Using the GNU Compiler Collection

For ccc version 16.0.0 (pre-release)

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

This file documents the use of the GNU compilers.

Copyright (©) 1988-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software.
Copies published by the Free Software Foundation raise funds for GNU devel-
opment.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

1 Programming Languages Supported by GCC 1
2 Language Standards Supported by GCC................... 3
3 GCC Command Options.ot et 9
4 C Implementation-Defined Behavior..................... 593
5 C++ Implementation-Defined Behavior.................. 603
6 Extensions to the C Language Family 605
7 Built-in Functions Provided by GCC.................... 831
8 Extensions to the C++ Language 1063
9 GNU Objective-C Features 1077
10 Binary Compatibility........ L. 1093
11 gcov—a Test Coverage Program....................... 1097
12 gcov-tool—an Offline Geda Profile Processing Tool 1123
13 gcov-dump—an Offline Geda and Geno Profile Dump Tool . 1127
14 1to-dump—Tool for dumping LTO object files............ 1129
15 Known Causes of Trouble with GCC................... 1131
16 Reporting Bugs i 1147
17 How To Get Help with GCC...... 1149
18 Contributing to GCC Development 1151
Funding Free Software 1153
The GNU Project and GNU/Linux 1155
GNU General Public License 1157
GNU Free Documentation License......................... 1169
Contributors to GCC 1177

A Indices ..o e 1195

Table of Contents

1 Programming Languages Supported by GCC .. 1

2 Language Standards Supported by GCC...... 3
21 CLANGUAZE . ..ttt 3
2.2 CH+4 Language . ..o oottt e 5
2.3 Objective-C and Objective-C++ Languages..................... 6
2.4 COBOL Languageuuiimi e 7
25 GO Language 7
26 Dlanguage.t 7
2.7 Modula-2 languaget 7
2.8 References for Other Languages...............c.ooiiiiiiiian. 7

3 GCC Command Options........................ 9
3.1 Option SUMMATYttt 9
3.2 Options Controlling the Kind of Output 33
3.3 Compiling C+4 Programs.........ccooiiiiiiiiiiiininnn.. 44
3.4 Options Controlling C Dialect 45
3.5 Options Controlling C++ Dialect................. ..o L. 52
3.6 Options Controlling Objective-C and Objective-C++ Dialects. . 82
3.7 Options Controlling OpenMP and OpenACC 86
3.8 Options to Control Diagnostic Messages Formatting............ 87
3.9 Options to Request or Suppress Warnings..................... 100
3.10 Options That Control Static Analysis........................ 169
3.11 Options for Debugging Your Program 186
3.12 Options That Control Optimization 194
3.13 Program Instrumentation Options........................... 275
3.14 Options Controlling the Preprocessor........................ 297
3.15 Passing Options to the Assembler 305
3.16 Options for Linking, 306
3.17 Options for Directory Search 312
3.18 Options for use with Picolibc................................ 316
3.19 Options for Code Generation Conventions 317
3.20 GCC Developer Options........covouiiiiiiiiiiiiiiiinnn... 328
3.21 Machine-Dependent Options............c.coovuiiiiiiieennnn... 347

3.21.1 AArch64 Options.oouuiiiii e 347

3.21.1.1 -march and -mcpu Feature Modifiers............... 354
3.21.2 Adapteva Epiphany Options............................ 358
3.21.3 AMD GCN Optionscouvueiiiiiiiiiiiiinienn.. 360
3.21.4 ARC Options . ..ouvvieiii i 362
3.21.5 ARM Options . ..ottt 370
3.21.6 AVR Options.c.oiii e 387

3.21.6.1 AVR Optimization Options........................ 393

iv

3.21.6.2 EIND and Devices with

More Than 128 Ki Bytesof Flash 394
3.21.6.3 Handling of the RAMPD, RAMPX, RAMPY
and RAMPZ Special Function Registers 396
3.21.6.4 AVR Built-in Macros................ooiiiii.. 397
3.21.6.5 AVR Internal Optionscccoiiiii.... 400
3.21.7 Blackfin Optionsco i 401
3.21.8 COX OptionS . .. v ottt e 403
3.21.9 CRIS Optionsottt e 404
3.21.10 C-SKY Optionsoovveiniii i 406
3.21.11 Cygwin and MinGW Options.......................... 409
3.21.12 Darwin Optionsc.oiiiiiiiiii .. 410
3.21.13 DEC Alpha Options.coviuiiiiiiiiiiiian.. 415
3.21.14 eBPF Options........oooiiiiiii it 420
3.21.15 FR30 Options........oviueiii i 422
3.21.16 FRV Options. ..o 422
3.21.17 FT32 Options . ..ot 425
3.21.18 GNU/Linux Optionscovviiiiiiiiiininienan.. 425
3.21.19 HS8/300 Optionsvuvniirinii i, 426
3.21.20 HPPA Options.......covvriiiiii i, 426
3.21.21 TA-64 Options......oouiiirtii i 430
3.21.22 LM32 Options. . .o ovvet et 433
3.21.23 LoongArch Optionsccoiiiiiiiiiiine .. 434
3.21.24 M32C OPtIONS . .. v vttt 440
3.21.25 M32R/D Optionsouiuiuiriiiiiiiiinaen. 440
3.21.26 M680X0 OPtions . ..ovureteiii i 442
3.21.27 MCore Options.viit e 447
3.21.28 MicroBlaze Options 448
3.21.29 MIPS Options. . .oovtii e 449
3.21.30 MMIX Options.c.vvuriiitii i i e e 464
3.21.31 MNI10300 Optionsvevureee e 465
3.21.32 Moxie Optionsvuiiii e 466
3.21.33 MSP430 Optionsovuuutiiii e 467
3.21.34 NDS32 Options . ..ouvvvntit i 469
3.21.35 Nvidia PTX Optionsovveiiiiniiiiennnn... 471
3.21.36 OpenRISC Options.c.covviiiiiiiii e, 472
3.21.37 PDP-11 Optionsouueiiii i 473
3.21.38 PowerPC Options.........cooiiiiiiiiiiiiiii.., 474
3.21.39 PRU Options ... oouueiii e 474
3.21.40 RISC-V Optionsovvurireiiii i 476
3.21.41 RL78 Options . ..ottt 493
3.21.42 IBM RS/6000 and PowerPC Options 494
3.21.43 RX OptionsS ..ottt 510
3.21.44 S/390 and zSeries Options...............c.cooininn... 513
3.21.45 SH Optionsvvet i i 517
3.21.46 Solaris 2 Options.ooviii i 524

3.21.47 SPARC Options.ouuiiiiii i 524

3.21.48 Options for System V i 530

3.21.49 V850 Optionsvvuet it 531
3.21.50 VAX Options .. .eveeii e 533
3.21.51 Visium Options ..ot 534
3.21.52 VMS Optionscoouueiini e 535
3.21.53 VxWorks Optionscoviiiiiiiiiiii ... 535
3.21.54 x86 OptiONS.vii e 536
3.21.55 x86 Windows Options............cooiiiiiiiiiian.. 569
3.21.56 Xstormyl6 Options..........ccovieiiiiiiiiiii .. 569
3.21.57 Xtensa Optionsooiiiiiiiiiiiiiiii 569
3.21.58 zSeries OptionS.ovvuiii i 572
3.22 Specifying Subprocesses and the Switches to Pass to Them... 572
3.23 Environment Variables Affecting GCC....................... 581
3.24 Using Precompiled Headers.............. ..., 584
3.25 CA+ Modules. 586
3.25.1 Module Mapper...... .o 588
3.25.2 Module Preprocessing ... 590
3.25.3 Compiled Module Interface.................. 590

C Implementation-Defined Behavior........ 593
4.1 Translation........ ..o 593
4.2 Environment e 593
4.3 Identifiersot 593
4.4 Characterso e 594
4.5 Inbegers . ..ot e 595
4.6 Floating Point. i 596
4.7 Constant exXpresSiONSvvvr ettt et 597
4.8 Arrays and Pointers........... ... i 597
4.9 HInts. ... 598
4.10 Structures, Unions, Enumerations, and Bit-Fields............ 598
411 Qualifiers 599
B I o Y 600
4.13 Declarators 600
4.14 Statements.t e 600
4.15 Preprocessing Directives. ..., 600
4.16 Library Functions......... ... o i 601
4.17 Architecture ... 601
4.18 Locale-Specific Behavior............ il 602

C++ Implementation-Defined Behavior.... 603

5.1 Conditionally-Supported Behavior............................ 603
5.2 Exception Handling i i 603

vi

6 Extensions to the C Language Family....... 605
6.1 Additional Numeric Types.c.ovuiuiiiiiiiiiiiiiae. 605
6.1.1 128-bit Integers.o 605
6.1.2 Double-Word Integers ... 605
6.1.3 Complex Numbers.oiiiiiiiiii i, 605
6.1.4 Additional Floating Types..........ccoiiiiiiiiiiin.. 607
6.1.5 Half-Precision Floating Point 608
6.1.6 Decimal Floating Types ..., 609
6.1.7 Fixed-Point Types........cooiiii ., 610
6.2 Array, Union, and Struct Extensions.......................... 611
6.2.1 Arrays of Variable Length 611
6.2.2 Arrays of Length Zero.......... o L. 612
6.2.3 Structures with No Members 614
6.2.4 Unions with Flexible Array Members 614
6.2.5 Structures with only Flexible Array Members............ 614
6.2.6 Unnamed Structure and Union Fields.................... 614
6.2.7 Cast toa Union Typecooviiiiiiiiiiiiiiii . 615
6.2.8 Non-Lvalue Arrays May Have Subscripts................. 616
6.2.9 Non-Constant Initializers................... 616
6.2.10 Compound Literals........... i i, 616
6.2.11 Designated Initializers............. L. 618
6.3 Named Address Spacesoueiiiiiiiiii i 619
6.3.1 AVR Named Address Spaces...........ccovvviineneann... 619
6.3.2 M32C Named Address Spaces...........oveveviienenn.. 622
6.3.3 PRU Named Address Spaces.........coouueeeeiiineaan.. 622
6.3.4 RL78 Named Address Spaces..........ccoveeiieenienan... 622
6.3.5 x86 Named Address Spaces..........coovvuivieennnan.. 622
6.4 Attributes Specificto GCC............. i 622
6.4.1 Declaring Attributes of Functions........................ 623
6.4.1.1 Common Function Attributes....................... 624
6.4.1.2 AArch64 Function Attributes....................... 654
6.4.1.3 AMD GCN Function Attributes..................... 657
6.4.1.4 ARC Function Attributes........................ ... 658
6.4.1.5 ARM Function Attributes 659
6.4.1.6 AVR Function Attributes........................... 661
6.4.1.7 Blackfin Function Attributes........................ 664
6.4.1.8 BPF Function Attributes........................... 665
6.4.1.9 C-SKY Function Attributes......................... 665
6.4.1.10 Epiphany Function Attributes 665
6.4.1.11 H8/300 Function Attributes 666
6.4.1.12 IA-64 Function Attributes......................... 667
6.4.1.13 LoongArch Function Attributes.................... 667
6.4.1.14 M32C Function Attributes......................... 671
6.4.1.15 M32R/D Function Attributes...................... 672
6.4.1.16 m68k Function Attributes 672

6.4.1.17 MCORE Function Attributes...................... 673

vii

6.4.1.18 MicroBlaze Function Attributes.................... 673
6.4.1.19 Microsoft Windows Function Attributes............ 674
6.4.1.20 MIPS Function Attributes...............oovvvo.. .. 675
6.4.1.21 MSP430 Function Attributes....................... 677
6.4.1.22 NDS32 Function Attributes........................ 678
6.4.1.23 Nvidia PTX Function Attributes................... 679
6.4.1.24 PowerPC Function Attributes...................... 679
6.4.1.25 RISC-V Function Attributes....................... 682
6.4.1.26 RL78 Function Attributes 684
6.4.1.27 RX Function Attributes 684
6.4.1.28 S/390 Function Attributes......................... 685
6.4.1.29 SH Function Attributes................... 686
6.4.1.30 Symbian OS Function Attributes 687
6.4.1.31 V850 Function Attributes.......................... 687
6.4.1.32 Visium Function Attributes........................ 688
6.4.1.33 x86 Function Attributes 688
6.4.1.34 Xstormyl6 Function Attributes.................... 701
6.4.2 Specifying Attributes of Variables........................ 701
6.4.2.1 Common Variable Attributes........................ 702
6.4.2.2 ARC Variable Attributes 712
6.4.2.3 AVR Variable Attributes............................ 712
6.4.2.4 Blackfin Variable Attributes 714
6.4.2.5 H8/300 Variable Attributes......................... 714
6.4.2.6 TA-64 Variable Attributes........................... 714
6.4.2.7 LoongArch Variable Attributes...................... 715
6.4.2.8 M32R/D Variable Attributes........................ 715
6.4.2.9 Microsoft Windows Variable Attributes 715
6.4.2.10 MSP430 Variable Attributes....................... 716
6.4.2.11 Nvidia PTX Variable Attributes................... 716
6.4.2.12 PowerPC Variable Attributes...................... 716
6.4.2.13 RL78 Variable Attributes.......................... 717
6.4.2.14 V850 Variable Attributes.......................... 717
6.4.2.15 x86 Variable Attributes............................ 717
6.4.2.16 Xstormyl6 Variable Attributes..................... 717
6.4.3 Specifying Attributes of Types............ccooiiiiiii .. 717
6.4.3.1 Common Type Attributes........................... 718
6.4.3.2 ARC Type Attributes.............coiiiiiii ... 731
6.4.3.3 ARM Type Attributes............... ..., 732
6.4.3.4 BPF Type Attributes...............ccoiiiiiiint. 732
6.4.3.5 PowerPC Type Attributes 732
6.4.3.6 x86 Type Attributes............ 732
6.4.4 Label Attributes.. ... 733
6.4.5 Enumerator Attributes L. 733
6.4.6 Statement Attributes............ 734
6.4.7 Attribute Syntax 736
6.5 Pragmas Accepted by GCC........ ... i, 740

6.5.1 AArch64 Pragmas...........oooiiiiiiiiiiiii .. 740

viii

6.5.2 ARM Pragmaso, 741
6.5.3 LoongArch Pragmas.......... i 741
6.5.4 M32C Pragmas.oouueiiii e 741
6.5.5 PRU Pragmas..........cccoiiiiiiiiiiiiiiiiiiiinnnnn 741
6.5.6 RS/6000 and PowerPC Pragmas......................... 742
6.5.7 S/390 Pragmas...... ...t 742
6.5.8 Darwin Pragmaso 742
6.5.9 Solaris Pragmaso 742
6.5.10 Symbol-Renaming Pragmas............................. 743
6.5.11 Structure-Layout Pragmas..................... 743
6.5.12 Weak Pragmas ..., 744
6.5.13 Diagnostic Pragmas i 745
6.5.14 Visibility Pragmas............ oo i 747
6.5.15 Push/Pop Macro Pragmas....................coooiue.. 747
6.5.16 Function Specific Option Pragmas...................... 747
6.5.17 Loop-Specific Pragmas 748
6.6 Thread-Local Storage, 749
6.6.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 750
6.6.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage..... 750
6.7 OpenMPo 752
6.8 OpenACC. ... 752
6.9 An Inline Function is As Fast As a Macro..................... 752
6.10 When is a Volatile Object Accessed?..... ..., 754
6.11 How to Use Inline Assembly Language in C Code............ 755

6.11.1 Basic Asm — Assembler Instructions Without Operands.. 755
6.11.2 Extended Asm - Assembler Instructions

with C Expression Operands, 757
6.11.2.1 Volatile..... ... 759
6.11.2.2 Assembler Template............... 761
6.11.2.3 Output Operands...........covviiiiiiiiinennnn... 762
6.11.2.4 Flag Output Operandscoviiieina... 765
6.11.2.5 Input Operands ..., 767
6.11.2.6 Clobbers and Scratch Registers.................... 768
6.11.2.7 Goto Labels............ oo i 772
6.11.2.8 Generic Operand Modifiers 773
6.11.2.9 AArch64 Operand Modifiers....................... 774
6.11.2.10 x86 Operand Modifiers 774
6.11.2.11 x86 Floating-Point asm Operands................. 776
6.11.2.12 MSP430 Operand Modifiers o
6.11.2.13 LoongArch Operand Modifiers.................... o
6.11.2.14 RISC-V Operand Modifiers....................... 778
6.11.2.15 SH Operand Modifiers............................ 778

6.11.3 Constraints for asm Operands........................... 779
6.11.3.1 Simple Constraints ..., 779
6.11.3.2 Multiple Alternative Constraints................... 782
6.11.3.3 Constraint Modifier Characters.................... 782

6.11.3.4 Constraints for Particular Machines................ 783

6.11.4 C++11 Constant Expressions instead of String Literals.. 809

6.11.5 Controlling Names Used in Assembler Code............. 809
6.11.6 Variables in Specified Registers......................... 810
6.11.6.1 Defining Global Register Variables................. 810
6.11.6.2 Specifying Registers for Local Variables............ 811
6.11.6.3 Hard Register Constraints 812
6.11.7 Sizeof an asm...........oiiiiiiiiii 814
6.12 Other Extensions to C Syntax............c.cooiiiiiiiian... 815
6.12.1 Statements and Declarations in Expressions............. 815
6.12.2 Locally Declared Labelsoooiiiia. 817
6.12.3 Labelsas Values.............. i 818
6.12.4 Nested Functions.......... ..o, 819
6.12.5 Referring to a Type with typeof 820
6.12.6 Determining the Number of Elements of Arrays......... 822
6.12.7 The maximum and minimum representable values of a type. . 822
6.12.8 Support for offsetof i 822
6.12.9 Determining the Alignment of
Functions, Types or Variables 823
6.12.10 Extensions to enum Type Declarations................. 823
6.12.11 Support for the _Bool Type........ccoviiiiiiiiin... 824
6.12.12 Macros with a Variable Number of Arguments. 824
6.12.13 Conditionals with Omitted Operands.................. 825
6.12.14 Case Rangesccoiiiiiiiiii i 825
6.12.15 Mixed Declarations, Labels and Code.................. 825
6.12.16 C++ Style Comments.............ccoviiiiiiiniannan... 825
6.12.17 Slightly Looser Rules for Escaped Newlines............ 826
6.12.18 Hex Floats. ..o 826
6.12.19 Binary Constants using the ‘0b’” Prefix................. 826
6.12.20 Dollar Signs in Identifier Names 826
6.12.21 The Character ESC in Constants....................... 826
6.12.22 Raw String Literals it 827
6.12.23 Alternate Keywords i, 827
6.12.24 Function Names as Stringsoooiiiian. 827
6.13 Extensions to C Semantics ..., 828
6.13.1 Prototypes and Old-Style Function Definitions.......... 828
6.13.2 Arithmetic on void- and Function-Pointers............. 829
6.13.3 Pointer Arguments in Variadic Functions 829
6.13.4 Pointers to Arrays with Qualifiers Work as Expected. ... 829
6.13.5 Const and Volatile Functions 830
7 Built-in Functions Provided by GCC 831
7.1 Builtins for C Library Functions............... 831
7.2 Additional Builtins for Numeric Operations................... 833
7.2.1 Floating-Point Format Builtins 833
7.2.2 Bit Operation Builtins.............o i 836

7.2.3 Byte-Swapping Builtins........... ...l 840

724 CRCBuiltins.........oiiiiiii i
7.2.5 Built-in Functions to Perform
Arithmetic with Overflow Checking.............
7.3 Builtins for Stack Allocation...............,
7.4 Nonlocal GOtos. e
7.5 Constructing Function Calls..............
7.6 Getting the Return or Frame Address of a Function...........
7.7 Stack scrubbing internal interfaces............................
7.8 Using Vector Instructions through Built-in Functions..........
7.9 Builtins for Atomic Memory Access. ...,
7.9.1 Built-in Functions for Memory
Model Aware Atomic Operations.................oooiiia...
7.9.2 Legacy __sync Built-in Functions
for Atomic Memory ACCESS .. .vvurrte et
7.10 Object Size Checking........ ... oo,
7.10.1 Object Size Checking Built-in Functions................
7.10.2 Object Size Checking and Source Fortification
7.10.2.1 Formatted Output Function Checking..............
7.11 Built-in functions for C++ allocations and deallocations... ..
7.12 Other Built-in Functions Provided by GCC..................
7.13 Built-in Functions Specific to Particular Target Machines
7.13.1 AArch64 Built-in Functions.............................
7.13.2 Alpha Built-in Functions
7.13.3 ARC Built-in Functions il
7.13.4 ARC SIMD Built-in Functions..........................
7.13.5 Arm C Language Extensions (ACLE)...................
7.13.6 ARM Floating Point Status and Control Intrinsics......
7.13.7 ARM ARMv8-M Security Extensions...................
7.13.8 AVR Built-in Functionsoooiiiin...
7.13.9 Blackfin Built-in Functions
7.13.10 BPF Built-in Functions................
7.13.11 FR-V Built-in Functions...................
7.13.11.1 Argument Typesooeiiiiiii i
7.13.11.2 Directly-Mapped Integer Functions
7.13.11.3 Directly-Mapped Media Functions
7.13.11.4 Raw Read/Write Functions.......................
7.13.11.5 Other Built-in Functions..........................
7.13.12 LoongArch Base Built-in Functions....................
7.13.12.1 Data Types ..o
7.13.12.2 Directly-mapped Builtin Functions................
7.13.12.3 Directly-mapped Division Builtin Functions.......
7.13.12.4 Other Builtin Functions
7.13.13 LoongArch SX Vector Intrinsics
7.13.13.1 SX Data Types.....ccovuuiiiiiiiiiiiiiiiiiiin.
7.13.13.2 Directly-mapped SX Builtin Functions............
7.13.13.3 Directly-mapped SX Division Builtin Functions. ..
7.13.14 LoongArch ASX Vector Intrinsics......................

7.13.14.1 ASX Data Types.....oouviiiiiiiiiiiniina... 911
7.13.14.2 Directly-mapped ASX Builtin Functions.......... 911
7.13.14.3 Directly-mapped ASX Division Builtin Functions.. 925
7.13.14.4 Directly-mapped SX and

ASX Conversion Builtin Functions 925
7.13.15 MIPS DSP Built-in Functions 929
7.13.16 MIPS Paired-Single Support............. ..., 933
7.13.17 MIPS Loongson Built-in Functions 933

7.13.17.1 Paired-Single Arithmetic 935
7.13.17.2 Paired-Single Built-in Functions 936
7.13.17.3 MIPS-3D Built-in Functions...................... 937
7.13.18 MIPS SIMD Architecture (MSA) Support 939
7.13.18.1 MIPS SIMD Architecture Built-in Functions...... 940
7.13.19 Other MIPS Built-in Functions........................ 953
7.13.20 MSP430 Built-in Functions............................ 953
7.13.21 NDS32 Built-in Functions 953
7.13.22 Nvidia PTX Built-in Functions........................ 954
7.13.23 Basic PowerPC Built-in Functions..................... 954
7.13.23.1 Basic PowerPC Built-in

Functions Available on all Configurations.................. 954

7.13.23.2 Basic PowerPC Built-in

Functions Available on ISA 2.05........................... 958

7.13.23.3 Basic PowerPC Built-in

Functions Available on ISA 2.06........................... 960

7.13.23.4 Basic PowerPC Built-in

Functions Available on ISA 2.07............ 961

7.13.23.5 Basic PowerPC Built-in

Functions Available on ISA 3.0........ ..., 961

7.13.23.6 Basic PowerPC Built-in

Functions Available on ISA 3.1 963
7.13.24 PowerPC AltiVec/VSX Built-in Functions............. 965

7.13.24.1 PowerPC AltiVec Built-in Functions on ISA 2.05.. 968
7.13.24.2 PowerPC AltiVec Built-in

Functions Available on ISA 2.06............. 976
7.13.24.3 PowerPC AltiVec Built-in
Functions Available on ISA 2.07............ 978
7.13.24.4 PowerPC AltiVec Built-in
Functions Available on ISA 3.0........ ... i, 981
7.13.24.5 PowerPC AltiVec Built-in
Functions Available on ISA 3.1........ 986
7.13.25 PowerPC Hardware Transactional
Memory Built-in Functions............. 998
7.13.25.1 PowerPC HTM Low Level Built-in Functions 998
7.13.25.2 PowerPC HTM High Level Inline Functions...... 1000
7.13.26 PowerPC Atomic Memory Operation Functions....... 1001

7.13.27 PowerPC Matrix-Multiply Assist Built-in Functions .. 1002
7.13.28 PRU Built-in Functions 1003

xi

xii

7.13.29 RISC-V Built-in Functions 1004
7.13.30 RISC-V Vector Intrinsics..........cooviiiiiii.n 1004
7.13.31 CORE-V Built-in Functions.......................... 1004
7.13.32 RX Built-in Functions............... oL 1025
7.13.33 S/390 System z Built-in Functions.................... 1026
7.13.34 SH Built-in Functions............... 1028
7.13.35 SPARC VIS Built-in Functions....................... 1029
7.13.36 TI C6X Built-in Functions 1032
7.13.37 x86 Built-in Functions............. L 1033
7.13.38 x86 Transactional Memory Intrinsics 1059
7.13.39 x86 Control-Flow Protection Intrinsics................ 1060
Extensions to the C++4 Language.......... 1063
8.1 When is a Volatile C++ Object Accessed?................... 1063
8.2 Restricting Pointer Aliasing 1063
8.3 Vague Linkageo i 1064
8.4 CH+ Interface and Implementation Pragmas 1065
8.5 Where’s the Template? 1066
8.6 Extracting the Function Pointer from a Bound
Pointer to Member Function, 1068
8.7 CH+-Specific Variable, Function, and Type Attributes....... 1069
8.8 Function Multiversioning............. 1071
8.9 Type Traits....coouueiiii i e 1073
8.10 Deprecated Features ..., 1076
8.11 Backwards Compatibility............ ..o i 1076
GNU Objective-C Features................. 1077
9.1 GNU Objective-C Runtime APT............. 1077
9.1.1 Modern GNU Objective-C Runtime API................ 1077
9.1.2 Traditional GNU Objective-C Runtime API 1078
9.2 +load: Executing Code beforemain 1078
9.2.1 What You Can and Cannot Do in +load................ 1079
9.3 Type Encoding..........ooiiiiiiiiii i 1080
9.3.1 Legacy Type Encodingot 1082
9.3.2 0encCode.ottt 1082
9.3.3 Method Signatures 1083
9.4 Garbage Collection........ ..., 1083
9.5 Constant String Objects...........cco i, 1084
9.6 compatibility_alias.............ccoiiiiiiiiiiiiiiiii.., 1085
9.7 EXCEPIONS . .. vt 1085
9.8 Synchronization..............coiiiiiiiiiii 1087
9.9 Fast Enumeration............. ..o i i 1087
9.9.1 Using Fast Enumeration................., 1087
9.9.2 (C99-Like Fast Enumeration Syntax..................... 1087
9.9.3 Fast Enumeration Details............. 1088

9.9.4 Fast Enumeration Protocol 1089

9.10 Messaging with the GNU Objective-C Runtime............. 1090
9.10.1 Dynamically Registering Methods 1090
9.10.2 Forwarding Hook.........o i, 1090

10 Binary Compatibility 1093
11 gcov—a Test Coverage Program 1097

11.1 Introduction to gcov.......... ..o 1097

11.2 Invoking gCov..........oiiiiiiiiiiii i 1097

11.3 Using gcov with GCC Optimization........................ 1114

11.4 Brief Description of gcov Data Files........................ 1115

11.5 Data File Relocation to Support Cross-Profiling 1115

11.6 Profiling and Test Coverage in Freestanding Environments.. 1116
11.6.1 OVEIrVIEW . o vttt e 1116
11.6.2 Tutorial.......cooeiiiii 1117
11.6.3 System Initialization Caveats.......................... 1121

12 gcov-tool—an Offline Gcda

Profile Processing Tool....................... 1123
12.1 Introduction to gcov-tooll 1123
12.2 Invoking gcov—to0l........cuuuiiuiiiitiii i 1123

13 gcov-dump—an Offline Gcda and Gceno

Profile Dump Tool............................ 1127
13.1 Introduction to gcov—dumpol 1127
13.2 Invoking gcov—dump............coouiiiiiiiiiiiiiiii 1127

14 1lto-dump—Tool for dumping

LTO object files............................... 1129
14.1 Introduction to 1to-dumpccoiiiiiiiiiia.. 1129
14.2 Invoking 1to—dump..........c.ovueiiiiiiiiiiiiininennennn.. 1129
15 Known Causes of Trouble with GCC..... 1131
15.1 Actual Bugs We Haven’t Fixed Yet......................... 1131
15.2 Interoperation...............cooiiiiiiiiinneeiiiinnn. 1131
15.3 Incompatibilities of GCC............ it ... 1133
15.4 Fixed Header Files...........ooo i, 1136
15.5 Standard Libraries............ .o, 1136
15.6 Disappointments and Misunderstandings 1137
15.7 Common Misunderstandings with GNU C++............... 1138
15.7.1 Declare and Define Static Members.................... 1138

15.7.2 Name Lookup, Templates, and

Accessing Members of Base Classes..................o.o..... 1139

xiii

Xiv

15.7.3 Temporaries May Vanish Before You Expect........... 1140
15.7.4 TImplicit Copy-Assignment for Virtual Bases............ 1141

15.8 Certain Changes We Don’t Want to Make.................. 1142
15.9 Warning Messages and Error Messages 1145
16 Reporting Bugs............................. 1147
16.1 Have You Found a Bug?......... 1147
16.2 How and Where to Report Bugs................ 1147
17 How To Get Help with GCC.............. 1149
18 Contributing to GCC Development....... 1151
Funding Free Software.......................... 1153
The GNU Project and GNU/Linux............ 1155
GNU General Public License................... 1157
GNU Free Documentation License............. 1169
ADDENDUM: How to use this License for your documents 1176
Contributors to GCC 1177
Appendix A Indices............................ 1195
Al OptionIndex. ... 1195

A.2 Concept and Symbol Indexo il 1227

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Fortran, Ada, D, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Mercury.
To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the COBOL compiler is gcobol, the Ada compiler is GNAT, and so on. When we
talk about compiling one of those languages, we might refer to that compiler by its own
name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C Language

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. The ANSI standard,
but not the ISO standard, also came with a Rationale document. This standard, in both its
forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. To
select this standard in GCC, use one of the options —ansi, -—std=c90 or —std=1509899: 1990;
to obtain all the diagnostics required by the standard, you should also specify -pedantic
(or -pedantic-errors if you want them to be errors rather than warnings). See Section 3.4
[Options Controlling C Dialect], page 45.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option -std=is09899:199409 (with,
as for other standard versions, -pedantic to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. (While in development, drafts of this standard version were
referred to as C9X.) GCC has substantially complete support for this standard version; see
https://gcc.gnu.org/projects/c-status.html for details. To select this standard, use
-std=c99 or -std=1s09899:1999.

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. (While in development, drafts of this standard version were referred to as
C1X.) GCC has substantially complete support for this standard, enabled with -std=c11 or
-std=1809899:2011. A version with corrections integrated was prepared in 2017 and pub-
lished in 2018 as ISO/TEC 9899:2018; it is known as C17 and is supported with -std=c17 or
-std=1809899:2017; the corrections are also applied with —std=c11, and the only difference
between the options is the value of __STDC_VERSION__.

A fifth version of the C standard, known as (23, was published in 2024 as ISO/IEC
9899:2024. (While in development, drafts of this standard version were referred to as C2X.)
Support for this is enabled with -std=c23 or -std=1s09899:2024.

A further version of the C standard, known as C2Y, is under development; experimental
and incomplete support for this is enabled with -std=c2y.

By default, GCC provides some extensions to the C language that, on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 605.

https://gcc.gnu.org/projects/c-status.html

4 Using the GNU Compiler Collection (GCC)

Some features that are part of the C99 standard are accepted as extensions in C90 mode,
and some features that are part of the Cl1 standard are accepted as extensions in C90
and C99 modes. Use of the -std options listed above disables these extensions where they
conflict with the C standard version selected. You may also select an extended version of
the C language explicitly with -std=gnu90 (for C90 with GNU extensions), -std=gnu99
(for C99 with GNU extensions), -std=gnull (for C11 with GNU extensions), -std=gnul7
(for C17 with GNU extensions) or -std=gnu23 (for C23 with GNU extensions).

The default, if no C language dialect options are given, is ~std=gnu23.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and
since C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types,
added in C99, are not required for freestanding implementations. Since C23, freestanding
implementations are required to support a larger range of library facilities, including some
functions from other headers.

The standard also defines two environments for programs, a freestanding environment,
required of all implementations and which may not have library facilities beyond those
required of freestanding implementations, where the handling of program startup and ter-
mination are implementation-defined; and a hosted environment, which is not required,
in which all the library facilities are provided and startup is through a function int main
(void) or int main (int, char *[]1). An OS kernel is an example of a program running
in a freestanding environment; a program using the facilities of an operating system is an
example of a program running in a hosted environment.

GCC aims towards being usable as the compiler for a conforming freestanding or hosted
implementation. By default, it acts as the compiler for a hosted implementation, defining _
_STDC_HOSTED__ as 1 and presuming that when the names of ISO C functions are used, they
have the semantics defined in the standard. To make it act as the compiler for a freestanding
environment, use the option -ffreestanding; it then defines __STDC_HOSTED__ to O and
does not make assumptions about the meanings of function names from the standard library,
with exceptions noted below. To build an OS kernel, you may well still need to make your
own arrangements for linking and startup. See Section 3.4 [Options Controlling C Dialect],
page 45.

GCC generally provides library facilities in headers that do not declare functions with
external linkage (which includes the headers required by C11 and before to be provided
by freestanding implementations), but not those included in other headers. Additionally,
GCC provides <stdatomic.h>, even though it declares some functions with external linkage
(which are provided in libatomic). On a few platforms, some of the headers not declaring
functions with external linkage are instead obtained from the OS’s C library, which may
mean that they lack support for features from more recent versions of the C standard that
are supported in GCC’s own versions of those headers. On some platforms, GCC provides
<tgmath.h> (but this implementation does not support interfaces added in C23).

To use the facilities of a hosted environment, and some of the facilities required in a

freestanding environment by C23, you need to find them elsewhere (for example, in the
GNU C library). See Section 15.5 [Standard Libraries|, page 1136.

Chapter 2: Language Standards Supported by GCC 5

Most of the compiler support routines used by GCC are present in libgcc, but there are
a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Contrary to the standards covering memcpy GCC expects the case
of an exact overlap of source and destination to work and not invoke undefined behavior.
Finally, if __builtin_trap is used, and the target does not implement the trap pattern,
then GCC emits a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see https://gcc.gnu.org/readings.html

2.2 C++ Language

GCC supports the original ISO C++ standard published in 1998, and the 2011, 2014, 2017
and mostly 2020 and 2024 revisions.

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select this
standard in GCC, use one of the options -ansi, -std=c++98, or -std=c++03; to obtain all
the diagnostics required by the standard, you should also specify -pedantic (or -pedantic-
errors if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, all of which have been implemented in GCC.
For details see https://gcc.gnu.org/projects/cxx-status.html#cxx1l. To select this
standard in GCC, use the option -std=c++11.

Another revised ISO C++ standard was published in 2014 as ISO/IEC 14882:2014, and is
referred to as C++14; before its publication it was sometimes referred to as C++1y. C++14
contains several further changes to the C++ language, all of which have been implemented
in GCC. For details see https://gcc.gnu.org/projects/cxx-status.html#cxx14. To
select this standard in GCC, use the option -std=c++14.

The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was published.
This is referred to as C++17, and before publication was often referred to as C++1z. GCC
supports all the changes in that specification. For further details see https://gcc.gnu.

org/projects/cxx-status.html#cxx17. Use the option -std=c++17 to select this variant
of C++.

Another revised ISO C++ standard was published in 2020 as ISO/IEC 14882:2020, and
is referred to as C++20; before its publication it was sometimes referred to as C++2a. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx20. To select this standard in GCC, use
the option -std=c++20.

Yet another revised ISO C++ standard was published in 2024 as ISO/IEC 14882:2024, and
is referred to as C++23; before its publication it was sometimes referred to as C++2b. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx23. To select this standard in GCC, use
the option -std=c++23.

https://gcc.gnu.org/readings.html
https://gcc.gnu.org/projects/cxx-status.html#cxx11
https://gcc.gnu.org/projects/cxx-status.html#cxx14
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx23
https://gcc.gnu.org/projects/cxx-status.html#cxx23

6 Using the GNU Compiler Collection (GCC)

More information about the C++ standards is available on the ISO C++ committee’s web
site at https://www.open-std.org/jtcl/sc22/wg21/.

To obtain all the diagnostics required by any of the standard versions described above you
should specify -pedantic or -pedantic-errors, otherwise GCC will allow some non-ISO
C++ features as extensions. See Section 3.9 [Warning Options|, page 100.

By default, GCC also provides some additional extensions to the C++ language that
on rare occasions conflict with the C++ standard. See Section 3.5 [C++ Dialect Options],
page 52. Use of the -std options listed above disables these extensions where they they
conflict with the C++ standard version selected. You may also select an extended version
of the C++ language explicitly with -std=gnu++98 (for C++98 with GNU extensions), or
-std=gnu++11 (for C++11 with GNU extensions), or -std=gnu++14 (for C++14 with GNU
extensions), or -std=gnu++17 (for C++17 with GNU extensions), or -std=gnu++20 (for
C++20 with GNU extensions), or ~std=gnu++23 (for C++23 with GNU extensions).

The default, if no C++ language dialect options are given, is —std=gnu++20.

2.3 Objective-C and Objective-C++ Languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @optional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options -fgnu-runtime
and -fnext-runtime allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The author-
itative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and
the Objective-C Language” (https://www.gnustep.org/resources/documentation/
ObjectivCBook.pdf).

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with
the option -fobjc-exceptions. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enu-
meration (not available in Objective-C++), attributes for methods (such as deprecated,
noreturn, sentinel, format), the unused attribute for method arguments, the @package
keyword for instance variables and the @optional and @required keywords in protocols.
You can disable all these Objective-C 2.0 language extensions with the option -fobjc-
std=objcl, which causes the compiler to recognize the same Objective-C language syntax
recognized by GCC 4.0, and to produce an error if one of the new features is used.

https://www.open-std.org/jtc1/sc22/wg21/
https://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
https://www.gnustep.org/resources/documentation/ObjectivCBook.pdf

Chapter 2: Language Standards Supported by GCC 7

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e https://developer.apple.com/library/archive/documentation/Cocoa/
Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

For more information concerning the history of Objective-C that is available online, see
https://gcc.gnu.org/readings.html

2.4 COBOL Language

As of the GCC 15 release, GCC supports the ISO COBOL language standard (ISO/IEC
1989:2023). It includes some support for compatibility with other COBOL compilers via
the -dialect option.

2.5 Go Language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
https://go.dev/doc/gol.

2.6 D language

GCC supports the D 2.0 programming language. The D language itself is currently de-
fined by its reference implementation and supporting language specification, described at
https://dlang.org/spec/spec.html.

2.7 Modula-2 language

GCC supports the Modula-2 language and is compliant with the PIM2, PIM3, PIM4 and
ISO dialects. Also implemented are a complete set of free ISO libraries. It also contains a
collection of PIM libraries and some Logitech compatible libraries.

For more information on Modula-2 see https://gcc.gnu.org/readings.html. The on-
line manual is available at https://gcc.gnu.org/onlinedocs/gm2/index.html.

2.8 References for Other Languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://gcc.gnu.org/readings.html
https://go.dev/doc/go1
https://dlang.org/spec/spec.html
https://gcc.gnu.org/readings.html
https://gcc.gnu.org/onlinedocs/gm2/index.html

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the -c option says not to run the linker. Then the output consists of object files output by
the assembler. See Section 3.2 [Options Controlling the Kind of Output], page 33.

Other options are passed on to one or more stages of processing. Some options control
the preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

The usual way to run GCC is to run the executable called gcc, or machine-gcc when
cross-compiling, or machine-gcc-version to run a specific version of GCC. When you
compile C++ programs, you should invoke GCC as g++ instead. See Section 3.3 [Compiling
C++ Programs], page 44, for information about the differences in behavior between gcc and
g++ when compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: -dv is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify -L more than once, the directories are searched in the order specified. Also, the
placement of the -1 option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example, -fmove-
loop-invariants, -Wformat and so on. Most of these have both positive and negative
forms; the negative form of -ffoo is ~fno-foo. This manual documents only one of these
two forms, whichever one is not the default.

Some options take one or more arguments typically separated either by a space or by
the equals sign (‘=) from the option name. Unless documented otherwise, an argument
can be either numeric or a string. Numeric arguments must typically be small unsigned
decimal or hexadecimal integers. Hexadecimal arguments must begin with the ‘Ox’ prefix.
Arguments to options that specify a size threshold of some sort may be arbitrarily large
decimal or hexadecimal integers followed by a byte size suffix designating a multiple of bytes
such as kB and KiB for kilobyte and kibibyte, respectively, MB and MiB for megabyte and
mebibyte, GB and GiB for gigabyte and gigibyte, and so on. Such arguments are designated
by byte-size in the following text. Refer to the NIST, IEC, and other relevant national and
international standards for the full listing and explanation of the binary and decimal byte
size prefixes.

See Section A.1 [Option Index], page 1195, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

10 Using the GNU Compiler Collection (GCC)

Owerall Options
See Section 3.2 [Options Controlling the Kind of Output], page 33.

-¢c -S -E -o file
-dumpbase dumpbase -dumpbase-ext auxdropsuf
-dumpdir dumppfx -x language
-v -### --help[=class[,...]] --target-help --version
-pass-exit-codes -pipe -specs=file -wrapper
@file -ffile-prefix-map=old=new -fcanon-prefix-map
-fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fada-spec-parent=unit
-fdump-go-spec=file

--assemble --compile --dumpbase dumpbase
--dumpbase-ext auxdropsuf --dumpdir dumppfx
--language=language --output=file --pass-exit-codes
--pipe --preprocess --specs=file --verbose

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 45.

-ansi -std=standard -aux-info filename

-fno-asm

-fno-builtin -fno-builtin-function -fcond-mismatch
-ffreestanding -fgimple -fgnu-tm -fgnu89-inline -fhosted
-flax-vector-conversions -fms-extensions
-fpermitted-flt-eval-methods=standard

-fplan9-extensions -fsigned-bitfields -funsigned-bitfields
-fsigned-char -funsigned-char -fstrict-flex-arrays[=n]
-fsso-struct=endianness --ansi

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 52.

--compile-std-module

-fabi-compat-version=n -fabi-version=n
-fno-access-control -faligned-new=[n]
-fno-assume-sane-operators-new-delete
-fchar8_t -fcheck-new

-fconcepts -fconcepts-diagnostics-depth=n
-fconstexpr-depth=n -fconstexpr-cache-depth=n
-fconstexpr-loop-limit=n -fconstexpr-ops-limit=n
-fcontracts -fcontract-assumption-mode=[on|off
-fcontract-build-level=[off |default|audit]
-fcontract-continuation-mode=[on|off
-fcontract-mode=[on|off]
—-fcontract-role=name:default,audit,axiom
-fcontract-semantic=[default|audit|axiom|:semantic
-fcontract-strict-declarations=[on|off]
-fcoroutines -fdiagnostics-all-candidates
-fno-elide-constructors

-fno-enforce-eh-specs

-fext-numeric-literals

-fno-gnu-keywords

-fno-immediate-escalation
-fno-implement-inlines

-fimplicit-constexpr
-fno-implicit-inline-templates
-fno-implicit-templates

-fmodule-header|=kind]

-fmodule-implicit-inline

-fno-module-lazy

Chapter 3: GCC Command Options 11

-fmodule-mapper=specification

-fmodule-only

-fmodules

-fms-extensions

-fnew-inheriting-ctors

-fnew-ttp-matching

-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags

-fno-pretty-templates -frange-for-ext-temps

-fno-rtti -fsized-deallocation

-fstrict-enums -fstrong-eval-order[=kind
-ftemplate-backtrace-limit=n

-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-use-cxa-get-exception-ptr
-fno-weak -nostdinc++

-fvisibility-inlines-hidden

-fvisibility-ms-compat

-flang-info-include-translate[=header]
-flang-info-include-translate-not

-flang-info-module-cmi[=module]

-stdlib=1ibstdc++,libc++

-Wabbreviated-auto-in-template-arg

-Wabi-tag -Waligned-new[=kind]

-Wcatch-value -Wcatch-value=n

-Wno-class-conversion -Wclass-memaccess

-Wcomma-subscript -Wconditionally-supported

-Wno-conversion-null -Wctad-maybe-unsupported

-Wctor-dtor-privacy -Wdangling-reference
-Wno-defaulted-function-deleted

-Wno-delete-incomplete

-Wdelete-non-virtual-dtor -Wno-deprecated-array-compare
-Wdeprecated-copy -Wdeprecated-copy-dtor
-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion
-Wno-deprecated-literal-operator -Wdeprecated-variadic-comma-omission
-Weffc++ -Wno-elaborated-enum-base

-Wno-exceptions -Wno-expose-global-module-tu-local -Wno-external-tu-local
-Wextra-semi -Wno-global-module -Wno-inaccessible-base
-Wno-inherited-variadic-ctor -Wno-init-list-lifetime
-Winvalid-constexpr -Winvalid-imported-macros

-Wno-invalid-offsetof -Wno-literal-suffix

-Wmismatched-new-delete -Wmismatched-tags

-Wmultiple-inheritance -Wnamespaces -Wnarrowing

-Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor

-Wpessimizing-move -Wno-placement-new -Wplacement-new=n
-Wrange-loop-construct -Wredundant-move -Wredundant-tags

-Wreorder -Wregister -Wno-sfinae-incomplete

-Wstrict-null-sentinel -Wno-subobject-linkage -Wtemplates
-Wno-non-c-typedef-for-linkage -Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions -Wself-move -Wsign-promo
-Wsized-deallocation -Wsuggest-final-methods

-Wsuggest-final-types -Wsuggest-override -Wno-template-body
-Wno-template-id-cdtor -Wtemplate-names-tu-local

-Wno-terminate -Wno-vexing-parse -Wvirtual-inheritance
-Wno-virtual-move-assign -Wvolatile

Objective-C' and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 82.

12 Using the GNU Compiler Collection (GCC)

-fconstant-string-class=class-name

-fgnu-runtime -fnext-runtime

-fno-nil-receivers

-fobjc-abi-version=n

-fobjc-call-cxx-cdtors

-fobjc-direct-dispatch

-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck

-fobjc-std=objcl

-fno-local-ivars
-fivar-visibility=[public|protected|private|package]
-freplace-objc-classes

-fzero-link

-gen-decls

-Wassign-intercept -Wno-property-assign-default
-Wno-protocol -Wobjc-root-class -Wselector
-Wstrict-selector-match

-Wundeclared-selector

OpenMP and OpenACC Options
See Section 3.7 [Options Controlling OpenMP and OpenACC], page 86.

-foffload=arg -foffload-options=arg
-fopenacc -fopenacc-dim=geom
-fopenmp -fopenmp-simd -fopenmp-target-simd-clone[=device-type]

Diagnostic Message Formatting Options
See Section 3.8 [Options to Control Diagnostic Messages Formatting], page 87.

-fmessage-length=n

-fdiagnostics-plain-output
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics-color=[auto|never|always]
-fdiagnostics-urls=[auto|never|always
-fdiagnostics-format=[text|sarif-stderr|sarif-file
-fdiagnostics-add-output=DIAGNOSTICS-OUTPUT-SPEC
-fdiagnostics-set-output=DIAGNOSTICS-OUTPUT-SPEC
-fno-diagnostics-json-formatting
-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fno-diagnostics-show-event-links
-fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers
-fno-diagnostics-show-cwe

-fno-diagnostics-show-rules
-fno-diagnostics-show-highlight-colors
-fno-diagnostics-show-nesting
-fno-diagnostics-show-nesting-locations
-fdiagnostics-show-nesting-levels
-fdiagnostics-minimum-margin-width=width
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics-show-template-tree -fno-elide-type
-fdiagnostics-path-format=[none|separate-events|inline-events]
-fdiagnostics-show-path-depths

-fno-show-column

-fdiagnostics-column-unit=[display|byte]
-fdiagnostics-column-origin=origin
-fdiagnostics-escape-format=|[unicode |bytes]
-fdiagnostics-text-art-charset=|nonelascii|unicode|emoji]
-fdiagnostics-show-context|[=depth]

Chapter 3: GCC Command Options

Warning Options
See Section 3.9 [Options to Request or Suppress Warnings|, page 100.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors -fpermissive

-w -Wextra -Wall -Wabi=n

-Waddress -Wno-address-of-packed-member -Waggregate-return
-Walloc-size -Walloc-size-larger-than=byte-size -Walloc-zero
-Walloca -Walloca-larger-than=byte-size -Wauto-profile
-Wno-aggressive-loop-optimizations

-Warith-conversion

-Warray-bounds -Warray-bounds=n -Warray-compare
-Warray-parameter -Warray-parameter=n

-Wno-attributes -Wattribute-alias=n -Wno-attribute-alias
-Wno-attribute-warning

-Wbidi-chars=[none|unpaired|any|ucn]

-Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch

-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-cll-compat
-Wcll-c23-compat -Wc23-c2y-compat

-Wc++-compat -Wc++ll-compat -Wc++14-compat -Wc++17-compat
-Wc++20-compat -Wc++26-compat

-Wno-c++11-extensions -Wno-c++14-extensions -Wno-c++17-extensions
-Wno-c++20-extensions -Wno-c++23-extensions
-Wcalloc-transposed-args -Wcannot-profile

-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts

-Wclobbered -Wcomment

-Wcompare-distinct-pointer-types

-Wno-complain-wrong-lang

-Wconversion -Wno-coverage-mismatch -Wno-cpp

-Wdangling-else -Wdangling-pointer -Wdangling-pointer=n
-Wdate-time

-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wno-deprecated-openmp

-Wdisabled-optimization

-Wno-discarded-array-qualifiers -Wno-discarded-qualifiers
-Wno-div-by-zero -Wdouble-promotion

-Wduplicated-branches -Wduplicated-cond

-Wempty-body -Wno-endif-labels -Wenum-compare -Wenum-conversion
-Wenum-int-mismatch

-Werror -Werror=x -Wexpansion-to-defined -Wfatal-errors
-Wflex-array-member-not-at-end

-Wfloat-conversion -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-diag -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=n

-Wformat-security -Wformat-signedness -Wformat-truncation=n
-Wformat-y2k -Wframe-address

-Wframe-larger-than=byte-size -Wno-free-nonheap-object
-Wheader-guard -Wno-if-not-aligned -Wno-ignored-attributes
-Wignored-qualifiers -Wno-incompatible-pointer-types -Whardened
-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=n
-Wno-implicit-function-declaration -Wno-implicit-int
-Winfinite-recursion

-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Wno-invalid-memory-model

-Winvalid-pch -Winvalid-utf8 -Wno-unicode -Wjump-misses-init
-Wkeyword-macro

-Wlarger-than=byte-size -Wleading-whitespace=kind

13

14

-Wlogical-not-parentheses
-Wlong-long -Wno-lto-type
-Wmemset-elt-size -Wmemse
-Wmisleading-indentation

-Wmissing-field-initialize

Using the GNU Compiler Collection (GCC)

-Wlogical-op

-mismatch -Wmain -Wmaybe-uninitialized
t-transposed-args

-Wmissing-attributes -Wmissing-braces
rs -Wmissing-format-attribute

-Wmissing-include-dirs -Wmissing-noreturn -Wmusttail-local-addr

-Wmaybe-musttail-local-add
-Wno-multichar -Wmultista

r -Wno-missing-profile
tement-macros -Wnonnull -Wnonnull-compare

-Wnormalized=[none|id|nfc|nfkc]

-Wnull-dereference -Wno-o
-Wopenacc-parallelism
-Wopenmp -Wopenmp-simd

dr

-Wno-overflow -Woverlength-strings -Wno-override-init-side-effects

-Wpacked -Wno-packed-bitf
-Wparentheses -Wno-pedant
-Wpointer-arith -Wno-poin
-Wno-pragmas -Wno-pragma-
-Wno-psabi
-Wredundant-decls -Wrestr
-Wno-return-local-addr -W
-Wno-scalar-storage-order
-Wshadow -Wshadow=global
-Wno-shadow-ivar
-Wno-shift-count-negative
-Wno-shift-overflow -Wshi
-Wsign-compare -Wsign-con
-Wno-sizeof-array-argument
-Wsizeof-array-div
-Wsizeof-pointer-div -Wsi
-Wstack-protector -Wstack
-Wstrict-aliasing=n -Wstr
-Wstring-compare
-Wno-stringop-overflow -Wn
-Wno-stringop-truncation
-Wsuggest-attribute=attrib
-Wswitch -Wno-switch-bool
-Wno-switch-outside-range
-Wsystem-headers -Wtautol
-Wtrailing-whitespace=kind

ield-compat -Wpacked-not-aligned -Wpadded
ic-ms-format

ter-compare -Wno-pointer-to-int-cast
once-outside-header -Wno-prio-ctor-dtor

ict

return-type

-Wsequence-point

-Wshadow=local -Wshadow=compatible-local

-Wno-shift-count-overflow -Wshift-negative-valuel
ft-overflow=n
version

zeof-pointer-memaccess
-usage=byte-size -Wstrict-aliasing
ict-overflow -Wstrict-overflow=n

o-stringop-overread
-Wstrict-flex-arrays
ute-name
-Wswitch-default -Wswitch-enum
-Wno-switch-unreachable -Wsync-nand
ogical-compare -Wtrailing-whitespace
-Wtrampolines -Wtrigraphs

-Wtrivial-auto-var-init -Wno-tsan -Wtype-limits -Wundef

-Wuninitialized -Wunknown
-Wunsuffixed-float-constan
-Wunterminated-string-init
-Wunused
-Wunused-but-set-parameter
-Wunused-but-set-variable

-pragmas
ts
ialization

-Wunused-but-set-parameter=n
-Wunused-but-set-variable=n

-Wunused-const-variable -Wunused-const-variable=n

-Wunused-function -Wunuse
-Wunused-macros

d-label -Wunused-local-typedefs

-Wunused-parameter -Wno-unused-result

-Wunused-value -Wunused-v
-Wuse-after-free -Wuse-af
-Wno-varargs -Wvariadic-m
-Wvector-operation-perform
-Wvla -Wvla-larger-than=b

ariable

ter-free=n -Wuseless-cast
acros

ance

yte-size -Wno-vla-larger-than

-Wvolatile-register-var -Wwrite-strings

-Wno-xor-used-as-pow
-Wzero-as—-null-pointer-con

stant

Chapter 3: GCC Command Options

-Wzero-length-bounds
--all-warnings --extra-warnings --no-warnings
--pedantic --pedantic-e