The GNU D Compiler

For ccc version 16.0.0 (pre-release)

(GCC)

David Friedman, Iain Buclaw

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 2006-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Invoking gdc.............., 1
1.1 Input and Output files........ ..o 1
1.2 Runtime Options 1
1.3 Options for Directory Search............. 5
1.4 Code Generationo.uiiiiiiiiiiiiiiiiii i 6
1.5 Warningsottt e 7
1.6 Options for Linking.......... . ..o 9
1.7 Developer Options.ouiiit i 10

2 Language Reference............................ 11
2.1 ABtrIbULES . .o 11

2.1.1 Attribute Syntaxo 11
2.1.2 Common Attributeso 12
2.1.3 Other Attributes i 16
2.1.4 Target-specific Attributes..........ol 17
2.2 Built-in Functionso 17
2.2.1 Built-in Types. ... 18
2.2.2 Querying Available Built-ins.............................. 18
2.2.3 Other Built-in Functions.................................. 19
2.3 Importing C Sources into D............. .. i 20
2.4 Inline Assembly 21
2.5 INtrinsiCs . .o e 22
2.5.1 Bit Operation Intrinsics............cooiiiiiii ... 22
2.5.2 Integer Overflow Intrinsics........... ...t 24
2.5.3 Math Intrinsics......cooviiiiii e 25
2.5.4 Variadic Intrinsics oo i 27
2.5.5 Volatile Intrinsics. ... 27
2.5.6 CTFE Intrinsicsooiiiiiiiiiiiiii e 28
2.6 Predefined Pragmas i i 31
2.7 Predefined Versions. ... 32
2.7.1 Standard Predefined Versions................... 32
2.7.2 Common Predefined Versions, 34
2.7.3 Target-specific Predefined Versions........................ 35
2.8 Special Enums. 37
2.9 TradbS . ottt 37
2.10 Vector EXtensionsuuuuueiiiieiiniiiiiiiiiiiieea.., 38
2.11 Vector Intrinsics.o 39
2.12 Missing Features and Deviations.............................. 41
GNU General Public License 44
GNU Free Documentation License 55

ADDENDUM: How to use this License for your documents.......... 62

Option Index

Keyword Index.................

ii

1 Invoking gdc

The gdc command is the GNU compiler for the D language and supports many of the same
options as gcc. See Section “Option Summary” in Using the GNU Compiler Collection
(GCC). This manual only documents the options specific to gdc.

1.1 Input and Output files

For any given input file, the file name suffix determines what kind of compilation is done.
The following kinds of input file names are supported:

file.d D source files.
file.dd Ddoc source files.
file.di D interface files.

You can specify more than one input file on the gdc command line, each being compiled
separately in the compilation process. If you specify a -o file option, all the input files
are compiled together, producing a single output file, named file. This is allowed even when
using -S or -c.

A D interface file contains only what an import of the module needs, rather than the
whole implementation of that module. They can be created by gdc from a D source file
by using the -H option. When the compiler resolves an import declaration, it searches for
matching .di files first, then for .d.

A Ddoc source file contains code in the D macro processor language. It is primarily
designed for use in producing user documentation from embedded comments, with a slight
affinity towards HTML generation. If a .d source file starts with the string Ddoc then it is
treated as general purpose documentation, not as a D source file.

1.2 Runtime Options

These options affect the runtime behavior of programs compiled with gdc.

-fall-instantiations
Generate code for all template instantiations. The default template emission
strategy is to not generate code for declarations that were either instantiated
speculatively, such as from __traits(compiles, ...), or that come from an
imported module not being compiled.

-fno-assert
Turn off code generation for assert contracts.

-fno-bounds-check
Turns off array bounds checking for all functions, which can improve perfor-
mance for code that uses arrays extensively. Note that this can result in un-
predictable behavior if the code in question actually does violate array bounds
constraints. It is safe to use this option if you are sure that your code never
throws a RangeError.

Chapter 1: Invoking gdc 2

—-fbounds-check=value
An alternative to -fbounds-check that allows more control as to where bounds
checking is turned on or off. The following values are supported:

4 b

on Turns on array bounds checking for all functions.

‘safeonly’
Turns on array bounds checking only for @safe functions.

‘off’ Turns off array bounds checking completely.

-fno-builtin
Don’t recognize built-in functions unless they begin with the prefix
‘__builtin_’. By default, the compiler will recognize when a function in the
core.stdc package is a built-in function.

-fcheckaction=value
This option controls what code is generated on an assertion, bounds check, or
final switch failure. The following values are supported:

‘context’ Throw an AssertError with extra context information.
‘halt’ Halt the program execution.
‘throw’ Throw an AssertError (the default).

-fdebug

-fdebug=value
Turn on compilation of conditional debug code into the program. The -fdebug
option itself sets the debug level to 1, while -fdebug= enables debug code that
are identified by any of the following values:

‘ident’ Turns on compilation of any debug code identified by ident.

-fno-druntime
Implements https://dlang.org/spec/betterc.html. Assumes that compila-
tion targets an environment without a D runtime library.

This is equivalent to compiling with the following options:

gdc -nophoboslib -fno-exceptions -fno-moduleinfo -fno-rtti

-fextern-std=standard
Sets the C++ name mangling compatibility to the version identified by standard.
The following values are supported:

‘c++98’

‘c++03’ Sets __traits(getTargetInfo, "cppStd") to 199711.
‘c++1l’ Sets __traits(getTargetInfo, "cppStd") to 201103.
‘ct++14’ Sets __traits(getTargetInfo, "cppStd") to 201402.

‘cH+1T’ Sets __traits(getTargetInfo, "cppStd") to 201703. This is the
default.

‘c++20’ Sets __traits(getTargetInfo, "cppStd") to 202002.

https://dlang.org/spec/betterc.html

Chapter 1: Invoking gdc 3

‘c++23’ Sets __traits(getTargetInfo, "cppStd") to 202302.

-finclude-imports
Include imported modules in the compilation, as if they were given on the
command line. When this option is enabled, all imported modules are compiled
except those that are part of libphobos.

-fno-invariants
Turns off code generation for class invariant contracts.

-fmain Generates a default main() function when compiling. This is useful when
unittesting a library, as it enables running the unittests in a library without
having to manually define an entry-point function. This option does nothing
when main is already defined in user code.

-fno-moduleinfo
Turns off generation of the ModuleInfo and related functions that would be-
come unreferenced without it, which may allow linking to programs not written
in D. Functions that are not be generated include module constructors and de-
structors (static this and static “this), unittest code, and DSO registry
functions for dynamically linked code.

-fonly=filename
Tells the compiler to parse and run semantic analysis on all modules on the
command line, but only generate code for the module specified by filename.

-fno-postconditions
Turns off code generation for postcondition out contracts.

-fno-preconditions
Turns off code generation for precondition in contracts.

-fpreview=id
Turns on an upcoming D language change identified by id. The following values
are supported:

‘all’ Turns on all upcoming D language features.
‘bitfields’
Implements bit-fields in D.

‘dip1000’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/other/DIP1000.md (Scoped pointers).

‘dip1008’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/other/DIP1008.md (Allow exceptions in @nogc code).

‘dip1021’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/accepted/DIP1021.md (Mutable function arguments).

‘dip25’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/archive/DIP25.md (Sealed references).

‘dtorfields’
Turns on generation for destructing fields of partially constructed
objects.

https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1008.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1008.md
https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md
https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md

Chapter 1: Invoking gdc 4

—-frelease

—-frevert=

‘fieldwise’
Turns on generation of struct equality to use field-wise comparisons.

‘fixaliasthis’
Implements new lookup rules that check the current scope for alias
this before searching in upper scopes.

‘fiximmutableconv’
Disallows unsound immutable conversions that were formerly in-
correctly permitted.

in Implements in parameters to mean scope const [ref] and ac-
cepts rvalues.

‘inclusiveincontracts’
Implements in contracts of overridden methods to be a superset of
parent contract.

‘nosharedaccess’
Turns off and disallows all access to shared memory objects.

‘rvaluerefparam’
Implements rvalue arguments to ref parameters.

‘systemvariables’
Disables access to variables marked @system from @safe code.

Turns on compiling in release mode, which means not emitting runtime checks
for contracts and asserts. Array bounds checking is not done for @system and
@trusted functions, and assertion failures are undefined behavior.

This is equivalent to compiling with the following options:

gdc -fno-assert -fbounds-check=safe -fno-invariants \
-fno-postconditions -fno-preconditions -fno-switch-errors

Turns off a D language feature identified by id. The following values are sup-
ported:

‘all’ Turns off all revertable D language features.

‘dip1000’ Reverts https://github.com/dlang/DIPs/blob/master/DIPs/
other/DIP1000.md (Scoped pointers).

‘dip25’ Reverts https://github.com/dlang/DIPs/blob/master/DIPs/
archive/DIP25.md (Sealed references).

‘dtorfields’
Turns off generation for destructing fields of partially constructed
objects.

‘intpromote’
Turns off C-style integral promotion for unary +, - and ~ expres-
sions.

https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md

Chapter 1: Invoking gdc 5

-fno-rtti
Turns off generation of run-time type information for all user defined types. Any
code that uses features of the language that require access to this information
will result in an error.

-fno-switch-errors
This option controls what code is generated when no case is matched in a final
switch statement. The default run time behavior is to throw a SwitchError.
Turning off ~-fswitch-errors means that instead the execution of the program
is immediately halted.

-funittest
Turns on compilation of unittest code, and turns on the version(unittest)
identifier. This implies -fassert.

-fversion=value
Turns on compilation of conditional version code into the program identified
by any of the following values:

‘ident’ Turns on compilation of version code identified by ident.

-fno-weak-templates
Turns off emission of declarations that can be defined in multiple objects as weak
symbols. The default is to emit all public symbols as weak, unless the target
lacks support for weak symbols. Disabling this option means that common
symbols are instead put in COMDAT or become private.

1.3 Options for Directory Search

These options specify directories to search for files, libraries, and other parts of the compiler:

-Idir Specify a directory to use when searching for imported modules at compile time.
Multiple -I options can be used, and the paths are searched in the same order.

-Jdir Specify a directory to use when searching for files in string imports at com-
pile time. This switch is required in order to use import(file) expressions.
Multiple -J options can be used, and the paths are searched in the same order.

-Ldir When linking, specify a library search directory, as with gcc.

-Bdir This option specifies where to find the executables, libraries, source files, and
data files of the compiler itself, as with gcc.

-fmodule-file=module=spec
This option manipulates file paths of imported modules, such that if an im-
ported module matches all or the leftmost part of module, the file path in spec
is used as the location to search for D sources. This is used when the source
file path and names are not the same as the package and module hierarchy.
Consider the following examples:
gdc test.d -fmodule-file=A.B=foo.d -fmodule-file=C=bar

This will tell the compiler to search in all import paths for the source file foo.d
when importing A.B, and the directory bar/ when importing C, as annotated
in the following D code:

module test;

Chapter 1: Invoking gdc 6

import A.B; // Matches A.B, searches for foo.d
import C.D.E; // Matches C, searches for bar/D/E.d
import A.B.C; // No match, searches for A/B/C.d

-imultilib dir

Use dir as a subdirectory of the gcc directory containing target-specific D
sources and interfaces.

-iprefix prefix

-nostdinc

Specify prefix as the prefix for the gce directory containing target-specific D
sources and interfaces. If the prefix represents a directory, you should include
the final '/"'.

Do not search the standard system directories for D source and interface files.
Only the directories that have been specified with -I options (and the directory
of the current file, if appropriate) are searched.

1.4 Code Generation

In addition to the many gcc options controlling code generation, gdc has several options
specific to itself.

-H

-Hd dir

-Hf file

-MM

-MF file

-MG

-MP

-MT target

Generates D interface files for all modules being compiled. The compiler deter-
mines the output file based on the name of the input file, removes any directory
components and suffix, and applies the .di suffix.

Same as -H, but writes interface files to directory dir. This option can be used
with -Hf file to independently set the output file and directory path.

Same as -H but writes interface files to file. This option can be used with -Hd
dir to independently set the output file and directory path.

Output the module dependencies of all source files being compiled in a format
suitable for make. The compiler outputs one make rule containing the object
file name for that source file, a colon, and the names of all imported files.

Like -M but does not mention imported modules from the D standard library
package directories.

When used with -M or -MM, specifies a file to write the dependencies to. When
used with the driver options =MD or -MMD, -MF overrides the default dependency
output file.

This option is for compatibility with gcc, and is ignored by the compiler.

Outputs a phony target for each dependency other than the modules being
compiled, causing each to depend on nothing.

Change the target of the rule emitted by dependency generation to be exactly
the string you specify. If you want multiple targets, you can specify them as a
single argument to -MT, or use multiple -MT options.

Chapter 1: Invoking gdc 7

-MQ target
Same as -MT, but it quotes any characters which are special to make.

-MD This option is equivalent to -M -MF file. The driver determines file by remov-
ing any directory components and suffix from the input file, and then adding a
.deps suffix.

-MMD Like -MD but does not mention imported modules from the D standard library

package directories.

-X Output information describing the contents of all source files being compiled in
JSON format to a file. The driver determines file by removing any directory
components and suffix from the input file, and then adding a . json suffix.

-Xf file Same as -X, but writes all JSON contents to the specified file.

-fdoc Generates Ddoc documentation and writes it to a file. The compiler determines
file by removing any directory components and suffix from the input file, and
then adding a .html suffix.

-fdoc-dir=dir
Same as -fdoc, but writes documentation to directory dir. This option can be
used with -fdoc-file=file to independently set the output file and directory
path.

-fdoc-file=file
Same as —fdoc, but writes documentation to file. This option can be used with
-fdoc-dir=dir to independently set the output file and directory path.

-fdoc-inc=file
Specify file as a Ddoc macro file to be read. Multiple ~-fdoc—inc options can
be used, and files are read and processed in the same order.

-fdump-c++-spec=file
For D source files, generate corresponding C++ declarations in file.

—-fdump-c++-spec-verbose
In conjunction with ~fdump-c++-spec= above, add comments for ignored dec-
larations in the generated C++ header.

-fsave-mixins=file
Generates code expanded from D mixin statements and writes the processed
sources to file. This is useful to debug errors in compilation and provides source
for debuggers to show when requested.

1.5 Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there is likely to be a bug in the program. Unless
-Werror is specified, they do not prevent compilation of the program.

-Wall Turns on all warnings messages. Warnings are not a defined part of the D
language, and all constructs for which this may generate a warning message are
valid code.

Chapter 1: Invoking gdc 8

-Walloca This option warns on all uses of "alloca" in the source.

-Walloca-larger-than=n
Warn on unbounded uses of alloca, and on bounded uses of alloca whose bound
can be larger than n bytes. -Wno-alloca-larger-than disables -Walloca-
larger-than warning and is equivalent to -Walloca-larger-than=SIZE_MAX
or larger.

-Wno-builtin-declaration-mismatch
Warn if a built-in function is declared with an incompatible signature.

-Wcast-result
Warn about casts that will produce a null or zero result. Currently this is only
done for casting between an imaginary and non-imaginary data type, or casting
between a D and C++ class.

-Wno-deprecated
Do not warn about usage of deprecated features and symbols with deprecated
attributes.

-Werror Turns all warnings into errors.

-Wextra This enables some extra warning flags that are not enabled by -Wall.

-Waddress

-Wcast-result
-Wmismatched-special-enum
-Wunknown-pragmas

-Wmismatched-special-enum
Warn when an enum the compiler recognizes as special is declared with a dif-
ferent size to the built-in type it is representing.

-Wspeculative
List all error messages from speculative compiles, such as __traits(compiles,
...). This option does not report messages as warnings, and these messages
therefore never become errors when the -Werror option is also used.

-Wunknown-pragmas
Warn when a pragma() is encountered that is not understood by gdc. This
differs from -fignore-unknown-pragmas where a pragma that is part of the D
language, but not implemented by the compiler, won’t get reported.

-Wno-varargs
Do not warn upon questionable usage of the macros used to handle variable
arguments like va_start.

-fno-ignore—-unknown-pragmas
Do not recognize unsupported pragmas. Any pragma() encountered that is not
part of the D language will result in an error. This option is now deprecated
and will be removed in a future release.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point gdc bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced.

Chapter 1: Invoking gdc 9

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This can be
used in conjunction with -fdoc or -H to generate files for each module present
on the command-line, but no other output file.

—-ftransition=id
Report additional information about D language changes identified by id. The
following values are supported:

‘all’ List information on all D language transitions.

‘complex’ List all usages of complex or imaginary types.

‘field’ List all non-mutable fields which occupy an object instance.
‘in’ List all usages of in on parameter.

‘nogc’ List all hidden GC allocations.

‘templates’

List statistics on template instantiations.

‘tls’ List all variables going into thread local storage.

1.6 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

—-defaultlib=1ibname
Specify the library to use instead of libphobos when linking. Options specifying
the linkage of libphobos, such as -static-1libphobos or -shared-libphobos,
are ignored.

—-debuglib=1ibname
Specify the debug library to use instead of libphobos when linking. This option
has no effect unless the —-g option was also given on the command line. Options
specifying the linkage of libphobos, such as -static-libphobos or -shared-
libphobos, are ignored.

-nophoboslib
Do not use the Phobos or D runtime library when linking. Options specifying
the linkage of libphobos, such as -static-libphobos or -shared-libphobos,
are ignored. The standard system libraries are used normally, unless -nostdlib
or -nodefaultlibs is used.

-shared-libphobos
On systems that provide libgphobos and libgdruntime as a shared and a
static library, this option forces the use of the shared version. If no shared
version was built when the compiler was configured, this option has no effect.

-static-libphobos
On systems that provide libgphobos and libgdruntime as a shared and a
static library, this option forces the use of the static version. If no static version
was built when the compiler was configured, this option has no effect.

Chapter 1: Invoking gdc 10

1.7 Developer Options

This section describes command-line options that are primarily of interest to developers or
language tooling.

-fdump-d-original
Output the internal front-end AST after the semantic3 stage. This option is
only useful for debugging the GNU D compiler itself.

-v Dump information about the compiler language processing stages as the source
program is being compiled. This includes listing all modules that are processed
through the parse, semantic, semantic2, and semantic3 stages; all import
modules and their file paths; and all function bodies that are being compiled.

11

2 Language Reference

The implementation of the D programming language used by the GNU D compiler is shared
with parts of the front-end for the Digital Mars D compiler, hosted at https://github.
com/dlang/dmd/. This common front-end covers lexical analysis, parsing, and semantic
analysis of the D programming language defined in the documents at https://dlang.org/

The implementation details described in this manual are GNU D extensions to the D
programming language. If you want to write code that checks whether these features are
available, you can test for the predefined version GNU, or you can check whether a specific
feature is compilable using __traits(compiles).

version (GNU)

{
import gcc.builtins;
return __builtin_atan2(x, y);
}
static if (__traits(compiles, { asm {"";} }))
{
asm { "magic instruction"; }
}

2.1 Attributes

User-Defined Attributes (UDA) are compile-time expressions introduced by the @ token
that can be attached to a declaration. These attributes can then be queried, extracted, and
manipulated at compile time.

GNU D provides a number of extra special attributes to control specific compiler behavior
that may help the compiler optimize or check code more carefully for correctness. The
attributes are defined in the gcc.attributes module.

There is some overlap between the purposes of attributes and pragmas. It has been
found more convenient to use @attribute to achieve a natural attachment of attributes
to their corresponding declarations, whereas pragma is of use for compatibility with other
compilers or constructs that do not naturally form part of the grammar.

2.1.1 Attribute Syntax

@(gcc.attributes.attribute) is the generic entrypoint for applying GCC attributes to a
function, variable, or type. There is no type checking done, as well as no deprecation path
for attributes removed from the compiler. So the recommendation is to use any of the other
UDAs available as described in Section 2.1.2 [Common Attributes], page 12, unless it is a
target-specific attribute (See Section 2.1.4 [Target Attributes], page 17).

Function attributes introduced by the @attribute UDA are used in the declaration of

a function, followed by an attribute name string and any arguments separated by commas
enclosed in parentheses.

import gcc.attributes;

Qattribute("regparm", 1) int func(int size);
Multiple attributes can be applied to a single declaration either with multiple @attribute
attributes, or passing all attributes as a comma-separated list enclosed by parentheses.

// Both funcl and func2 have the same attributes applied.

https://github.com/dlang/dmd/
https://github.com/dlang/dmd/
https://dlang.org/
https://dlang.org/

Chapter 2: Language Reference 12

Q@attribute("noinline") @attribute("noclone") void funcl();

@(attribute("noinline"), attribute("noclone")) void func2();
There are some problems with the semantics of such attributes in D. For example, there
are no manglings for attributes, although they may affect code generation, so problems
may arise when attributed types are used in conjunction with templates or overloading.
Similarly, typeid does not distinguish between types with different attributes. Support for
attributes in D are restricted to declarations only.

2.1.2 Common Attributes

The following attributes are supported on most targets.

@(gcc.attributes.alloc_size (sizeArglIdx))

Q@(gcc.attributes.alloc_size (sizeArgIdx, numArgldx))

Q@(gcc.attributes.alloc_size (sizeArgIdx, numArgIdx, zeroBasedNumbering))
The @alloc_size attribute may be applied to a function - or a function pointer
variable - that returns a pointer and takes at least one argument of an integer
or enumerated type. It indicates that the returned pointer points to memory
whose size is given by the function argument at sizeArgIdx, or by the product
of the arguments at sizeArgIdx and numArgIdx. Meaningful sizes are positive
values less than ptrdiff_t.max. Unless zeroBasedNumbering is true, argu-
ment numbering starts at one for ordinary functions, and at two for non-static
member functions.

If numArgIdx is less than 0, it is taken to mean there is no argument specifying
the element count.

Q@alloc_size(1) void* malloc(size_t);

@alloc_size(3,2) void* reallocarray(void *, size_t, size_t);
@alloc_size(1,2) void* my_calloc(size_t, size_t, bool);

void malloc_cb(@alloc_size(1) void* function(size_t) ptr) { }

@(gcc.attributes.always_inline)
The @always_inline attribute inlines the function independent of any restric-
tions that otherwise apply to inlining. Failure to inline such a function is
diagnosed as an error.

@always_inline int func();

@(gcc.attributes.cold)
The @cold attribute on functions is used to inform the compiler that the func-
tion is unlikely to be executed. The function is optimized for size rather than
speed and on many targets it is placed into a special subsection of the text
section so all cold functions appear close together, improving code locality of
non-cold parts of program. The paths leading to calls of cold functions within
code are considered to be cold too.
@cold int func();

@(gcc.attributes.flatten)
The @flatten attribute is used to inform the compiler that every call inside
this function should be inlined, if possible. Functions declared with attribute
@noinline and similar are not inlined.
@flatten int func();

Chapter 2: Language Reference 13

@(gcc.

@(gcc.

Q(gcc.

@(gcc.

@(gcc.

Q(gcc.

@(gcc.

attributes.no_icf)
The @no_icf attribute prevents a function from being merged with another
semantically equivalent function.

@no_icf int func();

attributes.no_sanitize ("sanitize_option"))
The @no_sanitize attribute on functions is used to inform the compiler that
it should not do sanitization of any option mentioned in sanitize_option. A list
of values acceptable by the -fsanitize option can be provided.

Ono_sanitize("alignment", "object-size") void funci() { }
Ono_sanitize("alignment,object-size") void func2() { }

attributes.noclone)
The @noclone attribute prevents a function from being considered for cloning - a
mechanism that produces specialized copies of functions and which is (currently)
performed by interprocedural constant propagation.

@noclone int func();

attributes.noinline)
The @noinline attribute prevents a function from being considered for inlining.
If the function does not have side effects, there are optimizations other than
inlining that cause function calls to be optimized away, although the function
call is live. To keep such calls from being optimized away, put asm { ""; } in
the called function, to serve as a special side effect.

@noinline int func();

attributes.noipa)

The @noipa attribute disables interprocedural optimizations between the func-
tion with this attribute and its callers, as if the body of the function is not
available when optimizing callers and the callers are unavailable when opti-
mizing the body. This attribute implies @noinline, @noclone, and @no_icf
attributes. However, this attribute is not equivalent to a combination of other
attributes, because its purpose is to suppress existing and future optimizations
employing interprocedural analysis, including those that do not have an at-
tribute suitable for disabling them individually.

This attribute is supported mainly for the purpose of testing the compiler.

@noipa int func();

attributes.noplt)
The @noplt attribute is the counterpart to option ~fno-plt. Calls to functions
marked with this attribute in position-independent code do not use the PLT in
position-independent code.

In position-dependant code, a few targets also convert call to functions that are
marked to not use the PLT to use the GOT instead.

@noplt int func();

attributes.optimize (arguments))
The @optimize attribute is used to specify that a function is to be compiled
with different optimization options than specified on the command line. Valid
arguments are constant non-negative integers and strings. Multiple arguments

Chapter 2: Language Reference 14

can be provided, separated by commas to specify multiple options. Each nu-
meric argument specifies an optimization level. Each string argument that
begins with the letter O refers to an optimization option such as -00 or -Os.
Other options are taken as suffixes to the -f prefix jointly forming the name of
an optimization option.

Not every optimization option that starts with the -f prefix specified by the
attribute necessarily has an effect on the function. The @optimize attribute
should be used for debugging purposes only. It is not suitable in production
code.

Qoptimize(2) double fnO(double x);

@optimize("2") double fni(double x);

Qoptimize("s") double fn2(double x);

Qoptimize("Ofast") double fn3(double x);

Qoptimize ("-02") double fn4(double x);
Qoptimize("tree-vectorize") double fn5(double x);
Qoptimize("-ftree-vectorize") double fn6(double x);
Qoptimize("no-finite-math-only", 3) double fn7(double x);

Q@(gcc.attributes.register ("registerName"))
The @register attribute specifies that a local or __gshared variable is to be

given a register storage-class in the C99 sense of the term, and will be placed
into a register named registerName.

The variable needs to boiled down to a data type that fits the target register.
It also cannot have either thread-local or extern storage. It is an error to take
the address of a register variable.

Qregister("ebx") __gshared int ebx = void;
void func() { Q@register("r10") long r10 = Ox2a; }

@(gcc.attributes.restrict)
The @restrict attribute specifies that a function parameter is to be restrict-
qualified in the C99 sense of the term. The parameter needs to boil down to
either a pointer or reference type, such as a D pointer, class reference, or a ref
parameter.

void func(@restrict ref const float[16] array);

@(gcc.attributes.section ("sectionName"))
The @section attribute specifies that a function or variable lives in a particular
section. For when you need certain particular functions to appear in special
sections.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

@section("bar") extern void func();
@section("stack") ubyte[10000] stack;

@(gcc.attributes.simd)
The @simd attribute enables creation of one or more function versions that can
process multiple arguments using SIMD instructions from a single invocation.
Specifying this attribute allows compiler to assume that such versions are avail-
able at link time (provided in the same or another module). Generated versions
are target-dependent and described in the corresponding Vector ABI document.

Chapter 2: Language Reference 15

O@simd double sqrt(double x);

@(gcc.attributes.simd_clones ("mask"))
The @simd_clones attribute is the same as @simd, but also includes a mask
argument. Valid masks values are notinbranch or inbranch, and instructs the
compiler to generate non-masked or masked clones correspondingly.

@simd_clones("notinbranch") double atan2(double y, double x);

@(gcc.attributes.symver ("arguments"))
The @symver attribute creates a symbol version on ELF targets. The syntax
of the string parameter is "name@nodename". The name part of the parameter
is the actual name of the symbol by which it will be externally referenced. The
nodename portion should be the name of a node specified in the version script
supplied to the linker when building a shared library. Versioned symbol must
be defined and must be exported with default visibility.

Finally if the parameter is "name@@nodename" then in addition to creating a
symbol version (as if "name@nodename" was used) the version will be also used
to resolve name by the linker.

@symver ("foo@VERS_1") int foo_v1();

@(gcc.attributes.target ("options"))
The @target attribute is used to specify that a function is to be compiled
with different target options than specified on the command line. One or more
strings can be provided as arguments, separated by commas to specify multiple
options. Each string consists of one or more comma-separated suffixes to the
-m prefix jointly forming the name of a machine-dependent option.

The target attribute can be used for instance to have a function compiled with
a different ISA (instruction set architecture) than the default.

The options supported are specific to each target.

@target ("arch=core2") void core2_func();
Qtarget("sse3") void sse3_func();

@(gcc.attributes.target_clones ("options"))
The @target_clones attribute is used to specify that a function be cloned
into multiple versions compiled with different target options than specified on
the command line. The supported options and restrictions are the same as for
Qtarget attribute.

It also creates a resolver function that dynamically selects a clone suitable for
current architecture. The resolver is created only if there is a usage of a function
with @target_clones attribute.

Q@target_clones("sse4.1,avx,default") double func(double x);

Q@(gcc.attributes.used)
The @used attribute, annotated to a function or variable, means that code
must be emitted for the function even if it appears that the function is not
referenced. This is useful, for example, when the function is referenced only in
inline assembly.
Qused __gshared int var = 0x1000;

Chapter 2: Language Reference 16

@(gcc.

@(gcc.

2.1.3

attributes.visibility ("visibilityName"))
The @visibility attribute affects the linkage of the declaration to which it is
attached. It can be applied to variables, types, and functions.

There are four supported visibility_type values: default, hidden, protected,
or internal visibility.
@visibility("protected") void func() { 1}

attributes.weak)
The @weak attribute causes a declaration of an external symbol to be emitted as
a weak symbol rather than a global. This is primarily useful in defining library
functions that can be overridden in user code, though it can also be used with
non-function declarations. The overriding symbol must have the same type as
the weak symbol. In addition, if it designates a variable it must also have the
same size and alignment as the weak symbol.

Weak symbols are supported for ELF targets, and also for a.out targets when
using the GNU assembler and linker.

@weak int func() { return 1; }

Other Attributes

The following attributes are defined for compatibility with other compilers.

@(gcc.
@(gcc.
@(gcc.

@(gcc.

Q(gcc.
@(gcc.
@(gcc.

@(gcc.

Q(gcc.

@(gcc.

attributes.allocSize (sizeArgIdx))

attributes.allocSize (sizeArgIdx, numArgIdx))

attributes.allocSize (sizeArgldx))
These attributes are a synonym for Qalloc_size(sizeArgldx, numArgldx,
true). Unlike @alloc_size, it uses 0-based index of the function arguments.

attributes.assumeUsed)
This attribute is a synonym for @used.

attributes.dynamicCompile)
attributes.dynamicCompileConst)
attributes.dynamicCompileEmit)

These attributes are accepted, but have no effect.

attributes.fastmath)
This attribute is a synonym for @optimize("Ofast"). KExplicitly sets "fast-
math" for a function, enabling aggressive math optimizations.

attributes.hidden)
This attribute is a synonym for @visibility("hidden"). Sets the visibility of
a function or global variable to "hidden".

attributes.naked)
This attribute is a synonym for @attribute("naked"). Adds GCC’s "naked"
attribute to a function, disabling function prologue / epilogue emission. In-
tended to be used in combination with basic asm statements. While using
extended asm or a mixture of basic asm and D code may appear to work, they
cannot be depended upon to work reliably and are not supported.

Chapter 2: Language Reference 17

@(gcc.attributes.noSanitize ("sanitize_option"))
This attribute is a synonym for @no_sanitize("sanitize_option").

@(gcc.attributes.optStrategy ("strategy"))
This attribute is a synonym for @optimize ("00") and Qoptimize("0s"). Sets
the optimization strategy for a function. Valid strategies are "none", "optsize",
"minsize". The strategies are mutually exclusive.

Q@(gcc.attributes.polly)
This attribute is a synonym for @optimize ("loop-parallelize-all", "loop-
nest-optimize"). Only effective when GDC was built with ISL included.

2.1.4 Target-specific Attributes

Many targets have their own target-specific attributes. These are also exposed via the
gcc.attributes module with use of the generic @(gcc.attributes.attribute) UDA
function.

See Section 2.1.1 [Attribute Syntax], page 11, for details of the exact syntax for using
attributes.

See the function and variable attribute documentation in the GCC manual for more
information about what attributes are available on each target.

Examples of using x86-specific target attributes are shown as follows:

import gcc.attributes;

@attribute("cdecl")
Q@attribute("fastcall")
@attribute("ms_abi")
@attribute("sysv_abi")
Q@attribute("callee_pop_aggregate_return", 1)
Q@attribute("ms_hook_prologue")
@attribute("naked")
Q@attribute("regparm", 2)
Qattribute("sseregparm")
Q@attribute("force_align_arg_pointer")
@attribute("stdcall")
Qattribute("no_caller_saved_registers")
Q@attribute("interrupt")
Q@attribute("indirect_branch", "thunk")
Q@attribute("function_return", "keep"))
Qattribute("nocf_check")
@attribute("cf_check")
@attribute("indirect_return")
Qattribute("fentry_name", "nop")
Q@attribute("fentry_section", "__entry_loc")
@attribute("nodirect_extern_access")

2.2 Built-in Functions

GCC provides a large number of built-in functions that are made available in GNU D
by importing the gcc.builtins module. Declarations in this module are automatically
created by the compiler. All declarations start with __builtin_. Refer to the built-in
function documentation in the GCC manual for a full list of functions that are available.

Chapter 2: Language Reference 18

2.2.1 Built-in Types

In addition to built-in functions, the following types are defined in the gcc.builtins mod-
ule.

___builtin_clong
The D equivalent of the target’s C long type.

—__builtin_clonglong
The D equivalent of the target’s C long long type.

___builtin_culong
The D equivalent of the target’s C unsigned long type.

___builtin_culonglong
The D equivalent of the target’s C unsigned long long type.

___builtin_machine_byte
Signed unit-sized integer type.

___builtin_machine_int
Signed word-sized integer type.

___builtin_machine_ubyte
Unsigned unit-sized integer type.

___builtin_machine_uint
Unsigned word-sized integer type.

___builtin_pointer_int
Signed pointer-sized integer type.

___builtin_pointer_uint
Unsigned pointer-sized integer type.

___builtin_unwind_int
The D equivalent of the target’s C _Unwind_Sword type.

___builtin_unwind_uint
The D equivalent of the target’s C _Unwind_Word type.

___builtin_va_list
The target’s va_list type.

2.2.2 Querying Available Built-ins

Not all of the functions are supported, and some target-specific functions may only be
available when compiling for a particular ISA. One way of finding out what is exposed
by the built-ins module is by generating a D interface file. Assuming you have no file
builtins.d, the command

echo "module gcc.builtins;" > builtins.d; gdc -H -fsyntax-only builtins.d

will save all built-in declarations to the file builtins.di.

Another way to determine whether a specific built-in is available is by using compile-time
reflection.
enum X86_HAVE_SSE3 =

_traits(compiles, __builtin_ia32_haddps);

Chapter 2: Language Reference 19

enum X86_HAVE_SSSE3
enum X86_HAVE_SSE41
enum X86_HAVE_SSE42
enum X86_HAVE_AVX =
enum X86_HAVE_AVX2
enum X86_HAVE_BMI2

__traits(compiles, __builtin_ia32_pmulhrswi28);
__traits(compiles, __builtin_ia32_dpps);
__traits(compiles, __builtin_ia32_pcmpgtq);
_traits(compiles, __builtin_ia32_vbroadcastf128_pd256) ;
__traits(compiles, __builtin_ia32_gathersiv2df);
__traits(compiles, __builtin_ia32_pext_si);

2.2.3 Other Built-in Functions

As well as built-ins being available from the gcc.builtins module, GNU D will also rec-
ognize when an extern(C) library function is a GCC built-in. Many of these functions
are only optimized in certain cases; if they are not optimized in a particular case, a call to
the library function is emitted. This optimization can be disabled with the ~-fno-builtin
option (see Section 1.2 [Runtime Options|, page 1).

In the core.stdc.complex module, the functions cabs, cabsf, cabsl, cacos, cacosf,
cacosh, cacoshf, cacoshl, cacosl, carg, cargf, cargl, casin, casinf, casinh, casinhf,
casinhl, casinl, catan, catanf, catanh, catanhf, catanhl, catanl, ccos, ccosf, ccosh,
ccoshf, ccoshl, ccosl, cexp, cexpf, cexpl, clog, clogf, clogl, conj, conjf, conjl,
cpow, cpowf, cpowl, cproj, cprojf, cprojl, csin, csinf, csinh, csinhf, csinhl, csinl,
csqrt, csqrtf, csqrtl, ctan, ctanf, ctanh, ctanhf, ctanhl, ctanl may be handled as
built-in functions. All these functions have corresponding versions prefixed with __builtin_
in the gcc.builtins module.

In the core.stdc.ctype module, the functions isalnum, isalpha, isblank, iscntrl,
isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower,
toupper may be handled as built-in functions. All these functions have corresponding
versions prefixed with __builtin_ in the gcc.builtins module.

In the core.stdc.fenv module, the functions feclearexcept, fegetenv,
fegetexceptflag, fegetround, feholdexcept, feraiseexcept, fesetenv,
fesetexceptflag, fesetround, fetestexcept, feupdateenv may be handled as built-in
functions. All these functions have corresponding versions prefixed with __builtin_ in
the gcc.builtins module.

In the core.stdc.inttypes module, the function imaxabs may be handled as a built-in
function. All these functions have corresponding versions prefixed with __builtin_ in the
gcc.builtins module.

In the core.stdc.math module, the functions acos, acosf, acosh, acoshf, acoshl,
acosl, asin, asinf, asinh, asinhf, asinhl, asinl, atan, atan2, atan2f, atan2l, atanf,
atanh, atanhf, atanhl, atanl, cbrt, cbrtf, cbrtl, ceil, ceilf, ceill, copysign,
copysignf, copysignl, cos, cosf, cosh, coshf, coshl, cosl, erf, erfc, erfcf, erfcl,
erff, erfl, exp, exp2, exp2f, exp2l, expf, expl, expml, expmlf, expmll, fabs, fabsf,
fabsl, fdim, fdimf, fdiml, floor, floorf, floorl, fma, fmaf, fmal, fmax, fmaxf,
fmaxl, fmin, fminf, fminl, fmod, fmodf, fmodl, frexp, frexpf, frexpl, hypot, hypotf,
hypotl, ilogb, ilogbf, ilogbl, isinf, isnan, 1dexp, ldexpf, 1ldexpl, 1gamma, lgammaf,
lgammal, 11rint, 11rintf, 11rintl, 11round, 11lroundf, 11lroundl, log, 1logl0, loglOf,
logl01, loglp, loglpf, loglpl, log2, log2f, log2l, logb, logbf, logbl, logf, logl,
lrint, 1rintf, 1lrintl, lround, lroundf, lroundl, modf, modff, modfl, nan, nanf, nanl,
nearbyint, nearbyintf, nearbyintl, nextafter, nextafterf, nextafterl, nexttoward,
nexttowardf, nexttowardl, pow, powf, powl, remainder, remainderf, remainderl,
remquo, remquof, remquol, rint, rintf, rintl, round, roundf, roundl, scalbln,

Chapter 2: Language Reference 20

scalblnf, scalblnl, scalbn, scalbnf, scalbnl, signbit, sin, sinf, sinh, sinhf,
sinhl, sinl, sqrt, sqrtf, sqrtl, tan, tanf, tanh, tanhf, tanhl, tanl, tgamma, tgammaf,
tgammal, trunc, truncf, truncl may be handled as built-in functions. All these functions
have corresponding versions prefixed with __builtin_ in the gcc.builtins module.

In the core.stdc.stdio module, the functions fprintf, fputc, fputc_unlocked,
fputs, fwrite, printf, puts, snprintf, sprintf, vfprintf, vprintf, vsnprintf,
vsprintf may be handled as built-in functions. All these functions have corresponding
versions prefixed with __builtin_ in the gcc.builtins module.

In the core.stdc.stdlib module, the functions abort, abs, aligned_alloc, alloca,
calloc, exit, _Exit, free, labs, llabs, malloc, realloc may be handled as built-in
functions. All these functions have corresponding versions prefixed with __builtin_ in the
gcc.builtins module.

In the core.stdc.string module, the functions memchr, memcmp, memcpy, memmove,
memset, strcat, strchr, strcmp, strcpy, strcspn, strdup, strlen, strncat, strancmp,
strncpy, strpbrk, strrchr, strspn, strstr may be handled as built-in functions. All
these functions have corresponding versions prefixed with __builtin_ in the gcc.builtins
module.

In the core.stdc.time module, the function strftime may be handled as a built-in
function. All these functions have corresponding versions prefixed with __builtin_ in the
gcc.builtins module.

In the core.stdc.wctype module, the functions iswalnum, iswalpha, iswblank,
iswentrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper,
iswxdigit, towlower, towupper may be handled as built-in functions. All these functions
have corresponding versions prefixed with __builtin_ in the gcc.builtins module.

Within the core.sys package for POSIX and platform definitions, the functions
putchar_unlocked, putc_unlocked, posix_memalign, ffs, strcasecmp, strncasecmp,
stpcpy, stpncpy, strndup, strnlen, execl, execle, execlp, execv, execve, execvp,
_exit, fork may be handled as built-in functions. All these functions have corresponding
versions prefixed with __builtin_ in the gcc.builtins module.

2.3 Importing C Sources into D

ImportC is a C preprocessor and parser embedded into the GNU D implementation. It
enables direct importation of C files, without needing to manually prepare a D file corre-
sponding to the declarations in the C file.

ImportC is an implementation of ISO/TEC 9899:2011, which will be referred to as C11.
Prior versions, such as C99, C89, and K+R C, are not supported.

Assuming you have no file cstdio.c or main.d, the commands

cat > cstdio.c << @EOC

int printf(const char*, ...);

QEOC

cat > main.d << QEOD

import cstdio;

void main() { printf("Hello ImportC\n"); }
Q@EOD

gdc main.d -o main; ./main

will generate a program which will print ‘Hello ImportC’.

Chapter 2: Language Reference 21

ImportC does not have a preprocessor. It is designed to compile C files after they have
been first run through the C preprocessor. If the C file has a ‘.i’ extension, the file is
presumed to be already preprocessed. Preprocessing can be run manually:

gcc -E file.c > file.i

ImportC collects all the #def ine macros from the preprocessor run when it is run automat-
ically. The macros that look like manifest constants, such as:
#define COLOR 0x123456

are interpreted as D manifest constant declarations of the form:
enum COLOR = 0x123456;

The variety of macros that can be interpreted as D declarations may be expanded, but will
never encompass all the metaprogramming uses of C macros.

GNU D does not directly compile C files into modules that can be linked in with D code
to form an executable. When given a source file with the suffix ‘.c’, the compiler driver
program gdc instead runs the subprogram ccl.

gdc filel.d file2.c // d21 filel.d -o filel.s
// ccl file2.c -o file2.s
// as filel.s -o filel.o
// as file2.s -o file2.o0
// 1d filel.o file2.o0

2.4 Inline Assembly

The asm keyword allows you to embed assembler instructions within D code. GNU D
provides two forms of inline asm statements. A basic asm statement is one with no operands,
while an extended asm statement includes one or more operands.

asm FunctionAttributes {
AssemblerInstruction ;

asm FunctionAttributes {
AssemblerTemplate
: OutputOperands
[: InputOperands
[: Clobbers
[: GotoLabels |]| ;
}

The extended form is preferred for mixing D and assembly language within a function, but
to include assembly language in a function declared with the naked attribute you must use
basic asm.

uint incr (uint value)
{
uint result;
asm { "incl %0"
: "=a" (result)
: "a" (value);
}

return result;

Chapter 2: Language Reference 22

Multiple assembler instructions can appear within an asm block, or the instruction template
can be a multi-line or concatenated string. In both cases, GCC’s optimizers won’t discard
or move any instruction within the statement block.

bool hasCPUID()

{
uint flags = void;
asm nothrow @nogc {
"pushfl";
"pushfl";
"xorl %0, (%hesp)" :: "i" (0x00200000);
"POpfl";
"pushfl";
"popl %0" : "=a" (flags);
"xorl (%hesp), #%0" : "=a" (flags);
"popfl";
}
return (flags & 0x0020_0000) != 0;
}

The instruction templates for both basic and extended asm can be any expression that can
be evaluated at compile-time to a string, not just string literals.

uint invert(uint v)

{
uint result;
asm @safe @nogc nothrow pure {
genAsmInsn(" invert™)
: [res] “=r° (result)
: [argl] "r~ (v);
}
return result;
}

The total number of input + output + goto operands is limited to 30.

2.5 Intrinsics

The D language specification itself does not define any intrinsics that a compatible com-
piler must implement. Rather, within the D core library there are a number of modules
that define primitives with generic implementations. While the generic versions of these
functions are computationally expensive relative to the cost of the operation itself, compiler
implementations are free to recognize them and generate equivalent and faster code.

The following are the kinds of intrinsics recognized by GNU D.

2.5.1 Bit Operation Intrinsics

The following functions are a collection of intrinsics that do bit-level operations, available
by importing the core.bitop module.

Although most are named after x86 hardware instructions, it is not guaranteed that they
will result in generating equivalent assembly on x86. If the compiler determines there is a
better way to get the same result in hardware, then that will be used instead.

Chapter 2: Language Reference 23

int core.bitop.bsf (uint v) [Function]

int core.bitop.bsf (ulong v) [Function]
Scans the bits in v starting with bit 0, looking for the first set bit. Returns the bit
number of the first bit set. The return value is undefined if v is zero.

This intrinsic is the same as the GCC built-in function __builtin_ctz.

int core.bitop.bsr (uint v) [Function]

int core.bitop.bsr (ulong v) [Function]
Scans the bits in v from the most significant bit to the least significant bit, looking
for the first set bit. Returns the bit number of the first bit set. The return value is
undefined if v is zero.

This intrinsic is equivalent to writing the following:

result = __builtin_clz(v) ~ (v.sizeof * 8 - 1)
int core.bitop.bt (scope const(uint*) p, uint bitnum) [Function]
int core.bitop.bt (scope const(uint*) p, uint bitnum) [Function]

Tests the bit bitnum in the input parameter p. Returns a non-zero value if the bit
was set, and a zero if it was clear.
This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;
int core.bitop.btc (uint* p, uint bitnum) [Function]
int core.bitop.btc (ulong* p, ulong bitnum) [Function]

Tests and complements the bit bitnum in the input parameter p. Returns a non-zero
value if the bit was set, and a zero if it was clear.
This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J, bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

plbitnum / bits_per_unit] ~= bit_mask;
int core.bitop.btr (uint* p, uint bitnum) [Function]
int core.bitop.btr (ulong* p, ulong bitnum) [Function]

Tests and resets (sets to 0) the bit bitnum in the input parameter p. Returns a
non-zero value if the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

plbitnum / bits_per_unit] &= ~“bit_mask;

Chapter 2: Language Reference 24

int core.bitop.bts (uint* p, uint bitnum) [Function]

int core.bitop.bts (ulong* p, ulong bitnum) [Function]
Tests and sets the bit bitnum in the input parameter p. Returns a non-zero value if
the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

plbitnum / bits_per_unit] |= bit_mask;
ushort core.bitop.byteswap (ushort x) [Function]
uint core.bitop.bswap (uint x) [Function]
ulong core.bitop.bswap (ulong x) [Function]

Swaps the bytes in x end-to-end; for example, in a 4-byte uint, byte 0 becomes byte
3, byte 1 becomes byte 2, etc.

This intrinsic is the same as the GCC built-in function __builtin_bswap.

int core.bitop.popcnt (uint x) [Function]
int core.bitop.popcnt (ulong x) [Function]
Calculates the number of set bits in x.

This intrinsic is the same as the GCC built-in function __builtin_popcount.

T core.bitop.rol (T)(const T value, const uint count) [Template]
T core.bitop.rol (uint count, T)(const T value) [Template]
Bitwise rotate value left by count bit positions.
This intrinsic is equivalent to writing the following:

result = cast(T) ((value << count) | (value >> (T.sizeof * 8 - count)));

T core.bitop.ror (T)(const T value, const uint count) [Template]
T core.bitop.ror (uint count, T)(const T value) [Template]
Bitwise rotate value right by count bit positions.

This intrinsic is equivalent to writing the following:

result = cast(T) ((value >> count) | (value << (T.sizeof * 8 - count)));

2.5.2 Integer Overflow Intrinsics

The following functions are a collection of intrinsics that implement integral arithmetic
primitives that check for out-of-range results, available by importing the core.checkedint
module.

In all intrinsics, the overflow is sticky, meaning a sequence of operations can be done
and overflow need only be checked at the end.

int core.checkedint.adds (int x, int y, ref bool overflow) [Function]
long core.checkedint.adds (long x, long y, ref bool [Function]
overflow)

Add two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_sadd_overflow.

Chapter 2: Language Reference 25

int core.checkedint.addu (int x, int y, ref bool overflow) [Function]
long core.checkedint.addu (long x, long y, ref bool [Function]
overflow)

Add two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_uadd_overflow.

int core.checkedint.muls (int x, int y, ref bool overflow) [Function]
long core.checkedint.muls (long x, long y, ref bool [Function]
overflow)

Multiply two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_smul_overflow.

int core.checkedint.mulu (int x, int y, ref bool overflow) [Function]
long core.checkedint.mulu (long x, long y, ref bool [Function]
overflow)

Multiply two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_umul_overflow.

int core.checkedint.negs (int x, ref bool overflow) [Function]
long core.checkedint.negs (long x, ref bool overflow) [Function]
Negates an integer.

This intrinsic is equivalent to writing the following:

result = __builtin_ssub (0, x, overflow);
int core.checkedint.subs (int x, int y, ref bool overflow) [Function]
long core.checkedint.subs (long x, long y, ref bool [Function]
overflow)

Substract two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_ssub_overflow.

int core.checkedint.subu (int x, int y, ref bool overflow) [Function]
long core.checkedint.subu (long x, long y, ref bool [Function]
overflow)

Substract two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_usub_overflow.

2.5.3 Math Intrinsics

The following functions are a collection of mathematical intrinsics, available by importing
the core.math module.

float core.math.cos (float x) [Function]

double core.math.cos (double x) [Function]

real core.math.cos (real x) [Function]
Returns cosine of x, where x is in radians. The return value is undefined if x is greater
than 264,

This intrinsic is the same as the GCC built-in function __builtin_cos.

Chapter 2: Language Reference 26

float core.math.fabs (float x) [Function]
double core.math.fabs (double x) [Function]
real core.math.fabs (real x) [Function]

Compute the absolute value of x.
This intrinsic is the same as the GCC built-in function __builtin_fabs.

float core.math.ldexp (float n, int exp) [Function]
double core.math.ldexp (double n, int exp) [Function]
real core.math.ldexp (real n, int exp) [Function]

Compute n * 2°77,

This intrinsic is the same as the GCC built-in function __builtin_ldexp.

float core.math.rint (float x) [Function]
double core.math.rint (double x) [Function]
real core.math.rint (real x) [Function]

Rounds x to the nearest integer value, using the current rounding mode. If the return
value is not equal to x, the FE_INEXACT exception is raised. nearbyint performs the
same operation, but does not set the FE_INEXACT exception.

This intrinsic is the same as the GCC built-in function __builtin_rint.

float core.math.rndtol (float x) [Function]
double core.math.rndtol (double x) [Function]
real core.math.rndtol (real x) [Function]

Returns x rounded to a long value using the current rounding mode. If the integer
value of x is greater than long.max, the result is indeterminate.

This intrinsic is the same as the GCC built-in function __builtin_llround.

float core.math.sin (float x) [Function]
double core.math.sin (double x) [Function]
real core.math.sin (real x) [Function]
Returns sine of x, where x is in radians. The return value is undefined if x is greater
than 254,
This intrinsic is the same as the GCC built-in function __builtin_sin.
float core.math.sqrt (float x) [Function]
double core.math.sqrt (double x) [Function]
real core.math.sqrt (real x) [Function]

Compute the sqrt of x.
This intrinsic is the same as the GCC built-in function __builtin_sqrt.

T core.math.toPrec (T)(float f) [Template]
T core.math.toPrec (T)(double f) [Template]
T core.math.toPrec (T)(real f) [Template]

Round f to a specific precision.

In floating-point operations, D language types specify only a minimum precision, not
a maximum. The toPrec function forces rounding of the argument f to the precision
of the specified floating point type T. The rounding mode used is inevitably target-
dependent, but will be done in a way to maximize accuracy. In most cases, the default
is round-to-nearest.

Chapter 2: Language Reference 27

2.5.4 Variadic Intrinsics

The following functions are a collection of variadic intrinsics, available by importing the
core.stdc.stdarg module.

void core.stdc.stdarg.va_arg (T)(ref va_list ap, ref T [Template]
parmn)
Retrieve and store in parmn the next value from the va_list ap that is of type T.

This intrinsic is equivalent to writing the following:

parmn = __builtin_va_arg (ap, T);

T core.stdc.stdarg.va_arg (T)(ref va_list ap) [Template]
Retrieve and return the next value from the va_list ap that is of type T.

This intrinsic is equivalent to writing the following:

result = __builtin_va_arg (ap, T);
void core.stdc.stdarg.va_copy (out va_list dest, va_list [Function]
src)

Make a copy of src in its current state and store to dest.

This intrinsic is the same as the GCC built-in function __builtin_va_copy.

void core.stdc.stdarg.va_end (va_list ap) [Function]
Destroy ap so that it is no longer useable.

This intrinsic is the same as the GCC built-in function __builtin_va_end.

void core.stdc.stdarg.va_start (T)(out va_list ap, ref T [Template]
parmn)
Initialize ap so that it can be used to access the variable arguments that follow the
named argument parmn.

This intrinsic is the same as the GCC built-in function __builtin_va_start.

2.5.5 Volatile Intrinsics

The following functions are a collection of intrinsics for volatile operations, available by
importing the core.volatile module.

Calls to them are guaranteed to not be removed (as dead assignment elimination or
presumed to have no effect) or reordered in the same thread.

These reordering guarantees are only made with regards to other operations done
through these functions; the compiler is free to reorder regular loads/stores with regards
to loads/stores done through these functions.

This is useful when dealing with memory-mapped I/O (MMIO) where a store can have
an effect other than just writing a value, or where sequential loads with no intervening stores
can retrieve different values from the same location due to external stores to the location.

These functions will, when possible, do the load/store as a single operation. In general,
this is possible when the size of the operation is less than or equal to (void*).sizeof,
although some targets may support larger operations. If the load/store cannot be done as
a single operation, multiple smaller operations will be used.

Chapter 2: Language Reference 28

These are not to be conflated with atomic operations. They do not guarantee any
atomicity. This may be provided by coincidence as a result of the instructions used on
the target, but this should not be relied on for portable programs. Further, no memory
fences are implied by these functions. They should not be used for communication between
threads. They may be used to guarantee a write or read cycle occurs at a specified address.

ubyte core.volatile.volatileLoad (ubyte* ptr) [Function]

ushort core.volatile.volatileLoad (ushort* ptr) [Function]

uint core.volatile.volatileLoad (uint* ptr) [Function]

ulong core.volatile.volatileLoad (ulong#* ptr) [Function]
Read value from the memory location indicated by ptr.

ubyte core.volatile.volatileStore (ubyte* ptr, ubyte value) [Function]

ushort core.volatile.volatileStore (ushort* ptr, ushort [Function]
value)

uint core.volatile.volatileStore (uint* ptr, uint value) [Function]

ulong core.volatile.volatileStore (ulong* ptr, ulong value) [Function]

Write value to the memory location indicated by ptr.

2.5.6 CTFE Intrinsics

The following functions are only treated as intrinsics during compile-time function execution
(CTFE) phase of compilation to allow more functions to be computable at compile-time,
either because their generic implementations are too complex, or do some low-level bit
manipulation of floating point types.

Calls to these functions that exist after CTFE has finished will get standard code-
generation without any special compiler intrinsic suppport.

float std.math.exponential.exp (float x) [Function]
double std.math.exponential.exp (double x) [Function]
real std.math.exponential.exp (real x) [Function]

Calculates e®.

This function is evaluated during CTFE as the GCC built-in function __builtin_exp.

float std.math.exponential.expml (float x) [Function]
double std.math.exponential.expml (double x) [Function]
real std.math.exponential.expml (real x) [Function]
Calculates e — 1.0.
This function is evaluated during CTFE as the GCC built-in function __builtin_
expml.
float std.math.exponential.exp2 (float x) [Function]
double std.math.exponential.exp2 (double x) [Function]
real std.math.exponential.exp2 (real x) [Function]

Calculates 27.

This function is evaluated during CTFE as the GCC built-in function __builtin_
exp2.

Chapter 2: Language Reference 29

float std.math.exponential.log (float x) [Function]
double std.math.exponential.log (double x) [Function]
real std.math.exponential.log (real x) [Function]

Calculate the natural logarithm of x.
This function is evaluated during CTFE as the GCC built-in function __builtin_log.

float std.math.exponential.loglO (float x) [Function]
double std.math.exponential.loglO (double x) [Function]
real std.math.exponential.loglO (real x) [Function]
Calculates the base-10 logarithm of x.
This function is evaluated during CTFE as the GCC built-in function __builtin_
logl0.
float std.math.exponential.log2 (float x) [Function]
double std.math.exponential.log2 (double x) [Function]
real std.math.exponential.log2 (real x) [Function]
Calculates the base-2 logarithm of x.
This function is evaluated during CTFE as the GCC built-in function __builtin_
log2.
Largest!(F, G) std.math.exponential.pow (F, G) (F x, G y) [Template]
real std.math.exponential.pow (I, F)(I x, F y) [Template]

Calculates z¥, where y is a float.
This function is evaluated during CTFE as the GCC built-in function __builtin_pow.

F std.math.exponential.pow (F, G) (F x, G n) [Template]
Calculates =™, where n is an integer.
This function is evaluated during CTFE as the GCC built-in function __builtin_
powi.

real std.math.operations.fma (real x, real y, real z) [Function]

Returns (x * y) + z, rounding only once according to the current rounding mode.
This function is evaluated during CTFE as the GCC built-in function __builtin_fma.

F std.math.operations.fmax (F)(const F x, const F y) [Template]
Returns the larger of x and y.

This function is evaluated during CTFE as the GCC built-in function __builtin_
fmax.
F std.math.operations.fmin (F)(const F x, const F y) [Template]
Returns the smaller of x and y.
This function is evaluated during CTFE as the GCC built-in function __builtin_
fmin.
float std.math.rounding.ceil (float x) [Function]
double std.math.rounding.ceil (double x) [Function]
real std.math.rounding.ceil (real x) [Function]

Returns the value of x rounded upward to the next integer (toward positive infinity).

This function is evaluated during CTFE as the GCC built-in function __builtin_
ceil.

Chapter 2: Language Reference 30

float std.math.rounding.floor (float x) [Function]
double std.math.rounding.floor (double x) [Function]
real std.math.rounding.floor (real x) [Function]
Returns the value of x rounded downward to the next integer (toward negative infin-
ity).
This function is evaluated during CTFE as the GCC built-in function __builtin_
floor.
real std.math.rounding.round (real x) [Function]

Return the value of x rounded to the nearest integer. If the fractional part of x is
exactly 0.5, the return value is rounded away from zero.

This function is evaluated during CTFE as the GCC built-in function __builtin_
round.
real std.math.rounding.trunc (real x) [Function]

Returns the integer portion of x, dropping the fractional portion.

This function is evaluated during CTFE as the GCC built-in function __builtin_
trunc.

R std.math.traits.copysign (R, X)(R to, X from) [Template]
Returns a value composed of to with from’s sign bit.

This function is evaluated during CTFE as the GCC built-in function __builtin_
copysign.

bool std.math.traits.isFinite (X)(X x) [Template]
Returns true if x is finite.

This function is evaluated during CTFE as the GCC built-in function __builtin_
isfinite.

bool std.math.traits.isInfinity (X)(X x) [Template]
Returns true if x is infinite.
This function is evaluated during CTFE as the GCC built-in function __builtin_
isinf.

bool std.math.traits.isNaN (X)(X x) [Template]
Returns true if x is NaN.

This function is evaluated during CTFE as the GCC built-in function __builtin_

isnan.
float std.math.trigoometry.tan (float x) [Function]
double std.math.trigoometry.tan (double x) [Function]
real std.math.trigonometry.tan (real x) [Function]

Returns tangent of x, where x is in radians.

This intrinsic is the same as the GCC built-in function __builtin_tan.

Chapter 2: Language Reference 31

2.6 Predefined Pragmas

The pragma operator is used as a way to pass special information to the implementation
and allow the addition of vendor specific extensions. The standard predefined pragmas are
documented by the D language specification hosted at https://dlang.org/spec/pragmna.
html#predefined-pragmas. A D compiler must recognize, but is free to ignore any pragma
in this list.

Where a pragma is ignored, the GNU D compiler will emit a warning when the
-Wunknown-pragmas option is seen on the command-line.

pragma(crt_constructor)
pragma(crt_constructor) annotates a function so it is run after the C runtime
library is initialized and before the D runtime library is initialized. Functions
with this pragma must return void.

pragma(crt_constructor) void init() { }

pragma(crt_destructor)
pragma (crt_destructor) annotates a function so it is run after the D runtime
library is terminated and before the C runtime library is terminated. Calling
exit function also causes the annotated functions to run. Functions with this
pragma must return void.
pragma(crt_destructor) void init() { }

pragma(inline)

pragma(inline, false)

pragma(inline, true)
pragma(inline) affects whether functions are declared inlined or not. The
pragma takes two forms. In the first form, inlining is controlled by the
command-line options for inlining.

Functions annotated with pragma(inline, false) are marked uninlinable.
Functions annotated with pragma(inline, true) are always inlined.

pragma(1ib)
This pragma is accepted, but has no effect.
pragma(lib, "advapi32");

pragma(linkerDirective)
This pragma is accepted, but has no effect.
pragma(linkerDirective, "/FAILIFMISMATCH:_ITERATOR_DEBUG_LEVEL=2");

pragma(mangle)
pragma(mangle, "symbol_name") overrides the default mangling for a function
or variable symbol. The symbol name can be any expression that must evaluate
at compile time to a string literal. This enables linking to a symbol which is a
D keyword, since an identifier cannot be a keyword.

Targets are free to apply a prefix to the user label of the symbol name in as-
sembly. For example, on x86_64-apple-darwin, ‘symbol_name’ would produce
‘_symbol_name’. If the mangle string begins with ‘*’, then pragma (mangle) will
output the rest of the string unchanged.

pragma(mangle, "body")

https://dlang.org/spec/pragma.html#predefined-pragmas
https://dlang.org/spec/pragma.html#predefined-pragmas

Chapter 2: Language Reference 32

extern(C) void body_func();

pragma(mangle, "function")
extern(C++) struct _function {}

pragma(msg)
pragma(msg, "message") causes the compiler to print an informational mes-
sage with the text ‘message’. The pragma accepts multiple arguments, each to
which is evaluated at compile time and then all are combined into one concate-
nated message.

pragma(msg, "compiling...", 6, 1.0); // prints "compiling...61.0"

pragma(printf)

pragma(scanf)
pragma(printf) and pragma(scanf) specifies that a function declaration with
printf or scanf style arguments that should be type-checked against a format
string.
A printf-like or scanf-like function can either be an extern(C) or extern(C++)
function with a format parameter accepting a pointer to a O-terminated char
string, immediately followed by either a . .. variadic argument list or a param-
eter of type va_list as the last parameter.

extern(C):

pragma(printf)
int printf(scope const char* format, scope const ...);

pragma(scanf)
int vscanf(scope const char* format, va_list arg);

pragma(startaddress)
This pragma is accepted, but has no effect.

void foo() { }
pragma(startaddress, foo);

2.7 Predefined Versions

Several conditional version identifiers are predefined; you use them without supplying their
definitions. They fall into three classes: standard, common, and target-specific.

Predefined version identifiers from this list cannot be set from the command line or from
version statements. This prevents things like both Windows and linux being simultaneously
set.

2.7.1 Standard Predefined Versions

The standard predefined versions are documented by the D language specification hosted
at https://dlang.org/spec/version.html#predefined-versions.

all
none Version none is never defined; used to just disable a section of code. Version
all is always defined; used as the opposite of none.

https://dlang.org/spec/version.html#predefined-versions

Chapter 2: Language Reference 33

BigEndian

LittleEndian

These versions reflect the byte order of multi-byte data in memory.
LittleEndian is set when the least significant byte is first. BigEndian is set
when the most significant byte is first.

CRuntime_Bionic
CRuntime_Glibc
CRuntime_Microsoft
CRuntime_Musl
CRuntime_Newlib
CRuntime_UClibc

These versions reflect which standard C library is being linked in. CRuntime_
Bionic is set when Bionic is the default C library. CRuntime_Glibc is set when
GLIBC is the default C library. CRuntime_Microsoft is set when MSVCRT is
the default C library. CRuntime_Musl is set when musl is the default C library.
CRuntime_Newlib is set when Newlib is the default C library. CRuntime_UClibc
is set when uClibc is the default C library.

CppRuntime_Gcc

D_BetterC

D_Coverage

D_Ddoc

This version is defined when the standard C++ library being linked in is
libstdc++.

This version is defined when the standard D libraries are not being implicitly
linked in. This also implies that features of the D language that rely on excep-
tions, module information, or run-time type information are disabled as well.
Enabled by -fno-druntime.

This version is defined when code coverage analysis instrumentation is being
generated. Enabled by -ftest-coverage.

This version is defined when Ddoc documentation is being generated. Enabled
by -fdoc.

D_Exceptions

This version is defined when exception handling is supported. Disabled by
-fno-exceptions.

D_HardFloat
D_SoftFloat

These versions reflect the floating-point ABI in use by the target. D_HardFloat
is set when the target hardware has a floating-point unit. D_SoftFloat is set
when the target hardware does not have a floating-point unit.

D_Invariants

D_LP64

This version is defined when checks are being emitted for class invariants and
struct invariants. Enabled by -finvariants.

This version is defined when pointers are 64-bits. Not to be confused with with
C’s __LP64__ model.

Chapter 2: Language Reference 34

D_ModulelInfo
This version is defined when run-time module information (also known as
ModuleInfo) is supported. Disabled by -fno-moduleinfo.

D_NoBoundsChecks
This version is defined when array bounds checks are disabled. Enabled by
—-fno-bounds-checks.

D_Optimized
This version is defined in all optimizing compilations.

D_PIC This version is defined when position-independent code is being generated. En-
abled by -fPIC.

D_PIE This version is defined when position-independent code that can be only linked
into executables is being generated. Enabled by -fPIE.

D_PreConditions
This version is defined when checks are being emitted for in contracts. Disabled
by -fno-preconditions.

D_PostConditions
This version is defined when checks are being emitted for out contracts. Dis-
abled by -fno-postconditions.

D_TypeInfo
This version is defined when run-time type information (also known as
TypeInfo) is supported. Disabled by -fno-rtti.

D_Version2
This version defined when this is a D version 2 compiler.

unittest This version is defined when the unittest code is being compiled in. Enabled
by -funittest.

2.7.2 Common Predefined Versions

The common predefined macros are GNU D extensions. They are available with the same
meanings regardless of the machine or operating system on which you are using GNU D.
Their names all start with GNU.

GNU This version is defined by the GNU D compiler. If all you need to know is
whether or not your D program is being compiled by GDC, or a non-GDC
compiler, you can simply test version(GNU).

GNU_CET This version is defined when -fcf-protection is used. The protection level
is also set in __traits(getTargetInfo, "CET") (see Section 2.9 [Traits],
page 37).

GNU_DWARF2_Exceptions

GNU_SEH_Exceptions

GNU_SjLj_Exceptions
These versions reflect the mechanism that will be used for exception han-
dling by the target. GNU_DWARF2_Exceptions is defined when the target uses

Chapter 2: Language Reference 35

DWARF 2 exceptions. GNU_SEH_Exceptions is defined when the target uses
SEH exceptions. GNU_SjLj_Exceptions is defined when the target uses the
setjmp/longjmp-based exception handling scheme.

GNU_EMUTLS
This version is defined if the target does not support thread-local storage, and
an emulation layer is used instead.

GNU_InlineAsm
This version is defined when asm statements use GNU D style syntax. (see
Section 2.4 [Inline Assembly], page 21)

GNU_StackGrowsDown
This version is defined if pushing a word onto the stack moves the stack pointer
to a smaller address, and is undefined otherwise.

2.7.3 Target-specific Predefined Versions

The D compiler normally predefines several versions that indicate what type of system and
machine is in use. They are obviously different on each target supported by GCC.

AArch64 Version relating to the AArch64 family of processors.
Android Version relating to the Android platform.

ARM
ARM_HardFloat
ARM_SoftFloat

ARM_SoftFP
ARM_Thumb
Versions relating to the ARM family of processors.
Cygwin Version relating to the Cygwin environment.
darwin Deprecated; use 08X instead.
DragonF1yBSD
Versions relating to DragonFlyBSD systems.
FreeBSD
FreeBSD_9
FreeBSD_10
FreeBSD_11
FreeBSD_. ..
Versions relating to FreeBSD systems. The FreeBSD major version number is
inferred from the target triplet.
HPPA
HPPA64 Versions relating to the HPPA family of processors.
Hurd Version relating to GNU Hurd systems.
linux Version relating to Linux systems.

MinGW Version relating to the MinGW environment.

Chapter 2: Language Reference 36

MIPS32
MIPS64
MIPS_EABI
MIPS_HardFloat
MIPS_N32
MIPS_N64
MIPS_032
MIPS_064
MIPS_SoftFloat
Versions relating to the MIPS family of processors.

NetBSD Version relating to NetBSD systems.

OpenBSD Version relating to OpenBSD systems.

0sX Version relating to OSX systems.

Posix Version relating to POSIX systems (includes Linux, FreeBSD, OSX, Solaris,
ete).

PPC

PPC64

PPC_HardFloat
PPC_SoftFloat
Versions relating to the PowerPC family of processors.

RISCV32
RISCV64 Versions relating to the RISC-V family of processors.

S390
SystemZ Versions relating to the S/390 and System Z family of processors.

3390X Deprecated; use SystemZ instead.
Solaris Versions relating to Solaris systems.

SPARC
SPARC64
SPARC_HardFloat
SPARC_SoftFloat
SPARC_V8P1lus
Versions relating to the SPARC family of processors.

Thumb Deprecated; use ARM_Thumb instead.

D_X32
X86
X86_64 Versions relating to the x86-32 and x86-64 family of processors.

Windows
Win32
Win64 Versions relating to Microsoft Windows systems.

Chapter 2: Language Reference 37

2.8 Special Enums

Special enum names are used to represent types that do not have an equivalent basic D type.
For example, C++ types used by the C++ name mangler.

Special enums are declared opaque, with a base type explicitly set. Unlike regular opaque
enums, special enums can be used as any other value type. They have a default .init value,
as well as other enum properties available (.min, .max). Special enums can be declared in
any module, and will be recognized by the compiler.

import gcc.builtins;
enum __c_long : __builtin_clong;
_c_long var = 0x800A;

The following identifiers are recognized by GNU D.

__c_complex_double
C _Complex double type.

__c_complex_float
C _Complex float type.

__c_complex_real
C _Complex long double type.

__c_long C++ long type.

__c_longlong
C++ long long type.

__c_long_double
C long double type.

__c_ulong
C++ unsigned long type.

__c_ulonglong
C++ unsigned long long type.

__c_wchar_t
C++ wchar_t type.

The core.stdc.config module declares the following shorthand alias types for
convenience: c_complex_double, c_complex_float, c_complex_real, cpp_long,
cpp_longlong, c_long_double, cpp_ulong, cpp_ulonglong.

It may cause undefined behavior at runtime if a special enum is declared with a base type
that has a different size to the target C/C++ type it is representing. The GNU D compiler
will catch such declarations and emit a warning when the -Wmismatched-special-enum
option is seen on the command-line.

2.9 Traits

Traits are extensions to the D programming language to enable programs, at compile time,

to get at information internal to the compiler. This is also known as compile time reflection.
GNU D implements a __traits(getTargetInfo) trait that receives a string key as its

argument. The result is an expression describing the requested target information.

version (0SX)

Chapter 2: Language Reference 38

{

static assert(__traits(getTargetInfo, "objectFormat") == "macho");
}
Keys for the trait are implementation defined, allowing target-specific data for exotic targets.
A reliable subset exists which a D compiler must recognize. These are documented by the D
language specification hosted at https://dlang.org/spec/traits.html#getTargetInfo.

The following keys are recognized by GNU D.

CET When -fcf-protection is used, the first bit is set to 1 for the value branch
and the second bit is set to 1 for the value return.

cppRuntimelibrary
The C++ runtime library affinity for this toolchain.

cppStd The version of the C++ standard supported by extern(C++) code, equivalent
to the __cplusplus macro in a C++ compiler.

floatAbi Floating point ABI; may be ‘hard’, ‘soft’, or ‘softfp’.

objectFormat
Target object format.

2.10 Vector Extensions

CPUs often support specialized vector types and vector operations (aka media instructions).
Vector types are a fixed array of floating or integer types, and vector operations operate
simultaneously on them.

alias int4 = __vector(int[4]);

All the basic integer types can be used as base types, both as signed and as unsigned: byte,
short, int, long. In addition, float and double can be used to build floating-point vector
types, and void to build vectors of untyped data. Only sizes that are positive power-of-two
multiples of the base type size are currently allowed.

The core.simd module has the following shorthand aliases for commonly supported vector
types: byte8, bytel6, byte32, byte64, doublel, double2, double4, double8, float2,
float4, float8, floatl6, int2, int4, int8, int16, longl, long2, long4, long8, short4,
short8, shortl16, short32, ubyte8, ubytel6, ubyte32, ubyte64, uint2, uint4, uints,
uint16, ulongl, ulong?2, ulong4, ulong8, ushort4, ushort8, ushort16, ushort32, voids,
void16, void32, void64. All these aliases correspond to __vector (type[N]).

Which vector types are supported depends on the target. Only vector types that are
implemented for the current architecture are supported at compile-time. Vector operations
that are not supported in hardware cause GNU D to synthesize the instructions using a
narrower mode.

alias v4i = __vector(int[4]);
alias v128f = __vector(float[128]); // Error: not supported on this platform

int4 a, b, c;

C

a * b; // Natively supported on x86 with SSE4
c b

*
a/ b; // Always synthesized

https://dlang.org/spec/traits.html#getTargetInfo

Chapter 2: Language Reference 39

Vector types can be used with a subset of normal D operations. Currently, GNU D allows
using the following operators on these types: +, —, *, /, unary+, unary-.

alias int4 = __vector(int[4]);
int4 a, b, c;

c =a+ b;

It is also possible to use shifting operators <<, >>, the modulus operator %, logical operations
&, |, 7, and the complement operator unary~ on integer-type vectors.

For convenience, it is allowed to use a binary vector operation where one operand is a
scalar. In that case the compiler transforms the scalar operand into a vector where each
element is the scalar from the operation. The transformation happens only if the scalar
could be safely converted to the vector-element type. Consider the following code.

alias int4 = __vector(int[4]);
int4 a, b;
long 1;
a=>b+1; // a=b+ [1,1,1,1];
a=2x*b; // a=1[2,2,2,2] * b;
a=1+a; // Error, incompatible types.
Vector comparison is supported with standard comparison operators: ==, !=, <, <=, >,

>=. Comparison operands can be vector expressions of integer-type or real-type. Compar-
ison between integer-type vectors and real-type vectors are not supported. The result of
the comparison is a vector of the same width and number of elements as the comparison
operands with a signed integral element type.

Vectors are compared element-wise producing 0 when comparison is false and -1 (constant
of the appropriate type where all bits are set) otherwise. Consider the following example.

alias int4 = __vector(int([4]);

int4 a = [1,2,3,4];

int4 b = [3,2,1,4];

int4 c;

c=a> b; // The result would be [0, 0,-1, 0]
c = a == b; // The result would be [0,-1, 0,-1]

2.11 Vector Intrinsics

The following functions are a collection of vector operation intrinsics, available by importing
the gcc.simd module.

void gcc.simd.prefetch (bool rw, ubyte locality) [Template]
(const(void)* addr)
Emit the prefetch instruction. The value of addr is the address of the memory to
prefetch. The value of rw is a compile-time constant one or zero; one means that the
prefetch is preparing for a write to the memory address and zero, the default, means
that the prefetch is preparing for a read. The value locality must be a compile-time
constant integer between zero and three.

Chapter 2: Language Reference 40

This intrinsic is the same as the GCC built-in function __builtin_prefetch.

for (i = 0; i < n; i++)

{
import gcc.simd : prefetch;
ali] = alil + blil;
prefetch! (true, 1) (&ali+jl);
prefetch! (false, 1)(&b[i+j]);
/...

}

V gcc.simd.loadUnaligned (V)(const V* p) [Template]
Load unaligned vector from the address p.
float4d v;

ubyte[16] arr;
v = loadUnaligned(cast(float4*)arr.ptr);

V gcc.simd.storeUnaligned (V)(Vx p, V value) [Template]
Store vector value to unaligned address p.

float4d v;
ubyte[16] arr;

storeUnaligned(cast(float4*)arr.ptr, v);

VO gcc.simd.shuffle (VO, V1, M)(VO opl, V1 op2, M mask) [Template]

V gcc.simd.shuffle (V, M)(V opl, M mask) [Template]
Construct a permutation of elements from one or two vectors, returning a vector of
the same type as the input vector(s). The mask is an integral vector with the same
width and element count as the output vector.

This intrinsic is the same as the GCC built-in function __builtin_shuffle.

int4 a = [1, 2, 3, 4];
int4 b = [5, 6, 7, 8];
int4 maskl = [0, 1, 1, 3];
int4 mask2 = [0, 4, 2, 5];
int4 res;
res = shuffle(a, maskl); // res is [1,2,2,4]
res = shuffle(a, b, mask2); // res is [1,5,3,6]
V gcc.simd.shufflevector (V1, V2, M...)(V1 op1l, V2 op2, M [Template]
mask)
V gcc.simd.shufflevector (V, mask...)(V opl, V op2) [Template]

Construct a permutation of elements from two vectors, returning a vector with the
same element type as the input vector(s), and same length as the mask.

This intrinsic is the same as the GCC built-in function __builtin_shufflevector.

int8 a = [1, -2, 3, -4, 5, -6, 7, -8];
int4 b = shufflevector(a, a, 0, 2, 4, 6); // b is [1,3,5,7]
int4 ¢ = [-2, -4, -6, -8];
int8 d = shufflevector!(int8, 4, 0, 5, 1, 6, 2, 7, 3)(c, b); // 4 is a
E gcc.simd.extractelement (V, int idx)(V val) [Template]

Extracts a single scalar element from a vector val at a specified index idx.

int4 a = [0, 10, 20, 30];
int k = extractelement! (int4, 2)(a); // a is 20

Chapter 2: Language Reference 41

V gcc.simd.insertelement (V, int idx)(V val, B e) [Template]
Inserts a scalar element e into a vector val at a specified index idx.

int4 a = [0, 10, 20, 30];
int4 b = insertelement!(int4, 2)(a, 50); // b is [0,10,50,30]

V gcc.simd.convertvector (V, T)(T val) [Template]
Convert a vector val from one integral or floating vector type to another. The result
is an integral or floating vector that has had every element cast to the element type
of the return type.

This intrinsic is the same as the GCC built-in function __builtin_convertvector.

int4 a = [1, -2, 3, -4];

float4 b = [1.5, -2.5, 3, 7];

float4 ¢ = convertvector!floatd(a); // ¢ is [1,-2,3,-4]
doubled4 d = convertvector!doubled4(a); // d is [1,-2,3,-4]
double4 e = convertvector!doubled4(b); // e is [1.5,-2.5,3,7]
int4 f = convertvector!int4(b); // £ is [1,-2,3,7]

VO gcc.simd.blendvector (VO, V1, M)(VO opO, V1 opl, M mask) [Template]
Construct a conditional merge of elements from two vectors, returning a vector of the
same type as the input vector(s). The mask is an integral vector with the same width
and element count as the output vector.

int4 a = [1, 2, 3, 4];
int4 b = [3, 2, 1, 4];
auto ¢ = blendvector(a, b, a > b); // c is [3,2,3,4]
auto d = blendvector(a, b, a < b); // d is [1,2,1,4]

2.12 Missing Features and Deviations

Some parts of the D specification are hard or impossible to implement with GCC, they
should be listed here.

Bit Operation Intrinsics
The Digital Mars D compiler implements the core.bitop intrinsics inp,
inpw, inpl, outp, outpw, and outpl. These are not recognized by GNU
D. On most targets, equivalent intrinsics that have the same effect would
be core.volatile.loadVolatile and core.volatile.storeVolatile
respectively (see Section 2.5.5 [Volatile Intrinsics], page 27).

On x86 targets, if an in or out instruction is specifically required, that can be
achieved using assembler statements instead.
ubyte inp(uint port)

{
ubyte value;
asm { "inb %wl, %bO0" : "=a" (value) : "Nd" (port); }
return value;

}

void outp(uint port, ushort value)

{
asm { "outb %b0, %wi" : : "a" (value), "Nd" (port); }
}

Chapter 2: Language Reference 42

Floating-Point Intermediate Values

GNU D uses a software compile-time floating-point type that assists in cross-
compilation and support for arbitrary target real precisions wider than 80
bits. Because of this, the result of floating-point CTFE operations may have
different results in GNU D compared with other D compilers that use the host’s
native floating-point type for storage and CTFE. In particular, GNU D won’t
overflow or underflow when a target real features a higher precision than the
host. Differences also extend to .stringof representations of intermediate
values due to formatting differences with sprintf ("%Lg").

version (GNU)

assert((25.5) .stringof ~ (3.01).stringof == "2.55e+13.01e+0");
else

assert((25.5) .stringof ~ (3.01).stringof == "25.53.01");

Function Calling Conventions
GNU D does not implement the extern(D) calling convention for x86 as de-
scribed in the D specification hosted at https://dlang.org/spec/abi.html#
function_calling_conventions.

Instead, there is no distinction between extern(C) and extern(D) other than
name mangling.

ImportC Limitations
GNU D does not run the preprocessor automatically for any ImportC sources.
Instead all C files are expected to be manually preprocessed before they are
imported into the compilation.

Inline Assembler
GNU D does not implement the D inline assembler for x86 and x86_64 as de-
scribed in the D specification hosted at https://dlang.org/spec/iasm.html.
Nor does GNU D predefine the D_InlineAsm_X86 and D_InlineAsm_X86_64
version identifiers to indicate support.

The GNU D compiler uses an alternative, GCC-based syntax for inline assem-
bler (see Section 2.4 [Inline Assembly], page 21).

Interfacing to Objective-C
GNU D does not support interfacing with Objective-C, nor its protocols,
classes, subclasses, instance variables, instance methods and class methods.
The extern(Objective-C) linkage is ignored, as are the Qoptional and
@selector attributes. The D_ObjectiveC version identifier is not predefined
for compilations.

Pragma Directives
Pragmas that are designed to embed information into object files or other-
wise pass options to the linker are not supported by GNU D. These include
pragma(lib), pragma(linkerDirective), and pragma(startaddress).

SIMD Intrinsics
The Digital Mars D compiler implements the core.simd intrinsics __simd, __
simd_ib, __simd_sto. These are not recognized by GNU D, nor does GNU D
predefine the D_SIMD version identifier to indicate support.

https://dlang.org/spec/abi.html#function_calling_conventions
https://dlang.org/spec/abi.html#function_calling_conventions
https://dlang.org/spec/iasm.html

Chapter 2: Language Reference 43

On x86 targets, all intrinsics are available as functions in the gcc.builtins
module, and have predictable equivalents.

version (DigitalMars)

{
__simd (XMM.PSLLW, opl, op2);
__simd_ib(XMM.PSLLW, opl, imm8);
}
version (GNU)
{
__builtin_ia32_psllw(opl, op2);
__builtin_ia32_psllwi(opl, imm8);
}

Typelnfo-based va_arg
The Digital Mars D compiler implements a version of core.vararg.va_arg
that accepts a run-time TypeInfo argument for use when the static type is not
known. This function is not implemented by GNU D. It is more portable to
use variadic template functions instead.

44

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://www.fsf.org

GNU General Public License 45

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 46

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

GNU General Public License 47

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 48

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

GNU General Public License 49

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 50

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

GNU General Public License 51

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 52

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

GNU General Public License 53

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 54

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

95

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://www.fsf.org

GNU Free Documentation License 56

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 57

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

GNU Free Documentation License 58

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 59

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may