
GNU Offloading and Multi Processing

Runtime Library
The GNU OpenMP and OpenACC Implementation

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright c© 2006-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Funding Free Software”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

1 Enabling OpenMP . 1
2 OpenMP Implementation Status . 3
3 OpenMP Runtime Library Routines . 15

4 OpenMP Environment Variables . 59
5 Enabling OpenACC . 71
6 OpenACC Runtime Library Routines . 73

7 OpenACC Environment Variables . 93
8 CUDA Streams Usage . 95
9 OpenACC Library Interoperability . 97

10 OpenACC Profiling Interface . 101

11 OpenMP-Implementation Specifics . 107

12 Offload-Target Specifics . 113
13 The libgomp ABI . 119

14 Reporting Bugs . 125

GNU General Public License . 127

GNU Free Documentation License . 139
Funding Free Software . 147

Library Index . 149

iii

Table of Contents

1 Enabling OpenMP . 1

2 OpenMP Implementation Status 3
2.1 OpenMP 4.5 . 3
2.2 OpenMP 5.0 . 3

New features listed in Appendix B of the OpenMP specification . . . 3
Other new OpenMP 5.0 features . 5

2.3 OpenMP 5.1 . 5
New features listed in Appendix B of the OpenMP specification . . . 5
Other new OpenMP 5.1 features . 6

2.4 OpenMP 5.2 . 7
New features listed in Appendix B of the OpenMP specification . . . 7
Other new OpenMP 5.2 features . 8

2.5 OpenMP 6.0 . 9
New features listed in Appendix B of the OpenMP specification . . . 9
Deprecated features, unless listed above . 12
Other new OpenMP 6.0 features . 12

2.6 OpenMP Technical Report 14 . 13
New features listed in Appendix B of the OpenMP specification . . 13
Deprecated features, unless listed above . 13

3 OpenMP Runtime Library Routines 15
3.1 Thread Team Routines . 15

3.1.1 omp_set_num_threads – Set upper team size limit 15
3.1.2 omp_get_num_threads – Size of the active team 15
3.1.3 omp_get_max_threads – Maximum

number of threads of parallel region . 16
3.1.4 omp_get_thread_num – Current thread ID 16
3.1.5 omp_in_parallel – Whether a parallel region is active 16
3.1.6 omp_set_dynamic – Enable/disable dynamic teams 17
3.1.7 omp_get_dynamic – Dynamic teams setting 17
3.1.8 omp_get_cancellation – Whether

cancellation support is enabled . 17
3.1.9 omp_set_nested – Enable/disable nested parallel regions . . 18
3.1.10 omp_get_nested – Nested parallel regions 18
3.1.11 omp_set_schedule – Set the runtime scheduling method . . 19
3.1.12 omp_get_schedule – Obtain the runtime scheduling method . . 19
3.1.13 omp_get_teams_thread_limit – Maximum
number of threads imposed by teams . 20

3.1.14 omp_get_supported_active_levels – Maximum
number of active regions supported . 20

3.1.15 omp_set_max_active_levels – Limits the
number of active parallel regions . 20

iv

3.1.16 omp_get_max_active_levels – Current
maximum number of active regions . 21

3.1.17 omp_get_level – Obtain the current nesting level 21
3.1.18 omp_get_ancestor_thread_num – Ancestor thread ID . . . 21
3.1.19 omp_get_team_size – Number of threads in a team 22
3.1.20 omp_get_active_level – Number of parallel regions 22

3.2 Thread Affinity Routines . 22
3.2.1 omp_get_proc_bind – Whether threads
may be moved between CPUs . 22

3.3 Teams Region Routines . 23
3.3.1 omp_get_num_teams – Number of teams 23
3.3.2 omp_get_team_num – Get team number 23
3.3.3 omp_set_num_teams – Set upper
teams limit for teams construct . 23

3.3.4 omp_get_max_teams – Maximum
number of teams of teams region . 24

3.3.5 omp_set_teams_thread_limit – Set upper
thread limit for teams construct . 24

3.3.6 omp_get_thread_limit – Maximum number of threads . . . 24
3.4 Tasking Routines . 25

3.4.1 omp_get_max_task_priority – Maximum priority value . . 25
3.4.2 omp_in_explicit_task – Whether a

given task is an explicit task . 25
3.4.3 omp_in_final – Whether in final or included task region . . 25

3.5 Resource Relinquishing Routines . 26
3.5.1 omp_pause_resource – Release
OpenMP resources on a device . 26

3.5.2 omp_pause_resource_all – Release
OpenMP resources on all devices . 26

3.6 Device Information Routines . 27
3.6.1 omp_get_num_procs – Number of processors online 27
3.6.2 omp_set_default_device – Set the
default device for target regions . 27

3.6.3 omp_get_default_device – Get the
default device for target regions . 27

3.6.4 omp_get_num_devices – Number of target devices 28
3.6.5 omp_get_device_num – Return
device number of current device . 28

3.6.6 omp_get_device_from_uid – Obtain the
device number to a unique id . 28

3.6.7 omp_get_uid_from_device –
Obtain the unique id of a device . 29

3.6.8 omp_is_initial_device – Whether
executing on the host device . 29

3.6.9 omp_get_initial_device – Return
device number of initial device . 30

3.7 Device Memory Routines . 30

v

3.7.1 omp_target_alloc – Allocate device memory 30
3.7.2 omp_target_free – Free device memory 31
3.7.3 omp_target_is_present – Check whether storage is mapped . . 31
3.7.4 omp_target_is_accessible – Check
whether memory is device accessible . 32

3.7.5 omp_target_memcpy – Copy data between devices 33
3.7.6 omp_target_memcpy_async – Copy data

between devices asynchronously . 34
3.7.7 omp_target_memcpy_rect – Copy a

subvolume of data between devices . 35
3.7.8 omp_target_memcpy_rect_async – Copy a subvolume of
data between devices asynchronously . 36

3.7.9 omp_target_memset – Set bytes in device memory 37
3.7.10 omp_target_memset – Set bytes in
device memory asynchronously . 38

3.7.11 omp_target_associate_ptr – Associate a
device pointer with a host pointer . 39

3.7.12 omp_target_disassociate_ptr – Remove
device–host pointer association . 40

3.7.13 omp_get_mapped_ptr – Return
device pointer to a host pointer . 40

3.8 Lock Routines . 41
3.8.1 omp_init_lock – Initialize simple lock . 41
3.8.2 omp_init_nest_lock – Initialize nested lock 41
3.8.3 omp_destroy_lock – Destroy simple lock 42
3.8.4 omp_destroy_nest_lock – Destroy nested lock 42
3.8.5 omp_set_lock – Wait for and set simple lock 42
3.8.6 omp_set_nest_lock – Wait for and set nested lock 43
3.8.7 omp_unset_lock – Unset simple lock . 43
3.8.8 omp_unset_nest_lock – Unset nested lock 43
3.8.9 omp_test_lock – Test and set simple lock if available 44
3.8.10 omp_test_nest_lock – Test and set nested lock if available . . 44

3.9 Timing Routines . 44
3.9.1 omp_get_wtick – Get timer precision . 45
3.9.2 omp_get_wtime – Elapsed wall clock time 45

3.10 Event Routine . 45
3.10.1 omp_fulfill_event – Fulfill and destroy an OpenMP event . . 45

3.11 Interoperability Routines . 46
3.11.1 omp_get_num_interop_properties – Get the number
of implementation-specific properties . 46

3.11.2 omp_get_interop_int – Obtain
integer-valued interoperability property . 46

3.11.3 omp_get_interop_ptr – Obtain
pointer-valued interoperability property . 47

3.11.4 omp_get_interop_str – Obtain
string-valued interoperability property . 48

vi

3.11.5 omp_get_interop_name – Obtain the name of an
interop_property value as string . 48

3.11.6 omp_get_interop_type_desc – Obtain type and
description to an interop_property . 49

3.11.7 omp_get_interop_rc_desc – Obtain error
string to an interop_rc error code . 49

3.12 Memory Management Routines . 50
3.12.1 omp_init_allocator – Create an allocator 50
3.12.2 omp_destroy_allocator – Destroy an allocator 51
3.12.3 omp_set_default_allocator – Set the default allocator . . 51
3.12.4 omp_get_default_allocator – Get the default allocator . . 52
3.12.5 omp_alloc – Memory allocation with an allocator 52
3.12.6 omp_aligned_alloc – Memory allocation
with an allocator and alignment . 53

3.12.7 omp_free – Freeing memory
allocated with OpenMP routines . 54

3.12.8 omp_calloc – Allocate nullified memory with an allocator . . 54
3.12.9 omp_aligned_calloc – Allocate aligned

nullified memory with an allocator . 55
3.12.10 omp_realloc – Reallocate memory
allocated with OpenMP routines . 56

3.13 Environment Display Routine . 57
3.13.1 omp_display_env – print the initial ICV values 57

4 OpenMP Environment Variables 59
4.1 OMP_ALLOCATOR – Set the default allocator . 59
4.2 OMP_AFFINITY_FORMAT – Set the format

string used for affinity display . 60
4.3 OMP_CANCELLATION – Set whether cancellation is activated 61
4.4 OMP_DISPLAY_AFFINITY – Display thread affinity information . . 61
4.5 OMP_DISPLAY_ENV – Show OpenMP version

and environment variables . 61
4.6 OMP_DEFAULT_DEVICE – Set the device used in target regions . . . 61
4.7 OMP_DYNAMIC – Dynamic adjustment of threads 62
4.8 OMP_MAX_ACTIVE_LEVELS – Set the maximum
number of nested parallel regions . 62

4.9 OMP_MAX_TASK_PRIORITY – Set the maximum priority 62
4.10 OMP_NESTED – Nested parallel regions . 63
4.11 OMP_NUM_TEAMS – Specifies the number of
teams to use by teams region . 63

4.12 OMP_NUM_THREADS – Specifies the number of threads to use 63
4.13 OMP_PROC_BIND – Whether threads may be moved between CPUs . . 64
4.14 OMP_PLACES – Specifies on which CPUs the
threads should be placed . 64

4.15 OMP_STACKSIZE – Set default thread stack size 65
4.16 OMP_SCHEDULE – How threads are scheduled 66

vii

4.17 OMP_TARGET_OFFLOAD – Controls offloading behavior 66
4.18 OMP_TEAMS_THREAD_LIMIT – Set the maximum
number of threads imposed by teams . 66

4.19 OMP_THREAD_LIMIT – Set the maximum number of threads 67
4.20 OMP_WAIT_POLICY – How waiting threads are handled 67
4.21 GOMP_CPU_AFFINITY – Bind threads to specific CPUs 67
4.22 GOMP_DEBUG – Enable debugging output . 68
4.23 GOMP_STACKSIZE – Set default thread stack size 68
4.24 GOMP_SPINCOUNT – Set the busy-wait spin count 68
4.25 GOMP_RTEMS_THREAD_POOLS – Set the

RTEMS specific thread pools . 69

5 Enabling OpenACC . 71

6 OpenACC Runtime Library Routines 73
6.1 acc_get_num_devices – Get number of

devices for given device type . 73
6.2 acc_set_device_type – Set type of device accelerator to use. . . 73
6.3 acc_get_device_type – Get type of

device accelerator to be used. 73
6.4 acc_set_device_num – Set device number to use. 74
6.5 acc_get_device_num – Get device number to be used. 74
6.6 acc_get_property – Get device property. 74
6.7 acc_async_test – Test for completion of a
specific asynchronous operation. 75

6.8 acc_async_test_all – Tests for completion of
all asynchronous operations. 76

6.9 acc_wait – Wait for completion of a
specific asynchronous operation. 76

6.10 acc_wait_all – Waits for completion of all
asynchronous operations. 76

6.11 acc_wait_all_async – Wait for completion of
all asynchronous operations. 77

6.12 acc_wait_async – Wait for completion of
asynchronous operations. 77

6.13 acc_init – Initialize runtime for a specific device type. 77
6.14 acc_shutdown – Shuts down the runtime
for a specific device type. 78

6.15 acc_on_device – Whether executing on a particular device . . . 78
6.16 acc_malloc – Allocate device memory. 78
6.17 acc_free – Free device memory. 79
6.18 acc_copyin – Allocate device memory
and copy host memory to it. 79

6.19 acc_present_or_copyin – If the data is not present on the device, allocate
device memory and copy from host memory. 80

viii

6.20 acc_create – Allocate device memory
and map it to host memory. 80

6.21 acc_present_or_create – If the data is not present on the device, allocate
device memory and map it to host memory. 81

6.22 acc_copyout – Copy device memory to host memory. 82
6.23 acc_delete – Free device memory. 83
6.24 acc_update_device – Update device memory

from mapped host memory. 84
6.25 acc_update_self – Update host memory
from mapped device memory. 84

6.26 acc_map_data – Map previously allocated
device memory to host memory. 85

6.27 acc_unmap_data – Unmap device memory from host memory. . . 85
6.28 acc_deviceptr – Get device pointer
associated with specific host address. 86

6.29 acc_hostptr – Get host pointer associated
with specific device address. 86

6.30 acc_is_present – Indicate whether host variable
/ array is present on device. 86

6.31 acc_memcpy_to_device – Copy host memory to device memory. . . 87
6.32 acc_memcpy_from_device – Copy device
memory to host memory. 87

6.33 acc_memcpy_device – Copy memory within a device. 88
6.34 acc_attach – Let device pointer point to device-pointer target. . . 89
6.35 acc_detach – Let device pointer point to host-pointer target. . . 89
6.36 acc_get_current_cuda_device – Get CUDA device handle. . . 90
6.37 acc_get_current_cuda_context – Get CUDA context handle. . . 90
6.38 acc_get_cuda_stream – Get CUDA stream handle. 90
6.39 acc_set_cuda_stream – Set CUDA stream handle. 90
6.40 acc_prof_register – Register callbacks. 91
6.41 acc_prof_unregister – Unregister callbacks. 91
6.42 acc_prof_lookup – Obtain inquiry functions. 91
6.43 acc_register_library – Library registration. 91

7 OpenACC Environment Variables 93
7.1 ACC_DEVICE_TYPE . 93
7.2 ACC_DEVICE_NUM . 93
7.3 ACC_PROFLIB . 93

8 CUDA Streams Usage . 95

9 OpenACC Library Interoperability 97
9.1 Introduction . 97
9.2 First invocation: NVIDIA CUBLAS library API 97
9.3 First invocation: OpenACC library API . 98
9.4 OpenACC library and environment variables 99

ix

10 OpenACC Profiling Interface 101
10.1 Implementation Status and Implementation-Defined Behavior . . 101

11 OpenMP-Implementation Specifics 107
11.1 Implementation-defined ICV Initialization 107
11.2 OpenMP Context Selectors . 107
11.3 Memory allocation . 107

12 Offload-Target Specifics . 113
12.1 AMD Radeon (GCN) . 113

12.1.1 OpenMP interop –
Foreign-Runtime Support for AMD GPUs . 114

12.2 nvptx . 115
12.2.1 OpenMP interop –
Foreign-Runtime Support for Nvidia GPUs 117

13 The libgomp ABI . 119
13.1 Implementing MASKED and MASTER construct 119
13.2 Implementing CRITICAL construct . 119
13.3 Implementing ATOMIC construct . 119
13.4 Implementing FLUSH construct . 119
13.5 Implementing BARRIER construct . 119
13.6 Implementing THREADPRIVATE construct 119
13.7 Implementing PRIVATE clause . 120
13.8 Implementing FIRSTPRIVATE LASTPRIVATE
COPYIN and COPYPRIVATE clauses . 120

13.9 Implementing REDUCTION clause . 120
13.10 Implementing PARALLEL construct . 120
13.11 Implementing FOR construct . 121
13.12 Implementing ORDERED construct . 122
13.13 Implementing SECTIONS construct . 122
13.14 Implementing SINGLE construct . 122
13.15 Implementing OpenACC’s PARALLEL construct 123

14 Reporting Bugs . 125

GNU General Public License . 127

GNU Free Documentation License 139
ADDENDUM: How to use this License for your documents 146

Funding Free Software . 147

Library Index . 149

1

1 Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time flag -fopenmp
must be specified. For C and C++, this enables the handling of the OpenMP directives
using #pragma omp and the [[omp::directive(...)]], [[omp::sequence(...)]] and
[[omp::decl(...)]] attributes. For Fortran, it enables for free source form the !$omp

sentinel for directives and the !$ conditional compilation sentinel and for fixed source form
the c$omp, *$omp and !$omp sentinels for directives and the c$, *$ and !$ conditional
compilation sentinels. The flag also arranges for automatic linking of the OpenMP runtime
library (Chapter 3 [Runtime Library Routines], page 15).

The -fopenmp-simd flag can be used to enable a subset of OpenMP directives that do
not require the linking of either the OpenMP runtime library or the POSIX threads library.

A complete description of all OpenMP directives may be found in the OpenMP Applica-
tion Program Interface (https://www.openmp.org) manuals. See also Chapter 2 [OpenMP
Implementation Status], page 3.

https://www.openmp.org
https://www.openmp.org

3

2 OpenMP Implementation Status

The _OPENMP preprocessor macro and Fortran’s openmp_version parameter, provided by
omp_lib.h and the omp_lib module, have the value 202111 (i.e. OpenMP 5.2).

2.1 OpenMP 4.5

The OpenMP 4.5 specification is fully supported.

2.2 OpenMP 5.0

New features listed in Appendix B of the OpenMP specification

Description Status Comments
Array shaping N
Array sections with non-unit strides in C and C++ N
Iterators Y
metadirective directive Y
declare variant directive Y
target-offload-var ICV and OMP_TARGET_OFFLOAD env
variable

Y

Nested-parallel changes to max-active-levels-var ICV Y
requires directive Y See also Chapter 12

[Offload-Target
Specifics], page 113,

teams construct outside an enclosing target region Y
Non-rectangular loop nests P Full support for

C/C++, partial for
Fortran (PR110735
(https://gcc.gnu.
org/PR110735))

!= as relational-op in canonical loop form for C/C++ Y
nonmonotonic as default loop schedule modifier for
worksharing-loop constructs

Y

Collapse of associated loops that are imperfectly nested
loops

Y

Clauses if, nontemporal and order(concurrent) in
simd construct

Y

atomic constructs in simd Y
loop construct Y
order(concurrent) clause Y
scan directive and in_scan modifier for the reduction
clause

Y

in_reduction clause on task constructs Y
in_reduction clause on target constructs P nowait only stub
task_reduction clause with taskgroup Y
task modifier to reduction clause Y

https://gcc.gnu.org/PR110735
https://gcc.gnu.org/PR110735
https://gcc.gnu.org/PR110735

4 GNU libgomp

affinity clause to task construct Y Stub only
detach clause to task construct Y
omp_fulfill_event runtime routine Y
reduction and in_reduction clauses on taskloop

and taskloop simd constructs
Y

taskloop construct cancelable by cancel construct Y
mutexinoutset dependence-type for depend clause Y
Predefined memory spaces, memory allocators, alloca-
tor traits

Y See also Sec-
tion 11.3 [Memory
allocation],
page 107,

Memory management routines Y
allocate directive P C++ unsupported;

see also Sec-
tion 11.3 [Memory
allocation],
page 107,

allocate clause P Clause has no
effect on target

(PR113436
(https://gcc.gnu.
org/PR113436))

use_device_addr clause on target data Y
ancestor modifier on device clause Y
Implicit declare target directive Y
Discontiguous array section with target update

construct
N

C/C++’s lvalue expressions in to, from and map clauses Y
C/C++’s lvalue expressions in depend clauses Y
Nested declare target directive Y
Combined master constructs Y
depend clause on taskwait Y
Weak memory ordering clauses on atomic and flush

construct
Y

hint clause on the atomic construct Y Stub only
depobj construct and depend objects Y
Lock hints were renamed to synchronization hints Y
conditional modifier to lastprivate clause Y
Map-order clarifications P
close map-type-modifier Y
Mapping C/C++ pointer variables and to assign the
address of device memory mapped by an array section

P

Mapping of Fortran pointer and allocatable vari-
ables, including pointer and allocatable components of
variables

Y

defaultmap extensions Y

https://gcc.gnu.org/PR113436
https://gcc.gnu.org/PR113436
https://gcc.gnu.org/PR113436

Chapter 2: OpenMP Implementation Status 5

declare mapper directive P Initial support and
for C/C++, only

omp_get_supported_active_levels routine Y
Runtime routines and environment variables to display
runtime thread affinity information

Y

omp_pause_resource and omp_pause_resource_all

runtime routines
Y

omp_get_device_num runtime routine Y
OMPT interface N
OMPD interface N

Other new OpenMP 5.0 features

Description Status Comments
Supporting C++’s range-based for loop Y

2.3 OpenMP 5.1

New features listed in Appendix B of the OpenMP specification

Description Status Comments
OpenMP directive as C++ attribute specifiers Y
omp_all_memory reserved locator Y
target device trait in OpenMP Context Y
target_device selector set in context selectors Y
C/C++’s delimited declare variant directive: sup-
port elision of preprocessed code and interpret enclosed
function definitions as variant functions

Y

declare variant: new clauses adjust_args and
append_args

Y

dispatch construct Y
device-specific ICV settings with environment variables Y
assume and assumes directives Y
nothing directive Y
error directive Y
masked construct Y
scope directive Y
Loop transformation constructs Y
strict modifier in the grainsize and num_tasks

clauses of the taskloop construct
Y

align clause in allocate directive P Only C and Fortran
align modifier in allocate clause Y
thread_limit clause to target construct Y
has_device_addr clause to target construct Y
Iterators in target update motion clauses and map

clauses
P Limited support for

C/C++

Indirect calls to the device version of a procedure or
function in target regions

Y

6 GNU libgomp

interop directive Y Cf. Chapter 12
[Offload-Target
Specifics], page 113,

omp_interop_t object support in runtime routines Y
nowait clause in taskwait directive Y
Extensions to the atomic directive Y
seq_cst clause on a flush construct Y
inoutset argument to the depend clause Y
private and firstprivate argument to default

clause in C and C++
Y

present argument to defaultmap clause Y
omp_set_num_teams, omp_set_teams_thread_limit,
omp_get_max_teams, omp_get_teams_thread_limit

runtime routines

Y

omp_target_is_accessible runtime routine Y
omp_target_memcpy_async and omp_target_memcpy_

rect_async runtime routines
Y

omp_get_mapped_ptr runtime routine Y
omp_calloc, omp_realloc, omp_aligned_alloc and
omp_aligned_calloc runtime routines

Y

omp_alloctrait_key_t enum: omp_atv_serialized

added, omp_atv_default changed
Y

omp_display_env runtime routine Y
ompt_scope_endpoint_t enum: ompt_scope_

beginend

N

ompt_sync_region_t enum additions N
ompt_state_t enum: ompt_state_wait_barrier_

implementation and ompt_state_wait_barrier_

teams

N

ompt_callback_target_data_op_emi_t,
ompt_callback_target_emi_t, ompt_callback_

target_map_emi_t and ompt_callback_target_

submit_emi_t

N

ompt_callback_error_t type N
OMP_PLACES syntax extensions Y
OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT envi-
ronment variables

Y

Other new OpenMP 5.1 features

Description Status Comments
Support of strictly structured blocks in Fortran Y
Support of structured block sequences in C/C++ Y
unconstrained and reproducible modifiers on order

clause
Y

Support begin/end declare target syntax in C/C++ Y

Chapter 2: OpenMP Implementation Status 7

Pointer predetermined firstprivate getting initialized to
address of matching mapped list item per 5.1, Sect.
2.21.7.2

N

For Fortran, diagnose placing declarative be-
fore/between USE, IMPORT, and IMPLICIT as
invalid

N

Optional comma between directive and clause in the
#pragma form

Y

indirect clause in declare target Y
device_type(nohost)/device_type(host) for
variables

N

present modifier to the map, to and from clauses Y
Changed interaction between declare target and
OpenMP context

Y

Dynamic selector support in metadirective Y
Dynamic selector support in declare variant P Fortran rejects

non-constant
expressions in
dynamic selectors;
C/C++ reject
expressions using
argument variables.
(PR113904
(https://gcc.gnu.
org/PR113904))

2.4 OpenMP 5.2

New features listed in Appendix B of the OpenMP specification

Description Status Comments
omp_in_explicit_task routine and explicit-task-var
ICV

Y

omp/ompx/omx sentinels and omp_/ompx_ namespaces N/A warning for
ompx/omx sentinels1

Clauses on end directive can be on directive Y
destroy clause with destroy-var argument on depobj Y
Deprecation of no-argument destroy clause on depobj N/A undeprecated in

OpenMP 6

linear clause syntax changes and step modifier Y
Deprecation of minus operator for reductions Y
Deprecation of separating map modifiers without
comma

Y

1 The ompx sentinel as C/C++ pragma and C++ attributes are warned for with -Wunknown-pragmas (implied
by -Wall) and -Wattributes (enabled by default), respectively; for Fortran free-source code, there is a
warning enabled by default and, for fixed-source code, the omx sentinel is warned for with -Wsurprising

(enabled by -Wall). Unknown clauses are always rejected with an error.

https://gcc.gnu.org/PR113904
https://gcc.gnu.org/PR113904
https://gcc.gnu.org/PR113904

8 GNU libgomp

declare mapper with iterator and present modifiers N
If a matching mapped list item is not found in the data
environment, the pointer retains its original value

Y

New enter clause as alias for to on declare target
directive

Y

Deprecation of to clause on declare target directive Y
Extended list of directives permitted in Fortran pure
procedures

Y

New allocators directive for Fortran Y
Deprecation of allocate directive for Fortran
allocatables/pointers

Y

Optional paired end directive with dispatch Y
New memspace and traits modifiers for uses_

allocators

P Only predefined
allocators

Deprecation of traits array following the alloca-
tor handle expression in uses_allocators

Y

New otherwise clause as alias for default on
metadirectives

Y

Deprecation of default clause on metadirectives Y Both otherwise

and default are
accepted without
diagnostics.

Deprecation of delimited form of declare target Y
Reproducible semantics changed for
order(concurrent)

N

allocate and firstprivate clauses on scope Y
ompt_callback_work N
Default map-type for the map clause in target

enter/exit data

Y

New doacross clause as alias for depend with
source/sink modifier

Y

Deprecation of depend with source/sink modifier Y
omp_cur_iteration keyword Y

Other new OpenMP 5.2 features

Description Status Comments
For Fortran, optional comma between directive and
clause

N

Conforming device numbers and omp_initial_device

and omp_invalid_device enum/PARAMETER
Y

Initial value of default-device-var ICV with OMP_

TARGET_OFFLOAD=mandatory

Y

all as implicit-behavior for defaultmap Y
interop types in any position of the modifier list for the
init clause of the interop construct

Y

Chapter 2: OpenMP Implementation Status 9

Invoke virtual member functions of C++ objects created
on the host device on other devices

N

mapper as map-type modifier in declare mapper N

2.5 OpenMP 6.0

New features listed in Appendix B of the OpenMP specification

Features deprecated in versions 5.0, 5.1 and 5.2 were
removed

N/A Backward
compatibility

Full support for C23 was added P
Full support for C++23 was added P
Full support for Fortran 2023 was added P
_ALL suffix to the device-scope environment variables P Host device number

wrongly accepted

num_threads clause now accepts a list N
Abstract names added for OMP_NUM_THREADS, OMP_

THREAD_LIMIT and OMP_TEAMS_THREAD_LIMIT

N

Supporting increments with abstract names in OMP_

PLACES

N

Extension of OMP_DEFAULT_DEVICE and new OMP_

AVAILABLE_DEVICES environment vars
N

New uid trait for target devices and for OMP_

AVAILABLE_DEVICES and OMP_DEFAULT_DEVICE

N

New OMP_THREADS_RESERVE environment variable N
The decl attribute was added to the C++ attribute
syntax

Y

The OpenMP directive syntax was extended to include
C23 attribute specifiers

Y

Support for pure directives in Fortran’s do concurrent N
All inarguable clauses take now an optional Boolean
argument

N

The adjust_args clause was extended to specify the
argument by position and supports variadic arguments

N

For Fortran, locator list can be also function reference
with data pointer result

N

Concept of assumed-size arrays in C and C++ N
directive-name-modifier accepted in all clauses N
Extension of interop operation of append_args, al-
lowing all modifiers of the init clause

Y

New argument-free version of depobj with repeatable
clauses and the init clause

N

Undeprecate omitting the argument to the depend

clause of the argument version of the depend construct
Y

For Fortran, atomic with BLOCK construct and, for
C/C++, with unlimited curly braces supported

N

10 GNU libgomp

For Fortran, atomic with pointer comparison N
For Fortran, atomic with enum and enumeration types N
For Fortran, atomic compare with storing the compar-
ison result

N

Canonical loop sequences and new looprange clause N
For Fortran, handling polymorphic types in data-
sharing-attribute clauses

P private not
supported

For Fortran, rejecting polymorphic types in data-
mapping clauses

N not diagnosed
(and mostly
unsupported)

New taskgraph construct including saved modifier
and replayable clause

N

default clause on the target directive and accepting
variable categories

N

Semantic change regarding the reference count update
with use_device_ptr and use_device_addr

N

Support for inductions N
Reduction over private variables with reduction clause N
Implicit reduction identifiers of C++ classes N
New init_complete clause to the scan directive N
ref modifier to the map clause N
New storage map-type modifier; context-dependent
alloc and release are aliases

N

Change of the map-type property from ultimate to de-
fault

N

self modifier to map and self as defaultmap

argument
N

Mapping of assumed-size arrays in C, C++ and Fortran N
delete as delete-modifier not as map type N
For Fortran, the automap modifier to the enter clause
of declare_target

N

groupprivate directive N
local clause to declare_target directive N
part_size allocator trait for interleaved allocator
partitions

N

pin_device, preferred_device and target_access

allocator traits
N

access allocator trait changes N
New partitioner value to partition allocator trait N
Semicolon-separated list to uses_allocators N
New need_device_addr modifier to adjust_args

clause
N

interop clause to dispatch Y
Scope requirement changes for declare_target N
message and severity clauses to parallel directive N

Chapter 2: OpenMP Implementation Status 11

self_maps clause to requires directive Y
no_openmp_constructs assumptions clause Y
Restriction for ordered regarding loop-transforming
directives

N

apply clause to loop-transforming constructs N
Non-constant values in the sizes clause N
fuse loop-transformation construct N
interchange loop-transformation construct N
reverse loop-transformation construct N
split loop-transformation construct N
stripe loop-transformation construct N
tile permitting association of grid and inter-tile loops N
strict modifier keyword to num_threads N
safesync clause to the parallel construct N
omp_curr_progress_width identifier N
omp_get_max_progress_width runtime routine N
Lifted restrictions on order(concurrent) and, hence,
the loop construct

N

atomic permitted in a construct with
order(concurrent)

N

Lifted restrictions on not-strictly-nested regions with
order(concurrent)

N

workdistribute directive for Fortran N
Fortran DO CONCURRENT as associated loop in a loop

construct
N

New task_iteration directive inside taskloop N
threadset clause in task-generating constructs N
New priority clause to target, target_enter_data,
target_data, target_exit_data and target_update

N

New device_type clause to the target directive N
target_data as composite construct N
nowait clause with reverse-offload target directives N
Extended prefer-type modifier to init clause Y
Boolean argument to nowait and nogroup may be non
constant

N

memscope clause to atomic and flush N
New transparent clause for multi-generational task-
dependence graphs

N

The cancel construct now completes tasks with unful-
filled events

N

omp_fulfill_event routine was restricted regarding
fulfillment of event variables

N

Added rule for compound-directive names, permitting
many more combinations

N

omp_is_free_agent and omp_ancestor_is_free_

agent routines
N

12 GNU libgomp

omp_get_device_from_uid and omp_get_uid_from_

device routines
Y

omp_get_device_num_teams, omp_set_device_num_

teams, omp_get_device_teams_thread_limit, and
omp_set_device_teams_thread_limit routines

N

omp_target_memset and omp_target_memset_async

routines
Y

Fortran version of the interop runtime routines Y
Routines for obtaining memory spaces/allocators for
shared/device memory

N

omp_get_memspace_num_resources routine N
omp_get_memspace_pagesize routine N
omp_get_submemspace routine N
omp_init_mempartitioner, omp_destroy_

mempartitioner, omp_init_mempartition,
omp_destroy_mempartition, omp_mempartition_

set_part, omp_mempartition_get_user_data

routines

N

Deprecation of the target_data_op, target, target_
map and target_submit callbacks and as values that
set_callback must return

N

ompt_target_data_transfer and ompt_

target_data_transfer_async values in
ompt_target_data_op_t enum

N

The values ompt_target_data_transfer_to_device,
ompt_target_data_transfer_from_device,
ompt_target_data_transfer_to_device_async and
ompt_target_data_transfer_from_device_async of
the target_data_op OMPT type were deprecated

N

ompt_get_buffer_limits OMPT routine N

Deprecated features, unless listed above

Deprecation of omitting the optional white space to
separate adjacent keywords in the directive-name in
Fortran (fixed and free source form)

N

Deprecation of the combiner expression in the
declare_reduction argument

N

Deprecation of the Fortran include file omp_lib.h N

Other new OpenMP 6.0 features

Multi-word directives now use underscore by default N
Relaxed Fortran restrictions to the aligned clause N
Mapping lambda captures N
New omp_pause_stop_tool constant for
omp pause resource

N

Chapter 2: OpenMP Implementation Status 13

In Fortran (fixed and free source form), spaces between
directive names are mandatory

N

Update of the map-type decay for mapping and
declare_mapper

N

2.6 OpenMP Technical Report 14

Technical Report (TR) 14 is the first preview for OpenMP 6.1.

New features listed in Appendix B of the OpenMP specification

The depth clause to fuse directive N
The attach modifier to the map clause N
The dyn_groupprivate clause and the omp_get_dyn_

groupprivate_ptr, omp_get_dyn_groupprivate_

size, and omp_get_dyn_groupprivate_size

routines

N

begin declare_variant directive in Fortran N
grid and tile modifier to the size clause N
New flatten loop-transforming directive N
scaled modifier to simdlen clause N
New omp_default_device identifier as conforming de-
vice number

Y

Clarify when omp_target_is_accessible routine re-
turns zero

N

Deprecated features, unless listed above

Deprecation of conditional-update-capture structured
block without a capture statement

N

15

3 OpenMP Runtime Library Routines

The runtime routines described here are defined by Section 18 of the OpenMP specification
in version 5.2.

3.1 Thread Team Routines

Routines controlling threads in the current contention group. They have C linkage and do
not throw exceptions.

3.1.1 omp_set_num_threads – Set upper team size limit

Description:
Specifies the number of threads used by default in subsequent parallel sections,
if those do not specify a num_threads clause. The argument of omp_set_num_
threads shall be a positive integer.

C/C++:

Prototype: void omp_set_num_threads(int num_threads);

Fortran:

Interface: subroutine omp_set_num_threads(num_threads)

integer, intent(in) :: num_threads

See also: Section 4.12 [OMP NUM THREADS], page 63, Section 3.1.2
[omp get num threads], page 15, Section 3.1.3 [omp get max threads],
page 16,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.1.

3.1.2 omp_get_num_threads – Size of the active team

Description:
Returns the number of threads in the current team. In a sequential section of
the program omp_get_num_threads returns 1.

The default team size may be initialized at startup by the OMP_NUM_THREADS

environment variable. At runtime, the size of the current team may be set
either by the NUM_THREADS clause or by omp_set_num_threads. If none of the
above were used to define a specific value and OMP_DYNAMIC is disabled, one
thread per CPU online is used.

C/C++:

Prototype: int omp_get_num_threads(void);

Fortran:

Interface: integer function omp_get_num_threads()

See also: Section 3.1.3 [omp get max threads], page 16, Section 3.1.1
[omp set num threads], page 15, Section 4.12 [OMP NUM THREADS],
page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.2.

https://www.openmp.org
https://www.openmp.org

16 GNU libgomp

3.1.3 omp_get_max_threads – Maximum number of threads of
parallel region

Description:
Return the maximum number of threads used for the current parallel region
that does not use the clause num_threads.

C/C++:

Prototype: int omp_get_max_threads(void);

Fortran:

Interface: integer function omp_get_max_threads()

See also: Section 3.1.1 [omp set num threads], page 15, Section 3.1.6 [omp set dynamic],
page 17, Section 3.3.6 [omp get thread limit], page 24,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.3.

3.1.4 omp_get_thread_num – Current thread ID

Description:
Returns a unique thread identification number within the current team. In a
sequential parts of the program, omp_get_thread_num always returns 0. In
parallel regions the return value varies from 0 to omp_get_num_threads-1 in-
clusive. The return value of the primary thread of a team is always 0.

C/C++:

Prototype: int omp_get_thread_num(void);

Fortran:

Interface: integer function omp_get_thread_num()

See also: Section 3.1.2 [omp get num threads], page 15, Section 3.1.18
[omp get ancestor thread num], page 21,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.4.

3.1.5 omp_in_parallel – Whether a parallel region is active

Description:
This function returns true if currently running in parallel, false otherwise.
Here, true and false represent their language-specific counterparts.

C/C++:

Prototype: int omp_in_parallel(void);

Fortran:

Interface: logical function omp_in_parallel()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.6.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 17

3.1.6 omp_set_dynamic – Enable/disable dynamic teams

Description:
Enable or disable the dynamic adjustment of the number of threads within a
team. The function takes the language-specific equivalent of true and false,
where true enables dynamic adjustment of team sizes and false disables it.

C/C++:

Prototype: void omp_set_dynamic(int dynamic_threads);

Fortran:

Interface: subroutine omp_set_dynamic(dynamic_threads)

logical, intent(in) :: dynamic_threads

See also: Section 4.7 [OMP DYNAMIC], page 62, Section 3.1.7 [omp get dynamic],
page 17,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.7.

3.1.7 omp_get_dynamic – Dynamic teams setting

Description:
This function returns true if enabled, false otherwise. Here, true and false

represent their language-specific counterparts.

The dynamic team setting may be initialized at startup by the OMP_DYNAMIC

environment variable or at runtime using omp_set_dynamic. If undefined, dy-
namic adjustment is disabled by default.

C/C++:

Prototype: int omp_get_dynamic(void);

Fortran:

Interface: logical function omp_get_dynamic()

See also: Section 3.1.6 [omp set dynamic], page 17, Section 4.7 [OMP DYNAMIC],
page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.8.

3.1.8 omp_get_cancellation – Whether cancellation support is
enabled

Description:
This function returns true if cancellation is activated, false otherwise. Here,
true and false represent their language-specific counterparts. Unless OMP_

CANCELLATION is set true, cancellations are deactivated.

C/C++:

Prototype: int omp_get_cancellation(void);

Fortran:

Interface: logical function omp_get_cancellation()

See also: Section 4.3 [OMP CANCELLATION], page 61,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.9.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

18 GNU libgomp

3.1.9 omp_set_nested – Enable/disable nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The function takes the language-specific equivalent
of true and false, where true enables dynamic adjustment of team sizes and
false disables it.

Enabling nested parallel regions also sets the maximum number of active nested
regions to the maximum supported. Disabling nested parallel regions sets the
maximum number of active nested regions to one.

Note that the omp_set_nested API routine was deprecated in the OpenMP
specification 5.0 in favor of omp_set_max_active_levels.

C/C++:

Prototype: void omp_set_nested(int nested);

Fortran:

Interface: subroutine omp_set_nested(nested)

logical, intent(in) :: nested

See also: Section 3.1.10 [omp get nested], page 18, Section 3.1.15 [omp set max active levels],
page 20, Section 4.8 [OMP MAX ACTIVE LEVELS], page 62, Section 4.10
[OMP NESTED], page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.10.

3.1.10 omp_get_nested – Nested parallel regions

Description:
This function returns true if nested parallel regions are enabled, false other-
wise. Here, true and false represent their language-specific counterparts.

The state of nested parallel regions at startup depends on several environment
variables. If OMP_MAX_ACTIVE_LEVELS is defined and is set to greater than one,
then nested parallel regions will be enabled. If not defined, then the value of
the OMP_NESTED environment variable will be followed if defined. If neither are
defined, then if either OMP_NUM_THREADS or OMP_PROC_BIND are defined with a
list of more than one value, then nested parallel regions are enabled. If none of
these are defined, then nested parallel regions are disabled by default.

Nested parallel regions can be enabled or disabled at runtime using omp_set_

nested, or by setting the maximum number of nested regions with omp_set_

max_active_levels to one to disable, or above one to enable.

Note that the omp_get_nested API routine was deprecated in the OpenMP
specification 5.0 in favor of omp_get_max_active_levels.

C/C++:

Prototype: int omp_get_nested(void);

Fortran:

Interface: logical function omp_get_nested()

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 19

See also: Section 3.1.16 [omp get max active levels], page 21, Section 3.1.9
[omp set nested], page 18, Section 4.8 [OMP MAX ACTIVE LEVELS],
page 62, Section 4.10 [OMP NESTED], page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.11.

3.1.11 omp_set_schedule – Set the runtime scheduling method

Description:
Sets the runtime scheduling method. The kind argument can have the
value omp_sched_static, omp_sched_dynamic, omp_sched_guided or
omp_sched_auto. Except for omp_sched_auto, the chunk size is set to the
value of chunk size if positive, or to the default value if zero or negative. For
omp_sched_auto the chunk size argument is ignored.

C/C++

Prototype: void omp_set_schedule(omp_sched_t kind, int

chunk_size);

Fortran:

Interface: subroutine omp_set_schedule(kind, chunk_size)

integer(kind=omp_sched_kind) kind

integer chunk_size

See also: Section 3.1.12 [omp get schedule], page 19, Section 4.16 [OMP SCHEDULE],
page 66,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.12.

3.1.12 omp_get_schedule – Obtain the runtime scheduling method

Description:
Obtain the runtime scheduling method. The kind argument is set to omp_

sched_static, omp_sched_dynamic, omp_sched_guided or omp_sched_auto.
The second argument, chunk size, is set to the chunk size.

C/C++

Prototype: void omp_get_schedule(omp_sched_t *kind, int

*chunk_size);

Fortran:

Interface: subroutine omp_get_schedule(kind, chunk_size)

integer(kind=omp_sched_kind) kind

integer chunk_size

See also: Section 3.1.11 [omp set schedule], page 19, Section 4.16 [OMP SCHEDULE],
page 66,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.13.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

20 GNU libgomp

3.1.13 omp_get_teams_thread_limit – Maximum number of threads
imposed by teams

Description:
Return the maximum number of threads that are able to participate in each
team created by a teams construct.

C/C++:

Prototype: int omp_get_teams_thread_limit(void);

Fortran:

Interface: integer function omp_get_teams_thread_limit()

See also: Section 3.3.5 [omp set teams thread limit], page 24, Section 4.18
[OMP TEAMS THREAD LIMIT], page 66,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.6.

3.1.14 omp_get_supported_active_levels – Maximum number of
active regions supported

Description:
This function returns the maximum number of nested, active parallel regions
supported by this implementation.

C/C++

Prototype: int omp_get_supported_active_levels(void);

Fortran:

Interface: integer function omp_get_supported_active_levels()

See also: Section 3.1.16 [omp get max active levels], page 21, Section 3.1.15
[omp set max active levels], page 20,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.15.

3.1.15 omp_set_max_active_levels – Limits the number of active
parallel regions

Description:
This function limits the maximum allowed number of nested, active parallel
regions. max levels must be less or equal to the value returned by omp_get_

supported_active_levels.

C/C++

Prototype: void omp_set_max_active_levels(int max_levels);

Fortran:

Interface: subroutine omp_set_max_active_levels(max_levels)

integer max_levels

See also: Section 3.1.16 [omp get max active levels], page 21, Section 3.1.20
[omp get active level], page 22, Section 3.1.14 [omp get supported active levels],
page 20,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.15.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 21

3.1.16 omp_get_max_active_levels – Current maximum number of
active regions

Description:
This function obtains the maximum allowed number of nested, active parallel
regions.

C/C++

Prototype: int omp_get_max_active_levels(void);

Fortran:

Interface: integer function omp_get_max_active_levels()

See also: Section 3.1.15 [omp set max active levels], page 20, Section 3.1.20
[omp get active level], page 22,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.16.

3.1.17 omp_get_level – Obtain the current nesting level

Description:
This function returns the nesting level for the parallel blocks, which enclose the
calling call.

C/C++

Prototype: int omp_get_level(void);

Fortran:

Interface: integer function omp_level()

See also: Section 3.1.20 [omp get active level], page 22,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.17.

3.1.18 omp_get_ancestor_thread_num – Ancestor thread ID

Description:
This function returns the thread identification number for the given nesting
level of the current thread. For values of level outside zero to omp_get_level

-1 is returned; if level is omp_get_level the result is identical to omp_get_

thread_num.

C/C++

Prototype: int omp_get_ancestor_thread_num(int level);

Fortran:

Interface: integer function omp_get_ancestor_thread_

num(level)

integer level

See also: Section 3.1.17 [omp get level], page 21, Section 3.1.4 [omp get thread num],
page 16, Section 3.1.19 [omp get team size], page 22,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.18.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

22 GNU libgomp

3.1.19 omp_get_team_size – Number of threads in a team

Description:
This function returns the number of threads in a thread team to which either
the current thread or its ancestor belongs. For values of level outside zero to
omp_get_level, -1 is returned; if level is zero, 1 is returned, and for omp_get_
level, the result is identical to omp_get_num_threads.

C/C++:

Prototype: int omp_get_team_size(int level);

Fortran:

Interface: integer function omp_get_team_size(level)

integer level

See also: Section 3.1.2 [omp get num threads], page 15, Section 3.1.17 [omp get level],
page 21, Section 3.1.18 [omp get ancestor thread num], page 21,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.19.

3.1.20 omp_get_active_level – Number of parallel regions

Description:
This function returns the nesting level for the active parallel blocks, which
enclose the calling call.

C/C++

Prototype: int omp_get_active_level(void);

Fortran:

Interface: integer function omp_get_active_level()

See also: Section 3.1.17 [omp get level], page 21, Section 3.1.16 [omp get max active levels],
page 21, Section 3.1.15 [omp set max active levels], page 20,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.20.

3.2 Thread Affinity Routines

Routines controlling and accessing thread-affinity policies. They have C linkage and do not
throw exceptions.

3.2.1 omp_get_proc_bind – Whether threads may be moved
between CPUs

Description:
This functions returns the currently active thread affinity policy, which
is set via OMP_PROC_BIND. Possible values are omp_proc_bind_false,
omp_proc_bind_true, omp_proc_bind_primary, omp_proc_bind_master,
omp_proc_bind_close and omp_proc_bind_spread, where omp_proc_bind_

master is a deprecated alias for omp_proc_bind_primary.

C/C++:

Prototype: omp_proc_bind_t omp_get_proc_bind(void);

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 23

Fortran:

Interface: integer(kind=omp_proc_bind_kind) function

omp_get_proc_bind()

See also: Section 4.13 [OMP PROC BIND], page 64, Section 4.14 [OMP PLACES],
page 64, Section 4.21 [GOMP CPU AFFINITY], page 67,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.22.

3.3 Teams Region Routines

Routines controlling the league of teams that are executed in a teams region. They have C
linkage and do not throw exceptions.

3.3.1 omp_get_num_teams – Number of teams

Description:
Returns the number of teams in the current team region.

C/C++:

Prototype: int omp_get_num_teams(void);

Fortran:

Interface: integer function omp_get_num_teams()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.32.

3.3.2 omp_get_team_num – Get team number

Description:
Returns the team number of the calling thread.

C/C++:

Prototype: int omp_get_team_num(void);

Fortran:

Interface: integer function omp_get_team_num()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.33.

3.3.3 omp_set_num_teams – Set upper teams limit for teams
construct

Description:
Specifies the upper bound for number of teams created by the teams construct
which does not specify a num_teams clause. The argument of omp_set_num_
teams shall be a positive integer.

C/C++:

Prototype: void omp_set_num_teams(int num_teams);

Fortran:

Interface: subroutine omp_set_num_teams(num_teams)

integer, intent(in) :: num_teams

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

24 GNU libgomp

See also: Section 4.11 [OMP NUM TEAMS], page 63, Section 3.3.1
[omp get num teams], page 23, Section 3.3.4 [omp get max teams],
page 24,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.3.

3.3.4 omp_get_max_teams – Maximum number of teams of teams
region

Description:
Return the maximum number of teams used for the teams region that does not
use the clause num_teams.

C/C++:

Prototype: int omp_get_max_teams(void);

Fortran:

Interface: integer function omp_get_max_teams()

See also: Section 3.3.3 [omp set num teams], page 23, Section 3.3.1
[omp get num teams], page 23,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.4.

3.3.5 omp_set_teams_thread_limit – Set upper thread limit for
teams construct

Description:
Specifies the upper bound for number of threads that are available for each team
created by the teams construct which does not specify a thread_limit clause.
The argument of omp_set_teams_thread_limit shall be a positive integer.

C/C++:

Prototype: void omp_set_teams_thread_limit(int thread_limit);

Fortran:

Interface: subroutine omp_set_teams_thread_limit(thread_

limit)

integer, intent(in) :: thread_limit

See also: Section 4.18 [OMP TEAMS THREAD LIMIT], page 66, Section 3.1.13
[omp get teams thread limit], page 20, Section 3.3.6 [omp get thread limit],
page 24,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.5.

3.3.6 omp_get_thread_limit – Maximum number of threads

Description:
Return the maximum number of threads of the program.

C/C++:

Prototype: int omp_get_thread_limit(void);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 25

Fortran:

Interface: integer function omp_get_thread_limit()

See also: Section 3.1.3 [omp get max threads], page 16, Section 4.19
[OMP THREAD LIMIT], page 67,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.14.

3.4 Tasking Routines

Routines relating to explicit tasks. They have C linkage and do not throw exceptions.

3.4.1 omp_get_max_task_priority – Maximum priority value

that can be set for tasks.

Description:
This function obtains the maximum allowed priority number for tasks.

C/C++

Prototype: int omp_get_max_task_priority(void);

Fortran:

Interface: integer function omp_get_max_task_priority()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.29.

3.4.2 omp_in_explicit_task – Whether a given task is an explicit
task

Description:
The function returns the explicit-task-var ICV; it returns true when the en-
countering task was generated by a task-generating construct such as target,
task or taskloop. Otherwise, the encountering task is in an implicit task
region such as generated by the implicit or explicit parallel region and omp_

in_explicit_task returns false.

C/C++

Prototype: int omp_in_explicit_task(void);

Fortran:

Interface: logical function omp_in_explicit_task()

Reference: OpenMP specification v5.2 (https://www.openmp.org), Section 18.5.2.

3.4.3 omp_in_final – Whether in final or included task region

Description:
This function returns true if currently running in a final or included task re-
gion, false otherwise. Here, true and false represent their language-specific
counterparts.

C/C++:

Prototype: int omp_in_final(void);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

26 GNU libgomp

Fortran:

Interface: logical function omp_in_final()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.21.

3.5 Resource Relinquishing Routines

Routines releasing resources used by the OpenMP runtime. They have C linkage and do
not throw exceptions.

3.5.1 omp_pause_resource – Release OpenMP resources on a device

Description:
Free resources used by the OpenMP program and the runtime library on and for
the device specified by device num; on success, zero is returned and non-zero
otherwise.

The value of device num must be a conforming device number. The routine
may not be called from within any explicit region and all explicit threads that
do not bind to the implicit parallel region have finalized execution.

C/C++:

Prototype: int omp_pause_resource(omp_pause_resource_t kind,

int device_num);

Fortran:

Interface: integer function omp_pause_resource(kind,

device_num)

integer (kind=omp_pause_resource_kind) kind

integer device_num

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.43.

3.5.2 omp_pause_resource_all – Release OpenMP resources on all
devices

Description:
Free resources used by the OpenMP program and the runtime library on all
devices, including the host. On success, zero is returned and non-zero otherwise.

The routine may not be called from within any explicit region and all explicit
threads that do not bind to the implicit parallel region have finalized execution.

C/C++:

Prototype: int omp_pause_resource(omp_pause_resource_t kind);

Fortran:

Interface: integer function omp_pause_resource(kind)

integer (kind=omp_pause_resource_kind) kind

See also: Section 3.5.1 [omp pause resource], page 26,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.44.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 27

3.6 Device Information Routines

Routines related to devices available to an OpenMP program. They have C linkage and do
not throw exceptions.

3.6.1 omp_get_num_procs – Number of processors online

Description:
Returns the number of processors online on that device.

C/C++:

Prototype: int omp_get_num_procs(void);

Fortran:

Interface: integer function omp_get_num_procs()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.5.

3.6.2 omp_set_default_device – Set the default device for target
regions

Description:
Get the value of the default-device-var ICV, which is used for target regions
without a device clause. The argument shall be a nonnegative device number,
omp_initial_device, or omp_invalid_device.

The effect of running this routine in a target region is unspecified.

C/C++:

Prototype: void omp_set_default_device(int device_num);

Fortran:

Interface: subroutine omp_set_default_device(device_num)

integer device_num

See also: Section 4.6 [OMP DEFAULT DEVICE], page 61, Section 3.6.3
[omp get default device], page 27,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.29.

3.6.3 omp_get_default_device – Get the default device for target
regions

Description:
Get the value of the default-device-var ICV, which is used for target regions
without a device clause. The value is either a nonnegative device number, omp_
initial_device or omp_invalid_device. Note that for the host, the ICV can
have two values: either the value of the named constant omp_initial_device
or the value returned by the omp_get_num_devices routine.

The effect of running this routine in a target region is unspecified.

C/C++:

Prototype: int omp_get_default_device(void);

https://www.openmp.org
https://www.openmp.org

28 GNU libgomp

Fortran:

Interface: integer function omp_get_default_device()

See also: Section 4.6 [OMP DEFAULT DEVICE], page 61, Section 3.6.2
[omp set default device], page 27, Section 3.6.9 [omp get initial device],
page 30,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.30.

3.6.4 omp_get_num_devices – Number of target devices

Description:
Returns the number of available non-host devices.

The effect of running this routine in a target region is unspecified.

Note that in GCC the function is marked pure, i.e. as returning always the same
number. When GCC was not configured to support offloading, it is replaced by
zero; compile with -fno-builtin-omp_get_num_devices if a run-time function
is desired.

C/C++:

Prototype: int omp_get_num_devices(void);

Fortran:

Interface: integer function omp_get_num_devices()

See also: Section 3.6.9 [omp get initial device], page 30,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.31.

3.6.5 omp_get_device_num – Return device number of current
device

Description:
This function returns a device number that represents the device that the cur-
rent thread is executing on. When called on the host, it returns the same
value as returned by the omp_get_initial_device function as required since
OpenMP 5.0.

C/C++

Prototype: int omp_get_device_num(void);

Fortran:

Interface: integer function omp_get_device_num()

See also: Section 3.6.9 [omp get initial device], page 30,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.37.

3.6.6 omp_get_device_from_uid – Obtain the device number to a
unique id

Description:
This function returns the device number associated with the passed unique-
identifier (UID) string. If no device with this UID is available, the value omp_

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 29

invalid_device is returned. The effect of running this routine in a target

region is unspecified.

GCC treats the UID string case sensitive; for the initial device, GCC currently
only accepts the value OMP_INITIAL_DEVICE and returns for it the value of
omp_initial_device.

C/C++:

Prototype: int omp_get_device_from_uid(const char *uid);

Fortran:

Interface: integer function omp_get_device_from_uid(uid)

character(len=*), intent(in) :: uid

See also: Section 3.6.7 [omp get uid from device], page 29, Chapter 12 [Offload-Target
Specifics], page 113,

Reference: OpenMP specification v6.0 (https://www.openmp.org), Section 24.7

3.6.7 omp_get_uid_from_device – Obtain the unique id of a device

Description:
This function returns a pointer to a string that represents a unique identifier
(UID) for the device specified by device num. It returns a NULL (C/C++) or a
disassociated pointer (Fortran) for omp_invalid_device. The effect of running
this routine in a target region is unspecified.

GCC currently returns for initial device the value OMP_INITIAL_DEVICE.

C/C++:

Prototype: const char *omp_get_uid_from_device(int device_

num);

Fortran:

Interface: character(:) function omp_get_uid_from_

device(device_num)

Interface: pointer :: omp_get_uid_from_device

integer, intent(in) :: device_num

See also: Section 3.6.7 [omp get uid from device], page 29, Chapter 12 [Offload-Target
Specifics], page 113,

Reference: OpenMP specification v6.0 (https://www.openmp.org), Section 24.8

3.6.8 omp_is_initial_device – Whether executing on the host
device

Description:
This function returns true if currently running on the host device, false oth-
erwise. Here, true and false represent their language-specific counterparts.

Note that in GCC this function call is already folded to a constant in the
compiler; compile with -fno-builtin-omp_is_initial_device if a run-time
function is desired.

https://www.openmp.org
https://www.openmp.org

30 GNU libgomp

C/C++:

Prototype: int omp_is_initial_device(void);

Fortran:

Interface: logical function omp_is_initial_device()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.34.

3.6.9 omp_get_initial_device – Return device number of initial
device

Description:
This function returns a device number that represents the host device. Since
OpenMP 5.1, this is equal to the value returned by the omp_get_num_devices
function; since OpenMP 6.0 it may also return the value of omp_initial_

device.

The effect of running this routine in a target region is unspecified.

Note that GCC inlines this function unless you compile with -fno-builtin-

omp_get_initial_device. If GCC was not configured to support offloading, it
expands to constant zero; in non-host code it expands to omp_initial_device;
and otherwise it is replaced with a call to omp_get_num_devices.

C/C++

Prototype: int omp_get_initial_device(void);

Fortran:

Interface: integer function omp_get_initial_device()

See also: Section 3.6.4 [omp get num devices], page 28,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.35.

3.7 Device Memory Routines

Routines related to memory allocation and managing corresponding pointers on devices.
They have C linkage and do not throw exceptions.

3.7.1 omp_target_alloc – Allocate device memory

Description:
This routine allocates size bytes of memory in the device environment associated
with the device number device num. If successful, a device pointer is returned,
otherwise a null pointer.

In GCC, when the device is the host or the device shares memory with the
host, the memory is allocated on the host; in that case, when size is zero, either
NULL or a unique pointer value that can later be successfully passed to omp_

target_free is returned. When the allocation is not performed on the host, a
null pointer is returned when size is zero; in that case, additionally a diagnostic
might be printed to standard error (stderr).

Running this routine in a target region except on the initial device is not
supported.

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 31

C/C++

Prototype: void *omp_target_alloc(size_t size, int device_num)

Fortran:

Interface: type(c_ptr) function omp_target_alloc(size,

device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int,

c_size_t

integer(c_size_t), value :: size

integer(c_int), value :: device_num

See also: Section 3.7.2 [omp target free], page 31, Section 3.7.11 [omp target associate ptr],
page 39,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.1

3.7.2 omp_target_free – Free device memory

Description:
This routine frees memory allocated by the omp_target_alloc routine. The
device ptr argument must be either a null pointer or a device pointer returned
by omp_target_alloc for the specified device_num. The device number de-
vice num must be a conforming device number.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: void omp_target_free(void *device_ptr, int

device_num)

Fortran:

Interface: subroutine omp_target_free(device_ptr, device_num)

bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int

type(c_ptr), value :: device_ptr

integer(c_int), value :: device_num

See also: Section 3.7.1 [omp target alloc], page 30, Section 3.7.12 [omp target disassociate ptr],
page 40,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.2

3.7.3 omp_target_is_present – Check whether storage is mapped

Description:
This routine tests whether storage, identified by the host pointer ptr is mapped
to the device specified by device num. If so, it returns a nonzero value and
otherwise zero.

In GCC, this includes self mapping such that omp_target_is_present returns
true when device num specifies the host or when the host and the device share

https://www.openmp.org
https://www.openmp.org

32 GNU libgomp

memory. If ptr is a null pointer, true is returned and if device num is an invalid
device number, false is returned.

If those conditions do not apply, true is returned if the association has been
established by an explicit or implicit map clause, the declare target directive
or a call to the omp_target_associate_ptr routine.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: int omp_target_is_present(const void *ptr,

int device_num)

Fortran:

Interface: integer(c_int) function omp_target_is_present(ptr,

&

device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int

type(c_ptr), value :: ptr

integer(c_int), value :: device_num

See also: Section 3.7.11 [omp target associate ptr], page 39,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.3

3.7.4 omp_target_is_accessible – Check whether memory is device
accessible

Description:
This routine tests whether memory, starting at the address given by ptr and
extending size bytes, is accessibly on the device specified by device num. If so,
it returns a nonzero value and otherwise zero.

The address given by ptr is interpreted to be in the address space of the device
and size must be positive.

Note that GCC’s current implementation assumes that ptr is a valid host
pointer. Therefore, all addresses given by ptr are assumed to be accessible
on the initial device. And, to err on the safe side, this memory is only available
on a non-host device that can access all host memory ([uniform] shared memory
access).

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: int omp_target_is_accessible(const void *ptr,

size_t size,

int device_num)

Fortran:

Interface: integer(c_int) function omp_target_is_

accessible(ptr, &

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 33

size, device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: ptr

integer(c_size_t), value :: size

integer(c_int), value :: device_num

See also: Section 3.7.11 [omp target associate ptr], page 39,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.4

3.7.5 omp_target_memcpy – Copy data between devices

Description:
This routine copies length of bytes of data from the device identified by device
number src device num to device dst device num. The data is copied from the
source device from the address provided by src, shifted by the offset of src offset
bytes, to the destination device’s dst address shifted by dst offset. The routine
returns zero on success and non-zero otherwise.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: int omp_target_memcpy(void *dst,

const void *src,

size_t length,

size_t dst_offset,

size_t src_offset,

int dst_device_num,

int src_device_num)

Fortran:

Interface: integer(c_int) function omp_target_memcpy(&

dst, src, length, dst_offset, src_offset, &

dst_device_num, src_device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: dst, src

integer(c_size_t), value :: length, dst_offset,

src_offset

integer(c_int), value :: dst_device_num, src_

device_num

See also: Section 3.7.6 [omp target memcpy async], page 34, Section 3.7.7
[omp target memcpy rect], page 35,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.5

https://www.openmp.org
https://www.openmp.org

34 GNU libgomp

3.7.6 omp_target_memcpy_async – Copy data between devices
asynchronously

Description:
This routine copies asynchronously length of bytes of data from the device
identified by device number src device num to device dst device num. The
data is copied from the source device from the address provided by src, shifted
by the offset of src offset bytes, to the destination device’s dst address shifted by
dst offset. Task dependence is expressed by passing an array of depend objects
to depobj list, where the number of array elements is passed as depobj count;
if the count is zero, the depobj list argument is ignored. In C++ and Fortran,
the depobj list argument can also be omitted in that case. The routine returns
zero if the copying process has successfully been started and non-zero otherwise.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: int omp_target_memcpy_async(void *dst,

const void *src,

size_t length,

size_t dst_offset,

size_t src_offset,

int dst_device_num,

int src_device_num,

int depobj_count,

omp_depend_t *depobj_list)

Fortran:

Interface: integer(c_int) function omp_target_memcpy_async(&

dst, src, length, dst_offset, src_offset, &

dst_device_num, src_device_num, &

depobj_count, depobj_list) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: dst, src

integer(c_size_t), value :: length, dst_offset,

src_offset

integer(c_int), value :: dst_device_num, src_

device_num, depobj_count

integer(omp_depend_kind), optional :: depobj_

list(*)

See also: Section 3.7.5 [omp target memcpy], page 33, Section 3.7.8
[omp target memcpy rect async], page 36,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.7

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 35

3.7.7 omp_target_memcpy_rect – Copy a subvolume of data between
devices

Description:
This routine copies a subvolume of data from the device identified by device
number src device num to device dst device num. The array has num dims
dimensions and each array element has a size of element size bytes. The vol-
ume array specifies how many elements per dimension are copied. The full
sizes of the destination and source arrays are given by the dst dimensions and
src dimensions arguments, respectively. The offset per dimension to the first
element to be copied is given by the dst offset and src offset arguments. The
routine returns zero on success and non-zero otherwise.

The OpenMP specification only requires that num dims up to three is sup-
ported. In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the dst and src arguments. As GCC supports arbitrary dimensions, it
returns INT_MAX.

The device-number arguments must be conforming device numbers, the src
and dst must be either both null pointers or all of the following must be ful-
filled: element size and num dims must be positive and the volume, offset and
dimension arrays must have at least num dims dimensions.

Running this routine in a target region is not supported except on the initial
device.

C/C++

Prototype: int omp_target_memcpy_rect(void *dst,

const void *src,

size_t element_size,

int num_dims,

const size_t *volume,

const size_t *dst_offset,

const size_t *src_offset,

const size_t *dst_dimensions,

const size_t *src_dimensions,

int dst_device_num,

int src_device_num)

Fortran:

Interface: integer(c_int) function omp_target_memcpy_rect(&

dst, src, element_size, num_dims, volume, &

dst_offset, src_offset, dst_dimensions, &

src_dimensions, dst_device_num, src_device_num)

bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: dst, src

integer(c_size_t), value :: element_size,

dst_offset, src_offset

36 GNU libgomp

integer(c_size_t), value :: volume, dst_dimensions,

src_dimensions

integer(c_int), value :: num_dims, dst_device_num,

src_device_num

See also: Section 3.7.8 [omp target memcpy rect async], page 36, Section 3.7.5
[omp target memcpy], page 33, Chapter 12 [Offload-Target Specifics],
page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.6

3.7.8 omp_target_memcpy_rect_async – Copy a subvolume of data
between devices asynchronously

Description:
This routine copies asynchronously a subvolume of data from the device identi-
fied by device number src device num to device dst device num. The array has
num dims dimensions and each array element has a size of element size bytes.
The volume array specifies how many elements per dimension are copied. The
full sizes of the destination and source arrays are given by the dst dimensions
and src dimensions arguments, respectively. The offset per dimension to the
first element to be copied is given by the dst offset and src offset arguments.
Task dependence is expressed by passing an array of depend objects to de-
pobj list, where the number of array elements is passed as depobj count; if the
count is zero, the depobj list argument is ignored. In C++ and Fortran, the
depobj list argument can also be omitted in that case. The routine returns
zero on success and non-zero otherwise.

The OpenMP specification only requires that num dims up to three is sup-
ported. In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the dst and src arguments. As GCC supports arbitrary dimensions, it
returns INT_MAX.

The device-number arguments must be conforming device numbers, the src
and dst must be either both null pointers or all of the following must be ful-
filled: element size and num dims must be positive and the volume, offset and
dimension arrays must have at least num dims dimensions.

Running this routine in a target region is not supported except on the initial
device.

C/C++

Prototype: int omp_target_memcpy_rect_async(void *dst,

const void *src,

size_t element_size,

int num_dims,

const size_t *volume,

const size_t *dst_offset,

const size_t *src_offset,

const size_t *dst_dimensions,

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 37

const size_t *src_dimensions,

int dst_device_num,

int src_device_num,

int depobj_count,

omp_depend_t *depobj_list)

Fortran:

Interface: integer(c_int) function omp_target_memcpy_rect_

async(&

dst, src, element_size, num_dims, volume, &

dst_offset, src_offset, dst_dimensions, &

src_dimensions, dst_device_num, src_device_num, &

depobj_count, depobj_list) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: dst, src

integer(c_size_t), value :: element_size,

dst_offset, src_offset

integer(c_size_t), value :: volume, dst_dimensions,

src_dimensions

integer(c_int), value :: num_dims, dst_device_num,

src_device_num

integer(c_int), value :: depobj_count

integer(omp_depend_kind), optional :: depobj_

list(*)

See also: Section 3.7.7 [omp target memcpy rect], page 35, Section 3.7.6
[omp target memcpy async], page 34, Chapter 12 [Offload-Target Specifics],
page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.8

3.7.9 omp_target_memset – Set bytes in device memory

Description:
This routine fills memory on the device identified by device number device num.
Starting from the device address ptr, the first count bytes are set to the value
val, converted to unsigned char. If count is zero, the routine has no effect; if
ptr is NULL, the behavior is unspecified. The function returns ptr.

The device num must be a conforming device number and ptr must be a valid
device pointer for that device. Running this routine in a target region except
on the initial device is not supported.

C/C++

Prototype: void *omp_target_memcpy(void *ptr,

int val,

size_t count,

int device_num)

https://www.openmp.org

38 GNU libgomp

Fortran:

Interface: type(c_ptr) function omp_target_memset(&

ptr, val, count, device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: ptr

integer(c_size_t), value :: count

integer(c_int), value :: val, device_num

See also: Section 3.7.10 [omp target memset async], page 38,

Reference: OpenMP specification v6.0 (https://www.openmp.org), Section 25.8.1

3.7.10 omp_target_memset – Set bytes in device memory
asynchronously

Description:
This routine fills memory on the device identified by device number device num.
Starting from the device address ptr, the first count bytes are set to the value
val, converted to unsigned char. If count is zero, the routine has no effect;
if ptr is NULL, the behavior is unspecified. Task dependence is expressed by
passing an array of depend objects to depobj list, where the number of array
elements is passed as depobj count; if the count is zero, the depobj list argu-
ment is ignored. In C++ and Fortran, the depobj list argument can also be
omitted in that case. The function returns ptr.

The device num must be a conforming device number and ptr must be a valid
device pointer for that device. Running this routine in a target region except
on the initial device is not supported.

C/C++

Prototype: void *omp_target_memcpy_async(void *ptr,

int val,

size_t count,

int device_num,

int depobj_count,

omp_depend_t *depobj_list)

Fortran:

Interface: type(c_ptr) function omp_target_memset_async(&

ptr, val, count, device_num, &

depobj_count, depobj_list) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: ptr

integer(c_size_t), value :: count

integer(c_int), value :: val, device_num, depobj_

count

integer(omp_depend_kind), optional :: depobj_

list(*)

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 39

See also: Section 3.7.9 [omp target memset], page 37,

Reference: OpenMP specification v6.0 (https://www.openmp.org), Section 25.8.2

3.7.11 omp_target_associate_ptr – Associate a device pointer with
a host pointer

Description:
This routine associates storage on the host with storage on a device identified
by device num. The device pointer is usually obtained by calling omp_target_

alloc or by other means (but not by using the map clauses or the declare

target directive). The host pointer should point to memory that has a storage
size of at least size.

The device offset parameter specifies the offset into device ptr that is used as
the base address for the device side of the mapping; the storage size should be
at least device offset plus size.

After the association, the host pointer can be used in a map clause and in the to
and from clauses of the target update directive to transfer data between the as-
sociated pointers. The reference count of such associated storage is infinite. The
association can be removed by calling omp_target_disassociate_ptr which
should be done before the lifetime of either storage ends.

The routine returns nonzero (EINVAL) when the device num invalid, for when
the initial device or the associated device shares memory with the host. omp_

target_associate_ptr returns zero if host ptr points into already associated
storage that is fully inside of a previously associated memory. Otherwise, if the
association was successful zero is returned; if none of the cases above apply,
nonzero (EINVAL) is returned.

The omp_target_is_present routine can be used to test whether associated
storage for a device pointer exists.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: int omp_target_associate_ptr(const void *host_ptr,

const void *device_ptr,

size_t size,

size_t device_offset,

int device_num)

Fortran:

Interface: integer(c_int) function omp_target_associate_

ptr(host_ptr, &

device_ptr, size, device_offset, device_num)

bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int,

c_size_t

type(c_ptr), value :: host_ptr, device_ptr

https://www.openmp.org

40 GNU libgomp

integer(c_size_t), value :: size, device_offset

integer(c_int), value :: device_num

See also: Section 3.7.12 [omp target disassociate ptr], page 40, Section 3.7.3
[omp target is present], page 31, Section 3.7.1 [omp target alloc], page 30,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.9

3.7.12 omp_target_disassociate_ptr – Remove device–host pointer
association

Description:
This routine removes the storage association established by calling omp_target_
associate_ptr and sets the reference count to zero, even if omp_target_

associate_ptr was invoked multiple times for for host pointer ptr. If ap-
plicable, the device memory needs to be freed by the user.

If an associated device storage location for the device num was found and has
infinite reference count, the association is removed and zero is returned. In all
other cases, nonzero (EINVAL) is returned and no other action is taken.

Note that passing a host pointer where the association to the device pointer
was established with the declare target directive yields undefined behavior.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: int omp_target_disassociate_ptr(const void *ptr,

int device_num)

Fortran:

Interface: integer(c_int) function omp_target_disassociate_

ptr(ptr, &

device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int

type(c_ptr), value :: ptr

integer(c_int), value :: device_num

See also: Section 3.7.11 [omp target associate ptr], page 39,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.10

3.7.13 omp_get_mapped_ptr – Return device pointer to a host
pointer

Description:
If the device number is refers to the initial device or to a device with memory
accessible from the host (shared memory), the omp_get_mapped_ptr routines
returns the value of the passed ptr. Otherwise, if associated storage to the
passed host pointer ptr exists on device associated with device num, it returns
that pointer. In all other cases and in cases of an error, a null pointer is returned.

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 41

The association of storage location is established either via an explicit or implicit
map clause, the declare target directive or the omp_target_associate_ptr

routine.

Running this routine in a target region except on the initial device is not
supported.

C/C++

Prototype: void *omp_get_mapped_ptr(const void *ptr, int

device_num);

Fortran:

Interface: type(c_ptr) function omp_get_mapped_ptr(ptr,

device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int

type(c_ptr), value :: ptr

integer(c_int), value :: device_num

See also: Section 3.7.11 [omp target associate ptr], page 39,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.11

3.8 Lock Routines

Initialize, set, test, unset and destroy simple and nested locks. The routines have C linkage
and do not throw exceptions.

3.8.1 omp_init_lock – Initialize simple lock

Description:
Initialize a simple lock. After initialization, the lock is in an unlocked state.

C/C++:

Prototype: void omp_init_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_init_lock(svar)

integer(omp_lock_kind), intent(out) :: svar

See also: Section 3.8.3 [omp destroy lock], page 42,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.1.

3.8.2 omp_init_nest_lock – Initialize nested lock

Description:
Initialize a nested lock. After initialization, the lock is in an unlocked state and
the nesting count is set to zero.

C/C++:

Prototype: void omp_init_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_init_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(out) :: nvar

https://www.openmp.org
https://www.openmp.org

42 GNU libgomp

See also: Section 3.8.4 [omp destroy nest lock], page 42,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.1.

3.8.3 omp_destroy_lock – Destroy simple lock

Description:
Destroy a simple lock. In order to be destroyed, a simple lock must be in the
unlocked state.

C/C++:

Prototype: void omp_destroy_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_destroy_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.1 [omp init lock], page 41,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.3.

3.8.4 omp_destroy_nest_lock – Destroy nested lock

Description:
Destroy a nested lock. In order to be destroyed, a nested lock must be in the
unlocked state and its nesting count must equal zero.

C/C++:

Prototype: void omp_destroy_nest_lock(omp_nest_lock_t *);

Fortran:

Interface: subroutine omp_destroy_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.1 [omp init lock], page 41,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.3.

3.8.5 omp_set_lock – Wait for and set simple lock

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_

lock. The calling thread is blocked until the lock is available. If the lock is
already held by the current thread, a deadlock occurs.

C/C++:

Prototype: void omp_set_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_set_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.1 [omp init lock], page 41, Section 3.8.9 [omp test lock], page 44,
Section 3.8.7 [omp unset lock], page 43,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.4.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 43

3.8.6 omp_set_nest_lock – Wait for and set nested lock

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_

nest_lock. The calling thread is blocked until the lock is available. If the
lock is already held by the current thread, the nesting count for the lock is
incremented.

C/C++:

Prototype: void omp_set_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_set_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.2 [omp init nest lock], page 41, Section 3.8.8 [omp unset nest lock],
page 43,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.4.

3.8.7 omp_unset_lock – Unset simple lock

Description:
A simple lock about to be unset must have been locked by omp_set_lock or
omp_test_lock before. In addition, the lock must be held by the thread calling
omp_unset_lock. Then, the lock becomes unlocked. If one or more threads
attempted to set the lock before, one of them is chosen to, again, set the lock
to itself.

C/C++:

Prototype: void omp_unset_lock(omp_lock_t *lock);

Fortran:

Interface: subroutine omp_unset_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.5 [omp set lock], page 42, Section 3.8.9 [omp test lock], page 44,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.5.

3.8.8 omp_unset_nest_lock – Unset nested lock

Description:
A nested lock about to be unset must have been locked by omp_set_nested_

lock or omp_test_nested_lock before. In addition, the lock must be held by
the thread calling omp_unset_nested_lock. If the nesting count drops to zero,
the lock becomes unlocked. If one ore more threads attempted to set the lock
before, one of them is chosen to, again, set the lock to itself.

C/C++:

Prototype: void omp_unset_nest_lock(omp_nest_lock_t *lock);

https://www.openmp.org
https://www.openmp.org

44 GNU libgomp

Fortran:

Interface: subroutine omp_unset_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.6 [omp set nest lock], page 43,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.5.

3.8.9 omp_test_lock – Test and set simple lock if available

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_

lock. Contrary to omp_set_lock, omp_test_lock does not block if the lock is
not available. This function returns true upon success, false otherwise. Here,
true and false represent their language-specific counterparts.

C/C++:

Prototype: int omp_test_lock(omp_lock_t *lock);

Fortran:

Interface: logical function omp_test_lock(svar)

integer(omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.1 [omp init lock], page 41, Section 3.8.5 [omp set lock], page 42,
Section 3.8.5 [omp set lock], page 42,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.6.

3.8.10 omp_test_nest_lock – Test and set nested lock if available

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_

nest_lock. Contrary to omp_set_nest_lock, omp_test_nest_lock does not
block if the lock is not available. If the lock is already held by the current
thread, the new nesting count is returned. Otherwise, the return value equals
zero.

C/C++:

Prototype: int omp_test_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: logical function omp_test_nest_lock(nvar)

integer(omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.1 [omp init lock], page 41, Section 3.8.5 [omp set lock], page 42,
Section 3.8.5 [omp set lock], page 42,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.6.

3.9 Timing Routines

Portable, thread-based, wall clock timer. The routines have C linkage and do not throw
exceptions.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 45

3.9.1 omp_get_wtick – Get timer precision

Description:
Gets the timer precision, i.e., the number of seconds between two successive
clock ticks.

C/C++:

Prototype: double omp_get_wtick(void);

Fortran:

Interface: double precision function omp_get_wtick()

See also: Section 3.9.2 [omp get wtime], page 45,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.4.2.

3.9.2 omp_get_wtime – Elapsed wall clock time

Description:
Elapsed wall clock time in seconds. The time is measured per thread, no guar-
antee can be made that two distinct threads measure the same time. Time is
measured from some "time in the past", which is an arbitrary time guaranteed
not to change during the execution of the program.

C/C++:

Prototype: double omp_get_wtime(void);

Fortran:

Interface: double precision function omp_get_wtime()

See also: Section 3.9.1 [omp get wtick], page 45,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.4.1.

3.10 Event Routine

Support for event objects. The routine has C linkage and do not throw exceptions.

3.10.1 omp_fulfill_event – Fulfill and destroy an OpenMP event

Description:
Fulfill the event associated with the event handle argument. Currently, it is
only used to fulfill events generated by detach clauses on task constructs - the
effect of fulfilling the event is to allow the task to complete.

The result of calling omp_fulfill_event with an event handle other than that
generated by a detach clause is undefined. Calling it with an event handle that
has already been fulfilled is also undefined.

C/C++:

Prototype: void omp_fulfill_event(omp_event_handle_t event);

Fortran:

Interface: subroutine omp_fulfill_event(event)

integer (kind=omp_event_handle_kind) :: event

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.5.1.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

46 GNU libgomp

3.11 Interoperability Routines

Routines to obtain properties from an object of OpenMP interop type. They have C linkage
and do not throw exceptions.

3.11.1 omp_get_num_interop_properties – Get the number of
implementation-specific properties

Description:
The omp_get_num_interop_properties function returns the number of
implementation-defined interoperability properties available for the passed
interop, extending the OpenMP-defined properties. The available OpenMP
interop property-type values range from omp_ipr_first to the value returned
by omp_get_num_interop_properties minus one.

No implementation-defined properties are currently defined in GCC.

C/C++:

Prototype: int omp_get_num_interop_properties(const omp_

interop_t interop)

Fortran:

Interface: integer function omp_get_num_interop_

properties(interop)

integer(omp_interop_kind), intent(in) :: interop

See also: Section 3.11.5 [omp get interop name], page 48, Section 3.11.6
[omp get interop type desc], page 49,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.1,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.1

3.11.2 omp_get_interop_int – Obtain integer-valued
interoperability property

Description:
The omp_get_interop_int function returns the integer value associated with
the property id interoperability property of the passed interop object. The
ret code argument is optional, i.e. it can be omitted in C++ and Fortran or
used with NULL as argument in C and C++. If successful, ret code (if present)
is set to omp_irc_success.

In GCC, the effect of running this routine in a target region that is not the
initial device is unspecified.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int* was used for the ret code argu-
ment in place of a pointer to the enumerated type omp_interop_rc_t.

C/C++:

Prototype: omp_intptr_t omp_get_interop_int(const omp_

interop_t interop, omp_interop_property_t

property_id, omp_interop_rc_t *ret_code)

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 47

Fortran:

Interface: integer(c_intptr_t) function omp_get_interop_

int(interop, property_id, ret_code)

use, intrinsic :: iso_c_binding, only : c_intptr_t

integer(omp_interop_kind), intent(in) :: interop

integer(omp_interop_property_kind) property_id

integer(omp_interop_rc_kind), optional,

intent(out) :: ret_code

See also: Section 3.11.3 [omp get interop ptr], page 47, Section 3.11.4
[omp get interop str], page 48, Section 3.11.7 [omp get interop rc desc],
page 49, Chapter 12 [Offload-Target Specifics], page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.2,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.2

3.11.3 omp_get_interop_ptr – Obtain pointer-valued
interoperability property

Description:
The omp_get_interop_int function returns the pointer value associated with
the property id interoperability property of the passed interop object. The
ret code argument is optional, i.e. it can be omitted in C++ and Fortran or
used with NULL as argument in C and C++. If successful, ret code (if present)
is set to omp_irc_success.

In GCC, the effect of running this routine in a target region that is not the
initial device is unspecified.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int* was used for the ret code argu-
ment in place of a pointer to the enumerated type omp_interop_rc_t.

C/C++:

Prototype: void *omp_get_interop_ptr(const omp_interop_t

interop, omp_interop_property_t property_id,

omp_interop_rc_t *ret_code)

Fortran:

Interface: type(c_ptr) function omp_get_interop_int(interop,

property_id, ret_code)

use, intrinsic :: iso_c_binding, only : c_ptr

integer(omp_interop_kind), intent(in) :: interop

integer(omp_interop_property_kind) property_id

integer(omp_interop_rc_kind), optional,

intent(out) :: ret_code

See also: Section 3.11.2 [omp get interop int], page 46, Section 3.11.4
[omp get interop str], page 48, Section 3.11.7 [omp get interop rc desc],
page 49, Chapter 12 [Offload-Target Specifics], page 113,

https://www.openmp.org
https://www.openmp.org

48 GNU libgomp

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.3,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.3

3.11.4 omp_get_interop_str – Obtain string-valued interoperability
property

Description:
The omp_get_interop_str function returns the string value associated with
the property id interoperability property of the passed interop object. The
ret code argument is optional, i.e. it can be omitted in C++ and Fortran or
used with NULL as argument in C and C++. If successful, ret code (if present)
is set to omp_irc_success.

In GCC, the effect of running this routine in a target region that is not the
initial device is unspecified.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int* was used for the ret code argu-
ment in place of a pointer to the enumerated type omp_interop_rc_t.

C/C++:

Prototype: const char *omp_get_interop_str(const omp_interop_t

interop, omp_interop_property_t property_id,

omp_interop_rc_t *ret_code)

Fortran:

Interface: character(:) function omp_get_interop_str(interop,

property_id, ret_code)

pointer :: omp_get_interop_str

integer(omp_interop_kind), intent(in) :: interop

integer(omp_interop_property_kind) property_id

integer(omp_interop_rc_kind), optional,

intent(out) :: ret_code

See also: Section 3.11.2 [omp get interop int], page 46, Section 3.11.3
[omp get interop ptr], page 47, Section 3.11.7 [omp get interop rc desc],
page 49, Chapter 12 [Offload-Target Specifics], page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.4,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.4

3.11.5 omp_get_interop_name – Obtain the name of an interop_
property value as string

Description:
The omp_get_interop_name function returns the name of the property itself
as string; for the properties specified by the OpenMP specification, the name
matches the name of the named constant with the ‘omp_ipr_’ prefix removed.

C/C++:

Prototype: const char *omp_get_interop_name(const omp_interop_

t interop, omp_interop_property_t property_id)

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 49

Fortran:

Interface: character(:) function omp_get_interop_

name(interop, property_id)

pointer :: omp_get_interop_name

integer(omp_interop_kind), intent(in) :: interop

integer(omp_interop_property_kind) property_id

See also: Section 3.11.1 [omp get num interop properties], page 46, Section 3.11.6
[omp get interop type desc], page 49,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.5,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.5

3.11.6 omp_get_interop_type_desc – Obtain type and description to
an interop_property

Description:
The omp_get_interop_type_desc function returns a string that describes in
human-readable form the data type associated with the property id interoper-
ability property of the passed interop object.

In GCC, this function returns the name of the C/C++ data type for this property
or ‘N/A’ if this property is not available for the given foreign runtime. If interop
is omp_interop_none or for invalid property values, a null pointer is returned.
The effect of running this routine in a target region that is not the initial
device is unspecified.

C/C++:

Prototype: const char *omp_get_interop_type_desc(const

omp_interop_t interop, omp_interop_property_t

property_id)

Fortran:

Interface: character(:) function omp_get_interop_type_

desc(interop, property_id)

pointer :: omp_get_interop_type_desc

integer(omp_interop_kind), intent(in) :: interop

integer(omp_interop_property_kind) property_id

See also: Section 3.11.1 [omp get num interop properties], page 46, Section 3.11.5
[omp get interop name], page 48, Chapter 12 [Offload-Target Specifics],
page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.6,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.6

3.11.7 omp_get_interop_rc_desc – Obtain error string to an
interop_rc error code

Description:
The omp_get_interop_rc_desc function returns a string value describing the
ret code in human-readable form.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

50 GNU libgomp

The behavior is unspecified if value of ret code was not set by an interoperability
routine invoked for interop.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int was used for the ret code argument
in place of the enumerated type omp_interop_rc_t.

C/C++:

Prototype: const char *omp_get_interop_rc_desc(const

omp_interop_t interop, omp_interop_rc_t ret_code)

Fortran:

Interface: character(:) function omp_get_interop_rc_

desc(interop, property_id, ret_code)

pointer :: omp_get_interop_rc_desc

integer(omp_interop_kind), intent(in) :: interop

integer (omp_interop_rc_kind) ret_code

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.7,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.7

3.12 Memory Management Routines

Routines to manage and allocate memory on the current device. They have C linkage and
do not throw exceptions.

3.12.1 omp_init_allocator – Create an allocator

Description:
Create an allocator that uses the specified memory space and has the specified
traits; if an allocator that fulfills the requirements cannot be created, omp_
null_allocator is returned.

The predefined memory spaces and available traits can be found at Section 11.3
[Memory allocation], page 107, where the trait names have to be prefixed by
omp_atk_ (e.g. omp_atk_pinned) and the named trait values by omp_atv_ (e.g.
omp_atv_true); additionally, omp_atv_default may be used as trait value to
specify that the default value should be used.

C/C++:

Prototype: omp_allocator_handle_t omp_init_allocator(

omp_memspace_handle_t memspace,

int ntraits,

const omp_alloctrait_t traits[]);

Fortran:

Interface: function omp_init_allocator(memspace, ntraits,

traits)

integer (omp_allocator_handle_kind) :: omp_init_

allocator

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 51

integer (omp_memspace_handle_kind), intent(in) ::

memspace

integer, intent(in) :: ntraits

type (omp_alloctrait), intent(in) :: traits(*)

See also: Section 11.3 [Memory allocation], page 107, Section 4.1 [OMP ALLOCATOR],
page 59, Section 3.12.2 [omp destroy allocator], page 51,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.2

3.12.2 omp_destroy_allocator – Destroy an allocator

Description:
Releases all resources used by a memory allocator, which must not represent a
predefined memory allocator. Accessing memory after its allocator has been de-
stroyed has unspecified behavior. Passing omp_null_allocator to the routine
is permitted but has no effect.

C/C++:

Prototype: void omp_destroy_allocator (omp_allocator_handle_t

allocator);

Fortran:

Interface: subroutine omp_destroy_allocator(allocator)

integer (omp_allocator_handle_kind), intent(in) ::

allocator

See also: Section 3.12.1 [omp init allocator], page 50,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.3

3.12.3 omp_set_default_allocator – Set the default allocator

Description:
Sets the default allocator that is used when no allocator has been specified in
the allocate or allocator clause or if an OpenMP memory routine is invoked
with the omp_null_allocator allocator.

C/C++:

Prototype: void omp_set_default_allocator(omp_allocator_

handle_t allocator);

Fortran:

Interface: subroutine omp_set_default_allocator(allocator)

integer (omp_allocator_handle_kind), intent(in) ::

allocator

See also: Section 3.12.4 [omp get default allocator], page 52, Section 3.12.1
[omp init allocator], page 50, Section 4.1 [OMP ALLOCATOR], page 59,
Section 11.3 [Memory allocation], page 107,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.4

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

52 GNU libgomp

3.12.4 omp_get_default_allocator – Get the default allocator

Description:
The routine returns the default allocator that is used when no allocator has
been specified in the allocate or allocator clause or if an OpenMP memory
routine is invoked with the omp_null_allocator allocator.

C/C++:

Prototype: omp_allocator_handle_t omp_get_default_

allocator();

Fortran:

Interface: function omp_get_default_allocator()

integer (omp_allocator_handle_kind) :: omp_get_

default_allocator

See also: Section 3.12.3 [omp set default allocator], page 51, Section 4.1
[OMP ALLOCATOR], page 59,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.5

3.12.5 omp_alloc – Memory allocation with an allocator

Description:
Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or omp_null_allocator. If the allocators is
omp_null_allocator, the allocator specified by the def-allocator-var ICV is
used. size must be a nonnegative number denoting the number of bytes to be
allocated; if size is zero, omp_alloc will return a null pointer. If successful, a
pointer to the allocated memory is returned, otherwise the fallback trait of
the allocator determines the behavior. The content of the allocated memory is
unspecified.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit – or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_alloc must be freed using omp_free.

C :

Prototype: void* omp_alloc(size_t size,

omp_allocator_handle_t allocator)

C++:

Prototype: void* omp_alloc(size_t size,

omp_allocator_handle_t allocator=omp_null_

allocator)

Fortran:

Interface: type(c_ptr) function omp_alloc(size, allocator)

bind(C)

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 53

use, intrinsic :: iso_c_binding, only : c_ptr,

c_size_t

integer (c_size_t), value :: size

integer (omp_allocator_handle_kind), value ::

allocator

See also: Section 4.1 [OMP ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp set default allocator], page 51, Section 3.12.7
[omp free], page 54, Section 3.12.1 [omp init allocator], page 50,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.6

3.12.6 omp_aligned_alloc – Memory allocation with an allocator
and alignment

Description:
Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or omp_null_allocator. If the allocators is omp_
null_allocator, the allocator specified by the def-allocator-var ICV is used.
alignment must be a positive power of two and size must be a nonnegative
number that is a multiple of the alignment and denotes the number of bytes
to be allocated; if size is zero, omp_aligned_alloc will return a null pointer.
The alignment will be at least the maximal value required by alignment trait
of the allocator and the value of the passed alignment argument. If successful,
a pointer to the allocated memory is returned, otherwise the fallback trait of
the allocator determines the behavior. The content of the allocated memory is
unspecified.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit – or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_aligned_alloc must be freed using omp_free.

C :

Prototype: void* omp_aligned_alloc(size_t alignment,

size_t size,

omp_allocator_handle_t allocator)

C++:

Prototype: void* omp_aligned_alloc(size_t alignment,

size_t size,

omp_allocator_handle_t allocator=omp_null_

allocator)

Fortran:

Interface: type(c_ptr) function omp_aligned_alloc(alignment,

size, allocator) bind(C)

use, intrinsic :: iso_c_binding, only : c_ptr,

c_size_t

https://www.openmp.org

54 GNU libgomp

integer (c_size_t), value :: alignment, size

integer (omp_allocator_handle_kind), value ::

allocator

See also: Section 4.1 [OMP ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp set default allocator], page 51, Section 3.12.7
[omp free], page 54, Section 3.12.1 [omp init allocator], page 50,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.13.6

3.12.7 omp_free – Freeing memory allocated with OpenMP
routines

Description:
The omp_free routine deallocates memory previously allocated by an OpenMP
memory-management routine. The ptr argument must point to such memory or
be a null pointer; if it is a null pointer, no operation is performed. If specified,
the allocator argument must be either the memory allocator that was used
for the allocation or omp_null_allocator; if it is omp_null_allocator, the
implementation will determine the value automatically.

Calling omp_free invokes undefined behavior if the memory was already deal-
located or when the used allocator has already been destroyed.

C :

Prototype: void omp_free(void *ptr,

omp_allocator_handle_t allocator)

C++:

Prototype: void omp_free(void *ptr,

omp_allocator_handle_t allocator=omp_null_

allocator)

Fortran:

Interface: subroutine omp_free(ptr, allocator) bind(C)

use, intrinsic :: iso_c_binding, only : c_ptr

type (c_ptr), value :: ptr

integer (omp_allocator_handle_kind), value ::

allocator

See also: Section 3.12.5 [omp alloc], page 52, Section 3.12.6 [omp aligned alloc], page 53,
Section 3.12.8 [omp calloc], page 54, Section 3.12.9 [omp aligned calloc],
page 55, Section 3.12.10 [omp realloc], page 56,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.7

3.12.8 omp_calloc – Allocate nullified memory with an allocator

Description:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or omp_null_allocator. If the
allocators is omp_null_allocator, the allocator specified by the def-allocator-
var ICV is used. The to-be allocated memory is for an array with nmemb

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 55

elements, each having a size of size bytes. Both nmemb and size must be
nonnegative numbers; if either of them is zero, omp_calloc will return a null
pointer. If successful, a pointer to the zero-initialized allocated memory is
returned, otherwise the fallback trait of the allocator determines the behavior.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit – or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_calloc must be freed using omp_free.

C :

Prototype: void* omp_calloc(size_t nmemb, size_t size,

omp_allocator_handle_t allocator)

C++:

Prototype: void* omp_calloc(size_t nmemb, size_t size,

omp_allocator_handle_t allocator=omp_null_

allocator)

Fortran:

Interface: type(c_ptr) function omp_calloc(nmemb, size,

allocator) bind(C)

use, intrinsic :: iso_c_binding, only : c_ptr,

c_size_t

integer (c_size_t), value :: nmemb, size

integer (omp_allocator_handle_kind), value ::

allocator

See also: Section 4.1 [OMP ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp set default allocator], page 51, Section 3.12.7
[omp free], page 54, Section 3.12.1 [omp init allocator], page 50,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.13.8

3.12.9 omp_aligned_calloc – Allocate aligned nullified memory
with an allocator

Description:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or omp_null_allocator. If the
allocators is omp_null_allocator, the allocator specified by the def-allocator-
var ICV is used. The to-be allocated memory is for an array with nmemb
elements, each having a size of size bytes. Both nmemb and size must be non-
negative numbers; if either of them is zero, omp_aligned_calloc will return
a null pointer. alignment must be a positive power of two and size must be a
multiple of the alignment; the alignment will be at least the maximal value re-
quired by alignment trait of the allocator and the value of the passed alignment
argument. If successful, a pointer to the zero-initialized allocated memory is
returned, otherwise the fallback trait of the allocator determines the behavior.

https://www.openmp.org

56 GNU libgomp

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit – or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_aligned_calloc must be freed using omp_free.

C :

Prototype: void* omp_aligned_calloc(size_t nmemb, size_t size,

omp_allocator_handle_t allocator)

C++:

Prototype: void* omp_aligned_calloc(size_t nmemb, size_t size,

omp_allocator_handle_t allocator=omp_null_

allocator)

Fortran:

Interface: type(c_ptr) function omp_aligned_calloc(nmemb,

size, allocator) bind(C)

use, intrinsic :: iso_c_binding, only : c_ptr,

c_size_t

integer (c_size_t), value :: nmemb, size

integer (omp_allocator_handle_kind), value ::

allocator

See also: Section 4.1 [OMP ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp set default allocator], page 51, Section 3.12.7
[omp free], page 54, Section 3.12.1 [omp init allocator], page 50,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.13.8

3.12.10 omp_realloc – Reallocate memory allocated with OpenMP
routines

Description:
The omp_realloc routine deallocates memory to which ptr points to and allo-
cates new memory with the specified allocator argument; the new memory will
have the content of the old memory up to the minimum of the old size and the
new size, otherwise the content of the returned memory is unspecified. If the
new allocator is the same as the old one, the routine tries to resize the existing
memory allocation, returning the same address as ptr if successful. ptr must
point to memory allocated by an OpenMP memory-management routine.

The allocator and free allocator arguments must be a predefined allocator,
an allocator handle or omp_null_allocator. If free allocator is omp_null_

allocator, the implementation automatically determines the allocator used
for the allocation of ptr. If allocator is omp_null_allocator and ptr is not a
null pointer, the same allocator as free_allocator is used and when ptr is a
null pointer the allocator specified by the def-allocator-var ICV is used.

The size must be a nonnegative number denoting the number of bytes to be
allocated; if size is zero, omp_realloc will return free the memory and return

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 57

a null pointer. When size is nonzero: if successful, a pointer to the allocated
memory is returned, otherwise the fallback trait of the allocator determines
the behavior.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit – or the free allocator and
allocator arguments may only be a constant expression with the value of one
of the predefined allocators and may not be omp_null_allocator.

Memory allocated by omp_realloc must be freed using omp_free. Calling
omp_free invokes undefined behavior if the memory was already deallocated or
when the used allocator has already been destroyed.

C :

Prototype: void* omp_realloc(void *ptr, size_t size,

omp_allocator_handle_t allocator,

omp_allocator_handle_t free_allocator)

C++:

Prototype: void* omp_realloc(void *ptr, size_t size,

omp_allocator_handle_t allocator=omp_null_

allocator,

omp_allocator_handle_t free_allocator=omp_null_

allocator)

Fortran:

Interface: type(c_ptr) function omp_realloc(ptr, size,

allocator, free_allocator) bind(C)

use, intrinsic :: iso_c_binding, only : c_ptr,

c_size_t

type(C_ptr), value :: ptr

integer (c_size_t), value :: size

integer (omp_allocator_handle_kind), value ::

allocator, free_allocator

See also: Section 4.1 [OMP ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp set default allocator], page 51, Section 3.12.7
[omp free], page 54, Section 3.12.1 [omp init allocator], page 50,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.9

3.13 Environment Display Routine

Routine to display the OpenMP version number and the initial value of ICVs. It has C
linkage and does not throw exceptions.

3.13.1 omp_display_env – print the initial ICV values

Description:
Each time this routine is invoked, the OpenMP version number and initial value
of internal control variables (ICVs) is printed on stderr. The displayed values

https://www.openmp.org

58 GNU libgomp

are those at startup after evaluating the environment variables; later calls to
API routines or clauses used in enclosing constructs do not affect the output.

If the verbose argument is false, only the OpenMP version and standard
OpenMP ICVs are shown; if it is true, additionally, the GCC-specific ICVs are
shown.

The output consists of multiple lines and starts with ‘OPENMP DISPLAY

ENVIRONMENT BEGIN’ followed by the name-value lines and ends with ‘OPENMP
DISPLAY ENVIRONMENT END’. The name is followed by an equal sign and the
value is enclosed in single quotes.

The first line has as name either ‘_OPENMP’ or ‘openmp_version’ and shows as
value the supported OpenMP version number (4-digit year, 2-digit month) of
the implementation, matching the value of the _OPENMP macro and, in Fortran,
the named constant openmp_version.

In each of the succeeding lines, the name matches the environment-variable
name of an ICV and shows its value. Those line are might be prefixed by pair
of brackets and a space, where the brackets enclose a comma-separated list of
devices to which the ICV-value combination applies to; the value can either be
a numeric device number or an abstract name denoting all devices (all), the
initial host device (host) or all devices but the host (device). Note that the
same ICV might be printed multiple times for multiple devices, even if all have
the same value.

The effect when invoked from within a target region is unspecified.

C/C++:

Prototype: void omp_display_env(int verbose)

Fortran:

Interface: subroutine omp_display_env(verbose)

logical, intent(in) :: verbose

Example: Note that the GCC-specific ICVs, such as the shown GOMP_SPINCOUNT, are only
printed when verbose set to true.

OPENMP DISPLAY ENVIRONMENT BEGIN

_OPENMP = '202111'

[host] OMP_DYNAMIC = 'FALSE'

[host] OMP_NESTED = 'FALSE'

[all] OMP_CANCELLATION = 'FALSE'

...

[host] GOMP_SPINCOUNT = '300000'

OPENMP DISPLAY ENVIRONMENT END

See also: Section 4.5 [OMP DISPLAY ENV], page 61, Chapter 4 [Environment
Variables], page 59, Section 11.1 [Implementation-defined ICV Initialization],
page 107,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.15

https://www.openmp.org

59

4 OpenMP Environment Variables

The environment variables which beginning with OMP_ are defined by section 4 of the
OpenMP specification in version 4.5 or in a later version of the specification, while those
beginning with GOMP_ are GNU extensions. Most OMP_ environment variables have an as-
sociated internal control variable (ICV).

For any OpenMP environment variable that sets an ICV and is neither OMP_DEFAULT_
DEVICE nor has global ICV scope, associated device-specific environment variables exist. For
them, the environment variable without suffix affects the host. The suffix _DEV_ followed
by a non-negative device number less that the number of available devices sets the ICV
for the corresponding device. The suffix _DEV sets the ICV of all non-host devices for
which a device-specific corresponding environment variable has not been set while the _ALL
suffix sets the ICV of all host and non-host devices for which a more specific corresponding
environment variable is not set.

4.1 OMP_ALLOCATOR – Set the default allocator

ICV: def-allocator-var
Scope: data environment
Description:

Sets the default allocator that is used when no allocator has been specified in
the allocate or allocator clause or if an OpenMP memory routine is invoked
with the omp_null_allocator allocator. If unset, omp_default_mem_alloc is
used.

The value can either be a predefined allocator or a predefined memory space or
a predefined memory space followed by a colon and a comma-separated list of
memory trait and value pairs, separated by =.

See Section 11.3 [Memory allocation], page 107, for a list of supported prefedined
allocators, memory spaces, and traits.

Note: The corresponding device environment variables are currently not sup-
ported. Therefore, the non-host def-allocator-var ICVs are always initialized
to omp_default_mem_alloc. However, on all devices, the omp_set_default_

allocator API routine can be used to change value.

Examples:

OMP_ALLOCATOR=omp_high_bw_mem_alloc

OMP_ALLOCATOR=omp_large_cap_mem_space

OMP_ALLOCATOR=omp_low_lat_mem_space:pinned=true,partition=nearest

See also: Section 11.3 [Memory allocation], page 107, Section 3.12.4
[omp get default allocator], page 52, Section 3.12.3 [omp set default allocator],
page 51, Chapter 12 [Offload-Target Specifics], page 113,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 6.21

https://www.openmp.org

60 GNU libgomp

4.2 OMP_AFFINITY_FORMAT – Set the format string used for
affinity display

ICV: affinity-format-var
Scope: device
Description:

Sets the format string used when displaying OpenMP thread affinity informa-
tion. Special values are output using % followed by an optional size specification
and then either the single-character field type or its long name enclosed in curly
braces; using %% displays a literal percent. The size specification consists of an
optional 0. or . followed by a positive integer, specifying the minimal width of
the output. With 0. and numerical values, the output is padded with zeros on
the left; with ., the output is padded by spaces on the left; otherwise, the out-
put is padded by spaces on the right. If unset, the value is “level %L thread

%i affinity %A”.

Supported field types are:

t team num value returned by omp_get_team_num

T num teams value returned by omp_get_num_teams

L nesting level value returned by omp_get_level

n thread num value returned by omp_get_thread_num

N num threads value returned by omp_get_num_threads

a ancestor tnum value returned by omp_get_ancestor_

thread_num(omp_get_level()-1)

H host name of the host that executes the thread
P process id process identifier
i native thread id native thread identifier
A thread affinity comma separated list of integer values or

ranges, representing the processors on which
a process might execute, subject to affinity
mechanisms

For instance, after setting

OMP_AFFINITY_FORMAT="%0.2a!%n!%.4L!%N;%.2t;%0.2T;%{team_num};%{num_teams};%A"

with either OMP_DISPLAY_AFFINITY being set or when calling omp_display_

affinity with NULL or an empty string, the program might display the follow-
ing:

00!0! 1!4; 0;01;0;1;0-11

00!3! 1!4; 0;01;0;1;0-11

00!2! 1!4; 0;01;0;1;0-11

00!1! 1!4; 0;01;0;1;0-11

See also: Section 4.4 [OMP DISPLAY AFFINITY], page 61,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 6.14

https://www.openmp.org

Chapter 4: OpenMP Environment Variables 61

4.3 OMP_CANCELLATION – Set whether cancellation is activated

ICV: cancel-var
Scope: global
Description:

If set to TRUE, the cancellation is activated. If set to FALSE or if unset, cancel-
lation is disabled and the cancel construct is ignored.

See also: Section 3.1.8 [omp get cancellation], page 17,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.11

4.4 OMP_DISPLAY_AFFINITY – Display thread affinity
information

ICV: display-affinity-var
Scope: global
Description:

If set to FALSE or if unset, affinity displaying is disabled. If set to TRUE, the
runtime displays affinity information about OpenMP threads in a parallel region
upon entering the region and every time any change occurs.

See also: Section 4.2 [OMP AFFINITY FORMAT], page 60,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 6.13

4.5 OMP_DISPLAY_ENV – Show OpenMP version and
environment variables

ICV: none

Scope: not applicable
Description:

If set to TRUE, the runtime displays the same information to stderr as shown
by the omp_display_env routine invoked with verbose argument set to false.
If set to VERBOSE, the same information is shown as invoking the routine with
verbose set to true. If unset or set to FALSE, this information is not shown.
The result for any other value is unspecified.

See also: Section 3.13.1 [omp display env], page 57,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.12

4.6 OMP_DEFAULT_DEVICE – Set the device used in target
regions

ICV: default-device-var
Scope: data environment
Description:

Set to choose the device which is used in a target region, unless the value is
overridden by omp_set_default_device or by a device clause. The value shall

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

62 GNU libgomp

be the nonnegative device number. If no device with the given device number
exists, the code is executed on the host. If unset, OMP_TARGET_OFFLOAD is
mandatory and no non-host devices are available, it is set to omp_invalid_

device. Otherwise, if unset, device number 0 is used.

See also: Section 3.6.3 [omp get default device], page 27, Section 3.6.2
[omp set default device], page 27, Section 4.17 [OMP TARGET OFFLOAD],
page 66,

Reference: OpenMP specification v5.2 (https://www.openmp.org), Section 21.2.7

4.7 OMP_DYNAMIC – Dynamic adjustment of threads

ICV: dyn-var
Scope: global
Description:

Enable or disable the dynamic adjustment of the number of threads within
a team. The value of this environment variable shall be TRUE or FALSE. If
undefined, dynamic adjustment is disabled by default.

See also: Section 3.1.6 [omp set dynamic], page 17,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.3

4.8 OMP_MAX_ACTIVE_LEVELS – Set the maximum number of
nested parallel regions

ICV: max-active-levels-var
Scope: data environment
Description:

Specifies the initial value for the maximum number of nested parallel regions.
The value of this variable shall be a positive integer. If undefined, then if OMP_
NESTED is defined and set to true, or if OMP_NUM_THREADS or OMP_PROC_BIND

are defined and set to a list with more than one item, the maximum number of
nested parallel regions is initialized to the largest number supported, otherwise
it is set to one.

See also: Section 3.1.15 [omp set max active levels], page 20, Section 4.10
[OMP NESTED], page 63, Section 4.13 [OMP PROC BIND], page 64,
Section 4.12 [OMP NUM THREADS], page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.9

4.9 OMP_MAX_TASK_PRIORITY – Set the maximum priority

number that can be set for a task.

ICV: max-task-priority-var
Scope: global
Description:

Specifies the initial value for the maximum priority value that can be set for
a task. The value of this variable shall be a non-negative integer, and zero is
allowed. If undefined, the default priority is 0.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 4: OpenMP Environment Variables 63

See also: Section 3.4.1 [omp get max task priority], page 25,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.14

4.10 OMP_NESTED – Nested parallel regions

ICV: max-active-levels-var
Scope: data environment
Description:

Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The value of this environment variable shall be
TRUE or FALSE. If set to TRUE, the number of maximum active nested regions
supported is by default set to the maximum supported, otherwise it is set to
one. If OMP_MAX_ACTIVE_LEVELS is defined, its setting overrides this setting. If
both are undefined, nested parallel regions are enabled if OMP_NUM_THREADS or
OMP_PROC_BINDS are defined to a list with more than one item, otherwise they
are disabled by default.

Note that the OMP_NESTED environment variable was deprecated in the OpenMP
specification 5.0 in favor of OMP_MAX_ACTIVE_LEVELS.

See also: Section 3.1.15 [omp set max active levels], page 20, Section 3.1.9
[omp set nested], page 18, Section 4.8 [OMP MAX ACTIVE LEVELS],
page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.6

4.11 OMP_NUM_TEAMS – Specifies the number of teams to use
by teams region

ICV: nteams-var
Scope: device
Description:

Specifies the upper bound for number of teams to use in teams regions without
explicit num_teams clause. The value of this variable shall be a positive integer.
If undefined it defaults to 0 which means implementation defined upper bound.

See also: Section 3.3.3 [omp set num teams], page 23,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 6.23

4.12 OMP_NUM_THREADS – Specifies the number of threads to
use

ICV: nthreads-var
Scope: data environment
Description:

Specifies the default number of threads to use in parallel regions. The value
of this variable shall be a comma-separated list of positive integers; the value
specifies the number of threads to use for the corresponding nested level. Spec-
ifying more than one item in the list automatically enables nesting by default.
If undefined one thread per CPU is used.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

64 GNU libgomp

When a list with more than value is specified, it also affects the max-active-
levels-var ICV as described in Section 4.8 [OMP MAX ACTIVE LEVELS],
page 62.

See also: Section 3.1.1 [omp set num threads], page 15, Section 4.8
[OMP MAX ACTIVE LEVELS], page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.2

4.13 OMP_PROC_BIND – Whether threads may be moved
between CPUs

ICV: bind-var
Scope: data environment
Description:

Specifies whether threads may be moved between processors. If set to TRUE,
OpenMP threads should not be moved; if set to FALSE they may be moved.
Alternatively, a comma separated list with the values PRIMARY, MASTER (depre-
cated since OpenMP 5.1), CLOSE and SPREAD can be used to specify the thread
affinity policy for the corresponding nesting level. With PRIMARY and MASTER

the worker threads are in the same place partition as the primary thread. With
CLOSE those are kept close to the primary thread in contiguous place parti-
tions. And with SPREAD a sparse distribution across the place partitions is
used. Specifying more than one item in the list automatically enables nesting
by default.

When a list is specified, it also affects themax-active-levels-var ICV as described
in Section 4.8 [OMP MAX ACTIVE LEVELS], page 62.

When undefined, OMP_PROC_BIND defaults to TRUE when OMP_PLACES or GOMP_
CPU_AFFINITY is set and FALSE otherwise.

See also: Section 3.2.1 [omp get proc bind], page 22, Section 4.21 [GOMP CPU AFFINITY],
page 67, Section 4.14 [OMP PLACES], page 64, Section 4.8
[OMP MAX ACTIVE LEVELS], page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.4

4.14 OMP_PLACES – Specifies on which CPUs the threads
should be placed

ICV: place-partition-var
Scope: implicit tasks
Description:

The thread placement can be either specified using an abstract name or by
an explicit list of the places. The abstract names threads, cores, sockets,
ll_caches and numa_domains can be optionally followed by a positive number
in parentheses, which denotes the how many places shall be created. With
threads each place corresponds to a single hardware thread; cores to a single
core with the corresponding number of hardware threads; with sockets the
place corresponds to a single socket; with ll_caches to a set of cores that

https://www.openmp.org
https://www.openmp.org

Chapter 4: OpenMP Environment Variables 65

shares the last level cache on the device; and numa_domains to a set of cores for
which their closest memory on the device is the same memory and at a similar
distance from the cores. The resulting placement can be shown by setting the
OMP_DISPLAY_ENV environment variable.

Alternatively, the placement can be specified explicitly as comma-separated
list of places. A place is specified by set of nonnegative numbers in curly
braces, denoting the hardware threads. The curly braces can be omitted when
only a single number has been specified. The hardware threads belonging to
a place can either be specified as comma-separated list of nonnegative thread
numbers or using an interval. Multiple places can also be either specified by
a comma-separated list of places or by an interval. To specify an interval, a
colon followed by the count is placed after the hardware thread number or the
place. Optionally, the length can be followed by a colon and the stride number
– otherwise a unit stride is assumed. Placing an exclamation mark (!) directly
before a curly brace or numbers inside the curly braces (excluding intervals)
excludes those hardware threads.

For instance, the following specifies the same places list: "{0,1,2}, {3,4,6},

{7,8,9}, {10,11,12}"; "{0:3}, {3:3}, {7:3}, {10:3}"; and "{0:2}:4:3".

If OMP_PLACES and GOMP_CPU_AFFINITY are unset and OMP_PROC_BIND is either
unset or false, threads may be moved between CPUs following no placement
policy.

See also: Section 4.13 [OMP PROC BIND], page 64, Section 4.21 [GOMP CPU AFFINITY],
page 67, Section 3.2.1 [omp get proc bind], page 22, Section 4.5
[OMP DISPLAY ENV], page 61,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.5

4.15 OMP_STACKSIZE – Set default thread stack size

ICV: stacksize-var
Scope: device
Description:

Set the default thread stack size in kilobytes, unless the number is suffixed by B,
K, M or G, in which case the size is, respectively, in bytes, kilobytes, megabytes or
gigabytes. This is different from pthread_attr_setstacksize which gets the
number of bytes as an argument. If the stack size cannot be set due to system
constraints, an error is reported and the initial stack size is left unchanged. If
undefined, the stack size is system dependent.

See also: Section 4.23 [GOMP STACKSIZE], page 68,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.7

https://www.openmp.org
https://www.openmp.org

66 GNU libgomp

4.16 OMP_SCHEDULE – How threads are scheduled

ICV: run-sched-var
Scope: data environment
Description:

Allows to specify schedule type and chunk size. The value of the variable
shall have the form: type[,chunk] where type is one of static, dynamic,
guided or auto The optional chunk size shall be a positive integer. If undefined,
dynamic scheduling and a chunk size of 1 is used.

See also: Section 3.1.11 [omp set schedule], page 19,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Sections 2.7.1.1 and
4.1

4.17 OMP_TARGET_OFFLOAD – Controls offloading behavior

ICV: target-offload-var
Scope: global
Description:

Specifies the behavior with regard to offloading code to a device. This variable
can be set to one of three values - MANDATORY, DISABLED or DEFAULT.

If set to MANDATORY, the program terminates with an error if any device con-
struct or device memory routine uses a device that is unavailable or not sup-
ported by the implementation, or uses a non-conforming device number. If set
to DISABLED, then offloading is disabled and all code runs on the host. If set
to DEFAULT, the program tries offloading to the device first, then falls back to
running code on the host if it cannot.

If undefined, then the program behaves as if DEFAULT was set.

Note: Even with MANDATORY, no run-time termination is performed when the
device number in a device clause or argument to a device memory routine
is for host, which includes using the device number in the default-device-var
ICV. However, the initial value of the default-device-var ICV is affected by
MANDATORY.

See also: Section 4.6 [OMP DEFAULT DEVICE], page 61,

Reference: OpenMP specification v5.2 (https://www.openmp.org), Section 21.2.8

4.18 OMP_TEAMS_THREAD_LIMIT – Set the maximum number of
threads imposed by teams

ICV: teams-thread-limit-var
Scope: device
Description:

Specifies an upper bound for the number of threads to use by each contention
group created by a teams construct without explicit thread_limit clause. The
value of this variable shall be a positive integer. If undefined, the value of 0 is
used which stands for an implementation defined upper limit.

https://www.openmp.org
https://www.openmp.org

Chapter 4: OpenMP Environment Variables 67

See also: Section 4.19 [OMP THREAD LIMIT], page 67, Section 3.3.5
[omp set teams thread limit], page 24,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 6.24

4.19 OMP_THREAD_LIMIT – Set the maximum number of
threads

ICV: thread-limit-var
Scope: data environment
Description:

Specifies the number of threads to use for the whole program. The value of this
variable shall be a positive integer. If undefined, the number of threads is not
limited.

See also: Section 4.12 [OMP NUM THREADS], page 63, Section 3.3.6
[omp get thread limit], page 24,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.10

4.20 OMP_WAIT_POLICY – How waiting threads are handled

Description:
Specifies whether waiting threads should be active or passive. If the value
is PASSIVE, waiting threads should not consume CPU power while waiting;
while the value is ACTIVE specifies that they should. If undefined, threads wait
actively for a short time before waiting passively.

See also: Section 4.24 [GOMP SPINCOUNT], page 68,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.8

4.21 GOMP_CPU_AFFINITY – Bind threads to specific CPUs

Description:
Binds threads to specific CPUs. The variable should contain a space-separated
or comma-separated list of CPUs. This list may contain different kinds of
entries: either single CPU numbers in any order, a range of CPUs (M-N) or a
range with some stride (M-N:S). CPU numbers are zero based. For example,
GOMP_CPU_AFFINITY="0 3 1-2 4-15:2" binds the initial thread to CPU 0, the
second to CPU 3, the third to CPU 1, the fourth to CPU 2, the fifth to CPU
4, the sixth through tenth to CPUs 6, 8, 10, 12, and 14 respectively and then
starts assigning back from the beginning of the list. GOMP_CPU_AFFINITY=0

binds all threads to CPU 0.

There is no libgomp library routine to determine whether a CPU affinity spec-
ification is in effect. As a workaround, language-specific library functions, e.g.,
getenv in C or GET_ENVIRONMENT_VARIABLE in Fortran, may be used to query
the setting of the GOMP_CPU_AFFINITY environment variable. A defined CPU
affinity on startup cannot be changed or disabled during the runtime of the
application.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

68 GNU libgomp

If both GOMP_CPU_AFFINITY and OMP_PROC_BIND are set, OMP_PROC_BIND has
a higher precedence. If neither has been set and OMP_PROC_BIND is unset, or
when OMP_PROC_BIND is set to FALSE, the host system handles the assignment
of threads to CPUs.

See also: Section 4.14 [OMP PLACES], page 64, Section 4.13 [OMP PROC BIND],
page 64,

4.22 GOMP_DEBUG – Enable debugging output

Description:
Enable debugging output. The variable should be set to 0 (disabled, also the
default if not set), or 1 (enabled).

If enabled, some debugging output is printed during execution. This is currently
not specified in more detail, and subject to change.

4.23 GOMP_STACKSIZE – Set default thread stack size

Description:
Set the default thread stack size in kilobytes. This is different from pthread_

attr_setstacksize which gets the number of bytes as an argument. If the
stack size cannot be set due to system constraints, an error is reported and
the initial stack size is left unchanged. If undefined, the stack size is system
dependent.

See also: Section 4.15 [OMP STACKSIZE], page 65,

Reference: GCC Patches Mailinglist (https://gcc.gnu.org/ml/gcc-patches/2006-06/
msg00493.html), GCC Patches Mailinglist (https://gcc.gnu.org/ml/
gcc-patches/2006-06/msg00496.html)

4.24 GOMP_SPINCOUNT – Set the busy-wait spin count

Description:
Determines how long a threads waits actively with consuming CPU power be-
fore waiting passively without consuming CPU power. The value may be either
INFINITE, INFINITY to always wait actively or an integer which gives the num-
ber of spins of the busy-wait loop. The integer may optionally be followed
by the following suffixes acting as multiplication factors: k (kilo, thousand), M
(mega, million), G (giga, billion), or T (tera, trillion). If undefined, 0 is used
when OMP_WAIT_POLICY is PASSIVE, 300,000 is used when OMP_WAIT_POLICY is
undefined and 30 billion is used when OMP_WAIT_POLICY is ACTIVE. If there are
more OpenMP threads than available CPUs, 1000 and 100 spins are used for
OMP_WAIT_POLICY being ACTIVE or undefined, respectively; unless the GOMP_

SPINCOUNT is lower or OMP_WAIT_POLICY is PASSIVE.

See also: Section 4.20 [OMP WAIT POLICY], page 67,

https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html

Chapter 4: OpenMP Environment Variables 69

4.25 GOMP_RTEMS_THREAD_POOLS – Set the RTEMS specific
thread pools

Description:
This environment variable is only used on the RTEMS real-time operating
system. It determines the scheduler instance specific thread pools. The
format for GOMP_RTEMS_THREAD_POOLS is a list of optional <thread-pool-

count>[$<priority>]@<scheduler-name> configurations separated by :

where:

• <thread-pool-count> is the thread pool count for this scheduler instance.

• $<priority> is an optional priority for the worker threads of a thread pool
according to pthread_setschedparam. In case a priority value is omitted,
then a worker thread inherits the priority of the OpenMP primary thread
that created it. The priority of the worker thread is not changed after
creation, even if a new OpenMP primary thread using the worker has a
different priority.

• @<scheduler-name> is the scheduler instance name according to the
RTEMS application configuration.

In case no thread pool configuration is specified for a scheduler instance, then
each OpenMP primary thread of this scheduler instance uses its own dynam-
ically allocated thread pool. To limit the worker thread count of the thread
pools, each OpenMP primary thread must call omp_set_num_threads.

Example: Lets suppose we have three scheduler instances IO, WRK0, and WRK1 with GOMP_

RTEMS_THREAD_POOLS set to "1@WRK0:3$4@WRK1". Then there are no thread
pool restrictions for scheduler instance IO. In the scheduler instance WRK0 there
is one thread pool available. Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP primary thread
that created it. In the scheduler instance WRK1 there are three thread pools
available and their worker threads run at priority four.

71

5 Enabling OpenACC

To activate the OpenACC extensions for C/C++ and Fortran, the compile-time flag
-fopenacc must be specified. This enables the OpenACC directive ‘#pragma acc’ in
C/C++ and, in Fortran, the ‘!$acc’ sentinel in free source form and the ‘c$acc’, ‘*$acc’
and ‘!$acc’ sentinels in fixed source form. The flag also arranges for automatic linking
of the OpenACC runtime library (Chapter 6 [OpenACC Runtime Library Routines],
page 73).

See https://gcc.gnu.org/wiki/OpenACC for more information.

A complete description of all OpenACC directives accepted may be found in the
OpenACC (https://www.openacc.org) Application Programming Interface manual,
version 2.6.

https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org

73

6 OpenACC Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenACC specifications
in version 2.6. They have C linkage, and do not throw exceptions. Generally, they are
available only for the host, with the exception of acc_on_device, which is available for
both the host and the acceleration device.

6.1 acc_get_num_devices – Get number of devices for given
device type

Description
This function returns a value indicating the number of devices available for the
device type specified in devicetype.

C/C++:

Prototype: int acc_get_num_devices(acc_device_t devicetype);

Fortran:

Interface: integer function acc_get_num_devices(devicetype)

integer(kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.1.

6.2 acc_set_device_type – Set type of device accelerator to
use.

Description
This function indicates to the runtime library which device type, specified in
devicetype, to use when executing a parallel or kernels region.

C/C++:

Prototype: acc_set_device_type(acc_device_t devicetype);

Fortran:

Interface: subroutine acc_set_device_type(devicetype)

integer(kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.2.

6.3 acc_get_device_type – Get type of device accelerator to
be used.

Description
This function returns what device type will be used when executing a parallel
or kernels region.

This function returns acc_device_none if acc_get_device_type is called from
acc_ev_device_init_start, acc_ev_device_init_end callbacks of the Ope-
nACC Profiling Interface (Chapter 10 [OpenACC Profiling Interface], page 101),
that is, if the device is currently being initialized.

https://www.openacc.org
https://www.openacc.org

74 GNU libgomp

C/C++:

Prototype: acc_device_t acc_get_device_type(void);

Fortran:

Interface: function acc_get_device_type(void)

integer(kind=acc_device_kind) acc_get_device_type

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.3.

6.4 acc_set_device_num – Set device number to use.

Description
This function will indicate to the runtime which device number, specified by
devicenum, associated with the specified device type devicetype.

C/C++:

Prototype: acc_set_device_num(int devicenum, acc_device_t

devicetype);

Fortran:

Interface: subroutine acc_set_device_num(devicenum,

devicetype)

integer devicenum

integer(kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.4.

6.5 acc_get_device_num – Get device number to be used.

Description
This function returns which device number associated with the specified device
type devicetype, will be used when executing a parallel or kernels region.

C/C++:

Prototype: int acc_get_device_num(acc_device_t devicetype);

Fortran:

Interface: function acc_get_device_num(devicetype)

integer(kind=acc_device_kind) devicetype

integer acc_get_device_num

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.5.

6.6 acc_get_property – Get device property.

Description
These routines return the value of the specified property for the device being
queried according to devicenum and devicetype. Integer-valued and string-
valued properties are returned by acc_get_property and acc_get_property_

string respectively. The Fortran acc_get_property_string subroutine re-
turns the string retrieved in its fourth argument while the remaining entry
points are functions, which pass the return value as their result.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 75

Note for Fortran, only: the OpenACC technical committee corrected and,
hence, modified the interface introduced in OpenACC 2.6. The kind-value pa-
rameter acc_device_property has been renamed to acc_device_property_

kind for consistency and the return type of the acc_get_property function
is now a c_size_t integer instead of a acc_device_property integer. The
parameter acc_device_property is still provided, but might be removed in a
future version of GCC.

C/C++:

Prototype: size_t acc_get_property(int devicenum, acc_device_t

devicetype, acc_device_property_t property);

Prototype: const char *acc_get_property_string(int devicenum,

acc_device_t devicetype, acc_device_property_t

property);

Fortran:

Interface: function acc_get_property(devicenum, devicetype,

property)

Interface: subroutine acc_get_property_string(devicenum,

devicetype, property, string)

use ISO_C_Binding, only: c_size_t

integer devicenum

integer(kind=acc_device_kind) devicetype

integer(kind=acc_device_property_kind) property

integer(kind=c_size_t) acc_get_property

character(*) string

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.6.

6.7 acc_async_test – Test for completion of a specific
asynchronous operation.

Description
This function tests for completion of the asynchronous operation specified in
arg. In C/C++, a non-zero value is returned to indicate the specified asyn-
chronous operation has completed while Fortran returns true. If the asyn-
chronous operation has not completed, C/C++ returns zero and Fortran returns
false.

C/C++:

Prototype: int acc_async_test(int arg);

Fortran:

Interface: function acc_async_test(arg)

integer(kind=acc_handle_kind) arg

logical acc_async_test

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.9.

https://www.openacc.org
https://www.openacc.org

76 GNU libgomp

6.8 acc_async_test_all – Tests for completion of all
asynchronous operations.

Description
This function tests for completion of all asynchronous operations. In C/C++,
a non-zero value is returned to indicate all asynchronous operations have com-
pleted while Fortran returns true. If any asynchronous operation has not com-
pleted, C/C++ returns zero and Fortran returns false.

C/C++:

Prototype: int acc_async_test_all(void);

Fortran:

Interface: function acc_async_test()

logical acc_get_device_num

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.10.

6.9 acc_wait – Wait for completion of a specific
asynchronous operation.

Description
This function waits for completion of the asynchronous operation specified in
arg.

C/C++:

Prototype: acc_wait(arg);

Prototype (Ope-
nACC 1.0 com-
patibility):

acc_async_wait(arg);

Fortran:

Interface: subroutine acc_wait(arg)

integer(acc_handle_kind) arg

Interface (Ope-
nACC 1.0 com-
patibility):

subroutine acc_async_wait(arg)

integer(acc_handle_kind) arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.11.

6.10 acc_wait_all – Waits for completion of all
asynchronous operations.

Description
This function waits for the completion of all asynchronous operations.

C/C++:

Prototype: acc_wait_all(void);

Prototype (Ope-
nACC 1.0 com-
patibility):

acc_async_wait_all(void);

https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 77

Fortran:

Interface: subroutine acc_wait_all()

Interface (Ope-
nACC 1.0 com-
patibility):

subroutine acc_async_wait_all()

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.13.

6.11 acc_wait_all_async – Wait for completion of all
asynchronous operations.

Description
This function enqueues a wait operation on the queue async for any and all
asynchronous operations that have been previously enqueued on any queue.

C/C++:

Prototype: acc_wait_all_async(int async);

Fortran:

Interface: subroutine acc_wait_all_async(async)

integer(acc_handle_kind) async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.14.

6.12 acc_wait_async – Wait for completion of asynchronous
operations.

Description
This function enqueues a wait operation on queue async for any and all asyn-
chronous operations enqueued on queue arg.

C/C++:

Prototype: acc_wait_async(int arg, int async);

Fortran:

Interface: subroutine acc_wait_async(arg, async)

integer(acc_handle_kind) arg, async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.12.

6.13 acc_init – Initialize runtime for a specific device type.

Description
This function initializes the runtime for the device type specified in devicetype.

C/C++:

Prototype: acc_init(acc_device_t devicetype);

Fortran:

Interface: subroutine acc_init(devicetype)

integer(acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.7.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

78 GNU libgomp

6.14 acc_shutdown – Shuts down the runtime for a specific
device type.

Description
This function shuts down the runtime for the device type specified in devicetype.

C/C++:

Prototype: acc_shutdown(acc_device_t devicetype);

Fortran:

Interface: subroutine acc_shutdown(devicetype)

integer(acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.8.

6.15 acc_on_device – Whether executing on a particular
device

Description:
This function returns whether the program is executing on a particular device
specified in devicetype. In C/C++ a non-zero value is returned to indicate the
device is executing on the specified device type. In Fortran, true is returned. If
the program is not executing on the specified device type C/C++ returns zero,
while Fortran returns false.

Note that in GCC, depending on devicetype, the function call might be folded
to a constant in the compiler; compile with -fno-builtin-acc_on_device if a
run-time function is desired.

C/C++:

Prototype: acc_on_device(acc_device_t devicetype);

Fortran:

Interface: function acc_on_device(devicetype)

integer(acc_device_kind) devicetype

logical acc_on_device

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.17.

6.16 acc_malloc – Allocate device memory.

Description
This function allocates bytes bytes of device memory. It returns the device
address of the allocated memory.

C/C++:

Prototype: d_void* acc_malloc(size_t bytes);

Fortran:

Interface: type(c_ptr) function acc_malloc(bytes)

integer(c_size_t), value :: bytes

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.18.
openacc specification v3.3 (https://www.openacc.org), section 3.2.16.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 79

6.17 acc_free – Free device memory.

Description
Free previously allocated device memory at the device address data_dev.

C/C++:

Prototype: void acc_free(d_void *data_dev);

Fortran:

Interface: subroutine acc_free(data_dev)

type(c_ptr), value :: data_dev

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.19.
openacc specification v3.3 (https://www.openacc.org), section 3.2.17.

6.18 acc_copyin – Allocate device memory and copy host
memory to it.

Description
In C/C++, this function allocates len bytes of device memory and maps it to the
specified host address in a. The device address of the newly allocated device
memory is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: void *acc_copyin(h_void *a, size_t len);

Prototype: void *acc_copyin_async(h_void *a, size_t len, int

async);

Fortran:

Interface: subroutine acc_copyin(a)

type(*), dimension(..) :: a

Interface: subroutine acc_copyin(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_copyin_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyin_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.20.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

80 GNU libgomp

6.19 acc_present_or_copyin – If the data is not present on
the device, allocate device memory and copy from host
memory.

Description
This function tests if the host data specified by a and of length len is present
or not. If it is not present, device memory is allocated and the host memory
copied. The device address of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Note that acc_present_or_copyin and acc_pcopyin exist for backward com-
patibility with OpenACC 2.0; use Section 6.18 [acc copyin], page 79, instead.

C/C++:

Prototype: void *acc_present_or_copyin(h_void *a, size_t len);

Prototype: void *acc_pcopyin(h_void *a, size_t len);

Fortran:

Interface: subroutine acc_present_or_copyin(a)

type(*), dimension(..) :: a

Interface: subroutine acc_present_or_copyin(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_pcopyin(a)

type(*), dimension(..) :: a

Interface: subroutine acc_pcopyin(a, len)

type(*), dimension(..) :: a

integer len

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.20.

6.20 acc_create – Allocate device memory and map it to
host memory.

Description
This function allocates device memory and maps it to host memory specified by
the host address a with a length of len bytes. In C/C++, the function returns
the device address of the allocated device memory.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: void *acc_create(h_void *a, size_t len);

Prototype: void *acc_create_async(h_void *a, size_t len, int

async);

Fortran:

Interface: subroutine acc_create(a)

https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 81

type(*), dimension(..) :: a

Interface: subroutine acc_create(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_create_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_create_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.21.

6.21 acc_present_or_create – If the data is not present on
the device, allocate device memory and map it to host
memory.

Description
This function tests if the host data specified by a and of length len is present
or not. If it is not present, device memory is allocated and mapped to host
memory. In C/C++, the device address of the newly allocated device memory
is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Note that acc_present_or_create and acc_pcreate exist for backward com-
patibility with OpenACC 2.0; use Section 6.20 [acc create], page 80, instead.

C/C++:

Prototype: void *acc_present_or_create(h_void *a, size_t len)

Prototype: void *acc_pcreate(h_void *a, size_t len)

Fortran:

Interface: subroutine acc_present_or_create(a)

type(*), dimension(..) :: a

Interface: subroutine acc_present_or_create(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_pcreate(a)

type(*), dimension(..) :: a

Interface: subroutine acc_pcreate(a, len)

type(*), dimension(..) :: a

integer len

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.21.

https://www.openacc.org
https://www.openacc.org

82 GNU libgomp

6.22 acc_copyout – Copy device memory to host memory.

Description
This function copies mapped device memory to host memory which is specified
by host address a for a length len bytes in C/C++.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_copyout(h_void *a, size_t len);

Prototype: acc_copyout_async(h_void *a, size_t len, int async);

Prototype: acc_copyout_finalize(h_void *a, size_t len);

Prototype: acc_copyout_finalize_async(h_void *a, size_t len,

int async);

Fortran:

Interface: subroutine acc_copyout(a)

type(*), dimension(..) :: a

Interface: subroutine acc_copyout(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_copyout_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyout_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyout_finalize(a)

type(*), dimension(..) :: a

Interface: subroutine acc_copyout_finalize(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_copyout_finalize_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_copyout_finalize_async(a, len,

async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.22.

https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 83

6.23 acc_delete – Free device memory.

Description
This function frees previously allocated device memory specified by the device
address a and the length of len bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_delete(h_void *a, size_t len);

Prototype: acc_delete_async(h_void *a, size_t len, int async);

Prototype: acc_delete_finalize(h_void *a, size_t len);

Prototype: acc_delete_finalize_async(h_void *a, size_t len,

int async);

Fortran:

Interface: subroutine acc_delete(a)

type(*), dimension(..) :: a

Interface: subroutine acc_delete(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_delete_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_delete_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Interface: subroutine acc_delete_finalize(a)

type(*), dimension(..) :: a

Interface: subroutine acc_delete_finalize(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_delete_finalize_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_delete_finalize_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.23.

https://www.openacc.org

84 GNU libgomp

6.24 acc_update_device – Update device memory from
mapped host memory.

Description
This function updates the device copy from the previously mapped host mem-
ory. The host memory is specified with the host address a and a length of len
bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_update_device(h_void *a, size_t len);

Prototype: acc_update_device(h_void *a, size_t len, async);

Fortran:

Interface: subroutine acc_update_device(a)

type(*), dimension(..) :: a

Interface: subroutine acc_update_device(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_update_device_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_update_device_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.24.

6.25 acc_update_self – Update host memory from mapped
device memory.

Description
This function updates the host copy from the previously mapped device mem-
ory. The host memory is specified with the host address a and a length of len
bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_update_self(h_void *a, size_t len);

Prototype: acc_update_self_async(h_void *a, size_t len, int

async);

Fortran:

Interface: subroutine acc_update_self(a)

type(*), dimension(..) :: a

https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 85

Interface: subroutine acc_update_self(a, len)

type(*), dimension(..) :: a

integer len

Interface: subroutine acc_update_self_async(a, async)

type(*), dimension(..) :: a

integer(acc_handle_kind) :: async

Interface: subroutine acc_update_self_async(a, len, async)

type(*), dimension(..) :: a

integer len

integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.25.

6.26 acc_map_data – Map previously allocated device
memory to host memory.

Description
This function maps previously allocated device and host memory. The device
memory is specified with the device address data dev. The host memory is
specified with the host address data arg and a length of bytes.

C/C++:

Prototype: void acc_map_data(h_void *data_arg, d_void

*data_dev, size_t bytes);

Fortran:

Interface: subroutine acc_map_data(data_arg, data_dev, bytes)

type(*), dimension(*) :: data_arg

type(c_ptr), value :: data_dev

integer(c_size_t), value :: bytes

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.26.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.21.

6.27 acc_unmap_data – Unmap device memory from host
memory.

Description
This function unmaps previously mapped device and host memory. The latter
specified by data arg.

C/C++:

Prototype: void acc_unmap_data(h_void *data_arg);

Fortran:

Interface: subroutine acc_unmap_data(data_arg)

type(*), dimension(*) :: data_arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.27.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.22.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

86 GNU libgomp

6.28 acc_deviceptr – Get device pointer associated with
specific host address.

Description
This function returns the device address that has been mapped to the host
address specified by data arg.

C/C++:

Prototype: void *acc_deviceptr(h_void *data_arg);

Fortran:

Interface: type(c_ptr) function acc_deviceptr(data_arg)

type(*), dimension(*) :: data_arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.28.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.23.

6.29 acc_hostptr – Get host pointer associated with specific
device address.

Description
This function returns the host address that has been mapped to the device
address specified by data dev.

C/C++:

Prototype: void *acc_hostptr(d_void *data_dev);

Fortran:

Interface: type(c_ptr) function acc_hostptr(data_dev)

type(c_ptr), value :: data_dev

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.29.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.24.

6.30 acc_is_present – Indicate whether host variable / array
is present on device.

Description
This function indicates whether the specified host address in a and a length of
len bytes is present on the device. In C/C++, a non-zero value is returned to
indicate the presence of the mapped memory on the device. A zero is returned
to indicate the memory is not mapped on the device.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes. If the host memory is mapped to device
memory, then a true is returned. Otherwise, a false is return to indicate the
mapped memory is not present.

C/C++:

Prototype: int acc_is_present(h_void *a, size_t len);

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 87

Fortran:

Interface: function acc_is_present(a)

type(*), dimension(..) :: a

logical acc_is_present

Interface: function acc_is_present(a, len)

type(*), dimension(..) :: a

integer len

logical acc_is_present

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.30.

6.31 acc_memcpy_to_device – Copy host memory to device
memory.

Description
This function copies host memory specified by host address of data host src
to device memory specified by the device address data dev dest for a length of
bytes bytes.

C/C++:

Prototype: void acc_memcpy_to_device(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes);

Prototype: void acc_memcpy_to_device_async(d_void* data_dev_

dest,

h_void* data_host_src, size_t bytes, int async_arg);

Fortran:

Interface: subroutine acc_memcpy_to_device(data_dev_dest, &

data_host_src, bytes)

Interface: subroutine acc_memcpy_to_device_async(data_dev_

dest, &

data_host_src, bytes, async_arg)

type(c_ptr), value :: data_dev_dest

type(*), dimension(*) :: data_host_src

integer(c_size_t), value :: bytes

integer(acc_handle_kind), value :: async_arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.31
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.26.

6.32 acc_memcpy_from_device – Copy device memory to host
memory.

Description
This function copies device memory specified by device address of data dev src
to host memory specified by the host address data host dest for a length of
bytes bytes.

C/C++:

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

88 GNU libgomp

Prototype: void acc_memcpy_from_device(h_void* data_host_

dest,

d_void* data_dev_src, size_t bytes);

Prototype: void acc_memcpy_from_device_async(h_void*

data_host_dest,

d_void* data_dev_src, size_t bytes, int async_arg);

Fortran:

Interface: subroutine acc_memcpy_from_device(data_host_dest,

&

data_dev_src, bytes)

Interface: subroutine acc_memcpy_from_device_async(data_host_

dest, &

data_dev_src, bytes, async_arg)

type(*), dimension(*) :: data_host_dest

type(c_ptr), value :: data_dev_src

integer(c_size_t), value :: bytes

integer(acc_handle_kind), value :: async_arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.32.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.27.

6.33 acc_memcpy_device – Copy memory within a device.

Description
This function copies device memory from one memory location to another on the
current device. It copies bytes bytes of data from the device address, specified
by data dev src, to the device address data dev dest. The _async version per-
forms the transfer asynchronously using the queue associated with async arg.

C/C++:

Prototype: void acc_memcpy_device(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes);

Prototype: void acc_memcpy_device_async(d_void* data_dev_

dest,

d_void* data_dev_src, size_t bytes, int async_arg);

Fortran:

Interface: subroutine acc_memcpy_device(data_dev_dest, &

data_dev_src, bytes)

Interface: subroutine acc_memcpy_device_async(data_dev_dest,

&

data_dev_src, bytes, async_arg)

type(c_ptr), value :: data_dev_dest

type(c_ptr), value :: data_dev_src

integer(c_size_t), value :: bytes

integer(acc_handle_kind), value :: async_arg

https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 89

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.33.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.28.

6.34 acc_attach – Let device pointer point to device-pointer
target.

Description
This function updates a pointer on the device from pointing to a host-pointer
address to pointing to the corresponding device data.

C/C++:

Prototype: void acc_attach(h_void **ptr_addr);

Prototype: void acc_attach_async(h_void **ptr_addr, int

async);

Fortran:

Interface: subroutine acc_attach(ptr_addr)

Interface: subroutine acc_attach_async(ptr_addr, async_arg)

type(*), dimension(..) :: ptr_addr

integer(acc_handle_kind), value :: async_arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.34.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.29.

6.35 acc_detach – Let device pointer point to host-pointer
target.

Description
This function updates a pointer on the device from pointing to a device-pointer
address to pointing to the corresponding host data.

C/C++:

Prototype: void acc_detach(h_void **ptr_addr);

Prototype: void acc_detach_async(h_void **ptr_addr, int

async);

Prototype: void acc_detach_finalize(h_void **ptr_addr);

Prototype: void acc_detach_finalize_async(h_void **ptr_addr,

int async);

Fortran:

Interface: subroutine acc_detach(ptr_addr)

Interface: subroutine acc_detach_async(ptr_addr, async_arg)

Interface: subroutine acc_detach_finalize(ptr_addr)

Interface: subroutine acc_detach_finalize_async(ptr_addr,

async_arg)

type(*), dimension(..) :: ptr_addr

integer(acc_handle_kind), value :: async_arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.35.
OpenACC specification v3.3 (https://www.openacc.org), section 3.2.29.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

90 GNU libgomp

6.36 acc_get_current_cuda_device – Get CUDA device
handle.

Description
This function returns the CUDA device handle. This handle is the same as
used by the CUDA Runtime or Driver API’s.

C/C++:

Prototype: void *acc_get_current_cuda_device(void);

Reference: OpenACC specification v2.6 (https://www.openacc.org), section A.2.1.1.

6.37 acc_get_current_cuda_context – Get CUDA context
handle.

Description
This function returns the CUDA context handle. This handle is the same as
used by the CUDA Runtime or Driver API’s.

C/C++:

Prototype: void *acc_get_current_cuda_context(void);

Reference: OpenACC specification v2.6 (https://www.openacc.org), section A.2.1.2.

6.38 acc_get_cuda_stream – Get CUDA stream handle.

Description
This function returns the CUDA stream handle for the queue async. This
handle is the same as used by the CUDA Runtime or Driver API’s.

C/C++:

Prototype: void *acc_get_cuda_stream(int async);

Reference: OpenACC specification v2.6 (https://www.openacc.org), section A.2.1.3.

6.39 acc_set_cuda_stream – Set CUDA stream handle.

Description
This function associates the stream handle specified by stream with the queue
async.

This cannot be used to change the stream handle associated with acc_async_

sync.

The return value is not specified.

C/C++:

Prototype: int acc_set_cuda_stream(int async, void *stream);

Reference: OpenACC specification v2.6 (https://www.openacc.org), section A.2.1.4.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 91

6.40 acc_prof_register – Register callbacks.

Description:
This function registers callbacks.

C/C++:

Prototype: void acc_prof_register (acc_event_t, acc_prof_

callback, acc_register_t);

See also: Chapter 10 [OpenACC Profiling Interface], page 101,

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 5.3.

6.41 acc_prof_unregister – Unregister callbacks.

Description:
This function unregisters callbacks.

C/C++:

Prototype: void acc_prof_unregister (acc_event_t, acc_prof_

callback, acc_register_t);

See also: Chapter 10 [OpenACC Profiling Interface], page 101,

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 5.3.

6.42 acc_prof_lookup – Obtain inquiry functions.

Description:
Function to obtain inquiry functions.

C/C++:

Prototype: acc_query_fn acc_prof_lookup (const char *);

See also: Chapter 10 [OpenACC Profiling Interface], page 101,

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 5.3.

6.43 acc_register_library – Library registration.

Description:
Function for library registration.

C/C++:

Prototype: void acc_register_library (acc_prof_reg, acc_prof_

reg, acc_prof_lookup_func);

See also: Chapter 10 [OpenACC Profiling Interface], page 101, Section 7.3
[ACC PROFLIB], page 93,

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 5.3.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

93

7 OpenACC Environment Variables

The variables ACC_DEVICE_TYPE and ACC_DEVICE_NUM are defined by section 4 of the Ope-
nACC specification in version 2.0. The variable ACC_PROFLIB is defined by section 4 of the
OpenACC specification in version 2.6.

7.1 ACC_DEVICE_TYPE

Description:
Control the default device type to use when executing compute regions. If
unset, the code can be run on any device type, favoring a non-host device type.

Supported values in GCC (if compiled in) are

• host

• nvidia

• radeon

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 4.1.

7.2 ACC_DEVICE_NUM

Description:
Control which device, identified by device number, is the default device. The
value must be a nonnegative integer less than the number of devices. If unset,
device number zero is used.

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 4.2.

7.3 ACC_PROFLIB

Description:
Semicolon-separated list of dynamic libraries that are loaded as profiling li-
braries. Each library must provide at least the acc_register_library routine.
Each library file is found as described by the documentation of dlopen of your
operating system.

See also: Section 6.43 [acc register library], page 91, Chapter 10 [OpenACC Profiling
Interface], page 101,

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 4.3.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

95

8 CUDA Streams Usage

This applies to the nvptx plugin only.

The library provides elements that perform asynchronous movement of data and asyn-
chronous operation of computing constructs. This asynchronous functionality is imple-
mented by making use of CUDA streams1.

The primary means by that the asynchronous functionality is accessed is through the
use of those OpenACC directives which make use of the async and wait clauses. When
the async clause is first used with a directive, it creates a CUDA stream. If an async-

argument is used with the async clause, then the stream is associated with the specified
async-argument.

Following the creation of an association between a CUDA stream and the async-

argument of an async clause, both the wait clause and the wait directive can be used.
When either the clause or directive is used after stream creation, it creates a rendezvous
point whereby execution waits until all operations associated with the async-argument,
that is, stream, have completed.

Normally, the management of the streams that are created as a result of using the async
clause, is done without any intervention by the caller. This implies the association between
the async-argument and the CUDA stream is maintained for the lifetime of the program.
However, this association can be changed through the use of the library function acc_set_

cuda_stream. When the function acc_set_cuda_stream is called, the CUDA stream that
was originally associated with the async clause is destroyed. Caution should be taken when
changing the association as subsequent references to the async-argument refer to a different
CUDA stream.

1 See "Stream Management" in "CUDA Driver API", TRM-06703-001, Version 5.5, for additional
information

97

9 OpenACC Library Interoperability

9.1 Introduction

The OpenACC library uses the CUDA Driver API, and may interact with programs that
use the Runtime library directly, or another library based on the Runtime library, e.g.,
CUBLAS1. This chapter describes the use cases and what changes are required in order to
use both the OpenACC library and the CUBLAS and Runtime libraries within a program.

9.2 First invocation: NVIDIA CUBLAS library API

In this first use case (see below), a function in the CUBLAS library is called prior to any
of the functions in the OpenACC library. More specifically, the function cublasCreate().

When invoked, the function initializes the library and allocates the hardware resources
on the host and the device on behalf of the caller. Once the initialization and allocation
has completed, a handle is returned to the caller. The OpenACC library also requires
initialization and allocation of hardware resources. Since the CUBLAS library has already
allocated the hardware resources for the device, all that is left to do is to initialize the
OpenACC library and acquire the hardware resources on the host.

Prior to calling the OpenACC function that initializes the library and allocate the host
hardware resources, you need to acquire the device number that was allocated during the
call to cublasCreate(). The invoking of the runtime library function cudaGetDevice()

accomplishes this. Once acquired, the device number is passed along with the device type
as parameters to the OpenACC library function acc_set_device_num().

Once the call to acc_set_device_num() has completed, the OpenACC library uses the
context that was created during the call to cublasCreate(). In other words, both libraries
share the same context.

/* Create the handle */

s = cublasCreate(&h);

if (s != CUBLAS_STATUS_SUCCESS)

{

fprintf(stderr, "cublasCreate failed %d\n", s);

exit(EXIT_FAILURE);

}

/* Get the device number */

e = cudaGetDevice(&dev);

if (e != cudaSuccess)

{

fprintf(stderr, "cudaGetDevice failed %d\n", e);

exit(EXIT_FAILURE);

}

/* Initialize OpenACC library and use device 'dev' */

acc_set_device_num(dev, acc_device_nvidia);

Use Case 1

1 See section 2.26, "Interactions with the CUDA Driver API" in "CUDA Runtime API", Version 5.5,
and section 2.27, "VDPAU Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5, for
additional information on library interoperability.

98 GNU libgomp

9.3 First invocation: OpenACC library API

In this second use case (see below), a function in the OpenACC library is called prior to any
of the functions in the CUBLAS library. More specifically, the function acc_set_device_

num().

In the use case presented here, the function acc_set_device_num() is used to both
initialize the OpenACC library and allocate the hardware resources on the host and the
device. In the call to the function, the call parameters specify which device to use and what
device type to use, i.e., acc_device_nvidia. It should be noted that this is but one method
to initialize the OpenACC library and allocate the appropriate hardware resources. Other
methods are available through the use of environment variables and these is discussed in
the next section.

Once the call to acc_set_device_num() has completed, other OpenACC functions can
be called as seen with multiple calls being made to acc_copyin(). In addition, calls can
be made to functions in the CUBLAS library. In the use case a call to cublasCreate() is
made subsequent to the calls to acc_copyin(). As seen in the previous use case, a call to
cublasCreate() initializes the CUBLAS library and allocates the hardware resources on the
host and the device. However, since the device has already been allocated, cublasCreate()
only initializes the CUBLAS library and allocates the appropriate hardware resources on
the host. The context that was created as part of the OpenACC initialization is shared
with the CUBLAS library, similarly to the first use case.

dev = 0;

acc_set_device_num(dev, acc_device_nvidia);

/* Copy the first set to the device */

d_X = acc_copyin(&h_X[0], N * sizeof (float));

if (d_X == NULL)

{

fprintf(stderr, "copyin error h_X\n");

exit(EXIT_FAILURE);

}

/* Copy the second set to the device */

d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));

if (d_Y == NULL)

{

fprintf(stderr, "copyin error h_Y1\n");

exit(EXIT_FAILURE);

}

/* Create the handle */

s = cublasCreate(&h);

if (s != CUBLAS_STATUS_SUCCESS)

{

fprintf(stderr, "cublasCreate failed %d\n", s);

exit(EXIT_FAILURE);

}

/* Perform saxpy using CUBLAS library function */

s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);

if (s != CUBLAS_STATUS_SUCCESS)

{

Chapter 9: OpenACC Library Interoperability 99

fprintf(stderr, "cublasSaxpy failed %d\n", s);

exit(EXIT_FAILURE);

}

/* Copy the results from the device */

acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));

Use Case 2

9.4 OpenACC library and environment variables

There are two environment variables associated with the OpenACC library that may be
used to control the device type and device number: ACC_DEVICE_TYPE and ACC_DEVICE_

NUM, respectively. These two environment variables can be used as an alternative to calling
acc_set_device_num(). As seen in the second use case, the device type and device number
were specified using acc_set_device_num(). If however, the aforementioned environment
variables were set, then the call to acc_set_device_num() would not be required.

The use of the environment variables is only relevant when an OpenACC function is
called prior to a call to cudaCreate(). If cudaCreate() is called prior to a call to an
OpenACC function, then you must call acc_set_device_num()2

2 More complete information about ACC_DEVICE_TYPE and ACC_DEVICE_NUM can be found in sections 4.1
and 4.2 of the OpenACC (https://www.openacc.org) Application Programming Interface”, Version 2.6.

https://www.openacc.org

101

10 OpenACC Profiling Interface

10.1 Implementation Status and Implementation-Defined
Behavior

We’re implementing the OpenACC Profiling Interface as defined by the OpenACC 2.6
specification. We’re clarifying some aspects here as implementation-defined behavior, while
they’re still under discussion within the OpenACC Technical Committee.

This implementation is tuned to keep the performance impact as low as possible for the
(very common) case that the Profiling Interface is not enabled. This is relevant, as the
Profiling Interface affects all the hot code paths (in the target code, not in the offloaded
code). Users of the OpenACC Profiling Interface can be expected to understand that
performance is impacted to some degree once the Profiling Interface is enabled: for example,
because of the runtime (libgomp) calling into a third-party library for every event that has
been registered.

We’re not yet accounting for the fact that OpenACC events may occur during event
processing. We just handle one case specially, as required by CUDA 9.0 nvprof, that
acc_get_device_type (Section 6.3 [acc get device type], page 73)) may be called from
acc_ev_device_init_start, acc_ev_device_init_end callbacks.

We’re not yet implementing initialization via a acc_register_library function
that is either statically linked in, or dynamically via LD_PRELOAD. Initialization via
acc_register_library functions dynamically loaded via the ACC_PROFLIB environment
variable does work, as does directly calling acc_prof_register, acc_prof_unregister,
acc_prof_lookup.

As currently there are no inquiry functions defined, calls to acc_prof_lookup always
returns NULL.

There aren’t separate start, stop events defined for the event types acc_ev_create, acc_
ev_delete, acc_ev_alloc, acc_ev_free. It’s not clear if these should be triggered before
or after the actual device-specific call is made. We trigger them after.

Remarks about data provided to callbacks:

acc_prof_info.event_type

It’s not clear if for nested event callbacks (for example, acc_ev_enqueue_

launch_start as part of a parent compute construct), this should be set for
the nested event (acc_ev_enqueue_launch_start), or if the value of the parent
construct should remain (acc_ev_compute_construct_start). In this imple-
mentation, the value generally corresponds to the innermost nested event type.

acc_prof_info.device_type

• For acc_ev_compute_construct_start, and in presence of an if clause
with false argument, this still refers to the offloading device type. It’s not
clear if that’s the expected behavior.

• Complementary to the item before, for acc_ev_compute_construct_end,
this is set to acc_device_host in presence of an if clause with false ar-
gument. It’s not clear if that’s the expected behavior.

102 GNU libgomp

acc_prof_info.thread_id

Always -1; not yet implemented.

acc_prof_info.async

• Not yet implemented correctly for acc_ev_compute_construct_start.

• In a compute construct, for host-fallback execution/acc_device_host it
always is acc_async_sync. It is unclear if that is the expected behavior.

• For acc_ev_device_init_start and acc_ev_device_init_end, it will al-
ways be acc_async_sync. It is unclear if that is the expected behavior.

acc_prof_info.async_queue

There is no limited number of asynchronous queues in libgomp. This always
has the same value as acc_prof_info.async.

acc_prof_info.src_file

Always NULL; not yet implemented.

acc_prof_info.func_name

Always NULL; not yet implemented.

acc_prof_info.line_no

Always -1; not yet implemented.

acc_prof_info.end_line_no

Always -1; not yet implemented.

acc_prof_info.func_line_no

Always -1; not yet implemented.

acc_prof_info.func_end_line_no

Always -1; not yet implemented.

acc_event_info.event_type, acc_event_info.*.event_type
Relating to acc_prof_info.event_type discussed above, in this implementa-
tion, this will always be the same value as acc_prof_info.event_type.

acc_event_info.*.parent_construct

• Will be acc_construct_parallel for all OpenACC compute constructs
as well as many OpenACC Runtime API calls; should be the one matching
the actual construct, or acc_construct_runtime_api, respectively.

• Will be acc_construct_enter_data or acc_construct_exit_data when
processing variable mappings specified in OpenACC declare directives;
should be acc_construct_declare.

• For implicit acc_ev_device_init_start, acc_ev_device_init_

end, and explicit as well as implicit acc_ev_alloc, acc_ev_free,
acc_ev_enqueue_upload_start, acc_ev_enqueue_upload_end,
acc_ev_enqueue_download_start, and acc_ev_enqueue_download_end,
will be acc_construct_parallel; should reflect the real parent construct.

acc_event_info.*.implicit

For acc_ev_alloc, acc_ev_free, acc_ev_enqueue_upload_start,
acc_ev_enqueue_upload_end, acc_ev_enqueue_download_start, and

Chapter 10: OpenACC Profiling Interface 103

acc_ev_enqueue_download_end, this currently will be 1 also for explicit
usage.

acc_event_info.data_event.var_name

Always NULL; not yet implemented.

acc_event_info.data_event.host_ptr

For acc_ev_alloc, and acc_ev_free, this is always NULL.

typedef union acc_api_info

. . . as printed in 5.2.3. Third Argument: API-Specific Information. This should
obviously be typedef struct acc_api_info.

acc_api_info.device_api

Possibly not yet implemented correctly for acc_ev_compute_construct_start,
acc_ev_device_init_start, acc_ev_device_init_end: will always be acc_

device_api_none for these event types. For acc_ev_enter_data_start, it
will be acc_device_api_none in some cases.

acc_api_info.device_type

Always the same as acc_prof_info.device_type.

acc_api_info.vendor

Always -1; not yet implemented.

acc_api_info.device_handle

Always NULL; not yet implemented.

acc_api_info.context_handle

Always NULL; not yet implemented.

acc_api_info.async_handle

Always NULL; not yet implemented.

Remarks about certain event types:

acc_ev_device_init_start, acc_ev_device_init_end
• When a compute construct triggers implicit acc_ev_device_init_start

and acc_ev_device_init_end events, they currently aren’t nested
within the corresponding acc_ev_compute_construct_start and
acc_ev_compute_construct_end, but they’re currently observed before
acc_ev_compute_construct_start. It’s not clear what to do: the
standard asks us provide a lot of details to the acc_ev_compute_

construct_start callback, without (implicitly) initializing a device
before?

• Callbacks for these event types will not be invoked for calls to the acc_

set_device_type and acc_set_device_num functions. It’s not clear if
they should be.

acc_ev_enter_data_start, acc_ev_enter_data_end, acc_ev_exit_data_start,
acc_ev_exit_data_end

• Callbacks for these event types will also be invoked for OpenACC host data
constructs. It’s not clear if they should be.

104 GNU libgomp

• Callbacks for these event types will also be invoked when processing vari-
able mappings specified in OpenACC declare directives. It’s not clear if
they should be.

Callbacks for the following event types will be invoked, but dispatch and information
provided therein has not yet been thoroughly reviewed:

• acc_ev_alloc

• acc_ev_free

• acc_ev_update_start, acc_ev_update_end

• acc_ev_enqueue_upload_start, acc_ev_enqueue_upload_end

• acc_ev_enqueue_download_start, acc_ev_enqueue_download_end

During device initialization, and finalization, respectively, callbacks for the following
event types will not yet be invoked:

• acc_ev_alloc

• acc_ev_free

Callbacks for the following event types have not yet been implemented, so currently
won’t be invoked:

• acc_ev_device_shutdown_start, acc_ev_device_shutdown_end

• acc_ev_runtime_shutdown

• acc_ev_create, acc_ev_delete

• acc_ev_wait_start, acc_ev_wait_end

For the following runtime library functions, not all expected callbacks will be invoked
(mostly concerning implicit device initialization):

• acc_get_num_devices

• acc_set_device_type

• acc_get_device_type

• acc_set_device_num

• acc_get_device_num

• acc_init

• acc_shutdown

Aside from implicit device initialization, for the following runtime library functions, no
callbacks will be invoked for shared-memory offloading devices (it’s not clear if they should
be):

• acc_malloc

• acc_free

• acc_copyin, acc_present_or_copyin, acc_copyin_async

• acc_create, acc_present_or_create, acc_create_async

• acc_copyout, acc_copyout_async, acc_copyout_finalize, acc_copyout_

finalize_async

• acc_delete, acc_delete_async, acc_delete_finalize, acc_delete_finalize_

async

Chapter 10: OpenACC Profiling Interface 105

• acc_update_device, acc_update_device_async

• acc_update_self, acc_update_self_async

• acc_map_data, acc_unmap_data

• acc_memcpy_to_device, acc_memcpy_to_device_async

• acc_memcpy_from_device, acc_memcpy_from_device_async

107

11 OpenMP-Implementation Specifics

11.1 Implementation-defined ICV Initialization

affinity-format-var See Section 4.2 [OMP AFFINITY FORMAT], page 60.
def-allocator-var See Section 4.1 [OMP ALLOCATOR], page 59.
max-active-levels-var See Section 4.8 [OMP MAX ACTIVE LEVELS], page 62.
dyn-var See Section 4.7 [OMP DYNAMIC], page 62.
nthreads-var See Section 4.12 [OMP NUM THREADS], page 63.
num-devices-var Number of non-host devices found by GCC’s run-time library
num-procs-var The number of CPU cores on the initial device, except that

affinity settings might lead to a smaller number. On non-host
devices, the value of the nthreads-var ICV.

place-partition-var See Section 4.14 [OMP PLACES], page 64.
run-sched-var See Section 4.16 [OMP SCHEDULE], page 66.
stacksize-var See Section 4.15 [OMP STACKSIZE], page 65.
thread-limit-var See Section 4.18 [OMP TEAMS THREAD LIMIT], page 66,
wait-policy-var See Section 4.20 [OMP WAIT POLICY], page 67, and Sec-

tion 4.24 [GOMP SPINCOUNT], page 68,

11.2 OpenMP Context Selectors

vendor is always gnu. References are to the GCC manual.

For the host compiler, kind always matches host, cpu and any; for the offloading archi-
tectures AMD GCN and Nvidia PTX, kind always matches nohost, gpu and any. For the
x86 family of computers, AMD GCN and Nvidia PTX the following traits are supported
in addition; while OpenMP is supported on more architectures, GCC currently does not
match any arch or isa traits for those.

Note that for AMD GCN and Nvidia PTX, the isa is currently an exact match between
the compiled-for ISA architecture and the matching isa trait value. For instance, when
compiling for gfx942, the isa trait value gfx9-4-generic is not matched and, likewise,
gfx942 is not matched when compiling for its generic architecture.

arch isa

x86, x86_64, i386, i486, i586, i686, ia32 See -m... flags in “x86
Options” (without -m)

amdgcn, gcn See -march= in “AMD
GCN Options”

nvptx, nvptx64 See -march= in “Nvidia
PTX Options”

11.3 Memory allocation

The description below applies to:

• Explicit use of the OpenMP API routines, see Section 3.12 [Memory Management
Routines], page 50.

108 GNU libgomp

• The allocate clause, except when the allocator modifier is a constant expression
with value omp_default_mem_alloc and no align modifier has been specified. (In
that case, the normal malloc allocation is used.)

• The allocate directive for variables in static memory; while the alignment is honored,
the normal static memory is used.

• Using the allocate directive for automatic/stack variables, except when the
allocator clause is a constant expression with value omp_default_mem_alloc and
no align clause has been specified. (In that case, the normal allocation is used:
stack allocation and, sometimes for Fortran, also malloc [depending on flags such as
-fstack-arrays].)

• In Fortran, the allocators directive and the executable allocate directive for Fortran
pointers and allocatables is supported, but requires that files containing those directives
has to be compiled with -fopenmp-allocators. Additionally, all files that might
explicitly or implicitly deallocate memory allocated that way must also be compiled
with that option.

• The used alignment is the maximum of the value the align clause and the alignment
of the type after honoring, if present, the aligned (GNU::aligned) attribute and C’s
_Alignas and C++’s alignas. However, the align clause of the allocate directive
has no effect on the value of C’s _Alignof and C++’s alignof.

GCC supports the following predefined allocators and predefined memory spaces:

Predefined allocators Associated predefined memory spaces
omp default mem alloc omp default mem space
omp large cap mem alloc omp large cap mem space
omp const mem alloc omp const mem space
omp high bw mem alloc omp high bw mem space
omp low lat mem alloc omp low lat mem space
omp cgroup mem alloc omp low lat mem space (implemen-

tation defined)

omp pteam mem alloc omp low lat mem space (implemen-
tation defined)

omp thread mem alloc omp low lat mem space (implemen-
tation defined)

ompx gnu pinned mem alloc omp default mem space (GNU
extension)

ompx gnu managed mem alloc ompx gnu managed mem space
(GNU extension)

Each predefined allocator, including omp_null_allocator, has a corresponding allocator
class template that meet the C++ allocator completeness requirements. These are located in
the omp::allocator namespace, and the ompx::allocator namespace for gnu extensions.
This allows the allocator-aware C++ standard library containers to use OpenMP allocation
routines; for instance:

std::vector<int, omp::allocator::cgroup_mem<int>> vec;

The following allocator templates are supported:

Predefined allocators Associated allocator template
omp null allocator omp::allocator::null allocator

Chapter 11: OpenMP-Implementation Specifics 109

omp default mem alloc omp::allocator::default mem
omp large cap mem alloc omp::allocator::large cap mem
omp const mem alloc omp::allocator::const mem
omp high bw mem alloc omp::allocator::high bw mem
omp low lat mem alloc omp::allocator::low lat mem
omp cgroup mem alloc omp::allocator::cgroup mem
omp pteam mem alloc omp::allocator::pteam mem
omp thread mem alloc omp::allocator::thread mem
ompx gnu pinned mem alloc ompx::allocator::gnu pinned mem
ompx gnu managed mem alloc ompx::allocator::gnu managed mem

The following traits are available when constructing a new allocator; if a trait is not spec-
ified or with the value default, the specified default value is used for that trait. The prede-
fined allocators use the default values of each trait, except that the omp_cgroup_mem_alloc,
omp_pteam_mem_alloc, and omp_thread_mem_alloc allocators have the access trait set
to cgroup, pteam, and thread, respectively. For each trait, a named constant prefixed by
omp_atk_ exists; for each non-numeric value, a named constant prefixed by omp_atv_ exists.

Trait Allowed values Default value
sync_hint contended, uncontended,

serialized, private
contended

alignment Positive integer being a power of
two

1 byte

access all, cgroup, pteam, thread all

pool_size Positive integer (bytes) See below.
fallback default_mem_fb, null_fb,

abort_fb, allocator_fb
See below

fb_data allocator handle (none)
pinned true, false See below
partition environment, nearest, blocked,

interleaved

environment

For the fallback trait, the default value is null_fb for the omp_default_mem_alloc

allocator and any allocator that is associated with device memory; for all other allocators,
it is default_mem_fb by default.

For the pinned trait, the default value is true for predefined allocator ompx_gnu_

pinned_mem_alloc (a GNU extension), and false for all others.

The following description applies to the initial device (the host) and largely also to
non-host devices; for the latter, also see Chapter 12 [Offload-Target Specifics], page 113.

For the memory spaces, the following applies:

• omp_default_mem_space is supported

• omp_const_mem_space maps to omp_default_mem_space

• omp_low_lat_mem_space is only available on supported devices, and maps to omp_

default_mem_space otherwise.

• omp_large_cap_mem_space maps to omp_default_mem_space, unless the memkind
library is available

• omp_high_bw_mem_space maps to omp_default_mem_space, unless the memkind li-
brary is available

110 GNU libgomp

• ompx_gnu_managed_mem_space is a GNU extension that provides managed memory
accessible by both host and devices. The memory space is available if the offload target
associated with the default-device-var ICV supports managed memory (see Chapter 12
[Offload-Target Specifics], page 113). This memory is accessible by both the host and
the device at the same address, so it need not be mapped with map clauses. Instead,
use the is_device_ptr clause or has_device_addr clause to indicate that the pointer
is already accessible on the device. If managed memory is not supported by the default
device, as configured at the moment the allocator is called, then the allocator will use
the fall-back setting. If the default device is configured differently when the memory is
freed, via omp_free or omp_realloc, the result may be undefined.

On Linux systems, where the memkind library (https://github.com/memkind/
memkind) (libmemkind.so.0) is available at runtime and the respective memkind kind is
supported, it is used when creating memory allocators requesting

• the partition trait interleaved except when the memory space is omp_large_cap_
mem_space (uses MEMKIND_HBW_INTERLEAVE)

• the memory space is omp_high_bw_mem_space (uses MEMKIND_HBW_PREFERRED)

• the memory space is omp_large_cap_mem_space (uses MEMKIND_DAX_KMEM_ALL or, if
not available, MEMKIND_DAX_KMEM)

On Linux systems, where the numa library (https://github.com/numactl/numactl)
(libnuma.so.1) is available at runtime, it used when creating memory allocators requesting

• the partition trait nearest, except when both the libmemkind library is available and
the memory space is either omp_large_cap_mem_space or omp_high_bw_mem_space

Note that the numa library will round up the allocation size to a multiple of the system
page size; therefore, consider using it only with large data or by sharing allocations via
the pool_size trait. Furthermore, the Linux kernel does not guarantee that an allocation
will always be on the nearest NUMA node nor that after reallocation the same node will
be used. Note additionally that, on Linux, the default setting of the memory placement
policy is to use the current node; therefore, unless the memory placement policy has been
overridden, the partition trait environment (the default) will be effectively a nearest

allocation.

Additional notes regarding the traits:

• The pinned trait is supported on Linux hosts, but is usually subject to the OS
ulimit/rlimit locked memory settings (see Chapter 12 [Offload-Target Specifics],
page 113, for exceptions). The implementation uses a custom allocator to try to use
as few memory pages as possible. At present, freed pinned memory is not returned to
the OS (although it may be reused by subsequent pinned allocations).

• The default for the pool_size trait is no pool and for every (re)allocation the associated
library routine is called, which might internally use a memory pool. Currently, the same
applies when a pool_size has been specified, except that once allocations exceed the
the pool size, the action of the fallback trait applies.

• For the partition trait, the partition part size will be the same as the requested
size (i.e. interleaved or blocked has no effect), except for interleaved when the
memkind library is available. Furthermore, for nearest and unless the numa library is
available, the memory might not be on the same NUMA node as thread that allocated

https://github.com/memkind/memkind
https://github.com/memkind/memkind
https://github.com/numactl/numactl

Chapter 11: OpenMP-Implementation Specifics 111

the memory; on Linux, this is in particular the case when the memory placement policy
is set to preferred.

• The access trait has no effect such that memory is always accessible by all threads.
(Except on supported no-host devices.)

• The sync_hint trait has no effect.

See also: Chapter 12 [Offload-Target Specifics], page 113,

113

12 Offload-Target Specifics

The following sections present notes on the offload-target specifics

12.1 AMD Radeon (GCN)

On the hardware side, there is the hierarchy (fine to coarse):

• work item (thread)

• wavefront

• work group

• compute unit (CU)

All OpenMP and OpenACC levels are used, i.e.

• OpenMP’s simd and OpenACC’s vector map to work items (thread)

• OpenMP’s threads (“parallel”) and OpenACC’s workers map to wavefronts

• OpenMP’s teams and OpenACC’s gang use a threadpool with the size of the number
of teams or gangs, respectively.

The used sizes are

• Number of teams is the specified num_teams (OpenMP) or num_gangs (OpenACC) or
otherwise the number of CU. It is limited by two times the number of CU.

• Number of wavefronts is 4 for gfx900 and 16 otherwise; num_threads (OpenMP) and
num_workers (OpenACC) overrides this if smaller.

• The wavefront has 102 scalars and 64 vectors

• Number of workitems is always 64

• The hardware permits maximally 40 workgroups/CU and 16 wavefronts/workgroup up
to a limit of 40 wavefronts in total per CU.

• 80 scalars registers and 24 vector registers in non-kernel functions (the chosen
procedure-calling API).

• For the kernel itself: as many as register pressure demands (number of teams and
number of threads, scaled down if registers are exhausted)

The implementation remark:

• I/O within OpenMP target regions and OpenACC compute regions is supported using
the C library printf functions and the Fortran print/write statements.

• Reverse offload regions (i.e. target regions with device(ancestor:1)) are processed
serially per target region such that the next reverse offload region is only executed
after the previous one returned.

• OpenMP code that has a requires directive with self_maps or unified_shared_

memory is only supported if all the AMD GPUs present have the HSA_AMD_SYSTEM_

INFO_SVM_ACCESSIBLE_BY_DEFAULT property; some systems require the "xnack" fea-
ture enabled for this to be true, in which case the runtime will attempt to set the
HSA_XNACK environment variable to ‘1’ automatically (user-set values are not overrid-
den, and the setting only affects the executable itself and any child processes). If
any AMD GPU device is not supported, all AMD GPUs are removed from the list of
available devices (“host fallback”).

114 GNU libgomp

• The available stack size can be changed using the GCN_STACK_SIZE environment vari-
able; the default is 32 kiB per thread.

• Low-latency memory (omp_low_lat_mem_space) is supported when the the access

trait is set to cgroup. The default pool size is automatically scaled to share the 64 kiB
LDS memory between the number of teams configured to run on each compute-unit,
but may be adjusted at runtime by setting environment variable GOMP_GCN_LOWLAT_

POOL=bytes.

• omp_low_lat_mem_alloc cannot be used with true low-latency memory because the
definition implies the omp_atv_all trait; main graphics memory is used instead.

• omp_cgroup_mem_alloc, omp_pteam_mem_alloc, and omp_thread_mem_alloc, all use
low-latency memory as first preference, and fall back to main graphics memory when
the low-latency pool is exhausted.

• Pinned memory allocated using omp_alloc with the ompx_gnu_pinned_mem_alloc al-
locator or the pinned trait is obtained via the CUDA API when an NVPTX device is
present. This provides a performance boost for NVPTX offload code and also allows
unlimited use of pinned memory regardless of the OS ulimit/rlimit settings.

• Managed memory allocated on the host with the ompx_gnu_managed_mem_alloc

allocator or in the ompx_gnu_managed_mem_space (both GNU extensions) allocate
memory equivalent to HIP Managed Memory, although not actually allocated using
hipMallocManaged. This memory is accessible by both the host and the device
at the same address, so it need not be mapped with map clauses. Instead, use the
is_device_ptr clause or has_device_addr clause to indicate that the pointer is
already accessible on the device. The ROCm runtime will automatically handle data
migration between host and device as needed. Not all AMD GPU devices support
this feature, and many that do require that -mxnack=on is configured at compile
time. If managed memory is not supported by the default device, as configured at the
moment the allocator is called, then the allocator will use the fall-back setting. If
the default device is configured differently when the memory is freed, via omp_free

or omp_realloc, the result may be undefined. If the current device does not support
Unified Shared Memory (or it is not enabled with HSA_XNACK=1) then Managed
Memory might still work, but allocations may only be visible to a single device
(whichever was the default device when the first allocation was made).

• The OpenMP routines omp_target_memcpy_rect and omp_target_memcpy_rect_

async and the target update directive for non-contiguous list items use the 3D
memory-copy function of the HSA library. Higher dimensions call this functions in a
loop and are therefore supported.

• The unique identifier (UID), used with OpenMP’s API UID routines, is the value
returned by the HSA runtime library for HSA_AMD_AGENT_INFO_UUID. For GPUs, it
is currently ‘GPU-’ followed by 16 lower-case hex digits, yielding a string like GPU-

f914a2142fc3413a. The output matches the one used by rocminfo.

12.1.1 OpenMP interop – Foreign-Runtime Support for AMD
GPUs

On AMD GPUs, the foreign runtimes are HIP (C++ Heterogeneous-Compute Interface for
Portability) and HSA (Heterogeneous System Architecture), where HIP is the default. The

Chapter 12: Offload-Target Specifics 115

interop object is created using OpenMP’s interop directive or, implicitly, when invoking a
declare variant procedure that has the append_args clause. In either case, the prefer_
type modifier determines whether HIP or HSA is used.

When specifying the targetsync modifier: For HIP, a stream is created using
hipStreamCreate. For HSA, a queue is created of type HSA_QUEUE_TYPE_MULTI with a
queue size of 64.

Invoke the Section 3.11 [Interoperability Routines], page 46, on an interop object to
obtain the following properties. For properties with integral (int), pointer (ptr), or string
(str) data type, call omp_get_interop_int, omp_get_interop_ptr, or omp_get_interop_
str, respectively. Note that device_num is the OpenMP device number while device is
the HIP device number or HSA device handle.

When using HIP with C and C++, the __HIP_PLATFORM_AMD__ preprocessor macro must
be defined before including the HIP header files.

For the API routine call, add the prefix omp_ipr_ to the property name; for instance:

omp_interop_rc_t ret;

int device_num = omp_get_interop_int (my_interop_obj, omp_ipr_device_num, &ret);

Available properties for an HIP interop object:

Property C data type API routine value (if
constant)

fr_id omp_interop_fr_t int omp_fr_hip

fr_name const char * str "hip"

vendor int int 1

vendor_name const char * str "amd"

device_num int int
platform N/A
device hipDevice_t int
device_context hipCtx_t ptr
targetsync hipStream_t ptr

Available properties for an HSA interop object:

Property C data type API routine value (if
constant)

fr_id omp_interop_fr_t int omp_fr_hsa

fr_name const char * str "hsa"

vendor int int 1

vendor_name const char * str "amd"

device_num int int
platform N/A
device hsa_agent * ptr
device_context N/A
targetsync hsa_queue * ptr

12.2 nvptx

On the hardware side, there is the hierarchy (fine to coarse):

• thread

116 GNU libgomp

• warp

• thread block

• streaming multiprocessor

All OpenMP and OpenACC levels are used, i.e.

• OpenMP’s simd and OpenACC’s vector map to threads

• OpenMP’s threads (“parallel”) and OpenACC’s workers map to warps

• OpenMP’s teams and OpenACC’s gang use a threadpool with the size of the number
of teams or gangs, respectively.

The used sizes are

• The warp_size is always 32

• CUDA kernel launched: dim={#teams,1,1}, blocks={#threads,warp_size,1}.

• The number of teams is limited by the number of blocks the device can host simulta-
neously.

Additional information can be obtained by setting the environment variable to GOMP_

DEBUG=1 (very verbose; grep for kernel.*launch for launch parameters).

GCC generates generic PTX ISA code, which is just-in-time compiled by CUDA, which
caches the JIT in the user’s directory (see CUDA documentation; can be tuned by the
environment variables CUDA_CACHE_{DISABLE,MAXSIZE,PATH}.

Note: While PTX ISA is generic, the -mptx= and -march= commandline options still
affect the used PTX ISA code and, thus, the requirements on CUDA version and hardware.

The implementation remark:

• I/O within OpenMP target regions and OpenACC compute regions is supported using
the C library printf functions. Additionally, the Fortran print/write statements
are supported within OpenMP target regions, but not yet within OpenACC compute
regions.

• Compilation OpenMP code that contains requires reverse_offload requires at least
-march=sm_35, compiling for -march=sm_30 is not supported.

• For code containing reverse offload (i.e. target regions with device(ancestor:1)),
there is a slight performance penalty for all target regions, consisting mostly of shut-
down delay Per device, reverse offload regions are processed serially such that the next
reverse offload region is only executed after the previous one returned.

• OpenMP code that has a requires directive with self_maps or unified_

shared_memory runs on nvptx devices if and only if all of those support the
pageableMemoryAccess property;1 otherwise, all nvptx device are removed from the
list of available devices (“host fallback”).

• The default per-warp stack size is 128 kiB; see also -msoft-stack in the GCC manual.

• Low-latency memory (omp_low_lat_mem_space) is supported when the the access

trait is set to cgroup, and libgomp has been built for PTX ISA version 4.1 or higher
(such as in GCC’s default configuration). The default pool size is 8 kiB per team,

1 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements

Chapter 12: Offload-Target Specifics 117

but may be adjusted at runtime by setting environment variable GOMP_NVPTX_LOWLAT_
POOL=bytes. The maximum value is limited by the available hardware, and care should
be taken that the selected pool size does not unduly limit the number of teams that
can run simultaneously.

• omp_low_lat_mem_alloc cannot be used with true low-latency memory because the
definition implies the omp_atv_all trait; main graphics memory is used instead.

• omp_cgroup_mem_alloc, omp_pteam_mem_alloc, and omp_thread_mem_alloc, all use
low-latency memory as first preference, and fall back to main graphics memory when
the low-latency pool is exhausted.

• Managed memory allocated on the host with the ompx_gnu_managed_mem_alloc allo-
cator or in the ompx_gnu_managed_mem_space (both GNU extensions) allocate memory
in the CUDA Managed Memory space using cuMemAllocManaged. This memory is ac-
cessible by both the host and the device at the same address, so it need not be mapped
with map clauses. Instead, use the is_device_ptr clause or has_device_addr clause
to indicate that the pointer is already accessible on the device. The CUDA runtime
will automatically handle data migration between host and device as needed. If man-
aged memory is not supported by the default device, as configured at the moment the
allocator is called, then the allocator will use the fall-back setting. If the default device
is configured differently when the memory is freed, via omp_free or omp_realloc, the
result may be undefined.

• The OpenMP routines omp_target_memcpy_rect and omp_target_memcpy_rect_

async and the target update directive for non-contiguous list items use the 2D
and 3D memory-copy functions of the CUDA library. Higher dimensions call those
functions in a loop and are therefore supported.

• The unique identifier (UID), used with OpenMP’s API UID routines, consists of the
‘GPU-’ prefix followed by the 16-bytes UUID as returned by the CUDA runtime library.
This UUID is output in grouped lower-case hex digits; the grouping of those 32 digits
is: 8 digits, hyphen, 4 digits, hyphen, 4 digits, hyphen, 16 digits. This leads to a string
like GPU-a8081c9e-f03e-18eb-1827-bf5ba95afa5d. The output matches the format
used by nvidia-smi.

12.2.1 OpenMP interop – Foreign-Runtime Support for Nvidia
GPUs

On Nvidia GPUs, the foreign runtimes APIs are the CUDA runtime API, the CUDA driver
API, and HIP, the C++ Heterogeneous-Compute Interface for Portability that is—on CUDA-
based systems—a very thin layer on top of the CUDA API. By default, CUDA is used. The
interop object is created using OpenMP’s interop directive or, implicitly, when invoking a
declare variant procedure that has the append_args clause. In either case, the prefer_
type modifier determines whether CUDA, CUDA driver, or HSA is used.

When specifying the targetsync modifier, a CUDA stream is created using the CU_

STREAM_DEFAULT flag.

Invoke the Section 3.11 [Interoperability Routines], page 46, on an interop object to
obtain the following properties. For properties with integral (int), pointer (ptr), or string
(str) data type, call omp_get_interop_int, omp_get_interop_ptr, or omp_get_interop_

118 GNU libgomp

str, respectively. Note that device_num is the OpenMP device number while device is
the CUDA, CUDA Driver, or HIP device number.

When using HIP with C and C++, the __HIP_PLATFORM_NVIDIA__ preprocessor macro
must be defined before including the HIP header files.

For the API routine call, add the prefix omp_ipr_ to the property name; for instance:
omp_interop_rc_t ret;

int device_num = omp_get_interop_int (my_interop_obj, omp_ipr_device_num, &ret);

Available properties for a CUDA runtime API interop object:

Property C data type API routine value (if
constant)

fr_id omp_interop_fr_t int omp_fr_cuda

fr_name const char * str "cuda"

vendor int int 11

vendor_name const char * str "nvidia"

device_num int int
platform N/A
device int int
device_context N/A
targetsync cudaStream_t ptr

Available properties for a CUDA driver API interop object:

Property C data type API routine value (if
constant)

fr_id omp_interop_fr_t int omp_fr_cuda_

driver

fr_name const char * str "cuda_

driver"

vendor int int 11

vendor_name const char * str "nvidia"

device_num int int
platform N/A
device CUdevice int
device_context CUcontext ptr
targetsync CUstream ptr

Available properties for an HIP interop object:

Property C data type API routine value (if
constant)

fr_id omp_interop_fr_t int omp_fr_hip

fr_name const char * str "hip"

vendor int int 11

vendor_name const char * str "nvidia"

device_num int int
platform N/A
device hipDevice_t int
device_context hipCtx_t ptr
targetsync hipStream_t ptr

119

13 The libgomp ABI

The following sections present notes on the external ABI as presented by libgomp. Only
maintainers should need them.

13.1 Implementing MASKED and MASTER construct
if (omp_get_thread_num () == thread_num)

block

Hereby, thread num has the value of the argument to the filter clause or zero if not
specified.

Alternately, we generate two copies of the parallel subfunction and only include this in
the version run by the thread num thread. Surely this is not worthwhile though...

13.2 Implementing CRITICAL construct

Without a specified name,
void GOMP_critical_start (void);

void GOMP_critical_end (void);

so that we don’t get COPY relocations from libgomp to the main application.

With a specified name, use omp set lock and omp unset lock with name being trans-
formed into a variable declared like

omp_lock_t gomp_critical_user_<name> __attribute__((common))

Ideally the ABI would specify that all zero is a valid unlocked state, and so we wouldn’t
need to initialize this at startup.

13.3 Implementing ATOMIC construct

The target should implement the __sync builtins.

Failing that we could add
void GOMP_atomic_enter (void)

void GOMP_atomic_exit (void)

which reuses the regular lock code, but with yet another lock object private to the library.

13.4 Implementing FLUSH construct

Expands to the __sync_synchronize builtin.

13.5 Implementing BARRIER construct
void GOMP_barrier (void)

13.6 Implementing THREADPRIVATE construct

In most cases we can map this directly to __thread. Except that OMP allows constructors
for C++ objects. We can either refuse to support this (how often is it used?) or we can
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions to the main pthreads library.
Failing that, we can have a set of entry points to register ctor functions to be called.

120 GNU libgomp

13.7 Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent of a PARALLEL block, the
variable becomes a local variable in the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new automatic variable within
the current function. This preserves the semantic of new variable creation.

13.8 Implementing FIRSTPRIVATE LASTPRIVATE
COPYIN and COPYPRIVATE clauses

This seems simple enough for PARALLEL blocks. Create a private struct for communicating
between the parent and subfunction. In the parent, copy in values for scalar and "small"
structs; copy in addresses for others TREE ADDRESSABLE types. In the subfunction,
copy the value into the local variable.

It is not clear what to do with bare FOR or SECTION blocks. The only thing I can
figure is that we do something like:

#pragma omp for firstprivate(x) lastprivate(y)

for (int i = 0; i < n; ++i)

body;

which becomes
{

int x = x, y;

// for stuff

if (i == n)

y = y;

}

where the "x=x" and "y=y" assignments actually have different uids for the two vari-
ables, i.e. not something you could write directly in C. Presumably this only makes sense
if the "outer" x and y are global variables.

COPYPRIVATE would work the same way, except the structure broadcast would have
to happen via SINGLE machinery instead.

13.9 Implementing REDUCTION clause

The private struct mentioned in the previous section should have a pointer to an array of
the type of the variable, indexed by the thread’s team id. The thread stores its final value
into the array, and after the barrier, the primary thread iterates over the array to collect
the values.

13.10 Implementing PARALLEL construct
#pragma omp parallel

{

body;

}

becomes
void subfunction (void *data)

{

Chapter 13: The libgomp ABI 121

use data;

body;

}

setup data;

GOMP_parallel_start (subfunction, &data, num_threads);

subfunction (&data);

GOMP_parallel_end ();

void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)

The FN argument is the subfunction to be run in parallel.

The DATA argument is a pointer to a structure used to communicate data in and out
of the subfunction, as discussed above with respect to FIRSTPRIVATE et al.

The NUM THREADS argument is 1 if an IF clause is present and false, or the value of
the NUM THREADS clause, if present, or 0.

The function needs to create the appropriate number of threads and/or launch them
from the dock. It needs to create the team structure and assign team ids.

void GOMP_parallel_end (void)

Tears down the team and returns us to the previous omp_in_parallel() state.

13.11 Implementing FOR construct
#pragma omp parallel for

for (i = lb; i <= ub; i++)

body;

becomes

void subfunction (void *data)

{

long _s0, _e0;

while (GOMP_loop_static_next (&_s0, &_e0))

{

long _e1 = _e0, i;

for (i = _s0; i < _e1; i++)

body;

}

GOMP_loop_end_nowait ();

}

GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);

subfunction (NULL);

GOMP_parallel_end ();

#pragma omp for schedule(runtime)

for (i = 0; i < n; i++)

body;

becomes

{

long i, _s0, _e0;

if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))

do {

long _e1 = _e0;

for (i = _s0, i < _e0; i++)

body;

} while (GOMP_loop_runtime_next (&_s0, _&e0));

122 GNU libgomp

GOMP_loop_end ();

}

Note that while it looks like there is trickiness to propagating a non-constant STEP,
there isn’t really. We’re explicitly allowed to evaluate it as many times as we want, and
any variables involved should automatically be handled as PRIVATE or SHARED like any
other variables. So the expression should remain evaluable in the subfunction. We can also
pull it into a local variable if we like, but since its supposed to remain unchanged, we can
also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be able to
get away with no work-sharing context at all, since we can simply perform the arithmetic
directly in each thread to divide up the iterations. Which would mean that we wouldn’t
need to call any of these routines.

There are separate routines for handling loops with an ORDERED clause. Bookkeeping
for that is non-trivial...

13.12 Implementing ORDERED construct
void GOMP_ordered_start (void)

void GOMP_ordered_end (void)

13.13 Implementing SECTIONS construct

A block as
#pragma omp sections

{

#pragma omp section

stmt1;

#pragma omp section

stmt2;

#pragma omp section

stmt3;

}

becomes
for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())

switch (i)

{

case 1:

stmt1;

break;

case 2:

stmt2;

break;

case 3:

stmt3;

break;

}

GOMP_barrier ();

13.14 Implementing SINGLE construct

A block like
#pragma omp single

Chapter 13: The libgomp ABI 123

{

body;

}

becomes
if (GOMP_single_start ())

body;

GOMP_barrier ();

while
#pragma omp single copyprivate(x)

body;

becomes
datap = GOMP_single_copy_start ();

if (datap == NULL)

{

body;

data.x = x;

GOMP_single_copy_end (&data);

}

else

x = datap->x;

GOMP_barrier ();

13.15 Implementing OpenACC’s PARALLEL construct
void GOACC_parallel ()

125

14 Reporting Bugs

Bugs in the GNU Offloading and Multi Processing Runtime Library should be reported
via Bugzilla (https://gcc.gnu.org/bugzilla/). Please add "openacc", or "openmp", or
both to the keywords field in the bug report, as appropriate.

https://gcc.gnu.org/bugzilla/

127

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://www.fsf.org

128 GNU libgomp

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 129

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

130 GNU libgomp

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 131

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

132 GNU libgomp

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 133

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

134 GNU libgomp

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 135

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

136 GNU libgomp

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 137

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

139

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://www.fsf.org

140 GNU libgomp

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 141

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

142 GNU libgomp

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 143

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

144 GNU libgomp

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 145

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/

146 GNU libgomp

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

147

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

149

Library Index

A
acc get property . 74
acc get property string . 74

E
Environment Variable . . . 59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69

F
FDL, GNU Free Documentation License 139

I
Implementation specific setting . . 63, 66, 68, 69, 107

	1 Enabling OpenMP
	2 OpenMP Implementation Status
	OpenMP 4.5
	OpenMP 5.0
	New features listed in Appendix B of the OpenMP specification
	Other new OpenMP 5.0 features

	OpenMP 5.1
	New features listed in Appendix B of the OpenMP specification
	Other new OpenMP 5.1 features

	OpenMP 5.2
	New features listed in Appendix B of the OpenMP specification
	Other new OpenMP 5.2 features

	OpenMP 6.0
	New features listed in Appendix B of the OpenMP specification
	Deprecated features, unless listed above
	Other new OpenMP 6.0 features

	OpenMP Technical Report 14
	New features listed in Appendix B of the OpenMP specification
	Deprecated features, unless listed above

	3 OpenMP Runtime Library Routines
	Thread Team Routines
	omp_set_num_threads -- Set upper team size limit
	omp_get_num_threads -- Size of the active team
	omp_get_max_threads -- Maximum number of threads of parallel region
	omp_get_thread_num -- Current thread ID
	omp_in_parallel -- Whether a parallel region is active
	omp_set_dynamic -- Enable/disable dynamic teams
	omp_get_dynamic -- Dynamic teams setting
	omp_get_cancellation -- Whether cancellation support is enabled
	omp_set_nested -- Enable/disable nested parallel regions
	omp_get_nested -- Nested parallel regions
	omp_set_schedule -- Set the runtime scheduling method
	omp_get_schedule -- Obtain the runtime scheduling method
	omp_get_teams_thread_limit -- Maximum number of threads imposed by teams
	omp_get_supported_active_levels -- Maximum number of active regions supported
	omp_set_max_active_levels -- Limits the number of active parallel regions
	omp_get_max_active_levels -- Current maximum number of active regions
	omp_get_level -- Obtain the current nesting level
	omp_get_ancestor_thread_num -- Ancestor thread ID
	omp_get_team_size -- Number of threads in a team
	omp_get_active_level -- Number of parallel regions

	Thread Affinity Routines
	omp_get_proc_bind -- Whether threads may be moved between CPUs

	Teams Region Routines
	omp_get_num_teams -- Number of teams
	omp_get_team_num -- Get team number
	omp_set_num_teams -- Set upper teams limit for teams construct
	omp_get_max_teams -- Maximum number of teams of teams region
	omp_set_teams_thread_limit -- Set upper thread limit for teams construct
	omp_get_thread_limit -- Maximum number of threads

	Tasking Routines
	omp_get_max_task_priority -- Maximum priority value
	omp_in_explicit_task -- Whether a given task is an explicit task
	omp_in_final -- Whether in final or included task region

	Resource Relinquishing Routines
	omp_pause_resource -- Release OpenMP resources on a device
	omp_pause_resource_all -- Release OpenMP resources on all devices

	Device Information Routines
	omp_get_num_procs -- Number of processors online
	omp_set_default_device -- Set the default device for target regions
	omp_get_default_device -- Get the default device for target regions
	omp_get_num_devices -- Number of target devices
	omp_get_device_num -- Return device number of current device
	omp_get_device_from_uid -- Obtain the device number to a unique id
	omp_get_uid_from_device -- Obtain the unique id of a device
	omp_is_initial_device -- Whether executing on the host device
	omp_get_initial_device -- Return device number of initial device

	Device Memory Routines
	omp_target_alloc -- Allocate device memory
	omp_target_free -- Free device memory
	omp_target_is_present -- Check whether storage is mapped
	omp_target_is_accessible -- Check whether memory is device accessible
	omp_target_memcpy -- Copy data between devices
	omp_target_memcpy_async -- Copy data between devices asynchronously
	omp_target_memcpy_rect -- Copy a subvolume of data between devices
	omp_target_memcpy_rect_async -- Copy a subvolume of data between devices asynchronously
	omp_target_memset -- Set bytes in device memory
	omp_target_memset -- Set bytes in device memory asynchronously
	omp_target_associate_ptr -- Associate a device pointer with a host pointer
	omp_target_disassociate_ptr -- Remove device--host pointer association
	omp_get_mapped_ptr -- Return device pointer to a host pointer

	Lock Routines
	omp_init_lock -- Initialize simple lock
	omp_init_nest_lock -- Initialize nested lock
	omp_destroy_lock -- Destroy simple lock
	omp_destroy_nest_lock -- Destroy nested lock
	omp_set_lock -- Wait for and set simple lock
	omp_set_nest_lock -- Wait for and set nested lock
	omp_unset_lock -- Unset simple lock
	omp_unset_nest_lock -- Unset nested lock
	omp_test_lock -- Test and set simple lock if available
	omp_test_nest_lock -- Test and set nested lock if available

	Timing Routines
	omp_get_wtick -- Get timer precision
	omp_get_wtime -- Elapsed wall clock time

	Event Routine
	omp_fulfill_event -- Fulfill and destroy an OpenMP event

	Interoperability Routines
	omp_get_num_interop_properties -- Get the number of implementation-specific properties
	omp_get_interop_int -- Obtain integer-valued interoperability property
	omp_get_interop_ptr -- Obtain pointer-valued interoperability property
	omp_get_interop_str -- Obtain string-valued interoperability property
	omp_get_interop_name -- Obtain the name of an interop_property value as string
	omp_get_interop_type_desc -- Obtain type and description to an interop_property
	omp_get_interop_rc_desc -- Obtain error string to an interop_rc error code

	Memory Management Routines
	omp_init_allocator -- Create an allocator
	omp_destroy_allocator -- Destroy an allocator
	omp_set_default_allocator -- Set the default allocator
	omp_get_default_allocator -- Get the default allocator
	omp_alloc -- Memory allocation with an allocator
	omp_aligned_alloc -- Memory allocation with an allocator and alignment
	omp_free -- Freeing memory allocated with OpenMP routines
	omp_calloc -- Allocate nullified memory with an allocator
	omp_aligned_calloc -- Allocate aligned nullified memory with an allocator
	omp_realloc -- Reallocate memory allocated with OpenMP routines

	Environment Display Routine
	omp_display_env -- print the initial ICV values

	4 OpenMP Environment Variables
	OMP_ALLOCATOR -- Set the default allocator
	OMP_AFFINITY_FORMAT -- Set the format string used for affinity display
	OMP_CANCELLATION -- Set whether cancellation is activated
	OMP_DISPLAY_AFFINITY -- Display thread affinity information
	OMP_DISPLAY_ENV -- Show OpenMP version and environment variables
	OMP_DEFAULT_DEVICE -- Set the device used in target regions
	OMP_DYNAMIC -- Dynamic adjustment of threads
	OMP_MAX_ACTIVE_LEVELS -- Set the maximum number of nested parallel regions
	OMP_MAX_TASK_PRIORITY -- Set the maximum priority
	OMP_NESTED -- Nested parallel regions
	OMP_NUM_TEAMS -- Specifies the number of teams to use by teams region
	OMP_NUM_THREADS -- Specifies the number of threads to use
	OMP_PROC_BIND -- Whether threads may be moved between CPUs
	OMP_PLACES -- Specifies on which CPUs the threads should be placed
	OMP_STACKSIZE -- Set default thread stack size
	OMP_SCHEDULE -- How threads are scheduled
	OMP_TARGET_OFFLOAD -- Controls offloading behavior
	OMP_TEAMS_THREAD_LIMIT -- Set the maximum number of threads imposed by teams
	OMP_THREAD_LIMIT -- Set the maximum number of threads
	OMP_WAIT_POLICY -- How waiting threads are handled
	GOMP_CPU_AFFINITY -- Bind threads to specific CPUs
	GOMP_DEBUG -- Enable debugging output
	GOMP_STACKSIZE -- Set default thread stack size
	GOMP_SPINCOUNT -- Set the busy-wait spin count
	GOMP_RTEMS_THREAD_POOLS -- Set the RTEMS specific thread pools

	5 Enabling OpenACC
	6 OpenACC Runtime Library Routines
	acc_get_num_devices -- Get number of devices for given device type
	acc_set_device_type -- Set type of device accelerator to use.
	acc_get_device_type -- Get type of device accelerator to be used.
	acc_set_device_num -- Set device number to use.
	acc_get_device_num -- Get device number to be used.
	acc_get_property -- Get device property.
	acc_async_test -- Test for completion of a specific asynchronous operation.
	acc_async_test_all -- Tests for completion of all asynchronous operations.
	acc_wait -- Wait for completion of a specific asynchronous operation.
	acc_wait_all -- Waits for completion of all asynchronous operations.
	acc_wait_all_async -- Wait for completion of all asynchronous operations.
	acc_wait_async -- Wait for completion of asynchronous operations.
	acc_init -- Initialize runtime for a specific device type.
	acc_shutdown -- Shuts down the runtime for a specific device type.
	acc_on_device -- Whether executing on a particular device
	acc_malloc -- Allocate device memory.
	acc_free -- Free device memory.
	acc_copyin -- Allocate device memory and copy host memory to it.
	acc_present_or_copyin -- If the data is not present on the device, allocate device memory and copy from host memory.
	acc_create -- Allocate device memory and map it to host memory.
	acc_present_or_create -- If the data is not present on the device, allocate device memory and map it to host memory.
	acc_copyout -- Copy device memory to host memory.
	acc_delete -- Free device memory.
	acc_update_device -- Update device memory from mapped host memory.
	acc_update_self -- Update host memory from mapped device memory.
	acc_map_data -- Map previously allocated device memory to host memory.
	acc_unmap_data -- Unmap device memory from host memory.
	acc_deviceptr -- Get device pointer associated with specific host address.
	acc_hostptr -- Get host pointer associated with specific device address.
	acc_is_present -- Indicate whether host variable / array is present on device.
	acc_memcpy_to_device -- Copy host memory to device memory.
	acc_memcpy_from_device -- Copy device memory to host memory.
	acc_memcpy_device -- Copy memory within a device.
	acc_attach -- Let device pointer point to device-pointer target.
	acc_detach -- Let device pointer point to host-pointer target.
	acc_get_current_cuda_device -- Get CUDA device handle.
	acc_get_current_cuda_context -- Get CUDA context handle.
	acc_get_cuda_stream -- Get CUDA stream handle.
	acc_set_cuda_stream -- Set CUDA stream handle.
	acc_prof_register -- Register callbacks.
	acc_prof_unregister -- Unregister callbacks.
	acc_prof_lookup -- Obtain inquiry functions.
	acc_register_library -- Library registration.

	7 OpenACC Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB

	8 CUDA Streams Usage
	9 OpenACC Library Interoperability
	Introduction
	First invocation: NVIDIA CUBLAS library API
	First invocation: OpenACC library API
	OpenACC library and environment variables

	10 OpenACC Profiling Interface
	Implementation Status and Implementation-Defined Behavior

	11 OpenMP-Implementation Specifics
	Implementation-defined ICV Initialization
	OpenMP Context Selectors
	Memory allocation

	12 Offload-Target Specifics
	AMD Radeon (GCN)
	OpenMP interop -- Foreign-Runtime Support for AMD GPUs

	nvptx
	OpenMP interop -- Foreign-Runtime Support for Nvidia GPUs

	13 The libgomp ABI
	Implementing MASKED and MASTER construct
	Implementing CRITICAL construct
	Implementing ATOMIC construct
	Implementing FLUSH construct
	Implementing BARRIER construct
	Implementing THREADPRIVATE construct
	Implementing PRIVATE clause
	Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
	Implementing REDUCTION clause
	Implementing PARALLEL construct
	Implementing FOR construct
	Implementing ORDERED construct
	Implementing SECTIONS construct
	Implementing SINGLE construct
	Implementing OpenACC's PARALLEL construct

	14 Reporting Bugs
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Funding Free Software
	Library Index

