Using the GNU Compiler Collection

For ccc version 16.0.0 (pre-release)

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

This file documents the use of the GNU compilers.

Copyright (©) 1988-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software.
Copies published by the Free Software Foundation raise funds for GNU devel-
opment.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

1 Programming Languages Supported by GCC 1
2 Language Standards Supported by GCC................... 3
3 GCC Command Options.ot et 9
4 C Implementation-Defined Behavior..................... 589
5 C++ Implementation-Defined Behavior.................. 599
6 Extensions to the C Language Family 601
7 Built-in Functions Provided by GCC.................... 827
8 Extensions to the C++ Language 1059
9 GNU Objective-C Features 1073
10 Binary Compatibility........ L. 1089
11 gcov—a Test Coverage Program....................... 1093
12 gcov-tool—an Offline Geda Profile Processing Tool 1119
13 gcov-dump—an Offline Geda and Geno Profile Dump Tool . 1123
14 1to-dump—Tool for dumping LTO object files............ 1125
15 Known Causes of Trouble with GCC................... 1127
16 Reporting Bugs i 1143
17 How To Get Help with GCC...... 1145
18 Contributing to GCC Development 1147
Funding Free Software 1149
The GNU Project and GNU/Linux 1151
GNU General Public License 1153
GNU Free Documentation License......................... 1165
Contributors to GCC 1173

A Indices ..o e 1191

Table of Contents

1 Programming Languages Supported by GCC .. 1

2 Language Standards Supported by GCC...... 3
21 CLANGUAZE . ..ottt 3
2.2 CH4 Languageovuuti i e 5
2.3 Objective-C and Objective-C++ Languages..................... 6
24 COBOL Languageoouueiin e 7
2.5 GO Languageo it e 7
26 Dlanguage.t 7
2.7 Modula-2 languageo 7
2.8 References for Other Languages...............oooiiiiiiiia.. 7

3 GCC Command Options........................ 9
3.1 Option SUMMATY vv et e 9
3.2 Options Controlling the Kind of Output 34
3.3 Compiling C++4 Programs.........c.ovuiiirienrieiieennenannnn. 44
3.4 Options Controlling C Dialect, 45
3.5 Options Controlling C++ Dialect...............c.ooiiii.. 52
3.6 Options Controlling Objective-C and Objective-C++ Dialects. . 82
3.7 Options Controlling OpenMP and OpenACC 86
3.8 Options to Control Diagnostic Messages Formatting............ 88
3.9 Options to Request or Suppress Warnings..................... 100
3.10 Options That Control Static Analysis........................ 169
3.11 Options for Debugging Your Program 187
3.12 Options That Control Optimization 194
3.13 Program Instrumentation Options............. 275
3.14 Options Controlling the Preprocessor........................ 297
3.15 Passing Options to the Assembler 305
3.16 Options for Linking i 305
3.17 Options for Directory Search, 312
3.18 Options for Code Generation Conventions 315
3.19 GCC Developer Options........c.ooiuiiiiiiiii ... 326
3.20 Machine-Dependent Options. ..., 345

3.20.1 AArch64 Options.oueiitii i 345

3.20.1.1 -march and -mcpu Feature Modifiers............... 353
3.20.2 Adapteva Epiphany Options...................ooi.... 356
3.20.3 AMD GOCN Optionsovveeeniie i 358
3.20.4 ARC Optionsveeiii e 361
3.20.5 ARM Options........coviniiiiiii i 370
3.20.6 AVR Options.ouriiiiie i i 388

3.20.6.1 AVR Optimization Options........................ 393

3.20.6.2 EIND and Devices with
More Than 128 Ki Bytes of Flash 395

iv

3.20.6.3 Handling of the RAMPD, RAMPX, RAMPY

and RAMPZ Special Function Registers 396
3.20.6.4 AVR Built-in Macros...........cooviiiii ... 397
3.20.6.5 AVR Internal Optionscooviiieaa... 400

3.20.7 Blackfin Optionscoiiiiiiiiiiiiiii 401
3.20.8 COX OptIOnS .« vt v ettt e 404
3.20.9 CRIS Options ... utit et 404
3.20.10 C-SKY Optionsttt 406
3.20.11 Cygwin and MinGW Options.............. ..., 409
3.20.12 Darwin Options.........c.oviiiiiiiiiiiii i 410
3.20.13 DEC Alpha Options..........cooviiiiiiiiiii ... 414
3.20.14 eBPF Options. ... 419
3.20.15 FR30 Options.......c.ooiiiiiiiii e 421
3.20.16 FT32 Options.oiiuiiitiii e 421
3.20.17 FRV Options.......cooviiiiiiii i 421
3.20.18 GNU/Linux Optionscoooiuiiiiiiiai... 425
3.20.19 HS8/300 Optionscuvuiriririniniaanaaeneannnn. 425
3.20.20 HPPA Options.......ooueiimiii i, 426
3.20.21 TA-64 Options.ovuutii i 429
3.20.22 LM32 Options. . ..ottt 433
3.20.23 LoongArch Options ..., 433
3.20.24 M32C OptionS ..o oottt e 439
3.20.25 M32R/D Optionsc.ouiuiiiiiiiiiiiaan.. 440
3.20.26 M680X0 OPtions .. .ovvureteiii i 441
3.20.27 MCQCore OptionS.oviiiieiiiii it 446
3.20.28 MicroBlaze Options ...t .. 447
3.20.29 MIPS Options.oviiti e 449
3.20.30 MMIX Options.ooviriiiiiii e 464
3.20.31 MNI10300 Optionscovureeiiniit e 465
3.20.32 Moxie OptiOnS . ..ottt i 466
3.20.33 MSP430 Optionsoovuuieeiii i 466
3.20.34 NDS32 Optionsvveii i 469
3.20.35 Nvidia PTX Optionsc.cooviiiiiiiiiiiii .. 470
3.20.36 OpenRISC Options.........cooviiiiiiiii .. 472
3.20.37 PDP-11 Optionsovurireiiiie i 473
3.20.38 PowerPC Options.........coooeiiiiiiiiiii ... 474
3.20.39 PRU Optionsoviiiii e 474
3.20.40 RISC-V Optionsoeuuiiiiiiiiii i 475
3.20.41 RL78 Options........oouuiiiiii i, 491
3.20.42 IBM RS/6000 and PowerPC Options 492
3.20.43 RX Options......o.ueiiiii e 508
3.20.44 S/390 and zSeries Options.coovvuiiiiinn... 511
3.20.45 SH Optionscouuuriiiii e 515
3.20.46 Solaris 2 Options.......c.viiiier i 522
3.20.47 SPARC Options.ooueviiieiiiii i 522
3.20.48 Options for System Vol 528
3.20.49 V850 Optionsvviutt it 528

3.20.50 VAX Options «.uuvveeeie i 531

3.20.51 Visium Optionsoviiii e 531
3.20.52 VMS Optionsoueiiii e 532
3.20.53 VxWorks Options ..o, 533
3.20.54 X866 OptIONS. . ..ottt 533
3.20.55 x86 Windows Options..........ccovviiiiiiiiinnannn.. 567
3.20.56 Xstormyl6 Options..........ooviiiiiiiiiiiiinn.. 567
3.20.57 Xtensa Options ... 567
3.20.58 zSeries OPtions.covvuiiiiii i 569
3.21 Specifying Subprocesses and the Switches to Pass to Them. .. 569
3.22 Environment Variables Affecting GCC....................... 578
3.23 Using Precompiled Headers. ..., 582
324 CH+ Modules. ..o 583
3.24.1 Module Mapper ... 585
3.24.2 Module Preprocessing ... 587
3.24.3 Compiled Module Interface 587

C Implementation-Defined Behavior........ 589
4.1 Translation...... ... 589
4.2 Environment 589
4.3 Identifiers. 589
4.4 Characters . ..ottt e 590
4.5 Inbegers . ..o 591
4.6 Floating Point........ ... i 592
4.7 Constant exXpressionst 593
4.8 Arrays and Pointers........ i 593
4.9 HInts. ..o 594
4.10 Structures, Unions, Enumerations, and Bit-Fields............ 594
411 Qualifiersoo 595
B 1 o T OO 596
4.13 Declaratorso 596
4.14 Statements. 596
4.15 Preprocessing Directives........o 596
4.16 Library Functions.......... ..ot 597
4.17 Architectureo 597
4.18 Locale-Specific Behavior................. ..ot 598

C++ Implementation-Defined Behavior.... 599

5.1 Conditionally-Supported Behavior............................ 599
5.2 Exception Handlingo i i 599

vi

6 Extensions to the C Language Family....... 601
6.1 Additional Numeric Types.c.ovuiuiiiiiiiiiiiiiae. 601
6.1.1 128-bit Integers.o 601
6.1.2 Double-Word Integers ... 601
6.1.3 Complex Numbers.oiiiiiiiiii i, 601
6.1.4 Additional Floating Types..........ccoiiiiiiiiiiin.. 603
6.1.5 Half-Precision Floating Point 604
6.1.6 Decimal Floating Types ..., 605
6.1.7 Fixed-Point Types........cooiiii ., 606
6.2 Array, Union, and Struct Extensions.......................... 607
6.2.1 Arrays of Variable Length 607
6.2.2 Arrays of Length Zero.......... o L. 608
6.2.3 Structures with No Members 610
6.2.4 Unions with Flexible Array Members 610
6.2.5 Structures with only Flexible Array Members............ 610
6.2.6 Unnamed Structure and Union Fields.................... 610
6.2.7 Cast toa Union Typecooviiiiiiiiiiiiiiii . 611
6.2.8 Non-Lvalue Arrays May Have Subscripts................. 612
6.2.9 Non-Constant Initializers................... 612
6.2.10 Compound Literals........... i i, 612
6.2.11 Designated Initializers............. L. 614
6.3 Named Address Spacesoueiiiiiiiiii i 615
6.3.1 AVR Named Address Spaces...........ccovvviineneann... 615
6.3.2 M32C Named Address Spaces...........oveveviienenn.. 618
6.3.3 PRU Named Address Spaces.........coouueeeeiiineaan.. 618
6.3.4 RL78 Named Address Spaces..........ccoveeiieenienan... 618
6.3.5 x86 Named Address Spaces..........coovvuivieennnan.. 618
6.4 Attributes Specificto GCC............. i 618
6.4.1 Declaring Attributes of Functions........................ 619
6.4.1.1 Common Function Attributes....................... 620
6.4.1.2 AArch64 Function Attributes....................... 650
6.4.1.3 AMD GCN Function Attributes..................... 653
6.4.1.4 ARC Function Attributes........................ ... 654
6.4.1.5 ARM Function Attributes 655
6.4.1.6 AVR Function Attributes........................... 657
6.4.1.7 Blackfin Function Attributes........................ 660
6.4.1.8 BPF Function Attributes........................... 661
6.4.1.9 C-SKY Function Attributes......................... 661
6.4.1.10 Epiphany Function Attributes 661
6.4.1.11 H8/300 Function Attributes 662
6.4.1.12 IA-64 Function Attributes......................... 663
6.4.1.13 LoongArch Function Attributes.................... 663
6.4.1.14 M32C Function Attributes......................... 667
6.4.1.15 M32R/D Function Attributes...................... 668
6.4.1.16 m68k Function Attributes 668

6.4.1.17 MCORE Function Attributes...................... 669

vii

6.4.1.18 MicroBlaze Function Attributes.................... 669
6.4.1.19 Microsoft Windows Function Attributes............ 669
6.4.1.20 MIPS Function Attributes...............oovvvo.. .. 671
6.4.1.21 MSP430 Function Attributes....................... 673
6.4.1.22 NDS32 Function Attributes........................ 674
6.4.1.23 Nvidia PTX Function Attributes................... 675
6.4.1.24 PowerPC Function Attributes...................... 675
6.4.1.25 RISC-V Function Attributes....................... 678
6.4.1.26 RL78 Function Attributes 680
6.4.1.27 RX Function Attributes 680
6.4.1.28 S/390 Function Attributes......................... 681
6.4.1.29 SH Function Attributes................... 682
6.4.1.30 Symbian OS Function Attributes 683
6.4.1.31 V850 Function Attributes.......................... 683
6.4.1.32 Visium Function Attributes........................ 683
6.4.1.33 x86 Function Attributes 683
6.4.1.34 Xstormyl6 Function Attributes.................... 697
6.4.2 Specifying Attributes of Variables........................ 697
6.4.2.1 Common Variable Attributes........................ 697
6.4.2.2 ARC Variable Attributes 707
6.4.2.3 AVR Variable Attributes............................ 707
6.4.2.4 Blackfin Variable Attributes 709
6.4.2.5 H8/300 Variable Attributes......................... 710
6.4.2.6 TA-64 Variable Attributes........................... 710
6.4.2.7 LoongArch Variable Attributes...................... 710
6.4.2.8 M32R/D Variable Attributes........................ 710
6.4.2.9 Microsoft Windows Variable Attributes 711
6.4.2.10 MSP430 Variable Attributes....................... 711
6.4.2.11 Nvidia PTX Variable Attributes................... 712
6.4.2.12 PowerPC Variable Attributes...................... 712
6.4.2.13 RL78 Variable Attributes.......................... 712
6.4.2.14 V850 Variable Attributes.......................... 712
6.4.2.15 x86 Variable Attributes............................ 712
6.4.2.16 Xstormyl6 Variable Attributes..................... 713
6.4.3 Specifying Attributes of Types............ccooiiiiiii .. 713
6.4.3.1 Common Type Attributes........................... 713
6.4.3.2 ARC Type Attributes.............coiiiiiii ... 727
6.4.3.3 ARM Type Attributes............... ..., 727
6.4.3.4 BPF Type Attributes...............ccoiiiiiiint. 728
6.4.3.5 PowerPC Type Attributes 728
6.4.3.6 x86 Type Attributes............ 728
6.4.4 Label Attributes.. ... 728
6.4.5 Enumerator Attributes L. 729
6.4.6 Statement Attributes............ 730
6.4.7 Attribute Syntax 732
6.5 Pragmas Accepted by GCC........ ... i, 736

6.5.1 AArch64 Pragmas...........oooiiiiiiiiiiiii .. 736

viii

6.5.2 ARM Pragmaso, 736
6.5.3 LoongArch Pragmas.......... i 736
6.5.4 M32C Pragmas.oouueiiii e 736
6.5.5 PRU Pragmas..........cccoiiiiiiiiiiiiiiiiiiiinnnnn 737
6.5.6 RS/6000 and PowerPC Pragmas......................... 737
6.5.7 S/390 Pragmas...... ...t 737
6.5.8 Darwin Pragmaso 737
6.5.9 Solaris Pragmaso 738
6.5.10 Symbol-Renaming Pragmas............................. 738
6.5.11 Structure-Layout Pragmas..................... 739
6.5.12 Weak Pragmas ..., 740
6.5.13 Diagnostic Pragmas i 740
6.5.14 Visibility Pragmas............ oo i 742
6.5.15 Push/Pop Macro Pragmas....................coooiue.. 742
6.5.16 Function Specific Option Pragmas...................... 743
6.5.17 Loop-Specific Pragmas 743
6.6 Thread-Local Storage, 744
6.6.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 745
6.6.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage..... 746
6.7 OpenMPo 747
6.8 OpenACC. ... 748
6.9 An Inline Function is As Fast As a Macro..................... 748
6.10 When is a Volatile Object Accessed?..... ..., 749
6.11 How to Use Inline Assembly Language in C Code............ 750

6.11.1 Basic Asm — Assembler Instructions Without Operands.. 751
6.11.2 Extended Asm - Assembler Instructions

with C Expression Operands, 752
6.11.2.1 Volatile.......coouie 754
6.11.2.2 Assembler Template............... 756
6.11.2.3 Output Operands...........covviiiiiiiiinennnn... 758
6.11.2.4 Flag Output Operandscoviiieina... 760
6.11.2.5 Input Operands ..., 762
6.11.2.6 Clobbers and Scratch Registers.................... 764
6.11.2.7 Goto Labels............ oo i 767
6.11.2.8 Generic Operand Modifiers 769
6.11.2.9 AArch64 Operand Modifiers....................... 769
6.11.2.10 x86 Operand Modifiers 769
6.11.2.11 x86 Floating-Point asm Operands................. 771
6.11.2.12 MSP430 Operand Modifiers 772
6.11.2.13 LoongArch Operand Modifiers.................... 772
6.11.2.14 RISC-V Operand Modifiers....................... 773
6.11.2.15 SH Operand Modifiers............................ 773

6.11.3 Constraints for asm Operands........................... 774
6.11.3.1 Simple Constraints ..., 774
6.11.3.2 Multiple Alternative Constraints................... T
6.11.3.3 Constraint Modifier Characters.................... e

6.11.3.4 Constraints for Particular Machines................ 778

6.11.4 C++11 Constant Expressions instead of String Literals.. 804

6.11.5 Controlling Names Used in Assembler Code............. 804
6.11.6 Variables in Specified Registers......................... 805
6.11.6.1 Defining Global Register Variables................. 805
6.11.6.2 Specifying Registers for Local Variables............ 806
6.11.6.3 Hard Register Constraints 807
6.11.7 Sizeof an asm...........oiiiiiiiiii 809
6.12 Other Extensions to C Syntax............c.cooiiiiiiiian... 810
6.12.1 Statements and Declarations in Expressions............. 810
6.12.2 Locally Declared Labelsoooiiiia. 812
6.12.3 Labelsas Values.............. i 813
6.12.4 Nested Functions.......... ..o, 814
6.12.5 Referring to a Type with typeof 816
6.12.6 Determining the Number of Elements of Arrays......... 817
6.12.7 Support for offsetof ... 817
6.12.8 Determining the Alignment of
Functions, Types or Variables................................ 818
6.12.9 Extensions to enum Type Declarations 818
6.12.10 Support for the _Bool Type.......ccooviiiiiiia... 819
6.12.11 Macros with a Variable Number of Arguments. 819
6.12.12 Conditionals with Omitted Operands.................. 820
6.12.13 Case Rangesot 820
6.12.14 Mixed Declarations, Labels and Code.................. 820
6.12.15 C++ Style Comments..........coviiiiiiiriiinnann... 821
6.12.16 Slightly Looser Rules for Escaped Newlines............ 821
6.12.17 Hex Floats 821
6.12.18 Binary Constants using the ‘0b’” Prefix................. 821
6.12.19 Dollar Signs in Identifier Names 821
6.12.20 The Character ESC in Constants....................... 822
6.12.21 Raw String Literalso L. 822
6.12.22 Alternate Keywords.............c.oiiiiiiiiiiiit, 822
6.12.23 Function Names as Strings ..., 822
6.13 Extensions to C Semanticscoviiiiiiiiiiii... 823
6.13.1 Prototypes and Old-Style Function Definitions.......... 823
6.13.2 Arithmetic on void- and Function-Pointers............. 824
6.13.3 Pointer Arguments in Variadic Functions 824
6.13.4 Pointers to Arrays with Qualifiers Work as Expected. ... 824
6.13.5 Const and Volatile Functions 825
7 Built-in Functions Provided by GCC 827
7.1 Builtins for C Library Functions.............., 827
7.2 Additional Builtins for Numeric Operations................... 829
7.2.1 Floating-Point Format Builtins 829
7.2.2 Bit Operation Builtins............. 832
7.2.3 Byte-Swapping Builtins..........ol 836

724 CRCOBuiltins........coooii i 836

7.2.5 Built-in Functions to Perform

Arithmetic with Overflow Checking............... 838
7.3 Builtins for Stack Allocation.............., 841
7.4 Nonlocal GOtOS.t e 843
7.5 Constructing Function Calls..............ot 843
7.6 Getting the Return or Frame Address of a Function........... 845
7.7 Stack scrubbing internal interfaces............. 847
7.8 Using Vector Instructions through Built-in Functions.......... 848
7.9 Builtins for Atomic Memory Access. ..., 851
7.9.1 Built-in Functions for Memory
Model Aware Atomic Operations..............coviiuveana... 852
7.9.2 Legacy __sync Built-in Functions
for Atomic Memory ACCESSvuutinet e 857
7.10 Object Size Checking.........c.cooiiiiiiiiiiiiii i 859
7.10.1 Object Size Checking Built-in Functions................ 859
7.10.2 Object Size Checking and Source Fortification 860
7.10.2.1 Formatted Output Function Checking.............. 861
7.11 Built-in functions for C++ allocations and deallocations..... 861
7.12 Other Built-in Functions Provided by GCC.................. 862
7.13 Built-in Functions Specific to Particular Target Machines 872
7.13.1 AArch64 Built-in Functions............................. 872
7.13.2 Alpha Built-in Functions 873
7.13.3 ARC Built-in Functions 874
7.13.4 ARC SIMD Built-in Functions.......................... 876
7.13.5 Arm C Language Extensions (ACLE)................... 880
7.13.6 ARM Floating Point Status and Control Intrinsics...... 881
7.13.7 ARM ARMv8-M Security Extensions................... 881
7.13.8 AVR Built-in Functions 881
7.13.9 Blackfin Built-in Functions 883
7.13.10 BPF Built-in Functions................. 883
7.13.11 FR-V Built-in Functions.............. 886
7.13.11.1 Argument Typesoooeiieiiiiii i 886
7.13.11.2 Directly-Mapped Integer Functions 887
7.13.11.3 Directly-Mapped Media Functions 887
7.13.11.4 Raw Read/Write Functions....................... 889
7.13.11.5 Other Built-in Functions.......................... 889
7.13.12 LoongArch Base Built-in Functions.................... 890
7.13.12.1 Data Types ..o 890
7.13.12.2 Directly-mapped Builtin Functions................ 890
7.13.12.3 Directly-mapped Division Builtin Functions....... 892
7.13.12.4 Other Builtin Functions 892
7.13.13 LoongArch SX Vector Intrinsics 892
7.13.13.1 SX Data Types.....coovuriiiiiiiiiiiii i 893
7.13.13.2 Directly-mapped SX Builtin Functions............ 893
7.13.13.3 Directly-mapped SX Division Builtin Functions ... 906
7.13.14 LoongArch ASX Vector Intrinsics...................... 907

7.13.14.1 ASX Data Types....ovoeeeiiiiiiiiiiiaan. 907

7.13.14.2 Directly-mapped ASX Builtin Functions.......... 907
7.13.14.3 Directly-mapped ASX Division Builtin Functions.. 921
7.13.14.4 Directly-mapped SX and

ASX Conversion Builtin Functions 921
7.13.15 MIPS DSP Built-in Functions 925
7.13.16 MIPS Paired-Single Support................ooovie... 929
7.13.17 MIPS Loongson Built-in Functions 929

7.13.17.1 Paired-Single Arithmetic 931
7.13.17.2 Paired-Single Built-in Functions 932
7.13.17.3 MIPS-3D Built-in Functions...................... 933
7.13.18 MIPS SIMD Architecture (MSA) Support 935
7.13.18.1 MIPS SIMD Architecture Built-in Functions...... 936
7.13.19 Other MIPS Built-in Functions........................ 949
7.13.20 MSP430 Built-in Functions..................coooo. .. 949
7.13.21 NDS32 Built-in Functions 949
7.13.22 Nvidia PTX Built-in Functions........................ 950
7.13.23 Basic PowerPC Built-in Functions..................... 950
7.13.23.1 Basic PowerPC Built-in

Functions Available on all Configurations.................. 950

7.13.23.2 Basic PowerPC Built-in

Functions Available on ISA 2.05............ 954

7.13.23.3 Basic PowerPC Built-in

Functions Available on ISA 2.06............, 956

7.13.23.4 Basic PowerPC Built-in

Functions Available on ISA 2.07.......... 957

7.13.23.5 Basic PowerPC Built-in

Functions Available on ISA 3.0.................. 957

7.13.23.6 Basic PowerPC Built-in

Functions Available on ISA 3.1....... i L. 959
7.13.24 PowerPC AltiVec/VSX Built-in Functions............. 961

7.13.24.1 PowerPC AltiVec Built-in Functions on ISA 2.05.. 964
7.13.24.2 PowerPC AltiVec Built-in

Functions Available on ISA 2.06...................coou... 972
7.13.24.3 PowerPC AltiVec Built-in
Functions Available on ISA 2.07.......... 974
7.13.24.4 PowerPC AltiVec Built-in
Functions Available on ISA 3.0............ 977
7.13.24.5 PowerPC AltiVec Built-in
Functions Available on ISA 3.1 i i L. 982
7.13.25 PowerPC Hardware Transactional
Memory Built-in Functions............o oL 994
7.13.25.1 PowerPC HTM Low Level Built-in Functions 994
7.13.25.2 PowerPC HTM High Level Inline Functions....... 996
7.13.26 PowerPC Atomic Memory Operation Functions........ 997
7.13.27 PowerPC Matrix-Multiply Assist Built-in Functions. ... 998
7.13.28 PRU Built-in Functions 999

7.13.29 RISC-V Built-in Functions 1000

xi

xii

7.13.30 RISC-V Vector Intrinsics..........coovviiieeiinn. . 1000
7.13.31 CORE-V Built-in Functions.......................... 1000
7.13.32 RX Built-in Functions..................... oo L 1021
7.13.33 S/390 System z Built-in Functions.................... 1022
7.13.34 SH Built-in Functions............ 1024
7.13.35 SPARC VIS Built-in Functions....................... 1025
7.13.36 TI C6X Built-in Functions 1028
7.13.37 x86 Built-in Functions............., 1029
7.13.38 x86 Transactional Memory Intrinsics 1055
7.13.39 x86 Control-Flow Protection Intrinsics................ 1056
Extensions to the C++4 Language.......... 1059
8.1 When is a Volatile C++ Object Accessed?................... 1059
8.2 Restricting Pointer Aliasingl 1059
8.3 Vague Linkage i 1060
8.4 C++ Interface and Implementation Pragmas 1061
8.5 Where’s the Template?........... ... 1062
8.6 Extracting the Function Pointer from a Bound
Pointer to Member Functiont 1064
8.7 CH+-Specific Variable, Function, and Type Attributes....... 1065
8.8 Function Multiversioningo i 1067
8.9 Type Traitsoouiiiii e 1069
8.10 Deprecated Features ... 1072
8.11 Backwards Compatibility............ ..o i 1072
GNU Objective-C Features................. 1073
9.1 GNU Objective-C Runtime APT............................. 1073
9.1.1 Modern GNU Objective-C Runtime API................ 1073
9.1.2 Traditional GNU Objective-C Runtime API 1074
9.2 +load: Executing Code beforemain......................... 1074
9.2.1 What You Can and Cannot Do in +load................ 1075
9.3 Type Encoding....... ..o 1076
9.3.1 Legacy Type Encodingot 1078
9.3.2 0encCode.ottt 1078
9.3.3 Method Signaturesol 1079
9.4 Garbage Collection....... ..., 1079
9.5 Constant String Objects...........co i, 1080
9.6 compatibility_alias.............coiiiiiiiiiiiiiiiiii... 1081
9.7 EXCEPIONS . .. v vt 1081
9.8 Synchronization.......... i 1083
9.9 Fast Enumeration............ ..o i 1083
9.9.1 Using Fast Enumeration................ 1083
9.9.2 (C99-Like Fast Enumeration Syntax..................... 1083
9.9.3 Fast Enumeration Details............................... 1084
9.9.4 Fast Enumeration Protocol 1085

9.10 Messaging with the GNU Objective-C Runtime............. 1086

9.10.1 Dynamically Registering Methods 1086
9.10.2 Forwarding Hook......... o i 1086

10 Binary Compatibility 1089
11 gcov—a Test Coverage Program 1093
11.1 Introduction to gcov......... ... 1093
11.2 Invoking Cov.......ouiiiiii i 1093
11.3 Using gcov with GCC Optimization........................ 1110
11.4 Brief Description of gcov Data Files........................ 1111
11.5 Data File Relocation to Support Cross-Profiling 1111
11.6 Profiling and Test Coverage in Freestanding Environments.. 1112
11.6. 1 OVEIVIEW . o .ttt ettt e e 1112
11.6.2 Tutorial.o 1113
11.6.3 System Initialization Caveats.......................... 1117

12 gcov-tool—an Offline Gcda

Profile Processing Tool....................... 1119
12.1 Introduction to gcov-tool i 1119
12.2 Invoking gcov—tool............oiiiiiiiiiiiiiiii i, 1119

13 gcov-dump—an Offline Gcda and Gceno

Profile Dump Tool............................ 1123
13.1 Introduction to gcov—dumpc..ciiiiiiiiiiii. 1123
13.2 Invoking gcov—qdump............ccoiuiiiiiiiiiiiiiii i 1123

14 1lto-dump—Tool for dumping

LTO object files............................... 1125
14.1 Introduction to 1to-dumpcviiiiiiiiiian... 1125
14.2 Invoking 1to=Qumpouuiuttiiiieiiii i, 1125
15 Known Causes of Trouble with GCC 1127
15.1 Actual Bugs We Haven’t Fixed Yet......................... 1127
15.2 Interoperation..............c.eiiiiiiiiiiiiiiiiiiiiiaannn. 1127
15.3 Incompatibilities of GCC......... 1129
15.4 Fixed Header Files...... 1132
15.5 Standard Libraries.............ccooiiiiiiiii.. 1132
15.6 Disappointments and Misunderstandings 1133
15.7 Common Misunderstandings with GNU C4++............... 1134
15.7.1 Declare and Define Static Members.................... 1134
15.7.2 Name Lookup, Templates, and
Accessing Members of Base Classes.......................... 1135

15.7.3 Temporaries May Vanish Before You Expect........... 1136

xiii

Xiv

15.7.4 Implicit Copy-Assignment for Virtual Bases............ 1137

15.8 Certain Changes We Don’t Want to Make 1138
15.9 Warning Messages and Error Messages 1141
16 Reporting Bugs............................. 1143
16.1 Have You Found a Bug?.........o i 1143
16.2 How and Where to Report Bugs.............. 1143
17 How To Get Help with GCC.............. 1145
18 Contributing to GCC Development....... 1147
Funding Free Software.......................... 1149
The GNU Project and GNU/Linux............ 1151
GNU General Public License................... 1153
GNU Free Documentation License............. 1165
ADDENDUM: How to use this License for your documents 1172
Contributors to GCC 1173
Appendix A Indices............................ 1191
Al Option Indexoooii 1191

A.2 Concept and Symbol Index oL 1221

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Fortran, Ada, D, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Mercury.
To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the COBOL compiler is gcobol, the Ada compiler is GNAT, and so on. When we
talk about compiling one of those languages, we might refer to that compiler by its own
name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C Language

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. The ANSI standard,
but not the ISO standard, also came with a Rationale document. This standard, in both its
forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. To
select this standard in GCC, use one of the options —ansi, -—std=c90 or —std=1509899: 1990;
to obtain all the diagnostics required by the standard, you should also specify -pedantic
(or -pedantic-errors if you want them to be errors rather than warnings). See Section 3.4
[Options Controlling C Dialect], page 45.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option -std=is09899:199409 (with,
as for other standard versions, -pedantic to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. (While in development, drafts of this standard version were
referred to as C9X.) GCC has substantially complete support for this standard version; see
https://gcc.gnu.org/projects/c-status.html for details. To select this standard, use
-std=c99 or -std=1s09899:1999.

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. (While in development, drafts of this standard version were referred to as
C1X.) GCC has substantially complete support for this standard, enabled with -std=c11 or
-std=1809899:2011. A version with corrections integrated was prepared in 2017 and pub-
lished in 2018 as ISO/TEC 9899:2018; it is known as C17 and is supported with -std=c17 or
-std=1809899:2017; the corrections are also applied with —std=c11, and the only difference
between the options is the value of __STDC_VERSION__.

A fifth version of the C standard, known as (23, was published in 2024 as ISO/IEC
9899:2024. (While in development, drafts of this standard version were referred to as C2X.)
Support for this is enabled with -std=c23 or -std=1s09899:2024.

A further version of the C standard, known as C2Y, is under development; experimental
and incomplete support for this is enabled with -std=c2y.

By default, GCC provides some extensions to the C language that, on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 601.

https://gcc.gnu.org/projects/c-status.html

4 Using the GNU Compiler Collection (GCC)

Some features that are part of the C99 standard are accepted as extensions in C90 mode,
and some features that are part of the Cl1 standard are accepted as extensions in C90
and C99 modes. Use of the -std options listed above disables these extensions where they
conflict with the C standard version selected. You may also select an extended version of
the C language explicitly with -std=gnu90 (for C90 with GNU extensions), -std=gnu99
(for C99 with GNU extensions), -std=gnull (for C11 with GNU extensions), -std=gnul7
(for C17 with GNU extensions) or -std=gnu23 (for C23 with GNU extensions).

The default, if no C language dialect options are given, is ~std=gnu23.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and
since C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types,
added in C99, are not required for freestanding implementations. Since C23, freestanding
implementations are required to support a larger range of library facilities, including some
functions from other headers.

The standard also defines two environments for programs, a freestanding environment,
required of all implementations and which may not have library facilities beyond those
required of freestanding implementations, where the handling of program startup and ter-
mination are implementation-defined; and a hosted environment, which is not required,
in which all the library facilities are provided and startup is through a function int main
(void) or int main (int, char *[]1). An OS kernel is an example of a program running
in a freestanding environment; a program using the facilities of an operating system is an
example of a program running in a hosted environment.

GCC aims towards being usable as the compiler for a conforming freestanding or hosted
implementation. By default, it acts as the compiler for a hosted implementation, defining _
_STDC_HOSTED__ as 1 and presuming that when the names of ISO C functions are used, they
have the semantics defined in the standard. To make it act as the compiler for a freestanding
environment, use the option -ffreestanding; it then defines __STDC_HOSTED__ to O and
does not make assumptions about the meanings of function names from the standard library,
with exceptions noted below. To build an OS kernel, you may well still need to make your
own arrangements for linking and startup. See Section 3.4 [Options Controlling C Dialect],
page 45.

GCC generally provides library facilities in headers that do not declare functions with
external linkage (which includes the headers required by C11 and before to be provided
by freestanding implementations), but not those included in other headers. Additionally,
GCC provides <stdatomic.h>, even though it declares some functions with external linkage
(which are provided in libatomic). On a few platforms, some of the headers not declaring
functions with external linkage are instead obtained from the OS’s C library, which may
mean that they lack support for features from more recent versions of the C standard that
are supported in GCC’s own versions of those headers. On some platforms, GCC provides
<tgmath.h> (but this implementation does not support interfaces added in C23).

To use the facilities of a hosted environment, and some of the facilities required in a

freestanding environment by C23, you need to find them elsewhere (for example, in the
GNU C library). See Section 15.5 [Standard Libraries|, page 1132.

Chapter 2: Language Standards Supported by GCC 5

Most of the compiler support routines used by GCC are present in libgcc, but there are
a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Contrary to the standards covering memcpy GCC expects the case
of an exact overlap of source and destination to work and not invoke undefined behavior.
Finally, if __builtin_trap is used, and the target does not implement the trap pattern,
then GCC emits a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see https://gcc.gnu.org/readings.html

2.2 C++ Language

GCC supports the original ISO C++ standard published in 1998, and the 2011, 2014, 2017
and mostly 2020 and 2024 revisions.

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select this
standard in GCC, use one of the options -ansi, -std=c++98, or -std=c++03; to obtain all
the diagnostics required by the standard, you should also specify -pedantic (or -pedantic-
errors if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, all of which have been implemented in GCC.
For details see https://gcc.gnu.org/projects/cxx-status.html#cxx1l. To select this
standard in GCC, use the option -std=c++11.

Another revised ISO C++ standard was published in 2014 as ISO/IEC 14882:2014, and is
referred to as C++14; before its publication it was sometimes referred to as C++1y. C++14
contains several further changes to the C++ language, all of which have been implemented
in GCC. For details see https://gcc.gnu.org/projects/cxx-status.html#cxx14. To
select this standard in GCC, use the option -std=c++14.

The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was published.
This is referred to as C++17, and before publication was often referred to as C++1z. GCC
supports all the changes in that specification. For further details see https://gcc.gnu.

org/projects/cxx-status.html#cxx17. Use the option -std=c++17 to select this variant
of C++.

Another revised ISO C++ standard was published in 2020 as ISO/IEC 14882:2020, and
is referred to as C++20; before its publication it was sometimes referred to as C++2a. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx20. To select this standard in GCC, use
the option -std=c++20.

Yet another revised ISO C++ standard was published in 2024 as ISO/IEC 14882:2024, and
is referred to as C++23; before its publication it was sometimes referred to as C++2b. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx23. To select this standard in GCC, use
the option -std=c++23.

https://gcc.gnu.org/readings.html
https://gcc.gnu.org/projects/cxx-status.html#cxx11
https://gcc.gnu.org/projects/cxx-status.html#cxx14
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx23
https://gcc.gnu.org/projects/cxx-status.html#cxx23

6 Using the GNU Compiler Collection (GCC)

More information about the C++ standards is available on the ISO C++ committee’s web
site at https://www.open-std.org/jtcl/sc22/wg21/.

To obtain all the diagnostics required by any of the standard versions described above you
should specify -pedantic or -pedantic-errors, otherwise GCC will allow some non-ISO
C++ features as extensions. See Section 3.9 [Warning Options|, page 100.

By default, GCC also provides some additional extensions to the C++ language that
on rare occasions conflict with the C++ standard. See Section 3.5 [C++ Dialect Options],
page 52. Use of the -std options listed above disables these extensions where they they
conflict with the C++ standard version selected. You may also select an extended version
of the C++ language explicitly with -std=gnu++98 (for C++98 with GNU extensions), or
-std=gnu++11 (for C++11 with GNU extensions), or -std=gnu++14 (for C++14 with GNU
extensions), or -std=gnu++17 (for C++17 with GNU extensions), or -std=gnu++20 (for
C++20 with GNU extensions), or ~std=gnu++23 (for C++23 with GNU extensions).

The default, if no C++ language dialect options are given, is —~std=gnu++17.

2.3 Objective-C and Objective-C++ Languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @optional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options -fgnu-runtime
and -fnext-runtime allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The author-
itative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and
the Objective-C Language” (https://www.gnustep.org/resources/documentation/
ObjectivCBook.pdf).

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with
the option -fobjc-exceptions. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enu-
meration (not available in Objective-C++), attributes for methods (such as deprecated,
noreturn, sentinel, format), the unused attribute for method arguments, the @package
keyword for instance variables and the @optional and @required keywords in protocols.
You can disable all these Objective-C 2.0 language extensions with the option -fobjc-
std=objcl, which causes the compiler to recognize the same Objective-C language syntax
recognized by GCC 4.0, and to produce an error if one of the new features is used.

https://www.open-std.org/jtc1/sc22/wg21/
https://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
https://www.gnustep.org/resources/documentation/ObjectivCBook.pdf

Chapter 2: Language Standards Supported by GCC 7

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e https://developer.apple.com/library/archive/documentation/Cocoa/
Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

For more information concerning the history of Objective-C that is available online, see
https://gcc.gnu.org/readings.html

2.4 COBOL Language

As of the GCC 15 release, GCC supports the ISO COBOL language standard (ISO/IEC
1989:2023). It includes some support for compatibility with other COBOL compilers via
the -dialect option.

2.5 Go Language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
https://go.dev/doc/gol.

2.6 D language

GCC supports the D 2.0 programming language. The D language itself is currently de-
fined by its reference implementation and supporting language specification, described at
https://dlang.org/spec/spec.html.

2.7 Modula-2 language

GCC supports the Modula-2 language and is compliant with the PIM2, PIM3, PIM4 and
ISO dialects. Also implemented are a complete set of free ISO libraries. It also contains a
collection of PIM libraries and some Logitech compatible libraries.

For more information on Modula-2 see https://gcc.gnu.org/readings.html. The on-
line manual is available at https://gcc.gnu.org/onlinedocs/gm2/index.html.

2.8 References for Other Languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://gcc.gnu.org/readings.html
https://go.dev/doc/go1
https://dlang.org/spec/spec.html
https://gcc.gnu.org/readings.html
https://gcc.gnu.org/onlinedocs/gm2/index.html

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the -c option says not to run the linker. Then the output consists of object files output by
the assembler. See Section 3.2 [Options Controlling the Kind of Output], page 34.

Other options are passed on to one or more stages of processing. Some options control
the preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

The usual way to run GCC is to run the executable called gcc, or machine-gcc when
cross-compiling, or machine-gcc-version to run a specific version of GCC. When you
compile C++ programs, you should invoke GCC as g++ instead. See Section 3.3 [Compiling
C++ Programs], page 44, for information about the differences in behavior between gcc and
g++ when compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: -dv is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify -L more than once, the directories are searched in the order specified. Also, the
placement of the -1 option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example, -fmove-
loop-invariants, -Wformat and so on. Most of these have both positive and negative
forms; the negative form of -ffoo is ~fno-foo. This manual documents only one of these
two forms, whichever one is not the default.

Some options take one or more arguments typically separated either by a space or by
the equals sign (‘=) from the option name. Unless documented otherwise, an argument
can be either numeric or a string. Numeric arguments must typically be small unsigned
decimal or hexadecimal integers. Hexadecimal arguments must begin with the ‘Ox’ prefix.
Arguments to options that specify a size threshold of some sort may be arbitrarily large
decimal or hexadecimal integers followed by a byte size suffix designating a multiple of bytes
such as kB and KiB for kilobyte and kibibyte, respectively, MB and MiB for megabyte and
mebibyte, GB and GiB for gigabyte and gigibyte, and so on. Such arguments are designated
by byte-size in the following text. Refer to the NIST, IEC, and other relevant national and
international standards for the full listing and explanation of the binary and decimal byte
size prefixes.

See Section A.1 [Option Index], page 1191, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

10 Using the GNU Compiler Collection (GCC)

Owerall Options
See Section 3.2 [Options Controlling the Kind of Output], page 34.

-¢c -S -E -o file
-dumpbase dumpbase -dumpbase-ext auxdropsuf
-dumpdir dumppfx -x language
-v -### --help[=class[,...]] --target-help --version
-pass-exit-codes -pipe -specs=file -wrapper
@file -ffile-prefix-map=old=new -fcanon-prefix-map
-fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fada-spec-parent=unit
-fdump-go-spec=file

--assemble --compile --dumpbase dumpbase
--dumpbase-ext auxdropsuf --dumpdir dumppfx
--language=language --output=file --pass-exit-codes
--pipe --preprocess --specs=file --verbose

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 45.

-ansi -std=standard -aux-info filename

-fno-asm

-fno-builtin -fno-builtin-function -fcond-mismatch
-ffreestanding -fgimple -fgnu-tm -fgnu89-inline -fhosted
-flax-vector-conversions -fms-extensions
-fpermitted-flt-eval-methods=standard

-fplan9-extensions -fsigned-bitfields -funsigned-bitfields
-fsigned-char -funsigned-char -fstrict-flex-arrays[=n]
-fsso-struct=endianness --ansi

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 52.

-fabi-compat-version=n -fabi-version=n
-fno-access-control -faligned-new=[n]
-fno-assume-sane-operators-new-delete
-fchar8_t -fcheck-new
-fconcepts -fconcepts-diagnostics-depth=n
-fconstexpr-depth=n -fconstexpr-cache-depth=n
-fconstexpr-loop-limit=n -fconstexpr-ops-limit=n
-fcontracts -fcontract-assumption-mode=[on|off
-fcontract-build-level=[off|default|audit]
-fcontract-continuation-mode=[on|off
-fcontract-mode=[on|off]
-fcontract-role=name:default,audit,axiom
-fcontract-semantic=[default|audit|axiom|: semantic
-fcontract-strict-declarations=[on|off]
-fcoroutines -fdiagnostics-all-candidates
-fno-elide-constructors
-fno-enforce-eh-specs
-fext-numeric-literals
-fno-gnu-keywords
-fno-immediate-escalation
-fno-implement-inlines
-fimplicit-constexpr
-fno-implicit-inline-templates
-fno-implicit-templates
-fmodule-header[=kind]
-fmodule-implicit-inline
-fno-module-lazy
-fmodule-mapper=specification

Chapter 3: GCC Command Options 11

-fmodule-only

-fmodules

-fms-extensions

-fnew-inheriting-ctors

-fnew-ttp-matching

-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags

-fno-pretty-templates -frange-for-ext-temps

-fno-rtti -fsized-deallocation

-fstrict-enums -fstrong-eval-order[=kind
-ftemplate-backtrace-limit=n

-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-use-cxa-get-exception-ptr
-fno-weak -nostdinc++

-fvisibility-inlines-hidden

-fvisibility-ms-compat

-flang-info-include-translate[=header]
-flang-info-include-translate-not

-flang-info-module-cmi[=module]

-stdlib=1ibstdc++,libc++

-Wabbreviated-auto-in-template-arg

-Wabi-tag -Waligned-new[=kind]

-Wcatch-value -Wcatch-value=n

-Wno-class-conversion -Wclass-memaccess

-Wcomma-subscript -Wconditionally-supported

-Wno-conversion-null -Wctad-maybe-unsupported

-Wctor-dtor-privacy -Wdangling-reference
-Wno-defaulted-function-deleted

-Wno-delete-incomplete

-Wdelete-non-virtual-dtor -Wno-deprecated-array-compare
-Wdeprecated-copy -Wdeprecated-copy-dtor
-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion
-Wno-deprecated-literal-operator -Wdeprecated-variadic-comma-omission
-Weffc++ -Wno-elaborated-enum-base

-Wno-exceptions -Wno-expose-global-module-tu-local -Wno-external-tu-local
-Wextra-semi -Wno-global-module -Wno-inaccessible-base
-Wno-inherited-variadic-ctor -Wno-init-list-lifetime
-Winvalid-constexpr -Winvalid-imported-macros

-Wno-invalid-offsetof -Wno-literal-suffix

-Wmismatched-new-delete -Wmismatched-tags

-Wmultiple-inheritance -Wnamespaces -Wnarrowing

-Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor

-Wpessimizing-move -Wno-placement-new -Wplacement-new=n
-Wrange-loop-construct -Wredundant-move -Wredundant-tags

-Wreorder -Wregister -Wno-sfinae-incomplete

-Wstrict-null-sentinel -Wno-subobject-linkage -Wtemplates
-Wno-non-c-typedef-for-linkage -Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions -Wself-move -Wsign-promo
-Wsized-deallocation -Wsuggest-final-methods

-Wsuggest-final-types -Wsuggest-override -Wno-template-body
-Wno-template-id-cdtor -Wtemplate-names-tu-local

-Wno-terminate -Wno-vexing-parse -Wvirtual-inheritance
-Wno-virtual-move-assign -Wvolatile

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 82.

-fconstant-string-class=class-name

12 Using the GNU Compiler Collection (GCC)

-fgnu-runtime -fnext-runtime

-fno-nil-receivers

-fobjc-abi-version=n

-fobjc-call-cxx-cdtors

-fobjc-direct-dispatch

-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck

-fobjc-std=objcl

-fno-local-ivars
-fivar-visibility=[public|protected|private|package]
-freplace-objc-classes

-fzero-link

-gen-decls

-Wassign-intercept -Wno-property-assign-default
-Wno-protocol -Wobjc-root-class -Wselector
-Wstrict-selector-match

-Wundeclared-selector

OpenMP and OpenACC Options
See Section 3.7 [Options Controlling OpenMP and OpenACC], page 86.

-foffload=arg -foffload-options=arg
-fopenacc -fopenacc-dim=geom
-fopenmp -fopenmp-simd -fopenmp-target-simd-clone[=device-type]

Diagnostic Message Formatting Options
See Section 3.8 [Options to Control Diagnostic Messages Formatting], page 88.

-fmessage-length=n

-fdiagnostics-plain-output
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics-color=[auto|never|always]
-fdiagnostics-urls=[auto|never|always
-fdiagnostics-format=[text|sarif-stderr|sarif-file
-fdiagnostics-add-output=DIAGNOSTICS-OUTPUT-SPEC
-fdiagnostics-set-output=DIAGNOSTICS-OUTPUT-SPEC
-fno-diagnostics-json-formatting
-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fno-diagnostics-show-event-links
-fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers
-fno-diagnostics-show-cwe

-fno-diagnostics-show-rules
-fno-diagnostics-show-highlight-colors
-fno-diagnostics-show-nesting
-fno-diagnostics-show-nesting-locations
-fdiagnostics-show-nesting-levels
-fdiagnostics-minimum-margin-width=width
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics-show-template-tree -fno-elide-type
-fdiagnostics-path-format=[none|separate-events|inline-events]
-fdiagnostics-show-path-depths

-fno-show-column

-fdiagnostics-column-unit=[display|byte]
-fdiagnostics-column-origin=origin
-fdiagnostics-escape-format=|[unicode |bytes]
-fdiagnostics-text-art-charset=|nonelascii|unicode|emoji]
-fdiagnostics-show-context|[=depth]

Chapter 3: GCC Command Options

Warning Options
See Section 3.9 [Options to Request or Suppress Warnings|, page 100.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors -fpermissive

-w -Wextra -Wall -Wabi=n

-Waddress -Wno-address-of-packed-member -Waggregate-return
-Walloc-size -Walloc-size-larger-than=byte-size -Walloc-zero
-Walloca -Walloca-larger-than=byte-size -Wauto-profile
-Wno-aggressive-loop-optimizations

-Warith-conversion

-Warray-bounds -Warray-bounds=n -Warray-compare
-Warray-parameter -Warray-parameter=n

-Wno-attributes -Wattribute-alias=n -Wno-attribute-alias
-Wno-attribute-warning

-Wbidi-chars=[none|unpaired|any|ucn]

-Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch

-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-cll-compat
-Wcll-c23-compat -Wc23-c2y-compat

-Wc++-compat -Wc++ll-compat -Wc++14-compat -Wc++17-compat
-Wc++20-compat -Wc++26-compat

-Wno-c++11-extensions -Wno-c++14-extensions -Wno-c++17-extensions
-Wno-c++20-extensions -Wno-c++23-extensions
-Wcalloc-transposed-args -Wcannot-profile

-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts

-Wclobbered -Wcomment

-Wcompare-distinct-pointer-types

-Wno-complain-wrong-lang

-Wconversion -Wno-coverage-mismatch -Wno-cpp

-Wdangling-else -Wdangling-pointer -Wdangling-pointer=n
-Wdate-time

-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wdisabled-optimization

-Wno-discarded-array-qualifiers -Wno-discarded-qualifiers
-Wno-div-by-zero -Wdouble-promotion

-Wduplicated-branches -Wduplicated-cond

-Wempty-body -Wno-endif-labels -Wenum-compare -Wenum-conversion
-Wenum-int-mismatch

-Werror -Werror=* -Wexpansion-to-defined -Wfatal-errors
-Wflex-array-member-not-at-end

-Wfloat-conversion -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-diag -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=n

-Wformat-security -Wformat-signedness -Wformat-truncation=n
-Wformat-y2k -Wframe-address

-Wframe-larger-than=byte-size -Wno-free-nonheap-object
-Wheader-guard -Wno-if-not-aligned -Wno-ignored-attributes
-Wignored-qualifiers -Wno-incompatible-pointer-types -Whardened
-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=n
-Wno-implicit-function-declaration -Wno-implicit-int
-Winfinite-recursion

-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Wno-invalid-memory-model

-Winvalid-pch -Winvalid-utf8 -Wno-unicode -Wjump-misses-init
-Wkeyword-macro

-Wlarger-than=byte-size -Wleading-whitespace=kind
-Wlogical-not-parentheses -Wlogical-op

13

14

Using the GNU Compiler Collection (GCC)

-Wlong-long -Wno-lto-type-mismatch
-Wmemset-elt-size -Wmemset-transpos
-Wmisleading-indentation -Wmissing-
-Wmissing-field-initializers -Wmiss
-Wmissing-include-dirs -Wmissing-no
-Wmaybe-musttail-local-addr -Wno-mi
-Wno-multichar -Wmultistatement-mac
-Wnormalized=[none|id|nfc|nfkc|
-Wnull-dereference -Wno-odr
-Wopenacc-parallelism

-Wopenmp -Wopenmp-simd

-Wno-overflow -Woverlength-strings
-Wpacked -Wno-packed-bitfield-compa
-Wparentheses -Wno-pedantic-ms-form
-Wpointer-arith -Wno-pointer-compar
-Wno-pragmas -Wno-pragma-once-outsi
-Wno-psabi

-Wredundant-decls -Wrestrict
-Wno-return-local-addr -Wreturn-typ
-Wno-scalar-storage-order -Wsequenc
-Wshadow -Wshadow=global -Wshadow=
-Wno-shadow-ivar
-Wno-shift-count-negative -Wno-shif
-Wno-shift-overflow -Wshift-overflo
-Wsign-compare -Wsign-conversion
-Wno-sizeof-array-argument
-Wsizeof-array-div
-Wsizeof-pointer-div -Wsizeof-point
-Wstack-protector -Wstack-usage=byt
-Wstrict-aliasing=n -Wstrict-overfl
-Wstring-compare
-Wno-stringop-overflow -Wno-stringop
-Wno-stringop-truncation -Wstrict-f
-Wsuggest-attribute=attribute-name
-Wswitch -Wno-switch-bool -Wswitch
-Wno-switch-outside-range -Wno-swit

-Wmain -Wmaybe-uninitialized
ed-args

attributes -Wmissing-braces
ing-format-attribute

return -Wmusttail-local-addr
ssing-profile

ros -Wnonnull -Wnonnull-compare

-Wno-override-init-side-effects
t -Wpacked-not-aligned -Wpadded
at
e -Wno-pointer-to-int-cast
de-header -Wno-prio-ctor-dtor

e
e-point
local -Wshadow=compatible-local

t-count-overflow -Wshift-negative-valuell
w=n

er-memaccess
e-size -Wstrict-aliasing
ow -Wstrict-overflow=n

-overread
lex-arrays

-default -Wswitch-enum
ch-unreachable -Wsync-nand

-Wsystem-headers -Wtautological-compare -Wtrailing-whitespace

-Wtrailing-whitespace=kind -Wtrampo
-Wtrivial-auto-var-init -Wno-tsan
-Wuninitialized -Wunknown-pragmas
-Wunsuffixed-float-constants
-Wunterminated-string-initialization
-Wunused

-Wunused-but-set-parameter -Wunused

lines -Wtrigraphs
-Wtype-limits -Wundef

-but-set-parameter=n

-Wunused-but-set-variable -Wunused-but-set-variable=n
-Wunused-const-variable -Wunused-const-variable=n

-Wunused-function -Wunused-label -
-Wunused-macros

-Wunused-parameter -Wno-unused-resu
-Wunused-value -Wunused-variable
-Wuse-after-free -Wuse-after-free=n
-Wno-varargs -Wvariadic-macros
-Wvector-operation-performance

-Wvla -Wvla-larger-than=byte-size
-Wvolatile-register-var -Wwrite-str
-Wno-xor-used-as—-pow
-Wzero-as-null-pointer-constant
-Wzero-length-bounds

Wunused-local-typedefs

1t

-Wuseless-cast

-Wno-vla-larger-than
ings

Chapter 3: GCC Command Options

--all-warnings --extra-warnings --no-warnings
--pedantic --pedantic-errors

Static Analyzer Options

-fanalyzer

-fanalyzer-call-summaries
-fanalyzer-checker=name
-fno-analyzer-feasibility
-fanalyzer-fine-grained
-fanalyzer-show-events-in-system-headers
-fno-analyzer-state-merge
-fno-analyzer-state-purge
-fno-analyzer-suppress-followups
-fanalyzer-transitivity
-fno-analyzer-undo-inlining
-fanalyzer-verbose-edges
-fanalyzer-verbose-state-changes
-fanalyzer-verbosity=level
-fdump-analyzer
-fdump-analyzer-callgraph
-fdump-analyzer-exploded-graph
-fdump-analyzer-exploded-nodes
-fdump-analyzer-exploded-nodes-2
-fdump-analyzer-exploded-nodes-3
-fdump-analyzer-exploded-paths
-fdump-analyzer-feasibility
-fdump-analyzer-infinite-loop
-fdump-analyzer-json
-fdump-analyzer-state-purge
-fdump-analyzer-stderr
-fdump-analyzer-supergraph
-fdump-analyzer-untracked
-Wno-analyzer-double-fclose
-Wno-analyzer-double-free
-Wno-analyzer-exposure-through-output-file
-Wno-analyzer-exposure-through-uninit-copy
-Wno-analyzer-fd-access-mode-mismatch
-Wno-analyzer-fd-double-close
-Wno-analyzer-fd-leak
-Wno-analyzer-fd-phase-mismatch
-Wno-analyzer-fd-type-mismatch
-Wno-analyzer-fd-use-after-close
-Wno-analyzer-fd-use-without-check
-Wno-analyzer-file-leak
-Wno-analyzer-free-of-non-heap
-Wno-analyzer-imprecise-fp-arithmetic
-Wno-analyzer-infinite-loop
-Wno-analyzer-infinite-recursion
-Wno-analyzer-jump-through-null
-Wno-analyzer-malloc-leak
-Wno-analyzer-mismatching-deallocation
-Wno-analyzer-null-argument
-Wno-analyzer-null-dereference
-Wno-analyzer-out-of-bounds
-Wno-analyzer-overlapping-buffers
-Wno-analyzer-possible-null-argument
-Wno-analyzer-possible-null-dereference
-Wno-analyzer-putenv-of-auto-var

15

16 Using the GNU Compiler Collection (GCC)

-Wno-analyzer-shift-count-negative
-Wno-analyzer-shift-count-overflow
-Wno-analyzer-stale-setjmp-buffer
-Wno-analyzer-tainted-allocation-size
-Wno-analyzer-tainted-assertion
-Wno-analyzer-tainted-array-index
-Wno-analyzer-tainted-divisor
-Wno-analyzer-tainted-offset
-Wno-analyzer-tainted-size
-Wno-analyzer-throw-of-unexpected-type
-Wanalyzer-symbol-too-complex
-Wanalyzer-too-complex
-Wno-analyzer-undefined-behavior-ptrdiff
-Wno-analyzer-undefined-behavior-strtok
-Wno-analyzer-unsafe-call-within-signal-handler
-Wno-analyzer-use-after-free
-Wno-analyzer-use-of-pointer-in-stale-stack-frame
-Wno-analyzer-use-of-uninitialized-value
-Wno-analyzer-va-arg-type-mismatch
-Wno-analyzer-va-list-exhausted
-Wno-analyzer-va-list-leak
-Wno-analyzer-va-list-use-after-va-end
-Wno-analyzer-write-to-const
-Wno-analyzer-write-to-string-literal

C and Objective-C-only Warning Options
-Wbad-function-cast -Wdeprecated-non-prototype -Wfree-labels
-Wmissing-declarations -Wmissing-parameter-name -Wmissing-parameter-type
-Wdeclaration-missing-parameter-type -Wmissing-prototypes
-Wmissing-variable-declarations
-Wmultiple-parameter-fwd-decl-lists
-Wnested-externs -Wold-style-declaration
-Wold-style-definition -Wstrict-prototypes -Wtraditional
-Wtraditional-conversion -Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.11 [Options for Debugging Your Program|, page 187.

-g -glevel -gdwarf -gdwarf-version

-gbtf -gctf -gctflevel

-gprune-btf -gno-prune-btf

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstrict-dwarf -gno-strict-dwarf

-gas—-loc-support -gno-as-loc-support
-gas—-locview-support -gno-as-locview-support

-gcodeview

-gcolumn-info -gno-column-info -gdwarf32 -gdwarf64
-gstatement-frontiers -gno-statement-frontiers
-gvariable-location-views -gno-variable-location-views
-ginternal-reset-location-views -gno-internal-reset-location-views
-ginline-points -gno-inline-points

-gvms -gz[=type]

-gsplit-dwarf -gdescribe-dies -gno-describe-dies
-fdebug-prefix-map=old=new -fdebug-types-section
-fno-eliminate-unused-debug-types
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]
-fno-eliminate-unused-debug-symbols -femit-class-debug-always
-fno-merge-debug-strings -fno-dwarf2-cfi-asm

Chapter 3: GCC Command Options 17

-fvar-tracking -fvar-tracking-assignments -fvar-tracking-uninit
--debug

Optimization Options
See Section 3.12 [Options that Control Optimization|, page 194.

-faggressive-loop-optimizations

-falign-functions[=n[:m: [n2[:m2]]1]]

-falign-jumps[=n[:m: [n2[:m2]]1]]

-falign-labels[=n[:m: [n2[:m2]]1]]

-falign-loops[=n[:m: [n2[:m2]111]

-fmin-function-alignment=[n]

-fno-allocation-dce -fallow-store-data-races

-fassociative-math -fauto-profile -fauto-profile[=path]
-fauto-profile-inlining -fauto-inc-dec -fbranch-probabilities
-fcaller-saves

-fcombine-stack-adjustments -fconserve-stack

-ffold-mem-offsets

-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range -fcx-method

-fdata-sections -fdce -fdelayed-branch
-fdelete-null-pointer-checks -fdep-fusion -fdevirtualize
-fdevirtualize-speculatively -fdevirtualize-at-ltrans -fdse
-fearly-inlining -fexcess-precision=style

-fexpensive-optimizations -fext-dce

-ffast-math -ffat-lto-objects -ffinite-loops

-ffinite-math-only -ffloat-store

-fforward-propagate -ffp-contract=style -ffp-int-builtin-inexact
-ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-atomics -finline-functions -finline-functions-called-once
-finline-limit=n -finline-small-functions

-finline-stringops|=£n]

-fipa-modref -fipa-cp -fipa-cp-clone

-fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const
-fipa-reference -fipa-reference-addressable -fipa-reorder-for-locality
-fipa-sra -fipa-stack-alignment

-fipa-icf -fipa-icf-functions -fipa-icf-variables
-fira-algorithm=algorithm

-flate-combine-instructions -flifetime-dse -flive-patching=Ilevel
-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots

-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
-fivopts -fkeep-inline-functions -fkeep-static-functions
-fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage
-floop-block -floop-interchange -floop-strip-mine
-floop—unroll-and-jam -floop-nest-optimize

-floop-parallelize-all -flra-remat -flto -flto-compression-level
-flto-partition=alg -flto-incremental=path
-flto-incremental-cache-size=n -fmalloc-dce -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fmove-loop-stores -fno-branch-count-reg
-fno-defer-pop -fno-function-cse

-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
-fno-peephole2 -fno-printf-return-value -fno-sched-interblock

18 Using the GNU Compiler Collection (GCC)

-fno-sched-spec -fno-signed-zeros

-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-crc -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays

-fprofile-correction

-fprofile-use -fprofile-use=path -fprofile-partial-training
-fprofile-values -fprofile-reorder-functions

-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-algorithm=algorithm

-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsave-optimization-record

-fsched2-use-superblocks -fsched-pressure

-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-fusion

-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling?

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
-fsignaling-nans

-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
-fsplit-paths

-fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt
-fstdarg-opt -fstore-merging -fstrict-aliasing -fipa-strict-aliasing
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-coalesce-vars
-ftree-copy-prop -ftree-cselim -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
-ftree-loop-if-convert -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize

-ftree-parallelize-loops[=n] -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge

-ftree-ter -ftree-vectorize -ftree-vrp -ftrivial-auto-var-init
-funconstrained-commons -funit-at-a-time -funroll-all-loops
-funroll-loops -funsafe-math-optimizations -funswitch-loops

-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
-fweb -fwhole-program -fwpa -fuse-linker-plugin -fzero-call-used-regs
--param name=value

-0 -00 -01 -02 -03 -0s -0Ofast -0g -0z --optimize

Program Instrumentation Options
See Section 3.13 [Program Instrumentation Options], page 275.

-p -pg -fprofile-arcs -coverage -ftest-coverage
-fcondition-coverage

-fpath-coverage

-fprofile -fprofile-abs-path

-fprofile-dir=path -fprofile-generate -fprofile-generate=path
-fprofile-info-section -fprofile-info-section=name
-fprofile-note=path -fprofile-prefix-path=path
-fprofile-update=method -fprofile-filter-files=regex

Chapter 3: GCC Command Options

-fprofile-exclude-files=regex
-fprofile-reproducible=[multithreaded|parallel-runs|serial]
-fsanitize=style -fsanitize-recover -fsanitize-recover=style
-fsanitize-trap -fsanitize-trap=style
-fasan-shadow-offset=number -fsanitize-sections=s1,s2,...
-fsanitize-undefined-trap-on-error -fbounds-check -fcf-protection
-fcf-protection=[full|branch|return|none|check
-fharden-compares -fharden-conditional-branches -fhardened
-fharden-control-flow-redundancy -fhardcfr-skip-leaf
-fhardcfr-check-exceptions -fhardcfr-check-returning-calls
-fhardcfr-check-noreturn-calls=[always |no-xthrow|nothrow|never
-fstack-protector -fstack-protector-all -fstack-protector-strong
-fstack-protector-explicit -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fstrub=disable -fstrub=strict -fstrub=relaxed

-fstrub=all -fstrub=at-calls -fstrub=internal
-fvtable-verify=[std|preinit|none]

-fvtv-counts -fvtv-debug

-finstrument-functions -finstrument-functions-once
-finstrument-functions-exclude-function-list=sym,sym,...
—finstrument-functions-exclude-file-list=file,file,...
-fprofile-prefix-map=old=new

-fpatchable-function-entry=N[, ¥

--coverage —-profile

Preprocessor Options
See Section 3.14 [Options Controlling the Preprocessor|, page 297.

-C -CC -Dmacro[=defn]

-dD -dI -dM -dN -dU

-fdebug-cpp -fdirectives-only -fdollars-in-identifiers
-fexec-charset=charset -fextended-identifiers
-finput-charset=charset

-fmacro-prefix-map=old=new -fmax-include-depth=depth
-fno-canonical-system-headers -fpch-deps -fpch-preprocess
-fpreprocessed -ftabstop=width -ftrack-macro-expansion
-fwide-exec-charset=charset -fworking-directory

-H -imacros file -include file

-M -MD -MF -MG -MM -MMD -MP -MQ -MT -Mno-modules
-no-integrated-cpp -P -pthread -remap

-traditional -traditional-cpp -trigraphs

-Umacro -undef

-Wp,option -Xpreprocessor option

--comments --comments-in-macros

--define-macro=macro[=defn

--dependencies --dump=letters

--imacros=file --include=file

--no-integrated-cpp --no-line-commands
--print-missing-file-dependencies

--traditional --traditional-cpp --trigraphs --trace-includes
--undefine-macro=macro

--user-dependencies --write-dependencies --write-user-dependencies

Assembler Options
See Section 3.15 [Passing Options to the Assembler|, page 305.

-Wa,option -Xassembler option
--for-assembler=option

19

20

Linker Options

Using the GNU Compiler Collection (GCC)

See Section 3.16 [Options for Linking], page 305.

object-file-name
-nostartfiles -n
-e entry

-pie -pthread
-s -static

-r
-static-pie

-flink-libatomic -fuse-ld=linker -llibrary
odefaultlibs -nolibc -nostdlib -nostdlib++
-rdynamic

-static-libgcc -static-libstdc++

-static-libasan -static-libtsan -static-liblsan -static-libubsan
-shared -shared-libgcc -symbolic

-T script -Wl,option -Xlinker option

-u symbol

-Tbss=addr -Tdata=addr -Ttext=addr

-N -n -t -Z -z keyword

-—entry=entry

--force-link=symbol

--pie --static

Directory Options

for-linker=option
--no-standard-library
--static-pie --symbolic

See Section 3.17 [Options for Directory Search], page 312.

-Bprefix -Idir
-idirafter dir
-imacros file

-iplugindir=dir
-iquote dir -isy
-iwithprefix dir
-Ldir -no-canoni
-nostdinc -nostd
—-—-embed-dir=dir

—-include-barrier

I

-imultilib dir

-iprefix file

sroot dir -isystem dir
-iwithprefixbefore dir

cal-prefixes --no-sysroot-suffix

inc++

--embed-directory=dir
--include-directory=dir

--include-directory-after=dir
--include-with-prefix=prefix

--include-with-prefix-before=p:
--no-canonical-prefixes --no-
--prefix=prefix --sysroot=dir

Code Generation Options
See Section 3.18 [Options for Code

--include-prefix=prefix
--include-with-prefix-after=prefix
refix
standard-includes

Generation Conventions|, page 315.

-fcall-saved-reg

-fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions
-fasynchronous-unwind-tables
-fno-gnu-unique
-finhibit-size-directive -fcommon
-fpcc-struct-return -fpic -fPIC
-fno-jump-tables -fno-bit-tests
-frecord-gcc-switches
-freg-struct-return -fshort-enums
-fverbose-asm -fpack-struct[=n]
-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrampolines -ftrampoline-impl=[stack|heap]
-ftrapv -fwrapv

-fvisibility=[default|internal |hidden|protected
-fstrict-volatile-bitfields -fsync-libcalls
-fzero-init-padding-bits=value

-Qy -Qn

-fno-ident

-fpie -fPIE -fno-plt

-fshort-wchar

—funwind-tables

Chapter 3: GCC Command Options 21

Developer Options
See Section 3.19 [GCC Developer Options|, page 326.

-dletters -dumpspecs -dumpmachine -dumpversion
-dumpfullversion -fcallgraph-info[=su,da

-fchecking -fchecking=n

-fdbg-cnt-list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-1list
-fdisable-tree-pass_name
-fdisable-tree-pass—-name=range-list

-fdump-debug -fdump-earlydebug

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-final-insns[=file

-fdump-internal-locations

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-lang-all

-fdump-lang-switch

-fdump-lang-switch-options
-fdump-lang-switch-options=filename

-fdump-passes

-fdump-rtl-pass -fdump-rtl-pass=filename
-fdump-statistics

-fdump-tree-all

-fdump-tree-switch

-fdump-tree-switch-options
-fdump-tree-switch-options=filename

-fcompare-debug[=opts| -fcompare-debug-second
-fenable-kind-pass

-fenable-kind-pass=range-list

-fira-verbose=n

-flto-report -flto-report-wpa -fmem-report-wpa
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
-fopt-info -fopt-info-options[=file]

-fmultiflags -fprofile-report

-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstats -fstack-usage -ftime-report -ftime-report-details
-fvar-tracking-assignments-toggle -gtoggle
-print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-multiarch

-print-prog-name=program -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]
--dump=Iletters

--print-file-name=library --print-libgcc-file-file-name
--print-multi-directory --print-multi-lib --print-multi-os-directory
--print-multiarch --print-prog-name=program

--print-search-dirs --print-sysroot --print-sysroot-headers-suffix

--save-temps

Machine-Dependent Options
See Section 3.20 [Machine-Dependent Options], page 345.

AArch64 Options (Section 3.20.1 [AArch64 Options|, page 345)

-mabi=name -mbig-endian -mlittle-endian

22

Using the GNU Compiler Collection (GCC)

-menable-sysreg-checking

-mgeneral-regs-only

-mcmodel=tiny -mcmodel=small -mcmodel=large

-mstrict-align -mno-strict-align

-momit-leaf-frame-pointer

-mtls-dialect=desc -mtls-dialect=traditional

-mtls-size=size

-mfix-cortex-ab3-835769 -mfix-cortex-ab3-843419
-mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
-mpc-relative-literal-loads

-msign-return-address=scope

-mbranch-protection=features

-mharden-sls=opts

-march=name -mcpu=name -mtune=name

-moverride=string -mverbose-cost-dump
-mstack-protector-guard=guard -mstack-protector-guard-reg=sysreg
-mstack-protector-guard-offset=offset -mtrack-speculation
-moutline-atomics -mearly-ldp-fusion -mlate-ldp-fusion
-Wexperimental-fmv-target

Adapteva Epiphany Options (Section 3.20.2 [Adapteva Epiphany Options],
page 356)

-mhalf-reg-file -mprefer-short-insn-regs

-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf

-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num

-mround-nearest -mlong-calls -mshort-calls -msmalll6

-mfp-mode=mode -mvect-double -max-vect-align=num

-msplit-vecmove-early -mlreg-reg

AMD GCN Options (Section 3.20.3 [AMD GCN Options|, page 358)

-march=gpu -mtune=gpu -mstack-size=bytes
-Wopenacc-dims

ARC Options (Section 3.20.4 [ARC Options|, page 361)

-mbarrel-shifter -mjli-always

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr

-mea -mno-mpy -mmul32x16 -mmul64 -matomic

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mlong-calls -mmedium-calls -msdata -mirqg-ctrl-saved

-mrgf-banked-regs -mlpc-width=width -G num

-mvolatile-cache -mtp-regno=regno

-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact -mlra-priority-noncompact -mmillicode
-mmixed-code -mg-class -mRcq -mRcw -msize-level=Ilevel

-mtune=cpu -mmultcost=num -mcode-density-frame
-munalign-prob-threshold=probability -mmpy-option=multo

-mdiv-rem -mcode-density -mll64 -mfpu=fpu -mrfl6 -mbranch-index

ARM Options (Section 3.20.5 [ARM Options], page 370)

-mapcs—-frame -mno-apcs-frame

-mabi=name

-mapcs-stack-check -mno-apcs-stack-check
-mapcs-reentrant -mno-apcs-reentrant
-mgeneral-regs-only

Chapter 3: GCC Command Options 23

-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian

-mbe8 -mbe32

-mfloat-abi=name

-mfpl6-format=name

-mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mtune=name -mprint-tune-info
-mstructure-size-boundary=n
-mabort-on-noreturn

-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport
-mpoke-function-name

-mthumb -marm -mflip-thumb
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations

-mfix-cortex-m3-1ldrd
-mfix-cortex-ab7-aes-1742098
-mfix-cortex-a72-aes-1655431
-munaligned-access

-mneon-for-64bits

-mslow-flash-data

-masm-syntax-unified

-mrestrict-it

-mverbose-cost-dump

-mpure-code

-mcmse

-mfix-cmse-cve-2021-35465
-mstack-protector-guard=guard -mstack-protector-guard-offset=offset
-mfdpic

-mbranch-protection=features

AVR Options (Section 3.20.6 [AVR Options|, page 388)

-mmcu=mcu -mabsdata -maccumulate-args -mcvt

-mbranch-cost=cost -mfuse-add=level -mfuse-move=Ilevel

-mfuse-move2 -mcall-prologues -mgas-isr-prologues -mint8 -mflmap
-mdouble=bits -mlong-double=bits -mno-call-main

-mn_flash=size -mfract-convert-truncate -mno-interrupts
-mmain-is-0S_task -mrelax -mrmw -mstrict-X -mtiny-stack
-mrodata-in-ram -msplit-bit-shift -msplit-ldst -mshort-calls
-mskip-bug -muse-nonzero-bits -nodevicelib -nodevicespecs
-Waddr-space-convert -Wmisspelled-isr

Blackfin Options (Section 3.20.7 [Blackfin Options], page 401)

-mcpu=cpu[-sirevision]

-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n

-mleaf-id-shared-library -mno-leaf-id-shared-library

-msep-data -mno-sep-data -mlong-calls -mno-long-calls

-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram

-micplb

C6X Options (Section 3.20.8 [C6X Options]|, page 404)

Using the GNU Compiler Collection (GCC)

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

CRIS Options (Section 3.20.9 [CRIS Options|, page 404)

-mcpu=cpu -march=cpu

-mtune=cpu -mmax-stack-frame=n

-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue

-melf -maout -sim -sim2

-mmul-bug-workaround -mno-mul-bug-workaround

C-SKY Options (Section 3.20.10 [C-SKY Options]|, page 406)

-march=arch -mcpu=cpu

-mbig-endian -EB -mlittle-endian -EL

-mhard-float -msoft-float -mfpu=fpu -mdouble-float -mfdivdu
-mfloat-abi=name

-melrw -mistack -mmp -mcp -mcache -msecurity -mtrust
-mdsp -medsp -mvdsp

-mdiv -msmart -mhigh-registers -manchor

-mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt
-mbranch-cost=n -mcse-cc -msched-prolog -msim

Cygwin and MinGW Options (Section 3.20.11 [Cygwin and MinGW Options],
page 409)
-mconsole -mcrtdll=library -mdll

-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable

Darwin Options (Section 3.20.12 [Darwin Options|, page 410)

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms -nodefaultrpaths
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options (Section 3.20.13 [DEC Alpha Options], page 414)

-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant

Chapter 3: GCC Command Options

-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-msafe-bwa -msafe-partial

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

eBPF Options (Section 3.20.14 [eBPF Options|, page 419)
-mbig-endian -mlittle-endian
-mframe-limit=bytes -mxbpf -mco-re -mno-co-re -mjmpext
-mjmp32 -malu32 -mv3-atomics -mbswap -msdiv -msmov -mcpu=version
-masm=dialect -minline-memops-threshold=bytes

FR30 Options (Section 3.20.15 [FR30 Options|, page 421)

-msmall-model -mno-lsim

FT32 Options (Section 3.20.16 [FT32 Options|, page 421)

-msim -mlra -mnodiv -mft32b -mcompress -mnopm

FRV Options (Section 3.20.17 [FRV Options], page 421)
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

GNU/Linuz Options (Section 3.20.18 [GNU/Linux Options|, page 425)

-mglibc -muclibc -mmusl -mbionic -mandroid
-tno-android-cc -tno-android-1d

HS8/300 Options (Section 3.20.19 [H8/300 Options|, page 425)
-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300
HPPA Options (Section 3.20.20 [HPPA Options|, page 426)

-march=architecture-type

-matomic-libcalls -mbig-switch

-mcaller-copies -mdisable-fpregs -mdisable-indexing
-mordered -mfast-indirect-calls -mgas -mgnu-ld -mhp-1d
-mfixed-range=register-range

-mcoherent-ldcw -mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-atomic-libcalls -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0

-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime

Using the GNU Compiler Collection (GCC)

-mschedule=cpu-type -mspace-regs -msoft-mult -msio -mwsio
-munix=unix-std -nolibdld -static -threads

IA-64 Options (Section 3.20.21 [IA-64 Options|, page 429)
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata
-mconstant-gp -mauto-pic -mfused-madd
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-mno-inline-int-divide
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt
-mdwarf2-asm -mearly-stop-bits
-mfixed-range=register-range -mtls-size=tls-size
-mtune=cpu-type -milp32 -mlp64
-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1dc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

LM32 Options (Section 3.20.22 [LM32 Options], page 433)

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

LoongArch Options (Section 3.20.23 [LoongArch Options]|, page 433)
-march=arch-type -mtune=tune-type -mabi=base-abi-type
-mfpu=fpu-type -msimd=simd-type
-msoft-float -msingle-float -mdouble-float -mlsx -mno-lsx -mlasx -mno-lasx
-mbranch-cost=n -maddr-reg-reg-cost=n -mcheck-zero-division
-mno-check-zero-division -mbreak-code=code
-mcond-move-int -mno-cond-move-int
-mcond-move-float -mno-cond-move-float
-memcpy -mno-memcpy -mstrict-align -mno-strict-align -G num
-mmax-inline-memcpy-size=n
-mexplicit-relocs=style -mexplicit-relocs -mno-explicit-relocs
-mdirect-extern-access -mno-direct-extern-access
-mcmodel=code-model -mrelax -mpass-mrelax-to-as
-mrecip -mrecip=opt -mfrecipe -mno-frecipe -mdiv32 -mno-div32
-mlam-bh -mno-lam-bh -mlamcas -mno-lamcas -mld-seq-sa -mno-ld-seq-sa
-mscq -mno-scq -mtls-dialect=opt
-mannotate-tablejump -mno-annotate-tablejump

M32C Options (Section 3.20.24 [M32C Options|, page 439)
-mcpu=cpu -msim -memregs=number
MS32R/D Options (Section 3.20.25 [M32R /D Options|, page 440)

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name

Chapter 3: GCC Command Options

-mno-flush-trap
-G num

-mflush-trap=number

M680x0 Options (Section 3.20.26 [M680x0 Options], page 441)

-march=arch
-m68000

-mcpu=cpu -mtune=tune

-m68020 -m68020-40 -m68020-60
-m68060 -mcpu32 -m5200 -m5206e -mb528
-mcfvde -mbitfield -mno-bitfield -mc6
-mnobitfield -mrtd -mno-rtd -mdiv
-mno-short -mhard-float -m68881 -msof
-malign-int -mstrict-align -msep-data
-mshared-library-id=n
-mxgot -mno-xgot -mlong-jump-table-off

-mno-div

-mid-shared-library

-m68030 -m68040
x -mb5307 -mb5407
8000 -mc68020
-mshort
t-float -mpcrel
-mno-sep-data
-mno-id-shared-library
sets

MCore Options (Section 3.20.27 [MCore Options|, page 446)

-mhardlit -mno-hardlit -mdiv
-mno-relax-immediates -mwide-bitfields
-m4byte-functions -mno-4byte-functions
-mno-callgraph-data -mslow-bytes -mno-
-mlittle-endian -mbig-endian -m210 -m

-mno-div

-mrelax-immediates
-mno-wide-bitfields
-mcallgraph-data

slow-bytes -mno-lsim
340 -mstack-increment

MicroBlaze Options (Section 3.20.28 [MicroBlaze Options|, page 447)

-msoft-float -mhard-float -msmall-divi
-mmemcpy -mxl-soft-mul -mxl-soft-div
-mxl-pattern-compare -mxl-stack-check
-mxl-multiply-high -mxl-float-convert
-mbig-endian -mlittle-endian -mxl-reor
-mpic-data-is-text-relative

des -mcpu=cpu
-mxl-barrel-shift
-mxl-gp-opt -mno-clearbss
-mxl-float-sqrt

der -mxl-mode-app-model

MIPS Options (Section 3.20.29 [MIPS Options|, page 449)

-EL -EB -march=arch -mtune=arch
-mipsl -mips2 -mips3 -mips4 -mips32
-mips32r6 -mips64 -mips64r2 -mips64r3
-mips16 -mno-mips16 -mflip-mipsi6
-minterlink-compressed -mno-interlink-c
-minterlink-mipsl6 -mno-interlink-mipsi
-mabi=abi -mabicalls -mno-abicalls
-mshared -mno-shared -mplt -mno-plt
-mgp32 -mgp64 -mfp32 -mfpxx -mfp64
-mno-float -msingle-float -mdouble-flo
-modd-spreg -mno-odd-spreg

-mabs=mode -mnan=encoding

-mdsp -mno-dsp -mdspr2 -mno-dspr2
-mmcu -mmno-mcu

-meva -mno-eva

-mvirt -mno-virt

-mxpa -mno-xpa

-mcrc -mno-crc

-mginv -mno-ginv

-mmicromips -mno-micromips

-mmsa -mno-msa
-mloongson-mmi
-mloongson-ext
-mloongson-ext2
-mfpu=fpu-type
-msmartmips -mno-smartmips
-mpaired-single -mno-paired-single
-mips3d -mno-mips3d -mmt -mno-mt -ml
-mlong64 -mlong32 -msym32 -mno-sym32
-Gnum -mlocal-sdata -mno-local-sdata

-mno-loongson-mmi
-mno-loongson-ext
-mno-loongson-ext2

-mdmx

-mips32r2
-mips64r5

-mips32r3
-mips64r6

ompressed
6

-mxgot -mno-xgot
-mhard-float -msoft-float
at

-mno-mdmx

lsc -mno-llsc

27

-mips32r5

Using the GNU Compiler Collection (GCC)

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses

-mexplicit-relocs -mno-explicit-relocs
-mexplicit-relocs=release

-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mload-store-pairs -mno-load-store-pairs

-mstrict-align -mno-strict-align

-mno-unaligned-access -munaligned-access

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls

-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r5900 -mno-fix-r5900

-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120

-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbl
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mcompact-branches=policy

-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mlxcl-sxcl -mno-lxcl-sxcl -mmadd4 -mno-madd4
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
-mframe-header-opt -mno-frame-header-opt

MMIX Options (Section 3.20.30 [MMIX Options|, page 464)
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options (Section 3.20.31 [MN10300 Options], page 465)
-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-d0
-mno-crt0 -mrelax -mliw -msetlb

Mozie Options (Section 3.20.32 [Moxie Options], page 466)

-meb -mel -mmul.x -mno-crtO

MSP430 Options (Section 3.20.33 [MSP430 Options|, page 466)

-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-mwarn-mcu

-mcode-region= -mdata-region=

-msilicon-errata= -msilicon-errata-warn=

-mhwmult= -minrt -mtiny-printf -mmax-inline-shift=

NDS32 Options (Section 3.20.34 [NDS32 Options|, page 469)
-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
—MCmMOV ~ —MNno-cmov
-mext-perf -mno-ext-perf
-mext-perf2 -mno-ext-perf2
-mext-string -mno-ext-string
-mv3push -mno-v3push

Chapter 3: GCC Command Options

-m16bit -mno-16bit
-misr-vector-size=num
-mcache-block-size=num
-march=arch
-mcmodel=code-model
-mctor-dtor -mrelax

Nvidia PTX Options (Section 3.20.35 [Nvidia PTX Options|, page 470)

-m64 -mmainkernel -moptimize

OpenRISC Options (Section 3.20.36 [OpenRISC Options|, page 472)

-mboard=name -mnewlib -mhard-mul -mhard-div

-msoft-mul -msoft-div

-msoft-float -mhard-float -mdouble-float -munordered-float
-mcmov -mror -mrori -msext -msfimm -mshftimm
-mcmodel=code-model

PDP-11 Options (Section 3.20.37 [PDP-11 Options], page 473)

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -mi10
-mint32 -mno-intl6 -mintl6 -mno-int32
-msplit -munix-asm -mdec-asm -mgnu-asm -mlra

PowerPC Options See RS/6000 and PowerPC Options.
PRU Options (Section 3.20.39 [PRU Options|, page 474)

-mmcu=mcu -minrt -mno-relax -mloop
-mmul -mfillzero -mabi=variant

RISC-V Options (Section 3.20.40 [RISC-V Options], page 475)

-mbranch-cost=N-instruction

-mplt -mno-plt

-mabi=ABI-string

-mfdiv -mno-fdiv

-mfence-tso -mno-fence-tso

-mdiv -mno-div

-misa-spec=ISA-spec-string
-march=ISA-string|Profiles|Profiles_ISA-string|CPU/processor string
-mtune=processor-string
-mpreferred-stack-boundary=num
-msmall-data-limit=N-bytes

-msave-restore -mno-save-restore
-mshorten-memrefs -mno-shorten-memrefs
-mstrict-align -mno-strict-align
-mcmodel=medlow -mcmodel=medany -mcmodel=large
-mexplicit-relocs -mno-explicit-relocs

-mrelax -mno-relax

-mriscv-attribute -mno-riscv-attribute
-malign-data=type

-mbig-endian -mlittle-endian
-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset
-mcsr-check -mno-csr-check

-mmovcC —MNno-MovcC

-minline-atomics -mno-inline-atomics
-minline-strlen -mno-inline-strlen
-minline-strcmp -mno-inline-strcmp
-minline-strncmp -mno-inline-strncmp
-mtls-dialect=desc -mtls-dialect=trad

RL78 Options (Section 3.20.41 [RL78 Options|, page 491)

-msim -mmul=none -mmul=gl3 -mmul=gl4 -mallregs

29

30

Using the GNU Compiler Collection (GCC)

-mcpu=gl0 -mcpu=gl3 -mcpu=gl4 -mgl0 -mgl3 -mgl4d
-m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts

RS/6000 and PowerPC Options (Section 3.20.42 [RS/6000 and PowerPC Op-

tions], page 492)

-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mpowerpc64

-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc

-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcnt
-mfprnd -mno-fprnd

b -mno-popcntb -mpopcntd -mno-popcntd

-mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp

-mfull-toc -mminimal-toc -
-m64 -m32 -mxl-compat -mno

mno-fp-in-toc -mno-sum-in-toc
-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -
-mupdate -mno-update

mmultiple -mno-multiple

-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib

-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -mswdiv -msingle-pic-base

-mprioritize-restricted-insns

=priority

-msched-costly-dep=dependence_type

-minsert-sched-nops=scheme
-mcall-aixdesc -mcall-eabi
-mcall-linux -mcall-netbsd
-mcall-sysv -mcall-sysv-eabi
-mtraceback=traceback_type
-maix-struct-return -msvr4-s
-mabi=abi-type -msecure-plt
-msplit-patch-nops

-mcall-freebsd
-mcall-openbsd
-mcall-sysv-noeabi

truct-return
-mbss-plt

-mlongcall -mno-longcall -mpltseq -mno-pltseq

-mblock-move-inline-limit=num
-mblock-compare-inline-limit=num
-mblock-compare-inline-loop-limit=num
-mno-block-ops-unaligned-vsx
-mstring-compare-inline-limit=num
-misel -mno-isel

-mvrsave -mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mreadonly-in-sdata -mvxworks

-G num

-mrecip -mrecip=opt -mno-recip -mrecip-precision

-mno-recip-precision
-mveclibabi=type -mfriz -mno-friz

-mpointers-to-nested-functions -mno-pointers-to-nested-functions

-msave-toc-indirect -mno-save-toc-indirect
-mpower8-fusion -mno-mpower8-fusion
-mcrypto -mno-crypto -mhtm -mno-htm
-mquad-memory -mno-quad-memory
-mquad-memory-atomic -mno-quad-memory-atomic

Chapter 3: GCC Command Options 31

-mcompat-align-parm -mno-compat-align-parm

-mfloat128 -mno-floatl128 -mfloatl28-hardware -mno-floatl28-hardware
-mgnu-attribute -mno-gnu-attribute

-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset -mprefixed -mno-prefixed

-mpcrel -mno-pcrel -mmma -mno-mmma -mrop-protect -mno-rop-protect
-mprivileged -mno-privileged

RX Options (Section 3.20.43 [RX Options|, page 508)

-m64bit-doubles -m32bit-doubles -fpu -nofpu

-mcpu=

-mbig-endian-data -mlittle-endian-data

-msmall-data

-msim -mno-sim

-mas100-syntax -mno-asl100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-mallow-string-insns -mno-allow-string-insns

-mjsr

-mno-warn-multiple-fast-interrupts

-msave-acc-in-interrupts
S/390 and zSeries Options (Section 3.20.44 [S/390 and zSeries Options],
page 511)

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp

-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack

-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mhtm -mvx -mzvector

-mtpf-trace -mno-tpf-trace -mtpf-trace-skip -mno-tpf-trace-skip

-mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

-mhotpatch=halfwords,halfwords

SH Options (Section 3.20.45 [SH Options|, page 515)
-ml -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -mé4-single-only -mé-single -m4
-m4a-nofpu -méa-single-only -méa-single -m4a -m4al
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-maccumulate-outgoing-args
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch
-mcbranch-force-delay-slot
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas

Solaris 2 Options (Section 3.20.46 [Solaris 2 Options|, page 522)

-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-pthreads

Using the GNU Compiler Collection (GCC)

SPARC Options (Section 3.20.47 [SPARC Options|, page 522)
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-mstd-struct-return -mno-std-struct-return
-munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2
-mvis3 -mno-vis3 -mvis3b -mno-vis3b
-mvis4 -mno-vis4 -mvis4b -mno-vis4b
-mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld
-mpopc -mno-popc -msubxc -mno-subxc
-mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr7i2rc

System V Options (Section 3.20.48 [System V Options|, page 528)
-YP,paths -Ym,dir

V850 Options (Section 3.20.49 [V850 Options|, page 528)
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850el -mv850es
-mv850e -mv850 -mv850e3vb
-mloop
-mrelax
-mlong-jumps
-msoft-float
-mhard-float
-mgcc-abi
-mrh850-abi
-mbig-switch

VAX Options (Section 3.20.50 [VAX Options|, page 531)
-munix -mgnu -md -md-float -mg -mg-float -mlra

Visium Options (Section 3.20.51 [Visium Options], page 531)
-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float
-mcpu=cpu-type -mtune=cpu-type -msv-mode -muser-mode

VMS Options (Section 3.20.52 [VMS Options|, page 532)
-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size

VzWorks Options (Section 3.20.53 [VxWorks Options|, page 533)
-mrtp -msmp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

z86 Options (Section 3.20.54 [x86 Options], page 533)
-mtune=cpu-type -march=cpu-type
-mtune-ctrl=feature-list -mdump-tune-features -mno-default
-mfpmath=unit

Chapter 3: GCC Command Options 33

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float
-mno-wide-multiply -mrtd -malign-double

-mpreferred-stack-boundary=num

-mincoming-stack-boundary=num

-mcld -mcx16 -msahf -mmovbe -mcrc32 -mmwait

-mrecip -mrecip=opt

-mvzeroupper -mprefer-avx128 -mprefer-vector-width=opt
-mpartial-vector-fp-math

-mmove-max=bits -mstore-max=bits

-mnoreturn-no-callee-saved-registers

-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l1 -msse4.2 -msse4 -mavx
-mavx2 -mavxb512f -mavxb512cd -mavx512vl

-mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes
-mpclmul -mfsgsbase -mrdrnd -mfl6c -mfma -mpconfig -mwbnoinvd
-mptwrite -mclflushopt -mclwb -mxsavec -mxsaves

-msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
-madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp
-mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg

-mshstk -mmanual-endbr -mcet-switch -mforce-indirect-call

-mavx512vbmi2 -mavx512bf16 -menqcmd

-mvpclmulgdq -mavxb512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq
-mavx512vnni -mprfchw -mrdpid

-mrdseed -msgx -mavxb5l2vp2intersect -mserialize -mtsxldtrk

-mamx-tile -mamx-int8 -mamx-bf16 -muintr -mhreset -mavxvnni -mamx-fp8
-mavx512fpl16 -mavxifma -mavxvnniint8 -mavxneconvert -mcmpccxadd -mamx-fpl6
-mprefetchi -mraoint -mamx-complex -mavxvnniintl6 -msm3 -msha512 -msm4 -mapxf|}
-musermsr -mavx10.1 -mavx10.2 -mamx-avx512 -mamx-tf32 -mmovrs -mamx-movrs
-mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg

-mkl -mwidekl

-mmemcpy-strategy=strategy -mmemset-strategy=strategy

-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=num -msseregparm

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mdaz-ftz -mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -ml6 -miamcu -mlarge-data-threshold=num

-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
-minstrument-return=type -mfentry-name=name -mfentry-section=name
-mavx2b6-split-unaligned-load -mavx256-split-unaligned-store
-malign-data=type -mstack-protector-guard=guard
-mstack-protector-guard-reg=reg

-mstack-protector-guard-offset=offset
-mstack-protector-guard-symbol=symbol

-mgeneral-regs-only -mcall-ms2sysv-xlogues -mrelax-cmpxchg-loop
-mindirect-branch=choice -mfunction-return=choice
-mindirect-branch-register -mharden-sls=choice
-mindirect-branch-cs-prefix -mneeded -mno-direct-extern-access
-munroll-only-small-loops -mlam=choice

286 Windows Options See Cygwin and MinGW Options.
Xstormy16 Options (Section 3.20.56 [Xstormy16 Options], page 567)

-msim

Xtensa Options (Section 3.20.57 [Xtensa Options], page 567)

-mconst16 -mno-constl6

34

Using the GNU Compiler Collection (GCC)

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mauto-litpools -mno-auto-litpools

-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

-mabi=abi-type

-mextra-132r-costs=cycles

-mstrict-align -mno-strict-align

2Series Options See S/390 and zSeries Options.

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.
file.i
file.
file.

file.

file.
file.

file.
file.

file.
file.
file.
- CpP
file.
file.
file.

file

file.
file.

C
i
ii

m

mi

mii

(o]

cp
CXX

CPP
c++

C source code that must be preprocessed.
C source code that should not be preprocessed.
C++ source code that should not be preprocessed.

Objective-C source code. Note that you must link with the 1ibobjc library to
make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the 1ibobjc library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the -fdump-ada-spec switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Chapter 3: GCC Command Options 35

file.

file.
file.
file.
file.
-hpp
file.
file.
file.

file

file.
file.
file.
file.

file.
.FOR
file.
file.
file.

file

file.
file.
file.
file.
file.

file.
file.
file.
file.

file.
file.
file.
file.

file

file.
file.
file.

mii

hh

hp
hxx

HPP
h++
tcc

for
ftn
fi

fpp
FPP
FTN

£90
£95
03
£08
fii
F90
F95
FO3
FO8

cob
COB
cbl
CBL

.go
file.

di
dd

ads

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

COBOL source code.

Go source code.

D source code.

D interface file.

D documentation code (Ddoc).

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

36 Using the GNU Compiler Collection (GCC)

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S
file.sx Assembler code that must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the -x option:

-x language

--language=language

--language language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next —-x option. Possible values for language
are:

¢ c-header cpp-output
c++ c++-header c++-system-header c++-user-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
cobol
d
£77 £77-cpp-input £95 £f95-cpp-input
go
Note that -x does not imply a particular language standard. For example -x
£77 may also require -std=legacy for some older source codes.

-X none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as if -x has not been used at all).

If you only want some of the stages of compilation, you can use -x (or filename suffixes)
to tell gcc where to start, and one of the options -c, =S, or -E to say where gcc is to stop.
Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do nothing
at all.

-c
—--compile
Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
‘.c’, .17 fL8’, ete., with ‘.o’
Unrecognized input files, not requiring compilation or assembly, are ignored.
-S
-—assemble
Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

Chapter 3: GCC Command Options 37

-E

By default, the assembler file name for a source file is made by replacing the

suffix <.¢’, ‘.17, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

——preprocess

-o file

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

—--output=file
--output file

Place the primary output in file file. This applies to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If -0 is not specified, the default is to put an executable file in a.out, the
object file for source.suffix in source.o, its assembler file in source.s, a
precompiled header file in source.suffix.gch, and all preprocessed C source
on standard output.

Though -o names only the primary output, it also affects the naming of aux-
iliary and dump outputs. See the examples below. Unless overridden, both
auxiliary outputs and dump outputs are placed in the same directory as the
primary output. In auxiliary outputs, the suffix of the input file is replaced
with that of the auxiliary output file type; in dump outputs, the suffix of the
dump file is appended to the input file suffix. In compilation commands, the
base name of both auxiliary and dump outputs is that of the primary output;
in compile and link commands, the primary output name, minus the executable
suffix, is combined with the input file name. If both share the same base name,
disregarding the suffix, the result of the combination is that base name, other-
wise, they are concatenated, separated by a dash.

gcc —-c foo.c ...
will use foo.o0 as the primary output, and place aux outputs and dumps next to
it, e.g., aux file foo.dwo for -~gsplit-dwarf, and dump file foo.c.???r.final
for ~-fdump-rtl-final.
If a non-linker output file is explicitly specified, aux and dump files by default
take the same base name:

gcc —c foo.c -o dir/foobar.o ...
will name aux outputs dir/foobar.* and dump outputs dir/foobar.c.*.

A linker output will instead prefix aux and dump outputs:

gcc foo.c bar.c -o dir/foobar ...
will generally name aux outputs dir/foobar-foo.* and dir/foobar-bar.*,
and dump outputs dir/foobar-foo.c.* and dir/foobar-bar.c.*.
The one exception to the above is when the executable shares the base name
with the single input:

gcec foo.c -o dir/foo ...

38

Using the GNU Compiler Collection (GCC)

in which case aux outputs are named dir/foo.* and dump outputs named
dir/foo.c.x*.

The location and the names of auxiliary and dump outputs can be adjusted
by the options —dumpbase, ~dumpbase-ext, ~dumpdir, -save-temps=cwd, and
-save-temps=obj.

—dumpbase dumpbase
—--dumpbase dumpbase

This option sets the base name for auxiliary and dump output files. It does
not affect the name of the primary output file. Intermediate outputs, when
preserved, are not regarded as primary outputs, but as auxiliary outputs:

gcc —save-temps -S foo.c

saves the (no longer) temporary preprocessed file in foo.1i, and then compiles
to the (implied) output file foo.s, whereas:

gcc -save-temps —dumpbase save-foo -c foo.c

preprocesses to in save-foo. i, compiles to save-foo.s (now an intermediate,
thus auxiliary output), and then assembles to the (implied) output file foo.o.

Absent this option, dump and aux files take their names from the input file,
or from the (non-linker) output file, if one is explicitly specified: dump output
files (e.g. those requested by -fdump-* options) with the input name suffix,
and aux output files (those requested by other non-dump options, e.g. -save-
temps, -gsplit-dwarf, -fcallgraph-info) without it.

Similar suffix differentiation of dump and aux outputs can be attained for
explicitly-given -dumpbase basename.suf by also specifying -dumpbase-ext
.suf.

If dumpbase is explicitly specified with any directory component, any dumppfx
specification (e.g. —dumpdir or -save-temps=+*) is ignored, and instead of ap-
pending to it, dumpbase fully overrides it:

gcc foo.c —c -o dir/foo.o -dumpbase alt/foo \

-dumpdir pfx- -save-temps=cwd ...

creates auxiliary and dump outputs named alt/foo.x*, disregarding dir/ in
-o, the ./ prefix implied by -save-temps=cwd, and pfx- in ~dumpdir.
When -dumpbase is specified in a command that compiles multiple inputs, or
that compiles and then links, it may be combined with dumppfx, as specified
under ~dumpdir. Then, each input file is compiled using the combined dumppfx,
and default values for dumpbase and auxdropsuf are computed for each input
file:

gcc foo.c bar.c -c -dumpbase main ...

creates foo.o and bar.o as primary outputs, and avoids overwriting the aux-
iliary and dump outputs by using the dumpbase as a prefix, creating auxiliary
and dump outputs named main-foo.* and main-bar. *.

An empty string specified as dumpbase avoids the influence of the output base-
name in the naming of auxiliary and dump outputs during compilation, com-
puting default values :

gcc —c foo.c -o dir/foobar.o -dumpbase '' ...

Chapter 3: GCC Command Options 39

will name aux outputs dir/foo.* and dump outputs dir/foo.c.*. Note how
their basenames are taken from the input name, but the directory still defaults
to that of the output.

The empty-string dumpbase does not prevent the use of the output basename
for outputs during linking:

gcc foo.c bar.c -o dir/foobar -dumpbase '' -flto ...

The compilation of the source files will name auxiliary outputs dir/foo.* and
dir/bar.*, and dump outputs dir/foo.c.* and dir/bar.c.*. LTO recompi-
lation during linking will use dir/foobar. as the prefix for dumps and auxiliary
files.

—dumpbase-ext auxdropsuf

--dumpbase-ext auxdropsuf
When forming the name of an auxiliary (but not a dump) output file, drop trail-
ing auxdropsuf from dumpbase before appending any suffixes. If not specified,
this option defaults to the suffix of a default dumpbase, i.e., the suffix of the
input file when -dumpbase is not present in the command line, or dumpbase is
combined with dumppfx.

gcc foo.c -c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...

creates dir/foo.o as the main output, and generates auxiliary outputs in
dir/x-foo.*, taking the location of the primary output, and dropping the
.c suffix from the dumpbase. Dump outputs retain the suffix: dir/x-foo.c.*.

This option is disregarded if it does not match the suffix of a specified dumpbase,
except as an alternative to the executable suffix when appending the linker
output base name to dumppfx, as specified below:

gcc foo.c bar.c -o main.out -dumpbase-ext .out ...

creates main.out as the primary output, and avoids overwriting the auxiliary
and dump outputs by using the executable name minus auxdropsuf as a pre-
fix, creating auxiliary outputs named main-foo.* and main-bar.* and dump
outputs named main-foo.c.* and main-bar.c. *.

—dumpdir dumppfx

—-—-dumpdir dumppfx
When forming the name of an auxiliary or dump output file, use dumppfx as a
prefix:

gcc —dumpdir pfx- -c foo.c ...

creates foo.o as the primary output, and auxiliary outputs named pfx-foo.*,
combining the given dumppfx with the default dumpbase derived from the
default primary output, derived in turn from the input name. Dump outputs
also take the input name suffix: pfx-foo.c.x*.

If dumppfx is to be used as a directory name, it must end with a directory
separator:

gcc —dumpdir dir/ -c foo.c -o obj/bar.o ...

creates obj/bar.o as the primary output, and auxiliary outputs named
dir/bar.*, combining the given dumppfx with the default dumpbase derived
from the primary output name. Dump outputs also take the input name
suffix: dir/bar.c.*.

40

Using the GNU Compiler Collection (GCC)

It defaults to the location of the output file, unless the output file is a special
file like /dev/null. Options -save-temps=cwd and -save-temps=obj override
this default, just like an explicit ~dumpdir option. In case multiple such options
are given, the last one prevails:

gcc —dumpdir pfx- -c foo.c -save-temps=obj ...
outputs foo.o, with auxiliary outputs named foo.* because -save-temps=*
overrides the dumppfx given by the earlier ~dumpdir option. It does not matter
that =obj is the default for -save-temps, nor that the output directory is
implicitly the current directory. Dump outputs are named foo.c. *.
When compiling from multiple input files, if ~dumpbase is specified, dumpbase,
minus a auxdropsuf suffix, and a dash are appended to (or override, if contain-
ing any directory components) an explicit or defaulted dumppfx, so that each
of the multiple compilations gets differently-named aux and dump outputs.

gcc foo.c bar.c -¢ -dumpdir dir/pfx- -dumpbase main ...

outputs auxiliary dumps to dir/pfx-main-foo.* and dir/pfx-main-bar.*,
appending dumpbase- to dumppfx. Dump outputs retain the input file suffix:
dir/pfx-main-foo.c.* and dir/pfx-main-bar.c.*, respectively. Contrast
with the single-input compilation:

gcc foo.c -c —dumpdir dir/pfx- -dumpbase main ...
that, applying -dumpbase to a single source, does not compute and append
a separate dumpbase per input file. Its auxiliary and dump outputs go in
dir/pfx-main. *.
When compiling and then linking from multiple input files, a defaulted or ex-
plicitly specified dumppfx also undergoes the dumpbase- transformation above
(e.g. the compilation of foo.c and bar.c above, but without -c). If nei-
ther —~dumpdir nor -dumpbase are given, the linker output base name, minus
auxdropsuf, if specified, or the executable suffix otherwise, plus a dash is ap-
pended to the default dumppfx instead. Note, however, that unlike earlier cases
of linking;:

gcc foo.c bar.c -dumpdir dir/pfx- -o main ...
does not append the output name main to dumppfx, because ~dumpdir is explic-
itly specified. The goal is that the explicitly-specified dumppfx may contain the
specified output name as part of the prefix, if desired; only an explicitly-specified
—-dumpbase would be combined with it, in order to avoid simply discarding a
meaningful option.

When compiling and then linking from a single input file, the linker output
base name will only be appended to the default dumppfx as above if it does not
share the base name with the single input file name. This has been covered in
single-input linking cases above, but not with an explicit ~dumpdir that inhibits
the combination, even if overridden by -save-temps=x:

gcc foo.c —dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...

Auxiliary outputs are named foo.*, and dump outputs foo.c.*, in the current
working directory as ultimately requested by -save-temps=cwd.

Summing it all up for an intuitive though slightly imprecise data flow: the
primary output name is broken into a directory part and a basename part;

Chapter 3: GCC Command Options 41

-V
—--verbose

— it

--help

dumppfx is set to the former, unless overridden by ~dumpdir or —~save-temps=*,
and dumpbase is set to the latter, unless overriden by —dumpbase. If there are
multiple inputs or linking, this dumpbase may be combined with dumppfx and
taken from each input file. Auxiliary output names for each input are formed by
combining dumppfx, dumpbase minus suffix, and the auxiliary output suffix;
dump output names are only different in that the suffix from dumpbase is
retained.

When it comes to auxiliary and dump outputs created during LTO recompila-
tion, a combination of dumppfx and dumpbase, as given or as derived from the
linker output name but not from inputs, even in cases in which this combination
would not otherwise be used as such, is passed down with a trailing period re-
placing the compiler-added dash, if any, as a ~dumpdir option to 1to-wrapper;
being involved in linking, this program does not normally get any -dumpbase
and -dumpbase-ext, and it ignores them.

When running sub-compilers, 1to-wrapper appends LTO stage names to the
received dumppfx, ensures it contains a directory component so that it overrides
any —dumpdir, and passes that as —~dumpbase to sub-compilers.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like -v except the commands are not executed and arguments are quoted unless
they contain only alphanumeric characters or ./-_. This is useful for shell
scripts to capture the driver-generated command lines.

Print (on the standard output) a description of the command-line options un-
derstood by gcc. If the -v option is also specified then --help is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the -Wextra option has also been specified (prior
to the —-help option), then command-line options that have no documentation
associated with them are also displayed.

--target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|["]qualifier}|,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.
‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

42

Using the GNU Compiler Collection (GCC)

‘target’ Display target-specific options. Unlike the --target-help option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended --help= syntax.

‘params’ Display the values recognized by the —-param option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC. If
an option is supported by all languages, one needs to select ‘common’
class.

‘common’ Display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:

--help=target,undocumented

The sense of a qualifier can be inverted by prefixing it with the ‘=’ character,

so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings, ~joined, “undocumented
The argument to ——help= should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:
--help=target,optimizers

The --help= option can be repeated on the command line. Each successive use
displays its requested class of options, skipping those that have already been
displayed. If --help is also specified anywhere on the command line then this
takes precedence over any —-help= option.

If the -Q option appears on the command line before the --help= option, then
the descriptive text displayed by —-help= is changed. Instead of describing the
displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the —-help= option is used).

Here is a truncated example from the ARM port of gcc:
% gcc -Q -mabi=2 --help=target -c

Chapter 3: GCC Command Options 43

—--version

The following options are target specific:

-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at -02 by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by -03
by using:

gcc -c -Q -03 --help=optimizers > /tmp/03-opts

gcc —c¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

Display the version number and copyrights of the invoked GCC.

-pass-exit-codes
--pass-exit-codes

-pipe
-—pipe

Normally the gce program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify -pass-exit-codes, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

-specs=file
--specs=file
—--specs file

-Wrapper

Process file after the compiler reads in the standard specs file, in order to
override the defaults which the gcc driver program uses when determining what
switches to pass to ccl, cclplus, as, 1d, etc. More than one -specs=file can
be specified on the command line, and they are processed in order, from left to
right. See Section 3.21 [Spec Files|, page 569, for information about the format
of the file.

Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc —-c t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb --args’, thus the invocation of
cclis ‘gdb —-args ccl ...".

-ffile-prefix-map=old=new

When compiling files residing in directory old, record any references to them in
the result of the compilation as if the files resided in directory new instead. Spec-
ifying this option is equivalent to specifying all the individual -f*-prefix-map

44 Using the GNU Compiler Collection (GCC)

options. This can be used to make reproducible builds that are location inde-
pendent. Directories referenced by directives are not affected by these options.
See also ~fmacro-prefix-map, ~-fdebug-prefix-map, ~-fprofile-prefix-map
and -fcanon-prefix-map.

-fcanon-prefix-map
For the -f*-prefix-map options normally comparison of o1d prefix against the
filename that would be normally referenced in the result of the compilation is
done using textual comparison of the prefixes, or ignoring character case for
case insensitive filesystems and considering slashes and backslashes as equal on
DOS based filesystems. The -fcanon-prefix-map causes such comparisons to
be done on canonicalized paths of o1d and the referenced filename.

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to be
dlopen’d by the compiler. The base name of the shared object file is used
to identify the plugin for the purposes of argument parsing (See -fplugin-
arg-name-key=value below). Each plugin should define the callback functions
specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with -fdump-ada-spec|[-slim] above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

Q@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘. cc’, ‘. cpp’, *.CPP’, ‘.c++’, ‘. cp’,
or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code) ‘.tcc’;

Chapter 3: GCC Command Options 45

preprocessed C++ files use the suffix ‘.ii’; and C++20 module interface units sometimes use

‘oixx’, C.cppm’, ‘.cxxm’, ‘.c++m’, or ‘.ccm’.
GCC recognizes files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless -x is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 45, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 52, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi

--ansi In C mode, this is equivalent to -std=c90. In C++ mode, it is equivalent to
-std=c++98.

-std= Determine the language standard. See Chapter 2 [Language Standards Sup-

ported by GCC], page 3, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
-std=c90 turns off certain features of GCC that are incompatible with ISO
(€90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?:
expression. On the other hand, when a GNU dialect of a standard is specified,
all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by -Wpedantic to
identify which features are GNU extensions given that version of the standard.
For example -std=gnu90 -Wpedantic warns about C++ style ‘//’ comments,
while -std=gnu99 -Wpedantic does not.

A value for this option must be provided; possible values are

46

‘c90’
‘c89’

‘1509899:

‘1509899:

‘c99’
‘c9x’

‘1509899:
‘1509899:

‘cl1t’
‘clx’

‘1809899:

‘cl17’
‘c18’

‘1809899:
‘1509899:

‘c23’

‘c2x’

‘1509899:

i

‘c2y

‘gnu90’
‘gnu89’

‘gnu99’
‘gnu9x’

Using the GNU Compiler Collection (GCC)

1990’
Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as -ansi for C code.

199409’
ISO C90 as modified in amendment 1.

1999’

199x’
ISO (C99. This standard is substantially completely supported,
modulo bugs and floating-point issues (mainly but not entirely
relating to optional C99 features from Annexes F and G). See
https://gcc.gnu.org/projects/c-status.html for more infor-
mation. The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

20171’
ISO C11, the 2011 revision of the ISO C standard. This standard is
substantially completely supported, modulo bugs, floating-point is-
sues (mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name ‘c1x’ is deprecated.

2017’

2018’
ISO C17, the 2017 revision of the ISO C standard (published in
2018). This standard is same as C11 except for corrections of de-
fects (all of which are also applied with -std=c11) and a new value
of __STDC_VERSION and so is supported to the same extent as
C11.

-

2024’
ISO C23, the 2023 revision of the ISO C standard (published in
2024). The name ‘c2x’ is deprecated.

The next version of the ISO C standard, still under development.
The support for this version is experimental and incomplete.

GNU dialect of ISO C90 (including some C99 features).

GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.

https://gcc.gnu.org/projects/c-status.html

Chapter 3: GCC Command Options 47

‘gnull’
‘gnulx’

‘gnul’?’
‘gnul8’

‘gnu23’
‘gnu2x’

‘gnu2y’

‘c++98’
‘c++03’

‘gnu++98’
‘gnu++03’

‘c++11’
‘c++0x’

‘gnu++11’
‘gnu++0x’

‘c++14’
4C++1y7

‘gnut++14’
‘gnu++1y’

‘c++17’
‘c++1z’

‘gnu++17’
‘gnut++1z’

‘c++20’
‘c++2a’

‘gnu++20’
‘gnut++2a’

GNU dialect of ISO C11. The name ‘gnulx’ is deprecated.

GNU dialect of ISO C17.

GNU dialect of ISO C23. This is the default for C code. The name
‘gnu2x’ is deprecated.

The next version of the ISO C standard, still under development,
plus GNU extensions. The support for this version is experimental
and incomplete. The name ‘gnu2x’ is deprecated.

The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as —ansi for C++ code.

GNU dialect of -std=c++98.

The 2011 ISO C++ standard plus amendments. The name ‘c++0x’
is deprecated.

GNU dialect of -std=c++11. The name ‘gnu++0x’ is deprecated.

The 2014 ISO C++ standard plus amendments. The name ‘c++1y’
is deprecated.

GNU dialect of -std=c++14. The name ‘gnu++1y’ is deprecated.

The 2017 ISO C++ standard plus amendments. The name ‘c++1z’
is deprecated.

GNU dialect of —std=c++17. This is the default for C++ code. The
name ‘gnu++1z’ is deprecated.

The 2020 ISO C++ standard plus amendments. Support is experi-
mental, and could change in incompatible ways in future releases.
The name ‘c++2a’ is deprecated.

GNU dialect of -std=c++20. Support is experimental, and could
change in incompatible ways in future releases. The name ‘gnu++2a’
is deprecated.

48

Using the GNU Compiler Collection (GCC)

‘c++23’

‘c++2b’ The 2023 ISO C++ standard plus amendments (published in 2024).
Support is experimental, and could change in incompatible ways in
future releases. The name ‘c++2b’ is deprecated.

‘gnu++23’

‘gnu++2b’ GNU dialect of —std=c++23. Support is experimental, and could
change in incompatible ways in future releases. The name ‘gnu++2b’
is deprecated.

‘c++2¢’

‘c++26’ The next revision of the ISO C++ standard, planned for 2026. Sup-
port is highly experimental, and will almost certainly change in
incompatible ways in future releases.

‘gnu++2¢’
‘gnu++26’ GNU dialect of -std=c++2c. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

—aux-info filename

—-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm inline__ and
__typeof__ instead. In C, —ansi implies ~-fno-asm.

—_) ——

In C++, inline is a standard keyword and is not affected by this switch. You
may want to use the —-fno-gnu-keywords flag instead, which disables typeof
but not asm and inline. In C99 mode (-std=c99 or -std=gnu99), this switch
only affects the asm and typeof keywords, since inline is a standard keyword
in ISO C99. In C23 mode (-std=c23 or -std=gnu23), this switch only affects
the asm keyword, since typeof is a standard keyword in ISO C23.

—fno-builtin
—fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 7.1 [Library Builtins], page 827, for details of the functions affected,
including those which are not built-in functions when -ansi or -std options for
strict ISO C conformance are used because they do not have an ISO standard
meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which

Chapter 3: GCC Command Options 49

adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.
In addition, when a function is recognized as a built-in function, GCC may
use information about that function to warn about problems with calls to that
function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with -Wformat
for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the -fno-builtin-function option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding -fbuiltin-function option; if you wish to enable built-in
functions selectively when using -fno-builtin or -ffreestanding, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-ffreestanding

-fgimple

-fgnu-tm

Assert that compilation targets a freestanding environment. This implies -fno-
builtin. A freestanding environment is one in which the standard library may
not exist, and program startup may not necessarily be at main. The most
obvious example is an OS kernel. This is equivalent to ~-fno-hosted.

See Chapter 2 [Language Standards Supported by GCC], page 3, for details of
freestanding and hosted environments.

Enable parsing of function definitions marked with __GIMPLE. This is an ex-
perimental feature that allows unit testing of GIMPLE passes.

When the option -fgnu-tm is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.

For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (-fnon-call-exceptions).

50

Using the GNU Compiler Collection (GCC)

-fgnu89-inline

—-fhosted

The option -fgnu89-inline tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.9 [An Inline Function is
As Fast As a Macro], page 748. Using this option is roughly equivalent to adding
the gnu_inline function attribute to all inline functions (see Section 6.4.1
[Function Attributes], page 619).

The option -fno-gnu89-inline explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option is not supported in -std=c90 or -std=gnu90 mode.

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

Assert that compilation targets a hosted environment. This implies -fbuiltin.
A hosted environment is one in which the entire standard library is available,
and in which main has a return type of int. Examples are nearly everything
except a kernel. This is equivalent to ~-fno-freestanding.

-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;
struct ABC {
Uow UOW;
};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.2.6 [Unnamed struct/union fields within
structs/unions], page 610, for details.

Note that this option is off for all targets except for x86 targets using ms-abi.

-fpermitted-flt-eval-methods=style

ISO/IEC TS 18661-3 defines new permissible values for FLT_EVAL_METHOD that
indicate that operations and constants with a semantic type that is an inter-
change or extended format should be evaluated to the precision and range of
that type. These new values are a superset of those permitted under C99/C11,
which does not specify the meaning of other positive values of FLT_EVAL_
METHOD. As such, code conforming to C11 may not have been written expecting
the possibility of the new values.

-fpermitted-flt-eval-methods specifies whether the compiler should allow
only the values of FLT_EVAL_METHOD specified in C99/C11, or the extended set
of values specified in ISO/IEC TS 18661-3.

Chapter 3: GCC Command Options 51

style is either c11 or ts-18661-3 as appropriate.

The default when in a standards compliant mode (-std=c11 or similar) is
-fpermitted-flt-eval-methods=c1l. The default when in a GNU dialect
(-std=gnull or similar) is ~-fpermitted-flt-eval-methods=ts-18661-3.

The ‘-fdeps-*’ options are used to extract structured dependency information
for a source. This involves determining what resources provided by other source
files will be required to compile the source as well as what resources are provided
by the source. This information can be used to add required dependencies
between compilation rules of dependent sources based on their contents rather
than requiring such information be reflected within the build tools as well.

-fdeps-file=file
Where to write structured dependency information.

-fdeps-format=format
The format to use for structured dependency information. ‘p1689r5’ is the
only supported format right now. Note that when this argument is specified,
the output of ‘-MF’ is stripped of some information (namely C++ modules) so
that it does not use extended makefile syntax not understood by most tools.

-fdeps-target=~file
Analogous to -MT but for structured dependency information. This indicates
the target which will ultimately need any required resources and provide any
resources extracted from the source that may be required by other sources.

-fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.

This enables -fms-extensions, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.2.6 [Unnamed struct /union fields within structs/unions], page 610,
for details. This is only supported for C, not C++.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.
-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ~-fno-unsigned-char, which is the negative form
of ~funsigned-char. Likewise, the option -fno-signed-char is equivalent to
-funsigned-char.

-funsigned-char
Let the type char be unsigned, like unsigned char.

52 Using the GNU Compiler Collection (GCC)

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fstrict-flex-arrays (C and C++ only)

-fstrict-flex-arrays=level (C and C++ only)
Control when to treat the trailing array of a structure as a flexible array member
for the purpose of accessing the elements of such an array. The value of level
controls the level of strictness.

-fstrict-flex-arrays is equivalent to -fstrict-flex-arrays=3, which is
the strictest; a trailing array is treated as a flexible array member only when it
is declared as a flexible array member per C99 standard onwards.

The negative form -fno-strict-flex-arrays is equivalent to -fstrict-
flex-arrays=0, which is the least strict. In this case all trailing arrays of
structures are treated as flexible array members.

There are two more levels in between 0 and 3, which are provided to support
older code that uses the GCC zero-length array extension (‘[0]’) or one-element
array as flexible array members (‘[1]’). When level is 1, the trailing array is
treated as a flexible array member when it is declared as either ‘[]1’, ‘[0]’, or
‘[11’. When level is 2, the trailing array is treated as a flexible array member
when it is declared as either ‘[]’, or ‘[0]’.

You can control this behavior for a specific trailing array field of a structure
by using the variable attribute strict_flex_array attribute (see Section 6.4.2
[Variable Attributes|, page 697).

The -fstrict_flex_arrays option interacts with the -Wstrict-flex-arrays
option. See Section 3.9 [Warning Options|, page 100, for more information.

-fsso-struct=endianness
Set the default scalar storage order of structures and unions to the specified en-
dianness. The accepted values are ‘big-endian’, ‘little-endian’ and ‘native’
for the native endianness of the target (the default). This option is not sup-
ported for C++.
Warning: the -fsso-struct switch causes GCC to generate code that is not
binary compatible with code generated without it if the specified endianness is
not the native endianness of the target.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

Chapter 3: GCC Command Options 53

g++ -g —fstrict-enums -0 -c firstClass.C

In this example, only -fstrict-enums is an option meant only for C++ programs; you can
use the other options with any language supported by GCC.

Some options for compiling C programs, such as -std, are also relevant for C++ programs.
See Section 3.4 [Options Controlling C Dialect], page 45.

Here is a list of options that are only for compiling C++ programs:

—-fabi-version=n
Use version n of the C++ ABI. The default is version 0.

Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was
the default through G++ 4.9.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const /static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin
type and corrects the mangling of lambdas in default argument scope.

Version 8, which first appeared in G++ 4.9, corrects the substitution behavior
of function types with function-cv-qualifiers.

Version 9, which first appeared in G++ 5.2, corrects the alignment of nullptr_t.

Version 10, which first appeared in G++ 6.1, adds mangling of attributes that
affect type identity, such as ia32 calling convention attributes (e.g. ‘stdcall’).

Version 11, which first appeared in G++ 7, corrects the mangling of sizeof... ex-
pressions and operator names. For multiple entities with the same name within
a function, that are declared in different scopes, the mangling now changes
starting with the twelfth occurrence. It also implies -fnew-inheriting-ctors.

Version 12, which first appeared in G++ 8, corrects the calling conventions for
empty classes on the x86_64 target and for classes with only deleted copy/move
constructors. It accidentally changes the calling convention for classes with a
deleted copy constructor and a trivial move constructor.

Version 13, which first appeared in G++ 8.2, fixes the accidental change in
version 12.

54

Using the GNU Compiler Collection (GCC)

Version 14, which first appeared in G++ 10, corrects the mangling of the nullptr
expression.

Version 15, which first appeared in G++ 10.3, corrects G++ 10 ABI tag regres-
sion.

Version 16, which first appeared in G++ 11, changes the mangling of __alignof _
_ to be distinct from that of alignof, and dependent operator names.

Version 17, which first appeared in G++ 12, fixes layout of classes that inherit
from aggregate classes with default member initializers in C++14 and up.

Version 18, which first appeared in G++ 13, fixes manglings of lambdas that
have additional context.

Version 19, which first appeared in G++ 14, fixes manglings of structured bind-
ings to include ABI tags, handling of cv-qualified [[no_unique_address|] mem-
bers, and adds mangling of C++20 constraints on function templates.

Version 20, which first appeared in G++ 15, fixes manglings of lambdas in static
data member initializers.

Version 21, which first appeared in G++ 16, fixes unnecessary captures in noex-
cept lambdas (c++/119764), layout of a base class with all explicitly defaulted
constructors (c++/120012), and mangling of class and array objects with im-
plicitly zero-initialized non-trailing subobjects (c++/121231).

See also -Wabi.

-fabi-compat-version=n

On targets that support strong aliases, G++ works around mangling changes by
creating an alias with the correct mangled name when defining a symbol with
an incorrect mangled name. This switch specifies which ABI version to use for
the alias.

With -fabi-version=0 (the default), this defaults to 13 (GCC 8.2 compatibil-
ity). If another ABI version is explicitly selected, this defaults to 0. For com-
patibility with GCC versions 3.2 through 4.9, use -fabi-compat-version=2.

If this option is not provided but -Wabi=n is, that version is used for compati-
bility aliases. If this option is provided along with -Wabi (without the version),
the version from this option is used for the warning.

—-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-faligned-new
-faligned-new=alignment

Enable support for C++17 new of types that require more alignment than
void* ::operator new(std::size_t) provides. A numeric argument such as
-faligned-new=32 can be used to specify how much alignment (in bytes) is
provided by that function, but few users will need to override the default of
alignof (std::max_align_t).

This flag is enabled by default for -std=c++17.

Chapter 3: GCC Command Options 55

-fno-assume-sane-operators-new

—-fchar8_t

The C++ standard allows replacing the global new, new[], delete and delete[]
operators, though a lot of C++ programs don’t replace them and just use the im-
plementation provided version. Furthermore, the C++ standard allows omitting
those calls if they are made from new or delete expressions (and by extension the
same is assumed if __builtin_operator_new or __builtin_operator_delete
functions are used). This option allows control over some optimizations around
calls to those operators. With -fassume-sane-operators-new-delete option
GCC may assume that calls to the replaceable global operators from new or
delete expressions or from __builtin_operator_new or __builtin_operator_
delete calls don’t read or modify any global variables or variables whose ad-
dress could escape to the operators (global state; except for errno for the new
and new[] operators). This allows most optimizations across those calls and
is something that the implementation provided operators satisfy unless malloc
implementation details are observable in the code or unless malloc hooks are
used, but might not be satisfied if a program replaces those operators. This be-
havior is enabled by default. With ~fno-assume-sane-operators-new-delete
option GCC must assume all these calls (whether from new or delete expressions
or called directly) may read and write global state unless proven otherwise (e.g.
when GCC compiles their implementation). Use this option if those operators
are or may be replaced and code needs to expect such behavior.

—-fno-char8_t

Enable support for char8_t as adopted for C++20. This includes the addition
of a new char8_t fundamental type, changes to the types of UTF-8 string and
character literals, new signatures for user-defined literals, associated standard
library updates, and new __cpp_char8_t and __cpp_lib_char8_t feature test
macros.

This option enables functions to be overloaded for ordinary and UTF-8 strings:

int f(const char *); // #1
int f(const char8_t *); // #2
int vl = £f("text"); // Calls #1

int v2 = f(u8"text"); // Calls #2

and introduces new signatures for user-defined literals:

int operator""_udll(char8_t);

int v3 = u8'x'_udli;

int operator""_udl2(const char8_t*, std::size_t);
int v4 = u8"text"_udl2;

template<typename T, T...> int operator""_udl3();
int v = u8"text"_udl3;

The change to the types of UTF-8 string and character literals introduces in-
compatibilities with ISO C++11 and later standards. For example, the following
code is well-formed under ISO C++11, but is ill-formed when -fchar8_t is spec-
ified.

const char *cp = u8"xx";// error: invalid conversion from

// “const char8_t*' to “const charx'
int f(const charx);
auto v = f(u8"xx"); // error: invalid conversion from

56 Using the GNU Compiler Collection (GCC)

// “const char8_t*' to “const charx'
std::string s{u8"xx"}; // error: no matching function for call to

// “std::basic_string<char>::basic_string()'
using namespace std::literals;
s = u8"xx"s; // error: conversion from

// “basic_string<char8_t>' to non-scalar

// type “basic_string<char>' requested

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
throw(), in which case the compiler always checks the return value even without
this option. In all other cases, when operator new has a non-empty exception
specification, memory exhaustion is signalled by throwing std::bad_alloc.
See also ‘new (nothrow)’.

-fconcepts
Enable support for the C++ Concepts feature for constraining template ar-
guments. With -std=c++20 and above, Concepts are part of the language
standard, so -fconcepts defaults to on.

Some constructs that were allowed by the earlier C++ Extensions for Concepts
Technical Specification, ISO 19217 (2015), but didn’t make it into the standard,
could additionally be enabled by -fconcepts-ts. The option -fconcepts-ts
was deprecated in GCC 14 and removed in GCC 15; users are expected to
convert their code to C++20 concepts.

-fconcepts-diagnostics-depth=n
Specify maximum error replay depth during recursive diagnosis of a constraint
satisfaction failure. The default is 1.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fconstexpr-cache-depth=n

Set the maximum level of nested evaluation depth for C++11 constexpr func-
tions that will be cached to n. This is a heuristic that trades off compilation
speed (when the cache avoids repeated calculations) against memory consump-
tion (when the cache grows very large from highly recursive evaluations). The
default is 8. Very few users are likely to want to adjust it, but if your code does
heavy constexpr calculations you might want to experiment to find which value
works best for you.

-fconstexpr-fp-except
Annex F of the C standard specifies that IEC559 floating point exceptions
encountered at compile time should not stop compilation. C++ compilers have
historically not followed this guidance, instead treating floating point division
by zero as non-constant even though it has a well defined value. This flag tells
the compiler to give Annex F priority over other rules saying that a particular
operation is undefined.

Chapter 3: GCC Command Options 57

constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except

—-fconstexpr-loop-limit=n
Set the maximum number of iterations for a loop in C++14 constexpr functions
to n. A limit is needed to detect infinite loops during constant expression
evaluation. The default is 262144 (1<<18).

-fconstexpr-ops-limit=n
Set the maximum number of operations during a single constexpr evaluation.
Even when number of iterations of a single loop is limited with the above limit,
if there are several nested loops and each of them has many iterations but
still smaller than the above limit, or if in a body of some loop or even outside
of a loop too many expressions need to be evaluated, the resulting constexpr
evaluation might take too long. The default is 33554432 (1<<25).

-fcontracts
Enable experimental support for the C++ Contracts feature, as briefly added to
and then removed from the C++20 working paper (N4820). The implementation
also includes proposed enhancements from papers P1290, P1332, and P1429.
This functionality is intended mostly for those interested in experimentation
towards refining the feature to get it into shape for a future C++ standard.

On violation of a checked contract, the violation handler is called. Users can
replace the violation handler by defining

void

handle_contract_violation (const std::experimental::contract_violation&);
There are different sets of additional flags that can be used together to specify
which contracts will be checked and how, for N4820 contracts, P1332 contracts,
or P1429 contracts; these sets cannot be used together.

-fcontract-mode=[on|off]
Control whether any contracts have any semantics at all. Defaults
to on.

-fcontract-assumption-mode=[on|off]
[N4820] Control whether contracts with level ‘axiom’ should have
the assume semantic. Defaults to on.

-fcontract-build-level=[off|default|audit]
[N4820] Specify which level of contracts to generate checks for. De-
faults to ‘default’.

-fcontract-continuation-mode=[on|off]
[N4820] Control whether to allow the program to continue executing
after a contract violation. That is, do checked contracts have the
‘maybe’ semantic described below rather than the ‘never’ semantic.
Defaults to off.

-fcontract-role=name:default,audit,axiom
[P1332] Specify the concrete semantics for each contract level of a
particular contract role.

58 Using the GNU Compiler Collection (GCC)
-fcontract-semantic=[default|audit|axiom|: semantic
[P1429] Specify the concrete semantic for a particular contract level.
-fcontract-strict-declarations=[on|off]
Control whether to reject adding contracts to a function after its
first declaration. Defaults to off.
The possible concrete semantics for that can be specified with
‘~fcontract-role’ or ‘-fcontract-semantic’ are:
ignore This contract has no effect.
assume This contract is treated like C++23 [[assume]].
check_never_continue
never
abort This contract is checked. If it fails, the violation handler is called.
If the handler returns, std: :terminate is called.
check_maybe_continue
maybe This contract is checked. If it fails, the violation handler is called.
If the handler returns, execution continues normally.
-fcoroutines

Enable support for the C++ coroutines extension (experimental).

-fdiagnostics-all-candidates

Permit the C++ front end to note all candidates during overload resolution
failure, including when a deleted function is selected.

-fdump-lang-

-fdump-lang-switch
-fdump-lang-switch-options
-fdump-lang-switch-options=filename

Control the dumping of C++-specific information. The options and filename
portions behave as described in the —fdump-tree option. The following switch
values are accepted:

‘all’ Enable all of the below.

‘class’ Dump class hierarchy information. Virtual table information is
emitted unless ’slim’ is specified.

‘module’ Dump module information. Options lineno (locations), graph
(reachability), blocks (clusters), uid (serialization), alias (merge-
able), asmname (Elrond), eh (mapper) & vops (macros) may pro-
vide additional information.

raw Dump the raw internal tree data.

‘tinst’ Dump the sequence of template instantiations, indented to show
the depth of recursion. The lineno option adds the source loca-
tion where the instantiation was triggered, and the details option
also dumps pre-instantiation substitutions such as those performed
during template argument deduction.

Chapter 3: GCC Command Options 59

Lines in the .tinst dump start with ‘I’ for an instantiation, ‘S’ for
another substitution, and ‘R[IS]’ for the reopened context of a
deferred instantiation.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases. This option also causes G++ to call trivial member functions which
otherwise would be expanded inline.

In C++17, the compiler is required to omit these temporaries, but this option
still affects trivial member functions.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining NDEBUG. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

—-fextern-tls-init

-fno-extern-tls-init
The C++11 and OpenMP standards allow thread_local and threadprivate
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the -fno-extern-tls-init option.

On targets that support symbol aliases, the default is ~-fextern-tls-init. On
targets that do not support symbol aliases, the default is ~-fno-extern-tls-
init.

-ffold-simple-inlines

-fno-fold-simple-inlines
Permit the C++ frontend to fold calls to std::move, std::forward,
std::addressof, std::to_underlying and std::as_const. In contrast to
inlining, this means no debug information will be generated for such calls.
Since these functions are rarely interesting to debug, this flag is enabled by
default unless -fno-inline is active.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as an
identifier. You can use the keyword __typeof__ instead. This option is implied
by the strict ISO C++ dialects: —ansi, -std=c++98, —std=c++11, etc.

60 Using the GNU Compiler Collection (GCC)

-fno-immediate-escalation
Do not enable immediate function escalation whereby certain functions can be
promoted to consteval, as specified in P2564R3. For example:

consteval int id(int i) { returm i; }

constexpr int f(auto t)
{
return t + id(t); // id causes f<int> to be promoted to constevall]

}

void g(int i)
{
f (3);

}
compiles in C++20: f is an immediate-escalating function (due to the auto it
is a function template and is declared constexpr) and id(t) is an immediate-
escalating expression, so f is promoted to consteval. Consequently, the call to
id(t) is in an immediate context, so doesn’t have to produce a constant (that is
the mechanism allowing consteval function composition). However, with ~fno-
immediate-escalation, f is not promoted to consteval, and since the call to
consteval function id(t) is not a constant expression, the compiler rejects the
code.

This option is turned on by default; it is only effective in C++20 mode or later.
-fimplicit-constexpr

Make inline functions implicitly constexpr, if they satisfy the requirements for a

constexpr function. This option can be used in C++14 mode or later. This can

result in initialization changing from dynamic to static and other optimizations.
-fno-implicit-templates

Never emit code for non-inline templates that are instantiated implicitly (i.e.

by use); only emit code for explicit instantiations. If you use this option, you

must take care to structure your code to include all the necessary explicit in-

stantiations to avoid getting undefined symbols at link time. See Section 8.5

[Template Instantiation|, page 1062, for more information.
-fno-implicit-inline-templates

Don’t emit code for implicit instantiations of inline templates, either. The

default is to handle inlines differently so that compiles with and without opti-

mization need the same set of explicit instantiations.
-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled by

#pragma implementation. This causes linker errors if these functions are not

inlined everywhere they are called.

—-fmodules

-fno-modules
Enable support for C++20 modules (see Section 3.24 [C++ Modules], page 583).
The -fno-modules is usually not needed, as that is the default. Even though

Chapter 3: GCC Command Options 61

this is a C++20 feature, it is not currently implicitly enabled by selecting that
standard version.

-fmodule-header
-fmodule-header=user
—-fmodule-header=system
Compile a header file to create an importable header unit.

-fmodule-implicit-inline
Member functions defined in their class definitions are not implicitly inline for
modular code. This is different to traditional C++ behavior, for good reasons.
However, it may result in a difficulty during code porting. This option makes
such function definitions implicitly inline. It does however generate an ABI
incompatibility, so you must use it everywhere or nowhere. (Such definitions
outside of a named module remain implicitly inline, regardless.)

-fno-module-lazy
Disable lazy module importing and module mapper creation.

-fmodule-mapper=[hostname|: port[?ident|

-fmodule-mapper=| program[?ident| args. . .

-fmodule-mapper==socket|[?ident|

-fmodule-mapper=<>[inout|[?ident]

-fmodule-mapper=<in>out|?ident|

-fmodule-mapper=rfile[?ident]
An oracle to query for module name to filename mappings. If unspecified the
CXX_MODULE_MAPPER environment variable is used, and if that is unset, an in-
process default is provided.

—-fmodule-only
Only emit the Compiled Module Interface, inhibiting any object file.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fnew-inheriting-ctors
Enable the P0136 adjustment to the semantics of C++11 constructor inheri-
tance. This is part of C++17 but also considered to be a Defect Report against
C++11 and C++14. This flag is enabled by default unless -~fabi-version=10 or
lower is specified.

-fnew-ttp-matching
Enable the P0522 resolution to Core issue 150, template template parameters
and default arguments: this allows a template with default template arguments
as an argument for a template template parameter with fewer template param-
eters. This flag is enabled by default for —~std=c++17.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

62

Using the GNU Compiler Collection (GCC)

—-fnothrow-opt

Treat a throw () exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic
effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

-fno-operator-names

Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags

Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fno-pretty-templates

When an error message refers to a specialization of a function template, the
compiler normally prints the signature of the template followed by the template
arguments and any typedefs or typenames in the signature (e.g. void £ (T)
[with T = int] rather than void f (int)) so that it’s clear which template is
involved. When an error message refers to a specialization of a class template,
the compiler omits any template arguments that match the default template
arguments for that template. If either of these behaviors make it harder to
understand the error message rather than easier, you can use -fno-pretty-
templates to disable them.

-frange-for-ext-temps

-fno-rtti

Enable lifetime extension of C++ range based for temporaries. With —std=c++23
and above this is part of the language standard, so lifetime of the temporaries
is extended until the end of the loop by default. This option allows enabling
that behavior also in earlier versions of the standard.

Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (dynamic_cast and
typeid). If you don’t use those parts of the language, you can save some space
by using this flag. Note that exception handling uses the same information,
but G++ generates it as needed. The dynamic_cast operator can still be used
for casts that do not require run-time type information, i.e. casts to void * or
to unambiguous base classes.

Mixing code compiled with -frtti with that compiled with -fno-rtti may
not work. For example, programs may fail to link if a class compiled with
-fno-rtti is used as a base for a class compiled with -frtti.

—-fsized-deallocation

Enable the built-in global declarations

void operator delete (void *, std::size_t) noexcept;

Chapter 3: GCC Command Options 63

void operator delete[] (void *, std::size_t) noexcept;

as introduced in C++14. This is useful for user-defined replacement deallocation
functions that, for example, use the size of the object to make deallocation
faster. Enabled by default under -std=c++14 and above. The flag -Wsized-
deallocation warns about places that might want to add a definition.

-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type. This option has no effect for an enumeration type with a
fixed underlying type.

-fstrong-eval-order

-fstrong-eval-order=kind
Evaluate member access, array subscripting, and shift expressions in left-to-
right order, and evaluate assignment in right-to-left order, as adopted for C++17.
-fstrong-eval-order is equivalent to -fstrong-eval-order=all, and is en-
abled by default with -std=c++17 or later.

-fstrong-eval-order=some enables just the ordering of member access and
shift expressions, and is the default for C++ dialects prior to C++17.

-fstrong-eval-order=none is equivalent to ~-fno-strong-eval-order.

-ftemplate-backtrace-limit=n
Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

64 Using the GNU Compiler Collection (GCC)

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes
std: :uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

-fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken
in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 8.5 [Template
Instantiation], page 1062.

-fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like -fvisibility=hidden.
2. Types, but not their members, are not hidden by default.

3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use -fvisibility=hidden and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are
different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

Chapter 3: GCC Command Options 65

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only
for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

-fext-numeric-literals (C++ and Objective-C++ only)
Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes. This is on by default for
all pre-C++11 dialects and all GNU dialects: -std=c++98, -std=gnu++98,
-std=gnut++11, -std=gnu++14. This option is off by default for ISO C++11
onwards (-std=c++11, ...).

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

-flang-info-include-translate

-flang-info-include-translate-not

-flang-info-include-translate=header
Inform of include translation events. The first will note accepted include trans-
lations, the second will note declined include translations. The header form
will inform of include translations relating to that specific header. If header is
of the form "user" or <system> it will be resolved to a specific user or system
header using the include path.

-flang-info-module-cmi

-flang-info-module-cmi=module
Inform of Compiled Module Interface pathnames. The first will note all read
CMI pathnames. The module form will not reading a specific module’s CMI.
module may be a named module or a header-unit (the latter indicated by either
being a pathname containing directory separators or enclosed in <> or "").

-stdlib=1ibstdc++,libc++
When G++ is configured to support this option, it allows specification of alter-
nate C++ runtime libraries. Two options are available: libstdc++ (the default,
native C++ runtime for G++) and libc++ which is the C++ runtime installed on
some operating systems (e.g. Darwin versions from Darwinll onwards). The
option switches G++ to use the headers from the specified library and to emit
-1stdc++ or —lc++ respectively, when a C++ runtime is required for linking.

In addition, these warning options have meanings only for C++ programs:

-Wabi-tag (C++ and Objective-C++ only)
Warn when a type with an ABI tag is used in a context that does not have that
ABI tag. See Section 8.7 [C++ Attributes|, page 1065, for more information
about ABI tags.

66 Using the GNU Compiler Collection (GCC)

-Wno-abbreviated-auto-in-template-arg
Disable the error for an auto placeholder type used within a template argument
list to declare a C++20 abbreviated function template, e.g.

void f(S<auto>);

This feature was proposed in the Concepts TS, but was not adopted into C++20;
in the standard, a placeholder in a parameter declaration must appear as a
decl-specifier. The error can also be reduced to a warning by -fpermissive or
-Wno-error=abbreviated-auto-in-template-arg.

-Wcomma-subscript (C++ and Objective-C++ only)
Warn about uses of a comma expression within a subscripting expression. This
usage was deprecated in C++20 and is going to be removed in C++23. However,
a comma expression wrapped in () is not deprecated. Example:
void f(int *a, int b, int c) {
alb,c]; // deprecated in C++20, invalid in C++23
al(b,c)]; // OK
}
In C++23 it is valid to have comma separated expressions in a subscript when
an overloaded subscript operator is found and supports the right number and
types of arguments. G++ will accept the formerly valid syntax for code that
is not valid in C++23 but used to be valid but deprecated in C++20 with a
pedantic warning that can be disabled with ~-Wno-comma-subscript.

Enabled by default with -std=c++20 unless -Wno-deprecated, and after
-std=c++23 regardless of -Wno-deprecated. Before -std=c++20, enabled
with explicit -Wdeprecated.

This warning is upgraded to an error by -pedantic-errors in C++23 mode or
later.

-Wctad-maybe-unsupported (C++ and Objective-C++ only)
Warn when performing class template argument deduction (CTAD) on a type
with no explicitly written deduction guides. This warning will point out cases
where CTAD succeeded only because the compiler synthesized the implicit de-
duction guides, which might not be what the programmer intended. Certain
style guides allow CTAD only on types that specifically "opt-in"; i.e., on types
that are designed to support CTAD. This warning can be suppressed with the
following pattern:
struct allow_ctad_t; // any name works
template <typename T> struct S {
s(m {1}
};

// Guide with incomplete parameter type will never be considered.
S(allow_ctad_t) -> S<void>;

-Wector-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

Chapter 3: GCC Command Options 67

-Wdangling-reference (C++ and Objective-C++ only)

Warn when a reference is bound to a temporary whose lifetime has ended. For
example:

int n = 1;

const int& r = std::max(n - 1, n + 1); // r is dangling
In the example above, two temporaries are created, one for each argument, and
a reference to one of the temporaries is returned. However, both temporaries
are destroyed at the end of the full expression, so the reference r is dangling.
This warning also detects dangling references in member initializer lists:

const int& f(const int& i) { return i; }
struct S {
const int &r; // r is dangling

SO : r(f(10)) { }

}’
Member functions are checked as well, but only their object argument:
struct S {
const S& self () { return *this; }
};

const S& s = S().self(); // s is dangling

Certain functions are safe in this respect, for example std: :use_facet: they
take and return a reference, but they don’t return one of its arguments, which
can fool the warning. Such functions can be excluded from the warning by
wrapping them in a #pragma:

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "-Wdangling-reference"

const T& foo (const T& { ... }

#pragma GCC diagnostic pop
The #pragma can also surround the class; in that case, the warning will be
disabled for all the member functions.

-Wdangling-reference also warns about code like

auto p = std::minmax(1, 2);

where std::minmax returns std::pair<const int&, const int&>, and both
references dangle after the end of the full expression that contains the call to
std: :minmax.

The warning does not warn for std: :span-like classes. We consider classes of
the form:

template<typename T>

struct Span {
T*x data_;
std::size len_;
};
as std: : span-like; that is, the class is a non-union class that has a pointer data
member and a trivial destructor.

The warning can be disabled by using the gnu::no_dangling attribute (see
Section 8.7 [C++ Attributes], page 1065).

This warning is enabled by -Wextra.

68 Using the GNU Compiler Collection (GCC)

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when delete is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by -Wall.

-Wdeprecated-copy (C++ and Objective-C++ only)
Warn that the implicit declaration of a copy constructor or copy assignment
operator is deprecated if the class has a user-provided copy constructor or copy
assignment operator, in C++11 and up. This warning is enabled by -Wextra.

-Wdeprecated-copy-dtor (C++ and Objective-C++ only)
Similar to -Wdeprecated-copy, but also deprecate if the class has a user-
provided destructor.

-Wno-deprecated-enum-enum-conversion (C++ and Objective-C++ only)

Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
different enumeration type. This conversion was deprecated in C++20. For
example:

enum E1 { e };

enum E2 { f };

int k = f - e;
-Wdeprecated-enum-enum-conversion is enabled by default with —std=c++20.
In pre-C++20 dialects, this warning can be enabled by -Wenum-conversion or
-Wdeprecated.

-Wno-deprecated-enum-float-conversion (C++ and Objective-C++ only)
Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
floating-point type. This conversion was deprecated in C++20. For example:
enum E1 { e };
enum E2 { f };
bool b = e <= 3.7;
-Wdeprecated-enum-float-conversion is enabled by default with
-std=c++20. In pre-C++20 dialects, this warning can be enabled by
-Wenum-conversion or -Wdeprecated.

-Wdeprecated-literal-operator (C++ and Objective-C++ only)
Warn that the declaration of a user-defined literal operator with a space before
the suffix is deprecated. This warning is enabled by default in C++23, or with
explicit -Wdeprecated.

string operator "" _il8n(const char*, std::size_t); // deprecated
string operator ""_il8n(const char*, std::size_t); // preferred

-Wdeprecated-variadic-comma-omission (C++ and Objective-C++ only)
Warn that omitting a comma before the varargs ... at the end of a function
parameter list is deprecated. This warning is enabled by default in C++26, or
with explicit -Wdeprecated.

void fi(int...); // deprecated
void f1(int, ...); // preferred

Chapter 3: GCC Command Options 69

template <typename ...T>

void f2(T...); // ok

template <typename ...T>

void £3(T......); // deprecated

-Wno-elaborated-enum-base
For C++11 and above, warn if an (invalid) additional enum-base is used in
an elaborated-type-specifier. That is, if an enum with given underlying type
and no enumerator list is used in a declaration other than just a standalone
declaration of the enum. Enabled by default. This warning is upgraded to an
error with -pedantic-errors.

-Wno-init-list-lifetime (C++ and Objective-C++ only)
Do not warn about uses of std::initializer_list that are likely to result
in dangling pointers. Since the underlying array for an initializer_list is
handled like a normal C++ temporary object, it is easy to inadvertently keep a
pointer to the array past the end of the array’s lifetime. For example:

e If a function returns a temporary initializer_list, or a local
initializer_list variable, the array’s lifetime ends at the end of the
return statement, so the value returned has a dangling pointer.

e If a new-expression creates an initializer_list, the array only lives until
the end of the enclosing full-expression, so the initializer_list in the
heap has a dangling pointer.

e When an initializer_list variable is assigned from a brace-enclosed ini-
tializer list, the temporary array created for the right side of the assignment
only lives until the end of the full-expression, so at the next statement the
initializer_list variable has a dangling pointer.

// li's initial underlying array lives as long as 1li
std::initializer_list<int> 1i = { 1,2,3 };

// assignment changes 1li to point to a temporary array

1i = { 4, 5 };

// now the temporary is gone and li has a dangling pointer
int i = 1li.begin()[0] // undefined behavior

e When a list constructor stores the begin pointer from the initializer_
list argument, this doesn’t extend the lifetime of the array, so if a class
variable is constructed from a temporary initializer_list, the pointer
is left dangling by the end of the variable declaration statement.

-Winvalid-constexpr

Warn when a function never produces a constant expression. In C++20 and
earlier, for every constexpr function and function template, there must be at
least one set of function arguments in at least one instantiation such that an
invocation of the function or constructor could be an evaluated subexpression
of a core constant expression. C++23 removed this restriction, so it’s possible
to have a function or a function template marked constexpr for which no
invocation satisfies the requirements of a core constant expression.

This warning is enabled as a pedantic warning by default in C++20 and earlier.
In C++23, -Winvalid-constexpr can be turned on, in which case it will be an
ordinary warning. For example:

void f (int& 1i);

70

Using the GNU Compiler Collection (GCC)

constexpr void

g (int& i)

{
// Warns by default in C++20, in C++23 only with -Winvalid-constexpr.
£(1);

}

-Winvalid-imported-macros

Verify all imported macro definitions are valid at the end of compilation. This
is not enabled by default, as it requires additional processing to determine. It
may be useful when preparing sets of header-units to ensure consistent macros.

-Wno-literal-suffix (C++ and Objective-C++ only)

Do not warn when a string or character literal is followed by a ud-suffix which
does not begin with an underscore. As a conforming extension, GCC treats
such suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from <inttypes.h>. For
example:

#define __STDC_FORMAT_MACROS

#include <inttypes.h>
#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %" PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

This option also controls warnings when a user-defined literal operator is de-
clared with a literal suffix identifier that doesn’t begin with an underscore.
Literal suffix identifiers that don’t begin with an underscore are reserved for
future standardization.

These warnings are enabled by default.

-Wno-narrowing (C++ and Objective-C++ only)

For C++11 and later standards, narrowing conversions are diagnosed by default,
as required by the standard. A narrowing conversion from a constant produces
an error, and a narrowing conversion from a non-constant produces a warning,
but -Wno-narrowing suppresses the diagnostic. Note that this does not affect
the meaning of well-formed code; narrowing conversions are still considered
ill-formed in SFINAE contexts.

With -Wnarrowing in C++98, warn when a narrowing conversion prohibited by
C++11 occurs within ‘{ }’, e.g.

int 1 = { 2.2 }; // error: narrowing from double to int

This flag is included in -Wall and -Wc++11-compat.

-Wnoexcept (C++ and Objective-C++ only)

Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. throw() or
noexcept) but is known by the compiler to never throw an exception.

Chapter 3: GCC Command Options 71

-Wnoexcept-type (C++ and Objective-C++ only)
Warn if the C++17 feature making noexcept part of a function type changes the
mangled name of a symbol relative to C++14. Enabled by -Wabi and -Wc++17-
compat.

As an example:

template <class T> void £(T t) { t(; 3};
void g() noexcept;
void h() { £(g); }

In C++14, £ calls £<void (*) ()>, but in C++17 it calls £<void (*) (Dnoexcept>.

-Wclass-memaccess (C++ and Objective-C++ only)
Warn when the destination of a call to a raw memory function such as memset
or memcpy is an object of class type, and when writing into such an object might
bypass the class non-trivial or deleted constructor or copy assignment, violate
const-correctness or encapsulation, or corrupt virtual table pointers. Modifying
the representation of such objects may violate invariants maintained by member
functions of the class. For example, the call to memset below is undefined
because it modifies a non-trivial class object and is, therefore, diagnosed. The
safe way to either initialize or clear the storage of objects of such types is by
using the appropriate constructor or assignment operator, if one is available.
std::string str = "abc";
memset (&str, 0, sizeof str);
The -Wclass-memaccess option is enabled by -Wall. Explicitly casting the
pointer to the class object to void * or to a type that can be safely accessed
by the raw memory function suppresses the warning.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible
but unsafe to delete an instance of a derived class through a pointer to the
class itself or base class. This warning is automatically enabled if ~-Weffc++ is
specified. The -Wdelete-non-virtual-dtor option (enabled by -Wall) should
be preferred because it warns about the unsafe cases without false positives.

-Wregister (C++ and Objective-C++ only)
Warn on uses of the register storage class specifier, except when it is part of
the GNU Section 6.11.6 [Explicit Register Variables|, page 805, extension. The
use of the register keyword as storage class specifier has been deprecated in
C++11 and removed in C++17. Enabled by default with -std=c++17.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:
struct A {
int i;
int j;
AQ: j (0, i (1 {1}
};

72 Using the GNU Compiler Collection (GCC)

The compiler rearranges the member initializers for i and j to match the dec-
laration order of the members, emitting a warning to that effect. This warning
is enabled by -Wall.

-Wno-pessimizing-move (C++ and Objective-C++ only)

This warning warns when a call to std: :move prevents copy elision. A typical
scenario when copy elision can occur is when returning in a function with a class
return type, when the expression being returned is the name of a non-volatile
automatic object, and is not a function parameter, and has the same type as
the function return type.

struct T {

};

T fn()

{
T t;

return std::move (t);

}
But in this example, the std: :move call prevents copy elision.
This warning is enabled by -Wall.

-Wno-redundant-move (C++ and Objective-C++ only)

This warning warns about redundant calls to std: :move; that is, when a move
operation would have been performed even without the std: :move call. This
happens because the compiler is forced to treat the object as if it were an rvalue
in certain situations such as returning a local variable, where copy elision isn’t
applicable. Consider:

struct T {

};

T £n(T t)

{

return std::move (t);

}
Here, the std: :move call is redundant. Because G++ implements Core Issue
1579, another example is:

struct T { // convertible to U

};

struct U {

1

U fn()

{
T t;

£é£urn std::move (t);
}
In this example, copy elision isn’t applicable because the type of the expression
being returned and the function return type differ, yet G++ treats the return
value as if it were designated by an rvalue.

Chapter 3: GCC Command Options 73

This warning is enabled by -Wextra.

-Wrange-loop-construct (C++ and Objective-C++ only)
This warning warns when a C++ range-based for-loop is creating an unnecessary
copy. This can happen when the range declaration is not a reference, but
probably should be. For example:
struct S { char arr[128]; };
void fn O {
S arr([5];
for (const auto x : arr) { ... }
}
It does not warn when the type being copied is a trivially-copyable type whose

size is less than 64 bytes.

This warning also warns when a loop variable in a range-based for-loop is ini-
tialized with a value of a different type resulting in a copy. For example:
void fn() {
int arr[10];
for (const double &x : arr) { ... }
}
In the example above, in every iteration of the loop a temporary value of type
double is created and destroyed, to which the reference const double & is

bound.
This warning is enabled by -Wall.

-Wredundant-tags (C++ and Objective-C++ only)

Warn about redundant class-key and enum-key in references to class types and
enumerated types in contexts where the key can be eliminated without causing
an ambiguity. For example:

struct foo;

struct foo *p; // warn that keyword struct can be eliminated
On the other hand, in this example there is no warning:

struct foo;

void foo (O} // "hides" struct foo

void bar (struct foo&); // no warning, keyword struct is necessary

-Wno-subobject-linkage (C++ and Objective-C++ only)

Do not warn if a class type has a base or a field whose type uses the anonymous
namespace or depends on a type with no linkage. If a type A depends on a type
B with no or internal linkage, defining it in multiple translation units would
be an ODR violation because the meaning of B is different in each translation
unit. If A only appears in a single translation unit, the best way to silence the
warning is to give it internal linkage by putting it in an anonymous namespace
as well. The compiler doesn’t give this warning for types defined in the main .C
file, as those are unlikely to have multiple definitions. -Wsubobject-linkage
is enabled by default.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:

e Define a copy constructor and an assignment operator for classes with
dynamically-allocated memory.

74

Using the GNU Compiler Collection (GCC)

e Prefer initialization to assignment in constructors.
e Have operator= return a reference to *this.
e Don’t try to return a reference when you must return an object.

e Distinguish between prefix and postfix forms of increment and decrement
operators.

e Never overload &&, ||, or ,.

This option also enables ~Wnon-virtual-dtor, which is also one of the effective
C++ recommendations. However, the check is extended to warn about the lack
of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-exceptions (C++ and Objective-C++ only)

Disable the warning about the case when an exception handler is shadowed by
another handler, which can point out a wrong ordering of exception handlers.

Warn about a class that is found to be incomplete, or a function with auto return
type that has not yet been deduced, in a context where that causes substitution
failure rather than an error, and then the class or function is defined later in
the translation unit. This is problematic because template instantiations or
concept checks could have different results if they first occur either before or
after the definition.

This warning is enabled by default. -Wsfinae-incomplete=2 adds a warning

at the point of substitution failure, to make it easier to track down problems
flagged by the default mode.

-Wstrict-null-sentinel (C++ and Objective-C++ only)

Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-c-typedef-for-linkage (C++ and Objective-C++ only)

Disable pedwarn for unnamed classes with a typedef name for linkage purposes
containing C++ specific members, base classes, default member initializers or
lambda expressions, including those on nested member classes.

typedef struct {
int a; // non-static data members are ok
struct T { int b; }; // member classes too
enum E { E1, E2, E3 }; // member enumerations as well
int ¢ = 42; // default member initializers are not ok
struct U : A { int c; }; // classes with base classes are not ok
typedef int V; // typedef is not ok
using W = int; // using declaration is not ok
decltype([1O{}) x; // lambda expressions not ok
}s;

In all these cases, the tag name S should be added after the struct keyword.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-template friend functions are declared within a
template. In very old versions of GCC that predate implementation of the ISO

Chapter 3: GCC Command Options 75

standard, declarations such as ‘friend int foo(int)’, where the name of the
friend is an unqualified-id, could be interpreted as a particular specialization
of a template function; the warning exists to diagnose compatibility problems,
and is enabled by default.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++
program. The new-style casts (dynamic_cast, static_cast, reinterpret_
cast, and const_cast) are less vulnerable to unintended effects and much
easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)
-Woverloaded-virtual=n
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void £(Q);

};

struct B: public A {
void f(int); // does not override
};
the A class version of f is hidden in B, and code like:
B*x b;
b->£();
fails to compile.

In cases where the different signatures are not an accident, the simplest solution
is to add a using-declaration to the derived class to un-hide the base function,
e.g. add using A::f; to B.

The optional level suffix controls the behavior when all the declarations in the
derived class override virtual functions in the base class, even if not all of the
base functions are overridden:

struct C {
virtual void £(Q);
virtual void f(int);

};

struct D: public C {
void f(int); // does override

}
This pattern is less likely to be a mistake; if D is only used virtually, the user
might have decided that the base class semantics for some of the overloads are
fine.

At level 1, this case does not warn; at level 2, it does. -Woverloaded-virtual
by itself selects level 2. Level 1 is included in -Wall.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

76 Using the GNU Compiler Collection (GCC)

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

-Wtemplates (C++ and Objective-C++ only)
Warn when a primary template declaration is encountered. Some coding rules
disallow templates, and this may be used to enforce that rule. The warning is
inactive inside a system header file, such as the STL, so one can still use the
STL. One may also instantiate or specialize templates.

-Wmismatched-new-delete (C++ and Objective-C++ only)

Warn for mismatches between calls to operator new or operator delete and
the corresponding call to the allocation or deallocation function. This includes
invocations of C++ operator delete with pointers returned from either mis-
matched forms of operator new, or from other functions that allocate objects
for which the operator delete isn’t a suitable deallocator, as well as calls
to other deallocation functions with pointers returned from operator new for
which the deallocation function isn’t suitable.

For example, the delete expression in the function below is diagnosed because
it doesn’t match the array form of the new expression the pointer argument was
returned from. Similarly, the call to free is also diagnosed.

void £ ()
{
int *a = new int[n];
delete a; // warning: mismatch in array forms of expressions

char *p = new char[n];
free (p); // warning: mismatch between new and free
}
The related option -Wmismatched-dealloc diagnoses mismatches involving al-
location and deallocation functions other than operator new and operator
delete.

-Wmismatched-new-delete is included in -Wall.

-Wmismatched-tags (C++ and Objective-C++ only)
Warn for declarations of structs, classes, and class templates and their special-
izations with a class-key that does not match either the definition or the first
declaration if no definition is provided.

For example, the declaration of struct Object in the argument list of draw
triggers the warning. To avoid it, either remove the redundant class-key struct
or replace it with class to match its definition.

class Object {
public:
virtual ~“Object () = 0;
};
void draw (struct Objectx*);
It is not wrong to declare a class with the class-key struct as the example

above shows. The -Wmismatched-tags option is intended to help achieve a

Chapter 3: GCC Command Options 77

consistent style of class declarations. In code that is intended to be portable to
Windows-based compilers the warning helps prevent unresolved references due
to the difference in the mangling of symbols declared with different class-keys.
The option can be used either on its own or in conjunction with ~-Wredundant-
tags.

-Wmultiple-inheritance (C++ and Objective-C++ only)
Warn when a class is defined with multiple direct base classes. Some coding
rules disallow multiple inheritance, and this may be used to enforce that rule.
The warning is inactive inside a system header file, such as the STL, so one
can still use the STL. One may also define classes that indirectly use multiple
inheritance.

-Wvirtual-inheritance
Warn when a class is defined with a virtual direct base class. Some coding rules
disallow multiple inheritance, and this may be used to enforce that rule. The
warning is inactive inside a system header file, such as the STL, so one can still
use the STL. One may also define classes that indirectly use virtual inheritance.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it is moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment
operator is written to avoid moving from a moved-from object, this warning

can be disabled.

-Wnamespaces
Warn when a namespace definition is opened. Some coding rules disallow
namespaces, and this may be used to enforce that rule. The warning is in-
active inside a system header file, such as the STL, so one can still use the STL.
One may also use using directives and qualified names.

-Wno-template-body (C++ and Objective-C++ only)
Disable diagnosing errors when parsing a template, and instead issue an error
only upon instantiation of the template. This flag can also be used to downgrade
such errors into warnings with Wno-error= or -fpermissive.

-Wno-template-id-cdtor (C++ and Objective-C++ only)
Disable the warning about the use of simple-template-id as the declarator-id of
a constructor or destructor, which became invalid in C++20 via DR 2237. For
example:
template<typename T> struct S {
S<T>(); // should be SQ);
~8<T>(); // should be “SQ);
};
-Wtemplate-id-cdtor is enabled by default with -std=c++20; it is also enabled
by -Wc++20-compat.

-Wtemplate-names-tu-local
Warn when a template body hides an exposure of a translation-unit-local entity.
In most cases, referring to a translation-unit-local entity (such as an internal

78

Using the GNU Compiler Collection (GCC)

linkage declaration) within an entity that is emitted into a module’s CMI is an
error. However, within the initializer of a variable, or in the body of a non-inline
function, this is not an exposure and no error is emitted.

This can cause variable or function templates to accidentally become unusable
if they reference such an entity, because other translation units that import the
template will never be able to instantiate it. This warning attempts to detect
cases where this might occur. The presence of an explicit instantiation silences
the warning.

This flag is enabled by -Wextra.

-Wno-expose-global-module-tu-local

An exposure of a translation-unit-local entity from a module interface is invalid,
as this may cause ODR violations and manifest in link errors or other unex-
pected behaviour. However, many existing libraries declare TU-local entities in
their interface, and avoiding exposures of these entities may be difficult in some
cases.

As an extension, GCC allows exposures of internal variables and functions that
were declared in the global module fragment. This warning indicates when such
an invalid exposure has occurred, and can be silenced using diagnostic pragmas
either at the site of the exposure, or at the point of declaration of the internal
declaration.

When combined with -Wtemplate-names-tu-local, GCC will also warn about
non-exposure references to TU-local entities in template bodies. Such templates
can still be instantiated in other TUs but the above risks regarding exposures
of translation-unit-local entities apply.

This warning is enabled by default, and is upgraded to an error by -pedantic-
errors.

-Wno-external-tu-local

Warn when naming a TU-local entity outside of the translation unit it was
declared in. Such declarations will be ignored during name lookup. This can
occur when performing ADL from a template declared in the same TU as the
internal function:

export module M;

template <typename T> void foo(T t) {

bar(t);
}

struct S {} s;
static void bar(S) {} // internal linkage

// instantiating foo(s) from outside this TU can see ::bar,
// but naming it there is ill-formed.

This can be worked around by making bar attached to the global module, using
extern "C++".

This warning is enabled by default, and is upgraded to an error by -pedantic-
errors.

Chapter 3: GCC Command Options 79

-Wno-terminate (C++ and Objective-C++ only)
Disable the warning about a throw-expression that will immediately result in a
call to terminate.

-Wno-vexing-parse (C++ and Objective-C++ only)
Warn about the most vexing parse syntactic ambiguity. This warns about the
cases when a declaration looks like a variable definition, but the C++ language
requires it to be interpreted as a function declaration. For instance:

void f(double a) {
int 1Q); // extern int i (void);
int n(int(a)); // extern int n (int);

}

Another example:

struct S { S(int); };
void f(double a) {

S x(int(a)); // extern struct S x (int);
S y(int()); // extern struct S y (int (*) (void));
S z0; // extern struct S z (void);

}

The warning will suggest options how to deal with such an ambiguity; e.g., it
can suggest removing the parentheses or using braces instead.

This warning is enabled by default.

-Wno-class-conversion (C++ and Objective-C++ only)
Do not warn when a conversion function converts an object to the same type,
to a base class of that type, or to void; such a conversion function will never be
called.

-Wvolatile (C++ and Objective-C++ only)

Warn about deprecated uses of the volatile qualifier. This includes postfix
and prefix ++ and -- expressions of volatile-qualified types, using simple as-
signments where the left operand is a volatile-qualified non-class type for their
value, compound assignments where the left operand is a volatile-qualified
non-class type, volatile-qualified function return type, volatile-qualified pa-
rameter type, and structured bindings of a volatile-qualified type. This usage
was deprecated in C++20.

Enabled by default with —std=c++20. Before —std=c++20, enabled with explicit
-Wdeprecated.

-Waligned-new

-Waligned-new=[none|global|all]
Warn about a new-expression of a type that requires greater alignment than
the alignof (std: :max_align_t) but uses an allocation function without an
explicit alignment parameter. This option is enabled by -Wall.

Normally this only warns about global allocation functions, but -Waligned-
new=all also warns about class member allocation functions.

-Wno-placement-new

-Wplacement-new=n
Warn about placement new expressions with undefined behavior, such as con-
structing an object in a buffer that is smaller than the type of the object. For

80

Using the GNU Compiler Collection (GCC)

example, the placement new expression below is diagnosed because it attempts
to construct an array of 64 integers in a buffer only 64 bytes large.

char buf [64];

new (buf) int[64];

This warning is enabled by default.

-Wplacement-new=1
This is the default warning level of -Wplacement-new. At this level
the warning is not issued for some strictly undefined constructs
that GCC allows as extensions for compatibility with legacy code.
For example, the following new expression is not diagnosed at this
level even though it has undefined behavior according to the C++
standard because it writes past the end of the one-element array.
struct S { int n, al1l; };

S *s = (S *)malloc (sizeof *s + 31 * sizeof s->al0]);
new (s->a)int [32]1(Q);

-Wplacement-new=2
At this level, in addition to diagnosing all the same constructs as
at level 1, a diagnostic is also issued for placement new expressions
that construct an object in the last member of structure whose type
is an array of a single element and whose size is less than the size of
the object being constructed. While the previous example would be
diagnosed, the following construct makes use of the flexible member
array extension to avoid the warning at level 2.
struct S { int n, all; };

S *s = (S *)malloc (sizeof *s + 32 * sizeof s->al0]);
new (s->a)int [32]10);

-Wcatch-value
-Wcatch-value=n (C++ and Objective-C++ only)

Warn about catch handlers that do not catch via reference. With -Wcatch-
value=1 (or -Wcatch-value for short) warn about polymorphic class types
that are caught by value. With -Wcatch-value=2 warn about all class types
that are caught by value. With -Wcatch-value=3 warn about all types that
are not caught by reference. -Wcatch-value is enabled by -Wall.

-Wconditionally-supported (C++ and Objective-C++ only)

Warn for conditionally-supported (C++11 [intro.defs]) constructs.

-Wno-defaulted-function-deleted (C++ and Objective-C++ only)

Warn when an explicitly defaulted function is deleted by the compiler. That
can occur when the function’s declared type does not match the type of the
function that would have been implicitly declared. This warning is enabled by
default.

-Wno-delete-incomplete (C++ and Objective-C++ only)

Do not warn when deleting a pointer to incomplete type, which may cause
undefined behavior at runtime. This warning is enabled by default.

Chapter 3: GCC Command Options 81

-Wextra-semi (C++, Objective-C++ only)
Warn about redundant semicolons. There are various contexts in which an
extra semicolon can occur. One is a semicolon after in-class function definitions,
which is valid in all C++ dialects (and is never a pedwarn):

struct S {
void foo () {};
};
Another is an extra semicolon at namespace scope, which has been allowed
since C++11 (therefore is a pedwarn in C++98):
struct S {
};
And yet another is an extra semicolon in class definitions, which has been
allowed since C++11 (therefore is a pedwarn in C++98):
struct S {
int a;
};
-Wno-global-module (C++ and Objective-C++ only)
Disable the diagnostic for when the global module fragment of a module unit
does not consist only of preprocessor directives.

-Wno-inaccessible-base (C++, Objective-C++ only)
This option controls warnings when a base class is inaccessible in a class derived
from it due to ambiguity. The warning is enabled by default. Note that the
warning for ambiguous virtual bases is enabled by the -Wextra option.
struct A { int a; };

struct B : A { };
struct C : B, A { };

-Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

-Wno-invalid-offsetof (C++ and Objective-C++ only)
Suppress warnings from applying the offsetof macro to a non-POD type.
According to the 2014 ISO C++ standard, applying offsetof to a non-standard-
layout type is undefined. In existing C++ implementations, however, offsetof
typically gives meaningful results. This flag is for users who are aware that
they are writing nonportable code and who have deliberately chosen to ignore
the warning about it.

The restrictions on offsetof may be relaxed in a future version of the C++
standard.

-Wsized-deallocation (C++ and Objective-C++ only)
Warn about a definition of an unsized deallocation function

void operator delete (void *) noexcept;

82 Using the GNU Compiler Collection (GCC)

void operator delete[] (void *) noexcept;

without a definition of the corresponding sized deallocation function
void operator delete (void *, std::size_t) noexcept;

void operator delete[] (void *, std::size_t) noexcept;

or vice versa. Enabled by -Wextra along with ~-fsized-deallocation.

-Wsuggest-final-types
Warn about types with virtual methods where code quality would be improved
if the type were declared with the C++11 final specifier, or, if possible, de-
clared in an anonymous namespace. This allows GCC to more aggressively
devirtualize the polymorphic calls. This warning is more effective with link-
time optimization, where the information about the class hierarchy graph is
more complete.

-Wsuggest-final-methods

Warn about virtual methods where code quality would be improved if the
method were declared with the C++11 final specifier, or, if possible, its type
were declared in an anonymous namespace or with the final specifier. This
warning is more effective with link-time optimization, where the information
about the class hierarchy graph is more complete. It is recommended to first
consider suggestions of -Wsuggest-final-types and then rebuild with new
annotations.

-Wsuggest-override
Warn about overriding virtual functions that are not marked with the override
keyword.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
-Wconversion-null is enabled by default.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 3, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —-fgnu-runtime -0 -c some_class.m

In this example, ~fgnu-runtime is an option meant only for Objective-C and Objective-C++
programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compilations
may also use options specific to the C front-end (e.g., -Wtraditional). Similarly, Objective-
C++ compilations may use C++-specific options (e.g., ~Wabi).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

Chapter 3: GCC Command Options 83

-fconstant-string-class=class-name

Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). On Darwin / macOS platforms, the -fconstant-
cfstrings option, if also present, overrides the -fconstant-string-class
setting and cause @"..." literals to be laid out as constant CoreFoundation
strings. Note that -fconstant-cfstrings is an alias for the target-specific
-mconstant-cfstrings equivalent.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin / macOS. The macro __NEXT_RUNTIME_
_ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n

Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

84

Using the GNU Compiler Collection (GCC)

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch

Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions

-fobjc-gc

Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++. This option is required to use the Objective-C
keywords @try, @throw, @catch, @finally and @synchronized. This option is
available with both the GNU runtime and the NeXT runtime (but not available
in conjunction with the NeXT runtime on Mac OS X 10.2 and earlier).

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default and
can be disabled using -fno-objc-nilcheck. Class methods and super calls are
never checked for nil in this way no matter what this flag is set to. Currently
this flag does nothing when the GNU runtime, or an older version of the NeXT
runtime ABI, is used.

-fobjc-std=objc1l

-freplace-

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)

Chapter 3: GCC Command Options 85

with static class references that get initialized at load time, which improves run-
time performance. Specifying the -fzero-link flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

-fno-local-ivars
By default instance variables in Objective-C can be accessed as if they were local
variables from within the methods of the class they’re declared in. This can
lead to shadowing between instance variables and other variables declared either
locally inside a class method or globally with the same name. Specifying the
-fno-local-ivars flag disables this behavior thus avoiding variable shadowing
issues.

-fivar-visibility=[public|protected|private|package]
Set the default instance variable visibility to the specified option so that instance
variables declared outside the scope of any access modifier directives default to
the specified visibility.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
sourcename.decl.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-property-assign-default (Objective-C and Objective-C++ only)
Do not warn if a property for an Objective-C object has no assign semantics
specified.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in
the class, even if a method implementation is inherited from the superclass. If
you use the ~Wno-protocol option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wobjc-root-class (Objective-C and Objective-C++ only)
Warn if a class interface lacks a superclass. Most classes will inherit from
NSObject (or Object) for example. When declaring classes intended to be
root classes, the warning can be suppressed by marking their interfaces with
__attribute__((objc_root_class)).

-Wselector (Objective-C and Objective-C++ only)
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for

86 Using the GNU Compiler Collection (GCC)

that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error is
found during compilation, or because the ~-fsyntax-only option is being used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while -Wselector only performs its checks in the final stage
of compilation. This also enforces the coding style convention that methods and
selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options Controlling OpenMP and OpenACC

GCC supports OpenMP extensions to the C, C++, and Fortran languages with the
-fopenmp option. Similarly, OpenACC extensions are supported in all three languages
with -fopenacc. See Section 6.7 [OpenMP], page 747, and Section 6.8 [OpenACC],
page 748, for an overview of these extensions.

-foffload=disable

-foffload=default

-foffload=target-list
Specify for which OpenMP and OpenACC offload targets code should be gen-
erated. The default behavior, equivalent to ~foffload=default, is to generate
code for all supported offload targets. The -foffload=disable form generates
code only for the host fallback, while ~-foffload=target-1ist generates code
only for the specified comma-separated list of offload targets.

Offload targets are specified in GCC'’s internal target-triplet format. You can
run the compiler with -v to show the list of configured offload targets under
OFFLOAD_TARGET_NAMES.

-foffload-options=options

-foffload-options=target-triplet-list=options
With -foffload-options=options, GCC passes the specified options to the
compilers for all enabled offloading targets. You can specify options that apply

Chapter 3: GCC Command Options 87

—-fopenacc

-fopenacc-

-fopenmp

only to a specific target or targets by using the ~-foffload-options=target-
list=options form. The target-list is a comma-separated list in the same
format as for the -foffload= option.

Typical command lines are

-foffload-options='-fno-math-errno -ffinite-math-only' \
-foffload-options=nvptx-none=-latomic
-foffload-options=amdgcn-amdhsa=-march=gfx906

Enable handling of OpenACC directives ‘#pragma acc’ in C/C++ and ‘!$acc’
in free-form Fortran and ‘!$acc’, ‘c$acc’ and ‘*$acc’ in fixed-form Fortran.
This option implies -pthread, and thus is only supported on targets that have
support for -pthread.

dim=geom

Specify default compute dimensions for parallel offload regions that do not
explicitly specify them. The geom value is a triple of ‘:’-separated sizes, in
order gang, worker, and vector. A size can be omitted, to use a target-specific
default value.

Enable handling of OpenMP directives ‘#pragma omp’, ‘[[omp: :directive(...)]1]1 |}
‘[[omp::decl(...)]]’, and ‘[[omp::sequence(...)]]” in C/C++. In
Fortran, it enables ‘!$omp’ and the conditional compilation sentinel ‘!$’. In
fixed source form Fortran, the sentinels can also start with ‘c’ or ‘*’.

This option implies -pthread, and thus is only supported on targets that have
support for -pthread. -fopenmp implies ~fopenmp-simd.

-fopenmp-simd

Enable handling of OpenMP’s simd, declare simd, declare reduction,
assume, ordered, scan and loop directive, and of combined or composite direc-
tives with simd as constituent with #pragma omp, [[omp::directive(...)]],
[[omp: :sequence(...)]] and [[omp::decl(...)]] in C/C++ and !$omp in
Fortran. It additionally enables the conditional compilation sentinel ‘!$’ in
Fortran. In fixed source form Fortran, the sentinels can also start with ‘c’ or
‘*’. Other OpenMP directives are ignored. Unless -fopenmp is additionally
specified, the 1loop region binds to the current task region, independent of the
specified bind clause.

-fopenmp-target-simd-clone
-fopenmp-target-simd-clone=device-type

In addition to generating SIMD clones for functions marked with the declare
simd directive, GCC also generates clones for functions marked with the
OpenMP declare target directive that are suitable for vectorization when
this option is in effect. The device-type may be one of none, host, nohost,
and any, which correspond to keywords for the device_type clause of
the declare target directive; clones are generated for the intersection
of devices specified. -fopenmp-target-simd-clone is equivalent to
-fopenmp-target-simd-clone=any and -fno-openmp-target-simd-clone is
equivalent to -fopenmp-target-simd-clone=none.

88 Using the GNU Compiler Collection (GCC)

At -02 and higher (but not -0s or -0g) this optimization defaults to —fopenmp-
target-simd-clone=nohost; otherwise it is disabled by default.

3.8 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often
source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. If
n is zero, then no line-wrapping is done; each error message appears on a single
line. This is the default for all front ends.

Note - this option also affects the display of the ‘#error’ and ‘#warning’ pre-
processor directives, and the ‘deprecated’ function/type/variable attribute.
It does not however affect the ‘pragma GCC warning’ and ‘pragma GCC error’
pragmas.

-fdiagnostics-plain-output
This option requests that diagnostic output look as plain as possible, which may
be useful when running dejagnu or other utilities that need to parse diagnostics
output and prefer that it remain more stable over time. ~-fdiagnostics-plain-
output is currently equivalent to the following options:
-fno-diagnostics-show-caret
-fno-diagnostics-show-line-numbers
-fdiagnostics-color=never
-fdiagnostics—-urls=never
-fdiagnostics-path-format=separate-events
-fdiagnostics-text-art-charset=none
-fno-diagnostics-show-event-links
-fno-diagnostics-show-nesting
In the future, if GCC changes the default appearance of its diagnostics, the
corresponding option to disable the new behavior will be added to this list.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

Chapter 3: GCC Command Options 89

-fdiagnostics-color [=WHEN]

-fno-diagnostics-color
Use color in diagnostics. WHEN is ‘never’, ‘always’, or ‘auto’. The default
depends on how the compiler has been configured, it can be any of the above
WHEN options or also ‘never’ if GCC_COLORS environment variable isn’t present
in the environment, and ‘auto’ otherwise. ‘auto’ makes GCC use color only
when the standard error is a terminal, and when not executing in an emacs
shell. The forms -fdiagnostics-color and -fno-diagnostics-color are
aliases for -fdiagnostics-color=always and -fdiagnostics-color=never,
respectively.

The colors are defined by the environment variable GCC_COLORS. Its value is
a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-
strings. SGR commands are interpreted by the terminal or terminal emulator.
(See the section in the documentation of your text terminal for permitted values
and their meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for
inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’
to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5; 255’ for 88-color
and 256-color modes foreground colors, ‘49’ for default background color, ‘40’
to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-
ors, and ‘48;5;0’ to ‘48;5;255" for 88-color and 256-color modes background
colors.

The default GCC_COLORS is

error=01;31:warning=01;35:note=01;36:rangel=32:range2=34:1ocus=01:\
quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
type-diff=01;32:fnname=01;32:targs=35:valid=01;31:invalid=01;32\
highlight-a=01;32:highlight-b=01;34

where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan, ‘32’
is green, ‘34’ is blue, ‘01’ is bold, and ‘31’ is red. Setting GCC_COLORS to the
empty string disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.
warning= SGR substring for warning: markers.
note= SGR substring for note: markers.

path= SGR substring for colorizing paths of control-flow events as printed
via -fdiagnostics-path-format=, such as the identifiers of indi-
vidual events and lines indicating interprocedural calls and returns.

rangel= SGR substring for first additional range.
range2= SGR substring for second additional range.

locus= SGR substring for location information, ‘file:line’ or
‘file:line:column’ etc.

quote= SGR substring for information printed within quotes.

90

Using the GNU Compiler Collection (GCC)

fnname= SGR substring for names of C++ functions.
targs= SGR substring for C++ function template parameter bindings.

fixit-insert=
SGR substring for fix-it hints suggesting text to be inserted or
replaced.

fixit-delete=
SGR substring for fix-it hints suggesting text to be deleted.

diff-filename=
SGR substring for filename headers within generated patches.

diff-hunk=
SGR substring for the starts of hunks within generated patches.

diff-delete=
SGR substring for deleted lines within generated patches.

diff-insert=
SGR substring for inserted lines within generated patches.

type-diff=
SGR substring for highlighting mismatching types within template
arguments in the C++ frontend.

valid= SGR substring for highlighting valid elements within text art dia-
grams.

invalid= SGR substring for highlighting invalid elements within text art di-
agrams.

highlight-a=

highlight-b=
SGR substrings for contrasting two different things within diagnos-
tics, such as a pair of mismatching types. See -fdiagnostics-
show-highlight-colors.

-fdiagnostics-urls[=WHEN]

Use escape sequences to embed URLs in diagnostics. For example, when
-fdiagnostics-show-option emits text showing the command-line option
controlling a diagnostic, embed a URL for documentation of that option.

WHEN is ‘never’, ‘always’, or ‘auto’. ‘auto’ makes GCC use URL escape
sequences only when the standard error is a terminal, and when not executing
in an emacs shell or any graphical terminal which is known to be incompatible
with this feature, see below.

The default depends on how the compiler has been configured. It can be any
of the above WHEN options.

GCC can also be configured (via the -—with-diagnostics-urls=auto-if-env
configure-time option) so that the default is affected by environment variables.
Under such a configuration, GCC defaults to using ‘auto’ if either GCC_URLS

Chapter 3: GCC Command Options 91

or TERM_URLS environment variables are present and non-empty in the environ-
ment of the compiler, or ‘never’ if neither are.

However, even with -fdiagnostics-urls=always the behavior is dependent
on those environment variables: If GCC_URLS is set to empty or ‘no’, do not
embed URLs in diagnostics. If set to ‘st’, URLs use ST escape sequences. If
set to ‘bel’, the default, URLs use BEL escape sequences. Any other non-empty
value enables the feature. If GCC_URLS is not set, use TERM_URLS as a fallback.
Note: ST is an ANSI escape sequence, string terminator ‘ESC \’, BEL is an
ASCII character, CTRL-G that usually sounds like a beep.

At this time GCC tries to detect also a few terminals that are known to not
implement the URL feature, and have bugs or at least had bugs in some versions
that are still in use, where the URL escapes are likely to misbehave, i.e. print
garbage on the screen. That list is currently xfce4-terminal, certain known to
be buggy gnome-terminal versions, the linux console, and mingw. This check
can be skipped with the -fdiagnostics-urls=always.

-fno-diagnostics—-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the -fno-diagnostics-show-option flag
suppresses that behavior.

-fno-diagnostics—show-caret
By default, each diagnostic emitted includes the original source line and a caret
‘7 indicating the column. This option suppresses this information. The source
line is truncated to n characters, if the -fmessage-length=n option is given.
When the output is done to the terminal, the width is limited to the width
given by the COLUMNS environment variable or, if not set, to the terminal width.

-fno-diagnostics—-show-labels
By default, when printing source code (via -fdiagnostics-show-caret), di-
agnostics can label ranges of source code with pertinent information, such as
the types of expressions:
printf ("foo %s bar", long_i + long_j);

| |

char * long int
This option suppresses the printing of these labels (in the example above, the
vertical bars and the “char *” and “long int” text).

-fno-diagnostics-show-event-links
By default, when printing execution paths (via -fdiagnostics-path-
format=inline-events), GCC will print lines connecting related events, such
as the line connecting events 1 and 2 in:

31 4if (p)

I z

I I

| (1) following ~false' branch (when “p' is NULL)... ->-+

I I

I I

92 Using the GNU Compiler Collection (GCC)

| +
4 || return 0;
5 || return *p;

Il -

I |

R >(2) ...to here

I

(3) dereference of NULL “p'

This option suppresses the printing of such connector lines.

-fno-diagnostics—-show-cwe
Diagnostic messages can optionally have an associated CWE (https://cwe.
mitre.org/index.html) identifier. GCC itself only provides such metadata
for some of the -fanalyzer diagnostics. GCC plugins may also provide di-
agnostics with such metadata. By default, if this information is present, it
will be printed with the diagnostic. This option suppresses the printing of this
metadata.

-fno-diagnostics-show-rules
Diagnostic messages can optionally have rules associated with them, such as
from a coding standard, or a specification. GCC itself does not do this for
any of its diagnostics, but plugins may do so. By default, if this information
is present, it will be printed with the diagnostic. This option suppresses the
printing of this metadata.

-fno-diagnostics-show-highlight-colors
GCC can use color for emphasis and contrast when printing diagnostic messages
and quoting the user’s source.

For example, in

demo.c: In function “test_bad_format_string args':
../../src/demo.c:25:18: warning: format “%i' expects argument of type “int', but argument 2 !
25 | printf("hello %i", msg);

I
| int const char *
I hs
e the %1 and int in the message and the int in the quoted source are colored
using highlight-a (bold green by default), and

e the const char * in the message and in the quoted source are both colored
using highlight-b (bold blue by default).

The intent is to draw the reader’s eyes to the relationships between the various
aspects of the diagnostic message and the source, using color to group related
elements and distinguish between mismatching ones.

This additional colorization is enabled by default if color printing is enabled
(as per -fdiagnostics-color=), but it can be separately disabled via -fno-
diagnostics-show-highlight-colors.

-fno-diagnostics—-show-line-numbers
By default, when printing source code (via -fdiagnostics-show-caret), a
left margin is printed, showing line numbers. This option suppresses this left
margin.

https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html

Chapter 3: GCC Command Options 93

-fdiagnostics-minimum-margin-width=width
This option controls the minimum width of the left margin printed by
-fdiagnostics-show-line-numbers. It defaults to 6.

-fdiagnostics-show-context [=depth]

-fno-diagnostics-show-context
With this option, the compiler might print the interesting control flow
chain that guards the basic block of the statement which has the warning.
depth is the maximum depth of the control flow chain. Currently,
The list of the impacted warning options includes: -Warray-bounds,
-Wstringop-overflow, -Wstringop-overread, -Wstringop-truncation.
and -Wrestrict. More warning options might be added to this list in
future releases. The forms -fdiagnostics-show-context and -fno-
diagnostics-show-context are aliases for -fdiagnostics-show-context=1
and -fdiagnostics-show-context=0, respectively.

-fdiagnostics-parseable-fixits
Emit fix-it hints in a machine-parseable format, suitable for consumption by
IDEs. For each fix-it, a line will be printed after the relevant diagnostic, starting
with the string “fix-it:”. For example:
fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"

The location is expressed as a half-open range, expressed as a count of bytes,
starting at byte 1 for the initial column. In the above example, bytes 3 through
20 of line 45 of “test.c” are to be replaced with the given string:

00000000011111111112222222222
12345678901234567890123456789
gtk_widget_showall (dlg);

gtk_widget_show_all

The filename and replacement string escape backslash as “\\", tab as “\t”,
newline as “\n”, double quotes as “\"”, non-printable characters as octal (e.g.
vertical tab as “\013”).

An empty replacement string indicates that the given range is to be removed.
An empty range (e.g. “45:3-45:3”) indicates that the string is to be inserted at
the given position.

-fdiagnostics-generate-patch
Print fix-it hints to stderr in unified diff format, after any diagnostics are
printed. For example:

--- test.c
+++ test.c
@ -42,5 +42,5 @

void show_cb(GtkDialog *dlg)
{
- gtk_widget_showall(dlg);
+ gtk_widget_show_all(dlg);
}

The diff may or may not be colorized, following the same rules as for diagnostics
(see -fdiagnostics-color).

94 Using the GNU Compiler Collection (GCC)

-fdiagnostics-show-template-tree
In the C++ frontend, when printing diagnostics showing mismatching template
types, such as:
could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
the -fdiagnostics-show-template-tree flag enables printing a tree-like
structure showing the common and differing parts of the types, such as:

map<
...1,
vector<

[double != float]>>

The parts that differ are highlighted with color (“double” and “float” in this
case).

-fno-elide-type
By default when the C++ frontend prints diagnostics showing mismatching tem-
plate types, common parts of the types are printed as “[...]” to simplify the
error message. For example:
could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>

Specifying the -fno-elide-type flag suppresses that behavior. This flag also
affects the output of the ~-fdiagnostics-show-template-tree flag.

-fdiagnostics-path-format=KIND
Specify how to print paths of control-flow events for diagnostics that have such
a path associated with them.

KIND is ‘none’, ‘separate-events’, or ‘inline-events’, the default.
‘none’ means to not print diagnostic paths.

‘separate-events’ means to print a separate “note” diagnostic for each event
within the diagnostic. For example:

test.c

test.c:25:10: note: (1) when 'PylList_New' fails, returning NULL

test.c:27:3: note: (2) when 'i < count'

test.c
‘inline-events’ means to print the events “inline” within the source code.
This view attempts to consolidate the events into runs of sufficiently-close
events, printing them as labelled ranges within the source.

For example, the same events as above might be printed as:

'test': events 1-3
25 | 1list = PyList_New(0);
| Ammemmmmeeees

(1) when 'PyList_New' fails, returning NULL

I
I
26 |
27 | for (i = 0; i < count; i++) {
|-
I |
| (2) when 'i < count'
28 | item = PyLong_FromLong(random()) ;
29 | PyList_Append(list, item);

:29:5: error: passing NULL as argument 1 to 'PyList_Append' which requires a non-NULL f

:29:5: note: (3) when calling 'PyList_Append', passing NULL from (1) as argument 1}

Chapter 3: GCC Command Options 95

| (3) when calling 'PyList_Append', passing NULL from (1) as argument 1Jj

Interprocedural control flow is shown by grouping the events by stack frame, and
using indentation to show how stack frames are nested, pushed, and popped.

For example:

'test': events 1-2

I
133

|
(1) entering 'test'
boxed_int *obj = make_boxed_int (i);

|
|
|
I
| 134
|
|
| (2) calling 'make_boxed_int'
|
+--> 'make_boxed_int': events 3-4
I
120

|
(3) entering 'make_boxed_int'
boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));|}

I

I

I

I

[121
I

I

| (4) calling 'wrapped_malloc'll
I

+--> 'wrapped_malloc': events 5-6

| 71 {
| I~
| I
| | (5) entering 'wrapped_malloc'
| 8 | return malloc (size);
| lf T
| | |
| | (6) calling 'malloc’
|

< +

|

'test': event 7
|
138 | free_boxed_int (obj);

| sl
I |
| (7) calling 'free_boxed_int'

-fdiagnostics-show-path-depths
This option provides additional information when printing control-flow paths
associated with a diagnostic.

If this is option is provided then the stack depth will be printed for each run
of events within -fdiagnostics-path-format=inline-events. If provided

96

Using the GNU Compiler Collection (GCC)

with -fdiagnostics-path-format=separate-events, then the stack depth
and function declaration will be appended when printing each event.

This is intended for use by GCC developers and plugin developers when debug-
ging diagnostics that report interprocedural control flow.

-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-fdiagnostics-column-unit=UNIT

Select the units for the column number. This affects traditional diagnostics (in
the absence of -fno-show-column).

The default UNIT, ‘display’, considers the number of display columns occupied
by each character. This may be larger than the number of bytes required to
encode the character, in the case of tab characters, or it may be smaller, in
the case of multibyte characters. For example, the character “GREEK SMALL
LETTER PI (U+03C0)” occupies one display column, and its UTF-8 encoding
requires two bytes; the character “SLIGHTLY SMILING FACE (U+1F642)”
occupies two display columns, and its UTF-8 encoding requires four bytes.

Setting UNIT to ‘byte’ changes the column number to the raw byte count in
all cases, as was traditionally output by GCC prior to version 11.1.0.

-fdiagnostics-column-origin=0RIGIN

Select the origin for column numbers, i.e. the column number assigned to the
first column. The default value of 1 corresponds to traditional GCC behavior
and to the GNU style guide. Some utilities may perform better with an origin
of 0; any non-negative value may be specified.

-fdiagnostics-escape-format=FORMAT

When GCC prints pertinent source lines for a diagnostic it normally attempts
to print the source bytes directly. However, some diagnostics relate to encoding
issues in the source file, such as malformed UTF-8, or issues with Unicode
normalization. These diagnostics are flagged so that GCC will escape bytes
that are not printable ASCIT when printing their pertinent source lines.

This option controls how such bytes should be escaped.

The default FORMAT, ‘unicode’ displays Unicode characters that are not
printable ASCII in the form ‘<U+XXXX>’, and bytes that do not correspond
to a Unicode character validly-encoded in UTF-8-encoded will be displayed as
hexadecimal in the form ‘<XX>’.

For example, a source line containing the string ‘before’ followed by the Uni-

code character U+03C0 (“GREEK SMALL LETTER PI”, with UTF-8 encoding

0xCF 0x80) followed by the byte 0xBF (a stray UTF-8 trailing byte), followed

by the string ‘after’ will be printed for such a diagnostic as:
before<U+03C0><BF>after

Setting FORMAT to ‘bytes’ will display all non-printable-ASCII bytes in the
form ‘<XX>’, thus showing the underlying encoding of non-ASCII Unicode char-
acters. For the example above, the following will be printed:

Chapter 3: GCC Command Options 97

before<CF><80><BF>after

-fdiagnostics-text-art-charset=CHARSET
Some diagnostics can contain “text art” diagrams: visualizations created from
text, intended to be viewed in a monospaced font.

This option selects which characters should be used for printing such diagrams,
if any. CHARSET is ‘none’, ‘ascii’, ‘unicode’; or ‘emoji’.

The ‘none’ value suppresses the printing of such diagrams. The ‘ascii’ value
will ensure that such diagrams are pure ASCII (“ASCII art”). The ‘unicode’
value will allow for conservative use of unicode drawing characters (such as box-
drawing characters). The ‘emoji’ value further adds the possibility of emoji in
the output (such as emitting U+26A0 WARNING SIGN followed by U+FEOF
VARIATION SELECTOR-16 to select the emoji variant of the character).

The default is ‘emoji’, except when the environment variable LANG is set to ‘C’,
in which case the default is ‘ascii’.

-fno-diagnostics-show-nesting
Some GCC diagnostics have an internal tree-like structure of nested
sub-diagnostics, such as for problems when instantiating C++ templates.

By default GCC uses indentation and bullet points in its text output to show
the nesting structure of these diagnostics, moves location information to sep-
arate lines to make the structure clearer, and eliminates redundant repeated
information.

Selecting -fno-diagnostics-show-nesting suppresses this indentation, refor-
matting, and elision, restoring an older ‘look” for the diagnostics.

-fno-diagnostics-show-nesting-locations
When fdiagnostics-show-nesting is enabled, file names and line- and
column- numbers are displayed on separate lines from the messages. This
location information can be disabled altogether with -fno-diagnostics-
show-nesting-locations. This option exists for use by GCC developers, for
writing DejaGnu test cases.

-fdiagnostics-show-nesting-levels
When fdiagnostics-show-nesting is enabled, use fdiagnostics-show-
nesting-levels to also display numbers showing the depth of the nesting.
This option exists for use by GCC developers for debugging nested diagnostics,
but may be of use to plugin authors.

-fdiagnostics-format=FORMAT
Select a different format for printing diagnostics. =~ FORMAT is ‘text’,
‘sarif-stderr’ or ‘sarif-file’.
Using this option replaces any additional “output sinks” added by
-fdiagnostics-add-output=, or that set by ~-fdiagnostics-set-output=.
The default is ‘text’.
The ‘sarif-stderr’ and ‘sarif-file’ formats both emit diagnostics in SARIF
Version 2.1.0 format, either to stderr, or to a file named source.sarif, respec-
tively.

98

Using the GNU Compiler Collection (GCC)

-fdiagnostics-add-output=DIAGNOSTICS-OUTPUT-SPEC
Add an additional “output sink” for emitting diagnostics.

DIAGNOSTICS-OUTPUT-SPEC should specify a scheme, optionally followed
by : and one or more KEY=VALUE pairs, in this form:

etc.

SCHEME
SCHEME: KEY=VALUE
SCHEME: KEY=VALUE, KEY2=VALUE2

Schemes, keys, or values with a name prefixed “experimental” may change or
be removed without notice.

SCHEME can be

text

sarif

Emit diagnostics to stderr using GCC’s classic text output format.

Supported keys are:

color=[yes|no]
Override colorization settings from -fdiagnostics-
color for this text output.

show-nesting=[yes|no]
Enable a mode that emphasizes hierarchical
relationships within diagnostics messages, as per
-fdiagnostics-show-nesting. Defaults to yes.

show-nesting-locations=[yes|no]
If show-nesting=yes, then by default locations are
shown; set this key to no to disable printing such lo-
cations. This exists for use by GCC developers, for
writing DejaGnu test cases.

show-nesting-levels=[yes|no]
This is a debugging option for use with show-
nesting=yes. Set this key to yes to print explicit
nesting levels in the output. This exists for use by
GCC developers.

Emit diagnostics to a file in SARIF format.
Supported keys are:

file=FILENAME
Specify the filename to write the SARIF output to,
potentially with a leading absolute or relative path. If
not specified, it defaults to source.sarif.

serialization=[json]
Specify the serialization format to use when writing
out the SARIF. Currently this can only be json, but
is present as an extension point for experimenting with
other serializations.

Chapter 3: GCC Command Options 99

version=[2.1|2.2-prerelease]
Specify the version of SARIF to use for the output. If
not specified, defaults to 2.1. 2.2-prerelease uses an
unofficial draft of the future SARIF 2.2 specification
and should only be used for experimentation in this
release.

There is also this key intended for use by GCC developers, rather
than end-users, and subject to change or removal without notice:

state-graphs=[yes|no]
This is a debugging feature and defaults to no. If
state-graphs=yes, then attempt to capture detailed
state information from -fanalyzer in the generated

SARIF.

experimental-html
Emit diagnostics to a file in HTML format. This scheme is exper-
imental, and may go away in future GCC releases. The keys and
details of the output are also subject to change.

Supported keys are:

css=[yes|no]
Add an embedded <style> to the generated HTML. De-
faults to yes.

file=FILENAME
Specify the filename to write the HTML output to,
potentially with a leading absolute or relative path. If
not specified, it defaults to source.html.

javascript=[yes|no]
Add an embedded <script> to the generated HTML
providing a barebones Ul for viewing results. Defaults
to yes.

There are also these keys intended for use by GCC developers,
rather than end-users, and subject to change or removal without
notice:

show-state-diagrams=[yes|no]

This is a debugging feature and defaults to no. If
show-state-diagrams=yes, then attempt to use dot
to generate SVG diagrams in the generated HTML, vi-
sualizing the state at each event in a diagnostic path.
These are visible by pressing “j” and “k” to single-step
forward and backward through events. Enabling this
option will slow down HTML generation.

show-graph-dot-src=[yes|no|
This is a debugging feature and defaults to no. If
show-graph-dot-src=yes then if show-state-
diagrams=yes, the generated state diagrams will also

100 Using the GNU Compiler Collection (GCC)

show the .dot source input to GraphViz used for the
diagram.

show-graph-sarif=[yes|no]
This is a debugging feature and defaults to no. If show-
graph-sarif=yes then if show-state-diagrams=yes,
the generated state diagrams will also show a SARIF
representation of the state.

For example,
-fdiagnostics-add-output=sarif:version=2.1,file=foo.2.1.sarif
-fdiagnostics-add-output=sarif:version=2.2-prerelease,file=foo.2.2.sarif
would add a pair of outputs, each writing to a different file, using versions 2.1
and 2.2 of the SARIF standard respectively.

In EBNF:
diagnostics-output-specifier = diagnostics—output-name
| diagnostics-output-name, ":", key-value-pairs;|j
diagnostics-output-name = "text" | "sarif" | "experimental-html";
key-value-pairs = key-value-pair
| key-value-pair "," key-value-pairs;
key-value-pair = key "=" value;
key = 7 string without a '=' 7 ;
value = ? string without a ',' 7 ;

-fdiagnostics-set-output=DIAGNOSTICS-OUTPUT-SPEC
This works in a similar way to -fdiagnostics-add-output= except that in-
stead of adding an additional “output sink” for diagnostics, it replaces all exist-
ing output sinks, such as from -fdiagnostics-format=, -fdiagnostics-add-
output=, or a prior call to ~-fdiagnostics-set-output=.

-fno-diagnostics-json-formatting
By default, when JSON is emitted for diagnostics (via -fdiagnostics-
format=sarif-stderr or -fdiagnostics-format=sarif-file), GCC will
add newlines and indentation to visually emphasize the hierarchical structure

of the JSON.

Use -fno-diagnostics-json-formatting to suppress this whitespace. It must
be passed before the option it is to affect.

This is intended for compatibility with tools that do not expect the output to
contain newlines, such as that emitted by older GCC releases.

3.9 Options to Request or Suppress Warnings
Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

Chapter 3: GCC Command Options 101

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced. If
-Wfatal-errors is also specified, then -Wfatal-errors takes precedence over
this option.

-w
--no-warnings
Inhibit all warning messages.

-Werror Turn all warnings into errors.

-Werror= Turn the specified warning into an error. The specifier for a warning is
appended; for example -Werror=switch turns the warnings controlled by
-Wswitch into errors. This switch takes a negative form, to be used to
negate -Werror for specific warnings; for example -Wno-error=switch makes
-Wswitch warnings not be errors, even when -Werror is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ~-Werror= and -Wno-
error= as described above. (Printing of the option in the warning message can
be disabled using the -fno-diagnostics-show-option flag.)

Note that specifying -Werror=foo automatically implies -Wfoo. However, -Wno-
error=foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
-Wunused-variable to request warnings on declarations of variables that are never used.
Each of these specific warning options also has a negative form beginning with ‘-Wno-’ to
turn off warnings; for example, -Wno-unused-variable. This manual lists only one of the
two forms, whichever is not the default. For further language-specific options also refer to
Section 3.5 [C++ Dialect Options|, page 52, and Section 3.6 [Objective-C and Objective-
C++ Dialect Options|, page 82. Additional warnings can be produced by enabling the static
analyzer; See Section 3.10 [Static Analyzer Options|, page 169.

Some options, such as -Wall and -Wextra, turn on other options, such as -Wunused,
which may turn on further options, such as -Wunused-variable. The combined effect of
positive and negative forms is that more specific options have priority over less specific ones,
independently of their position in the command line. For options of the same specificity, the
last one takes effect. Options enabled or disabled via pragmas (see Section 6.5.13 [Diagnostic
Pragmas], page 740) take effect as if they appeared at the end of the command line.

When an unrecognized warning option is requested (e.g., ~Wunknown-warning), GCC
gives an error stating that the option is not recognized. However, if the ~Wno- form is used,
the behavior is slightly different: no diagnostic is produced for -Wno-unknown-warning

102 Using the GNU Compiler Collection (GCC)

unless other diagnostics are being produced. This allows the use of new -Wno- options with
old compilers, but if something goes wrong, the compiler warns that an unrecognized option
is present.

The effectiveness of some warnings depends on optimizations also being enabled. For
example, -Wsuggest-final-types is more effective with link-time optimization. Some
other warnings may not be issued at all unless optimization is enabled. While optimization
in general improves the efficacy of warnings about control and data-flow problems, in some
cases it may also cause false positives.

-Wpedantic

-pedantic

—--pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; diagnose all
programs that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. This follows the version of the ISO C or C++
standard specified by any -std option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require -ansi or a -std option specifying the
version of the standard). However, without this option, certain GNU extensions
and traditional C and C++ features are supported as well. With this option,
they are diagnosed (or rejected with -pedantic-errors).

-Wpedantic does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. This alternate format can also be used to
disable warnings for non-ISO ‘__intN’ types, i.e. ‘__intN__’. Pedantic warn-

ings are also disabled in the expression that follows __extension__. However,

only system header files should use these escape routes; application programs
should avoid them. See Section 6.12.22 [Alternate Keywords|, page 822.

Some warnings about non-conforming programs are controlled by options other
than -Wpedantic; in many cases they are implied by -Wpedantic but can be
disabled separately by their specific option, e.g. -Wpedantic -Wno-pointer-—
sign.

Where the standard specified with -std represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’; there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
-Wpedantic are given where they are required by the base standard. (It does not
make sense for such warnings to be given only for features not in the specified
GNU C dialect, since by definition the GNU dialects of C include all features
the compiler supports with the given option, and there would be nothing to
warn about.)

-pedantic-errors

—--pedantic-errors
Give an error whenever the base standard (see ~-Wpedantic) requires a diagnos-
tic, in some cases where there is undefined behavior at compile-time and in some
other cases that do not prevent compilation of programs that are valid accord-
ing to the standard. This is not equivalent to -Werror=pedantic: the latter
option is unlikely to be useful, as it only makes errors of the diagnostics that are

Chapter 3: GCC Command Options 103

controlled by -Wpedantic, whereas this option also affects required diagnostics
that are always enabled or controlled by options other than -Wpedantic.

If you want the required diagnostics that are warnings by default to be er-
rors instead, but don’t also want to enable the -Wpedantic diagnostics, you
can specify -pedantic-errors -Wno-pedantic (or -pedantic-errors -Wno-
error=pedantic to enable them but only as warnings).

Some required diagnostics are errors by default, but can be reduced
to warnings using -fpermissive or their specific warning option, e.g.
-Wno-error=narrowing.

Some diagnostics for non-ISO practices are controlled by specific warning op-
tions other than -Wpedantic, but are also made errors by -pedantic-errors.
For instance:

-Wattributes (for standard attributes)
-Wchanges-meaning (C++)

-Wcomma-subscript (C++23 or later)
-Wdeclaration-after-statement (C90 or earlier)
-Welaborated-enum-base (C++11 or later)
-Wimplicit-int (C99 or later)
-Wimplicit-function-declaration (C99 or later)
-Wincompatible-pointer-types
-Wint-conversion

-Wlong-long (C90 or earlier)

-Wmain

-Wnarrowing (C++11 or later)

-Wpointer-arith

-Wpointer-sign

-Wincompatible-pointer-types

-Wregister (C++17 or later)

-Wvla (C90 or earlier)

-Wurite-strings (C++11 or later)

-fpermissive
Downgrade some required diagnostics about nonconformant code from errors
to warnings. Thus, using -fpermissive allows some nonconforming code to
compile. Some C++ diagnostics are controlled only by this flag, but it also
downgrades some C and C++ diagnostics that have their own flag:

-Wabbreviated-auto-in-template-arg (C++ and Objective-C++ only)
-Wdeclaration-missing-parameter-type (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wimplicit-int (C and Objective-C only)
-Wincompatible-pointer-types (C and Objective-C only)
-Wint-conversion (C and Objective-C only)

-Wnarrowing (C++ and Objective-C++ only)

-Wreturn-mismatch (C and Objective-C only)

-Wtemplate-body (C++ and Objective-C++ only)

The -fpermissive option is the default for historic C language modes
(-std=c89, -std=gnu89, -std=c90, -std=gnu90).

104 Using the GNU Compiler Collection (GCC)

-Wall

-—all-warnings
This enables all the warnings about constructions that some users consider ques-
tionable, and that are easy to avoid (or modify to prevent the warning), even
in conjunction with macros. This also enables some language-specific warn-
ings described in Section 3.5 [C++ Dialect Options], page 52, and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 82.

-Wall turns on the following warning flags:

-Waddress

-Waligned-new (C++ and Objective-C++ only)
-Warray-bounds=1 (only with -02)

-Warray-compare

-Warray-parameter=2

-Wbool-compare

-Wbool-operation

-Wc++1l-compat -Wc++1l4-compat -Wc++17compat -Wc++20compat
-Wcatch-value (C++ and Objective-C++ only)
-Wchar-subscripts

-Wclass-memaccess (C++ and Objective-C++ only)
-Wcomment

-Wdangling-else

-Wdangling-pointer=2

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
-Wduplicate-decl-specifier (C and Objective-C only)
-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wenum-int-mismatch (C and Objective-C only)
-Wformat=1

-Wformat-contains-nul

-Wformat-diag

-Wformat-extra-args

-Wformat-overflow=1

-Wformat-truncation=1

-Wformat-zero-length

-Wframe-address

-Wimplicit (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wimplicit-int (C and Objective-C only)
-Winfinite-recursion

-Winit-self (C++ and Objective-C++ only)
-Wint-in-bool-context

-Wlogical-not-parentheses

-Wmain (only for C/ObjC and unless -ffreestanding)
-Wmaybe-uninitialized

-Wmemset-elt-size

-Wmemset-transposed-args

-Wmisleading-indentation (only for C/C++)
-Wmismatched-dealloc

-Wmismatched-new-delete (C++ and Objective-C++ only)
-Wmissing-attributes

-Wmissing-braces (only for C/ObjC)
-Wmultistatement-macros

-Wnarrowing (C++ and Objective-C++ only)

-Wnonnull

-Wnonnull-compare

-Wopenmp-simd (C and C++ only)
-Woverloaded-virtual=1 (C++ and Objective-C++ only)

Chapter 3: GCC Command Options 105

-Wpacked-not-aligned

-Wparentheses

-Wpessimizing-move (C++ and Objective-C++ only)
-Wpointer-sign (only for C/ObjC)
-Wrange-loop-construct (C++ and Objective-C++ only)
-Wreorder (C++ and Objective-C++ only)
-Wrestrict

-Wreturn-type

-Wself-move (C++ and Objective-C++ only)
-Wsequence-point

-Wsign-compare (C++ and Objective-C++ only)
-Wsizeof-array-div

-Wsizeof-pointer-div
-Wsizeof-pointer-memaccess
-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtautological-compare

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused

-Wunused-but-set-variable
-Wunused-const-variable=1 (only for C/ObjC)
-Wunused-function

-Wunused-label

-Wunused-local-typedefs

-Wunused-value

-Wunused-variable

-Wuse-after-free=2

-Wvla-parameter

-Wvolatile-register-var
-Wzero-length-bounds

Note that some warning flags are not implied by -Wall. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to
modify the code to suppress the warning. Some of them are enabled by -Wextra
but many of them must be enabled individually.

-Wextra

-—extra-warnings
This enables some extra warning flags that are not enabled by -Wall. (This
option used to be called -W. The older name is still supported, but the newer
name is more descriptive.)

-Wabsolute-value (only for C/ObjC)
-Walloc-size
-Wcalloc-transposed-args
-Wcast-function-type

-Wclobbered

-Wdangling-reference (C++ only)
-Wdeprecated-copy (C++ and Objective-C++ only)
-Wempty-body

-Wenum-conversion (only for C/ObjC)
-Wexpansion-to-defined
-Wignored-qualifiers (only for C/C++)

106 Using the GNU Compiler Collection (GCC)

-Wimplicit-fallthrough=3
-Wmaybe-uninitialized
-Wmissing-field-initializers
-Wmissing-parameter-name (C/ObjC only)
-Wmissing-parameter-type (C/ObjC only)
-Wold-style-declaration (C/ObjC only)
-Wmultiple-parameter-fwd-decl-lists (C/ObjC only)
-Woverride-init (C/ObjC only)
-Wredundant-move (C++ and Objective-C++ only)
-Wshift-negative-value (in C++11 to C++17 and in C99 and newer)
-Wsign-compare (C++ and Objective-C++ only)
-Wsized-deallocation (C++ and Objective-C++ only)
-Wstring-compare
-Wtype-limits
-Wuninitialized
-Wunterminated-string-initialization (C/ObjC only)
-Wunused-parameter (only with -Wunused or -Wall)
-Wunused-but-set-parameter (only with -Wunused or -Wall)

The option -Wextra also prints warning messages for the following cases:

e A pointer is compared against integer zero with <, <=, > or >=.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) Ambiguous virtual bases.
e (C++ only) Subscripting an array that has been declared register.

e (C++ only) Taking the address of a variable that has been declared
register.

e (C++only) A base class is not initialized in the copy constructor of a derived
class.

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn about code affected by ABI changes. This includes code that may not
be compatible with the vendor-neutral C++ ABI as well as the psABI for the
particular target. The latter warnings are also controlled separately by -Wpsabi,
which is implied by -Wabi.
Since G++ now defaults to updating the ABI with each major release, normally
-Wabi warns only about C++ ABI compatibility problems if there is a check
added later in a release series for an ABI issue discovered since the initial
release. -Wabi warns about more things if an older ABI version is selected
(with -fabi-version=n).
-Wabi can also be used with an explicit version number to warn about C++
ABI compatibility with a particular ~-fabi-version level, e.g. -Wabi=2 to warn
about changes relative to -fabi-version=2.

If an explicit version number is provided and -fabi-compat-version is not
specified, the version number from this option is used for compatibility aliases.
If no explicit version number is provided with this option, but -fabi-compat-
version is specified, that version number is used for C++ ABI warnings.

Although an effort has been made to warn about all such cases, there are
probably some cases that are not warned about, even though G++ is generating

Chapter 3: GCC Command Options 107

incompatible code. There may also be cases where warnings are emitted even
though the code that is generated is compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

Known incompatibilities in ~fabi-version=2 (which was the default from GCC
3.4 to 4.9) include:

e A template with a non-type template parameter of reference type was
mangled incorrectly:

extern int N;
template <int &> struct S {};
void n (8<N>) {2}

This was fixed in -fabi-version=3.
e SIMD vector types declared using __attribute ((vector_size)) were

mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling was changed in -fabi-version=4.

e __attribute ((const)) and noreturn were mangled as type qualifiers,
and decltype of a plain declaration was folded away.

These mangling issues were fixed in -fabi-version=>5.

e Scoped enumerators passed as arguments to a variadic function are pro-
moted like unscoped enumerators, causing va_arg to complain. On most
targets this does not actually affect the parameter passing ABI, as there is
no way to pass an argument smaller than int.

Also, the ABI changed the mangling of template argument packs, const_
cast, static_cast, prefix increment/decrement, and a class scope func-
tion used as a template argument.

These issues were corrected in -fabi-version=6.

e Lambdas in default argument scope were mangled incorrectly, and the ABI
changed the mangling of nullptr_t.
These issues were corrected in -fabi-version=7.

e When mangling a function type with function-cv-qualifiers, the un-qualified
function type was incorrectly treated as a substitution candidate.
This was fixed in -fabi-version=8, the default for GCC 5.1.

e decltype(nullptr) incorrectly had an alignment of 1, leading to un-
aligned accesses. Note that this did not affect the ABI of a function with
a nullptr_t parameter, as parameters have a minimum alignment.
This was fixed in -fabi-version=9, the default for GCC 5.2.

e Target-specific attributes that affect the identity of a type, such as ia32
calling conventions on a function type (stdcall, regparm, etc.), did not

affect the mangled name, leading to name collisions when function pointers
were used as template arguments.

This was fixed in -fabi-version=10, the default for GCC 6.1.

108 Using the GNU Compiler Collection (GCC)

-Wpsabi (C, Objective-C, C++ and Objective-C++ only)

-Wpsabi enables warnings about processor-specific ABI changes, such as
changes in alignment requirements or how function arguments are passed.
On several targets, including AArch64, ARM, x86, MIPS, RS6000/PowerPC,
and S/390, these details have changed between different versions of GCC
and/or different versions of the C or C++ language standards in ways that
affect binary compatibility of compiled code. With -Wpsabi, GCC can detect
potentially incompatible usages and warn you about them.

-Wpsabi is enabled by default, and is also implied by -Wabi.

-Wno-changes-meaning (C++ and Objective-C++ only)

C++ requires that unqualified uses of a name within a class have the same
meaning in the complete scope of the class, so declaring the name after using
it is ill-formed:

struct A;

struct Bl { A a; typedef A A; }; // warning, 'A' changes meaning

struct B2 { A a; struct A { }; }; // error, 'A' changes meaning
By default, the B1 case is only a warning because the two declarations have
the same type, while the B2 case is an error. Both diagnostics can be disabled
with -Wno-changes-meaning. Alternately, the error case can be reduced to a
warning with -Wno-error=changes-meaning or -fpermissive.
Both diagnostics are also suppressed by -fms-extensions.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by -Wall.

-Wno-coverage-mismatch
Warn if feedback profiles do not match when using the -fprofile-use option.
If a source file is changed between compiling with -fprofile-generate and
with -fprofile-use, the files with the profile feedback can fail to match the
source file and GCC cannot use the profile feedback information. By default,
this warning is enabled and is treated as an error. -Wno-coverage-mismatch
can be used to disable the warning or -Wno-error=coverage-mismatch can be
used to disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is not
recommended.

-Wno-coverage-too-many-conditions
Warn if -fcondition-coverage is used and an expression have too many terms
and GCC gives up coverage. Coverage is given up when there are more terms
in the conditional than there are bits in a gcov_type_unsigned. This warning
is enabled by default.

-Wno-coverage-too-many-paths
Warn if -fpath-coverage is used and a function has too many paths and GCC
gives up coverage. Giving up is controlled by -fpath-coverage-limit. This
warning is enabled by default.

Chapter 3: GCC Command Options 109

-Wno-coverage-invalid-line—-number
Warn in case a function ends earlier than it begins due to an invalid linenum
macros. The warning is emitted only with --coverage enabled.

By default, this warning is enabled and is treated as an error. -Wno-
coverage-invalid-line-number can be used to disable the warning or
-Wno-error=coverage-invalid-line-number can be used to disable the
error.

-Wno-cpp (C, Objective-C, C++, Objective-C++ and Fortran only)
Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)
Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:

float area(float radius)
{
return 3.14159 * radius * radius;
}
the compiler performs the entire computation with double because the floating-
point literal is a double.

-Wduplicate-decl-specifier (C and Objective-C only)
Warn if a declaration has duplicate const, volatile, restrict or _Atomic
specifier. This warning is enabled by -Wall.

-Wformat

-Wformat=n
Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.4.1 [Function Attributes],
page 619), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by -ffreestanding or -fno-builtin.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not
support warning about features that go beyond a particular library’s limitations.
However, if ~-Wpedantic is used with ~-Wformat, warnings are given about format
features not in the selected standard version (but not for strfmon formats,

110 Using the GNU Compiler Collection (GCC)

since those are not in any version of the C standard). See Section 3.4 [Options
Controlling C Dialect], page 45.

-Wformat=1

-Wformat Option -Wformat is equivalent to -Wformat=1, and -Wno-format
is equivalent to -Wformat=0. Since -Wformat also checks for
null format arguments for several functions, -Wformat also
implies -Wnonnull. Some aspects of this level of format checking
can be disabled by the options: -Wno-format-contains-
nul, -Wno-format-diag, -Wno-format-extra-args, and
-Wno-format-zero-length. -Wformat is enabled by -Wall.

-Wformat=2
FEnable -Wformat plus additional format checks. Currently equiv-
alent to -Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k.

-Wno-format-contains—-nul
If -Wformat is specified, do not warn about format strings that contain NUL
bytes.

-Wno-format-diag
If -Wformat is specified, do not warn about format strings that are unsuitable
for GCC diagnostics.

-Wno-format-extra-args
If -Wformat is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option sup-
presses the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wformat-overflow

-Wformat-overflow=level
Warn about calls to formatted input/output functions such as sprintf and
vsprintf that might overflow the destination buffer. When the exact number
of bytes written by a format directive cannot be determined at compile-time
it is estimated based on heuristics that depend on the level argument and
on optimization. While enabling optimization will in most cases improve the
accuracy of the warning, it may also result in false positives.

-Wformat-overflow

-Wformat-overflow=1
Level 1 of -Wformat-overflow enabled by -Wformat employs a
conservative approach that warns only about calls that most likely
overflow the buffer. At this level, numeric arguments to format di-
rectives with unknown values are assumed to have the value of one,

Chapter 3: GCC Command Options 111

and strings of unknown length to be empty. Numeric arguments
that are known to be bounded to a subrange of their type, or string
arguments whose output is bounded either by their directive’s pre-
cision or by a finite set of string literals, are assumed to take on the
value within the range that results in the most bytes on output. For
example, the call to sprintf below is diagnosed because even with
both a and b equal to zero, the terminating NUL character ('\0")
appended by the function to the destination buffer will be written
past its end. Increasing the size of the buffer by a single byte is
sufficient to avoid the warning, though it may not be sufficient to
avoid the overflow.

void f (int a, int b)

¢ char buf [13];

sprintf (buf, "a = %i, b = %i\n", a, b);
}

-Wformat-overflow=2

Level 2 warns also about calls that might overflow the destination
buffer given an argument of sufficient length or magnitude. At level
2, unknown numeric arguments are assumed to have the minimum
representable value for signed types with a precision greater than 1,
and the maximum representable value otherwise. Unknown string
arguments whose length cannot be assumed to be bounded either
by the directive’s precision, or by a finite set of string literals they
may evaluate to, or the character array they may point to, are
assumed to be 1 character long.

At level 2, the call in the example above is again diagnosed, but this
time because with a equal to a 32-bit INT_MIN the first %i direc-
tive will write some of its digits beyond the end of the destination
buffer. To make the call safe regardless of the values of the two
variables, the size of the destination buffer must be increased to at
least 34 bytes. GCC includes the minimum size of the buffer in an
informational note following the warning.

An alternative to increasing the size of the destination buffer is to
constrain the range of formatted values. The maximum length of
string arguments can be bounded by specifying the precision in the
format directive. When numeric arguments of format directives can
be assumed to be bounded by less than the precision of their type,
choosing an appropriate length modifier to the format specifier will
reduce the required buffer size. For example, if a and b in the
example above can be assumed to be within the precision of the
short int type then using either the %hi format directive or casting
the argument to short reduces the maximum required size of the
buffer to 24 bytes.
void f (int a, int b)

{
char buf [23];

112 Using the GNU Compiler Collection (GCC)

sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
}

-Wno-format-zero-length
If -Wformat is specified, do not warn about zero-length formats. The C standard
specifies that zero-length formats are allowed.

-Wformat-nonliteral
If -Wformat is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
ava_list.

-Wformat-security

If -Wformat is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo) ;. This may be a security hole if
the format string came from untrusted input and contains ‘%n’. (This is cur-
rently a subset of what -Wformat-nonliteral warns about, but in future warn-
ings may be added to -Wformat-security that are not included in -Wformat-
nonliteral.)

-Wformat-signedness
If -Wformat is specified, also warn if the format string requires an unsigned
argument and the argument is signed and vice versa.

-Wformat-truncation

-Wformat-truncation=level
Warn about calls to formatted input/output functions such as snprintf and
vsnprintf that might result in output truncation. When the exact number
of bytes written by a format directive cannot be determined at compile-time
it is estimated based on heuristics that depend on the level argument and
on optimization. While enabling optimization will in most cases improve the
accuracy of the warning, it may also result in false positives. Except as noted
otherwise, the option uses the same logic -Wformat-overflow.

-Wformat-truncation

-Wformat-truncation=1
Level 1 of -Wformat-truncation enabled by -Wformat employs
a conservative approach that warns only about calls to bounded
functions whose return value is unused and that will most likely
result in output truncation.

-Wformat-truncation=2
Level 2 warns also about calls to bounded functions whose return
value is used and that might result in truncation given an argument
of sufficient length or magnitude.

-Wformat-y2k
If -Wformat is specified, also warn about strftime formats that may yield only
a two-digit year.

Chapter 3: GCC Command Options 113

-Wnonnull

-Wnonnull-

Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

-Wnonnull is included in -Wall and -Wformat. It can be disabled with the
-Wno-nonnull option.

compare
Warn when comparing an argument marked with the nonnull function at-
tribute against null inside the function.

-Wnonnull-compare is included in -Wall. It can be disabled with the -Wno-
nonnull-compare option.

-Wnull-dereference

Warn if the compiler detects paths that trigger erroneous or undefined behavior
due to dereferencing a null pointer. This option is only active when -fdelete-
null-pointer-checks is active, which is enabled by optimizations in most
targets. The precision of the warnings depends on the optimization options
used.

-Wno-musttail-local-addr

Do not warn about passing a pointer (or in C++, a reference) to a local variable
or label to argument of a musttail call. Those variables go out of scope before
the tail call instruction.

-Wmaybe-musttail-local-addr

Warn when address of a local variable can escape to a musttail call, unless it
goes out of scope already before the musttail call.

int foo (int *);

int
bar (int *x)
{
if (x[0] == 1)
{
int a = 42;
foo (&a);
/* Without the musttail attribute this call would not
be tail called, because address of the a variable escapes
and the second foo call could dereference it. With the attribute
the local variables are assumed to go out of scope immediately
before the tail call instruction and the compiler warns about
this. */
[[gnu: :musttail]] return foo (nullptr);
}
else
{
{
int a = 42;
foo (&a);
}

/* The a variable isn't already in scope, so even when it
escaped, even without musttail attribute it would be
undefined behavior to dereference it and the compiler could
turn this into a tail call. No warning is diagnosed here. */

114 Using the GNU Compiler Collection (GCC)

[[gnu: :musttail]] return foo (nullptr);
}
}

This warning is enabled by -Wextra.

-Wnrvo (C++ and Objective-C++ only)
Warn if the compiler does not elide the copy from a local variable to the return
value of a function in a context where it is allowed by [class.copy.elision]. This
elision is commonly known as the Named Return Value Optimization. For
instance, in the example below the compiler cannot elide copies from both v1
and v2, so it elides neither.

std: :vector<int> f()
{
std: :vector<int> vl, v2;
/] ...
if (cond) return vi;
else return v2; // warning: not eliding copy

}
-Winfinite-recursion
Warn about infinitely recursive calls. The warning is effective at all optimization

levels but requires optimization in order to detect infinite recursion in calls
between two or more functions. -Winfinite-recursion is included in -Wall.

Compare with -Wanalyzer-infinite-recursion which provides a similar di-
agnostic, but is implemented in a different way (as part of ~fanalyzer).

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the -Wuninitialized option.

For example, GCC warns about i being uninitialized in the following snippet
only when -Winit-self has been specified:

int £()

{
int i = i;
return i;

}
This warning is enabled by -Wall in C++.

-Wno-implicit-int (C and Objective-C only)
This option controls warnings when a declaration does not specify a type.
This warning is enabled by default, as an error, in C99 and later dialects
of C, and also by -Wall. The error can be downgraded to a warning using
-fpermissive (along with certain other errors), or for this error alone, with
-Wno-error=implicit-int.
This warning is upgraded to an error by -pedantic-errors.

-Wno-implicit-function-declaration (C and Objective-C only)
This option controls warnings when a function is used before being declared.
This warning is enabled by default, as an error, in C99 and later dialects
of C, and also by -Wall. The error can be downgraded to a warning using
-fpermissive (along with certain other errors), or for this error alone, with
-Wno-error=implicit-function-declaration.

Chapter 3: GCC Command Options 115

This warning is upgraded to an error by -pedantic-errors.

-Wimplicit (C and Objective-C only)
Same as -Wimplicit-int and -Wimplicit-function-declaration. This
warning is enabled by -Wall.

-Whardened
Warn when -fhardened did not enable an option from its set (for which see
-fhardened). For instance, using -fhardened and -fstack-protector at the
same time on the command line causes -Whardened to warn because -fstack-
protector-strong will not be enabled by -fhardened.

This warning is enabled by default and has effect only when -fhardened is
enabled.

-Wimplicit-fallthrough
-Wimplicit-fallthrough is the same as -Wimplicit-fallthrough=3 and
-Wno-implicit-fallthrough is the same as -Wimplicit-fallthrough=0.

-Wimplicit-fallthrough=n
Warn when a switch case falls through. For example:

switch (cond)
{
case 1:
a=1;
break;
case 2:
a = 2;
case 3:
a = 3;
break;

}

This warning does not warn when the last statement of a case cannot fall
through, e.g. when there is a return statement or a call to function declared
with the noreturn attribute. -Wimplicit-fallthrough= also takes into account
control flow statements, such as ifs, and only warns when appropriate. E.g.

switch (cond)
{
case 1:
if (i > 3) {
bar (5);
break;
} else if (i < 1) {
bar (0);
} else
return;
default:

N ..

Since there are occasions where a switch case fall through is desirable, GCC
provides an attribute, __attribute__ ((fallthrough)), that is to be used
along with a null statement to suppress this warning that would normally occur:

116

Using the GNU Compiler Collection (GCC)

switch (cond)
{

case 1:

bar (0);

__attribute__ ((fallthrough));
default:
}

C++17 and C23 provide a standard way to suppress the -Wimplicit-
fallthrough warning using [[fallthroughll]; instead of the GNU attribute.
In C++11 or C++14 users can use [[gnu::fallthroughl];, which is a GNU
extension. Instead of these attributes, it is also possible to add a fallthrough
comment to silence the warning. The whole body of the C or C++ style
comment should match the given regular expressions listed below. The option
argument n specifies what kind of comments are accepted:

e -Wimplicit-fallthrough=0 disables the warning altogether.

e -Wimplicit-fallthrough=1 matches .* regular expression, any comment
is used as fallthrough comment.

e -Wimplicit-fallthrough=2 case insensitively matches .*falls?[
\t-1*thr (ough|u) . * regular expression.

e -Wimplicit-fallthrough=3 case sensitively matches one of the following
regular expressions:

e -fallthrough
e Q@fallthrough@
e lint -fallthrough[\t]*

e [\t.!]*(ELSE,? |INTENTIONAL(LY)?)7
FALL(S | |-)?THR(OUGHIU) [\t.!I*(-=["\n\rl*)?

e [\t.!]*(Else,? |Intentional(ly)?)7
Fall((s | |-)[Tt] It)hr(oughlu) [\t.!I*(-["\n\r]*)?

o [\t.!1*([Eellse,? |[Iilntentional(ly)?)?
fall(s | |-)7thr(oughlw) [\t.!1*(-["\n\rl*)?

e -Wimplicit-fallthrough=4 case sensitively matches one of the following
regular expressions:

e -fallthrough
e @fallthrough@
e lint -fallthrough[\t]x*
e [\t]*FALLTHR(OUGH|U) [\t]*
e -Wimplicit-fallthrough=5 doesn’t recognize any comments as

fallthrough comments, only attributes disable the warning.

The comment needs to be followed after optional whitespace and other com-
ments by case or default keywords or by a user label that precedes some case
or default label.

Chapter 3: GCC Command Options 117

switch (cond)
{
case 1:
bar (0);
/* FALLTHRU */
default:

}
The -Wimplicit-fallthrough=3 warning is enabled by -Wextra.

-Wno-if-not-aligned (C, C++, Objective-C and Objective-C++ only)

Control if warnings triggered by the warn_if_not_aligned attribute should be
issued. These warnings are enabled by default.

-Wignored-qualifiers (C and C++ only)

Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by -Wextra.

-Wno-ignored-attributes (C and C++ only)

-Wmain

This option controls warnings when an attribute is ignored. This is different
from the -Wattributes option in that it warns whenever the compiler decides
to drop an attribute, not that the attribute is either unknown, used in a wrong
place, etc. This warning is enabled by default.

Warn if the type of main is suspicious. main should be a function with external
linkage, returning int, taking either zero arguments, two, or three arguments of
appropriate types. This warning is enabled by default in C++ and is enabled
by either -Wall or -Wpedantic.

This warning is upgraded to an error by -pedantic-errors.

-Wmisleading-indentation (C and C++ only)

Warn when the indentation of the code does not reflect the block structure.
Specifically, a warning is issued for if, else, while, and for clauses with a
guarded statement that does not use braces, followed by an unguarded state-
ment with the same indentation.

In the following example, the call to “bar” is misleadingly indented as if it were
guarded by the “if” conditional.
if (some_condition ())
foo ();
bar (); /* Gotcha: this is not guarded by the "if". =x/
In the case of mixed tabs and spaces, the warning uses the -ftabstop= option
to determine if the statements line up (defaulting to 8).

The warning is not issued for code involving multiline preprocessor logic such
as the following example.

if (flagh)
foo (0);

118

Using the GNU Compiler Collection (GCC)

#if SOME_CONDITION_THAT_DOES_NOT_HOLD
if (flagB)
#endif
foo (1);
The warning is not issued after a #line directive, since this typically indicates
autogenerated code, and no assumptions can be made about the layout of the
file that the directive references.

This warning is enabled by -Wall in C and C++.

-Wmissing-attributes

Warn when a declaration of a function is missing one or more attributes that
a related function is declared with and whose absence may adversely affect the
correctness or efficiency of generated code. For example, the warning is issued
for declarations of aliases that use attributes to specify less restrictive require-
ments than those of their targets. This typically represents a potential opti-
mization opportunity. By contrast, the -Wattribute-alias=2 option controls
warnings issued when the alias is more restrictive than the target, which could
lead to incorrect code generation. Attributes considered include alloc_align,
alloc_size, cold, const, hot, leaf, malloc, nonnull, noreturn, nothrow,
pure, returns_nonnull, and returns_twice.

In C++, the warning is issued when an explicit specialization of a primary
template declared with attribute alloc_align, alloc_size, assume_aligned,
format, format_arg, malloc, or nonnull is declared without it. Attributes
deprecated, error, and warning suppress the warning. (see Section 6.4.1
[Function Attributes], page 619).

You can use the copy attribute to apply the same set of attributes to a
declaration as that on another declaration without explicitly enumerating
the attributes. This attribute can be applied to declarations of functions
(see Section 6.4.1.1 [Common Function Attributes], page 620), variables
(see Section 6.4.2.1 [Common Variable Attributes|, page 697), or types (see
Section 6.4.3.1 [Common Type Attributes|, page 713).

-Wmissing-attributes is enabled by -Wall.

For example, since the declaration of the primary function template below
makes use of both attribute malloc and alloc_size the declaration of the
explicit specialization of the template is diagnosed because it is missing one of
the attributes.

template <class T>
Tx __attribute__ ((malloc, alloc_size (1)))
allocate (size_t);

template <>
void* __attribute__ ((malloc)) // missing alloc_size
allocate<void> (size_t);

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for a is not fully bracketed, but that for b is fully
bracketed.

int af2][2] = {0, 1, 2, 3 };

Chapter 3: GCC Command Options 119

int b[2][21 ={ {0, 1}, {2,3%} 1}
This warning is enabled by -Wall.

-Wmissing-include-dirs (C, C++, Objective-C, Objective-C++ and Fortran only)
Warn if a user-supplied include directory does not exist. This option is dis-
abled by default for C, C++, Objective-C and Objective-C++. For Fortran, it is
partially enabled by default by warning for -I and -J, only.

-Wno-missing-profile

This option controls warnings if feedback profiles are missing when using the
-fprofile-use option. This option diagnoses those cases where a new function
or a new file is added between compiling with -fprofile-generate and with
-fprofile-use, without regenerating the profiles. In these cases, the profile
feedback data files do not contain any profile feedback information for the newly
added function or file respectively. Also, in the case when profile count data
(.gcda) files are removed, GCC cannot use any profile feedback information. In
all these cases, warnings are issued to inform you that a profile generation step is
due. Ignoring the warning can result in poorly optimized code. -Wno-missing-
profile can be used to disable the warning, but this is not recommended and
should be done only when non-existent profile data is justified.

-Wmismatched-dealloc

Warn for calls to deallocation functions with pointer arguments returned from
allocation functions for which the former isn’t a suitable deallocator. A pair of
functions can be associated as matching allocators and deallocators by use of
attribute malloc. Unless disabled by the -fno-builtin option the standard
functions calloc, malloc, realloc, and free, as well as the corresponding
forms of C++ operator new and operator delete are implicitly associated as
matching allocators and deallocators. In the following example mydealloc is
the deallocator for pointers returned from myalloc.

void mydealloc (voidx);

attribute__ ((malloc (mydealloc, 1))) voidx*

myalloc (size_t);

void f (void)

{
void *p = myalloc (32);
// ...use p...
free (p); // warning: not a matching deallocator for myalloc
mydealloc (p); // ok

}

In C++, the related option -Wmismatched-new-delete diagnoses mismatches

involving either operator new or operator delete.

Option -Wmismatched-dealloc is included in -Wall.

-Wmultistatement-macros
Warn about unsafe multiple statement macros that appear to be guarded by a
clause such as if, else, for, switch, or while, in which only the first statement
is actually guarded after the macro is expanded.

120 Using the GNU Compiler Collection (GCC)

For example:
#define DOIT x++; y++
if (c)
DOIT;
will increment y unconditionally, not just when ¢ holds. The can usually be
fixed by wrapping the macro in a do-while loop:

#define DOIT do { x++; y++; } while (0)
if (c¢)
DOIT;

This warning is enabled by -Wall in C and C++.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn if a comparison like x<=y<=z appears; this is equivalent to (x<=y 7 1
: 0) <= z, which is a different interpretation from that of ordinary mathemat-
ical notation.

Also warn for dangerous uses of the GNU extension to 7: with omitted middle
operand. When the condition in the ?: operator is a boolean expression, the
omitted value is always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.

For C++ this also warns for some cases of unnecessary parentheses in declara-
tions, which can indicate an attempt at a function call instead of a declaration:
{

// Declares a local variable called mymutex.
std: :unique_lock<std::mutex> (mymutex) ;
// User meant std::unique_lock<std::mutex> lock (mymutex);

}
This warning is enabled by -Wall.

-Wno-self-move (C++ and Objective-C++ only)
This warning warns when a value is moved to itself with std: :move. Such a
std: :move typically has no effect.
struct T {
};
void fn()

{
T t;

t = std::move (t);
}
This warning is enabled by -Wall.
-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial

Chapter 3: GCC Command Options 121

ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The C++17 standard will define the order of evaluation of operands in more
cases: in particular it requires that the right-hand side of an assignment be
evaluated before the left-hand side, so the above examples are no longer unde-
fined. But this option will still warn about them, to help people avoid writing
code that is undefined in C and earlier revisions of C++.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discus-
sions of the problem, including proposed formal definitions, may be found on
the GCC readings page, at https://gcc.gnu.org/readings.html.

This warning is enabled by -Wall for C and C++.

-Wno-return-local-addr
Do not warn about returning a pointer (or in C++, a reference) to a variable
that goes out of scope after the function returns.

-Wreturn-mismatch
Warn about return statements without an expressions in functions which do
not return void. Also warn about a return statement with an expression in
a function whose return type is void, unless the expression type is also void.
As a GNU extension, the latter case is accepted without a warning unless
-Wpedantic is used.

Attempting to use the return value of a non-void function other than main
that flows off the end by reaching the closing curly brace that terminates the
function is undefined.

https://gcc.gnu.org/readings.html

122 Using the GNU Compiler Collection (GCC)

This warning is specific to C and enabled by default. In C99 and later language
dialects, it is treated as an error. It can be downgraded to a warning using
-fpermissive (along with other warnings), or for just this warning, with -Wno-
error=return-mismatch.

-Wreturn-type
Warn whenever a function is defined with a return type that defaults to int
(unless -Wimplicit-int is active, which takes precedence). Also warn if execu-
tion may reach the end of the function body, or if the function does not contain
any return statement at all.

Attempting to use the return value of a non-void function other than main
that flows off the end by reaching the closing curly brace that terminates the
function is undefined.

Unlike in C, in C++, flowing off the end of a non-void function other than main
results in undefined behavior even when the value of the function is not used.

