The GNU Modula-2 Compiler

For ccc version 16.0.0 (pre-release)

(GCC)

Gaius Mulley

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Overview of GNU Modula-2.................... 1
1.1 What is GNU Modula-2 ... 1
1.2 Why use GNU Modula-2 oo 1
1.3 How to get source code using git..............ocoiiiiiiiii.. 1
1.4 GNU Modula-2 Features.c.ooiiiiiiiiiiienn... 1

2 Using GNU Modula-2........................... 3
2.1 Example compile and link 3
2.2 Compiler Optionst 3
2.3 Elementary data types...... ... 10
2.4 Permanently accessible base procedures. 11

2.4.1 Standard procedures and functions common to PIM and ISO.. 11
2.4.2 IS0 specific standard procedures and functions............ 16
2.5 Behavior of the high procedure function........................ 17
2.6 GNU Modula-2 supported dialects...............ccooiiiia.. 18
2.6.1 Integer division, remainder and modulus 19
2.7 Module Search Path........ i i 19
2.8 FException implementation, 20
2.9 How to detect run time problems at compile time.............. 20
2.10 GNU Modula-2 language extensionsc...... 23
2.10.1 Optional procedure parameter 26
2.11 Type compatibility 27
2.11.1 Expression compatibility............. ...l 28
2.11.2 Assignment compatibilityl 28
2.11.3 Parameter compatibility oo 29
2.12 Exception handling............ .o i i 29
2.13 Unbounded by reference..............cooiii i, 32
2.14 Building a shared library i 34
2.15 How to produce swig interface files 34
2.15.1 Limitations of automatic generated of Swig files.......... 35
2.16 How to produce a Python module 36
2.17 Interfacing GNU Modula-2 to C.......t 40
2.18 Interface to assembly language..........., 41
2.19 Data type alignment 42
2.20 Packing data types...... ..o 44
2.21 Accessing GNU Modula-2 Built-ins, 45
2.22 The PIM system module i 52
2.23 The ISO system module........ ... 56
2.24 Release map.o 61
2.25 Documentation......... ... 61
2.26 Regression tests for gm2 in the repository..................... 61
2.27 LAmitations.ooouiiur i 61

2.28 ODJECHIVES. « ottt et e 61

229 FAQ .+ .o oot 62
2.29.1 Why use the C++ exception mechanism in GCC, rather
than a bespoke Modula-2 mechanism? 62
2,30 ComMUDNILY . . .vvt ettt e e 62
2.31 Other languages for GCC......... ... i .. 62
2.32 License of GNU Modula-2 ... 62
GNU General Public License 63
Contributing to GNU Modula-2.......... i, 73
3 EBNF of GNU Modula-2...................... 75
4 PIM and ISO library definitions.............. 84
4.1 Base libraries.oooiiii e 84
4.1.1 gm2-libs/ARRAYOFCHAR, 84
4.1.2 gm2-libs/ASCITo 85
4.1.3 gm2-1Ibs/ATES ..o 86
4.1.4 gm?2-libs/Assertion........... ... oo 87
4.1.5 gm2-libs/Break.......... ... 88
4.1.6 gm2-libs/Builtins.......... ..o i 89
4.1.7 gm2-libs/CFileSysOpooouinii i 95
4.1.8 gm2-libs/CHAR 97
4.1.9 gm2-libs/COROUTINESt 98
4.1.10 gm2-libs/CmdATES ..ot 99
4.1.11 gm2-libs/Debugooviuiii 100
4.1.12 gm2-libs/DynamicStrings...........coovuiiiiiiin... 101
4.1.13 gm2-libs/Environment.............oooiiuiiiniiia... 109
4.1.14 gm2-libs/FIO ... 110
4.1.15 gm2-1ibs/FileSysOpoovviriii i 117
4.1.16 gm2-libs/FormatStrings ...t 118
4117 @m2-Bibs/FPulO .o 120
4.1.18 gm2-1ibs/GetOpt .. .o.vviri i 121
4.1.19 gm2-libs/IOo 124
4.1.20 gm2-libs/Indexingcoooiiiiiiiiiiiiii 126
4.1.21 gm2-libs/LMathlib0o 129
4.1.22 gm2-libs/LegacyReall 130
4.1.23 gm?2-libs/M2Dependent........ ... 131
4.1.24 gm2-libs/M2EXCEPTION, 133
4.1.25 gm2-libs/M2RTSo 134
4.1.26 gm2-libs/MathLibO......... ... 138
4.1.27 gm2-libs/MemUtils........ ... 139
4.1.28 gm2-libs/NumberIO 140
4.1.29 gm2-libs/OptLib 142
4.1.30 gm2-libs/PushBackInput, 144
4.1.31 gm2-libs/RTExceptions.c..oovuiiiiiiiiiinia.. 147

ii

4.1.32 gm2-libs/RTint.......ooviiii e 151
4.1.33 gm2-1ibs/SATES. ..o\t 154
4.1.34 gm2-libs/SCmAATESt 155
4.1.35 gm2-libs/SEnvironment............o 156
4.1.36 gm2-libs/SFIOo 157
4.1.37 gm2-libs/SMathLib0.... ..., 159
4.1.38 gm2-libs/SYSTEM 160
4.1.39 gm2-libs/Scan..... ... 164
4.1.40 gm2-libs/Selective....... i 166
4141 gm2-libs/StdIO.o 168
4.1.42 gm2-1ibs/Storageovviiii 170
4.1.43 gm2-libs/StrCase.... ... 171
4.1.44 gm2-libs/StrIO o 172
4.1.45 gm2-libs/Strlib ... 173
4.1.46 gm2-libs/Stringoovuiiiiiii 175
4.1.47 gm2-libs/StringConvert. ..o, 176
4.1.48 gm2-libs/StringFileSysOp ...t 183
4.1.49 gm2-libs/SysExceptionsc.coiiiiiiiiiiii. 184
4.1.50 gm2-1ibs/SysStorageo.vueiiiiiiii i 185
4.1.51 gm2-libs/TimeString 187
4.1.52 gm2-1ibs/UnixArgsovuitiii i 188
4.1.53 gm2-libs/cbuiltin.......... ..o oo 189
4.1.54 gm2-1ibs/cgetopt ... o.vvii 194
4.1.55 gm2-libs/cxxabi... ... 196
4.1.56 gm2-libs/dtoa...... ..o 197
4.1.57 gm2-libs/errnoo. o 198
4.1.58 gm2-libs/gdbif. 199
4.1.59 gm2-libs/ldtoa ... 200
4.1.60 gm2-libs/libc.. ... 201
4.1.61 gm2-libs/libm ... 213
4.1.62 gm?2-libs/sckt... ... 215
4.1.63 gm2-libs/termioso.iiiiii 218
4.1.64 gm2-IDS/WIAPC. .\ttt 223
4.2 PIM and Logitech 3.0 Compatible 227
4.2.1 gm2-libs-log/BitBlockOpso, 227
4.2.2 gm2-libs-log/BitByteOpsoooviiiiiiiii 230
4.2.3 gm2-libs-log/BitWordOps.........ooviiiiiiiiiiiiia. 233
4.2.4 gm2-libs-log/BlockOps..... ... 236
4.2.5 gm2-libs-log/Breako 238
4.2.6 gm2-libs-log/CardinallO. ..., 239
4.2.7 gm2-libs-log/Conversionsc.coevuiiiiiiinia... 242
4.2.8 gm2-libs-log/DebugPMD i 243
4.2.9 gm2-libs-log/DebugTracecccooviiiiiiiiiiin... 244
4.2.10 gm2-libs-log/Delayccooiiiiiiiiiiii i 245
4.2.11 gm2-libs-log/Display........cooiiiiiiiiiiii.. 246
4212 gm2-libs-log/ErrorCode ... 247
4.2.13 gm2-libs-log/FileSystem ... 248

iii

4.2.14 gm2-libs-log/FloatingUtilities................. ... 254
4.2.15 gm2-libs-log/InOut ... 256
4.2.16 gm2-libs-log/Keyboard ..., 260
4217 gm2-libs-log/LonglOo i 261
4.2.18 gm2-libs-log/NumberConversion 262
4.2.19 gm2-libs-log/Random., 263
4.2.20 gm2-libs-log/RealConversions.ooovien... 265
4.2.21 gm2-libs-log/ReallnOut.t 268
4.2.22 gm2-libs-log/Strings 271
4.2.23 gm2-libs-log/Termbase ... 273
4.2.24 gm2-libs-log/Terminal ..., 275
4.2.25 gm2-libs-log/TimeDate..... ..., 277
4.3 PIM coroutine SUppOrtcovuiiiiiiii i 279
4.3.1 gm2-libs-coroutines/Executive 279
4.3.2 gm2-libs-coroutines/KeyBoardLEDs 282
4.3.3 gm2-libs-coroutines/SYSTEM 283
4.3.4 gm2-libs-coroutines/TimerHandler 289
4.4 M2 ISO Libraries.oouueit i 291
4.4.1 gm2-libs-iso/COROUTINES ..., 292
442 gm2-libs-iso/ChanConsts oo 295
4.4.3 gm?2-libs-iso/CharClass ... 297
4.4.4 gm2-libs-iso/ClientSocketo, 298
4.4.5 gm2-libs-iso/ComplexMath, 299
4.4.6 gm2-libs-iso/ConvStringlong, 301
4.4.7 gm2-libs-iso/ConvStringReal 302
4.4.8 gm2-libs-iso/ConvStringShort.............. ..., 303
4.4.9 gm2-1ibs-i80/ConvTyPesvueuiiiiiiii i, 304
4410 gm2-libs-iso/EXCEPTIONS ..., 305
4.4.11 gm2-libs-iso/ErrnoCategorycovviiiiioa.. 307
4.4.12 gm?2-libs-iso/GeneralUserExceptions 309
4.4.13 gm2-libs-iso/IOChancooviiiiiiiin 310
4.4.14 gm2-libs-iso/IOConStSot 314
4.4.15 gm2-libs-iso/IOLink 315
4416 gm2-libs-iso/IOResult il 318
4.417 gm2-libs-iso/LongComplexMath 319
4418 gm2-libs-iso/LongConv ..ot 321
4419 gm2-libs-iso/LonglO. 323
4.4.20 gm2-libs-iso/LongMath..........l 325
4421 gm2-libs-iso/LongStr ... 327
4.4.22 gm2-libs-iso/LongWholelO 329
4.4.23 gm2-libs-iso/LowlLongooiiiiiiiiiiii ... 330
4.4.24 gm2-libs-iso/LowReal..........l 332
4.4.25 gm2-libs-iso/LowShort............. oo 334
4.4.26 gm2-libs-iso/M2EXCEPTIONt 336
4.4.27 gm?2-libs-iso/M2RTS.o i 337
4.4.28 gm2-libs-iso/MemStream, 341
4.4.29 gm2-libs-iso/Preemptive..... ..., 343

iv

4.4.30
4.4.31
4.4.32
4.4.33
4.4.34
4.4.35
4.4.36
4.4.37
4.4.38
4.4.39
4.4.40
4.4.41
4.4.42
4.4.43
4.4.44
4.4.45
4.4.46
4.4.47
4.4.48
4.4.49
4.4.50
4.4.51
4.4.52
4.4.53
4.4.54
4.4.55
4.4.56
4.4.57
4.4.58
4.4.59
4.4.60
4.4.61
4.4.62
4.4.63
4.4.64
4.4.65
4.4.66
4.4.67
4.4.68
4.4.69
4.4.70
4.4.71
4.4.72
4.4.73
4.4.74
4.4.75
4.4.76

gm2-1ibs-180/Processes 344

gm2-libs-iso/ProgramArgs, 348
gm?2-1ibs-i80/RTco.o 349
gm?2-libs-iso/RTdata...................o i, 351
gm2-libs-iso/RTentity., 353
gm2-libs-iso/RTfio............oo i 354
gm2-libs-iso/RTgen.vei i 356
gm2-libs-iso/RTgenif i 359
gm?2-libs-iso/RTio ... 362
gm?2-libs-iso/RandomNumber........................... 364
gm2-libs-iso/RawlIO 367
gm?2-libs-iso/RealConv..............ooooiiiiiiiiiiia., 368
gm?2-libs-iso/ReallO ... 370
gm?2-libs-iso/RealMath 372
gm?2-libs-iso/RealStr..................... ... 374
gm2-libs-iso/RndFile ... 376
gm?2-libs-iso/SIOResult, 379
gm2-libs-iso/SLonglOo 380
gm2-libs-iso/SLongWholelO, 382
gm2-libs-iso/SRawlO 383
gm?2-libs-iso/SReallO 384
gm?2-libs-iso/SShortIO 386
gm?2-libs-iso/SShortWholeIO....................... 388
gm?2-libs-iso/STextIO.......... il 389
gm2-1libs-iso/SWholeIOot 391
gm?2-1ibs-iso/SYSTEM ...t 392
gm?2-libs-iso/Semaphoresol 397
gm2-libs-iso/SeqFile........o i 398
gm2-libs-iso/ShortComplexMath........................ 401
gm2-libs-iso/ShortConv......... 403
gm?2-libs-iso/ShortIOo 405
gm?2-libs-iso/ShortMath 407
gm?2-libs-iso/ShortStr...........o i 409
gm?2-libs-iso/ShortWholelO............................. 411
gm?2-libs-iso/SimpleCipher.......... ..., 412
gm?2-libs-iso/StdChans., 413
gm2-1ibs-iS0/Storageot 415
gm?2-libs-iso/StreamFile o oL 417
gm2-libs-iso/StringChano 418
gm2-1ibs-180/Stringsot 419
gm2-libs-iso/SysClock 423
gm2-libs-iso/TERMINATION ...t 425
gm?2-libs-iso/TermFile 426
gm?2-libs-iso/TextIO i 428
gm2-libs-iso/TextUtil. ... i, 430
gm?2-libs-iso/WholeConv........... ..., 431

gm?2-libs-iso/WholelO, 433

4.4.77
4.4.78
4.4.79
4.4.80

gm2-libs-iso/WholeStr............., 434
gm?2-libs-iso/wrapclock o i 435
gm2-libs-iso/wrapsocko i 438
gm2-libs-iso/wraptime.o 441

4.5 IndiCes . ..o 445

vi

1 Overview of GNU Modula-2

1.1 What is GNU Modula-2

GNU Modula-2 is a front end (https://gcc.gnu.org/frontends.html) for the GNU Com-
piler Collection (GCC (https://gcc.gnu.org)). The GNU Modula-2 compiler is compliant
with the PIM2, PIM3, PIM4 and ISO dialects. Also implemented are a complete set of free
ISO libraries and PIM libraries.

1

1.2 Why use GNU Modula-2

There are a number of advantages of using GNU Modula-2 rather than translate an existing
project into another language.

The first advantage is of maintainability of the original sources and the ability to debug
the original project source code using a combination of gm2 and gdb.

The second advantage is that gcc runs on many processors and platforms. gm2 builds
and runs on powerpc64le, amd64, 1386, aarch64 to name but a few processors.

gm?2 can produce swig interface headers to allow access from Python and other scripting
languages. It can also be used with C/C++ and generate shared libraries.

The compiler provides semantic analysis and run time checking (full ISO Modula-2
checking is implemented) and there is a plugin which can, under certain conditions, detect
run time errors at compile time.

The compiler supports PIM2, PIM3, PIM4 and ISO dialects of Modula-2, work is under-
way to implement M2R10. Many of the GCC builtins are available and access to assembly
programming is achieved using the same syntax as that used by GCC.

The gm2 driver allows third party libraries to be installed alongside gm2 libraries. See
Section 2.7 [Module Search Path], page 19.

1.3 How to get source code using git
GNU Modula-2 is now in the GCC git tree (https://gcc.gnu.org/git.html).

1.4 GNU Modula-2 Features

e the compiler currently complies with Programming in Modula-2 Edition 2, 3, 4 and ISO
Modula-2. Users can switch on specific language features by using: ‘~fpim’, ‘~-fpim2’,
‘~fpim3’, ‘~fpimé’ or ‘~fiso’.

! The four Modula-2 dialects supported are defined in the following references:
PIM2: 'Programming in Modula-2’, 2nd Edition, Springer Verlag, 1982, 1983 by Niklaus Wirth (PIM2).
PIM3: 'Programming in Modula-2’, 3rd Corrected Edition, Springer Verlag, 1985 (PIM3).

PIM4: 'Programming in Modula-2’, 4th Edition, Springer Verlag, 1988 (PIM4 (https://freepages.
modula2.org/report4/modula-2.html)).

ISO: the ISO Modula-2 language as defined in 'ISO/IEC Information technology - programming languages
- part 1: Modula-2 Language, ISO/IEC 10514-1 (1996)

https://gcc.gnu.org/frontends.html
https://gcc.gnu.org
https://gcc.gnu.org/git.html
https://freepages.modula2.org/report4/modula-2.html
https://freepages.modula2.org/report4/modula-2.html

Chapter 1: Overview of GNU Modula-2 2

e the option ‘~fswig’ will automatically create a swig interface file which corresponds to
the definition module of the file being compiled.

e exception handling is compatible with C++ and swig. Modula-2 code can be used with
C or C++ code.

e Python can call GNU Modula-2 modules via swig.
e shared libraries can be built.

e fixed sized types are now available from ‘SYSTEM’.
e variables can be declared at addresses.

e much better dwarf-2 debugging support and when used with ‘gdb’ the programmer
can display RECORDs, ARRAYs, SETs, subranges and constant char literals in Modula-2
syntax.

e supports sets of any ordinal size (memory permitting).

e casy interface to C, and varargs can be passed to C routines.

e many Logitech libraries have been implemented and can be accessed via:
‘~flibs=m2log,m2pim,m2iso’.

e coroutines have been implemented in the PIM style and these are accessible from SY'S-
TEM. A number of supporting libraries (executive and file descriptor mapping to in-
terrupt vector libraries are available through the ‘~flibs=m2iso,m2pim’ switch).

e can be built as a cross compiler (for embedded microprocessors such as the AVR and
the ARM).

2 Using GNU Modula-2

This document contains the user and design issues relevant to the Modula-2 front end to
gcc.

2.1 Example compile and link

The gm2 command is the GNU compiler for the Modula-2 language and supports many
of the same options as gcc. See Section “Option Summary” in Using the GNU Compiler
Collection (GCC). This manual only documents the options specific to gm2.

This section describes how to compile and link a simple hello world program. It provides
a few examples of using the different options mentioned in see Section 2.2 [Compiler options],
page 3. Assuming that you have a file called hello.mod in your current directory which
contains:

MODULE hello ;
FROM StrI0 IMPORT WriteString, Writeln ;

BEGIN
WriteString ('hello world') ; Writeln
END hello.

You can compile and link it by: ‘gm2 -g hello.mod’. The result will be an ‘a.out’ file
created in your directory.

You can split this command into two steps if you prefer. The compile step can be
achieved by: ‘gm2 -g -c -fscaffold-main hello.mod’ and the link via: ‘gm2 -g hello.o’.
1

2.2 Compiler options

This section describes the compiler options specific to GNU Modula-2 for generic flags
details See Section “Invoking GCC” in gcc.

For any given input file, the file name suffix determines what kind of compilation is done.
The following kinds of input file names are supported:

file.mod Modula-2 implementation or program source files. See the ‘~fmod=" option if
you wish to compile a project which uses a different source file extension.

file.def Modula-2 definition module source files. Definition modules are not compiled
separately, in GNU Modula-2 definition modules are parsed as required when
program or implementation modules are compiled. See the ‘-fdef=’ option if
you wish to compile a project which uses a different source file extension.

¢

1 To see all the compile actions taken by ‘gm2’ users can also add the ‘-v’ flag at the command line, for

example:
‘gm2 -v -g -I. hello.mod’
This displays the sub processes initiated by ‘gm2’ which can be useful when trouble shooting.

Chapter 2: Using GNU Modula-2 4

You can specify more than one input file on the gm2 command line,

-g create debugging information so that debuggers such as gdb can inspect and
control executable.

-I used to specify the search path for definition and implementation modules. An
example is: gm2 -g -c -I.:../../libs foo.mod. If this option is not specified
then the default path is added which consists of the current directory followed
by the appropriate language dialect library directories.

-fauto-init
turns on auto initialization of pointers to NIL. Whenever a block is created all
pointers declared within this scope will have their addresses assigned to NIL.

-fbounds turns on run time subrange, array index and indirection via NIL pointer check-
ing.

-fcase turns on compile time checking to check whether a CASE statement requires an
ELSE clause when on was not specified.

-fcpp preprocess the source with ‘cpp -lang-asm -traditional-cpp’ For further de-
tails about these options See Section “Invocation” in cpp. If ‘~fcpp’ is supplied
then all definition modules and implementation modules which are parsed will
be prepossessed by ‘cpp’.

-fdebug-builtins
call a real function, rather than the builtin equivalent. This can be useful for
debugging parameter values to a builtin function as it allows users to single
step code into an intrinsic function.

-fdef= recognize the specified suffix as a definition module filename. The default im-
plementation and module filename suffix is .def. If this option is used GNU
Modula-2 will still fall back to this default if a requested definition module is
not found.

-fdump-system-exports
display all inbuilt system items. This is an internal command line option.

-fexceptions
turn on exception handling code. By default this option is on. Exception
handling can be disabled by ‘-fno-exceptions’ and no references are made to
the run time exception libraries.

-fextended-opaque
allows opaque types to be implemented as any type. This is a GNU Modula-2
extension and it requires that the implementation module defining the opaque
type is available so that it can be resolved when compiling the module which
imports the opaque type.

-ffloatvalue
turns on run time checking to check whether a floating point number is about
to exceed range.

Chapter 2: Using GNU Modula-2 5

-fgen-modu

—-findex

-fiso

—-flibs=

-static-1i

-fm2-debug

-fm2-dump=

-fm2-dump-

-fm2-dump-

-fm2-dump-

-fm2-dump-

le-list=filename

attempt to find all modules when linking and generate a module list. If the
filename is ‘-’ then the contents are not written and only used to force the
linking of all module ctors. This option cannot be used if ‘~fuse-list=’ is
enabled.

generate code to check whether array index values are out of bounds. Array
index checking can be disabled via ‘~fno-index’.

turn on ISO standard features. Currently this enables the ISO SYSTEM module
and alters the default library search path so that the ISO libraries are searched
before the PIM libraries. It also effects the behavior of DIV and MOD operators.
See Section 2.6 [Dialect], page 18.

modifies the default library search path. The libraries supplied are: m2pim,
m2iso, m2min, m2log and m2cor. These map onto the Programming in Modula-
2 base libraries, ISO standard libraries, minimal library support, Logitech com-
patible library and Programming in Modula-2 with coroutines. Multiple li-
braries can be specified and are comma separated with precedence going to
the first in the list. It is not necessary to use -flibs=m2pim or -flibs=m2iso
if you also specify -fpim, -fpim2, -fpim3, -fpim4 or -fiso. Unless you are using
-flibs=m2min you should include m2pim as the they provide the base modules
which all other dialects utilize. The option ‘~fno-libs=-" disables the ‘gm2’
driver from modifying the search and library paths.

bgm2
On systems that provide the m2 runtimes as both shared and static libraries,
this option forces the use of the static version.

-trace=
turn on trace debugging using a comma separated list: ‘line,token,quad,all’.
This is an internal command line option.

enable dumping of modula-2 internal representation of data structures using a
comma separated list. The list can contain: ‘quad,gimple,decl,all’.

decl=filestem
dump the modula-2 representation of a symbol to the filestem specified. This
option only takes effect if the ‘~fm2-dump-filter’ is specified.

gimple=filestem
dump modula-2 gimple representation to the filestem specified.

quad=filestem
dump quadruple representation to the filestem specified.

filter=‘rules’

filter the language dumps ‘-fdump-lang-decl’, ‘-fdump-lang-gimple’
and‘-fdump-lang-quad’ on ‘rules’. ‘rules’ must be a comma separated
list which can take three forms: the full decl textual name of a procedure,
‘[libname.]module.ident’ or ‘[filename:]module.ident’. This is an

Chapter 2: Using GNU Modula-2 6

internal command line option. Currently it only filters on procedure
names and regexp matching is not implemented. Three examples of
its use following the previous forms could be: -fm2-dump-filter=_
M2_hello_init, -fm2-dump-filter=m2pim.StrI0.WriteString and
-fm2-dump-filter=StrLib.mod:StrI0.WriteString.

-fm2-file-offset-bits=
force the type SYSTEM.COFF_T to be built using the specified number of bits. If
this option is not used then default is CSSIZE_T bits.

-fm2-g improve the debugging experience for new programmers at the expense of gen-
erating nop instructions if necessary to ensure single stepping precision over all
code related keywords. An example of this is in termination of a list of nested
IF statements where multiple END keywords are mapped onto a sequence of nop
instructions.

-fm2-lower-case
render keywords in error messages using lower case.

-fm2-pathname=
specify the module mangled prefix name for all modules in the following include
paths.

-fm2-pathnamel
for internal use only: used by the driver to copy the user facing ‘-I’ option.

-fm2-pathname-root=pathroot
add search paths derived from the specified pathroot. See Section 2.7 [Module
Search Path], page 19, for examples.

-fm2-pathname-rootI

for internal wuse only: used by the driver to copy every user
‘~fm2-pathname-root=" facing option in order with all other ‘-T’
options.

-fm2-plugin

insert plugin to identify run time errors at compile time (default on).

-fm2-prefix=
specify the module mangled prefix name. All exported symbols from a definition
module will have the prefix name.

-fm2-statistics
generates quadruple information: number of quadruples generated, number of
quadruples remaining after optimization and number of source lines compiled.

-fm2-strict-type
experimental flag to turn on the new strict type checker.

-fm2-strict-type-reason
provides more detail why the types are incompatible.

-fm2-whole-program
compile all implementation modules and program module at once. Notice that
you need to take care if you are compiling different dialect modules (particu-

Chapter 2:

—-fmod=

-fnil

—-fpim

-fpim2

-fpim3

-fpim4

Using GNU Modula-2 7

larly with the negative operands to modulus). But this option, when coupled
together with -03, can deliver huge performance improvements.

recognize the specified suffix as implementation and module filenames. The
default implementation and module filename suffix is .mod. If this option is
used GNU Modula-2 will still fall back to this default if it needs to read an
implementation module and the specified suffixed filename does not exist.

generate code to detect accessing data through a NIL value pointer. Derefer-
encing checking through a NIL pointer can be disabled by ‘~fno-nil’.

turn on PIM standard features. Currently this enables the PIM SYSTEM module
and determines which identifiers are pervasive (declared in the base module).
If no other ‘-fpim[234]° switch is used then division and modulus operators
behave as defined in PIM4. See Section 2.6 [Dialect], page 18.

turn on PIM-2 standard features. Currently this removes SIZE from being a
pervasive identifier (declared in the base module). It places SIZE in the SYSTEM
module. It also effects the behavior of DIV and MOD operators. See Section 2.6
[Dialect], page 18.

turn on PIM-3 standard features. Currently this only effects the behavior of
DIV and MOD operators. See Section 2.6 [Dialect], page 18.

turn on PIM-4 standard features. Currently this only effects the behavior of
DIV and MOD operators. See Section 2.6 [Dialect], page 18.

-fpositive-mod-floor-div

-fpthread

-frange

—-freturn

forces the DIV and MOD operators to behave as defined by PIM4. All modulus
results are positive and the results from the division are rounded to the floor.
See Section 2.6 [Dialect], page 18.

link against the pthread library. By default this option is on. It can be dis-
abled by ‘~fno-pthread’. GNU Modula-2 uses the GCC pthread libraries to
implement coroutines (see the SYSTEM implementation module).

generate code to check the assignment range, return value range set range and
constructor range. Range checking can be disabled via ‘~fno-range’.

generate code to check that functions always exit with a RETURN and do not fall
out at the end. Return checking can be disabled via ‘-fno-return’.

-fruntime-modules=

specify, wusing a comma separated list, the run time modules and
their order. These modules will initialized first before any other
modules in the application dependency. By default the run time
modules list is set to m2iso:RTentity,m2iso:Storage,m2iso:SYSTEM,
m2iso:M2RTS,m2iso:RTExceptions,m2iso:I0Link. Note that these modules
will only be linked into your executable if they are required. Adding a long
list of dependent modules will not effect the size of the executable it merely
states the initialization order should they be required.

Chapter 2: Using GNU Modula-2 8

-fscaffold-dynamic
the option ensures that ‘gm2’ will generate a dynamic scaffold infrastructure
when compiling implementation and program modules. By default this
option is on. Use ‘-fno-scaffold-dynamic’ to turn it off or select
‘~fno-scaffold-static’.

-fscaffold-c
generate a C source scaffold for the current module being compiled.

-fscaffold-c++
generate a C++ source scaffold for the current module being compiled.

-fscaffold-main
force the generation of the ‘main’ function. This is not necessary if the ‘-c’ is
omitted.

-fscaffold-static
the option ensures that ‘gm2’ will generate a static scaffold within the pro-
gram module. The static scaffold consists of sequences of calls to all dependent
module initialization and finalization procedures. The static scaffold is useful
for debugging and single stepping the initialization blocks of implementation
modules.

-fshared generate a shared library from the module.

-fsoft-check-all
turns on all run time checks. This is the same as invoking GNU Modula-2 us-
ing the command options -fnil -frange -findex -fwholevalue -fwholediv
-fcase -freturn.

-fsources
displays the path to the source of each module. This option can be used at
compile time to check the correct definition module is being used.

-fswig generate a swig interface file.

-funbounded-by-reference

enable optimization of unbounded parameters by attempting to pass non VAR
unbounded parameters by reference. This optimization avoids the implicit copy
inside the callee procedure. GNU Modula-2 will only allow unbounded param-
eters to be passed by reference if, inside the callee procedure, they are not
written to, no address is calculated on the array and it is not passed as a VAR
parameter. Note that it is possible to write code to break this optimization,
therefore this option should be used carefully. For example it would be possible
to take the address of an array, pass the address and the array to a procedure,
read from the array in the procedure and write to the location using the address
parameter.

Due to the dangerous nature of this option it is not enabled when the ‘-0’
option is specified.

-fuse-list=filename
if ‘~fscaffold-static’ is enabled then use the file filename for the initial-
ization order of modules. Whereas if ‘-fscaffold-dynamic’ is enabled then

Chapter 2: Using GNU Modula-2 9

use this file to force linking of all module ctors. This option cannot be used if
‘~fgen-module-list=’is enabled.

-fwholediv
generate code to detect whole number division by zero or modulus by zero.

-fwholevalue
generate code to detect whole number overflow and underflow.

-Wcase-enum
generate a warning if a CASE statement selects on an enumerated type expression
and the statement is missing one or more CASE labels. No warning is issued if
the CASE statement has a default ELSE clause. The option ‘-Wall’ will turn on
this flag.

-Wuninit-variable-checking
issue a warning if a variable is used before it is initialized. The checking only
occurs in the first basic block in each procedure. It does not check parameters,
array types or set types.

-Wuninit-variable-checking=all,known,cond

issue a warning if a variable is used before it is initialized. The checking will
only occur in the first basic block in each procedure if ‘known’ is specified.
If ‘cond’ or ‘all’ is specified then checking continues into conditional
branches of the flow graph. All checking will stop when a procedure
call is invoked or the top of a loop is encountered. The option ‘-Wall’
will turn on this flag with ‘-Wuninit-variable-checking=known’. The
‘~Wuninit-variable-checking=all’ will increase compile time.

-fwideset
turn on access to the runtime support library module ‘M2WIDESET’. By default
this option is on. Wideset provision can be disabled by ‘~fno-wideset’ and no
reference will be made to the run time ‘M2WIDESET’ library.

This section describes the linking related options. There are three linking strategies avail-
able which are dynamic scaffold, static scaffold and user defined. The dynamic scaffold is
enabled by default and each module will register itself to the run time ‘M2RTS’ via a construc-
tor. The static scaffold mechanism will invoke each modules ‘_init’ and ‘_finish’ function
in turn via a sequence of calls from within ‘main’. Lastly the user defined strategy can be
implemented by turning off the dynamic and static options via ‘~fno-scaffold-dynamic’
and ‘-fno-scaffold-static’.

In the simple test below:

$ gm2 hello.mod

the driver will add the options ‘-fscaffold-dynamic’ and ‘-fgen-module-list=-’
which generate a list of application modules and also creates the ‘main’ function with calls
to ‘M2RTS’. It can be useful to add the option ‘-fsources’ which displays the source files
as they are parsed and summarizes whether the source file is required for compilation or
linking.

If you wish to split the above command line into a compile and link then you could use
these steps:

$ gm2 -c -fscaffold-main hello.mod

Chapter 2: Using GNU Modula-2 10

$ gm2 hello.o

The ‘-fscaffold-main’ informs the compiler to generate the ‘main’ function and scaf-
fold. You can enable the environment variable ‘GCC_M2LINK_RTFLAG’ to trace the construc-
tion and destruction of the application. The values for ‘GCC_M2LINK_RTFLAG’ are shown in
the table below:

value | meaning

all turn on all flags below

module trace modules as they register themselves
hex display the hex address of the init/fini functions
warning | show any warnings

dep trace module dependency resolution
post generate module list after dependency resolution
force generate a module list after dependency and forced

I
|
|
|
pre | generate module list prior to dependency resolution
I
|
|
|

ordering is complete
The values can be combined using a comma separated list.

One of the advantages of the dynamic scaffold is that the driver behaves in a similar
way to the other front end drivers. For example consider a small project consisting of
4 definition implementation modules (‘a.def’, ‘a.mod’, ‘b.def’, ‘b.mod’, ‘c.def’, ‘c.mod’,
‘d.def’, ‘d.mod’) and a program module ‘program.mod’.

To link this project we could:

$ gm2 -g -c a.mod
$ gm2 -g -c b.mod
$ gm2 -g -c c.mod
$ gm2 -g -c d.mod
$ gm2 -g program.mod a.o b.o c.o d.o

The module initialization sequence is defined by the ISO standard to follow the import
graph traversal. The initialization order is the order in which the corresponding separate
modules finish the processing of their import lists.

However, if required, you can override this using ‘-fruntime-modules=a,b,c,d’ for
example which forces the initialization sequence to ‘a’, ‘b’, ‘c’ and ‘d’.

2.3 Elementary data types

This section describes the elementary data types supported by GNU Modula-2. It also
describes the relationship between these data types and the equivalent C data types.

The following data types are supported: INTEGER, LONGINT, SHORTINT, CARDINAL,
LONGCARD, SHORTCARD, BOOLEAN, REAL, LONGREAL, SHORTREAL, COMPLEX, LONGCOMPLEX,
SHORTCOMPLEX and CHAR.

An equivalence table is given below:
GNU Modula-2 GNU C

INTEGER int
LONGINT long long int

Chapter 2: Using GNU Modula-2

11

SHORTINT short int

CARDINAL unsigned int
LONGCARD long long unsigned int
SHORTCARD short unsigned int
BOOLEAN bool

REAL double

LONGREAL long double
SHORTREAL float

CHAR char

SHORTCOMPLEX complex float
COMPLEX complex double
LONGCOMPLEX complex long double

Note that GNU Modula-2 also supports fixed sized data types which are exported from
the SYSTEM module. See Section 2.22 [The PIM system module], page 52. See Section 2.23
[The ISO system module|, page 56.

2.4 Permanently accessible base procedures.

This section describes the procedures and functions which are always visible.

2.4.1 Standard procedures and functions common to PIM and
ISO

The following procedures are implemented and conform with Programming in Modula-2
and ISO Modula-2: NEW, DISPOSE, INC, DEC, INCL, EXCL and HALT. The standard functions
are: ABS, CAP, CHR, FLOAT, HIGH, LFLOAT, LTRUNC, MIN, MAX, ODD, SFLOAT, STRUNC TRUNC
and VAL. All these functions and procedures (except HALT, NEW, DISPOSE and, under non
constant conditions, LENGTH) generate in-line code for efficiency.

(*
ABS - returns the positive value of i.

*)

PROCEDURE ABS (i: <any signed type>) : <any signed type> ;

(*
CAP - returns the capital of character ch providing
ch lies within the range 'a'..'z'. Otherwise ch
is returned unaltered.
*)

PROCEDURE CAP (ch: CHAR) : CHAR ;

(*

CHR - converts a value of a <whole number type> into a CHAR.

Chapter 2: Using GNU Modula-2

CHR(x) is shorthand for VAL(CHAR, x).
*)

PROCEDURE CHR (x: <whole number type>) : CHAR ;

(*
DISPOSE - the procedure DISPOSE is replaced by:
DEALLOCATE(p, TSIZE(p~)) ;
The user is expected to import the procedure DEALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type which has been
initialized by a call to NEW.

Out: the area of memory
holding p~ is returned to the system.
Note that the underlying procedure DEALLOCATE
procedure in module Storage will assign p to NIL.

*)

PROCEDURE DISPOSE (VAR p:<any pointer type>) ;

(*
DEC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
DEC, v will have its predecessor value. If two
parameters are supplied then the value v will have its
n'th predecessor. For these reasons the value of n
must be >=0.
*)
PROCEDURE DEC (VAR v: <any base type>; [n: <any base type> = 1]) ;
(*
EXCL - excludes bit element e from a set type s.

*)

PROCEDURE EXCL (VAR s: <any set type>; e: <element of set type s>) ;

(*
FLOAT - will return a REAL number whose value is the same as o.

*)

PROCEDURE FLOAT (o: <any whole number type>) : REAL ;

(*

12

Chapter 2: Using GNU Modula-2 13

FLOATS - will return a SHORTREAL number whose value is the same as o.
*)

PROCEDURE FLOATS (o: <any whole number type>) : REAL ;

(*
FLOATL - will return a LONGREAL number whose value is the same as o.

*)

PROCEDURE FLOATL (o: <any whole number type>) : REAL ;

(*
HALT - will call the HALT procedure inside the module M2RTS.
Users can replace M2RTS.
*)

PROCEDURE HALT ;

(*
HIGH - returns the last accessible index of an parameter declared as
ARRAY OF CHAR. Thus

PROCEDURE foo (a: ARRAY OF CHAR) ;
VAR
c: CARDINAL ;
BEGIN
c := HIGH(a)
END foo ;

BEGIN
foo('hello')
END

will cause the local variable c¢ to contain the value 5

*)

PROCEDURE HIGH (a: ARRAY OF CHAR) : CARDINAL ;

(*
INC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
INC, v will have its successor value. If two
parameters are supplied then the value v will have its
n'th successor. For these reasons the value of n
must be >=0.

PROCEDURE

(*
INCL -
*)

PROCEDURE

(*
LFLOAT
*)

PROCEDURE

(*

LTRUNC

*)

PROCEDURE

(*
MIN -
*)

PROCEDURE

(*
MAX -
*)

PROCEDURE

(*
NEW -

Chapter 2: Using GNU Modula-2 14

INC (VAR v: <any base type>; [n: <any base type> = 1]) ;

includes bit element e to a set type s.

INCL (VAR s: <any set type>; e: <element of set type s>) ;

- will return a LONGREAL number whose value is the same as o.

LFLOAT (o: <any whole number type>) : LONGREAL ;

- will return a LONG<type> number whose value is the
same as o. PIM2, PIM3 and ISO Modula-2 will return
a LONGCARD whereas PIM4 returns LONGINT.

LTRUNC (o: <any floating point type>) : LONG<type> ;

returns the lowest legal value of an ordinal type.

MIN (t: <ordinal type>) : <ordinal type> ;

returns the largest legal value of an ordinal type.

MAX (t: <ordinal type>) : <ordinal type> ;

the procedure NEW is replaced by:

ALLOCATE(p, TSIZE(p™)) ;

The user is expected to import the procedure ALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type.
Out: variable p is set to some allocated memory

Chapter 2: Using GNU Modula-2 15

which is large enough to hold all the contents of p~.
*)

PROCEDURE NEW (VAR p:<any pointer type>) ;

€
0DD - returns TRUE if the value is not divisible by 2.
*)

PROCEDURE ODD (x: <whole number type>) : BOOLEAN ;

(*
SFLOAT - will return a SHORTREAL number whose value is the same
as o.

*)

PROCEDURE SFLOAT (o: <any whole number type>) : SHORTREAL ;

(*
STRUNC - will return a SHORT<type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE STRUNC (o: <any floating point type>) : SHORT<type> ;

(*

TRUNC - will return a <type> number whose value is the same as o.
PIM2, PIM3 and ISO Modula-2 will return a CARDINAL
whereas PIM4 returns INTEGER.

*)

PROCEDURE TRUNC (o: <any floating point type>) : <type> ;

(*
TRUNCS - will return a <type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE TRUNCS (o: <any floating point type>) : <type> ;

(*

TRUNCL - will return a <type> number whose value is the same

Chapter 2: Using GNU Modula-2 16

as o. PIM2, PIM3 and ISO Modula-2 will return a
LONGCARD whereas PIM4 returns LONGINT.
*)

PROCEDURE TRUNCL (o: <any floating point type>) : <type> ;

(*
VAL - converts data i of <any simple data type 2> to
<any simple data type 1> and returns this value.
No range checking is performed during this conversion.

*)

PROCEDURE VAL (<any simple data type 1>,
i: <any simple data type 2>) : <any simple data type 1> ;

2.4.2 1ISO specific standard procedures and functions
The standard function LENGTH is specific to ISO Modula-2 and is defined as:

(*
IM - returns the imaginary component of a complex type.
The return value will the same type as the imaginary field
within the complex type.

*)

PROCEDURE IM (c: <any complex type>) : <floating point type> ;

(*
INT - returns an INTEGER value which has the same value as V.
This function is equivalent to: VAL(INTEGER, v).
*)

PROCEDURE INT (v: <any ordinal type>) : INTEGER ;

(*
LENGTH - returns the length of string a.
*)

PROCEDURE LENGTH (a: ARRAY OF CHAR) : CARDINAL ;

This function is evaluated at compile time, providing that string a is a constant. If a
cannot be evaluated then a call is made to M2RTS.Length.

(*
0DD - returns a BOOLEAN indicating whether the whole number
value, v, is odd.

Chapter 2: Using GNU Modula-2 17

*)

PROCEDURE ODD (v: <any whole number type>) : BOOLEAN ;

(*
RE - returns the real component of a complex type.
The return value will the same type as the real field
within the complex type.

*)

PROCEDURE RE (c: <any complex type>) : <floating point type> ;

2.5 Behavior of the high procedure function

This section describes the behavior of the standard procedure function HIGH and it includes
a table of parameters with the expected return result. The standard procedure function will
return the last accessible indice of an ARRAY. If the parameter to HIGH is a static array then
the result will be a CARDINAL value matching the upper bound in the ARRAY declaration.

The section also describes the behavior of a string literal actual parameter and how it
relates to HIGH. The PIM2, PIM3, PIM4 and ISO standard is silent on the issue of whether
a nul is present in an ARRAY OF CHAR actual parameter.

If the first parameter to HIGH is an unbounded ARRAY the return value from HIGH will
be the last accessible element in the array. If a constant string literal is passed as an actual
parameter then it will be nul terminated. The table and example code below describe the
effect of passing an actual parameter and the expected HIGH value.

MODULE examplel ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR

x: CARDINAL ;
BEGIN

x := HIGH (a) ;

END test ;

BEGIN
test ('') ;
test ('1') ;
test ('12') ;
test ('123') ;
END examplel.

Actual parameter | HIGH (a) | a[HIGH (a)] = nul

Chapter 2: Using GNU Modula-2 18

v | 0 | TRUE
1! | 1 | TRUE
12! | 2 | TRUE
'123' | 3 | TRUE

A constant string literal will be passed to an ARRAY OF CHAR with an appended nul CHAR.
Thus if the constant string literal '' is passed as an actual parameter (in examplel) then
the result from HIGH(a) will be 0.

MODULE example2 ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR

x: CARDINAL ;
BEGIN

x := HIGH (a) ;

END test ;

VAR
str0: ARRAY [0..0] OF CHAR ;
strl: ARRAY [0..1] OF CHAR ;

str2: ARRAY [0..2] OF CHAR ;
str3: ARRAY [0..3] OF CHAR ;

BEGIN

str0 := 'a' ; (* No room for the nul terminator. *)
test (str0) ;

strl := 'ab' ; (* No room for the nul terminator. x*)
test (strl) ;

str2 := 'ab' ; (* Terminated with a nul. *)

test (str2) ;

str2 := 'abc' ; (* Terminated with a nul. x*)

test (str3) ;
END example2.

Actual parameter | HIGH (a) | al[HIGH (a)] = nul

str0 | O | FALSE
stri | 1 | FALSE
atr2 | 2 | TRUE
str3 | 3 | TRUE

2.6 GNU Modula-2 supported dialects

This section describes the dialects understood by GNU Modula-2. It also describes the
differences between the dialects and any command line switches which determine dialect
behaviour.

The GNU Modula-2 compiler is compliant with four dialects of Modula-2. The lan-
guage as defined in ’Programming in Modula-2’ 2nd Edition, Springer Verlag, 1982, 1983

Chapter 2: Using GNU Modula-2 19

by Niklaus Wirth (PIM2), 'Programming in Modula-2’, 3rd Corrected Edition, Springer
Verlag, 1985 (PIM3) and 'Programming in Modula-2’, 4th Edition, Springer Verlag, 1988
(PIM4) https://freepages.modula2.org/report4d/modula-2.html and the ISO Modula-

2 language as defined in ISO/IEC Information technology - programming languages - part
1: Modula-2 Language, ISO/IEC 10514-1 (1996) (ISO).

The command line switches ‘~fpim2’, ‘-fpim3’, ‘~fpim4’ and ‘-fiso’ can be used to
force mutually exclusive features. However by default the compiler will not aggressively fail

if a non mutually exclusive feature is used from another dialect. For example it is possible
to specify ‘-fpim2’ and still utilize ‘DEFINITION’ ‘MODULES’ which have no export list.

Some dialect differences will force a compile time error, for example in PIM2 the user
must IMPORT SIZE from the module SYSTEM, whereas in PIM3 and PIM4 SIZE is a pervasive
function. Thus compiling PIM4 source code with the ‘~fpim2’ switch will cause a compile
time error. This can be fixed quickly with an additional IMPORT or alternatively by compiling
with the ‘-fpim4’ switch.

However there are some very important differences between the dialects which are mu-
tually exclusive and therefore it is vital that users choose the dialects with care when these
language features are used.

2.6.1 Integer division, remainder and modulus

The most dangerous set of mutually exclusive features found in the four dialects supported
by GNU Modula-2 are the INTEGER division, remainder and modulus arithmetic operators.
It is important to note that the same source code can be compiled to give different run time
results depending upon these switches! The reference manual for the various dialects of
Modula-2 are quite clear about this behavior and sadly there are three distinct definitions.

The table below illustrates the problem when a negative operand is used.

Pim2/3 Pim4 IS0
lval rval DIV MOD DIV MOD DIV MOD / REM
31 10 3 1 3 1 3 1 3 1
-31 10 -3 -1 -4 9 -4 9 -3 -1
31 -10 -3 1 -3 1 Exception -3 1
-31 -10 3 -1 4 9 Exception 3 -1

See also P24 of PIM2, P27 of PIM3, P29 of PIM4 and P201 of the ISO Standard. At
present all dialect division, remainder and modulus are implemented as above, apart from
the exception calling in the ISO dialect. Instead of exception handling the results are the
same as the PIM4 dialect. This is a temporary implementation situation.

2.7 Module Search Path

This section describes the default module search path and how this might be changed. By
default the compiler will search the current directory, local include dir, prefix include dir,
gce version specific modules and lastly native system header dir. The exact location and
whether all these directories are used depends upon the configuration options used when
building GCC.

The ‘-1’ option option can be used to introduce new directories in the module search path
and for convenience the options ‘-f1ibs=" and ‘-fm2-pathname-root=" are also provided.

https://freepages.modula2.org/report4/modula-2.html

Chapter 2: Using GNU Modula-2 20

The site wide modules are typically located at prefix/include/m2 whereas the version
specific modules are located in libsubdir/m2. Both of these /m2 directories are organized
such that the non dialect specific modules are at the top and dialect specific modules are
in subdirectories.

The ‘~fm2-pathname-root=’ option is equivalent to adding a ‘-I’ path for every library
dialect. For example if the library dialect order is selected by ‘~flibs=pim,iso,log’ and
‘~fm2-pathname-root=foo’ is supplied then this is equivalent to the following pairs of
options:

-fm2-pathname=m2pim -Ifoo/m2/m2pim
-fm2-pathname=m2iso -Ifoo/m2/m2iso
-fm2-pathname=m2log -Ifoo/m2/m2log
-fm2-pathname=- -Ifoo/m2

The option ‘-fsources’ will show the source module, path and pathname for each mod-
ule parsed.

2.8 Exception implementation

This section describes how exceptions are implemented in GNU Modula-2 and how com-
mand line switches affect their behavior. The option ‘~fsoft-check-all’ enables all soft-
ware checking of nil dereferences, division by zero etc. Additional code is produced to check
these conditions and exception handlers are invoked if the conditions prevail.

Without ‘-fsoft-check-all’ these exceptions will be caught by hardware (assuming
the hardware support exists) and a signal handler is invoked. The signal handler will
in turn THROW an exception which will be caught by the appropriate Modula-2 handler.
However the action of throwing an exception from within a signal handler is implementation
defined (according to the C++ documentation). For example on the x86_64 architecture this
works whereas on the i686 architecture it does not. Therefore to ensure portability it is
recommended to use ‘-fsoft-check-all’.

2

2.9 How to detect run time problems at compile time

Consider the following program:

MODULE assignvalue ; (*!m2iso+gm2x*)

PROCEDURE bad () : INTEGER ;
VAR
i: INTEGER ;
BEGIN
i=-1;
RETURN i
END bad ;

VAR

2 ‘_fsoft-check-all’ can be effectively combined with ‘-02’ to semantically analyze source code for pos-

sible run time errors at compile time.

Chapter 2: Using GNU Modula-2 21

foo: CARDINAL ;
BEGIN
(* The m2rte plugin will detect this as an error, post
optimization. *)
foo := bad ()
END assignvalue.

here we see that the programmer has overlooked that the return value from ‘bad’ will
cause an overflow to ‘foo’. If we compile the code with the following options:

$ gm2 -g -fsoft-check-all -02 -fm2-plugin -c assignvalue.mod
assignvalue.mod:16:0:inevitable that this error will occur at run time,
assignment will result in an overflow

The gm2 semantic plugin is automatically run and will generate a warning message for
every exception call which is known as reachable. It is highly advised to run the optimizer
(‘-02’ or ‘-03’) with ‘-fsoft-check-all’ so that the compiler is able to run the optimizer
and perform variable and flow analysis before the semantic plugin is invoked.

The ‘-Wuninit-variable-checking’ can be used to identify uninitialized variables
within the first basic block in a procedure. The checking is limited to variables so long as
they are not an array or set or a variant record or var parameter.

The following example detects whether a sub component within a record is uninitialized.
MODULE testlarge2 ;

TYPE
color = RECORD
r, g, b: CARDINAL ;
END ;
pixel = RECORD

fg, bg: color ;
END ;

PROCEDURE test ;
VAR

p: pixel ;
BEGIN

p

fg.r =1
p.-fg.g := 2 ;
p-fg.g 3 ; (* Deliberate typo should be p.fg.b. *)

p-bg := p.fg ; (* Accessing an uninitialized field. x*)
END test ;

0o 0’ 09

BEGIN
test
END testlarge2.

$ gm2 -c -Wuninit-variable-checking testlarge2.mod
testlarge2.mod:19:13: warning: In procedure ‘test’: attempting to

Chapter 2: Using GNU Modula-2 22

access expression before it has been initialized
19 | p-bg := p.fg ; (* Accessing an uninitialized field. x*)

I ~

The following example detects if an individual field is uninitialized.

MODULE testwithnoptr ;

TYPE
Vec = RECORD
x, y: CARDINAL ;
END ;

PROCEDURE test ;
VAR
p: Vec ;
BEGIN
WITH p DO
x =1 ;
x := 2 (x Deliberate typo, user meant y. *)
END ;
IF p.y = 2
THEN
END
END test ;

BEGIN
test
END testwithnoptr.
The following example detects a record is uninitialized via a pointer variable in a ‘WITH’
block.
$ gm2 -g -c -Wuninit-variable-checking testwithnoptr.mod
testwithnoptr.mod:21:8: warning: In procedure ‘test’: attempting to
access expression before it has been initialized
21 | IF p.y = 2

MODULE testnew6 ;
FROM Storage IMPORT ALLOCATE ;

TYPE
PtrToVec = POINTER TO RECORD
x, y: INTEGER ;
END ;

PROCEDURE test ;
VAR
p: PtrToVec ;

Chapter 2: Using GNU Modula-2 23

x := 2 (% Deliberate typo, user meant y. *)
END
IF po.y = 2
THEN
END
END test ;

BEGIN
test
END testnew6.

$ gm2 -g -c -Wuninit-variable-checking testnew6.mod
testnew6.mod:19:9: warning: In procedure ‘test’: attempting to
access expression before it has been initialized

19 | IF p~.y = 2

2.10 GNU Modula-2 language extensions

This section introduces the GNU Modula-2 language extensions. The GNU Modula-2 com-
piler allows abstract data types to be any type, not just restricted to a pointer type providing
the ‘~fextended-opaque’ option is supplied See Section 2.2 [Compiler options|, page 3.

Declarations can be made in any order, whether they are types, constants, procedures,
nested modules or variables.

GNU Modula-2 also allows programmers to interface to C and assembly language.

GNU Modula-2 provides support for the special tokens __LINE__, __FILE
__FUNCTION__ and __DATE__. Support for these tokens will occur even if the ‘~fcpp’
option is not supplied. A table of these identifiers and their data type and values is given
below:

——

Scope GNU Modula-2 token Data type and example value

anywhere __LINE__ Constant Literal compatible
with CARDINAL, INTEGER and WORD.
Example 1234

anywhere __FILE__ Constant string compatible
with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example
"hello.mod"

procedure __FUNCTION__ Constant string compatible

Chapter 2: Using GNU Modula-2

module __FUNCTION__
anywhere __DATE__
anywhere __COLUMN__

24

with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example

"calc"

Example
"module hello initialization"

Constant string compatible

with parameter ARRAY OF CHAR or
an ARRAY whose SIZE is >= string
length. Example

"Thu Apr 29 10:07:16 BST 2004"

Gives a constant literal number
determining the left hand column
where the first _ appears in

__COLUMN__. The left most column
is 1.

The preprocessor ‘cpp’ can be invoked via the ‘~fcpp’ command line option. This in
turn invokes ‘cpp’ with the following arguments ‘~traditional -lang-asm’. These options
preserve comments and all quotations. ‘gm2’ treats a ‘#’ character in the first column as a
preprocessor directive unless ‘~fno-cpp’ is supplied.

For example here is a module which calls FatalError via the macro ERROR.

MODULE cpp ;

FROM SYSTEM IMPORT ADR, SIZE ;

FROM libc IMPORT exit, printf, malloc ;

PROCEDURE FatalError (a, file: ARRAY OF CHAR;
line: CARDINAL;
func: ARRAY OF CHAR) ;

BEGIN

printf ("%s:%d:fatal error, %s, in %s\n",
ADR (file), line, ADR (a), ADR (func)) ;

exit (1)
END FatalError ;

#define ERROR(X) FatalError(X

VAR
pc: POINTER TO CARDINAL;
BEGIN

pc := malloc (SIZE (CARDINAL))

IF pc = NIL

FILE

LINE FUNCTION__)

—_ - —_ -

Chapter 2: Using GNU Modula-2 25

THEN
ERROR ('out of memory')
END
END cpp.

Another use for the C preprocessor in Modula-2 might be to turn on debugging

code.

For example the library module FormatStrings.mod uses procedures from

DynamicStrings.mod and to track down memory leaks it was useful to track the source
file and line where each string was created. Here is a section of FormatStrings.mod which
shows how the debugging code was enabled and disabled by adding -fcpp to the command

line.

FROM DynamicStrings IMPORT String, InitString, InitStringChar, Mark,
ConCat, Slice, Index, char,
Assign, Length, Mult, Dup, ConCatChar,
PushAllocation, PopAllocationExemption,
InitStringDB, InitStringCharStarDB,
InitStringCharDB, MultDB, DupDB, SliceDB ;

(*

#define InitString(X) InitStringDB(X FILE LINE__)

b _— —_—— —_—

#define InitStringCharStar(X) InitStringCharStarDB(X, __FILE__, \
__LINE_.)
#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)
#define Dup(X) DupDB(X, __FILE__, __LINE__)
#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)
*)
PROCEDURE doDSdbEnter ;
BEGIN
PushAllocation

END doDSdbEnter ;

PROCEDURE doDSdbExit (s: String) ;
BEGIN

s := PopAllocationExemption (TRUE, s)
END doDSdbExit ;

PROCEDURE DSdbEnter ;
BEGIN
END DSdbEnter ;

PROCEDURE DSdbExit (s: String) ;

BEGIN
END DSdbExit ;

(*

Chapter 2: Using GNU Modula-2 26

#define DBsbEnter doDBsbEnter
#define DBsbExit doDBsbExit
*)

PROCEDURE Sprintfl (s: String; w: ARRAY OF BYTE) : String ;
BEGIN

DSdbEnter ;

s := FormatString (HandleEscape (s), w) ;

DSdbExit (s) ;

RETURN s
END Sprintfl ;

It is worth noting that the overhead of this code once —-fcpp is not present and -O2 is
used will be zero since the local empty procedures DSdbEnter and DSdbExit will be thrown
away by the optimization passes of the GCC backend.

2.10.1 Optional procedure parameter

GNU Modula-2 allows the last parameter to a procedure or function parameter to be op-
tional. For example in the ISO library COROUTINES.def the procedure NEWCOROUTINE is
defined as having an optional fifth argument (initProtection) which, if absent, is auto-
matically replaced by NIL.

PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
size: CARDINAL; VAR cr: COROUTINE;
[initProtection: PROTECTION = NIL]);

(* Creates a new coroutine whose body is given by procBody,
and returns the identity of the coroutine in cr.
workspace is a pointer to the work space allocated to
the coroutine; size specifies the size of this workspace
in terms of SYSTEM.LOC.

The optional fifth argument may contain a single parameter
which specifies the initial protection level of the coroutine.

*)

The implementation module COROUTINES.mod implements this procedure using the fol-
lowing syntax:

PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
size: CARDINAL; VAR cr: COROUTINE;
[initProtection: PROTECTION]);

BEGIN

END NEWCOROUTINE ;

Note that it is illegal for this declaration to contain an initializer value for
initProtection. However it is necessary to surround this parameter with the brackets
[and]. This serves to remind the programmer that the last parameter was declared as
optional in the definition module.

Chapter 2: Using GNU Modula-2 27

Local procedures can be declared to have an optional final parameter in which case the
initializer is mandatory in the implementation or program module.

GNU Modula-2 also provides additional fixed sized data types which are all exported
from the SYSTEM module. See Section 2.22 [The PIM system module], page 52. See Sec-
tion 2.23 [The ISO system module], page 56.

2.11 Type compatibility

This section discuss the issues surrounding assignment, expression and parameter compat-
ibility, their effect of the additional fixed sized datatypes and also their effect of run time
checking. The data types supported by the compiler are:

GNU Modula-2 scope switches
INTEGER pervasive
LONGINT pervasive
SHORTINT pervasive
CARDINAL pervasive
LONGCARD pervasive
SHORTCARD pervasive
BOOLEAN pervasive

BITSET pervasive

REAL pervasive
LONGREAL pervasive
SHORTREAL pervasive

CHAR pervasive
SHORTCOMPLEX pervasive
COMPLEX pervasive
LONGCOMPLEX pervasive

LoC SYSTEM -fiso
BYTE SYSTEM

WORD SYSTEM

ADDRESS SYSTEM

The following extensions are supported for
most architectures (please check SYSTEM.def).

INTEGERS SYSTEM
INTEGER16 SYSTEM
INTEGER32 SYSTEM
INTEGER64 SYSTEM
CARDINALS8 SYSTEM
CARDINAL16 SYSTEM
CARDINAL32 SYSTEM
CARDINALG64 SYSTEM
BITSET8 SYSTEM
BITSET16 SYSTEM

Chapter 2: Using GNU Modula-2 28

BITSET32 SYSTEM
WORD16 SYSTEM
WORD32 SYSTEM
WORD64 SYSTEM
REAL32 SYSTEM
REAL64 SYSTEM
REAL96 SYSTEM
REAL128 SYSTEM
COMPLEX32 SYSTEM
COMPLEX64 SYSTEM
COMPLEX96 SYSTEM
COMPLEX128 SYSTEM

The Modula-2 language categorizes compatibility between entities of possibly differing
types into three sub components: expressions, assignments, and parameters. Parameter
compatibility is further divided into two sections for pass by reference and pass by value
compatibility.

For more detail on the Modula-2 type compatibility see the Modula-2 ISO standard
BS ISO/IEC 10514-1:1996 page 121-125. For detail on the PIM type compatibility see
Programming in Modula-2 Edition 4 page 29, (Elementary Data Types).

2.11.1 Expression compatibility

Modula-2 restricts the types of expressions to the same type. Expression compatibility is a
symmetric relation.

For example two sub expressions of INTEGER and CARDINAL are not expression compatible
(https://freepages.modula2.org/report4/modula-2.html and ISO Modula-2).

In GNU Modula-2 this rule is also extended across all fixed sized data types (imported
from SYSTEM).

2.11.2 Assignment compatibility

This section discusses the assignment issues surrounding assignment compatibility of ele-
mentary types (INTEGER, CARDINAL, REAL and CHAR for example). The information here is
found in more detail in the Modula-2 ISO standard BS ISO/IEC 10514-1:1996 page 122.

Assignment compatibility exists between the same sized elementary types.

Same type family of different sizes are also compatible as long as the MAX (type) and
MIN (type) is known. So for example this includes the INTEGER family, CARDINAL family and
the REAL family.

The reason for this is that when the assignment is performed the compiler will check to
see that the expression (on the right of the :=) lies within the range of the designator type
(on the left hand side of the :=). Thus these ordinal types can be assignment compatible.
However it does mean that WORD32 is not compatible with WORD16 as WORD32 does not have
a minimum or maximum value and therefore cannot be checked. The compiler does not
know which of the two bytes from WORD32 should be copied into WORD16 and which two
should be ignored. Currently the types BITSET8, BITSET16 and BITSET32 are assignment
incompatible. However this restriction maybe lifted when further run time checking is
achieved.

https://freepages.modula2.org/report4/modula-2.html

Chapter 2: Using GNU Modula-2 29

Modula-2 does allow INTEGER to be assignment compatible with WORD as they are the
same size. Likewise GNU Modula-2 allows INTEGER16 to be compatible with WORD16 and
the same for the other fixed sized types and their sized equivalent in either WORDn, BYTE or
LOC types. However it prohibits assignment between WORD and WORD32 even though on many
systems these sizes will be the same. The reasoning behind this rule is that the extended
fixed sized types are meant to be used by applications requiring fixed sized data types and
it is more portable to forbid the blurring of the boundaries between fixed sized and machine
dependent sized types.

Intermediate code run time checking is always generated by the front end. However
this intermediate code is only translated into actual code if the appropriate command line
switches are specified. This allows the compiler to perform limited range checking at compile
time. In the future it will allow the extensive GCC optimizations to propagate constant
values through to the range checks which if they are found to exceed the type range will
result in a compile time error message.

2.11.3 Parameter compatibility

Parameter compatibility is divided into two areas, pass by value and pass by reference (VAR).
In the case of pass by value the rules are exactly the same as assignment. However in the
second case, pass by reference, the actual parameter and formal parameter must be the
same size and family. Furthermore INTEGER and CARDINALS are not treated as compatible
in the pass by reference case.

The types BYTE, LOC, WORD and WORDn derivatives are assignment and parameter com-
patible with any data type of the same size.

2.12 Exception handling

This section gives an example of exception handling and briefly describes its runtime be-
havior. The module below is written in the ISO dialect of Modula-2 and can be compiled
with the command line:

$ gm2 -g -fiso -fsoft-check-all lazyunique.mod

The option ‘~fsoft-check-all’ generates checks for NIL pointer access violation. In
turn this will call the exception handler.

Chapter 2: Using GNU Modula-2

MODULE lazyunique ; (*!m2iso+gm2%)

FROM Storage IMPORT ALLOCATE ;
FROM libc IMPORT printf, exit ;

TYPE
List = POINTER TO RECORD
next : List ;
value: INTEGER ;
END ;

Array = ARRAY [0..3] OF INTEGER ;

CONST
Unsorted = Array {0, 2, 1, 1} ;

VAR
head: List ;

PROCEDURE Display ;
VAR
p: List ;
BEGIN
p := head” .next ;
printf ("\nunique data\n");
printf ("=s=s=s=======\n");
WHILE p # NIL DO
printf ("%d\n", p~.value);
p := p~ .next
END
END Display ;

PROCEDURE Add (VAR p: List; val: INTEGER) ;

BEGIN
NEW (p) ;
WITH p~ DO
value := val ;
next := NIL
END

END Add ;

30

Chapter 2: Using GNU Modula-2

PROCEDURE Unique (val: INTEGER) ;
VAR
p: List ;
BEGIN
printf ("new value %d\n", val);
p := head ;
(* The following line may cause an exception accessing next or
value. *)
WHILE p~.next”.value # val DO
p := p~ .next
END
EXCEPT
(* Now fixup. Determine the source of the exception and retry.
IF head = NIL
THEN
printf ("list was empty, add sentinal\n");
Add (head, -1) ;
RETRY (* Jump back to the begin statement. *)
ELSIF p~.next = NIL
THEN
printf ("growing the list\n");
Add (p~.next, val) ;
RETRY (* Jump back to the begin statement. *)
ELSE
printf ("should never reach here!\n");
END
END Unique ;

PROCEDURE unique ;
VAR
i: CARDINAL ;
BEGIN
FOR i := 0 TO HIGH (Unsorted) DO
Unique (Unsorted[i])
END ;
Display
END unique ;

BEGIN
head := NIL ;
unique

END lazyunique.

Chapter 2: Using GNU Modula-2 32

new value 0O

list was empty, add sentinal
new value O
growing the list
new value 0

new value 2
growing the list
new value 2

new value 1
growing the list
new value 1

new value 1

unique data

2.13 Unbounded by reference

This section documents a GNU Modula-2 compiler switch which implements a language
optimization surrounding the implementation of unbounded arrays. In GNU Modula-2
the unbounded array is implemented by utilizing an internal structure struct {dataType
xaddress, unsigned int high}. So given the Modula-2 procedure declaration:

PROCEDURE foo (VAR a: ARRAY OF dataType) ;
BEGIN
IF a[2]= (* etc *)
END foo ;
it is translated into GCC trees, which can be represented in their C form thus:

void foo (struct {dataType *address, unsigned int high} a)
{

if (a.address[2] == /* etc */
}

Whereas if the procedure foo was declared as:

PROCEDURE foo (a: ARRAY OF dataType) ;
BEGIN
IF a[2]= (* etc *)
END foo ;
then it is implemented by being translated into the following GCC trees, which can be
represented in their C form thus:

void foo (struct {dataType *address, unsigned int high} a)
{
dataType *copyContents = (dataType *)alloca (a.high+1);
memcpy (copyContents, a.address, a.high+1);
a.address = copyContents;

Chapter 2: Using GNU Modula-2 33

if (a.address[2] == /* etc */
}

This implementation works, but it makes a copy of each non VAR unbounded array when
a procedure is entered. If the unbounded array is not changed during procedure foo then
this implementation will be very inefficient. In effect Modula-2 lacks the REF keyword of
Ada. Consequently the programmer maybe tempted to sacrifice semantic clarity for greater
efficiency by declaring the parameter using the VAR keyword in place of REF.

The -funbounded-by-reference switch instructs the compiler to check and see if the
programmer is modifying the content of any unbounded array. If it is modified then a copy
will be made upon entry into the procedure. Conversely if the content is only read and never
modified then this non VAR unbounded array is a candidate for being passed by reference.
It is only a candidate as it is still possible that passing this parameter by reference could
alter the meaning of the source code. For example consider the following case:

PROCEDURE StrConCat (VAR a: ARRAY OF CHAR; b, c: ARRAY OF CHAR) ;
BEGIN

(* code which performs string a := b + c *)
END StrConCat ;

PROCEDURE foo ;

VAR

a: ARRAY [0..3] OF CHAR ;
BEGIN

a:="'q' ;

StrConCat(a, a, a)
END foo ;

In the code above we see that the same parameter, a, is being passed three times to
StrConCat. Clearly even though parameters b and c are never modified it would be incorrect
to implement them as pass by reference. Therefore the compiler checks to see if any non
VAR parameter is type compatible with any VAR parameter and if so it generates run time
procedure entry checks to determine whether the contents of parameters b or ¢ matches the
contents of a. If a match is detected then a copy is made and the address in the unbounded
structure is modified.

The compiler will check the address range of each candidate against the address range
of any VAR parameter, providing they are type compatible. For example consider:

PROCEDURE foo (a: ARRAY OF BYTE; VAR f: REAL) ;
BEGIN

f := 3.14 ;

IF a[0]=BYTE(0)

THEN

(* etc *)

END

END foo ;

PROCEDURE bar ;

Chapter 2: Using GNU Modula-2 34

BEGIN
r := 2.0 ;
foo(r, r)
END bar ;

Here we see that although parameter, a, is a candidate for the passing by reference, it
would be incorrect to use this transformation. Thus the compiler detects that parameters,
a and f are type compatible and will produce run time checking code to test whether the
address range of their respective contents intersect.

2.14 Building a shared library

This section describes building a tiny shared library implemented in Modula-2 and built
with 1ibtool. Suppose a project consists of two definition modules and two implementation
modules and a program module a.def, a.mod, b.def, b.mod and c.mod. The first step is to
compile the modules using position independent code. This can be achieved by the following
three commands:

libtool --tag=CC --mode=compile gm2 -g -c a.mod -o a.lo
libtool --tag=CC --mode=compile gm2 -g -c b.mod -o b.lo
libtool --tag=CC --mode=compile gm2 -g -c c.mod -o c.lo

The second step is to generate the shared library initialization and finalization routines.
We can do this by asking gm?2 to generate a list of dependent modules and then use this to
generate the scaffold. We also must compile the scaffold.

gm2 -c -g -fmakelist c.mod
gm2 -c -g -fmakeinit -fshared c.mod
libtool --tag=CC --mode=compile g++ -g -c c_m2.cpp -o c_m2.lo

The third step is to link all these .1lo files.

libtool --mode=link gcc -g c_m2.lo a.lo b.lo c.lo \
-L$(prefix)/1ib64 \
-rpath “pwd® -1lgm2 -lstdc++ -1lm -o libabc.la
At this point the shared library libabc.so will have been created inside the directory
.1ibs.

2.15 How to produce swig interface files

This section describes how Modula-2 implementation modules can be called from Python
(and other scripting languages such as TCL and Perl). GNU Modula-2 can be instructed to
create a swig interface when it is compiling an implementation module. Swig then uses the
interface file to generate all the necessary wrapping to that the desired scripting language
may access the implementation module.

Here is an example of how you might call upon the services of the Modula-2 library
module NumberIO from Python3.

The following commands can be used to generate the Python3 module:

export src=‘directory to the sources’
export prefix=‘directory to where the compiler is installed’
gm2 -I${src} -c -g -fswig ${src}/../../../gm2-1ibs/NumberIO.mod

Chapter 2: Using GNU Modula-2 35

gm2 -I${src} -c -g -fmakelist ${src}/../../../gm2-1libs/NumberIO.mod

gm2 -I${src} -c -g -fmakeinit -fshared \
${src}/../../../gn2-1ibs/NumberI0.mod

swig —-c++ -python3 NumberIO.i

libtool --mode=compile g++ -g -c¢ -I${src} NumberIO_m2.cpp \
-0 NumberIO_m2.lo

libtool --tag=CC --mode=compile gm2 -g -c \
-I${src}../../../gm2-1ibs \
${src}/../../../gn2-1ibs/NumberI0.mod -o NumberIO.lo

libtool --tag=CC --mode=compile g++ -g -c NumberIO_wrap.cxx \
-I/usr/include/python3 -o NumberIO_wrap.lo

libtool --mode=link gcc -g NumberIO_m2.lo NumberIO_wrap.lo \
-L${prefix}/1ib64 \
-rpath “pwd® -1gm2 -lstdc++ -1lm -o libNumberIO.la

cp .libs/1libNumberI0.so _NumberIO.so

The first four commands, generate the swig interface file NumberI0.i and python wrap
files NumberIO_wrap.cxx and NumberIO.py. The next three 1libtool commnads compile
the C++ and Modula-2 source code into .1lo objects. The last 1ibtool command links all
the .1o files into a .1la file and includes all shared library dependencies.

Now it is possible to run the following Python script (called testnum.py):

import NumberIO

print ("1234 x 2 =", NumberIO.NumberIO_StrToInt("1234")*2)
like this:

$ python3 testnum.py
1234 x 2 = 2468

See Section 2.16 [Producing a Python module], page 36, for another example which uses
the UNQUALIFIED keyword to reduce the module name clutter from the viewport of Python3.

2.15.1 Limitations of automatic generated of Swig files

This section discusses the limitations of automatically generating swig files. From the
previous example we see that the module NumberIO had a swig interface file NumberIO.1
automatically generated by the compiler. If we consider three of the procedure definitions in
NumberIO.def we can see the success and limitations of the automatic interface generation.

PROCEDURE StrToHex (a: ARRAY OF CHAR; VAR x: CARDINAL) ;
PROCEDURE StrToInt (a: ARRAY OF CHAR; VAR x: INTEGER)
PROCEDURE ReadInt (VAR x: CARDINAL) ;

Below are the swig interface prototypes:

I

Chapter 2: Using GNU Modula-2 36

extern void NumberIO_StrToHex (char *_m2_address_a,
int _m2_high_a, unsigned int *QUTPUT);
/* parameters: x is known to be an OUTPUT */
extern void NumberIO_StrToInt (char *_m2_address_a,
int _m2_high_a, int *0UTPUT);
/* parameters: x is guessed to be an OUTPUT */
extern void NumberIO_ReadInt (int *x);
/* parameters: x is unknown */

In the case of StrToHex it can be seen that the compiler detects that the last parameter
is an output. It explicitly tells swig this by using the parameter name OUTPUT and in the
following comment it informs the user that it knows this to be an output parameter. In
the second procedure StrTolInt it marks the final parameter as an output, but it tells the
user that this is only a guess. Finally in ReadInt it informs the user that it does not know
whether the parameter, x, is an output, input or an inout parameter.

The compiler decides whether to mark a parameter as either: INPUT, OUTPUT or INOUT
if it is read before written or visa versa in the first basic block. At this point it will write
output that the parameter is known. If it is not read or written in the first basic block
then subsequent basic blocks are searched and the result is commented as a guess. Finally
if no read or write occurs then the parameter is commented as unknown. However, clearly
it is possible to fool this mechanism. Nevertheless automatic generation of implementation
module into swig interface files was thought sufficiently useful despite these limitations.

In conclusion it would be wise to check all parameters in any automatically generated
swig interface file. Furthermore you can force the automatic mechanism to generate correct
interface files by reading or writing to the VAR parameter in the first basic block of a
procedure.

2.16 How to produce a Python module

This section describes how it is possible to produce a Python module from Modula-2 code.
There are a number of advantages to this approach, it ensures your code reaches a wider
audience, maybe it is easier to initialize your application in Python.

The example application here is a pedagogical two dimensional gravity next event sim-
ulation. The Python module needs to have a clear API which should be placed in a single
definition module. Furthermore the API should only use fundamental pervasive data types
and strings. Below the API is contained in the file twoDsim.def:

DEFINITION MODULE twoDsim ;

EXPORT UNQUALIFIED gravity, box, poly3, polyb, poly6, mass,
fix, circle, pivot, velocity, accel, fps,
replayRate, simulateFor ;

(*

gravity - turn on gravity at: g m"2

*)

PROCEDURE gravity (g: REAL) ;

Chapter 2: Using GNU Modula-2

(*
box - place a box in the world at (x0,y0), (x0+i,y0+j)
*)

PROCEDURE box (x0, yO, i, j: REAL) : CARDINAL ;

(*
poly3 - place a triangle in the world at:
(x0,y0), (x1,y1), (x2,y2)
*)

PROCEDURE poly3 (x0, yO, x1, yl1, x2, y2: REAL) : CARDINAL ;

(*
polyb - place a pentagon in the world at:
(x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4)
*)

PROCEDURE poly5 (x0, yO0, x1, yi,
x2, y2, x3, y3, x4, y4: REAL) : CARDINAL ;

(*
poly6 - place a hexagon in the world at:
(x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4) , (x5,y5)
*)

PROCEDURE poly6 (x0, yO, x1, yi,
x2, y2, x3, y3,
x4, y4, x5, y5: REAL) : CARDINAL ;

(*
mass - specify the mass of an object and return the, id.

*)
PROCEDURE mass (id: CARDINAL; m: REAL) : CARDINAL ;
(*
fix - fix the object to the world.
*)

PROCEDURE fix (id: CARDINAL) : CARDINAL ;

37

Chapter 2: Using GNU Modula-2

(*
circle - adds a circle to the world. Center
defined by: x0, yO radius, r.
*)

PROCEDURE circle (x0, yO, r: REAL) : CARDINAL ;
(*
velocity - give an object, id, a velocity, vx, vy.
*)
PROCEDURE velocity (id: CARDINAL; vx, vy: REAL) : CARDINAL
€
accel - give an object, id, an acceleration, ax, ay.
*)
PROCEDURE accel (id: CARDINAL; ax, ay: REAL) : CARDINAL ;
(*
fps - set frames per second.
*)
PROCEDURE fps (f: REAL) ;
(*
replayRate - set frames per second during replay.
*)
PROCEDURE replayRate (f: REAL) ;
(*
simulateFor - render for, t, seconds.
*)

PROCEDURE simulateFor (t: REAL) ;

END twoDsim.

I

38

Chapter 2: Using GNU Modula-2

39

The keyword UNQUALIFIED can be used to ensure that the compiler will provide exter-
nally accessible functions gravity, box, poly3, poly5, poly6, mass, fix, circle, pivot,
velocity, accel, fps, replayRate, simulateFor rather than name mangled alternatives.
Hence in our Python3 application we could write:

#!/usr/bin/env python3
from twoDsim import x*

b = box (0.0, 0.0, 1.0, 1.0)
b = fix (b)
cl = circle (0.7, 0.7, 0.05)
cl = mass (c1, 0.01)
c2 = circle (0.7, 0.1, 0.05)
c2 = mass (c2, 0.01)
c2 = fix (c2)
gravity (-9.81)
fps (24.0%4.0)
replayRate (24.0)
print ("creating frames")
try:

simulateFor (1.0)

print ("all done")
except:

print ("exception raised")

which accesses the various functions defined and implemented by the module twoDsim.
The Modula-2 source code is compiled via:

$ gm2 -g -fiso -c -fswig twoDsim.mod

$ gmn2 -g -fiso -c -fmakelist
$ gm2 -g -fiso -c -fmakeinit

twoDsim.mod
twoDsim.mod

The first command both compiles the source file creating twoDsim.o and produces a
swig interface file swig.i. We now use swig and g++ to produce and compile the interface

wrappers:

$ libtool --mode=compile g++

$ swig -c++ -python3 twoDsim.

$ libtool --mode=compile g++
-I/usr/include/python3 -o
$ libtool --mode=compile gm2
libtool --mode=compile gm2
$ libtool --mode=compile gm2
twoDsim.mod -o twoDsim.lo

>

$ libtool --mode=link gcc -g
roots.lo deviceGnuPic.lo \
-L${prefix}/1ib64 \

-g -c twoDsim_m2.cpp -o twoDsim_m2.lo
i

-c -fPIC twoDsim_wrap.cxx \
twoDsim_wrap.lo

—-g —fPIC —fiso -c deviceGnuPic.mod
-g —fPIC -fiso -c roots.mod

-g -fPIC -fiso -c -fswig \

Finally the application is linked into a shared library:

twoDsim_m2.lo twoDsim_wrap.lo \

-rpath “pwd® -1gm2 -lstdc++ -1lm -o libtwoDsim.la

Chapter 2: Using GNU Modula-2 40

cp .libs/libtwoDsim.so _twoDsim.so

The library name must start with _ to comply with the Python3 module naming scheme.

2.17 Interfacing GNU Modula-2 to C

The GNU Modula-2 compiler tries to use the C calling convention wherever possible however
some parameters have no C equivalent and thus a language specific method is used. For
example unbounded arrays are passed as a struct {void *address, unsigned int high}
and the contents of these arrays are copied by callee functions when they are declared as
non VAR parameters. The VAR equivalent unbounded array parameters need no copy, but
still use the struct representation.

The recommended method of interfacing GNU Modula-2 to C is by telling the definition
module that the implementation is in the C language. This is achieved by using the tokens
DEFINITION MODULE FOR "C". Here is an example 1ibprintf.def.

DEFINITION MODULE FOR "C" libprintf ;
EXPORT UNQUALIFIED printf ;
PROCEDURE printf (a: ARRAY OF CHAR; ...) : [INTEGER] ;

END libprintf.

the UNQUALIFIED keyword in the definition module informs GNU Modula-2 not to prefix
the module name to exported references in the object file.

The printf declaration states that the first parameter semantically matches ARRAY OF
CHAR but since the module is for the C language it will be mapped onto char *. The token

. indicates a variable number of arguments (varargs) and all parameters passed here are
mapped onto their C equivalents. Arrays and constant strings are passed as pointers. Lastly
[INTEGER] states that the caller can ignore the function return result if desired.

The hello world program can be rewritten as:
MODULE hello ;

FROM libprintf IMPORT printf ;

BEGIN
printf ("hello world\n")
END hello.

and it can be compiled by:
‘gm2 -g hello.mod -1c’

In reality the ‘-1c¢’ is redundant as libc is always included in the linking process. It
is shown here to emphasize that the C library or object file containing printf must be
present. The search path for modules can be changed by using ‘-I’.

If a procedure function is declared using varargs then some parameter values are con-
verted. The table below summarizes the default conversions and default types used.

Actual Parameter | Default conversion | Type of actual

Chapter 2: Using GNU Modula-2 41

| | value passed

123 | none | long long int
"hello world" | none I const char *
a: ARRAY OF CHAR | ADR (a) | char *

a: ARRAY [0..5] OF CHAR| ADR (a) | char *

3.14 | none | long double

If you wish to pass int values then you should explicitly convert the constants using
one of the conversion mechanisms. For example: INTEGER(10) or VAL(INTEGER, 10) or
CAST (INTEGER, 10).

2.18 Interface to assembly language

The interface for GNU Modula-2 to assembly language is almost identical to GNU C. The
only alterations are that the keywords asm and volatile are in capitals, following the
Modula-2 convention.

A simple, but highly non optimal, example is given below. Here we want to add the two
CARDINALs foo and bar together and return the result. The target processor is assumed to
be executing the x86_64 instruction set.

PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;

VAR
myout: CARDINAL ;
BEGIN
ASM VOLATILE ("movl %1,%%eax; addl %2,%%eax; movl %%eax,%0"
"=rm" (myout) (* outputs *)
"rm" (foo), "rm" (bar) (* inputs *)
"eax") ; (* we trash *)
RETURN(myout)
END Example ;

For a full description of this interface we refer the reader to the GNU C manual.
See Section “Extensions to the C Language Family” in gcc.

The same example can be written using the newer extensions of naming the operands
rather than using numbered arguments.
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;
VAR
myout: CARDINAL ;
BEGIN
ASM VOLATILE (
"movl %[left],%keax; addl %[right],%%eax; movl %%eax,’%[output]"

[output] "=rm" (myout) (* outputs *)
[left] "rm" (foo), [right] "rm" (bar) (* inputs *)
"eax") ; (* we trash *)
RETURN (myout)
END Example ;

Both examples generate exactly the same code. It is worth noting that the specifier “rm”
indicates that the operand can be either a register or memory. Of course you must choose

Chapter 2: Using GNU Modula-2 42

an instruction which can take either, but this allows the compiler to make more efficient
choices depending upon the optimization level.

2.19 Data type alignment

GNU Modula-2 allows you to specify alignment for types and variables. The syntax for
alignment is to use the ISO pragma directives <* bytealignment (expression) and *>.
These directives can be used after type and variable declarations.

The ebnf of the alignment production is:

Alignment := [ByteAlignment] =:
ByteAlignment := '<x*' AttributeExpression '*>' =
AlignmentExpression := "(" ConstExpression ")" =

The Alignment ebnf statement may be used during construction of types, records, record
fields, arrays, pointers and variables. Below is an example of aligning a type so that the
variable bar is aligned on a 1024 address.

MODULE align ;

TYPE
foo = INTEGER <* bytealignment (1024) *> ;

VAR
z : INTEGER ;
bar: foo ;
BEGIN
END align.

The next example aligns a variable on a 1024 byte boundary.
MODULE align2 ;

VAR

x : CHAR ;

z : ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;
BEGIN
END align2.

Here the example aligns a pointer on a 1024 byte boundary.
MODULE align4 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

VAR

x : CHAR ;

z : POINTER TO INTEGER <* bytealignment(1024) *> ;
BEGIN

IF ADR(z) MOD 1024=0
THEN

Chapter 2: Using GNU Modula-2 43

exit (0)
ELSE
exit (1)
END
END align4.

In example alignb record field y is aligned on a 1024 byte boundary.
MODULE alignb ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
rec = RECORD
x: CHAR ;
y: CHAR <* bytealignment(1024) *> ;
END ;
VAR
r: rec ;
BEGIN
IF ADR(r.y) MOD 1024=0
THEN
exit (0)
ELSE
exit (1)
END
END alignb.

In the example below module align6 declares foo as an array of 256 INTEGERs. The
array foo is aligned on a 1024 byte boundary.

MODULE align6 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
foo = ARRAY [0..255] OF INTEGER <* bytealignment(1024) x> ;

VAR
x : CHAR ;
z : foo ;
BEGIN
IF ADR(z) MOD 1024=0
THEN
exit (0)
ELSE
exit (1)
END

Chapter 2: Using GNU Modula-2 44

END align6.

2.20 Packing data types

The pragma <* bytealignment (0) *> can be used to specify that the fields within a RECORD
are to be packed. Currently this only applies to fields which are declared as subranges,
ordinal types and enumerated types. Here is an example of how two subranges might be
packed into a byte.

TYPE
bits3c = [0..7] ;
bits3i = [-4..3] ;

byte = RECORD
<* bytealignment(0) *>

X: bits3c ;
<* bitsunused(2) *>
y: bits3i ;

END ;

Notice that the user has specified that in between fields x and y there are two bits
unused.

Now the user wishes to create a record with byte numbers zero and one occupied and then
an INTEGER32 field which is four byte aligned. In this case byte numbers two and three will
be unused. The pragma bytealignment can be issued at the start of the record indicating
the default alignment for the whole record and this can be overridden by individual fields
if necessary.

rec = RECORD
<* bytealignment (1) *> ;
a, b: byte ;
x: INTEGER32 <* bytealignment(4) *> ;
END ;

In the following example the user has specified that a record has two fields p and q but
that there are three bytes unused between these fields.

header = RECORD
<* bytealignment(1l) *>

p: byte ;
<* bytesunused(3) *>
q: byte ;

END ;

The pragma <* bytesunused(x) *> can only be used if the current field is on a byte
boundary. There is also a SYSTEM pseudo procedure function TBITSIZE(T) which returns
the minimum number of bits necessary to represent type T.

Another example of packing record bit fields is given below:
MODULE align21 ;

FROM 1libc IMPORT exit ;

Chapter 2: Using GNU Modula-2 45

TYPE
colour = (red, blue, green, purple, white, black) ;

soc PACKEDSET OF colour ;
rec = RECORD
<* bytealignment(0) *>
X: socC ;
y: [-1..1] ;
END ;

VAR
r: rec ;
v: CARDINAL ;
BEGIN
v := SIZE(r) ;
IF SIZE(r)#1
THEN
exit (1)
END ;
r.x := soc{blue} ;
IF r.x#soc{blue}
THEN
exit (2)
END
END align21.

Here we see that the total size of this record is one byte and consists of a six bit set type
followed by a 2 bit integer subrange.

2.21 Accessing GNU Modula-2 Built-ins

This section describes the built-in constants and functions defined in GNU Modula-2. The
following compiler constants can be accessed using the __ATTRIBUTE__ __BUILTIN__ key-
words. These are not part of the Modula-2 language and they may differ depending upon
the target architecture but they provide a method whereby common libraries can interface
to a different underlying architecture.

The built-in constants are: BITS_PER_UNIT, BITS_PER_WORD, BITS_PER_CHAR and
UNITS_PER_WORD. They are integrated into GNU Modula-2 by an extension to the
ConstFactor rule:

ConstFactor := ConstQualidentOrSet | Number | ConstString |

"(" ConstExpression ")" | "NOT" ConstFactor |
ConstAttribute =:
ConstAttribute := "__ATTRIBUTE__" "__BUILTIN__" "(" "(" Ident ")" ")" =:

Here is an example taken from the ISO library SYSTEM.def:

Chapter 2: Using GNU Modula-2 46

CONST
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

Built-in functions are transparent to the end user. All built-in functions are declared
in DEFINITION MODULEs and are imported as and when required. Built-in functions are
declared in definition modules by using the __BUILTIN__ keyword. Here is a section of the
ISO library LongMath.def which demonstrates this feature.

PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
(* Returns the square root of x *)

This indicates that the function sqrt will be implemented using the gce built-in maths
library. If gee cannot utilize the built-in function (for example if the programmer requested
the address of sqrt) then code is generated to call the alternative function implemented in
the IMPLEMENTATION MODULE.

Sometimes a function exported from the DEFINITION MODULE will have a different name
from the built-in function within gee. In such cases the mapping between the GNU Modula-
2 function name and the gcc name is expressed using the keywords __ATTRIBUTE__ __
BUILTIN__ ((Ident)). For example the function sqrt in LongMath.def maps onto the gcc
built-in function sqrtl and this is expressed as:

PROCEDURE __ATTRIBUTE BUILTIN__ ((sqrtl)) sqrt
(x: LONGREAL)
(* Returns the positive square root of x *)

: LONGREAL;

The following module Builtins.def enumerates the list of built-in functions which can
be accessed in GNU Modula-2. It also serves to define the parameter and return value for
each function:

DEFINITION MODULE Builtins ;

FROM SYSTEM IMPORT ADDRESS ;

(* Floating point intrinsic procedure functions. %)
PROCEDURE __BUILTIN__ isnanf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnan (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanl (x: LONGREAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinitef (x: SHORTREAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinite (x: REAL) INTEGER ;
PROCEDURE __BUILTIN__ isfinitel (x: LONGREAL) INTEGER ;
PROCEDURE __BUILTIN__ sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sinl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ cosl (x: LONGREAL) : LONGREAL ;

Chapter 2: Using GNU Modula-2 47

PROCEDURE __BUILTIN__ sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sqrtl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ atan2 (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ atan2l (x, y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ fabsf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ fabs (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ fabsl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ loglOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ loglO (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl0l (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ explOf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ expl0 (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl0l (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ ilogbf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogb (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogbl (x: LONGREAL) : INTEGER ;
PROCEDURE __BUILTIN__ huge_val () : REAL ;
PROCEDURE __BUILTIN__ huge_valf () : SHORTREAL ;
PROCEDURE __BUILTIN__ huge_vall () : LONGREAL ;
PROCEDURE __BUILTIN__ modf (x: REAL; VAR y: REAL) : REAL ;
PROCEDURE __BUILTIN__ modff (x: SHORTREAL;

VAR y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ signbit (r: REAL) INTEGER ;
PROCEDURE __BUILTIN__ signbitf (s: SHORTREAL) INTEGER ;
PROCEDURE __BUILTIN__ signbitl (1: LONGREAL) : INTEGER ;
PROCEDURE __BUILTIN__ nextafter (x, y: REAL) : REAL ;

Chapter 2: Using GNU Modula-2 48

PROCEDURE __BUILTIN__ nextafterf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ nextafterl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ nexttoward (x: REAL; y: LONGREAL) : REAL ;

PROCEDURE __BUILTIN__ nexttowardf (x: SHORTREAL; y: LONGREAL) : SHORTREAL ;Jj
PROCEDURE __BUILTIN__ nexttowardl (x, y: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ scalbln (x: REAL; n: LONGINT) : REAL ;

PROCEDURE __BUILTIN__ scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbn (x: REAL; n: INTEGER) : REAL ;
PROCEDURE __BUILTIN__ scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL ;

PROCEDURE __BUILTIN__ isgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isgreaterequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isless (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islessequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islessgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isunordered (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ iseqsig (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isnormal (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormalf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormall (1: LONGREAL) : INTEGER ;

Chapter 2: Using GNU Modula-2

PROCEDURE __BUILTIN__ isinf_sign (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signl (1: LONGREAL) : INTEGER ;

(* Complex arithmetic intrincic procedure functions. *)

PROCEDURE __BUILTIN__ cabsf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ cabs (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cabsl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ cargf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ carg (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cargl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ conjf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ conj (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ conjl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cpowerf (base: SHORTCOMPLEX;

exp: SHORTREAL) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cpower (base: COMPLEX; exp: REAL) : COMPLEX ;
PROCEDURE __BUILTIN__ cpowerl (base: LONGCOMPLEX;

exp: LONGREAL) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ csqrtf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csqrt (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csqrtl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cexp (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ cexpl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ clnf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cln (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ clnl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ csinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csin (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csinl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ccos (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ctan (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

(* memory

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_

Chapter 2: Using GNU Modula-2

carcsinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
carcsin (z: COMPLEX) : COMPLEX ;

carcsinl (z: LONGCOMPLEX) : LONGCOMPLEX ;
carccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
carccos (z: COMPLEX) : COMPLEX ;

carccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;
carctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
carctan (z: COMPLEX) : COMPLEX ;

carctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

and string intrincic procedure functions *)

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_

__BUILTIN_

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_

__BUILTIN_
__BUILTIN_
__BUILTIN_
__BUILTIN_

alloca (i: CARDINAL) : ADDRESS ;
memcpy (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
index (s: ADDRESS; c: INTEGER) : ADDRESS ;
rindex (s: ADDRESS; c: INTEGER) : ADDRESS ;
memcmp (s1, s2: ADDRESS;

nbytes: CARDINAL) INTEGER ;
memset (s: ADDRESS; c: INTEGER;

nbytes: CARDINAL) : ADDRESS ;
memmove (s1, s2: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcat (dest, src: ADDRESS) : ADDRESS ;
strncat (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcpy (dest, src: ADDRESS) : ADDRESS ;
strncpy (dest, src: ADDRESS;

nbytes: CARDINAL) : ADDRESS ;
strcmp (s1, s2: ADDRESS) INTEGER ;
strncmp (s1, s2: ADDRESS;

nbytes: CARDINAL) : INTEGER ;

strlen (s: ADDRESS) INTEGER ;
strstr (haystack, needle: ADDRESS)
strpbrk (s, accept: ADDRESS)
strspn (s, accept: ADDRESS) : CARDINAL ;
strcspn (s, accept: ADDRESS) : CARDINAL ;
strchr (s: ADDRESS; c: INTEGER) : ADDRESS ;
strrchr (s: ADDRESS; c: INTEGER) : ADDRESS ;

: ADDRESS ;
: ADDRESS ;

clz (value: CARDINAL) : INTEGER ;
c¢l1z1l (value: LONGCARD) : INTEGER ;
ctz (value: CARDINAL) : INTEGER ;
ctzll (value: LONGCARD) INTEGER ;

50

Chapter 2: Using GNU Modula-2 51

(*
longjmp - this GCC builtin restricts the val to always 1.
*)
(* do not use these two builtins, as gcc, only really
anticipates that the Ada front end should use them
and it only uses them in its runtime exception handling.
We leave them here in the hope that someday they will
behave more like their libc counterparts. *)

PROCEDURE __BUILTIN__ longjmp (env: ADDRESS; val: INTEGER) ;
PROCEDURE __BUILTIN__ setjmp (env: ADDRESS) : INTEGER ;

(*
frame_address - returns the address of the frame.
The current frame is obtained if level is O,
the next level up if level is 1 etc.

*)

PROCEDURE __BUILTIN__ frame_address (level: CARDINAL) : ADDRESS ;

(*
return_address - returns the return address of function.
The current function return address is
obtained if level is O,
the next level up if level is 1 etc.

*)

PROCEDURE __BUILTIN__ return_address (level: CARDINAL) : ADDRESS ;

(*
alloca_trace - this is a no-op which is used for internal debugging.

*)

PROCEDURE alloca_trace (returned: ADDRESS; nBytes: CARDINAL) : ADDRESS ;

END Builtins.

Although this module exists and will result in the generation of in-line code if optimiza-
tion flags are passed to GNU Modula-2, users are advised to utilize the same functions from
more generic libraries. The built-in mechanism will be applied to these generic libraries
where appropriate. Note for the mathematical routines to be in-lined you need to specify
the ‘~ffast-math -0’ options.

Chapter 2: Using GNU Modula-2 52

2.22 The PIM system module
DEFINITION MODULE SYSTEM ;

EXPORT QUALIFIED BITSPERBYTE, BYTESPERWORD,
ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, COFF_T, CARDINAL64, (xii
Target specific data types. *)
ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE ;
(* SIZE is also exported if -fpim2 is used. *)

CONST
BITSPERBYTE = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
BYTESPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINALG64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. *)

(* The following types are supported on this target:
TYPE

(* Target specific data types. *)
*)

(*
all the functions below are declared internally to gm2

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE SIZE (v: <type>) : ZType;
(* Returns the number of BYTES used to store a v of
any specified <type>. Only available if -fpim2 is used.
*)

Chapter 2: Using GNU Modula-2 53

PROCEDURE TSIZE (<type>) : CARDINAL;
(* Returns the number of BYTES used to store a value of the
specified <type>.
*)

PROCEDURE ROTATE (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up/right
or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
*)

PROCEDURE SHIFT (val: <a set type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up/left
or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.

*)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
(*

THROW is a GNU extension and was not part of the PIM or ISO
standards. It throws an exception which will be caught by the
EXCEPT block (assuming it exists). This is a compiler builtin
function which interfaces to the GCC exception handling runtime
system.
GCC uses the term throw, hence the naming distinction between
the GCC builtin and the Modula-2 runtime library procedure Raise.
The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.

*)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
(* Returns the minimum number of bits necessary to represent
<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.
*)
*)

(* The following procedures are invoked by GNU Modula-2 to
shift non word sized set types. They are not strictly part
of the core PIM Modula-2, however they are used
to implement the SHIFT procedure defined above,

Chapter 2: Using GNU Modula-2

which are in turn used by the Logitech compatible libraries.

Users will access these procedures by using the procedure
SHIFT above and GNU Modula-2 will map SHIFT onto one of
the following procedures.

(*
ShiftVal - is a runtime procedure whose job is to implement
the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will
inline a SHIFT of a single WORD sized set and will only
call this routine for larger sets.

*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: INTEGER) ;

(*
ShiftLeft - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
ShiftRight - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
RotateVal - is a runtime procedure whose job is to implement
the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
inline a ROTATE of a single WORD (or less)
sized set and will only call this routine for larger

54

Chapter 2: Using GNU Modula-2 55

sets.

*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: INTEGER) ;

(*
RotateLeft - performs the rotate left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

(*
RotateRight - performs the rotate right for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

END SYSTEM.

The different dialects of Modula-2 PIM-[234] and ISO Modula-2 declare the function
SIZE in different places. PIM-[34] and ISO Modula-2 declare SIZE as a pervasive function
(declared in the base module). PIM-2 defined SIZE in the SYSTEM module (as shown above).

GNU Modula-2 allows users to specify the dialect of Modula-2 by using the -fiso and
-fpim2 command line switches.

The data types CSIZE_T, CSSIZE_T and COFF_T are also exported from the SYSTEM
module. The type CSIZE_T is unsigned and is mapped onto the target C data type size_t
whereas the type CSSIZE_T is mapped onto the signed C data type ssize_t. The default
size for the signed type COFF_T is the same as CSSIZE_T and this can be overridden by the
-fm2-file-offset-bits= command line option.

It is anticipated that these should only be used to provide cross platform definition
modules for C libraries.

Chapter 2: Using GNU Modula-2 56

There are also a variety of fixed sized INTEGER and CARDINAL types. The variety of the
fixed sized types will depend upon the target architecture.

2.23 The ISO system module
DEFINITION MODULE SYSTEM;

(* Gives access to system programming facilities that are probably
non portable. *)

(* The constants and types define underlying properties of storage *)

EXPORT QUALIFIED BITSPERLOC, LOCSPERWORD,
LOC, BYTE, WORD, ADDRESS, CSIZE_T, CSSIZE_T, COFF_T, (x
Target specific data types. *)
ADDADR, SUBADR, DIFADR, MAKEADR, ADR, ROTATE,
SHIFT, CAST, TSIZE,

(* Internal GM2 compiler functions *)
ShiftVal, ShiftLeft, ShiftRight,
RotateVal, RotateLeft, RotateRight,
THROW, TBITSIZE ;

CONST
(* <implementation-defined constant> ; *)
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
(* <implementation-defined constant> ; *)
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* <implementation-defined constant> ; *)
LOCSPERBYTE = 8 DIV BITSPERLOC ;

(x Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINALG64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will
move into another module in the future. *)

(*

All the data types and procedures below are declared internally.

Chapter 2: Using GNU Modula-2 57

TYPE
(* Target specific data types. *)

TYPE
LOC; (* A system basic type. Values are the uninterpreted
contents of the smallest addressable unit of storage *)
ADDRESS = POINTER TO LOC;
WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)

TYPE
BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr + offset), or may raise
an exception if this address is not valid.

*)

PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr - offset), or may raise an
exception if this address is not valid.

*)

PROCEDURE DIFADR (addrl, addr2: ADDRESS): INTEGER;
(* Returns the difference between addresses (addrl - addr2),
or may raise an exception if the arguments are invalid
or address space is non-contiguous.

*)

PROCEDURE MAKEADR (high: <some type>; ...): ADDRESS;
(* Returns an address constructed from a list of values whose
types are implementation-defined, or may raise an
exception if this address is not valid.

In GNU Modula-2, MAKEADR can take any number of arguments
which are mapped onto the type ADDRESS. The first parameter
maps onto the high address bits and subsequent parameters map
onto lower address bits. For example:

a := MAKEADR(BYTE(OFEH), BYTE(ODCH), BYTE(OBAH), BYTE(098H),
BYTE(076H) , BYTE(054H), BYTE(032H), BYTE(O10H)) ;

then the value of, a, on a 64 bit machine is: OFEDCBA9876543210H

Chapter 2: Using GNU Modula-2 58

The parameters do not have to be the same type, but constants
must be typed.
*)

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE ROTATE (val: <a packedset type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up/right
or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
*)

PROCEDURE SHIFT (val: <a packedset type>;
num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up/left
or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.

*)

PROCEDURE CAST (<targettype>; val: <anytype>): <targettype>;
(* CAST is a type transfer function. Given the expression
denoted by val, it returns a value of the type <targettype>.
An invalid value for the target value or a
physical address alignment problem may raise an exception.

*)

PROCEDURE TSIZE (<type>; ...): CARDINAL;
(* Returns the number of LOCS used to store a value of the
specified <type>. The extra parameters, if present,
are used to distinguish variants in a variant record.

*)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
(%

THROW is a GNU extension and was not part of the PIM or ISO
standards. It throws an exception which will be caught by the
EXCEPT block (assuming it exists). This is a compiler builtin
function which interfaces to the GCC exception handling runtime
system.
GCC uses the term throw, hence the naming distinction between
the GCC builtin and the Modula-2 runtime library procedure Raise.
The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.

Chapter 2: Using GNU Modula-2

99

*)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
(* Returns the minimum number of bits necessary to represent
<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.
*)
*)

(* The following procedures are invoked by GNU Modula-2 to
shift non word set types. They are not part of ISO Modula-2
but are used to implement the SHIFT procedure defined above. *)

(*
ShiftVal - is a runtime procedure whose job is to implement
the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will
inline a SHIFT of a single WORD sized set and will only
call this routine for larger sets.

*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
ShiftCount: INTEGER) ;

(*
ShiftLeft - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL,;
ShiftCount: CARDINAL) ;

(*
ShiftRight - performs the shift left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;

Chapter 2: Using GNU Modula-2 60

SetSizeInBits: CARDINAL;
ShiftCount: CARDINAL) ;

(*
RotateVal - is a runtime procedure whose job is to implement
the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
inline a ROTATE of a single WORD (or less)
sized set and will only call this routine for larger
sets.

*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: INTEGER) ;

(*
Rotateleft - performs the rotate left for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

(*
RotateRight - performs the rotate right for a multi word set.
This procedure might be called by the back end of
GNU Modula-2 depending whether amount is known at
compile time.

*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

END SYSTEM.

The data types CSIZE_T, CSSIZE_T and COFF_T are also exported from the SYSTEM
module. The type CSIZE_T is unsigned and is mapped onto the target C data type size_t
whereas the type CSSIZE_T is mapped onto the signed C data type ssize_t. The default

Chapter 2: Using GNU Modula-2 61

size for the signed type COFF_T is the same as CSSIZE_T and this can be overridden by the
-fm2-file-offset-bits= command line option.

It is anticipated that these should only be used to provide cross platform definition
modules for C libraries.

There are also a variety of fixed sized INTEGER and CARDINAL types. The variety of the
fixed sized types will depend upon the target architecture.

2.24 Release map

GNU Modula-2 is now part of GCC and therefore will adopt the GCC release schedule. It
is intended that GNU Modula-2 implement more of the GCC builtins (vararg access) and
GCC features.

There is an intention to implement the ISO generics and the M2R10 dialect of Modula-2.
It will also implement all language changes. If you wish to see something different please
email gm2@nongnu.org with your ideas.

2.25 Documentation

The GNU Modula-2 documentation is available online at https://gcc.gnu.org/
onlinedocs/ in the PDF| info, and HTML file formats.

2.26 Regression tests for gm2 in the repository

The regression testsuite can be run from the gce build directory:

$ cd build-gcc
$ make check -j 24

which runs the complete testsuite for all compilers using 24 parallel invocations of the
compiler. Individual language testsuites can be run by specifying the language, for example
the Modula-2 testsuite can be run using:

$ cd build-gcc
$ make check-m2 -j 24

Finally the results of the testsuite can be emailed to the gce-testresults (https://gec.
gnu.org/lists.html) list using the test_summary script found in the gcc source tree:

$ ‘directory to the sources’/contrib/test_summary

2.27 Limitations

The Logitech compatibility library is incomplete. The primary modules for this platform
exist, though for a comprehensive list of completed modules please check the documentation.

2.28 Objectives

e The intention of GNU Modula-2 is to provide a production Modula-2 front end to GCC.

e It should support all Niklaus Wirth PIM Dialects [234] and also ISO Modula-2 including
a re-implementation of all the ISO modules.

e There should be an easy interface to C.

mailto:gm2@nongnu.org
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/lists.html
https://gcc.gnu.org/lists.html

Chapter 2: Using GNU Modula-2 62

e Exploit the features of GCC.

e Listen to the requests of the users.

2.29 FAQ

2.29.1 Why use the C++ exception mechanism in GCC, rather
than a bespoke Modula-2 mechanism?

The C++ mechanism is tried and tested, it also provides GNU Modula-2 with the ability to
link with C++ modules and via swig it can raise Python exceptions.

2.30 Community

You can subscribe to the GNU Modula-2 mailing by sending an email to: gm2-
subscribe@nongnu.org or by https://lists.nongnu.org/mailman/listinfo/gm2. The
mailing list contents can be viewed https://lists.gnu.org/archive/html/gm2/.

2.31 Other languages for GCC

These exist and can be found on the frontends web page on the GCC web site (https://
gcc.gnu.org/frontends.html).

2.32 License of GNU Modula-2

GNU Modula-2 is free software, the compiler is held under the GPL v3 http://www.gnu.
org/licenses/gpl-3.0.txt, its libraries (pim, iso and Logitech compatible) are under the
GPL v3 with the GCC run time library exception clause.

Under Section 7 of GPL version 3, you are granted additional permissions described
in the GCC Runtime Library Exception, version 3.1, as published by the Free Software
Foundation.

You should have received a copy of the GNU General Public License and a copy of the
GCC Runtime Library Exception along with this program; see the files COPYING3 and
COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>.

More information on how these licenses work is available http://www.gnu.org/
licenses/licenses.html on the GNU web site.

mailto:gm2-subscribe@nongnu.org
mailto:gm2-subscribe@nongnu.org
https://lists.nongnu.org/mailman/listinfo/gm2
https://lists.gnu.org/archive/html/gm2/
https://gcc.gnu.org/frontends.html
https://gcc.gnu.org/frontends.html
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html

63

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://www.fsf.org

GNU General Public License 64

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the wor