
GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

NAME
gcobol — GCC COBOL Front-end

SYNOPSIS
gcobol [-Dname[=value]] [-E] [-fdefaultbyte=value] [-fsyntax-only]

[-Icopybook-path] [-fmax-errors=nerror] [-nomain | -main filename |
-main=filename -main=filename:program-id]
[-fcobol-exceptions exception[,exception . . .]] [-copyext ext]
[-ffixed-form | -ffree-form] [-findicator-column]
[-finternal-ebcdic] [-dialect dialect-name] [-include filename]
[-preprocess preprocess-filter] [-fflex-debug] [-fyacc-debug]
filename [. . .]

DESCRIPTION
gcobol compiles COBOL source code to object code, and optionally produces an executable binary or
shared object. As a GCC component, it accepts all options that affect code-generation and linking. Options
specific to COBOL are listed below.

-main filename
gcobol will generate a main() function as an entry point calling the first PROGRAM-ID in
filename.

-main is the default. When none of -nomain, -c, or -shared, is present, an implicit
-main is inserted into the command line ahead of the first source file name.

-main=filename
The .o object module for filename will include a main() entry point calling the first PRO-
GRAM-ID in filename

-main=filename:program-id
The .o object module for filename will include a main() entry point that calls the
program-id entry point

-nomain
No main() entry point will be generated by this compilation. The -nomain option is incom-
patible with -main, and is implied by -shared. It is also implied by -c when there is no
-main present.

See below for examples showing the use of -main and -nomain.

-D name[=expr]
Define a CDF name (for use with >>IF) to have the value of expr.

-E Write the CDF-processed COBOL input to standard output in free-form reference format. Cer-
tain non-COBOL markers are included in the output to indicate where copybook files were in-
cluded. For line-number consistency with the input, blank lines are retained.

Unlike the C compiler, This option does not prevent compilation. To prevent compilation, use
the option

-fsyntax-only
also.

-fdefaultbyte=value
Use value, a number between 0 and 255, as the default value for all WORKING-STORAGE
data items that have no VALUE clause. By default, alphanumeric data items are initialized with
blanks, and numeric data items are initialized to zero. This option overrides the default with
value.

-fsyntax-only
Invoke only the parser. Check the code for syntax errors, but don’t do anything beyond that.

Linux February 2025 1

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

-copyext ext
For the CDF directive

COPY name
if name is unquoted, several varieties of name are tried, as described below under Copybooks.
The -copyext option extends the names searched to include ext. If ext is all uppercase or
all lowercase, both forms are tried, with preference given to the one supplied. If ext is mixed-
case, only that version is tried. For example, with

-copyext .abc
given the CDF directive

COPY name
gcobol will add to possible names searched name.abc and name.ABC in that order.

-ffixed-form
Use strict fixed-form reference format in reading the COBOL input: 72-character lines, with a
6-character sequence area, and an indicator column. Data past column 72 are ignored.

-ffree-form
Force the COBOL input to be interpreted as free-form reference format. Line breaks are in-
significant, except that ‘∗’ at the start of a line acts as a comment marker. Equivalent to
-indicator-column 0.

-findicator-column
describes the location of the Indicator Area in a COBOL file in Reference Format, where the
first 6 columns — known as the “Sequence Number Area” — are ignored, and the 7th column
— the Indicator Area — may hold a character of significance to the compiler.

Although reference format, strictly speaking, ignores data after column 72, with this option
gcobol accepts long COBOL lines, sometimes known as extended source format. Text past
column 72 is treated as ordinary COBOL text. (Line continuation remains in effect, however,
provided no text appears past column 72.)

There is no maximum line length. Regardless of source code format, the entire program could
appear on one line.

By default, gcobol auto-detects the source code format by examining the line that contains the
text "program-id". When there are characters on past column 72 on that line, the file is assumed
to be in extended source format, with the indicator area in column 7. Otherwise, columns 1-6
are examined. If those characters are all digits or blanks, the file is assumed to be in fixed-form
reference format, also with the indicator in column 7. If not auto-detected as fixed-form
reference format or extended source format, the file is assumed to be in free-form reference
format.

-fcobol-exceptions exception [,exception . . .]
By default, no exception condition is enabled (including fatal ones), and by the ISO standard
exception conditions are enabled only via the CDF TURN directive. This option enables one or
more exception conditions by default, as though TURN had appeared at the top of the first
source code file. This option may also appear more than once on the command line.

The value of exception is a Level 1, 2, or 3 exception condition name, as described by
ISO/IEC 1989:2023. EC-ALL means enable all exceptions.

The -fno-cobol-exceptions form turns off exception, just as though
>>TURN exception CHECKING OFF

had appeared.

Not all exception conditions are implemented. Any that are not produce a warning message.

-fmax-errors=nerror
nerror represents the number of error messages produced. Without this option, gcobol at-
tempts to recover from a syntax error by resuming compilation at the next statement, continuing
until end-of-file. With it, gcobol counts the messages as they’re produced, and stops when

Linux February 2025 2

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

nerror is reached.

-fstatic-call, -fno-static-call
With -fno-static-call, gcobol never uses static linking for

CALL program
By default, or with -fstatic-call, if program is an alphanumeric literal, gcobol uses
static linkage, meaning the compiler produces an external symbol program for the linker to
resolve. (In the future, that will work with CONSTANT data items, too.) With static linkage,
if program is not supplied by the source code module or another object file or library at build
time, the linker will produce an “unresolved symbol” error. With -fno-static-call,
gcobol always uses dynamic linking.

This option affects the CALL statement for literals only. If program is a non-constant data
item, it is always resolved using dynamic linking, with dlsym(3), because its value is deter-
mined at run time.

-dialect dialect-name
By default, gcobol accepts COBOL syntax as defined by ISO/IEC 1989:2023, with some ex-
tensions for backward compatibility with COBOL-85. To make the compiler more generally
useful, some additional syntax is supported by this option.

The value of dialect-name may be
ibm to indicate IBM COBOL 6.3 syntax, specifically

STOP <number>.
gnu to indicate GnuCOBOL syntax
mf to indicate MicroFocus syntax, specifically LEVEL 78 constants.

Only a few such non-standard constructs are accepted, and gcobol makes no claim to emulate
other compilers. But to the extent that a feature is popular but nonstandard, this option provides
a way to support it, or add it.

-include filename
Process filename as if

COPY “filename”
appeared as the first line of the primary source file. If filename is not an absolute path, the
directory searched is the current working directory, not the directory containing the main source
file. The name is used verbatim. No permutations are applied, and no directories searched.

If multiple -include options are given, the files are included in the order they appear on the
command line.

-preprocess preprocess-filter
After all CDF text-manipulation has been applied, and before the prepared COBOL is sent to
the cobol1 compiler, the input may be further altered by one or more filters. In the tradition of
sed(1), each preprocess-filter reads from standard input and writes to standard output.

To supply options to preprocess-filter, use a comma-separated string, similar to how
linker options are supplied to -Wl. (Do not put any spaces after the commas, because the shell
will treat it as an option separator.) gcobol replaces each comma with a space when
preprocess-filter is invoked. For example,

-preprocess tee,output.cbl
invokes tee(1) with the output filename argument output.cbl, causing a copy of the input to be
written to the file.

gcobol searches the current working directory and the PATH environment variable directories
for an executable file whose name matches preprocess-filter. The first one found is
used. If none is found, an error is reported and the compiler is not invoked.

The -preprocess option may appear more than once on the command line. Each
preprocess-filter is applied in turn, in order of appearance.

Linux February 2025 3

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

The preprocess-filter should return a zero exit status, indicating success. If it returns a
nonzero exit status, an error is reported and the compiler is not invoked.

-fflex-debug, -fyacc-debug
produce messages useful for compiler development. The -fflex-debug option prints the
tokenized input stream. The -fyacc-debug option shows the shift and reduce actions taken
by the parser.

COMPILATION SCENARIOS
gcobol xyz.cob
gcobol -main xyz.cob
gcobol -main=xyz.cob xyz.cob

These are equivalent. The xyz.cob code is compiled and a main() function is inserted that calls the first
PROGRAM-ID in the xyz.cob source file.

gcobol -nomain xyz.cob elsewhere.o
The -nomain option prevents a main() function from being generated by the gcobol compiler. A
main() entry point must be present in the elsewhere.o module; without it the linker will report a
“missing main” error.

gcobol aaa.cob bbb.cob ccc.cob
gcobol -main aaa.cob bbb.cob ccc.cob

The two commands are equivalent. The three source code modules are compiled and linked together along
with a generated main() function that calls the first PROGRAM-ID in the aaa.cob module.

gcobol aaa.cob bbb.cob -main ccc.cob
gcobol -main=ccc.cob aaa.cob bbb.cob ccc.cob

These two commands have the same result: An a.out executable is created that starts executing at the first
PROGRAM-ID in ccc.cob.

gcobol -main=bbb.cob:b-entry aaa.cob bbb.cob ccc.cob
An a.out executable is created that starts executing at the PROGRAM-ID b-entry.

gcobol -c aaa.cob
gcobol -c -main bbb.cob
gcobol -c ccc.cob
gcobol aaa.o bbb.o ccc.o

The first three commands each create a .o file. The bbb.o file will contain a main() entry point that calls
the first PROGRAM-ID in bbb. The fourth links the three .o files into an a.out.

EBCDIC
The -finternal-ebcdic option is useful when working with mainframe COBOL programs intended
for EBCDIC-encoded files. With this option, while the COBOL text remains in ASCII, the character liter-
als and field initial values produce EBCDIC strings in the compiled binary, and any character data read
from a file are interpreted as EBCDIC data. The file data are not converted; rather, the file is assumed to
use EBCDIC representation. String literals in the COBOL text are converted, so that they can be compared
meaningfully with data in the file.

Only file data and character literals are affected. Data read from and written to the environment, or taken
from the command line, are interpreted according the locale(7) in force during execution. The same is true
of ACCEPT and DISPLAY. Names known to the operating system, such as file names and the names of
environment variables, are processed verbatim.

At the present time, this is an all-or-nothing setting. Support for USAGE and CODESET, which would al-
low conversion between encodings, remains a future goal.

See also “Feature-set Variables”, below.

REDEFINES . . . USAGE POINTER
Per ISO, an item that REDEFINES another may not be larger than the item it redefines, unless that item
has LEVEL 01 and is not EXTERNAL. In gcobol, using -dialect ibm, this rule is relaxed for
REDEFINES with USAGE POINTER whose redefined member is a 4-byte USAGE COMP-5 (usually

Linux February 2025 4

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

PIC S9(8)), or vice-versa. In that case, the redefined member is re-sized to be 8 bytes, to accommodate the
pointer. This feature allows pointer arithmetic on a 64-bit system with source code targeted at a 32-bit sys-
tem.

See also “Feature-set Variables”, below.

IMPLEMENTATION NOTES
gcobol is a gcc compiler, and follows gcc conventions where applicable. Sometimes those conventions
(and user expectations) conflict with common Mainframe practice. Unless required of the compiler by the
ISO specification, any such conflicts are resolved in favor of gcc.

Linking
Unlike, C, the COBOL CALL statement implies dynamic linking, because for

CALL program
program can be a variable whose value is determined at runtime. However, the parameter may also be
compile-time constant, either an alphanumeric literal, or a CONSTANT data item.

gcobol supports static linking where possible, unless defeated by -fno-static-call. If the para-
meter value is known at compile time, the compiler produces an external reference to be resolved by the
linker. The referenced program is normally supplied via an object module, a static library, or a shared ob-
ject. If it is not supplied, the linker will report an “unresolved symbol” error, either at build time or, if using
a shared object, when the program is executed. This feature informs the programmer of the error at the ear-
liest opportunity.

Programs that are expected to execute correctly in the presence of an unresolved symbol (perhaps because
the program logic won’t require that particular CALL) can use the -no-static-call option. That
forces all CALL statements to be resolved dynamically, at runtime.

Implemented Exception Conditions
By default, per ISO, no EC is enabled. Implemented ECs may be enabled on the command line or via the
TURN directive. Any attempt to enable an EC that is not implemented is treated as an error.

An enabled EC not handled by a DECLARATIVE is written to the system log and to standard error. (The
authors intend to make that an option.) A fatal EC not handled with RESUME ends with a call to abort(3)
and process termination.

Not all Exception Conditions are implemented. Any attempt to enable an EC that that is not implemented
produces a warning message. The following are implemented:

EC-FUNCTION-ARGUMENT
for the following functions:
ACOS
ANNUITY
ASIN
LOG
LOG10
PRESENT-VALUE
SQRT

EC-SORT-MERGE-FILE-OPEN
EC-BOUND-SUBSCRIPT

subscript not an integer, less than 1, or greater than occurs
EC-BOUND-REF-MOD

refmod start not an integer, start less than 1, start greater than variable size, length not an in-
teger, length less than 1, and start+length exceeds variable size

EC-BOUND-ODO
DEPENDING not an integer, greater than occurs upper limit, less than occurs lower limit,
and subscript greater than DEPENDING for sending item

Linux February 2025 5

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

EC-SIZE-ZERO-DIVIDE
for both fixed-point and floating-point division

EC-SIZE-TRUNCATION
EC-SIZE-EXPONENTIATION

As of this writing, no COBOL compiler documents a complete implementation of ISO/IEC 1989:2023 Ex-
ception Conditions. gcobol will give priority to those ECs that the user community deems most valuable.

EXTENSIONS TO ISO COBOL
Standard COBOL has no provision for environment variables as defined by Unix and Windows, or com-
mand-line arguments. gcobol supports them using syntax similar to that of GnuCOBOL. ISO and IBM
also define incompatible ways to return the program’s exit status to the operating system. gcobol sup-
ports IBM syntax.

Environment Variables
To read an environment variable:

ACCEPT target FROM ENVIRONMENT envar

where target is a data item defined in DATA DIVISION, and envar names an environment variable.
envar may be a string literal or alphanumeric data item whose value is the name of an environment vari-
able. The value of the named environment variable is moved to target. The rules are the same as for
MOVE.

To write an environment variable:

SET ENVIRONMENT envar TO source

where source is a data item defined in DATA DIVISION, and envar names an environment variable.
envar again may be a string literal or alphanumeric data item whose value is the name of an environment
variable. The value of the named environment variable is set to the value of source.

Command-line Arguments
To read command-line arguments, use the registers COMMAND-LINE and COMMAND-LINE-COUNT
in an ACCEPT statement (only). Used without a subscript, COMMAND-LINE returns the whole com-
mand line as a single string. With a subscript, COMMAND-LINE is a table of command-line arguments.
For example, if the program is invoked as

./program -i input output

then

ACCEPT target FROM COMMAND-LINE(3)

moves input into target. The program name is the first thing in the whole command line and is found
in COMMAND-LINE(1) COMMAND-LINE table.

To discover how many arguments were provided on the command line, use

ACCEPT target FROM COMMAND-LINE-COUNT

If ACCEPT refers to a nonexistent environment variable or command-line argument, the target is set to
LOW-VALUES.

The system command line parameters can also be accessed through the LINKAGE SECTION in the pro-
gram where execution starts. The data structure looks like this:

linkage section.
01 argc pic 999.
01 argv.

02 argv-table occurs 1 to 100 times depending on argc.
03 argv-element pointer.

Linux February 2025 6

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

01 argv-string pic x(100) .
and the code to access the third parameter looks like this

procedure division using by value argc by reference argv.
set address of argv-string to argv-element(3)
display argv-string

#line directive
The parser accepts lines in the form

#line lineno “filename”.
The effect is to set the current line number to lineno and the current input filename to filename. Pre-
processors may use this directive to control the filename and line numbers reported in error messages and in
the debugger.

SELECT . . . ASSIGN TO
In the phrase

ASSIGN TO filename

filename may appear in quotes or not. If quoted, it represents a filename as known to the operating sys-
tem. If unquoted, it names either a data element or an environment variable containing the name of a file.
If filename matches the name of a data element, that element is used. If not, resolution of filename is
deferred until runtime, when the name must appear in the program’s environment.

XML PARSE
gcobol emulates the IBM XML PARSE statement. The following values for XML-EVENT are defined:
COMMENT

Text of a comment between "<!--" and "-->"
CONTENT-CHARACTERS

Some or all of the character content of the element between start and end tags.
END-OF-ELEMENT

End-element tag, with name if present in the input.
PROCESSING-INSTRUCTION-DATA

Processing instruction (after the target name), excluding "?>".
PROCESSING-INSTRUCTION-TARGET

The processing instruction target name appears in XML-TEXT or XML-NTEXT.
START-OF-ELEMENT

Name of the start element tag or empty element tag.

ISO COBOL Implementation Status
USAGE Data Types

gcobol supports the following USAGE IS clauses:
INDEX for use as an index in a table.
POINTER for variables whose value is the address of an external function, PROGRAM-ID, or data item.

Assignment is via the SET statement.
BINARY, COMP, COMPUTATIONAL, COMP-4, COMPUTATIONAL-4

big-endian integer, 1 to 16 bytes, per PICTURE.
COMP-1, COMPUTATIONAL-1, FLOAT-BINARY-32

IEEE 754 single-precision (4-byte) floating point, as provided by the hardware.
COMP-2, COMPUTATIONAL-2, FLOAT-BINARY-64

IEEE 754 double-precision (8-byte) floating point, as provided by the hardware.
COMP-3, COMPUTATIONAL-3, PACKED-DECIMAL

currently unimplemented.
COMP-5, COMPUTATIONAL-5

little-endian integer, 1 to 16 bytes, per PICTURE.

Linux February 2025 7

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

FLOAT-BINARY-128, FLOAT-EXTENDED
implements 128-bit floating point, per IEEE 754.

gcobol supports ISO integer BINARY-<type> types, most of which alias COMP-5.

LB LB LB LB LB LB LB LB L L L L . COMP-5 Compatible Picture BINARY
Type Bytes Value T{ BINARY-CHAR [UNSIGNED] T} 1 0 — 256 S9(1...4)T{
BINARY-CHAR SIGNED T} 1 -128 — +127 9(1...4) T{ BINARY-SHORT [UNSIGNED]
T} 2 0 — 65535 S9(1...4)T{ BINARY-SHORT SIGNED T} 2 -32768 — +32767
9(5...9) T{ BINARY-LONG [UNSIGNED] T} 4 0 — 4,294,967,295 S9(5...9)T{ BINARY-

LONG SIGNED T} 4 T{ -2,147,483,648 — +2,147,483,647 T} 9(10...18) T{
BINARY-LONG-LONG [UNSIGNED] T} 8 T{ 0 — 18,446,744,073,709,551,615 T}
S9(10...18) T{ BINARY-LONG-LONG SIGNED T} 8 T{ -9,223,372,036,854,775,808
— +9,223,372,036,854,775,807 T}

These define a size (in bytes) and cannot be used with a PICTURE clause. Per the ISO standard, SIGNED
is the default for the BINARY-type aliases.

All computation — both integer and floating point — is done using 128-bit intermediate forms.

Environment Names
In gcobol

DISPLAY UPON

maps SYSOUT and STDOUT to standard output, and SYSPUNCH, SYSPCH and STDERR to standard
error.

Exit Status
gcobol supports the ISO syntax for returning an exit status to the operating system,

STOP RUN [WITH] {NORMAL | ERROR} [STATUS] status

In addition, gcobol also supports the IBM syntax for returning an exit status to the operating system. Use
the RETURN-CODE register:

MOVE ZERO TO RETURN-CODE.
GOBACK.

The RETURN-CODE register is defined as a 4-byte binary integer.

COMPILER-DIRECTING FACILITY
The CDF should be used with caution because no comprehensive test suite has been identified.

CDF Text Manipulation
COPY copybook [OF|BY library] [REPLACING . . .]

If copybook is a literal, it treated a literal filename, which either does or does not exist. If
copybook is a COBOL word, gcobol looks first for an environment variable named
copybook and, if found, uses the contents of that variable as the name of the copybook file. If
that file does not exist, it continues looking for a file named one of:

• copybook (literally)
• copybook.cpy
• copybook.CPY
• copybook.cbl
• copybook.CBL
• copybook.cob
• copybook.COB

in that order. It looks first in the same directory as the source code file, and then in any
copybook-path named with the -I option. copybook-path may (like the shell’s

Linux February 2025 8

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

PATH variable) be a colon-separated list. The -I option may occur multiple times on the
command line. Each successive copybook-path is concatenated to previous ones. Rela-
tive paths (having no leading ‘/’) are searched relative to the compiler’s current working di-
rectory.

For example,

-I /usr/local/include:include

searches first the directory where the COBOL program is found, next in /usr/local/include,
and finally in an include subdirectory of the directory from which gcobol was invoked.

For the REPLACING phrase, both the modern pseudo-text and the COBOL/85 forms are rec-
ognized. (The older forms are used in the NIST CCVS/85 test suite.)

REPLACE . . .
gcobol supports the full ISO REPLACE syntax.

CDF Directives
>>DEFINE name AS {expression | PARAMETER} [OVERRIDE]

Define name as a compilation variable to have the value expression. If name was previ-
ously defined, OVERRIDE is required, else the directive is invalid. AS PARAMETER is ac-
cepted, but has no effect in gcobol.

>>DEFINE name AS OFF
releases the definition name, making it subsequently invalid for use.

>>IF cce text [>>ELSE alt-text] >>END-IF
evaluates cce, a constant conditional expression, for conditional compilation. If a name, cce
may be defined with the -D command-line parameter. If true, the COBOL text text is com-
piled. If false, else-text, if present, is compiled. [IS [NOT]] DEFINED is supported.
Boolean literals are not supported.

>>EVALUATE
Not implemented.

>>CALL-CONVENTION convention
convention may be one of:
COBOL

Use standard COBOL case-insensitive symbol-name matching. For CALL “name”,
name is rendered by the compiler in lowercase.

C Use case-sensitive symbol-name matching. The CALL target is not changed in any
way; it is used verbatim.

VERBATIM
An alias for >>CALL-CONVENTION C.

>>COBOL-WORDS EQUATE keyword WITH alias
makes alias a synonym for keyword.

>>COBOL-WORDS UNDEFINE keyword
keyword is removed from the COBOL grammar. Use of it in a program will provoke a syn-
tax error from the compiler.

>>COBOL-WORDS SUBSTITUTE keyword BY new-word
keyword is deleted as a keyword from the grammar, replaced by new-word. keyword
may thereafter be used as a user-defined word.

>>COBOL-WORDS RESERVE new-word
Treat new-word as a COBOL keyword. It cannot be used by the program, either as a key-
word or as a user-defined word.

Linux February 2025 9

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

>>DISPLAY string . . .
Write string to standard error as a warning message.

>>SOURCE format
format may be one of:
FIXED

Source conforms to COBOL fixed-form reference format with unlimited line length.
FREE Source conforms to COBOL free-form reference format. ‘∗’ at the beginning of a

line is recognized as a comment.

>>FLAG-02 Not implemented.
>>FLAG-85 Not implemented.
>>FLAG-NATIVE-ARITHMETIC

Not implemented.
>>LEAP-SECOND

Not implemented.
>>LISTING Not implemented.
>>PAGE Not implemented.
>>PROPAGATE

Not implemented.
>>PUSH directive
>>POP directive

With PUSH, push CDF state onto a stack. With POP, return to the prior pushed state.
directive may be one of
CALL-CONVENTION
COBOL-WORDS
DEFINE
SOURCE FORMAT
TURN

>>TURN [ec [file . . .] . . .] CHECKING {[ON] [[WITH] LOCATION] | OFF}
Enable (or, with OFF, disable) exception condition ec optionally associated with the file
connectors file. If LOCATION is specified, gcobol reports at runtime the source
filename and line number of the statement that triggered the exception condition.

Feature-set Variables
Some command-line options affect CDF feature-set variables that are special to gcobol. They can be set
and tested using >>DEFINE and >>IF, and are distinguished by a leading ‘%’ in the name, which is other-
wise invalid in a COBOL identifier:

%EBCDIC-MODE
is set by -finternal-ebcdic.

%64-BIT-POINTER
is implied by -dialect ibm.

To set a feature-set variable, use
>>SET feature [AS] {ON | OFF}

If feature is %EBCDIC-MODE, the directive must appear before PROGRAM-ID.

To test a feature-set variable, use
>>IF feature DEFINED

Intrinsic functions
gcobol implements all intrinsic functions defined by ISO/IEC 1989:2023, plus a few others. They are
listed alphabetically below.
ABS ACOS ANNUITY ASIN ATAN
BASECONVERT BIT-OF BIT-TO-CHAR BOOLEAN-OF-INTEGER BYTE-LENGTH

Linux February 2025 10

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

CHAR CHAR-NATIONAL COMBINED-DATETIME CONCAT CONVERT COS CURRENT-DATE
DATE-OF-INTEGER DATE-TO-YYYYMMDD DAY-OF-INTEGER DAY-TO-YYYYDDD DISPLAY-OF
E EXCEPTION-FILE EXCEPTION-FILE-N EXCEPTION-LOCATION EXCEPTION-LOCATION-N
EXCEPTION-STATEMENT EXCEPTION-STATUS EXP EXP10
FACTORIAL FIND-STRING FORMATTED-CURRENT-DATE FORMATTED-DATE FORMATTED-
DATETIME FORMATTED-TIME FRACTION-PART
HEX-OF HEX-TO-CHAR HIGHEST-ALGEBRAIC
INTEGER INTEGER-OF-BOOLEAN INTEGER-OF-DATE INTEGER-OF-DAY INTEGER-OF-FOR-
MATTED-DATE INTEGER-PART
LENGTH LOCALE-COMPARE LOCALE-DATE LOCALE-TIME LOCALE-TIME-FROM-SECONDS
LOG LOG10 LOWER-CASE LOWEST-ALGEBRAIC
MAX MEAN MEDIAN MIDRANGE MIN MOD MODULE-NAME
NATIONAL-OF NUMVAL NUMVAL-C NUMVAL-F ORD
ORD-MAX ORD-MIN
PI PRESENT-VALUE
RANDOM RANGE REM REVERSE
SECONDS-FROM-FORMATTED-TIME SECONDS-PAST-MIDNIGHT SIGN SIN SMALLEST-ALGE-
BRAIC SQRT STANDARD-COMPARE STANDARD-DEVIATION SUBSTITUTE SUM
TAN TEST-DATE-YYYYMMDD TEST-DAY-YYYYDDD TEST-FORMATTED-DATETIME TEST-
NUMVAL TEST-NUMVAL-C TEST-NUMVAL-F TRIM
ULENGTH UPOS UPPER-CASE USUBSTR USUPPLEMENTARY UUID4 UVALID UWIDTH
VARIANCE
WHEN-COMPILED
YEAR-TO-YYYY

Binary floating point DISPLAY
How the DISPLAY presents binary floating point numbers depends on the value.

When a value has six or fewer decimal digits to the left of the decimal point, it is expressed as
123456.789....

When a value is less than 1 and has no more than three zeroes to the right of the decimal point, it is ex-
pressed as 0.0001234....

Otherwise, exponential notation is used: 1.23456E+7.

In all cases, trailing zeroes on the right of the number are removed from the displayed value.

COMP-1 displayed with 9 decimal digits.
COMP-2 displayed with 17 decimal digits.
FLOAT-EXTENDED

displayed with 36 decimal digits.

Those digit counts are consistent with the IEEE 754 requirements for information interchange. As one ex-
ample, the description for COMP-2 binary64 values (per Wikipedia).

If an IEEE 754 double-precision number is converted to a decimal string with at least 17 significant digits,
and then converted back to double-precision representation, the final result must match the original number.

17 digits was chosen so that the DISPLAY statement shows the contents of a COMP-2 variable without
hiding any information.

Binary floating point MOVE
During a MOVE statement, a floating-point value may be truncated. It will not be unusual for Numeric
Display values to be altered when moved through a floating-point value.

This program:

01 PICV999 PIC 9999V999.
01 COMP2 COMP-2.

PROCEDURE DIVISION.
MOVE 1.001 to PICV999

Linux February 2025 11

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

MOVE PICV999 TO COMP2
DISPLAY "The result of MOVE " PICV999 " TO COMP2 is " COMP2
MOVE COMP2 to PICV999
DISPLAY "The result of MOVE COMP2 TO PICV999 is " PICV999

generates this result:

The result of MOVE 0001.001 TO COMP2 is 1.00099999999999989
The result of MOVE COMP2 TO PICV999 is 0001.000

However, the internal implementation can produce results that might be seem surprising:

The result of MOVE 0055.110 TO COMP2 is 55.1099999999999994
The result of MOVE COMP2 TO PICV999 is 0055.110

The source of this inconsistency is the way gcobol stores and converts numbers. Converting the floating-
point value to the numeric display value 0055110 is done by multiplying 55.109999... by 1,000 and then
truncating the result to an integer. And it turns out that even though 55.11 can’t be represented in floating-
point as an exact value, the product of the multiplication, 55110, is an exact value.

In cases where it is important for conversions to have predictable results, we need to be able to apply round-
ing, which can be done with an arithmetic statement:

MOVE 1.001 to PICV999
MOVE PICV999 TO COMP2
DISPLAY "The result of MOVE " PICV999 " TO COMP2 is " COMP2
MOVE COMP2 to PICV999
DISPLAY "The result of MOVE COMP2 TO PICV999 is " PICV999
ADD COMP2 to ZERO GIVING PICV999 ROUNDED
DISPLAY "The result of ADD COMP2 to ZERO GIVING PICV999 ROUNDED is " PICV999

The result of MOVE 0001.001 TO COMP2 is 1.00099999999999989
The result of MOVE COMP2 TO PICV999 is 0001.000
The result of ADD COMP2 to ZERO GIVING PICV999 ROUNDED is 0001.001

Binary floating point computation
gcobol attempts to do internal computations using binary integers when possible. Thus, simple arith-
metic between binary values and numeric display values conclude with binary intermediate results.

If a floating-point value gets included in the mix of variables specified for a calculation, then the intermedi-
ate result becomes a 128-bit floating-point value.

A warning about binary floating point comparison
The cardinal rule when doing comparisons involving floating-point values: Never, ever, test for equality.
It’s just not worth the hassle.

For example:

WORKING-STORAGE SECTION.
01 COMP1 COMP-1 VALUE 555.11.
01 COMP2 COMP-2 VALUE 555.11.

PROCEDURE DIVISION.
DISPLAY "COMPARE " COMP1 " with " COMP2
IF COMP1 EQUAL COMP2 DISPLAY "Equal" ELSE DISPLAY "Not equal" END-IF

MOVE COMP1 to COMP2
DISPLAY "COMPARE " COMP1 " with " COMP2
IF COMP1 EQUAL COMP2 DISPLAY "Equal" ELSE DISPLAY "Not equal" END-IF

the results:

Linux February 2025 12

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

COMPARE 555.1099854 with 555.110000000000014
Not equal
COMPARE 555.1099854 with 555.1099853515625
Equal

Why? Again, it has to do with the internals of gcobol. When differently sized floating-point values need
to be compared, they are first converted to 128-bit floats. And it turns out that when a COMP1 is moved to
a COMP2, and they are both converted to FLOAT-EXTENDED, the two resulting values are (probably)
equal.

Avoid testing for equality unless you really know what you are doing and you really test the code. And
then avoid it anyway.

Finally, it is observably the case that the gcobol implementations of floating-point conversions and com-
parisons don’t precisely match the behavior of other COBOL compilers.

You have been warned.

ENVIRONMENT
COBPATH If defined, specifies the directory paths to be used by the gcobol runtime library, libgcobol.so,

to locate shared objects. Like LD_LIBRARY_PATH, it may contain several directory names
separated by a colon (‘:’). COBPATH is searched first, followed by LD_LIBRARY_PATH.
Note that COBPATH does not change where the runtime linker looks
for libgcobol.so itself. How the runtime linker searches for libgcobol.so when the executable
loads is controlled by ld.so(8), not libgcobol.

Each directory is searched for files whose name ends in .so. For each such file, dlopen(3) is
attempted, and, if successful dlsym(3). No relationship is defined between the symbol’s name
and the filename.

Without COBPATH, binaries produced by gcobol behave as one might expect of any program
compiled with gcc. Any shared objects needed by the program are mentioned on the command
line with a -llibrary option, and are found by following the executable’s RPATH or other-
wise per the configuration of the runtime linker, ld.so(8).

UPSI COBOL defines a User Programmable Status Indicator (UPSI) switch. In gcobol, the settings
are denoted UPSI-0 through UPSI-7, where 0-7 indicates a bit position. The value of the UPSI
switches is taken from the UPSI environment variable, whose value is a string of up to eight 1’s
and 0’s. The first character represents the value of UPSI-0, and missing values are assigned 0.
For example, UPSI=1000011 in the environment sets bits 0, 5, and 6 on, which means that
UPSI-0, UPSI-5, and UPSI-6 are on.

GCOBOL_TEMPDIR
causes any temporary files created during CDF processing to be written to a file whose name is
specified in the value of GCOBOL_TEMPDIR. If the value is just “/”, the effect is different:
each copybook read is reported on standard error. This feature is meant to help diagnose myste-
rious copybook errors.

Variables for Developers
GCOBOL_SHOW

produces a trace of the internal calls made by the parser to prepare the GENERIC tree.
GCOBOL_TRACE

used at compile time, produces an executable that traces the execution, mapping it back the same
code-creation functions as GCOBOL_SHOW, as well as the values of data items and branch condi-
tions.

FILES
Executables produced by gcobol require the runtime support library libgcobol, which is provided both as
a static library and as a shared object.

Linux February 2025 13

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

COMPATIBILITY
The ISO standard leaves the default file organization up to the implementation; in gcobol, the default is
SEQUENTIAL.

On-Disk Format
Any ability to use files produced by other COBOL compilers, or for those compilers to use files produced
by gcobol, is the product of luck and intuition. Various compilers interpret the ISO standard differently,
and the standard’s text is not always definitive.

For ORGANIZATION IS LINE SEQUENTIAL files (explicitly or by default), gcobol, absent specific
direction, produces an ordinary Linux text file: for each WRITE, the data are written, followed by an ASCII
NL (hex 0A) character. On READ, the record is read up to the size of the specified record or NL,
whichever comes first. The NL is not included in the data brought into the record buffer; it serves only as an
on-disk record-termination marker. Consequently, SEQUENTIAL and LINE SEQUENTIAL files work
the same way: the COBOL program never sees the record terminator.

When READ and WRITE are used with ADVANCING, however, the game changes. If ADVANCING is
used with LINE SEQUENTIAL files, it is honored by gcobol.

Other compilers may not do likewise. According to ISO, in WRITE (14.9.47.3 General rules)
ADVANCING is ignored for files for which “the physical file does not support vertical positioning”. It fur-
ther states that, in the absence of ADVANCING, WRITE proceeds as if “as if the user has specified
AFTER ADVANCING 1 LINE”. Some other implementations interpret that to mean that the first WRITE
to a LINE SEQUENTIAL file results in a leading NL on the first line, and no trailing NL on the last line.
Some furthermore prohibit the use of ADVANCING with LINE SEQUENTIAL files.

STANDARDS
The reference standard for gcobol is ISO/IEC 1989:2023.
• If gcobol compiles code consistent with that standard, the resulting program should execute correctly;

any other result is a bug.
• If gcobol compiles code that does not comply with that standard, but runs correctly according to some

other specification, that represents a non-standard extension. One day, the -pedantic option will
produce diagnostic messages for such code.

• If gcobol rejects code consistent with that standard, that represents an aspect of COBOL that is (or is
not) on the To Do list. If you would like to see it compile, please get in touch with the developers.

Status of NIST COBOL Compiler Verification Suite
NC 100% Nucleus
SQ 100% Sequential I/O
RL 100% Relative I/O
IX 100% Indexed I/O
IC 100% Inter-Program Communication
ST 100% Sort-Merge
SM 100% Source Text Manipulation RW \n Report Writer
CM Communication
DB to do? Debug
SG Segmentation
IF 100% Intrinsic Function

Where gcobol passes 100% of the tests in a module, we exclude the (few) tests for obsolete features. The
authors regard features that were obsolete in 1985 to be well and truly obsolete today, and did not imple-
ment them.

Notable deferred features
CCVS-85 modules not marked with above with any status (CM, and SG) are on the “hard maybe” list,
meaning they await an interested party with real code using the feature.

gcobol does not implement Report Writer or Screen Section.

Linux February 2025 14

GCOBOL(1) GCC COBOL Compiler GCOBOL(1)

Beyond COBOL/85
gcobol increasingly implements ISO/IEC 1989:2023. For example, DECLARATIVES is not tested by
CCVS-85, but are implemented by gcobol. Similarly, Exception Conditions were not defined in 1985,
and gcobol contains a growing number of them.

The authors are well aware that a complete, pure COBOL-85 compiler won’t compile most existing
COBOL code. Every vendor offered (and offers) extensions, and most environments rely on a variety of
preprocessors and ancillary systems defined outside the standard. The express goal of adding an ISO
COBOL front-end to GCC is to establish a foundation on which any needed extensions can be built.

HISTORY
COBOL, the language, may well be older than the reader. To the author’s knowledge, free COBOL compil-
ers first began to appear in 2000. Around that time an earlier COBOL for GCC project
cobolforgcc: https://cobolforgcc.sourceforge.net/ met with some success, but was never officially merged
into GCC.

This compiler, gcobol, was begun by COBOLworx: https://www.cobolworx.com/ in the fall of 2021. The
project announced a complete implementation of the core language features in December 2022.

AUTHORS
James K. Lowden

(jklowden@cobolworx.com) is responsible for the parser.
Robert Dubner

(rdubner@cobolworx.com) is responsible for producing the GIMPLE tree, which is input to the
GCC back-end.

CAVEATS
• gcobol has been tested only on x64 and Apple M1 processors running Linux in 64-bit mode.
• The I/O support has not been extensively tested, and does not implement or emulate many features re-

lated to VSAM and other mainframe subsystems. While LINE-SEQUENTIAL files are ordinary text
files that can be manipulated with standard utilities, INDEXED and RELATIVE files produced by
gcobol are not compatible with that of any other COBOL compiler. Enhancements to the I/O support
will be readily available to the paying customer.

Linux February 2025 15

	GCOBOL(1)
	Name
	Synopsis
	Description
	Compilation scenarios
	Ebcdic
	Redefines ... usage pointer
	Implementation notes
	Linking
	Implemented Exception Conditions

	Extensions to iso cobol
	Environment Variables
	Command-line Arguments
	#line directive
	SELECT ... ASSIGN TO
	XML PARSE

	Iso cobol implementation status
	USAGE Data Types
	Environment Names
	Exit Status

	Compiler-directing facility
	CDF Text Manipulation
	CDF Directives
	Feature-set Variables
	Intrinsic functions
	Binary floating point DISPLAY
	Binary floating point MOVE
	Binary floating point computation
	A warning about binary floating point comparison

	Environment
	Variables for Developers

	Files
	Compatibility
	On-Disk Format

	Standards
	Status of NIST COBOL Compiler Verification Suite
	Notable deferred features
	Beyond COBOL/85

	History
	Authors
	Caveats

