
PROCEDURE GetTextBufferSize (e: EHBlock) : CARDINAL ;
(*
GetNumber - return the exception number associated with,
source.
*)
PROCEDURE GetNumber (source: EHBlock) : CARDINAL ;
(*
InitExceptionBlock - creates and returns a new exception block.
*)
PROCEDURE InitExceptionBlock () : EHBlock ;
(*
KillExceptionBlock - destroys the EHB, e, and all its handlers.
*)
PROCEDURE KillExceptionBlock (e: EHBlock) : EHBlock ;
(*
PushHandler - install a handler in EHB, e.
*)

PROCEDURE PushHandler (e: EHBlock; number: CARDINAL; p: ProcedureHandler) ;Jj

Chapter 4: PIM and ISO library definitions 149

(*
PopHandler - removes the handler associated with, number, from
EHB, e.

*)

PROCEDURE PopHandler (e: EHBlock; number: CARDINAL) ;

(*
DefaultErrorCatch - displays the current error message in
the current exception block and then
calls HALT.

*)

PROCEDURE DefaultErrorCatch ;

(*

BaseExceptionsThrow - configures the Modula-2 exceptions to call
THROW which in turn can be caught by an
exception block. If this is not called then
a Modula-2 exception will simply call an
error message routine and then HALT.

*)

PROCEDURE BaseExceptionsThrow ;

(*
IsInExceptionState - returns TRUE if the program is currently
in the exception state.

*)

PROCEDURE IsInExceptionState () : BOOLEAN ;

(*
SetExceptionState - returns the current exception state and
then sets the current exception state to,
to.

*)

PROCEDURE SetExceptionState (to: BOOLEAN) : BOOLEAN ;

(*

SwitchExceptionState - assigns, from, with the current exception

Chapter 4: PIM and ISO library definitions 150

state and then assigns the current exception
to, to.
*)

PROCEDURE SwitchExceptionState (VAR from: BOOLEAN; to: BOOLEAN) ;
(*
GetBaseExceptionBlock - returns the initial language exception block

created.

*)
PROCEDURE GetBaseExceptionBlock () : EHBlock ;
(*
SetExceptionSource - sets the current exception source to, source.
*)
PROCEDURE SetExceptionSource (source: ADDRESS) ;
(*
GetExceptionSource - returns the current exception source.
*)

PROCEDURE GetExceptionSource () : ADDRESS ;

END RTExceptioms.

Chapter 4: PIM and ISO library definitions 151

4.1.32 gm2-libs/RTint
DEFINITION MODULE RTint ;

(* Provides users of the COROUTINES library with the
ability to create interrupt sources based on
file descriptors and timeouts. *)

FROM SYSTEM IMPORT ADDRESS ;

TYPE
DispatchVector = PROCEDURE (CARDINAL, CARDINAL, ADDRESS) ;

(*
InitInputVector - returns an interrupt vector which is associated
with the file descriptor, fd.
*)

PROCEDURE InitInputVector (fd: INTEGER; pri: CARDINAL) : CARDINAL ;

(*
InitOutputVector - returns an interrupt vector which is associated
with the file descriptor, fd.
*)

PROCEDURE InitOutputVector (fd: INTEGER; pri: CARDINAL) : CARDINAL ;
(*
InitTimeVector - returns an interrupt vector associated with
the relative time.
*)
PROCEDURE InitTimeVector (micro, secs: CARDINAL; pri: CARDINAL) : CARDINAL ;Jj
(*

ReArmTimeVector - reprimes the vector, vec, to deliver an interrupt
at the new relative time.

*)

PROCEDURE ReArmTimeVector (vec: CARDINAL; micro, secs: CARDINAL) ;

(*

Chapter 4: PIM and ISO library definitions 152

GetTimeVector - assigns, micro, and, secs, with the remaining
time before this interrupt will expire.
This value is only updated when a Listen
occurs.

*)

PROCEDURE GetTimeVector (vec: CARDINAL; VAR micro, secs: CARDINAL)

3

(*
AttachVector - adds the pointer, p, to be associated with the interruptfl
vector. It returns the previous value attached to this
vector.

*)

PROCEDURE AttachVector (vec: CARDINAL; ptr: ADDRESS) : ADDRESS ;

(*
IncludeVector - includes, vec, into the dispatcher list of
possible interrupt causes.

*)

PROCEDURE IncludeVector (vec: CARDINAL) ;

(*
ExcludeVector - excludes, vec, from the dispatcher list of
possible interrupt causes.

*)

PROCEDURE ExcludeVector (vec: CARDINAL) ;

(*
Listen - will either block indefinitely (until an interrupt)
or alteratively will test to see whether any interrupts
are pending.
If a pending interrupt was found then, call, is called
and then this procedure returns.
It only listens for interrupts > pri.

*)

PROCEDURE Listen (untilInterrupt: BOOLEAN;
call: DispatchVector;
pri: CARDINAL) ;

Chapter 4: PIM and ISO library definitions 153

(*
Init - allows the user to force the initialize order.

*)

PROCEDURE Init ;

END RTint.

Chapter 4: PIM and ISO library definitions 154

4.1.33 gm2-libs/SArgs
DEFINITION MODULE SArgs ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED GetArg, Narg ;

€
GetArg - returns the nth argument from the command line.
The success of the operation is returned.
If TRUE is returned then the string, s, contains a
new string, otherwise s is set to NIL.

*)
PROCEDURE GetArg (VAR s: String ; n: CARDINAL) : BOOLEAN ;
(*
Narg - returns the number of arguments available from
command line.

*)

PROCEDURE Narg() : CARDINAL ;

END SArgs.

Chapter 4: PIM and ISO library definitions 155

4.1.34 gm2-libs/SCmdArgs
DEFINITION MODULE SCmdArgs ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED GetArg, Narg ;
(*
GetArg - returns the nth argument from the command line, CmdLine
the success of the operation is returned.
*)
PROCEDURE GetArg (CmdLine: String;

n: CARDINAL; VAR Argi: String) : BOOLEAN ;

(*
Narg - returns the number of arguments available from
command line, CmdLine.

*)

PROCEDURE Narg (CmdLine: String) : CARDINAL ;

END SCmdArgs.

Chapter 4: PIM and ISO library definitions 156

4.1.35 gm2-libs/SEnvironment
DEFINITION MODULE SEnvironment ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED GetEnvironment ;

(*
GetEnvironment - gets the environment variable Env and places
a copy of its value into String, dest.
It returns TRUE if the string Env was found in
the processes environment.

*)

PROCEDURE GetEnvironment (Env: String;
VAR dest: String) : BOOLEAN ;

(*
PutEnvironment - change or add an environment variable definition EnvDef.|}
TRUE is returned if the environment variable was
set or changed successfully.

*)

PROCEDURE PutEnvironment (EnvDef: String) : BOOLEAN ;

END SEnvironment.

Chapter 4: PIM and ISO library definitions 157

4.1.36 gm2-libs/SFIO
DEFINITION MODULE SFIO ;

FROM DynamicStrings IMPORT String ;
FROM FIO IMPORT File ;

EXPORT QUALIFIED OpenToRead, OpenToWrite, OpenForRandom, Exists, WriteS, ReadS ;|Jj

(*
Exists - returns TRUE if a file named, fname exists for reading.

*)

PROCEDURE Exists (fname: String) : BOOLEAN

I

(*
OpenToRead - attempts to open a file, fname, for reading and
it returns this file.
The success of this operation can be checked by
calling IsNoError.

*)

PROCEDURE OpenToRead (fname: String) : File

3

(*
OpenToWrite - attempts to open a file, fname, for write and
it returns this file.
The success of this operation can be checked by
calling IsNoError.

*)

PROCEDURE OpenToWrite (fname: String) : File

3

(*
OpenForRandom - attempts to open a file, fname, for random access

read or write and it returns this file.
The success of this operation can be checked by
calling IsNoError.
towrite, determines whether the file should be
opened for writing or reading.
if towrite is TRUE or whether the previous file should]]
be left alone, allowing this descriptor to seek
and modify an existing file.

Chapter 4: PIM and ISO library definitions 158

*)

PROCEDURE OpenForRandom (fname: String; towrite, newfile: BOOLEAN) : File ;Jj

(*
WriteS - writes a string, s, to, file. It returns the String, s.

*)

PROCEDURE WriteS (file: File; s: String) : String ;

(*
ReadS - reads a string, s, from, file. It returns the String, s.
It stops reading the string at the end of line or end of file.[}
It consumes the newline at the end of line but does not place
this into the returned string.

*)

PROCEDURE ReadS (file: File) : String ;

END SFIO.

Chapter 4: PIM and ISO library definitions 159

4.1.37 gm2-libs/SMathLib0
DEFINITION MODULE SMathLibO ;

CONST
pi = 3.1415926535897932384626433832795028841972;
expl = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: SHORTREAL) : SHORTREAL ;
PROCEDURE exp (x: SHORTREAL) : SHORTREAL ;

PROCEDURE 1n (x: SHORTREAL) : SHORTREAL ;

PROCEDURE __BUILTIN__ sin (x: SHORTREAL) : SHORTREAL ;

PROCEDURE __BUILTIN__ cos (x: SHORTREAL) : SHORTREAL ;

PROCEDURE tan (x: SHORTREAL) : SHORTREAL ;

PROCEDURE arctan (x: SHORTREAL) : SHORTREAL ;

PROCEDURE entier (x: SHORTREAL) : INTEGER ;

END SMathLibO.

Chapter 4: PIM and ISO library definitions 160

4.1.38 gm2-libs/SYSTEM

DEFINITION MODULE SYSTEM ;

EXPORT QUALIFIED BITSPERBYTE, BYTESPERWORD,

ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, COFF_T, CARDINAL64,

Target specific data types. *)
ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE ;
(* SIZE is also exported if -fpim2 is used. *)

CONST
BITSPERBYTE = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
BYTESPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINALS8, CARDINAL16, CARDINAL32, CARDINAL64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. *)

(* The following types are supported on this target:
TYPE

(* Target specific data types. *)
*)

(*
all the functions below are declared internally to gm2

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. x*)

PROCEDURE SIZE (v: <type>) : ZType;
(* Returns the number of BYTES used to store a v of
any specified <type>. Only available if -fpim2 is used.
*)

A

Chapter 4: PIM and ISO library definitions 161

PROCEDURE TSIZE (<type>) : CARDINAL;
(* Returns the number of BYTES used to store a value of the
specified <type>.
*)

PROCEDURE ROTATE (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up/right
or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
*)

PROCEDURE SHIFT (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up/left
or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.

*)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
(*

THROW is a GNU extension and was not part of the PIM or ISO
standards. It throws an exception which will be caught by the
EXCEPT block (assuming it exists). This is a compiler builtin
function which interfaces to the GCC exception handling runtime
system.
GCC uses the term throw, hence the naming distinction between
the GCC builtin and the Modula-2 runtime library procedure Raise.
The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.

*)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
(* Returns the minimum number of bits necessary to represent
<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.
*)
*)

(* The following procedures are invoked by GNU Modula-2 to
shift non word sized set types. They are not strictly part
of the core PIM Modula-2, however they are used
to implement the SHIFT procedure defined above,

Chapter 4: PIM and ISO library definitions 162

which are in turn used by the Logitech compatible libraries.

Users will access these procedures by using the procedure
SHIFT above and GNU Modula-2 will map SHIFT onto one of
the following procedures.

(*
ShiftVal - is a runtime procedure whose job is to implement
the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will
inline a SHIFT of a single WORD sized set and will only
call this routine for larger sets.

*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: INTEGER) ;

(*
ShiftLeft - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
ShiftRight - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
RotateVal - is a runtime procedure whose job is to implement
the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
inline a ROTATE of a single WORD (or less)
sized set and will only call this routine for larger

Chapter 4: PIM and ISO library definitions

sets.

*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: INTEGER)

I

(*
RotateLeft - performs the rotate left for a multi word set.
This procedure might be called by the back end of

GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL)

3

(*
RotateRight - performs the rotate right for a multi word set.
This procedure might be called by the back end of

GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL)

b

END SYSTEM.

163

Chapter 4: PIM and ISO library definitions

4.1.39

gm?2-libs/Scan

DEFINITION MODULE Scan ;

(* Provides a primitive symbol fetching from input.

Symbols are delimited by spaces and tabs.
Limitation only allows one source file at
a time to deliver symbols. *)

EXPORT QUALIFIED GetNextSymbol, WriteError,

OpenSource, CloseSource,
TerminateOnError, DefineComments ;

(* OpenSource - opens a source file for reading.

PROCEDURE OpenSource (a: ARRAY OF CHAR) : BOOLEAN ;

(* CloseSource - closes the current source file from reading.

PROCEDURE CloseSource ;

(* GetNextSymbol gets the next source symbol and returns it in a.

PROCEDURE GetNextSymbol (VAR a: ARRAY OF CHAR) ;

(*
(*

WriteError writes a message, a, under the source line, which
attempts to pinpoint the Symbol at fault.

PROCEDURE WriteError (a: ARRAY OF CHAR) ;

(*

*)

TerminateOnError - exits with status 1 if we call WriteError.

PROCEDURE TerminateOnError ;

(*

*)

*)
*)

DefineComments - defines the start of comments within the source

file.

164

Chapter 4: PIM and ISO library definitions 165

The characters in Start define the comment start
and characters in End define the end.

The BOOLEAN eoln determine whether the comment
is terminated by end of line. If eoln is TRUE
then End is ignored.

If this procedure is never called then no comments
are allowed.

*)

PROCEDURE DefineComments (Start, End: ARRAY OF CHAR; eoln: BOOLEAN)

3

END Scan.

Chapter 4: PIM and ISO library definitions 166

4.1.40 gm2-libs/Selective
DEFINITION MODULE Selective ;

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED SetO0fFd, Timeval,
InitSet, KillSet, InitTime, KillTime,
GetTime, SetTime,
FdZero, FdSet, FdClr, FdIsSet, Select,
MaxFdsPlusOne, WriteCharRaw, ReadCharRaw,

GetTimeOfDay ;
TYPE
Set0fFd = ADDRESS ; (* Hidden type in Selective.c *)
Timeval = ADDRESS ; (* Hidden type in Selective.c *)

PROCEDURE Select (nooffds: CARDINAL;
readfds, writefds, exceptfds: Set(0fFd;
timeout: Timeval) : INTEGER ;

PROCEDURE InitTime (sec, usec: CARDINAL) : Timeval ;
PROCEDURE KillTime (t: Timeval) : Timeval ;

PROCEDURE GetTime (t: Timeval; VAR sec, usec: CARDINAL) ;
PROCEDURE SetTime (t: Timeval; sec, usec: CARDINAL) ;
PROCEDURE InitSet () : SetOfFd ;

PROCEDURE KillSet (s: SetOfFd) : SetOfFd ;

PROCEDURE FdZero (s: SetOfFd) ;

PROCEDURE FdSet (fd: INTEGER; s: Set0fFd) ;

PROCEDURE FdClr (fd: INTEGER; s: SetOfFd) ;

PROCEDURE FdIsSet (fd: INTEGER; s: SetOfFd) : BOOLEAN ;
PROCEDURE MaxFdsPlusOne (a, b: INTEGER) : INTEGER ;

(* you must use the raw routines with select - not the FIO buffered routines *)Jj
PROCEDURE WriteCharRaw (fd: INTEGER; ch: CHAR) ;
PROCEDURE ReadCharRaw (fd: INTEGER) : CHAR ;

(*
GetTimeOfDay - fills in a record, Timeval, filled in with the
current system time in seconds and microseconds.
It returns zero (see man 3p gettimeofday)

*)

PROCEDURE GetTimeOfDay (tv: Timeval) : INTEGER ;

Chapter 4: PIM and ISO library definitions 167

END Selective.

Chapter 4: PIM and ISO library definitions 168

4.1.41 gm?2-libs/StdIO
DEFINITION MODULE StdIO ;

EXPORT QUALIFIED ProcRead, ProcWrite,
Read, Write,
PushOutput, PopOutput, GetCurrentOutput,
PushInput, PopInput, GetCurrentInput ;

TYPE
ProcWrite = PROCEDURE (CHAR) ;
ProcRead = PROCEDURE (VAR CHAR) ;
(*

Read - is the generic procedure that all higher application layers
should use to receive a character.

*)

PROCEDURE Read (VAR ch: CHAR) ;

(*
Write - is the generic procedure that all higher application layers
should use to emit a character.

*)

PROCEDURE Write (ch: CHAR) ;

(*
PushOutput - pushes the current Write procedure onto a stack,
any future references to Write will actually invoke
procedure, p.

*)
PROCEDURE PushQOutput (p: ProcWrite) ;
(%
PopOutput - restores Write to use the previous output procedure.
*)

PROCEDURE PopOutput ;

Chapter 4: PIM and ISO library definitions 169

(*
GetCurrentOutput - returns the current output procedure.

*)
PROCEDURE GetCurrentOutput () : ProcWrite ;
(*
PushInput - pushes the current Read procedure onto a stack,
any future references to Read will actually invoke

procedure, p.

*)
PROCEDURE PushInput (p: ProcRead) ;
(*
PopInput - restores Write to use the previous output procedure.
*)
PROCEDURE PopInput ;
(*
GetCurrentInput - returns the current input procedure.
*)

PROCEDURE GetCurrentInput () : ProcRead ;

END StdIO.

Chapter 4: PIM and ISO library definitions 170

4.1.42 gm?2-libs/Storage
DEFINITION MODULE Storage ;

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED ALLOCATE, DEALLOCATE, REALLOCATE, Available ;

(*
ALLOCATE - attempt to allocate memory from the heap.
NIL is returned in, a, if ALLOCATE fails.

*)

PROCEDURE ALLOCATE (VAR a: ADDRESS ; Size: CARDINAL) ;

(*
DEALLOCATE - return, Size, bytes to the heap.
The variable, a, is set to NIL.

*)

PROCEDURE DEALLOCATE (VAR a: ADDRESS ; Size: CARDINAL) ;

(*
REALLOCATE - attempts to reallocate storage. The address,
a, should either be NIL in which case ALLOCATE
is called, or alternatively it should have already
been initialized by ALLOCATE. The allocated storage
is resized accordingly.

*)
PROCEDURE REALLOCATE (VAR a: ADDRESS; Size: CARDINAL) ;
(*
Available - returns TRUE if, Size, bytes can be allocated.

*)

PROCEDURE Available (Size: CARDINAL) : BOOLEAN ;

END Storage.

Chapter 4: PIM and ISO library definitions 171

4.1.43 gm?2-libs/StrCase
DEFINITION MODULE StrCase ;

EXPORT QUALIFIED StrToUpperCase, StrToLowerCase, Cap, Lower ;

€
StrToUpperCase - converts string, a, to uppercase returning the
result in, b.

*)
PROCEDURE StrToUpperCase (a: ARRAY OF CHAR ; VAR b: ARRAY OF CHAR) ;
(*

StrToLowerCase - converts string, a, to lowercase returning the

result in, b.

*)

PROCEDURE StrTolLowerCase (a: ARRAY OF CHAR ; VAR b: ARRAY OF CHAR) ;

(*
Cap - converts a lower case character into a capital character.
If the character is not a lower case character 'a'..'z'
then the character is simply returned unaltered.
*)

PROCEDURE Cap (ch: CHAR) : CHAR ;

(*
Lower - converts an upper case character into a lower case character.
If the character is not an upper case character 'A'..'Z'
then the character is simply returned unaltered.
*)

PROCEDURE Lower (ch: CHAR) : CHAR ;

END StrCase.

Chapter 4: PIM and ISO library definitions 172

4.1.44 gm?2-libs/StrIO
DEFINITION MODULE StrIQ ;

EXPORT QUALIFIED ReadString, WriteString,

Writeln ;
€
Writeln - writes a carriage return and a newline
character.
*)

PROCEDURE Writeln ;

(*
ReadString - reads a sequence of characters into a string.
Line editing accepts Del, Ctrl H, Ctrl W and
Ctrl U.
*)

PROCEDURE ReadString (VAR a: ARRAY OF CHAR) ;
(*

WriteString - writes a string to the default output.
*)

PROCEDURE WriteString (a: ARRAY OF CHAR) ;

END StrIO.

Chapter 4: PIM and ISO library definitions 173

4.1.45 gm2-libs/StrLib
DEFINITION MODULE StrLib ;

EXPORT QUALIFIED StrConCat, StrLen, StrCopy, StrEqual, Strless,
IsSubString, StrRemoveWhitePrefix ;

(*
StrConCat - combines a and b into c.

*)

PROCEDURE StrConCat (a, b: ARRAY OF CHAR; VAR c: ARRAY OF CHAR) ;

(*
StrLess - returns TRUE if string, a, alphabetically occurs before
string, b.
*)

PROCEDURE StrLess (a, b: ARRAY OF CHAR) : BOOLEAN ;
(*
StrEqual - performs a = b on two strings.
*)
PROCEDURE StrEqual (a, b: ARRAY OF CHAR) : BOOLEAN ;
(*
StrLen - returns the length of string, a.
*)
PROCEDURE StrLen (a: ARRAY OF CHAR) : CARDINAL ;
€
StrCopy - copy string src into string dest providing dest is large enough.|}
If dest is smaller than a then src then the string is truncated whenj

dest is full. Add a nul character if there is room in dest.hl

*)

PROCEDURE StrCopy (src: ARRAY OF CHAR ; VAR dest: ARRAY OF CHAR) ;

(*

Chapter 4: PIM and ISO library definitions 174

IsSubString - returns true if b is a subcomponent of a.

*)
PROCEDURE IsSubString (a, b: ARRAY OF CHAR) : BOOLEAN ;
(*

StrRemoveWhitePrefix - copies string, into string, b, excluding any whitel}
space infront of a.

*)

PROCEDURE StrRemoveWhitePrefix (a: ARRAY OF CHAR; VAR b: ARRAY OF CHAR) ;i

END StrLib.

Chapter 4: PIM and ISO library definitions 175

4.1.46 gm2-libs/String
DEFINITION MODULE String ;

FROM DynamicStrings IMPORT String ;
FROM FIO IMPORT File ;

PROCEDURE Write (f: File; str: String) ;
PROCEDURE Writeln (f: File) ;

END String.

Chapter 4: PIM and ISO library definitions 176

4.1.47 gm2-libs/StringConvert
DEFINITION MODULE StringConvert ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED IntegerToString, StringTolnteger,

(*

*)

PROCEDURE IntegerToString (i: INTEGER; width: CARDINAL; padding: CHAR; sign:

(*

*)

StringToLongInteger, LongIntegerToString,
StringToCardinal, CardinalToString,
StringToLongCardinal, LongCardinalToString,
StringToShortCardinal, ShortCardinalToString,
StringToLongreal, LongrealToString,

ToSigFig,

stoi, itos, ctos, stoc, hstoi, ostoi, bstoi,
hstoc, ostoc, bstoc,

stor, stolr ;

IntegerToString - converts INTEGER, i, into a String. The field with

can be specified if non zero. Leading characters
are defined by padding and this function will
prepend a + if sign is set to TRUE.

The base allows the caller to generate binary,
octal, decimal, hexidecimal numbers.

The value of lower is only used when hexidecimal
numbers are generated and if TRUE then digits
abcdef are used, and if FALSE then ABCDEF are used.

base: CARDINAL; lower: BOOLEAN) : String ;

CardinalToString - converts CARDINAL, c, into a String. The field

width can be specified if non zero. Leading
characters are defined by padding.

The base allows the caller to generate binary,
octal, decimal, hexidecimal numbers.

The value of lower is only used when hexidecimal
numbers are generated and if TRUE then digits

abcdef are used, and if FALSE then ABCDEF are used.}}

PROCEDURE CardinalToString (c: CARDINAL; width: CARDINAL; padding: CHAR;

base: CARDINAL; lower: BOOLEAN) : String ;

BOOLEAN; |

Chapter 4: PIM and ISO library definitions 177

(*

StringToInteger - converts a string, s, of, base, into an INTEGER.
Leading white space is ignored. It stops converting
when either the string is exhausted or if an illegall]
numeral is found.

The parameter found is set TRUE if a number was found.]]

*)

PROCEDURE StringToInteger (s: String; base: CARDINAL; VAR found: BOOLEAN) : INTEGER ;[

(*

StringToCardinal - converts a string, s, of, base, into a CARDINAL.
Leading white space is ignored. It stops convertingli
when either the string is exhausted or if an illegall}
numeral is found.

The parameter found is set TRUE if a number was found.|}

*)

PROCEDURE StringToCardinal (s: String; base: CARDINAL; VAR found: BOOLEAN) : CARDINAL

(*

LongIntegerToString - converts LONGINT, i, into a String. The field withf
can be specified if non zero. Leading characters|
are defined by padding and this function will
prepend a + if sign is set to TRUE.

The base allows the caller to generate binary,
octal, decimal, hexidecimal numbers.

The value of lower is only used when hexidecimall}
numbers are generated and if TRUE then digits

abcdef are used, and if FALSE then ABCDEF are used.j]

*)

PROCEDURE LongIntegerToString (i: LONGINT; width: CARDINAL; padding: CHAR;J}
sign: BOOLEAN; base: CARDINAL; lower: BOOLEAN) : String

(*

StringToLongInteger - converts a string, s, of, base, into an LONGINT.Q
Leading white space is ignored. It stops converting]]
when either the string is exhausted or if an illegall}
numeral is found.

The parameter found is set TRUE if a number was found.[|}

Chapter 4: PIM and ISO library definitions 178

PROCEDURE StringToLongInteger (s: String; base: CARDINAL; VAR found: BOOLEAN) : LONGIN

(*

LongCardinalToString - converts LONGCARD, c, into a String. The field
width can be specified if non zero. Leading
characters are defined by padding.

The base allows the caller to generate binary,
octal, decimal, hexidecimal numbers.

The value of lower is only used when hexidecimalll
numbers are generated and if TRUE then digits

abcdef are used, and if FALSE then ABCDEF are used.ll

*)

PROCEDURE LongCardinalToString (c: LONGCARD; width: CARDINAL; padding: CHAR;J}
base: CARDINAL; lower: BOOLEAN) : String H |

(*

StringToLongCardinal - converts a string, s, of, base, into a LONGCARD.J
Leading white space is ignored. It stops convertingl
when either the string is exhausted or if an illegall}
numeral is found.

The parameter found is set TRUE if a number was found.[|}

*)

PROCEDURE StringToLongCardinal (s: String; base: CARDINAL; VAR found: BOOLEAN) : LONGC

(*

ShortCardinalToString - converts SHORTCARD, c, into a String. The field]]
width can be specified if non zero. Leading
characters are defined by padding.

The base allows the caller to generate binary,[i
octal, decimal, hexidecimal numbers.

The value of lower is only used when hexidecimall]
numbers are generated and if TRUE then digits

abcdef are used, and if FALSE then ABCDEF are used.j]

*)

PROCEDURE ShortCardinalToString (c: SHORTCARD; width: CARDINAL; padding: CHAR;J}
base: CARDINAL; lower: BOOLEAN) : String ;f}

(*
StringToShortCardinal - converts a string, s, of, base, into a SHORTCARD.|}

Chapter 4: PIM and ISO library definitions 179

Leading white space is ignored. It stops convertingl
when either the string is exhausted or if an illegall}
numeral is found.

The parameter found is set TRUE if a number was found.|]

*)

PROCEDURE StringToShortCardinal (s: String; base: CARDINAL;
VAR found: BOOLEAN) : SHORTCARD ;

(*
stoi - decimal string to INTEGER
*)

PROCEDURE stoi (s: String) : INTEGER ;
(*
itos - integer to decimal string.
*)
PROCEDURE itos (i: INTEGER; width: CARDINAL; padding: CHAR; sign: BOOLEAN) : String ;|j
(*
ctos - cardinal to decimal string.
*)
PROCEDURE ctos (c: CARDINAL; width: CARDINAL; padding: CHAR) : String ;
(%
stoc - decimal string to CARDINAL
*)
PROCEDURE stoc (s: String) : CARDINAL ;
(*
hstoi - hexidecimal string to INTEGER
*)
PROCEDURE hstoi (s: String) : INTEGER ;

(*
ostoi - octal string to INTEGER

Chapter 4: PIM and ISO library definitions 180

*)
PROCEDURE ostoi (s: String) : INTEGER ;
(*

bstoi - binary string to INTEGER
*)
PROCEDURE bstoi (s: String) : INTEGER ;
(*

hstoc - hexidecimal string to CARDINAL
*)
PROCEDURE hstoc (s: String) : CARDINAL ;
(*

ostoc - octal string to CARDINAL
*)
PROCEDURE ostoc (s: String) : CARDINAL ;
(%

bstoc - binary string to CARDINAL
*)
PROCEDURE bstoc (s: String) : CARDINAL ;
(*

StringToLongreal - returns a LONGREAL and sets found to TRUE

if a legal number is seen.

*)
PROCEDURE StringToLongreal (s: String; VAR found: BOOLEAN) : LONGREAL ;
(*

LongrealToString - converts a LONGREAL number, Real, which has,

TotalWidth, and FractionWidth into a string.

So for example:

Chapter 4: PIM and ISO library definitions 181

LongrealToString(1.0, 4, 2) -> '1.00'

LongrealToString(12.3, 5, 2) -> '12.30'
LongrealToString(12.3, 6, 2) -> ' 12.30'
LongrealToString(12.3, 6, 3) -> '12.300'

if total width is too small then the fraction
becomes truncated.

LongrealToString(12.3, 5, 3) -> '12.30'

If TotalWidth is O then the function

will return the value of x which is converted
into as a fixed point number with exhaustive
precision.

*)

PROCEDURE LongrealToString (x: LONGREAL;
TotalWidth, FractionWidth: CARDINAL) : String ;|

(%
stor - returns a REAL given a string.

*)
PROCEDURE stor (s: String) : REAL ;
(*
stolr - returns a LONGREAL given a string.
*)
PROCEDURE stolr (s: String) : LONGREAL ;
(*
ToSigFig - returns a floating point or base 10 integer
string which is accurate to, n, significant

figures. It will return a new String
and, s, will be destroyed.

So: 12.345
rounded to the following significant figures yields

5 12.345
4 12.34

Chapter 4: PIM and ISO library definitions

*)

12.3
12
10

PROCEDURE ToSigFig (s: String; n: CARDINAL) : String ;

(*

ToDecimalPlaces - returns a floating point or base 10 integer

*)

string which is accurate to, n, decimal
places. It will return a new String
and, s, will be destroyed.

Decimal places yields, n, digits after
the

So: 12.345
rounded to the following decimal places yields

12.34500
12.3450
12.345
12.34
12.3

=N WP o

PROCEDURE ToDecimalPlaces (s: String; n: CARDINAL) : String ;

END StringConvert.

182

Chapter 4: PIM and ISO library definitions 183

4.1.48 gm?2-libs/StringFileSysOp
DEFINITION MODULE StringFileSysOp ;

FROM DynamicStrings IMPORT String ;
FROM CFileSysOp IMPORT AccessMode ;

PROCEDURE Exists (filename: String) : BOOLEAN ;

PROCEDURE IsDir (dirname: String) : BOOLEAN ;

PROCEDURE IsFile (filename: String) : BOOLEAN ;

PROCEDURE Unlink (filename: String) : BOOLEAN ;

PROCEDURE Access (pathname: String; mode: AccessMode) : AccessMode ;

END StringFileSysOp.

Chapter 4: PIM and ISO library definitions 184

4.1.49 gm?2-libs/SysExceptions
DEFINITION MODULE SysExceptions ;

(* Provides a mechanism for the underlying libraries to
configure the exception routines. This mechanism
is used by both the IS0 and PIM libraries.
It is written to be IS0 compliant and this also
allows for mixed dialect projects. *)

FROM SYSTEM IMPORT ADDRESS ;
TYPE
PROCEXCEPTION = PROCEDURE (ADDRESS) ;
PROCEDURE InitExceptionHandlers (indexf, range, casef, invalidloc,
function, wholevalue, wholediv,
realvalue, realdiv, complexvalue,

complexdiv, protection, systemf,
coroutine, exception: PROCEXCEPTION) ;

END SysExceptions.

Chapter 4: PIM and ISO library definitions 185

4.1.50 gm2-libs/SysStorage
DEFINITION MODULE SysStorage ;

(* Provides dynamic allocation for the system components.
This allows the application to use the traditional Storage module
which can be handled differently. %)

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED ALLOCATE, DEALLOCATE, REALLOCATE, Available, Init ;

(*
ALLOCATE - attempt to allocate memory from the heap.
NIL is returned in, a, if ALLOCATE fails.

*)

PROCEDURE ALLOCATE (VAR a: ADDRESS ; size: CARDINAL) ;

(*
DEALLOCATE - return, size, bytes to the heap.
The variable, a, is set to NIL.

*)

PROCEDURE DEALLOCATE (VAR a: ADDRESS ; size: CARDINAL) ;

(*
REALLOCATE - attempts to reallocate storage. The address,
a, should either be NIL in which case ALLOCATE
is called, or alternatively it should have already
been initialized by ALLOCATE. The allocated storage
is resized accordingly.

*)
PROCEDURE REALLOCATE (VAR a: ADDRESS; size: CARDINAL) ;
(*
Available - returns TRUE if, size, bytes can be allocated.

*)

PROCEDURE Available (size: CARDINAL) : BOOLEAN;

(*

Chapter 4: PIM and ISO library definitions 186

Init - initializes the heap.
This does nothing on a GNU/Linux system.
But it remains here since it might be used in an
embedded system.
*)

PROCEDURE Init ;

END SysStorage.

Chapter 4: PIM and ISO library definitions 187

4.1.51 gm2-libs/TimeString
DEFINITION MODULE TimeString ;

EXPORT QUALIFIED GetTimeString ;

(*

GetTimeString - places the time in ascii format into array, a.
*)

PROCEDURE GetTimeString (VAR a: ARRAY OF CHAR) ;

END TimeString.

Chapter 4: PIM and ISO library definitions 188

4.1.52 gm2-libs/UnixArgs
DEFINITION MODULE UnixArgs ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED GetArgC, GetArgV, GetEnvV ;
PROCEDURE GetArgC () : INTEGER ;

PROCEDURE GetArgV () : ADDRESS ;
PROCEDURE GetEnvV () : ADDRESS ;

END UnixArgs.

Chapter 4: PIM and ISO library definitions 189

4.1.53 gm2-libs/cbuiltin
DEFINITION MODULE FOR "C" cbuiltin ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT UNQUALIFIED alloca, memcpy,

isfinite, isfinitef, isfinitel,

isinf_sign, isinf_signf, isinf_signl,
sinf, sinl, sin,
cosf, cosl, cos,
atan2f, atan2l, atan2,
sqrtf, sqrtl, sqrt,
fabsf, fabsl, fabs,
logf, logl, log,
expf, expl, exp,
logl0f, logl0l, logiO,
expl0f, expl0l, explO,
ilogbf, ilogbl, ilogb,
significand, significandf, significandl,
modf, modff, modfl,
nextafter, nextafterf, nextafterl,
nexttoward, nexttowardf, nexttowardl,
scalb, scalbf, scalbl,
scalbn, scalbnf, scalbnl,
scalbln, scalblnf, scalblnl,

cabsf, cabsl, cabs,
cargf, carg, cargl,
conjf, conj, conjl,
cpowf, cpow, cpowl,
csqrtf, csqrt, csqrtl,
cexpf, cexp, cexpl,
clogf, clog, clogl,
csinf, csin, csinl,
ccosf, ccos, ccosl,
ctanf, ctan, ctanl,
casinf, casin, casinl,
cacosf, cacos, cacosl,
catanf, catan, catanl,

index, rindex,

memcmp, memset, memmove,

strcat, strncat, strcpy, strncpy, strcmp, strncmp,

strlen, strstr, strpbrk, strspn, strcspn, strchr, strrchr,|j

clz, clzll,
ctz, ctzll ;

Chapter 4: PIM and ISO library definitions 190

PROCEDURE alloca (i: CARDINAL) : ADDRESS ;
PROCEDURE memcpy (dest, src: ADDRESS; n: CARDINAL)
PROCEDURE isfinite (x: REAL) : BOOLEAN ;
PROCEDURE isfinitel (x: LONGREAL) : BOOLEAN ;
PROCEDURE isfinitef (x: SHORTREAL) : BOOLEAN ;
PROCEDURE isinf_sign (x: REAL) : BOOLEAN ;
PROCEDURE isinf_signl (x: LONGREAL) : BOOLEAN ;
PROCEDURE isinf_signf (x: SHORTREAL) : BOOLEAN ;
PROCEDURE sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE sin (x: REAL) : REAL ;

PROCEDURE sinl (x: LONGREAL) : LONGREAL ;
PROCEDURE cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE cos (x: REAL) : REAL ;

PROCEDURE cosl (x: LONGREAL) : LONGREAL ;
PROCEDURE atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE atan2 (x, y: REAL) : REAL ;

PROCEDURE atan2l (x, y: LONGREAL) : LONGREAL ;
PROCEDURE sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE sqrt (x: REAL) : REAL ;

PROCEDURE sqrtl (x: LONGREAL) : LONGREAL ;
PROCEDURE fabsf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE fabs (x: REAL) : REAL ;

PROCEDURE fabsl (x: LONGREAL) : LONGREAL ;
PROCEDURE logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE log (x: REAL) : REAL ;

PROCEDURE logl (x: LONGREAL) : LONGREAL ;
PROCEDURE expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE exp (x: REAL) : REAL ;

PROCEDURE expl (x: LONGREAL) : LONGREAL ;
PROCEDURE logl0f (x: SHORTREAL) : SHORTREAL ;
PROCEDURE loglO (x: REAL) : REAL ;

: ADDRESS ;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

logl0l (x:
expl0f (x:

expl0 (x:

expl0l (x:
ilogbf (x:

REAL)

LONGREAL)
SHORTREAL)

LONGREAL)
SHORTREAL)

: REAL

: LONGREAL ;
: SHORTREAL

b

: LONGREAL ;

INTEGER ;

I

PROCEDURE ilogb (x: REAL) INTEGER ;
PROCEDURE ilogbl (x: LONGREAL) : INTEGER ;

PROCEDURE significand (r: REAL) : REAL ;
PROCEDURE significandf (s: SHORTREAL) : SHORTREAL ;
PROCEDURE significandl (1: LONGREAL) : LONGREAL ;

PROCEDURE modf (x: REAL; VAR y: REAL) : REAL ;
PROCEDURE modff (x: SHORTREAL; VAR y: SHORTREAL) : SHORTREAL ;
PROCEDURE modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL ;

Chapter 4: PIM and ISO library definitions 191

PROCEDURE nextafter (x, y: REAL) : REAL ;
PROCEDURE nextafterf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE nextafterl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE nexttoward (x: REAL; y: LONGREAL) : REAL ;
PROCEDURE nexttowardf (x: SHORTREAL; y: LONGREAL) : SHORTREAL ;
PROCEDURE nexttowardl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE scalb (x, n: REAL) : REAL ;
PROCEDURE scalbf (x, n: SHORTREAL) : SHORTREAL ;
PROCEDURE scalbl (x, n: LONGREAL) : LONGREAL ;

PROCEDURE scalbn (x: REAL; n: INTEGER) : REAL ;
PROCEDURE scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL ;
PROCEDURE scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL ;

PROCEDURE scalbln (x: REAL; n: LONGINT) : REAL ;
PROCEDURE scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL ;
PROCEDURE scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL ;

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

cabsf (z:

cabs (z:

cabsl (z:

cargf (z:

carg (z:

cargl (z:

conjf (z:

conj (z:

conjl (z:

cpowf (base: SHORTCOMPLEX; exp: SHORTREAL)
cpow (base: COMPLEX; exp: REAL)
cpowl (base: LONGCOMPLEX; exp: LONGREAL)

SHORTCOMPLEX)

COMPLEX)

: REAL
LONGCOMPLEX)

SHORTCOMPLEX)

COMPLEX)

: REAL
LONGCOMPLEX)

SHORTCOMPLEX)

COMPLEX)

LONGCOMPLEX)

csqrtf (z: SHORTCOMPLEX)

csqrt (z: COMPLEX)

csqrtl (z: LONGCOMPLEX)

cexpf (z: SHORTCOMPLEX)

cexp (z:

cexpl (z: LONGCOMPLEX)

COMPLEX)

clogf (z: SHORTCOMPLEX)

clog (z:

COMPLEX)

: SHORTREAL

3

: LONGREAL ;

: SHORTREAL

b

: LONGREAL ;

I

3

: SHORTCOMPLEX ;
: COMPLEX ;
: LONGCOMPLEX

)

: COMPLEX ;

: SHORTCOMPLEX ;

: COMPLEX ;
: LONGCOMPLEX ;

b

: SHORTCOMPLEX ;
: COMPLEX ;
: LONGCOMPLEX ;

)

: SHORTCOMPLEX ;
: COMPLEX ;

: SHORTCOMPLEX ;

: LONGCOMPLEX ;

3

PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

clogl (z:

csinf (z:
csin (z:
csinl (z:

ccosf (z:
ccos (z:
ccosl (z:

ctanf (z:
ctan (z:
ctanl (z:

casinf (z:

casin (z:

casinl (z:

cacosf (z:

cacos (z:

cacosl (z:

catanf (z:

catan (z:

catanl (z:

LONGCOMPLEX)

SHORTCOMPLEX)

COMPLEX)

SHORTCOMPLEX)
: COMPLEX ;
LONGCOMPLEX)

COMPLEX)

SHORTCOMPLEX)
: COMPLEX ;
LONGCOMPLEX)

COMPLEX)

COMPLEX)

COMPLEX)

COMPLEX)

SHORTCOMPLEX)
: COMPLEX ;
LONGCOMPLEX)

SHORTCOMPLEX)
: COMPLEX ;
LONGCOMPLEX)

SHORTCOMPLEX)
: COMPLEX ;
LONGCOMPLEX)

Chapter 4: PIM and ISO library definitions

: LONGCOMPLEX ;

: SHORTCOMPLEX ;

: COMPLEX ;
LONGCOMPLEX)

: LONGCOMPLEX ;

: SHORTCOMPLEX ;

: LONGCOMPLEX ;

: SHORTCOMPLEX ;

: LONGCOMPLEX ;

: SHORTCOMPLEX

: LONGCOMPLEX ;

: SHORTCOMPLEX

: LONGCOMPLEX ;

: SHORTCOMPLEX

: LONGCOMPLEX ;

b

b

b

192

PROCEDURE index (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE rindex (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE memcmp (s1, s2: ADDRESS; n: CARDINAL) INTEGER ;
PROCEDURE memmove (s1, s2: ADDRESS; n: CARDINAL) : ADDRESS ;

PROCEDURE memset (s: ADDRESS; c: INTEGER; n: CARDINAL) : ADDRESS ;
PROCEDURE strcat (dest, src: ADDRESS) : ADDRESS ;

PROCEDURE strncat (dest, src: ADDRESS; n: CARDINAL) : ADDRESS ;
PROCEDURE strcpy (dest, src: ADDRESS) : ADDRESS ;

PROCEDURE strncpy (dest, src: ADDRESS; n: CARDINAL) : ADDRESS ;
PROCEDURE strcmp (s1, s2: ADDRESS) INTEGER ;

PROCEDURE strncmp (s1, s2: ADDRESS; n: CARDINAL) INTEGER ;

PROCEDURE strlen (s: ADDRESS) : INTEGER ;

PROCEDURE strstr (haystack, needle: ADDRESS) : ADDRESS ;
PROCEDURE strpbrk (s, accept: ADDRESS) : ADDRESS ;
PROCEDURE strspn (s, accept: ADDRESS) : CARDINAL ;
PROCEDURE strcspn (s, accept: ADDRESS) : CARDINAL ;
PROCEDURE strchr (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE strrchr (s: ADDRESS; c: INTEGER) : ADDRESS ;

PROCEDURE clz (value: CARDINAL)
PROCEDURE clzll (value: CARDINAL)

INTEGER ;
INTEGER ;

Chapter 4: PIM and ISO library definitions 193

PROCEDURE ctz (value: CARDINAL) : INTEGER ;
PROCEDURE ctzll (value: CARDINAL) : INTEGER ;

END cbuiltin.

Chapter 4: PIM and ISO library definitions 194

4.1.54 gm2-libs/cgetopt
DEFINITION MODULE cgetopt ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
Options = ADDRESS ;

VAR
optarg : ADDRESS ;
optind, opterr, optopt: INTEGER ;

(*
getopt - the getopt() function parses the command-line arguments.
Its arguments argc and argv are the argument count and array as|j
passed to the main() function on program invocation. An element off]

argv that starts with '-' (and is not exactly "-" or "--") is anfi
option element. The characters of this element (aside from thel]
initial '-') are option characters. If getopt() is called

repeatedly, it returns successively each of the option characters]]
from each of the option elements.

*)

PROCEDURE getopt (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS) : CHAR ;Jj

(*

getopt_long - works like getopt() except that it also accepts long options,]]
started with two dashes. (If the program accepts only longj
options, then optstring should be specified as an empty string (""),|}
not NULL.) Long option names may be abbreviated if the abbreviation]]
is unique or is an exact match for some defined option. Aj
long option may take a parameter, of the form --arg=param orjj
--arg param.

*)

PROCEDURE getopt_long (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS;
longopts: ADDRESS; VAR longindex: INTEGER) : INTEGER ;|Jj

(*
getopt_long_only - a wrapper for the C getopt_long_only.
*)

PROCEDURE getopt_long_only (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS;|]

Chapter 4: PIM and ISO library definitions 195

longopts: ADDRESS; VAR longindex: INTEGER) : INTEGER ;|}

(*
InitOptions - constructor for empty Optioms.

*)

PROCEDURE InitOptions () : Options ;

(*

KillOptions - deconstructor for empty Optioms.

*)

PROCEDURE KillOptions (o: Options) : Optiomns ;

(*
SetOption - set option[index] with {name, has_arg, flag, val}.
*)

PROCEDURE SetOption (o: Options; index: CARDINAL;
name: ADDRESS; has_arg: INTEGER;
VAR flag: INTEGER; val: INTEGER) ;

(%
GetLongOptionArray - return a pointer to the C array containing all
long options.

*)

PROCEDURE GetLongOptionArray (o: Options) : ADDRESS ;

END cgetopt.

Chapter 4: PIM and ISO library definitions 196

4.1.55 gm2-libs/cxxabi
DEFINITION MODULE FOR "C" cxxabi ;

(* This should only be used by the compiler and it matches the
g++ implementation. *)

FROM SYSTEM IMPORT ADDRESS ;

EXPORT UNQUALIFIED __cxa_begin_catch cxa_end_catch cxa_rethrow ;

3 _— b —_—

PROCEDURE __cxa_begin_catch (a: ADDRESS) : ADDRESS ;
PROCEDURE __cxa_end_catch ;
PROCEDURE __cxa_rethrow ;

END cxxabi.

Chapter 4: PIM and ISO library definitions 197

4.1.56 gm2-libs/dtoa
DEFINITION MODULE dtoa ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
Mode = (maxsignificant, decimaldigits) ;

(*
strtod - returns a REAL given a string, s. It will set
error to TRUE if the number is too large.

*)
PROCEDURE strtod (s: ADDRESS; VAR error: BOOLEAN) : REAL ;
(*

dtoa - converts a REAL, d, into a string. The address of the
string is returned.

mode indicates the type of conversion required.
ndigits determines the number of digits according to mode.
decpt the position of the decimal point.
sign does the string have a sign?
*)
PROCEDURE dtoa (d : REAL;
mode : INTEGER;

ndigits : INTEGER;
VAR decpt: INTEGER;
VAR sign : BOOLEAN) : ADDRESS ;

END dtoa.

Chapter 4: PIM and ISO library definitions

4.1.57 gm?2-libs/errno
DEFINITION MODULE errno ;

CONST
EINTR = 4 ; (* system call interrupted *)
ERANGE = 34 ; (* result is too large *)
EAGAIN = 11 ; (* retry the system call *)

PROCEDURE geterrno () : INTEGER ;

END errno.

198

Chapter 4: PIM and ISO library definitions 199

4.1.58 gm?2-libs/gdbif
DEFINITION MODULE gdbif ;

(* Provides interactive connectivity with gdb useful for debugging
Modula-2 shared libraries. *)

EXPORT UNQUALIFIED sleepSpin, finishSpin, connectSpin ;

(*
finishSpin - sets boolean mustWait to FALSE.
*)

PROCEDURE finishSpin ;

(*
sleepSpin - waits for the boolean variable mustWait to become FALSE.
It sleeps for a second between each test of the variable.

*)

PROCEDURE sleepSpin ;

(*
connectSpin - breakpoint placeholder. Its only purpose is to allow users]]
to set a breakpoint. This procedure is called once
sleepSpin is released from its spin (via a call from
finishSpin).
*)

PROCEDURE connectSpin ;

END gdbif.

Chapter 4: PIM and ISO library definitions 200

4.1.59 gm2-libs/ldtoa
DEFINITION MODULE ldtoa ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
Mode = (maxsignificant, decimaldigits) ;

(*
strtold - returns a LONGREAL given a C string, s. It will set
error to TRUE if the number is too large or badly formed.

*)
PROCEDURE strtold (s: ADDRESS; VAR error: BOOLEAN) : LONGREAL ;
(*

ldtoa - converts a LONGREAL, d, into a string. The address of the
string is returned.

mode indicates the type of conversion required.
ndigits determines the number of digits according to mode.
decpt the position of the decimal point.
sign does the string have a sign?
*)
PROCEDURE 1dtoa (d : LONGREAL;
mode : INTEGER;

ndigits : INTEGER;
VAR decpt: INTEGER;
VAR sign : BOOLEAN) : ADDRESS ;

END 1ldtoa.

Chapter 4: PIM and ISO library definitions

4.1.60 gm?2-libs/libc

DEFINITION MODULE FOR "C" libc ;

FROM SYSTEM IMPORT ADDRESS, CSIZE_T, CSSIZE_T, COFF_T ;

EXPORT UNQUALIFIED time_t, timeb, tm, ptrToTM,
atof, atoi, atol, atoll,

strtod,
write, read,
system, abort,

malloc, free,
exit, isatty,
getenv, putenv, getpid,
dup, close, open, lseek,

readv, writev,
perror,
getcwd, chown, strlen, strcpy, strncpy,
unlink,

creat,

setenv,

strtof, strtold, strtol, strtoll,

memcpy, memset, memmove, printf, realloc,

rand, srand,

time, localtime, ftime,
shutdown, snprintf,

rename, setjmp, longjmp, atexit,
ttyname, sleep, execv ;

TYPE

time_t = LONGINT ;

I

ptrToTM = POINTER TO tm ;

tm = RECORD

tm_sec: INTEGER ;
tm_min: INTEGER ;

tm_hour:
tm_mday:

INTEGER ;
INTEGER ;

tm_mon: INTEGER ;

tm_year:
tm_wday:
tm_yday:
tm_isdst:

tm_gmtoff: LONGINT ;
ADDRESS ;

tm_zone:
END ;

timeb = RECORD
time

INTEGER ;
INTEGER ;
INTEGER ;
INTEGER ;

: time_t

3

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

Seconds.
Minutes.
Hours.

Day.

Month.

Year - 1900.
Day of week.
Days in year.
DST.

201

strtoul,

strtoull,l}

[0-60] (1 leap second) *)J

[0-59]
[0-23]
[1-31]
[0-11]

[0-6]
[0-365]
[-1/0/1]

Seconds east of UTC.
char * zone name

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

Chapter 4: PIM and ISO library definitions 202

millitm : SHORTCARD ;

timezone: SHORTCARD ;

dstflag : SHORTCARD ;
END ;

exitP = PROCEDURE () : INTEGER ;

(*

double atof(const char *nptr)
*)
PROCEDURE atof (uptr: ADDRESS) : REAL ;
(*

int atoi(const char *nptr)
*)
PROCEDURE atoi (nptr: ADDRESS) : INTEGER ;
(*

long atol(const char *nptr);
*)
PROCEDURE atol (nptr: ADDRESS) : CSSIZE_T ;
(*

long long atoll(const char *nptr);
*)
PROCEDURE atoll (nptr: ADDRESS) : LONGINT ;
(*

double strtod(const char *restrict nptr, char **_Nullable restrict endptr)]]
*)
PROCEDURE strtod (nptr, endptr: ADDRESS) : REAL ;
(*

float strtof(const char *restrict nptr, char **_Nullable restrict endptr)f]

*)

Chapter 4: PIM and ISO library definitions

PROCEDURE

203

strtof (nptr, endptr: ADDRESS) : SHORTREAL ;

double strtold(const char *restrict nptr,
char **_Nullable restrict endptr)

strtold (nptr, endptr: ADDRESS) : LONGREAL ;

strtol(const char *restrict nptr, char *x_Nullable restrict endptr,|]
int base)

strtol (nptr, endptr: ADDRESS; base: INTEGER) : CSSIZE_T ;

long strtoll(const char *restrict nptr,
char **_Nullable restrict endptr, int base)

strtoll (nptr, endptr: ADDRESS; base: INTEGER) : LONGINT ;

unsigned long strtoul(const char *restrict nptr,

char **_Nullable restrict endptr, int base)

strtoul (nptr, endptr: ADDRESS; base: INTEGER) : CSIZE_T ;

unsigned long long strtoull(const char *restrict nptr,

(*

long
*)
PROCEDURE
(*

long
*)
PROCEDURE
(*

long
*)
PROCEDURE
(*
*)
PROCEDURE
(*
*)
PROCEDURE
(%

char **_Nullable restrict endptr, int base)]]

strtoull (nptr, endptr: ADDRESS; base: INTEGER) : LONGCARD ;

ssize_t write (int d, void *buf, size_t nbytes)

*)

Chapter 4: PIM and ISO library definitions 204

PROCEDURE write (d: INTEGER; buf: ADDRESS; nbytes: CSIZE_T) : [CSSIZE_T] ;Jj

(*
ssize_t read (int d, void *buf, size_t nbytes)

*)

PROCEDURE read (d: INTEGER; buf: ADDRESS; nbytes: CSIZE_T) : [CSSIZE_T] ;|

(*
int system(string)
char *string;

*)

PROCEDURE system (a: ADDRESS) : [INTEGER]

3

(*

abort - generate a fault

abort() first closes all open files if possible, then sends
an IO0OT signal to the process. This signal usually results
in termination with a core dump, which may be used for
debugging.

It is possible for abort() to return control if is caught or
ignored, in which case the value returned is that of the
kill(2V) system call.

*)

PROCEDURE abort <* noreturn x>

3

(*
malloc - memory allocator.
void *malloc(size_t size);
malloc() returns a pointer to a block of at least size
bytes, which is appropriately aligned. If size is zero,
malloc() returns a non-NULL pointer, but this pointer should
not be dereferenced.

*)

PROCEDURE malloc (size: CSIZE_T) : ADDRESS

)

Chapter 4: PIM and ISO library definitions 205

(*
free - memory deallocator.
free (void *ptr);
free() releases a previously allocated block. Its argument
is a pointer to a block previously allocated by malloc,
calloc, realloc, malloc, or memalign.

*)

PROCEDURE free (ptr: ADDRESS) ;

(*

void #*realloc (void *ptr, size_t size);

realloc changes the size of the memory block pointed to

by ptr to size bytes. The contents will be unchanged to
the minimum of the old and new sizes; newly allocated memory
will be uninitialized. If ptr is NIL, the call is

equivalent to malloc(size); if size is equal to zero, the
call is equivalent to free(ptr). Unless ptr is NIL, it

must have been returned by an earlier call to malloc(),
realloc.

*)
PROCEDURE realloc (ptr: ADDRESS; size: CSIZE_T) : ADDRESS ;
(*
isatty - does this descriptor refer to a terminal.
*)
PROCEDURE isatty (fd: INTEGER) : INTEGER ;
(*

exit - returns control to the invoking process. Result, r, is
returned.

*)

PROCEDURE exit (r: INTEGER) <* noreturn *> ;

(*

getenv - returns the C string for the equivalent C environment

Chapter 4: PIM and ISO library definitions 206

variable.

*)
PROCEDURE getenv (s: ADDRESS) : ADDRESS ;
(*
putenv - change or add an environment variable.
*)
PROCEDURE putenv (s: ADDRESS) : INTEGER ;
(*
getpid - returns the UNIX process identification number.
*)
PROCEDURE getpid () : INTEGER ;
(*
dup - duplicates the file descriptor, d.
*)
PROCEDURE dup (d: INTEGER) : INTEGER ;
(*
close - closes the file descriptor, d.
*)
PROCEDURE close (d: INTEGER) : [INTEGER] ;
(*
open — open the file, filename with flag and mode.
*)
PROCEDURE open (filename: ADDRESS; oflag: INTEGER; mode: INTEGER) : INTEGER ;|}
€
creat - creates a new file
*)

PROCEDURE creat (filename: ADDRESS; mode: CARDINAL) : INTEGER;

Chapter 4: PIM and ISO library definitions 207

(*

lseek - calls unix lseek:

off_t lseek(int fildes, off_t offset, int whence);
*)

PROCEDURE 1seek (fd: INTEGER; offset: COFF_T; whence: INTEGER) : [COFF_T] ;N

(*
perror - writes errno and string. (ARRAY OF CHAR is translated onto ADDRESS).J}
*)

PROCEDURE perror (string: ARRAY OF CHAR);

(*
readv - reads an io vector of bytes.

*)

PROCEDURE readv (fd: INTEGER; v: ADDRESS; n: INTEGER) : [INTEGER] ;

(*
writev - writes an io vector of bytes.

*)

PROCEDURE writev (fd: INTEGER; v: ADDRESS; n: INTEGER) : [INTEGER] ;

(%
getcwd - copies the absolute pathname of the
current working directory to the array pointed to by buf,
which is of length size.

If the current absolute path name would require a buffer
longer than size elements, NULL is returned, and errno is
set to ERANGE; an application should check for this error,
and allocate a larger buffer if necessary.

*)

PROCEDURE getcwd (buf: ADDRESS; size: CSIZE_T) : ADDRESS ;

(*
chown - The owner of the file specified by path or by fd is

Chapter 4: PIM and ISO library definitions 208

changed. Only the super-user may change the owner of a
file. The owner of a file may change the group of the
file to any group of which that owner is a member. The
super-user may change the group arbitrarily.

If the owner or group is specified as -1, then that ID is
not changed.

On success, zero is returned. On error, -1 1is returned,
and errno is set appropriately.

*)

PROCEDURE chown (filename: ADDRESS; uid, gid: INTEGER) : [INTEGER] ;

(*
strlen - returns the length of string, a.

*)

PROCEDURE strlen (a: ADDRESS) : CSIZE_T ;

(*
strcpy - copies string, src, into, dest.
It returns dest.

*)
PROCEDURE strcpy (dest, src: ADDRESS) : [ADDRESS] ;
(*
strncpy - copies string, src, into, dest, copying at most, n, bytes.
It returns dest.
*)
PROCEDURE strncpy (dest, src: ADDRESS; n: CARDINAL) : [ADDRESS] ;
(*
unlink - removes file and returns O if successful.
*)
PROCEDURE unlink (file: ADDRESS) : [INTEGER] ;

(*

memcpy — Copy memory area

Chapter 4: PIM and ISO library definitions 209

SYNOPSIS
#include <string.h>

void *memcpy(void *dest, const void *src, size_t n);
It returns dest.

*)

PROCEDURE memcpy (dest, src: ADDRESS; size: CSIZE_T) : [ADDRESS]

(*
memset - fill memory with a constant byte
SYNOPSIS
#include <string.h>

void *memset(void *s, int c, size_t n);
It returns s.

*)

PROCEDURE memset (s: ADDRESS; c: INTEGER; size: CSIZE_T) : [ADDRESS]

(%
memmove - cOpy memory areas which may overlap
SYNOPSIS
#include <string.h>

void *memmove(void *dest, const void *src, size_t n);
It returns dest.

*)

PROCEDURE memmove (dest, src: ADDRESS; size: CSIZE_T) : [ADDRESS]

I

(*
int printf(const char *format, ...);

*)

PROCEDURE printf (format: ARRAY OF CHAR; ...) : [INTEGER]

3

Chapter 4: PIM and ISO library definitions 210

(*
int snprintf(char *str, size_t size, const char *format, ...);

*)

PROCEDURE snprintf (dest: ADDRESS; size: CSIZE_T;
format: ARRAY OF CHAR; ...) : [INTEGER] ;

(*
setenv - sets environment variable, name, to value.
It will overwrite an existing value if, overwrite,
is true. It returns O on success and -1 for an error.

*)

PROCEDURE setenv (name: ADDRESS; value: ADDRESS; overwrite: INTEGER) : [INTEGER] ;Q

(*
srand - initialize the random number seed.

*)

PROCEDURE srand (seed: INTEGER) ;

(*
rand - return a random integer.

*)

PROCEDURE rand () : INTEGER ;

(*
time - returns a pointer to the time_t value. If, a,
is not NIL then the 1libc value is copied into
memory at address, a.

*)
PROCEDURE time (a: ADDRESS) : time_t ;
(*

localtime - returns a pointer to the libc copy of the tm
structure.

*)

PROCEDURE localtime (VAR t: time_t) : ADDRESS ;

Chapter 4: PIM and ISO library definitions 211

(*
ftime - return date and time.

*)

PROCEDURE ftime (VAR t: timeb) : [INTEGER] ;

(*
shutdown - shutdown a socket, s.
if how = 0, then no more reads are allowed.
if how = 1, then no more writes are allowed.
if how = 2, then mo more reads or writes are allowed.

*)

PROCEDURE shutdown (s: INTEGER; how: INTEGER) : [INTEGER] ;

(*
rename - change the name or location of a file

*)

PROCEDURE rename (oldpath, newpath: ADDRESS) : [INTEGER] ;

(*
setjmp - returns 0 if returning directly, and non-zero
when returning from longjmp using the saved
context.

*)

PROCEDURE setjmp (env: ADDRESS) : INTEGER ;

(*
longjmp - restores the environment saved by the last call
of setjmp with the corresponding env argument.
After longjmp is completed, program execution
continues as if the corresponding call of setjmp
had just returned the value val. The value of
val must not be zero.

*)

PROCEDURE longjmp (env: ADDRESS; val: INTEGER) ;

(*

atexit - execute, proc, when the function exit is called.

Chapter 4: PIM and ISO library definitions 212

*)
PROCEDURE atexit (proc: exitP) : [INTEGER] ;
(*
ttyname - returns a pointer to a string determining the ttyname.
*)
PROCEDURE ttyname (filedes: INTEGER) : ADDRESS ;
(*
sleep - calling thread sleeps for seconds.
*)
PROCEDURE sleep (seconds: CARDINAL) : [CARDINAL] ;
(*
execv - execute a file.
*)

PROCEDURE execv (pathname: ADDRESS; argv: ADDRESS) : [INTEGER] ;

END 1libc.

Chapter 4: PIM and ISO library definitions

4.1.61 gm2-libs/libm
DEFINITION MODULE FOR "C" libm ;

213

(* Users are strongly advised to use MathLibO or RealMath as calls
to functions within these modules will generate inline code.
This module is used by MathLibO and RealMath when inline code cannot

be generated.

*)

EXPORT UNQUALIFIED sin, sinl, sinf,

PROCEDURE sin (x: REAL) : REAL ;

PROCEDURE sinl (x: LONGREAL) : LONGREAL ;
PROCEDURE sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE cos (x: REAL) : REAL ;

PROCEDURE cosl (x: LONGREAL) : LONGREAL ;
PROCEDURE cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE tan (x: REAL) : REAL ;

PROCEDURE tanl (x: LONGREAL) : LONGREAL ;
PROCEDURE tanf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE sqrt (x: REAL) : REAL ;

PROCEDURE sqrtl (x: LONGREAL) : LONGREAL ;
PROCEDURE sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE asin (x: REAL) : REAL ;

PROCEDURE asinl (x: LONGREAL) : LONGREAL ;
PROCEDURE asinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE acos (x: REAL) : REAL ;

PROCEDURE acosl (x: LONGREAL) : LONGREAL ;
PROCEDURE acosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE atan (x: REAL) : REAL ;

PROCEDURE atanl (x: LONGREAL) : LONGREAL ;
PROCEDURE atanf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE atan2 (x, y: REAL) : REAL ;
PROCEDURE atan2l (x, y: LONGREAL) : LONGREAL ;

cos, cosl, cosf,

tan, tanl, tanf,

sqrt, sqrtl, sqrtf,
asin, asinl, asinf,
acos, acosl, acosf,
atan, atanl, atanf,
atan2, atan2l, atan2f,
exp, expl, expf,

log, logl, logf,
expl0, expl0l, explOf,
pow, powl, powf,
floor, floorl, floorf,
ceil, ceill, ceilf ;

Chapter 4: PIM and ISO library definitions 214

PROCEDURE atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE exp (x: REAL) : REAL ;

PROCEDURE expl (x: LONGREAL) : LONGREAL ;
PROCEDURE expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE log (x: REAL) : REAL ;

PROCEDURE logl (x: LONGREAL) : LONGREAL ;
PROCEDURE logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE exp10 (x: REAL) : REAL ;

PROCEDURE expl10l (x: LONGREAL) : LONGREAL ;
PROCEDURE explOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE pow (x, y: REAL) : REAL ;

PROCEDURE powl (x, y: LONGREAL) : LONGREAL ;
PROCEDURE powf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE floor (x: REAL) : REAL ;

PROCEDURE floorl (x: LONGREAL) : LONGREAL ;
PROCEDURE floorf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE ceil (x: REAL) : REAL ;

PROCEDURE ceill (x: LONGREAL) : LONGREAL ;
PROCEDURE ceilf (x: SHORTREAL) : SHORTREAL ;

END libm.

Chapter 4: PIM and ISO library definitions 215

4.1.62 gm2-libs/sckt
DEFINITION MODULE sckt ;

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED tcpServerState,
tcpServerEstablish, tcpServerEstablishPort,
tcpServerAccept, getlLocallP,
tcpServerPortNo, tcpServerIP, tcpServerSocketFd,
tcpServerClientIP, tcpServerClientPortNo,
tcpClientState,
tcpClientSocket, tcpClientSocketIP, tcpClientConnect,
tcpClientPortNo, tcpClientIP, tcpClientSocketFd ;

TYPE
tcpServerState = ADDRESS ;
tcpClientState = ADDRESS ;
(*

tcpServerEstablish - returns a tcpState containing the relevant
information about a socket declared to receive
tcp connections.

*)

PROCEDURE tcpServerEstablish () : tcpServerState ;

(*
tcpServerEstablishPort - returns a tcpState containing the relevant
information about a socket declared to receivell
tcp connections. This method attempts to usel]

the port specified by the parameter.
*)

PROCEDURE tcpServerEstablishPort (port: CARDINAL) : tcpServerState ;
(*
tcpServerAccept - returns a file descriptor once a client has connected andj]

been accepted.

*)

PROCEDURE tcpServerAccept (s: tcpServerState) : INTEGER ;

(*

Chapter 4: PIM and ISO library definitions 216

tcpServerPortNo - returns the portNo from structure, s.

*)

PROCEDURE tcpServerPortNo (s: tcpServerState) : CARDINAL ;

(*
tcpSocketFd - returns the sockFd from structure, s.

*)

PROCEDURE tcpServerSocketFd (s: tcpServerState) : INTEGER ;

(*
getLocalIP - returns the IP address of this machine.

*)

PROCEDURE getLocalIP (s: tcpServerState) : CARDINAL ;

(*
tcpServerIP - returns the IP address from structure, s.

*)

PROCEDURE tcpServerIP (s: tcpServerState) : CARDINAL ;

(*
tcpServerClientIP - returns the IP address of the client who
has connected to server, s.

*)

PROCEDURE tcpServerClientIP (s: tcpServerState) : CARDINAL ;

(*
tcpServerClientPortNo - returns the port number of the client who
has connected to server, s.

*)

PROCEDURE tcpServerClientPortNo (s: tcpServerState) : CARDINAL ;

(*
tcpClientSocket - returns a file descriptor (socket) which has
connected to, serverName:portNo.

*)

Chapter 4: PIM and ISO library definitions 217

PROCEDURE tcpClientSocket (serverName: ADDRESS; portNo: CARDINAL) : tcpClientState ;|j

(*
tcpClientSocketIP - returns a file descriptor (socket) which has
connected to, ip:portNo.

*)
PROCEDURE tcpClientSocketIP (ip: CARDINAL; portNo: CARDINAL) : tcpClientState ;Jj
(*
tcpClientConnect - returns the file descriptor associated with, s,
once a connect has been performed.
*)
PROCEDURE tcpClientConnect (s: tcpClientState) : INTEGER ;
(*
tcpClientPortNo - returns the portNo from structure, s.
*)
PROCEDURE tcpClientPortNo (s: tcpClientState) : INTEGER ;
(*
tcpClientSocketFd - returns the sockFd from structure, s.
*)
PROCEDURE tcpClientSocketFd (s: tcpClientState) : INTEGER ;
(*
tcpClientIP - returns the IP address from structure, s.

*)

PROCEDURE tcpClientIP (s: tcpClientState) : CARDINAL ;

END sckt.

Chapter 4: PIM and ISO library definitions 218

4.1.63 gm2-libs/termios
DEFINITION MODULE termios ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
TERMIOS = ADDRESS ;

(*

*)

ControlChar = (vintr, vquit, verase, vkill, veof, vtime, vmin,

vswtc, vstart, vstop, vsusp, veol, vreprint, vdiscard,
vwerase, vlnext, veol2) ;

(* input flag bits *)

ignbrk, ibrkint, ignpar, iparmrk, inpck, istrip, inlcr,

igncr, icrnl, iuclc, ixon, ixany, ixoff, imaxbel,

(* output flag bits *)

opost, olcuc, onlcr, ocrnl, onocr, onlret, ofill, ofdel,

onl0, onll, ocr0O, ocrl, ocr2, ocr3,

otab0O, otabl, otab2, otab3, obsO, obsl, off0, offl, ovtO, ovti,l
(* baud rate %)

b0, b50, b75, b110, b135, b150, b200, b300, b600, b1200,

b1800, b2400, b4800, b9600, b19200, b38400,

b57600, b115200, b240400, b460800, b500000, 576000,

b921600, 1000000, b1152000, b1500000, b2000000, b2500000,
b3000000, b3500000, b4000000, maxbaud, crtscts,

(* character size %)

csb, cs6, cs7, cs8, cstopb, cread, parenb, parodd, hupcl, clocal,li
(* local flags *)

lisig, licanon, lxcase, lecho, lechoe, lechok, lechonl, lnoflsh,|}
ltopstop, lechoctl, lechoprt, lechoke, 1flusho, lpendin, liexten) ;Jj

InitTermios - new data structure.

PROCEDURE InitTermios () : TERMIOS ;

(*

*)

KillTermios - delete data structure.

PROCEDURE KillTermios (t: TERMIOS) : TERMIOS ;

Chapter 4: PIM and ISO library definitions 219

(*
cfgetospeed - return output baud rate.

*)
PROCEDURE cfgetospeed (t: TERMIOS) : INTEGER ;
(*
cfgetispeed - return input baud rate.
*)
PROCEDURE cfgetispeed (t: TERMIOS) : INTEGER ;
(*
cfsetospeed - set output baud rate.
*)
PROCEDURE cfsetospeed (t: TERMIOS; b: CARDINAL) : INTEGER ;
(*
cfsetispeed - set input baud rate.
*)
PROCEDURE cfsetispeed (t: TERMIOS; b: CARDINAL) : INTEGER ;
(*
cfsetspeed - set input and output baud rate.
*)
PROCEDURE cfsetspeed (t: TERMIOS; b: CARDINAL) : INTEGER ;
(*
tcgetattr - get state of, fd, into, t.
*)
PROCEDURE tcgetattr (fd: INTEGER; t: TERMIOS) : INTEGER ;
(*

The following three functions return the different option values.

*)

Chapter 4: PIM and ISO library definitions 220

PROCEDURE tcsnow () : INTEGER ; (* alter fd now *)
PROCEDURE tcsdrain () : INTEGER ; (* alter when all output has been sent *)J]
PROCEDURE tcsflush () : INTEGER ; (* like drain, except discard any pending input *)Jj

(*
tcsetattr - set state of, fd, to, t, using option.

*)
PROCEDURE tcsetattr (fd: INTEGER; option: INTEGER; t: TERMIOS) : INTEGER ;|}
(*
cfmakeraw - sets, t, to raw mode.
*)
PROCEDURE cfmakeraw (t: TERMIOS) ;
(*
tcsendbreak - send zero bits for duration.
*)
PROCEDURE tcsendbreak (fd: INTEGER; duration: INTEGER) : INTEGER ;
(*
tcdrain - waits for pending output to be written on, fd.
*)
PROCEDURE tcdrain (fd: INTEGER) : INTEGER ;
(*
tcflushi - flush input.
*)
PROCEDURE tcflushi (fd: INTEGER) : INTEGER ;
(*
tcflusho - flush output.
*)

PROCEDURE tcflusho (fd: INTEGER) : INTEGER ;

Chapter 4: PIM and ISO library definitions 221

(*
tcflushio - flush input and output.
*)

PROCEDURE tcflushio (fd: INTEGER) : INTEGER ;

(*
tcflowoni - restart input on, fd.

*)

PROCEDURE tcflowoni (fd: INTEGER) : INTEGER ;

€
tcflowoffi - stop input on, fd.
*)

PROCEDURE tcflowoffi (fd: INTEGER) : INTEGER ;

(%
tcflowono - restart output on, fd.

*)

PROCEDURE tcflowono (fd: INTEGER) : INTEGER ;

(*
tcflowoffo - stop output on, fd.
*)

PROCEDURE tcflowoffo (fd: INTEGER) : INTEGER ;

(*
GetFlag - sets a flag value from, t, in, b, and returns TRUE
if, t, supports, f.
*)

PROCEDURE GetFlag (t: TERMIOS; f: Flag; VAR b: BOOLEAN) : BOOLEAN ;

(*
SetFlag - sets a flag value in, t, to, b, and returns TRUE if
this flag value is supported.
*)

Chapter 4: PIM and ISO library definitions 222

PROCEDURE SetFlag (t: TERMIOS; f: Flag; b: BOOLEAN) : BOOLEAN ;

(*
GetChar - sets a CHAR, ch, value from, t, and returns TRUE if
this value is supported.

*)
PROCEDURE GetChar (t: TERMIOS; c: ControlChar; VAR ch: CHAR) : BOOLEAN ;
(*

SetChar - sets a CHAR value in, t, and returns TRUE if, c,
is supported.

*)

PROCEDURE SetChar (t: TERMIOS; c: ControlChar; ch: CHAR) : BOOLEAN ;

END termios.

Chapter 4: PIM and ISO library definitions 223

4.1.64 gm2-libs/wrapc
DEFINITION MODULE wrapc ;

FROM SYSTEM IMPORT ADDRESS ;

(*
strtime - returns the C string for the equivalent C asctime
function.

*)

PROCEDURE strtime () : ADDRESS ;

(*
filesize - assigns the size of a file, f, into low, high and
returns zero if successful.

*)
PROCEDURE filesize (f: INTEGER; VAR low, high: CARDINAL) : INTEGER ;
(*
fileinode - return the inode associated with file, f.
*)
PROCEDURE fileinode (f: INTEGER; VAR low, high: CARDINAL) : INTEGER ;
(*
filemtime - returns the mtime of a file, f.
*)
PROCEDURE filemtime (f: INTEGER) : INTEGER ;
(*
getrand - returns a random number between 0..n-1
*)
PROCEDURE getrand (n: INTEGER) : INTEGER ;
(*

getusername - returns a C string describing the current user.

*)

Chapter 4: PIM and ISO library definitions 224

PROCEDURE getusername () : ADDRESS ;

(*
getnameuidgid - fills in the, uid, and, gid, which represents
user, name.

*)

PROCEDURE getnameuidgid (name: ADDRESS; VAR uid, gid: INTEGER) ;

(*
in C these procedure functions are really macros, so we provide
real C functions and let gm2 call these if the builtins
are unavailable.

*)

PROCEDURE signbit (r: REAL) : INTEGER ;
PROCEDURE signbitf (s: SHORTREAL) : INTEGER ;
PROCEDURE signbitl (1: LONGREAL) : INTEGER ;

(*
isfinite - provide non builtin alternative to the gcc builtin isfinite.]]
Returns 1 if x is finite and O if it is not.

*)

PROCEDURE isfinite (x: REAL) : INTEGER ;

(*
isfinitef - provide non builtin alternative to the gcc builtin isfinite.]]
Returns 1 if x is finite and O if it is not.

*)
PROCEDURE isfinitef (x: SHORTREAL) : INTEGER ;
(*
isfinitel - provide non builtin alternative to the gcc builtin isfinite.|}
Returns 1 if x is finite and O if it is not.

*)

PROCEDURE isfinitel (x: LONGREAL) : INTEGER ;

Chapter 4: PIM and ISO library definitions 225

(*
isnan - provide non builtin alternative to the gcc builtin isnan.
Returns 1 if x is a NaN otherwise return O.

*)

PROCEDURE isman (x: REAL) : INTEGER ;

(*
isnanf - provide non builtin alternative to the gcc builtin isnanf.
Returns 1 if x is a NaN otherwise return O.

*)
PROCEDURE isnanf (x: SHORTREAL) : INTEGER ;
(*

isnanl - provide non builtin alternative to the gcc builtin isnanl.

Returns 1 if x is a NaN otherwise return O.

*)
PROCEDURE isnanl (x: LONGREAL) : INTEGER ;
(*

SeekSet - return the system libc SEEK_SET value.
*)
PROCEDURE SeekSet () : INTEGER ;
(%

SeekEnd - return the system libc SEEK_END value.
*)
PROCEDURE SeekEnd () : INTEGER ;
(*

ReadOnly - return the system value of O_RDONLY.
*)
PROCEDURE ReadOnly () : BITSET ;

(*
WriteOnly - return the system value of O_WRONLY.

Chapter 4: PIM and ISO library definitions 226

*)

PROCEDURE WriteOnly () : BITSET ;

END wrapc.

Chapter 4: PIM and ISO library definitions 227

4.2 PIM and Logitech 3.0 Compatible

These modules are provided to enable legacy Modula-2 applications to build with GNU
Modula-2. It is advised that these module should not be used for new projects, maybe the
ISO libraries or the native compiler PIM libraries (FIO) should be used instead.

Here is an outline of the module layering:

InOut RealInOut LongIO0 CardinallIO

\ I I /
Terminal
I
Termbase
/ \
Keyboard Display

Above the line are user level PIM [234] and Logitech 3.0 compatible modules. Below
the line Logitech 3.0 advised that these modules should be considered part of the runtime
system. The libraries do not provide all the features found in the Logitech libraries as a
number of these features were MS-DOS related. Essentially the basic input/output, file
system, string manipulation and conversion routines are provided. Access to DOSCALL,
graphics, time and date are not as these were constrained by the limitations of MS-DOS.

The following libraries are contained within the base GNU Modula-2 libraries and are also
Logitech-3.0 compatible: See Section 4.1.2 [gm2-libs/ASCII], page 85, See Section 4.1.42
[gm2-libs/Storage], page 170, and See Section 4.1.26 [gm2-libs/MathLib0], page 138. These
libraries are always available for any dialect of the language (although their implementation
and behaviour might differ, for example Storage ISO and PIM).

The following libraries are Logitech-3.0 compatible but fall outside the base GNU
Modula-2 libraries.

4.2.1 gm2-libs-log/BitBlockOps
DEFINITION MODULE BitBlockOps ;

FROM SYSTEM IMPORT ADDRESS ;

(*
BlockAnd - performs a bitwise AND on blocks
[dest..dest+size-1] := [dest..dest+size-1] AND
[src..src+size-1]
*)

PROCEDURE BlockAnd (dest, src: ADDRESS; size: CARDINAL) ;

Chapter 4: PIM and ISO library definitions 228

(*
BlockOr - performs a bitwise OR on blocks
[dest..dest+size-1] := [dest..dest+size-1] OR
[src..src+size-1]
*)

PROCEDURE BlockOr (dest, src: ADDRESS; size: CARDINAL) ;

(*
BlockXor - performs a bitwise XOR on blocks
[dest..dest+size-1] := [dest..dest+size-1] XOR
[src..src+size-1]
*)

PROCEDURE BlockXor (dest, src: ADDRESS; size: CARDINAL) ;

(*
BlockNot - performs a bitsize NOT on the block as defined
by: [dest..dest+size-1]
*)

PROCEDURE BlockNot (dest: ADDRESS; size: CARDINAL) ;

(*

BlockShr - performs a block shift right of, count, bits.
Where the block is defined as:
[dest..dest+size-1].

The block is considered to be an ARRAY OF BYTEs
which is shifted, bit at a time over each byte in
turn. The left most byte is considered the byte
located at the lowest address.

If you require an endianness SHIFT use

the SYSTEM.SHIFT procedure and declare the

block as a POINTER TO set type.

*)

PROCEDURE BlockShr (dest: ADDRESS; size, count: CARDINAL) ;

(*

BlockShl - performs a block shift left of, count, bits.
Where the block is defined as:
[dest..dest+size-1].

The block is considered to be an ARRAY OF BYTEs

Chapter 4: PIM and ISO library definitions

*)

which is shifted, bit at a time over each byte in
turn. The left most byte is considered the byte
located at the lowest address.

If you require an endianness SHIFT use

the SYSTEM.SHIFT procedure and declare the

block as a POINTER TO set type.

PROCEDURE BlockShl (dest: ADDRESS; size, count: CARDINAL) ;

(*

*)

BlockRor - performs a block rotate right of, count, bits.

Where the block is defined as:
[dest..dest+size-1].

The block is considered to be an ARRAY OF BYTEs
which is rotated, bit at a time over each byte in
turn. The left most byte is considered the byte
located at the lowest address.

If you require an endianness ROTATE use

the SYSTEM.ROTATE procedure and declare the

block as a POINTER TO set type.

PROCEDURE BlockRor (dest: ADDRESS; size, count: CARDINAL) ;

(*

*)

BlockRol - performs a block rotate left of, count, bits.

Where the block is defined as:
[dest..dest+size-1].

The block is considered to be an ARRAY OF BYTEs
which is rotated, bit at a time over each byte in
turn. The left most byte is considered the byte
located at the lowest address.

If you require an endianness ROTATE use

the SYSTEM.ROTATE procedure and declare the

block as a POINTER TO set type.

PROCEDURE BlockRol (dest: ADDRESS; size, count: CARDINAL) ;

END BitBlockOps.

229

Chapter 4: PIM and ISO library definitions 230

4.2.2 gm2-libs-log/BitByteOps
DEFINITION MODULE BitByteOps ;

FROM SYSTEM IMPORT BYTE ;

(*
GetBits - returns the bits firstBit..lastBit from source.
Bit 0 of byte maps onto the firstBit of source.

*)

PROCEDURE GetBits (source: BYTE; firstBit, lastBit: CARDINAL) : BYTE ;

(*

SetBits - sets bits in, byte, starting at, firstBit, and ending at,
lastBit, with, pattern. The bit zero of, pattern, will
be placed into, byte, at position, firstBit.

*)

PROCEDURE SetBits (VAR byte: BYTE; firstBit, lastBit: CARDINAL;
pattern: BYTE) ;

(*

ByteAnd - returns a bitwise (left AND right)
*)
PROCEDURE ByteAnd (left, right: BYTE) : BYTE ;
(*

ByteOr - returns a bitwise (left OR right)
*)
PROCEDURE ByteOr (left, right: BYTE) : BYTE ;
(*

ByteXor - returns a bitwise (left XOR right)

*)

PROCEDURE ByteXor (left, right: BYTE) : BYTE ;

(*

Chapter 4: PIM and ISO library definitions 231

ByteNot - returns a byte with all bits inverted.
*)

PROCEDURE ByteNot (byte: BYTE) : BYTE ;

(*
ByteShr - returns a, byte, which has been shifted, count
bits to the right.
*)

PROCEDURE ByteShr (byte: BYTE; count: CARDINAL) : BYTE ;

(*
ByteShl - returns a, byte, which has been shifted, count
bits to the left.

*)

PROCEDURE ByteShl (byte: BYTE; count: CARDINAL) : BYTE ;

(*
ByteSar - shift byte arthemetic right. Preserves the top
end bit and as the value is shifted right.
*)

PROCEDURE ByteSar (byte: BYTE; count: CARDINAL) : BYTE ;
(*
ByteRor - returns a, byte, which has been rotated, count

bits to the right.
*)

PROCEDURE ByteRor (byte: BYTE; count: CARDINAL) : BYTE ;
(*
ByteRol - returns a, byte, which has been rotated, count
bits to the left.

*)

PROCEDURE ByteRol (byte: BYTE; count: CARDINAL) : BYTE ;

(*

Chapter 4: PIM and ISO library definitions 232

HighNibble - returns the top nibble only from, byte.
The top nibble of, byte, is extracted and
returned in the bottom nibble of the return
value.

*)
PROCEDURE HighNibble (byte: BYTE) : BYTE ;
(*

LowNibble - returns the low nibble only from, byte.
The top nibble is replaced by zeros.

*)
PROCEDURE LowNibble (byte: BYTE) : BYTE ;
(*
Swap - swaps the low and high nibbles in the, byte.

*)

PROCEDURE Swap (byte: BYTE) : BYTE ;

END BitByteOps.

Chapter 4: PIM and ISO library definitions 233

4.2.3 gm2-libs-log/BitWordOps
DEFINITION MODULE BitWordOps ;

FROM SYSTEM IMPORT WORD ;

(*
GetBits - returns the bits firstBit..lastBit from source.
Bit 0 of word maps onto the firstBit of source.

*)

PROCEDURE GetBits (source: WORD; firstBit, lastBit: CARDINAL) : WORD ;

(*
SetBits - sets bits in, word, starting at, firstBit, and ending at,
lastBit, with, pattern. The bit zero of, pattern, will
be placed into, word, at position, firstBit.

*)

PROCEDURE SetBits (VAR word: WORD; firstBit, lastBit: CARDINAL;
pattern: WORD) ;

(*

WordAnd - returns a bitwise (left AND right)
*)
PROCEDURE WordAnd (left, right: WORD) : WORD ;
(*

WordOr - returns a bitwise (left OR right)
*)
PROCEDURE WordOr (left, right: WORD) : WORD ;
(*

WordXor - returns a bitwise (left XOR right)

*)

PROCEDURE WordXor (left, right: WORD) : WORD ;

(*

Chapter 4: PIM and ISO library definitions 234

WordNot - returns a word with all bits inverted.

*)

PROCEDURE WordNot (word: WORD) : WORD ;

(*
WordShr - returns a, word, which has been shifted, count
bits to the right.
*)

PROCEDURE WordShr (word: WORD; count: CARDINAL) : WORD ;

(*
WordShl - returns a, word, which has been shifted, count
bits to the left.

*)

PROCEDURE WordShl (word: WORD; count: CARDINAL) : WORD ;

(*
WordSar - shift word arthemetic right. Preserves the top
end bit and as the value is shifted right.
*)

PROCEDURE WordSar (word: WORD; count: CARDINAL) : WORD ;
(*
WordRor - returns a, word, which has been rotated, count

bits to the right.
*)

PROCEDURE WordRor (word: WORD; count: CARDINAL) : WORD ;
(*
WordRol - returns a, word, which has been rotated, count
bits to the left.

*)

PROCEDURE WordRol (word: WORD; count: CARDINAL) : WORD ;

(*

Chapter 4: PIM and ISO library definitions 235

HighByte - returns the top byte only from, word.
The byte is returned in the bottom byte
in the return value.

*)
PROCEDURE HighByte (word: WORD) : WORD ;
(*
LowByte - returns the low byte only from, word.
The byte is returned in the bottom byte

in the return value.

*)
PROCEDURE LowByte (word: WORD) : WORD ;
(*
Swap - byte flips the contents of word.
*)

PROCEDURE Swap (word: WORD) : WORD ;

END BitWordOps.

Chapter 4: PIM and ISO library definitions 236

4.2.4 gm2-libs-log/BlockOps
DEFINITION MODULE BlockOps ;

FROM SYSTEM IMPORT ADDRESS ;

(*
MoveBlockForward - moves, n, bytes from, src, to, dest.
Starts copying from src and keep copying
until, n, bytes have been copied.

*)

PROCEDURE BlockMoveForward (dest, src: ADDRESS; n: CARDINAL) ;

(*
MoveBlockBackward - moves, n, bytes from, src, to, dest.
Starts copying from src+n and keeps copying
until, n, bytes have been copied.
The last datum to be copied will be the byte
at address, src.

*)

PROCEDURE BlockMoveBackward (dest, src: ADDRESS; n: CARDINAL) ;

(*
BlockClear - fills, block..block+n-1, with zeros.
*)

PROCEDURE BlockClear (block: ADDRESS; n: CARDINAL) ;

(*
BlockSet - fills, n, bytes starting at, block, with a pattern
defined at address pattern..pattern+patternSize-1.

*)

PROCEDURE BlockSet (block: ADDRESS; n: CARDINAL;
pattern: ADDRESS; patternSize: CARDINAL) ;

(*
BlockEqual - returns TRUE if the blocks defined, a..a+n-1, and,
b..b+n-1 contain the same bytes.

*)

Chapter 4: PIM and ISO library definitions 237

PROCEDURE BlockEqual (a, b: ADDRESS; n: CARDINAL) : BOOLEAN ;

(*

BlockPosition - searches for a pattern as defined by
pattern..patternSize-1 in the block,
block. .block+blockSize-1. It returns
the offset from block indicating the
first occurence of, pattern.

MAX (CARDINAL) is returned if no match
is detected.

*)

PROCEDURE BlockPosition (block: ADDRESS; blockSize: CARDINAL;
pattern: ADDRESS; patternSize: CARDINAL) : CARDINAL ;|J}

END BlockOps.

Chapter 4: PIM and ISO library definitions 238

4.2.5 gm2-libs-log/Break
DEFINITION MODULE Break ;

EXPORT QUALIFIED EnableBreak, DisableBreak, InstallBreak, UnInstallBreak ;H

(*
EnableBreak - enable the current break handler.

*)

PROCEDURE EnableBreak ;

(*
DisableBreak - disable the current break handler (and all
installed handlers).

*)

PROCEDURE DisableBreak ;

(*
InstallBreak - installs a procedure, p, to be invoked when
a ctrl-c is caught. Any number of these
procedures may be stacked. Only the top
procedure is run when ctrl-c is caught.

*)
PROCEDURE InstallBreak (p: PROC) ;
(*
UnInstallBreak - pops the break handler stack.
*)

PROCEDURE UnInstallBreak ;

END Break.

Chapter 4: PIM and ISO library definitions 239

4.2.6 gm2-libs-log/CardinallO
DEFINITION MODULE CardinallQ ;

EXPORT QUALIFIED Done,
ReadCardinal, WriteCardinal, ReadHex, WriteHex,
ReadlLongCardinal, WriteLongCardinal, ReadLongHex,
WriteLongHex,
ReadShortCardinal, WriteShortCardinal, ReadShortHex,
WriteShortHex ;

VAR
Done: BOOLEAN ;

(*
ReadCardinal - read an unsigned decimal number from the terminal.
The read continues until a space, newline, esc or
end of file is reached.

*)

PROCEDURE ReadCardinal (VAR c: CARDINAL) ;

(*
WriteCardinal - writes the value, c, to the terminal and ensures
that at least, n, characters are written. The number
will be padded out by preceeding spaces if necessary.

*)

PROCEDURE WriteCardinal (c: CARDINAL; n: CARDINAL)

3

(*
ReadHex - reads in an unsigned hexadecimal number from the terminal.
The read continues until a space, newline, esc or
end of file is reached.

*)

PROCEDURE ReadHex (VAR c: CARDINAL) ;

(*
WriteHex - writes out a CARDINAL, c¢, in hexadecimal format padding
with, n, characters (leading with '0')

*)

Chapter 4: PIM and ISO library definitions 240

PROCEDURE WriteHex (c: CARDINAL; n: CARDINAL) ;

(*
ReadlLongCardinal - read an unsigned decimal number from the terminal.
The read continues until a space, newline, esc or
end of file is reached.

*)

PROCEDURE ReadLongCardinal (VAR c: LONGCARD) ;

(*
WriteLongCardinal - writes the value, c, to the terminal and ensures
that at least, n, characters are written. The numberll
will be padded out by preceeding spaces if necessary.|}

*)

PROCEDURE WriteLongCardinal (c: LONGCARD; n: CARDINAL) ;

€
ReadlongHex - reads in an unsigned hexadecimal number from the terminal.|]
The read continues until a space, newline, esc or
end of file is reached.

*)

PROCEDURE ReadLongHex (VAR c: LONGCARD) ;

(%
WriteLongHex - writes out a LONGCARD, c, in hexadecimal format padding]]
with, n, characters (leading with '0')

*)

PROCEDURE WriteLongHex (c: LONGCARD; n: CARDINAL) ;

(*
WriteShortCardinal - writes the value, c, to the terminal and ensures
that at least, n, characters are written. The numberl}
will be padded out by preceeding spaces if necessary.|}]

*)

PROCEDURE WriteShortCardinal (c: SHORTCARD; n: CARDINAL) ;

Chapter 4: PIM and ISO library definitions 241

(*
ReadShortCardinal - read an unsigned decimal number from the terminal.|}
The read continues until a space, newline, esc or
end of file is reached.

*)

PROCEDURE ReadShortCardinal (VAR c: SHORTCARD) ;

(*
ReadShortHex - reads in an unsigned hexadecimal number from the terminal.|}
The read continues until a space, newline, esc or
end of file is reached.

*)
PROCEDURE ReadShortHex (VAR c: SHORTCARD) ;
(*

WriteShortHex - writes out a SHORTCARD, c, in hexadecimal format paddingji
with, n, characters (leading with '0')

*)

PROCEDURE WriteShortHex (c: SHORTCARD; n: CARDINAL) ;

END CardinalIO.

Chapter 4: PIM and ISO library definitions 242

4.2.7 gm2-libs-log/Conversions
DEFINITION MODULE Conversions ;

EXPORT QUALIFIED ConvertOctal, ConvertHex, ConvertCardinal,
ConvertInteger, ConvertLongInt, ConvertShortInt ;

(*

ConvertOctal - converts a CARDINAL, num, into an octal/hex/decimal
string and right justifies the string. It adds
spaces rather than '0O' to pad out the string
to len characters.

If the length of str is < num then the number is
truncated on the right.
*)

PROCEDURE ConvertOctal (num, len: CARDINAL; VAR str: ARRAY OF CHAR) ;
PROCEDURE ConvertHex (num, len: CARDINAL; VAR str: ARRAY OF CHAR) ;
PROCEDURE ConvertCardinal (num, len: CARDINAL; VAR str: ARRAY OF CHAR) ;

(*
The INTEGER counterparts will add a '-' if, num, is <O
*)

PROCEDURE ConvertInteger (num: INTEGER; len: CARDINAL; VAR str: ARRAY OF CHAR) ;|}

PROCEDURE ConvertLongInt (num: LONGINT; len: CARDINAL; VAR str: ARRAY OF CHAR) ;|j
PROCEDURE ConvertShortInt (num: SHORTINT; len: CARDINAL; VAR str: ARRAY OF CHAR) ;I

END Conversions.

Chapter 4: PIM and ISO library definitions 243

4.2.8 gm2-libs-log/DebugPMD
DEFINITION MODULE DebugPMD ;

END DebugPMD.

Chapter 4: PIM and ISO library definitions 244

4.2.9 gm2-libs-log/DebugTrace
DEFINITION MODULE DebugTrace ;

END DebugTrace.

Chapter 4: PIM and ISO library definitions 245

4.2.10 gm?2-libs-log/Delay
DEFINITION MODULE Delay ;

EXPORT QUALIFIED Delay ;
(*

milliSec - delays the program by approximately, milliSec, milliseconds.|]
*)

PROCEDURE Delay (milliSec: INTEGER) ;

END Delay.

Chapter 4: PIM and ISO library definitions 246

4.2.11 gm?2-libs-log/Display
DEFINITION MODULE Display ;
EXPORT QUALIFIED Write ;
(*
Write - display a character to the stdout.
ASCII.EOL moves to the beginning of the next line.
ASCII.del erases the character to the left of the cursor.

*)

PROCEDURE Write (ch: CHAR) ;

END Display.

Chapter 4: PIM and ISO library definitions 247

4.2.12 gm?2-libs-log/ErrorCode
DEFINITION MODULE ErrorCode ;

EXPORT QUALIFIED SetErrorCode, GetErrorCode, ExitTo0S ;

(*
SetErrorCode - sets the exit value which will be used if
the application terminates normally.

*)
PROCEDURE SetErrorCode (value: INTEGER) ;
(*
GetErrorCode - returns the current value to be used upon
application termination.
*)
PROCEDURE GetErrorCode (VAR value: INTEGER) ;
(*
ExitToOS - terminate the application and exit returning
the last value set by SetErrorCode to the 0S.

*)

PROCEDURE ExitToO0S ;

END ErrorCode.

Chapter 4: PIM and ISO library definitions

4.2.13 gm?2-libs-log/FileSystem
DEFINITION MODULE FileSystem ;

(* Use this module sparingly, FIO or the ISO file modules have a
much cleaner interface.

*)

FROM SYSTEM IMPORT WORD, BYTE, ADDRESS ;

IMPORT FIO

b

FROM DynamicStrings IMPORT String ;

EXPORT QUALIFIED File, Response, Flag, FlagSet,

Create, Close, Lookup, Rename, Delete,
SetRead, SetWrite, SetModify, SetOpen,
Doio, SetPos, GetPos, Length, Reset,

ReadWord, ReadChar, ReadByte, ReadNBytes,
WriteWord, WriteChar, WriteByte, WriteNBytes ;

TYPE
File = RECORD
res : Response ;
flags : FlagSet ;
eof : BOOLEAN ;
lastWord: WORD ;
lastByte: BYTE ;
fio : FIO.File ;
highpos,
lowpos : CARDINAL ;
name : String ;
END ;
Flag = (
read, (* read access mode *)
write, (* write access mode *)
modify,
truncate, (* truncate file when closed *)
again, (* reread the last character *)
temporary, (* file is temporary *)
opened (x file has been opened *)
);
FlagSet = SET OF Flag;
Response = (done, notdone, notsupported, callerror,

unknownfile, paramerror, toomanyfiles,

248

Chapter 4: PIM and ISO library definitions 249

userdeverror) ;

Command = (create, close, lookup, rename, delete,
setread, setwrite, setmodify, setopen,
doio, setpos, getpos, length) ;

(*
Create - creates a temporary file. To make the file perminant
the file must be renamed.

*)

PROCEDURE Create (VAR f: File) ;

(*
Close - closes an open file.

*)

PROCEDURE Close (f: File) ;

(*
Lookup - looks for a file, filename. If the file is found
then, f, is opened. If it is not found and, newFile,
is TRUE then a new file is created and attached to, f.
If, newFile, is FALSE and no file was found then f.res
is set to notdone.

*)

PROCEDURE Lookup (VAR f: File; filename: ARRAY OF CHAR; newFile: BOOLEAN) ;Jj

(*
Rename - rename a file and change a temporary file to a permanent
file. f.res is set appropriately.

*)
PROCEDURE Rename (VAR f: File; newname: ARRAY OF CHAR) ;
(*
Delete - deletes a file, name, and sets the f.res field.
f.res is set appropriately.

*)

PROCEDURE Delete (name: ARRAY OF CHAR; VAR f: File) ;

Chapter 4: PIM and ISO library definitions 250

(*
ReadWord - reads a WORD, w, from file, f.
f.res is set appropriately.

*)

PROCEDURE ReadWord (VAR f: File; VAR w: WORD) ;

(*
WriteWord - writes one word to a file, f.
f.res is set appropriately.

*)

PROCEDURE WriteWord (VAR f: File; w: WORD) ;

(*
ReadChar - reads one character from a file, f.

*)

PROCEDURE ReadChar (VAR f: File; VAR ch: CHAR) ;

(*
WriteChar - writes a character, ch, to a file, f.
f.res is set appropriately.

*)

PROCEDURE WriteChar (VAR f: File; ch: CHAR) ;

(*
ReadByte - reads a BYTE, b, from file, f.
f.res is set appropriately.

*)
PROCEDURE ReadByte (VAR f: File; VAR b: BYTE) ;
(*

WriteByte - writes one BYTE, b, to a file, f.
f.res is set appropriately.

*)

PROCEDURE WriteByte (VAR f: File; b: BYTE) ;

Chapter 4: PIM and ISO library definitions 251

(*
ReadNBytes - reads a sequence of bytes from a file, f.

*)

PROCEDURE ReadNBytes (VAR f: File; a: ADDRESS; amount: CARDINAL;
VAR actuallyRead: CARDINAL) ;

(*
WriteNBytes - writes a sequence of bytes to file, f.

*)

PROCEDURE WriteNBytes (VAR f: File; a: ADDRESS; amount: CARDINAL;
VAR actuallyWritten: CARDINAL) ;

(*
Again - returns the last character read to the internal buffer
so that it can be read again.

*)

PROCEDURE Again (VAR f: File) ;

(*
SetRead - puts the file, f, into the read state.
The file position is unchanged.

*)

PROCEDURE SetRead (VAR f: File) ;

(*
SetWrite - puts the file, f, into the write state.
The file position is unchanged.

*)

PROCEDURE SetWrite (VAR f: File) ;

(*
SetModify - puts the file, f, into the modify state.
The file position is unchanged but the file can be
read and written.

Chapter 4: PIM and ISO library definitions 252

PROCEDURE SetModify (VAR f: File) ;

(*
SetOpen - places a file, f, into the open state. The file may
have been in the read/write/modify state before and
in which case the previous buffer contents are flushed
and the file state is reset to open. The position is
unaltered.

*)

PROCEDURE SetOpen (VAR f: File) ;

(*
Reset - places a file, f, into the open state and reset the
position to the start of the file.
*)

PROCEDURE Reset (VAR f: File) ;
(*
SetPos - lseek to a position within a file.
*)
PROCEDURE SetPos (VAR f: File; high, low: CARDINAL) ;
(*
GetPos - return the position within a file.
*)
PROCEDURE GetPos (VAR f: File; VAR high, low: CARDINAL) ;
(*
Length - returns the length of file, in, high, and, low.
*)
PROCEDURE Length (VAR f: File; VAR high, low: CARDINAL) ;
(*

Doio - effectively flushes a file in write mode, rereads the
current buffer from disk if in read mode and writes

Chapter 4: PIM and ISO library definitions 253

and rereads the buffer if in modify mode.

*)
PROCEDURE Doio (VAR f: File) ;
(*
FileNameChar - checks to see whether the character, ch, is
legal in a filename. nul is returned if the

character was illegal.

*)

PROCEDURE FileNameChar (ch: CHAR) : CHAR ;

END FileSystem.

Chapter 4: PIM and ISO library definitions 254

4.2.14 gm?2-libs-log/FloatingUtilities
DEFINITION MODULE FloatingUtilities ;

EXPORT QUALIFIED Frac, Round, Float, Trunc,
Fracl, Roundl, Floatl, Truncl ;

€
Frac - returns the fractional component of, r.

*)

PROCEDURE Frac (r: REAL) : REAL ;

(*
Int - returns the integer part of r. It rounds the value towards zero.|}

*)

PROCEDURE Int (r: REAL) : INTEGER ;

(*
Round - returns the number rounded to the nearest integer.

*)

PROCEDURE Round (r: REAL) : INTEGER ;

(*
Float - returns a REAL value corresponding to, i.

*)

PROCEDURE Float (i: INTEGER) : REAL ;

(*
Trunc - round to the nearest integer not larger in absolute
value.

*)
PROCEDURE Trunc (r: REAL) : INTEGER ;
(*

Fracl - returns the fractional component of, r.

*)

Chapter 4: PIM and ISO library definitions 255

PROCEDURE Fracl (r: LONGREAL) : LONGREAL ;

(*
Intl - returns the integer part of r. It rounds the value towards zero.|}

*)
PROCEDURE Intl (r: LONGREAL) : LONGINT ;
(*
Roundl - returns the number rounded to the nearest integer.
*)
PROCEDURE Roundl (r: LONGREAL) : LONGINT ;
(*
Floatl - returns a REAL value corresponding to, i.
*)
PROCEDURE Floatl (i: INTEGER) : LONGREAL ;
(*

Truncl - round to the nearest integer not larger in absolute
value.

*)

PROCEDURE Truncl (r: LONGREAL) : LONGINT ;

END FloatingUtilities.

Chapter 4: PIM and ISO library definitions 256

4.2.15 gm2-libs-log/InOut
DEFINITION MODULE InQut ;

IMPORT ASCII ;

FROM DynamicStrings IMPORT String ;

EXPORT QUALIFIED EOL, Done, termCH, OpenInput, OpenOutput,
CloseInput, CloseQOutput,
Read, ReadString, ReadInt, ReadCard,
Write, Writeln, WriteString, WritelInt, WriteCard,
WriteOct, WriteHex,
ReadS, WriteS ;

CONST
EOL = ASCII.EOL ;

VAR
Done : BOOLEAN ;
termCH: CHAR ;

(*
OpenInput - reads a string from stdin as the filename for reading.
If the filename ends with '.' then it appends the defext
extension. The global variable Done is set if all
was successful.
*)

PROCEDURE OpenInput (defext: ARRAY OF CHAR) ;

(*
CloseInput - closes an opened input file and returns input back to
StdIn.
*)

PROCEDURE CloselInput ;

(*
OpenOutput - reads a string from stdin as the filename for writing.
If the filename ends with '.' then it appends the defext
extension. The global variable Done is set if all
was successful.
*)

PROCEDURE OpenOutput (defext: ARRAY OF CHAR) ;

Chapter 4: PIM and ISO library definitions 257

(*
CloseOutput - closes an opened output file and returns output back to
StdOut.

*)

PROCEDURE CloseOutput ;

(*
Read - reads a single character from the current input file.
Done is set to FALSE if end of file is reached or an
error occurs.

*)

PROCEDURE Read (VAR ch: CHAR) ;

(*
ReadString - reads a sequence of characters. Leading white space
is ignored and the string is terminated with a character
<= ! '

*)
PROCEDURE ReadString (VAR s: ARRAY OF CHAR) ;
(*
WriteString - writes a string to the output file.
*)
PROCEDURE WriteString (s: ARRAY OF CHAR) ;
(*
Write - writes out a single character, ch, to the current output file.|}
*)
PROCEDURE Write (ch: CHAR) ;
(*
Writeln - writes a newline to the output file.
*)

PROCEDURE Writeln ;

Chapter 4: PIM and ISO library definitions 258

(*
ReadInt - reads a string and converts it into an INTEGER, x.
Done is set if an INTEGER is read.
*)

PROCEDURE ReadInt (VAR x: INTEGER) ;

(*
ReadInt - reads a string and converts it into an INTEGER, x.
Done is set if an INTEGER is read.
*)

PROCEDURE ReadCard (VAR x: CARDINAL) ;

(*
WriteCard - writes the CARDINAL, x, to the output file. It ensures
that the number occupies, n, characters. Leading spaces
are added if required.

*)

PROCEDURE WriteCard (x, n: CARDINAL) ;

(*
WriteInt - writes the INTEGER, x, to the output file. It ensures
that the number occupies, n, characters. Leading spaces
are added if required.

*)

PROCEDURE WriteInt (x: INTEGER; n: CARDINAL) ;

(*
WriteOct - writes the CARDINAL, x, to the output file in octal.
It ensures that the number occupies, n, characters.
Leading spaces are added if required.

*)

PROCEDURE WriteOct (x, n: CARDINAL) ;

(*
WriteHex - writes the CARDINAL, x, to the output file in hexadecimal.

Chapter 4: PIM and ISO library definitions 259

It ensures that the number occupies, n, characters.
Leading spaces are added if required.

*)

PROCEDURE WriteHex (x, n: CARDINAL) ;

(*
ReadS - returns a string which has is a sequence of characters.
Leading white space is ignored and string is terminated
with a character <= ' '.

*)
PROCEDURE ReadS () : String ;
(*
WriteS - writes a String to the output device.
It returns the string, s.

*)

PROCEDURE WriteS (s: String) : String ;

END InQOut.

Chapter 4: PIM and ISO library definitions 260

4.2.16 gm?2-libs-log/Keyboard
DEFINITION MODULE Keyboard ;

EXPORT QUALIFIED Read, KeyPressed ;
(*
Read - reads a character from StdIn. If necessary it will wait
for a key to become present on StdlIm.
*)
PROCEDURE Read (VAR ch: CHAR) ;
(*
KeyPressed - returns TRUE if a character can be read from StdIn
without blocking the caller.

*)

PROCEDURE KeyPressed () : BOOLEAN ;

END Keyboard.

Chapter 4: PIM and ISO library definitions 261

4.2.17 gm2-libs-log/LonglO
DEFINITION MODULE LongIO ;

EXPORT QUALIFIED Done, ReadLongInt, WriteLongInt ;

VAR
Done: BOOLEAN ;

PROCEDURE ReadLongInt (VAR i: LONGINT) ;
PROCEDURE WriteLongInt (i: LONGINT; n: CARDINAL) ;

END LongIO.

Chapter 4: PIM and ISO library definitions

4.2.18 gm?2-libs-log/NumberConversion
DEFINITION MODULE NumberConversion ;

(* —-fixme-- finish this. *)

END NumberConversion.

262

Chapter 4: PIM and ISO library definitions 263

4.2.19 gm2-libs-log/Random
DEFINITION MODULE Random ;

FROM SYSTEM IMPORT BYTE ;
EXPORT QUALIFIED Randomize, RandomInit, RandomBytes, RandomCard, RandomInt, RandomReal

(*
Randomize - initialize the random number generator with a seed
based on the microseconds.

*)
PROCEDURE Randomize ;
(*
RandomInit - initialize the random number generator with value, seed.
*)
PROCEDURE RandomInit (seed: CARDINAL) ;
(*
RandomBytes - fills in an array with random values.
*)
PROCEDURE RandomBytes (VAR a: ARRAY OF BYTE) ;
(*
RandomInt - return an INTEGER in the range O..bound-1
*)
PROCEDURE RandomInt (bound: INTEGER) : INTEGER ;
(*
RandomCard - return a CARDINAL in the range 0..bound-1
*)
PROCEDURE RandomCard (bound: CARDINAL) : CARDINAL ;
(*

RandomReal - return a REAL number in the range 0.0..1.0

*)

Chapter 4: PIM and ISO library definitions 264

PROCEDURE RandomReal () : REAL ;

(*
RandomLongReal - return a LONGREAL number in the range 0.0..1.0
*)

PROCEDURE RandomLongReal () : LONGREAL ;

END Random.

Chapter 4: PIM and ISO library definitions 265

4.2.20 gm2-libs-log/RealConversions
DEFINITION MODULE RealConversions ;

EXPORT QUALIFIED SetNoOfExponentDigits,
RealToString, StringToReal,
LongRealToString, StringToLongReal ;

(*
SetNoOfExponentDigits - sets the number of exponent digits to be
used during future calls of LongRealToString
and RealToString providing that the width
is sufficient.
If this value is set to O (the default) then
the number digits used is the minimum necessary.|}

*)

PROCEDURE SetNoOfExponentDigits (places: CARDINAL) ;

(*

RealToString - converts a real, r, into a right justified string, str.|j
The number of digits to the right of the decimal point
is given in, digits. The value, width, represents the
maximum number of characters to be used in the string,
str.

If digits is negative then exponent notation is used
whereas if digits is positive then fixed point notation]j
is used.

If, r, is less than 0.0 then a '-' preceeds the value,
str. However, if, r, is >= 0.0 a '+' is not added.

If the conversion of, r, to a string requires more
than, width, characters then the string, str, is set
to a nul string and, ok is assigned FALSE.

For fixed point notation the minimum width required is
ABS(width)+8

For exponent notation the minimum width required is
ABS(digits)+2+logl0(magnitude).

if r is a NaN then the string 'nan' is returned formatted andj]
ok will be FALSE.

Chapter 4: PIM and ISO library definitions 266

*)

PROCEDURE RealToString (r: REAL; digits, width: INTEGER;

(*

*)

VAR str: ARRAY OF CHAR; VAR ok: BOOLEAN) ;

LongRealToString - converts a real, r, into a right justified string, str.|}

The number of digits to the right of the decimal point]]
is given in, digits. The value, width, represents thell
maximum number of characters to be used in the string,|}
str.

If digits is negative then exponent notation is used]]
whereas if digits is positive then fixed point notationf]
is used.

If, r, is less than 0.0 then a '-' preceeds the value,]]
str. However, if, r, is >= 0.0 a '+' is not added.

If the conversion of, r, to a string requires more
than, width, characters then the string, str, is set|]
to a nul string and, ok is assigned FALSE.

For fixed point notation the minimum width required isfj
ABS (width)+8

For exponent notation the minimum width required is]j
ABS(digits)+2+logl0(magnitude) .

Examples:
RealToString(100.0, 10, 10, a, ok) -> '100.000000"'}
RealToString(100.0, -5, 12, a, ok) -> ' 1.00000E+2'}

RealToString(123.456789, 10, 10, a, ok) =-> '123.456789'}
RealToString(123.456789, -5, 13, a, ok) -> ' 1.23456E+2']}

RealToString(123.456789, -2, 15, a, ok) -> ' 1.23E+2"]

if r is a NaN then the string 'man' is returned formatted andj]
ok will be FALSE.

PROCEDURE LongRealToString (r: LONGREAL; digits, width: INTEGER;

VAR str: ARRAY OF CHAR; VAR ok: BOOLEAN) ;

Chapter 4: PIM and ISO library definitions 267

(*
StringToReal - converts, str, into a REAL, r. The parameter, ok, is
set to TRUE if the conversion was successful.

*)
PROCEDURE StringToReal (str: ARRAY OF CHAR; VAR r: REAL; VAR ok: BOOLEAN) ;Jj
(*

StringToLongReal - converts, str, into a LONGREAL, r. The parameter, ok, isfi
set to TRUE if the conversion was successful.

*)

PROCEDURE StringToLongReal (str: ARRAY OF CHAR; VAR r: LONGREAL; VAR ok: BOOLEAN) ;i

END RealConversions.

Chapter 4: PIM and ISO library definitions 268

4.2.21 gm?2-libs-log/ReallnOut
DEFINITION MODULE ReallnQut ;

EXPORT QUALIFIED SetNoOfDecimalPlaces,
ReadReal, WriteReal, WriteRealOct,
ReadLongReal, WriteLongReal, WriteLongRealOct,
ReadShortReal, WriteShortReal, WriteShortRealOct,
Done ;

CONST
DefaultDecimalPlaces = 6 ;

VAR
Done: BOOLEAN ;

(*

SetNoOfDecimalPlaces - number of decimal places WriteReal and
WriteLongReal should emit. This procedure
can be used to override the default
DefaultDecimalPlaces constant.

*)

PROCEDURE SetNoOfDecimalPlaces (places: CARDINAL) ;

(*
ReadReal - reads a real number, legal syntaxes include:
100, 100.0, 100e0, 100EO, 100E-1, E2, +1E+2, le+2
*)

PROCEDURE ReadReal (VAR x: REAL) ;

(*

WriteReal - writes a real to the terminal. The real number
is right justified and, n, is the minimum field
width.

*)

PROCEDURE WriteReal (x: REAL; n: CARDINAL) ;
(*

WriteRealOct - writes the real to terminal in octal words.

*)

Chapter 4: PIM and ISO library definitions 269

PROCEDURE WriteRealOct (x: REAL) ;

(*
ReadlLongReal - reads a LONGREAL number, legal syntaxes include:
100, 100.0, 100e0, 100EO, 100E-1, E2, +1E+2, le+2
*)

PROCEDURE ReadLongReal (VAR x: LONGREAL) ;

(*

WriteLongReal - writes a LONGREAL to the terminal. The real number
is right justified and, n, is the minimum field
width.

*)

PROCEDURE WriteLongReal (x: LONGREAL; n: CARDINAL) ;

(%
WritelLongRealOct - writes the LONGREAL to terminal in octal words.
*)

PROCEDURE WriteLongRealOct (x: LONGREAL) ;

(*
ReadShortReal - reads a SHORTREAL number, legal syntaxes include:
100, 100.0, 100e0, 100EO, 100E-1, E2, +1E+2, le+2

*)

PROCEDURE ReadShortReal (VAR x: SHORTREAL) ;

(*

WriteShortReal - writes a SHORTREAL to the terminal. The real number
is right justified and, n, is the minimum field
width.

*)

PROCEDURE WriteShortReal (x: SHORTREAL; n: CARDINAL) ;

(*
WriteShortRealOct - writes the SHORTREAL to terminal in octal words.

Chapter 4: PIM and ISO library definitions 270

*)

PROCEDURE WriteShortRealOct (x: SHORTREAL) ;

END RealInOut.

Chapter 4: PIM and ISO library definitions

271

4.2.22 gm?2-libs-log/Strings

DEFINITION MODULE Strings ;

EXPORT QUALIFIED Assign, Insert, Delete, Pos, Copy, ConCat, Length,

(*

Assign
*)
PROCEDURE

(*

Insert
*)

PROCEDURE

(*
Delete
*)

PROCEDURE

(*

CompareStr ;
- dest :=

source.

Assign (VAR dest: ARRAY OF CHAR; source: ARRAY OF CHAR) ;

- insert the string, substr, into str at position, index.
substr, is added to the end of, str, if, index >= length(str)]]

Insert (substr: ARRAY OF CHAR; VAR str: ARRAY OF CHAR;
index: CARDINAL) ;

- delete len characters from, str, starting at, index.

Delete (VAR str: ARRAY OF CHAR; index: CARDINAL; length: CARDINAL) ;|Jj

Pos - return the first position of, substr, in, str.

*)

PROCEDURE

(*

Copy -

*)

PROCEDURE

(*
ConCat

Pos (substr, str: ARRAY OF CHAR) : CARDINAL ;

copy at most, length, characters in, substr, to, str,
starting at position, index.

Copy (str: ARRAY OF CHAR;
index, length: CARDINAL; VAR result: ARRAY OF CHAR) ;

- concatenates two strings, sl, and, s2

Chapter 4: PIM and ISO library definitions 272

and places the result into, dest.

*)
PROCEDURE ConCat (s1, s2: ARRAY OF CHAR; VAR dest: ARRAY OF CHAR) ;
(*
Length - return the length of string, s.
*)
PROCEDURE Length (s: ARRAY OF CHAR) : CARDINAL ;
(*
CompareStr - compare two strings, left, and, right.
*)

PROCEDURE CompareStr (left, right: ARRAY OF CHAR) : INTEGER ;

END Strings.

Chapter 4: PIM and ISO library definitions 273

4.2.23 gm?2-libs-log/Termbase
DEFINITION MODULE Termbase ;

(*
Initially the read routines from Keyboard and the
write routine from Display is assigned to the Read,
KeyPressed and Write procedures.

*)

EXPORT QUALIFIED ReadProcedure, StatusProcedure, WriteProcedure,
AssignRead, AssignWrite, UnAssignRead, UnAssignWrite,
Read, KeyPressed, Write ;

TYPE
ReadProcedure = PROCEDURE (VAR CHAR) ;
WriteProcedure = PROCEDURE (CHAR) ;
StatusProcedure = PROCEDURE () : BOOLEAN ;

(*
AssignRead - assigns a read procedure and status procedure for terminall]
input. Done is set to TRUE if successful. Subsequent
Read and KeyPressed calls are mapped onto the user suppliedil
procedures. The previous read and status procedures are
uncovered and reused after UnAssignRead is called.

*)

PROCEDURE AssignRead (rp: ReadProcedure; sp: StatusProcedure;
VAR Done: BOOLEAN) ;

(*
UnAssignRead - undo the last call to AssignRead and set Done to TRUE
on success.

*)
PROCEDURE UnAssignRead (VAR Done: BOOLEAN) ;
(%

Read - reads a single character using the currently active read
procedure.

*)

PROCEDURE Read (VAR ch: CHAR) ;

Chapter 4: PIM and ISO library definitions 274

(*

KeyPressed - returns TRUE if a character is available to be read.

*)

PROCEDURE KeyPressed () : BOOLEAN ;

(*
AssignWrite - assigns a write procedure for terminal output.
Done is set to TRUE if successful. Subsequent
Write calls are mapped onto the user supplied
procedure. The previous write procedure is
uncovered and reused after UnAssignWrite is called.

*)
PROCEDURE AssignWrite (wp: WriteProcedure; VAR Done: BOOLEAN) ;
(*

UnAssignWrite - undo the last call to AssignWrite and set Done to TRUE]
on success.

*)
PROCEDURE UnAssignWrite (VAR Done: BOOLEAN) ;
(*

Write - writes a single character using the currently active write
procedure.

*)

PROCEDURE Write (VAR ch: CHAR) ;

END Termbase.

Chapter 4: PIM and ISO library definitions 275

4.2.24 gm?2-libs-log/Terminal
DEFINITION MODULE Terminal ;

(*
It provides simple terminal input output
routines which all utilize the TermBase module.

*)

EXPORT QUALIFIED Read, KeyPressed, ReadAgain, ReadString, Write,
WriteString, Writeln ;

(*
Read - reads a single character.

*)

PROCEDURE Read (VAR ch: CHAR) ;

(*
KeyPressed - returns TRUE if a character can be read without blocking
the caller.
*)

PROCEDURE KeyPressed () : BOOLEAN ;

(*
ReadString - reads a sequence of characters.
Tabs are expanded into 8 spaces and <cr> or <1f> terminates|]
the string.

*)
PROCEDURE ReadString (VAR s: ARRAY OF CHAR) ;
(*
ReadAgain - makes the last character readable again.
*)
PROCEDURE ReadAgain ;
(*

Write - writes a single character to the Termbase module.

*)

Chapter 4: PIM and ISO library definitions 276

PROCEDURE Write (ch: CHAR) ;

(*
WriteString - writes out a string which is terminated by a <nul>
character or the end of string HIGH(s).
*)

PROCEDURE WriteString (s: ARRAY OF CHAR) ;
(*

Writeln - writes a 1f character.
*)

PROCEDURE Writeln ;

END Terminal.

Chapter 4: PIM and ISO library definitions 277

4.2.25 gm?2-libs-log/TimeDate
DEFINITION MODULE TimeDate ;

(*
Legacy compatibility - you are advised to use cleaner
designed modules based on 'man 3 strtime'
and friends for new projects as the day value here is ugly.
[it was mapped onto MSDOS pre 2000] .

*)
EXPORT QUALIFIED Time, GetTime, SetTime, CompareTime, TimeToZero,
TimeToString ;
TYPE
(*
day holds: Dbits 0..4 = day of month (1..31)
5..8 = month of year (1..12)
9.. = year - 1900
minute holds: hours * 60 + minutes

millisec holds: seconds * 1000 + millisec
which is reset to O every minute

*)

Time = RECORD
day, minute, millisec: CARDINAL ;
END ;

(*
GetTime - returns the current date and time.

*)
PROCEDURE GetTime (VAR curTime: Time) ;
€
SetTime - does nothing, but provides compatibility with
the Logitech-3.0 library.
*)
PROCEDURE SetTime (curTime: Time) ;

(*

CompareTime - compare two dates and time which returns:

Chapter 4: PIM and ISO library definitions 278

-1 if t1 < t2
0 if t1 t2
1 1if €1 > t2

*)
PROCEDURE CompareTime (t1, t2: Time) : INTEGER ;
(*

TimeToZero - initializes, t, to zero.
*)
PROCEDURE TimeToZero (VAR t: Time) ;
(*

TimeToString - convert time, t, to a string.

The string, s, should be at least 19 characters

long and the returned string will be

yyyy-mm—-dd hh:mm:ss
*)

PROCEDURE TimeToString (t: Time; VAR s: ARRAY OF CHAR) ;

END TimeDate.

Chapter 4: PIM and ISO library definitions 279

4.3 PIM coroutine support

This directory contains a PIM SYSTEM containing the PROCESS primitives built on top of
gthreads.

4.3.1 gm2-libs-coroutines/Executive
DEFINITION MODULE Executive ;

EXPORT QUALIFIED SEMAPHORE, DESCRIPTOR,
InitProcess, KillProcess, Resume, Suspend, InitSemaphore,|i
Wait, Signal, WaitForIO, Ps, GetCurrentProcess,
RotateRunQueue, ProcessName, DebugProcess ;

TYPE
SEMAPHORE ; (* defines Dijkstras semaphores *)
DESCRIPTOR ; (* handle onto a process *)
(*

InitProcess - initializes a process which is held in the suspended
state. When the process is resumed it will start executingfl
procedure, p. The process has a maximum stack size of,
StackSize, bytes and its textual name is, Name.
The StackSize should be at least 5000 bytes.
*)

PROCEDURE InitProcess (p: PROC; StackSize: CARDINAL;
Name: ARRAY OF CHAR) : DESCRIPTOR ;

(*

KillProcess - kills the current process. Notice that if InitProcess
is called again, it might reuse the DESCRIPTOR of the
killed process. It is the responsibility of the caller
to ensure all other processes understand this process
is different.

*)
PROCEDURE KillProcess ;
(*
Resume - resumes a suspended process. If all is successful then the process, p,l|]
is returned. If it fails then NIL is returned.

*)

PROCEDURE Resume (d: DESCRIPTOR) : DESCRIPTOR ;

Chapter 4: PIM and ISO library definitions 280

(*
Suspend - suspend the calling process.
The process can only continue running if another process
Resumes it.

*)

PROCEDURE Suspend ;

(*
InitSemaphore - creates a semaphore whose initial value is, v, and
whose name is, Name.

*)

PROCEDURE InitSemaphore (v: CARDINAL; Name: ARRAY OF CHAR) : SEMAPHORE ;

(*
Wait - performs dijkstras P operation on a semaphore.
A process which calls this procedure will
wait until the value of the semaphore is > 0O
and then it will decrement this value.

*)

PROCEDURE Wait (s: SEMAPHORE) ;

(*
Signal - performs dijkstras V operation on a semaphore.
A process which calls the procedure will increment
the semaphores value.

*)
PROCEDURE Signal (s: SEMAPHORE) ;
(*
WaitForI0O - waits for an interrupt to occur on vector, VectorNo.
*)
PROCEDURE WaitForIO (VectorNo: CARDINAL) ;

(*

Ps - displays a process list together with process status.

Chapter 4: PIM and ISO library definitions 281

*)

PROCEDURE Ps ;

(*
GetCurrentProcess - returns the descriptor of the current running
process.

*)

PROCEDURE GetCurrentProcess () : DESCRIPTOR ;

(*
RotateRunQueue - rotates the process run queue.
It does not call the scheduler.

*)
PROCEDURE RotateRunQueue ;
(*

ProcessName - displays the name of process, d, through

DebugString.

*)
PROCEDURE ProcessName (d: DESCRIPTOR) ;
(*

DebugProcess - gdb debug handle to enable users to debug deadlocked

semaphore processes.

*)

PROCEDURE DebugProcess (d: DESCRIPTOR) ;

END Executive.

Chapter 4: PIM and ISO library definitions 282

4.3.2 gm2-libs-coroutines/KeyBoard LEDs
DEFINITION MODULE KeyBoardLEDs ;

EXPORT QUALIFIED SwitchLeds,
SwitchScroll, SwitchNum, SwitchCaps ;

(*
SwitchlLeds - switch the keyboard LEDs to the state defined
by the BOOLEAN variables. TRUE = ON.

*)
PROCEDURE SwitchLeds (NumLock, CapsLock, ScrollLock: BOOLEAN) ;
(*
SwitchScroll - switchs the scroll LED on or off.
*)
PROCEDURE SwitchScroll (Scroll: BOOLEAN) ;
(*
SwitchNum - switches the Num LED on or off.
*)
PROCEDURE SwitchNum (Num: BOOLEAN) ;
(*
SwitchCaps - switches the Caps LED on or off.
*)

PROCEDURE SwitchCaps (Caps: BOOLEAN) ;

END KeyBoardLEDs.

Chapter 4: PIM and ISO library definitions 283

4.3.3 gm2-libs-coroutines/SYSTEM
DEFINITION MODULE SYSTEM ;

(*

This module is designed to be used on a native operating system
rather than an embedded system as it implements the coroutine
primitives TRANSFER, IOTRANSFER and

NEWPROCESS through the GNU Pthread library. =)

FROM COROUTINES IMPORT PROTECTION ;

EXPORT QUALIFIED (* the following are built into the compiler: *)

ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, COFF_T, (*

Target specific data types. *)

ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE,

(* SIZE is exported depending upon -fpim2 and
-fpedantic. %)

(* The rest are implemented in SYSTEM.mod. *)

PROCESS, TRANSFER, NEWPROCESS, IOTRANSFER,

LISTEN,

ListenlLoop, Turnlnterrupts,

(* Internal GM2 compiler functions. x*)

ShiftVal, ShiftLeft, ShiftRight,

RotateVal, RotatelLeft, RotateRight ;

TYPE

(*

(*

PROCESS = RECORD
context: INTEGER ;
END ;

Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINALG64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. =)

The following types are supported on this target:
(* Target specific data types. *)

Chapter 4: PIM and ISO library definitions 284

*)

(*
TRANSFER - save the current volatile environment into, pl.
Restore the volatile environment from, p2.

*)

PROCEDURE TRANSFER (VAR pl: PROCESS; p2: PROCESS) ;

(*
NEWPROCESS - p is a parameterless procedure, a, is the origin of
the workspace used for the process stack and containing
the volatile environment of the process. StackSize, is
the maximum size of the stack in bytes which can be used
by this process. mnew, is the new process.

*)

PROCEDURE NEWPROCESS (p: PROC; a: ADDRESS; StackSize: CARDINAL; VAR new: PROCESS) ;Jj

(*
IOTRANSFER - saves the current volatile environment into, First,
and restores volatile environment, Second.
When an interrupt, InterruptNo, is encountered then
the reverse takes place. (The then current volatile
environment is shelved onto Second and First is resumed) .l

NOTE: that upon interrupt the Second might not be the
same process as that before the original call to
IOTRANSFER.
*)

PROCEDURE IOTRANSFER (VAR First, Second: PROCESS; InterruptNo: CARDINAL) ;[i
(*
LISTEN - briefly listen for any interrupts.
*)
PROCEDURE LISTEN ;

(*

ListenLoop - should be called instead of users writing:

Chapter 4: PIM and ISO library definitions 285

LOOP
LISTEN
END

It performs the same function but yields

control back to the underlying operating system
via a call to pth_select.

It also checks for deadlock.

This function returns when an interrupt occurs ie
a file descriptor becomes ready or a time event
expires. See the module RTint.

*)

PROCEDURE ListenLoop ;

(*
TurnInterrupts - switches processor interrupts to the protection
level, to. It returns the old value.

*)

PROCEDURE TurnInterrupts (to: PROTECTION) : PROTECTION ;

(*

all the functions below are declared internally to gm2

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE SIZE (v: <type>) : ZType;
(* Returns the number of BYTES used to store a v of
any specified <type>. Only available if -fpim2 is used.
*)

PROCEDURE TSIZE (<type>) : CARDINAL;
(* Returns the number of BYTES used to store a value of the
specified <type>.
*)

PROCEDURE ROTATE (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up or down
(left or right) by the absolute value of num. The direction is
down if the sign of num is negative, otherwise the direction is up.

*)

Chapter 4: PIM and ISO library definitions 286

PROCEDURE SHIFT (val: <a set type>;

(*

*)

num: INTEGER): <type of first parameter>;
Returns a bit sequence obtained from val by shifting up or down
(left or right) by the absolute value of num, introducing
zeros as necessary. The direction is down if the sign of
num is negative, otherwise the direction is up.

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;

(*

*)

THROW is a GNU extension and was not part of the PIM or ISO

standards. It throws an exception which will be caught by the EXCEPT]
block (assuming it exists). This is a compiler builtin function which]]
interfaces to the GCC exception handling runtime system.

GCC uses the term throw, hence the naming distinction between

the GCC builtin and the Modula-2 runtime library procedure Raise.

The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.

PROCEDURE TBITSIZE (<type>) : CARDINAL ;

*)

(*

*)

Returns the minimum number of bits necessary to represent

<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.

(* The following procedures are invoked by GNU Modula-2 to
shift non word sized set types. They are not strictly part
of the core PIM Modula-2, however they are used

to implement the SHIFT procedure defined above,

which are in turn used by the Logitech compatible libraries.

(*

Users will access these procedures by using the procedure
SHIFT above and GNU Modula-2 will map SHIFT onto one of
the following procedures.

ShiftVal - is a runtime procedure whose job is to implement

the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will
inline a SHIFT of a single WORD sized set and will
only call this routine for larger sets.

Chapter 4: PIM and ISO library definitions

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: INTEGER) ;

(*
ShiftLeft - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
ShiftRight - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*

RotateVal - is a runtime procedure whose job is to implement

287

the ROTATE procedure of IS0 SYSTEM. GNU Modula-2 will

inline a ROTATE of a single WORD (or less)
sized set and will only call this routine for
larger sets.

*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: INTEGER) ;

(*
RotatelLeft - performs the rotate left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known
at compile time.

Chapter 4: PIM and ISO library definitions 288

*)

PROCEDURE RotatelLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

(*
RotateRight - performs the rotate right for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)
PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;

SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

END SYSTEM.

Chapter 4: PIM and ISO library definitions 289

4.3.4 gm2-libs-coroutines/TimerHandler
DEFINITION MODULE TimerHandler ;

(* It also provides the Executive with a basic round robin scheduler. *)J]

EXPORT QUALIFIED TicksPerSecond, GetTicks,
EVENT,
Sleep, ArmEvent, WaitOn, Cancel, ReArmEvent ;

CONST
TicksPerSecond = 25 ; (* Number of ticks per second. *)
TYPE
EVENT ;
(*
GetTicks - returns the number of ticks since boottime.
*)

PROCEDURE GetTicks () : CARDINAL ;

(*
Sleep - suspends the current process for a time, t.
The time is measured in ticks.

*)

PROCEDURE Sleep (t: CARDINAL) ;

(*
ArmEvent - initializes an event, e, to occur at time, t.
The time, t, is measured in ticks.
The event is NOT placed onto the event queue.

*)

PROCEDURE ArmEvent (t: CARDINAL) : EVENT ;

b

(*

WaitOn - places event, e, onto the event queue and then the calling
process suspends. It is resumed up by either the event
expiring or the event, e, being cancelled.

TRUE is returned if the event was cancelled

Chapter 4: PIM and ISO library definitions 290

FALSE is returned if the event expires.
The event, e, is always assigned to NIL when the function
finishes.

*)

PROCEDURE WaitOn (VAR e: EVENT) : BOOLEAN ;

(*
Cancel - cancels the event, e, on the event queue and makes
the appropriate process runnable again.
TRUE is returned if the event was cancelled and
FALSE is returned is the event was not found or
no process was waiting on this event.

*)

PROCEDURE Cancel (e: EVENT) : BOOLEAN ;

(*
ReArmEvent - removes an event, e, from the event queue. A new time
is given to this event and it is then re-inserted onto thel}
event queue in the correct place.
TRUE is returned if this occurred
FALSE is returned if the event was not found.

*)

PROCEDURE ReArmEvent (e: EVENT; t: CARDINAL) : BOOLEAN ;

END TimerHandler.

Chapter 4: PIM and ISO library definitions 291

4.4 M2 ISO Libraries

This directory contains the ISO definition modules and some corresponding im-
plementation modules. The definition files: ChanConsts.def, CharClass.def,
ComplexMath.def, ConvStringlLong.def, ConvStringReal.def, ConvTypes.def,
CORQUTINES.def, EXCEPTIONS.def, GeneralUserExceptions.def, I0Chan.def,
I0Consts.def, IOLink.def, IOLink.def, IOResult.def, LongComplexMath.def,
LongConv.def, LongI0.def, LongMath.def, LongStr.def, LowLong.def, LowReal.def,
M2EXCEPTION.def, Processes.def, ProgramArgs.def, RawlIO.def, RealConv.def,
RealIO.def, RealMath.def, RealStr.def, RndFile.def, Semaphores.def, SeqFile.def,
SIOResult.def, SLongI0.def, SRawIO0.def, SReallO.def, StdChans.def, STextIO.def,
Storage.def, StreamFile.def, Strings.def, SWholeIO.def, SysClock.def,
SYSTEM.def, TERMINATION.def, TextIO.def, WholeConv.def, WholeIO.def and
WholeStr.def were defined by the International Standard Information technology -
programming languages BS ISO/IEC 10514-1:1996E Part 1: Modula-2, Base Language.

The Copyright to the definition files ChanConsts.def, CharClass.def,
ComplexMath.def, ConvStringlLong.def, ConvStringReal.def, ConvTypes.def,
COROUTINES.def, EXCEPTIONS.def, GeneralUserExceptions.def, I0Chan.def,
I0Consts.def, IOLink.def, IOLink.def, IOResult.def, LongComplexMath.def,
LongConv.def, LongIO.def, LongMath.def, LongStr.def, LowLong.def, LowReal.def,
M2EXCEPTION.def, Processes.def, ProgramArgs.def, RawIO.def, RealConv.def,
RealIO.def, RealMath.def, RealStr.def, RndFile.def, Semaphores.def, SeqFile.def,
SIOResult.def, SLongI0.def, SRawIO.def, SReallO.def, StdChans.def, STextIO0.def,
Storage.def, StreamFile.def, Strings.def, SWholeIO.def, SysClock.def,
SYSTEM.def, TERMINATION.def, TextIO.def, WholeConv.def, WholeIO.def and
WholeStr.def belong to ISO/IEC (International Organization for Standardization and
International Electrotechnical Commission). The licence allows them to be distributed
with the compiler (as described on page 707 of the Information technology - Programming
languages Part 1: Modula-2, Base Language. BS ISO/IEC 10514-1:1996).

All implementation modules and ClientSocket.def, LongWholeIO.def,
M2RTS.def, MemStream.def, pth.def, RandomNumber.def, RTdata.def, RTentity.def,
RTfio.def, RTio.def, ShortComplexMath.def, ShortIO.def, ShortWholeIO.def,
SimpleCipher.def, SLongWholeIO.def, SShortI0.def, SShortWholeIO.def,
StringChan.def and wraptime.def are Copyright of the FSF and are held under the
GPLv3 with runtime exceptions.

Under Section 7 of GPL version 3, you are granted additional permissions described
in the GCC Runtime Library Exception, version 3.1, as published by the Free Software
Foundation.

You should have received a copy of the GNU General Public License and a copy of the
GCC Runtime Library Exception along with this program; see the files COPYING3 and
COPYING.RUNTIME respectively. If not, see http://www.gnu.org/licenses/.

Notice that GNU Modula-2 contains additional libraries for input/output of SHORTREAL,
SHORTCARD, SHORTINT, LONGCARD, LONGINT data types. It also provides a RandomNumber,
SimpleCipher and ClientSocket modules as well as low level modules which allow the 10
libraries to coexist with their PIM counterparts.

http://www.gnu.org/licenses/

Chapter 4: PIM and ISO library definitions 292

4.4.1 gm2-libs-iso/COROUTINES
DEFINITION MODULE COROUTINES;

(* Facilities for coroutines and the handling of interrupts *)

IMPORT SYSTEM ;

CONST
UnassignedPriority = 0 ;

TYPE

COROUTINE ; (* Values of this type are created dynamically by NEWCOROUTINE]

and identify the coroutine in subsequent operations *)
INTERRUPTSOURCE = CARDINAL ;
PROTECTION = [UnassignedPriority..7] ;

PROCEDURE NEWCOROUTINE (procBody: PROC;
workspace: SYSTEM.ADDRESS;
size: CARDINAL;
VAR cr: COROUTINE;
[initProtection: PROTECTION = UnassignedPriority]);l}
(* Creates a new coroutine whose body is given by procBody, and
returns the identity of the coroutine in cr. workspace is a
pointer to the work space allocated to the coroutine; size
specifies the size of this workspace in terms of SYSTEM.LOC.

The optarg, initProtection, may contain a single parameter which
specifies the initial protection level of the coroutine.

*)

PROCEDURE TRANSFER (VAR from: COROUTINE; to: COROUTINE);
(* Returns the identity of the calling coroutine in from, and
transfers control to the coroutine specified by to.

*)

PROCEDURE IOTRANSFER (VAR from: COROUTINE; to: COROUTINE);

(* Returns the identity of the calling coroutine in from and
transfers control to the coroutine specified by to. On
occurrence of an interrupt, associated with the caller, control
is transferred back to the caller, and the identity of the
interrupted coroutine is returned in from. The calling coroutine
must be associated with a source of interrupts.

*)

Chapter 4: PIM and ISO library definitions 293

PROCEDURE ATTACH (source: INTERRUPTSOURCE) ;
(* Associates the specified source of interrupts with the calling
coroutine. *)

PROCEDURE DETACH (source: INTERRUPTSOURCE) ;
(* Dissociates the specified source of interrupts from the calling
coroutine. *)

PROCEDURE IsATTACHED (source: INTERRUPTSOURCE): BOOLEAN;
(* Returns TRUE if and only if the specified source of interrupts is
currently associated with a coroutine; otherwise returns FALSE.

*)

PROCEDURE HANDLER (source: INTERRUPTSOURCE): COROUTINE;

(* Returns the coroutine, if any, that is associated with the source
of interrupts. The result is undefined if IsATTACHED(source) =
FALSE.

*)

PROCEDURE CURRENT (): COROUTINE;
(* Returns the identity of the calling coroutine. *)

PROCEDURE LISTEN (p: PROTECTION);
(* Momentarily changes the protection of the calling coroutine to
p. *)

PROCEDURE PROT (): PROTECTION;
(* Returns the protection of the calling coroutine. *)

(*
TurnInterrupts - switches processor interrupts to the protection
level, to. It returns the old value.

*)
PROCEDURE TurnInterrupts (to: PROTECTION) : PROTECTION ;
(*
ListenLoop - should be called instead of users writing:
LOOP

LISTEN
END

It performs the same function but yields
control back to the underlying operating system.

Chapter 4: PIM and ISO library definitions 294

It also checks for deadlock.
Note that this function does return when an interrupt occurs.|}
(File descriptor becomes ready or time event expires).

*)

PROCEDURE ListenLoop ;

END COROUTINES.

Chapter 4: PIM and ISO library definitions

295

4.4.2 gm2-libs-iso/ChanConsts
DEFINITION MODULE ChanConsts;

(* Common types and values for channel open requests and results *)

TYPE
Ch
(

)

Fl

Request flags possibly given when a channel is opened *)Jj
input operations are requested/available x*)

output operations are requested/available *)

a file may/must/did exist before the channel is opened *)Jj
text operations are requested/available *)

raw operations are requested/available *)

interactive use is requested/applies *)

echoing by interactive device on removal of characters from in
stream requested/applies *)

anFlags = (*
readFlag, (*
writeFlag, (*
oldFlag, (*
textFlag, €
rawFlag, (*
interactiveFlag, (*
echoFlag (*
agSet = SET OF ChanFlags;

(* Singleton values of FlagSet, to allow for example, read + write *)

CONS

read = FlagSet{readFlag};
write = FlagSet{writeFlag}; (*

T

old = FlagSet{oldFlag};

text = FlagSet{textFlag};
FlagSet{rawFlag};

ra

W =

(* input operations are requested/available *)Jj

output operations are requested/available *)Jj

a file may/must/did exist before the channel is opene
text operations are requested/available *)Jj

raw operations are requested/available *)J]

(*
(*
(*

interactive = FlagSet{interactiveFlagl}; (* interactive use is requested/applies *)Ji

echo = FlagSet{echoFlag};

TYPE
Op

enResults =
(opened,
wrongNameFormat,
wrongFlags,
tooManyOpen,
outOfChans,
wrongPermissions,
noRoomOnDevice,
noSuchFile,
fileExists,
wrongFileType,
noTextOperations,
noRawOperations,

noMixedOperations,

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

(* echoing by interactive device on removal of character
input stream requested/applies *)

Possible results of open requests *)

the open succeeded as requested *)

given name is in the wrong format for the implementation *)J]
given flags include a value that does not apply to the devic
this device cannot support any more open channels *)Jj

no more channels can be allocated *)

file or directory permissions do not allow request *)Jj
storage limits on the device prevent the open *)|

a needed file does not exist *)

a file of the given name already exists when a new one is re
the file is of the wrong type to support the required operat
text operations have been requested, but are not supported *
raw operations have been requested, but are not supported *)|
text and raw operations have been requested, but they]]

Chapter 4: PIM and ISO library definitions 296

are not supported in combination *)

alreadyOpen, (* the source/destination is already open for operations not su
in combination with the requested operations *)Jj

otherProblem (* open failed for some other reason *)

)5

END ChanConsts.

Chapter 4: PIM and ISO library definitions 297

4.4.3 gm2-libs-iso/CharClass
DEFINITION MODULE CharClass;

(* Classification of values of the type CHAR *)

PROCEDURE IsNumeric (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as a numeric character *)Jj

PROCEDURE IsLetter (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as a letter *)

PROCEDURE IsUpper (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as an upper case letter *)J

PROCEDURE IsLower (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as a lower case letter *)J

PROCEDURE IsControl (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch represents a control function *)

PROCEDURE IsWhiteSpace (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch represents a space character or a format effector

END CharClass.

Chapter 4: PIM and ISO library definitions 298

4.4.4 gm2-libs-iso/ClientSocket
DEFINITION MODULE ClientSocket ;

FROM I0Chan IMPORT ChanlId ;
FROM ChanConsts IMPORT FlagSet, OpenResults ;

€
OpenSocket - opens a TCP client connection to host:port.

*)

PROCEDURE OpenSocket (VAR cid: Chanld;
host: ARRAY OF CHAR; port: CARDINAL;
f: FlagSet; VAR res: OpenResults) ;

(*
Close - if the channel identified by cid is not open to
a socket stream, the exception wrongDevice is
raised; otherwise closes the channel, and assigns
the value identifying the invalid channel to cid.

*)
PROCEDURE Close (VAR cid: ChanId) ;
(*
IsSocket - tests if the channel identified by cid is open as
a client socket stream.

*)

PROCEDURE IsSocket (cid: ChanId) : BOOLEAN ;

END ClientSocket.

Chapter 4: PIM and ISO library definitions 299

4.4.5 gm2-libs-iso/ComplexMath
DEFINITION MODULE ComplexMath;

(* Mathematical functions for the type COMPLEX *)

CONST
i-= CMPLX (0.0, 1.0);
one = CMPLX (1.0, 0.0);
zero = CMPLX (0.0, 0.0);

PROCEDURE __BUILTIN__ abs (z: COMPLEX): REAL;
(* Returns the length of z *)

PROCEDURE __BUILTIN__ arg (z: COMPLEX): REAL;
(* Returns the angle that z subtends to the positive real axis *)

PROCEDURE __BUILTIN__ conj (z: COMPLEX): COMPLEX;
(* Returns the complex conjugate of z *)

PROCEDURE __BUILTIN__ power (base: COMPLEX; exponent: REAL): COMPLEX;
(* Returns the value of the number base raised to the power exponent *)Jj

PROCEDURE __BUILTIN__ sqrt (z: COMPLEX): COMPLEX;
(* Returns the principal square root of z *)

PROCEDURE __BUILTIN__ exp (z: COMPLEX): COMPLEX;
(* Returns the complex exponential of z *)

PROCEDURE __BUILTIN__ 1n (z: COMPLEX): COMPLEX;
(* Returns the principal value of the natural logarithm of z *)

PROCEDURE __BUILTIN__ sin (z: COMPLEX): COMPLEX;
(* Returns the sine of z %)

PROCEDURE __BUILTIN__ cos (z: COMPLEX): COMPLEX;
(* Returns the cosine of z *)

PROCEDURE __BUILTIN__ tan (z: COMPLEX): COMPLEX;
(* Returns the tangent of z *)

PROCEDURE __BUILTIN__ arcsin (z: COMPLEX): COMPLEX;
(* Returns the arcsine of z %)

PROCEDURE __BUILTIN__ arccos (z: COMPLEX): COMPLEX;
(* Returns the arccosine of z x*)

Chapter 4: PIM and ISO library definitions 300

PROCEDURE __BUILTIN__ arctan (z: COMPLEX): COMPLEX;
(* Returns the arctangent of z *)

PROCEDURE polarToComplex (abs, arg: REAL): COMPLEX;
(* Returns the complex number with the specified polar coordinates *)

PROCEDURE scalarMult (scalar: REAL; z: COMPLEX): COMPLEX;
(* Returns the scalar product of scalar with z *)

PROCEDURE IsCMathException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in a
routine from this module; otherwise returns FALSE.

*)

END ComplexMath.

Chapter 4: PIM and ISO library definitions 301

4.4.6 gm2-libs-iso/ConvStringLong
DEFINITION MODULE ConvStringlong ;

FROM DynamicStrings IMPORT String ;

(*
RealToFloatString - converts a real with, sigFigs, into a string
and returns the result as a string.

*)

PROCEDURE RealToFloatString (real: LONGREAL; sigFigs: CARDINAL) : String ;|j

(*
RealToEngString - converts the value of real to floating-point
string form, with sigFigs significant figures.
The number is scaled with one to three digits
in the whole number part and with an exponent
that is a multiple of three.
*)

PROCEDURE RealToEngString (real: LONGREAL; sigFigs: CARDINAL) : String ;
(*
RealToFixedString - returns the number of characters in the fixed-point]]
string representation of real rounded to the givenfi
place relative to the decimal point.

*)

PROCEDURE RealToFixedString (real: LONGREAL; place: INTEGER) : String ;

END ConvStringLong.

Chapter 4: PIM and ISO library definitions 302

4.4.7 gm2-libs-iso/ConvStringReal
DEFINITION MODULE ConvStringReal ;

FROM DynamicStrings IMPORT String ;

(*
RealToFloatString - converts a real with, sigFigs, into a string
and returns the result as a string.

*)

PROCEDURE RealToFloatString (real: REAL; sigFigs: CARDINAL) : String ;

(*
RealToEngString - converts the value of real to floating-point
string form, with sigFigs significant figures.
The number is scaled with one to three digits
in the whole number part and with an exponent
that is a multiple of three.

*)
PROCEDURE RealToEngString (real: REAL; sigFigs: CARDINAL) : String ;
(*
RealToFixedString - returns the number of characters in the fixed-point]]
string representation of real rounded to the givenfi
place relative to the decimal point.

*)

PROCEDURE RealToFixedString (real: REAL; place: INTEGER) : String ;

END ConvStringReal.

Chapter 4: PIM and ISO library definitions 303

4.4.8 gm2-libs-iso/ConvStringShort
DEFINITION MODULE ConvStringShort ;

FROM DynamicStrings IMPORT String ;

(*
RealToFloatString - converts a real with, sigFigs, into a string
and returns the result as a string.

*)

PROCEDURE RealToFloatString (real: SHORTREAL; sigFigs: CARDINAL) : String ;Jj

(*
RealToEngString - converts the value of real to floating-point
string form, with sigFigs significant figures.
The number is scaled with one to three digits
in the whole number part and with an exponent
that is a multiple of three.

*)
PROCEDURE RealToEngString (real: SHORTREAL; sigFigs: CARDINAL) : String ;[
(*
RealToFixedString - returns the number of characters in the fixed-point]]
string representation of real rounded to the givenfi
place relative to the decimal point.

*)

PROCEDURE RealToFixedString (real: SHORTREAL; place: INTEGER) : String ;

END ConvStringShort.

Chapter 4: PIM and ISO library definitions 304

4.4.9 gm2-libs-iso/ConvTypes
DEFINITION MODULE ConvTypes;

(* Common types used in the string conversion modules x*)

TYPE
ConvResults = (* Values of this type are used to express the format of a string
(
strAllRight, (* the string format is correct for the corresponding conversion *

strOut0OfRange, (* the string is well-formed but the value cannot be represented *
strWrongFormat, (* the string is in the wrong format for the conversion *)Jj

strEmpty (* the given string is empty *)
)3
ScanClass = (* Values of this type are used to classify input to finite state scann
(
padding, (* a leading or padding character at this point in the scan - ignore it
valid, (* a valid character at this point in the scan - accept it *)Jj
invalid, (* an invalid character at this point in the scan - reject it *)|j
terminator (* a terminating character at this point in the scan (not part of token
)3
ScanState = (* The type of lexical scanning control procedures x*)

PROCEDURE (CHAR, VAR ScanClass, VAR ScanState);

END ConvTypes.

Chapter 4: PIM and ISO library definitions 305

4.4.10 gm2-libs-iso/EXCEPTIONS
DEFINITION MODULE EXCEPTIONS;

(* Provides facilities for raising user exceptions
and for making enquiries concerning the current execution state.

*)

TYPE
ExceptionSource; (* values of this type are used within library
modules to identify the source of raised
exceptions *)
ExceptionNumber = CARDINAL;

PROCEDURE AllocateSource (VAR newSource: ExceptionSource);
(* Allocates a unique value of type ExceptionSource *)

PROCEDURE RAISE (source: ExceptionSource;
number: ExceptionNumber; message: ARRAY OF CHAR)
<*x noreturn *> ;
(* Associates the given values of source, number and message with
the current context and raises an exception.

*)

PROCEDURE CurrentNumber (source: ExceptionSource): ExceptionNumber;
(* If the current coroutine is in the exceptional execution state
because of the raising of an exception from source, returns
the corresponding number, and otherwise raises an exception.

*)

PROCEDURE GetMessage (VAR text: ARRAY OF CHAR);

(* If the current coroutine is in the exceptional execution state,
returns the possibly truncated string associated with the
current context. Otherwise, in normal execution state,
returns the empty string.

*)

PROCEDURE IsCurrentSource (source: ExceptionSource): BOOLEAN;

(* If the current coroutine is in the exceptional execution state
because of the raising of an exception from source, returns
TRUE, and otherwise returns FALSE.

*)

PROCEDURE IsExceptionalExecution (): BOOLEAN;
(* If the current coroutine is in the exceptional execution state
because of the raising of an exception, returns TRUE, and
otherwise returns FALSE.

Chapter 4: PIM and ISO library definitions 306

*)

END EXCEPTIONS.

Chapter 4: PIM and ISO library definitions 307

4.4.11 gm?2-libs-iso/ErrnoCategory
DEFINITION MODULE ErrnoCategory ;

(*
provides an interface to errno (if the system
supports it) which determines whether the current
errno is a hard or soft error. These distinctions
are needed by the ISO Modula-2 libraries. Not all
errno values are tested, only those which could be
related to a device.

*)

IMPORT ChanConsts ;

(*
IsErrnoHard - returns TRUE if the value of errno is associated with
a hard device error.

*)

PROCEDURE IsErrnoHard (e: INTEGER) : BOOLEAN ;

(*
IsErrnoSoft - returns TRUE if the value of errno is associated with
a soft device error.

*)

PROCEDURE IsErrnoSoft (e: INTEGER) : BOOLEAN ;

(*
UnAvailable - returns TRUE if the value of errno indicates that
the resource or device is unavailable for some
reason.

*)
PROCEDURE UnAvailable (e: INTEGER) : BOOLEAN ;
(*
GetOpenResults - maps errno onto the ISO Modula-2 enumerated
type, OpenResults.

*)

PROCEDURE GetOpenResults (e: INTEGER) : ChanConsts.OpenResults ;

Chapter 4: PIM and ISO library definitions 308

END ErrnoCategory.

Chapter 4: PIM and ISO library definitions 309

4.4.12 gm2-libs-iso/GeneralUserExceptions
DEFINITION MODULE GeneralUserExceptions;

(* Provides facilities for general user-defined exceptions *)

TYPE
GeneralExceptions = (problem, disaster);

PROCEDURE RaiseGeneralException (exception: GeneralExceptions;
text: ARRAY OF CHAR);
(* Raises exception using text as the associated message *)

PROCEDURE IsGeneralException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception from
GeneralExceptions; otherwise returns FALSE.

*)

PROCEDURE GeneralException(): GeneralExceptions;
(* If the current coroutine is in the exceptional execution
state because of the raising of an exception from
GeneralExceptions, returns the corresponding enumeration value,
and otherwise raises an exception.

*)

END GeneralUserExceptions.

Chapter 4: PIM and ISO library definitions 310

4.4.13 gm2-libs-iso/IOChan
DEFINITION MODULE IOChan;

(* Types and procedures forming the interface to channels for
device-independent data transfer modules

*)
IMPORT IOConsts, ChanConsts, SYSTEM;

TYPE
Chanld; (* Values of this type are used to identify channels *)

(* There is one pre-defined value identifying an invalid channel
on which no data transfer operations are available. It may
be used to initialize variables of type ChanId.

*)

PROCEDURE InvalidChan (): ChanId;
(* Returns the value identifying the invalid channel. *)

(* For each of the following operations, if the device supports
the operation on the channel, the behaviour of the procedure
conforms with the description below. The full behaviour is
defined for each device module. If the device does not
support the operation on the channel, the behaviour of the
procedure is to raise the exception notAvailable.

(* Text operations - these perform any required translation between thel]
internal and external representation of text.

PROCEDURE Look (cid: ChanlId; VAR ch: CHAR; VAR res: I0Consts.ReadResults);l]
(* If there is a character as the next item in the input stream
cid, assigns its value to ch without removing it from the stream;
otherwise the value of ch is not defined. res (and the stored
read result) are set to the value allRight, endOfLine, or endOfInput.]]
*)

PROCEDURE Skip (cid: ChanId);
(* If the input stream cid has ended, the exception skipAtEnd
is raised; otherwise the next character or line mark in cid is
removed, and the stored read result is set to the value
allRight.
*)

Chapter 4: PIM and ISO library definitions 311

PROCEDURE SkipLook (cid: ChanId; VAR ch: CHAR; VAR res: IOConsts.ReadResults);]]
(* If the input stream cid has ended, the exception skipAtEnd is
raised; otherwise the next character or line mark in cid is
removed. If there is a character as the next item in cid
stream, assigns its value to ch without removing it from the
stream. Otherwise, the value of ch is not defined. res
(and the stored read result) are set to the value allRight,
endOfLine, or endOfInput.
*)

PROCEDURE WritelLn (cid: ChanId);
(* Writes a line mark over the channel cid. x*)

PROCEDURE TextRead (cid: ChanlId; to: SYSTEM.ADDRESS; maxChars: CARDINAL;
VAR charsRead: CARDINAL);
(* Reads at most maxChars characters from the current line in cid,
and assigns corresponding values to successive components of
an ARRAY OF CHAR variable for which the address of the first
component is to. The number of characters read is assigned to charsRead.|]

The stored read result is set to allRight, endOfLine, or endOfInput.l}
*)

PROCEDURE TextWrite (cid: ChanId; from: SYSTEM.ADDRESS;
charsToWrite: CARDINAL);
(* Writes a number of characters given by the value of charsToWrite,
from successive components of an ARRAY OF CHAR variable for which
the address of the first component is from, to the channel cid.

*)

(* Direct raw operations - these do not effect translation between
the internal and external representation of data

*)

PROCEDURE RawRead (cid: ChanId; to: SYSTEM.ADDRESS; maxLocs: CARDINAL;
VAR locsRead: CARDINAL);

(* Reads at most maxLocs items from cid, and assigns corresponding
values to successive components of an ARRAY OF LOC variable for
which the address of the first component is to. The number of
characters read is assigned to charsRead. The stored read result
is set to the value allRight, or endOfInput.

*)

PROCEDURE RawWrite (cid: ChanId; from: SYSTEM.ADDRESS; locsToWrite: CARDINAL) ;R
(* Writes a number of items given by the value of charsToWrite,
from successive components of an ARRAY OF LOC variable for
which the address of the first component is from, to the channel cid.|}

*)

Chapter 4: PIM and ISO library definitions 312

(* Common operations *)

PROCEDURE GetName (cid: ChanId; VAR s: ARRAY OF CHAR);
(* Copies to s a name associated with the channel cid, possibly truncated]l
(depending on the capacity of s).
*)

PROCEDURE Reset (cid: ChanId);
(* Resets the channel cid to a state defined by the device module. *)

PROCEDURE Flush (cid: ChanId);
(* Flushes any data buffered by the device module out to the channel cid. *)J]

(* Access to read results *)

PROCEDURE SetReadResult (cid: ChanlId; res: IOConsts.ReadResults);
(* Sets the read result value for the channel cid to the value res. *)

PROCEDURE ReadResult (cid: ChanId): IOConsts.ReadResults;
(* Returns the stored read result value for the channel cid.
(This is initially the value notKnown) .

*)
(* Users can discover which flags actually apply to a channel x*)

PROCEDURE CurrentFlags (cid: ChanId): ChanConsts.FlagSet;
(* Returns the set of flags that currently apply to the channel cid. *)Jj

(* The following exceptions are defined for this module and its clients *)Jj

TYPE
ChanExceptions =
(wrongDevice, (* device specific operation on wrong device *)
notAvailable, (* operation attempted that is not available on that]]
channel *)
skipAtEnd, (* attempt to skip data from a stream that has ended *)J]

softDeviceError, (* device specific recoverable error *)
hardDeviceError, (* device specific non-recoverable error *)

textParseError, (* input data does not correspond to a character or]]
line mark - optional detection *)
notAChannel (* given value does not identify a channel -

optional detection *)

)

PROCEDURE IsChanException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional

Chapter 4: PIM and ISO library definitions 313

execution state because of the raising of an exception from
ChanExceptions; otherwise returns FALSE.

*)

PROCEDURE ChanException (): ChanExceptions;

(* If the current coroutine is in the exceptional execution state
because of the raising of an exception from ChanExceptions,
returns the corresponding enumeration value, and otherwise
raises an exception.

*)

(* When a device procedure detects a device error, it raises the
exception softDeviceError or hardDeviceError. If these
exceptions are handled, the following facilities may be
used to discover an implementation-defined error number for
the channel.

*)

TYPE
DeviceErrNum = INTEGER;

PROCEDURE DeviceError (cid: ChanId): DeviceErrNum;
(* If a device error exception has been raised for the channel cid,
returns the error number stored by the device module.

*)

END IOChan.

Chapter 4: PIM and ISO library definitions 314

4.4.14 gm2-libs-iso/IOConsts
DEFINITION MODULE IOConsts;

(* Types and constants for input/output modules *)

TYPE

ReadResults =

(
notKnown,
allRight,
outOfRange,
wrongFormat,
endOfLine,
endOfInput

)3

END IOConsts.

(*

(*
(*
(*
(*
(*
(*

This type is used to classify the result of an input operation *)J]

no read result is set *)

data is as expected or as required *)
data cannot be represented *)

data not in expected format *)

end of line seen before expected data *)
end of input seen before expected data *)

Chapter 4: PIM and ISO library definitions 315

4.4.15 gm2-libs-iso/IOLink
DEFINITION MODULE IOLink;

(* Types and procedures for the standard implementation of channels *)
IMPORT IOChan, IOConsts, ChanConsts, SYSTEM;

TYPE
Deviceld;
(* Values of this type are used to identify new device modules,
and are normally obtained by them during their initialization.

*)

PROCEDURE AllocateDeviceId (VAR did: Deviceld);
(* Allocates a unique value of type Deviceld, and assigns this
value to did. *)

PROCEDURE MakeChan (did: Deviceld; VAR cid: IOChan.ChanId);
(* Attempts to make a new channel for the device module identified
by did. If no more channels can be made, the identity of
the invalid channel is assigned to cid. Otherwise, the identity
of a new channel is assigned to cid.

*)

PROCEDURE UnMakeChan (did: DeviceId; VAR cid: IOChan.ChanId);

(* If the device module identified by did is not the module that
made the channel identified by cid, the exception wrongDevice is
raised; otherwise the channel is deallocated, and the value
identifying the invalid channel is assigned to cid.

*)

TYPE
DeviceTablePtr = POINTER TO DeviceTable;
(* Values of this type are used to refer to device tables *)

TYPE
LookProc = PROCEDURE (DeviceTablePtr, VAR CHAR, VAR IOConsts.ReadResults) ;li
SkipProc = PROCEDURE (DeviceTablePtr) ;
SkipLookProc = PROCEDURE (DeviceTablePtr, VAR CHAR, VAR IOConsts.ReadResults) ;fj
WriteLnProc = PROCEDURE (DeviceTablePtr) ;

TextReadProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL, VAR CARDINAL) ;
TextWriteProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL) ;

RawReadProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL, VAR CARDINAL) ;
RawWriteProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL) ;
GetNameProc = PROCEDURE (DeviceTablePtr, VAR ARRAY OF CHAR) ;

ResetProc = PROCEDURE (DeviceTablePtr) ;

Chapter 4: PIM and ISO library definitions 316

FlushProc PROCEDURE (DeviceTablePtr) ;
FreeProc PROCEDURE (DeviceTablePtr) ;
(* Carry out the operations involved in closing the corresponding
channel, including flushing buffers, but do not unmake the
channel.

*)

TYPE
DeviceData = SYSTEM.ADDRESS;

DeviceTable =
RECORD (* Initialized by MakeChan to: *)
cd: DeviceData; (* the value NIL *)
did: Deviceld; (* the value given in the call of MakeChan *)J]
cid: IOChan.Chanld; (* the identity of the channel *)

result: IOConsts.ReadResults; (* the value notKnown x*)
errNum: IOChan.DeviceErrNum; (* undefined *)
flags: ChanConsts.FlagSet; (* ChanConsts.FlagSet{} *)

doLook: LookProc; (* raise exception notAvailable *)
doSkip: SkipProc; (* raise exception notAvailable *)
doSkipLook: SkipLookProc; (* raise exception notAvailable x)
doLnWrite: WritelnProc; (* raise exception notAvailable *)
doTextRead: TextReadProc; (* raise exception notAvailable *)
doTextWrite: TextWriteProc; (* raise exception notAvailable *)
doRawRead: RawReadProc; (* raise exception notAvailable *)
doRawWrite: RawWriteProc; (* raise exception notAvailable *)
doGetName: GetNameProc; (* return the empty string *)
doReset: ResetProc; (* do nothing *)

doFlush: FlushProc; (* do nothing *)

doFree: FreeProc; (* do nothing *)

END;

(* The pointer to the device table for a channel is obtained using the
following procedure: *)

(*
If the device module identified by did is not the module that made
the channel identified by cid, the exception wrongDevice is raised.

*)

PROCEDURE DeviceTablePtrValue (cid: IOChan.ChanId; did: DeviceId): DeviceTablePtr;l}

(*
Tests if the device module identified by did is the module

Chapter 4: PIM and ISO library definitions 317

that made the channel identified by cid.
*)

PROCEDURE IsDevice (cid: IOChan.ChanId; did: DeviceId) : BOOLEAN;

TYPE
DevExceptionRange = I0Chan.ChanExceptions;

(*

IS0 standard states defines
DevExceptionRange = [IOChan.notAvailable .. IOChan.textParseError];

however this must be a bug as other modules need to raise
I0Chan.wrongDevice exceptions.

*)

PROCEDURE RAISEdevException (cid: IOChan.ChanlId; did: Deviceld;
x: DevExceptionRange; s: ARRAY OF CHAR) <* noreturn *> ;|j

(* If the device module identified by did is not the module that made the channell]
identified by cid, the exception wrongDevice is raised; otherwise the given excep
is raised, and the string value in s is included in the exception message.|}

*)

PROCEDURE IsIOException () : BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution statel]
because of the raising af an exception from ChanExceptions;
otherwise FALSE.
*)

PROCEDURE IQException () : IOChan.ChanExceptions;
(* If the current coroutine is in the exceptional execution state because of thel]
raising af an exception from ChanExceptions, returns the correspondingll
enumeration value, and otherwise raises an exception.

*)

END IOLink.

Chapter 4: PIM and ISO library definitions 318

4.4.16 gm2-libs-iso/IOResult
DEFINITION MODULE IOResult;

(* Read results for specified channels *)

IMPORT IOConsts, I0Chan;

TYPE

ReadResults = I0Consts.ReadResults;

(*
ReadResults =
(
notKnown,
allRight,
outOfRange,
wrongFormat,
endOfLine,
endOfInput
)
*)

(*

(*
(*
(*
(*
(*
(*

This type is used to classify the result of an input operation *

no read result is set *)

data is as expected or as required *)
data cannot be represented *)

data not in expected format *)

end of line seen before expected data *)
end of input seen before expected data *)

PROCEDURE ReadResult (cid: IOChan.ChanId): ReadResults;
(* Returns the result for the last read operation on the channel cid. *)Jj

END IOResult.

Chapter 4: PIM and ISO library definitions 319

4.4.17 gm2-libs-iso/LongComplexMath
DEFINITION MODULE LongComplexMath;

(* Mathematical functions for the type LONGCOMPLEX *)

CONST
i-= CMPLX (0.0, 1.0);
one = CMPLX (1.0, 0.0);
zero = CMPLX (0.0, 0.0);

PROCEDURE abs (z: LONGCOMPLEX): LONGREAL;
(* Returns the length of z *)

PROCEDURE arg (z: LONGCOMPLEX): LONGREAL;
(* Returns the angle that z subtends to the positive real axis *)

PROCEDURE conj (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the complex conjugate of z *)

PROCEDURE power (base: LONGCOMPLEX; exponent: LONGREAL): LONGCOMPLEX;
(* Returns the value of the number base raised to the power exponent *)Jj

PROCEDURE sqrt (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the principal square root of z *)

PROCEDURE exp (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the complex exponential of z *)

PROCEDURE 1n (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the principal value of the natural logarithm of z *)

PROCEDURE sin (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the sine of z %)

PROCEDURE cos (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the cosine of z *)

PROCEDURE tan (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the tangent of z *)

PROCEDURE arcsin (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the arcsine of z %)

PROCEDURE arccos (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the arccosine of z x*)

Chapter 4: PIM and ISO library definitions 320

PROCEDURE arctan (z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the arctangent of z *)

PROCEDURE polarToComplex (abs, arg: LONGREAL): LONGCOMPLEX;
(* Returns the complex number with the specified polar coordinates *)

PROCEDURE scalarMult (scalar: LONGREAL; z: LONGCOMPLEX): LONGCOMPLEX;
(* Returns the scalar product of scalar with z *)

PROCEDURE IsCMathException (): BOOLEAN;

(* Returns TRUE if the current coroutine is in the exceptional execution statel]
because of the raising of an exception in a routine from this module; otherwisel}
returns FALSE.

*)

END LongComplexMath.

Chapter 4: PIM and ISO library definitions 321

4.4.18 gm?2-libs-iso/LongConv
DEFINITION MODULE LongConv;

(x Low-level LONGREAL/string conversions *)

IMPORT
ConvTypes;

TYPE
ConvResults = ConvTypes.ConvResults; (* strAllRight, strOutOfRange,
strWrongFormat, strEmpty *)

PROCEDURE ScanReal (inputCh: CHAR; VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);
(* Represents the start state of a finite state scanner for real
numbers - assigns class of inputCh to chClass and a procedure
representing the next state to nextState.

*)

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
(* Returns the format of the string value for conversion to LONGREAL. *)Jj

PROCEDURE ValueReal (str: ARRAY OF CHAR): LONGREAL;
(* Returns the value corresponding to the real number string value
str if str is well-formed; otherwise raises the LongConv exception.

*)

PROCEDURE LengthFloatReal (real: LONGREAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point string
representation of real with sigFigs significant figures.

*)

PROCEDURE LengthEngReal (real: LONGREAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point engineering
string representation of real with sigFigs significant figures.

*)

PROCEDURE LengthFixedReal (real: LONGREAL; place: INTEGER): CARDINAL;
(* Returns the number of characters in the fixed-point string
representation of real rounded to the given place relative to the
decimal point.

*)

PROCEDURE IsRConvException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in a

Chapter 4: PIM and ISO library definitions 322

routine from this module; otherwise returns FALSE.

*)

END LongConv.

Chapter 4: PIM and ISO library definitions

4.4.19 gm2-libs-iso/LonglO
DEFINITION MODULE LongIO;

(* Input and output of long real numbers in decimal text form
over specified channels. The read result is of the type
I0Consts.ReadResults.

*)

IMPORT IOChan;

(* The text form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit}, [".",
{decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"], decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (cid: IOChan.ChanId; VAR real: LONGREAL);
(* Skips leading spaces, and removes any remaining characters
from cid that form part of a signed fixed or floating
point number. The value of this number is assigned to real.
The read result is set to the value allRight, outOfRange,
wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteFloat (cid: IOChan.ChanId; real: LONGREAL;
sigFigs: CARDINAL; width: CARDINAL);
(* Writes the value of real to cid in floating-point text form,
with sigFigs significant figures, in a field of the given
minimum width.

*)

PROCEDURE WriteEng (cid: IOChan.ChanId; real: LONGREAL;
sigFigs: CARDINAL; width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with
one to three digits in the whole number part, and with an
exponent that is a multiple of three.

*)

PROCEDURE WriteFixed (cid: IOChan.ChanId; real: LONGREAL;
place: INTEGER; width: CARDINAL);
(* Writes the value of real to cid in fixed-point text form,
rounded to the given place relative to the decimal point,
in a field of the given minimum width.

323

Chapter 4: PIM and ISO library definitions

*)

PROCEDURE WriteReal (cid: IOChan.ChanId; real: LONGREAL;
width: CARDINAL);

(* Writes the value of real to cid, as WriteFixed if the
sign and magnitude can be shown in the given width, or
otherwise as WriteFloat. The number of places or
significant digits depends on the given width.

*)

END LongIO.

324

Chapter 4: PIM and ISO library definitions 325

4.4.20 gm2-libs-iso/LongMath
DEFINITION MODULE LongMath;

(* Mathematical functions for the type LONGREAL *)

CONST
pi = 3.1415926535897932384626433832795028841972;
expl = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
(* Returns the positive square root of x *)

PROCEDURE __BUILTIN__ exp (x: LONGREAL): LONGREAL;
(* Returns the exponential of x *)

PROCEDURE __BUILTIN__ 1n (x: LONGREAL): LONGREAL;
(* Returns the natural logarithm of x *)

(* The angle in all trigonometric functions is measured in radians *)

PROCEDURE __BUILTIN__ sin (x: LONGREAL): LONGREAL;
(* Returns the sine of x *)

PROCEDURE __BUILTIN__ cos (x: LONGREAL): LONGREAL;
(* Returns the cosine of x *)

PROCEDURE tan (x: LONGREAL): LONGREAL;
(x Returns the tangent of x *)

PROCEDURE arcsin (x: LONGREAL): LONGREAL;
(* Returns the arcsine of x *)

PROCEDURE arccos (x: LONGREAL): LONGREAL;
(* Returns the arccosine of x *)

PROCEDURE arctan (x: LONGREAL): LONGREAL;
(* Returns the arctangent of x *)

PROCEDURE power (base, exponent: LONGREAL): LONGREAL;
(* Returns the value of the number base raised to the power exponent *)|J]

PROCEDURE round (x: LONGREAL): INTEGER;
(* Returns the value of x rounded to the nearest integer *)

PROCEDURE IsRMathException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional

Chapter 4: PIM and ISO library definitions 326

execution state because of the raising of an exception in a
routine from this module; otherwise returns FALSE.

*)

END LongMath.

Chapter 4: PIM and ISO library definitions 327

4.4.21 gm?2-libs-iso/LongStr
DEFINITION MODULE LongStr;

(x LONGREAL/string conversions)

IMPORT
ConvTypes;

TYPE
(* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
ConvResults = ConvTypes.ConvResults;

(* the string form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit}, [".",
{decimal digit}]

*)

(* the string form of a signed floating-point real number is
signed fixed-point real number, "E", ["+" | "-"],
decimal digit, {decimal digit}

*)

PROCEDURE StrToReal (str: ARRAY OF CHAR; VAR real: LONGREAL;
VAR res: ConvResults);

(* Ignores any leading spaces in str. If the subsequent characters
in str are in the format of a signed real number, assigns a
corresponding value to real. Assigns a value indicating the
format of str to res.

*)

PROCEDURE RealToFloat (real: LONGREAL; sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);
(* Converts the value of real to floating-point string form, with
sigFigs significant figures, and copies the possibly truncated
result to str.

*)

PROCEDURE RealToEng (real: LONGREAL; sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);

(* Converts the value of real to floating-point string form, with
sigFigs significant figures, and copies the possibly truncated
result to str. The number is scaled with one to three digits
in the whole number part and with an exponent that is a
multiple of three.

*)

Chapter 4: PIM and ISO library definitions 328

PROCEDURE RealToFixed (real: LONGREAL; place: INTEGER;
VAR str: ARRAY OF CHAR);
(* Converts the value of real to fixed-point string form, rounded
to the given place relative to the decimal point, and copies
the possibly truncated result to str.

*)

PROCEDURE RealToStr (real: LONGREAL; VAR str: ARRAY OF CHAR);

(* Converts the value of real as RealToFixed if the sign and
magnitude can be shown within the capacity of str, or
otherwise as RealToFloat, and copies the possibly truncated
result to str. The number of places or significant digits
depend on the capacity of str.

*)

END LongStr.

Chapter 4: PIM and ISO library definitions

4.4.22 gm?2-libs-iso/LongWholelO
DEFINITION MODULE LongWholeIO;

(* Input and output of whole numbers in decimal text form
over specified channels. The read result is of the
type I0Consts.ReadResults.

*)

IMPORT IOChan;

(* The text form of a signed whole number is
["+" | "-"], decimal digit, {decimal digit}

The text form of an unsigned whole number is
decimal digit, {decimal digit}
*)

PROCEDURE ReadInt (cid: IOChan.ChanId; VAR int: LONGINT);

(* Skips leading spaces, and removes any remaining characters
from cid that form part of a signed whole number. The
value of this number is assigned to int. The read result
is set to the value allRight, outOfRange, wrongFormat,
endOfLine, or endOfInput.

*)

PROCEDURE WriteInt (cid: IOChan.ChanId; int: LONGINT;
width: CARDINAL);
(* Writes the value of int to cid in text form, in a field of
the given minimum width. *)

PROCEDURE ReadCard (cid: IOChan.ChanId; VAR card: LONGCARD);

(* Skips leading spaces, and removes any remaining characters
from cid that form part of an unsigned whole number. The
value of this number is assigned to card. The read result
is set to the value allRight, outOfRange, wrongFormat,
end0OfLine, or endOfInput.

*)

PROCEDURE WriteCard (cid: IOChan.ChanId; card: LONGCARD;
width: CARDINAL);
(* Writes the value of card to cid in text form, in a field
of the given minimum width. *)

END LongWholeIO.

329

Chapter 4: PIM and ISO library definitions 330

4.4.23 gm?2-libs-iso/LowLong
DEFINITION MODULE LowLong;

(* Access to underlying properties of the type LONGREAL *)

CONST
radix = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, radix>)) ; (x ZType ®
places = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, places>)) ; (x ZType %)}
expoMin = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, expoMin>)) ; (x ZType %)
expoMax = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, expoMax>)) ; (* ZType)|
large = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, large>)) ; (* RType *)|i
small = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, small>)) ; (* RType *)i
IEC559 = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, IEC559>)) ; (* BOOLEAN)N
LIA1 = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, LIA1>)) ; (*x BOOLEAN =)N
IS0 = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, IS0>)) ; (* BOOLEAN =)N
IEEE = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, IEEE>)) ; (* BOOLEAN)N
rounds = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, rounds>)) ; (* BOOLEAN)N
gUnderflow = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, gUnderflow>)) ; (* BOOLEAN *)Jj
exception = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, exception>)) ; (* BOOLEAN x)J]
extend = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, extend>)) ; (* BOOLEAN)N
nModes = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, nModes>)) ; (x ZType %)}

TYPE

Modes = PACKEDSET OF [0 .. nModes-1];

PROCEDURE exponent (x: LONGREAL): INTEGER;
(* Returns the exponent value of x *)

PROCEDURE fraction (x: LONGREAL): LONGREAL;
(* Returns the significand (or significant part) of x *)

PROCEDURE sign (x: LONGREAL): LONGREAL;
(x Returns the signum of x *)

PROCEDURE succ (x: LONGREAL): LONGREAL;
(* Returns the next value of the type LONGREAL greater than x *)

PROCEDURE ulp (x: LONGREAL): LONGREAL;
(* Returns the value of a unit in the last place of x *)

PROCEDURE pred (x: LONGREAL): LONGREAL;
(* Returns the previous value of the type LONGREAL less than x *)

PROCEDURE intpart (x: LONGREAL): LONGREAL;
(* Returns the integer part of x *)

Chapter 4: PIM and ISO library definitions 331

PROCEDURE fractpart (x: LONGREAL): LONGREAL;
(* Returns the fractional part of x *)

PROCEDURE scale (x: LONGREAL; n: INTEGER): LONGREAL;
(* Returns the value of x * radix ** n *)

PROCEDURE trunc (x: LONGREAL; n: INTEGER): LONGREAL;
(* Returns the value of the first n places of x *)

PROCEDURE round (x: LONGREAL; n: INTEGER): LONGREAL;
(* Returns the value of x rounded to the first n places *)

PROCEDURE synthesize (expart: INTEGER; frapart: LONGREAL): LONGREAL;
(* Returns a value of the type LONGREAL constructed from the given expart and frapar

PROCEDURE setMode (m: Modes);
(* Sets status flags appropriate to the underlying implementation of the type LONGRE

PROCEDURE currentMode (): Modes;
(* Returns the current status flags in the form set by setMode *)

PROCEDURE IsLowException (): BOOLEAN;

(* Returns TRUE if the current coroutine is in the exceptional execution statel]
because of the raising of an exception in a routine from this module; otherwisel]
returns FALSE.

*)

END LowLong.

Chapter 4: PIM and ISO library definitions 332

4.4.24 gm?2-libs-iso/LowReal
DEFINITION MODULE LowReal;

(* Access to underlying properties of the type REAL *)

CONST
radix = __ATTRIBUTE__ __BUILTIN__ ((<REAL, radix>)) ; (x ZType %)}
places = __ATTRIBUTE__ __BUILTIN__ ((<REAL, places>)) ; (x ZType *)Jj
expoMin = __ATTRIBUTE__ __BUILTIN__ ((<REAL, expoMin>)) ; (x ZType %)
expoMax = __ATTRIBUTE__ __BUILTIN__ ((<REAL, expoMax>)) ; (* ZType *)J
large = __ATTRIBUTE__ __BUILTIN__ ((<REAL, large>)) ; (* RType *)|
small = __ATTRIBUTE__ __BUILTIN__ ((<REAL, small>)) ; (* RType %)
IEC559 = __ATTRIBUTE__ __BUILTIN__ ((<REAL, IEC559>)) ; (*x BOOLEAN =*)I
LIA1 = __ATTRIBUTE__ __BUILTIN__ ((<REAL, LIA1>)) ; (*x BOOLEAN =)I
IS0 = __ATTRIBUTE__ __BUILTIN__ ((<REAL, IS0>)) ; (x BOOLEAN =*)H
IEEE = __ATTRIBUTE__ __BUILTIN__ ((<REAL, IEEE>)) ; (* BOOLEAN *)H
rounds = __ATTRIBUTE__ __BUILTIN__ ((<REAL, rounds>)) ; (* BOOLEAN *)H
gUnderflow = __ATTRIBUTE__ __BUILTIN__ ((<REAL, gUnderflow>)) ; (* BOOLEAN *)J
exception = __ATTRIBUTE__ __BUILTIN__ ((<REAL, exception>)) ; (*x BOOLEAN =)J]
extend = __ATTRIBUTE__ __BUILTIN__ ((<REAL, extend>)) ; (x BOOLEAN =*)I
nModes = __ATTRIBUTE__ __BUILTIN__ ((<REAL, nModes>)) ; (x ZType %)}

TYPE

Modes = PACKEDSET OF [0..nModes-11];

PROCEDURE exponent (x: REAL): INTEGER;
(* Returns the exponent value of x *)

PROCEDURE fraction (x: REAL): REAL;
(* Returns the significand (or significant part) of x *)

PROCEDURE sign (x: REAL): REAL;
(x Returns the signum of x *)

PROCEDURE succ (x: REAL): REAL;
(* Returns the next value of the type REAL greater than x *)

PROCEDURE ulp (x: REAL): REAL;
(* Returns the value of a unit in the last place of x *)

PROCEDURE pred (x: REAL): REAL;
(* Returns the previous value of the type REAL less than x *)

PROCEDURE intpart (x: REAL): REAL;
(* Returns the integer part of x *)

Chapter 4: PIM and ISO library definitions 333

PROCEDURE fractpart (x: REAL): REAL;
(* Returns the fractional part of x *)

PROCEDURE scale (x: REAL; n: INTEGER): REAL;
(* Returns the value of x * radix ** n *)

PROCEDURE trunc (x: REAL; n: INTEGER): REAL;
(* Returns the value of the first n places of x *)

PROCEDURE round (x: REAL; n: INTEGER): REAL;
(* Returns the value of x rounded to the first n places *)

PROCEDURE synthesize (expart: INTEGER; frapart: REAL): REAL;
(* Returns a value of the type REAL constructed from the given expart and frapart *)

PROCEDURE setMode (m: Modes);
(* Sets status flags appropriate to the underlying implementation of the type REAL *

PROCEDURE currentMode (): Modes;
(* Returns the current status flags in the form set by setMode *)

PROCEDURE IsLowException (): BOOLEAN;

(* Returns TRUE if the current coroutine is in the exceptional execution statel]
because of the raising of an exception in a routine from this module; otherwisel]
returns FALSE.

*)

END LowReal.

Chapter 4: PIM and ISO library definitions 334

4.4.25 gm?2-libs-iso/LowShort
DEFINITION MODULE LowShort;

(* Access to underlying properties of the type SHORTREAL *)

CONST
radix = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, radix>)) ;
places = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, places>)) ;
expoMin = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, expoMin>)) ;
expoMax = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, expoMax>)) ;
large = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, large>)) ;
small = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, small>)) ;
TEC559 = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, IEC559>)) ;
LIA1 = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, LIA1>)) ;

150 = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, IS0>)) ;

IEEE = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, IEEE>)) ;
rounds = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, rounds>)) ;
gUnderflow = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, gUnderflow>)) ;
exception = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, exception>)) ;
extend = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, extend>)) ;
nModes = __ATTRIBUTE__ __BUILTIN__ ((<SHORTREAL, nModes>)) ;

TYPE

Modes = PACKEDSET OF [0 .. nModes-1];

PROCEDURE exponent (x: SHORTREAL): INTEGER;
(* Returns the exponent value of x *)

PROCEDURE fraction (x: SHORTREAL): SHORTREAL;
(* Returns the significand (or significant part) of x *)

PROCEDURE sign (x: SHORTREAL): SHORTREAL;
(x Returns the signum of x *)

PROCEDURE succ (x: SHORTREAL): SHORTREAL;
(* Returns the next value of the type SHORTREAL greater than x *)

PROCEDURE ulp (x: SHORTREAL): SHORTREAL;
(* Returns the value of a unit in the last place of x *)

PROCEDURE pred (x: SHORTREAL): SHORTREAL;
(* Returns the previous value of the type SHORTREAL less than x *)

PROCEDURE intpart (x: SHORTREAL): SHORTREAL;
(* Returns the integer part of x *)

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

ZType *)j
ZType *)j
ZType)l
ZType *)l
RType *)|}
RType *)|}
BOOLEAN *)|
BOOLEAN)|
BOOLEAN *)|
BOOLEAN *)|
BOOLEAN)|
BOOLEAN)|
BOOLEAN)|
BOOLEAN *)|
ZType *)j

Chapter 4: PIM and ISO library definitions 335

PROCEDURE fractpart (x: SHORTREAL): SHORTREAL;
(* Returns the fractional part of x *)

PROCEDURE scale (x: SHORTREAL; n: INTEGER): SHORTREAL;
(* Returns the value of x * radix ** n *)

PROCEDURE trunc (x: SHORTREAL; n: INTEGER): SHORTREAL;
(* Returns the value of the first n places of x *)

PROCEDURE round (x: SHORTREAL; n: INTEGER): SHORTREAL;
(* Returns the value of x rounded to the first n places *)

PROCEDURE synthesize (expart: INTEGER; frapart: SHORTREAL): SHORTREAL;
(* Returns a value of the type SHORTREAL constructed from the given expart and frapa

PROCEDURE setMode (m: Modes);
(* Sets status flags appropriate to the underlying implementation of the type SHORTR

PROCEDURE currentMode (): Modes;
(* Returns the current status flags in the form set by setMode *)

PROCEDURE IsLowException (): BOOLEAN;

(* Returns TRUE if the current coroutine is in the exceptional execution statel]
because of the raising of an exception in a routine from this module; otherwisel]
returns FALSE.

*)

END LowShort.

Chapter 4: PIM and ISO library definitions 336

4.4.26 gm2-libs-iso/M2EXCEPTION
DEFINITION MODULE M2EXCEPTION;

(* Provides facilities for identifying language exceptions x*)

TYPE
M2Exceptions =
(indexException, rangeException, caseSelectException, invalidLocation
functionException, wholeValueException, wholeDivException, realValueExcept
realDivException, complexValueException, complexDivException, protException,]]
sysException, coException, exException
)

PROCEDURE M2Exception (): M2Exceptions;
(x If the current coroutine is in the exceptional execution state because of the rai
of a language exception, returns the corresponding enumeration value, and otherwi
raises an exception.

*)

PROCEDURE IsM2Exception (): BOOLEAN;
(* If the current coroutine is in the exceptional execution state because of the rai
of a language exception, returns TRUE, and otherwise returns FALSE.

*)

END M2EXCEPTION.

Chapter 4: PIM and ISO library definitions 337

4.4.27 gm2-libs-iso/M2RTS
DEFINITION MODULE M2RTS ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
ArgCVEnvP = PROCEDURE (INTEGER, ADDRESS, ADDRESS) ;

PROCEDURE ConstructModules (applicationmodule, libname: ADDRESS;
overrideliborder: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

PROCEDURE DeconstructModules (applicationmodule, libname: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

(*
RegisterModule - adds module name to the list of outstanding
modules which need to have their dependencies
explored to determine initialization order.

*)

PROCEDURE RegisterModule (name, libname: ADDRESS;
init, fini: ArgCVEnvP;
dependencies: PROC) ;

(*
RequestDependant - used to specify that modulename is dependant upon
module dependantmodule.

*)

PROCEDURE RequestDependant (modulename, libname,
dependantmodule, dependantlibname: ADDRESS) ;|j

(*
ExecuteTerminationProcedures - calls each installed termination
procedure in reverse order.

*)

PROCEDURE ExecuteTerminationProcedures ;

Chapter 4: PIM and ISO library definitions 338

(*
InstallTerminationProcedure - installs a procedure, p, which will
be called when the procedure
ExecuteTerminationProcedures
is invoked. It returns TRUE is the
procedure is installed.

*)

PROCEDURE InstallTerminationProcedure (p: PROC) : BOOLEAN ;

(*
ExecuteInitialProcedures - executes the initial procedures installed
by InstallInitialProcedure.

*)

PROCEDURE ExecutelInitialProcedures ;

(*
InstallInitialProcedure - installs a procedure to be executed just
before the BEGIN code section of the main
program module.

*)

PROCEDURE InstallInitialProcedure (p: PROC) : BOOLEAN ;

(*
HALT - terminate the current program. The procedure

ExecuteTerminationProcedures
is called before the program is stopped. The parameter
exitcode is optional. If the parameter is not supplied
HALT will call libc 'abort', otherwise it will exit with
the code supplied. Supplying a parameter to HALT has the
same effect as calling ExitOnHalt with the same code and
then calling HALT with no parameter.

*)

PROCEDURE HALT ([exitcode: INTEGER = -1]) <* noreturn *> ;

(*
Halt - provides a more user friendly version of HALT, which takes
four parameters to aid debugging. It writes an error message
to stderr and calls exit (1).

Chapter 4: PIM and ISO library definitions 339

PROCEDURE Halt (description, filename, function: ARRAY OF CHAR;
line: CARDINAL) <* noreturn *> ;

(*
HaltC - provides a more user friendly version of HALT, which takes
four parameters to aid debugging. It writes an error message
to stderr and calls exit (1).

*)

PROCEDURE HaltC (description, filename, function: ADDRESS;
line: CARDINAL) <* noreturn *> ;

(*
ExitOnHalt - if HALT is executed then call exit with the exit code, e.ll
*)

PROCEDURE ExitOnHalt (e: INTEGER) ;

(*
ErrorMessage - emits an error message to stderr and then calls exit (1).]

*)

PROCEDURE ErrorMessage (message: ARRAY OF CHAR;
filename: ARRAY OF CHAR;
line: CARDINAL;
function: ARRAY OF CHAR) <* noreturn *> ;

(*
IsTerminating - Returns true if any coroutine has started program terminationf
and false otherwise.

*)
PROCEDURE IsTerminating () : BOOLEAN ;
(*

HasHalted - Returns true if a call to HALT has been made and false
otherwise.

*)

PROCEDURE HasHalted () : BOOLEAN ;

Chapter 4: PIM and ISO library definitions

(*
Length

*)

PROCEDURE

(*

340

- returns the length of a string, a. This is called whenever
the user calls LENGTH and the parameter cannot be calculated
at compile time.

Length (a: ARRAY OF CHAR) : CARDINAL ;

The following are the runtime exception handler routines.

*)

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END M2RTS.

AssignmentException (filename: ADDRESS; line, column: CARDINAL; scope, messa
ReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message:

IncException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADD
DecException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADD
InclException (filename: ADDRESS; line, column: CARDINAL; scope, message: AD
ExclException (filename: ADDRESS; line, column: CARDINAL; scope, message: AD
ShiftException (filename: ADDRESS; line, column: CARDINAL; scope, message: A
RotateException (filename: ADDRESS; line, column: CARDINAL; scope, message:

StaticArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; sc
DynamicArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; s
ForLoopBeginException (filename: ADDRESS; line, column: CARDINAL; scope, mes
ForLoopToException (filename: ADDRESS; line, column: CARDINAL; scope, messag
ForLoopEndException (filename: ADDRESS; line, column: CARDINAL; scope, messa
PointerNilException (filename: ADDRESS; line, column: CARDINAL; scope, messa
NoReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message
CaseException (filename: ADDRESS; line, column: CARDINAL; scope, message: AD
WholeNonPosDivException (filename: ADDRESS; line, column: CARDINAL; scope, m
WholeNonPosModException (filename: ADDRESS; line, column: CARDINAL; scope, m
WholeZeroDivException (filename: ADDRESS; line, column: CARDINAL; scope, mes
WholeZeroRemException (filename: ADDRESS; line, column: CARDINAL; scope, mes
WholeValueException (filename: ADDRESS; line, column: CARDINAL; scope, messa
RealValueException (filename: ADDRESS; line, column: CARDINAL; scope, messag
ParameterException (filename: ADDRESS; line, column: CARDINAL; scope, messag
NoException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDR

Chapter 4: PIM and ISO library definitions 341

4.4.28 gm?2-libs-iso/MemStream
DEFINITION MODULE MemStream ;

(*
Description: provides an ISO module which can write to a memory
buffer or read from a memory buffer.

*)

FROM I0Chan IMPORT ChanlId ;
FROM ChanConsts IMPORT FlagSet, OpenResults ;
FROM SYSTEM IMPORT ADDRESS, LOC ;

(*
Attempts to obtain and open a channel connected to a contigeous
buffer in memory. The write flag is implied; without the raw
flag, text is implied. If successful, assigns to cid the identity of
the opened channel, assigns the value opened to res.
If a channel cannot be opened as required,
the value of res indicates the reason, and cid identifies the
invalid channel.

The parameters, buffer, length and used maybe updated as
data is written. The buffer maybe reallocated

and its address might alter, however the parameters will
always reflect the current active buffer. When this
channel is closed the buffer is deallocated and

buffer will be set to NIL, length and used will be set to
zZero.

*)

PROCEDURE OpenWrite (VAR cid: ChanId; flags: FlagSet;
VAR res: OpenResults;
VAR buffer: ADDRESS;
VAR length: CARDINAL;
VAR used: CARDINAL;
deallocOnClose: BOOLEAN) ;

(%
Attempts to obtain and open a channel connected to a contigeous
buffer in memory. The read and old flags are implied; without
the raw flag, text is implied. If successful, assigns to cid the
identity of the opened channel, assigns the value opened to res, and
selects input mode, with the read position corresponding to the start
of the buffer. If a channel cannot be opened as required, the value of]}

Chapter 4: PIM and ISO library definitions 342

res indicates the reason, and cid identifies the invalid channel.

*)

PROCEDURE OpenRead (VAR cid: ChanId; flags: FlagSet;
VAR res: OpenResults;
buffer: ADDRESS; length: CARDINAL;
deallocOnClose: BOOLEAN) ;

(*
Close - if the channel identified by cid is not open to
a memory stream, the exception wrongDevice is
raised; otherwise closes the channel, and assigns
the value identifying the invalid channel to cid.

*)

PROCEDURE Close (VAR cid: ChanId) ;

(*
Rewrite - assigns the buffer index to zero. Subsequent
writes will overwrite the previous buffer contents.

*)
PROCEDURE Rewrite (cid: ChanId) ;
(*

Reread - assigns the buffer index to zero. Subsequent
reads will read the previous buffer contents.

*)
PROCEDURE Reread (cid: ChanId) ;
(*
IsMem - tests if the channel identified by cid is open as
a memory stream.

*)

PROCEDURE IsMem (cid: ChanId) : BOOLEAN ;

END MemStream.

Chapter 4: PIM and ISO library definitions 343

4.4.29 gm?2-libs-iso/Preemptive
DEFINITION MODULE Preemptive ;

(*
initPreemptive - if microsecs > O then turn on preemptive scheduling.
if microsecs = O then preemptive scheduling is turned off.|]

*)

PROCEDURE initPreemptive (seconds, microsecs: CARDINAL) ;

END Preemptive.

Chapter 4: PIM and ISO library definitions 344

4.4.30 gm2-libs-iso/Processes
DEFINITION MODULE Processes;

(* This module allows concurrent algorithms to be expressed using
processes. A process is a unit of a program that has the
potential to run in parallel with other processes.

*)

IMPORT SYSTEM;

TYPE
ProcessId; (* Used to identify processes *)
Parameter = SYSTEM.ADDRESS; (* Used to pass data between processes *)|j
Body = PROC; (* Used as the type of a process body *)Jj
Urgency = INTEGER; (* Used by the internal scheduler *)
Sources = CARDINAL; (* Used to identify event sources *)
ProcessesExceptions = (* Exceptions raised by this module *)

(passiveProgram, processError);

(* The following procedures create processes and switch control between
them. *)

PROCEDURE Create (procBody: Body; extraSpace: CARDINAL; procUrg: Urgency;ll
procParams: Parameter; VAR procld: ProcessId);
(* Creates a new process with procBody as its body, and with urgency

and parameters given by procUrg and procParams. At least as

much workspace (in units of SYSTEM.LOC) as is specified by

extraSpace is allocated to the process.

An identity for the new process is returned in procld.

The process is created in the passive state; it will not run

until activated.

*)

PROCEDURE Start (procBody: Body; extraSpace: CARDINAL; procUrg: Urgency;
procParams: Parameter; VAR procId: ProcessId);
(* Creates a new process, with parameters as for Create.
The process is created in the ready state; it is eligible to
run immediately.

*)

PROCEDURE StopMe ();
(* Terminates the calling process.
The process must not be associated with a source of events.

*)

PROCEDURE SuspendMe () ;

Chapter 4: PIM and ISO library definitions

(* Causes the calling process to enter the passive state. The
procedure only returns when the calling process is again
activated by another process.

*)

PROCEDURE Activate (procId: ProcessId);
(* Causes the process identified by procId to enter the ready
state, and thus to become eligible to run again.

*)

PROCEDURE SuspendMeAndActivate (procId: ProcessId);
(* Executes an atomic sequence of SuspendMe() and
Activate(procId). *)

PROCEDURE Switch (procId: ProcessId; VAR info: Parameter);
(* Causes the calling process to enter the passive state; the
process identified by procld becomes the currently executing

process. 1info is used to pass parameter information from the

calling to the activated process. 0On return, info will
contain information from the process that chooses to switch
back to this one (or will be NIL if Activate or
SuspendMeAndActivate are used instead of Switch).

*)

PROCEDURE Wait Q) ;
(* Causes the calling process to enter the waiting state.
The procedure will return when the calling process is
activated by another process, or when one of its associated
eventSources has generated an event.

*)

(* The following procedures allow the association of processes
with sources of external events.

*)

PROCEDURE Attach (eventSource: Sources);
(* Associates the specified eventSource with the calling
process. *)

PROCEDURE Detach (eventSource: Sources);
(* Dissociates the specified eventSource from the program. *)

PROCEDURE IsAttached (eventSource: Sources): BOOLEAN;
(* Returns TRUE if and only if the specified eventSource is
currently associated with one of the processes of the
program.

*)

345

Chapter 4: PIM and ISO library definitions 346

PROCEDURE Handler (eventSource: Sources): ProcessId;
(* Returns the identity of the process, if any, that is
associated with the specified eventSource.

*)

(* The following procedures allow processes to obtain their
identity, parameters, and urgency.

*)

PROCEDURE Me (): ProcessId;
(* Returns the identity of the calling process (as assigned
when the process was first created).

*)

PROCEDURE MyParam (): Parameter;
(* Returns the value specified as procParams when the calling
process was created. *)

PROCEDURE UrgencyOf (procId: ProcessId): Urgency;
(* Returns the urgency established when the process identified
by procld was first created.

*)

(* The following procedure provides facilities for exception
handlers. x*)

PROCEDURE ProcessesException (): ProcessesExceptions;

(* If the current coroutine is in the exceptional execution state
because of the raising of a language exception, returns the
corresponding enumeration value, and otherwise raises an
exception.

*)

PROCEDURE IsProcessesException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in
a routine from this module; otherwise returns FALSE.

*)

(*
Reschedule - rotates the ready queue and transfers to the process
with the highest run priority.
*)

PROCEDURE Reschedule ;

Chapter 4: PIM and ISO library definitions 347

(*
displayProcesses -

*)

PROCEDURE displayProcesses (message: ARRAY OF CHAR) ;

END Processes.

Chapter 4: PIM and ISO library definitions

4.4.31 gm2-libs-iso/ProgramArgs
DEFINITION MODULE ProgramArgs;

(¥ Access to program arguments x)
IMPORT IOChan;

TYPE
ChanId = IOChan.ChanId;

PROCEDURE ArgChan (): ChanId;
(* Returns a value that identifies a channel for reading
program arguments *)

PROCEDURE IsArgPresent (): BOOLEAN;

(x Tests if there is a current argument to read from. If not,
read <= IOChan.CurrentFlags() will be FALSE, and attempting
to read from the argument channel will raise the exception
notAvailable.

*)

PROCEDURE NextArg ();

(* If there is another argument, causes subsequent input from the
argument device to come from the start of the next argument.
Otherwise there is no argument to read from, and a call of
IsArgPresent will return FALSE.

*)

END ProgramArgs.

348

Chapter 4: PIM and ISO library definitions 349

4.4.32 gm?2-libs-iso/RTco
DEFINITION MODULE FOR "C" RTco ;

FROM SYSTEM IMPORT ADDRESS ;

IMPORT RTentity ; (* Imported so the initialization call graph

understands that RTco.cc depends upon RTentity.)|

(* init initializes the module and allows the application to lazily invoke threads. *

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

init () : INTEGER ;

initThread (p: PROC; stackSize: CARDINAL; interruptLevel: CARDINAL) : INTEGE
initSemaphore (value: CARDINAL) : INTEGER ;

wait (semaphore: INTEGER) ;

signal (semaphore: INTEGER) ;

transfer (VAR pl: INTEGER; p2: INTEGER) ;

waitThread (tid: INTEGER) ;

signalThread (tid: INTEGER) ;

currentThread () : INTEGER ;

(* currentInterruptlLevel returns the interrupt level of the current thread. =*)Jj

PROCEDURE

currentInterruptLevel () : CARDINAL ;

(* turninterrupts returns the old interrupt level and assigns the interrupt level]]
to newlLevel.)

PROCEDURE

(*

select

turnInterrupts (newLevel: CARDINAL) : CARDINAL ;

access to the select system call which will be thread safe.

This is typically called from the idle process to wait for an interrupt.|}

*)

PROCEDURE

select (pl: INTEGER;

Chapter 4: PIM and ISO library definitions

END RTco.

p2:
p3:
p4:
: ADDRESS)

ADDRESS;
ADDRESS;
ADDRESS;

: INTEGER ;

b

350

Chapter 4: PIM and ISO library definitions 351

4.4.33 gm?2-libs-iso/RTdata
DEFINITION MODULE RTdata ;

(*
Description: provides a mechanism whereby devices can store
data attached to a device.

*)

FROM SYSTEM IMPORT ADDRESS ;
FROM IOLink IMPORT DeviceTablePtr ;

TYPE
Moduleld ;
FreeProcedure = PROCEDURE (ADDRESS) ;

(*
MakeModuleld - creates a unique module Id.

*)

PROCEDURE MakeModuleId (VAR m: ModuleId) ;

(*
InitData - adds, datum, to the device, d. The datum
is associated with ModuleID, m.

*)

PROCEDURE InitData (d: DeviceTablePtr; m: Moduleld;
datum: ADDRESS; f: FreeProcedure) ;

(*
GetData - returns the datum assocated with ModuleId, m.

*)

PROCEDURE GetData (d: DeviceTablePtr; m: ModuleId) : ADDRESS ;

(*
KillData - destroys the datum associated with Moduleld, m,
in device, d. It invokes the free procedure
given during InitData.

*)

PROCEDURE KillData (d: DeviceTablePtr; m: Moduleld) ;

Chapter 4: PIM and ISO library definitions 352

END RTdata.

Chapter 4: PIM and ISO library definitions 353

4.4.34 gm?2-libs-iso/RTentity

DEFINITION MODULE RTentity ;

(*

Description:

*)

provides a set of routines for maintaining an

efficient mechanism to group opaque (or pointer)

data structures together.

Internally the

entities are grouped together using a binary

tree.

It does not use Storage - and instead

uses malloc, free from libc as Storage uses the
module to detect erroneous deallocations.

IMPORT SYSTEM ;

TYPE
Group ;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

InitGroup
KillGroup

GetKey (g:
PutKey (g:
DelKey (g:
IsIn (g: Group; a: SYSTEM.ADDRESS)

END RTentity.

() : Group ;

(g: Group) : Group ;

Group; a: SYSTEM.ADDRESS) : CARDINAL ;
Group; a: SYSTEM.ADDRESS; key: CARDINAL) ;
Group; a: SYSTEM.ADDRESS) ;

: BOOLEAN ;

Chapter 4: PIM and ISO library definitions 354

4.4.35 gm?2-libs-iso/RTfio
DEFINITION MODULE RTfio ;

(*
Description: provides default FIO based methods for the RTgenif
procedures. These will be used by StreamFile,
SeqFile, StdChans, TermFile and RndFile.
*)

FROM SYSTEM IMPORT ADDRESS ;
FROM IOLink IMPORT DeviceTablePtr;
FROM RTgenif IMPORT GenDevIF ;

(*
doreadchar - returns a CHAR from the file associated with, g.

*)

PROCEDURE doreadchar (g: GenDevIF; d: DeviceTablePtr) : CHAR ;

(*
dounreadchar - pushes a CHAR back onto the file associated
with, g.
*)

PROCEDURE dounreadchar (g: GenDevIF; d: DeviceTablePtr; ch: CHAR) : CHAR ;|j

(*
dogeterrno - returns the errno relating to the generic device.

*)

PROCEDURE dogeterrno (g: GenDevIF; d: DeviceTablePtr) : INTEGER ;

(*
dorbytes - reads upto, max, bytes setting, actual, and
returning FALSE if an error (not due to eof)
occurred.

*)

PROCEDURE dorbytes (g: GenDevIF;
d: DeviceTablePtr;
to: ADDRESS;
max: CARDINAL;

Chapter 4: PIM and ISO library definitions 355

VAR actual: CARDINAL) : BOOLEAN ;

(*
dowbytes - writes up to, nBytes. It returns FALSE
if an error occurred and it sets actual
to the amount of data written.

*)

PROCEDURE dowbytes (g: GenDevIF;
d: DeviceTablePtr;
from: ADDRESS;
nBytes: CARDINAL;
VAR actual: CARDINAL) : BOOLEAN ;

(*
dowriteln - attempt to write an end of line marker to the
file and returns TRUE if successful.

*)
PROCEDURE dowriteln (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

iseof - returns TRUE if end of file has been seen.
*)
PROCEDURE iseof (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

iseoln - returns TRUE if end of line has been seen.
*)
PROCEDURE iseoln (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

iserror - returns TRUE if an error was seen on the device.

Note that reaching EOF is not classified as an
error.

*)

PROCEDURE iserror (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

END RTfio.

Chapter 4: PIM and ISO library definitions 356

4.4.36 gm2-libs-iso/RTgen
DEFINITION MODULE RTgen ;

(*
Description: provides a generic device interface between
IS0 channels and the underlying PIM style
FIO0 procedure calls.

*)

FROM RTgenif IMPORT GenDevIF ;

FROM IOLink IMPORT Deviceld, DeviceTablePtr;
FROM IOConsts IMPORT ReadResults ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
ChanDev ;
DeviceType = (seqfile, streamfile, programargs, stdchans, term, socket, rndfile) ;|j

(*
InitChanDev - initialize and return a ChanDev.

*)

PROCEDURE InitChanDev (t: DeviceType; d: Deviceld; g: GenDevIF) : ChanDev H |

(*
KillChanDev - deallocates, g.
*)

PROCEDURE KillChanDev (g: GenDevIF) : GenDevIF ;

(*
RaiseEOFinLook - returns TRUE if the Look procedure
should raise an exception if it
sees end of file.

*)
PROCEDURE RaiseEOFinLook (g: ChanDev) : BOOLEAN ;
(*

RaiseEOFinSkip - returns TRUE if the Skip procedure
should raise an exception if it

Chapter 4: PIM and ISO library definitions 357

sees end of file.

*)

PROCEDURE RaiseEQOFinSkip (g: ChanDev) : BOOLEAN ;

PROCEDURE doLook (g: ChanDev;
d: DeviceTablePtr;
VAR ch: CHAR;
VAR r: ReadResults) ;

PROCEDURE doSkip (g: ChanDev;
d: DeviceTablePtr) ;

PROCEDURE doSkipLook (g: ChanDev;
d: DeviceTablePtr;
VAR ch: CHAR;
VAR r: ReadResults) ;

PROCEDURE doWriteLn (g: ChanDev;
d: DeviceTablePtr) ;

PROCEDURE doReadText (g: ChanDev;
d: DeviceTablePtr;
to: ADDRESS;
maxChars: CARDINAL;
VAR charsRead: CARDINAL) ;

PROCEDURE doWriteText (g: ChanDev;
d: DeviceTablePtr;
from: ADDRESS;
charsToWrite: CARDINAL) ;

PROCEDURE doReadLocs (g: ChanDev;
d: DeviceTablePtr;
to: ADDRESS;
maxLocs: CARDINAL;
VAR locsRead: CARDINAL) ;

PROCEDURE doWriteLocs (g: ChanDev;
d: DeviceTablePtr;
from: ADDRESS;
locsToWrite: CARDINAL) ;

(*
checkErrno - checks a number of errno conditions and raises
appropriate ISO exceptions if they occur.

Chapter 4: PIM and ISO library definitions 358

*)

PROCEDURE checkErrno (g: ChanDev; d: DeviceTablePtr) ;

END RTgen.

Chapter 4: PIM and ISO library definitions 359

4.4.37 gm2-libs-iso/RTgenif
DEFINITION MODULE RTgenif ;

(*
Description: provides a generic interface mechanism used
by RTgen. This is not an ISO module but rather
a runtime support module.

*)

FROM SYSTEM IMPORT ADDRESS ;
FROM IOLink IMPORT Deviceld, DeviceTablePtr ;

TYPE
GenDevIF ;
readchar = PROCEDURE (GenDevIF, DeviceTablePtr) : CHAR ;
unreadchar = PROCEDURE (GenDevIF, DeviceTablePtr, CHAR) : CHAR ;

geterrno = PROCEDURE (GenDevIF, DeviceTablePtr) : INTEGER ;
readbytes = PROCEDURE (GenDevIF, DeviceTablePtr, ADDRESS, CARDINAL, VAR CARDINAL)

writebytes = PROCEDURE (GenDevIF, DeviceTablePtr, ADDRESS, CARDINAL, VAR CARDINAL)
writeln = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN ;
iseof = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN ;
iseoln = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN ;
iserror = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN ;
(*
InitGenDevIF - initializes a generic device.
*)
PROCEDURE InitGenDevIF (d : Deviceld;
rc : readchar;
urc : unreadchar;
geterr: geterrno;
rbytes: readbytes;
wbytes: writebytes;
wl : writeln;
eof : iseof;
eoln : iseoln;
iserr : iserror) : GenDevIF ;
(*
getDID - returns the device id this generic interface.
*)

PROCEDURE getDID (g: GenDevIF) : Deviceld ;

Chapter 4: PIM and ISO library definitions 360

(*
doReadChar - returns the next character from the generic
device.

*)

PROCEDURE doReadChar (g: GenDevIF; d: DeviceTablePtr) : CHAR ;

(*
doUnReadChar - pushes back a character to the generic device.

*)

PROCEDURE doUnReadChar (g: GenDevIF; d: DeviceTablePtr; ch: CHAR) : CHAR ;|}

(*
doGetErrno - returns the errno relating to the generic device.

*)

PROCEDURE doGetErrno (g: GenDevIF; d: DeviceTablePtr) : INTEGER ;

(*
doRBytes - attempts to read, n, bytes from the generic device.
It set the actual amount read and returns a boolean
to determine whether an error occurred.

*)

PROCEDURE doRBytes (g: GenDevIF; d: DeviceTablePtr;
to: ADDRESS; max: CARDINAL;
VAR actual: CARDINAL) : BOOLEAN ;

(*
doWBytes - attempts to write, n, bytes to the generic device.
It sets the actual amount written and returns a
boolean to determine whether an error occurred.

*)
PROCEDURE doWBytes (g: GenDevIF; d: DeviceTablePtr;

from: ADDRESS; max: CARDINAL;
VAR actual: CARDINAL) : BOOLEAN ;

(*

Chapter 4: PIM and ISO library definitions 361

doWrLn - writes an end of line marker and returns
TRUE if successful.
*)

PROCEDURE doWrLn (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

isEOF - returns true if the end of file was reached.
*)
PROCEDURE isEQOF (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

isEOLN - returns true if the end of line was reached.
*)
PROCEDURE isEOLN (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

isError - returns true if an error was seen in the device.
*)
PROCEDURE isError (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;
(*

KillGenDevIF - deallocates a generic device.
*)

PROCEDURE KillGenDevIF (g: GenDevIF) : GenDevIF ;

END RTgenif.

Chapter 4: PIM and ISO library definitions 362

4.4.38 gm2-libs-iso/RTio
DEFINITION MODULE RTio ;

(*
Description: provides low level routines for creating and destroying
ChanlIds. This is necessary to allow multiple modules
to create, Chanld values, where Chanld is an opaque

type.
*)
IMPORT FIO, IOLink ;

TYPE
Chanld ;

(*
InitChanId - return a new ChanId.

*)
PROCEDURE InitChanId () : ChanId ;
(*
KillChanId - deallocate a ChanId.
*)
PROCEDURE KillChanId (c: ChanId) : ChanId ;
(*
NilChanId - return a NIL pointer.
*)
PROCEDURE NilChanId () : ChanId ;
(*
GetDeviceld - returns the device id, from, c.
*)
PROCEDURE GetDevicelId (c: ChanId) : IOLink.Deviceld ;

(*

SetDeviceld - sets the device id in, c.

Chapter 4: PIM and ISO library definitions 363

*)
PROCEDURE SetDeviceld (c: ChanId; d: IOLink.Deviceld) ;
(*
GetDevicePtr - returns the device table ptr, from, c.
*)
PROCEDURE GetDevicePtr (c: ChanId) : IOLink.DeviceTablePtr ;
(*
SetDevicePtr - sets the device table ptr in, c.
*)
PROCEDURE SetDevicePtr (c: ChanId; p: IOLink.DeviceTablePtr) ;
(*
GetFile - returns the file field from, c.
*)
PROCEDURE GetFile (c: ChanId) : FIO0.File ;
(*
SetFile - sets the file field in, c.
*)

PROCEDURE SetFile (c: ChanId; f: FIO0.File) ;

END RTio.

Chapter 4: PIM and ISO library definitions 364

4.4.39 gm2-libs-iso/RandomNumber
DEFINITION MODULE RandomNumber ;

(*
Description: provides primitives for obtaining random numbers on
pervasive data types.

*)

FROM SYSTEM IMPORT BYTE ;

EXPORT QUALIFIED Randomize, RandomInit, RandomBytes,
RandomCard, RandomShortCard, RandomLongCard,
RandomInt, RandomShortInt, RandomLongInt,
RandomReal, RandomLongReal, RandomShortReal ;

€
Randomize - initialize the random number generator with a seed
based on the microseconds.

*)
PROCEDURE Randomize ;
(*
RandomInit - initialize the random number generator with value, seed.
*)
PROCEDURE RandomInit (seed: CARDINAL) ;
(*
RandomBytes - fills in an array with random values.
*)
PROCEDURE RandomBytes (VAR a: ARRAY OF BYTE) ;
(*
RandomInt - return an INTEGER in the range [low .. high].
*)
PROCEDURE RandomInt (low, high: INTEGER) : INTEGER ;

(%
RandomShortInt - return an SHORTINT in the range [low..high].

Chapter 4: PIM and ISO library definitions 365

*)
PROCEDURE RandomShortInt (low, high: SHORTINT) : SHORTINT ;
(*
RandomLongInt - return an LONGINT in the range [low..high].
*)
PROCEDURE RandomLongInt (low, high: LONGINT) : LONGINT ;
(*
RandomShortCard - return a SHORTCARD in the range [low..high].
*)
PROCEDURE RandomShortCard (low, high: CARDINAL) : CARDINAL ;
(*
RandomCard - return a CARDINAL in the range [low..high].
*)
PROCEDURE RandomCard (low, high: CARDINAL) : CARDINAL ;
(%
RandomlongCard - return an LONGCARD in the range [low..high].
*)
PROCEDURE RandomLongCard (low, high: LONGCARD) : LONGCARD ;
(*
RandomReal - return a REAL number in the range 0.0..1.0
*)
PROCEDURE RandomReal () : REAL ;
(*
RandomShortReal - return a SHORTREAL number in the range 0.0..1.0
*)

PROCEDURE RandomShortReal () : SHORTREAL ;

Chapter 4: PIM and ISO library definitions 366

(*
RandomLongReal - return a LONGREAL number in the range 0.0..1.0
*)

PROCEDURE RandomLongReal () : LONGREAL ;

END RandomNumber.

Chapter 4: PIM and ISO library definitions 367

4.4.40 gm2-libs-iso/RawlO
DEFINITION MODULE RawIO;

(* Reading and writing data over specified channels using raw
operations, that is, with no conversion or interpretation.
The read result is of the type I0Consts.ReadResults.

*)
IMPORT IOChan, SYSTEM;

PROCEDURE Read (cid: IOChan.ChanId; VAR to: ARRAY OF SYSTEM.LOC);
(* Reads storage units from cid, and assigns them to
successive components of to. The read result is set
to the value allRight, wrongFormat, or endOfInput.
*)

PROCEDURE Write (cid: IOChan.ChanId; from: ARRAY OF SYSTEM.LOC) ;
(* Writes storage units to cid from successive components
of from. *)

END RawIO.

Chapter 4: PIM and ISO library definitions 368

4.4.41 gm?2-libs-iso/RealConv
DEFINITION MODULE RealConv;

(x Low-level REAL/string conversions *)

IMPORT
ConvTypes;

TYPE
(* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
ConvResults = ConvTypes.ConvResults;

PROCEDURE ScanReal (inputCh: CHAR; VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);
(* Represents the start state of a finite state scanner for real
numbers - assigns class of inputCh to chClass and a procedure
representing the next state to nextState.

*)

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
(* Returns the format of the string value for conversion to REAL. %)

PROCEDURE ValueReal (str: ARRAY OF CHAR): REAL;
(* Returns the value corresponding to the real number string value
str if str is well-formed; otherwise raises the RealConv
exception.

*)

PROCEDURE LengthFloatReal (real: REAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point string
representation of real with sigFigs significant figures.

*)

PROCEDURE LengthEngReal (real: REAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point engineering
string representation of real with sigFigs significant figures.

*)

PROCEDURE LengthFixedReal (real: REAL; place: INTEGER): CARDINAL;
(* Returns the number of characters in the fixed-point string
representation of real rounded to the given place relative to the
decimal point.

*)

PROCEDURE IsRConvException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional

Chapter 4: PIM and ISO library definitions 369

execution state because of the raising of an exception in a
routine from this module; otherwise returns FALSE.

*)

END RealConv.

Chapter 4: PIM and ISO library definitions

4.4.42 gm?2-libs-iso/ReallO
DEFINITION MODULE ReallO;

(* Input and output of real numbers in decimal text form
over specified channels. The read result is of the
type I0Consts.ReadResults.

*)

IMPORT IOChan;

(* The text form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit},
[".", {decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"], decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (cid: IOChan.ChanId; VAR real: REAL);
(* Skips leading spaces, and removes any remaining characters
from cid that form part of a signed fixed or floating
point number. The value of this number is assigned to real.
The read result is set to the value allRight, outOfRange,
wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteFloat (cid: IOChan.ChanId; real: REAL;
sigFigs: CARDINAL; width: CARDINAL);
(* Writes the value of real to cid in floating-point text form,
with sigFigs significant figures, in a field of the given
minimum width.

*)

PROCEDURE WriteEng (cid: IOChan.ChanId; real: REAL;
sigFigs: CARDINAL; width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with
one to three digits in the whole number part, and with an
exponent that is a multiple of three.

*)

PROCEDURE WriteFixed (cid: IOChan.ChanId; real: REAL;
place: INTEGER; width: CARDINAL);
(* Writes the value of real to cid in fixed-point text form,
rounded to the given place relative to the decimal point,
in a field of the given minimum width.

370

Chapter 4: PIM and ISO library definitions

*)

PROCEDURE WriteReal (cid: IOChan.ChanId;
real: REAL; width: CARDINAL);
(* Writes the value of real to cid, as WriteFixed if the sign
and magnitude can be shown in the given width, or otherwise
as WriteFloat. The number of places or significant digits

depends on the given width.
*)

END ReallO.

371

Chapter 4: PIM and ISO library definitions 372

4.4.43 gm?2-libs-iso/RealMath
DEFINITION MODULE RealMath;

(* Mathematical functions for the type REAL *)

CONST
pi = 3.1415926535897932384626433832795028841972;
expl = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: REAL): REAL;
(* Returns the positive square root of x *)

PROCEDURE __BUILTIN__ exp (x: REAL): REAL;
(* Returns the exponential of x *)

PROCEDURE __BUILTIN__ 1n (x: REAL): REAL;
(* Returns the natural logarithm of x *)

(* The angle in all trigonometric functions is measured in radians *)

PROCEDURE __BUILTIN__ sin (x: REAL): REAL;
(* Returns the sine of x *)

PROCEDURE __BUILTIN__ cos (x: REAL): REAL;
(* Returns the cosine of x *)

PROCEDURE tan (x: REAL): REAL;
(x Returns the tangent of x *)

PROCEDURE arcsin (x: REAL): REAL;
(* Returns the arcsine of x *)

PROCEDURE arccos (x: REAL): REAL;
(* Returns the arccosine of x *)

PROCEDURE arctan (x: REAL): REAL;
(* Returns the arctangent of x *)

PROCEDURE power (base, exponent: REAL) : REAL;
(* Returns the value of the number base raised to the power exponent *)|J]

PROCEDURE round (x: REAL) : INTEGER;
(* Returns the value of x rounded to the nearest integer *)

PROCEDURE IsRMathException () : BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution statel]

Chapter 4: PIM and ISO library definitions 373

because of the raising of an exception in a routine from this module; otherwisell
returns FALSE.
*)

END RealMath.

Chapter 4: PIM and ISO library definitions 374

4.4.44 gm?2-libs-iso/RealStr
DEFINITION MODULE RealStr;

(x REAL/string conversions *)

IMPORT
ConvTypes;

TYPE
(* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
ConvResults = ConvTypes.ConvResults;

(* the string form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit}, [".",
{decimal digit}]

*)

(* the string form of a signed floating-point real number is
signed fixed-point real number, "E", ["+" | "-"],
decimal digit, {decimal digit}

*)

PROCEDURE StrToReal (str: ARRAY OF CHAR; VAR real: REAL;
VAR res: ConvResults);

(* Ignores any leading spaces in str. If the subsequent characters
in str are in the format of a signed real number, assigns a
corresponding value to real. Assigns a value indicating the
format of str to res.

*)

PROCEDURE RealToFloat (real: REAL; sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);
(* Converts the value of real to floating-point string form, with
sigFigs significant figures, and copies the possibly truncated
result to str.

*)

PROCEDURE RealToEng (real: REAL; sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);

(* Converts the value of real to floating-point string form, with
sigFigs significant figures, and copies the possibly truncated
result to str. The number is scaled with one to three digits
in the whole number part and with an exponent that is a multiple
of three.

*)

Chapter 4: PIM and ISO library definitions 375

PROCEDURE RealToFixed (real: REAL; place: INTEGER;
VAR str: ARRAY OF CHAR);
(* Converts the value of real to fixed-point string form, rounded

to the given place relative to the decimal point, and copies

the possibly truncated result to str.
*)

PROCEDURE RealToStr (real: REAL; VAR str: ARRAY OF CHAR);
(* Converts the value of real as RealToFixed if the sign and
magnitude can be shown within the capacity of str, or
otherwise as RealToFloat, and copies the possibly truncated

result to str. The number of places or significant digits are
implementation-defined.

*)

END RealStr.

Chapter 4: PIM and ISO library definitions 376

4.4.45 gm?2-libs-iso/RndFile
DEFINITION MODULE RndFile;

(* Random access files *)

IMPORT IOChan, ChanConsts, SYSTEM;

TYPE

ChanId = IOChan.ChanId;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

(*

CONST
(*

Accepted singleton values of FlagSet *)

input operations are requested/available *)

read = FlagSet{ChanConsts.readFlag};

(*

output operations are requested/available *)

write = FlagSet{ChanConsts.writeFlag};

(*

a file may/must/did exist before the channel is opened *)

0old = FlagSet{ChanConsts.oldFlag};

(* text operations are requested/available *)
text = FlagSet{ChanConsts.textFlag};

(* raw operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

PROCEDURE Open0Old (VAR cid: Chanld; name: ARRAY OF CHAR; flags: FlagSet;

(*

*)

VAR res: OpenResults);
Attempts to obtain and open a channel connected to a stored random
access file of the given name.
The old flag is implied; without the write flag, read is implied;
without the text flag, raw is implied.
If successful, assigns to cid the identity of the opened channel,
assigns the value opened to res, and sets the read/write position
to the start of the file.
If a channel cannot be opened as required, the value of res indicates]
the reason, and cid identifies the invalid channel.

PROCEDURE OpenClean (VAR cid: Chanld; name: ARRAY OF CHAR; flags: FlagSet;l

(*

VAR res: OpenResults);
Attempts to obtain and open a channel connected to a stored random
access file of the given name.
The write flag is implied; without the text flag, raw is implied.
If successful, assigns to cid the identity of the opened channel,
assigns the value opened to res, and truncates the file to zero length.|]

Chapter 4: PIM and ISO library definitions 377

If a channel cannot be opened as required, the value of res indicates|]
the reason, and cid identifies the invalid channel.

*)

PROCEDURE IsRndFile (cid: ChanId): BOOLEAN;
(* Tests if the channel identified by cid is open to a random access file. *)J]

PROCEDURE IsRndFileException (): BOOLEAN;

(* Returns TRUE if the current coroutine is in the exceptional execution]]
state because of the raising of a RndFile exception; otherwise returnsji
FALSE.

*)

CONST
FilePosSize = SIZE(LONGINT) ;
(* <implementation-defined whole number greater than zero>; *)

TYPE
FilePos = LONGINT ; (* ARRAY [1 .. FilePosSize] OF SYSTEM.LOC; *)

PROCEDURE StartPos (cid: ChanlId): FilePos;

(* If the channel identified by cid is not open to a random access file,J]
the exception wrongDevice is raised; otherwise returns the position off}
the start of the file.

*)

PROCEDURE CurrentPos (cid: ChanId): FilePos;
(* If the channel identified by cid is not open to a random access file,]]
the exception wrongDevice is raised; otherwise returns the position
of the current read/write position.

*)

PROCEDURE EndPos (cid: ChanId): FilePos;
(* If the channel identified by cid is not open to a random access file,]]
the exception wrongDevice is raised; otherwise returns the first
position after which there have been no writes.

*)

PROCEDURE NewPos (cid: ChanId; chunks: INTEGER; chunkSize: CARDINAL;
from: FilePos): FilePos;

(* If the channel identified by cid is not open to a random access file,J]
the exception wrongDevice is raised; otherwise returns the position
(chunks * chunkSize) relative to the position given by from, or
raises the exception posRange if the required position cannot be
represented as a value of type FilePos.

Chapter 4: PIM and ISO library definitions 378

PROCEDURE SetPos (cid: Chanld; pos: FilePos);
(* If the channel identified by cid is not open to a random access file,J]
the exception wrongDevice is raised; otherwise sets the read/write
position to the value given by pos.

*)

PROCEDURE Close (VAR cid: ChanId);
(* If the channel identified by cid is not open to a random access file,]]
the exception wrongDevice is raised; otherwise closes the channel,
and assigns the value identifying the invalid channel to cid.

*)

END RndFile.

Chapter 4: PIM and ISO library definitions 379

4.4.46 gm2-libs-iso/SIOResult
DEFINITION MODULE SIOResult;

(* Read results for the default input channel *)
IMPORT IOConsts;

TYPE
ReadResults = I0Consts.ReadResults;

(*
ReadResults = (* This type is used to classify the result of an input operation
(
notKnown, (* no read result is set *)
allRight, (*x data is as expected or as required *)
outOfRange, (* data cannot be represented *)
wrongFormat, (* data not in expected format *)
endOfLine, (* end of line seen before expected data *)
endOfInput (* end of input seen before expected data *)
)
*)

PROCEDURE ReadResult (): ReadResults;
(* Returns the result for the last read operation on the default input channel. *)Jj

END SIOResult.

Chapter 4: PIM and ISO library definitions 380

4.4.47 gm?2-libs-iso/SLonglO
DEFINITION MODULE SLongIO;
(* Input and output of long real numbers in decimal text form

using default channels. The read result is of the type
I0Consts.ReadResults.

*)

(* The text form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit},
[".", {decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"]1, decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (VAR real: LONGREAL);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
fixed or floating point number. The value of this number
is assigned to real. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteFloat (real: LONGREAL; sigFigs: CARDINAL;
width: CARDINAL);
(* Writes the value of real to the default output channel in
floating-point text form, with sigFigs significant figures,
in a field of the given minimum width.

*)

PROCEDURE WriteEng (real: LONGREAL; sigFigs: CARDINAL;
width: CARDINAL);
(*x As for WriteFloat, except that the number is scaled with
one to three digits in the whole number part, and with an
exponent that is a multiple of three.

*)

PROCEDURE WriteFixed (real: LONGREAL; place: INTEGER;
width: CARDINAL);
(* Writes the value of real to the default output channel in
fixed-point text form, rounded to the given place relative
to the decimal point, in a field of the given minimum width.

*)

Chapter 4: PIM and ISO library definitions

PROCEDURE WriteReal (real: LONGREAL; width: CARDINAL);

(* Writes the value of real to the default output channel, as
WriteFixed if the sign and magnitude can be shown in the
given width, or otherwise as WriteFloat. The number of
places or significant digits depends on the given width.

*)

END SLongIO.

381

Chapter 4: PIM and ISO library definitions

4.4.48 gm?2-libs-iso/SLongWholelO
DEFINITION MODULE SLonglWholeIO;

(* Input and output of whole numbers in decimal text form over
default channels. The read result is of the type
I0Consts.ReadResults.

*)

(x The text form of a signed whole number is
["+" | "-"], decimal digit, {decimal digit}

The text form of an unsigned whole number is
decimal digit, {decimal digit}
*)

PROCEDURE ReadInt (VAR int: LONGINT);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
whole number. The value of this number is assigned
to int. The read result is set to the value allRight,
outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteInt (int: LONGINT; width: CARDINAL);
(* Writes the value of int to the default output channel in
text form, in a field of the given minimum width.

*)

PROCEDURE ReadCard (VAR card: LONGCARD);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of an
unsigned whole number. The value of this number is
assigned to card. The read result is set to the value

allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteCard (card: LONGCARD; width: CARDINAL);
(* Writes the value of card to the default output channel in
text form, in a field of the given minimum width.

*)

END SLongWholeIO.

382

Chapter 4: PIM and ISO library definitions 383

4.4.49 gm?2-libs-iso/SRawlIO
DEFINITION MODULE SRawIO;

(* Reading and writing data over default channels using raw operations, that is, wit
conversion or interpretation. The read result is of the type I0Consts.ReadResults

*)
IMPORT SYSTEM;

PROCEDURE Read (VAR to: ARRAY OF SYSTEM.LOC);

(* Reads storage units from the default input channel, and assigns them to successiv
components of to. The read result is set to the value allRight, wrongFormat, or]j
endOfInput.

*)

PROCEDURE Write (from: ARRAY OF SYSTEM.LOC) ;
(* Writes storage units to the default output channel from successive components of

*)

END SRawlO.

Chapter 4: PIM and ISO library definitions 384

4.4.50 gm2-libs-iso/SReallO
DEFINITION MODULE SReallO;

(* Input and output of real numbers in decimal text form over
default channels. The read result is of the type
I0Consts.ReadResults.

*)

(* The text form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit},
[".", {decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"]1, decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (VAR real: REAL);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
fixed or floating point number. The value of this number
is assigned to real. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteFloat (real: REAL; sigFigs: CARDINAL; width: CARDINAL);
(* Writes the value of real to the default output channel in
floating-point text form, with sigFigs significant figures,
in a field of the given minimum width.

*)

PROCEDURE WriteEng (real: REAL; sigFigs: CARDINAL; width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with one to
three digits in the whole number part, and with an exponent that
is a multiple of three.

*)

PROCEDURE WriteFixed (real: REAL; place: INTEGER; width: CARDINAL);
(* Writes the value of real to the default output channel in
fixed-point text form, rounded to the given place relative
to the decimal point, in a field of the given minimum width.

*)

PROCEDURE WriteReal (real: REAL; width: CARDINAL);
(* Writes the value of real to the default output channel, as
WriteFixed if the sign and magnitude can be shown in the

Chapter 4: PIM and ISO library definitions 385

given width, or otherwise as WriteFloat. The number of
places or significant digits depends on the given width.

*)

END SReallIO.

Chapter 4: PIM and ISO library definitions 386

4.4.51 gm?2-libs-iso/SShortIO
DEFINITION MODULE SShortIO;

(* Input and output of short real numbers in decimal text form
using default channels. The read result is of the type
I0Consts.ReadResults.

*)

(* The text form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit},
[".", {decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"]1, decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (VAR real: SHORTREAL);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
fixed or floating point number. The value of this number
is assigned to real. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteFloat (real: SHORTREAL; sigFigs: CARDINAL;
width: CARDINAL);
(* Writes the value of real to the default output channel in
floating-point text form, with sigFigs significant figures,
in a field of the given minimum width.

*)

PROCEDURE WriteEng (real: SHORTREAL; sigFigs: CARDINAL;
width: CARDINAL);
(*x As for WriteFloat, except that the number is scaled with
one to three digits in the whole number part, and with an
exponent that is a multiple of three.

*)

PROCEDURE WriteFixed (real: SHORTREAL; place: INTEGER;
width: CARDINAL);
(* Writes the value of real to the default output channel in
fixed-point text form, rounded to the given place relative
to the decimal point, in a field of the given minimum width.

*)

Chapter 4: PIM and ISO library definitions

PROCEDURE WriteReal (real: SHORTREAL; width: CARDINAL);

(* Writes the value of real to the default output channel, as
WriteFixed if the sign and magnitude can be shown in the
given width, or otherwise as WriteFloat. The number of
places or significant digits depends on the given width.

*)

END SShortIO.

387

Chapter 4: PIM and ISO library definitions 388

4.4.52 gm2-libs-iso/SShortWholelO
DEFINITION MODULE SShortWholeIO;

(* Input and output of whole numbers in decimal text form over
default channels. The read result is of the type
I0Consts.ReadResults.

*)

(x The text form of a signed whole number is
["+" | "-"], decimal digit, {decimal digit}

The text form of an unsigned whole number is
decimal digit, {decimal digit}
*)

PROCEDURE ReadInt (VAR int: SHORTINT);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
whole number. The value of this number is assigned
to int. The read result is set to the value allRight,
outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteInt (int: SHORTINT; width: CARDINAL);
(* Writes the value of int to the default output channel in
text form, in a field of the given minimum width.

*)

PROCEDURE ReadCard (VAR card: SHORTCARD);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of an
unsigned whole number. The value of this number is
assigned to card. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteCard (card: SHORTCARD; width: CARDINAL);
(* Writes the value of card to the default output channel in
text form, in a field of the given minimum width.

*)

END SShortWholeIO.

Chapter 4: PIM and ISO library definitions 389

4.4.53 gm?2-libs-iso/STextIO
DEFINITION MODULE STextIO;

(* Input and output of character and string types over default channels. The read re
is of the type I0Consts.ReadResults.
*)

(* The following procedures do not read past line marks *)

PROCEDURE ReadChar (VAR ch: CHAR);

(* If possible, removes a character from the default input stream, and assigns thel]
corresponding value to ch. The read result is set to allRight, endOfLine orj}
endOfInput.

*)

PROCEDURE ReadRestLine (VAR s: ARRAY OF CHAR);

(* Removes any remaining characters from the default input stream before the next 1i
mark, copying to s as many as can be accommodated as a string value. The read re
is set to the value allRight, outOfRange, endOfLine, or endOfInput.

*)

PROCEDURE ReadString (VAR s: ARRAY OF CHAR);

(* Removes only those characters from the default input stream before the next line
that can be accommodated in s as a string value, and copies them to s. The read r
is set to the value allRight, endOfLine, or endOfInput.

*)

PROCEDURE ReadToken (VAR s: ARRAY OF CHAR);

(* Skips leading spaces, and then removes characters from the default input stream b
the next space or line mark, copying to s as many as can be accommodated as a str
value. The read result is set to the value allRight, outOfRange, endOfLine, orfi
endOfInput.

*)

(* The following procedure reads past the next line mark *)

PROCEDURE SkipLine;

(* Removes successive items from the default input stream up to and including the ne
line mark or until the end of input is reached. The read result is set to the val
allRight, or endOfInput.

*)

(* Output procedures *)

PROCEDURE WriteChar (ch: CHAR);

Chapter 4: PIM and ISO library definitions 390

(* Writes the value of ch to the default output stream. *)

PROCEDURE WriteLln;
(* Writes a line mark to the default output stream. *)

PROCEDURE WriteString (s: ARRAY OF CHAR);
(* Writes the string value of s to the default output stream. *)

END STextIO.

Chapter 4: PIM and ISO library definitions 391

4.4.54 gm?2-libs-iso/SWholelO
DEFINITION MODULE SWholeIO;

(* Input and output of whole numbers in decimal text form over
default channels. The read result is of the type
I0Consts.ReadResults.

*)

(x The text form of a signed whole number is
["+" | "-"], decimal digit, {decimal digit}

The text form of an unsigned whole number is
decimal digit, {decimal digit}
*)

PROCEDURE ReadInt (VAR int: INTEGER);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
whole number. The value of this number is assigned
to int. The read result is set to the value allRight,
outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteInt (int: INTEGER; width: CARDINAL);
(* Writes the value of int to the default output channel in
text form, in a field of the given minimum width.

*)

PROCEDURE ReadCard (VAR card: CARDINAL);

(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of an
unsigned whole number. The value of this number is
assigned to card. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.

*)

PROCEDURE WriteCard (card: CARDINAL; width: CARDINAL);
(* Writes the value of card to the default output channel in
text form, in a field of the given minimum width.

*)

END SWholeIO.

Chapter 4: PIM and ISO library definitions 392

4.4.55 gm2-libs-iso/SYSTEM
DEFINITION MODULE SYSTEM;

(* Gives access to system programming facilities that are probably
non portable. *)

(* The constants and types define underlying properties of storage *)

EXPORT QUALIFIED BITSPERLOC, LOCSPERWORD,
LOC, BYTE, WORD, ADDRESS, CSIZE_T, CSSIZE_T, COFF_T, (x
Target specific data types. *)
ADDADR, SUBADR, DIFADR, MAKEADR, ADR, ROTATE,
SHIFT, CAST, TSIZE,

(* Internal GM2 compiler functions *)
ShiftVal, ShiftLeft, ShiftRight,
RotateVal, RotatelLeft, RotateRight,
THROW, TBITSIZE ;

CONST
(* <implementation-defined constant> ; *)
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
(* <implementation-defined constant> ; *)
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* <implementation-defined constant> ; *)
LOCSPERBYTE = 8 DIV BITSPERLOC ;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINALS8, CARDINAL16, CARDINAL32, CARDINAL64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. *)

(*

A1l the data types and procedures below are declared internally.

TYPE

Chapter 4: PIM and ISO library definitions 393

(* Target specific data types. *)

TYPE
LOC; (* A system basic type. Values are the uninterpreted
contents of the smallest addressable unit of storage *)
ADDRESS = POINTER TO LOC;
WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)

TYPE
BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr + offset), or may raise
an exception if this address is not valid.

*)

PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr - offset), or may raise an
exception if this address is not valid.

*)

PROCEDURE DIFADR (addrl, addr2: ADDRESS): INTEGER;
(* Returns the difference between addresses (addrl - addr2),
or may raise an exception if the arguments are invalid
or address space is non-contiguous.

*)

PROCEDURE MAKEADR (high: <some type>; ...): ADDRESS;
(* Returns an address constructed from a list of values whose
types are implementation-defined, or may raise an
exception if this address is not valid.

In GNU Modula-2, MAKEADR can take any number of arguments
which are mapped onto the type ADDRESS. The first parameter
maps onto the high address bits and subsequent parameters map
onto lower address bits. For example:

a := MAKEADR(BYTE(OFEH), BYTE(ODCH), BYTE(OBAH), BYTE(09SH),
BYTE(0O76H), BYTE(054H), BYTE(032H), BYTE(O10H)) ;

then the value of, a, on a 64 bit machine is: OFEDCBA9876543210H
The parameters do not have to be th