GNAT Reference Manual

GNAT Reference Manual , Oct 17, 2025
AdaCore
Copyright (© 2008-2025, Free Software Foundation

Table of Contents

1 About This Guide............................... 2
1.1 What This Reference Manual Contains.......................... 2
1.2 Conventionst e 3
1.3 Related Information......... ... o i 3

2 Implementation Defined Pragmas.............. 5
2.1 Pragma Abort_Defer........o 5
2.2 Pragma Abstract_State......... ... 5
2.3 Pragma Ada_83 6
2.4 Pragma Ada_-95 ... 7
2.5 Pragma Ada_05o 7
2.6 Pragma Ada_2005t 7
2.7 Pragma Ada_12 8
2.8 Pragma Ada_2012t 8
2.9 Pragma Ada_2022 8
2.10 Pragma Aggregate_Individually_Assign 9
2.11 Pragma Allow_Integer Addressc.cooiiiiiiean... 9
2.12 Pragma Always_Terminatesoooiiiiiiiiia... 10
2.13 Pragma Annotateo 10
214 Pragma ASSertot 10
2.15 Pragma Assert_And_Cut i 11
2.16 Pragma Assertion_Level L. 11
2.17 Pragma Assertion_Policy i 12
2.18 Pragma ASSUME.ttt e 13
2.19 Pragma Assume_No_Invalid_Values........................... 14
2.20 Pragma Async_Readers..........o i, 14
2.21 Pragma Async_Writers ..o 14
2.22 Pragma Attribute_Definitiono 15
2.23 Pragma C_Pass By_Copy......ccooiiiiiiiiiiiiiiiiiian. 15
224 Pragma Check ... 15
2.25 Pragma Check_Float_Overflow.............., 16
2.26 Pragma Check_-Name.......... i i 16
2.27 Pragma Check_Policyc..coi i 17
2.28 Pragma Comment...........ouiiiiiiiiiii e 18
2.29 Pragma Common_Object ..., 18
2.30 Pragma Compile_Time_Error.............. 19
2.31 Pragma Compile_Time_Warning....................ooii.... 19
2.32 Pragma Complete_Representation 19
2.33 Pragma Complex_Representation............................. 20
2.34 Pragma Component_Alignment......................c.oo.... 20
2.35 Pragma Constant_After_Elaboration.......................... 21
2.36 Pragma Contract_Casesoviriieiiiiieiiiiinennn... 21
2.37 Pragma Convention_Identifier 22

2.38
2.39
2.40
241
2.42
2.43
2.44
2.45
2.46
247
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84

Pragma CPP_Class. ..ot 23
Pragma CPP_Constructor ..., 23
Pragma CPP_Virtual......... i, 24
Pragma CPP_Vtable..........o i i 24
Pragma CPU. e 24
Pragma Deadline_Floor........... i i 24
Pragma Debug ... 24
Pragma Debug_Policyco i 25
Pragma Default_Initial_Condition 25
Pragma Default_Scalar_Storage_Order........................ 25
Pragma Default_Storage_Pool 26
Pragma Depends ... 26
Pragma Detect_Blocking L 27
Pragma Disable_Atomic_Synchronization 27
Pragma Dispatching_Domain.............. o ... 28
Pragma Effective_Reads.......... i 28
Pragma Effective_Writes. ... 28
Pragma Elaboration_Checks...........o i, 28
Pragma Eliminate.......... ..o i i 28
Pragma Enable_Atomic_Synchronization...................... 31
Pragma Exceptional _Cases ... 31
Pragma Exit_Cases. ... 31
Pragma Export_Function............. i i i 31
Pragma Export_Object....... ... oo i 32
Pragma Export_Procedure................... 33
Pragma Export_Valued_Procedure............................ 34
Pragma Extend_System o i 34
Pragma Extensions_Allowed 35
Pragma Extensions_Visible............ ... oL 35
Pragma External 36
Pragma External Name_Casing........... ..., 36
Pragma Fast_Math........ ..o 37
Pragma Favor_Top_Levelo it 37
Pragma Finalize_Storage_ Only............. 37
Pragma Float_Representation 38
Pragma Ghost. i 38
Pragma Global 38
Pragma Ident 39
Pragma Ignore_Pragma.......... i i 39
Pragma Implementation_Defined 39
Pragma Implemented........... i 39
Pragma Implicit_Packing............. 40
Pragma Import_Function............... 41
Pragma Import_Object........ ..o 42
Pragma Import_Procedure............. L. 42
Pragma Import_Valued_Procedure............................ 43

Pragma Independent i 44

ii

2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
2.95
2.96
2.97
2.98
2.99
2.100
2.101
2.102
2.103
2.104
2.105
2.106
2.107
2.108
2.109
2.110
2.111
2.112
2.113
2.114
2.115
2.116
2.117
2.118
2.119
2.120
2.121
2.122
2.123
2.124
2.125
2.126
2.127
2.128
2.129
2.130
2.131

Pragma Independent_Components............................ 44
Pragma Initial_Condition................... 44
Pragma Initialize_Scalars..........ol 45
Pragma Initializes.......... . i 46
Pragma Inline_ Always. ... 46
Pragma Inline_Generico i 47
Pragma Interface....... i 47
Pragma Interface_Nameo i L. 47
Pragma Interrupt_Handler............ L. 47
Pragma Interrupt_State i 48
Pragma Interrupts_System_By_Default 49
Pragma Invariant........o i i 49
Pragma Keep_-Names...........ccoooiiiiiiiiiiiii i 49
Pragma License 50
Pragma Link With..... ... o 51
Pragma Linker_Alias.............oo o i 51
Pragma Linker_Constructor 52
Pragma Linker_Destructor............... oo, 52
Pragma Linker_Section............ i it 52
Pragma Lock_Free oo i 53
Pragma Loop_Invariant L 54
Pragma Loop_Optimize, 55
Pragma Loop_Varianto i, 55
Pragma Machine_Attribute............ 56
Pragma Main 56
Pragma Main_Storage. ..., 56
Pragma Max_Queue_Length......... 57
Pragma No_Body i 57
Pragma No_Caching.......... ..o il 57
Pragma No_Component_Reordering o7
Pragma No_Elaboration_Code_All........................... 58
Pragma No_Heap_Finalization................ 58
Pragma No_Inline.......... i i, 58
Pragma No_Raise i 59
Pragma No_Return........... oo i 59
Pragma No_Strict_Aliasingt 59
Pragma No_Tagged_Streams....................cooiiio.... 59
Pragma Normalize_Scalarso, 60
Pragma Obsolescent. ... 61
Pragma Optimize_Alignment 63
Pragma Ordered ... 64
Pragma Overflow_Mode i, 65
Pragma Overriding_Renamings................, 65
Pragma Part_Of. 0 66
Pragma Partition_Elaboration_Policy........................ 66
Pragma Passive i 66

Pragma Persistent _BSS........ 67

iii

2.132
2.133
2.134
2.135
2.136
2.137
2.138
2.139
2.140
2.141
2.142
2.143
2.144
2.145
2.146
2.147
2.148
2.149
2.150
2.151
2.152
2.153
2.154
2.155
2.156
2.157
2.158
2.159
2.160
2.161
2.162
2.163
2.164
2.165
2.166
2.167
2.168
2.169
2.170
2.171
2.172
2.173
2.174
2.175
2.176
2.177
2.178

Pragma Post...... ... 67
Pragma Postcondition............ ... o il 67
Pragma Post_Class. ... 70
Pragma Pre. ... 70
Pragma Precondition............. ... i 70
Pragma Predicate......... ... i 71
Pragma Predicate_Failure L 72
Pragma Preelaborable_Initialization 72
Pragma Prefix_Exception-Messages....................oo... 72
Pragma Pre_Class. ...t 72
Pragma Priority_Specific_Dispatching........................ 73
Pragma Profile...... 73
Pragma Profile_-Warnings.............. ... i 76
Pragma Program _Exit............cooo i 76
Pragma Propagate_Exceptions............... 76
Pragma Provide_Shift_Operators............................ 76
Pragma Psect_Object i 7
Pragma Pure_Function...........o, 77
Pragma Rational oo i 78
Pragma Ravenscar it 78
Pragma Refined_Dependst 78
Pragma Refined_Globalot 79
Pragma Refined_Post.......... o i i 79
Pragma Refined_State............ il 79
Pragma Relative_Deadline......................, 80
Pragma Remote_Access_Type 80
Pragma Rename_Pragma............. 80
Pragma Restricted_Run_Time............... 81
Pragma Restriction_-Warningsot 81
Pragma Reviewable i 81
Pragma Secondary_Stack_Size........... 82
Pragma Share_Generic, 83
Pragma Shared...... 83
Pragma Short_Circuit_And_Or........... 83
Pragma Short_Descriptors.........c.oouiiiiiiieiinaan.. 84
Pragma Side_Effects........o i 84
Pragma Simple_Storage_Pool_Type.......................... 84
Pragma Source_File_Namet 85
Pragma Source_File_Name_Project 86
Pragma Source_Reference 87
Pragma SPARK Mode ... 87
Pragma Static_Elaboration_Desired.......................... 88
Pragma Stream_Converto i 88
Pragma Style_Checks......... ... i i 89
Pragma Subprogram_Variant............... 91
Pragma Subtitle........ 92

Pragma Suppress.oiii 92

iv

2.179 Pragma Suppress_All. ...t 93
2.180 Pragma Suppress_Debug_Info L. 93
2.181 Pragma Suppress_Exception_Locations 93
2.182 Pragma Suppress_Initialization............... 94
2.183 Pragma Task_ Name....... 94
2.184 Pragma Task_Storagecooeiiiiiiiiiiiiiiiinian.. 95
2.185 Pragma Test_Caseovutiniiniiiiii i 95
2.186 Pragma Thread_Local_Storage 96
2.187 Pragma Time_Slice.........ooiiiiiiiiiiiiii .. 96
2.188 Pragma Title. 97
2.189 Pragma Type_Invariant, 97
2.190 Pragma Type_Invariant_Classoooiiiio... 97
2.191 Pragma Unchecked_Union............... ..., 98
2.192 Pragma Unevaluated_Use_ Of_Old 98
2.193 Pragma User_Aspect_Definition 98
2.194 Pragma Unimplemented_Unit, 99
2.195 Pragma Universal_Aliasing, 99
2.196 Pragma Unmodified.......... i 99
2.197 Pragma Unreferenced i, 100
2.198 Pragma Unreferenced_Objects.......... ..., 101
2.199 Pragma Unreserve_All_Interrupts.............. 101
2.200 Pragma UnSUppPIesSSuveetetteeen i 101
2.201 Pragma Unusedcooiiiiiiiiiiiiiii ., 102
2.202 Pragma Use_.VADS_Size........c.oiiiiiiiiiiiii . 102
2.203 Pragma Validity_Checks.............coiiiiiiiiiiii. .. 102
2.204 Pragma Volatile.......o 103
2.205 Pragma Volatile_Full_Access, 103
2.206 Pragma Volatile_Function.............., 104
2.207 Pragma Warning_As_Frror.......... 104
2.208 Pragma Warnings.............cooiiiiiiiiiiiiiiii .. 105
2.209 Pragma Weak _External 107
2.210 Pragma Wide_Character_Encoding......................... 108

Implementation Defined Aspects............ 109
3.1 Aspect Abstract_State.......... ..o 109
3.2 Aspect Always_Terminates ..., 109
3.3 Aspect Annotate........... 109
3.4 Aspect Async_Readers............. o i 110
3.5 Aspect Async_ Writers..........ooiiiii i 110
3.6 Aspect Constant_After_Elaboration........................... 110
3.7 Aspect Contract_Casesoueeiieiii i 110
3.8 Aspect Depends.........coiiiiiiii 110
3.9 Aspect Default_Initial_Condition 110
3.10 Aspect DIMension........ ..ot 110
3.11 Aspect Dimension_System...............c.ooiiiiiiiiiiia.... 111
3.12 Aspect Disable_Controlled............, 112

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59

Aspect Effective_Reads..................l 112
Aspect Effective_Writes ... 112
Aspect Exceptional_Casesc.coviiiiiiiiiiiiii.. 112
Aspect Exit_Casesouiii i 112
Aspect Extended_Access i 112
Aspect Extensions_Visible............. L 113
Aspect Favor_Top_Level.......... ... o i 114
Aspect GhoSt . ..ot 114
Aspect Ghost_Predicate...............o i 114
Aspect Global...... ... 114
Aspect Initial_Condition........... ..., 114
Aspect Initializes. ... 114
Aspect Inline_Always. ..o 114
Aspect Invariant ... 114
Aspect Invariant’Class. . ..o 114
Aspect Tterable. i 114
Aspect Linker_Section......... i 115
Aspect Local_Restrictions 115
Aspect Lock_Free 116
Aspect Max_Queue_Length................o ... 116
Aspect No_Caching 116
Aspect No_Elaboration_Code_All............................ 116
Aspect No_Inline....... ... 116
Aspect No_Raiseooiii i 116
Aspect No_Tagged_Streamsccoviiiiieinn... 117
Aspect No_Task_Parts............. .o i, 117
Aspect Object_Size. 117
Aspect Obsolescent. ... 117
Aspect Part_Of 117
Aspect Persistent_BSS 117
Aspect Potentially Invalid........... ... oo 117
Aspect Predicate 117
Aspect Program_Exit 117
Aspect Pure_Function............o i 117
Aspect Refined_Depends ..., 118
Aspect Refined_Global 118
Aspect Refined_Post ... 118
Aspect Refined_State. ... 118
Aspect Relaxed_Initialization....................covion... 118
Aspect Remote_Access_Type 118
Aspect Scalar_Storage_Order........... 118
Aspect Secondary_Stack_Size................ i 118
Aspect Shared 118
Aspect Side_Effects o 118
Aspect Simple_Storage_Pool............ 118
Aspect Simple_Storage_Pool_Type.......... ...t 118

Aspect SPARK_Modeoooiii i 119

vi

3.60 Aspect Subprogram_Variant................. 119
3.61 Aspect Suppress_Debug_Info..............., 119
3.62 Aspect Suppress_Initialization............................... 119
3.63 Aspect Test_Caseouviiii 119
3.64 Aspect Thread_Local_Storaget 119
3.65 Aspect Universal_Aliasing 119
3.66 Aspect Unmodified.......... ... i 119
3.67 Aspect Unreferencedo i 119
3.68 Aspect Unreferenced_Objects. 119
3.69 Aspect User_ASpectovviiiniii i 119
3.70 Aspect Value_Size........ .o 120
3.71 Aspect Volatile_Full_Access ..., 120
3.72 Aspect Volatile_Function............. 120
3.73 Aspect Warnings........ ..o 120

Implementation Defined Attributes......... 121
4.1 Attribute Abort_Signal.......... 121
4.2 Attribute Address_Size i 121
4.3 Attribute Asm_Input....... 121
4.4 Attribute Asm_Output ... 121
4.5 Attribute Atomic_Always_Lock_Free.......................... 122
4.6 Attribute Bit. 122
4.7 Attribute Bit_Position............... ... 122
4.8 Attribute Code_ Address........ ..o, 122
4.9 Attribute Compiler_Version.............. ..., 123
4.10 Attribute Constrained........... ... 123
4.11 Attribute Default_Bit_Order............ 123
4.12 Attribute Default_Scalar_Storage_ Order 123
4.13 Attribute Deref 123
4.14 Attribute Descriptor_Size.......... ..o 123
4.15 Attribute Elaborated 124
4.16 Attribute Elab_Bodyo 124
4.17 Attribute Elab_Spec. ... 124
4.18 Attribute Elab_Subp_Body i 124
4.19 Attribute Emax 124
4.20 Attribute Enabled......... 125
4.21 Attribute Enum_Rep........... 125
4.22 Attribute Enum_Val......... 125
4.23 Attribute Epsilon o 126
4.24 Attribute Fast_Math 126
4.25 Attribute Finalization_Size 126
4.26 Attribute Fixed_Value........... ..., 126
4.27 Attribute From_Any 126
4.28 Attribute Has_Access_Values............ oot 126
4.29 Attribute Has_Discriminants 127
4.30 Attribute Has_Tagged_Values............... 127

vii

4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77

Attribute Imgo 127
Attribute Initialized............ 127
Attribute Integer_Value i 127
Attribute Invalid_Value.......... i i 128
Attribute Large 128
Attribute Library_Level oo i 128
Attribute Loop_Entry o 128
Attribute Machine_Size............... i 129
Attribute Mantissaot 129
Attribute Maximum_Alignment............. 129
Attribute Max_Integer_Size......... i, 129
Attribute Mechanism_Code............ i 129
Attribute Null_Parameter, 129
Attribute Object_Size 129
Attribute Old 130
Attribute Passed_By_Reference.............................. 131
Attribute Pool_Address ... 131
Attribute Range_Length............ 131
Attribute Restriction_Set......... 131
Attribute Result 132
Attribute Round 132
Attribute Safe_Emax............ 132
Attribute Safe_Large 132
Attribute Safe_Small 132
Attribute Scalar_Storage_Order.............................. 132
Attribute Simple_Storage_Pool o 135
Attribute Small 136
Attribute Small_Denominator 136
Attribute Small_Numerator.......... 136
Attribute Storage_Unit ...t 136
Attribute Stub_Type 136
Attribute System_Allocator_Alignment 137
Attribute Target_Name......... ..., 137
Attribute To_Address ... 137
Attribute To_Anyo 137
Attribute Type_Class ..o 137
Attribute Type_ Key.o 138
Attribute TypeCode.cooiiii e 138
Attribute Unconstrained_Array................oooiiiiiii... 138
Attribute Universal_Literal_String........................... 138
Attribute Unrestricted_Access 138
Attribute Update ... 141
Attribute Valid_Value i i 142
Attribute Valid_Scalars............ i 143
Attribute VADS_Size. ... 143
Attribute Value_Size ... 143
Attribute Wchar_T_Size. ... 143

viii

4.78 Attribute Word_Size 144

5 Standard and Implementation

Defined Restrictions 145
5.1 Partition-Wide Restrictions.......... i 145
5.1.1 Immediate_Reclamation, 145
5.1.2 Max_Asynchronous_Select_Nesting....................... 145
5.1.3 Max_Entry_Queue_Length.......... 145
5.1.4 Max_Protected_Entries........... ... i 145
5.1.5 Max_Select_Alternatives..............ccooiiiiiiiii .. 145
5.1.6 Max_Storage_At_Blocking, 146
5.1.7 Max_Task_Entries............cooiiiii i, 146
5.1.8 Max_ Tasks ... 146
5.1.9 No_Abort_Statements 146
5.1.10 No_Access_Parameter_Allocators 146
5.1.11 No_Access_Subprograms.ccouueeiueenieenne... 146
5.1.12 No_Allocatorsou e 146
5.1.13 No_Anonymous_Allocatorscooiiiiii .. 146
5.1.14 No_Asynchronous_Control.............................. 146
5.1.15 No_Calendaro 146
5.1.16 No_Coextensionsouuuiiiiiieiiiiaae.n. 146
5.1.17 No_Default_Initialization 147
5.1.18 No_Delay ..o 147
5.1.19 No_Dependenceccoiiiiiiiiiiiiiiiiiaana.. 147
5.1.20 No_Direct_Boolean_Operators 147
5.1.21 No_Dispatch 147
5.1.22 No_Dispatching_Calls.......... ..., 147
5.1.23 No_Dynamic_Attachment............................... 149
5.1.24 No_Dynamic_Prioritiesccoii i 149
5.1.25 No_Entry_Calls_In_Elaboration_-Code................... 149
5.1.26 No_Enumeration_ Maps.........ccooiiiiiiiiiiiiiiin... 149
5.1.27 No_Exception_.Handlers.................. 149
5.1.28 No_Exception_Propagation 149
5.1.29 No_Exception_Registration..................... 150
5.1.30 No_Exceptionscoooiiiiiiiiiiiii i, 150
5.1.31 No_Finalization, 150
5.1.32 No_Fixed_Point i ... 150
5.1.33 No_Floating Point............. ... i i i 150
5.1.34 No_Implicit_Conditionals.................. 150
5.1.35 No_Implicit_Dynamic_Code............................. 151
5.1.36 No_Implicit_Heap_Allocations 151
5.1.37 No_Implicit_Protected_Object_Allocations 151
5.1.38 No_Implicit_Task_Allocations........................... 151
5.1.39 No_Initialize_Scalars.............o it 151
5.1.40 No_IO. .. oo 151

5.1.41

ix

5.1.42 No_Local_Protected_Objects................oooiii.. 151
5.1.43 No_Local_Tagged_Types........cooouiiiiiiiiiiiia... 151
5.1.44 No_Local_Timing_ Events............................... 152
5.1.45 No_Long_Long_Integers..................cooiiiiiiian. 152
5.1.46 No_Multiple_Elaboration 152
5.1.47 No_Nested_Finalization................................. 152
5.1.48 No_Protected_Type_Allocators 152
5.1.49 No_Protected_Types.......cooiiiiiiiiiiiiiiiiii.. 152
5.1.50 No_Recursiono, 152
5.1.501 No_Reentrancy............. oo, 152
5.1.502 No_Relative_Delay ..., 152
5.1.53 No_Requeue_Statements................................ 152
5.1.54 No_Secondary_Stack................oiiiiiiiiiii., 153
5.1.55 No_Select_Statements, 153
5.1.56 No_Specific_Termination_Handlers...................... 153
5.1.57 No_Specification_of _Aspectl 153
5.1.58 No_Standard_Allocators_After_Elaboration 153
5.1.59 No_Standard_Storage_Pools 153
5.1.60 No_Stream_Optimizations 153
5.1.61 NO_Streamsc.oeuiiiiteeiii i 153
5.1.62 No_Tagged_Type_Registration.......................... 154
5.1.63 No_Task_Allocatorscoviiiiiiiiiiiiiinnn... 154
5.1.64 No_Task_At_Interrupt_Priority 154
5.1.65 No_Task_Attributes_Package 154
5.1.66 No_Task_Hierarchy..................... . i i, 154
5.1.67 No_Task_Terminationcciiiiiiinn... 154
5.1.68 No_Tasking ... 154
5.1.69 No_Terminate_Alternatives................ ..., 154
5.1.70 No_Unchecked_Accessooviiiiiiiiiiiiini .. 155
5.1.71 No_Unchecked _Conversion..............coeeeiiueeannn.. 155
5.1.72 No_Unchecked_Deallocation 155
5.1.73 No_Use_Of_Attribute............cocoiiiiii .. 155
5.1.74 No_Use_Of_Entity........ccooiiiiiiiiiiiiii .. 155
5.1.75 No_Use_Of Pragmacoiiiiiiiiiiini... 155
5.1.76 Pure_Barrierscoiiiiiiiii 155
5.1.77 Simple_Barriers ... 156
5.1.78 Static_Priorities............coiii . 156
5.1.79 Static_Storage_Size......... .o 156
5.2 Program Unit Level Restrictions................... 156
5.2.1 No_Elaboration_Code...............cooiiiiiiiiiiiiinn. 156
5.2.2 No_Dynamic_Accessibility_Checks 157
5.2.3 No_Dynamic_Sized_Objects...........cccoiiiiiiiii... 157
5.24 No_Entry_Queue, 158
5.2.5 No_Implementation_Aspect_Specifications................ 158
5.2.6 No_Implementation_Attributes........................... 158
5.2.7 No_Implementation_Identifiers........................... 158
5.2.8 No_Implementation_Pragmas............................ 158

5.2.9 No_Implementation_Restrictions......................... 158
5.2.10 No_Implementation_Units.............................. 158
5.2.11 No_Implicit_Alasingccoeeiieniiiiaiaan.. 158
5.2.12 No_Implicit_Loops.ooveiiiiii i 159
5.2.13 No_Obsolescent_Features............................... 159
5.2.14 No_Wide_Characterscooiiiiiiiiiiian... 159
5.2.15 Static_Dispatch_Tables................................. 159
5216 SPARK 05 ... i 159

6 Implementation Advice....................... 160
6.1 RM 1.1.3(20): Error Detection.................ooooiiiioa... 160
6.2 RM 1.1.3(31): Child Units. 160
6.3 RM 1.1.5(12): Bounded Errorsooooiiiiiiiit, 160
6.4 RM 2.8(16): Pragmasoooiiiiiiiiiiiiiii 160
6.5 RM 2.8(17-19): Pragmasccoiuiiiiiiiiiiian.... 161
6.6 RM 3.5.2(5): Alternative Character Sets...................... 161
6.7 RM 3.5.4(28): Integer Types......coovuiuiiiiiiiiiiiiinnn. 162
6.8 RM 3.5.4(29): Integer Types......coovuiiiiiiiiiiiiinn. 162
6.9 RM 3.5.5(8): Enumeration Values 162
6.10 RM 3.5.7(17): Float Typesouvueiriiiiiiiiiaennn 162
6.11 RM 3.6.2(11): Multidimensional Arrays...................... 163
6.12 RM 9.6(30-31): Duration’Small.............................. 163
6.13 RM 10.2.1(12): Consistent Representation................... 163
6.14 RM 11.4.1(19): Exception Information....................... 163
6.15 RM 11.5(28): Suppression of Checks......................... 164
6.16 RM 13.1 (21-24): Representation Clauses.................... 164
6.17 RM 13.2(6-8): Packed Types............coooiiiiiiiiiiiiiin, 164
6.18 RM 13.3(14-19): Address Clauses..........c.coouiuiuininan... 165
6.19 RM 13.3(29-35): Alignment Clausesc....... 165
6.20 RM 13.3(42-43): Size Clauses.........ovvuiuininininininan .. 166
6.21 RM 13.3(50-56): Size Clauses.........o.vueiuiuineineennan.. 166
6.22 RM 13.3(71-73): Component Size Clauses 167
6.23 RM 13.4(9-10): Enumeration Representation Clauses 167
6.24 RM 13.5.1(17-22): Record Representation Clauses........... 167
6.25 RM 13.5.2(5): Storage Place Attributes...................... 168
6.26 RM 13.5.3(7-8): Bit Ordering...........cooviiiiiiiiiian.. 168
6.27 RM 13.7(37): Address as Private.................... 168
6.28 RM 13.7.1(16): Address Operationsc.coouu... 168
6.29 RM 13.9(14-17): Unchecked Conversion...................... 168
6.30 RM 13.11(23-25): Implicit Heap Usage 169
6.31 RM 13.11.2(17): Unchecked Deallocation 169
6.32 RM 13.13.2(1.6): Stream Oriented Attributes................ 169
6.33 RM A.1(52): Names of Predefined Numeric Types........... 170
6.34 RM A.3.2(49): Ada.Characters.Handling 170
6.35 RM A.4.4(106): Bounded-Length String Handling 170
6.36 RM A.5.2(46-47): Random Number Generation.............. 170

xi

6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65

RM A.10.7(23): Get_Immediate...........oovuuununenenen.n. 171
RM A.18: Containersooviuiiiiiiiiannaa.n.. 171
RM B.1(39-41): Pragma EXport..........cccovuiuiuinenannn.. 171
RM B.2(12-13): Package Interfaces........................ 172
RM B.3(63-71): Interfacing with C.......................... 172
RM B.4(95-98): Interfacing with COBOL.................... 173
RM B.5(22-26): Interfacing with Fortran 173
RM C.1(3-5): Access to Machine Operations................. 174
RM C.1(10-16): Access to Machine Operations 174
RM C.3(28): Interrupt Support.............coooviiiiiin... 175
RM C.3.1(20-21): Protected Procedure Handlers............. 175
RM C.3.2(25): Package Interrupts..............coovvnenn.. 175
RM C.4(14): Pre-elaboration Requirements.................. 175
RM C.5(8): Pragma Discard_Names......................... 175
RM C.7.2(30): The Package Task_Attributes 175
RM D.3(17): Locking Policies, 176
RM D.4(16): Entry Queuing Policies 176
RM D.6(9-10): Preemptive Abortc.oooia... 176
RM D.7(21): Tasking Restrictions........................... 176
RM D.8(47-49): Monotonic Time..............coooiiiiii.. 176
RM E.5(28-29): Partition Communication Subsystem........ 177
RM F(7): COBOL SUPPOTt « v 177
RM F.1(2): Decimal Radix Support 177
RM G: Numerics. ... 177
RM G.1.1(56-58): Complex Types........co.vuiiiiininnn... 178
RM G.1.2(49): Complex Elementary Functions 178
RM G.2.4(19): Accuracy Requirements...................... 179
RM G.2.6(15): Complex Arithmetic Accuracy 179
RM H.6(15/2): Pragma Partition_Elaboration_Policy 179

Implementation Defined Characteristics.... 180

Intrinsic Subprograms........................ 199
8.1 Intrinsic Operators..........c.oouiiiiiiiiiiiiiiiii . 199
8.2 Compilation_ ISO_Date ... 199
8.3 Compilation_Date...... i 199
8.4 Compilation_Time...... i 199
8.5 Enclosing_Entity 200
8.6 Exception_Information i 200
8.7 Exception_-Message....... ..ot 200
8.8 Exception.Name 200
8.9 File ... o 200
.10 LANE « ettt 200
8.11 Shifts and Rotates ... 201

xii

xiii

9 Representation Clauses and Pragmas....... 202
9.1 Alignment Clausesouuuttit i 202
9.2 Size Clatsesvvt 203
9.3 Storage_Size Clausesoovrit i 204
9.4 Size of Variant Record Objects ...t 205
9.5 Biased Representation...............oooiiiiiiiiiiiiiiinn.... 207
9.6 Value_Size and Object_Size Clauses................cooviiuo... 207
9.7 Component_Size Clauses ..ottt 210
9.8 Bit_Order Clausesvuuuriteiiie i 211
9.9 Effect of Bit_Order on Byte Ordering......................... 212
9.10 Pragma Pack for Arrays.............. i 216
9.11 Pragma Pack for Records.............. oL 218
9.12 Record Representation Clauses, 219
9.13 Handling of Records with Holes 220
9.14 Enumeration Clauses.ouuiiiiiiiiiiiieniaann. 221
9.15 Address ClatSes. . ..ottt 222
9.16 Use of Address Clauses for Memory-Mapped I/O 227
9.17 Effect of Convention on Representation...................... 227
9.18 Conventions and Anonymous Access Types.................. 228
9.19 Determining the Representations chosen by GNAT........... 230

10 Standard Library Routines................. 233

11 The Implementation of Standard I/0...... 244
11.1 Standard I/O Packages............cooviiiiiiiiiiiiiian... 244
11.2 FORM Stringsoovnutitii e 245
11.3 Direct IO ..o 245
11.4 Sequential IO i 245
115 Text IO . .. 246

11.5.1 Stream Pointer Positioning, 247
11.5.2 Reading and Writing Non-Regular Files................. 247
11.5.3 Get_-Immediate...........cooiiiiii i 248
11.5.4 Treating Text_1O Files as Streams...................... 248
11.5.5 Text_IO EXtensionsouiiiiiiiiiinenninaann. 248
11.5.6 Text_IO Facilities for Unbounded Strings............... 248
11.6 Wide_Text_IOo 249
11.6.1 Stream Pointer Positioning 251
11.6.2 Reading and Writing Non-Regular Files................. 252
11.7 Wide_Wide_Text_ IO ... 252
11.7.1 Stream Pointer Positioning 253
11.7.2 Reading and Writing Non-Regular Files................. 253
11.8 Stream_TO 254
11.9 Text Translation ..o, 254
11.10 Shared Fileso 254

11.11 Filenames encodingoouiiiuiiiiiineennnnnnnn. 255

11.12 File content encoding ...t 255
11.13 Open Modes ... ovvee e 256
11.14 Operations on C Streams. 256
11.15 Interfacing to C Streams il 259

12 The GNAT Library.......................... 262
12.1 Ada.Characters.Latin_9 (a-chlat9.ads).................. 262
12.2 Ada.Characters.Wide_Latin_1 (a-cwilal.ads)............ 262
12.3 Ada.Characters.Wide_Latin_9 (a-cwila9.ads)............ 262
12.4 Ada.Characters.Wide_Wide_Latin_1 (a-chzlal.ads)...... 262
12.5 Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)...... 263
12.6 Ada.Containers.Bounded_Holders (a-coboho.ads)......... 263
12.7 Ada.Command_Line.Environment (a-colien.ads)........... 263
12.8 Ada.Command_Line.Remove (a-colire.ads)................. 263
12.9 Ada.Command_Line.Response_File (a-clrefi.ads)......... 263
12.10 Ada.Direct_I0.C_Streams (a-diocst.ads)................ 263
12.11 Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads).... 263
12.12 Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)... 263
12.13 Ada.Exceptions.Traceback (a-exctra.ads)............... 264
12.14 Ada.Sequential_IO0.C_Streams (a-siocst.ads)........... 264
12.15 Ada.Streams.Stream_I0.C_Streams (a-ssicst.ads)...... 264
12.16 Ada.Strings.Unbounded.Text_I0 (a-suteio.ads)......... 264
12.17

Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads).. 264
12.18 Ada.Strings.Wide_Wide_Unbounded.Wide_

Wide_Text_IO0 (a-szuzti.ads)........covviiiniinininininannn 264
12.19 Ada.Task_Initialization (a-tasini.ads)................ 264
12.20 Ada.Text_I0.C_Streams (a-tiocst.ads).................. 264
12.21 Ada.Text_IO0.Reset_Standard_Files (a-tirsfi.ads)..... 264
12.22 Ada.Wide_Characters.Unicode (a-wichun.ads)........... 265
12.23 Ada.Wide_Text_I0.C_Streams (a-wtcstr.ads)............ 265
12.24 Ada.Wide_Text_I0.Reset_Standard_Files (a-wrstfi.ads)..265
12.25 Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)..... 265
12.26 Ada.Wide_Wide_Text_IO0.C_Streams (a-ztcstr.ads)...... 265
12.27 Ada.Wide_Wide_Text_I0.Reset_

Standard_Files (a-zrstfi.ads)ocoiiiiiiiiinia., 265
12.28 GNAT.Altivec (g-altive.ads)...........coovviuiuiunnnn... 265
12.29 GNAT.Altivec.Conversions (g-altcon.ads)............... 265
12.30 GNAT.Altivec.Vector_Operations (g-alveop.ads)....... 266
12.31 GNAT.Altivec.Vector_Types (g-alvety.ads)............. 266
12.32 GNAT.Altivec.Vector_Views (g-alvevi.ads)............. 266
12.33 GNAT.Array_Split (g-arrspl.ads)...........c.covoeuvnenn. 266
12.34 GNAT.AWK (g=awk.adS)ovririeieieniiaaaaiaaeaenes 266
12.35 GNAT.Binary_Search (g-binsea.ads)...................... 266
12.36 GNAT.Bind_Environment (g-binenv.ads).................. 266
12.37 GNAT.Branch_Prediction (g-brapre.ads)................. 266

xiv

12.38
12.39
12.40
12.41
12.42
12.43
12.44
12.45
12.46
12.47
12.48
12.49
12.50
12.51
12.52
12.53
12.54
12.55
12.56
12.57
12.58
12.59
12.60
12.61
12.62
12.63
12.64
12.65
12.66
12.67
12.68
12.69
12.70
12.71
12.72
12.73
12.74
12.75
12.76
12.77
12.78
12.79
12.80
12.81
12.82
12.83
12.84

GNAT.
GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.
GNAT.

GNAT

GNAT.
GNAT.

GNAT
GNAT

Bounded_Buffers (g-boubuf.ads) 266
Bounded_Mailboxes (g-boumai.ads)................. 266
Bubble_Sort (g-bubsor.ads)................ouuun... 267
Bubble_Sort_A (g-busora.ads)...................... 267
.Bubble_Sort_G (g-busorg.ads)...................... 267
Byte_Order_Mark (g-byorma.ads) 267
Byte_Swapping (g-bytswa.ads)..............oeuen... 267
C_Time (g-c_time.ads).........oovviriiiininininnn.. 267
.Calendar (g-calend.ads)..........c.cooueueuenannn... 267
Calendar.Time_IO (g-catiio.ads).................. 267
CRC32 (g=crec32.ads) «ovvviitiiiiiiiiaaieen. 267
Case_Util (g-casuti.ads)cooviuiuininannnn. 267
LCGI (g=CL.adS) . vvvieeiiie e 268
CGI.Cookie (g-cgic00.ads)oovvuiuininenennn... 268
CGI.Debug (g-cgideb.ads)ovvvrinineenennnn.n. 268
Command_Line (g-comlin.ads)....................... 268
Compiler_Version (g-comver.ads).................. 268
Ctrl_C (g—ctrl_c.ads).....ovvvuriiieniinninennnn. 268
Current_Exception (g-curexc.ads)................. 268
.Debug_Pools (g-debpo0.ads)ouvurvreninnnn.. 268
Debug_Utilities (g-debuti.ads)................... 268
Decode_String (g-decstr.ads)..............coounn.. 269
Decode_UTF8_String (g-deutst.ads)................ 269
.Directory_Operations (g-dirope.ads) 269
Directory_Operations.Iteration (g-diopit.ads).. 269
Dynamic_HTables (g-dynhta.ads) 269
Dynamic_Tables (g-dyntab.ads) 269
.Encode_String (g-encstr.ads)...................... 269
Encode_UTF8_String (g-enutst.ads)................ 269
Exception_Actions (g-excact.ads)................. 270
Exception_Traces (g-exctra.ads).................. 270
Exceptions (g-except.ads)..........cooviuininnn... 270
Expect (g-expect.ads)......coovuiriiiniiiininian... 270
Expect.TTY (g-exptty.ads)covvuinrinininnnn.. 270
Float_Control (g-flocon.ads)............coovvuen... 270
Formatted_String (g-forstr.ads).................. 270
Generic_Fast_Math_Functions (g-gfmafu.ads)..... 270
Heap_Sort (g-heasor.ads)cooovuennn.. 271
.Heap_Sort_A (g-hesora.ads)........................ 271
Heap_Sort_G (g-hesorg.ads)...........covvuiunn... 271
HTable (g-htable.ads).........oovvuriininininennn.. 271
I0 (8=10.@dS) o overetet e 271
.I0_Aux (g-10_aux.ads)....c.ouiiiiiiiiiiia, 271
Lock_Files (g-locfil.ads)..........coouiuenennn... 271
MBBS_Discrete_Random (g-mbdira.ads) 272
.MBBS_Float_Random (g-mbflra.ads)................. 272
\MD5 (gmd5.ads) ...t 272

XV

12.85
12.86
12.87
12.88
12.89
12.90
12.91
12.92
12.93
12.94
12.95
12.96
12.97
12.98
12.99
12.100
12.101
12.102
12.103
12.104
12.105
12.106
12.107
12.108
12.109
12.110
12.111
12.112
12.113
12.114
12.115
12.116
12.117
12.118
12.119
12.120
12.121
12.122
12.123
12.124
12.125
12.126
12.127
12.128
12.129
12.130
12.131

GNAT.Memory_Dump (g-memdum.ads)c.ooueeerennn... 272
GNAT.Most_Recent_Exception (g-moreex.ads)............ 272
GNAT.0S_Lib (g-08_1ib.ads) .. .cuverinenrininiiiennannn. 272
GNAT.Perfect_Hash_Generators (g-pehage.ads).......... 272
GNAT.Random_Numbers (g-rannum.ads) 272
GNAT.Regexp (g-Tegexp.ads)ovuiuininininininananannn. 273
GNAT.Registry (g-regist.ads)........ccoovviririnnnnnnn... 273
GNAT.Regpat (g-regpat.ads)........covvriuiniininennnn.n. 273
GNAT.Rewrite_Data (g-rewdat.ads)....................... 273
GNAT.Secondary_Stack_Info (g-sestin.ads)............. 273
GNAT.Semaphores (g-semaph.ads)c.covuvueenn... 273
GNAT.Serial_Communications (g-sercom.ads)............ 273
GNAT.SHAL (g-shal.ads)........ouiuiiiininiiiiiiiianann. 273
GNAT.SHA224 (g-sha224.ads)..........coovuinininanann... 273
GNAT.SHA256 (g-sha256.ads)...........ccooiuininenannn... 274
GNAT.SHA384 (g-sha384.adS).......cuvuirirannnannnnnnnn. 274
GNAT.SHA512 (g-5hab12.ads)........oeeeeeenenee i, 274
GNAT.Signals (g-signal.ads)........cocoveuenunnanennnnn. 274
GNAT.Sockets (g-socket.ads)...........ooviiinininn.. 274
GNAT.Source_Info (g-souinf.ads)...........c.couvuenn... 274
GNAT.Spelling_Checker (g-speche.ads)................. 274
GNAT.Spelling_Checker_Generic (g-spchge.ads)........ 274
GNAT.Spitbol.Patterns (g-spipat.ads)................. 274
GNAT.Spitbol (g-spitbo.ads).......coovviuininnininnnn.. 275
GNAT.Spitbol.Table_Boolean (g-sptabo.ads)........... 275
GNAT.Spitbol.Table_Integer (g-sptain.ads)........... 275
GNAT.Spitbol.Table_VString (g-sptavs.ads)........... 275
GNAT.SSE (g-55€.2dS) .. evtviririiiieiaiiaaiaeaeaennn. 275
GNAT.SSE.Vector_Types (g-ssvety.ads)................. 275
GNAT.String_Hash (g-strhas.ads)....................... 275
GNAT.Strings (g-string.ads)...........coovviiiinininen.. 275
GNAT.String_Split (g-strspl.ads)..............ooou.... 275
GNAT.Table (g-table.ads)oouvvuinininenenannnn. 276
GNAT.Task_Lock (g-tasloc.ads)cooovuununen... 276
GNAT.Time_Stamp (g-timsta.ads)........................ 276
GNAT.Threads (g-thread.ads)............cooviiirenennnn.. 276
GNAT.Traceback (g-traceb.ads)coevvnin... 276
GNAT.Traceback.Symbolic (g-trasym.ads)............... 276
GNAT.UTF_32 (g-utf_32.ads).......covererinanannn.n.. 276
GNAT.UTF_32_Spelling_Checker (g-u3spch.ads)......... 276
GNAT.Wide_Spelling_Checker (g-wispch.ads)........... 277
GNAT.Wide_String Split (g-wistsp.ads)................ 277
GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)..... 277
GNAT.Wide_Wide_String_Split (g-zistsp.ads).......... 277
Interfaces.C.Extensions (i-cexten.ads)............... 277
Interfaces.C.Streams (i-cstrea.ads).................. 277

Interfaces.Packed_Decimal (i-pacdec.ads)............ 277

xvi

Xvii

12.132 Interfaces.VxWorks (i-vxwork.ads)..................... 277
12.133 Interfaces.VxWorks.IO (i-vxwoio.ads)................. 277
12.134 System.Address_Image (s-addima.ads).................. 277
12.135 System.Assertions (s-assert.ads)...................... 278
12.136 System.Atomic_Counters (s-atocou.ads)................ 278
12.137 System.Memory (S—memory.ads)coooeuinininnn. 278
12.138 System.Multiprocessors (s-multip.ads)................ 278
12.139
System.Multiprocessors.Dispatching_Domains (s-mudido.ads)..278
12.140 System.Partition_Interface (s-parint.ads)........... 278
12.141 System.Pool_Global (s-pooglo.ads)...........c.ccuvnn... 278
12.142 System.Pool_Local (s-p00loc.ads)..........ovvueunnn... 279
12.143 System.Restrictions (s-restri.ads)................... 279
12.144 System.Rident (s-rident.ads)o.ia.. 279
12.145 System.Strings.Stream_Ops (s-ststop.ads)............ 279
12.146 System.Unsigned_Types (s-unstyp.ads)................. 279
12.147 System.Wch_Cnv (s-wchenv.ads) ..o.ovvvvninininnnannn... 279
12.148 System.Wch_Con (s-wchcon.ads)co.vuereninnnn... 279
13 Interfacing to Other Languages 280
13.1 Interfacing to C.... ..o e 280
13.2 Interfacing to CH+4. ...t 281
13.3 Interfacing to COBOL....... i 284
13.4 Interfacing to Fortran il 284
13.5 Interfacing to non-GNAT Adacode.......................... 284
14 Specialized Needs Annexes 286

15 Implementation of Specific Ada Features.. 287

15.1 Machine Code Insertionsccooiiiiiiiiiiiia... 287
15.2 GNAT Implementation of Tasking........................... 289
15.2.1 Mapping Ada Tasks onto the Underlying Kernel Threads. . 289
15.2.2 Ensuring Compliance with the Real-Time Annex........ 290
15.2.3 Support for Locking Policies............................ 290
15.3 GNAT Implementation of Shared Passive Packages 291
15.4 Code Generation for Array Aggregates....................... 292
15.4.1 Static constant aggregates with static bounds........... 292
15.4.2 Constant aggregates with unconstrained nominal types.. 293
15.4.3 Aggregates with static bounds.......................... 293
15.4.4 Aggregates with nonstatic bounds 293
15.4.5 Aggregates in assignment statements 293
15.5 The Size of Discriminated Records with Default Discriminants. . 294
15.6 Image Values For Nonscalar Types 295

15.7 Strict Conformance to the Ada Reference Manual............ 295

xviii

16 Implementation of Ada 2022 Features..... 297
17 GNAT language extensions................. 330
17.1 How to activate the extended GNAT Ada superset........... 330
17.2 Curated Extensionsco i 330
17.2.1 Local Declarations Without Block 330
17.2.2 Deep delta Aggregates.oviiiiiiiiiiinin.. 332
17.2.2.1 Synbax ..ot 332
17.2.2.2 Legality Rules.......... ... i i, 333
17.2.2.3 Dynamic SemanticS............ccoviiieiiiiieen... 333
17.2.2.4 Examples.t 334
17.2.3 Fixed lower bounds for array types and subtypes........ 334
17.2.4 Prefixed-view notation for calls to primitive
subprograms of untagged types............. .. i 335
17.2.5 Expression defaults for generic formal functions......... 336
17.2.6 String interpolation, 336
17.2.7 Constrained attribute for generic objects................ 337
17.2.8 Static aspect on intrinsic functions 337
17.2.9 First Controlling Parameter 338
17.2.10 Generalized Finalization............. 339
17.2.10.1 Finalizable tagged types........... 341
17.2.10.2 CompoSite tyPes. . .vvvete e 341
17.2.10.3 Interoperability with controlled types............. 341
17.3 Experimental Language Extensions.......................... 341
17.3.1 Conditional when constructs............................ 341
17.3.2 Implicit With ... 342
17.3.3 Storage Model...... ... 342
17.3.3.1 Aspect Storage_Model_Type....................... 343
17.3.3.2 Aspect Designated_Storage_-Model 345
17.3.3.3 Legacy Storage Pools............ 346
17.3.4 Attribute Super........... 347
17.3.5 Simpler Accessibility Model............. 347
17.3.5.1 Stand-alone objects........... L 348
17.3.5.2 Subprogram parametersccooiiio... 348
17.3.5.3 Functionresults............ it 350
17.3.6 Case pattern matching 352
17.3.7 Mutably Tagged Types with Size’Class Aspect.......... 354
17.3.8 No_Raise aspect ..., 356
17.3.9 Inference of Dependent Types in Generic Instantiations.. 356
17.3.10 External_Initialization Aspect 357
17.3.11 Finally construct 358
17.3. 111 Synbax ..ot 358
17.3.11.2 Legality Rules.......... ... i i, 358
17.3.11.3 Dynamic Semantics.............coooiiiiiiii... 358
17.3.12 Continue statementccoeiiiieiieine ... 359

17.3.13 Destructors . ..o 359

xix

17.3.14 Structural Generic Instantiation....................... 360
17.3.14. 1 SyNbaX ..ot 360
17.3.14.2 Legality Rules.......... ... i, 360
17.3.14.3 Static Semantics..............oo i 361

18 Security Hardening Features 363
18.1 Register Scrubbing......... ..o i i 363
18.2 Stack Scrubbing......... ... 363
18.3 Hardened Conditionals 365
18.4 Hardened Booleans............ ..o, 367
18.5 Control Flow Redundancy....................ooiiiiiiit. 368

19 Obsolescent Features........................ 371
19.1 PolyORB ... 371
19.2 pragma No_Run_Time........ ... 371
19.3 pragma Ravenscar............ ..o 371
19.4 pragma Restricted_ Run_Time 371
19.5 pragma Task_Info....... ... i i i 371
19.6 package System.Task_Info (s-tasinf.ads).................. 372

20 Compatibility and Porting Guide 373
20.1 Writing Portable Fixed-Point Declarations................... 373
20.2 Compatibility with Ada 83 i 374

20.2.1 Legal Ada 83 programs that are illegal in Ada 95....... 374

20.2.2 More deterministic semantics...............coiiiiii.... 376

20.2.3 Changed semantics............ooiiiiiiiiiiiii ... 376

20.2.4 Other language compatibility issues..................... 376

20.3 Compatibility between Ada 95 and Ada 2005................ 377
20.4 Implementation-dependent characteristics.................... 378

20.4.1 Implementation-defined pragmas........................ 378

20.4.2 Implementation-defined attributes...................... 378

20.4.3 Librariesouuuuue 378

20.4.4 Elaboration order i 378

20.4.5 Target-specific aspects. ... 379

20.5 Compatibility with Other Ada Systems...................... 379
20.6 Representation Clauses...........ccoviuiiiiiiiiiiniiennn.. 380
20.7 Compatibility with HP Ada 83 381
21 GNU Free Documentation License......... 382

‘GNAT, The GNU Ada Development Environment’

GCC version 16.0.0
AdaCore

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “GNAT
Reference Manual”, and with no Back-Cover Texts. A copy of the license is included in the
section entitled [GNU Free Documentation License|, page 381.

1 About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the Ada language standard.

GNAT implements Ada 95, Ada 2005, Ada 2012 and Ada 2022, and it may also be invoked
in Ada 83 compatibility mode. By default, GNAT assumes Ada 2012, but you can override
with a compiler switch to explicitly specify the language version. (Please refer to the ‘GNAT
User’s Guide’ for details on these switches.) Throughout this manual, references to ‘Ada’
without a year suffix apply to all the Ada versions of the language.

Ada is designed to be highly portable. In general, a program will have the same effect
even when compiled by different compilers on different platforms. However, since Ada is
designed to be used in a wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.

Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

1.1 What This Reference Manual Contains

This reference manual contains the following chapters:

* [Implementation Defined Pragmas|, page 4, lists GNAT implementation-dependent

pragmas, which can be used to extend and enhance the functionality of the compiler.

[Implementation Defined Attributes|, page 120, lists GNAT implementation-dependent
attributes, which can be used to extend and enhance the functionality of the compiler.

* [Standard and Implementation Defined Restrictions|, page 144, lists GNAT
implementation-dependent restrictions, which can be used to extend and enhance the
functionality of the compiler.

[Implementation Advice], page 159, provides information on generally desirable be-
havior which are not requirements that all compilers must follow since it cannot be
provided on all systems, or which may be undesirable on some systems.
[Implementation Defined Characteristics], page 179, provides a guide to minimizing
implementation dependent features.

[Intrinsic Subprograms|, page 198, describes the intrinsic subprograms implemented by
GNAT, and how they can be imported into user application programs.
[Representation Clauses and Pragmas|, page 201, describes in detail the way that

GNAT represents data, and in particular the exact set of representation clauses and
pragmas that is accepted.

[Standard Library Routines|, page 232, provides a listing of packages and a brief de-
scription of the functionality that is provided by Ada’s extensive set of standard library
routines as implemented by GNAT.

* [The Implementation of Standard I/O], page 243, details how the GNAT implementa-
tion of the input-output facilities.

[The GNAT Library|, page 261, is a catalog of packages that complement the Ada
predefined library.

Chapter 1: About This Guide 3

*

[Interfacing to Other Languages|, page 279, describes how programs written in Ada
using GNAT can be interfaced to other programming languages.

[Specialized Needs Annexes|, page 285, describes the GNAT implementation of all of
the specialized needs annexes.

[Implementation of Specific Ada Features], page 286, discusses issues related to GNAT’s
implementation of machine code insertions, tasking, and several other features.

[Implementation of Ada 2022 Features|, page 296, describes the status of the GNAT
implementation of the Ada 2022 language standard.

[Security Hardening Features], page 362, documents GNAT extensions aimed at secu-
rity hardening.

[Obsolescent Features|, page 370, documents implementation dependent features, in-
cluding pragmas and attributes, which are considered obsolescent, since there are other
preferred ways of achieving the same results. These obsolescent forms are retained for
backwards compatibility.

[Compatibility and Porting Guide], page 372, presents some guidelines for developing
portable Ada code, describes the compatibility issues that may arise between GNAT
and other Ada compilation systems (including those for Ada 83), and shows how GNAT
can expedite porting applications developed in other Ada environments.

[GNU Free Documentation License], page 381, contains the license for this document.

This reference manual assumes a basic familiarity with the Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995. 1t does not require knowledge of
the new features introduced by Ada 2005 or Ada 2012. All three reference manuals are
included in the GNAT documentation package.

1.2 Conventions

Following are examples of the typographical and graphic conventions used in this guide:

*

*

*

Functions, utility program names, standard names, and classes.
Option flags
File names
Variables
‘Emphasis’
[optional information or parameters]
Examples are described by text
and then shown this way.

Commands that are entered by the user are shown as preceded by a prompt string
comprising the $ character followed by a space.

1.3 Related Information

See the following documents for further information on GNAT:

*

GNAT User’s Guide for Native Platforms, which provides information on how to use
the GNAT development environment.

Chapter 1: About This Guide 4

* Ada 95 Reference Manual, the Ada 95 programming language standard.

* Ada 95 Annotated Reference Manual, which is an annotated version of the Ada 95
standard. The annotations describe detailed aspects of the design decision, and in
particular contain useful sections on Ada 83 compatibility.

* Ada 2005 Reference Manual, the Ada 2005 programming language standard.

* Ada 2005 Annotated Reference Manual, which is an annotated version of the Ada 2005
standard. The annotations describe detailed aspects of the design decision.

* Ada 2012 Reference Manual, the Ada 2012 programming language standard.

* DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains
specific information on compatibility between GNAT and DEC Ada 83 systems.

* DEC Ada, Language Reference Manual, part number AA-PYZAB-TK, which describes
in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

2 Implementation Defined Pragmas

Ada defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada Reference Manual.

In addition, Ada allows implementations to define additional pragmas whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
pragmas, which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas might not be portable to other compilers (al-
though GNAT implements this set of pragmas on all platforms). Therefore if portability
to other compilers is an important consideration, the use of these pragmas should be mini-
mized.

2.1 Pragma Abort_Defer

Syntax:
pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence
of statements (but not for the declarations or handlers, if any, associated with this state-
ment sequence). This can also be useful for adding a polling point in Ada code, where
asynchronous abort of tasks is checked when leaving the statement sequence, and is lighter
than, for example, using delay 0.0;, since with zero-cost exception handling, propagat-
ing exceptions (implicitly used to implement task abort) cannot be done reliably in an
asynchronous way.

An example of usage would be:

-- Add a polling point to check for task aborts

begin
pragma Abort_Defer;
end;

2.2 Pragma Abstract_State

Syntax:
pragma Abstract_State (ABSTRACT_STATE_LIST);

ABSTRACT_STATE_LIST ::
null
| STATE_NAME_WITH_OPTIONS
| (STATE_NAME_WITH_OPTIONS {, STATE_NAME WITH_OPTIONS})

STATE_NAME_WITH_OPTIONS ::
STATE_NAME
| (STATE_NAME with OPTION_LIST)

Chapter 2: Implementation Defined Pragmas 6

OPTION_LIST ::= OPTION {, OPTION}

OPTION ::=
SIMPLE_OPTION
| NAME_VALUE_OPTION

SIMPLE_OPTION ::= Ghost | Synchronous
NAME_VALUE_OPTION ::=
Part_0f => ABSTRACT_STATE
| External [=> EXTERNAL_PROPERTY_LIST]
EXTERNAL_PROPERTY_LIST ::=
EXTERNAL_PROPERTY
| (EXTERNAL_PROPERTY {, EXTERNAL_PROPERTY})

EXTERNAL_PROPERTY ::=

Async_Readers [=> static_boolean EXPRESSION]
| Async_Writers [=> static_boolean_EXPRESSION]
| Effective_Reads [=> static_boolean_EXPRESSION]
| Effective_Writes [=> static_boolean_EXPRESSION]

others => static_boolean_EXPRESSION

STATE_NAME ::= defining_identifier
ABSTRACT_STATE ::= name

For the semantics of this pragma, see the entry for aspect Abstract_State in the SPARK
2014 Reference Manual, section 7.1.4.

2.3 Pragma Ada_83

Syntax:
pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies,
regardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the keywords added by Ada 95 and
Ada 2005 are not recognized, optional package bodies are allowed, and generics may name
types with unknown discriminants without using the (<>) notation. In addition, some but
not all of the additional restrictions of Ada 83 are enforced.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

Ada 83 mode is intended for two purposes. Firstly, it allows existing Ada 83 code to be
compiled and adapted to GNAT with less effort. Secondly, it aids in keeping code backwards

Chapter 2: Implementation Defined Pragmas 7

compatible with Ada 83. However, there is no guarantee that code that is processed correctly
by GNAT in Ada 83 mode will in fact compile and execute with an Ada 83 compiler, since
GNAT does not enforce all the additional checks required by Ada 83.

2.4 Pragma Ada_95

Syntax:
pragma Ada_95;

A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

2.5 Pragma Ada_05

Syntax:

pragma Ada_05;
pragma Ada_05 (local_NAME);

A configuration pragma that establishes Ada 2005 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This pragma is useful when
writing a reusable component that itself uses Ada 2005 features, but which is intended to
be usable from either Ada 83 or Ada 95 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

The one argument form (which is not a configuration pragma) is used for managing the
transition from Ada 95 to Ada 2005 in the run-time library. If an entity is marked as
Ada_2005 only, then referencing the entity in Ada_83 or Ada_95 mode will generate a
warning. In addition, in Ada_83 or Ada_95 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2005
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.6 Pragma Ada_2005

Syntax:
pragma Ada_2005;

This configuration pragma is a synonym for pragma Ada_05 and has the same syntax and
effect.

Chapter 2: Implementation Defined Pragmas 8

2.7 Pragma Ada_12

Syntax:

pragma Ada_12;

pragma Ada_12 (local_NAME);
A configuration pragma that establishes Ada 2012 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically for
the Ada and System packages and their children, so you need not specify it in these contexts.
This pragma is useful when writing a reusable component that itself uses Ada 2012 features,
but which is intended to be usable from Ada 83, Ada 95, or Ada 2005 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

The one argument form, which is not a configuration pragma, is used for managing the
transition from Ada 2005 to Ada 2012 in the run-time library. If an entity is marked
as Ada_2012 only, then referencing the entity in any pre-Ada_2012 mode will generate a
warning. In addition, in any pre-Ada_2012 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2012
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.8 Pragma Ada_2012

Syntax:
pragma Ada_2012;

This configuration pragma is a synonym for pragma Ada_12 and has the same syntax and
effect.

2.9 Pragma Ada_2022

Syntax:

pragma Ada_2022;
pragma Ada_2022 (local_NAME);

A configuration pragma that establishes Ada 2022 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada
2022 features, but which is intended to be usable from Ada 83, Ada 95, Ada 2005 or Ada
2012 programs.

Like all configuration pragmas, if the pragma is placed before a library level package speci-
fication it is not propagated to the corresponding package body (see RM 10.1.5(8)); it must
be added explicitly to the package body.

The one argument form, which is not a configuration pragma, is used for managing the
transition from Ada 2012 to Ada 2022 in the run-time library. If an entity is marked
as Ada_2022 only, then referencing the entity in any pre-Ada_2022 mode will generate a

Chapter 2: Implementation Defined Pragmas 9

warning. In addition, in any pre-Ada_2012 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada_2022
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.10 Pragma Aggregate_Individually_Assign

Syntax:
pragma Aggregate_Individually_Assign;

Where possible, GNAT will store the binary representation of a record aggregate in memory
for space and performance reasons. This configuration pragma changes this behavior so that
record aggregates are instead always converted into individual assignment statements.

2.11 Pragma Allow_Integer_Address

Syntax:
pragma Allow_Integer_Address;

In almost all versions of GNAT, System.Address is a private type in accordance with the
implementation advice in the RM. This means that integer values, in particular integer liter-
als, are not allowed as address values. If the configuration pragma Allow_Integer_Address
is given, then integer expressions may be used anywhere a value of type System.Address
is required. The effect is to introduce an implicit unchecked conversion from the integer
value to type System.Address. The reverse case of using an address where an integer type
is required is handled analogously. The following example compiles without errors:

pragma Allow_Integer_Address;
with System; use System;
package AddrAsInt is
X : Integer;
Y : Integer;
for X'Address use 16#1240#;
for Y use at 16#3230#;
: Address := 16#4000#;
: constant Address := 4000;
: constant Address := Address (X + Y);
: Integer := y'Address;
: constant Integer := Integer (Y'Address);
type R is new integer;
RR : R := 1000;
Z : Integer;
for Z'Address use RR;
end AddrAsInt;

Note that pragma Allow_Integer_Address is ignored if System.Address is not a private
type. In implementations of GNAT where System.Address is a visible integer type, this
pragma serves no purpose but is ignored rather than rejected to allow common sets of
sources to be used in the two situations.

s < B B

Chapter 2: Implementation Defined Pragmas 10

2.12 Pragma Always_Terminates

Syntax:
pragma Always_Terminates [(boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Always_Terminates in the
SPARK 2014 Reference Manual, section 6.1.11.

2.13 Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}] [, entity => local_NAME]);

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. IDENTIFIER identifies the type of annotation.
GNAT verifies that it is an identifier, but does not otherwise analyze it. The second optional
identifier is also left unanalyzed, and by convention is used to control the action of the tool
to which the annotation is addressed. The remaining ARG arguments can be either string
literals or more generally expressions. String literals (and concatenations of string literals)
are assumed to be either of type Standard.String or else Wide_String or Wide_Wide_
String depending on the character literals they contain. All other kinds of arguments are
analyzed as expressions, and must be unambiguous. The last argument if present must have
the identifier Entity and GNAT verifies that a local name is given.

The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler, except to generate corresponding note lines in the generated ALI file.
For the format of these note lines, see the compiler source file lib-writ.ads. This pragma
is intended for use by external tools. The use of pragma Annotate does not affect the
compilation process in any way. This pragma may be used as a configuration pragma.

2.14 Pragma Assert

Syntax:

pragma Assert (
boolean_EXPRESSION
[, string_ EXPRESSION]);

The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:

if assertions-enabled then
if not boolean_EXPRESSION then
System.Assertions.Raise_Assert_Failure
(string_EXPRESSION) ;
end if;
end if;
The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message
is file:mnnn, where file is the name of the source file containing the assert, and nnn is the
line number of the assert.

Chapter 2: Implementation Defined Pragmas 11

Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.

Assert checks can be either checked or ignored. By default they are ignored. They will be
checked if either the command line switch ‘-gnata’ is used, or if an Assertion_Policy or
Check_Policy pragma is used to enable Assert_Checks.

If assertions are ignored, then there is no run-time effect (and in particular, any side effects
from the expression will not occur at run time). (The expression is still analyzed at compile
time, and may cause types to be frozen if they are mentioned here for the first time).

If assertions are checked, then the given expression is tested, and if it is False then
System.Assertions.Raise_Assert_Failure is called which results in the raising of
Assert_Failure with the given message.

You should generally avoid side effects in the expression arguments of this pragma, because
these side effects will turn on and off with the setting of the assertions mode, resulting in
assertions that have an effect on the program. However, the expressions are analyzed for
semantic correctness whether or not assertions are enabled, so turning assertions on and off
cannot affect the legality of a program.

Note that the implementation defined policy DISABLE, given in a pragma Assertion_
Policy, can be used to suppress this semantic analysis.

Note: this is a standard language-defined pragma in versions of Ada from 2005 on.
In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an
implementation-defined addition.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.15 Pragma Assert_And_Cut

Syntax:

pragma Assert_And_Cut (
boolean_EXPRESSION
[, string_ EXPRESSION]);
The effect of this pragma is identical to that of pragma Assert, except that in an
Assertion_Policy pragma, the identifier Assert_And_Cut is used to control whether it is
ignored or checked (or disabled).

The intention is that this be used within a subprogram when the given test expresion sums
up all the work done so far in the subprogram, so that the rest of the subprogram can be
verified (informally or formally) using only the entry preconditions, and the expression in
this pragma. This allows dividing up a subprogram into sections for the purposes of testing
or formal verification. The pragma also serves as useful documentation.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.16 Pragma Assertion_Level

Syntax:
pragma Assertion_Level (LEVEL_IDENTIFIER

Chapter 2: Implementation Defined Pragmas 12

[, depends => DEPENDENCY_DESCRIPTOR]) ;

DEPENDENCY_DESCRIPTOR ::

LEVEL_IDENTIFIER | LEVEL_IDENTIFIER_LIST

LEVEL_IDENTIFIER_LIST ::= '[' LEVEL_IDENTIFIER {, LEVEL_IDENTIFIER} ']’
For the semantics of this pragma, see the SPARK 2014 Reference Manual, section 11.4.3.

2.17 Pragma Assertion_Policy

Syntax:
pragma Assertion_Policy (CHECK | DISABLE | IGNORE | SUPPRESSIBLE);

pragma Assertion_Policy (
ASSERTION_KIND => POLICY_IDENTIFIER
{, ASSERTION_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND | ASSERTION_LEVEL

RM_ASSERTION_KIND ::= Assert
Static_Predicate
Dynamic_Predicate
Pre
Pre'Class
Post
Post'Class
Type_Invariant
Type_Invariant'Class
Default_Initial_Condition

ID_ASSERTION_KIND ::= Assertions |
Assert_And_Cut |
Assume |
Contract_Cases |
Debug |
Ghost |
Initial_Condition |
Invariant |
Invariant'Class |
Loop_Invariant |
Loop_Variant |
Postcondition |
Precondition |
Predicate |
Refined_Post |
Statement_Assertions |
Subprogram_Variant

Chapter 2: Implementation Defined Pragmas 13

POLICY_IDENTIFIER ::= Check | Disable | Ignore | Suppressible

This is a standard Ada 2012 pragma that is available as an implementation-defined pragma
in earlier versions of Ada. The assertion kinds RM_ASSERTION_KIND are those defined in
the Ada standard. The assertion kinds ID_ASSERTION_KIND are implementation defined
additions recognized by the GNAT compiler.

Additionally the pragma can apply to an assertion level defined by the Assertion_Level
pragma. For more details see the SPARK 2014 Reference Manual, section 11.4.2.

The pragma applies in both cases to pragmas and aspects with matching names, e.g. Pre
applies to the Pre aspect, and Precondition applies to both the Precondition pragma and
the aspect Precondition. Note that the identifiers for pragmas Pre_Class and Post_Class
are Pre’Class and Post’Class (not Pre_Class and Post_Class), since these pragmas are in-
tended to be identical to the corresponding aspects.

If the policy is CHECK, then assertions are enabled, i.e. the corresponding pragma or aspect
is activated. If the policy is IGNORE, then assertions are ignored, i.e. the corresponding
pragma or aspect is deactivated. This pragma overrides the effect of the ‘-gnata’ switch on
the command line. If the policy is SUPPRESSIBLE, then assertions are enabled by default,
however, if the ‘-gnatp’ switch is specified all assertions are ignored.

The implementation defined policy DISABLE is like IGNORE except that it completely disables
semantic checking of the corresponding pragma or aspect. This is useful when the pragma
or aspect argument references subprograms in a with’ed package which is replaced by a
dummy package for the final build.

The implementation defined assertion kind Assertions applies to all assertion kinds. The
form with no assertion kind given implies this choice, so it applies to all assertion kinds
(RM defined, and implementation defined).

The implementation defined assertion kind Statement_Assertions applies to Assert,
Assert_And_Cut, Assume, Loop_Invariant, and Loop_Variant.

2.18 Pragma Assume

Syntax:

pragma Assume (
boolean_EXPRESSION
[, string_ EXPRESSION]);

The effect of this pragma is identical to that of pragma Assert, except that in an
Assertion_Policy pragma, the identifier Assume is used to control whether it is ignored

or checked (or disabled).

The intention is that this be used for assumptions about the external environment. So
you cannot expect to verify formally or informally that the condition is met, this must be
established by examining things outside the program itself. For example, we may have code
that depends on the size of Long_Long_Integer being at least 64. So we could write:

pragma Assume (Long_Long_Integer'Size >= 64);

This assumption cannot be proved from the program itself, but it acts as a useful run-time
check that the assumption is met, and documents the need to ensure that it is met by
reference to information outside the program.

Chapter 2: Implementation Defined Pragmas 14

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.19 Pragma Assume_No_Invalid_Values

Syntax:
pragma Assume_No_Invalid_Values (On | 0ff);

This is a configuration pragma that controls the assumptions made by the compiler about
the occurrence of invalid representations (invalid values) in the code.
The default behavior (corresponding to an Off argument for this pragma), is to assume that
values may in general be invalid unless the compiler can prove they are valid. Consider the
following example:

V1l : Integer range 1 .. 10;

V2 : Integer range 11 .. 20;

for J in V2 .. V1 loop

end loop;
if V1 and V2 have valid values, then the loop is known at compile time not to execute since
the lower bound must be greater than the upper bound. However in default mode, no such
assumption is made, and the loop may execute. If Assume_No_Invalid_Values (On) is

given, the compiler will assume that any occurrence of a variable other than in an explicit
'Valid test always has a valid value, and the loop above will be optimized away.

The use of Assume_No_Invalid_Values (On) is appropriate if you know your code is free of
uninitialized variables and other possible sources of invalid representations, and may result
in more efficient code. A program that accesses an invalid representation with this pragma
in effect is erroneous, so no guarantees can be made about its behavior.

It is peculiar though permissible to use this pragma in conjunction with validity checking
(-gnatVa). In such cases, accessing invalid values will generally give an exception, though
formally the program is erroneous so there are no guarantees that this will always be the
case, and it is recommended that these two options not be used together.

2.20 Pragma Async_Readers

Syntax:
pragma Async_Readers [(static_boolean_ EXPRESSION) 1;

For the semantics of this pragma, see the entry for aspect Async_Readers in the SPARK
2014 Reference Manual, section 7.1.2.

2.21 Pragma Async_Writers

Syntax:
pragma Async_Writers [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Async_Writers in the SPARK
2014 Reference Manual, section 7.1.2.

Chapter 2: Implementation Defined Pragmas 15

2.22 Pragma Attribute_Definition

Syntax:

pragma Attribute_Definition
([Attribute =>] ATTRIBUTE_DESIGNATOR,
[Entity =>] LOCAL_NAME,
[Expression =>] EXPRESSION | NAME);

If Attribute is a known attribute name, this pragma is equivalent to the attribute definition
clause:

for Entity'Attribute use Expression;
If Attribute is not a recognized attribute name, the pragma is ignored, and a warning is

emitted. This allows source code to be written that takes advantage of some new attribute,
while remaining compilable with earlier compilers.

2.23 Pragma C_Pass_By_Copy

Syntax:

pragma C_Pass_By_Copy
([Max_Size =>] static_integer_ EXPRESSION);
Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C_Pass_By_Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

* The size of the record type does not exceed the value specified for Max_Size.
* The record type has Convention C.

* The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy; i.e., in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

You can also pass records by copy by specifying the convention C_Pass_By_Copy for the

record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

2.24 Pragma Check

Syntax:

pragma Check (
[Name =>] CHECK_KIND,
[Check =>] Boolean_EXPRESSION
[, [Message =>] string EXPRESSION]);

CHECK_KIND ::= IDENTIFIER |
Pre'Class |
Post'Class |

Chapter 2: Implementation Defined Pragmas 16

Type_Invariant'Class |
Invariant'Class

This pragma is similar to the predefined pragma Assert except that an extra identifier
argument is present. In conjunction with pragma Check_Policy, this can be used to define
groups of assertions that can be independently controlled. The identifier Assertion is
special, it refers to the normal set of pragma Assert statements.

Checks introduced by this pragma are normally deactivated by default. They can be acti-
vated either by the command line option ‘-gnata’, which turns on all checks, or individually
controlled using pragma Check_Policy.

The identifiers Assertions and Statement_Assertions are not permitted as check kinds,
since this would cause confusion with the use of these identifiers in Assertion_Policy and
Check_Policy pragmas, where they are used to refer to sets of assertions.

2.25 Pragma Check_Float_Overflow

Syntax:
pragma Check_Float_0Overflow;

In Ada, the predefined floating-point types (Short_Float, Float, Long_Float, Long_Long_
Float) are defined to be ‘unconstrained’. This means that even though each has a well-
defined base range, an operation that delivers a result outside this base range is not required
to raise an exception. This implementation permission accommodates the notion of infinities
in IEEE floating-point, and corresponds to the efficient execution mode on most machines.
GNAT will not raise overflow exceptions on these machines; instead it will generate infinities
and NaN’s as defined in the IEEE standard.

Generating infinities, although efficient, is not always desirable. Often the preferable ap-
proach is to check for overflow, even at the (perhaps considerable) expense of run-time
performance. This can be accomplished by defining your own constrained floating-point
subtypes — i.e., by supplying explicit range constraints — and indeed such a subtype can
have the same base range as its base type. For example:

subtype My_Float is Float range Float'Range;

Here My_Float has the same range as Float but is constrained, so operations on My_Float
values will be checked for overflow against this range.

This style will achieve the desired goal, but it is often more convenient to be able to
simply use the standard predefined floating-point types as long as overflow checking could
be guaranteed. The Check_Float_0Overflow configuration pragma achieves this effect. If
a unit is compiled subject to this configuration pragma, then all operations on predefined
floating-point types including operations on base types of these floating-point types will be
treated as though those types were constrained, and overflow checks will be generated. The
Constraint_Error exception is raised if the result is out of range.

This mode can also be set by use of the compiler switch ‘-gnateF’.

2.26 Pragma Check_Name

Syntax:
pragma Check_Name (check_name_IDENTIFIER) ;

Chapter 2: Implementation Defined Pragmas 17

This is a configuration pragma that defines a new implementation defined check name
(unless IDENTIFIER matches one of the predefined check names, in which case the pragma
has no effect). Check names are global to a partition, so if two or more configuration
pragmas are present in a partition mentioning the same name, only one new check name is
introduced.

An implementation defined check name introduced with this pragma may be used in only
three contexts: pragma Suppress, pragma Unsuppress, and as the prefix of a Check_
Name 'Enabled attribute reference. For any of these three cases, the check name must
be visible. A check name is visible if it is in the configuration pragmas applying to the
current unit, or if it appears at the start of any unit that is part of the dependency set of
the current unit (e.g., units that are mentioned in with clauses).

Check names introduced by this pragma are subject to control by compiler switches (in
particular -gnatp) in the usual manner.

2.27 Pragma Check_Policy

Syntax:

pragma Check_Policy
([Name =>] CHECK_KIND,
[Policy =>] POLICY_IDENTIFIER);

pragma Check_Policy (
CHECK_KIND => POLICY_IDENTIFIER
{, CHECK_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
CHECK_KIND ::= IDENTIFIER |
Pre'Class |
Post'Class |
|

Type_Invariant'Class
Invariant'Class

The identifiers Name and Policy are not allowed as CHECK_KIND values. This
avoids confusion between the two possible syntax forms for this pragma.

POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE

This pragma is used to set the checking policy for assertions (specified by aspects or prag-
mas), the Debug pragma, or additional checks to be checked using the Check pragma. It
may appear either as a configuration pragma, or within a declarative part of package. In
the latter case, it applies from the point where it appears to the end of the declarative
region (like pragma Suppress).

The Check_Policy pragma is similar to the predefined Assertion_Policy pragma, and if
the check kind corresponds to one of the assertion kinds that are allowed by Assertion_
Policy, then the effect is identical.

Chapter 2: Implementation Defined Pragmas 18

If the first argument is Debug, then the policy applies to Debug pragmas, disabling their
effect if the policy is OFF, DISABLE, or IGNORE, and allowing them to execute with normal
semantics if the policy is ON or CHECK. In addition if the policy is DISABLE, then the
procedure call in Debug pragmas will be totally ignored and not analyzed semantically.

Finally the first argument may be some other identifier than the above possibilities, in which
case it controls a set of named assertions that can be checked using pragma Check. For
example, if the pragma:

pragma Check_Policy (Critical_Error, OFF);

is given, then subsequent Check pragmas whose first argument is also Critical_Error will
be disabled.

The check policy is OFF to turn off corresponding checks, and ON to turn on corresponding
checks. The default for a set of checks for which no Check_Policy is given is OFF unless
the compiler switch ‘-gnata’ is given, which turns on all checks by default.

The check policy settings CHECK and IGNORE are recognized as synonyms for ON and OFF.
These synonyms are provided for compatibility with the standard Assertion_Policy
pragma. The check policy setting DISABLE causes the second argument of a corresponding
Check pragma to be completely ignored and not analyzed.

2.28 Pragma Comment

Syntax:
pragma Comment (static_string EXPRESSION) ;

This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the
pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

2.29 Pragma Common_Object

Syntax:

pragma Common_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object LOCAL_NAME is assigned to the area
designated by the External argument. You may define a record to correspond to a series
of fields. The Size argument is syntax checked in GNAT, but otherwise ignored.

Common_0Object is not supported on all platforms. If no support is available, then the code

generator will issue a message indicating that the necessary attribute for implementation
of this pragma is not available.

Chapter 2: Implementation Defined Pragmas 19

2.30 Pragma Compile_Time_Error
Syntax:

pragma Compile_Time_Error
(boolean_EXPRESSION, static_string EXPRESSION);

This pragma can be used to generate additional compile time error messages. It is partic-
ularly useful in generics, where errors can be issued for specific problematic instantiations.
The first parameter is a boolean expression. The pragma ensures that the value of an ex-
pression is known at compile time, and has the value False. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g., the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are not met, an
error message is generated using the value given as the second argument. This string value
may contain embedded ASCIL.LF characters to break the message into multiple lines.

2.31 Pragma Compile_Time_Warning
Syntax:

pragma Compile_Time_Warning
(boolean EXPRESSION, static_string EXPRESSION) ;

Same as pragma Compile_Time_Error, except a warning is issued instead of an error mes-
sage. If switch ‘-gnatw_C’ is used, a warning is only issued if the value of the expression is
known to be True at compile time, not when the value of the expression is not known at
compile time. Note that if this pragma is used in a package that is with’ed by a client, the
client will get the warning even though it is issued by a with’ed package (normally warnings
in with’ed units are suppressed, but this is a special exception to that rule).

One typical use is within a generic where compile time known characteristics of formal
parameters are tested, and warnings given appropriately. Another use with a first param-
eter of True is to warn a client about use of a package, for example that it is not fully
implemented.

In previous versions of the compiler, combining ‘-gnatwe’ with Compile_Time_Warning
resulted in a fatal error. Now the compiler always emits a warning. You can use [Pragma
Compile_Time_Error], page 18, to force the generation of an error.

2.32 Pragma Complete_Representation
Syntax:
pragma Complete_Representation;

This pragma must appear immediately within a record representation clause. Typical place-
ments are before the first component clause or after the last component clause. The effect is
to give an error message if any component is missing a component clause. This pragma may
be used to ensure that a record representation clause is complete, and that this invariant is
maintained if fields are added to the record in the future.

Chapter 2: Implementation Defined Pragmas 20

2.33 Pragma Complex_Representation

Syntax:

pragma Complex_Representation
([Entity =>] LOCAL_NAME);

The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gce to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,
there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

2.34 Pragma Component_Alignment
Syntax:

pragma Component_Alignment (
[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]) ;

ALIGNMENT_CHOICE ::=
Component_Size

| Component_Size_4

| Storage_Unit

| Default

Specifies the alignment of components in array or record types. The meaning of the Form
argument is as follows:

‘Component_Size’
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

‘Component_Size_4’
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

‘Storage_Unit’
Specifies that array or record components are byte aligned, i.e., aligned on
boundaries determined by the value of the constant System.Storage_Unit.

‘Default’

Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. The
Default choice is the same as Component_Size (natural alignment).

Chapter 2: Implementation Defined Pragmas 21

If the Name parameter is present, type_LOCAL_NAME must refer to a local record or array
type, and the specified alignment choice applies to the specified type. The use of Component_
Alignment together with a pragma Pack causes the Component_Alignment pragma to be
ignored. The use of Component_Alignment together with a record representation clause is
only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for
configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component_Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

2.35 Pragma Constant_After_Elaboration

Syntax:
pragma Constant_After_Elaboration [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Constant_After_Elaboration
in the SPARK 2014 Reference Manual, section 3.3.1.

2.36 Pragma Contract_Cases

Syntax:
pragma Contract_Cases (CONTRACT_CASE {, CONTRACT_CASE});

CONTRACT_CASE ::= CASE_GUARD => CONSEQUENCE
CASE_GUARD ::= boolean_EXPRESSION | others
CONSEQUENCE ::= boolean_EXPRESSION

The Contract_Cases pragma allows defining fine-grain specifications that can complement
or replace the contract given by a precondition and a postcondition. Additionally, the
Contract_Cases pragma can be used by testing and formal verification tools. The compiler
checks its validity and, depending on the assertion policy at the point of declaration of the
pragma, it may insert a check in the executable. For code generation, the contract cases

pragma Contract_Cases (
Condl => Predi,
Cond2 => Pred2);

are equivalent to

Cl : constant Boolean := Condl; -- evaluated at subprogram entry
C2 : constant Boolean := Cond2; -- evaluated at subprogram entry
pragma Precondition ((Cl and not C2) or (C2 and not C1));

pragma Postcondition (if C1 then Predl);

pragma Postcondition (if C2 then Pred2);

Chapter 2: Implementation Defined Pragmas 22

The precondition ensures that one and only one of the case guards is satisfied on entry
to the subprogram. The postcondition ensures that for the case guard that was True on
entry, the corresponding consequence is True on exit. Other consequence expressions are
not evaluated.

A precondition P and postcondition Q can also be expressed as contract cases:
pragma Contract_Cases (P => Q);

The placement and visibility rules for Contract_Cases pragmas are identical to those de-
scribed for preconditions and postconditions.

The compiler checks that boolean expressions given in case guards and consequences
are valid, where the rules for case guards are the same as the rule for an expression in
Precondition and the rules for consequences are the same as the rule for an expression
in Postcondition. In particular, attributes '0ld and 'Result can only be used within
consequence expressions. The case guard for the last contract case may be others, to
denote any case not captured by the previous cases. The following is an example of use
within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;

pragma Contract_Cases (((Arg in 0.0 .. 99.0) => Sqrt'Result < 10.0,
Arg >= 100.0 => Sqgrt'Result >= 10.0,
others => Sqrt'Result = 0.0));

end Math_Functions;
The meaning of contract cases is that only one case should apply at each call, as determined

by the corresponding case guard evaluating to True, and that the consequence for this case
should hold when the subprogram returns.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.37 Pragma Convention_Ildentifier

Syntax:

pragma Convention_Identifier (
[Name =>] IDENTIFIER,
[Convention =>] convention_IDENTIFIER);

This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention in
other pragmas (including for example pragma Import or another Convention_Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:
pragma Convention_Identifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding
the need to modify the sources. As another example, you could use this to parameterize

convention requirements according to systems. Suppose you needed to use Stdcall on
windows systems, and C on some other system, then you could define a convention identifier

Chapter 2: Implementation Defined Pragmas 23

Library and use a single Convention_Identifier pragma to specify which convention
would be used system-wide.

2.38 Pragma CPP_Class

Syntax:

pragma CPP_Class ([Entity =>] LOCAL_NAME);
The argument denotes an entity in the current declarative region that is declared as a record
type. It indicates that the type corresponds to an externally declared C++ class type, and
is to be laid out the same way that C++ would lay out the type. If the C++ class has virtual
primitives then the record must be declared as a tagged record type.
Types for which CPP_Class is specified do not have assignment or equality operators defined
(such operations can be imported or declared as subprograms as required). Initialization
is allowed only by constructor functions (see pragma CPP_Constructor). Such types are
implicitly limited if not explicitly declared as limited or derived from a limited type, and
an error is issued in that case.
See [Interfacing to C++], page 281, for related information.

Note: Pragma CPP_Class is currently obsolete. It is supported for backward compatibility
but its functionality is available using pragma Import with Convention = CPP.

2.39 Pragma CPP_Constructor

Syntax:
pragma CPP_Constructor ([Entity =>] LOCAL_NAME

[, [External_Name =>] static_string_ EXPRESSION]

[, [Link_Name =>] static_string EXPRESSION]);
This pragma identifies an imported function (imported in the usual way with pragma
Import) as corresponding to a C++ constructor. If External_Name and Link_Name are
not specified then the Entity argument is a name that must have been previously men-
tioned in a pragma Import with Convention = CPP. Such name must be of one of the
following forms:

* ‘function’ Fname ‘return’ T*

* ‘function’ Fname ‘return’ T’Class

* ‘function’ Fname (...) ‘return’ T°

* ‘function’ Fname (...) ‘return’ T’Class
where T is a limited record type imported from C++ with pragma Import and Convention
= CPP.

The first two forms import the default constructor, used when an object of type T is created
on the Ada side with no explicit constructor. The latter two forms cover all the non-default
constructors of the type. See the GNAT User’s Guide for details.

If no constructors are imported, it is impossible to create any objects on the Ada side and
the type is implicitly declared abstract.

Pragma CPP_Constructor is intended primarily for automatic generation using an auto-
matic binding generator tool (such as the -~fdump-ada-spec GCC switch). See [Interfacing
to C++], page 281, for more related information.

Chapter 2: Implementation Defined Pragmas 24

Note: The use of functions returning class-wide types for constructors is currently obsolete.
They are supported for backward compatibility. The use of functions returning the type T
leave the Ada sources more clear because the imported C++ constructors always return an
object of type T; that is, they never return an object whose type is a descendant of type T.

2.40 Pragma CPP_Virtual

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It is retained for compatibility purposes. It
used to be required to ensure compatibility with C++, but is no longer required for that
purpose because GNAT generates the same object layout as the G++ compiler by default.

See [Interfacing to C++], page 281, for related information.

2.41 Pragma CPP_Vtable

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It used to be required to ensure compatibility
with C++, but is no longer required for that purpose because GNAT generates the same
object layout as the G++ compiler by default.

See [Interfacing to C++], page 281, for related information.

2.42 Pragma CPU

Syntax:
pragma CPU (EXPRESSION) ;

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.43 Pragma Deadline_Floor

Syntax:
pragma Deadline_Floor (time_span_EXPRESSION);

This pragma applies only to protected types and specifies the floor deadline inherited by a
task when the task enters a protected object. It is effective only when the EDF scheduling
policy is used.

2.44 Pragma Debug

Syntax:
pragma Debug ([CONDITION,]PROCEDURE_CALL_WITHOUT_SEMICOLON);

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME
| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART

The procedure call argument has the syntactic form of an expression, meeting the syntactic
requirements for pragmas.

Chapter 2: Implementation Defined Pragmas 25

If debug pragmas are not enabled or if the condition is present and evaluates to False,
this pragma has no effect. If debug pragmas are enabled, the semantics of the pragma is
exactly equivalent to the procedure call statement corresponding to the argument with a
terminating semicolon. Pragmas are permitted in sequences of declarations, so you can use
pragma Debug to intersperse calls to debug procedures in the middle of declarations. Debug
pragmas can be enabled either by use of the command line switch ‘-gnata’ or by use of the
pragma Check_Policy with a first argument of Debug.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.45 Pragma Debug_Policy

Syntax:
pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF);

This pragma is equivalent to a corresponding Check_Policy pragma with a first argument
of Debug. It is retained for historical compatibility reasons.

2.46 Pragma Default_Initial_Condition

Syntax:
pragma Default_Initial_Condition [(null | boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Default_Initial_Condition in
the SPARK 2014 Reference Manual, section 7.3.3.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.47 Pragma Default_Scalar_Storage_Order

Syntax:
pragma Default_Scalar_Storage_Order (High_Order_First | Low_Order_First);

Normally if no explicit Scalar_Storage_0Order is given for a record type or array type, then
the scalar storage order defaults to the ordinary default for the target. But this default
may be overridden using this pragma. The pragma may appear as a configuration pragma,
or locally within a package spec or declarative part. In the latter case, it applies to all
subsequent types declared within that package spec or declarative part.

The following example shows the use of this pragma:

pragma Default_Scalar_Storage_Order (High Order_First);
with System; use System;
package DSSO1 is
type H1 is record
a : Integer;
end record;

type L2 is record
a : Integer;
end record;

Chapter 2: Implementation Defined Pragmas 26

for L2'Scalar_Storage_0Order use Low_Order_First;
type L2a is new L2;

package Inner is
type H3 is record
a : Integer;
end record;

pragma Default_Scalar_Storage_Order (Low_Order_First);

type L4 is record
a : Integer;
end record;
end Inner;

type H4a is new Inner.L4;

type H5 is record
a : Integer;
end record;
end DSSO01;

In this example record types with names starting with ‘L’ have Low_Order_First scalar
storage order, and record types with names starting with ‘H’ have High_Order_First.
Note that in the case of H4a, the order is not inherited from the parent type. Only an
explicitly set Scalar_Storage_Order gets inherited on type derivation.

If this pragma is used as a configuration pragma which appears within a configuration
pragma file (as opposed to appearing explicitly at the start of a single unit), then the
binder will require that all units in a partition be compiled in a similar manner, other than
run-time units, which are not affected by this pragma. Note that the use of this form is
discouraged because it may significantly degrade the run-time performance of the software,
instead the default scalar storage order ought to be changed only on a local basis.

2.48 Pragma Default_Storage_Pool

Syntax:
pragma Default_Storage_Pool (storage_pool _NAME | null);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.49 Pragma Depends

Syntax:
pragma Depends (DEPENDENCY_RELATION);

DEPENDENCY_RELATION ::=

Chapter 2: Implementation Defined Pragmas 27

null
| (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})

DEPENDENCY_CLAUSE ::=
OUTPUT_LIST =>[+] INPUT_LIST
| NULL_DEPENDENCY_CLAUSE
NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})

INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})

OUTPUT ::
INPUT

NAME | FUNCTION_RESULT
NAME

where FUNCTION_RESULT is a function Result attribute_reference

For the semantics of this pragma, see the entry for aspect Depends in the SPARK 2014
Reference Manual, section 6.1.5.

2.50 Pragma Detect_Blocking
Syntax:

pragma Detect_Blocking;

This is a standard pragma in Ada 2005, that is available in all earlier versions of Ada as an
implementation-defined pragma.

This is a configuration pragma that forces the detection of potentially blocking operations
within a protected operation, and to raise Program_Error if that happens.

2.51 Pragma Disable_Atomic_Synchronization
Syntax:

pragma Disable_Atomic_Synchronization [(Entity)];

pragma Enable_Atomic_Synchronization [(Entity)];

Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchro-
nization points in the case of multiple tasks. Particularly in the case of multi-processors
this may require special handling, e.g. the generation of memory barriers. This synchro-
nization is performed by default, but can be turned off using pragma Disable_Atomic_
Synchronization. The Enable_Atomic_Synchronization pragma turns it back on.

The placement and scope rules for these pragmas are the same as those for pragma
Suppress. In particular they can be used as configuration pragmas, or in a declaration
sequence where they apply until the end of the scope. If an Entity argument is present,
the action applies only to that entity.

Chapter 2: Implementation Defined Pragmas 28

2.52 Pragma Dispatching_Domain

Syntax:
pragma Dispatching Domain (EXPRESSION);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.53 Pragma Effective_Reads

Syntax:
pragma Effective_Reads [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Effective_Reads in the SPARK
2014 Reference Manual, section 7.1.2.

2.54 Pragma Effective_Writes

Syntax:
pragma Effective_Writes [(static_boolean_ EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Effective_Writes in the SPARK
2014 Reference Manual, section 7.1.2.

2.55 Pragma Elaboration_Checks

Syntax:
pragma Elaboration_Checks (Dynamic | Static);

This is a configuration pragma which specifies the elaboration model to be used during
compilation. For more information on the elaboration models of GNAT, consult the chapter
on elaboration order handling in the ‘GNAT User’s Guide’.

The pragma may appear in the following contexts:

* Configuration pragmas file

* Prior to the context clauses of a compilation unit’s initial declaration
Any other placement of the pragma will result in a warning and the effects of the offending
pragma will be ignored.

If the pragma argument is Dynamic, then the dynamic elaboration model is in effect. If the
pragma argument is Static, then the static elaboration model is in effect.

2.56 Pragma Eliminate

Syntax:
pragma Eliminate (
[Unit_Name
[Entity

IDENTIFIER | SELECTED_COMPONENT ,
IDENTIFIER |

SELECTED_COMPONENT |
STRING_LITERAL

[, Source_Location => SOURCE_TRACE]);

I
\
[

Il
Vv

Chapter 2: Implementation Defined Pragmas 29

SOURCE_TRACE ::= STRING_LITERAL

This pragma indicates that the given entity is not used in the program to be compiled and
built, thus allowing the compiler to eliminate the code or data associated with the named
entity. Any reference to an eliminated entity causes a compile-time or link-time error.

The pragma has the following semantics, where U is the unit specified by the Unit_Name
argument and E is the entity specified by the Entity argument:

* E must be a subprogram that is explicitly declared either:
* Within U, or
* Within a generic package that is instantiated in U, or

* As an instance of generic subprogram instantiated in U.

Otherwise the pragma is ignored.

* If E is overloaded within U then, in the absence of a Source_Location argument, all
overloadings are eliminated.

* If E is overloaded within U and only some overloadings are to be eliminated, then each
overloading to be eliminated must be specified in a corresponding pragma Eliminate
with a Source_Location argument identifying the line where the declaration appears,
as described below.

* If E is declared as the result of a generic instantiation, then a Source_Location argu-
ment is needed, as described below.

Pragma Eliminate allows a program to be compiled in a system-independent manner, so
that unused entities are eliminated but without needing to modify the source text. Normally
the required set of Eliminate pragmas is constructed automatically using the gnatelim
tool.

Any source file change that removes, splits, or adds lines may make the set of Eliminate
pragmas invalid because their Source_Location argument values may get out of date.

Pragma Eliminate may be used where the referenced entity is a dispatching operation. In
this case all the subprograms to which the given operation can dispatch are considered to
be unused (are never called as a result of a direct or a dispatching call).

The string literal given for the source location specifies the line number of the declaration
of the entity, using the following syntax for SOURCE_TRACE:

SOURCE_TRACE SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET]

LBRACKET : t[
RBRACKET =]

SOURCE_REFERENCE ::= FILE_NAME : LINE_NUMBER

LINE_NUMBER DIGIT {DIGIT}
Spaces around the colon in a SOURCE_REFERENCE are optional.

The source trace that is given as the Source_Location must obey the following rules (or
else the pragma is ignored), where U is the unit U specified by the Unit_Name argument and
E is the subprogram specified by the Entity argument:

Chapter 2: Implementation Defined Pragmas 30

* FILE_NAME is the short name (with no directory information) of the Ada source file for
U, using the required syntax for the underlying file system (e.g. case is significant if the
underlying operating system is case sensitive). If U is a package and E is a subprogram
declared in the package specification and its full declaration appears in the package
body, then the relevant source file is the one for the package specification; analogously
if U is a generic package.

If E is not declared in a generic instantiation (this includes generic subprogram in-
stances), the source trace includes only one source line reference. LINE_NUMBER gives
the line number of the occurrence of the declaration of E within the source file (as a
decimal literal without an exponent or point).

If E is declared by a generic instantiation, its source trace (from left to right) starts
with the source location of the declaration of E in the generic unit and ends with the
source location of the instantiation, given in square brackets. This approach is applied
recursively with nested instantiations: the rightmost (nested most deeply in square
brackets) element of the source trace is the location of the outermost instantiation,
and the leftmost element (that is, outside of any square brackets) is the location of the
declaration of E in the generic unit.

Examples:

pragma Eliminate (PkgO, Proc);
-- Eliminate (all overloadings of) Proc in PkgO

pragma Eliminate (Pkgl, Proc,
Source_Location => "pkgl.ads:8");
-- Eliminate overloading of Proc at line 8 in pkgl.ads

—-- Assume the following file contents:
-— gen_pkg.ads
-— 1: generic
2 type T is private;
-— 3: package Gen_Pkg is
4 procedure Proc(N : T);

-- ... end Gen_Pkg;

- q.adb

- 1: with Gen_Pkg;

-— 2: procedure Q is

-- 3: package Inst_Pkg is new Gen_Pkg(Integer);
- ... -- No calls on Inst_Pkg.Proc

-- ... end Q;

-— The following pragma eliminates Inst_Pkg.Proc from Q
pragma Eliminate (Q, Proc,
Source_Location => "gen_pkg.ads:4[q.adb:3]");

Chapter 2: Implementation Defined Pragmas 31

2.57 Pragma Enable_Atomic_Synchronization

Syntax:

pragma Enable_Atomic_Synchronization [(Entity)];

Reenables atomic synchronization; see pragma Disable_Atomic_Synchronization for de-

tails.

2.58 Pragma Exceptional_Cases

Syntax:

pragma Exceptional_Cases (EXCEPTIONAL_CASE_LIST);

EXCEPTIONAL_CASE_LIST ::

EXCEPTIONAL_CASE
CONSEQUENCE

For the semantics of this aspect, see the SPARK 2014 Reference Manual, section 6.1.9.

2.59 Pragma Exit_Cases

Syntax:

EXCEPTIONAL_CASE {, EXCEPTIONAL_CASE}
exception_choice {'|' exception_choice} => CONSEQUENCE
Boolean_expression

pragma Exit_Cases (EXIT_CASE_LIST);

EXIT_CASE_LIST ::
EXIT_CASE
EXIT_KIND

GUARD i
For the semantics of this aspect, see the SPARK 2014 Reference Manual, section 6.1.10.

EXIT_CASE {, EXIT_CASE}
GUARD => EXIT_KIND

Normal _

Return

Exception_Raised

(Exception_Raised => exception_name)
Program_Exit

Boolean_expression

2.60 Pragma Export_Function

Syntax:

pragma Export_Function (

[Internal
[External

-

[Result_Type
, [Mechanism

[T e T e T s B |
-

-

EXTERNAL_SYMBOL ::

IDENTIFIER

=>]
=>]

, [Parameter_Types =>]

=>]
=>:|

[Result_Mechanism =>]

LOCAL_NAME
EXTERNAL_SYMBOL]
PARAMETER_TYPES]
result_SUBTYPE_MARK]
MECHANISM]
MECHANISM_NAME]) ;

| static_string_ EXPRESSION

nn

Chapter 2: Implementation Defined Pragmas 32

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in conjunction with a separate
pragma Export, which must precede the pragma Export_Function. GNAT does not require
a separate pragma Export, but if none is present, Convention Ada is assumed, which is
usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma
Export_Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.

The internal_name must uniquely designate the function to which the pragma applies.
If more than one function name exists of this name in the declarative part you must use
the Parameter_Types and Result_Type parameters to achieve the required unique desig-
nation. The subtype_marks in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an 'Access attribute can be used to match an anonymous
access parameter.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.61 Pragma Export_Object

Syntax:

pragma Export_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

Chapter 2: Implementation Defined Pragmas 33

| static_string EXPRESSION

This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point of
view of portability), but it is not required. Size is syntax checked, but otherwise ignored
by GNAT.

2.62 Pragma Export_Procedure

Syntax:
pragma Export_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

Chapter 2: Implementation Defined Pragmas 34

2.63 Pragma Export_Valued_Procedure

Syntax:
pragma Export_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

| nn

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export_Procedure except that the first parameter of LOCAL_
NAME, which must be present, must be of mode out, and externally the subprogram is treated
as a function with this parameter as the result of the function. GNAT provides for this
capability to allow the use of out and in out parameters in interfacing to external functions
(which are not permitted in Ada functions). GNAT does not require a separate pragma
Export, but if none is present, Convention Ada is assumed, which is almost certainly not
what is wanted since the whole point of this pragma is to interface with foreign language
functions, so it is usually appropriate to use this pragma in conjunction with a Export or
Convention pragma that specifies the desired foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.64 Pragma Extend_System

Syntax:
pragma Extend_System ([Name =>] IDENTIFIER);

Chapter 2: Implementation Defined Pragmas 35

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions
that are present in the Ada RM. However, other implementations, notably the DEC Ada
83 implementation, provide many extensions to package System.

For each such implementation accommodated by this pragma, GNAT provides a package
Aux_xxx, e.g., Aux_DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal
way and access entities either by selection or using a use clause. In this case no special
processing is required.

However, if existing code contains references such as System.xxx where ‘xxx’ is an entity
in the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend_System is a configuration pragma whose single argument
is the name of the package containing the extended definition (e.g., Aux_DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux_xxx where Aux_xxx is the pragma
argument for any entity referenced in package System, but not found in package System.

You can use this pragma either to access a predefined System extension supplied with the
compiler, for example Aux_DEC or you can construct your own extension unit following the
above definition. Note that such a package is a child of System and thus is considered part
of the implementation. To compile it you will have to use the ‘-gnatg’ switch for compiling
System units, as explained in the GNAT User’s Guide.

2.65 Pragma Extensions_Allowed
Syntax:
pragma Extensions_Allowed (On | Off | All_Extensions);

This configuration pragma enables (via the “On” or “All_Extensions” argument) or disables
(via the “Off” argument) the implementation extension mode; the pragma takes precedence
over the —gnatX and -gnatX0 command switches.

If an argument of "On" is specified, the latest version of the Ada language is implemented
(currently Ada 2022) and, in addition, a curated set of GNAT specific extensions are rec-
ognized. (See the list here [here], page 330)

An argument of "A11_Extensions" has the same effect except that some extra experimental
extensions are enabled (See the list here [here], page 341)

2.66 Pragma Extensions_Visible
Syntax:
pragma Extensions_Visible [(static_boolean_EXPRESSION) 1;

For the semantics of this pragma, see the entry for aspect Extensions_Visible in the
SPARK 2014 Reference Manual, section 6.1.7.

Chapter 2: Implementation Defined Pragmas 36

2.67 Pragma External

Syntax:
pragma External (
[Convention =>] convention_IDENTIFIER,
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_ EXPRESSION]
[, [Link_Name =>] static_string EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined in the
Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma Export before the latter was
standardized.

2.68 Pragma External_Name_Casing
Syntax:

pragma External_ Name_Casing (
Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);

This pragma provides control over the casing of external names associated with Import and
Export pragmas. There are two cases to consider:

* Implicit external names

Implicit external names are derived from identifiers. The most common case arises
when a standard Ada Import or Export pragma is used with only two arguments, as
in:

pragma Import (C, C_Routine);

Since Ada is a case-insensitive language, the spelling of the identifier in the Ada source
program does not provide any information on the desired casing of the external name,
and so a convention is needed. In GNAT the default treatment is that such names are
converted to all lower case letters. This corresponds to the normal C style in many
environments. The first argument of pragma External_Name_Casing can be used to
control this treatment. If Uppercase is specified, then the name will be forced to all
uppercase letters. If Lowercase is specified, then the normal default of all lower case
letters will be used.

This same implicit treatment is also used in the case of extended DEC Ada 83 compat-
ible Import and Export pragmas where an external name is explicitly specified using
an identifier rather than a string.

Explicit external names

Explicit external names are given as string literals. The most common case arises when
a standard Ada Import or Export pragma is used with three arguments, as in:

pragma Import (C, C_Routine, "C_routine");

In this case, the string literal normally provides the exact casing required for the
external name. The second argument of pragma External_Name_Casing may be used
to modify this behavior. If Uppercase is specified, then the name will be forced to
all uppercase letters. If Lowercase is specified, then the name will be forced to all

Chapter 2: Implementation Defined Pragmas 37

lowercase letters. A specification of As_Is provides the normal default behavior in
which the casing is taken from the string provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can be used
as a configuration pragma in the gnat.adc file, in which case it applies to all subsequent
compilations, or it can be used as a program unit pragma, in which case it only applies
to the current unit, or it can be used more locally to control individual Import/Export
pragmas.

It was primarily intended for use with OpenVMS systems, where many compilers convert
all symbols to upper case by default. For interfacing to such compilers (e.g., the DEC C
compiler), it may be convenient to use the pragma:

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

2.69 Pragma Fast_Math

Syntax:
pragma Fast_Math;

This is a configuration pragma which activates a mode in which speed is considered more
important for floating-point operations than absolutely accurate adherence to the require-
ments of the standard. Currently the following operations are affected:

‘Complex Multiplication’
The normal simple formula for complex multiplication can result in intermediate
overflows for numbers near the end of the range. The Ada standard requires
that this situation be detected and corrected by scaling, but in Fast_Math mode
such cases will simply result in overflow. Note that to take advantage of this you
must instantiate your own version of Ada.Numerics.Generic_Complex_Types
under control of the pragma, rather than use the preinstantiated versions.

2.70 Pragma Favor_Top_Level

Syntax:
pragma Favor_Top_Level (type_LOCAL_NAME);

The argument of pragma Favor_Top_Level must be a named access-to-subprogram
type. This pragma is an efficiency hint to the compiler, regarding the use of 'Access
or 'Unrestricted_Access on nested (non-library-level) subprograms. The pragma
means that nested subprograms are not used with this type, or are rare, so that the
generated code should be efficient in the top-level case. When this pragma is used,
dynamically generated trampolines may be used on some targets for nested subprograms.
See restriction No_Implicit_Dynamic_Code.

2.71 Pragma Finalize_Storage_Only

Syntax:
pragma Finalize_Storage_0Only (first_subtype_LOCAL_NAME);

Chapter 2: Implementation Defined Pragmas 38

The argument of pragma Finalize_Storage_0Only must denote a local type which is derived
from Ada.Finalization.Controlled or Limited_Controlled. The pragma suppresses the
call to Finalize for declared library-level objects of the argument type. This is mostly
useful for types where finalization is only used to deal with storage reclamation since in
most environments it is not necessary to reclaim memory just before terminating execution,
hence the name. Note that this pragma does not suppress Finalize calls for library-level
heap-allocated objects (see pragma No_Heap_Finalization).

2.72 Pragma Float_Representation

Syntax:
pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]) ;

FLOAT_REP ::= VAX_Float | IEEE_Float

In the one argument form, this pragma is a configuration pragma which allows control over
the internal representation chosen for the predefined floating point types declared in the
packages Standard and System. This pragma is only provided for compatibility and has no
effect.

The two argument form specifies the representation to be used for the specified floating-
point type. The argument must be IEEE_Float to specify the use of IEEE format, as
follows:

* For a digits value of 6, 32-bit IEEE short format will be used.
* For a digits value of 15, 64-bit IEEE long format will be used.

* No other value of digits is permitted.

2.73 Pragma Ghost

Syntax:
pragma Ghost [(static_boolean_ EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Ghost in the SPARK 2014
Reference Manual, section 6.9.

2.74 Pragma Global

Syntax:
pragma Global (GLOBAL_SPECIFICATION);

GLOBAL_SPECIFICATION ::=
null
| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})

MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST

MODE_SELECTOR ::
GLOBAL_LIST

In_Out | Input | Output | Proof_In
GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})

Chapter 2: Implementation Defined Pragmas 39

GLOBAL_ITEM ::= NAME

For the semantics of this pragma, see the entry for aspect Global in the SPARK 2014
Reference Manual, section 6.1.4.

2.75 Pragma Ident

Syntax:
pragma Ident (static_string EXPRESSION);

This pragma is identical in effect to pragma Comment. It is provided for compatibility with
other Ada compilers providing this pragma.

2.76 Pragma Ignore_Pragma

Syntax:
pragma Ignore_Pragma (pragma_IDENTIFIER);

This is a configuration pragma that takes a single argument that is a simple identifier. Any
subsequent use of a pragma whose pragma identifier matches this argument will be silently
ignored. Any preceding use of a pragma whose pragma identifier matches this argument
will be parsed and then ignored. This may be useful when legacy code or code intended for
compilation with some other compiler contains pragmas that match the name, but not the
exact implementation, of a GNAT pragma. The use of this pragma allows such pragmas to
be ignored, which may be useful in CodePeer mode, or during porting of legacy code.

2.77 Pragma Implementation_Defined

Syntax:
pragma Implementation_Defined (local_NAME);

This pragma marks a previously declared entity as implementation-defined. For an over-
loaded entity, applies to the most recent homonym.

pragma Implementation_Defined;

The form with no arguments appears anywhere within a scope, most typically a package
spec, and indicates that all entities that are defined within the package spec are Implemen-
tation_Defined.

This pragma is used within the GNAT runtime library to identify implementation-defined
entities introduced in language-defined units, for the purpose of implementing the
No_Implementation_Identifiers restriction.

2.78 Pragma Implemented

Syntax:
pragma Implemented (procedure_LOCAL_NAME, implementation_kind);

implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any

This is an Ada 2012 representation pragma which applies to protected, task and synchro-
nized interface primitives. The use of pragma Implemented provides a way to impose a

Chapter 2: Implementation Defined Pragmas 40

static requirement on the overriding operation by adhering to one of the three implemen-
tation kinds: entry, protected procedure or any of the above. This pragma is available in
all earlier versions of Ada as an implementation-defined pragma.

type Synch_Iface is synchronized interface;
procedure Prim_Op (Obj : in out Iface) is abstract;
pragma Implemented (Prim_Op, By_Protected_Procedure);

protected type Prot_1 is new Synch_Iface with
procedure Prim_Op; -- Legal
end Prot_1;

protected type Prot_2 is new Synch_Iface with
entry Prim_Op; -- Illegal
end Prot_2;

task type Task_Typ is new Synch_Iface with
entry Prim_Op; -= Illegal
end Task_Typ;

When applied to the procedure_or_entry_NAME of a requeue statement, pragma Imple-
mented determines the runtime behavior of the requeue. Implementation kind By_Entry
guarantees that the action of requeueing will proceed from an entry to another entry. Im-
plementation kind By_Protected _Procedure transforms the requeue into a dispatching call,
thus eliminating the chance of blocking. Kind By_Any shares the behavior of By_Entry and
By_Protected_Procedure depending on the target’s overriding subprogram kind.

2.79 Pragma Implicit_Packing

Syntax:

pragma Implicit_Packing;
This is a configuration pragma that requests implicit packing for packed arrays for which
a size clause is given but no explicit pragma Pack or specification of Component_Size is

present. It also applies to records where no record representation clause is present. Consider
this example:

type R is array (0 .. 7) of Boolean;
for R'Size use 8;

In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause does not
change the layout of a composite object. So the Size clause in the above example is normally
rejected, since the default layout of the array uses 8-bit components, and thus the array
requires a minimum of 64 bits.

If this declaration is compiled in a region of code covered by an occurrence of the configura-
tion pragma Implicit_Packing, then the Size clause in this and similar examples will cause
implicit packing and thus be accepted. For this implicit packing to occur, the type in ques-
tion must be an array of small components whose size is known at compile time, and the Size
clause must specify the exact size that corresponds to the number of elements in the array
multiplied by the size in bits of the component type (both single and multi-dimensioned
arrays can be controlled with this pragma).

Chapter 2: Implementation Defined Pragmas 41

Similarly, the following example shows the use in the record case

type r is record
a, b, c, d, e, £, g, h : boolean;
chr : character;
end record;
for r'size use 16;

Without a pragma Pack, each Boolean field requires 8 bits, so the minimum size is 72 bits,
but with a pragma Pack, 16 bits would be sufficient. The use of pragma Implicit_Packing
allows this record declaration to compile without an explicit pragma Pack.

2.80 Pragma Import_Function

Syntax:
pragma Import_Function (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[

[Result_Mechanism =>] MECHANISM_NAME]) ;

-

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value
| Reference

This pragma is used in conjunction with a pragma Import to specify additional information
for an imported function. The pragma Import (or equivalent pragma Interface) must

Chapter 2: Implementation Defined Pragmas 42

precede the Import_Function pragma and both must appear in the same declarative part
as the function specification.

The Internal argument must uniquely designate the function to which the pragma applies.
If more than one function name exists of this name in the declarative part you must use the
Parameter_Types and Result_Type parameters to achieve the required unique designation.
Subtype marks in these parameters must exactly match the subtypes in the corresponding
function specification, using positional notation to match parameters with subtype marks.
The form with an 'Access attribute can be used to match an anonymous access parameter.

You may optionally use the Mechanism and Result_Mechanism parameters to specify pass-
ing mechanisms for the parameters and result. If you specify a single mechanism name, it
applies to all parameters. Otherwise you may specify a mechanism on a parameter by pa-
rameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

2.81 Pragma Import_Object
Syntax:

pragma Import_Object (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string_EXPRESSION

This pragma designates an object as imported, and apart from the extended rules for
external symbols, is identical in effect to the use of the normal Import pragma applied
to an object. Unlike the subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a portability point of view). size
is syntax checked, but otherwise ignored by GNAT.

2.82 Pragma Import_Procedure

Syntax:
pragma Import_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::=
null

Chapter 2: Implementation Defined Pragmas 43

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_ NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Import_Function except that it applies to a procedure rather
than a function and the parameters Result_Type and Result_Mechanism are not permitted.

2.83 Pragma Import_Valued_Procedure

Syntax:
pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

PARAMETER_TYPES ::
null
| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::
subtype_NAME
| subtype_Name ' Access

MECHANISM ::=
MECHANISM_NAME
| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

Chapter 2: Implementation Defined Pragmas 44

This pragma is identical to Import_Procedure except that the first parameter of LOCAL_
NAME, which must be present, must be of mode out, and externally the subprogram is treated
as a function with this parameter as the result of the function. The purpose of this capability
is to allow the use of out and in out parameters in interfacing to external functions (which
are not permitted in Ada functions). You may optionally use the Mechanism parameters to
specify passing mechanisms for the parameters. If you specify a single mechanism name,
it applies to all parameters. Otherwise you may specify a mechanism on a parameter by
parameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

Note that it is important to use this pragma in conjunction with a separate pragma Import
that specifies the desired convention, since otherwise the default convention is Ada, which
is almost certainly not what is required.

2.84 Pragma Independent
Syntax:
pragma Independent (component_LOCAL_NAME);

This pragma is standard in Ada 2012 mode (which also provides an aspect of the same
name). It is also available as an implementation-defined pragma in all earlier versions. It
specifies that the designated object or all objects of the designated type must be indepen-
dently addressable. This means that separate tasks can safely manipulate such objects. For
example, if two components of a record are independent, then two separate tasks may access
these two components. This may place constraints on the representation of the object (for
instance prohibiting tight packing).

2.85 Pragma Independent_Components
Syntax:
pragma Independent_Components (Local_NAME) ;

This pragma is standard in Ada 2012 mode (which also provides an aspect of the same
name). It is also available as an implementation-defined pragma in all earlier versions. It
specifies that the components of the designated object, or the components of each object of
the designated type, must be independently addressable. This means that separate tasks can
safely manipulate separate components in the composite object. This may place constraints
on the representation of the object (for instance prohibiting tight packing).

2.86 Pragma Initial_Condition
Syntax:
pragma Initial_Condition (boolean_EXPRESSION) ;

For the semantics of this pragma, see the entry for aspect Initial_Condition in the
SPARK 2014 Reference Manual, section 7.1.6.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

Chapter 2: Implementation Defined Pragmas 45

2.87 Pragma Initialize_Scalars

Syntax:

pragma Initialize_Scalars
[(TYPE_VALUE_PAIR {, TYPE_VALUE_PAIR}) 1;

TYPE_VALUE_PAIR ::=
SCALAR_TYPE => static_EXPRESSION

SCALAR_TYPE :=
Short_Float

| Float

| Long_Float

| Long_Long_Flat

| Signed_8

| Signed_16

| Signed_32

| Signed_64

| Unsigned_8

| Unsigned_16

| Unsigned_32

| Unsigned_64

This pragma is similar to Normalize_Scalars conceptually but has two important differ-
ences.

First, there is no requirement for the pragma to be used uniformly in all units of a partition.
In particular, it is fine to use this just for some or all of the application units of a partition,
without needing to recompile the run-time library. In the case where some units are compiled
with the pragma, and some without, then a declaration of a variable where the type is
defined in package Standard or is locally declared will always be subject to initialization,
as will any declaration of a scalar variable. For composite variables, whether the variable
is initialized may also depend on whether the package in which the type of the variable is
declared is compiled with the pragma.

The other important difference is that the programmer can control the value used for ini-
tializing scalar objects. This effect can be achieved in several different ways:

* At compile time, the programmer can specify the invalid value for a particular family
of scalar types using the optional arguments of the pragma.

The compile-time approach is intended to optimize the generated code for the pragma,
by possibly using fast operations such as memset. Note that such optimizations require
using values where the bytes all have the same binary representation.

* At bind time, the programmer has several options:

* Initialization with invalid values (similar to Normalize_Scalars, though for Initial-

ize_Scalars it is not always possible to determine the invalid values in complex
cases like signed component fields with nonstandard sizes).

Initialization with high values.

Initialization with low values.

Chapter 2: Implementation Defined Pragmas 46

* Initialization with a specific bit pattern.

See the GNAT User’s Guide for binder options for specifying these cases.

The bind-time approach is intended to provide fast turnaround for testing with different
values, without having to recompile the program.

At execution time, the programmer can specify the invalid values using an environment
variable. See the GNAT User’s Guide for details.

The execution-time approach is intended to provide fast turnaround for testing with
different values, without having to recompile and rebind the program.

Note that pragma Initialize_Scalars is particularly useful in conjunction with the en-
hanced validity checking that is now provided in GNAT, which checks for invalid values
under more conditions. Using this feature (see description of the ‘-gnatV’ flag in the GNAT
User’s Guide) in conjunction with pragma Initialize_Scalars provides a powerful new
tool to assist in the detection of problems caused by uninitialized variables.

Note: the use of Initialize_Scalars has a fairly extensive effect on the generated code.
This may cause your code to be substantially larger. It may also cause an increase in
the amount of stack required, so it is probably a good idea to turn on stack checking (see
description of stack checking in the GNAT User’s Guide) when using this pragma.

2.88 Pragma Initializes

Syntax:
pragma Initializes (INITIALIZATION_LIST);

INITIALIZATION_LIST ::=
null
| (INITIALIZATION_ITEM {, INITIALIZATION_ITEM})

INITIALIZATION_ITEM ::= name [=> INPUT_LIST]

INPUT_LIST ::
null
| INPUT
| (INPUT {, INPUT})

INPUT ::= name

For the semantics of this pragma, see the entry for aspect Initializes in the SPARK 2014
Reference Manual, section 7.1.5.

2.89 Pragma Inline_Always

Syntax:
pragma Inline_Always (NAME [, NAME]);
Similar to pragma Inline except that inlining is unconditional. Inline_Always instructs the

compiler to inline every direct call to the subprogram or else to emit a compilation error,
independently of any option, in particular ‘-gnatn’ or ‘-gnatN’ or the optimization level. It

Chapter 2: Implementation Defined Pragmas 47

is an error to take the address or access of NAME. It is also an error to apply this pragma to
a primitive operation of a tagged type. Thanks to such restrictions, the compiler is allowed
to remove the out-of-line body of NAME.

2.90 Pragma Inline_Generic

Syntax:
pragma Inline_Generic (GNAME {, GNAME});

GNAME ::= generic_unit_NAME | generic_instance_NAME

This pragma is provided for compatibility with Dec Ada 83. It has no effect in GNAT
(which always inlines generics), other than to check that the given names are all names of
generic units or generic instances.

2.91 Pragma Interface

Syntax:
pragma Interface (
[Convention =>] convention_identifier,
[Entity =>] local_NAME
[, [External_Name =>] static_string_expression]
[, [Link_Name =>] static_string_expression]);

This pragma is identical in syntax and semantics to the standard Ada pragma Import.
It is provided for compatibility with Ada 83. The definition is upwards compatible both
with pragma Interface as defined in the Ada 83 Reference Manual, and also with some
extended implementations of this pragma in certain Ada 83 implementations. The only
difference between pragma Interface and pragma Import is that there is special circuitry
to allow both pragmas to appear for the same subprogram entity (normally it is illegal to
have multiple Import pragmas). This is useful in maintaining Ada 83/Ada 95 compatibility
and is compatible with other Ada 83 compilers.

2.92 Pragma Interface_Name

Syntax:
pragma Interface_Name (
[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string EXPRESSION]
[, [Link_Name =>] static_string EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for an interfaced
subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma
for this purpose. You must provide at least one of External_Name or Link_Name.

2.93 Pragma Interrupt_Handler

Syntax:
pragma Interrupt_Handler (procedure_LOCAL_NAME);

Chapter 2: Implementation Defined Pragmas 48

This program unit pragma is supported for parameterless protected procedures as described
in Annex C of the Ada Reference Manual.

2.94 Pragma Interrupt_State

Syntax:

pragma Interrupt_State
([Name =>] value,
[State =>] SYSTEM | RUNTIME | USER);

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for an Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution. Additionally, signals such as SIGSEGV, SIGABRT, SIGFPE and SIGILL are often
mapped to specific Ada exceptions, or used to implement run-time functions such as the
abort statement and stack overflow checking.

Pragma Interrupt_State provides a general mechanism for overriding such uses of in-
terrupts. It subsumes the functionality of pragma Unreserve_All_Interrupts. Pragma
Interrupt_State is not available on Windows. On all other platforms than VxWorks, it
applies to signals; on VxWorks, it applies to vectored hardware interrupts and may be used
to mark interrupts required by the board support package as reserved.

Interrupts can be in one of three states:
* System

The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may
not install a handler. As a result you are guaranteed standard system default action if
this interrupt is raised. This also allows installing a low level handler via C APIs such
as sigaction(), outside of Ada control.

Runtime

The interrupt is reserved (no Ada handler can be installed). The run time is allowed
to install a handler for internal control purposes, but is not required to do so.

* User

The interrupt is unreserved. The user may install an Ada handler via Ada.Interrupts
and pragma Interrupt_Handler or Attach_Handler to provide some other action.

These states are the allowed values of the State parameter of the pragma. The Name
parameter is a value of the type Ada.Interrupts.Interrupt_ID. Typically, it is a name
declared in Ada.Interrupts.Names.

This is a configuration pragma, and the binder will check that there are no inconsistencies
between different units in a partition in how a given interrupt is specified. It may appear
anywhere a pragma is legal.

The effect is to move the interrupt to the specified state.

By declaring interrupts to be SYSTEM, you guarantee the standard system action, such as
a core dump.

By declaring interrupts to be USER, you guarantee that you can install a handler.

Chapter 2: Implementation Defined Pragmas 49

Note that certain signals on many operating systems cannot be caught and handled by
applications. In such cases, the pragma is ignored. See the operating system documentation,
or the value of the array Reserved declared in the spec of package System.0S_Interface.

Overriding the default state of signals used by the Ada runtime may interfere with an
application’s runtime behavior in the cases of the synchronous signals, and in the case of
the signal used to implement the abort statement.

2.95 Pragma Interrupts_System_By_Default

Syntax:
pragma Interrupts_System_By_Default;

Default all interrupts to the System state as defined above in pragma Interrupt_State.
This is a configuration pragma.

2.96 Pragma Invariant

Syntax:

pragma Invariant
([Entity =>] private_type_LOCAL_NAME,
[Check =>] EXPRESSION
[, [Message =>] String Expression]);

This pragma provides exactly the same capabilities as the Type_Invariant aspect defined in
AT05-0146-1, and in the Ada 2012 Reference Manual. The Type_Invariant aspect is fully
implemented in Ada 2012 mode, but since it requires the use of the aspect syntax, which
is not available except in 2012 mode, it is not possible to use the Type_Invariant aspect in
earlier versions of Ada. However the Invariant pragma may be used in any version of Ada.
Also note that the aspect Invariant is a synonym in GNAT for the aspect Type_Invariant,
but there is no pragma Type_Invariant.

The pragma must appear within the visible part of the package specification, after the type
to which its Entity argument appears. As with the Invariant aspect, the Check expression
is not analyzed until the end of the visible part of the package, so it may contain forward
references. The Message argument, if present, provides the exception message used if the
invariant is violated. If no Message parameter is provided, a default message that identifies
the line on which the pragma appears is used.

It is permissible to have multiple Invariants for the same type entity, in which case they are
and’ed together. It is permissible to use this pragma in Ada 2012 mode, but you cannot
have both an invariant aspect and an invariant pragma for the same entity.

For further details on the use of this pragma, see the Ada 2012 documentation of the
Type_Invariant aspect.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.97 Pragma Keep_Names

Syntax:
pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME) ;

Chapter 2: Implementation Defined Pragmas 50

The LOCAL_NAME argument must refer to an enumeration first subtype in the current declar-
ative part. The effect is to retain the enumeration literal names for use by Image and Value
even if a global Discard_Names pragma applies. This is useful when you want to generally
suppress enumeration literal names and for example you therefore use a Discard_Names
pragma in the gnat.adc file, but you want to retain the names for specific enumeration

types.

2.98 Pragma License

Syntax:
pragma License (Unrestricted | GPL | Modified_GPL | Restricted);

This pragma is provided to allow automated checking for appropriate license conditions with
respect to the standard and modified GPL. A pragma License, which is a configuration
pragma that typically appears at the start of a source file or in a separate gnat.adc file,
specifies the licensing conditions of a unit as follows:

* Unrestricted This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada Reference
Manual.

* GPL This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be withed by a restricted unit.

* Modified_GPL This is used for a unit licensed under the GNAT modified GPL that
includes a special exception paragraph that specifically permits the inclusion of the
unit in programs without requiring the entire program to be released under the GPL.

* Restricted This is used for a unit that is restricted in that it is not permitted to depend
on units that are licensed under the GPL. Typical examples are proprietary code that
is to be released under more restrictive license conditions. Note that restricted units
are permitted to with units which are licensed under the modified GPL (this is the
whole point of the modified GPL).

Normally a unit with no License pragma is considered to have an unknown license, and no
checking is done. However, standard GNAT headers are recognized, and license information
is derived from them as follows.

A GNAT license header starts with a line containing 78 hyphens. The following comment
text is searched for the appearance of any of the following strings.
If the string ‘GNU General Public License’ is found, then the unit is assumed to have GPL
license, unless the string ‘As a special exception’ follows, in which case the license is assumed
to be modified GPL.
If one of the strings ‘This specification is adapted from the Ada Semantic Interface’ or ‘This
specification is derived from the Ada Reference Manual’ is found then the unit is assumed
to be unrestricted.
These default actions means that a program with a restricted license pragma will automat-
ically get warnings if a GPL unit is inappropriately withed. For example, the program:
with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is

Chapter 2: Implementation Defined Pragmas 51

end Secret_Stuff
if compiled with pragma License (Restricted) in a gnat . adc file will generate the warning:

1. with Sem_Ch3;
I

>>> license of withed unit "Sem_Ch3" is incompatible

2. with GNAT.Sockets;
3. procedure Secret_Stuff is

Here we get a warning on Sem_Ch3 since it is part of the GNAT compiler and is licensed
under the GPL, but no warning for GNAT.Sockets which is part of the GNAT run time,
and is therefore licensed under the modified GPL.

2.99 Pragma Link_With

Syntax:
pragma Link With (static_string EXPRESSION {,static_string_EXPRESSION});

This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly
the same effect as pragma Linker_Options except that spaces occurring within one of the
string expressions are treated as separators. For example, in the following case:

pragma Link _With ("-labc -ldef");
results in passing the strings -labc and -1def as two separate arguments to the linker. In

addition pragma Link_With allows multiple arguments, with the same effect as successive
pragmas.

2.100 Pragma Linker_Alias

Syntax:

pragma Linker_Alias (
[Entity =>] LOCAL_NAME,
[Target =>] static_string EXPRESSION) ;

LOCAL_NAME must refer to an object that is declared at the library level. This pragma
establishes the given entity as a linker alias for the given target. It is equivalent to __
attribute__((alias)) in GNU C and causes LOCAL_NAME to be emitted as an alias for the
symbol static_string EXPRESSION in the object file, that is to say no space is reserved
for LOCAL_NAME by the assembler and it will be resolved to the same address as static_
string EXPRESSION by the linker.

The actual linker name for the target must be used (e.g., the fully encoded name with
qualification in Ada, or the mangled name in C++), or it must be declared using the C
convention with pragma Import or pragma Export.

Not all target machines support this pragma. On some of them it is accepted only if pragma
Weak_External has been applied to LOCAL_NAME.

-- Example of the use of pragma Linker_Alias

package p is

Chapter 2: Implementation Defined Pragmas 52

i : Integer := 1;
pragma Export (C, i);

new_name_for_i : Integer;
pragma Linker_Alias (new_name_for_i, "i");
end p;

2.101 Pragma Linker_Constructor

Syntax:
pragma Linker_Constructor (procedure_LOCAL_NAME) ;

procedure_LOCAL_NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as an initialization
routine by the linker. It is equivalent to __attribute__((constructor)) in GNU C and
causes procedure_LOCAL_NAME to be invoked before the entry point of the executable is
called (or immediately after the shared library is loaded if the procedure is linked in a
shared library), in particular before the Ada run-time environment is set up.

Because of these specific contexts, the set of operations such a procedure can perform
is very limited and the type of objects it can manipulate is essentially restricted to the
elementary types. In particular, it must only contain code to which pragma Restrictions
(No_Elaboration_Code) applies.

This pragma is used by GNAT to implement auto-initialization of shared Stand Alone
Libraries, which provides a related capability without the restrictions listed above. Where
possible, the use of Stand Alone Libraries is preferable to the use of this pragma.

2.102 Pragma Linker_Destructor

Syntax:
pragma Linker_Destructor (procedure_LOCAL_NAME);

procedure_LOCAL_NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as a finalization
routine by the linker. It is equivalent to __attribute__((destructor)) in GNU C and
causes procedure_LOCAL_NAME to be invoked after the entry point of the executable has
exited (or immediately before the shared library is unloaded if the procedure is linked in a
shared library), in particular after the Ada run-time environment is shut down.

See pragma Linker_Constructor for the set of restrictions that apply because of these
specific contexts.

2.103 Pragma Linker_Section

Syntax:
pragma Linker_Section (
[(Entity =>] LOCAL_NAME,
[Section =>] static_string EXPRESSION) ;

LOCAL_NAME must refer to an object, type, or subprogram that is declared at the library
level. This pragma specifies the name of the linker section for the given entity. It is

Chapter 2: Implementation Defined Pragmas 53

equivalent to __attribute__((section)) in GNU C and causes LOCAL_NAME to be placed
in the static_string EXPRESSION section of the executable (assuming the linker doesn’t
rename the section). GNAT also provides an implementation defined aspect of the same
name.

In the case of specifying this aspect for a type, the effect is to specify the corresponding
section for all library-level objects of the type that do not have an explicit linker section
set. Note that this only applies to whole objects, not to components of composite objects.

In the case of a subprogram, the linker section applies to all previously declared matching
overloaded subprograms in the current declarative part which do not already have a linker
section assigned. The linker section aspect is useful in this case for specifying different linker
sections for different elements of such an overloaded set.

Note that an empty string specifies that no linker section is specified. This is not quite the
same as omitting the pragma or aspect, since it can be used to specify that one element
of an overloaded set of subprograms has the default linker section, or that one object of a
type for which a linker section is specified should has the default linker section.

The compiler normally places library-level entities in standard sections depending on the
class: procedures and functions generally go in the .text section, initialized variables in
the .data section and uninitialized variables in the .bss section.

Other, special sections may exist on given target machines to map special hardware, for
example I/O ports or flash memory. This pragma is a means to defer the final layout of the
executable to the linker, thus fully working at the symbolic level with the compiler.

Some file formats do not support arbitrary sections so not all target machines support this
pragma. The use of this pragma may cause a program execution to be erroneous if it is used
to place an entity into an inappropriate section (e.g., a modified variable into the .text
section). See also pragma Persistent_BSS.

-- Example of the use of pragma Linker_Section

package I0_Card is
Port_A : Integer;
pragma Volatile (Port_A);
pragma Linker_Section (Port_A, ".bss.port_a");

Port_B : Integer;
pragma Volatile (Port_B);
pragma Linker_Section (Port_B, ".bss.port_b");

type Port_Type is new Integer with Linker_Section => ".bss";
PA : Port_Type with Linker_Section => ".bss.PA";
PB : Port_Type; —-- ends up in linker section ".bss"

procedure Q with Linker_Section => "(Qsection";
end I0_Card;

2.104 Pragma Lock_Free
Syntax:

Chapter 2: Implementation Defined Pragmas 54

pragma Lock_Free [(static_boolean_EXPRESSION)];

This pragma may be specified for protected types or objects. It specifies that the imple-
mentation of protected operations must be implemented without locks. Compilation fails
if the compiler cannot generate lock-free code for the operations.

The current conditions required to support this pragma are:
* Protected type declarations may not contain entries

* Protected subprogram declarations may not have nonelementary parameters

In addition, each protected subprogram body must satisfy:

* May reference only one protected component

* May not reference nonconstant entities outside the protected subprogram scope

* May not contain address representation items, allocators, or quantified expressions

May not contain delay, goto, loop, or procedure-call statements
May not contain exported and imported entities
May not dereferenced access values

Function calls and attribute references must be static

If the Lock_Free aspect is specified to be True for a protected unit and the Ceiling_Locking
locking policy is in effect, then the run-time actions associated with the Ceiling_Locking
locking policy (described in Ada RM D.3) are not performed when a protected operation
of the protected unit is executed.

2.105 Pragma Loop_Invariant
Syntax:
pragma Loop_Invariant (boolean_ EXPRESSION);

The effect of this pragma is similar to that of pragma Assert, except that in an Assertion_
Policy pragma, the identifier Loop_Invariant is used to control whether it is ignored or
checked (or disabled).

Loop_Invariant can only appear as one of the items in the sequence of statements of a
loop body, or nested inside block statements that appear in the sequence of statements of
a loop body. The intention is that it be used to represent a “loop invariant” assertion, i.e.
something that is true each time through the loop, and which can be used to show that the
loop is achieving its purpose.

Multiple Loop_Invariant and Loop_Variant pragmas that apply to the same loop should
be grouped in the same sequence of statements.

To aid in writing such invariants, the special attribute Loop_Entry may be used to refer to
the value of an expression on entry to the loop. This attribute can only be used within the
expression of a Loop_Invariant pragma. For full details, see documentation of attribute
Loop_Entry.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

Chapter 2: Implementation Defined Pragmas 55

2.106 Pragma Loop_Optimize

Syntax:
pragma Loop_Optimize (OPTIMIZATION_HINT {, OPTIMIZATION_HINT});

OPTIMIZATION_HINT ::= Ivdep | No_Unroll | Unroll | No_Vector | Vector

This pragma must appear immediately within a loop statement. It allows the programmer
to specify optimization hints for the enclosing loop. The hints are not mutually exclusive
and can be freely mixed, but not all combinations will yield a sensible outcome.

There are five supported optimization hints for a loop:

* Ivdep

The programmer asserts that there are no loop-carried dependencies which would pre-
vent consecutive iterations of the loop from being executed simultaneously.
* No_Unroll
The loop must not be unrolled. This is a strong hint: the compiler will not unroll a
loop marked with this hint.
* Unroll
The loop should be unrolled. This is a weak hint: the compiler will try to apply
unrolling to this loop preferably to other optimizations, notably vectorization, but
there is no guarantee that the loop will be unrolled.
* No_Vector
The loop must not be vectorized. This is a strong hint: the compiler will not vectorize
a loop marked with this hint.
Vector
The loop should be vectorized. This is a weak hint: the compiler will try to apply
vectorization to this loop preferably to other optimizations, notably unrolling, but
there is no guarantee that the loop will be vectorized.

These hints do not remove the need to pass the appropriate switches to the compiler in
order to enable the relevant optimizations, that is to say ‘-funroll-loops’ for unrolling and
‘-ftree-vectorize’ for vectorization.

2.107 Pragma Loop_Variant

Syntax:
pragma Loop_Variant (LOOP_VARIANT_ITEM {, LOOP_VARIANT_ITEM });
LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
CHANGE_DIRECTION ::= Increases | Decreases

Loop_Variant can only appear as one of the items in the sequence of statements of a loop
body, or nested inside block statements that appear in the sequence of statements of a loop
body. It allows the specification of quantities which must always decrease or increase in
successive iterations of the loop. In its simplest form, just one expression is specified, whose
value must increase or decrease on each iteration of the loop.

In a more complex form, multiple arguments can be given which are interpreted in a nesting
lexicographic manner. For example:

pragma Loop_Variant (Increases => X, Decreases => Y);

Chapter 2: Implementation Defined Pragmas 56

specifies that each time through the loop either X increases, or X stays the same and Y
decreases. A Loop_Variant pragma ensures that the loop is making progress. It can be
useful in helping to show informally or prove formally that the loop always terminates.
Loop_Variant is an assertion whose effect can be controlled using an Assertion_Policy
with a check name of Loop_Variant. The policy can be Check to enable the loop variant
check, Ignore to ignore the check (in which case the pragma has no effect on the program),
or Disable in which case the pragma is not even checked for correct syntax.

Multiple Loop_Invariant and Loop_Variant pragmas that apply to the same loop should
be grouped in the same sequence of statements.

The Loop_Entry attribute may be used within the expressions of the Loop_Variant pragma
to refer to values on entry to the loop.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.108 Pragma Machine_Attribute

Syntax:
pragma Machine_Attribute (
[Entity =>] LOCAL_NAME,
[Attribute_Name =>] static_string EXPRESSION
[, [Info =>] static_EXPRESSION {, static_EXPRESSION}]);

Machine-dependent attributes can be specified for types and/or declarations. This
pragma is semantically equivalent to __attribute__((attribute_name)) (if info is not
specified) or __attribute__((attribute_name(info))) or __attribute__((attribute_
name (info,...))) in GNU C, where ‘attribute_name’ is recognized by the compiler
middle-end or the TARGET_ATTRIBUTE_TABLE machine specific macro. Note that a string
literal for the optional parameter info or the following ones is transformed by default
into an identifier, which may make this pragma unusable for some attributes. For further
information see GNU Compiler Collection (GCC) Internals.

2.109 Pragma Main

Syntax:
pragma Main
(MAIN_OPTION [, MAIN_OPTION]);

MAIN_OPTION ::=

[Stack_Size =>] static_integer_ EXPRESSION
| [Task_Stack_Size_Default =>] static_integer_ EXPRESSION
| [Time_Slicing_Enabled =>] static_boolean_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.
2.110 Pragma Main_Storage

Syntax:
pragma Main_Storage

Chapter 2: Implementation Defined Pragmas 57

(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
| [TOP_GUARD =>] static_SIMPLE_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.

2.111 Pragma Max_Queue_Length

Syntax:
pragma Max_Queue_Length (static_integer_ EXPRESSION) ;

This pragma is used to specify the maximum callers per entry queue for individual protected
entries and entry families. It accepts a single integer (-1 or more) as a parameter and must
appear after the declaration of an entry.

A value of -1 represents no additional restriction on queue length.

2.112 Pragma No_Body

Syntax:

pragma No_Body;
There are a number of cases in which a package spec does not require a body, and in fact
a body is not permitted. GNAT will not permit the spec to be compiled if there is a body
around. The pragma No_Body allows you to provide a body file, even in a case where no
body is allowed. The body file must contain only comments and a single No_Body pragma.
This is recognized by the compiler as indicating that no body is logically present.

This is particularly useful during maintenance when a package is modified in such a way
that a body needed before is no longer needed. The provision of a dummy body with a
No_Body pragma ensures that there is no interference from earlier versions of the package
body.

2.113 Pragma No_Caching

Syntax:
pragma No_Caching [(static_boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect No_Caching in the SPARK 2014
Reference Manual, section 7.1.2.

2.114 Pragma No_Component_Reordering

Syntax:
pragma No_Component_Reordering [([Entity =>] type_LOCAL_NAME)];

type_LOCAL_NAME must refer to a record type declaration in the current declarative part.
The effect is to preclude any reordering of components for the layout of the record, i.e.
the record is laid out by the compiler in the order in which the components are declared
textually. The form with no argument is a configuration pragma which applies to all record

Chapter 2: Implementation Defined Pragmas 58

types declared in units to which the pragma applies and there is a requirement that this
pragma be used consistently within a partition.

2.115 Pragma No_Elaboration_Code_All
Syntax:

pragma No_Elaboration_Code_All [(program_unit_NAME)];

This is a program unit pragma (there is also an equivalent aspect of the same name) that
establishes the restriction No_Elaboration_Code for the current unit and any extended
main source units (body and subunits). It also has the effect of enforcing a transitive
application of this aspect, so that if any unit is implicitly or explicitly with’ed by the
current unit, it must also have the No_Elaboration_Code_All aspect set. It may be applied
to package or subprogram specs or their generic versions.

2.116 Pragma No_Heap_Finalization
Syntax:
pragma No_Heap_Finalization [(first_subtype_LOCAL_NAME) 1;

Pragma No_Heap_Finalization may be used as a configuration pragma or as a type-specific
pragma.

In its configuration form, the pragma must appear within a configuration file such as
gnat.adc, without an argument. The pragma suppresses the call to Finalize for heap-
allocated objects created through library-level named access-to-object types in cases where
the designated type requires finalization actions.

In its type-specific form, the argument of the pragma must denote a library-level named
access-to-object type. The pragma suppresses the call to Finalize for heap-allocated ob-
jects created through the specific access type in cases where the designated type requires
finalization actions.

It is still possible to finalize such heap-allocated objects by explicitly deallocating them.

A library-level named access-to-object type declared within a generic unit will lose its No_
Heap_Finalization pragma when the corresponding instance does not appear at the library
level.

2.117 Pragma No_Inline
Syntax:

pragma No_Inline (NAME {, NAME});

This pragma suppresses inlining for the callable entity or the instances of the generic sub-
program designated by NAME, including inlining that results from the use of pragma Inline.
This pragma is always active, in particular it is not subject to the use of option ‘-gnatn’
or ‘-gnatN’. It is illegal to specify both pragma No_Inline and pragma Inline_Always for
the same NAME.

Chapter 2: Implementation Defined Pragmas 59

2.118 Pragma No_Raise

Syntax:

pragma No_Raise (subprogram_LOCAL_NAME {, subprogram_LOCAL_NAME});
Fach subprogram_LOCAL_NAME argument must refer to one or more subprogram declarations
in the current declarative part. A subprogram to which this pragma is applied may not
raise an exception that is not caught within it. An implementation-defined check named

Raise_Check is associated with the pragma, and Program_FError is raised upon its failure
(see RM 11.5(19/5)).

2.119 Pragma No_Return

Syntax:
pragma No_Return (procedure_LOCAL_NAME {, procedure_LOCAL_NAME});

Fach procedure_LOCAL_NAME argument must refer to one or more procedure declarations in
the current declarative part. A procedure to which this pragma is applied may not contain
any explicit return statements. In addition, if the procedure contains any implicit returns
from falling off the end of a statement sequence, then execution of that implicit return will
cause Program_KError to be raised.

One use of this pragma is to identify procedures whose only purpose is to raise an exception.
Another use of this pragma is to suppress incorrect warnings about missing returns in
functions, where the last statement of a function statement sequence is a call to such a
procedure.

Note that in Ada 2005 mode, this pragma is part of the language. It is available in all
earlier versions of Ada as an implementation-defined pragma.

2.120 Pragma No_Strict_Aliasing

Syntax:
pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];

type_LOCAL_NAME must refer to an access type declaration in the current declarative part.
The effect is to inhibit strict aliasing optimization for the given type. The form with no
arguments is a configuration pragma which applies to all access types declared in units to
which the pragma applies. For a detailed description of the strict aliasing optimization, and
the situations in which it must be suppressed, see the section on Optimization and Strict
Aliasing in the GNAT User’s Guide.

This pragma currently has no effects on access to unconstrained array types.

2.121 Pragma No_Tagged_Streams

Syntax:

pragma No_Tagged_Streams [([Entity =>] tagged_type_LOCAL_NAME)];
Normally when a tagged type is introduced using a full type declaration, part of the process-
ing includes generating stream access routines to be used by stream attributes referencing
the type (or one of its subtypes or derived types). This can involve the generation of signif-
icant amounts of code which is wasted space if stream routines are not needed for the type
in question.

Chapter 2: Implementation Defined Pragmas 60

The No_Tagged_Streams pragma causes the generation of these stream routines to be
skipped, and any attempt to use stream operations on types subject to this pragma will be
statically rejected as illegal.

There are two forms of the pragma. The form with no arguments must appear in a declar-
ative sequence or in the declarations of a package spec. This pragma affects all subsequent
root tagged types declared in the declaration sequence, and specifies that no stream routines
be generated. The form with an argument (for which there is also a corresponding aspect)
specifies a single root tagged type for which stream routines are not to be generated.

Once the pragma has been given for a particular root tagged type, all subtypes and derived
types of this type inherit the pragma automatically, so the effect applies to a complete
hierarchy (this is necessary to deal with the class-wide dispatching versions of the stream
routines).

When pragmas Discard_Names and No_Tagged_Streams are simultaneously applied to a
tagged type its Expanded_Name and External_Tag are initialized with empty strings. This
is useful to avoid exposing entity names at binary level but has a negative impact on the
debuggability of tagged types.

2.122 Pragma Normalize_Scalars

Syntax:
pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The effect is to
cause all scalar objects that are not otherwise initialized to be initialized. The initial values
are implementation dependent and are as follows:

‘Standard.Character’
Objects whose root type is Standard.Character are initialized to Character’Last
unless the subtype range excludes NUL (in which case NUL is used). This choice
will always generate an invalid value if one exists.

‘Standard.Wide_Character’
Objects whose root type is Standard.Wide_Character are initialized to
Wide_Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if one exists.

‘Standard.Wide_Wide_Character’
Objects whose root type is Standard.Wide_Wide_Character are initialized to
the invalid value 16#FFFF_FFFF# unless the subtype range excludes NUL
(in which case NUL is used). This choice will always generate an invalid value
if one exists.

‘Integer types’
Objects of an integer type are treated differently depending on whether negative
values are present in the subtype. If no negative values are present, then all one
bits is used as the initial value except in the special case where zero is excluded
from the subtype, in which case all zero bits are used. This choice will always
generate an invalid value if one exists.

For subtypes with negative values present, the largest negative number is used,
except in the unusual case where this largest negative number is in the subtype,

Chapter 2: Implementation Defined Pragmas 61

and the largest positive number is not, in which case the largest positive value
is used. This choice will always generate an invalid value if one exists.

‘Floating-Point Types’
Objects of all floating-point types are initialized to all 1-bits. For standard
IEEE format, this corresponds to a NaN (not a number) which is indeed an
invalid value.

‘Fixed-Point Types’
Objects of all fixed-point types are treated as described above for integers,
with the rules applying to the underlying integer value used to represent the
fixed-point value.

‘Modular types’
Objects of a modular type are initialized to all one bits, except in the special
case where zero is excluded from the subtype, in which case all zero bits are
used. This choice will always generate an invalid value if one exists.

‘Enumeration types’
Objects of an enumeration type are initialized to all one-bits, i.e., to the value
2 ** typ'Size - 1 unless the subtype excludes the literal whose Pos value is
zero, in which case a code of zero is used. This choice will always generate an
invalid value if one exists.

2.123 Pragma Obsolescent

Syntax:
pragma Obsolescent;

pragma Obsolescent (
[Message =>] static_string EXPRESSION
[, [Version =>] Ada_05]);

pragma Obsolescent (
[(Entity =>] NAME

[, [Message =>] static_string EXPRESSION

[, [Version =>] Ada_05]]);
This pragma can occur immediately following a declaration of an entity, including the case
of a record component. If no Entity argument is present, then this declaration is the one
to which the pragma applies. If an Entity parameter is present, it must either match the
name of the entity in this declaration, or alternatively, the pragma can immediately follow
an enumeration type declaration, where the Entity argument names one of the enumeration
literals.

This pragma is used to indicate that the named entity is considered obsolescent and should
not be used. Typically this is used when an API must be modified by eventually remov-
ing or modifying existing subprograms or other entities. The pragma can be used at an
intermediate stage when the entity is still present, but will be removed later.

The effect of this pragma is to output a warning message on a reference to an entity thus
marked that the subprogram is obsolescent if the appropriate warning option in the compiler

Chapter 2: Implementation Defined Pragmas 62

is activated. If the Message parameter is present, then a second warning message is given
containing this text. In addition, a reference to the entity is considered to be a violation of
pragma Restrictions (No_Obsolescent_Features)

This pragma can also be used as a program unit pragma for a package, in which case the
entity name is the name of the package, and the pragma indicates that the entire package is
considered obsolescent. In this case a client withing such a package violates the restriction,
and the with clause is flagged with warnings if the warning option is set.

If the Version parameter is present (which must be exactly the identifier Ada_05, no other
argument is allowed), then the indication of obsolescence applies only when compiling in
Ada 2005 mode. This is primarily intended for dealing with the situations in the predefined
library where subprograms or packages have become defined as obsolescent in Ada 2005
(e.g., in Ada.Characters.Handling), but may be used anywhere.

The following examples show typical uses of this pragma:

package p is
pragma Obsolescent (p, Message => "use pp instead of p");
end p;

package q is
procedure q2;
pragma Obsolescent ("use g2new instead");

type R is new integer;

pragma Obsolescent
(Entity => R,
Message => "use RR in Ada 2005",
Version => Ada_05);

type M is record
F1 : Integer;
F2 : Integer;
pragma Obsolescent;
F3 : Integer;

end record;

type E is (a, bc, 'd', quack);
pragma Obsolescent (Entity => bc)
pragma Obsolescent (Entity => 'd')

function "+"
(a, b : character) return character;
pragma Obsolescent (Entity => "+");
end;

Note that, as for all pragmas, if you use a pragma argument identifier, then all subsequent
parameters must also use a pragma argument identifier. So if you specify Entity => for the
Entity argument, and a Message argument is present, it must be preceded by Message =>.

Chapter 2: Implementation Defined Pragmas 63

2.124 Pragma Optimize_Alignment

Syntax:
pragma Optimize_Alignment (TIME | SPACE | OFF);

This is a configuration pragma which affects the choice of default alignments for types
and objects where no alignment is explicitly specified. There is a time/space trade-off
in the selection of these values. Large alignments result in more efficient code, at the
expense of larger data space, since sizes have to be increased to match these alignments.
Smaller alignments save space, but the access code is slower. The normal choice of default
alignments for types and individual alignment promotions for objects (which is what you
get if you do not use this pragma, or if you use an argument of OFF), tries to balance these
two requirements.

Specifying SPACE causes smaller default alignments to be chosen in two cases. First any
packed record is given an alignment of 1. Second, if a size is given for the type, then the
alignment is chosen to avoid increasing this size. For example, consider:

type R is record
X : Integer;
Y : Character;
end record;

for R'Size use 5%8;

In the default mode, this type gets an alignment of 4, so that access to the Integer field X
are efficient. But this means that objects of the type end up with a size of 8 bytes. This
is a valid choice, since sizes of objects are allowed to be bigger than the size of the type,
but it can waste space if for example fields of type R appear in an enclosing record. If the
above type is compiled in Optimize_Alignment (Space) mode, the alignment is set to 1.

However, there is one case in which SPACE is ignored. If a variable length record (that
is a discriminated record with a component which is an array whose length depends on a
discriminant), has a pragma Pack, then it is not in general possible to set the alignment of
such a record to one, so the pragma is ignored in this case (with a warning).

Specifying SPACE also disables alignment promotions for standalone objects, which oc-
cur when the compiler increases the alignment of a specific object without changing the
alignment of its type.

Specifying SPACE also disables component reordering in unpacked record types, which can
result in larger sizes in order to meet alignment requirements.

Specifying TIME causes larger default alignments to be chosen in the case of small types
with sizes that are not a power of 2. For example, consider:

type R is record
A : Character;
B : Character;
C : Boolean;
end record;

pragma Pack (R);
for R'Size use 17;

Chapter 2: Implementation Defined Pragmas 64

The default alignment for this record is normally 1, but if this type is compiled in Optimize_
Alignment (Time) mode, then the alignment is set to 4, which wastes space for objects of
the type, since they are now 4 bytes long, but results in more efficient access when the
whole record is referenced.

As noted above, this is a configuration pragma, and there is a requirement that all units in
a partition be compiled with a consistent setting of the optimization setting. This would
normally be achieved by use of a configuration pragma file containing the appropriate
setting. The exception to this rule is that units with an explicit configuration pragma in
the same file as the source unit are excluded from the consistency check, as are all predefined
units. The latter are compiled by default in pragma Optimize_Alignment (Off) mode if no
pragma appears at the start of the file.

2.125 Pragma Ordered

Syntax:
pragma Ordered (enumeration_first_subtype_LOCAL_NAME) ;

Most enumeration types are from a conceptual point of view unordered. For example,
consider:

type Color is (Red, Blue, Green, Yellow);

By Ada semantics Blue > Red and Green > Blue, but really these relations make no sense;
the enumeration type merely specifies a set of possible colors, and the order is unimportant.

For unordered enumeration types, it is generally a good idea if clients avoid comparisons
(other than equality or inequality) and explicit ranges. (A ‘client’ is a unit where the type
is referenced, other than the unit where the type is declared, its body, and its subunits.)
For example, if code buried in some client says:

if Current_Color < Yellow then ...
if Current_Color in Blue .. Green then ...

then the client code is relying on the order, which is undesirable. It makes the code hard to
read and creates maintenance difficulties if entries have to be added to the enumeration type.
Instead, the code in the client should list the possibilities, or an appropriate subtype should
be declared in the unit that declares the original enumeration type. E.g., the following
subtype could be declared along with the type Color:

subtype RBG is Color range Red .. Green;
and then the client could write:

if Current_Color in RBG then ...
if Current_Color = Blue or Current_Color = Green then ...

However, some enumeration types are legitimately ordered from a conceptual point of view.
For example, if you declare:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

then the ordering imposed by the language is reasonable, and clients can depend on it,
writing for example:

if D in Mon .. Fri then ...
if D < Wed then ...

Chapter 2: Implementation Defined Pragmas 65

The pragma ‘Ordered’ is provided to mark enumeration types that are conceptually ordered,
alerting the reader that clients may depend on the ordering. GNAT provides a pragma to
mark enumerations as ordered rather than one to mark them as unordered, since in our
experience, the great majority of enumeration types are conceptually unordered.

The types Boolean, Character, Wide_Character, and Wide_Wide_Character are consid-
ered to be ordered types, so each is declared with a pragma Ordered in package Standard.

Normally pragma Ordered serves only as documentation and a guide for coding standards,
but GNAT provides a warning switch ‘-gnatw.u’ that requests warnings for inappropriate
uses (comparisons and explicit subranges) for unordered types. If this switch is used, then
any enumeration type not marked with pragma Ordered will be considered as unordered,
and will generate warnings for inappropriate uses.

Note that generic types are not considered ordered or unordered (since the template can be
instantiated for both cases), so we never generate warnings for the case of generic enumer-
ated types.

For additional information please refer to the description of the ‘-gnatw.u’ switch in the
GNAT User’s Guide.

2.126 Pragma Overflow_Mode

Syntax:

pragma Overflow_Mode
([General =>] MODE
[, [Assertions =>] MODE]);

MODE ::= STRICT | MINIMIZED | ELIMINATED

This pragma sets the current overflow mode to the given setting. For details of the meaning
of these modes, please refer to the ‘Overflow Check Handling in GNAT’ appendix in the
GNAT User’s Guide. If only the General parameter is present, the given mode applies to
all expressions. If both parameters are present, the General mode applies to expressions
outside assertions, and the Eliminated mode applies to expressions within assertions.

The case of the MODE parameter is ignored, so MINIMIZED, Minimized and minimized all
have the same effect.

The Overflow_Mode pragma has the same scoping and placement rules as pragma Suppress,
S0 it can occur either as a configuration pragma, specifying a default for the whole program,
or in a declarative scope, where it applies to the remaining declarations and statements in
that scope.

The pragma Suppress (Overflow_Check) suppresses overflow checking, but does not affect
the overflow mode.

The pragma Unsuppress (Overflow_Check) unsuppresses (enables) overflow checking, but
does not affect the overflow mode.

2.127 Pragma Overriding_Renamings
Syntax:

pragma Overriding_Renamings;

Chapter 2: Implementation Defined Pragmas 66

This is a GNAT configuration pragma to simplify porting legacy code accepted by the
Rational Ada compiler. In the presence of this pragma, a renaming declaration that renames
an inherited operation declared in the same scope is legal if selected notation is used as in:

pragma Overriding_Renamings;

package R is
function F (..);

function F (..) renames R.F;
end R;

even though RM 8.3 (15) stipulates that an overridden operation is not visible within the
declaration of the overriding operation.

2.128 Pragma Part_Of

Syntax:
pragma Part_0f (ABSTRACT_STATE);

ABSTRACT_STATE ::= NAME

For the semantics of this pragma, see the entry for aspect Part_0f in the SPARK 2014
Reference Manual, section 7.2.6.

2.129 Pragma Partition_Elaboration_Policy

Syntax:
pragma Partition_Elaboration_Policy (POLICY_IDENTIFIER);

POLICY_IDENTIFIER ::= Concurrent | Sequential

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.130 Pragma Passive
Syntax:
pragma Passive [(Semaphore | No)];

Syntax checked, but otherwise ignored by GNAT. This is recognized for compatibility with
DEC Ada 83 implementations, where it is used within a task definition to request that a
task be made passive. If the argument Semaphore is present, or the argument is omitted,
then DEC Ada 83 treats the pragma as an assertion that the containing task is passive and
that optimization of context switch with this task is permitted and desired. If the argument
No is present, the task must not be optimized. GNAT does not attempt to optimize any
tasks in this manner (since protected objects are available in place of passive tasks).

For more information on the subject of passive tasks, see the section ‘Passive Task Opti-
mization’ in the GNAT Users Guide.

Chapter 2: Implementation Defined Pragmas 67

2.131 Pragma Persistent_BSS

Syntax:
pragma Persistent_BSS [(object_LOCAL_NAME)]

This pragma allows selected objects to be placed in the .persistent_bss section. On some
targets the linker and loader provide for special treatment of this section, allowing a program
to be reloaded without affecting the contents of this data (hence the name persistent).

There are two forms of usage. If an argument is given, it must be the local name of a
library-level object, with no explicit initialization and whose type is potentially persistent.
If no argument is given, then the pragma is a configuration pragma, and applies to all
library-level objects with no explicit initialization of potentially persistent types.

A potentially persistent type is a scalar type, or an untagged, non-discriminated record,
all of whose components have no explicit initialization and are themselves of a potentially
persistent type, or an array, all of whose constraints are static, and whose component type
is potentially persistent.

If this pragma is used on a target where this feature is not supported, then the pragma will
be ignored. See also pragma Linker_Section.

2.132 Pragma Post
Syntax:

pragma Post (Boolean_Expression);

The Post pragma is intended to be an exact replacement for the language-defined Post as-
pect, and shares its restrictions and semantics. It must appear either immediately following
the corresponding subprogram declaration (only other pragmas may intervene), or if there
is no separate subprogram declaration, then it can appear at the start of the declarations
in a subprogram body (preceded only by other pragmas).

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.133 Pragma Postcondition

Syntax:

pragma Postcondition (
[Check =>] Boolean_Expression
[, [Message =>] String_Expression]);
The Postcondition pragma allows specification of automatic postcondition checks for sub-
programs. These checks are similar to assertions, but are automatically inserted just prior to
the return statements of the subprogram with which they are associated (including implicit
returns at the end of procedure bodies and associated exception handlers).

In addition, the boolean expression which is the condition which must be true may contain
references to function’Result in the case of a function to refer to the returned value.

Postcondition pragmas may appear either immediately following the (separate) declara-
tion of a subprogram, or at the start of the declarations of a subprogram body. Only other
pragmas may intervene (that is appear between the subprogram declaration and its post-
conditions, or appear before the postcondition in the declaration sequence in a subprogram

Chapter 2: Implementation Defined Pragmas 68

body). In the case of a postcondition appearing after a subprogram declaration, the for-
mal arguments of the subprogram are visible, and can be referenced in the postcondition
expressions.

The postconditions are collected and automatically tested just before any return (implicit
or explicit) in the subprogram body. A postcondition is only recognized if postconditions
are active at the time the pragma is encountered. The compiler switch ‘gnata’ turns on all
postconditions by default, and pragma Check_Policy with an identifier of Postcondition
can also be used to control whether postconditions are active.

The general approach is that postconditions are placed in the spec if they represent func-
tional aspects which make sense to the client. For example we might have:

function Direction return Integer;
pragma Postcondition
(Direction'Result = +1
or else
Direction'Result = -1);

which serves to document that the result must be +1 or -1, and will test that this is the
case at run time if postcondition checking is active.

Postconditions within the subprogram body can be used to check that some internal aspect
of the implementation, not visible to the client, is operating as expected. For instance if a
square root routine keeps an internal counter of the number of times it is called, then we
might have the following postcondition:

Sqrt_Calls : Natural := O;

function Sqrt (Arg : Float) return Float is
pragma Postcondition
(Sqrt_Calls = Sqrt_Calls'Old + 1);

end Sqrt
As this example, shows, the use of the 01d attribute is often useful in postconditions to
refer to the state on entry to the subprogram.

Note that postconditions are only checked on normal returns from the subprogram. If an
abnormal return results from raising an exception, then the postconditions are not checked.

If a postcondition fails, then the exception System.Assertions.Assert_Failure is raised.
If a message argument was supplied, then the given string will be used as the exception
message. If no message argument was supplied, then the default message has the form
“Postcondition failed at file_name:line”. The exception is raised in the context of the sub-
program body, so it is possible to catch postcondition failures within the subprogram body
itself.

Within a package spec, normal visibility rules in Ada would prevent forward references
within a postcondition pragma to functions defined later in the same package. This would
introduce undesirable ordering constraints. To avoid this problem, all postcondition prag-
mas are analyzed at the end of the package spec, allowing forward references.

The following example shows that this even allows mutually recursive postconditions as in:

package Parity_Functions is

Chapter 2: Implementation Defined Pragmas 69

function 0dd (X : Natural) return Boolean;
pragma Postcondition
(0dd'Result =
x=1
or else
(x /= 0 and then Even (X - 1))));

function Even (X : Natural) return Boolean;
pragma Postcondition
(Even'Result =
(x=0
or else
(x /=1 and then 0dd (X - 1))));

end Parity_Functions;

There are no restrictions on the complexity or form of conditions used within
Postcondition pragmas. The following example shows that it is even possible to verify
performance behavior.

package Sort is

Performance : constant Float;
-- Performance constant set by implementation
-- to match target architecture behavior.

procedure Treesort (Arg : String);

-- Sorts characters of argument using N*logN sort

pragma Postcondition

(Float (Clock - Clock'0ld) <=
Float (Arg'Length) *
log (Float (Arg'Length)) *
Performance) ;
end Sort;

Note: postcondition pragmas associated with subprograms that are marked as
Inline_Always, or those marked as Inline with front-end inlining (-gnatN option set)
are accepted and legality-checked by the compiler, but are ignored at run-time even if
postcondition checking is enabled.

Note that pragma Postcondition differs from the language-defined Post aspect (and cor-
responding Post pragma) in allowing multiple occurrences, allowing occurences in the body
even if there is a separate spec, and allowing a second string parameter, and the use of the
pragma identifier Check. Historically, pragma Postcondition was implemented prior to
the development of Ada 2012, and has been retained in its original form for compatibility
purposes.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

Chapter 2: Implementation Defined Pragmas 70

2.134 Pragma Post_Class
Syntax:

pragma Post_Class (Boolean_Expression);

The Post_Class pragma is intended to be an exact replacement for the language-defined
Post'Class aspect, and shares its restrictions and semantics. It must appear either im-
mediately following the corresponding subprogram declaration (only other pragmas may
intervene), or if there is no separate subprogram declaration, then it can appear at the start
of the declarations in a subprogram body (preceded only by other pragmas).

Note: This pragma is called Post_Class rather than Post'Class because the latter would
not be strictly conforming to the allowed syntax for pragmas. The motivation for providing
pragmas equivalent to the aspects is to allow a program to be written using the pragmas,
and then compiled if necessary using an Ada compiler that does not recognize the pragmas
or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this
pragma is Post'Class, not Post_Class.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.135 Pragma Pre
Syntax:

pragma Pre (Boolean_ Expression);

The Pre pragma is intended to be an exact replacement for the language-defined Pre aspect,
and shares its restrictions and semantics. It must appear either immediately following the
corresponding subprogram declaration (only other pragmas may intervene), or if there is
no separate subprogram declaration, then it can appear at the start of the declarations in
a subprogram body (preceded only by other pragmas).

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.136 Pragma Precondition
Syntax:

pragma Precondition (
[Check =>] Boolean_Expression
[, [Message =>] String_Expression]);

The Precondition pragma is similar to Postcondition except that the corresponding
checks take place immediately upon entry to the subprogram, and if a precondition fails,
the exception is raised in the context of the caller, and the attribute ‘Result cannot be used
within the precondition expression.

Otherwise, the placement and visibility rules are identical to those described for postcon-
ditions. The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;
pragma Precondition (Arg >= 0.0)

Chapter 2: Implementation Defined Pragmas 71

end Math_Functions;

Precondition pragmas may appear either immediately following the (separate) declara-
tion of a subprogram, or at the start of the declarations of a subprogram body. Only other
pragmas may intervene (that is appear between the subprogram declaration and its post-

conditions, or appear before the postcondition in the declaration sequence in a subprogram
body).

Note: precondition pragmas associated with subprograms that are marked as Inline_Always,
or those marked as Inline with front-end inlining (-gnatN option set) are accepted and
legality-checked by the compiler, but are ignored at run-time even if precondition checking
is enabled.

Note that pragma Precondition differs from the language-defined Pre aspect (and corre-
sponding Pre pragma) in allowing multiple occurrences, allowing occurences in the body
even if there is a separate spec, and allowing a second string parameter, and the use of
the pragma identifier Check. Historically, pragma Precondition was implemented prior to
the development of Ada 2012, and has been retained in its original form for compatibility
purposes.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.137 Pragma Predicate

Syntax:

pragma Predicate
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

This pragma (available in all versions of Ada in GNAT) encompasses both the Static_
Predicate and Dynamic_Predicate aspects in Ada 2012. A predicate is regarded as static
if it has an allowed form for Static_Predicate and is otherwise treated as a Dynamic_
Predicate. Otherwise, predicates specified by this pragma behave exactly as described in
the Ada 2012 reference manual. For example, if we have

type R is range 1 .. 10;

subtype S is R;

pragma Predicate (Entity => S, Check => S not in 4 .. 6);

subtype Q is R

pragma Predicate (Entity => Q, Check => F(Q) or G(Q));
the effect is identical to the following Ada 2012 code:

type R is range 1 .. 10;
subtype S is R with
Static_Predicate => S not in 4 .. 6;
subtype Q is R with
Dynamic_Predicate => F(Q) or G(Q);
Note that there are no pragmas Dynamic_Predicate or Static_Predicate. That is be-

cause these pragmas would affect legality and semantics of the program and thus do not
have a neutral effect if ignored. The motivation behind providing pragmas equivalent to

Chapter 2: Implementation Defined Pragmas 72

corresponding aspects is to allow a program to be written using the pragmas, and then com-
piled with a compiler that will ignore the pragmas. That doesn’t work in the case of static
and dynamic predicates, since if the corresponding pragmas are ignored, then the behavior
of the program is fundamentally changed (for example a membership test A in B would not
take into account a predicate defined for subtype B). When following this approach, the use
of predicates should be avoided.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.138 Pragma Predicate_Failure
Syntax:

pragma Predicate_Failure
([Entity =>] type_LOCAL_NAME,
[Message =>] String_ Expression);

The Predicate_Failure pragma is intended to be an exact replacement for the language-
defined Predicate_Failure aspect, and shares its restrictions and semantics.

2.139 Pragma Preelaborable_Initialization

Syntax:
pragma Preelaborable_Initialization (DIRECT_NAME);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.140 Pragma Prefix_Exception_Messages
Syntax:

pragma Prefix_Exception_Messages;

This is an implementation-defined configuration pragma that affects the behavior of raise
statements with a message given as a static string constant (typically a string literal). In
such cases, the string will be automatically prefixed by the name of the enclosing entity
(giving the package and subprogram containing the raise statement). This helps to identify
where messages are coming from, and this mode is automatic for the run-time library.

The pragma has no effect if the message is computed with an expression other than a static
string constant, since the assumption in this case is that the program computes exactly the
string it wants. If you still want the prefixing in this case, you can always call GNAT . Source_
Info.Enclosing_Entity and prepend the string manually.

2.141 Pragma Pre_Class
Syntax:

pragma Pre_Class (Boolean_Expression);

The Pre_Class pragma is intended to be an exact replacement for the language-defined
Pre'Class aspect, and shares its restrictions and semantics. It must appear either im-
mediately following the corresponding subprogram declaration (only other pragmas may

Chapter 2: Implementation Defined Pragmas 73

intervene), or if there is no separate subprogram declaration, then it can appear at the start
of the declarations in a subprogram body (preceded only by other pragmas).

Note: This pragma is called Pre_Class rather than Pre'Class because the latter would
not be strictly conforming to the allowed syntax for pragmas. The motivation for providing
pragmas equivalent to the aspects is to allow a program to be written using the pragmas,
and then compiled if necessary using an Ada compiler that does not recognize the pragmas
or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this
pragma is Pre'Class, not Pre_Class.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.142 Pragma Priority_Specific_Dispatching

Syntax:
pragma Priority_Specific_Dispatching (
POLICY_IDENTIFIER,
first_priority_EXPRESSION,
last_priority_EXPRESSION)

POLICY_IDENTIFIER ::=
EDF_Across_Priorities |
FIFO_Within_Priorities |
Non_Preemptive_Within_ Priorities |
Round_Robin_Within_Priorities
This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.143 Pragma Profile

Syntax:
pragma Profile (Ravenscar | Restricted | Ratiomal | Jorvik |
GNAT_Extended_Ravenscar | GNAT_Ravenscar_EDF);
This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as
an implementation-defined pragma. This is a configuration pragma that establishes
a set of configuration pragmas that depend on the argument. Ravenscar is standard
in Ada 2005. Jorvik is standard in Ada 202x. The other possibilities (Restricted,
Rational, GNAT_Extended_Ravenscar, GNAT_Ravenscar_EDF) are implementation-defined.
GNAT_Extended_Ravenscar is an alias for Jorvik.
The set of configuration pragmas is defined in the following sections.
* Pragma Profile (Ravenscar)
The Ravenscar profile is standard in Ada 2005, but is available in all earlier versions
of Ada as an implementation-defined pragma. This profile establishes the following set
of configuration pragmas:
* Task_Dispatching Policy (FIFO_Within_Priorities)
[RM D.2.2] Tasks are dispatched following a preemptive priority-ordered scheduling
policy.

Chapter 2: Implementation Defined Pragmas 74

* Locking_Policy (Ceiling_Locking)
[RM D.3] While tasks and interrupts execute a protected action, they inherit the
ceiling priority of the corresponding protected object.

* Detect_Blocking

This pragma forces the detection of potentially blocking operations within a pro-
tected operation, and to raise Program_FError if that happens.

plus the following set of restrictions:

* Max_Entry_Queue_Length => 1

No task can be queued on a protected entry.
Max_Protected_Entries =>1
* Max_Task_Entries => 0

No rendezvous statements are allowed.
* No_Abort_Statements
No_Dynamic_Attachment
No_Dynamic_Priorities
No_Implicit_Heap_Allocations
* No_Local_Protected_0Objects
No_Local_Timing_Events
No_Protected_Type_Allocators
No_Relative_Delay
No_Requeue_Statements
* No_Select_Statements
No_Specific_Termination_Handlers
* No_Task_Allocators

No_Task_Hierarchy

* No_Task_Termination

* Simple_Barriers

The Ravenscar profile also includes the following restrictions that specify that there
are no semantic dependencies on the corresponding predefined packages:

* No_Dependence => Ada.Asynchronous_Task_Control

* No_Dependence => Ada.Calendar

* No_Dependence => Ada.Execution_Time.Group_Budget

* No_Dependence => Ada.Execution_Time.Timers

* No_Dependence => Ada.Task_Attributes

* No_Dependence => System.Multiprocessors.Dispatching_Domains

This set of configuration pragmas and restrictions correspond to the definition
of the ‘Ravenscar Profile’ for limited tasking, devised and published by the
International Real-Time Ada Workshop, 1997. A description is also available at
‘http://www-users.cs.york.ac.uk/ burns/ravenscar.ps’.

Chapter 2: Implementation Defined Pragmas 75

The original definition of the profile was revised at subsequent IRTAW
meetings. It has been included in the ISO Guide for the Use of the Ada
Programming Language in High Integrity Systems, and was made part of
the Ada 2005 standard. The formal definition given by the Ada Rapporteur
Group (ARG) can be found in two Ada Issues (AI-249 and AI-305) available
at ‘http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt’ and
‘http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt’ .

The above set is a superset of the restrictions provided by pragma Profile
(Restricted), it includes six additional restrictions (Simple_Barriers, No_Select_
Statements, No_Calendar, No_Implicit_Heap_Allocations, No_Relative_Delay
and No_Task_Termination). This means that pragma Profile (Ravenscar), like the
pragma Profile (Restricted), automatically causes the use of a simplified, more
efficient version of the tasking run-time library.

* Pragma Profile (Jorvik)

Jorvik is the new profile added to the Ada 202x draft standard, previously implemented
under the name GNAT_Extended_Ravenscar.

The No_Implicit_Heap_Allocations restriction has been replaced by No_Implicit_
Task_Allocations and No_Implicit_Protected_Object_Allocations.

The Simple_Barriers restriction has been replaced by Pure_Barriers.

The Max_Protected_Entries, Max_Entry_Queue_Length, and No_Relative_Delay
restrictions have been removed.

Details on the rationale for Jorvik and implications for use may be found in A New
Ravenscar-Based Profile by P. Rogers, J. Ruiz, T. Gingold and P. Bernardi, in Reliable
Software Technologies — Ada Europe 2017, Springer-Verlag Lecture Notes in Computer
Science, Number 10300.

* Pragma Profile (GNAT_Ravenscar_EDF)

This profile corresponds to the Ravenscar profile but using EDF_Across_Priority as the
Task_Scheduling_Policy.

* Pragma Profile (Restricted)

This profile corresponds to the GNAT restricted run time. It establishes the following
set of restrictions:
* No_Abort_Statements

* No_Entry_Queue

* No_Task_Hierarchy

* No_Task_Allocators
No_Dynamic_Priorities
No_Terminate_Alternatives
No_Dynamic_Attachment
No_Protected_Type_Allocators
* No_Local_Protected_Objects
No_Requeue_Statements

* No_Task_Attributes_Package

Chapter 2: Implementation Defined Pragmas 76

* Max_Asynchronous_Select_Nesting = 0

* Max_Task_Entries =0

* Max_Protected_Entries =1

* Max_Select_Alternatives =0

This set of restrictions causes the automatic selection of a simplified version of the run
time that provides improved performance for the limited set of tasking functionality
permitted by this set of restrictions.

Pragma Profile (Rational)

The Rational profile is intended to facilitate porting legacy code that compiles with the
Rational APEX compiler, even when the code includes non- conforming Ada constructs.
The profile enables the following three pragmas:

* pragma Implicit_Packing
* pragma Overriding_Renamings

* pragma Use_VADS_Size

2.144 Pragma Profile_Warnings
Syntax:

pragma Profile_Warnings (Ravenscar | Restricted | Rational);

This is an implementation-defined pragma that is similar in effect to pragma Profile except
that instead of generating Restrictions pragmas, it generates Restriction_Warnings
pragmas. The result is that violations of the profile generate warning messages instead of
error messages.

2.145 Pragma Program_Exit

Syntax:
pragma Program_Exit [(boolean_EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Program_Exit in the SPARK
2014 Reference Manual, section 6.1.10.

2.146 Pragma Propagate_Exceptions
Syntax:

pragma Propagate_Exceptions;

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is ignored. It is retained for compatibility purposes. It used to be
used in connection with optimization of a now-obsolete mechanism for implementation of
exceptions.

2.147 Pragma Provide_Shift_Operators

Syntax:
pragma Provide_Shift_Operators (integer_first_subtype_LOCAL_NAME);

Chapter 2: Implementation Defined Pragmas 77

This pragma can be applied to a first subtype local name that specifies either an unsigned or
signed type. It has the effect of providing the five shift operators (Shift_Left, Shift_Right,
Shift_Right_Arithmetic, Rotate_Left and Rotate_Right) for the given type. It is similar
to including the function declarations for these five operators, together with the pragma
Import (Intrinsic, . ..) statements.

2.148 Pragma Psect_Object

Syntax:

pragma Psect_Object (
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER
| static_string EXPRESSION

This pragma is identical in effect to pragma Common_Object.

2.149 Pragma Pure_Function

Syntax:
pragma Pure_Function ([Entity =>] function_LOCAL_NAME);

This pragma appears in the same declarative part as a function declaration (or a set of
function declarations if more than one overloaded declaration exists, in which case the
pragma applies to all entities). It specifies that the function Entity is to be considered
pure for the purposes of code generation. This means that the compiler can assume that
there are no side effects, and in particular that two identical calls produce the same result
in the same context. It also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checks to try to ensure that this promise is
met, so Pure_Function can be used with functions that are conceptually pure, even if they
do modify global variables. For example, a square root function that is instrumented to
count the number of times it is called is still conceptually pure, and can still be optimized,
even though it modifies a global variable (the count). Memo functions are another example
(where a table of previous calls is kept and consulted to avoid re-computation).

Note also that the normal rules excluding optimization of subprograms in pure units (when
parameter types are descended from System.Address, or when the full view of a param-
eter type is limited), do not apply for the Pure_Function case. If you explicitly specify
Pure_Function, the compiler may optimize away calls with identical arguments, and if that
results in unexpected behavior, the proper action is not to use the pragma for subprograms
that are not (conceptually) pure.

Note: Most functions in a Pure package are automatically pure, and there is no need to
use pragma Pure_Function for such functions. One exception is any function that has at
least one formal of type System.Address or a type derived from it. Such functions are not
considered pure by default, since the compiler assumes that the Address parameter may
be functioning as a pointer and that the referenced data may change even if the address

Chapter 2: Implementation Defined Pragmas 78

value does not. Similarly, imported functions are not considered to be pure by default, since
there is no way of checking that they are in fact pure. The use of pragma Pure_Function
for such a function will override these default assumption, and cause the compiler to treat
a designated subprogram as pure in these cases.

Note: If pragma Pure_Function is applied to a renamed function, it applies to the under-
lying renamed function. This can be used to disambiguate cases of overloading where some
but not all functions in a set of overloaded functions are to be designated as pure.

If pragma Pure_Function is applied to a library-level function, the function is also con-
sidered pure from an optimization point of view, but the unit is not a Pure unit in the
categorization sense. So for example, a function thus marked is free to with non-pure units.

2.150 Pragma Rational

Syntax:
pragma Rational;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Rational);

2.151 Pragma Ravenscar

Syntax:
pragma Ravenscar;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Ravenscar);

which is the preferred method of setting the Ravenscar profile.

2.152 Pragma Refined_Depends

Syntax:
pragma Refined_Depends (DEPENDENCY_RELATION);

DEPENDENCY_RELATION ::=
null
| (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})
DEPENDENCY_CLAUSE ::=
QUTPUT_LIST =>[+] INPUT_LIST
| NULL_DEPENDENCY_CLAUSE
NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})

INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})

Chapter 2: Implementation Defined Pragmas 79

OUTPUT ::
INPUT

NAME | FUNCTION_RESULT
NAME

where FUNCTION_RESULT is a function Result attribute_reference

For the semantics of this pragma, see the entry for aspect Refined_Depends in the SPARK
2014 Reference Manual, section 6.1.5.

2.153 Pragma Refined_Global

Syntax:
pragma Refined_Global (GLOBAL_SPECIFICATION);

GLOBAL_SPECIFICATION ::=
null
| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})
MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST

MODE_SELECTOR ::

In_Out | Input | Output | Proof_In
GLOBAL_LIST GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})
GLOBAL_ITEM NAME

For the semantics of this pragma, see the entry for aspect Refined_Global in the SPARK
2014 Reference Manual, section 6.1.4.

2.154 Pragma Refined_Post

Syntax:
pragma Refined_Post (boolean_EXPRESSION);

For the semantics of this pragma, see the entry for aspect Refined_Post in the SPARK
2014 Reference Manual, section 7.2.7.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.155 Pragma Refined_State

Syntax:
pragma Refined_State (REFINEMENT_LIST);

REFINEMENT_LIST ::=
(REFINEMENT_CLAUSE {, REFINEMENT_CLAUSE})

REFINEMENT_CLAUSE ::= state_NAME => CONSTITUENT_LIST

CONSTITUENT_LIST ::=

Chapter 2: Implementation Defined Pragmas 80

null
| CONSTITUENT
| (CONSTITUENT {, CONSTITUENT})

CONSTITUENT ::= object_NAME | state_NAME

For the semantics of this pragma, see the entry for aspect Refined_State in the SPARK
2014 Reference Manual, section 7.2.2.

2.156 Pragma Relative_Deadline

Syntax:
pragma Relative_Deadline (time_span_EXPRESSION);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.157 Pragma Remote_Access_Type

Syntax:
pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME) ;

This pragma appears in the formal part of a generic declaration. It specifies an exception
to the RM rule from E.2.2(17/2), which forbids the use of a remote access to class-wide
type as actual for a formal access type.

When this pragma applies to a formal access type Entity, that type is treated as a remote
access to class-wide type in the generic. It must be a formal general access type, and its
designated type must be the class-wide type of a formal tagged limited private type from
the same generic declaration.

In the generic unit, the formal type is subject to all restrictions pertaining to remote access
to class-wide types. At instantiation, the actual type must be a remote access to class-wide

type.

2.158 Pragma Rename_Pragma

Syntax:

pragma Rename_Pragma (
[New_Name =>] IDENTIFIER,
[Renamed =>] pragma_IDENTIFIER);

This pragma provides a mechanism for supplying new names for existing pragmas. The
New_Name identifier can subsequently be used as a synonym for the Renamed pragma. For
example, suppose you have code that was originally developed on a compiler that supports
Inline_Only as an implementation defined pragma. And suppose the semantics of pragma
Inline_Only are identical to (or at least very similar to) the GNAT implementation defined
pragma Inline_Always. You could globally replace Inline_Only with Inline_Always.

However, to avoid that source modification, you could instead add a configuration pragma:

pragma Rename_Pragma (
New_Name => Inline_Only,

Chapter 2: Implementation Defined Pragmas 81

Renamed => Inline_Always);

Then GNAT will treat “pragma Inline_Only ...” as if you had written “pragma In-

line_Always ...”.

Pragma Inline_Only will not necessarily mean the same thing as the other Ada compiler;
it’s up to you to make sure the semantics are close enough.

2.159 Pragma Restricted _Run_Time
Syntax:

pragma Restricted_Run_Time;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Restricted);

which is the preferred method of setting the restricted run time profile.

2.160 Pragma Restriction_Warnings
Syntax:

pragma Restriction_Warnings
(restriction_IDENTIFIER {, restriction_IDENTIFIER});

This pragma allows a series of restriction identifiers to be specified (the list of allowed
identifiers is the same as for pragma Restrictions). For each of these identifiers the
compiler checks for violations of the restriction, but generates a warning message rather
than an error message if the restriction is violated.

One use of this is in situations where you want to know about violations of a restriction,
but you want to ignore some of these violations. Consider this example, where you want
to set Ada_95 mode and enable style checks, but you want to know about any other use of
implementation pragmas:

pragma Restriction_Warnings (No_Implementation_Pragmas);

pragma Warnings (0ff, "violation of No_Implementation_Pragmas");
pragma Ada_95;

pragma Style_Checks ("2bfhkM160");

pragma Warnings (On, "violation of No_Implementation_Pragmas");

By including the above lines in a configuration pragmas file, the Ada_95 and Style_Checks
pragmas are accepted without generating a warning, but any other use of implementation
defined pragmas will cause a warning to be generated.

2.161 Pragma Reviewable
Syntax:
pragma Reviewable;

This pragma is an RM-defined standard pragma, but has no effect on the program being
compiled, or on the code generated for the program.

Chapter 2: Implementation Defined Pragmas 82

To obtain the required output specified in RM H.3.1, the compiler must be run with various
special switches as follows:

*

‘Where compiler-generated run-time checks remain’

The switch ‘-gnatGL’ may be used to list the expanded code in pseudo-Ada form.
Runtime checks show up in the listing either as explicit checks or operators marked
with {} to indicate a check is present.

‘An identification of known exceptions at compile time’

If the program is compiled with ‘-gnatwa’, the compiler warning messages will indicate
all cases where the compiler detects that an exception is certain to occur at run time.

‘Possible reads of uninitialized variables’

The compiler warns of many such cases, but its output is incomplete.

A supplemental static analysis tool may be used to obtain a comprehensive list of all possible
points at which uninitialized data may be read.

*

*

‘Where run-time support routines are implicitly invoked’

In the output from ‘-gnatGL’, run-time calls are explicitly listed as calls to the relevant
run-time routine.

‘Object code listing’

This may be obtained either by using the *-S’ switch, or the objdump utility.
‘Constructs known to be erroneous at compile time’

These are identified by warnings issued by the compiler (use ‘-gnatwa’).
‘Stack usage information’

Static stack usage data (maximum per-subprogram) can be obtained via the ‘-fstack-
usage’ switch to the compiler. Dynamic stack usage data (per task) can be obtained
via the ‘-u’ switch to gnatbind

‘Object code listing of entire partition’

This can be obtained by compiling the partition with *-S’; or by applying objdump to
all the object files that are part of the partition.

‘A description of the run-time model’

The full sources of the run-time are available, and the documentation of these routines
describes how these run-time routines interface to the underlying operating system
facilities.

‘Control and data-flow information’

A supplemental static analysis tool may be used to obtain complete control and data-flow
information, as well as comprehensive messages identifying possible problems based on this
information.

2.162 Pragma Secondary_Stack_Size

Syntax:

pragma Secondary_Stack_Size (integer_EXPRESSION) ;

This pragma appears within the task definition of a single task declaration or a task type
declaration (like pragma Storage_Size) and applies to all task objects of that type. The

Chapter 2: Implementation Defined Pragmas 83

argument specifies the size of the secondary stack to be used by these task objects, and
must be of an integer type. The secondary stack is used to handle functions that return a
variable-sized result, for example a function returning an unconstrained String.

Note this pragma only applies to targets using fixed secondary stacks, like VxWorks 653
and bare board targets, where a fixed block for the secondary stack is allocated from the
primary stack of the task. By default, these targets assign a percentage of the primary stack
for the secondary stack, as defined by System.Parameter.Sec_Stack_Percentage. With
this pragma, an integer _EXPRESSION of bytes is assigned from the primary stack instead.

For most targets, the pragma does not apply as the secondary stack grows on demand:
allocated as a chain of blocks in the heap. The default size of these blocks can be modified
via the -D binder option as described in GNAT User’s Guide.

Note that no check is made to see if the secondary stack can fit inside the primary stack.

Note the pragma cannot appear when the restriction No_Secondary_Stack is in effect.

2.163 Pragma Share_Generic

Syntax:
pragma Share_Generic (GNAME {, GNAME});

GNAME ::= generic_unit_NAME | generic_instance_NAME

This pragma is provided for compatibility with Dec Ada 83. It has no effect in GNAT
(which does not implement shared generics), other than to check that the given names are
all names of generic units or generic instances.

2.164 Pragma Shared

This pragma is provided for compatibility with Ada 83. The syntax and semantics are
identical to pragma Atomic.

2.165 Pragma Short_Circuit_And_Or

Syntax:
pragma Short_Circuit_And_Or;

This configuration pragma causes the predefined AND and OR operators of type Stan-
dard.Boolean to have short-circuit semantics. That is, they behave like AND THEN and
OR ELSE; the right-hand side is not evaluated if the left-hand side determines the result.
This may be useful in the context of certification protocols requiring the use of short-
circuited logical operators.

There is no requirement that all units in a partition use this option. However, mixing of
short-circuit and non-short-circuit semantics can be confusing. Therefore, the recommended
use is to put the pragma in a configuration file that applies to the whole program. Alter-
natively, if you have a legacy library that should not use this pragma, you can put it in a
separate library project that does not use the pragma. In any case, fine-grained mixing of
the different semantics is not recommended. If pragma Short_Circuit_And_Or is specified,
then it is illegal to rename the predefined Boolean AND and OR, or to pass them to generic

Chapter 2: Implementation Defined Pragmas 84

formal functions; this corresponds to the fact that AND THEN and OR ELSE cannot be
renamed nor passed as generic formal functions.

Note that this pragma has no effect on other logical operators — predefined operators of
modular types, array-of-boolean types and types derived from Standard.Boolean, nor user-
defined operators.

See also the pragma Unevaluated_Use_0f_01d and the restriction No_Direct_Boolean_
Operators, which may be useful in conjunction with Short_Circuit_And_Or.

2.166 Pragma Short_Descriptors

Syntax:
pragma Short_Descriptors;

This pragma is provided for compatibility with other Ada implementations. It is recognized
but ignored by all current versions of GNAT.

2.167 Pragma Side_Effects

Syntax:
pragma Side_Effects [(static_boolean EXPRESSION) 1];

For the semantics of this pragma, see the entry for aspect Side_Effects in the SPARK
Reference Manual, section 6.1.12.

2.168 Pragma Simple_Storage_Pool_Type

Syntax:
pragma Simple_Storage_Pool_Type (type_LOCAL_NAME) ;

A type can be established as a ‘simple storage pool type’ by applying the representation
pragma Simple_Storage_Pool_Type to the type. A type named in the pragma must be
a library-level immutably limited record type or limited tagged type declared immediately
within a package declaration. The type can also be a limited private type whose full type
is allowed as a simple storage pool type.

For a simple storage pool type SSP, nonabstract primitive subprograms Allocate,
Deallocate, and Storage_Size can be declared that are subtype conformant with the
following subprogram declarations:

procedure Allocate

(Pool : in out SSP;

Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count) ;

procedure Deallocate
(Pool : in out SSP;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

Chapter 2: Implementation Defined Pragmas 85

function Storage_Size (Pool : SSP)
return System.Storage_Elements.Storage_Count;

Procedure Allocate must be declared, whereas Deallocate and Storage_Size are op-
tional. If Deallocate is not declared, then applying an unchecked deallocation has no
effect other than to set its actual parameter to null. If Storage_Size is not declared, then
the Storage_Size attribute applied to an access type associated with a pool object of type
SSP returns zero. Additional operations can be declared for a simple storage pool type
(such as for supporting a mark/release storage-management discipline).

An object of a simple storage pool type can be associated with an access type by specifying
the attribute [Simple_Storage_Pool], page 135. For example:

My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;

for Acc'Simple_Storage_Pool use My_Pool;
See attribute [Simple_Storage_Pool], page 135, for further details.

2.169 Pragma Source_File_Name
Syntax:

pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Spec_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Body_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

Use this to override the normal naming convention. It is a configuration pragma, and so has
the usual applicability of configuration pragmas (i.e., it applies to either an entire partition,
or to all units in a compilation, or to a single unit, depending on how it is used). unit_name
is mapped to file_name_literal. The identifier for the second argument is required, and
indicates whether this is the file name for the spec or for the body.

The optional Index argument should be used when a file contains multiple units, and when
you do not want to use gnatchop to separate then into multiple files (which is the recom-
mended procedure to limit the number of recompilations that are needed when some sources
change). For instance, if the source file source.ada contains

package B is
end B;
with B;

procedure A is
begin

Chapter 2: Implementation Defined Pragmas 86

end A;
you could use the following configuration pragmas:
pragma Source_File_Name
(B, Spec_File_Name => "source.ada", Index => 1);
pragma Source_File_Name
(A, Body_File_Name => "source.ada", Index => 2);
Note that the gnatname utility can also be used to generate those configuration pragmas.

Another form of the Source_File_Name pragma allows the specification of patterns defining
alternative file naming schemes to apply to all files.

pragma Source_File_Name
([Spec_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Body_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Subunit_File_Name =>] STRING_LITERAL
[, [Casing =>] CASING_SPEC]
[, [Dot_Replacement =>] STRING_LITERAL]);

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The first argument is a pattern that contains a single asterisk indicating the point at which
the unit name is to be inserted in the pattern string to form the file name. The second
argument is optional. If present it specifies the casing of the unit name in the resulting file
name string. The default is lower case. Finally the third argument allows for systematic
replacement of any dots in the unit name by the specified string literal.

Note that Source_File_Name pragmas should not be used if you are using project files.
The reason for this rule is that the project manager is not aware of these pragmas, and so
other tools that use the project file would not be aware of the intended naming conven-
tions. If you are using project files, file naming is controlled by Source_File_Name_Project
pragmas, which are usually supplied automatically by the project manager. A pragma
Source_File_Name cannot appear after a [Pragma Source_File_Name_Project], page 86.

For more details on the use of the Source_File_Name pragma, see the sections on Using
Other File Names and Alternative File Naming Schemes in the GNAT User’s Guide.

2.170 Pragma Source_File_Name_Project

This pragma has the same syntax and semantics as pragma Source_File_Name. It is
only allowed as a stand-alone configuration pragma. It cannot appear after a [Pragma
Source_File_Name], page 85, and most importantly, once pragma Source_File_Name_Project
appears, no further Source_File_Name pragmas are allowed.

Chapter 2: Implementation Defined Pragmas 87

The intention is that Source_File_Name_Project pragmas are always generated by the
Project Manager in a manner consistent with the naming specified in a project file, and when
naming is controlled in this manner, it is not permissible to attempt to modify this naming
scheme using Source_File_Name or Source_File_Name_Project pragmas (which would not
be known to the project manager).

2.171 Pragma Source_Reference

Syntax:
pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);

This pragma must appear as the first line of a source file. integer_literal is the logical
line number of the line following the pragma line (for use in error messages and debugging
information). string_literal is a static string constant that specifies the file name to
be used in error messages and debugging information. This is most notably used for the
output of gnatchop with the ‘-r’ switch, to make sure that the original unchopped source
file is the one referred to.

The second argument must be a string literal, it cannot be a static string expression other
than a string literal. This is because its value is needed for error messages issued by all
phases of the compiler.

2.172 Pragma SPARK_Mode

Syntax:
pragma SPARK_Mode [(On | 0ff)] ;

In general a program can have some parts that are in SPARK 2014 (and follow all the rules
in the SPARK Reference Manual), and some parts that are full Ada 2012.

The SPARK_Mode pragma is used to identify which parts are in SPARK 2014 (by default
programs are in full Ada). The SPARK_Mode pragma can be used in the following places:

* As a configuration pragma, in which case it sets the default mode for all units compiled
with this pragma.

* Immediately following a library-level subprogram spec

* Immediately within a library-level package body

* Immediately following the private keyword of a library-level package spec

* Immediately following the begin keyword of a library-level package body

* Immediately within a library-level subprogram body
Normally a subprogram or package spec/body inherits the current mode that is active at

the point it is declared. But this can be overridden by pragma within the spec or body as
above.

The basic consistency rule is that you can’t turn SPARK_Mode back On, once you have
explicitly (with a pragma) turned if 0ff. So the following rules apply:

If a subprogram spec has SPARK_Mode 0ff, then the body must also have SPARK_Mode
Off.

For a package, we have four parts:

* the package public declarations

Chapter 2: Implementation Defined Pragmas 88

* the package private part
* the body of the package
* the elaboration code after begin

For a package, the rule is that if you explicitly turn SPARK_Mode 0ff for any part, then all
the following parts must have SPARK_Mode 0ff. Note that this may require repeating a
pragma SPARK_Mode (0ff) in the body. For example, if we have a configuration pragma
SPARK _Mode (0On) that turns the mode on by default everywhere, and one particular
package spec has pragma SPARK_Mode (0ff), then that pragma will need to be repeated
in the package body.

2.173 Pragma Static_Elaboration_Desired
Syntax:

pragma Static_Elaboration_Desired;

This pragma is used to indicate that the compiler should attempt to initialize statically
the objects declared in the library unit to which the pragma applies, when these objects
are initialized (explicitly or implicitly) by an aggregate. In the absence of this pragma,
aggregates in object declarations are expanded into assignments and loops, even when the
aggregate components are static constants. When the aggregate is present the compiler
builds a static expression that requires no run-time code, so that the initialized object
can be placed in read-only data space. If the components are not static, or the aggregate
has more that 100 components, the compiler emits a warning that the pragma cannot be
obeyed. (See also the restriction No_Implicit_Loops, which supports static construction of
larger aggregates with static components that include an others choice.)

2.174 Pragma Stream_Convert
Syntax:

pragma Stream_Convert (

[Entity =>] type_LOCAL_NAME,

[Read =>] function_NAME,

[Write =>] function_NAME);
This pragma provides an efficient way of providing user-defined stream attributes. Not only
is it simpler to use than specifying the attributes directly, but more importantly, it allows
the specification to be made in such a way that the predefined unit Ada.Streams is not
loaded unless it is actually needed (i.e. unless the stream attributes are actually used); the
use of the Stream_Convert pragma adds no overhead at all, unless the stream attributes
are actually used on the designated type.

The first argument specifies the type for which stream functions are provided. The second
parameter provides a function used to read values of this type. It must name a function
whose argument type may be any subtype, and whose returned type must be the type given
as the first argument to the pragma.

The meaning of the Read parameter is that if a stream attribute directly or indirectly
specifies reading of the type given as the first parameter, then a value of the type given as
the argument to the Read function is read from the stream, and then the Read function is
used to convert this to the required target type.

Chapter 2: Implementation Defined Pragmas 89

Similarly the Write parameter specifies how to treat write attributes that directly or in-
directly apply to the type given as the first parameter. It must have an input parameter
of the type specified by the first parameter, and the return type must be the same as the
input type of the Read function. The effect is to first call the Write function to convert to
the given stream type, and then write the result type to the stream.

The Read and Write functions must not be overloaded subprograms. If necessary renamings
can be supplied to meet this requirement. The usage of this attribute is best illustrated by a
simple example, taken from the GNAT implementation of package Ada.Strings.Unbounded:

function To_Unbounded (S : String) return Unbounded_String
renames To_Unbounded_String;

pragma Stream_Convert
(Unbounded_String, To_Unbounded, To_String);

The specifications of the referenced functions, as given in the Ada Reference Manual are:

function To_Unbounded_String (Source : String)
return Unbounded_String;

function To_String (Source : Unbounded_String)
return String;

The effect is that if the value of an unbounded string is written to a stream, then the
representation of the item in the stream is in the same format that would be used for
Standard.String'Output, and this same representation is expected when a value of this
type is read from the stream. Note that the value written always includes the bounds, even
for Unbounded_String’Write, since Unbounded_String is not an array type.

Note that the Stream_Convert pragma is not effective in the case of a derived type of a
non-limited tagged type. If such a type is specified then the pragma is silently ignored, and
the default implementation of the stream attributes is used instead.

2.175 Pragma Style_Checks

Syntax:

pragma Style_Checks (string LITERAL | ALL_CHECKS |
On | Off [, LOCAL_NAME]);

This pragma is used in conjunction with compiler switches to control the built in style
checking provided by GNAT. The compiler switches, if set, provide an initial setting for
the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that
a pragma is legal, including use as a configuration pragma (including use in the gnat.adc
file).

The form with a string literal specifies which style options are to be activated. These are
additive, so they apply in addition to any previously set style check options. The codes for
the options are the same as those used in the ‘-gnaty’ switch to ‘gec’ or ‘gnatmake’. For
example the following two methods can be used to enable layout checking and to change
the maximum nesting level value:

*

Chapter 2: Implementation Defined Pragmas 90

-— switch on layout checks

pragma Style_Checks ("1");

-- set the number of maximum allowed nesting levels to 15
pragma Style_Checks ("L15");

gcc —c¢ -gnatyl -gnatyL15 ...

The string literal values can be cumulatively switched on and off by prefixing the value with
+ or -, where:

* +is equivalent to no prefix. It applies the check referenced by the literal value;

*

- switches the referenced check off.

-- allow misaligned block by disabling layout check
pragma Style_Checks ("-1");

declare

msg : constant String := "Hello";
begin

Put_Line (msg);

end;

-— enable the layout check again
pragma Style_Checks ("1");

declare

msg : constant String := "Hello";
begin

Put_Line (msg);

end;

The code above contains two layout errors, however, only the last line is picked up by the

compiler.

Similarly, the switches containing a numeric value can be applied in sequence. In the
example below, the permitted nesting level is reduced in in the middle block and the compiler
raises a warning on the highlighted line.

-— Permit 3 levels of nesting
pragma Style_Checks ("L3");

procedure Main is
begin
if True then
if True then
null;
end if;
end if;
-- Reduce permitted nesting levels to 2.
-- Note that "+L2" and "L2" are equivalent.
pragma Style_Checks ("+L2");
if True then
if True then

Chapter 2: Implementation Defined Pragmas 91

null;
end if;
end if;
-- Disable checking permitted nesting levels.
-- Note that the number after "-L" is insignificant,
-- "-L", "-L3" and "-Lx" are all equivalent.
pragma Style_Checks ("-L3");
if True then
if True then
null;
end if;
end if;
end Main;
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of the
gnaty switch with no options. See the GNAT User’s Guide for details.)
Note: the behavior is slightly different in GNAT mode (-gnatg used). In this case, ALL_
CHECKS implies the standard set of GNAT mode style check options (i.e. equivalent to
-gnatyg).
The forms with 0ff and On can be used to temporarily disable style checks as shown in the
following example:

pragma Style_Checks ("k"); -- requires keywords in lower case

pragma Style_Checks (0ff); -- turn off style checks

NULL; -- this will not generate an error message
pragma Style_Checks (On); -- turn style checks back on

NULL; -- this will generate an error message

Finally the two argument form is allowed only if the first argument is On or 0ff. The effect
is to turn of semantic style checks for the specified entity, as shown in the following example:

pragma Style_Checks ("r"); -- require consistency of identifier casing
Arg : Integer;

Rfl : Integer := ARG; -- incorrect, wrong case

pragma Style_Checks (0ff, Arg);

Rf2 : Integer := ARG; -- 0K, no error

2.176 Pragma Subprogram_Variant

Syntax:
pragma Subprogram_Variant (SUBPROGRAM_VARIANT_LIST);

SUBPROGRAM_VARIANT_LIST ::=
STRUCTURAL_SUBPROGRAM_VARIANT_ITEM
| NUMERIC_SUBPROGRAM_VARIANT_ITEMS

NUMERIC_SUBPROGRAM_VARIANT_ITEMS ::=
NUMERIC_SUBPROGRAM_VARIANT_ITEM {, NUMERIC_SUBPROGRAM_VARIANT_ITEM}

NUMERIC_SUBPROGRAM_VARIANT_ITEM ::=

Chapter 2: Implementation Defined Pragmas 92

CHANGE_DIRECTION => EXPRESSION

STRUCTURAL_SUBPROGRAM_VARIANT_ITEM ::=
STRUCTURAL => EXPRESSION

CHANGE_DIRECTION ::= Increases | Decreases

The Subprogram_Variant pragma is intended to be an exact replacement for the
implementation-defined Subprogram_Variant aspect, and shares its restrictions and
semantics.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.177 Pragma Subtitle

Syntax:
pragma Subtitle ([Subtitle =>] STRING_LITERAL);

This pragma is recognized for compatibility with other Ada compilers but is ignored by
GNAT.

2.178 Pragma Suppress

Syntax:
pragma Suppress (Identifier [, [On =>] Namel);

This is a standard pragma, and supports all the check names required in the RM. It is in-
cluded here because GNAT recognizes some additional check names that are implementation
defined (as permitted by the RM):

* Alignment_Check can be used to suppress alignment checks on addresses used in ad-
dress clauses. Such checks can also be suppressed by suppressing range checks, but
the specific use of Alignment_Check allows suppression of alignment checks without
suppressing other range checks. Note that Alignment_Check is suppressed by default
on machines (such as the x86) with non-strict alignment.

* Atomic_Synchronization can be used to suppress the special memory synchronization
instructions that are normally generated for access to Atomic variables to ensure correct
synchronization between tasks that use such variables for synchronization purposes.

* Duplicated_Tag_Check Can be used to suppress the check that is generated for a
duplicated tag value when a tagged type is declared.

* Container_Checks Can be used to suppress all checks within Ada.Containers and
instances of its children, including Tampering_Check.

* Tampering_Check Can be used to suppress tampering check in the containers.

* Predicate_Check can be used to control whether predicate checks are active. It is
applicable only to predicates for which the policy is Check. Unlike Assertion_Policy,
which determines if a given predicate is ignored or checked for the whole program, the
use of Suppress and Unsuppress with this check name allows a given predicate to be
turned on and off at specific points in the program.

Chapter 2: Implementation Defined Pragmas 93

* Validity_Check can be used specifically to control validity checks. If Suppress is
used to suppress validity checks, then no validity checks are performed, including those
specified by the appropriate compiler switch or the Validity_Checks pragma.

* Additional check names previously introduced by use of the Check_Name pragma are
also allowed.

Note that pragma Suppress gives the compiler permission to omit checks, but does not
require the compiler to omit checks. The compiler will generate checks if they are essentially
free, even when they are suppressed. In particular, if the compiler can prove that a certain
check will necessarily fail, it will generate code to do an unconditional ‘raise’, even if checks
are suppressed. The compiler warns in this case.

Of course, run-time checks are omitted whenever the compiler can prove that they will not
fail, whether or not checks are suppressed.

2.179 Pragma Suppress_All

Syntax:
pragma Suppress_All;

This pragma can appear anywhere within a unit. The effect is to apply Suppress (A11_
Checks) to the unit in which it appears. This pragma is implemented for compatibility
with DEC Ada 83 usage where it appears at the end of a unit, and for compatibility with
Rational Ada, where it appears as a program unit pragma. The use of the standard Ada
pragma Suppress (Al1l_Checks) as a normal configuration pragma is the preferred usage
in GNAT.

2.180 Pragma Suppress_Debug_Info

Syntax:
pragma Suppress_Debug_Info ([Entity =>] LOCAL_NAME) ;

This pragma can be used to suppress generation of debug information for the specified
entity. It is intended primarily for use in debugging the debugger, and navigating around
debugger problems.

2.181 Pragma Suppress_Exception_Locations

Syntax:
pragma Suppress_Exception_Locations;

In normal mode, a raise statement for an exception by default generates an exception
message giving the file name and line number for the location of the raise. This is useful for
debugging and logging purposes, but this entails extra space for the strings for the messages.
The configuration pragma Suppress_Exception_Locations can be used to suppress the
generation of these strings, with the result that space is saved, but the exception message for
such raises is null. This configuration pragma may appear in a global configuration pragma
file, or in a specific unit as usual. It is not required that this pragma be used consistently
within a partition, so it is fine to have some units within a partition compiled with this
pragma and others compiled in normal mode without it.

Chapter 2: Implementation Defined Pragmas 94

2.182 Pragma Suppress_Initialization

Syntax:
pragma Suppress_Initialization ([Entity =>] variable_or_subtype_LOCAL_NAME) ;

Here variable_or_subtype_LOCAL_NAME is the name introduced by a type declaration or
subtype declaration or the name of a variable introduced by an object declaration.

In the case of a type or subtype this pragma suppresses any implicit or explicit initialization
for all variables of the given type or subtype, including initialization resulting from the use
of pragmas Normalize_Scalars or Initialize_Scalars.

This is considered a representation item, so it cannot be given after the type is frozen. It
applies to all subsequent object declarations, and also any allocator that creates objects of
the type.

If the pragma is given for the first subtype, then it is considered to apply to the base type
and all its subtypes. If the pragma is given for other than a first subtype, then it applies
only to the given subtype. The pragma may not be given after the type is frozen.

Note that this includes eliminating initialization of discriminants for discriminated types,
and tags for tagged types. In these cases, you will have to use some non-portable mechanism
(e.g. address overlays or unchecked conversion) to achieve required initialization of these
fields before accessing any object of the corresponding type.

For the variable case, implicit initialization for the named variable is suppressed, just as
though its subtype had been given in a pragma Suppress_Initialization, as described above.

2.183 Pragma Task_Name

Syntax
pragma Task_Name (string_ EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the
task in which it appears. The argument must be of type String, and provides a name to be
used for the task instance when the task is created. Note that this expression is not required
to be static, and in particular, it can contain references to task discriminants. This facility
can be used to provide different names for different tasks as they are created, as illustrated
in the example below.

The task name is recorded internally in the run-time structures and is accessible to tools
like the debugger. In addition the routine Ada.Task_Identification.Image will return
this string, with a unique task address appended.

-— Example of the use of pragma Task_Name
with Ada.Task_Identification;

use Ada.Task_Identification;

with Text_IO0; use Text_IO0;

procedure t3 is

type Astring is access String;

task type Task_Typ (Name : access String) is

Chapter 2: Implementation Defined Pragmas 95

pragma Task_Name (Name.all);
end Task_Typ;

task body Task_Typ is

Nam : constant String := Image (Current_Task);
begin

Put_Line ("-->" & Nam (1 .. 14) & "<--");
end Task_Typ;

type Ptr_Task is access Task_Typ;
Task_Var : Ptr_Task;

begin
Task_Var :=
new Task_Typ (new String'("This is task 1"));
Task_Var :=
new Task_Typ (new String'("This is task 2"));
end;

2.184 Pragma Task_Storage

Syntax:

pragma Task_Storage (
[Task_Type =>] LOCAL_NAME,
[Top_Guard =>] static_integer_ EXPRESSION) ;
This pragma specifies the length of the guard area for tasks. The guard area is an additional
storage area allocated to a task. A value of zero means that either no guard area is created
or a minimal guard area is created, depending on the target. This pragma can appear
anywhere a Storage_Size attribute definition clause is allowed for a task type.

2.185 Pragma Test_Case

Syntax:
pragma Test_Case (
[Name =>] static_string Expression
, [Mode =>] (Nominal | Robustness)

[, Requires => Boolean_Expression]
[, Ensures => Boolean_Expression]);

The Test_Case pragma allows defining fine-grain specifications for use by testing tools.
The compiler checks the validity of the Test_Case pragma, but its presence does not lead
to any modification of the code generated by the compiler.

Test_Case pragmas may only appear immediately following the (separate) declaration of a
subprogram in a package declaration, inside a package spec unit. Only other pragmas may
intervene (that is appear between the subprogram declaration and a test case).

The compiler checks that boolean expressions given in Requires and Ensures are valid,
where the rules for Requires are the same as the rule for an expression in Precondition

Chapter 2: Implementation Defined Pragmas 96

and the rules for Ensures are the same as the rule for an expression in Postcondition. In
particular, attributes '01d and 'Result can only be used within the Ensures expression.
The following is an example of use within a package spec:

package Math_Functions is

function Sqrt (Arg : Float) return Float;

pragma Test_Case (Name => "Test 1",
Mode => Nominal,
Requires => Arg < 10000.0,
Ensures => Sqrt'Result < 10.0);

end Math_Functions;

The meaning of a test case is that there is at least one context where Requires holds
such that, if the associated subprogram is executed in that context, then Ensures holds
when the subprogram returns. Mode Nominal indicates that the input context should also
satisfy the precondition of the subprogram, and the output context should also satisfy its
postcondition. Mode Robustness indicates that the precondition and postcondition of the
subprogram should be ignored for this test case.

2.186 Pragma Thread_Local_Storage
Syntax:
pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);

This pragma specifies that the specified entity, which must be a variable declared in a library-
level package, is to be marked as “Thread Local Storage” (TLS). On systems supporting
this (which include Windows, Solaris, GNU/Linux, and VxWorks), this causes each thread
(and hence each Ada task) to see a distinct copy of the variable.

The variable must not have default initialization, and if there is an explicit initialization, it
must be either null for an access variable, a static expression for a scalar variable, or a fully
static aggregate for a composite type, that is to say, an aggregate all of whose components
are static, and which does not include packed or discriminated components.

This provides a low-level mechanism similar to that provided by the Ada.Task_Attributes
package, but much more efficient and is also useful in writing interface code that will interact
with foreign threads.

If this pragma is used on a system where TLS is not supported, then an error message will
be generated and the program will be rejected.

2.187 Pragma Time_Slice

Syntax:
pragma Time_Slice (static_duration_EXPRESSION) ;

For implementations of GNAT on operating systems where it is possible to supply a time
slice value, this pragma may be used for this purpose. It is ignored if it is used in a system
that does not allow this control, or if it appears in other than the main program unit.

Chapter 2: Implementation Defined Pragmas 97

2.188 Pragma Title
Syntax:
pragma Title (TITLING_OPTION [, TITLING OPTION]);

TITLING_OPTION ::=
[Title =>] STRING_LITERAL,
| [Subtitle =>] STRING_LITERAL

Syntax checked but otherwise ignored by GNAT. This is a listing control pragma used in
DEC Ada 83 implementations to provide a title and/or subtitle for the program listing.
The program listing generated by GNAT does not have titles or subtitles.

Unlike other pragmas, the full flexibility of named notation is allowed for this pragma,
i.e., the parameters may be given in any order if named notation is used, and named and
positional notation can be mixed following the normal rules for procedure calls in Ada.

2.189 Pragma Type_Invariant

Syntax:

pragma Type_Invariant
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

The Type_Invariant pragma is intended to be an exact replacement for the language-
defined Type_Invariant aspect, and shares its restrictions and semantics. It differs from
the language defined Invariant pragma in that it does not permit a string parameter, and
it is controlled by the assertion identifier Type_Invariant rather than Invariant.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

2.190 Pragma Type_Invariant_Class

Syntax:

pragma Type_Invariant_Class
([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

The Type_Invariant_Class pragma is intended to be an exact replacement for the
language-defined Type_Invariant'Class aspect, and shares its restrictions and semantics.

Note: This pragma is called Type_Invariant_Class rather than Type_Invariant'Class
because the latter would not be strictly conforming to the allowed syntax for pragmas. The
motivation for providing pragmas equivalent to the aspects is to allow a program to be
written using the pragmas, and then compiled if necessary using an Ada compiler that does
not recognize the pragmas or aspects, but is prepared to ignore the pragmas. The assertion
policy that controls this pragma is Type_Invariant'Class, not Type_Invariant_Class.

This is an assertion kind pragma that can associate a set of its arguments with an assertion
level. See SPARK 2014 Reference Manual, section 11.4.2.

Chapter 2: Implementation Defined Pragmas 98

2.191 Pragma Unchecked_Union

Syntax:
pragma Unchecked_Union (first_subtype_LOCAL_NAME) ;

This pragma is used to specify a representation of a record type that is equivalent to a C
union. It was introduced as a GNAT implementation defined pragma in the GNAT Ada 95
mode. Ada 2005 includes an extended version of this pragma, making it language defined,
and GNAT fully implements this extended version in all language modes (Ada 83, Ada 95,
and Ada 2005). For full details, consult the Ada 2012 Reference Manual, section B.3.3.

2.192 Pragma Unevaluated_Use_Of_Old

Syntax:
pragma Unevaluated_Use_0f_0ld (Error | Warn | Allow);

This pragma controls the processing of attributes Old and Loop_Entry. If either of these
attributes is used in a potentially unevaluated expression (e.g. the then or else parts of an
if expression), then normally this usage is considered illegal if the prefix of the attribute is
other than an entity name. The language requires this behavior for Old, and GNAT copies
the same rule for Loop_Entry.

The reason for this rule is that otherwise, we can have a situation where we save the Old
value, and this results in an exception, even though we might not evaluate the attribute.
Consider this example:

package UnevalOld is
K : Character;
procedure U (A : String; C : Boolean) -- ERROR
with Post => (if C then A(1)'0ld = K else True);
end;

If procedure U is called with a string with a lower bound of 2, and C false, then an exception
would be raised trying to evaluate A(1) on entry even though the value would not be actually
used.

Although the rule guarantees against this possibility, it is sometimes too restrictive. For
example if we know that the string has a lower bound of 1, then we will never raise an
exception. The pragma Unevaluated_Use_0f_01d can be used to modify this behavior.
If the argument is Error then an error is given (this is the default RM behavior). If the
argument is Warn then the usage is allowed as legal but with a warning that an exception
might be raised. If the argument is Allow then the usage is allowed as legal without
generating a warning.

This pragma may appear as a configuration pragma, or in a declarative part or package
specification. In the latter case it applies to uses up to the end of the corresponding
statement sequence or sequence of package declarations.

2.193 Pragma User_Aspect_Definition
Syntax:

pragma User_Aspect_Definition
(Identifier {, Identifier [(Identifier {, Identifierl})]});

Chapter 2: Implementation Defined Pragmas 99

This configuration pragma defines a new aspect, making it available for subsequent use
in a User_Aspect aspect specification. The first identifier is the name of the new aspect.
Any subsequent arguments specify the names of other aspects. A subsequent name for
which no parenthesized arguments are given shall denote either a Boolean-valued non-
representation aspect or an aspect that has been defined by another User_Aspect_Definition
pragma. A name for which one or more arguments are given shall be either Annotate or
Local_Restrictions (and the arguments shall be appropriate for the named aspect).

This pragma, together with the User_Aspect aspect, provides a mechanism for avoiding
textual duplication if some set of aspect specifications is needed in multiple places. This is
somewhat analogous to how profiles allow avoiding duplication of Restrictions pragmas.

The visibility rules for an aspect defined by a User_Aspect_Definition pragma are the same
as for a check name introduced by a Check_Name pragma. If multiple definitions are visible
for some aspect at some point, then the definitions must agree. A predefined aspect cannot
be redefined.

2.194 Pragma Unimplemented_Unit

Syntax:
pragma Unimplemented_Unit;

If this pragma occurs in a unit that is processed by the compiler, GNAT aborts with the mes-
sage xxx is not supported in this configuration, where xxx is the name of the current
compilation unit. This pragma is intended to allow the compiler to handle unimplemented
library units in a clean manner.

The abort only happens if code is being generated. Thus you can use specs of unimplemented
packages in syntax or semantic checking mode.

2.195 Pragma Universal_Aliasing

Syntax:
pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];

type_LOCAL_NAME must refer to a type declaration in the current declarative part. The
effect is to inhibit strict type-based aliasing optimizations for the given type. For a detailed
description of the strict type-based aliasing optimizations and the situations in which they
need to be suppressed, see the section on Optimization and Strict Aliasingin the GNAT
User’s Guide.

2.196 Pragma Unmodified

Syntax:
pragma Unmodified (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, in out param-
eters) whose names are listed are deliberately not assigned in the current source unit. This
suppresses warnings about the entities being referenced but not assigned, and in addition
a warning will be generated if one of these entities is in fact assigned in the same unit as
the pragma (or in the corresponding body, or one of its subunits).

Chapter 2: Implementation Defined Pragmas 100

This is particularly useful for clearly signaling that a particular parameter is not modified,
even though the spec suggests that it might be.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSE, TMP, TEMP in any
casing. Such names are typically to be used in cases where such warnings are expected. Thus
it is never necessary to use pragma Unmodified for such variables, though it is harmless to
do so.

2.197 Pragma Unreferenced
Syntax:

pragma Unreferenced (LOCAL_NAME {, LOCAL_NAME});
pragma Unreferenced (library_unit_NAME {, library_unit_NAME});

This pragma signals that the entities whose names are listed are deliberately not referenced
in the current source unit after the occurrence of the pragma. This suppresses warnings
about the entities being unreferenced, and in addition a warning will be generated if one of
these entities is in fact subsequently referenced in the same unit as the pragma (or in the
corresponding body, or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not referenced
in some particular subprogram implementation and that this is deliberate. It can also be
useful in the case of objects declared only for their initialization or finalization side effects.

If LOCAL_NAME identifies more than one matching homonym in the current scope, then the
entity most recently declared is the one to which the pragma applies. Note that in the case
of accept formals, the pragma Unreferenced may appear immediately after the keyword do
which allows the indication of whether or not accept formals are referenced or not to be
given individually for each accept statement.

The left hand side of an assignment does not count as a reference for the purpose of this
pragma. Thus it is fine to assign to an entity for which pragma Unreferenced is given.
However, use of an entity as an actual for an out parameter does count as a reference unless
warnings for unread output parameters are enabled via —-gnatw.o.

Note that if a warning is desired for all calls to a given subprogram, regardless of whether
they occur in the same unit as the subprogram declaration, then this pragma should not
be used (calls from another unit would not be flagged); pragma Obsolescent can be used
instead for this purpose, see [Pragma Obsolescent], page 61.

The second form of pragma Unreferenced is used within a context clause. In this case the
arguments must be unit names of units previously mentioned in with clauses (similar to the
usage of pragma Elaborate_All). The effect is to suppress warnings about unreferenced
units and unreferenced entities within these units.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any casing. Such
names are typically to be used in cases where such warnings are expected. Thus it is never
necessary to use pragma Unreferenced for such variables, though it is harmless to do so.

Chapter 2: Implementation Defined Pragmas 101

2.198 Pragma Unreferenced_Objects

Syntax:
pragma Unreferenced_Objects (local_subtype_NAME {, local_subtype_NAME});

This pragma signals that for the types or subtypes whose names are listed, objects which
are declared with one of these types or subtypes may not be referenced, and if no references
appear, no warnings are given.

This is particularly useful for objects which are declared solely for their initialization and
finalization effect. Such variables are sometimes referred to as RAII variables (Resource
Acquisition Is Initialization). Using this pragma on the relevant type (most typically a
limited controlled type), the compiler will automatically suppress unwanted warnings about
these variables not being referenced.

2.199 Pragma Unreserve_All_Interrupts
Syntax:

pragma Unreserve_All_Interrupts;

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program_Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for a Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution.

If the pragma Unreserve_All_Interrupts appears anywhere in any unit in a program,
then all such interrupts are unreserved. This allows the program to handle these interrupts,
but disables their standard functions. For example, if this pragma is used, then pressing
Ctrl-C will not automatically interrupt execution. However, a program can then handle
the SIGINT interrupt as it chooses.

For a full list of the interrupts handled in a specific implementation, see the source code for
the spec of Ada.Interrupts.Names in file a-intnam.ads. This is a target dependent file
that contains the list of interrupts recognized for a given target. The documentation in this
file also specifies what interrupts are affected by the use of the Unreserve_Al11l_Interrupts
pragma.

For a more general facility for controlling what interrupts can be handled, see pragma
Interrupt_State, which subsumes the functionality of the Unreserve_All_Interrupts
pragma.

2.200 Pragma Unsuppress

Syntax:

pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);
This pragma undoes the effect of a previous pragma Suppress. If there is no corresponding
pragma Suppress in effect, it has no effect. The range of the effect is the same as for pragma
Suppress. The meaning of the arguments is identical to that used in pragma Suppress.
One important application is to ensure that checks are on in cases where code depends on

the checks for its correct functioning, so that the code will compile correctly even if the
compiler switches are set to suppress checks. For example, in a program that depends on

Chapter 2: Implementation Defined Pragmas 102

external names of tagged types and wants to ensure that the duplicated tag check occurs
even if all run-time checks are suppressed by a compiler switch, the following configuration
pragma will ensure this test is not suppressed:

pragma Unsuppress (Duplicated_Tag_Check);

This pragma is standard in Ada 2005. It is available in all earlier versions of Ada as an
implementation-defined pragma.

Note that in addition to the checks defined in the Ada RM, GNAT recognizes a number
of implementation-defined check names. See the description of pragma Suppress for full
details.

2.201 Pragma Unused

Syntax:
pragma Unused (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, and in out
parameters) whose names are listed deliberately do not get assigned or referenced in the
current source unit after the occurrence of the pragma in the current source unit. This
suppresses warnings about the entities that are unreferenced and/or not assigned, and, in
addition, a warning will be generated if one of these entities gets assigned or subsequently
referenced in the same unit as the pragma (in the corresponding body or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not modified
or referenced, even though the spec suggests that it might be.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any casing. Such
names are typically to be used in cases where such warnings are expected. Thus it is never
necessary to use pragma Unused for such variables, though it is harmless to do so.

2.202 Pragma Use_VADS_Size

Syntax:

pragma Use_VADS_Size;
This is a configuration pragma. In a unit to which it applies, any use of the ‘Size attribute is
automatically interpreted as a use of the ‘VADS_Size attribute. Note that this may result in
incorrect semantic processing of valid Ada 95 or Ada 2005 programs. This is intended to aid

in the handling of existing code which depends on the interpretation of Size as implemented
in the VADS compiler. See description of the VADS_Size attribute for further details.

2.203 Pragma Validity_Checks

Syntax:

pragma Validity_Checks (string LITERAL | ALL_CHECKS | On | 0ff);
This pragma is used in conjunction with compiler switches to control the built-in validity
checking provided by GNAT. The compiler switches, if set provide an initial setting for the

switches, and this pragma may be used to modify these settings, or the settings may be
provided entirely by the use of the pragma. This pragma can be used anywhere that a

Chapter 2: Implementation Defined Pragmas 103

pragma is legal, including use as a configuration pragma (including use in the gnat.adc
file).

The form with a string literal specifies which validity options are to be activated. The
validity checks are first set to include only the default reference manual settings, and then
a string of letters in the string specifies the exact set of options required. The form of this
string is exactly as described for the ‘-gnatVx’ compiler switch (see the GNAT User’s Guide
for details). For example the following two methods can be used to enable validity checking
for mode in and in out subprogram parameters:

*

pragma Validity_Checks ("im");

$ gcc -c -gnatVim ...
The form ALL_CHECKS activates all standard checks (its use is equivalent to the use of
the gnatVa switch).

The forms with 0ff and On can be used to temporarily disable validity checks as shown in
the following example:

pragma Validity_Checks ("c"); -- validity checks for copies
pragma Validity_Checks (0ff); -- turn off validity checks

A := B; -— B will not be validity checked
pragma Validity_Checks (On); -- turn validity checks back on

A :=C; -- C will be validity checked

2.204 Pragma Volatile

Syntax:
pragma Volatile (LOCAL_NAME);

This pragma is defined by the Ada Reference Manual, and the GNAT implementation is
fully conformant with this definition. The reason it is mentioned in this section is that a
pragma of the same name was supplied in some Ada 83 compilers, including DEC Ada 83.
The Ada 95 / Ada 2005 implementation of pragma Volatile is upwards compatible with the
implementation in DEC Ada 83.

2.205 Pragma Volatile_Full_Access

Syntax:
pragma Volatile_Full_Access (LOCAL_NAME);

This is similar in effect to pragma Volatile, except that any reference to the object is
guaranteed to be done only with instructions that read or write all the bits of the object.
Furthermore, if the object is of a composite type, then any reference to a subcomponent of
the object is guaranteed to read and/or write all the bits of the object.

The intention is that this be suitable for use with memory-mapped I/O devices on some
machines. Note that there are two important respects in which this is different from pragma
Atomic. First a reference to a Volatile_Full_Access object is not a sequential action in
the RM 9.10 sense and, therefore, does not create a synchronization point. Second, in the

Chapter 2: Implementation Defined Pragmas 104

case of pragma Atomic, there is no guarantee that all the bits will be accessed if the reference
is not to the whole object; the compiler is allowed (and generally will) access only part of
the object in this case.

2.206 Pragma Volatile_Function

Syntax:
pragma Volatile Function [(static_boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Volatile_Function in the
SPARK 2014 Reference Manual, section 7.1.2.

2.207 Pragma Warning_As_Error

Syntax:
pragma Warning As_FError (static_string EXPRESSION);

This configuration pragma allows the programmer to specify a set of warnings that will be
treated as errors. Any warning that matches the pattern given by the pragma argument will
be treated as an error. This gives more precise control than -gnatwe, which treats warnings
as errors.

This pragma can apply to regular warnings (messages enabled by -gnatw) and to style
warnings (messages that start with “(style)”, enabled by -gnaty).

The pattern may contain asterisks, which match zero or more characters in the message. For
example, you can use pragma Warning_As_Error ("bits of*unused") to treat the warning
message warning: 960 bits of "a" unused as an error. All characters other than asterisk
are treated as literal characters in the match. The match is case insensitive; for example
XY7Z matches xyz.

Note that the pattern matches if it occurs anywhere within the warning message string (it
is not necessary to put an asterisk at the start and the end of the message, since this is
implied).

Another possibility for the static_string_. EXPRESSION which works whether or not error
tags are enabled (‘-gnatw.d’) is to use a single ‘-gnatw’ tag string, enclosed in brackets,
as shown in the example below, to treat one category of warnings as errors. Note that if
you want to treat multiple categories of warnings as errors, you can use multiple pragma
Warning_As_Error.

The above use of patterns to match the message applies only to warning messages generated
by the front end. This pragma can also be applied to warnings provided by the back end
and mentioned in [Pragma Warnings|, page 105. By using a single full ‘-Wxxx’ switch in
the pragma, such warnings can also be treated as errors.

The pragma can appear either in a global configuration pragma file (e.g. gnat.adc), or at
the start of a file. Given a global configuration pragma file containing:

pragma Warning_As_Error ("[-gnatwjl");
which will treat all obsolescent feature warnings as errors, the following program compiles
as shown (compile options here are ‘-gnatwa.d -gnatl -gnatj55’).
1. pragma Warning_As_Error ("#never assigned*");
2. function Warnerr return String is

Chapter 2: Implementation Defined Pragmas 105

3. X : Integer;
|
>>> error: variable "X" is never read and
never assigned [-gnatwv] [warning-as-error]

4. Y : Integer;
|
>>> warning: variable "Y" is assigned but
never read [-gnatwu]

5. begin
6. Y := 0;
7. return %ABC%;

>>> error: use of "J" is an obsolescent
feature (RM J.2(4)), use """ instead
[-gnatwj] [warning-as-error]

8. end;

8 lines: No errors, 3 warnings (2 treated as errors)

Note that this pragma does not affect the set of warnings issued in any way, it merely
changes the effect of a matching warning if one is produced as a result of other warnings
options. As shown in this example, if the pragma results in a warning being treated as an
error, the tag is changed from “warning:” to “error:” and the string “[warning-as-error|” is
appended to the end of the message

2.208 Pragma Warnings
Syntax:
pragma Warnings ([TOOL_NAME,] DETAILS [, REASON]);

DETAILS ::= On | Off

DETAILS ::= On | Off, local_NAME

DETAILS ::= static_string_ EXPRESSION

DETAILS ::= On | Off, static_string_ EXPRESSION
TOOL_NAME ::= GNAT | GNATprove

REASON ::= Reason => STRING_LITERAL {& STRING_LITERAL}

Note: in Ada 83 mode, a string literal may be used in place of a static string expression
(which does not exist in Ada 83).

Note if the second argument of DETAILS is a local_NAME then the second form is always
understood. If the intention is to use the fourth form, then you can write NAME & "" to force
the interpretation as a ‘static_string_ EXPRESSION’.

Chapter 2: Implementation Defined Pragmas 106

Note: if the first argument is a valid TOOL_NAME, it will be interpreted that way. The use
of the TOOL_NAME argument is relevant only to users of SPARK and GNATprove, see last
part of this section for details.

Normally warnings are enabled, with the output being controlled by the command line
switch. Warnings (0££) turns off generation of warnings until a Warnings (On) is encountered
or the end of the current unit. If generation of warnings is turned off using this pragma,
then some or all of the warning messages are suppressed, regardless of the setting of the
command line switches.

The Reason parameter may optionally appear as the last argument in any of the forms of this
pragma. It is intended purely for the purposes of documenting the reason for the Warnings
pragma. The compiler will check that the argument is a static string but otherwise ignore
this argument. Other tools may provide specialized processing for this string.

The form with a single argument (or two arguments if Reason present), where the first
argument is ON or OFF may be used as a configuration pragma.

If the LOCAL_NAME parameter is present, warnings are suppressed for the specified entity.
This suppression is effective from the point where it occurs till the end of the extended
scope of the variable (similar to the scope of Suppress). This form cannot be used as a
configuration pragma.

In the case where the first argument is other than ON or OFF, the third form with a single
static_string_ EXPRESSION argument (and possible reason) provides more precise control
over which warnings are active. The string is a list of letters specifying which warnings
are to be activated and which deactivated. The code for these letters is the same as the
string used in the command line switch controlling warnings. For a brief summary, use the
gnatmake command with no arguments, which will generate usage information containing
the list of warnings switches supported. For full details see the section on Warning Message
Control in the GNAT User’s Guide. This form can also be used as a configuration pragma.

The warnings controlled by the —gnatw switch are generated by the front end of the compiler.
The GCC back end can provide additional warnings and they are controlled by the -W switch.
Such warnings can be identified by the appearance of a string of the form [-W{xxx}] in the
message which designates the -W™xxx' switch that controls the message. The form with a
single ‘static_string_ EXPRESSION’ argument also works for these warnings, but the string
must be a single full -W™ xxx' switch in this case. The above reference lists a few examples
of these additional warnings.

The specified warnings will be in effect until the end of the program or another pragma
Warnings is encountered. The effect of the pragma is cumulative. Initially the set of
warnings is the standard default set as possibly modified by compiler switches. Then each
pragma Warning modifies this set of warnings as specified. This form of the pragma may
also be used as a configuration pragma.

The fourth form, with an On|0ff parameter and a string, is used to control individual
messages, based on their text. The string argument is a pattern that is used to match
against the text of individual warning messages (not including the initial “warning: “ tag).

The pattern may contain asterisks, which match zero or more characters in the message. For
example, you can use pragma Warnings (0ff, "bits of*unused") to suppress the warn-
ing message warning: 960 bits of "a" unused. No other regular expression notations are
permitted. All characters other than asterisk in these three specific cases are treated as

Chapter 2: Implementation Defined Pragmas 107

literal characters in the match. The match is case insensitive, for example XYZ matches
XyZ.

Note that the pattern matches if it occurs anywhere within the warning message string (it
is not necessary to put an asterisk at the start and the end of the message, since this is
implied).

The above use of patterns to match the message applies only to warning messages generated
by the front end. This form of the pragma with a string argument can also be used to control
warnings provided by the back end and mentioned above. By using a single full -W™ xxx"'
switch in the pragma, such warnings can be turned on and off.

There are two ways to use the pragma in this form. The OFF form can be used as a
configuration pragma. The effect is to suppress all warnings (if any) that match the pattern
string throughout the compilation (or match the -W switch in the back end case).

The second usage is to suppress a warning locally, and in this case, two pragmas must
appear in sequence:

pragma Warnings (0ff, Pattern);
code where given warning is to be suppressed
pragma Warnings (On, Pattern);

In this usage, the pattern string must match in the Off and On pragmas, and (if ‘-gnatw.w’
is given) at least one matching warning must be suppressed.

Note: if the ON form is not found, then the effect of the OFF form extends until the end
of the file (pragma Warnings is purely textual, so its effect does not stop at the end of the
enclosing scope).

Note: to write a string that will match any warning, use the string "#*x". It will not
work to use a single asterisk or two asterisks since this looks like an operator name. This
form with three asterisks is similar in effect to specifying pragma Warnings (0ff) except (if
-gnatw.w is given) that a matching pragma Warnings (On, "***") will be required. This
can be helpful in avoiding forgetting to turn warnings back on.

Note: the debug flag -gnatd.i can be used to cause the compiler to entirely ignore all
WARNINGS pragmas. This can be useful in checking whether obsolete pragmas in existing
programs are hiding real problems.

Note: pragma Warnings does not affect the processing of style messages. See separate entry
for pragma Style_Checks for control of style messages.

Users of the formal verification tool GNATprove for the SPARK subset of Ada may use the
version of the pragma with a TOOL_NAME parameter.

If present, TOOL_NAME is the name of a tool, currently either GNAT for the compiler or
GNATprove for the formal verification tool. A given tool only takes into account pragma
Warnings that do not specify a tool name, or that specify the matching tool name. This
makes it possible to disable warnings selectively for each tool, and as a consequence to
detect useless pragma Warnings with switch -gnatw.w.

2.209 Pragma Weak_External

Syntax:
pragma Weak_External ([Entity =>] LOCAL_NAME);

Chapter 2: Implementation Defined Pragmas 108

LOCAL_NAME must refer to an object that is declared at the library level. This pragma
specifies that the given entity should be marked as a weak symbol for the linker. It is
equivalent to __attribute__((weak)) in GNU C and causes LOCAL_NAME to be emitted as
a weak symbol instead of a regular symbol, that is to say a symbol that does not have to
be resolved by the linker if used in conjunction with a pragma Import.

When a weak symbol is not resolved by the linker, its address is set to zero. This is useful in
writing interfaces to external modules that may or may not be linked in the final executable,
for example depending on configuration settings.

If a program references at run time an entity to which this pragma has been applied, and
the corresponding symbol was not resolved at link time, then the execution of the program
is erroneous. It is not erroneous to take the Address of such an entity, for example to guard
potential references, as shown in the example below.

Some file formats do not support weak symbols so not all target machines support this
pragma.
-- Example of the use of pragma Weak_External

package External_Module is
key : Integer;
pragma Import (C, key);
pragma Weak_External (key);
function Present return boolean;
end External_Module;

with System; use System;
package body External_Module is
function Present return boolean is
begin
return key'Address /= System.Null_Address;
end Present;
end External_Module;

2.210 Pragma Wide_Character_Encoding

Syntax:

pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL);
This pragma specifies the wide character encoding to be used in program source text ap-
pearing subsequently. It is a configuration pragma, but may also be used at any point that
a pragma is allowed, and it is permissible to have more than one such pragma in a file,
allowing multiple encodings to appear within the same file.
However, note that the pragma cannot immediately precede the relevant wide character,
because then the previous encoding will still be in effect, causing “illegal character” errors.
The argument can be an identifier or a character literal. In the identifier case, it is one
of HEX, UPPER, SHIFT_JIS, EUC, UTF8, or BRACKETS. In the character literal case it is
correspondingly one of the characters h, u, s, e, 8, or b.
Note that when the pragma is used within a file, it affects only the encoding within that
file, and does not affect withed units, specs, or subunits.

109

3 Implementation Defined Aspects

Ada defines (throughout the Ada 2012 reference manual, summarized in Annex K) a set
of aspects that can be specified for certain entities. These language defined aspects are
implemented in GNAT in Ada 2012 mode and work as described in the Ada 2012 Reference
Manual.

In addition, Ada 2012 allows implementations to define additional aspects whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
aspects which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT reference manual describes these additional aspects.

Note that any program using these aspects may not be portable to other compilers (although
GNAT implements this set of aspects on all platforms). Therefore if portability to other
compilers is an important consideration, you should minimize the use of these aspects.

Note that for many of these aspects, the effect is essentially similar to the use of a pragma
or attribute specification with the same name applied to the entity. For example, if we
write:

type R is range 1 .. 100
with Value_Size => 10;

then the effect is the same as:

type R is range 1 .. 100;
for R'Value_Size use 10;

and if we write:

type R is new Integer
with Shared => True;

then the effect is the same as:

type R is new Integer;
pragma Shared (R);

In the documentation below, such cases are simply marked as being boolean aspects equiv-
alent to the corresponding pragma or attribute definition clause.

3.1 Aspect Abstract_State
This aspect is equivalent to [pragma Abstract_State|, page 5.

3.2 Aspect Always_Terminates

This boolean aspect is equivalent to [pragma Always_Terminates|, page 9.

3.3 Aspect Annotate

There are three forms of this aspect (where ID is an identifier, and ARG is a general
expression), corresponding to [pragma Annotate|, page 10.

‘Annotate => ID’
Equivalent to pragma Annotate (ID, Entity => Name) ;

Chapter 3: Implementation Defined Aspects 110

‘Annotate => (ID)’
Equivalent to pragma Annotate (ID, Entity => Name) ;

‘Annotate => (ID ,ID {, ARG})’
Equivalent to pragma Annotate (ID, ID {, ARG}, Entity => Name);

3.4 Aspect Async_Readers

This boolean aspect is equivalent to [pragma Async_Readers], page 14.

3.5 Aspect Async_Writers

This boolean aspect is equivalent to [pragma Async_Writers|, page 14.

3.6 Aspect Constant_After_Elaboration
This aspect is equivalent to [pragma Constant_After_Elaboration]|, page 21.

3.7 Aspect Contract_Cases

This aspect is equivalent to [pragma Contract_Cases], page 21, the sequence of clauses being
enclosed in parentheses so that syntactically it is an aggregate.

3.8 Aspect Depends
This aspect is equivalent to [pragma Depends], page 26.

3.9 Aspect Default_Initial_Condition
This aspect is equivalent to [pragma Default_Initial_Condition], page 25.

3.10 Aspect Dimension

The Dimension aspect is used to specify the dimensions of a given subtype of a dimensioned
numeric type. The aspect also specifies a symbol used when doing formatted output of
dimensioned quantities. The syntax is:
with Dimension =>
([Symbol =>] SYMBOL, DIMENSION_VALUE {, DIMENSION_Value})

SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL

DIMENSION_VALUE ::=

RATIONAL
| others => RATIONAL
| DISCRETE_CHOICE_LIST => RATIONAL

RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]

This aspect can only be applied to a subtype whose parent type has a Dimension_System
aspect. The aspect must specify values for all dimensions of the system. The rational

Chapter 3: Implementation Defined Aspects 111

values are the powers of the corresponding dimensions that are used by the compiler to
verify that physical (numeric) computations are dimensionally consistent. For example, the
computation of a force must result in dimensions (L => 1, M => 1, T => -2). For further
examples of the usage of this aspect, see package System.Dim.Mks. Note that when the
dimensioned type is an integer type, then any dimension value must be an integer literal.

3.11 Aspect Dimension_System

The Dimension_System aspect is used to define a system of dimensions that will be used in
subsequent subtype declarations with Dimension aspects that reference this system. The
syntax is:

with Dimension_System => (DIMENSION {, DIMENSION});

DIMENSION ::= ([Unit_Name =>] IDENTIFIER,
[(Unit_Symbol =>] SYMBOL,
[Dim_Symbol =>] SYMBOL)

SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL

This aspect is applied to a type, which must be a numeric derived type (typically a floating-
point type), that will represent values within the dimension system. Each DIMENSION cor-
responds to one particular dimension. A maximum of 7 dimensions may be specified.
Unit_Name is the name of the dimension (for example Meter). Unit_Symbol is the short-
hand used for quantities of this dimension (for example m for Meter). Dim_Symbol gives the
identification within the dimension system (typically this is a single letter, e.g. L standing
for length for unit name Meter). The Unit_Symbol is used in formatted output of dimen-
sioned quantities. The Dim_Symbol is used in error messages when numeric operations have
inconsistent dimensions.

GNAT provides the standard definition of the International MKS system in the run-time
package System.Dim.Mks. You can easily define similar packages for cgs units or British
units, and define conversion factors between values in different systems. The MKS system
is characterized by the following aspect:

type Mks_Type is new Long_Long_Float with
Dimension_System => (

(Unit_Name => Meter, Unit_Symbol => 'm', Dim_Symbol => 'L'),
(Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => 'M'),
(Unit_Name => Second, Unit_Symbol => 's', Dim_Symbol => 'T'),
(Unit_Name => Ampere, Unit_Symbol => 'A', Dim_Symbol => 'I'),
(Unit_Name => Kelvin, Unit_Symbol => 'K', Dim_Symbol => '@'),
(Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => 'N'),

(Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => 'J'));

Note that in the above type definition, we use the at symbol (@) to represent a theta
character (avoiding the use of extended Latin-1 characters in this context).

See section ‘Performing Dimensionality Analysis in GNAT’ in the GNAT Users Guide for
detailed examples of use of the dimension system.

Chapter 3: Implementation Defined Aspects 112

3.12 Aspect Disable_Controlled

The aspect Disable_Controlled is defined for controlled record types. If active, this
aspect causes suppression of all related calls to Initialize, Adjust, and Finalize. The
intended use is for conditional compilation, where for example you might want a record to
be controlled or not depending on whether some run-time check is enabled or suppressed.

3.13 Aspect Effective_Reads
This aspect is equivalent to [pragma Effective_Reads], page 28.

3.14 Aspect Effective_Writes
This aspect is equivalent to [pragma Effective_Writes], page 28.

3.15 Aspect Exceptional_Cases

This aspect may be specified for procedures and functions with side effects; it can be used to
list exceptions that might be propagated by the subprogram with side effects in the context
of its precondition, and associate them with a specific postcondition.

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.9.

3.16 Aspect Exit_Cases

This aspect may be specified for procedures and functions with side effects; it can be used to
partition the input state into a list of cases and specify, for each case, how the subprogram
is allowed to terminate (i.e. return normally or propagate an exception).

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.10.

3.17 Aspect Extended_Access

This nonoverridable boolean-valued type-related representation aspect can be specified as
part of a full_type_declaration for a general access type designating an unconstrained array
subtype.

The absence of an Extended_Access aspect specification for such a full_type_declaration is
equivalent to an explicit “Extended_Access => False” specification. This implies that the
aspect is never unspecified for an eligible access type. An access type for which this aspect
is True is said to be an extended access type; this includes the case of a type derived from
an extended access type. Similarly, a value of such a type is said to be an extended access
value.

The representation of an extended access value is different than that of other access values.
This representation makes it possible to designate objects that cannot be designated using
the usual “thin” or “fat” access representations for an access type designating an uncon-
strained array subtype (notably slices and array objects imported from other languages).
In particular, two rules are modified in determining the legality of an Access or
Unchecked_Access attribute reference if the expected access type is an extended access
type:

Chapter 3: Implementation Defined Aspects 113

* A slice of an aliased array object of a non-bitpacked type (more precisely, of an array
type having independently addressable components) is considered to be aliased (and
the accessibility level of a slice of an array object is defined to be that of the array
object); this also applies to renamings of such slices, slices of such renamings, etc.

* The requirement that the nominal subtype of the prefix shall statically match the
designated subtype of the access type need not be met.

The Size aspect (and other aspects including Stream_Size, Object_Size, and Alignment) of
an extended access type may depend on the properties of the designated type. Further
details of this dependence are not documented.

An extended access value is not convertible to a non-extended access type, although con-
versions in the opposite direction are allowed. We don’t want to allow

type Big_Ref is access all String with Extended_Access;
type Small_Ref is access all String;

Obj : aliased String := "abcde";
Big_Ptr : Big_Ref := Obj (2 .. 4)'Access; -- 0K
Small_Ptr : Small_Ref := Small_Ref (Big_Ptr); -- ERROR: illegal conversion

because there is no way to represent the result of such a conversion.

A dereference of an extended access value (or a reference to a renaming thereof) shall not
occur in any of the following contexts:

* as an operative constituent of the prefix of an Access or Unchecked_Access attribute

reference whose expected type is not extended; or

as an operative constituent of an actual parameter in a call where the corresponding
formal parameter is explicitly aliased.

For the same reasons that explicit conversions from an extended access type to a non-
extended access type are forbidden, we also need to disallow getting the same effect via a
Extended_Ptr.all’ Access reference; this includes the case of passing Extended_Ptr.all as an
actual parameter in a call where the corresponding formal parameter is explicitly aliased
(because the callee could evaluate Formal_Parameter’Access). This goal is accomplished by
adjusting the definition of the term “aliased”. A dereference of an extended value occurring
in one of these contexts is defined to denote a nonaliased view. This has the desired effect
because these contexts require an aliased view. Continuing the preceding example, this rule
disallows

Sneaky_1 : Small_Ptr := Big_Ptr.all'Access; —— ERROR: illegal 'Access prefix

function Make (Str : aliased in out String) return Small_Ptr
is (Str'Access); -- OK

Sneaky_2 : Small_Ptr := Make (Str => Big_Ptr.all); -- ERROR: bad parameter

for the same reason given above in the case of an explicit type conversion.

3.18 Aspect Extensions_Visible

This aspect is equivalent to [pragma Extensions_Visible], page 35.

Chapter 3: Implementation Defined Aspects 114

3.19 Aspect Favor_Top_Level

This boolean aspect is equivalent to [pragma Favor_Top_Level], page 37.

3.20 Aspect Ghost
This aspect is equivalent to [pragma Ghost|, page 38.

3.21 Aspect Ghost_Predicate

This aspect introduces a subtype predicate that can reference ghost entities. The subtype
cannot appear as a subtype_mark in a membership test.

For the detailed semantics of this aspect, see the entry for subtype predicates in the SPARK
Reference Manual, section 3.2.4.

3.22 Aspect Global
This aspect is equivalent to [pragma Global], page 38.

3.23 Aspect Initial_Condition

This aspect is equivalent to [pragma Initial_Condition], page 44.

3.24 Aspect Initializes

This aspect is equivalent to [pragma Initializes|, page 46.

3.25 Aspect Inline_Always

This boolean aspect is equivalent to [pragma Inline_Always|, page 46.

3.26 Aspect Invariant

This aspect is equivalent to [pragma Invariant], page 49. It is a synonym for the lan-
guage defined aspect Type_Invariant except that it is separately controllable using pragma
Assertion_Policy.

3.27 Aspect Invariant’Class

This aspect is equivalent to [pragma Type_Invariant_Class|, page 97. It is a synonym for
the language defined aspect Type_Invariant'Class except that it is separately controllable
using pragma Assertion_Policy.

3.28 Aspect Iterable

This aspect provides a light-weight mechanism for loops and quantified expressions over
container types, without the overhead imposed by the tampering checks of standard Ada
2012 iterators. The value of the aspect is an aggregate with six named components, of which
the last three are optional: First, Next, Has_Element, Element, Last, and Previous.
When only the first three components are specified, only the for .. in form of iteration

Chapter 3: Implementation Defined Aspects 115

over cursors is available. When Element is specified, both this form and the for .. of
form of iteration over elements are available. If the last two components are specified,
reverse iterations over the container can be specified (analogous to what can be done over
predefined containers that support the Reverse_Iterator interface). The following is a
typical example of use:

type List is private with

Iterable => (First => First_Cursor,
Next => Advance,
Has_Element => Cursor_Has_Element
[,Element => Get_Element]
[,Last => Last_Cursor]
[,Previous => Retreat]);

* The values of First and Last are primitive operations of the container type that return
a Cursor, which must be a type declared in the container package or visible from it.
For example:

function First_Cursor (Cont : Container) return Cursor;
function Last_Cursor (Cont : Container) return Cursor;

* The values of Next and Previous are primitive operations of the container type that
take both a container and a cursor and yield a cursor. For example:

function Advance (Cont : Container; Position : Cursor) return Cursor;
function Retreat (Cont : Container; Position : Cursor) return Cursor;

* The value of Has_Element is a primitive operation of the container type that takes
both a container and a cursor and yields a boolean. For example:

function Cursor_Has_Element (Cont : Container; Position : Cursor) return Boolean;

* The value of Element is a primitive operation of the container type that takes both a
container and a cursor and yields an Element_Type, which must be a type declared in
the container package or visible from it. For example:

function Get_Element (Cont : Container; Position : Cursor) return Element_Type;

This aspect is used in the GNAT-defined formal container packages.

3.29 Aspect Linker_Section

This aspect is equivalent to [pragma Linker_Section|, page 52.

3.30 Aspect Local_Restrictions

This aspect may be specified for a subprogram (and for other declarations as described
below). It is used to specify that a particular subprogram does not violate one or more
local restrictions, nor can it call a subprogram that is not subject to the same requirement.
Positional aggregate syntax (with parentheses, not square brackets) may be used to specify
more than one local restriction, as in

procedure Do_Something
with Local_Restrictions => (Some_Restriction, Another_Restriction);

Parentheses are currently required even in the case of specifying a single local restriction
(this requirement may be relaxed in the future). Supported local restrictions currently

Chapter 3: Implementation Defined Aspects 116

include (only) No_Heap_Allocations and No_Secondary_Stack. No_Secondary_Stack corre-
sponds to the GNAT-defined (global) restriction of the same name. No_Heap_Allocations
corresponds to the conjunction of the Ada-defined restrictions No_Allocators and
No_Implicit_Heap_Allocations.

Additional requirements are imposed in order to ensure that restriction violations cannot
be achieved via overriding dispatching operations, calling through an access-to-subprogram
value, calling a generic formal subprogram, or calling through a subprogram renaming. For
a dispatching operation, an overrider must be subject to (at least) the same restrictions
as the overridden inherited subprogram; similarly, the actual subprogram corresponding to
a generic formal subprogram in an instantiation must be subject to (at least) the same
restrictions as the formal subprogram. A call through an access-to-subprogram value is
conservatively assumed to violate all local restrictions; tasking-related constructs (notably
entry calls) are treated similarly. A renaming-as-body is treated like a subprogram body
containing a call to the renamed subprogram.

The Local_Restrictions aspect can be specified for a package specification, in which case
the aspect specification also applies to all eligible entities declared with the package. This
includes types. Default initialization of an object of a given type is treated like a call to
an implicitly-declared initialization subprogram. Such a “call” is subject to the same local
restriction checks as any other call. If a type is subject to a local restriction, then any
violations of that restriction within the default initialization expressions (if any) of the type
are rejected. This may include “calls” to the default initialization subprograms of other

types.
Local_Restrictions aspect specifications are additive (for example, in the case of a declara-
tion that occurs within nested packages that each have a Local_Restrictions specification).

3.31 Aspect Lock_Free

This boolean aspect is equivalent to [pragma Lock_Free], page 53.

3.32 Aspect Max_Queue_Length
This aspect is equivalent to [pragma Max_Queue_Length], page 57.

3.33 Aspect No_Caching
This boolean aspect is equivalent to [pragma No_Caching], page 57.

3.34 Aspect No_Elaboration_Code_All

This aspect is equivalent to [pragma No_Elaboration_Code_All], page 58, for a program
unit.

3.35 Aspect No_Inline

This boolean aspect is equivalent to [pragma No_Inline], page 58.

3.36 Aspect No_Raise

This boolean aspect is equivalent to [pragma No_Raise|, page 58.

Chapter 3: Implementation Defined Aspects 117

3.37 Aspect No_Tagged_Streams

This aspect is equivalent to [pragma No_Tagged_Streams], page 59, with an argument spec-
ifying a root tagged type (thus this aspect can only be applied to such a type).

3.38 Aspect No_Task_Parts

Applies to a type. If True, requires that the type and any descendants do not have
any task parts. The rules for this aspect are the same as for the language-defined
No_Controlled_Parts aspect (see RM-H.4.1), replacing “controlled” with “task”.

If No_Task_Parts is True for a type T, then the compiler can optimize away certain tasking-
related code that would otherwise be needed for T’Class, because descendants of T might
contain tasks.

3.39 Aspect Object_Size
This aspect is equivalent to [attribute Object_Size], page 129.

3.40 Aspect Obsolescent

This aspect is equivalent to [pragma Obsolescent|, page 61. Note that the evaluation of this
aspect happens at the point of occurrence, it is not delayed until the freeze point.

3.41 Aspect Part_Of
This aspect is equivalent to [pragma Part_Of], page 66.

3.42 Aspect Persistent_BSS
This boolean aspect is equivalent to [pragma Persistent_BSS], page 66.

3.43 Aspect Potentially_Invalid

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
13.9.1.

3.44 Aspect Predicate

This aspect is equivalent to [pragma Predicate], page 71. It is thus similar to the language
defined aspects Dynamic_Predicate and Static_Predicate except that whether the re-
sulting predicate is static or dynamic is controlled by the form of the expression. It is also
separately controllable using pragma Assertion_Policy.

3.45 Aspect Program_Exit

This boolean aspect is equivalent to [pragma Program_Exit], page 76.

3.46 Aspect Pure_Function

This boolean aspect is equivalent to [pragma Pure_Function], page 77.

Chapter 3: Implementation Defined Aspects 118

3.47 Aspect Refined_Depends
This aspect is equivalent to [pragma Refined_Depends], page 78.

3.48 Aspect Refined_Global
This aspect is equivalent to [pragma Refined_Global], page 79.

3.49 Aspect Refined_Post
This aspect is equivalent to [pragma Refined_Post|, page 79.

3.50 Aspect Refined_State
This aspect is equivalent to [pragma Refined_State], page 79.

3.51 Aspect Relaxed_Initialization

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.10.

3.52 Aspect Remote_Access_Type
This aspect is equivalent to [pragma Remote_Access_Type|, page 80.

3.53 Aspect Scalar_Storage_Order
This aspect is equivalent to a [attribute Scalar_Storage_Order|, page 132.

3.54 Aspect Secondary_Stack_Size
This aspect is equivalent to [pragma Secondary_Stack_Size], page 82.

3.55 Aspect Shared

This boolean aspect is equivalent to [pragma Shared], page 83, and is thus a synonym for
aspect Atomic.

3.56 Aspect Side_Effects
This aspect is equivalent to [pragma Side_Effects], page 84.

3.57 Aspect Simple_Storage_Pool
This aspect is equivalent to [attribute Simple_Storage_Pool], page 135.

3.58 Aspect Simple_Storage_Pool_Type
This boolean aspect is equivalent to [pragma Simple_Storage_Pool_Type], page 84.

Chapter 3: Implementation Defined Aspects 119

3.59 Aspect SPARK_Mode

This aspect is equivalent to [pragma SPARK_Mode|, page 87, and may be specified for
either or both of the specification and body of a subprogram or package.

3.60 Aspect Subprogram_Variant

For the syntax and semantics of this aspect, see the SPARK 2014 Reference Manual, section
6.1.8.

3.61 Aspect Suppress_Debug_Info
This boolean aspect is equivalent to [pragma Suppress_Debug_Info|, page 93.

3.62 Aspect Suppress_Initialization

This boolean aspect is equivalent to [pragma Suppress_Initialization|, page 93.

3.63 Aspect Test_Case
This aspect is equivalent to [pragma Test_Case|, page 95.

3.64 Aspect Thread_Local_Storage
This boolean aspect is equivalent to [pragma Thread_Local_Storage|, page 96.

3.65 Aspect Universal_Aliasing

This boolean aspect is equivalent to [pragma Universal_Aliasing], page 99.

3.66 Aspect Unmodified
This boolean aspect is equivalent to [pragma Unmodified], page 99.

3.67 Aspect Unreferenced

This boolean aspect is equivalent to [pragma Unreferenced], page 100.

When using the -gnat2022 switch, this aspect is also supported on formal parameters,
which is in particular the only form possible for expression functions.

3.68 Aspect Unreferenced_Objects

This boolean aspect is equivalent to [pragma Unreferenced_Objects], page 100.

3.69 Aspect User_Aspect

This aspect takes an argument that is the name of an aspect defined by a
User_Aspect_Definition configuration pragma. A User_Aspect aspect specification is
semantically equivalent to replicating the set of aspect specifications associated with the
named pragma-defined aspect.

Chapter 3: Implementation Defined Aspects 120

3.70 Aspect Value_Size
This aspect is equivalent to [attribute Value_Size], page 143.

3.71 Aspect Volatile_Full_Access
This boolean aspect is equivalent to [pragma Volatile_Full_Access], page 103.

3.72 Aspect Volatile_Function

This boolean aspect is equivalent to [pragma Volatile_Function], page 104.

3.73 Aspect Warnings

This aspect is equivalent to the two argument form of [pragma Warnings], page 105, where
the first argument is ON or OFF and the second argument is the entity.

121

4 Implementation Defined Attributes

Ada defines (throughout the Ada reference manual, summarized in Annex K), a set of
attributes that provide useful additional functionality in all areas of the language. These
language defined attributes are implemented in GNAT and work as described in the Ada
Reference Manual.

In addition, Ada allows implementations to define additional attributes whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT reference manual describes these additional attributes.
It also describes additional implementation-dependent features of standard language-defined
attributes.

Note that any program using these attributes may not be portable to other compilers
(although GNAT implements this set of attributes on all platforms). Therefore if portability
to other compilers is an important consideration, you should minimize the use of these
attributes.

4.1 Attribute Abort_Signal

Standard'Abort_Signal (Standard is the only allowed prefix) provides the entity for the
special exception used to signal task abort or asynchronous transfer of control. Normally this
attribute should only be used in the tasking runtime (it is highly peculiar, and completely
outside the normal semantics of Ada, for a user program to intercept the abort exception).

4.2 Attribute Address_Size

Standard'Address_Size (Standard is the only allowed prefix) is a static constant giving
the number of bits in an Address. It is the same value as System.Address’Size, but has
the advantage of being static, while a direct reference to System.Address’Size is nonstatic
because Address is a private type.

4.3 Attribute Asm_Input

The Asm_Input attribute denotes a function that takes two parameters. The first is a string,
the second is an expression of the type designated by the prefix. The first (string) argument
is required to be a static expression, and is the constraint for the parameter, (e.g., what
kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constant are the same as those used in the RTL, and
are dependent on the configuration file used to built the GCC back end. [Machine Code
Insertions|, page 287,

4.4 Attribute Asm_Output

The Asm_Output attribute denotes a function that takes two parameters. The first is a
string, the second is the name of a variable of the type designated by the attribute prefix.
The first (string) argument is required to be a static expression and designates the constraint
for the parameter (e.g., what kind of register is required). The second argument is the
variable to be updated with the result. The possible values for constraint are the same as

Chapter 4: Implementation Defined Attributes 122

those used in the RTL, and are dependent on the configuration file used to build the GCC
back end. If there are no output operands, then this argument may either be omitted, or
explicitly given as No_Output_Operands. [Machine Code Insertions|, page 287,

4.5 Attribute Atomic_Always_Lock_Free

The prefix of the Atomic_Always_Lock_Free attribute is a type. The result indicates
whether atomic operations are supported by the target for the given type.

4.6 Attribute Bit

obj'Bit, where obj is any object, yields the bit offset within the storage unit (byte) that
contains the first bit of storage allocated for the object. The value of this attribute is of the
type ‘universal_integer’ and is always a nonnegative number smaller than System.Storage_
Unit.

For an object that is a variable or a constant allocated in a register, the value is zero. (The
use of this attribute does not force the allocation of a variable to memory).

For an object that is a formal parameter, this attribute applies to either the matching actual
parameter or to a copy of the matching actual parameter.

For an access object the value is zero. Note that obj.all'Bit is subject to an Access_
Check for the designated object. Similarly for a record component X.C'Bit is subject to a
discriminant check and X(I) .Bit and X(I1..I2)'Bit are subject to index checks.

This attribute is designed to be compatible with the DEC Ada 83 definition and implemen-
tation of the Bit attribute.

4.7 Attribute Bit_Position

R.C'Bit_Position, where R is a record object and C is one of the fields of the record type,
yields the bit offset within the record contains the first bit of storage allocated for the object.
The value of this attribute is of the type ‘universal_integer’. The value depends only on the
field C and is independent of the alignment of the containing record R.

4.8 Attribute Code_Address

The 'Address attribute may be applied to subprograms in Ada 95 and Ada 2005, but
the intended effect seems to be to provide an address value which can be used to call the
subprogram by means of an address clause as in the following example:

procedure K is ...

procedure L;
for L'Address use K'Address;
pragma Import (Ada, L);

A call to L is then expected to result in a call to K. In Ada 83, where there were no access-
to-subprogram values, this was a common work-around for getting the effect of an indirect
call. GNAT implements the above use of Address and the technique illustrated by the
example code works correctly.

Chapter 4: Implementation Defined Attributes 123

However, for some purposes, it is useful to have the address of the start of the generated
code for the subprogram. On some architectures, this is not necessarily the same as the
Address value described above. For example, the Address value may reference a subpro-
gram descriptor rather than the subprogram itself.

The 'Code_Address attribute, which can only be applied to subprogram entities, always
returns the address of the start of the generated code of the specified subprogram, which
may or may not be the same value as is returned by the corresponding 'Address attribute.

4.9 Attribute Compiler_Version

Standard'Compiler_Version (Standard is the only allowed prefix) yields a static string
identifying the version of the compiler being used to compile the unit containing the at-
tribute reference.

4.10 Attribute Constrained

In addition to the usage of this attribute in the Ada RM, GNAT also permits the use of
the 'Constrained attribute in a generic template for any type, including types without
discriminants. The value of this attribute in the generic instance when applied to a scalar
type or a record type without discriminants is always True. This usage is compatible with
older Ada compilers, including notably DEC Ada.

4.11 Attribute Default_Bit_Order

Standard'Default_Bit_Order (Standard is the only allowed prefix), provides the value
System.Default_Bit_Order as a Pos value (0 for High_Order_First, 1 for Low_Order_
First). This is used to construct the definition of Default_Bit_Order in package System.

4.12 Attribute Default_Scalar_Storage_Order

Standard'Default_Scalar_Storage_Order (Standard is the only allowed prefix), provides
the current value of the default scalar storage order (as specified using pragma Default_
Scalar_Storage_Order, or equal to Default_Bit_Order if unspecified) as a System.Bit_
Order value. This is a static attribute.

4.13 Attribute Deref

The attribute typ'Deref (expr) where expr is of type System.Address yields the variable
of type typ that is located at the given address. It is similar to (totyp (expr).all), where
totyp is an unchecked conversion from address to a named access-to-typ type, except that
it yields a variable, so it can be used on the left side of an assignment.

4.14 Attribute Descriptor_Size

Nonstatic attribute Descriptor_Size returns the size in bits of the descriptor allocated for
a type. The result is non-zero only for unconstrained array types and the returned value is
of type universal integer. In GNAT, an array descriptor contains bounds information and
is located immediately before the first element of the array.

type Unconstr_Array is array (Short_Short_Integer range <>) of Positive;

Chapter 4: Implementation Defined Attributes 124

Put_Line ("Descriptor size = " & Unconstr_Array'Descriptor_Size'Img) ;

The attribute takes into account any padding due to the alignment of the component type.
In the example above, the descriptor contains two values of type Short_Short_Integer
representing the low and high bound. But, since Positive has an alignment of 4, the size
of the descriptor is 2 * Short_Short_Integer'Size rounded up to the next multiple of 32,
which yields a size of 32 bits, i.e. including 16 bits of padding.

4.15 Attribute Elaborated

The prefix of the 'Elaborated attribute must be a unit name. The value is a Boolean which
indicates whether or not the given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic elaboration checking, but it
can also be used in user programs. The value will always be True once elaboration of all
units has been completed. An exception is for units which need no elaboration, the value
is always False for such units.

4.16 Attribute Elab_Body

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the body of the referenced unit. This
is used in the main generated elaboration procedure by the binder and is not normally used
in any other context. However, there may be specialized situations in which it is useful
to be able to call this elaboration procedure from Ada code, e.g., if it is necessary to do
selective re-elaboration to fix some error.

4.17 Attribute Elab_Spec

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the spec of the referenced unit. This is
used in the main generated elaboration procedure by the binder and is not normally used in
any other context. However, there may be specialized situations in which it is useful to be
able to call this elaboration procedure from Ada code, e.g., if it is necessary to do selective
re-elaboration to fix some error.

4.18 Attribute Elab_Subp_Body

This attribute can only be applied to a library level subprogram name and is only allowed
in CodePeer mode. It returns the entity for the corresponding elaboration procedure for
elaborating the body of the referenced subprogram unit. This is used in the main generated
elaboration procedure by the binder in CodePeer mode only and is unrecognized otherwise.

4.19 Attribute Emax

The Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

Chapter 4: Implementation Defined Attributes 125

4.20 Attribute Enabled

The Enabled attribute allows an application program to check at compile time to see if
the designated check is currently enabled. The prefix is a simple identifier, referencing any
predefined check name (other than A11_Checks) or a check name introduced by pragma
Check_Name. If no argument is given for the attribute, the check is for the general state
of the check, if an argument is given, then it is an entity name, and the check indicates
whether an Suppress or Unsuppress has been given naming the entity (if not, then the
argument is ignored).

Note that instantiations inherit the check status at the point of the instantiation, so a useful
idiom is to have a library package that introduces a check name with pragma Check_Name,
and then contains generic packages or subprograms which use the Enabled attribute to see
if the check is enabled. A user of this package can then issue a pragma Suppress or pragma
Unsuppress before instantiating the package or subprogram, controlling whether the check
will be present.

4.21 Attribute Enum_Rep

Note that this attribute is now standard in Ada 202x and is available as an implementation
defined attribute for earlier Ada versions.

For every enumeration subtype S, S'Enum_Rep denotes a function with the following spec:
function S'Enum_Rep (Arg : S'Base) return <Universal_Integer>;

It is also allowable to apply Enum_Rep directly to an object of an enumeration type or to
a non-overloaded enumeration literal. In this case S'Enum_Rep is equivalent to typ'Enum_
Rep(S) where typ is the type of the enumeration literal or object.

The function returns the representation value for the given enumeration value. This will be
equal to value of the Pos attribute in the absence of an enumeration representation clause.
This is a static attribute (i.e., the result is static if the argument is static).

S'Enum_Rep can also be used with integer types and objects, in which case it simply returns
the integer value. The reason for this is to allow it to be used for (<>) discrete formal
arguments in a generic unit that can be instantiated with either enumeration types or
integer types. Note that if Enum_Rep is used on a modular type whose upper bound exceeds
the upper bound of the largest signed integer type, and the argument is a variable, so that
the universal integer calculation is done at run time, then the call to Enum_Rep may raise
Constraint_Error.

4.22 Attribute Enum_Val

Note that this attribute is now standard in Ada 202x and is available as an implementation
defined attribute for earlier Ada versions.

For every enumeration subtype S, S'Enum_Val denotes a function with the following spec:
function S'Enum_Val (Arg : <Universal_Integer>) return S'Base;

The function returns the enumeration value whose representation matches the argument, or
raises Constraint_Error if no enumeration literal of the type has the matching value. This
will be equal to value of the Val attribute in the absence of an enumeration representation
clause. This is a static attribute (i.e., the result is static if the argument is static).

Chapter 4: Implementation Defined Attributes 126

4.23 Attribute Epsilon

The Epsilon attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.24 Attribute Fast_Math

Standard'Fast_Math (Standard is the only allowed prefix) yields a static Boolean value
that is True if pragma Fast_Math is active, and False otherwise.

4.25 Attribute Finalization_Size

The prefix of attribute Finalization_Size must be an object or a non-class-wide type.
This attribute returns the size of any hidden data reserved by the compiler to handle
finalization-related actions. The type of the attribute is ‘universal_integer’.

Finalization_Size yields a value of zero for a type with no controlled parts, an object
whose type has no controlled parts, or an object of a class-wide type whose tag denotes a
type with no controlled parts.

Note that only heap-allocated objects contain finalization data.

4.26 Attribute Fixed_Value

For every fixed-point type S, S'Fixed_Value denotes a function with the following specifi-
cation:

function S'Fixed_Value (Arg : <Universal_Integer>) return S;
The value returned is the fixed-point value V such that:
V = Arg * S'Small

The effect is thus similar to first converting the argument to the integer type used to
represent S, and then doing an unchecked conversion to the fixed-point type. The difference
is that there are full range checks, to ensure that the result is in range. This attribute is
primarily intended for use in implementation of the input-output functions for fixed-point
values.

4.27 Attribute From_Any

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.28 Attribute Has_Access_Values

The prefix of the Has_Access_Values attribute is a type. The result is a Boolean value
which is True if the is an access type, or is a composite type with a component (at any
nesting depth) that is an access type, and is False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has access values.

Chapter 4: Implementation Defined Attributes 127

4.29 Attribute Has_Discriminants

The prefix of the Has_Discriminants attribute is a type. The result is a Boolean value
which is True if the type has discriminants, and False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has discriminants.

4.30 Attribute Has_Tagged_Values

The prefix of the Has_Tagged_Values attribute is a type. The result is a Boolean value
which is True if the type is a composite type (array or record) that is either a tagged type
or has a subcomponent that is tagged, and is False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has access values.

4.31 Attribute Img

The Img attribute differs from Image in that, while both can be applied directly to an
object, Img cannot be applied to types.

Example usage of the attribute:
Put_Line ("X = " & X'Img);
which has the same meaning as the more verbose:
Put_Line ("X = " & T'Image (X));
where T is the (sub)type of the object X.

Note that technically, in analogy to Image, X'Img returns a parameterless function that
returns the appropriate string when called. This means that X'Img can be renamed as a
function-returning-string, or used in an instantiation as a function parameter.

4.32 Attribute Initialized

For the syntax and semantics of this attribute, see the SPARK 2014 Reference Manual,
section 6.10.

4.33 Attribute Integer_Value

For every integer type S, S'Integer_Value denotes a function with the following spec:
function S'Integer_Value (Arg : <Universal_Fixed>) return S;

The value returned is the integer value V, such that:
Arg = V * T'Small

where T is the type of Arg. The effect is thus similar to first doing an unchecked conversion
from the fixed-point type to its corresponding implementation type, and then converting the
result to the target integer type. The difference is that there are full range checks, to ensure
that the result is in range. This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

Chapter 4: Implementation Defined Attributes 128

4.34 Attribute Invalid_Value

For every scalar type S, S’Invalid_Value returns an undefined value of the type. If possi-
ble this value is an invalid representation for the type. The value returned is identical to
the value used to initialize an otherwise uninitialized value of the type if pragma Initial-
ize_Scalars is used, including the ability to modify the value with the binder -Sxx flag and
relevant environment variables at run time.

4.35 Attribute Large

The Large attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.36 Attribute Library_Level

P'Library_Level, where P is an entity name, returns a Boolean value which is True if
the entity is declared at the library level, and False otherwise. Note that within a generic
instantiation, the name of the generic unit denotes the instance, which means that this
attribute can be used to test if a generic is instantiated at the library level, as shown in this
example:

generic

package Gen is
pragma Compile_Time_Error
(not Gen'Library_Level,
"Gen can only be instantiated at library level");

end Gen;

4.37 Attribute Loop_Entry

Syntax:
X'Loop_Entry [(loop_name)]

The Loop_Entry attribute is used to refer to the value that an expression had upon entry
to a given loop in much the same way that the 01d attribute in a subprogram postcondition
can be used to refer to the value an expression had upon entry to the subprogram. The
relevant loop is either identified by the given loop name, or it is the innermost enclosing
loop when no loop name is given.

A Loop_Entry attribute can only occur within an Assert, Assert_And_Cut, Assume, Loop_
Variant or Loop_Invariant pragma. In addition, such a pragma must be one of the items
in the sequence of statements of a loop body, or nested inside block statements that appear
in the sequence of statements of a loop body. A common use of Loop_Entry is to compare
the current value of objects with their initial value at loop entry, in a Loop_Invariant
pragma.

The effect of using X'Loop_Entry is the same as declaring a constant initialized with the
initial value of X at loop entry. This copy is not performed if the loop is not entered, or if
the corresponding pragmas are ignored or disabled.

Chapter 4: Implementation Defined Attributes 129

4.38 Attribute Machine_Size

This attribute is identical to the Object_Size attribute. It is provided for compatibility
with the DEC Ada 83 attribute of this name.

4.39 Attribute Mantissa

The Mantissa attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.40 Attribute Maximum_Alignment

Standard'Maximum_Alignment (Standard is the only allowed prefix) provides the maximum
useful alignment value for the target. This is a static value that can be used to specify the
alignment for an object, guaranteeing that it is properly aligned in all cases.

4.41 Attribute Max_Integer_Size

Standard'Max_Integer_Size (Standard is the only allowed prefix) provides the size of the
largest supported integer type for the target. The result is a static constant.

4.42 Attribute Mechanism_Code

func'Mechanism_Code yields an integer code for the mechanism used for the result of func-
tion func, and subprog'Mechanism_Code (n) yields the mechanism used for formal param-
eter number ‘n’ (a static integer value, with 1 meaning the first parameter) of subprogram
subprog. The code returned is:
617

by copy (value)
(27

by reference

4.43 Attribute Null_Parameter

A reference T'Null_Parameter denotes an imaginary object of type or subtype T allocated
at machine address zero. The attribute is allowed only as the default expression of a formal
parameter, or as an actual expression of a subprogram call. In either case, the subprogram
must be imported.

The identity of the object is represented by the address zero in the argument list, indepen-
dent of the passing mechanism (explicit or default).

This capability is needed to specify that a zero address should be passed for a record or
other composite object passed by reference. There is no way of indicating this without the
Null_Parameter attribute.

4.44 Attribute Object_Size

The size of an object is not necessarily the same as the size of the type of an object. This is
because by default object sizes are increased to be a multiple of the alignment of the object.

Chapter 4: Implementation Defined Attributes 130

For example, Natural'Size is 31, but by default objects of type Natural will have a size
of 32 bits. Similarly, a record containing an integer and a character:

type Rec is record
I : Integer;
C : Character;
end record;
will have a size of 40 (that is Rec'Size will be 40). The alignment will be 4, because of the
integer field, and so the default size of record objects for this type will be 64 (8 bytes).
If the alignment of the above record is specified to be 1, then the object size will be 40 (5
bytes). This is true by default, and also an object size of 40 can be explicitly specified in
this case.
A consequence of this capability is that different object sizes can be given to subtypes that
would otherwise be considered in Ada to be statically matching. But it makes no sense
to consider such subtypes as statically matching. Consequently, GNAT adds a rule to the
static matching rules that requires object sizes to match. Consider this example:

1. procedure BadAVConvert is

2. type R is new Integer;
3. subtype R1 is R range 1 .. 10;
4. subtype R2 is R range 1 .. 10;
5. for R1'Object_Size use 8;
6. for R2'0Object_Size use 16;
7. type R1P is access all R1i;
8. type R2P is access all R2;
9. R1PV : R1P := new R1'(4);
10. R2PV : R2P;
11. begin
12. R2PV := R2P (R1PV);
I
>>> target designated subtype not compatible with
type "R1" defined at line 3
13. end;

In the absence of lines 5 and 6, types R1 and R2 statically match and hence the conversion
on line 12 is legal. But since lines 5 and 6 cause the object sizes to differ, GNAT considers
that types R1 and R2 are not statically matching, and line 12 generates the diagnostic shown
above.

Similar additional checks are performed in other contexts requiring statically matching
subtypes.

4.45 Attribute Old

In addition to the usage of 01d defined in the Ada 2012 RM (usage within Post as-
pect), GNAT also permits the use of this attribute in implementation defined pragmas
Postcondition, Contract_Cases and Test_Case. Also usages of 01d which would be ille-
gal according to the Ada 2012 RM definition are allowed under control of implementation
defined pragma Unevaluated_Use_0f_01d.

Chapter 4: Implementation Defined Attributes 131

4.46 Attribute Passed_By_Reference

typ'Passed_By_Reference for any subtype typ returns a value of type Boolean value that
is True if the type is normally passed by reference and False if the type is normally passed
by copy in calls. For scalar types, the result is always False and is static. For non-scalar
types, the result is nonstatic.

4.47 Attribute Pool_Address

X'Pool_Address for any object X returns the address of X within its storage pool. This is the
same as X'Address, except that for an unconstrained array whose bounds are allocated just
before the first component, X'Pool_Address returns the address of those bounds, whereas
X'Address returns the address of the first component.

Here, we are interpreting ‘storage pool’ broadly to mean wherever the object is
allocated, which could be a user-defined storage pool, the global heap, on the stack, or
in a static memory area. For an object created by new, Ptr.all'Pool_Address is what is
passed to Allocate and returned from Deallocate.

4.48 Attribute Range_Length

typ'Range_Length for any discrete type typ yields the number of values represented by
the subtype (zero for a null range). The result is static for static subtypes. Range_Length
applied to the index subtype of a one dimensional array always gives the same result as
Length applied to the array itself.

4.49 Attribute Restriction_Set

This attribute allows compile time testing of restrictions that are currently in effect. It
is primarily intended for specializing code in the run-time based on restrictions that are
active (e.g. don’t need to save fpt registers if restriction No_Floating_Point is known to be
in effect), but can be used anywhere.

There are two forms:

System'Restriction_Set (partition_boolean_restriction_NAME)
System'Restriction_Set (No_Dependence => library_unit_NAME);

In the case of the first form, the only restriction names allowed are parameterless restric-
tions that are checked for consistency at bind time. For a complete list see the subtype
System.Rident.Partition_Boolean_Restrictions.

The result returned is True if the restriction is known to be in effect, and False if the
restriction is known not to be in effect. An important guarantee is that the value of a
Restriction_Set attribute is known to be consistent throughout all the code of a partition.

This is trivially achieved if the entire partition is compiled with a consistent set of restriction
pragmas. However, the compilation model does not require this. It is possible to compile
one set of units with one set of pragmas, and another set of units with another set of
pragmas. It is even possible to compile a spec with one set of pragmas, and then WITH the
same spec with a different set of pragmas. Inconsistencies in the actual use of the restriction
are checked at bind time.

Chapter 4: Implementation Defined Attributes 132

In order to achieve the guarantee of consistency for the Restriction_Set pragma, we consider
that a use of the pragma that yields False is equivalent to a violation of the restriction.

So for example if you write

if System'Restriction_Set (No_Floating_ Point) then

else

end if;
And the result is False, so that the else branch is executed, you can assume that this
restriction is not set for any unit in the partition. This is checked by considering this use of
the restriction pragma to be a violation of the restriction No_Floating_Point. This means

that no other unit can attempt to set this restriction (if some unit does attempt to set it,
the binder will refuse to bind the partition).

Technical note: The restriction name and the unit name are intepreted entirely syntactically,
as in the corresponding Restrictions pragma, they are not analyzed semantically, so they
do not have a type.

4.50 Attribute Result

function'Result can only be used with in a Postcondition pragma for a function. The
prefix must be the name of the corresponding function. This is used to refer to the result
of the function in the postcondition expression. For a further discussion of the use of this
attribute and examples of its use, see the description of pragma Postcondition.

4.51 Attribute Round

In addition to the usage of this attribute in the Ada RM, GNAT also permits the use of
the 'Round attribute for ordinary fixed point types.

4.52 Attribute Safe_Emax

The Safe_Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.53 Attribute Safe_Large

The Safe_Large attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

4.54 Attribute Safe_Small

The Safe_Small attribute is provided for compatibility with Ada 83. See the Ada 83
reference manual for an exact description of the semantics of this attribute.

4.55 Attribute Scalar_Storage_Order

For every array or record type S, the representation attribute Scalar_Storage_Order de-
notes the order in which storage elements that make up scalar components are ordered

Chapter 4: Implementation Defined Attributes 133

within S. The value given must be a static expression of type System.Bit_Order. The
following is an example of the use of this feature:

-— Component type definitioms

subtype Yr_Type is Natural range O .. 127;
subtype Mo_Type is Natural range 1 .. 12;
subtype Da_Type is Natural range 1 .. 31;

-— Record declaration

type Date is record
Years_Since_1980 : Yr_Type;
Month : Mo_Type;
Day_0f _Month : Da_Type;

end record;

-- Record representation clause

for Date use record

Years_Since_1980 at O range O .. 6;
Month at O range 7 .. 10;
Day_0f_Month at 0 range 11 .. 15;

end record;
—-- Attribute definition clauses

for Date'Bit_Order use System.High Order_First;

for Date'Scalar_Storage_Order use System.High Order_First;

-- If Scalar_Storage_Order is specified, it must be consistent with
-- Bit_Order, so it's best to always define the latter explicitly if
-- the former is used.

Other properties are as for the standard representation attribute Bit_Order defined by Ada
RM 13.5.3(4). The default is System.Default_Bit_Order.

For a record type T, if T'Scalar_Storage_Order is specified explicitly, it shall be equal
to T'Bit_Order. Note: this means that if a Scalar_Storage_Order attribute definition
clause is not confirming, then the type’s Bit_0rder shall be specified explicitly and set to
the same value.

Derived types inherit an explicitly set scalar storage order from their parent types. This
may be overridden for the derived type by giving an explicit scalar storage order for it.
However, for a record extension, the derived type must have the same scalar storage order
as the parent type.

A component of a record type that is itself a record or an array and that does not start and
end on a byte boundary must have have the same scalar storage order as the record type.
A component of a bit-packed array type that is itself a record or an array must have the
same scalar storage order as the array type.

Chapter 4: Implementation Defined Attributes 134

No component of a type that has an explicit Scalar_Storage_0Order attribute definition
may be aliased.

A confirming Scalar_Storage_Order attribute definition clause (i.e. with a value equal to
System.Default_Bit_Order) has no effect.

If the opposite storage order is specified, then whenever the value of a scalar component of
an object of type S is read, the storage elements of the enclosing machine scalar are first
reversed (before retrieving the component value, possibly applying some shift and mask
operatings on the enclosing machine scalar), and the opposite operation is done for writes.

In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar components are relaxed.
Instead, the following rules apply:

* the underlying storage elements are those at positions (position + first_bit /
storage_element_size) .. (position + (last_bit + storage_element_size - 1)
/ storage_element_size)

* the sequence of underlying storage elements shall have a size no greater than the largest
machine scalar

* the enclosing machine scalar is defined as the smallest machine scalar starting at a po-
sition no greater than position + first_bit / storage_element_size and covering
storage elements at least up to position + (last_bit + storage_element_size - 1)
/ storage_element_size

* the position of the component is interpreted relative to that machine scalar.

If no scalar storage order is specified for a type (either directly, or by inheritance in the case
of a derived type), then the default is normally the native ordering of the target, but this
default can be overridden using pragma Default_Scalar_Storage_Order.

If a component of T is itself of a record or array type, the specfied Scalar_Storage_Order
does ‘not’ apply to that nested type: an explicit attribute definition clause must be provided
for the component type as well if desired.

Representation changes that explicitly or implicitly toggle the scalar storage order are not
supported and may result in erroneous execution of the program, except when performed
by means of an instance of Ada.Unchecked_Conversion.

In particular, overlays are not supported and a warning is given for them:
type Rec_LE is record
I : Integer;
end record;

for Rec_LE use record
I at O range O .. 31;
end record;

for Rec_LE'Bit_Order use System.Low_Order_First;
for Rec_LE'Scalar_Storage_Order use System.Low_Order_First;

type Rec_BE is record
I : Integer;
end record;

Chapter 4: Implementation Defined Attributes 135

for Rec_BE use record
I at 0 range O .. 31;
end record;

for Rec_BE'Bit_Order use System.High Order_First;
for Rec_BE'Scalar_Storage_Order use System.High Order_First;

R_LE : Rec_LE;

R_BE : Rec_BE;
for R_BE'Address use R_LE'Address;

warning: overlay changes scalar storage order [enabled by default]

In most cases, such representation changes ought to be replaced by an instantiation of a
function or procedure provided by GNAT.Byte_Swapping.

Note that the scalar storage order only affects the in-memory data representation. It has
no effect on the representation used by stream attributes.

Note that debuggers may be unable to display the correct value of scalar components of a
type for which the opposite storage order is specified.

4.56 Attribute Simple_Storage_Pool

For every nonformal, nonderived access-to-object type Acc, the representation attribute
Simple_Storage_Pool may be specified via an attribute_definition_clause (or by specifying
the equivalent aspect):

My_Pool : My_Simple_Storage_Pool_Type;
type Acc is access My_Data_Type;

for Acc'Simple_Storage_Pool use My_Pool;

The name given in an attribute_definition_clause for the Simple_Storage_Pool
attribute shall denote a variable of a ‘simple storage pool type’ (see pragma
Simple_Storage_Pool_Type).

The use of this attribute is only allowed for a prefix denoting a type for which it has been
specified. The type of the attribute is the type of the variable specified as the simple storage
pool of the access type, and the attribute denotes that variable.

It is illegal to specify both Storage_Pool and Simple_Storage_Pool for the same access
type.

If the Simple_Storage_Pool attribute has been specified for an access type, then applying
the Storage_Pool attribute to the type is flagged with a warning and its evaluation raises
the exception Program_Error.

If the Simple_Storage_Pool attribute has been specified for an access type S, then the
evaluation of the attribute S'Storage_Size returns the result of calling Storage_Size
(S'Simple_Storage_Pool), which is intended to indicate the number of storage elements

Chapter 4: Implementation Defined Attributes 136

reserved for the simple storage pool. If the Storage_Size function has not been defined for
the simple storage pool type, then this attribute returns zero.

If an access type S has a specified simple storage pool of type SSP, then the evaluation of an
allocator for that access type calls the primitive Allocate procedure for type SSP, passing
S'Simple_Storage_Pool as the pool parameter. The detailed semantics of such allocators
is the same as those defined for allocators in section 13.11 of the Ada Reference Manual,
with the term ‘simple storage pool’ substituted for ‘storage pool’.

If an access type S has a specified simple storage pool of type SSP, then a call to an instance
of the Ada.Unchecked_Deallocation for that access type invokes the primitive Deallocate
procedure for type SSP, passing S'Simple_Storage_Pool as the pool parameter. The de-
tailed semantics of such unchecked deallocations is the same as defined in section 13.11.2
of the Ada Reference Manual, except that the term ‘simple storage pool’ is substituted for
‘storage pool’.

4.57 Attribute Small

The Small attribute is defined in Ada 95 (and Ada 2005) only for fixed-point types. GNAT
also allows this attribute to be applied to floating-point types for compatibility with Ada 83.
See the Ada 83 reference manual for an exact description of the semantics of this attribute
when applied to floating-point types.

4.58 Attribute Small_Denominator

typ'Small_Denominator for any fixed-point subtype typ yields the denominator in the
representation of typ'Small as a rational number with coprime factors (i.e. as an irreducible
fraction).

4.59 Attribute Small_Numerator

typ'Small_Numerator for any fixed-point subtype typ yields the numerator in the repre-
sentation of typ'Small as a rational number with coprime factors (i.e. as an irreducible
fraction).

4.60 Attribute Storage_Unit

Standard'Storage_Unit (Standard is the only allowed prefix) provides the same value as
System.Storage_Unit.

4.61 Attribute Stub_Type

The GNAT implementation of remote access-to-classwide types is organized as described
in AARM section E.4 (20.t): a value of an RACW type (designating a remote object) is
represented as a normal access value, pointing to a “stub” object which in turn contains the
necessary information to contact the designated remote object. A call on any dispatching
operation of such a stub object does the remote call, if necessary, using the information in
the stub object to locate the target partition, etc.

For a prefix T that denotes a remote access-to-classwide type, T'Stub_Type denotes the
type of the corresponding stub objects.

Chapter 4: Implementation Defined Attributes 137

By construction, the layout of T'Stub_Type is identical to that of type RACW_Stub_Type
declared in the internal implementation-defined unit System.Partition_Interface. Use
of this attribute will create an implicit dependency on this unit.

4.62 Attribute System_Allocator_Alignment

Standard'System_Allocator_Alignment (Standard is the only allowed prefix) provides
the observable guaranteed to be honored by the system allocator (malloc). This is a static
value that can be used in user storage pools based on malloc either to reject allocation with
alignment too large or to enable a realignment circuitry if the alignment request is larger
than this value.

4.63 Attribute Target_Name

Standard'Target_Name (Standard is the only allowed prefix) provides a static string value
that identifies the target for the current compilation. For GCC implementations, this is
the standard gcc target name without the terminating slash (for example, GNAT 5.0 on
windows yields “i586-pc-mingw32msv”).

4.64 Attribute To_Address

The System'To_Address (System is the only allowed prefix) denotes a function identical
to System.Storage_Elements.To_Address except that it is a static attribute. This means
that if its argument is a static expression, then the result of the attribute is a static ex-
pression. This means that such an expression can be used in contexts (e.g., preelaborable
packages) which require a static expression and where the function call could not be used
(since the function call is always nonstatic, even if its argument is static). The argument
must be in the range -(2**(m-1)) .. 2**m-1, where m is the memory size (typically 32
or 64). Negative values are intepreted in a modular manner (e.g., -1 means the same as
16#FFFF_FFFF# on a 32 bits machine).

4.65 Attribute To_Any

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.66 Attribute Type_Class

typ ' Type_Class for any type or subtype typ yields the value of the type class for the full
type of typ. If typ is a generic formal type, the value is the value for the corresponding
actual subtype. The value of this attribute is of type System.Aux_DEC.Type_Class, which
has the following definition:

type Type_Class is
(Type_Class_Enumeration,
Type_Class_Integer,
Type_Class_Fixed_Point,
Type_Class_Floating_Point,
Type_Class_Array,

Chapter 4: Implementation Defined Attributes 138

Type_Class_Record,
Type_Class_Access,
Type_Class_Task,
Type_Class_Address);

Protected types yield the value Type_Class_Task, which thus applies to all concurrent
types. This attribute is designed to be compatible with the DEC Ada 83 attribute of the
same name.

4.67 Attribute Type_Key

The Type_Key attribute is applicable to a type or subtype and yields a value of type Stan-
dard.String containing encoded information about the type or subtype. This provides im-
proved compatibility with other implementations that support this attribute.

4.68 Attribute TypeCode

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.69 Attribute Unconstrained_Array

The Unconstrained_Array attribute can be used with a prefix that denotes any type or
subtype. It is a static attribute that yields True if the prefix designates an unconstrained
array, and False otherwise. In a generic instance, the result is still static, and yields the
result of applying this test to the generic actual.

4.70 Attribute Universal_Literal_String

The prefix of Universal_Literal_String must be a named number. The static result is
the string consisting of the characters of the number as defined in the original source. This
allows the user program to access the actual text of named numbers without intermediate
conversions and without the need to enclose the strings in quotes (which would preclude
their use as numbers).

For example, the following program prints the first 50 digits of pi:

with Text_I0; use Text_IO;
with Ada.Numerics;
procedure Pi is
begin
Put (Ada.Numerics.Pi'Universal_Literal_String);
end;

4.71 Attribute Unrestricted_Access

The Unrestricted_Access attribute is similar to Access except that all accessibility and
aliased view checks are omitted. This is a user-beware attribute.

For objects, it is similar to Address, for which it is a desirable replacement where the value
desired is an access type. In other words, its effect is similar to first applying the Address
attribute and then doing an unchecked conversion to a desired access type.

Chapter 4: Implementation Defined Attributes 139

For subprograms, P'Unrestricted_Access may be used where P'Access would be illegal,
to construct a value of a less-nested named access type that designates a more-nested sub-
program. This value may be used in indirect calls, so long as the more-nested subprogram
still exists; once the subprogram containing it has returned, such calls are erroneous. For
example:

package body P is

type Less_Nested is access procedure;
Global : Less_Nested;

procedure P1 is
begin

Global.all;
end P1;

procedure P2 is
Local_Var : Integer;

procedure More_Nested is

begin
. Local_Var ...
end More_Nested;
begin
Global := More_Nested'Unrestricted_Access;
P1;
end P2;

end P;

When P1 is called from P2, the call via Global is OK, but if P1 were called after P2 returns,
it would be an erroneous use of a dangling pointer.

For objects, it is possible to use Unrestricted_Access for any type. However, if the result is
of an access-to-unconstrained array subtype, then the resulting pointer has the same scope
as the context of the attribute, and must not be returned to some enclosing scope. For
instance, if a function uses Unrestricted_Access to create an access-to-unconstrained-
array and returns that value to the caller, the result will involve dangling pointers. In
addition, it is only valid to create pointers to unconstrained arrays using this attribute if
the pointer has the normal default ‘fat’ representation where a pointer has two components,
one points to the array and one points to the bounds. If a size clause is used to force ‘thin’
representation for a pointer to unconstrained where there is only space for a single pointer,
then the resulting pointer is not usable.

In the simple case where a direct use of Unrestricted_Access attempts to make a thin pointer
for a non-aliased object, the compiler will reject the use as illegal, as shown in the following
example:

with System; use System;
procedure SliceUA2 is
type A is access all String;

Chapter 4: Implementation Defined Attributes 140

for A'Size use Standard'Address_Size;

procedure P (Arg : A) is

begin
null;
end P;
X : String := "hello world!";
X2 : aliased String := "hello world!";
AV : A := X'Unrestricted_Access; -- ERROR

I
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

begin
P (X'Unrestricted_Access); -- ERROR
I
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

P (X(7 .. 12)'Unrestricted_Access); -- ERROR
I
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

P (X2'Unrestricted_Access); -- 0K
end;

but other cases cannot be detected by the compiler, and are considered to be erroneous.
Consider the following example:

with System; use System;
with System; use System;
procedure SliceUA is

type AF is access all String;

type A is access all String;
for A'Size use Standard'Address_Size;

procedure P (Arg : A) is
begin
if Arg'Length /= 6 then
raise Program_ Error;
end if;
end P;

X : String := "hello world!";

Chapter 4: Implementation Defined Attributes 141

Y : AF := X (7 .. 12)'Unrestricted_Access;

begin
P (A (Y);
end;

A normal unconstrained array value or a constrained array object marked as aliased has
the bounds in memory just before the array, so a thin pointer can retrieve both the data
and the bounds. But in this case, the non-aliased object X does not have the bounds before
the string. If the size clause for type A were not present, then the pointer would be a fat
pointer, where one component is a pointer to the bounds, and all would be well. But with
the size clause present, the conversion from fat pointer to thin pointer in the call loses the
bounds, and so this is erroneous, and the program likely raises a Program_Error exception.

In general, it is advisable to completely avoid mixing the use of thin pointers and the use
of Unrestricted_Access where the designated type is an unconstrained array. The use of
thin pointers should be restricted to cases of porting legacy code that implicitly assumes
the size of pointers, and such code should not in any case be using this attribute.

Another erroneous situation arises if the attribute is applied to a constant. The resulting
pointer can be used to access the constant, but the effect of trying to modify a constant in
this manner is not well-defined. Consider this example:

P : constant Integer := 4;
type R is access all Integer;
RV : R := P'Unrestricted_Access;

RV.all := 3;
Here we attempt to modify the constant P from 4 to 3, but the compiler may or may not
notice this attempt, and subsequent references to P may yield either the value 3 or the value
4 or the assignment may blow up if the compiler decides to put P in read-only memory.
One particular case where Unrestricted_Access can be used in this way is to modify the
value of an in parameter:

procedure K (S : in String) is

type R is access all Character;

RV : R := S (3)'Unrestricted_Access;
begin

RV.all := 'a';
end;

In general this is a risky approach. It may appear to “work” but such uses of Unrestricted_
Access are potentially non-portable, even from one version of GNAT to another, so are best
avoided if possible.

4.72 Attribute Update

The Update attribute creates a copy of an array or record value with one or more modified
components. The syntax is:

PREFIX'Update (RECORD_COMPONENT_ASSOCIATION_LIST)
PREFIX'Update (ARRAY_COMPONENT_ASSOCIATION {, ARRAY_COMPONENT_ASSOCIATION })

Chapter 4: Implementation Defined Attributes 142

PREFIX'Update (MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION
{, MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION })

MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION ::
INDEX_EXPRESSION_LIST_LIST
INDEX_EXPRESSION_LIST

INDEX_EXPRESSION_LIST_LIST => EXPRI
INDEX_EXPRESSION_LIST {| INDEX_EXPI
(EXPRESSION {, EXPRESSION })

where PREFIX is the name of an array or record object, the association list in parentheses
does not contain an others choice and the box symbol <> may not appear in any expression.
The effect is to yield a copy of the array or record value which is unchanged apart from
the components mentioned in the association list, which are changed to the indicated value.
The original value of the array or record value is not affected. For example:

type Arr is Array (1 .. 5) of Integer;

(1,2,3,4,5);
Avari'Update (2 => 10, 3 .. 4 => 20);

yields a value for Avar2 of 1,10,20,20,5 with Avarl begin unmodified. Similarly:

Avarl : Arr :
Avar2 : Arr :

type Rec is A, B, C : Integer;

Rvarl : Rec :
Rvar2 : Rec :

(A=>1, B=>2, C=>3);

Rvarl'Update (B => 20);

yields a value for Rvar2 of (A => 1, B => 20, C => 3), with Rvarl being unmodifed. Note
that the value of the attribute reference is computed completely before it is used. This
means that if you write:

Avarl := Avarl'Update (1 => 10, 2 => Function_Call);

then the value of Avar1l is not modified if Function_Call raises an exception, unlike the
effect of a series of direct assignments to elements of Avarl. In general this requires that
two extra complete copies of the object are required, which should be kept in mind when
considering efficiency.

The Update attribute cannot be applied to prefixes of a limited type, and cannot reference
discriminants in the case of a record type. The accessibility level of an Update attribute
result object is defined as for an aggregate.

In the record case, no component can be mentioned more than once. In the array case, two
overlapping ranges can appear in the association list, in which case the modifications are
processed left to right.

Multi-dimensional arrays can be modified, as shown by this example:
A : array (1 .. 10, 1 .. 10) of Integer;

A := A'Update ((1, 2) => 20, (3, 4) => 30);
which changes element (1,2) to 20 and (3,4) to 30.

4.73 Attribute Valid_Value

The 'Valid_Value attribute is defined for enumeration types other than those in package
Standard or types derived from those types. This attribute is a function that takes a String,

Chapter 4: Implementation Defined Attributes 143

and returns Boolean. T'Valid_Value (S) returns True if and only if T'Value (S) would
not raise Constraint_Error.

4.74 Attribute Valid_Scalars

The 'Valid_Scalars attribute is intended to make it easier to check the validity of scalar
subcomponents of composite objects. The attribute is defined for any prefix P which denotes
an object. Prefix P can be any type except for tagged private or Unchecked_Union types.
The value of the attribute is of type Boolean.

P'Valid_Scalars yields True if and only if the evaluation of C'Valid yields True for every
scalar subcomponent C of P, or if P has no scalar subcomponents. Attribute 'Valid_Scalars
is equivalent to attribute 'Valid for scalar types.

It is not specified in what order the subcomponents are checked, nor whether any more are
checked after any one of them is determined to be invalid. If the prefix P is of a class-wide
type T'Class (where T is the associated specific type), or if the prefix P is of a specific
tagged type T, then only the subcomponents of T are checked; in other words, components
of extensions of T are not checked even if T'Class (P) 'Tag /= T'Tag.

The compiler will issue a warning if it can be determined at compile time that the prefix of
the attribute has no scalar subcomponents.

Note: Valid_Scalars can generate a lot of code, especially in the case of a large variant
record. If the attribute is called in many places in the same program applied to objects
of the same type, it can reduce program size to write a function with a single use of the
attribute, and then call that function from multiple places.

4.75 Attribute VADS_Size

The 'VADS_Size attribute is intended to make it easier to port legacy code which relies
on the semantics of 'Size as implemented by the VADS Ada 83 compiler. GNAT makes
a best effort at duplicating the same semantic interpretation. In particular, 'VADS_Size
applied to a predefined or other primitive type with no Size clause yields the Object_Size
(for example, Natural'Size is 32 rather than 31 on typical machines). In addition 'VADS_
Size applied to an object gives the result that would be obtained by applying the attribute
to the corresponding type.

4.76 Attribute Value_Size

type'Value_Size is the number of bits required to represent a value of the given subtype.
It is the same as type'Size, but, unlike Size, may be set for non-first subtypes.

4.77 Attribute Wchar_T _Size

Standard'Wchar_T_Size (Standard is the only allowed prefix) provides the size in bits
of the C wchar_t type primarily for constructing the definition of this type in package
Interfaces.C. The result is a static constant.

Chapter 4: Implementation Defined Attributes 144

4.78 Attribute Word_Size

Standard'Word_Size (Standard is the only allowed prefix) provides the value
System.Word_Size. The result is a static constant.

145

5 Standard and Implementation Defined
Restrictions

All Ada Reference Manual-defined Restriction identifiers are implemented:
* language-defined restrictions (see 13.12.1)
* tasking restrictions (see D.7)
* high integrity restrictions (see H.4)

GNAT implements additional restriction identifiers. All restrictions, whether language de-
fined or GNAT-specific, are listed in the following.

5.1 Partition-Wide Restrictions

There are two separate lists of restriction identifiers. The first set requires consistency
throughout a partition (in other words, if the restriction identifier is used for any compilation
unit in the partition, then all compilation units in the partition must obey the restriction).

5.1.1 Immediate_Reclamation

[RM H.4] This restriction ensures that, except for storage occupied by objects created by
allocators and not deallocated via unchecked deallocation, any storage reserved at run time
for an object is immediately reclaimed when the object no longer exists.

5.1.2 Max_Asynchronous_Select_Nesting

[RM D.7] Specifies the maximum dynamic nesting level of asynchronous selects. Violations
of this restriction with a value of zero are detected at compile time. Violations of this
restriction with values other than zero cause Storage_Error to be raised.

5.1.3 Max_Entry_Queue_Length

[RM D.7] This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most the specified number of tasks waiting on the entry at any
one time, and so no queue is required. Note that this restriction is checked at run time.
Violation of this restriction results in the raising of Program_Error exception at the point
of the call.

The restriction Max_Entry_Queue_Depth is recognized as a synonym for Max_Entry_Queue_
Length. This is retained for historical compatibility purposes (and a warning will be gen-
erated for its use if warnings on obsolescent features are activated).

5.1.4 Max_Protected_Entries

[RM D.7] Specifies the maximum number of entries per protected type. The bounds of
every entry family of a protected unit shall be static, or shall be defined by a discriminant
of a subtype whose corresponding bound is static.

5.1.5 Max_Select_Alternatives

[RM D.7] Specifies the maximum number of alternatives in a selective accept.

Chapter 5: Standard and Implementation Defined Restrictions 146

5.1.6 Max_Storage_At_Blocking

[RM D.7] Specifies the maximum portion (in storage elements) of a task’s Storage_Size that
can be retained by a blocked task. A violation of this restriction causes Storage_Error to
be raised.

5.1.7 Max_Task_Entries

[RM D.7] Specifies the maximum number of entries per task. The bounds of every entry
family of a task unit shall be static, or shall be defined by a discriminant of a subtype whose
corresponding bound is static.

5.1.8 Max_Tasks

[RM D.7] Specifies the maximum number of task that may be created, not counting the
creation of the environment task. Violations of this restriction with a value of zero are
detected at compile time. Violations of this restriction with values other than zero cause
Storage_Error to be raised.

5.1.9 No_Abort_Statements
[RM D.7] There are no abort_statements, and there are no calls to Task_Identification. Abort_Task.

5.1.10 No_Access_Parameter_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator as the actual parameter to an access parameter.

5.1.11 No_Access_Subprograms

[RM H.4] This restriction ensures at compile time that there are no declarations of access-
to-subprogram types.

5.1.12 No_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator.

5.1.13 No_Anonymous_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator of anonymous access type.

5.1.14 No_Asynchronous_Control

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined package Asynchronous_Task_Control.

5.1.15 No_Calendar

[GNAT] This restriction ensures at compile time that there are no semantic dependences
on package Calendar.

5.1.16 No_Coextensions

[RM H.4] This restriction ensures at compile time that there are no coextensions. See 3.10.2.

Chapter 5: Standard and Implementation Defined Restrictions 147

5.1.17 No_Default_Initialization

[GNAT] This restriction prohibits any instance of default initialization of variables or com-
ponents. The binder implements a consistency check that prevents any unit without the
restriction from with’ing a unit with the restriction (this allows the generation of initial-
ization procedures to be skipped, since you can be sure that no call is ever generated to
an initialization procedure in a unit with the restriction active). If used in conjunction
with Initialize_Scalars or Normalize_Scalars, the effect is to prohibit all cases of variables
declared without a specific initializer (including the case of OUT scalar parameters).

5.1.18 No_Delay

[RM H.4] This restriction ensures at compile time that there are no delay statements and
no semantic dependences on package Calendar.

5.1.19 No_Dependence

[RM 13.12.1] This restriction ensures at compile time that there are no dependences on
a library unit. For GNAT, this includes implicit implementation dependences on units of
the runtime library that are created by the compiler to support specific constructs of the
language. Here are some examples:

* System.Arith_64: 64-bit arithmetics for 32-bit platforms,

* System.Arith_128: 128-bit arithmetics for 64-bit platforms,

* System.Memory: heap memory allocation routines,
System.Memory_Compare: memory comparison routine (aka memcmp for C),
System.Memory_Copy: memory copy routine (aka memcpy for C),

* System.Memory_Move: memoy move routine (aka memmove for C),
* System.Memory_Set: memory set routine (aka memset for C),
* System.Stack_Checking[.0Operations]: stack checking without MMU,

System.GCC: support routines from the GCC library.
5.1.20 No_Direct_Boolean_Operators

[GNAT] This restriction ensures that no logical operators (and/or/xor) are used on operands
of type Boolean (or any type derived from Boolean). This is intended for use in safety critical
programs where the certification protocol requires the use of short-circuit (and then, or else)
forms for all composite boolean operations.

5.1.21 No_Dispatch

[RM H.4] This restriction ensures at compile time that there are no occurrences of T'Class,
for any (tagged) subtype T.

5.1.22 No_Dispatching_Calls

[GNAT] This restriction ensures at compile time that the code generated by the compiler
involves no dispatching calls. The use of this restriction allows the safe use of record ex-
tensions, classwide membership tests and other classwide features not involving implicit
dispatching. This restriction ensures that the code contains no indirect calls through a
dispatching mechanism. Note that this includes internally-generated calls created by the

Chapter 5: Standard and Implementation Defined Restrictions 148

compiler, for example in the implementation of class-wide objects assignments. The mem-
bership test is allowed in the presence of this restriction, because its implementation requires
no dispatching. This restriction is comparable to the official Ada restriction No_Dispatch
except that it is a bit less restrictive in that it allows all classwide constructs that do not
imply dispatching. The following example indicates constructs that violate this restriction.

package Pkg is
type T is tagged record
Data : Natural;
end record;
procedure P (X : T);

type DT is new T with record
More_Data : Natural;
end record;
procedure Q (X : DT);
end Pkg;

with Pkg; use Pkg;
procedure Example is
procedure Test (0 : T'Class) is

N : Natural := 0'Size; -- Error: Dispatching call
C : T'Class := 0; -- Error: implicit Dispatching Call
begin
if 0 in DT'Class then -- OK : Membership test
Q (DT (@) -- 0K : Type conversion plus direct call
else
P (0); -- Error: Dispatching call
end if;
end Test;
Obj : DT;
begin
P (0Obj); -- 0K : Direct call
P (T (0bj)); -- 0K : Type conversion plus direct call
P (T'Class (0bj)); -- Error: Dispatching call
Test (Obj); -- 0K : Type conversion
if Obj in T'Class then -- OK : Membership test
null;
end if;

end Example;

Chapter 5: Standard and Implementation Defined Restrictions 149

5.1.23 No_Dynamic_Attachment

[RM D.7] This restriction ensures that there is no call to any of the operations defined
in package Ada.Interrupts (Is_Reserved, Is_Attached, Current_Handler, Attach_Handler,
Exchange_Handler, Detach_Handler, and Reference).

The restriction No_Dynamic_Interrupts is recognized as a synonym for No_Dynamic_
Attachment. This is retained for historical compatibility purposes (and a warning will be
generated for its use if warnings on obsolescent features are activated).

5.1.24 No_Dynamic_Priorities

[RM D.7] There are no semantic dependencies on the package Dynamic_Priorities.

5.1.25 No_Entry_Calls_In_Elaboration_Code

[GNAT] This restriction ensures at compile time that no task or protected entry calls are
made during elaboration code. As a result of the use of this restriction, the compiler can
assume that no code past an accept statement in a task can be executed at elaboration
time.

5.1.26 No_Enumeration_Maps

[GNAT] This restriction ensures at compile time that no operations requiring enumeration
maps are used (that is Image and Value attributes applied to enumeration types).

5.1.27 No_Exception_Handlers

[GNAT] This restriction ensures at compile time that there are no explicit exception han-
dlers. It also indicates that no exception propagation will be provided. In this mode,
exceptions may be raised but will result in an immediate call to the last chance handler, a
routine that the user must define with the following profile:

procedure Last_Chance_Handler
(Source_Location : System.Address; Line : Integer);
pragma Export (C, Last_Chance_Handler,
"__gnat_last_chance_handler");

The Source_Location parameter is a C null-terminated string representing a message to be
associated with the exception (typically the source location of the raise statement generated
by the compiler). The Line parameter when nonzero represents the line number in the source
program where the raise occurs.

5.1.28 No_Exception_Propagation

[GNAT] This restriction guarantees that exceptions are never propagated to an outer sub-
program scope. The only case in which an exception may be raised is when the handler
is statically in the same subprogram, so that the effect of a raise is essentially like a goto
statement. Any other raise statement (implicit or explicit) will be considered unhandled.
Exception handlers are allowed, but may not contain an exception occurrence identifier (ex-
ception choice). In addition, use of the package GNAT.Current_Exception is not permitted,
and reraise statements (raise with no operand) are not permitted.

Chapter 5: Standard and Implementation Defined Restrictions 150

5.1.29 No_Exception_Registration

[GNAT] This restriction ensures at compile time that no stream operations for types Excep-
tion_Id or Exception_Occurrence are used. This also makes it impossible to pass exceptions
to or from a partition with this restriction in a distributed environment. If this restric-
tion is active, the generated code is simplified by omitting the otherwise-required global
registration of exceptions when they are declared.

5.1.30 No_Exceptions

[RM H.4] This restriction ensures at compile time that there are no raise statements and no
exception handlers and also suppresses the generation of language-defined run-time checks.

5.1.31 No_Finalization

[GNAT] This restriction disables the language features described in chapter 7.6 of the Ada
2005 RM as well as all form of code generation performed by the compiler to support these
features. The following types are no longer considered controlled when this restriction is in
effect:

* Ada.Finalization.Controlled

* Ada.Finalization.Limited_Controlled

* Derivations from Controlled or Limited_Controlled

* (Class-wide types

* Protected types

* Task types

* Array and record types with controlled components

The compiler no longer generates code to initialize, finalize or adjust an object or a nested
component, either declared on the stack or on the heap. The deallocation of a controlled
object no longer finalizes its contents.

5.1.32 No_Fixed_Point

[RM H.4] This restriction ensures at compile time that there are no occurrences of fixed
point types and operations.

5.1.33 No_Floating_Point

[RM H.4| This restriction ensures at compile time that there are no occurrences of floating
point types and operations.

5.1.34 No_Implicit_Conditionals

[GNAT] This restriction ensures that the generated code does not contain any implicit
conditionals, either by modifying the generated code where possible, or by rejecting any
construct that would otherwise generate an implicit conditional. Note that this check does
not include run time constraint checks, which on some targets may generate implicit con-
ditionals as well. To control the latter, constraint checks can be suppressed in the normal
manner. Constructs generating implicit conditionals include comparisons of composite ob-
jects and the Max/Min attributes.

Chapter 5: Standard and Implementation Defined Restrictions 151

5.1.35 No_Implicit_Dynamic_Code

[GNAT] This restriction prevents the compiler from building ‘trampolines’. This is a struc-
ture that is built on the stack and contains dynamic code to be executed at run time.
On some targets, a trampoline is built for the following features: Access, Unrestricted_
Access, or Address of a nested subprogram; nested task bodies; primitive operations of
nested tagged types. Trampolines do not work on machines that prevent execution of stack
data. For example, on windows systems, enabling DEP (data execution protection) will
cause trampolines to raise an exception. Trampolines are also quite slow at run time.

On many targets, trampolines have been largely eliminated. Look at the version of sys-
tem.ads for your target — if it has Always_Compatible_Rep equal to False, then trampo-
lines are largely eliminated. In particular, a trampoline is built for the following features:
Address of a nested subprogram; Access or Unrestricted_Access of a nested subprogram,
but only if pragma Favor_Top_Level applies, or the access type has a foreign-language con-
vention; primitive operations of nested tagged types.

5.1.36 No_Implicit_Heap_Allocations

[RM D.7] No constructs are allowed to cause implicit heap allocation.

5.1.37 No_Implicit_Protected_Object_Allocations

[GNAT] No constructs are allowed to cause implicit heap allocation of a protected object.

5.1.38 No_Implicit_Task_Allocations

[GNAT] No constructs are allowed to cause implicit heap allocation of a task.

5.1.39 No_Initialize_Scalars

[GNAT] This restriction ensures that no unit in the partition is compiled with pragma
Initialize_Scalars. This allows the generation of more efficient code, and in particular elim-
inates dummy null initialization routines that are otherwise generated for some record and
array types.

5.1.40 No_IO

[RM H.4] This restriction ensures at compile time that there are no dependences on any of
the library units Sequential 10, Direct_I1O, Text_10, Wide_Text_10, Wide_Wide_Text_I10,
or Stream_IO.

5.1.41 No_Local_Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator in subprograms, generic subprograms, tasks, and entry bodies.

5.1.42 No_Local_Protected_Objects

[RM D.7] This restriction ensures at compile time that protected objects are only declared
at the library level.

5.1.43 No_Local_Tagged_Types

[GNAT] This restriction ensures at compile time that tagged types are only declared at the
library level.

Chapter 5: Standard and Implementation Defined Restrictions 152

5.1.44 No_Local_Timing_Events

[RM D.7] All objects of type Ada.Real_Time.Timing_Events.Timing_Event are declared at
the library level.

5.1.45 No_Long_Long_Integers

[GNAT] This partition-wide restriction forbids any explicit reference to type Stan-
dard.Long_Long_Integer, and also forbids declaring range types whose implicit base type
is Long_Long_Integer, and modular types whose size exceeds Long_Integer’Size.

5.1.46 No_Multiple_Elaboration

[GNAT] When this restriction is active and the static elaboration model is used, and -
fpreserve-control-flow is not used, the compiler is allowed to suppress the elaboration counter
normally associated with the unit, even if the unit has elaboration code. This counter is
typically used to check for access before elaboration and to control multiple elaboration
attempts. If the restriction is used, then the situations in which multiple elaboration is
possible, including non-Ada main programs and Stand Alone libraries, are not permitted
and will be diagnosed by the binder.

5.1.47 No_Nested_Finalization
[RM D.7] All objects requiring finalization are declared at the library level.

5.1.48 No_Protected_Type_Allocators

[RM D.7] This restriction ensures at compile time that there are no allocator expressions
that attempt to allocate protected objects.

5.1.49 No_Protected_Types

[RM H.4] This restriction ensures at compile time that there are no declarations of protected
types or protected objects.

5.1.50 No_Recursion

[RM H.4] A program execution is erroneous if a subprogram is invoked as part of its exe-
cution.

5.1.51 No_Reentrancy

[RM H.4] A program execution is erroneous if a subprogram is executed by two tasks at the
same time.

5.1.52 No_Relative_Delay

[RM D.7] This restriction ensures at compile time that there are no delay relative statements
and prevents expressions such as delay 1.23; from appearing in source code.

5.1.53 No_Requeue_Statements

[RM D.7] This restriction ensures at compile time that no requeue statements are permitted
and prevents keyword requeue from being used in source code.

Chapter 5: Standard and Implementation Defined Restrictions 153

The restriction No_Requeue is recognized as a synonym for No_Requeue_Statements. This
is retained for historical compatibility purposes (and a warning will be generated for its use
if warnings on oNobsolescent features are activated).

5.1.54 No_Secondary_Stack

[GNAT] This restriction ensures at compile time that the generated code does not contain
any reference to the secondary stack. The secondary stack is used to implement func-
tions returning unconstrained objects (arrays or records) on some targets. Suppresses the
allocation of secondary stacks for tasks (excluding the environment task) at run time.

5.1.55 No_Select_Statements

[RM D.7] This restriction ensures at compile time no select statements of any kind are
permitted, that is the keyword select may not appear.

5.1.56 No_Specific_Termination_Handlers

[RM D.7] There are no calls to Ada.Task_Termination.Set_Specific_.Handler or to
Ada.Task_Termination.Specific_Handler.

5.1.57 No_Specification_of_Aspect

[RM 13.12.1] This restriction checks at compile time that no aspect specification, attribute
definition clause, or pragma is given for a given aspect.

5.1.58 No_Standard_Allocators_After_Elaboration

[RM D.7] Specifies that an allocator using a standard storage pool should never be evalu-
ated at run time after the elaboration of the library items of the partition has completed.
Otherwise, Storage_Error is raised.

5.1.59 No_Standard_Storage_Pools

[GNAT] This restriction ensures at compile time that no access types use the standard
default storage pool. Any access type declared must have an explicit Storage_Pool attribute
defined specifying a user-defined storage pool.

5.1.60 No_Stream_Optimizations

[GNAT] This restriction affects the performance of stream operations on types String,
Wide_String and Wide_Wide_String. By default, the compiler uses block reads and writes
when manipulating String objects due to their superior performance. When this restriction
is in effect, the compiler performs all IO operations on a per-character basis.

5.1.61 No_Streams

[GNAT] This restriction ensures at compile/bind time that there are no stream objects
created and no use of stream attributes. This restriction does not forbid dependences on
the package Ada.Streams. So it is permissible to with Ada.Streams (or another package
that does so itself) as long as no actual stream objects are created and no stream attributes
are used.

Note that the use of restriction allows optimization of tagged types, since they do not
need to worry about dispatching stream operations. To take maximum advantage of this

Chapter 5: Standard and Implementation Defined Restrictions 154

space-saving optimization, any unit declaring a tagged type should be compiled with the
restriction, though this is not required.

When pragmas Discard_Names and Restrictions (No_Streams) simultaneously apply to
a tagged type, its Expanded_Name and External_Tag are also initialized with empty strings.
In particular, both these pragmas can be applied as configuration pragmas to avoid exposing
entity names at binary level for the entire partition.

5.1.62 No_Tagged_Type_Registration

[GNAT] If this restriction is active, then class-wide streaming attributes are not supported.
In addition, the subprograms in Ada.Tags are not supported. If this restriction is active,
the generated code is simplified by omitting the otherwise-required global registration of
tagged types when they are declared. This restriction may be necessary in order to also
apply the No_Elaboration_Code restriction.

5.1.63 No_Task_Allocators

[RM D.7] There are no allocators for task types or types containing task subcomponents.

5.1.64 No_Task_At_Interrupt_Priority

[GNAT] This restriction ensures at compile time that there is no Interrupt_Priority aspect
or pragma for a task or a task type. As a consequence, the tasks are always created with a
priority below that an interrupt priority.

5.1.65 No_Task_Attributes_Package

[GNAT] This restriction ensures at compile time that there are no implicit or explicit
dependencies on the package Ada.Task_Attributes.

The restriction No_Task_Attributes is recognized as a synonym for No_Task_Attributes_
Package. This is retained for historical compatibility purposes (and a warning will be
generated for its use if warnings on obsolescent features are activated).

5.1.66 No_Task_Hierarchy

[RM D.7] All (non-environment) tasks depend directly on the environment task of the
partition.

5.1.67 No_Task_Termination

[RM D.7] Tasks that terminate are erroneous.

5.1.68 No_Tasking

[GNAT] This restriction prevents the declaration of tasks or task types throughout the
partition. It is similar in effect to the use of Max_Tasks => 0 except that violations are
caught at compile time and cause an error message to be output either by the compiler or
binder.

5.1.69 No_Terminate_Alternatives

[RM D.7] There are no selective accepts with terminate alternatives.

Chapter 5: Standard and Implementation Defined Restrictions 155

5.1.70 No_Unchecked_Access

[RM H.4] This restriction ensures at compile time that there are no occurrences of the
Unchecked_Access attribute.

5.1.71 No_Unchecked_Conversion

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined generic function Unchecked_Conversion.

5.1.72 No_Unchecked_Deallocation

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined generic procedure Unchecked_Deallocation.

5.1.73 No_Use_Of_Attribute

[RM 13.12.1] This is a standard Ada 2012 restriction that is GNAT defined in earlier versions
of Ada.

5.1.74 No_Use_Of_Entity

GNAT] This restriction ensures at compile time that there are no references to the entity
p
given in the form

No_Use_0f _Entity => Name
where Name is the fully qualified entity, for example
No_Use_0f_Entity => Ada.Text_IO0.Put_Line

5.1.75 No_Use_Of_Pragma

[RM 13.12.1] This is a standard Ada 2012 restriction that is GNAT defined in earlier versions
of Ada.

5.1.76 Pure_Barriers

[GNAT] This restriction ensures at compile time that protected entry barriers are restricted
to:

* components of the protected object (excluding selection from dereferences),

* constant declarations,

* named numbers,
enumeration literals,
integer literals,

real literals,

* % X *

character literals,

implicitly defined comparison operators,
uses of the Standard.”not” operator,
short-circuit operator,

* the Count attribute

This restriction is a relaxation of the Simple_Barriers restriction, but still ensures absence
of side effects, exceptions, and recursion during the evaluation of the barriers.

Chapter 5: Standard and Implementation Defined Restrictions 156

5.1.77 Simple_Barriers

[RM D.7] This restriction ensures at compile time that barriers in entry declarations for
protected types are restricted to either static boolean expressions or references to simple
boolean variables defined in the private part of the protected type. No other form of entry
barriers is permitted.

The restriction Boolean_Entry_Barriers is recognized as a synonym for Simple_Barriers.
This is retained for historical compatibility purposes (and a warning will be generated for
its use if warnings on obsolescent features are activated).

5.1.78 Static_Priorities

[GNAT] This restriction ensures at compile time that all priority expressions are static, and
that there are no dependences on the package Ada.Dynamic_Priorities.

5.1.79 Static_Storage_Size

[GNAT] This restriction ensures at compile time that any expression appearing in a Stor-
age_Size pragma or attribute definition clause is static.

5.2 Program Unit Level Restrictions

The second set of restriction identifiers does not require partition-wide consistency. The
restriction may be enforced for a single compilation unit without any effect on any of the
other compilation units in the partition.

5.2.1 No_Elaboration_Code

[GNAT] This restriction ensures at compile time that no elaboration code is generated. Note
that this is not the same condition as is enforced by pragma Preelaborate. There are cases
in which pragma Preelaborate still permits code to be generated (e.g., code to initialize a
large array to all zeroes), and there are cases of units which do not meet the requirements
for pragma Preelaborate, but for which no elaboration code is generated. Generally, it
is the case that preelaborable units will meet the restrictions, with the exception of large
aggregates initialized with an others_clause, and exception declarations (which generate
calls to a run-time registry procedure). This restriction is enforced on a unit by unit basis,
it need not be obeyed consistently throughout a partition.

In the case of aggregates with others, if the aggregate has a dynamic size, there is no
way to eliminate the elaboration code (such dynamic bounds would be incompatible with
Preelaborate in any case). If the bounds are static, then use of this restriction actually
modifies the code choice of the compiler to avoid generating a loop, and instead generate
the aggregate statically if possible, no matter how many times the data for the others clause
must be repeatedly generated.

It is not possible to precisely document the constructs which are compatible with this
restriction, since, unlike most other restrictions, this is not a restriction on the source
code, but a restriction on the generated object code. For example, if the source contains a
declaration:

Val : constant Integer := X;

where X is not a static constant, it may be possible, depending on complex optimization
circuitry, for the compiler to figure out the value of X at compile time, in which case this

Chapter 5: Standard and Implementation Defined Restrictions 157

initialization can be done by the loader, and requires no initialization code. It is not possible
to document the precise conditions under which the optimizer can figure this out.

Note that this the implementation of this restriction requires full code generation. If it is
used in conjunction with “semantics only” checking, then some cases of violations may be
missed.

When this restriction is active, we are not requesting control-flow preservation with -
fpreserve-control-flow, and the static elaboration model is used, the compiler is allowed
to suppress the elaboration counter normally associated with the unit. This counter is
typically used to check for access before elaboration and to control multiple elaboration
attempts.

5.2.2 No_Dynamic_Accessibility_Checks

[GNAT] No dynamic accessibility checks are generated when this restriction is in effect. In-
stead, dangling references are prevented via more conservative compile-time checking. More
specifically, existing compile-time checks are enforced but with more conservative assump-
tions about the accessibility levels of the relevant entities. These conservative assumptions
eliminate the need for dynamic accessibility checks.

These new rules for computing (at compile-time) the accessibility level of an anonymous
access type T are as follows:

* If T is a function result type then, from the caller’s perspective, its level is that of the
innermost master enclosing the function call. From the callee’s perspective, the level
of parameters and local variables of the callee is statically deeper than the level of T.

For any other accessibility level L such that the level of parameters and local variables
of the callee is statically deeper than L, the level of T (from the callee’s perspective) is
also statically deeper than L.

* If T is the type of a formal parameter then, from the caller’s perspective, its level is at
least as deep as that of the type of the corresponding actual parameter (whatever that
actual parameter might be). From the callee’s perspective, the level of parameters and
local variables of the callee is statically deeper than the level of T.

* If T is the type of a discriminant then its level is that of the discriminated type.
* If T is the type of a stand-alone object then its level is the level of the object.
* In all other cases, the level of T is as defined by the existing rules of Ada.

5.2.3 No_Dynamic_Sized_Objects

[GNAT] This restriction disallows certain constructs that might lead to the creation of
dynamic-sized composite objects (or array or discriminated type). An array subtype indi-
cation is illegal if the bounds are not static or references to discriminants of an enclosing
type. A discriminated subtype indication is illegal if the type has discriminant-dependent
array components or a variant part, and the discriminants are not static. In addition, array
and record aggregates are illegal in corresponding cases. Note that this restriction does
not forbid access discriminants. It is often a good idea to combine this restriction with
No_Secondary_Stack.

Chapter 5: Standard and Implementation Defined Restrictions 158

5.2.4 No_Entry_Queue

[GNAT] This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most one task waiting on the entry at any one time, and so no
queue is required. This restriction is not checked at compile time. A program execution is
erroneous if an attempt is made to queue a second task on such an entry.

5.2.5 No_Implementation_Aspect_Specifications

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined aspects are
present. With this restriction, the only aspects that can be used are those defined in the
Ada Reference Manual.

5.2.6 No_Implementation_Attributes

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined attributes are
present. With this restriction, the only attributes that can be used are those defined in the
Ada Reference Manual.

5.2.7 No_Implementation_Identifiers

[RM 13.12.1] This restriction checks at compile time that no implementation-defined iden-
tifiers (marked with pragma Implementation_Defined) occur within language-defined pack-
ages.

5.2.8 No_Implementation_Pragmas

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined pragmas are
present. With this restriction, the only pragmas that can be used are those defined in the
Ada Reference Manual.

5.2.9 No_Implementation_Restrictions

[GNAT] This restriction checks at compile time that no GNAT-defined restriction ident