The GNU D Compiler

For ccc version 16.0.0 (pre-release)

(GCC)

David Friedman, Iain Buclaw

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 2006-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Invoking gdc.............., 1
1.1 Input and Output files........ ..o 1
1.2 Runtime Options 1
1.3 Options for Directory Search............. 5
1.4 Code Generationo.uiiiiiiiiiiiiiiiiii i 6
1.5 Warningsottt e 7
1.6 Options for Linking.......... . ..o 9
1.7 Developer Options.ouiiit i 10

2 Language Reference............................ 11
2.1 ABtrIbULES . .o 11

2.1.1 Attribute Syntaxo 11
2.1.2 Common Attributeso 12
2.1.3 Other Attributes i 16
2.1.4 Target-specific Attributes..........ol 17
2.2 Built-in Functionso 17
2.2.1 Built-in Types. ... 18
2.2.2 Querying Available Built-ins.............................. 18
2.2.3 Other Built-in Functions.................................. 19
2.3 Importing C Sources into D............. .. i 20
2.4 Inline Assembly 21
2.5 INtrinsiCs . .o e 22
2.5.1 Bit Operation Intrinsics............cooiiiiiii ... 22
2.5.2 Integer Overflow Intrinsics........... ...t 24
2.5.3 Math Intrinsics......cooviiiiii e 25
2.5.4 Variadic Intrinsics oo i 27
2.5.5 Volatile Intrinsics. ... 27
2.5.6 CTFE Intrinsicsooiiiiiiiiiiiiii e 28
2.6 Predefined Pragmas i i 31
2.7 Predefined Versions. ... 32
2.7.1 Standard Predefined Versions................... 32
2.7.2 Common Predefined Versions, 34
2.7.3 Target-specific Predefined Versions........................ 35
2.8 Special Enums. 37
2.9 TradbS . ottt 37
2.10 Vector EXtensionsuuuuueiiiieiiniiiiiiiiiiiieea.., 38
2.11 Vector Intrinsics.o 39
2.12 Missing Features and Deviations.............................. 41
GNU General Public License 44
GNU Free Documentation License 55

ADDENDUM: How to use this License for your documents.......... 62

Option Index

Keyword Index.................

ii

1 Invoking gdc

The gdc command is the GNU compiler for the D language and supports many of the same
options as gcc. See Section “Option Summary” in Using the GNU Compiler Collection
(GCC). This manual only documents the options specific to gdc.

1.1 Input and Output files

For any given input file, the file name suffix determines what kind of compilation is done.
The following kinds of input file names are supported:

file.d D source files.
file.dd Ddoc source files.
file.di D interface files.

You can specify more than one input file on the gdc command line, each being compiled
separately in the compilation process. If you specify a -o file option, all the input files
are compiled together, producing a single output file, named file. This is allowed even when
using -S or -c.

A D interface file contains only what an import of the module needs, rather than the
whole implementation of that module. They can be created by gdc from a D source file
by using the -H option. When the compiler resolves an import declaration, it searches for
matching .di files first, then for .d.

A Ddoc source file contains code in the D macro processor language. It is primarily
designed for use in producing user documentation from embedded comments, with a slight
affinity towards HTML generation. If a .d source file starts with the string Ddoc then it is
treated as general purpose documentation, not as a D source file.

1.2 Runtime Options

These options affect the runtime behavior of programs compiled with gdc.

-fall-instantiations
Generate code for all template instantiations. The default template emission
strategy is to not generate code for declarations that were either instantiated
speculatively, such as from __traits(compiles, ...), or that come from an
imported module not being compiled.

-fno-assert
Turn off code generation for assert contracts.

-fno-bounds-check
Turns off array bounds checking for all functions, which can improve perfor-
mance for code that uses arrays extensively. Note that this can result in un-
predictable behavior if the code in question actually does violate array bounds
constraints. It is safe to use this option if you are sure that your code never
throws a RangeError.

Chapter 1: Invoking gdc 2

—-fbounds-check=value
An alternative to -fbounds-check that allows more control as to where bounds
checking is turned on or off. The following values are supported:

4 b

on Turns on array bounds checking for all functions.

‘safeonly’
Turns on array bounds checking only for @safe functions.

‘off’ Turns off array bounds checking completely.

-fno-builtin
Don’t recognize built-in functions unless they begin with the prefix
‘__builtin_’. By default, the compiler will recognize when a function in the
core.stdc package is a built-in function.

-fcheckaction=value
This option controls what code is generated on an assertion, bounds check, or
final switch failure. The following values are supported:

‘context’ Throw an AssertError with extra context information.
‘halt’ Halt the program execution.
‘throw’ Throw an AssertError (the default).

-fdebug

-fdebug=value
Turn on compilation of conditional debug code into the program. The -fdebug
option itself sets the debug level to 1, while -fdebug= enables debug code that
are identified by any of the following values:

‘ident’ Turns on compilation of any debug code identified by ident.

-fno-druntime
Implements https://dlang.org/spec/betterc.html. Assumes that compila-
tion targets an environment without a D runtime library.

This is equivalent to compiling with the following options:

gdc -nophoboslib -fno-exceptions -fno-moduleinfo -fno-rtti

-fextern-std=standard
Sets the C++ name mangling compatibility to the version identified by standard.
The following values are supported:

‘c++98’

‘c++03’ Sets __traits(getTargetInfo, "cppStd") to 199711.
‘c++1l’ Sets __traits(getTargetInfo, "cppStd") to 201103.
‘ct++14’ Sets __traits(getTargetInfo, "cppStd") to 201402.

‘cH+1T’ Sets __traits(getTargetInfo, "cppStd") to 201703. This is the
default.

‘c++20’ Sets __traits(getTargetInfo, "cppStd") to 202002.

https://dlang.org/spec/betterc.html

Chapter 1: Invoking gdc 3

‘c++23’ Sets __traits(getTargetInfo, "cppStd") to 202302.

-finclude-imports
Include imported modules in the compilation, as if they were given on the
command line. When this option is enabled, all imported modules are compiled
except those that are part of libphobos.

-fno-invariants
Turns off code generation for class invariant contracts.

-fmain Generates a default main() function when compiling. This is useful when
unittesting a library, as it enables running the unittests in a library without
having to manually define an entry-point function. This option does nothing
when main is already defined in user code.

-fno-moduleinfo
Turns off generation of the ModuleInfo and related functions that would be-
come unreferenced without it, which may allow linking to programs not written
in D. Functions that are not be generated include module constructors and de-
structors (static this and static “this), unittest code, and DSO registry
functions for dynamically linked code.

-fonly=filename
Tells the compiler to parse and run semantic analysis on all modules on the
command line, but only generate code for the module specified by filename.

-fno-postconditions
Turns off code generation for postcondition out contracts.

-fno-preconditions
Turns off code generation for precondition in contracts.

-fpreview=id
Turns on an upcoming D language change identified by id. The following values
are supported:

‘all’ Turns on all upcoming D language features.
‘bitfields’
Implements bit-fields in D.

‘dip1000’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/other/DIP1000.md (Scoped pointers).

‘dip1008’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/other/DIP1008.md (Allow exceptions in @nogc code).

‘dip1021’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/accepted/DIP1021.md (Mutable function arguments).

‘dip25’ Implements https://github.com/dlang/DIPs/blob/master/
DIPs/archive/DIP25.md (Sealed references).

‘dtorfields’
Turns on generation for destructing fields of partially constructed
objects.

https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1008.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1008.md
https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md
https://github.com/dlang/DIPs/blob/master/DIPs/accepted/DIP1021.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md

Chapter 1: Invoking gdc 4

—-frelease

—-frevert=

‘fieldwise’
Turns on generation of struct equality to use field-wise comparisons.

‘fixaliasthis’
Implements new lookup rules that check the current scope for alias
this before searching in upper scopes.

‘fiximmutableconv’
Disallows unsound immutable conversions that were formerly in-
correctly permitted.

in Implements in parameters to mean scope const [ref] and ac-
cepts rvalues.

‘inclusiveincontracts’
Implements in contracts of overridden methods to be a superset of
parent contract.

‘nosharedaccess’
Turns off and disallows all access to shared memory objects.

‘rvaluerefparam’
Implements rvalue arguments to ref parameters.

‘systemvariables’
Disables access to variables marked @system from @safe code.

Turns on compiling in release mode, which means not emitting runtime checks
for contracts and asserts. Array bounds checking is not done for @system and
@trusted functions, and assertion failures are undefined behavior.

This is equivalent to compiling with the following options:

gdc -fno-assert -fbounds-check=safe -fno-invariants \
-fno-postconditions -fno-preconditions -fno-switch-errors

Turns off a D language feature identified by id. The following values are sup-
ported:

‘all’ Turns off all revertable D language features.

‘dip1000’ Reverts https://github.com/dlang/DIPs/blob/master/DIPs/
other/DIP1000.md (Scoped pointers).

‘dip25’ Reverts https://github.com/dlang/DIPs/blob/master/DIPs/
archive/DIP25.md (Sealed references).

‘dtorfields’
Turns off generation for destructing fields of partially constructed
objects.

‘intpromote’
Turns off C-style integral promotion for unary +, - and ~ expres-
sions.

https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/other/DIP1000.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md
https://github.com/dlang/DIPs/blob/master/DIPs/archive/DIP25.md

Chapter 1: Invoking gdc 5

-fno-rtti
Turns off generation of run-time type information for all user defined types. Any
code that uses features of the language that require access to this information
will result in an error.

-fno-switch-errors
This option controls what code is generated when no case is matched in a final
switch statement. The default run time behavior is to throw a SwitchError.
Turning off ~-fswitch-errors means that instead the execution of the program
is immediately halted.

-funittest
Turns on compilation of unittest code, and turns on the version(unittest)
identifier. This implies -fassert.

-fversion=value
Turns on compilation of conditional version code into the program identified
by any of the following values:

‘ident’ Turns on compilation of version code identified by ident.

-fno-weak-templates
Turns off emission of declarations that can be defined in multiple objects as weak
symbols. The default is to emit all public symbols as weak, unless the target
lacks support for weak symbols. Disabling this option means that common
symbols are instead put in COMDAT or become private.

1.3 Options for Directory Search

These options specify directories to search for files, libraries, and other parts of the compiler:

-Idir Specify a directory to use when searching for imported modules at compile time.
Multiple -I options can be used, and the paths are searched in the same order.

-Jdir Specify a directory to use when searching for files in string imports at com-
pile time. This switch is required in order to use import(file) expressions.
Multiple -J options can be used, and the paths are searched in the same order.

-Ldir When linking, specify a library search directory, as with gcc.

-Bdir This option specifies where to find the executables, libraries, source files, and
data files of the compiler itself, as with gcc.

-fmodule-file=module=spec
This option manipulates file paths of imported modules, such that if an im-
ported module matches all or the leftmost part of module, the file path in spec
is used as the location to search for D sources. This is used when the source
file path and names are not the same as the package and module hierarchy.
Consider the following examples:
gdc test.d -fmodule-file=A.B=foo.d -fmodule-file=C=bar

This will tell the compiler to search in all import paths for the source file foo.d
when importing A.B, and the directory bar/ when importing C, as annotated
in the following D code:

module test;

Chapter 1: Invoking gdc 6

import A.B; // Matches A.B, searches for foo.d
import C.D.E; // Matches C, searches for bar/D/E.d
import A.B.C; // No match, searches for A/B/C.d

-imultilib dir

Use dir as a subdirectory of the gcc directory containing target-specific D
sources and interfaces.

-iprefix prefix

-nostdinc

Specify prefix as the prefix for the gce directory containing target-specific D
sources and interfaces. If the prefix represents a directory, you should include
the final '/"'.

Do not search the standard system directories for D source and interface files.
Only the directories that have been specified with -I options (and the directory
of the current file, if appropriate) are searched.

1.4 Code Generation

In addition to the many gcc options controlling code generation, gdc has several options
specific to itself.

-H

-Hd dir

-Hf file

-MM

-MF file

-MG

-MP

-MT target

Generates D interface files for all modules being compiled. The compiler deter-
mines the output file based on the name of the input file, removes any directory
components and suffix, and applies the .di suffix.

Same as -H, but writes interface files to directory dir. This option can be used
with -Hf file to independently set the output file and directory path.

Same as -H but writes interface files to file. This option can be used with -Hd
dir to independently set the output file and directory path.

Output the module dependencies of all source files being compiled in a format
suitable for make. The compiler outputs one make rule containing the object
file name for that source file, a colon, and the names of all imported files.

Like -M but does not mention imported modules from the D standard library
package directories.

When used with -M or -MM, specifies a file to write the dependencies to. When
used with the driver options =MD or -MMD, -MF overrides the default dependency
output file.

This option is for compatibility with gcc, and is ignored by the compiler.

Outputs a phony target for each dependency other than the modules being
compiled, causing each to depend on nothing.

Change the target of the rule emitted by dependency generation to be exactly
the string you specify. If you want multiple targets, you can specify them as a
single argument to -MT, or use multiple -MT options.

Chapter 1: Invoking gdc 7

-MQ target
Same as -MT, but it quotes any characters which are special to make.

-MD This option is equivalent to -M -MF file. The driver determines file by remov-
ing any directory components and suffix from the input file, and then adding a
.deps suffix.

-MMD Like -MD but does not mention imported modules from the D standard library

package directories.

-X Output information describing the contents of all source files being compiled in
JSON format to a file. The driver determines file by removing any directory
components and suffix from the input file, and then adding a . json suffix.

-Xf file Same as -X, but writes all JSON contents to the specified file.

-fdoc Generates Ddoc documentation and writes it to a file. The compiler determines
file by removing any directory components and suffix from the input file, and
then adding a .html suffix.

-fdoc-dir=dir
Same as -fdoc, but writes documentation to directory dir. This option can be
used with -fdoc-file=file to independently set the output file and directory
path.

-fdoc-file=file
Same as —fdoc, but writes documentation to file. This option can be used with
-fdoc-dir=dir to independently set the output file and directory path.

-fdoc-inc=file
Specify file as a Ddoc macro file to be read. Multiple ~-fdoc—inc options can
be used, and files are read and processed in the same order.

-fdump-c++-spec=file
For D source files, generate corresponding C++ declarations in file.

—-fdump-c++-spec-verbose
In conjunction with ~fdump-c++-spec= above, add comments for ignored dec-
larations in the generated C++ header.

-fsave-mixins=file
Generates code expanded from D mixin statements and writes the processed
sources to file. This is useful to debug errors in compilation and provides source
for debuggers to show when requested.

1.5 Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there is likely to be a bug in the program. Unless
-Werror is specified, they do not prevent compilation of the program.

-Wall Turns on all warnings messages. Warnings are not a defined part of the D
language, and all constructs for which this may generate a warning message are
valid code.

Chapter 1: Invoking gdc 8

-Walloca This option warns on all uses of "alloca" in the source.

-Walloca-larger-than=n
Warn on unbounded uses of alloca, and on bounded uses of alloca whose bound
can be larger than n bytes. -Wno-alloca-larger-than disables -Walloca-
larger-than warning and is equivalent to -Walloca-larger-than=SIZE_MAX
or larger.

-Wno-builtin-declaration-mismatch
Warn if a built-in function is declared with an incompatible signature.

-Wcast-result
Warn about casts that will produce a null or zero result. Currently this is only
done for casting between an imaginary and non-imaginary data type, or casting
between a D and C++ class.

-Wno-deprecated
Do not warn about usage of deprecated features and symbols with deprecated
attributes.

-Werror Turns all warnings into errors.

-Wextra This enables some extra warning flags that are not enabled by -Wall.

-Waddress

-Wcast-result
-Wmismatched-special-enum
-Wunknown-pragmas

-Wmismatched-special-enum
Warn when an enum the compiler recognizes as special is declared with a dif-
ferent size to the built-in type it is representing.

-Wspeculative
List all error messages from speculative compiles, such as __traits(compiles,
...). This option does not report messages as warnings, and these messages
therefore never become errors when the -Werror option is also used.

-Wunknown-pragmas
Warn when a pragma() is encountered that is not understood by gdc. This
differs from -fignore-unknown-pragmas where a pragma that is part of the D
language, but not implemented by the compiler, won’t get reported.

-Wno-varargs
Do not warn upon questionable usage of the macros used to handle variable
arguments like va_start.

-fno-ignore—-unknown-pragmas
Do not recognize unsupported pragmas. Any pragma() encountered that is not
part of the D language will result in an error. This option is now deprecated
and will be removed in a future release.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point gdc bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced.

Chapter 1: Invoking gdc 9

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This can be
used in conjunction with -fdoc or -H to generate files for each module present
on the command-line, but no other output file.

—-ftransition=id
Report additional information about D language changes identified by id. The
following values are supported:

‘all’ List information on all D language transitions.

‘complex’ List all usages of complex or imaginary types.

‘field’ List all non-mutable fields which occupy an object instance.
‘in’ List all usages of in on parameter.

‘nogc’ List all hidden GC allocations.

‘templates’

List statistics on template instantiations.

‘tls’ List all variables going into thread local storage.

1.6 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

—-defaultlib=1ibname
Specify the library to use instead of libphobos when linking. Options specifying
the linkage of libphobos, such as -static-1libphobos or -shared-libphobos,
are ignored.

—-debuglib=1ibname
Specify the debug library to use instead of libphobos when linking. This option
has no effect unless the —-g option was also given on the command line. Options
specifying the linkage of libphobos, such as -static-libphobos or -shared-
libphobos, are ignored.

-nophoboslib
Do not use the Phobos or D runtime library when linking. Options specifying
the linkage of libphobos, such as -static-libphobos or -shared-libphobos,
are ignored. The standard system libraries are used normally, unless -nostdlib
or -nodefaultlibs is used.

-shared-libphobos
On systems that provide libgphobos and libgdruntime as a shared and a
static library, this option forces the use of the shared version. If no shared
version was built when the compiler was configured, this option has no effect.

-static-libphobos
On systems that provide libgphobos and libgdruntime as a shared and a
static library, this option forces the use of the static version. If no static version
was built when the compiler was configured, this option has no effect.

Chapter 1: Invoking gdc 10

1.7 Developer Options

This section describes command-line options that are primarily of interest to developers or
language tooling.

-fdump-d-original
Output the internal front-end AST after the semantic3 stage. This option is
only useful for debugging the GNU D compiler itself.

-v Dump information about the compiler language processing stages as the source
program is being compiled. This includes listing all modules that are processed
through the parse, semantic, semantic2, and semantic3 stages; all import
modules and their file paths; and all function bodies that are being compiled.

11

2 Language Reference

The implementation of the D programming language used by the GNU D compiler is shared
with parts of the front-end for the Digital Mars D compiler, hosted at https://github.
com/dlang/dmd/. This common front-end covers lexical analysis, parsing, and semantic
analysis of the D programming language defined in the documents at https://dlang.org/

The implementation details described in this manual are GNU D extensions to the D
programming language. If you want to write code that checks whether these features are
available, you can test for the predefined version GNU, or you can check whether a specific
feature is compilable using __traits(compiles).

version (GNU)

{
import gcc.builtins;
return __builtin_atan2(x, y);
}
static if (__traits(compiles, { asm {"";} }))
{
asm { "magic instruction"; }
}

2.1 Attributes

User-Defined Attributes (UDA) are compile-time expressions introduced by the @ token
that can be attached to a declaration. These attributes can then be queried, extracted, and
manipulated at compile time.

GNU D provides a number of extra special attributes to control specific compiler behavior
that may help the compiler optimize or check code more carefully for correctness. The
attributes are defined in the gcc.attributes module.

There is some overlap between the purposes of attributes and pragmas. It has been
found more convenient to use @attribute to achieve a natural attachment of attributes
to their corresponding declarations, whereas pragma is of use for compatibility with other
compilers or constructs that do not naturally form part of the grammar.

2.1.1 Attribute Syntax

@(gcc.attributes.attribute) is the generic entrypoint for applying GCC attributes to a
function, variable, or type. There is no type checking done, as well as no deprecation path
for attributes removed from the compiler. So the recommendation is to use any of the other
UDAs available as described in Section 2.1.2 [Common Attributes], page 12, unless it is a
target-specific attribute (See Section 2.1.4 [Target Attributes], page 17).

Function attributes introduced by the @attribute UDA are used in the declaration of

a function, followed by an attribute name string and any arguments separated by commas
enclosed in parentheses.

import gcc.attributes;

Qattribute("regparm", 1) int func(int size);
Multiple attributes can be applied to a single declaration either with multiple @attribute
attributes, or passing all attributes as a comma-separated list enclosed by parentheses.

// Both funcl and func2 have the same attributes applied.

https://github.com/dlang/dmd/
https://github.com/dlang/dmd/
https://dlang.org/
https://dlang.org/

Chapter 2: Language Reference 12

Q@attribute("noinline") @attribute("noclone") void funcl();

@(attribute("noinline"), attribute("noclone")) void func2();
There are some problems with the semantics of such attributes in D. For example, there
are no manglings for attributes, although they may affect code generation, so problems
may arise when attributed types are used in conjunction with templates or overloading.
Similarly, typeid does not distinguish between types with different attributes. Support for
attributes in D are restricted to declarations only.

2.1.2 Common Attributes

The following attributes are supported on most targets.

@(gcc.attributes.alloc_size (sizeArglIdx))

Q@(gcc.attributes.alloc_size (sizeArgIdx, numArgldx))

Q@(gcc.attributes.alloc_size (sizeArgIdx, numArgIdx, zeroBasedNumbering))
The @alloc_size attribute may be applied to a function - or a function pointer
variable - that returns a pointer and takes at least one argument of an integer
or enumerated type. It indicates that the returned pointer points to memory
whose size is given by the function argument at sizeArgIdx, or by the product
of the arguments at sizeArgIdx and numArgIdx. Meaningful sizes are positive
values less than ptrdiff_t.max. Unless zeroBasedNumbering is true, argu-
ment numbering starts at one for ordinary functions, and at two for non-static
member functions.

If numArgIdx is less than 0, it is taken to mean there is no argument specifying
the element count.

Q@alloc_size(1) void* malloc(size_t);

@alloc_size(3,2) void* reallocarray(void *, size_t, size_t);
@alloc_size(1,2) void* my_calloc(size_t, size_t, bool);

void malloc_cb(@alloc_size(1) void* function(size_t) ptr) { }

@(gcc.attributes.always_inline)
The @always_inline attribute inlines the function independent of any restric-
tions that otherwise apply to inlining. Failure to inline such a function is
diagnosed as an error.

@always_inline int func();

@(gcc.attributes.cold)
The @cold attribute on functions is used to inform the compiler that the func-
tion is unlikely to be executed. The function is optimized for size rather than
speed and on many targets it is placed into a special subsection of the text
section so all cold functions appear close together, improving code locality of
non-cold parts of program. The paths leading to calls of cold functions within
code are considered to be cold too.
@cold int func();

@(gcc.attributes.flatten)
The @flatten attribute is used to inform the compiler that every call inside
this function should be inlined, if possible. Functions declared with attribute
@noinline and similar are not inlined.
@flatten int func();

Chapter 2: Language Reference 13

@(gcc.

@(gcc.

Q(gcc.

@(gcc.

@(gcc.

Q(gcc.

@(gcc.

attributes.no_icf)
The @no_icf attribute prevents a function from being merged with another
semantically equivalent function.

@no_icf int func();

attributes.no_sanitize ("sanitize_option"))
The @no_sanitize attribute on functions is used to inform the compiler that
it should not do sanitization of any option mentioned in sanitize_option. A list
of values acceptable by the -fsanitize option can be provided.

Ono_sanitize("alignment", "object-size") void funci() { }
Ono_sanitize("alignment,object-size") void func2() { }

attributes.noclone)
The @noclone attribute prevents a function from being considered for cloning - a
mechanism that produces specialized copies of functions and which is (currently)
performed by interprocedural constant propagation.

@noclone int func();

attributes.noinline)
The @noinline attribute prevents a function from being considered for inlining.
If the function does not have side effects, there are optimizations other than
inlining that cause function calls to be optimized away, although the function
call is live. To keep such calls from being optimized away, put asm { ""; } in
the called function, to serve as a special side effect.

@noinline int func();

attributes.noipa)

The @noipa attribute disables interprocedural optimizations between the func-
tion with this attribute and its callers, as if the body of the function is not
available when optimizing callers and the callers are unavailable when opti-
mizing the body. This attribute implies @noinline, @noclone, and @no_icf
attributes. However, this attribute is not equivalent to a combination of other
attributes, because its purpose is to suppress existing and future optimizations
employing interprocedural analysis, including those that do not have an at-
tribute suitable for disabling them individually.

This attribute is supported mainly for the purpose of testing the compiler.

@noipa int func();

attributes.noplt)
The @noplt attribute is the counterpart to option ~fno-plt. Calls to functions
marked with this attribute in position-independent code do not use the PLT in
position-independent code.

In position-dependant code, a few targets also convert call to functions that are
marked to not use the PLT to use the GOT instead.

@noplt int func();

attributes.optimize (arguments))
The @optimize attribute is used to specify that a function is to be compiled
with different optimization options than specified on the command line. Valid
arguments are constant non-negative integers and strings. Multiple arguments

Chapter 2: Language Reference 14

can be provided, separated by commas to specify multiple options. Each nu-
meric argument specifies an optimization level. Each string argument that
begins with the letter O refers to an optimization option such as -00 or -Os.
Other options are taken as suffixes to the -f prefix jointly forming the name of
an optimization option.

Not every optimization option that starts with the -f prefix specified by the
attribute necessarily has an effect on the function. The @optimize attribute
should be used for debugging purposes only. It is not suitable in production
code.

Qoptimize(2) double fnO(double x);

@optimize("2") double fni(double x);

Qoptimize("s") double fn2(double x);

Qoptimize("Ofast") double fn3(double x);

Qoptimize ("-02") double fn4(double x);
Qoptimize("tree-vectorize") double fn5(double x);
Qoptimize("-ftree-vectorize") double fn6(double x);
Qoptimize("no-finite-math-only", 3) double fn7(double x);

Q@(gcc.attributes.register ("registerName"))
The @register attribute specifies that a local or __gshared variable is to be

given a register storage-class in the C99 sense of the term, and will be placed
into a register named registerName.

The variable needs to boiled down to a data type that fits the target register.
It also cannot have either thread-local or extern storage. It is an error to take
the address of a register variable.

Qregister("ebx") __gshared int ebx = void;
void func() { Q@register("r10") long r10 = Ox2a; }

@(gcc.attributes.restrict)
The @restrict attribute specifies that a function parameter is to be restrict-
qualified in the C99 sense of the term. The parameter needs to boil down to
either a pointer or reference type, such as a D pointer, class reference, or a ref
parameter.

void func(@restrict ref const float[16] array);

@(gcc.attributes.section ("sectionName"))
The @section attribute specifies that a function or variable lives in a particular
section. For when you need certain particular functions to appear in special
sections.

Some file formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

@section("bar") extern void func();
@section("stack") ubyte[10000] stack;

@(gcc.attributes.simd)
The @simd attribute enables creation of one or more function versions that can
process multiple arguments using SIMD instructions from a single invocation.
Specifying this attribute allows compiler to assume that such versions are avail-
able at link time (provided in the same or another module). Generated versions
are target-dependent and described in the corresponding Vector ABI document.

Chapter 2: Language Reference 15

O@simd double sqrt(double x);

@(gcc.attributes.simd_clones ("mask"))
The @simd_clones attribute is the same as @simd, but also includes a mask
argument. Valid masks values are notinbranch or inbranch, and instructs the
compiler to generate non-masked or masked clones correspondingly.

@simd_clones("notinbranch") double atan2(double y, double x);

@(gcc.attributes.symver ("arguments"))
The @symver attribute creates a symbol version on ELF targets. The syntax
of the string parameter is "name@nodename". The name part of the parameter
is the actual name of the symbol by which it will be externally referenced. The
nodename portion should be the name of a node specified in the version script
supplied to the linker when building a shared library. Versioned symbol must
be defined and must be exported with default visibility.

Finally if the parameter is "name@@nodename" then in addition to creating a
symbol version (as if "name@nodename" was used) the version will be also used
to resolve name by the linker.

@symver ("foo@VERS_1") int foo_v1();

@(gcc.attributes.target ("options"))
The @target attribute is used to specify that a function is to be compiled
with different target options than specified on the command line. One or more
strings can be provided as arguments, separated by commas to specify multiple
options. Each string consists of one or more comma-separated suffixes to the
-m prefix jointly forming the name of a machine-dependent option.

The target attribute can be used for instance to have a function compiled with
a different ISA (instruction set architecture) than the default.

The options supported are specific to each target.

@target ("arch=core2") void core2_func();
Qtarget("sse3") void sse3_func();

@(gcc.attributes.target_clones ("options"))
The @target_clones attribute is used to specify that a function be cloned
into multiple versions compiled with different target options than specified on
the command line. The supported options and restrictions are the same as for
Qtarget attribute.

It also creates a resolver function that dynamically selects a clone suitable for
current architecture. The resolver is created only if there is a usage of a function
with @target_clones attribute.

Q@target_clones("sse4.1,avx,default") double func(double x);

Q@(gcc.attributes.used)
The @used attribute, annotated to a function or variable, means that code
must be emitted for the function even if it appears that the function is not
referenced. This is useful, for example, when the function is referenced only in
inline assembly.
Qused __gshared int var = 0x1000;

Chapter 2: Language Reference 16

@(gcc.

@(gcc.

2.1.3

attributes.visibility ("visibilityName"))
The @visibility attribute affects the linkage of the declaration to which it is
attached. It can be applied to variables, types, and functions.

There are four supported visibility_type values: default, hidden, protected,
or internal visibility.
@visibility("protected") void func() { 1}

attributes.weak)
The @weak attribute causes a declaration of an external symbol to be emitted as
a weak symbol rather than a global. This is primarily useful in defining library
functions that can be overridden in user code, though it can also be used with
non-function declarations. The overriding symbol must have the same type as
the weak symbol. In addition, if it designates a variable it must also have the
same size and alignment as the weak symbol.

Weak symbols are supported for ELF targets, and also for a.out targets when
using the GNU assembler and linker.

@weak int func() { return 1; }

Other Attributes

The following attributes are defined for compatibility with other compilers.

@(gcc.
@(gcc.
@(gcc.

@(gcc.

Q(gcc.
@(gcc.
@(gcc.

@(gcc.

Q(gcc.

@(gcc.

attributes.allocSize (sizeArgIdx))

attributes.allocSize (sizeArgIdx, numArgIdx))

attributes.allocSize (sizeArgldx))
These attributes are a synonym for Qalloc_size(sizeArgldx, numArgldx,
true). Unlike @alloc_size, it uses 0-based index of the function arguments.

attributes.assumeUsed)
This attribute is a synonym for @used.

attributes.dynamicCompile)
attributes.dynamicCompileConst)
attributes.dynamicCompileEmit)

These attributes are accepted, but have no effect.

attributes.fastmath)
This attribute is a synonym for @optimize("Ofast"). KExplicitly sets "fast-
math" for a function, enabling aggressive math optimizations.

attributes.hidden)
This attribute is a synonym for @visibility("hidden"). Sets the visibility of
a function or global variable to "hidden".

attributes.naked)
This attribute is a synonym for @attribute("naked"). Adds GCC’s "naked"
attribute to a function, disabling function prologue / epilogue emission. In-
tended to be used in combination with basic asm statements. While using
extended asm or a mixture of basic asm and D code may appear to work, they
cannot be depended upon to work reliably and are not supported.

Chapter 2: Language Reference 17

@(gcc.attributes.noSanitize ("sanitize_option"))
This attribute is a synonym for @no_sanitize("sanitize_option").

@(gcc.attributes.optStrategy ("strategy"))
This attribute is a synonym for @optimize ("00") and Qoptimize("0s"). Sets
the optimization strategy for a function. Valid strategies are "none", "optsize",
"minsize". The strategies are mutually exclusive.

Q@(gcc.attributes.polly)
This attribute is a synonym for @optimize ("loop-parallelize-all", "loop-
nest-optimize"). Only effective when GDC was built with ISL included.

2.1.4 Target-specific Attributes

Many targets have their own target-specific attributes. These are also exposed via the
gcc.attributes module with use of the generic @(gcc.attributes.attribute) UDA
function.

See Section 2.1.1 [Attribute Syntax], page 11, for details of the exact syntax for using
attributes.

See the function and variable attribute documentation in the GCC manual for more
information about what attributes are available on each target.

Examples of using x86-specific target attributes are shown as follows:

import gcc.attributes;

@attribute("cdecl")
Q@attribute("fastcall")
@attribute("ms_abi")
@attribute("sysv_abi")
Q@attribute("callee_pop_aggregate_return", 1)
Q@attribute("ms_hook_prologue")
@attribute("naked")
Q@attribute("regparm", 2)
Qattribute("sseregparm")
Q@attribute("force_align_arg_pointer")
@attribute("stdcall")
Qattribute("no_caller_saved_registers")
Q@attribute("interrupt")
Q@attribute("indirect_branch", "thunk")
Q@attribute("function_return", "keep"))
Qattribute("nocf_check")
@attribute("cf_check")
@attribute("indirect_return")
Qattribute("fentry_name", "nop")
Q@attribute("fentry_section", "__entry_loc")
@attribute("nodirect_extern_access")

2.2 Built-in Functions

GCC provides a large number of built-in functions that are made available in GNU D
by importing the gcc.builtins module. Declarations in this module are automatically
created by the compiler. All declarations start with __builtin_. Refer to the built-in
function documentation in the GCC manual for a full list of functions that are available.

Chapter 2: Language Reference 18

2.2.1 Built-in Types

In addition to built-in functions, the following types are defined in the gcc.builtins mod-
ule.

___builtin_clong
The D equivalent of the target’s C long type.

—__builtin_clonglong
The D equivalent of the target’s C long long type.

___builtin_culong
The D equivalent of the target’s C unsigned long type.

___builtin_culonglong
The D equivalent of the target’s C unsigned long long type.

___builtin_machine_byte
Signed unit-sized integer type.

___builtin_machine_int
Signed word-sized integer type.

___builtin_machine_ubyte
Unsigned unit-sized integer type.

___builtin_machine_uint
Unsigned word-sized integer type.

___builtin_pointer_int
Signed pointer-sized integer type.

___builtin_pointer_uint
Unsigned pointer-sized integer type.

___builtin_unwind_int
The D equivalent of the target’s C _Unwind_Sword type.

___builtin_unwind_uint
The D equivalent of the target’s C _Unwind_Word type.

___builtin_va_list
The target’s va_list type.

2.2.2 Querying Available Built-ins

Not all of the functions are supported, and some target-specific functions may only be
available when compiling for a particular ISA. One way of finding out what is exposed
by the built-ins module is by generating a D interface file. Assuming you have no file
builtins.d, the command

echo "module gcc.builtins;" > builtins.d; gdc -H -fsyntax-only builtins.d

will save all built-in declarations to the file builtins.di.

Another way to determine whether a specific built-in is available is by using compile-time
reflection.
enum X86_HAVE_SSE3 =

_traits(compiles, __builtin_ia32_haddps);

Chapter 2: Language Reference 19

enum X86_HAVE_SSSE3
enum X86_HAVE_SSE41
enum X86_HAVE_SSE42
enum X86_HAVE_AVX =
enum X86_HAVE_AVX2
enum X86_HAVE_BMI2

__traits(compiles, __builtin_ia32_pmulhrswi28);
__traits(compiles, __builtin_ia32_dpps);
__traits(compiles, __builtin_ia32_pcmpgtq);
_traits(compiles, __builtin_ia32_vbroadcastf128_pd256) ;
__traits(compiles, __builtin_ia32_gathersiv2df);
__traits(compiles, __builtin_ia32_pext_si);

2.2.3 Other Built-in Functions

As well as built-ins being available from the gcc.builtins module, GNU D will also rec-
ognize when an extern(C) library function is a GCC built-in. Many of these functions
are only optimized in certain cases; if they are not optimized in a particular case, a call to
the library function is emitted. This optimization can be disabled with the ~-fno-builtin
option (see Section 1.2 [Runtime Options|, page 1).

In the core.stdc.complex module, the functions cabs, cabsf, cabsl, cacos, cacosf,
cacosh, cacoshf, cacoshl, cacosl, carg, cargf, cargl, casin, casinf, casinh, casinhf,
casinhl, casinl, catan, catanf, catanh, catanhf, catanhl, catanl, ccos, ccosf, ccosh,
ccoshf, ccoshl, ccosl, cexp, cexpf, cexpl, clog, clogf, clogl, conj, conjf, conjl,
cpow, cpowf, cpowl, cproj, cprojf, cprojl, csin, csinf, csinh, csinhf, csinhl, csinl,
csqrt, csqrtf, csqrtl, ctan, ctanf, ctanh, ctanhf, ctanhl, ctanl may be handled as
built-in functions. All these functions have corresponding versions prefixed with __builtin_
in the gcc.builtins module.

In the core.stdc.ctype module, the functions isalnum, isalpha, isblank, iscntrl,
isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower,
toupper may be handled as built-in functions. All these functions have corresponding
versions prefixed with __builtin_ in the gcc.builtins module.

In the core.stdc.fenv module, the functions feclearexcept, fegetenv,
fegetexceptflag, fegetround, feholdexcept, feraiseexcept, fesetenv,
fesetexceptflag, fesetround, fetestexcept, feupdateenv may be handled as built-in
functions. All these functions have corresponding versions prefixed with __builtin_ in
the gcc.builtins module.

In the core.stdc.inttypes module, the function imaxabs may be handled as a built-in
function. All these functions have corresponding versions prefixed with __builtin_ in the
gcc.builtins module.

In the core.stdc.math module, the functions acos, acosf, acosh, acoshf, acoshl,
acosl, asin, asinf, asinh, asinhf, asinhl, asinl, atan, atan2, atan2f, atan2l, atanf,
atanh, atanhf, atanhl, atanl, cbrt, cbrtf, cbrtl, ceil, ceilf, ceill, copysign,
copysignf, copysignl, cos, cosf, cosh, coshf, coshl, cosl, erf, erfc, erfcf, erfcl,
erff, erfl, exp, exp2, exp2f, exp2l, expf, expl, expml, expmlf, expmll, fabs, fabsf,
fabsl, fdim, fdimf, fdiml, floor, floorf, floorl, fma, fmaf, fmal, fmax, fmaxf,
fmaxl, fmin, fminf, fminl, fmod, fmodf, fmodl, frexp, frexpf, frexpl, hypot, hypotf,
hypotl, ilogb, ilogbf, ilogbl, isinf, isnan, 1dexp, ldexpf, 1ldexpl, 1gamma, lgammaf,
lgammal, 11rint, 11rintf, 11rintl, 11round, 11lroundf, 11lroundl, log, 1logl0, loglOf,
logl01, loglp, loglpf, loglpl, log2, log2f, log2l, logb, logbf, logbl, logf, logl,
lrint, 1rintf, 1lrintl, lround, lroundf, lroundl, modf, modff, modfl, nan, nanf, nanl,
nearbyint, nearbyintf, nearbyintl, nextafter, nextafterf, nextafterl, nexttoward,
nexttowardf, nexttowardl, pow, powf, powl, remainder, remainderf, remainderl,
remquo, remquof, remquol, rint, rintf, rintl, round, roundf, roundl, scalbln,

Chapter 2: Language Reference 20

scalblnf, scalblnl, scalbn, scalbnf, scalbnl, signbit, sin, sinf, sinh, sinhf,
sinhl, sinl, sqrt, sqrtf, sqrtl, tan, tanf, tanh, tanhf, tanhl, tanl, tgamma, tgammaf,
tgammal, trunc, truncf, truncl may be handled as built-in functions. All these functions
have corresponding versions prefixed with __builtin_ in the gcc.builtins module.

In the core.stdc.stdio module, the functions fprintf, fputc, fputc_unlocked,
fputs, fwrite, printf, puts, snprintf, sprintf, vfprintf, vprintf, vsnprintf,
vsprintf may be handled as built-in functions. All these functions have corresponding
versions prefixed with __builtin_ in the gcc.builtins module.

In the core.stdc.stdlib module, the functions abort, abs, aligned_alloc, alloca,
calloc, exit, _Exit, free, labs, llabs, malloc, realloc may be handled as built-in
functions. All these functions have corresponding versions prefixed with __builtin_ in the
gcc.builtins module.

In the core.stdc.string module, the functions memchr, memcmp, memcpy, memmove,
memset, strcat, strchr, strcmp, strcpy, strcspn, strdup, strlen, strncat, strancmp,
strncpy, strpbrk, strrchr, strspn, strstr may be handled as built-in functions. All
these functions have corresponding versions prefixed with __builtin_ in the gcc.builtins
module.

In the core.stdc.time module, the function strftime may be handled as a built-in
function. All these functions have corresponding versions prefixed with __builtin_ in the
gcc.builtins module.

In the core.stdc.wctype module, the functions iswalnum, iswalpha, iswblank,
iswentrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper,
iswxdigit, towlower, towupper may be handled as built-in functions. All these functions
have corresponding versions prefixed with __builtin_ in the gcc.builtins module.

Within the core.sys package for POSIX and platform definitions, the functions
putchar_unlocked, putc_unlocked, posix_memalign, ffs, strcasecmp, strncasecmp,
stpcpy, stpncpy, strndup, strnlen, execl, execle, execlp, execv, execve, execvp,
_exit, fork may be handled as built-in functions. All these functions have corresponding
versions prefixed with __builtin_ in the gcc.builtins module.

2.3 Importing C Sources into D

ImportC is a C preprocessor and parser embedded into the GNU D implementation. It
enables direct importation of C files, without needing to manually prepare a D file corre-
sponding to the declarations in the C file.

ImportC is an implementation of ISO/TEC 9899:2011, which will be referred to as C11.
Prior versions, such as C99, C89, and K+R C, are not supported.

Assuming you have no file cstdio.c or main.d, the commands

cat > cstdio.c << @EOC

int printf(const char*, ...);

QEOC

cat > main.d << QEOD

import cstdio;

void main() { printf("Hello ImportC\n"); }
Q@EOD

gdc main.d -o main; ./main

will generate a program which will print ‘Hello ImportC’.

Chapter 2: Language Reference 21

ImportC does not have a preprocessor. It is designed to compile C files after they have
been first run through the C preprocessor. If the C file has a ‘.i’ extension, the file is
presumed to be already preprocessed. Preprocessing can be run manually:

gcc -E file.c > file.i

ImportC collects all the #def ine macros from the preprocessor run when it is run automat-
ically. The macros that look like manifest constants, such as:
#define COLOR 0x123456

are interpreted as D manifest constant declarations of the form:
enum COLOR = 0x123456;

The variety of macros that can be interpreted as D declarations may be expanded, but will
never encompass all the metaprogramming uses of C macros.

GNU D does not directly compile C files into modules that can be linked in with D code
to form an executable. When given a source file with the suffix ‘.c’, the compiler driver
program gdc instead runs the subprogram ccl.

gdc filel.d file2.c // d21 filel.d -o filel.s
// ccl file2.c -o file2.s
// as filel.s -o filel.o
// as file2.s -o file2.o0
// 1d filel.o file2.o0

2.4 Inline Assembly

The asm keyword allows you to embed assembler instructions within D code. GNU D
provides two forms of inline asm statements. A basic asm statement is one with no operands,
while an extended asm statement includes one or more operands.

asm FunctionAttributes {
AssemblerInstruction ;

asm FunctionAttributes {
AssemblerTemplate
: OutputOperands
[: InputOperands
[: Clobbers
[: GotoLabels |]| ;
}

The extended form is preferred for mixing D and assembly language within a function, but
to include assembly language in a function declared with the naked attribute you must use
basic asm.

uint incr (uint value)
{
uint result;
asm { "incl %0"
: "=a" (result)
: "a" (value);
}

return result;

Chapter 2: Language Reference 22

Multiple assembler instructions can appear within an asm block, or the instruction template
can be a multi-line or concatenated string. In both cases, GCC’s optimizers won’t discard
or move any instruction within the statement block.

bool hasCPUID()

{
uint flags = void;
asm nothrow @nogc {
"pushfl";
"pushfl";
"xorl %0, (%hesp)" :: "i" (0x00200000);
"POpfl";
"pushfl";
"popl %0" : "=a" (flags);
"xorl (%hesp), #%0" : "=a" (flags);
"popfl";
}
return (flags & 0x0020_0000) != 0;
}

The instruction templates for both basic and extended asm can be any expression that can
be evaluated at compile-time to a string, not just string literals.

uint invert(uint v)

{
uint result;
asm @safe @nogc nothrow pure {
genAsmInsn(" invert™)
: [res] “=r° (result)
: [argl] "r~ (v);
}
return result;
}

The total number of input + output + goto operands is limited to 30.

2.5 Intrinsics

The D language specification itself does not define any intrinsics that a compatible com-
piler must implement. Rather, within the D core library there are a number of modules
that define primitives with generic implementations. While the generic versions of these
functions are computationally expensive relative to the cost of the operation itself, compiler
implementations are free to recognize them and generate equivalent and faster code.

The following are the kinds of intrinsics recognized by GNU D.

2.5.1 Bit Operation Intrinsics

The following functions are a collection of intrinsics that do bit-level operations, available
by importing the core.bitop module.

Although most are named after x86 hardware instructions, it is not guaranteed that they
will result in generating equivalent assembly on x86. If the compiler determines there is a
better way to get the same result in hardware, then that will be used instead.

Chapter 2: Language Reference 23

int core.bitop.bsf (uint v) [Function]

int core.bitop.bsf (ulong v) [Function]
Scans the bits in v starting with bit 0, looking for the first set bit. Returns the bit
number of the first bit set. The return value is undefined if v is zero.

This intrinsic is the same as the GCC built-in function __builtin_ctz.

int core.bitop.bsr (uint v) [Function]

int core.bitop.bsr (ulong v) [Function]
Scans the bits in v from the most significant bit to the least significant bit, looking
for the first set bit. Returns the bit number of the first bit set. The return value is
undefined if v is zero.

This intrinsic is equivalent to writing the following:

result = __builtin_clz(v) ~ (v.sizeof * 8 - 1)
int core.bitop.bt (scope const(uint*) p, uint bitnum) [Function]
int core.bitop.bt (scope const(uint*) p, uint bitnum) [Function]

Tests the bit bitnum in the input parameter p. Returns a non-zero value if the bit
was set, and a zero if it was clear.
This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;
int core.bitop.btc (uint* p, uint bitnum) [Function]
int core.bitop.btc (ulong* p, ulong bitnum) [Function]

Tests and complements the bit bitnum in the input parameter p. Returns a non-zero
value if the bit was set, and a zero if it was clear.
This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J, bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

plbitnum / bits_per_unit] ~= bit_mask;
int core.bitop.btr (uint* p, uint bitnum) [Function]
int core.bitop.btr (ulong* p, ulong bitnum) [Function]

Tests and resets (sets to 0) the bit bitnum in the input parameter p. Returns a
non-zero value if the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

plbitnum / bits_per_unit] &= ~“bit_mask;

Chapter 2: Language Reference 24

int core.bitop.bts (uint* p, uint bitnum) [Function]

int core.bitop.bts (ulong* p, ulong bitnum) [Function]
Tests and sets the bit bitnum in the input parameter p. Returns a non-zero value if
the bit was set, and a zero if it was clear.

This intrinsic is equivalent to writing the following:

immutable bits_per_unit = (*p).sizeof * 8;
immutable bit_mask = size_t(1) << (bitnum J bits_per_unit);

result = (p[bitnum / bits_per_unit] & bit_mask) != 0;

plbitnum / bits_per_unit] |= bit_mask;
ushort core.bitop.byteswap (ushort x) [Function]
uint core.bitop.bswap (uint x) [Function]
ulong core.bitop.bswap (ulong x) [Function]

Swaps the bytes in x end-to-end; for example, in a 4-byte uint, byte 0 becomes byte
3, byte 1 becomes byte 2, etc.

This intrinsic is the same as the GCC built-in function __builtin_bswap.

int core.bitop.popcnt (uint x) [Function]
int core.bitop.popcnt (ulong x) [Function]
Calculates the number of set bits in x.

This intrinsic is the same as the GCC built-in function __builtin_popcount.

T core.bitop.rol (T)(const T value, const uint count) [Template]
T core.bitop.rol (uint count, T)(const T value) [Template]
Bitwise rotate value left by count bit positions.
This intrinsic is equivalent to writing the following:

result = cast(T) ((value << count) | (value >> (T.sizeof * 8 - count)));

T core.bitop.ror (T)(const T value, const uint count) [Template]
T core.bitop.ror (uint count, T)(const T value) [Template]
Bitwise rotate value right by count bit positions.

This intrinsic is equivalent to writing the following:

result = cast(T) ((value >> count) | (value << (T.sizeof * 8 - count)));

2.5.2 Integer Overflow Intrinsics

The following functions are a collection of intrinsics that implement integral arithmetic
primitives that check for out-of-range results, available by importing the core.checkedint
module.

In all intrinsics, the overflow is sticky, meaning a sequence of operations can be done
and overflow need only be checked at the end.

int core.checkedint.adds (int x, int y, ref bool overflow) [Function]
long core.checkedint.adds (long x, long y, ref bool [Function]
overflow)

Add two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_sadd_overflow.

Chapter 2: Language Reference 25

int core.checkedint.addu (int x, int y, ref bool overflow) [Function]
long core.checkedint.addu (long x, long y, ref bool [Function]
overflow)

Add two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_uadd_overflow.

int core.checkedint.muls (int x, int y, ref bool overflow) [Function]
long core.checkedint.muls (long x, long y, ref bool [Function]
overflow)

Multiply two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_smul_overflow.

int core.checkedint.mulu (int x, int y, ref bool overflow) [Function]
long core.checkedint.mulu (long x, long y, ref bool [Function]
overflow)

Multiply two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_umul_overflow.

int core.checkedint.negs (int x, ref bool overflow) [Function]
long core.checkedint.negs (long x, ref bool overflow) [Function]
Negates an integer.

This intrinsic is equivalent to writing the following:

result = __builtin_ssub (0, x, overflow);
int core.checkedint.subs (int x, int y, ref bool overflow) [Function]
long core.checkedint.subs (long x, long y, ref bool [Function]
overflow)

Substract two signed integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_ssub_overflow.

int core.checkedint.subu (int x, int y, ref bool overflow) [Function]
long core.checkedint.subu (long x, long y, ref bool [Function]
overflow)

Substract two unsigned integers, checking for overflow.

This intrinsic is the same as the GCC built-in function __builtin_usub_overflow.

2.5.3 Math Intrinsics

The following functions are a collection of mathematical intrinsics, available by importing
the core.math module.

float core.math.cos (float x) [Function]

double core.math.cos (double x) [Function]

real core.math.cos (real x) [Function]
Returns cosine of x, where x is in radians. The return value is undefined if x is greater
than 264,

This intrinsic is the same as the GCC built-in function __builtin_cos.

Chapter 2: Language Reference 26

float core.math.fabs (float x) [Function]
double core.math.fabs (double x) [Function]
real core.math.fabs (real x) [Function]

Compute the absolute value of x.
This intrinsic is the same as the GCC built-in function __builtin_fabs.

float core.math.ldexp (float n, int exp) [Function]
double core.math.ldexp (double n, int exp) [Function]
real core.math.ldexp (real n, int exp) [Function]

Compute n * 2°77,

This intrinsic is the same as the GCC built-in function __builtin_ldexp.

float core.math.rint (float x) [Function]
double core.math.rint (double x) [Function]
real core.math.rint (real x) [Function]

Rounds x to the nearest integer value, using the current rounding mode. If the return
value is not equal to x, the FE_INEXACT exception is raised. nearbyint performs the
same operation, but does not set the FE_INEXACT exception.

This intrinsic is the same as the GCC built-in function __builtin_rint.

float core.math.rndtol (float x) [Function]
double core.math.rndtol (double x) [Function]
real core.math.rndtol (real x) [Function]

Returns x rounded to a long value using the current rounding mode. If the integer
value of x is greater than long.max, the result is indeterminate.

This intrinsic is the same as the GCC built-in function __builtin_llround.

float core.math.sin (float x) [Function]
double core.math.sin (double x) [Function]
real core.math.sin (real x) [Function]
Returns sine of x, where x is in radians. The return value is undefined if x is greater
than 254,
This intrinsic is the same as the GCC built-in function __builtin_sin.
float core.math.sqrt (float x) [Function]
double core.math.sqrt (double x) [Function]
real core.math.sqrt (real x) [Function]

Compute the sqrt of x.
This intrinsic is the same as the GCC built-in function __builtin_sqrt.

T core.math.toPrec (T)(float f) [Template]
T core.math.toPrec (T)(double f) [Template]
T core.math.toPrec (T)(real f) [Template]

Round f to a specific precision.

In floating-point operations, D language types specify only a minimum precision, not
a maximum. The toPrec function forces rounding of the argument f to the precision
of the specified floating point type T. The rounding mode used is inevitably target-
dependent, but will be done in a way to maximize accuracy. In most cases, the default
is round-to-nearest.

Chapter 2: Language Reference 27

2.5.4 Variadic Intrinsics

The following functions are a collection of variadic intrinsics, available by importing the
core.stdc.stdarg module.

void core.stdc.stdarg.va_arg (T)(ref va_list ap, ref T [Template]
parmn)
Retrieve and store in parmn the next value from the va_list ap that is of type T.

This intrinsic is equivalent to writing the following:

parmn = __builtin_va_arg (ap, T);

T core.stdc.stdarg.va_arg (T)(ref va_list ap) [Template]
Retrieve and return the next value from the va_list ap that is of type T.

This intrinsic is equivalent to writing the following:

result = __builtin_va_arg (ap, T);
void core.stdc.stdarg.va_copy (out va_list dest, va_list [Function]
src)

Make a copy of src in its current state and store to dest.

This intrinsic is the same as the GCC built-in function __builtin_va_copy.

void core.stdc.stdarg.va_end (va_list ap) [Function]
Destroy ap so that it is no longer useable.

This intrinsic is the same as the GCC built-in function __builtin_va_end.

void core.stdc.stdarg.va_start (T)(out va_list ap, ref T [Template]
parmn)
Initialize ap so that it can be used to access the variable arguments that follow the
named argument parmn.

This intrinsic is the same as the GCC built-in function __builtin_va_start.

2.5.5 Volatile Intrinsics

The following functions are a collection of intrinsics for volatile operations, available by
importing the core.volatile module.

Calls to them are guaranteed to not be removed (as dead assignment elimination or
presumed to have no effect) or reordered in the same thread.

These reordering guarantees are only made with regards to other operations done
through these functions; the compiler is free to reorder regular loads/stores with regards
to loads/stores done through these functions.

This is useful when dealing with memory-mapped I/O (MMIO) where a store can have
an effect other than just writing a value, or where sequential loads with no intervening stores
can retrieve different values from the same location due to external stores to the location.

These functions will, when possible, do the load/store as a single operation. In general,
this is possible when the size of the operation is less than or equal to (void*).sizeof,
although some targets may support larger operations. If the load/store cannot be done as
a single operation, multiple smaller operations will be used.

Chapter 2: Language Reference 28

These are not to be conflated with atomic operations. They do not guarantee any
atomicity. This may be provided by coincidence as a result of the instructions used on
the target, but this should not be relied on for portable programs. Further, no memory
fences are implied by these functions. They should not be used for communication between
threads. They may be used to guarantee a write or read cycle occurs at a specified address.

ubyte core.volatile.volatileLoad (ubyte* ptr) [Function]

ushort core.volatile.volatileLoad (ushort* ptr) [Function]

uint core.volatile.volatileLoad (uint* ptr) [Function]

ulong core.volatile.volatileLoad (ulong#* ptr) [Function]
Read value from the memory location indicated by ptr.

ubyte core.volatile.volatileStore (ubyte* ptr, ubyte value) [Function]

ushort core.volatile.volatileStore (ushort* ptr, ushort [Function]
value)

uint core.volatile.volatileStore (uint* ptr, uint value) [Function]

ulong core.volatile.volatileStore (ulong* ptr, ulong value) [Function]

Write value to the memory location indicated by ptr.

2.5.6 CTFE Intrinsics

The following functions are only treated as intrinsics during compile-time function execution
(CTFE) phase of compilation to allow more functions to be computable at compile-time,
either because their generic implementations are too complex, or do some low-level bit
manipulation of floating point types.

Calls to these functions that exist after CTFE has finished will get standard code-
generation without any special compiler intrinsic suppport.

float std.math.exponential.exp (float x) [Function]
double std.math.exponential.exp (double x) [Function]
real std.math.exponential.exp (real x) [Function]

Calculates e®.

This function is evaluated during CTFE as the GCC built-in function __builtin_exp.

float std.math.exponential.expml (float x) [Function]
double std.math.exponential.expml (double x) [Function]
real std.math.exponential.expml (real x) [Function]
Calculates e — 1.0.
This function is evaluated during CTFE as the GCC built-in function __builtin_
expml.
float std.math.exponential.exp2 (float x) [Function]
double std.math.exponential.exp2 (double x) [Function]
real std.math.exponential.exp2 (real x) [Function]

Calculates 27.

This function is evaluated during CTFE as the GCC built-in function __builtin_
exp2.

Chapter 2: Language Reference 29

float std.math.exponential.log (float x) [Function]
double std.math.exponential.log (double x) [Function]
real std.math.exponential.log (real x) [Function]

Calculate the natural logarithm of x.
This function is evaluated during CTFE as the GCC built-in function __builtin_log.

float std.math.exponential.loglO (float x) [Function]
double std.math.exponential.loglO (double x) [Function]
real std.math.exponential.loglO (real x) [Function]
Calculates the base-10 logarithm of x.
This function is evaluated during CTFE as the GCC built-in function __builtin_
logl0.
float std.math.exponential.log2 (float x) [Function]
double std.math.exponential.log2 (double x) [Function]
real std.math.exponential.log2 (real x) [Function]
Calculates the base-2 logarithm of x.
This function is evaluated during CTFE as the GCC built-in function __builtin_
log2.
Largest!(F, G) std.math.exponential.pow (F, G) (F x, G y) [Template]
real std.math.exponential.pow (I, F)(I x, F y) [Template]

Calculates z¥, where y is a float.
This function is evaluated during CTFE as the GCC built-in function __builtin_pow.

F std.math.exponential.pow (F, G) (F x, G n) [Template]
Calculates =™, where n is an integer.
This function is evaluated during CTFE as the GCC built-in function __builtin_
powi.

real std.math.operations.fma (real x, real y, real z) [Function]

Returns (x * y) + z, rounding only once according to the current rounding mode.
This function is evaluated during CTFE as the GCC built-in function __builtin_fma.

F std.math.operations.fmax (F)(const F x, const F y) [Template]
Returns the larger of x and y.

This function is evaluated during CTFE as the GCC built-in function __builtin_
fmax.
F std.math.operations.fmin (F)(const F x, const F y) [Template]
Returns the smaller of x and y.
This function is evaluated during CTFE as the GCC built-in function __builtin_
fmin.
float std.math.rounding.ceil (float x) [Function]
double std.math.rounding.ceil (double x) [Function]
real std.math.rounding.ceil (real x) [Function]

Returns the value of x rounded upward to the next integer (toward positive infinity).

This function is evaluated during CTFE as the GCC built-in function __builtin_
ceil.

Chapter 2: Language Reference 30

float std.math.rounding.floor (float x) [Function]
double std.math.rounding.floor (double x) [Function]
real std.math.rounding.floor (real x) [Function]
Returns the value of x rounded downward to the next integer (toward negative infin-
ity).
This function is evaluated during CTFE as the GCC built-in function __builtin_
floor.
real std.math.rounding.round (real x) [Function]

Return the value of x rounded to the nearest integer. If the fractional part of x is
exactly 0.5, the return value is rounded away from zero.

This function is evaluated during CTFE as the GCC built-in function __builtin_
round.
real std.math.rounding.trunc (real x) [Function]

Returns the integer portion of x, dropping the fractional portion.

This function is evaluated during CTFE as the GCC built-in function __builtin_
trunc.

R std.math.traits.copysign (R, X)(R to, X from) [Template]
Returns a value composed of to with from’s sign bit.

This function is evaluated during CTFE as the GCC built-in function __builtin_
copysign.

bool std.math.traits.isFinite (X)(X x) [Template]
Returns true if x is finite.

This function is evaluated during CTFE as the GCC built-in function __builtin_
isfinite.

bool std.math.traits.isInfinity (X)(X x) [Template]
Returns true if x is infinite.
This function is evaluated during CTFE as the GCC built-in function __builtin_
isinf.

bool std.math.traits.isNaN (X)(X x) [Template]
Returns true if x is NaN.

This function is evaluated during CTFE as the GCC built-in function __builtin_

isnan.
float std.math.trigoometry.tan (float x) [Function]
double std.math.trigoometry.tan (double x) [Function]
real std.math.trigonometry.tan (real x) [Function]

Returns tangent of x, where x is in radians.

This intrinsic is the same as the GCC built-in function __builtin_tan.

Chapter 2: Language Reference 31

2.6 Predefined Pragmas

The pragma operator is used as a way to pass special information to the implementation
and allow the addition of vendor specific extensions. The standard predefined pragmas are
documented by the D language specification hosted at https://dlang.org/spec/pragmna.
html#predefined-pragmas. A D compiler must recognize, but is free to ignore any pragma
in this list.

Where a pragma is ignored, the GNU D compiler will emit a warning when the
-Wunknown-pragmas option is seen on the command-line.

pragma(crt_constructor)
pragma(crt_constructor) annotates a function so it is run after the C runtime
library is initialized and before the D runtime library is initialized. Functions
with this pragma must return void.

pragma(crt_constructor) void init() { }

pragma(crt_destructor)
pragma (crt_destructor) annotates a function so it is run after the D runtime
library is terminated and before the C runtime library is terminated. Calling
exit function also causes the annotated functions to run. Functions with this
pragma must return void.
pragma(crt_destructor) void init() { }

pragma(inline)

pragma(inline, false)

pragma(inline, true)
pragma(inline) affects whether functions are declared inlined or not. The
pragma takes two forms. In the first form, inlining is controlled by the
command-line options for inlining.

Functions annotated with pragma(inline, false) are marked uninlinable.
Functions annotated with pragma(inline, true) are always inlined.

pragma(1ib)
This pragma is accepted, but has no effect.
pragma(lib, "advapi32");

pragma(linkerDirective)
This pragma is accepted, but has no effect.
pragma(linkerDirective, "/FAILIFMISMATCH:_ITERATOR_DEBUG_LEVEL=2");

pragma(mangle)
pragma(mangle, "symbol_name") overrides the default mangling for a function
or variable symbol. The symbol name can be any expression that must evaluate
at compile time to a string literal. This enables linking to a symbol which is a
D keyword, since an identifier cannot be a keyword.

Targets are free to apply a prefix to the user label of the symbol name in as-
sembly. For example, on x86_64-apple-darwin, ‘symbol_name’ would produce
‘_symbol_name’. If the mangle string begins with ‘*’, then pragma (mangle) will
output the rest of the string unchanged.

pragma(mangle, "body")

https://dlang.org/spec/pragma.html#predefined-pragmas
https://dlang.org/spec/pragma.html#predefined-pragmas

Chapter 2: Language Reference 32

extern(C) void body_func();

pragma(mangle, "function")
extern(C++) struct _function {}

pragma(msg)
pragma(msg, "message") causes the compiler to print an informational mes-
sage with the text ‘message’. The pragma accepts multiple arguments, each to
which is evaluated at compile time and then all are combined into one concate-
nated message.

pragma(msg, "compiling...", 6, 1.0); // prints "compiling...61.0"

pragma(printf)

pragma(scanf)
pragma(printf) and pragma(scanf) specifies that a function declaration with
printf or scanf style arguments that should be type-checked against a format
string.
A printf-like or scanf-like function can either be an extern(C) or extern(C++)
function with a format parameter accepting a pointer to a O-terminated char
string, immediately followed by either a . .. variadic argument list or a param-
eter of type va_list as the last par