
GNU Compiler Collection Internals
For gcc version 16.0.0 (pre-release)

(GCC)

Richard M. Stallman and the GCC Developer Community

Copyright c© 1988-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

1 Contributing to GCC Development . 1
2 GCC and Portability . 3
3 The GCC low-level runtime library . 5
4 Language Front Ends in GCC . 61

5 Source Tree Structure and Build System 63
6 Testsuites . 81
7 Option specification files . 135
8 Passes and Files of the Compiler . 145

9 Sizes and offsets as runtime invariants 165

10 GENERIC . 179

11 GIMPLE . 231

12 Analysis and Optimization of GIMPLE tuples 271

13 RTL Representation . 283

14 Control Flow Graph . 349

15 Analysis and Representation of Loops 359

16 Machine Descriptions . 369

17 Target Description Macros and Functions 529

18 Host Configuration . 725

19 Makefile Fragments . 729

20 collect2 . 733
21 Standard Header File Directories . 735

22 Memory Management and Type Information 737

23 Plugins . 749
24 Link Time Optimization . 757
25 Match and Simplify . 765
26 Static Analyzer . 773

27 User Experience Guidelines . 785
Funding Free Software . 795

The GNU Project and GNU/Linux . 797
GNU General Public License . 799
GNU Free Documentation License . 811

Contributors to GCC . 819
Option Index . 837

ii

Concept Index . 839

iii

Table of Contents

1 Contributing to GCC Development 1

2 GCC and Portability . 3

3 The GCC low-level runtime library 5
3.1 Routines for integer arithmetic . 5

3.1.1 Arithmetic functions . 5
3.1.2 Comparison functions . 6
3.1.3 Trapping arithmetic functions . 7
3.1.4 Bit operations . 7
3.1.5 Bit-precise integer arithmetic functions . 8

3.2 Routines for floating point emulation . 9
3.2.1 Arithmetic functions . 9
3.2.2 Conversion functions . 10
3.2.3 Comparison functions . 12
3.2.4 Other floating-point functions . 13

3.3 Routines for decimal floating point emulation 14
3.3.1 Arithmetic functions . 14
3.3.2 Conversion functions . 15
3.3.3 Comparison functions . 19

3.4 Routines for fixed-point fractional emulation 20
3.4.1 Arithmetic functions . 21
3.4.2 Comparison functions . 29
3.4.3 Conversion functions . 29

3.5 Language-independent routines for exception handling 59
3.6 Miscellaneous runtime library routines . 59

3.6.1 Cache control functions . 60
3.6.2 Split stack functions and variables . 60

4 Language Front Ends in GCC 61

5 Source Tree Structure and Build System 63
5.1 Configure Terms and History . 63
5.2 Top Level Source Directory . 63
5.3 The gcc Subdirectory . 65

5.3.1 Subdirectories of gcc . 66
5.3.2 Configuration in the gcc Directory . 66

5.3.2.1 Scripts Used by configure . 66
5.3.2.2 The config.build; config.host; and config.gcc Files . . 67
5.3.2.3 Files Created by configure . 67

5.3.3 Build System in the gcc Directory . 68

iv

5.3.4 Makefile Targets . 68
5.3.5 Library Source Files and Headers under the gcc Directory . . 71
5.3.6 Headers Installed by GCC . 71
5.3.7 Building Documentation . 71

5.3.7.1 Texinfo Manuals . 72
5.3.7.2 Man Page Generation . 72
5.3.7.3 Miscellaneous Documentation . 73

5.3.8 Anatomy of a Language Front End . 74
5.3.8.1 The Front End language Directory 75
5.3.8.2 The Front End config-lang.in File 75
5.3.8.3 The Front End Make-lang.in File 76

5.3.9 Anatomy of a Target Back End . 78

6 Testsuites . 81
6.1 Idioms Used in Testsuite Code . 81
6.2 Directives used within DejaGnu tests . 82

6.2.1 Syntax and Descriptions of test directives 82
6.2.1.1 Specify how to build the test . 82
6.2.1.2 Specify additional compiler options 83
6.2.1.3 Modify the test timeout value . 83
6.2.1.4 Skip a test for some targets . 83
6.2.1.5 Expect a test to fail for some targets 84
6.2.1.6 Expect the compiler to crash . 85
6.2.1.7 Expect the test executable to fail . 85
6.2.1.8 Verify compiler messages . 85
6.2.1.9 Verify output of the test executable 86
6.2.1.10 Specify environment variables for a test 86
6.2.1.11 Specify additional files for a test . 86
6.2.1.12 Add checks at the end of a test . 87

6.2.2 Selecting targets to which a test applies 87
6.2.3 Keywords describing target attributes . 88

6.2.3.1 Endianness . 88
6.2.3.2 Data type sizes . 88
6.2.3.3 Fortran-specific attributes . 90
6.2.3.4 Vector-specific attributes . 90
6.2.3.5 Thread Local Storage attributes . 96
6.2.3.6 Decimal floating point attributes . 96
6.2.3.7 ARM-specific attributes . 96
6.2.3.8 AArch64-specific attributes . 102
6.2.3.9 LoongArch specific attributes . 103
6.2.3.10 MIPS-specific attributes . 103
6.2.3.11 MSP430-specific attributes . 104
6.2.3.12 nvptx-specific attributes . 104
6.2.3.13 PowerPC-specific attributes . 104
6.2.3.14 RISC-V specific attributes . 105
6.2.3.15 CORE-V specific attributes . 106

v

6.2.3.16 Other hardware attributes . 106
6.2.3.17 Environment attributes . 109
6.2.3.18 Other attributes . 112
6.2.3.19 Local to tests in gcc.target/i386 115
6.2.3.20 Local to tests in gcc.test-framework 116

6.2.4 Features for dg-add-options . 116
6.2.5 Features for dg-remove-options . 118
6.2.6 Variants of dg-require-support . 118
6.2.7 Commands for use in dg-final . 120

6.2.7.1 Scan a particular file . 120
6.2.7.2 Scan the assembly output . 120
6.2.7.3 Scan optimization dump files . 122
6.2.7.4 Check for output files . 123
6.2.7.5 Checks for gcov tests . 124
6.2.7.6 Clean up generated test files . 124

6.3 Ada Language Testsuites . 125
6.4 C Language Testsuites . 125
6.5 Support for testing link-time optimizations 127
6.6 Support for testing gcov . 128
6.7 Support for testing profile-directed optimizations 128
6.8 Support for testing binary compatibility . 129
6.9 Support for torture testing using multiple options 131
6.10 Support for testing GIMPLE passes . 131
6.11 Support for testing RTL passes . 132

7 Option specification files . 135
7.1 Option file format . 135
7.2 Option properties . 137

8 Passes and Files of the Compiler 145
8.1 Parsing pass . 145
8.2 Gimplification pass . 146
8.3 Pass manager . 146
8.4 Inter-procedural optimization passes . 147

8.4.1 Small IPA passes . 147
8.4.2 Regular IPA passes . 148
8.4.3 Late IPA passes . 150

8.5 Tree SSA passes . 150
8.6 RTL passes . 156
8.7 Optimization info . 160

8.7.1 Dump setup . 160
8.7.2 Optimization groups . 161
8.7.3 Dump files and streams . 161
8.7.4 Dump output verbosity . 162
8.7.5 Dump types . 162
8.7.6 Dump examples . 163

vi

9 Sizes and offsets as runtime invariants 165
9.1 Overview of poly_int . 165
9.2 Consequences of using poly_int . 166
9.3 Comparisons involving poly_int . 167

9.3.1 Comparison functions for poly_int . 167
9.3.2 Properties of the poly_int comparisons 168
9.3.3 Comparing potentially-unordered poly_ints 168
9.3.4 Comparing ordered poly_ints . 169
9.3.5 Checking for a poly_int marker value 169
9.3.6 Range checks on poly_ints . 170
9.3.7 Sorting poly_ints . 170

9.4 Arithmetic on poly_ints . 171
9.4.1 Using poly_int with C++ arithmetic operators 171
9.4.2 wi arithmetic on poly_ints . 172
9.4.3 Division of poly_ints . 172
9.4.4 Other poly_int arithmetic . 173

9.5 Alignment of poly_ints . 173
9.6 Computing bounds on poly_ints . 175
9.7 Converting poly_ints . 175
9.8 Miscellaneous poly_int routines . 176
9.9 Guidelines for using poly_int . 177

10 GENERIC . 179
10.1 Deficiencies . 179
10.2 Overview . 179

10.2.1 Trees . 180
10.2.2 Identifiers . 181
10.2.3 Containers . 181

10.3 Types . 182
10.4 Declarations . 186

10.4.1 Working with declarations . 186
10.4.2 Internal structure . 188

10.4.2.1 Current structure hierarchy . 188
10.4.2.2 Adding new DECL node types . 189

10.5 Attributes in trees . 191
10.6 Expressions . 191

10.6.1 Constant expressions . 192
10.6.2 References to storage . 194
10.6.3 Unary and Binary Expressions . 195
10.6.4 Vectors . 203

10.7 Statements . 207
10.7.1 Basic Statements . 207
10.7.2 Blocks . 209
10.7.3 Statement Sequences . 209
10.7.4 Empty Statements . 209
10.7.5 Jumps . 209

vii

10.7.6 Cleanups . 210
10.7.7 OpenMP . 210
10.7.8 OpenACC . 214

10.8 Functions . 215
10.8.1 Function Basics . 215
10.8.2 Function Properties . 217

10.9 Language-dependent trees . 218
10.10 C and C++ Trees . 218

10.10.1 Types for C++ . 219
10.10.2 Namespaces . 221
10.10.3 Classes . 222
10.10.4 Functions for C++ . 223
10.10.5 Statements for C and C++ . 226
10.10.6 C++ Expressions . 229

11 GIMPLE . 231
11.1 Tuple representation . 232

11.1.1 gimple (gsbase) . 232
11.1.2 gimple_statement_with_ops . 233
11.1.3 gimple_statement_with_memory_ops 233

11.2 Class hierarchy of GIMPLE statements . 234
11.3 GIMPLE instruction set . 237
11.4 Exception Handling . 237
11.5 Temporaries . 238
11.6 Operands . 238

11.6.1 Compound Expressions . 239
11.6.2 Compound Lvalues . 239
11.6.3 Conditional Expressions . 239
11.6.4 Logical Operators . 239
11.6.5 Manipulating operands . 239
11.6.6 Operand vector allocation . 240
11.6.7 Operand validation . 241
11.6.8 Statement validation . 241

11.7 Manipulating GIMPLE statements . 242
11.7.1 Common accessors . 242

11.8 Tuple specific accessors . 245
11.8.1 GIMPLE_ASM . 245
11.8.2 GIMPLE_ASSIGN . 246
11.8.3 GIMPLE_BIND . 247
11.8.4 GIMPLE_CALL . 248
11.8.5 GIMPLE_CATCH . 250
11.8.6 GIMPLE_COND . 250
11.8.7 GIMPLE_DEBUG . 251
11.8.8 GIMPLE_EH_FILTER . 253
11.8.9 GIMPLE_LABEL . 253
11.8.10 GIMPLE_GOTO . 254

viii

11.8.11 GIMPLE_NOP . 254
11.8.12 GIMPLE_OMP_ATOMIC_LOAD . 254
11.8.13 GIMPLE_OMP_ATOMIC_STORE . 254
11.8.14 GIMPLE_OMP_CONTINUE . 255
11.8.15 GIMPLE_OMP_CRITICAL . 255
11.8.16 GIMPLE_OMP_FOR . 256
11.8.17 GIMPLE_OMP_MASTER . 257
11.8.18 GIMPLE_OMP_ORDERED . 257
11.8.19 GIMPLE_OMP_PARALLEL . 257
11.8.20 GIMPLE_OMP_RETURN . 258
11.8.21 GIMPLE_OMP_SECTION . 259
11.8.22 GIMPLE_OMP_SECTIONS . 259
11.8.23 GIMPLE_OMP_SINGLE . 260
11.8.24 GIMPLE_OMP_STRUCTURED_BLOCK . 260
11.8.25 GIMPLE_PHI . 260
11.8.26 GIMPLE_RESX . 261
11.8.27 GIMPLE_RETURN . 261
11.8.28 GIMPLE_SWITCH . 261
11.8.29 GIMPLE_TRY . 262
11.8.30 GIMPLE_WITH_CLEANUP_EXPR . 263

11.9 GIMPLE sequences . 263
11.10 Sequence iterators . 264
11.11 Adding a new GIMPLE statement code . 268
11.12 Statement and operand traversals . 268

12 Analysis and Optimization of
GIMPLE tuples . 271
12.1 Annotations . 271
12.2 SSA Operands . 271

12.2.1 Operand Iterators And Access Routines 273
12.2.2 Immediate Uses . 275

12.3 Static Single Assignment . 276
12.3.1 Preserving the SSA form . 278
12.3.2 Examining SSA_NAME nodes . 279
12.3.3 Walking the dominator tree . 279

12.4 Alias analysis . 280
12.5 Memory model . 281

13 RTL Representation . 283
13.1 RTL Object Types . 283
13.2 RTL Classes and Formats . 284
13.3 Access to Operands . 286
13.4 Access to Special Operands . 287
13.5 Flags in an RTL Expression . 290
13.6 Machine Modes . 295

ix

13.7 Constant Expression Types . 302
13.8 Registers and Memory . 306
13.9 RTL Expressions for Arithmetic . 312
13.10 Comparison Operations . 316
13.11 Bit-Fields . 318
13.12 Vector Operations . 318
13.13 Conversions . 319
13.14 Declarations . 321
13.15 Side Effect Expressions . 321
13.16 Embedded Side-Effects on Addresses . 326
13.17 Assembler Instructions as Expressions . 327
13.18 Variable Location Debug Information in RTL 328
13.19 Insns . 328
13.20 RTL Representation of Function-Call Insns 337
13.21 On-the-Side SSA Form for RTL . 338

13.21.1 Using RTL SSA in a pass . 338
13.21.2 RTL SSA Instructions . 339
13.21.3 RTL SSA Basic Blocks . 339
13.21.4 RTL SSA Resources . 340
13.21.5 RTL SSA Register and Memory Accesses 340
13.21.6 RTL SSA Phi Nodes . 341
13.21.7 RTL SSA Access Lists . 342
13.21.8 Using the RTL SSA framework to change instructions . . 343

13.21.8.1 Changing One RTL SSA Instruction 344
13.21.8.2 Changing Multiple RTL SSA Instructions 345

13.22 Structure Sharing Assumptions . 347
13.23 Reading RTL . 348

14 Control Flow Graph . 349
14.1 Basic Blocks . 349
14.2 Edges . 351
14.3 Profile information . 354
14.4 Maintaining the CFG . 355
14.5 Liveness information . 357

15 Analysis and Representation of Loops 359
15.1 Loop representation . 359
15.2 Loop querying . 361
15.3 Loop manipulation . 362
15.4 Loop-closed SSA form . 362
15.5 Scalar evolutions . 363
15.6 IV analysis on RTL . 364
15.7 Number of iterations analysis . 364
15.8 Data Dependency Analysis . 366

x

16 Machine Descriptions . 369
16.1 Overview of How the Machine Description is Used 369
16.2 Everything about Instruction Patterns . 369
16.3 Example of define_insn . 371
16.4 RTL Template . 371
16.5 Output Templates and Operand Substitution 375
16.6 C Statements for Assembler Output . 376
16.7 Compact Syntax . 378
16.8 Predicates . 380

16.8.1 Machine-Independent Predicates . 381
16.8.2 Defining Machine-Specific Predicates . 383

16.9 Operand Constraints . 385
16.9.1 Simple Constraints . 385
16.9.2 Multiple Alternative Constraints . 389
16.9.3 Register Class Preferences . 390
16.9.4 Constraint Modifier Characters . 390
16.9.5 Constraints for Particular Machines . 392
16.9.6 Disable insn alternatives using the enabled attribute . . . 420
16.9.7 Defining Machine-Specific Constraints 421
16.9.8 Testing constraints from C . 425

16.10 Standard Pattern Names For Generation 426
16.11 When the Order of Patterns Matters . 481
16.12 Interdependence of Patterns . 481
16.13 Defining Jump Instruction Patterns . 482
16.14 Defining Looping Instruction Patterns . 482
16.15 Canonicalization of Instructions . 484
16.16 Defining RTL Sequences for Code Generation 486
16.17 Defining How to Split Instructions . 489
16.18 Including Patterns in Machine Descriptions. 494

16.18.1 RTL Generation Tool Options for Directory Search 494
16.19 Machine-Specific Peephole Optimizers . 495

16.19.1 RTL to Text Peephole Optimizers . 495
16.19.2 RTL to RTL Peephole Optimizers . 497

16.20 Instruction Attributes . 499
16.20.1 Defining Attributes and their Values 499
16.20.2 Attribute Expressions . 501
16.20.3 Assigning Attribute Values to Insns . 503
16.20.4 Example of Attribute Specifications . 505
16.20.5 Computing the Length of an Insn . 505
16.20.6 Constant Attributes . 507
16.20.7 Mnemonic Attribute . 507
16.20.8 Delay Slot Scheduling . 507
16.20.9 Specifying processor pipeline description 508

16.21 Conditional Execution . 514
16.22 RTL Templates Transformations . 516

16.22.1 define_subst Example . 516

xi

16.22.2 Pattern Matching in define_subst . 517
16.22.3 Generation of output template in define_subst 518

16.23 Constant Definitions . 518
16.24 Iterators . 520

16.24.1 Mode Iterators . 520
16.24.1.1 Defining Mode Iterators . 521
16.24.1.2 Substitution in Mode Iterators . 521
16.24.1.3 Mode Iterator Examples . 522

16.24.2 Code Iterators . 523
16.24.3 Int Iterators . 524
16.24.4 Subst Iterators . 525
16.24.5 Parameterized Names . 526

17 Target Description Macros and Functions . . 529
17.1 The Global targetm Variable . 529
17.2 Controlling the Compilation Driver, gcc . 530
17.3 Run-time Target Specification . 537
17.4 Defining data structures for per-function information. 540
17.5 Storage Layout . 541
17.6 Layout of Source Language Data Types . 551
17.7 Register Usage . 556

17.7.1 Basic Characteristics of Registers . 556
17.7.2 Order of Allocation of Registers . 559
17.7.3 How Values Fit in Registers . 559
17.7.4 Handling Leaf Functions . 562
17.7.5 Registers That Form a Stack . 563

17.8 Register Classes . 563
17.9 Stack Layout and Calling Conventions . 574

17.9.1 Basic Stack Layout . 574
17.9.2 Exception Handling Support . 579
17.9.3 Specifying How Stack Checking is Done 581
17.9.4 Registers That Address the Stack Frame 583
17.9.5 Eliminating Frame Pointer and Arg Pointer 586
17.9.6 Passing Function Arguments on the Stack 587
17.9.7 Passing Arguments in Registers . 589
17.9.8 How Scalar Function Values Are Returned 598
17.9.9 How Large Values Are Returned . 600
17.9.10 Caller-Saves Register Allocation . 601
17.9.11 Function Entry and Exit . 601
17.9.12 Generating Code for Profiling . 605
17.9.13 Permitting tail calls . 605
17.9.14 Shrink-wrapping separate components 606
17.9.15 Stack smashing protection . 607
17.9.16 Miscellaneous register hooks . 608

17.10 Implementing the Varargs Macros . 608
17.11 Support for Nested Functions . 611

xii

17.12 Implicit Calls to Library Routines . 614
17.13 Addressing Modes . 616
17.14 Vectorization . 621
17.15 OpenMP and OpenACC . 625
17.16 Anchored Addresses . 627
17.17 Condition Code Status . 628

17.17.1 Representation of condition codes using registers 629
17.18 Describing Relative Costs of Operations . 631
17.19 Adjusting the Instruction Scheduler . 639
17.20 Dividing the Output into Sections (Texts, Data, . . .) 647
17.21 Position Independent Code . 652
17.22 Defining the Output Assembler Language 653

17.22.1 The Overall Framework of an Assembler File 653
17.22.2 Output of Data . 656
17.22.3 Output of Uninitialized Variables . 659
17.22.4 Output and Generation of Labels . 661
17.22.5 How Initialization Functions Are Handled 668
17.22.6 Macros Controlling Initialization Routines 670
17.22.7 Output of Assembler Instructions . 672
17.22.8 Output of Dispatch Tables . 676
17.22.9 Assembler Commands for Exception Regions 678
17.22.10 Assembler Commands for Alignment 680

17.23 Controlling Debugging Information Format 682
17.23.1 Macros Affecting All Debugging Formats 682
17.23.2 Macros for DWARF Output . 683
17.23.3 Macros for VMS Debug Format . 685
17.23.4 Macros for CTF Debug Format . 685
17.23.5 Macros for BTF Debug Format . 685

17.24 Cross Compilation and Floating Point . 685
17.25 Mode Switching Instructions . 686
17.26 Defining target-specific uses of __attribute__ 688
17.27 Emulating TLS . 693
17.28 Defining coprocessor specifics for MIPS targets. 694
17.29 Parameters for Precompiled Header Validity Checking 695
17.30 C++ ABI parameters . 695
17.31 D ABI parameters . 697
17.32 Rust ABI parameters . 698
17.33 JIT ABI parameters . 699
17.34 Adding support for named address spaces 699
17.35 Miscellaneous Parameters . 701

18 Host Configuration . 725
18.1 Host Common . 725
18.2 Host Filesystem . 726
18.3 Host Misc . 727

xiii

19 Makefile Fragments . 729
19.1 Target Makefile Fragments . 729
19.2 Host Makefile Fragments . 732

20 collect2 . 733

21 Standard Header File Directories 735

22 Memory Management and Type Information . . 737
22.1 The Inside of a GTY(()) . 738
22.2 Support for inheritance . 743
22.3 Support for user-provided GC marking routines 743

22.3.1 User-provided marking routines for template types 744
22.4 Marking Roots for the Garbage Collector . 745
22.5 Source Files Containing Type Information 745
22.6 How to invoke the garbage collector . 746
22.7 Troubleshooting the garbage collector . 746

23 Plugins . 749
23.1 Loading Plugins . 749
23.2 Plugin API . 749

23.2.1 Plugin license check . 749
23.2.2 Plugin initialization . 750
23.2.3 Plugin callbacks . 751

23.3 Interacting with the pass manager . 752
23.4 Interacting with the GCC Garbage Collector 753
23.5 Giving information about a plugin . 753
23.6 Registering custom attributes or pragmas . 754
23.7 Recording information about pass execution 754
23.8 Controlling which passes are being run . 755
23.9 Keeping track of available passes . 755
23.10 Building GCC plugins . 755

24 Link Time Optimization . 757
24.1 Design Overview . 757

24.1.1 LTO modes of operation . 758
24.2 LTO file sections . 758
24.3 Using summary information in IPA passes 760

24.3.1 Virtual clones . 761
24.3.2 IPA references . 762
24.3.3 Jump functions . 762

24.4 Whole program assumptions, linker
plugin and symbol visibilities . 762

24.5 Internal flags controlling lto1 . 764

xiv

25 Match and Simplify . 765
25.1 GIMPLE API . 765
25.2 The Language . 766

26 Static Analyzer . 773
26.1 Analyzer Internals . 773

26.1.1 Overview . 773
26.1.2 Graphs . 774
26.1.3 State Tracking . 775
26.1.4 Region Model . 776
26.1.5 Analyzer Paths . 779
26.1.6 Limitations . 780

26.2 Debugging the Analyzer . 781
26.2.1 Special Functions for Debugging the Analyzer 782
26.2.2 Other Debugging Techniques . 784

27 User Experience Guidelines 785
27.1 Guidelines for Diagnostics . 785

27.1.1 Talk in terms of the user’s code . 785
27.1.2 Diagnostics are actionable . 785
27.1.3 The user’s attention is important . 785
27.1.4 Sometimes the user didn’t write the code 786
27.1.5 Precision of Wording . 786
27.1.6 Try the diagnostic on real-world code 786
27.1.7 Make mismatches clear . 786
27.1.8 Location Information . 787
27.1.9 Coding Conventions . 789
27.1.10 Group logically-related diagnostics . 789
27.1.11 Quoting . 789
27.1.12 Use color consistently when highlighting mismatches . . . 790
27.1.13 Spelling and Terminology . 791
27.1.14 Fix-it hints . 791

27.1.14.1 Fix-it hints should work . 791
27.1.14.2 Express deletion in
terms of deletion, not replacement . 792

27.1.14.3 Multiple suggestions . 793
27.2 Guidelines for Options . 793

Funding Free Software . 795

The GNU Project and GNU/Linux 797

GNU General Public License . 799

xv

GNU Free Documentation License 811
ADDENDUM: How to use this License for your documents 818

Contributors to GCC . 819

Option Index . 837

Concept Index . 839

1

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current devel-
opment sources are available via Git (see https://gcc.gnu.org/git.html). Source and
binary snapshots are also available for FTP; see https://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:
https://gcc.gnu.org/contribute.html

https://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at https://gcc.gnu.org/projects/.

https://gcc.gnu.org/git.html
https://gcc.gnu.org/snapshots.html
https://gcc.gnu.org/contribute.html
https://gcc.gnu.org/contributewhy.html
https://gcc.gnu.org/projects/

3

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

5

3 The GCC low-level runtime library

GCC provides a low-level runtime library, libgcc.a or libgcc_s.so.1 on some platforms.
GCC generates calls to routines in this library automatically, whenever it needs to perform
some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and all
floating-point and fixed-point operations on other machines. libgcc also includes routines
for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in Section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 13.6 [Machine Modes], page 295, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long

to DImode; and long long and unsigned long long to TImode.

3.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

3.1.1 Arithmetic functions

[Runtime Function]int __ashlsi3 (int a, int b)
[Runtime Function]long __ashldi3 (long a, int b)
[Runtime Function]long long __ashlti3 (long long a, int b)

These functions return the result of shifting a left by b bits.

[Runtime Function]int __ashrsi3 (int a, int b)
[Runtime Function]long __ashrdi3 (long a, int b)
[Runtime Function]long long __ashrti3 (long long a, int b)

These functions return the result of arithmetically shifting a right by b bits.

[Runtime Function]int __divsi3 (int a, int b)
[Runtime Function]long __divdi3 (long a, long b)
[Runtime Function]long long __divti3 (long long a, long long b)

These functions return the quotient of the signed division of a and b.

[Runtime Function]int __lshrsi3 (int a, int b)
[Runtime Function]long __lshrdi3 (long a, int b)
[Runtime Function]long long __lshrti3 (long long a, int b)

These functions return the result of logically shifting a right by b bits.

6 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __modsi3 (int a, int b)
[Runtime Function]long __moddi3 (long a, long b)
[Runtime Function]long long __modti3 (long long a, long long b)

These functions return the remainder of the signed division of a and b.

[Runtime Function]int __mulsi3 (int a, int b)
[Runtime Function]long __muldi3 (long a, long b)
[Runtime Function]long long __multi3 (long long a, long long b)

These functions return the product of a and b.

[Runtime Function]long __negdi2 (long a)
[Runtime Function]long long __negti2 (long long a)

These functions return the negation of a.

[Runtime Function]unsigned int __udivsi3 (unsigned int a, unsigned
int b)

[Runtime Function]unsigned long __udivdi3 (unsigned long a, unsigned
long b)

[Runtime Function]unsigned long long __udivti3 (unsigned long long a,
unsigned long long b)

These functions return the quotient of the unsigned division of a and b.

[Runtime Function]unsigned long __udivmoddi4 (unsigned long a,
unsigned long b, unsigned long *c)

[Runtime Function]unsigned long long __udivmodti4 (unsigned long long
a, unsigned long long b, unsigned long long *c)

These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

[Runtime Function]unsigned int __umodsi3 (unsigned int a, unsigned
int b)

[Runtime Function]unsigned long __umoddi3 (unsigned long a, unsigned
long b)

[Runtime Function]unsigned long long __umodti3 (unsigned long long a,
unsigned long long b)

These functions return the remainder of the unsigned division of a and b.

3.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

[Runtime Function]int __cmpdi2 (long a, long b)
[Runtime Function]int __cmpti2 (long long a, long long b)

These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 3: The GCC low-level runtime library 7

[Runtime Function]int __ucmpdi2 (unsigned long a, unsigned long b)
[Runtime Function]int __ucmpti2 (unsigned long long a, unsigned long

long b)
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

3.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

[Runtime Function]int __absvsi2 (int a)
[Runtime Function]long __absvdi2 (long a)

These functions return the absolute value of a.

[Runtime Function]int __addvsi3 (int a, int b)
[Runtime Function]long __addvdi3 (long a, long b)

These functions return the sum of a and b; that is a + b.

[Runtime Function]int __mulvsi3 (int a, int b)
[Runtime Function]long __mulvdi3 (long a, long b)

The functions return the product of a and b; that is a * b.

[Runtime Function]int __negvsi2 (int a)
[Runtime Function]long __negvdi2 (long a)

These functions return the negation of a; that is -a.

[Runtime Function]int __subvsi3 (int a, int b)
[Runtime Function]long __subvdi3 (long a, long b)

These functions return the difference between b and a; that is a - b.

3.1.4 Bit operations

[Runtime Function]int __clzsi2 (unsigned int a)
[Runtime Function]int __clzdi2 (unsigned long a)
[Runtime Function]int __clzti2 (unsigned long long a)

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

[Runtime Function]int __ctzsi2 (unsigned int a)
[Runtime Function]int __ctzdi2 (unsigned long a)
[Runtime Function]int __ctzti2 (unsigned long long a)

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

[Runtime Function]int __ffsdi2 (unsigned long a)
[Runtime Function]int __ffsti2 (unsigned long long a)

These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

8 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __paritysi2 (unsigned int a)
[Runtime Function]int __paritydi2 (unsigned long a)
[Runtime Function]int __parityti2 (unsigned long long a)

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

[Runtime Function]int __popcountsi2 (unsigned int a)
[Runtime Function]int __popcountdi2 (unsigned long a)
[Runtime Function]int __popcountti2 (unsigned long long a)

These functions return the number of bits set in a.

[Runtime Function]int32_t __bswapsi2 (int32_t a)
[Runtime Function]int64_t __bswapdi2 (int64_t a)

These functions return the a byteswapped.

3.1.5 Bit-precise integer arithmetic functions

_BitInt(n) library functions operate on arrays of limbs, where each limb has __LIBGCC_
BITINT_LIMB_WIDTH__ bits and the limbs are ordered according to __LIBGCC_BITINT_

ORDER__ ordering. The most significant limb if n is not divisible by __LIBGCC_BITINT_

LIMB_WIDTH__ contains padding bits which should be ignored on read (sign or zero ex-
tended), but extended on write. For the library functions, all bit-precise integers regardless
of n are represented like that, even when the target ABI says that for some small n they
should be represented differently in memory. A pointer to the array of limbs argument is
always accompanied with a bit size argument. If that argument is positive, it is number of
bits and the number is assumed to be zero-extended to infinite precision, if that argument is
negative, it is negated number of bits above which all bits are assumed to be sign-extended
to infinite precision. These number of bits arguments don’t need to match actual n for the
operation used in the source, they could be lowered because of sign or zero extensions on
the input or because value-range optimization figures value will need certain lower number
of bits. For big-endian ordering of limbs, when lowering the bit size argument the pointer
argument needs to be adjusted as well. Negative bit size argument should be always smaller
or equal to -2, because signed _BitInt(1) is not valid. For output arguments, either the
corresponding bit size argument should be always positive (for multiplication and division),
or is negative when the output of conversion from floating-point value is signed and positive
when unsigned. The arrays of limbs output arguments point to should not overlap any
inputs, while input arrays of limbs can overlap. UBILtype below stands for unsigned integer
type with __LIBGCC_BITINT_LIMB_WIDTH__ bit precision.

[Runtime Function]void __mulbitint3 (UBILtype *ret, int32_t retprec,
const UBILtype *u, int32_t uprec, const UBILtype *v, int32_t
vprec)

This function multiplies bit-precise integer operands u and v and stores result into
retprec precision bit-precise integer result ret.

[Runtime Function]void __divmodbitint4 (UBILtype *q, int32_t qprec,
UBILtype *r, int32_t rprec, const UBILtype *u, int32_t
uprec, const UBILtype *v, int32_t vprec)

This function divides bit-precise integer operands u and v and stores quotient into
qprec precision bit-precise integer result q (unless q is NULL and qprec is 0, in that

Chapter 3: The GCC low-level runtime library 9

case quotient is not stored anywhere) and remainder into rprec precision bit-precise
integer result r (similarly, unless r is NULL and rprec is 0).

3.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever -msoft-float is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 17.12 [Library Calls],
page 614). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

3.2.1 Arithmetic functions

[Runtime Function]float __addsf3 (float a, float b)
[Runtime Function]double __adddf3 (double a, double b)
[Runtime Function]long double __addtf3 (long double a, long double b)
[Runtime Function]long double __addxf3 (long double a, long double b)

These functions return the sum of a and b.

[Runtime Function]float __subsf3 (float a, float b)
[Runtime Function]double __subdf3 (double a, double b)
[Runtime Function]long double __subtf3 (long double a, long double b)
[Runtime Function]long double __subxf3 (long double a, long double b)

These functions return the difference between b and a; that is, a− b.

[Runtime Function]float __mulsf3 (float a, float b)
[Runtime Function]double __muldf3 (double a, double b)
[Runtime Function]long double __multf3 (long double a, long double b)
[Runtime Function]long double __mulxf3 (long double a, long double b)

These functions return the product of a and b.

[Runtime Function]float __divsf3 (float a, float b)
[Runtime Function]double __divdf3 (double a, double b)
[Runtime Function]long double __divtf3 (long double a, long double b)
[Runtime Function]long double __divxf3 (long double a, long double b)

These functions return the quotient of a and b; that is, a/b.

[Runtime Function]float __negsf2 (float a)
[Runtime Function]double __negdf2 (double a)
[Runtime Function]long double __negtf2 (long double a)
[Runtime Function]long double __negxf2 (long double a)

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

10 GNU Compiler Collection (GCC) Internals

3.2.2 Conversion functions

[Runtime Function]double __extendsfdf2 (float a)
[Runtime Function]long double __extendsftf2 (float a)
[Runtime Function]long double __extendsfxf2 (float a)
[Runtime Function]long double __extenddftf2 (double a)
[Runtime Function]long double __extenddfxf2 (double a)

These functions extend a to the wider mode of their return type.

[Runtime Function]double __truncxfdf2 (long double a)
[Runtime Function]double __trunctfdf2 (long double a)
[Runtime Function]float __truncxfsf2 (long double a)
[Runtime Function]float __trunctfsf2 (long double a)
[Runtime Function]float __truncdfsf2 (double a)

These functions truncate a to the narrower mode of their return type, rounding toward
zero.

[Runtime Function]int __fixsfsi (float a)
[Runtime Function]int __fixdfsi (double a)
[Runtime Function]int __fixtfsi (long double a)
[Runtime Function]int __fixxfsi (long double a)

These functions convert a to a signed integer, rounding toward zero.

[Runtime Function]long __fixsfdi (float a)
[Runtime Function]long __fixdfdi (double a)
[Runtime Function]long __fixtfdi (long double a)
[Runtime Function]long __fixxfdi (long double a)

These functions convert a to a signed long, rounding toward zero.

[Runtime Function]long long __fixsfti (float a)
[Runtime Function]long long __fixdfti (double a)
[Runtime Function]long long __fixtfti (long double a)
[Runtime Function]long long __fixxfti (long double a)

These functions convert a to a signed long long, rounding toward zero.

[Runtime Function]unsigned int __fixunssfsi (float a)
[Runtime Function]unsigned int __fixunsdfsi (double a)
[Runtime Function]unsigned int __fixunstfsi (long double a)
[Runtime Function]unsigned int __fixunsxfsi (long double a)

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

[Runtime Function]unsigned long __fixunssfdi (float a)
[Runtime Function]unsigned long __fixunsdfdi (double a)
[Runtime Function]unsigned long __fixunstfdi (long double a)
[Runtime Function]unsigned long __fixunsxfdi (long double a)

These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

Chapter 3: The GCC low-level runtime library 11

[Runtime Function]unsigned long long __fixunssfti (float a)
[Runtime Function]unsigned long long __fixunsdfti (double a)
[Runtime Function]unsigned long long __fixunstfti (long double a)
[Runtime Function]unsigned long long __fixunsxfti (long double a)

These functions convert a to an unsigned long long, rounding toward zero. Negative
values all become zero.

[Runtime Function]float __floatsisf (int i)
[Runtime Function]double __floatsidf (int i)
[Runtime Function]long double __floatsitf (int i)
[Runtime Function]long double __floatsixf (int i)

These functions convert i, a signed integer, to floating point.

[Runtime Function]float __floatdisf (long i)
[Runtime Function]double __floatdidf (long i)
[Runtime Function]long double __floatditf (long i)
[Runtime Function]long double __floatdixf (long i)

These functions convert i, a signed long, to floating point.

[Runtime Function]float __floattisf (long long i)
[Runtime Function]double __floattidf (long long i)
[Runtime Function]long double __floattitf (long long i)
[Runtime Function]long double __floattixf (long long i)

These functions convert i, a signed long long, to floating point.

[Runtime Function]float __floatunsisf (unsigned int i)
[Runtime Function]double __floatunsidf (unsigned int i)
[Runtime Function]long double __floatunsitf (unsigned int i)
[Runtime Function]long double __floatunsixf (unsigned int i)

These functions convert i, an unsigned integer, to floating point.

[Runtime Function]float __floatundisf (unsigned long i)
[Runtime Function]double __floatundidf (unsigned long i)
[Runtime Function]long double __floatunditf (unsigned long i)
[Runtime Function]long double __floatundixf (unsigned long i)

These functions convert i, an unsigned long, to floating point.

[Runtime Function]float __floatuntisf (unsigned long long i)
[Runtime Function]double __floatuntidf (unsigned long long i)
[Runtime Function]long double __floatuntitf (unsigned long long i)
[Runtime Function]long double __floatuntixf (unsigned long long i)

These functions convert i, an unsigned long long, to floating point.

[Runtime Function]void __fixsfbitint (UBILtype *r, int32_t rprec,
float a)

[Runtime Function]void __fixdfbitint (UBILtype *r, int32_t rprec,
double a)

[Runtime Function]void __fixxfbitint (UBILtype *r, int32_t rprec,
__float80 a)

12 GNU Compiler Collection (GCC) Internals

[Runtime Function]void __fixtfbitint (UBILtype *r, int32_t rprec,
_Float128 a)

These functions convert a to bit-precise integer r, rounding toward zero. If rprec is
positive, it converts to unsigned bit-precise integer and negative values all become
zero, if rprec is negative, it converts to signed bit-precise integer.

[Runtime Function]float __floatbitintsf (UBILtype *i, int32_t iprec)
[Runtime Function]double __floatbitintdf (UBILtype *i, int32_t iprec)
[Runtime Function]__float80 __floatbitintxf (UBILtype *i, int32_t

iprec)
[Runtime Function]_Float128 __floatbitinttf (UBILtype *i, int32_t

iprec)
[Runtime Function]_Float16 __floatbitinthf (UBILtype *i, int32_t

iprec)
[Runtime Function]__bf16 __floatbitintbf (UBILtype *i, int32_t iprec)

These functions convert bit-precise integer i to floating point. If iprec is positive,
it is conversion from unsigned bit-precise integer, otherwise from signed bit-precise
integer.

3.2.3 Comparison functions

There are two sets of basic comparison functions.

[Runtime Function]CMPtype __cmpsf2 (float a, float b)
[Runtime Function]CMPtype __cmpdf2 (double a, double b)
[Runtime Function]CMPtype __cmptf2 (long double a, long double b)

These functions calculate a <=> b. That is, if a is less than b, they return −1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

[Runtime Function]CMPtype __unordsf2 (float a, float b)
[Runtime Function]CMPtype __unorddf2 (double a, double b)
[Runtime Function]CMPtype __unordtf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))

return E;

return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

[Runtime Function]CMPtype __eqsf2 (float a, float b)
[Runtime Function]CMPtype __eqdf2 (double a, double b)
[Runtime Function]CMPtype __eqtf2 (long double a, long double b)

These functions return zero if neither argument is NaN, and a and b are equal.

Chapter 3: The GCC low-level runtime library 13

[Runtime Function]CMPtype __nesf2 (float a, float b)
[Runtime Function]CMPtype __nedf2 (double a, double b)
[Runtime Function]CMPtype __netf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

[Runtime Function]CMPtype __gesf2 (float a, float b)
[Runtime Function]CMPtype __gedf2 (double a, double b)
[Runtime Function]CMPtype __getf2 (long double a, long double b)

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

[Runtime Function]CMPtype __ltsf2 (float a, float b)
[Runtime Function]CMPtype __ltdf2 (double a, double b)
[Runtime Function]CMPtype __lttf2 (long double a, long double b)

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

[Runtime Function]CMPtype __lesf2 (float a, float b)
[Runtime Function]CMPtype __ledf2 (double a, double b)
[Runtime Function]CMPtype __letf2 (long double a, long double b)

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

[Runtime Function]CMPtype __gtsf2 (float a, float b)
[Runtime Function]CMPtype __gtdf2 (double a, double b)
[Runtime Function]CMPtype __gttf2 (long double a, long double b)

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

Comparison functions return a CMPtype which is a signed integer of target-dependent
size. Typically CMPtype will be word-sized, but other backends may override this with the
TARGET_LIBGCC_CMP_RETURN_MODE hook. Of note, AArch64 uses an single-int as the return
type, and AVR uses a quarter-int.

3.2.4 Other floating-point functions

[Runtime Function]float __powisf2 (float a, int b)
[Runtime Function]double __powidf2 (double a, int b)
[Runtime Function]long double __powitf2 (long double a, int b)
[Runtime Function]long double __powixf2 (long double a, int b)

These functions convert raise a to the power b.

[Runtime Function]complex float __mulsc3 (float a, float b, float c,
float d)

[Runtime Function]complex double __muldc3 (double a, double b, double
c, double d)

[Runtime Function]complex long double __multc3 (long double a, long
double b, long double c, long double d)

14 GNU Compiler Collection (GCC) Internals

[Runtime Function]complex long double __mulxc3 (long double a, long
double b, long double c, long double d)

These functions return the product of a + ib and c + id, following the rules of C99
Annex G.

[Runtime Function]complex float __divsc3 (float a, float b, float c,
float d)

[Runtime Function]complex double __divdc3 (double a, double b, double
c, double d)

[Runtime Function]complex long double __divtc3 (long double a, long
double b, long double c, long double d)

[Runtime Function]complex long double __divxc3 (long double a, long
double b, long double c, long double d)

These functions return the quotient of a + ib and c + id (i.e., (a + ib)/(c + id)),
following the rules of C99 Annex G.

3.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating
point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Deci-
mal) or BID (Binary Integer Decimal) encoding as selected at configure time.

3.3.1 Arithmetic functions

[Runtime Function]_Decimal32 __dpd_addsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal32 __bid_addsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal64 __dpd_adddd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal64 __bid_adddd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal128 __dpd_addtd3 (_Decimal128 a,
_Decimal128 b)

[Runtime Function]_Decimal128 __bid_addtd3 (_Decimal128 a,
_Decimal128 b)

These functions return the sum of a and b.

[Runtime Function]_Decimal32 __dpd_subsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal32 __bid_subsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal64 __dpd_subdd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal64 __bid_subdd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal128 __dpd_subtd3 (_Decimal128 a,
_Decimal128 b)

Chapter 3: The GCC low-level runtime library 15

[Runtime Function]_Decimal128 __bid_subtd3 (_Decimal128 a,
_Decimal128 b)

These functions return the difference between b and a; that is, a− b.

[Runtime Function]_Decimal32 __dpd_mulsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal32 __bid_mulsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal64 __dpd_muldd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal64 __bid_muldd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal128 __dpd_multd3 (_Decimal128 a,
_Decimal128 b)

[Runtime Function]_Decimal128 __bid_multd3 (_Decimal128 a,
_Decimal128 b)

These functions return the product of a and b.

[Runtime Function]_Decimal32 __dpd_divsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal32 __bid_divsd3 (_Decimal32 a, _Decimal32
b)

[Runtime Function]_Decimal64 __dpd_divdd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal64 __bid_divdd3 (_Decimal64 a, _Decimal64
b)

[Runtime Function]_Decimal128 __dpd_divtd3 (_Decimal128 a,
_Decimal128 b)

[Runtime Function]_Decimal128 __bid_divtd3 (_Decimal128 a,
_Decimal128 b)

These functions return the quotient of a and b; that is, a/b.

[Runtime Function]_Decimal32 __dpd_negsd2 (_Decimal32 a)
[Runtime Function]_Decimal32 __bid_negsd2 (_Decimal32 a)
[Runtime Function]_Decimal64 __dpd_negdd2 (_Decimal64 a)
[Runtime Function]_Decimal64 __bid_negdd2 (_Decimal64 a)
[Runtime Function]_Decimal128 __dpd_negtd2 (_Decimal128 a)
[Runtime Function]_Decimal128 __bid_negtd2 (_Decimal128 a)

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

3.3.2 Conversion functions

[Runtime Function]_Decimal64 __dpd_extendsddd2 (_Decimal32 a)
[Runtime Function]_Decimal64 __bid_extendsddd2 (_Decimal32 a)
[Runtime Function]_Decimal128 __dpd_extendsdtd2 (_Decimal32 a)
[Runtime Function]_Decimal128 __bid_extendsdtd2 (_Decimal32 a)
[Runtime Function]_Decimal128 __dpd_extendddtd2 (_Decimal64 a)

16 GNU Compiler Collection (GCC) Internals

[Runtime Function]_Decimal128 __bid_extendddtd2 (_Decimal64 a)
[Runtime Function]_Decimal32 __dpd_truncddsd2 (_Decimal64 a)
[Runtime Function]_Decimal32 __bid_truncddsd2 (_Decimal64 a)
[Runtime Function]_Decimal32 __dpd_trunctdsd2 (_Decimal128 a)
[Runtime Function]_Decimal32 __bid_trunctdsd2 (_Decimal128 a)
[Runtime Function]_Decimal64 __dpd_trunctddd2 (_Decimal128 a)
[Runtime Function]_Decimal64 __bid_trunctddd2 (_Decimal128 a)

These functions convert the value a from one decimal floating type to another.

[Runtime Function]_Decimal64 __dpd_extendsfdd (float a)
[Runtime Function]_Decimal64 __bid_extendsfdd (float a)
[Runtime Function]_Decimal128 __dpd_extendsftd (float a)
[Runtime Function]_Decimal128 __bid_extendsftd (float a)
[Runtime Function]_Decimal128 __dpd_extenddftd (double a)
[Runtime Function]_Decimal128 __bid_extenddftd (double a)
[Runtime Function]_Decimal128 __dpd_extendxftd (long double a)
[Runtime Function]_Decimal128 __bid_extendxftd (long double a)
[Runtime Function]_Decimal32 __dpd_truncdfsd (double a)
[Runtime Function]_Decimal32 __bid_truncdfsd (double a)
[Runtime Function]_Decimal32 __dpd_truncxfsd (long double a)
[Runtime Function]_Decimal32 __bid_truncxfsd (long double a)
[Runtime Function]_Decimal32 __dpd_trunctfsd (long double a)
[Runtime Function]_Decimal32 __bid_trunctfsd (long double a)
[Runtime Function]_Decimal64 __dpd_truncxfdd (long double a)
[Runtime Function]_Decimal64 __bid_truncxfdd (long double a)
[Runtime Function]_Decimal64 __dpd_trunctfdd (long double a)
[Runtime Function]_Decimal64 __bid_trunctfdd (long double a)

These functions convert the value of a from a binary floating type to a decimal floating
type of a different size.

[Runtime Function]float __dpd_truncddsf (_Decimal64 a)
[Runtime Function]float __bid_truncddsf (_Decimal64 a)
[Runtime Function]float __dpd_trunctdsf (_Decimal128 a)
[Runtime Function]float __bid_trunctdsf (_Decimal128 a)
[Runtime Function]double __dpd_extendsddf (_Decimal32 a)
[Runtime Function]double __bid_extendsddf (_Decimal32 a)
[Runtime Function]double __dpd_trunctddf (_Decimal128 a)
[Runtime Function]double __bid_trunctddf (_Decimal128 a)
[Runtime Function]long double __dpd_extendsdxf (_Decimal32 a)
[Runtime Function]long double __bid_extendsdxf (_Decimal32 a)
[Runtime Function]long double __dpd_extendddxf (_Decimal64 a)
[Runtime Function]long double __bid_extendddxf (_Decimal64 a)
[Runtime Function]long double __dpd_trunctdxf (_Decimal128 a)
[Runtime Function]long double __bid_trunctdxf (_Decimal128 a)
[Runtime Function]long double __dpd_extendsdtf (_Decimal32 a)
[Runtime Function]long double __bid_extendsdtf (_Decimal32 a)
[Runtime Function]long double __dpd_extendddtf (_Decimal64 a)

Chapter 3: The GCC low-level runtime library 17

[Runtime Function]long double __bid_extendddtf (_Decimal64 a)
These functions convert the value of a from a decimal floating type to a binary floating
type of a different size.

[Runtime Function]_Decimal32 __dpd_extendsfsd (float a)
[Runtime Function]_Decimal32 __bid_extendsfsd (float a)
[Runtime Function]_Decimal64 __dpd_extenddfdd (double a)
[Runtime Function]_Decimal64 __bid_extenddfdd (double a)
[Runtime Function]_Decimal128 __dpd_extendtftd (long double a)
[Runtime Function]_Decimal128 __bid_extendtftd (long double a)
[Runtime Function]float __dpd_truncsdsf (_Decimal32 a)
[Runtime Function]float __bid_truncsdsf (_Decimal32 a)
[Runtime Function]double __dpd_truncdddf (_Decimal64 a)
[Runtime Function]double __bid_truncdddf (_Decimal64 a)
[Runtime Function]long double __dpd_trunctdtf (_Decimal128 a)
[Runtime Function]long double __bid_trunctdtf (_Decimal128 a)

These functions convert the value of a between decimal and binary floating types of
the same size.

[Runtime Function]int __dpd_fixsdsi (_Decimal32 a)
[Runtime Function]int __bid_fixsdsi (_Decimal32 a)
[Runtime Function]int __dpd_fixddsi (_Decimal64 a)
[Runtime Function]int __bid_fixddsi (_Decimal64 a)
[Runtime Function]int __dpd_fixtdsi (_Decimal128 a)
[Runtime Function]int __bid_fixtdsi (_Decimal128 a)

These functions convert a to a signed integer.

[Runtime Function]long __dpd_fixsddi (_Decimal32 a)
[Runtime Function]long __bid_fixsddi (_Decimal32 a)
[Runtime Function]long __dpd_fixdddi (_Decimal64 a)
[Runtime Function]long __bid_fixdddi (_Decimal64 a)
[Runtime Function]long __dpd_fixtddi (_Decimal128 a)
[Runtime Function]long __bid_fixtddi (_Decimal128 a)

These functions convert a to a signed long.

[Runtime Function]unsigned int __dpd_fixunssdsi (_Decimal32 a)
[Runtime Function]unsigned int __bid_fixunssdsi (_Decimal32 a)
[Runtime Function]unsigned int __dpd_fixunsddsi (_Decimal64 a)
[Runtime Function]unsigned int __bid_fixunsddsi (_Decimal64 a)
[Runtime Function]unsigned int __dpd_fixunstdsi (_Decimal128 a)
[Runtime Function]unsigned int __bid_fixunstdsi (_Decimal128 a)

These functions convert a to an unsigned integer. Negative values all become zero.

[Runtime Function]unsigned long __dpd_fixunssddi (_Decimal32 a)
[Runtime Function]unsigned long __bid_fixunssddi (_Decimal32 a)
[Runtime Function]unsigned long __dpd_fixunsdddi (_Decimal64 a)
[Runtime Function]unsigned long __bid_fixunsdddi (_Decimal64 a)
[Runtime Function]unsigned long __dpd_fixunstddi (_Decimal128 a)

18 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long __bid_fixunstddi (_Decimal128 a)
These functions convert a to an unsigned long. Negative values all become zero.

[Runtime Function]_Decimal32 __dpd_floatsisd (int i)
[Runtime Function]_Decimal32 __bid_floatsisd (int i)
[Runtime Function]_Decimal64 __dpd_floatsidd (int i)
[Runtime Function]_Decimal64 __bid_floatsidd (int i)
[Runtime Function]_Decimal128 __dpd_floatsitd (int i)
[Runtime Function]_Decimal128 __bid_floatsitd (int i)

These functions convert i, a signed integer, to decimal floating point.

[Runtime Function]_Decimal32 __dpd_floatdisd (long i)
[Runtime Function]_Decimal32 __bid_floatdisd (long i)
[Runtime Function]_Decimal64 __dpd_floatdidd (long i)
[Runtime Function]_Decimal64 __bid_floatdidd (long i)
[Runtime Function]_Decimal128 __dpd_floatditd (long i)
[Runtime Function]_Decimal128 __bid_floatditd (long i)

These functions convert i, a signed long, to decimal floating point.

[Runtime Function]_Decimal32 __dpd_floatunssisd (unsigned int i)
[Runtime Function]_Decimal32 __bid_floatunssisd (unsigned int i)
[Runtime Function]_Decimal64 __dpd_floatunssidd (unsigned int i)
[Runtime Function]_Decimal64 __bid_floatunssidd (unsigned int i)
[Runtime Function]_Decimal128 __dpd_floatunssitd (unsigned int i)
[Runtime Function]_Decimal128 __bid_floatunssitd (unsigned int i)

These functions convert i, an unsigned integer, to decimal floating point.

[Runtime Function]_Decimal32 __dpd_floatunsdisd (unsigned long i)
[Runtime Function]_Decimal32 __bid_floatunsdisd (unsigned long i)
[Runtime Function]_Decimal64 __dpd_floatunsdidd (unsigned long i)
[Runtime Function]_Decimal64 __bid_floatunsdidd (unsigned long i)
[Runtime Function]_Decimal128 __dpd_floatunsditd (unsigned long i)
[Runtime Function]_Decimal128 __bid_floatunsditd (unsigned long i)

These functions convert i, an unsigned long, to decimal floating point.

[Runtime Function]void __bid_fixsdbitint (UBILtype *r, int32_t rprec,
_Decimal32 a)

[Runtime Function]void __bid_fixddbitint (UBILtype *r, int32_t rprec,
_Decimal64 a)

[Runtime Function]void __bid_fixtdbitint (UBILtype *r, int32_t rprec,
_Decimal128 a)

These functions convert a to bit-precise integer r, rounding toward zero. If rprec is
positive, it converts to unsigned bit-precise integer and negative values all become
zero, if rprec is negative, it converts to signed bit-precise integer. So far implemented
for BID format only.

Chapter 3: The GCC low-level runtime library 19

[Runtime Function]_Decimal32 __bid_floatbitintsd (UBILtype *i,
int32_t iprec)

[Runtime Function]_Decimal64 __bid_floatbitintdd (UBILtype *i,
int32_t iprec)

[Runtime Function]_Decimal128 __bid_floatbitinttd (UBILtype *i,
int32_t iprec)

These functions convert bit-precise integer i to decimal floating point. If iprec is
positive, it is conversion from unsigned bit-precise integer, otherwise from signed
bit-precise integer. So far implemented for BID format only.

3.3.3 Comparison functions

[Runtime Function]int __dpd_unordsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_unordsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_unorddd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_unorddd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_unordtd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_unordtd2 (_Decimal128 a, _Decimal128 b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__bid_unordXd2 (a, b))

return E;

return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

[Runtime Function]int __dpd_eqsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_eqsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_eqdd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_eqdd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_eqtd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_eqtd2 (_Decimal128 a, _Decimal128 b)

These functions return zero if neither argument is NaN, and a and b are equal.

[Runtime Function]int __dpd_nesd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_nesd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_nedd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_nedd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_netd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_netd2 (_Decimal128 a, _Decimal128 b)

These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

20 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __dpd_gesd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_gesd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_gedd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_gedd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_getd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_getd2 (_Decimal128 a, _Decimal128 b)

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

[Runtime Function]int __dpd_ltsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_ltsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_ltdd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_ltdd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_lttd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_lttd2 (_Decimal128 a, _Decimal128 b)

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

[Runtime Function]int __dpd_lesd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_lesd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_ledd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_ledd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_letd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_letd2 (_Decimal128 a, _Decimal128 b)

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

[Runtime Function]int __dpd_gtsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __bid_gtsd2 (_Decimal32 a, _Decimal32 b)
[Runtime Function]int __dpd_gtdd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __bid_gtdd2 (_Decimal64 a, _Decimal64 b)
[Runtime Function]int __dpd_gttd2 (_Decimal128 a, _Decimal128 b)
[Runtime Function]int __bid_gttd2 (_Decimal128 a, _Decimal128 b)

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

3.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only
activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for
_Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is as-
sumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract
to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract

to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode.
Similarly the fixed-point accumulator type short accum corresponds to HAmode;
unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode;

Chapter 3: The GCC low-level runtime library 21

long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode;
and unsigned long long accum to UTAmode.

3.4.1 Arithmetic functions

[Runtime Function]short fract __addqq3 (short fract a, short fract b)
[Runtime Function]fract __addhq3 (fract a, fract b)
[Runtime Function]long fract __addsq3 (long fract a, long fract b)
[Runtime Function]long long fract __adddq3 (long long fract a, long

long fract b)
[Runtime Function]unsigned short fract __adduqq3 (unsigned short

fract a, unsigned short fract b)
[Runtime Function]unsigned fract __adduhq3 (unsigned fract a,

unsigned fract b)
[Runtime Function]unsigned long fract __addusq3 (unsigned long fract

a, unsigned long fract b)
[Runtime Function]unsigned long long fract __addudq3 (unsigned long

long fract a, unsigned long long fract b)
[Runtime Function]short accum __addha3 (short accum a, short accum b)
[Runtime Function]accum __addsa3 (accum a, accum b)
[Runtime Function]long accum __addda3 (long accum a, long accum b)
[Runtime Function]long long accum __addta3 (long long accum a, long

long accum b)
[Runtime Function]unsigned short accum __adduha3 (unsigned short

accum a, unsigned short accum b)
[Runtime Function]unsigned accum __addusa3 (unsigned accum a,

unsigned accum b)
[Runtime Function]unsigned long accum __adduda3 (unsigned long accum

a, unsigned long accum b)
[Runtime Function]unsigned long long accum __adduta3 (unsigned long

long accum a, unsigned long long accum b)
These functions return the sum of a and b.

[Runtime Function]short fract __ssaddqq3 (short fract a, short fract
b)

[Runtime Function]fract __ssaddhq3 (fract a, fract b)
[Runtime Function]long fract __ssaddsq3 (long fract a, long fract b)
[Runtime Function]long long fract __ssadddq3 (long long fract a, long

long fract b)
[Runtime Function]short accum __ssaddha3 (short accum a, short accum

b)
[Runtime Function]accum __ssaddsa3 (accum a, accum b)
[Runtime Function]long accum __ssaddda3 (long accum a, long accum b)
[Runtime Function]long long accum __ssaddta3 (long long accum a, long

long accum b)
These functions return the sum of a and b with signed saturation.

22 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned short fract __usadduqq3 (unsigned short
fract a, unsigned short fract b)

[Runtime Function]unsigned fract __usadduhq3 (unsigned fract a,
unsigned fract b)

[Runtime Function]unsigned long fract __usaddusq3 (unsigned long
fract a, unsigned long fract b)

[Runtime Function]unsigned long long fract __usaddudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __usadduha3 (unsigned short
accum a, unsigned short accum b)

[Runtime Function]unsigned accum __usaddusa3 (unsigned accum a,
unsigned accum b)

[Runtime Function]unsigned long accum __usadduda3 (unsigned long
accum a, unsigned long accum b)

[Runtime Function]unsigned long long accum __usadduta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the sum of a and b with unsigned saturation.

[Runtime Function]short fract __subqq3 (short fract a, short fract b)
[Runtime Function]fract __subhq3 (fract a, fract b)
[Runtime Function]long fract __subsq3 (long fract a, long fract b)
[Runtime Function]long long fract __subdq3 (long long fract a, long

long fract b)
[Runtime Function]unsigned short fract __subuqq3 (unsigned short

fract a, unsigned short fract b)
[Runtime Function]unsigned fract __subuhq3 (unsigned fract a,

unsigned fract b)
[Runtime Function]unsigned long fract __subusq3 (unsigned long fract

a, unsigned long fract b)
[Runtime Function]unsigned long long fract __subudq3 (unsigned long

long fract a, unsigned long long fract b)
[Runtime Function]short accum __subha3 (short accum a, short accum b)
[Runtime Function]accum __subsa3 (accum a, accum b)
[Runtime Function]long accum __subda3 (long accum a, long accum b)
[Runtime Function]long long accum __subta3 (long long accum a, long

long accum b)
[Runtime Function]unsigned short accum __subuha3 (unsigned short

accum a, unsigned short accum b)
[Runtime Function]unsigned accum __subusa3 (unsigned accum a,

unsigned accum b)
[Runtime Function]unsigned long accum __subuda3 (unsigned long accum

a, unsigned long accum b)
[Runtime Function]unsigned long long accum __subuta3 (unsigned long

long accum a, unsigned long long accum b)
These functions return the difference of a and b; that is, a - b.

Chapter 3: The GCC low-level runtime library 23

[Runtime Function]short fract __sssubqq3 (short fract a, short fract
b)

[Runtime Function]fract __sssubhq3 (fract a, fract b)
[Runtime Function]long fract __sssubsq3 (long fract a, long fract b)
[Runtime Function]long long fract __sssubdq3 (long long fract a, long

long fract b)
[Runtime Function]short accum __sssubha3 (short accum a, short accum

b)
[Runtime Function]accum __sssubsa3 (accum a, accum b)
[Runtime Function]long accum __sssubda3 (long accum a, long accum b)
[Runtime Function]long long accum __sssubta3 (long long accum a, long

long accum b)
These functions return the difference of a and b with signed saturation; that is, a -

b.

[Runtime Function]unsigned short fract __ussubuqq3 (unsigned short
fract a, unsigned short fract b)

[Runtime Function]unsigned fract __ussubuhq3 (unsigned fract a,
unsigned fract b)

[Runtime Function]unsigned long fract __ussubusq3 (unsigned long
fract a, unsigned long fract b)

[Runtime Function]unsigned long long fract __ussubudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __ussubuha3 (unsigned short
accum a, unsigned short accum b)

[Runtime Function]unsigned accum __ussubusa3 (unsigned accum a,
unsigned accum b)

[Runtime Function]unsigned long accum __ussubuda3 (unsigned long
accum a, unsigned long accum b)

[Runtime Function]unsigned long long accum __ussubuta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the difference of a and b with unsigned saturation; that is, a
- b.

[Runtime Function]short fract __mulqq3 (short fract a, short fract b)
[Runtime Function]fract __mulhq3 (fract a, fract b)
[Runtime Function]long fract __mulsq3 (long fract a, long fract b)
[Runtime Function]long long fract __muldq3 (long long fract a, long

long fract b)
[Runtime Function]unsigned short fract __muluqq3 (unsigned short

fract a, unsigned short fract b)
[Runtime Function]unsigned fract __muluhq3 (unsigned fract a,

unsigned fract b)
[Runtime Function]unsigned long fract __mulusq3 (unsigned long fract

a, unsigned long fract b)
[Runtime Function]unsigned long long fract __muludq3 (unsigned long

long fract a, unsigned long long fract b)
[Runtime Function]short accum __mulha3 (short accum a, short accum b)

24 GNU Compiler Collection (GCC) Internals

[Runtime Function]accum __mulsa3 (accum a, accum b)
[Runtime Function]long accum __mulda3 (long accum a, long accum b)
[Runtime Function]long long accum __multa3 (long long accum a, long

long accum b)
[Runtime Function]unsigned short accum __muluha3 (unsigned short

accum a, unsigned short accum b)
[Runtime Function]unsigned accum __mulusa3 (unsigned accum a,

unsigned accum b)
[Runtime Function]unsigned long accum __muluda3 (unsigned long accum

a, unsigned long accum b)
[Runtime Function]unsigned long long accum __muluta3 (unsigned long

long accum a, unsigned long long accum b)
These functions return the product of a and b.

[Runtime Function]short fract __ssmulqq3 (short fract a, short fract
b)

[Runtime Function]fract __ssmulhq3 (fract a, fract b)
[Runtime Function]long fract __ssmulsq3 (long fract a, long fract b)
[Runtime Function]long long fract __ssmuldq3 (long long fract a, long

long fract b)
[Runtime Function]short accum __ssmulha3 (short accum a, short accum

b)
[Runtime Function]accum __ssmulsa3 (accum a, accum b)
[Runtime Function]long accum __ssmulda3 (long accum a, long accum b)
[Runtime Function]long long accum __ssmulta3 (long long accum a, long

long accum b)
These functions return the product of a and b with signed saturation.

[Runtime Function]unsigned short fract __usmuluqq3 (unsigned short
fract a, unsigned short fract b)

[Runtime Function]unsigned fract __usmuluhq3 (unsigned fract a,
unsigned fract b)

[Runtime Function]unsigned long fract __usmulusq3 (unsigned long
fract a, unsigned long fract b)

[Runtime Function]unsigned long long fract __usmuludq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __usmuluha3 (unsigned short
accum a, unsigned short accum b)

[Runtime Function]unsigned accum __usmulusa3 (unsigned accum a,
unsigned accum b)

[Runtime Function]unsigned long accum __usmuluda3 (unsigned long
accum a, unsigned long accum b)

[Runtime Function]unsigned long long accum __usmuluta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the product of a and b with unsigned saturation.

[Runtime Function]short fract __divqq3 (short fract a, short fract b)
[Runtime Function]fract __divhq3 (fract a, fract b)

Chapter 3: The GCC low-level runtime library 25

[Runtime Function]long fract __divsq3 (long fract a, long fract b)
[Runtime Function]long long fract __divdq3 (long long fract a, long

long fract b)
[Runtime Function]short accum __divha3 (short accum a, short accum b)
[Runtime Function]accum __divsa3 (accum a, accum b)
[Runtime Function]long accum __divda3 (long accum a, long accum b)
[Runtime Function]long long accum __divta3 (long long accum a, long

long accum b)
These functions return the quotient of the signed division of a and b.

[Runtime Function]unsigned short fract __udivuqq3 (unsigned short
fract a, unsigned short fract b)

[Runtime Function]unsigned fract __udivuhq3 (unsigned fract a,
unsigned fract b)

[Runtime Function]unsigned long fract __udivusq3 (unsigned long fract
a, unsigned long fract b)

[Runtime Function]unsigned long long fract __udivudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __udivuha3 (unsigned short
accum a, unsigned short accum b)

[Runtime Function]unsigned accum __udivusa3 (unsigned accum a,
unsigned accum b)

[Runtime Function]unsigned long accum __udivuda3 (unsigned long accum
a, unsigned long accum b)

[Runtime Function]unsigned long long accum __udivuta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the quotient of the unsigned division of a and b.

[Runtime Function]short fract __ssdivqq3 (short fract a, short fract
b)

[Runtime Function]fract __ssdivhq3 (fract a, fract b)
[Runtime Function]long fract __ssdivsq3 (long fract a, long fract b)
[Runtime Function]long long fract __ssdivdq3 (long long fract a, long

long fract b)
[Runtime Function]short accum __ssdivha3 (short accum a, short accum

b)
[Runtime Function]accum __ssdivsa3 (accum a, accum b)
[Runtime Function]long accum __ssdivda3 (long accum a, long accum b)
[Runtime Function]long long accum __ssdivta3 (long long accum a, long

long accum b)
These functions return the quotient of the signed division of a and b with signed
saturation.

[Runtime Function]unsigned short fract __usdivuqq3 (unsigned short
fract a, unsigned short fract b)

[Runtime Function]unsigned fract __usdivuhq3 (unsigned fract a,
unsigned fract b)

26 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long fract __usdivusq3 (unsigned long
fract a, unsigned long fract b)

[Runtime Function]unsigned long long fract __usdivudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __usdivuha3 (unsigned short
accum a, unsigned short accum b)

[Runtime Function]unsigned accum __usdivusa3 (unsigned accum a,
unsigned accum b)

[Runtime Function]unsigned long accum __usdivuda3 (unsigned long
accum a, unsigned long accum b)

[Runtime Function]unsigned long long accum __usdivuta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the quotient of the unsigned division of a and b with unsigned
saturation.

[Runtime Function]short fract __negqq2 (short fract a)
[Runtime Function]fract __neghq2 (fract a)
[Runtime Function]long fract __negsq2 (long fract a)
[Runtime Function]long long fract __negdq2 (long long fract a)
[Runtime Function]unsigned short fract __neguqq2 (unsigned short

fract a)
[Runtime Function]unsigned fract __neguhq2 (unsigned fract a)
[Runtime Function]unsigned long fract __negusq2 (unsigned long fract

a)
[Runtime Function]unsigned long long fract __negudq2 (unsigned long

long fract a)
[Runtime Function]short accum __negha2 (short accum a)
[Runtime Function]accum __negsa2 (accum a)
[Runtime Function]long accum __negda2 (long accum a)
[Runtime Function]long long accum __negta2 (long long accum a)
[Runtime Function]unsigned short accum __neguha2 (unsigned short

accum a)
[Runtime Function]unsigned accum __negusa2 (unsigned accum a)
[Runtime Function]unsigned long accum __neguda2 (unsigned long accum

a)
[Runtime Function]unsigned long long accum __neguta2 (unsigned long

long accum a)
These functions return the negation of a.

[Runtime Function]short fract __ssnegqq2 (short fract a)
[Runtime Function]fract __ssneghq2 (fract a)
[Runtime Function]long fract __ssnegsq2 (long fract a)
[Runtime Function]long long fract __ssnegdq2 (long long fract a)
[Runtime Function]short accum __ssnegha2 (short accum a)
[Runtime Function]accum __ssnegsa2 (accum a)
[Runtime Function]long accum __ssnegda2 (long accum a)
[Runtime Function]long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

Chapter 3: The GCC low-level runtime library 27

[Runtime Function]unsigned short fract __usneguqq2 (unsigned short
fract a)

[Runtime Function]unsigned fract __usneguhq2 (unsigned fract a)
[Runtime Function]unsigned long fract __usnegusq2 (unsigned long

fract a)
[Runtime Function]unsigned long long fract __usnegudq2 (unsigned long

long fract a)
[Runtime Function]unsigned short accum __usneguha2 (unsigned short

accum a)
[Runtime Function]unsigned accum __usnegusa2 (unsigned accum a)
[Runtime Function]unsigned long accum __usneguda2 (unsigned long

accum a)
[Runtime Function]unsigned long long accum __usneguta2 (unsigned long

long accum a)
These functions return the negation of a with unsigned saturation.

[Runtime Function]short fract __ashlqq3 (short fract a, int b)
[Runtime Function]fract __ashlhq3 (fract a, int b)
[Runtime Function]long fract __ashlsq3 (long fract a, int b)
[Runtime Function]long long fract __ashldq3 (long long fract a, int

b)
[Runtime Function]unsigned short fract __ashluqq3 (unsigned short

fract a, int b)
[Runtime Function]unsigned fract __ashluhq3 (unsigned fract a, int b)
[Runtime Function]unsigned long fract __ashlusq3 (unsigned long fract

a, int b)
[Runtime Function]unsigned long long fract __ashludq3 (unsigned long

long fract a, int b)
[Runtime Function]short accum __ashlha3 (short accum a, int b)
[Runtime Function]accum __ashlsa3 (accum a, int b)
[Runtime Function]long accum __ashlda3 (long accum a, int b)
[Runtime Function]long long accum __ashlta3 (long long accum a, int

b)
[Runtime Function]unsigned short accum __ashluha3 (unsigned short

accum a, int b)
[Runtime Function]unsigned accum __ashlusa3 (unsigned accum a, int b)
[Runtime Function]unsigned long accum __ashluda3 (unsigned long accum

a, int b)
[Runtime Function]unsigned long long accum __ashluta3 (unsigned long

long accum a, int b)
These functions return the result of shifting a left by b bits.

[Runtime Function]short fract __ashrqq3 (short fract a, int b)
[Runtime Function]fract __ashrhq3 (fract a, int b)
[Runtime Function]long fract __ashrsq3 (long fract a, int b)
[Runtime Function]long long fract __ashrdq3 (long long fract a, int

b)
[Runtime Function]short accum __ashrha3 (short accum a, int b)

28 GNU Compiler Collection (GCC) Internals

[Runtime Function]accum __ashrsa3 (accum a, int b)
[Runtime Function]long accum __ashrda3 (long accum a, int b)
[Runtime Function]long long accum __ashrta3 (long long accum a, int

b)
These functions return the result of arithmetically shifting a right by b bits.

[Runtime Function]unsigned short fract __lshruqq3 (unsigned short
fract a, int b)

[Runtime Function]unsigned fract __lshruhq3 (unsigned fract a, int b)
[Runtime Function]unsigned long fract __lshrusq3 (unsigned long fract

a, int b)
[Runtime Function]unsigned long long fract __lshrudq3 (unsigned long

long fract a, int b)
[Runtime Function]unsigned short accum __lshruha3 (unsigned short

accum a, int b)
[Runtime Function]unsigned accum __lshrusa3 (unsigned accum a, int b)
[Runtime Function]unsigned long accum __lshruda3 (unsigned long accum

a, int b)
[Runtime Function]unsigned long long accum __lshruta3 (unsigned long

long accum a, int b)
These functions return the result of logically shifting a right by b bits.

[Runtime Function]fract __ssashlhq3 (fract a, int b)
[Runtime Function]long fract __ssashlsq3 (long fract a, int b)
[Runtime Function]long long fract __ssashldq3 (long long fract a, int

b)
[Runtime Function]short accum __ssashlha3 (short accum a, int b)
[Runtime Function]accum __ssashlsa3 (accum a, int b)
[Runtime Function]long accum __ssashlda3 (long accum a, int b)
[Runtime Function]long long accum __ssashlta3 (long long accum a, int

b)
These functions return the result of shifting a left by b bits with signed saturation.

[Runtime Function]unsigned short fract __usashluqq3 (unsigned short
fract a, int b)

[Runtime Function]unsigned fract __usashluhq3 (unsigned fract a, int
b)

[Runtime Function]unsigned long fract __usashlusq3 (unsigned long
fract a, int b)

[Runtime Function]unsigned long long fract __usashludq3 (unsigned
long long fract a, int b)

[Runtime Function]unsigned short accum __usashluha3 (unsigned short
accum a, int b)

[Runtime Function]unsigned accum __usashlusa3 (unsigned accum a, int
b)

[Runtime Function]unsigned long accum __usashluda3 (unsigned long
accum a, int b)

Chapter 3: The GCC low-level runtime library 29

[Runtime Function]unsigned long long accum __usashluta3 (unsigned
long long accum a, int b)

These functions return the result of shifting a left by b bits with unsigned saturation.

3.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a
low-level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

[Runtime Function]int __cmpqq2 (short fract a, short fract b)
[Runtime Function]int __cmphq2 (fract a, fract b)
[Runtime Function]int __cmpsq2 (long fract a, long fract b)
[Runtime Function]int __cmpdq2 (long long fract a, long long fract b)
[Runtime Function]int __cmpuqq2 (unsigned short fract a, unsigned

short fract b)
[Runtime Function]int __cmpuhq2 (unsigned fract a, unsigned fract b)
[Runtime Function]int __cmpusq2 (unsigned long fract a, unsigned long

fract b)
[Runtime Function]int __cmpudq2 (unsigned long long fract a, unsigned

long long fract b)
[Runtime Function]int __cmpha2 (short accum a, short accum b)
[Runtime Function]int __cmpsa2 (accum a, accum b)
[Runtime Function]int __cmpda2 (long accum a, long accum b)
[Runtime Function]int __cmpta2 (long long accum a, long long accum b)
[Runtime Function]int __cmpuha2 (unsigned short accum a, unsigned

short accum b)
[Runtime Function]int __cmpusa2 (unsigned accum a, unsigned accum b)
[Runtime Function]int __cmpuda2 (unsigned long accum a, unsigned long

accum b)
[Runtime Function]int __cmputa2 (unsigned long long accum a, unsigned

long long accum b)
These functions perform a signed or unsigned comparison of a and b (depending on
the selected machine mode). If a is less than b, they return 0; if a is greater than b,
they return 2; and if a and b are equal they return 1.

3.4.3 Conversion functions

[Runtime Function]fract __fractqqhq2 (short fract a)
[Runtime Function]long fract __fractqqsq2 (short fract a)
[Runtime Function]long long fract __fractqqdq2 (short fract a)
[Runtime Function]short accum __fractqqha (short fract a)
[Runtime Function]accum __fractqqsa (short fract a)
[Runtime Function]long accum __fractqqda (short fract a)
[Runtime Function]long long accum __fractqqta (short fract a)
[Runtime Function]unsigned short fract __fractqquqq (short fract a)
[Runtime Function]unsigned fract __fractqquhq (short fract a)

30 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long fract __fractqqusq (short fract a)
[Runtime Function]unsigned long long fract __fractqqudq (short fract

a)
[Runtime Function]unsigned short accum __fractqquha (short fract a)
[Runtime Function]unsigned accum __fractqqusa (short fract a)
[Runtime Function]unsigned long accum __fractqquda (short fract a)
[Runtime Function]unsigned long long accum __fractqquta (short fract

a)
[Runtime Function]signed char __fractqqqi (short fract a)
[Runtime Function]short __fractqqhi (short fract a)
[Runtime Function]int __fractqqsi (short fract a)
[Runtime Function]long __fractqqdi (short fract a)
[Runtime Function]long long __fractqqti (short fract a)
[Runtime Function]float __fractqqsf (short fract a)
[Runtime Function]double __fractqqdf (short fract a)
[Runtime Function]short fract __fracthqqq2 (fract a)
[Runtime Function]long fract __fracthqsq2 (fract a)
[Runtime Function]long long fract __fracthqdq2 (fract a)
[Runtime Function]short accum __fracthqha (fract a)
[Runtime Function]accum __fracthqsa (fract a)
[Runtime Function]long accum __fracthqda (fract a)
[Runtime Function]long long accum __fracthqta (fract a)
[Runtime Function]unsigned short fract __fracthquqq (fract a)
[Runtime Function]unsigned fract __fracthquhq (fract a)
[Runtime Function]unsigned long fract __fracthqusq (fract a)
[Runtime Function]unsigned long long fract __fracthqudq (fract a)
[Runtime Function]unsigned short accum __fracthquha (fract a)
[Runtime Function]unsigned accum __fracthqusa (fract a)
[Runtime Function]unsigned long accum __fracthquda (fract a)
[Runtime Function]unsigned long long accum __fracthquta (fract a)
[Runtime Function]signed char __fracthqqi (fract a)
[Runtime Function]short __fracthqhi (fract a)
[Runtime Function]int __fracthqsi (fract a)
[Runtime Function]long __fracthqdi (fract a)
[Runtime Function]long long __fracthqti (fract a)
[Runtime Function]float __fracthqsf (fract a)
[Runtime Function]double __fracthqdf (fract a)
[Runtime Function]short fract __fractsqqq2 (long fract a)
[Runtime Function]fract __fractsqhq2 (long fract a)
[Runtime Function]long long fract __fractsqdq2 (long fract a)
[Runtime Function]short accum __fractsqha (long fract a)
[Runtime Function]accum __fractsqsa (long fract a)
[Runtime Function]long accum __fractsqda (long fract a)
[Runtime Function]long long accum __fractsqta (long fract a)
[Runtime Function]unsigned short fract __fractsquqq (long fract a)
[Runtime Function]unsigned fract __fractsquhq (long fract a)
[Runtime Function]unsigned long fract __fractsqusq (long fract a)

Chapter 3: The GCC low-level runtime library 31

[Runtime Function]unsigned long long fract __fractsqudq (long fract
a)

[Runtime Function]unsigned short accum __fractsquha (long fract a)
[Runtime Function]unsigned accum __fractsqusa (long fract a)
[Runtime Function]unsigned long accum __fractsquda (long fract a)
[Runtime Function]unsigned long long accum __fractsquta (long fract

a)
[Runtime Function]signed char __fractsqqi (long fract a)
[Runtime Function]short __fractsqhi (long fract a)
[Runtime Function]int __fractsqsi (long fract a)
[Runtime Function]long __fractsqdi (long fract a)
[Runtime Function]long long __fractsqti (long fract a)
[Runtime Function]float __fractsqsf (long fract a)
[Runtime Function]double __fractsqdf (long fract a)
[Runtime Function]short fract __fractdqqq2 (long long fract a)
[Runtime Function]fract __fractdqhq2 (long long fract a)
[Runtime Function]long fract __fractdqsq2 (long long fract a)
[Runtime Function]short accum __fractdqha (long long fract a)
[Runtime Function]accum __fractdqsa (long long fract a)
[Runtime Function]long accum __fractdqda (long long fract a)
[Runtime Function]long long accum __fractdqta (long long fract a)
[Runtime Function]unsigned short fract __fractdquqq (long long fract

a)
[Runtime Function]unsigned fract __fractdquhq (long long fract a)
[Runtime Function]unsigned long fract __fractdqusq (long long fract

a)
[Runtime Function]unsigned long long fract __fractdqudq (long long

fract a)
[Runtime Function]unsigned short accum __fractdquha (long long fract

a)
[Runtime Function]unsigned accum __fractdqusa (long long fract a)
[Runtime Function]unsigned long accum __fractdquda (long long fract

a)
[Runtime Function]unsigned long long accum __fractdquta (long long

fract a)
[Runtime Function]signed char __fractdqqi (long long fract a)
[Runtime Function]short __fractdqhi (long long fract a)
[Runtime Function]int __fractdqsi (long long fract a)
[Runtime Function]long __fractdqdi (long long fract a)
[Runtime Function]long long __fractdqti (long long fract a)
[Runtime Function]float __fractdqsf (long long fract a)
[Runtime Function]double __fractdqdf (long long fract a)
[Runtime Function]short fract __fracthaqq (short accum a)
[Runtime Function]fract __fracthahq (short accum a)
[Runtime Function]long fract __fracthasq (short accum a)
[Runtime Function]long long fract __fracthadq (short accum a)
[Runtime Function]accum __fracthasa2 (short accum a)

32 GNU Compiler Collection (GCC) Internals

[Runtime Function]long accum __fracthada2 (short accum a)
[Runtime Function]long long accum __fracthata2 (short accum a)
[Runtime Function]unsigned short fract __fracthauqq (short accum a)
[Runtime Function]unsigned fract __fracthauhq (short accum a)
[Runtime Function]unsigned long fract __fracthausq (short accum a)
[Runtime Function]unsigned long long fract __fracthaudq (short accum

a)
[Runtime Function]unsigned short accum __fracthauha (short accum a)
[Runtime Function]unsigned accum __fracthausa (short accum a)
[Runtime Function]unsigned long accum __fracthauda (short accum a)
[Runtime Function]unsigned long long accum __fracthauta (short accum

a)
[Runtime Function]signed char __fracthaqi (short accum a)
[Runtime Function]short __fracthahi (short accum a)
[Runtime Function]int __fracthasi (short accum a)
[Runtime Function]long __fracthadi (short accum a)
[Runtime Function]long long __fracthati (short accum a)
[Runtime Function]float __fracthasf (short accum a)
[Runtime Function]double __fracthadf (short accum a)
[Runtime Function]short fract __fractsaqq (accum a)
[Runtime Function]fract __fractsahq (accum a)
[Runtime Function]long fract __fractsasq (accum a)
[Runtime Function]long long fract __fractsadq (accum a)
[Runtime Function]short accum __fractsaha2 (accum a)
[Runtime Function]long accum __fractsada2 (accum a)
[Runtime Function]long long accum __fractsata2 (accum a)
[Runtime Function]unsigned short fract __fractsauqq (accum a)
[Runtime Function]unsigned fract __fractsauhq (accum a)
[Runtime Function]unsigned long fract __fractsausq (accum a)
[Runtime Function]unsigned long long fract __fractsaudq (accum a)
[Runtime Function]unsigned short accum __fractsauha (accum a)
[Runtime Function]unsigned accum __fractsausa (accum a)
[Runtime Function]unsigned long accum __fractsauda (accum a)
[Runtime Function]unsigned long long accum __fractsauta (accum a)
[Runtime Function]signed char __fractsaqi (accum a)
[Runtime Function]short __fractsahi (accum a)
[Runtime Function]int __fractsasi (accum a)
[Runtime Function]long __fractsadi (accum a)
[Runtime Function]long long __fractsati (accum a)
[Runtime Function]float __fractsasf (accum a)
[Runtime Function]double __fractsadf (accum a)
[Runtime Function]short fract __fractdaqq (long accum a)
[Runtime Function]fract __fractdahq (long accum a)
[Runtime Function]long fract __fractdasq (long accum a)
[Runtime Function]long long fract __fractdadq (long accum a)
[Runtime Function]short accum __fractdaha2 (long accum a)
[Runtime Function]accum __fractdasa2 (long accum a)

Chapter 3: The GCC low-level runtime library 33

[Runtime Function]long long accum __fractdata2 (long accum a)
[Runtime Function]unsigned short fract __fractdauqq (long accum a)
[Runtime Function]unsigned fract __fractdauhq (long accum a)
[Runtime Function]unsigned long fract __fractdausq (long accum a)
[Runtime Function]unsigned long long fract __fractdaudq (long accum

a)
[Runtime Function]unsigned short accum __fractdauha (long accum a)
[Runtime Function]unsigned accum __fractdausa (long accum a)
[Runtime Function]unsigned long accum __fractdauda (long accum a)
[Runtime Function]unsigned long long accum __fractdauta (long accum

a)
[Runtime Function]signed char __fractdaqi (long accum a)
[Runtime Function]short __fractdahi (long accum a)
[Runtime Function]int __fractdasi (long accum a)
[Runtime Function]long __fractdadi (long accum a)
[Runtime Function]long long __fractdati (long accum a)
[Runtime Function]float __fractdasf (long accum a)
[Runtime Function]double __fractdadf (long accum a)
[Runtime Function]short fract __fracttaqq (long long accum a)
[Runtime Function]fract __fracttahq (long long accum a)
[Runtime Function]long fract __fracttasq (long long accum a)
[Runtime Function]long long fract __fracttadq (long long accum a)
[Runtime Function]short accum __fracttaha2 (long long accum a)
[Runtime Function]accum __fracttasa2 (long long accum a)
[Runtime Function]long accum __fracttada2 (long long accum a)
[Runtime Function]unsigned short fract __fracttauqq (long long accum

a)
[Runtime Function]unsigned fract __fracttauhq (long long accum a)
[Runtime Function]unsigned long fract __fracttausq (long long accum

a)
[Runtime Function]unsigned long long fract __fracttaudq (long long

accum a)
[Runtime Function]unsigned short accum __fracttauha (long long accum

a)
[Runtime Function]unsigned accum __fracttausa (long long accum a)
[Runtime Function]unsigned long accum __fracttauda (long long accum

a)
[Runtime Function]unsigned long long accum __fracttauta (long long

accum a)
[Runtime Function]signed char __fracttaqi (long long accum a)
[Runtime Function]short __fracttahi (long long accum a)
[Runtime Function]int __fracttasi (long long accum a)
[Runtime Function]long __fracttadi (long long accum a)
[Runtime Function]long long __fracttati (long long accum a)
[Runtime Function]float __fracttasf (long long accum a)
[Runtime Function]double __fracttadf (long long accum a)
[Runtime Function]short fract __fractuqqqq (unsigned short fract a)

34 GNU Compiler Collection (GCC) Internals

[Runtime Function]fract __fractuqqhq (unsigned short fract a)
[Runtime Function]long fract __fractuqqsq (unsigned short fract a)
[Runtime Function]long long fract __fractuqqdq (unsigned short fract

a)
[Runtime Function]short accum __fractuqqha (unsigned short fract a)
[Runtime Function]accum __fractuqqsa (unsigned short fract a)
[Runtime Function]long accum __fractuqqda (unsigned short fract a)
[Runtime Function]long long accum __fractuqqta (unsigned short fract

a)
[Runtime Function]unsigned fract __fractuqquhq2 (unsigned short fract

a)
[Runtime Function]unsigned long fract __fractuqqusq2 (unsigned short

fract a)
[Runtime Function]unsigned long long fract __fractuqqudq2 (unsigned

short fract a)
[Runtime Function]unsigned short accum __fractuqquha (unsigned short

fract a)
[Runtime Function]unsigned accum __fractuqqusa (unsigned short fract

a)
[Runtime Function]unsigned long accum __fractuqquda (unsigned short

fract a)
[Runtime Function]unsigned long long accum __fractuqquta (unsigned

short fract a)
[Runtime Function]signed char __fractuqqqi (unsigned short fract a)
[Runtime Function]short __fractuqqhi (unsigned short fract a)
[Runtime Function]int __fractuqqsi (unsigned short fract a)
[Runtime Function]long __fractuqqdi (unsigned short fract a)
[Runtime Function]long long __fractuqqti (unsigned short fract a)
[Runtime Function]float __fractuqqsf (unsigned short fract a)
[Runtime Function]double __fractuqqdf (unsigned short fract a)
[Runtime Function]short fract __fractuhqqq (unsigned fract a)
[Runtime Function]fract __fractuhqhq (unsigned fract a)
[Runtime Function]long fract __fractuhqsq (unsigned fract a)
[Runtime Function]long long fract __fractuhqdq (unsigned fract a)
[Runtime Function]short accum __fractuhqha (unsigned fract a)
[Runtime Function]accum __fractuhqsa (unsigned fract a)
[Runtime Function]long accum __fractuhqda (unsigned fract a)
[Runtime Function]long long accum __fractuhqta (unsigned fract a)
[Runtime Function]unsigned short fract __fractuhquqq2 (unsigned fract

a)
[Runtime Function]unsigned long fract __fractuhqusq2 (unsigned fract

a)
[Runtime Function]unsigned long long fract __fractuhqudq2 (unsigned

fract a)
[Runtime Function]unsigned short accum __fractuhquha (unsigned fract

a)
[Runtime Function]unsigned accum __fractuhqusa (unsigned fract a)

Chapter 3: The GCC low-level runtime library 35

[Runtime Function]unsigned long accum __fractuhquda (unsigned fract
a)

[Runtime Function]unsigned long long accum __fractuhquta (unsigned
fract a)

[Runtime Function]signed char __fractuhqqi (unsigned fract a)
[Runtime Function]short __fractuhqhi (unsigned fract a)
[Runtime Function]int __fractuhqsi (unsigned fract a)
[Runtime Function]long __fractuhqdi (unsigned fract a)
[Runtime Function]long long __fractuhqti (unsigned fract a)
[Runtime Function]float __fractuhqsf (unsigned fract a)
[Runtime Function]double __fractuhqdf (unsigned fract a)
[Runtime Function]short fract __fractusqqq (unsigned long fract a)
[Runtime Function]fract __fractusqhq (unsigned long fract a)
[Runtime Function]long fract __fractusqsq (unsigned long fract a)
[Runtime Function]long long fract __fractusqdq (unsigned long fract

a)
[Runtime Function]short accum __fractusqha (unsigned long fract a)
[Runtime Function]accum __fractusqsa (unsigned long fract a)
[Runtime Function]long accum __fractusqda (unsigned long fract a)
[Runtime Function]long long accum __fractusqta (unsigned long fract

a)
[Runtime Function]unsigned short fract __fractusquqq2 (unsigned long

fract a)
[Runtime Function]unsigned fract __fractusquhq2 (unsigned long fract

a)
[Runtime Function]unsigned long long fract __fractusqudq2 (unsigned

long fract a)
[Runtime Function]unsigned short accum __fractusquha (unsigned long

fract a)
[Runtime Function]unsigned accum __fractusqusa (unsigned long fract

a)
[Runtime Function]unsigned long accum __fractusquda (unsigned long

fract a)
[Runtime Function]unsigned long long accum __fractusquta (unsigned

long fract a)
[Runtime Function]signed char __fractusqqi (unsigned long fract a)
[Runtime Function]short __fractusqhi (unsigned long fract a)
[Runtime Function]int __fractusqsi (unsigned long fract a)
[Runtime Function]long __fractusqdi (unsigned long fract a)
[Runtime Function]long long __fractusqti (unsigned long fract a)
[Runtime Function]float __fractusqsf (unsigned long fract a)
[Runtime Function]double __fractusqdf (unsigned long fract a)
[Runtime Function]short fract __fractudqqq (unsigned long long fract

a)
[Runtime Function]fract __fractudqhq (unsigned long long fract a)
[Runtime Function]long fract __fractudqsq (unsigned long long fract

a)

36 GNU Compiler Collection (GCC) Internals

[Runtime Function]long long fract __fractudqdq (unsigned long long
fract a)

[Runtime Function]short accum __fractudqha (unsigned long long fract
a)

[Runtime Function]accum __fractudqsa (unsigned long long fract a)
[Runtime Function]long accum __fractudqda (unsigned long long fract

a)
[Runtime Function]long long accum __fractudqta (unsigned long long

fract a)
[Runtime Function]unsigned short fract __fractudquqq2 (unsigned long

long fract a)
[Runtime Function]unsigned fract __fractudquhq2 (unsigned long long

fract a)
[Runtime Function]unsigned long fract __fractudqusq2 (unsigned long

long fract a)
[Runtime Function]unsigned short accum __fractudquha (unsigned long

long fract a)
[Runtime Function]unsigned accum __fractudqusa (unsigned long long

fract a)
[Runtime Function]unsigned long accum __fractudquda (unsigned long

long fract a)
[Runtime Function]unsigned long long accum __fractudquta (unsigned

long long fract a)
[Runtime Function]signed char __fractudqqi (unsigned long long fract

a)
[Runtime Function]short __fractudqhi (unsigned long long fract a)
[Runtime Function]int __fractudqsi (unsigned long long fract a)
[Runtime Function]long __fractudqdi (unsigned long long fract a)
[Runtime Function]long long __fractudqti (unsigned long long fract a)
[Runtime Function]float __fractudqsf (unsigned long long fract a)
[Runtime Function]double __fractudqdf (unsigned long long fract a)
[Runtime Function]short fract __fractuhaqq (unsigned short accum a)
[Runtime Function]fract __fractuhahq (unsigned short accum a)
[Runtime Function]long fract __fractuhasq (unsigned short accum a)
[Runtime Function]long long fract __fractuhadq (unsigned short accum

a)
[Runtime Function]short accum __fractuhaha (unsigned short accum a)
[Runtime Function]accum __fractuhasa (unsigned short accum a)
[Runtime Function]long accum __fractuhada (unsigned short accum a)
[Runtime Function]long long accum __fractuhata (unsigned short accum

a)
[Runtime Function]unsigned short fract __fractuhauqq (unsigned short

accum a)
[Runtime Function]unsigned fract __fractuhauhq (unsigned short accum

a)
[Runtime Function]unsigned long fract __fractuhausq (unsigned short

accum a)

Chapter 3: The GCC low-level runtime library 37

[Runtime Function]unsigned long long fract __fractuhaudq (unsigned
short accum a)

[Runtime Function]unsigned accum __fractuhausa2 (unsigned short accum
a)

[Runtime Function]unsigned long accum __fractuhauda2 (unsigned short
accum a)

[Runtime Function]unsigned long long accum __fractuhauta2 (unsigned
short accum a)

[Runtime Function]signed char __fractuhaqi (unsigned short accum a)
[Runtime Function]short __fractuhahi (unsigned short accum a)
[Runtime Function]int __fractuhasi (unsigned short accum a)
[Runtime Function]long __fractuhadi (unsigned short accum a)
[Runtime Function]long long __fractuhati (unsigned short accum a)
[Runtime Function]float __fractuhasf (unsigned short accum a)
[Runtime Function]double __fractuhadf (unsigned short accum a)
[Runtime Function]short fract __fractusaqq (unsigned accum a)
[Runtime Function]fract __fractusahq (unsigned accum a)
[Runtime Function]long fract __fractusasq (unsigned accum a)
[Runtime Function]long long fract __fractusadq (unsigned accum a)
[Runtime Function]short accum __fractusaha (unsigned accum a)
[Runtime Function]accum __fractusasa (unsigned accum a)
[Runtime Function]long accum __fractusada (unsigned accum a)
[Runtime Function]long long accum __fractusata (unsigned accum a)
[Runtime Function]unsigned short fract __fractusauqq (unsigned accum

a)
[Runtime Function]unsigned fract __fractusauhq (unsigned accum a)
[Runtime Function]unsigned long fract __fractusausq (unsigned accum

a)
[Runtime Function]unsigned long long fract __fractusaudq (unsigned

accum a)
[Runtime Function]unsigned short accum __fractusauha2 (unsigned accum

a)
[Runtime Function]unsigned long accum __fractusauda2 (unsigned accum

a)
[Runtime Function]unsigned long long accum __fractusauta2 (unsigned

accum a)
[Runtime Function]signed char __fractusaqi (unsigned accum a)
[Runtime Function]short __fractusahi (unsigned accum a)
[Runtime Function]int __fractusasi (unsigned accum a)
[Runtime Function]long __fractusadi (unsigned accum a)
[Runtime Function]long long __fractusati (unsigned accum a)
[Runtime Function]float __fractusasf (unsigned accum a)
[Runtime Function]double __fractusadf (unsigned accum a)
[Runtime Function]short fract __fractudaqq (unsigned long accum a)
[Runtime Function]fract __fractudahq (unsigned long accum a)
[Runtime Function]long fract __fractudasq (unsigned long accum a)

38 GNU Compiler Collection (GCC) Internals

[Runtime Function]long long fract __fractudadq (unsigned long accum
a)

[Runtime Function]short accum __fractudaha (unsigned long accum a)
[Runtime Function]accum __fractudasa (unsigned long accum a)
[Runtime Function]long accum __fractudada (unsigned long accum a)
[Runtime Function]long long accum __fractudata (unsigned long accum

a)
[Runtime Function]unsigned short fract __fractudauqq (unsigned long

accum a)
[Runtime Function]unsigned fract __fractudauhq (unsigned long accum

a)
[Runtime Function]unsigned long fract __fractudausq (unsigned long

accum a)
[Runtime Function]unsigned long long fract __fractudaudq (unsigned

long accum a)
[Runtime Function]unsigned short accum __fractudauha2 (unsigned long

accum a)
[Runtime Function]unsigned accum __fractudausa2 (unsigned long accum

a)
[Runtime Function]unsigned long long accum __fractudauta2 (unsigned

long accum a)
[Runtime Function]signed char __fractudaqi (unsigned long accum a)
[Runtime Function]short __fractudahi (unsigned long accum a)
[Runtime Function]int __fractudasi (unsigned long accum a)
[Runtime Function]long __fractudadi (unsigned long accum a)
[Runtime Function]long long __fractudati (unsigned long accum a)
[Runtime Function]float __fractudasf (unsigned long accum a)
[Runtime Function]double __fractudadf (unsigned long accum a)
[Runtime Function]short fract __fractutaqq (unsigned long long accum

a)
[Runtime Function]fract __fractutahq (unsigned long long accum a)
[Runtime Function]long fract __fractutasq (unsigned long long accum

a)
[Runtime Function]long long fract __fractutadq (unsigned long long

accum a)
[Runtime Function]short accum __fractutaha (unsigned long long accum

a)
[Runtime Function]accum __fractutasa (unsigned long long accum a)
[Runtime Function]long accum __fractutada (unsigned long long accum

a)
[Runtime Function]long long accum __fractutata (unsigned long long

accum a)
[Runtime Function]unsigned short fract __fractutauqq (unsigned long

long accum a)
[Runtime Function]unsigned fract __fractutauhq (unsigned long long

accum a)

Chapter 3: The GCC low-level runtime library 39

[Runtime Function]unsigned long fract __fractutausq (unsigned long
long accum a)

[Runtime Function]unsigned long long fract __fractutaudq (unsigned
long long accum a)

[Runtime Function]unsigned short accum __fractutauha2 (unsigned long
long accum a)

[Runtime Function]unsigned accum __fractutausa2 (unsigned long long
accum a)

[Runtime Function]unsigned long accum __fractutauda2 (unsigned long
long accum a)

[Runtime Function]signed char __fractutaqi (unsigned long long accum
a)

[Runtime Function]short __fractutahi (unsigned long long accum a)
[Runtime Function]int __fractutasi (unsigned long long accum a)
[Runtime Function]long __fractutadi (unsigned long long accum a)
[Runtime Function]long long __fractutati (unsigned long long accum a)
[Runtime Function]float __fractutasf (unsigned long long accum a)
[Runtime Function]double __fractutadf (unsigned long long accum a)
[Runtime Function]short fract __fractqiqq (signed char a)
[Runtime Function]fract __fractqihq (signed char a)
[Runtime Function]long fract __fractqisq (signed char a)
[Runtime Function]long long fract __fractqidq (signed char a)
[Runtime Function]short accum __fractqiha (signed char a)
[Runtime Function]accum __fractqisa (signed char a)
[Runtime Function]long accum __fractqida (signed char a)
[Runtime Function]long long accum __fractqita (signed char a)
[Runtime Function]unsigned short fract __fractqiuqq (signed char a)
[Runtime Function]unsigned fract __fractqiuhq (signed char a)
[Runtime Function]unsigned long fract __fractqiusq (signed char a)
[Runtime Function]unsigned long long fract __fractqiudq (signed char

a)
[Runtime Function]unsigned short accum __fractqiuha (signed char a)
[Runtime Function]unsigned accum __fractqiusa (signed char a)
[Runtime Function]unsigned long accum __fractqiuda (signed char a)
[Runtime Function]unsigned long long accum __fractqiuta (signed char

a)
[Runtime Function]short fract __fracthiqq (short a)
[Runtime Function]fract __fracthihq (short a)
[Runtime Function]long fract __fracthisq (short a)
[Runtime Function]long long fract __fracthidq (short a)
[Runtime Function]short accum __fracthiha (short a)
[Runtime Function]accum __fracthisa (short a)
[Runtime Function]long accum __fracthida (short a)
[Runtime Function]long long accum __fracthita (short a)
[Runtime Function]unsigned short fract __fracthiuqq (short a)
[Runtime Function]unsigned fract __fracthiuhq (short a)
[Runtime Function]unsigned long fract __fracthiusq (short a)

40 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long fract __fracthiudq (short a)
[Runtime Function]unsigned short accum __fracthiuha (short a)
[Runtime Function]unsigned accum __fracthiusa (short a)
[Runtime Function]unsigned long accum __fracthiuda (short a)
[Runtime Function]unsigned long long accum __fracthiuta (short a)
[Runtime Function]short fract __fractsiqq (int a)
[Runtime Function]fract __fractsihq (int a)
[Runtime Function]long fract __fractsisq (int a)
[Runtime Function]long long fract __fractsidq (int a)
[Runtime Function]short accum __fractsiha (int a)
[Runtime Function]accum __fractsisa (int a)
[Runtime Function]long accum __fractsida (int a)
[Runtime Function]long long accum __fractsita (int a)
[Runtime Function]unsigned short fract __fractsiuqq (int a)
[Runtime Function]unsigned fract __fractsiuhq (int a)
[Runtime Function]unsigned long fract __fractsiusq (int a)
[Runtime Function]unsigned long long fract __fractsiudq (int a)
[Runtime Function]unsigned short accum __fractsiuha (int a)
[Runtime Function]unsigned accum __fractsiusa (int a)
[Runtime Function]unsigned long accum __fractsiuda (int a)
[Runtime Function]unsigned long long accum __fractsiuta (int a)
[Runtime Function]short fract __fractdiqq (long a)
[Runtime Function]fract __fractdihq (long a)
[Runtime Function]long fract __fractdisq (long a)
[Runtime Function]long long fract __fractdidq (long a)
[Runtime Function]short accum __fractdiha (long a)
[Runtime Function]accum __fractdisa (long a)
[Runtime Function]long accum __fractdida (long a)
[Runtime Function]long long accum __fractdita (long a)
[Runtime Function]unsigned short fract __fractdiuqq (long a)
[Runtime Function]unsigned fract __fractdiuhq (long a)
[Runtime Function]unsigned long fract __fractdiusq (long a)
[Runtime Function]unsigned long long fract __fractdiudq (long a)
[Runtime Function]unsigned short accum __fractdiuha (long a)
[Runtime Function]unsigned accum __fractdiusa (long a)
[Runtime Function]unsigned long accum __fractdiuda (long a)
[Runtime Function]unsigned long long accum __fractdiuta (long a)
[Runtime Function]short fract __fracttiqq (long long a)
[Runtime Function]fract __fracttihq (long long a)
[Runtime Function]long fract __fracttisq (long long a)
[Runtime Function]long long fract __fracttidq (long long a)
[Runtime Function]short accum __fracttiha (long long a)
[Runtime Function]accum __fracttisa (long long a)
[Runtime Function]long accum __fracttida (long long a)
[Runtime Function]long long accum __fracttita (long long a)
[Runtime Function]unsigned short fract __fracttiuqq (long long a)
[Runtime Function]unsigned fract __fracttiuhq (long long a)

Chapter 3: The GCC low-level runtime library 41

[Runtime Function]unsigned long fract __fracttiusq (long long a)
[Runtime Function]unsigned long long fract __fracttiudq (long long a)
[Runtime Function]unsigned short accum __fracttiuha (long long a)
[Runtime Function]unsigned accum __fracttiusa (long long a)
[Runtime Function]unsigned long accum __fracttiuda (long long a)
[Runtime Function]unsigned long long accum __fracttiuta (long long a)
[Runtime Function]short fract __fractsfqq (float a)
[Runtime Function]fract __fractsfhq (float a)
[Runtime Function]long fract __fractsfsq (float a)
[Runtime Function]long long fract __fractsfdq (float a)
[Runtime Function]short accum __fractsfha (float a)
[Runtime Function]accum __fractsfsa (float a)
[Runtime Function]long accum __fractsfda (float a)
[Runtime Function]long long accum __fractsfta (float a)
[Runtime Function]unsigned short fract __fractsfuqq (float a)
[Runtime Function]unsigned fract __fractsfuhq (float a)
[Runtime Function]unsigned long fract __fractsfusq (float a)
[Runtime Function]unsigned long long fract __fractsfudq (float a)
[Runtime Function]unsigned short accum __fractsfuha (float a)
[Runtime Function]unsigned accum __fractsfusa (float a)
[Runtime Function]unsigned long accum __fractsfuda (float a)
[Runtime Function]unsigned long long accum __fractsfuta (float a)
[Runtime Function]short fract __fractdfqq (double a)
[Runtime Function]fract __fractdfhq (double a)
[Runtime Function]long fract __fractdfsq (double a)
[Runtime Function]long long fract __fractdfdq (double a)
[Runtime Function]short accum __fractdfha (double a)
[Runtime Function]accum __fractdfsa (double a)
[Runtime Function]long accum __fractdfda (double a)
[Runtime Function]long long accum __fractdfta (double a)
[Runtime Function]unsigned short fract __fractdfuqq (double a)
[Runtime Function]unsigned fract __fractdfuhq (double a)
[Runtime Function]unsigned long fract __fractdfusq (double a)
[Runtime Function]unsigned long long fract __fractdfudq (double a)
[Runtime Function]unsigned short accum __fractdfuha (double a)
[Runtime Function]unsigned accum __fractdfusa (double a)
[Runtime Function]unsigned long accum __fractdfuda (double a)
[Runtime Function]unsigned long long accum __fractdfuta (double a)

These functions convert from fractional and signed non-fractionals to fractionals and
signed non-fractionals, without saturation.

[Runtime Function]fract __satfractqqhq2 (short fract a)
[Runtime Function]long fract __satfractqqsq2 (short fract a)
[Runtime Function]long long fract __satfractqqdq2 (short fract a)
[Runtime Function]short accum __satfractqqha (short fract a)
[Runtime Function]accum __satfractqqsa (short fract a)
[Runtime Function]long accum __satfractqqda (short fract a)

42 GNU Compiler Collection (GCC) Internals

[Runtime Function]long long accum __satfractqqta (short fract a)
[Runtime Function]unsigned short fract __satfractqquqq (short fract

a)
[Runtime Function]unsigned fract __satfractqquhq (short fract a)
[Runtime Function]unsigned long fract __satfractqqusq (short fract a)
[Runtime Function]unsigned long long fract __satfractqqudq (short

fract a)
[Runtime Function]unsigned short accum __satfractqquha (short fract

a)
[Runtime Function]unsigned accum __satfractqqusa (short fract a)
[Runtime Function]unsigned long accum __satfractqquda (short fract a)
[Runtime Function]unsigned long long accum __satfractqquta (short

fract a)
[Runtime Function]short fract __satfracthqqq2 (fract a)
[Runtime Function]long fract __satfracthqsq2 (fract a)
[Runtime Function]long long fract __satfracthqdq2 (fract a)
[Runtime Function]short accum __satfracthqha (fract a)
[Runtime Function]accum __satfracthqsa (fract a)
[Runtime Function]long accum __satfracthqda (fract a)
[Runtime Function]long long accum __satfracthqta (fract a)
[Runtime Function]unsigned short fract __satfracthquqq (fract a)
[Runtime Function]unsigned fract __satfracthquhq (fract a)
[Runtime Function]unsigned long fract __satfracthqusq (fract a)
[Runtime Function]unsigned long long fract __satfracthqudq (fract a)
[Runtime Function]unsigned short accum __satfracthquha (fract a)
[Runtime Function]unsigned accum __satfracthqusa (fract a)
[Runtime Function]unsigned long accum __satfracthquda (fract a)
[Runtime Function]unsigned long long accum __satfracthquta (fract a)
[Runtime Function]short fract __satfractsqqq2 (long fract a)
[Runtime Function]fract __satfractsqhq2 (long fract a)
[Runtime Function]long long fract __satfractsqdq2 (long fract a)
[Runtime Function]short accum __satfractsqha (long fract a)
[Runtime Function]accum __satfractsqsa (long fract a)
[Runtime Function]long accum __satfractsqda (long fract a)
[Runtime Function]long long accum __satfractsqta (long fract a)
[Runtime Function]unsigned short fract __satfractsquqq (long fract a)
[Runtime Function]unsigned fract __satfractsquhq (long fract a)
[Runtime Function]unsigned long fract __satfractsqusq (long fract a)
[Runtime Function]unsigned long long fract __satfractsqudq (long

fract a)
[Runtime Function]unsigned short accum __satfractsquha (long fract a)
[Runtime Function]unsigned accum __satfractsqusa (long fract a)
[Runtime Function]unsigned long accum __satfractsquda (long fract a)
[Runtime Function]unsigned long long accum __satfractsquta (long

fract a)
[Runtime Function]short fract __satfractdqqq2 (long long fract a)
[Runtime Function]fract __satfractdqhq2 (long long fract a)

Chapter 3: The GCC low-level runtime library 43

[Runtime Function]long fract __satfractdqsq2 (long long fract a)
[Runtime Function]short accum __satfractdqha (long long fract a)
[Runtime Function]accum __satfractdqsa (long long fract a)
[Runtime Function]long accum __satfractdqda (long long fract a)
[Runtime Function]long long accum __satfractdqta (long long fract a)
[Runtime Function]unsigned short fract __satfractdquqq (long long

fract a)
[Runtime Function]unsigned fract __satfractdquhq (long long fract a)
[Runtime Function]unsigned long fract __satfractdqusq (long long

fract a)
[Runtime Function]unsigned long long fract __satfractdqudq (long long

fract a)
[Runtime Function]unsigned short accum __satfractdquha (long long

fract a)
[Runtime Function]unsigned accum __satfractdqusa (long long fract a)
[Runtime Function]unsigned long accum __satfractdquda (long long

fract a)
[Runtime Function]unsigned long long accum __satfractdquta (long long

fract a)
[Runtime Function]short fract __satfracthaqq (short accum a)
[Runtime Function]fract __satfracthahq (short accum a)
[Runtime Function]long fract __satfracthasq (short accum a)
[Runtime Function]long long fract __satfracthadq (short accum a)
[Runtime Function]accum __satfracthasa2 (short accum a)
[Runtime Function]long accum __satfracthada2 (short accum a)
[Runtime Function]long long accum __satfracthata2 (short accum a)
[Runtime Function]unsigned short fract __satfracthauqq (short accum

a)
[Runtime Function]unsigned fract __satfracthauhq (short accum a)
[Runtime Function]unsigned long fract __satfracthausq (short accum a)
[Runtime Function]unsigned long long fract __satfracthaudq (short

accum a)
[Runtime Function]unsigned short accum __satfracthauha (short accum

a)
[Runtime Function]unsigned accum __satfracthausa (short accum a)
[Runtime Function]unsigned long accum __satfracthauda (short accum a)
[Runtime Function]unsigned long long accum __satfracthauta (short

accum a)
[Runtime Function]short fract __satfractsaqq (accum a)
[Runtime Function]fract __satfractsahq (accum a)
[Runtime Function]long fract __satfractsasq (accum a)
[Runtime Function]long long fract __satfractsadq (accum a)
[Runtime Function]short accum __satfractsaha2 (accum a)
[Runtime Function]long accum __satfractsada2 (accum a)
[Runtime Function]long long accum __satfractsata2 (accum a)
[Runtime Function]unsigned short fract __satfractsauqq (accum a)
[Runtime Function]unsigned fract __satfractsauhq (accum a)

44 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long fract __satfractsausq (accum a)
[Runtime Function]unsigned long long fract __satfractsaudq (accum a)
[Runtime Function]unsigned short accum __satfractsauha (accum a)
[Runtime Function]unsigned accum __satfractsausa (accum a)
[Runtime Function]unsigned long accum __satfractsauda (accum a)
[Runtime Function]unsigned long long accum __satfractsauta (accum a)
[Runtime Function]short fract __satfractdaqq (long accum a)
[Runtime Function]fract __satfractdahq (long accum a)
[Runtime Function]long fract __satfractdasq (long accum a)
[Runtime Function]long long fract __satfractdadq (long accum a)
[Runtime Function]short accum __satfractdaha2 (long accum a)
[Runtime Function]accum __satfractdasa2 (long accum a)
[Runtime Function]long long accum __satfractdata2 (long accum a)
[Runtime Function]unsigned short fract __satfractdauqq (long accum a)
[Runtime Function]unsigned fract __satfractdauhq (long accum a)
[Runtime Function]unsigned long fract __satfractdausq (long accum a)
[Runtime Function]unsigned long long fract __satfractdaudq (long

accum a)
[Runtime Function]unsigned short accum __satfractdauha (long accum a)
[Runtime Function]unsigned accum __satfractdausa (long accum a)
[Runtime Function]unsigned long accum __satfractdauda (long accum a)
[Runtime Function]unsigned long long accum __satfractdauta (long

accum a)
[Runtime Function]short fract __satfracttaqq (long long accum a)
[Runtime Function]fract __satfracttahq (long long accum a)
[Runtime Function]long fract __satfracttasq (long long accum a)
[Runtime Function]long long fract __satfracttadq (long long accum a)
[Runtime Function]short accum __satfracttaha2 (long long accum a)
[Runtime Function]accum __satfracttasa2 (long long accum a)
[Runtime Function]long accum __satfracttada2 (long long accum a)
[Runtime Function]unsigned short fract __satfracttauqq (long long

accum a)
[Runtime Function]unsigned fract __satfracttauhq (long long accum a)
[Runtime Function]unsigned long fract __satfracttausq (long long

accum a)
[Runtime Function]unsigned long long fract __satfracttaudq (long long

accum a)
[Runtime Function]unsigned short accum __satfracttauha (long long

accum a)
[Runtime Function]unsigned accum __satfracttausa (long long accum a)
[Runtime Function]unsigned long accum __satfracttauda (long long

accum a)
[Runtime Function]unsigned long long accum __satfracttauta (long long

accum a)
[Runtime Function]short fract __satfractuqqqq (unsigned short fract

a)
[Runtime Function]fract __satfractuqqhq (unsigned short fract a)

Chapter 3: The GCC low-level runtime library 45

[Runtime Function]long fract __satfractuqqsq (unsigned short fract a)
[Runtime Function]long long fract __satfractuqqdq (unsigned short

fract a)
[Runtime Function]short accum __satfractuqqha (unsigned short fract

a)
[Runtime Function]accum __satfractuqqsa (unsigned short fract a)
[Runtime Function]long accum __satfractuqqda (unsigned short fract a)
[Runtime Function]long long accum __satfractuqqta (unsigned short

fract a)
[Runtime Function]unsigned fract __satfractuqquhq2 (unsigned short

fract a)
[Runtime Function]unsigned long fract __satfractuqqusq2 (unsigned

short fract a)
[Runtime Function]unsigned long long fract __satfractuqqudq2

(unsigned short fract a)
[Runtime Function]unsigned short accum __satfractuqquha (unsigned

short fract a)
[Runtime Function]unsigned accum __satfractuqqusa (unsigned short

fract a)
[Runtime Function]unsigned long accum __satfractuqquda (unsigned

short fract a)
[Runtime Function]unsigned long long accum __satfractuqquta (unsigned

short fract a)
[Runtime Function]short fract __satfractuhqqq (unsigned fract a)
[Runtime Function]fract __satfractuhqhq (unsigned fract a)
[Runtime Function]long fract __satfractuhqsq (unsigned fract a)
[Runtime Function]long long fract __satfractuhqdq (unsigned fract a)
[Runtime Function]short accum __satfractuhqha (unsigned fract a)
[Runtime Function]accum __satfractuhqsa (unsigned fract a)
[Runtime Function]long accum __satfractuhqda (unsigned fract a)
[Runtime Function]long long accum __satfractuhqta (unsigned fract a)
[Runtime Function]unsigned short fract __satfractuhquqq2 (unsigned

fract a)
[Runtime Function]unsigned long fract __satfractuhqusq2 (unsigned

fract a)
[Runtime Function]unsigned long long fract __satfractuhqudq2

(unsigned fract a)
[Runtime Function]unsigned short accum __satfractuhquha (unsigned

fract a)
[Runtime Function]unsigned accum __satfractuhqusa (unsigned fract a)
[Runtime Function]unsigned long accum __satfractuhquda (unsigned

fract a)
[Runtime Function]unsigned long long accum __satfractuhquta (unsigned

fract a)
[Runtime Function]short fract __satfractusqqq (unsigned long fract a)
[Runtime Function]fract __satfractusqhq (unsigned long fract a)
[Runtime Function]long fract __satfractusqsq (unsigned long fract a)

46 GNU Compiler Collection (GCC) Internals

[Runtime Function]long long fract __satfractusqdq (unsigned long
fract a)

[Runtime Function]short accum __satfractusqha (unsigned long fract a)
[Runtime Function]accum __satfractusqsa (unsigned long fract a)
[Runtime Function]long accum __satfractusqda (unsigned long fract a)
[Runtime Function]long long accum __satfractusqta (unsigned long

fract a)
[Runtime Function]unsigned short fract __satfractusquqq2 (unsigned

long fract a)
[Runtime Function]unsigned fract __satfractusquhq2 (unsigned long

fract a)
[Runtime Function]unsigned long long fract __satfractusqudq2

(unsigned long fract a)
[Runtime Function]unsigned short accum __satfractusquha (unsigned

long fract a)
[Runtime Function]unsigned accum __satfractusqusa (unsigned long

fract a)
[Runtime Function]unsigned long accum __satfractusquda (unsigned long

fract a)
[Runtime Function]unsigned long long accum __satfractusquta (unsigned

long fract a)
[Runtime Function]short fract __satfractudqqq (unsigned long long

fract a)
[Runtime Function]fract __satfractudqhq (unsigned long long fract a)
[Runtime Function]long fract __satfractudqsq (unsigned long long

fract a)
[Runtime Function]long long fract __satfractudqdq (unsigned long long

fract a)
[Runtime Function]short accum __satfractudqha (unsigned long long

fract a)
[Runtime Function]accum __satfractudqsa (unsigned long long fract a)
[Runtime Function]long accum __satfractudqda (unsigned long long

fract a)
[Runtime Function]long long accum __satfractudqta (unsigned long long

fract a)
[Runtime Function]unsigned short fract __satfractudquqq2 (unsigned

long long fract a)
[Runtime Function]unsigned fract __satfractudquhq2 (unsigned long

long fract a)
[Runtime Function]unsigned long fract __satfractudqusq2 (unsigned

long long fract a)
[Runtime Function]unsigned short accum __satfractudquha (unsigned

long long fract a)
[Runtime Function]unsigned accum __satfractudqusa (unsigned long long

fract a)
[Runtime Function]unsigned long accum __satfractudquda (unsigned long

long fract a)

Chapter 3: The GCC low-level runtime library 47

[Runtime Function]unsigned long long accum __satfractudquta (unsigned
long long fract a)

[Runtime Function]short fract __satfractuhaqq (unsigned short accum
a)

[Runtime Function]fract __satfractuhahq (unsigned short accum a)
[Runtime Function]long fract __satfractuhasq (unsigned short accum a)
[Runtime Function]long long fract __satfractuhadq (unsigned short

accum a)
[Runtime Function]short accum __satfractuhaha (unsigned short accum

a)
[Runtime Function]accum __satfractuhasa (unsigned short accum a)
[Runtime Function]long accum __satfractuhada (unsigned short accum a)
[Runtime Function]long long accum __satfractuhata (unsigned short

accum a)
[Runtime Function]unsigned short fract __satfractuhauqq (unsigned

short accum a)
[Runtime Function]unsigned fract __satfractuhauhq (unsigned short

accum a)
[Runtime Function]unsigned long fract __satfractuhausq (unsigned

short accum a)
[Runtime Function]unsigned long long fract __satfractuhaudq (unsigned

short accum a)
[Runtime Function]unsigned accum __satfractuhausa2 (unsigned short

accum a)
[Runtime Function]unsigned long accum __satfractuhauda2 (unsigned

short accum a)
[Runtime Function]unsigned long long accum __satfractuhauta2

(unsigned short accum a)
[Runtime Function]short fract __satfractusaqq (unsigned accum a)
[Runtime Function]fract __satfractusahq (unsigned accum a)
[Runtime Function]long fract __satfractusasq (unsigned accum a)
[Runtime Function]long long fract __satfractusadq (unsigned accum a)
[Runtime Function]short accum __satfractusaha (unsigned accum a)
[Runtime Function]accum __satfractusasa (unsigned accum a)
[Runtime Function]long accum __satfractusada (unsigned accum a)
[Runtime Function]long long accum __satfractusata (unsigned accum a)
[Runtime Function]unsigned short fract __satfractusauqq (unsigned

accum a)
[Runtime Function]unsigned fract __satfractusauhq (unsigned accum a)
[Runtime Function]unsigned long fract __satfractusausq (unsigned

accum a)
[Runtime Function]unsigned long long fract __satfractusaudq (unsigned

accum a)
[Runtime Function]unsigned short accum __satfractusauha2 (unsigned

accum a)
[Runtime Function]unsigned long accum __satfractusauda2 (unsigned

accum a)

48 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long accum __satfractusauta2
(unsigned accum a)

[Runtime Function]short fract __satfractudaqq (unsigned long accum a)
[Runtime Function]fract __satfractudahq (unsigned long accum a)
[Runtime Function]long fract __satfractudasq (unsigned long accum a)
[Runtime Function]long long fract __satfractudadq (unsigned long

accum a)
[Runtime Function]short accum __satfractudaha (unsigned long accum a)
[Runtime Function]accum __satfractudasa (unsigned long accum a)
[Runtime Function]long accum __satfractudada (unsigned long accum a)
[Runtime Function]long long accum __satfractudata (unsigned long

accum a)
[Runtime Function]unsigned short fract __satfractudauqq (unsigned

long accum a)
[Runtime Function]unsigned fract __satfractudauhq (unsigned long

accum a)
[Runtime Function]unsigned long fract __satfractudausq (unsigned long

accum a)
[Runtime Function]unsigned long long fract __satfractudaudq (unsigned

long accum a)
[Runtime Function]unsigned short accum __satfractudauha2 (unsigned

long accum a)
[Runtime Function]unsigned accum __satfractudausa2 (unsigned long

accum a)
[Runtime Function]unsigned long long accum __satfractudauta2

(unsigned long accum a)
[Runtime Function]short fract __satfractutaqq (unsigned long long

accum a)
[Runtime Function]fract __satfractutahq (unsigned long long accum a)
[Runtime Function]long fract __satfractutasq (unsigned long long

accum a)
[Runtime Function]long long fract __satfractutadq (unsigned long long

accum a)
[Runtime Function]short accum __satfractutaha (unsigned long long

accum a)
[Runtime Function]accum __satfractutasa (unsigned long long accum a)
[Runtime Function]long accum __satfractutada (unsigned long long

accum a)
[Runtime Function]long long accum __satfractutata (unsigned long long

accum a)
[Runtime Function]unsigned short fract __satfractutauqq (unsigned

long long accum a)
[Runtime Function]unsigned fract __satfractutauhq (unsigned long long

accum a)
[Runtime Function]unsigned long fract __satfractutausq (unsigned long

long accum a)

Chapter 3: The GCC low-level runtime library 49

[Runtime Function]unsigned long long fract __satfractutaudq (unsigned
long long accum a)

[Runtime Function]unsigned short accum __satfractutauha2 (unsigned
long long accum a)

[Runtime Function]unsigned accum __satfractutausa2 (unsigned long
long accum a)

[Runtime Function]unsigned long accum __satfractutauda2 (unsigned
long long accum a)

[Runtime Function]short fract __satfractqiqq (signed char a)
[Runtime Function]fract __satfractqihq (signed char a)
[Runtime Function]long fract __satfractqisq (signed char a)
[Runtime Function]long long fract __satfractqidq (signed char a)
[Runtime Function]short accum __satfractqiha (signed char a)
[Runtime Function]accum __satfractqisa (signed char a)
[Runtime Function]long accum __satfractqida (signed char a)
[Runtime Function]long long accum __satfractqita (signed char a)
[Runtime Function]unsigned short fract __satfractqiuqq (signed char

a)
[Runtime Function]unsigned fract __satfractqiuhq (signed char a)
[Runtime Function]unsigned long fract __satfractqiusq (signed char a)
[Runtime Function]unsigned long long fract __satfractqiudq (signed

char a)
[Runtime Function]unsigned short accum __satfractqiuha (signed char

a)
[Runtime Function]unsigned accum __satfractqiusa (signed char a)
[Runtime Function]unsigned long accum __satfractqiuda (signed char a)
[Runtime Function]unsigned long long accum __satfractqiuta (signed

char a)
[Runtime Function]short fract __satfracthiqq (short a)
[Runtime Function]fract __satfracthihq (short a)
[Runtime Function]long fract __satfracthisq (short a)
[Runtime Function]long long fract __satfracthidq (short a)
[Runtime Function]short accum __satfracthiha (short a)
[Runtime Function]accum __satfracthisa (short a)
[Runtime Function]long accum __satfracthida (short a)
[Runtime Function]long long accum __satfracthita (short a)
[Runtime Function]unsigned short fract __satfracthiuqq (short a)
[Runtime Function]unsigned fract __satfracthiuhq (short a)
[Runtime Function]unsigned long fract __satfracthiusq (short a)
[Runtime Function]unsigned long long fract __satfracthiudq (short a)
[Runtime Function]unsigned short accum __satfracthiuha (short a)
[Runtime Function]unsigned accum __satfracthiusa (short a)
[Runtime Function]unsigned long accum __satfracthiuda (short a)
[Runtime Function]unsigned long long accum __satfracthiuta (short a)
[Runtime Function]short fract __satfractsiqq (int a)
[Runtime Function]fract __satfractsihq (int a)
[Runtime Function]long fract __satfractsisq (int a)

50 GNU Compiler Collection (GCC) Internals

[Runtime Function]long long fract __satfractsidq (int a)
[Runtime Function]short accum __satfractsiha (int a)
[Runtime Function]accum __satfractsisa (int a)
[Runtime Function]long accum __satfractsida (int a)
[Runtime Function]long long accum __satfractsita (int a)
[Runtime Function]unsigned short fract __satfractsiuqq (int a)
[Runtime Function]unsigned fract __satfractsiuhq (int a)
[Runtime Function]unsigned long fract __satfractsiusq (int a)
[Runtime Function]unsigned long long fract __satfractsiudq (int a)
[Runtime Function]unsigned short accum __satfractsiuha (int a)
[Runtime Function]unsigned accum __satfractsiusa (int a)
[Runtime Function]unsigned long accum __satfractsiuda (int a)
[Runtime Function]unsigned long long accum __satfractsiuta (int a)
[Runtime Function]short fract __satfractdiqq (long a)
[Runtime Function]fract __satfractdihq (long a)
[Runtime Function]long fract __satfractdisq (long a)
[Runtime Function]long long fract __satfractdidq (long a)
[Runtime Function]short accum __satfractdiha (long a)
[Runtime Function]accum __satfractdisa (long a)
[Runtime Function]long accum __satfractdida (long a)
[Runtime Function]long long accum __satfractdita (long a)
[Runtime Function]unsigned short fract __satfractdiuqq (long a)
[Runtime Function]unsigned fract __satfractdiuhq (long a)
[Runtime Function]unsigned long fract __satfractdiusq (long a)
[Runtime Function]unsigned long long fract __satfractdiudq (long a)
[Runtime Function]unsigned short accum __satfractdiuha (long a)
[Runtime Function]unsigned accum __satfractdiusa (long a)
[Runtime Function]unsigned long accum __satfractdiuda (long a)
[Runtime Function]unsigned long long accum __satfractdiuta (long a)
[Runtime Function]short fract __satfracttiqq (long long a)
[Runtime Function]fract __satfracttihq (long long a)
[Runtime Function]long fract __satfracttisq (long long a)
[Runtime Function]long long fract __satfracttidq (long long a)
[Runtime Function]short accum __satfracttiha (long long a)
[Runtime Function]accum __satfracttisa (long long a)
[Runtime Function]long accum __satfracttida (long long a)
[Runtime Function]long long accum __satfracttita (long long a)
[Runtime Function]unsigned short fract __satfracttiuqq (long long a)
[Runtime Function]unsigned fract __satfracttiuhq (long long a)
[Runtime Function]unsigned long fract __satfracttiusq (long long a)
[Runtime Function]unsigned long long fract __satfracttiudq (long long

a)
[Runtime Function]unsigned short accum __satfracttiuha (long long a)
[Runtime Function]unsigned accum __satfracttiusa (long long a)
[Runtime Function]unsigned long accum __satfracttiuda (long long a)
[Runtime Function]unsigned long long accum __satfracttiuta (long long

a)

Chapter 3: The GCC low-level runtime library 51

[Runtime Function]short fract __satfractsfqq (float a)
[Runtime Function]fract __satfractsfhq (float a)
[Runtime Function]long fract __satfractsfsq (float a)
[Runtime Function]long long fract __satfractsfdq (float a)
[Runtime Function]short accum __satfractsfha (float a)
[Runtime Function]accum __satfractsfsa (float a)
[Runtime Function]long accum __satfractsfda (float a)
[Runtime Function]long long accum __satfractsfta (float a)
[Runtime Function]unsigned short fract __satfractsfuqq (float a)
[Runtime Function]unsigned fract __satfractsfuhq (float a)
[Runtime Function]unsigned long fract __satfractsfusq (float a)
[Runtime Function]unsigned long long fract __satfractsfudq (float a)
[Runtime Function]unsigned short accum __satfractsfuha (float a)
[Runtime Function]unsigned accum __satfractsfusa (float a)
[Runtime Function]unsigned long accum __satfractsfuda (float a)
[Runtime Function]unsigned long long accum __satfractsfuta (float a)
[Runtime Function]short fract __satfractdfqq (double a)
[Runtime Function]fract __satfractdfhq (double a)
[Runtime Function]long fract __satfractdfsq (double a)
[Runtime Function]long long fract __satfractdfdq (double a)
[Runtime Function]short accum __satfractdfha (double a)
[Runtime Function]accum __satfractdfsa (double a)
[Runtime Function]long accum __satfractdfda (double a)
[Runtime Function]long long accum __satfractdfta (double a)
[Runtime Function]unsigned short fract __satfractdfuqq (double a)
[Runtime Function]unsigned fract __satfractdfuhq (double a)
[Runtime Function]unsigned long fract __satfractdfusq (double a)
[Runtime Function]unsigned long long fract __satfractdfudq (double a)
[Runtime Function]unsigned short accum __satfractdfuha (double a)
[Runtime Function]unsigned accum __satfractdfusa (double a)
[Runtime Function]unsigned long accum __satfractdfuda (double a)
[Runtime Function]unsigned long long accum __satfractdfuta (double a)

The functions convert from fractional and signed non-fractionals to fractionals, with
saturation.

[Runtime Function]unsigned char __fractunsqqqi (short fract a)
[Runtime Function]unsigned short __fractunsqqhi (short fract a)
[Runtime Function]unsigned int __fractunsqqsi (short fract a)
[Runtime Function]unsigned long __fractunsqqdi (short fract a)
[Runtime Function]unsigned long long __fractunsqqti (short fract a)
[Runtime Function]unsigned char __fractunshqqi (fract a)
[Runtime Function]unsigned short __fractunshqhi (fract a)
[Runtime Function]unsigned int __fractunshqsi (fract a)
[Runtime Function]unsigned long __fractunshqdi (fract a)
[Runtime Function]unsigned long long __fractunshqti (fract a)
[Runtime Function]unsigned char __fractunssqqi (long fract a)
[Runtime Function]unsigned short __fractunssqhi (long fract a)

52 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned int __fractunssqsi (long fract a)
[Runtime Function]unsigned long __fractunssqdi (long fract a)
[Runtime Function]unsigned long long __fractunssqti (long fract a)
[Runtime Function]unsigned char __fractunsdqqi (long long fract a)
[Runtime Function]unsigned short __fractunsdqhi (long long fract a)
[Runtime Function]unsigned int __fractunsdqsi (long long fract a)
[Runtime Function]unsigned long __fractunsdqdi (long long fract a)
[Runtime Function]unsigned long long __fractunsdqti (long long fract

a)
[Runtime Function]unsigned char __fractunshaqi (short accum a)
[Runtime Function]unsigned short __fractunshahi (short accum a)
[Runtime Function]unsigned int __fractunshasi (short accum a)
[Runtime Function]unsigned long __fractunshadi (short accum a)
[Runtime Function]unsigned long long __fractunshati (short accum a)
[Runtime Function]unsigned char __fractunssaqi (accum a)
[Runtime Function]unsigned short __fractunssahi (accum a)
[Runtime Function]unsigned int __fractunssasi (accum a)
[Runtime Function]unsigned long __fractunssadi (accum a)
[Runtime Function]unsigned long long __fractunssati (accum a)
[Runtime Function]unsigned char __fractunsdaqi (long accum a)
[Runtime Function]unsigned short __fractunsdahi (long accum a)
[Runtime Function]unsigned int __fractunsdasi (long accum a)
[Runtime Function]unsigned long __fractunsdadi (long accum a)
[Runtime Function]unsigned long long __fractunsdati (long accum a)
[Runtime Function]unsigned char __fractunstaqi (long long accum a)
[Runtime Function]unsigned short __fractunstahi (long long accum a)
[Runtime Function]unsigned int __fractunstasi (long long accum a)
[Runtime Function]unsigned long __fractunstadi (long long accum a)
[Runtime Function]unsigned long long __fractunstati (long long accum

a)
[Runtime Function]unsigned char __fractunsuqqqi (unsigned short fract

a)
[Runtime Function]unsigned short __fractunsuqqhi (unsigned short

fract a)
[Runtime Function]unsigned int __fractunsuqqsi (unsigned short fract

a)
[Runtime Function]unsigned long __fractunsuqqdi (unsigned short fract

a)
[Runtime Function]unsigned long long __fractunsuqqti (unsigned short

fract a)
[Runtime Function]unsigned char __fractunsuhqqi (unsigned fract a)
[Runtime Function]unsigned short __fractunsuhqhi (unsigned fract a)
[Runtime Function]unsigned int __fractunsuhqsi (unsigned fract a)
[Runtime Function]unsigned long __fractunsuhqdi (unsigned fract a)
[Runtime Function]unsigned long long __fractunsuhqti (unsigned fract

a)

Chapter 3: The GCC low-level runtime library 53

[Runtime Function]unsigned char __fractunsusqqi (unsigned long fract
a)

[Runtime Function]unsigned short __fractunsusqhi (unsigned long fract
a)

[Runtime Function]unsigned int __fractunsusqsi (unsigned long fract
a)

[Runtime Function]unsigned long __fractunsusqdi (unsigned long fract
a)

[Runtime Function]unsigned long long __fractunsusqti (unsigned long
fract a)

[Runtime Function]unsigned char __fractunsudqqi (unsigned long long
fract a)

[Runtime Function]unsigned short __fractunsudqhi (unsigned long long
fract a)

[Runtime Function]unsigned int __fractunsudqsi (unsigned long long
fract a)

[Runtime Function]unsigned long __fractunsudqdi (unsigned long long
fract a)

[Runtime Function]unsigned long long __fractunsudqti (unsigned long
long fract a)

[Runtime Function]unsigned char __fractunsuhaqi (unsigned short accum
a)

[Runtime Function]unsigned short __fractunsuhahi (unsigned short
accum a)

[Runtime Function]unsigned int __fractunsuhasi (unsigned short accum
a)

[Runtime Function]unsigned long __fractunsuhadi (unsigned short accum
a)

[Runtime Function]unsigned long long __fractunsuhati (unsigned short
accum a)

[Runtime Function]unsigned char __fractunsusaqi (unsigned accum a)
[Runtime Function]unsigned short __fractunsusahi (unsigned accum a)
[Runtime Function]unsigned int __fractunsusasi (unsigned accum a)
[Runtime Function]unsigned long __fractunsusadi (unsigned accum a)
[Runtime Function]unsigned long long __fractunsusati (unsigned accum

a)
[Runtime Function]unsigned char __fractunsudaqi (unsigned long accum

a)
[Runtime Function]unsigned short __fractunsudahi (unsigned long accum

a)
[Runtime Function]unsigned int __fractunsudasi (unsigned long accum

a)
[Runtime Function]unsigned long __fractunsudadi (unsigned long accum

a)
[Runtime Function]unsigned long long __fractunsudati (unsigned long

accum a)

54 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned char __fractunsutaqi (unsigned long long
accum a)

[Runtime Function]unsigned short __fractunsutahi (unsigned long long
accum a)

[Runtime Function]unsigned int __fractunsutasi (unsigned long long
accum a)

[Runtime Function]unsigned long __fractunsutadi (unsigned long long
accum a)

[Runtime Function]unsigned long long __fractunsutati (unsigned long
long accum a)

[Runtime Function]short fract __fractunsqiqq (unsigned char a)
[Runtime Function]fract __fractunsqihq (unsigned char a)
[Runtime Function]long fract __fractunsqisq (unsigned char a)
[Runtime Function]long long fract __fractunsqidq (unsigned char a)
[Runtime Function]short accum __fractunsqiha (unsigned char a)
[Runtime Function]accum __fractunsqisa (unsigned char a)
[Runtime Function]long accum __fractunsqida (unsigned char a)
[Runtime Function]long long accum __fractunsqita (unsigned char a)
[Runtime Function]unsigned short fract __fractunsqiuqq (unsigned char

a)
[Runtime Function]unsigned fract __fractunsqiuhq (unsigned char a)
[Runtime Function]unsigned long fract __fractunsqiusq (unsigned char

a)
[Runtime Function]unsigned long long fract __fractunsqiudq (unsigned

char a)
[Runtime Function]unsigned short accum __fractunsqiuha (unsigned char

a)
[Runtime Function]unsigned accum __fractunsqiusa (unsigned char a)
[Runtime Function]unsigned long accum __fractunsqiuda (unsigned char

a)
[Runtime Function]unsigned long long accum __fractunsqiuta (unsigned

char a)
[Runtime Function]short fract __fractunshiqq (unsigned short a)
[Runtime Function]fract __fractunshihq (unsigned short a)
[Runtime Function]long fract __fractunshisq (unsigned short a)
[Runtime Function]long long fract __fractunshidq (unsigned short a)
[Runtime Function]short accum __fractunshiha (unsigned short a)
[Runtime Function]accum __fractunshisa (unsigned short a)
[Runtime Function]long accum __fractunshida (unsigned short a)
[Runtime Function]long long accum __fractunshita (unsigned short a)
[Runtime Function]unsigned short fract __fractunshiuqq (unsigned

short a)
[Runtime Function]unsigned fract __fractunshiuhq (unsigned short a)
[Runtime Function]unsigned long fract __fractunshiusq (unsigned short

a)
[Runtime Function]unsigned long long fract __fractunshiudq (unsigned

short a)

Chapter 3: The GCC low-level runtime library 55

[Runtime Function]unsigned short accum __fractunshiuha (unsigned
short a)

[Runtime Function]unsigned accum __fractunshiusa (unsigned short a)
[Runtime Function]unsigned long accum __fractunshiuda (unsigned short

a)
[Runtime Function]unsigned long long accum __fractunshiuta (unsigned

short a)
[Runtime Function]short fract __fractunssiqq (unsigned int a)
[Runtime Function]fract __fractunssihq (unsigned int a)
[Runtime Function]long fract __fractunssisq (unsigned int a)
[Runtime Function]long long fract __fractunssidq (unsigned int a)
[Runtime Function]short accum __fractunssiha (unsigned int a)
[Runtime Function]accum __fractunssisa (unsigned int a)
[Runtime Function]long accum __fractunssida (unsigned int a)
[Runtime Function]long long accum __fractunssita (unsigned int a)
[Runtime Function]unsigned short fract __fractunssiuqq (unsigned int

a)
[Runtime Function]unsigned fract __fractunssiuhq (unsigned int a)
[Runtime Function]unsigned long fract __fractunssiusq (unsigned int

a)
[Runtime Function]unsigned long long fract __fractunssiudq (unsigned

int a)
[Runtime Function]unsigned short accum __fractunssiuha (unsigned int

a)
[Runtime Function]unsigned accum __fractunssiusa (unsigned int a)
[Runtime Function]unsigned long accum __fractunssiuda (unsigned int

a)
[Runtime Function]unsigned long long accum __fractunssiuta (unsigned

int a)
[Runtime Function]short fract __fractunsdiqq (unsigned long a)
[Runtime Function]fract __fractunsdihq (unsigned long a)
[Runtime Function]long fract __fractunsdisq (unsigned long a)
[Runtime Function]long long fract __fractunsdidq (unsigned long a)
[Runtime Function]short accum __fractunsdiha (unsigned long a)
[Runtime Function]accum __fractunsdisa (unsigned long a)
[Runtime Function]long accum __fractunsdida (unsigned long a)
[Runtime Function]long long accum __fractunsdita (unsigned long a)
[Runtime Function]unsigned short fract __fractunsdiuqq (unsigned long

a)
[Runtime Function]unsigned fract __fractunsdiuhq (unsigned long a)
[Runtime Function]unsigned long fract __fractunsdiusq (unsigned long

a)
[Runtime Function]unsigned long long fract __fractunsdiudq (unsigned

long a)
[Runtime Function]unsigned short accum __fractunsdiuha (unsigned long

a)
[Runtime Function]unsigned accum __fractunsdiusa (unsigned long a)

56 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long accum __fractunsdiuda (unsigned long
a)

[Runtime Function]unsigned long long accum __fractunsdiuta (unsigned
long a)

[Runtime Function]short fract __fractunstiqq (unsigned long long a)
[Runtime Function]fract __fractunstihq (unsigned long long a)
[Runtime Function]long fract __fractunstisq (unsigned long long a)
[Runtime Function]long long fract __fractunstidq (unsigned long long

a)
[Runtime Function]short accum __fractunstiha (unsigned long long a)
[Runtime Function]accum __fractunstisa (unsigned long long a)
[Runtime Function]long accum __fractunstida (unsigned long long a)
[Runtime Function]long long accum __fractunstita (unsigned long long

a)
[Runtime Function]unsigned short fract __fractunstiuqq (unsigned long

long a)
[Runtime Function]unsigned fract __fractunstiuhq (unsigned long long

a)
[Runtime Function]unsigned long fract __fractunstiusq (unsigned long

long a)
[Runtime Function]unsigned long long fract __fractunstiudq (unsigned

long long a)
[Runtime Function]unsigned short accum __fractunstiuha (unsigned long

long a)
[Runtime Function]unsigned accum __fractunstiusa (unsigned long long

a)
[Runtime Function]unsigned long accum __fractunstiuda (unsigned long

long a)
[Runtime Function]unsigned long long accum __fractunstiuta (unsigned

long long a)
These functions convert from fractionals to unsigned non-fractionals; and from un-
signed non-fractionals to fractionals, without saturation.

[Runtime Function]short fract __satfractunsqiqq (unsigned char a)
[Runtime Function]fract __satfractunsqihq (unsigned char a)
[Runtime Function]long fract __satfractunsqisq (unsigned char a)
[Runtime Function]long long fract __satfractunsqidq (unsigned char a)
[Runtime Function]short accum __satfractunsqiha (unsigned char a)
[Runtime Function]accum __satfractunsqisa (unsigned char a)
[Runtime Function]long accum __satfractunsqida (unsigned char a)
[Runtime Function]long long accum __satfractunsqita (unsigned char a)
[Runtime Function]unsigned short fract __satfractunsqiuqq (unsigned

char a)
[Runtime Function]unsigned fract __satfractunsqiuhq (unsigned char a)
[Runtime Function]unsigned long fract __satfractunsqiusq (unsigned

char a)

Chapter 3: The GCC low-level runtime library 57

[Runtime Function]unsigned long long fract __satfractunsqiudq
(unsigned char a)

[Runtime Function]unsigned short accum __satfractunsqiuha (unsigned
char a)

[Runtime Function]unsigned accum __satfractunsqiusa (unsigned char a)
[Runtime Function]unsigned long accum __satfractunsqiuda (unsigned

char a)
[Runtime Function]unsigned long long accum __satfractunsqiuta

(unsigned char a)
[Runtime Function]short fract __satfractunshiqq (unsigned short a)
[Runtime Function]fract __satfractunshihq (unsigned short a)
[Runtime Function]long fract __satfractunshisq (unsigned short a)
[Runtime Function]long long fract __satfractunshidq (unsigned short

a)
[Runtime Function]short accum __satfractunshiha (unsigned short a)
[Runtime Function]accum __satfractunshisa (unsigned short a)
[Runtime Function]long accum __satfractunshida (unsigned short a)
[Runtime Function]long long accum __satfractunshita (unsigned short

a)
[Runtime Function]unsigned short fract __satfractunshiuqq (unsigned

short a)
[Runtime Function]unsigned fract __satfractunshiuhq (unsigned short

a)
[Runtime Function]unsigned long fract __satfractunshiusq (unsigned

short a)
[Runtime Function]unsigned long long fract __satfractunshiudq

(unsigned short a)
[Runtime Function]unsigned short accum __satfractunshiuha (unsigned

short a)
[Runtime Function]unsigned accum __satfractunshiusa (unsigned short

a)
[Runtime Function]unsigned long accum __satfractunshiuda (unsigned

short a)
[Runtime Function]unsigned long long accum __satfractunshiuta

(unsigned short a)
[Runtime Function]short fract __satfractunssiqq (unsigned int a)
[Runtime Function]fract __satfractunssihq (unsigned int a)
[Runtime Function]long fract __satfractunssisq (unsigned int a)
[Runtime Function]long long fract __satfractunssidq (unsigned int a)
[Runtime Function]short accum __satfractunssiha (unsigned int a)
[Runtime Function]accum __satfractunssisa (unsigned int a)
[Runtime Function]long accum __satfractunssida (unsigned int a)
[Runtime Function]long long accum __satfractunssita (unsigned int a)
[Runtime Function]unsigned short fract __satfractunssiuqq (unsigned

int a)
[Runtime Function]unsigned fract __satfractunssiuhq (unsigned int a)

58 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long fract __satfractunssiusq (unsigned
int a)

[Runtime Function]unsigned long long fract __satfractunssiudq
(unsigned int a)

[Runtime Function]unsigned short accum __satfractunssiuha (unsigned
int a)

[Runtime Function]unsigned accum __satfractunssiusa (unsigned int a)
[Runtime Function]unsigned long accum __satfractunssiuda (unsigned

int a)
[Runtime Function]unsigned long long accum __satfractunssiuta

(unsigned int a)
[Runtime Function]short fract __satfractunsdiqq (unsigned long a)
[Runtime Function]fract __satfractunsdihq (unsigned long a)
[Runtime Function]long fract __satfractunsdisq (unsigned long a)
[Runtime Function]long long fract __satfractunsdidq (unsigned long a)
[Runtime Function]short accum __satfractunsdiha (unsigned long a)
[Runtime Function]accum __satfractunsdisa (unsigned long a)
[Runtime Function]long accum __satfractunsdida (unsigned long a)
[Runtime Function]long long accum __satfractunsdita (unsigned long a)
[Runtime Function]unsigned short fract __satfractunsdiuqq (unsigned

long a)
[Runtime Function]unsigned fract __satfractunsdiuhq (unsigned long a)
[Runtime Function]unsigned long fract __satfractunsdiusq (unsigned

long a)
[Runtime Function]unsigned long long fract __satfractunsdiudq

(unsigned long a)
[Runtime Function]unsigned short accum __satfractunsdiuha (unsigned

long a)
[Runtime Function]unsigned accum __satfractunsdiusa (unsigned long a)
[Runtime Function]unsigned long accum __satfractunsdiuda (unsigned

long a)
[Runtime Function]unsigned long long accum __satfractunsdiuta

(unsigned long a)
[Runtime Function]short fract __satfractunstiqq (unsigned long long

a)
[Runtime Function]fract __satfractunstihq (unsigned long long a)
[Runtime Function]long fract __satfractunstisq (unsigned long long a)
[Runtime Function]long long fract __satfractunstidq (unsigned long

long a)
[Runtime Function]short accum __satfractunstiha (unsigned long long

a)
[Runtime Function]accum __satfractunstisa (unsigned long long a)
[Runtime Function]long accum __satfractunstida (unsigned long long a)
[Runtime Function]long long accum __satfractunstita (unsigned long

long a)
[Runtime Function]unsigned short fract __satfractunstiuqq (unsigned

long long a)

Chapter 3: The GCC low-level runtime library 59

[Runtime Function]unsigned fract __satfractunstiuhq (unsigned long
long a)

[Runtime Function]unsigned long fract __satfractunstiusq (unsigned
long long a)

[Runtime Function]unsigned long long fract __satfractunstiudq
(unsigned long long a)

[Runtime Function]unsigned short accum __satfractunstiuha (unsigned
long long a)

[Runtime Function]unsigned accum __satfractunstiusa (unsigned long
long a)

[Runtime Function]unsigned long accum __satfractunstiuda (unsigned
long long a)

[Runtime Function]unsigned long long accum __satfractunstiuta
(unsigned long long a)

These functions convert from unsigned non-fractionals to fractionals, with saturation.

3.5 Language-independent routines for exception handling

document me!

_Unwind_DeleteException

_Unwind_Find_FDE

_Unwind_ForcedUnwind

_Unwind_GetGR

_Unwind_GetIP

_Unwind_GetLanguageSpecificData

_Unwind_GetRegionStart

_Unwind_GetTextRelBase

_Unwind_GetDataRelBase

_Unwind_RaiseException

_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP

_Unwind_FindEnclosingFunction

_Unwind_SjLj_Register

_Unwind_SjLj_Unregister

_Unwind_SjLj_RaiseException

_Unwind_SjLj_ForcedUnwind

_Unwind_SjLj_Resume

__deregister_frame

__deregister_frame_info

__deregister_frame_info_bases

__register_frame

__register_frame_info

__register_frame_info_bases

__register_frame_info_table

__register_frame_info_table_bases

__register_frame_table

3.6 Miscellaneous runtime library routines

60 GNU Compiler Collection (GCC) Internals

3.6.1 Cache control functions

[Runtime Function]void __clear_cache (char *beg, char *end)
This function clears the instruction cache between beg and end.

3.6.2 Split stack functions and variables

[Runtime Function]void * __splitstack_find (void *segment_arg, void
*sp, size_t len, void **next_segment, void **next_sp, void
**initial_sp)

When using -fsplit-stack, this call may be used to iterate over the stack segments.
It may be called like this:

void *next_segment = NULL;

void *next_sp = NULL;

void *initial_sp = NULL;

void *stack;

size_t stack_size;

while ((stack = __splitstack_find (next_segment, next_sp,

&stack_size, &next_segment,

&next_sp, &initial_sp))

!= NULL)

{

/* Stack segment starts at stack and is

stack_size bytes long. */

}

There is no way to iterate over the stack segments of a different thread. However,
what is permitted is for one thread to call this with the segment arg and sp argu-
ments NULL, to pass next segment, next sp, and initial sp to a different thread, and
then to suspend one way or another. A different thread may run the subsequent
__splitstack_find iterations. Of course, this will only work if the first thread is
suspended while the second thread is calling __splitstack_find. If not, the second
thread could be looking at the stack while it is changing, and anything could happen.

[Variable]__morestack_segments
[Variable]__morestack_current_segment
[Variable]__morestack_initial_sp

Internal variables used by the -fsplit-stack implementation.

61

4 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 10 [GENERIC], page 179), was initially designed for C, and many aspects of it
are still somewhat biased towards C and C-like languages. It is, however, reasonably well
suited to other procedural languages, and front ends for many such languages have been
written for GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

• GCC front ends benefit from the support for many different target machines already
present in GCC.

• GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code than
when it is compiling from generated C code.

• Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of a
research project) as GCC front ends. cc Copyright (C) 2002-2026 Free Software Foundation,
Inc.

63

5 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built. The
user documentation for building and installing GCC is in a separate manual (https://gcc.
gnu.org/install/), with which it is presumed that you are familiar.

5.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with --build=,
--host=, and --target=.

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
built and installed a cross compiler that will be used to build the target libraries (if you
configured with --target=foo-bar, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with --target. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you’re not building a compiler, you’re
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original --host value in case you need it.

The libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

5.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

https://gcc.gnu.org/install/
https://gcc.gnu.org/install/

64 GNU Compiler Collection (GCC) Internals

c++tools Contains the sources for the g++-mapper-server, a tool used with C++ modules.

config Autoconf macros and Makefile fragments used throughout the tree.

contrib Contributed scripts that may be found useful in conjunction with GCC. One
of these, contrib/texi2pod.pl, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

fixincludes

The support for fixing system headers to work with GCC. See
fixincludes/README for more information. The headers fixed by this mecha-
nism are installed in libsubdir/include-fixed. Along with those headers,
README-fixinc is also installed, as libsubdir/include-fixed/README.

gcc The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 5.3 [The gcc Subdirectory], page 65, for details.

gnattools

Support tools for GNAT.

gotools Support tools for Go.

include Headers for the libiberty library.

intl GNU libintl, from GNU gettext, for systems which do not include it in
libc.

libada The Ada runtime library.

libatomic

The runtime support library for atomic operations (e.g. for __sync and __

atomic).

libbacktrace

A library that allows GCC to produce backtraces when it crashes.

libcc1 A library that allows GDB to make use of the compiler.

libcody A compiler dynamism library to allow communication between compilers and
build systems, for purposes such as C++ modules.

libcpp The C preprocessor library.

libdecnumber

The Decimal Float support library.

libffi The libffi library, used as part of the Go runtime library.

libga68 The Algol 68 runtime library.

libgcc The GCC runtime library.

libgcobol

The COBOL runtime library.

libgfortran

The Fortran runtime library.

Chapter 5: Source Tree Structure and Build System 65

libgm2 The Modula-2 runtime library.

libgo The Go runtime library. The bulk of this library is mirrored from the master
Go repository (https://github.com/golang/go).

libgomp The GNU Offloading and Multi Processing Runtime Library.

libiberty

The libiberty library, used for portability and for some generally useful data
structures and algorithms. See Section “Introduction” in gnu libiberty , for
more information about this library.

libitm The runtime support library for transactional memory.

libobjc The Objective-C and Objective-C++ runtime library.

libphobos

The D standard and runtime library. The bulk of this library is mirrored from
the master D repositories (https://github.com/dlang).

libquadmath

The runtime support library for quad-precision math operations.

libsanitizer

Libraries for various sanitizers. The bulk of this directory is mirrored from the
Google sanitizers repositories (https://github.com/google/sanitizers).

libssp The Stack protector runtime library.

libstdc++-v3

The C++ runtime library.

libvtv The vtable verification library.

lto-plugin

Plugin used by the linker if link-time optimizations are enabled.

maintainer-scripts

Scripts used by the gccadmin account on gcc.gnu.org.

zlib The zlib compression library, used for compressing and uncompressing GCC’s
intermediate language in LTO object files.

The build system in the top level directory, including how recursion into subdirecto-
ries works and how building runtime libraries for multilibs is handled, is documented in a
separate manual, included with GNU Binutils.

5.3 The gcc Subdirectory

The gcc directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler], page 145.

https://github.com/golang/go
https://github.com/golang/go
https://github.com/dlang
https://github.com/google/sanitizers

66 GNU Compiler Collection (GCC) Internals

5.3.1 Subdirectories of gcc

The gcc directory contains the following subdirectories:

language Subdirectories for various languages. Directories containing a file config-

lang.in are language subdirectories. The contents of the subdirectories c

(for C), cp (for C++), m2 (for Modula-2), objc (for Objective-C), objcp (for
Objective-C++), and lto (for LTO) are documented in this manual (see Chap-
ter 8 [Passes and Files of the Compiler], page 145); those for other languages
are not. See Section 5.3.8 [Anatomy of a Language Front End], page 74, for
details of the files in these directories.

common Source files shared between the compiler drivers (such as gcc) and the compilers
proper (such as cc1). If an architecture defines target hooks shared between
those places, it also has a subdirectory in common/config. See Section 17.1
[Target Structure], page 529.

config Configuration files for supported architectures and operating systems. See Sec-
tion 5.3.9 [Anatomy of a Target Back End], page 78, for details of the files in
this directory.

doc Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See Sec-
tion 5.3.7 [Documentation], page 71.

ginclude System headers installed by GCC, mainly those defined by the C standard
that do not declare functions with external linkage. See Section 5.3.6 [Headers
Installed by GCC], page 71, for details of when these and other headers are
installed.

po Message catalogs with translations of messages produced by GCC into various
languages, language.po. This directory also contains gcc.pot, the template
for these message catalogues, exgettext, a wrapper around gettext to extract
the messages from the GCC sources and create gcc.pot, which is run by ‘make
gcc.pot’, and EXCLUDES, a list of files from which messages should not be
extracted.

testsuite

The GCC testsuites (except for those for runtime libraries). See Chapter 6
[Testsuites], page 81.

5.3.2 Configuration in the gcc Directory

The gcc directory is configured with an Autoconf-generated script configure. The
configure script is generated from configure.ac and aclocal.m4. From the files
configure.ac and acconfig.h, Autoheader generates the file config.in. The file
cstamp-h.in is used as a timestamp.

5.3.2.1 Scripts Used by configure

configure uses some other scripts to help in its work:

• The standard GNU config.sub and config.guess files, kept in the top level directory,
are used.

Chapter 5: Source Tree Structure and Build System 67

• The file config.gcc is used to handle configuration specific to the particular target
machine. The file config.build is used to handle configuration specific to the particu-
lar build machine. The file config.host is used to handle configuration specific to the
particular host machine. (In general, these should only be used for features that cannot
reasonably be tested in Autoconf feature tests.) See Section 5.3.2.2 [The config.build;
config.host; and config.gcc Files], page 67, for details of the contents of these files.

• Each language subdirectory has a file language/config-lang.in that is used for front-
end-specific configuration. See Section 5.3.8.2 [The Front End config-lang.in File],
page 75, for details of this file.

• A helper script configure.frag is used as part of creating the output of configure.

5.3.2.2 The config.build; config.host; and config.gcc Files

The config.build file contains specific rules for particular systems which GCC is built on.
This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The config.host file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The config.gcc file contains specific rules for particular systems which GCC will generate
code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

5.3.2.3 Files Created by configure

Here we spell out what files will be set up by configure in the gcc directory. Some other
files are created as temporary files in the configuration process, and are not used in the
subsequent build; these are not documented.

• Makefile is constructed from Makefile.in, together with the host and target frag-
ments (see Chapter 19 [Makefile Fragments], page 729) t-target and x-host from
config, if any, and language Makefile fragments language/Make-lang.in.

• auto-host.h contains information about the host machine determined by configure.
If the host machine is different from the build machine, then auto-build.h is also
created, containing such information about the build machine.

• config.status is a script that may be run to recreate the current configuration.

• configargs.h is a header containing details of the arguments passed to configure to
configure GCC, and of the thread model used.

• cstamp-h is used as a timestamp.

• If a language config-lang.in file (see Section 5.3.8.2 [The Front End config-lang.in

File], page 75) sets outputs, then the files listed in outputs there are also generated.

The following configuration headers are created from the Makefile, using mkconfig.sh,
rather than directly by configure. config.h, bconfig.h and tconfig.h all contain the
xm-machine.h header, if any, appropriate to the host, build and target machines respec-
tively, the configuration headers for the target, and some definitions; for the host and build

68 GNU Compiler Collection (GCC) Internals

machines, these include the autoconfigured headers generated by configure. The other
configuration headers are determined by config.gcc. They also contain the typedefs for
rtx, rtvec and tree.

• config.h, for use in programs that run on the host machine.

• bconfig.h, for use in programs that run on the build machine.

• tconfig.h, for use in programs and libraries for the target machine.

• tm_p.h, which includes the header machine-protos.h that contains prototypes for
functions in the target machine.c file. The machine-protos.h header is included
after the rtl.h and/or tree.h would have been included. The tm_p.h also includes
the header tm-preds.h which is generated by genpreds program during the build to
define the declarations and inline functions for the predicate functions.

5.3.3 Build System in the gcc Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 8 [Passes], page 145).

5.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.

pdf Produce PDF-formatted documentation.

html Produce HTML-formatted documentation.

man Generate man pages.

info Generate info-formatted pages.

mostlyclean

Delete the files made while building the compiler.

clean That, and all the other files built by ‘make all’.

distclean

That, and all the files created by configure.

maintainer-clean

Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build GCC.

srcextra Generates files in the source directory that are not version-controlled but should
go into a release tarball.

srcinfo

srcman Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

Chapter 5: Source Tree Structure and Build System 69

install Installs GCC.

uninstall

Deletes installed files, though this is not supported.

check Run the testsuite. This creates a testsuite subdirectory that has various
.sum and .log files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the .exp file, optionally followed by (for some
tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as Tcl or DejaGnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures1.

Other targets available from the top level include:

bootstrap-lean

Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean

Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N = 1...4, profile, feedback)

Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

70 GNU Compiler Collection (GCC) Internals

all-stageN (N = 1...4, profile, feedback)

Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap

Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

distclean-stageN (N = 1...4, profile, feedback)

Wipe stage N and all the following ones.

For example, ‘make distclean-stage3’ wipes stage 3 and all the following ones,
so that another make then rebuilds them from scratch. This can be useful if
you’re doing changes where “bubbling” the changes as described above is not
sufficient, but a full make restrap isn’t necessary either.

profiledbootstrap

Builds a compiler with profiling feedback information. In this case, the second
and third stages are named ‘profile’ and ‘feedback’, respectively. For more
information, see the installation instructions.

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N = 1...4, profile, feedback)

For each package that is bootstrapped, rename directories so that, for example,
gcc points to the stageN GCC, compiled with the stageN-1 GCC2.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild
it or to run test suites), you should be able to work directly in the stageN-gcc
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the gcc directory points to the stage2 GCC, after
invoking this target it will be renamed to stage2-gcc.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stage1 compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran

2 Customarily, the system compiler is also termed the stage0 GCC.

Chapter 5: Source Tree Structure and Build System 71

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stage1. For example, make f951 will build a Fortran compiler even in
the stage1 build directory.

5.3.5 Library Source Files and Headers under the gcc Directory

FIXME: list here, with explanation, all the C source files and headers under the gcc direc-
tory that aren’t built into the GCC executable but rather are part of runtime libraries and
object files, such as crtstuff.c and unwind-dw2.c. See Section 5.3.6 [Headers Installed
by GCC], page 71, for more information about the ginclude directory.

5.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used with
it. However, GCC will fix those headers if necessary to make them work with GCC, and will
install some headers of its own, mainly headers that do not declare functions with external
linkage. These headers are installed in libsubdir/include. Headers for non-C runtime
libraries are also installed by GCC; these are not documented here. (FIXME: document
them somewhere.)

Several of the headers GCC installs are in the ginclude directory. These headers,
iso646.h, stdarg.h, stdbool.h, and stddef.h, are installed in libsubdir/include, un-
less the target Makefile fragment (see Section 19.1 [Target Fragment], page 729) overrides
this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in libsubdir/include. config.gcc may
set extra_headers; this specifies additional headers under config to be installed on some
systems. They’re installed at the top of the include tree, unless the optional ‘/././’
sequence appears in the name, marking the beginning of the name under which the header
should be installed.

GCC installs its own version of <float.h>, from ginclude/float.h. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <limits.h>; this is generated from glimits.h, to-
gether with limitx.h and limity.h if the system also has its own version of <limits.h>.
(GCC provides its own header because it does not declare functions with external linkage,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <limits.h>.) The system’s
<limits.h> header is used via libsubdir/include/syslimits.h, which is copied from
gsyslimits.h if it does not need fixing to work with GCC; if it needs fixing, syslimits.h
is the fixed copy.

GCC can also install <tgmath.h>. It will do this when config.gcc sets use_gcc_tgmath
to yes.

5.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by ‘make html’. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,

72 GNU Compiler Collection (GCC) Internals

and runtime libraries have their own documentation outside the gcc directory. FIXME:
document the documentation for runtime libraries somewhere.

5.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files doc/*.texi.
Other front ends have their own manuals in files language/*.texi. Common files
doc/include/*.texi are provided which may be included in multiple manuals; the
following files are in doc/include:

fdl.texi The GNU Free Documentation License.

funding.texi

The section “Funding Free Software”.

gcc-common.texi

Common definitions for manuals.

gpl_v3.texi

The GNU General Public License.

texinfo.tex

A copy of texinfo.tex known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $(TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $(TEXI2PDF)). HTML formatted manuals are generated
by ‘make html’. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script maintainer-scripts/update_web_docs_git. Each manual to
be provided online must be listed in the definition of MANUALS in that file; a file name.texi
must only appear once in the source tree, and the output manual must have the same name
as the source file. (However, other Texinfo files, included in manuals but not themselves the
root files of manuals, may have names that appear more than once in the source tree.) The
manual file name.texi should only include other files in its own directory or in doc/include.
HTML manuals will be generated by ‘makeinfo --html’, PostScript manuals by texi2dvi

and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts of manuals must
be version-controlled, even if they are generated files, for the generation of online manuals
to work.

The installation manual, doc/install.texi, is also provided on the GCC web site. The
HTML version is generated by the script doc/install.texi2html.

5.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using contrib/texi2pod.pl and pod2man. (The man page for g++, cp/g++.1,
just contains a ‘.so’ reference to gcc.1, but all the other man pages are generated from
Texinfo manuals.)

Chapter 5: Source Tree Structure and Build System 73

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the configure script detects that recent enough tools are
installed, and the Makefiles allow generating man pages to fail without aborting the build.
Man pages are also included in release distributions. They are generated in the source
directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by texi2pod.pl, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
doc/include/gcc-common.texi which texi2pod.pl understands:

@gcctabopt

Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘@code’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

@gccoptlist

Use for summary lists of options in manuals.

FIXME: describe the texi2pod.pl input language and magic comments in more detail.

5.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files in the gcc subdirectory with miscellaneous documentation:

ABOUT-GCC-NLS

Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

ABOUT-NLS

Notes on the Free Translation Project.

COPYING

COPYING3 The GNU General Public License, Versions 2 and 3.

COPYING.LIB

COPYING3.LIB

The GNU Lesser General Public License, Versions 2.1 and 3.

ChangeLog

/ChangeLog

Change log files for various parts of GCC.

LANGUAGES

Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

ONEWS Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

README.Portability

Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

74 GNU Compiler Collection (GCC) Internals

FIXME: document such files in subdirectories, at least config, c, cp, objc, testsuite.

5.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:

• A directory language under gcc containing source files for that front end. See Sec-
tion 5.3.8.1 [The Front End language Directory], page 75, for details.

• Amention of the language in the list of supported languages in gcc/doc/install.texi.

• A mention of the name under which the language’s runtime library is recog-
nized by --enable-shared=package in the documentation of that option in
gcc/doc/install.texi.

• A mention of any special prerequisites for building the front end in the documentation
of prerequisites in gcc/doc/install.texi.

• Details of contributors to that front end in gcc/doc/contrib.texi. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
contrib.texi.

• Information about support for that language in gcc/doc/frontends.texi.

• Information about standards for that language, and the front end’s support for them,
in gcc/doc/standards.texi. This may be a link to such information in the front end’s
own manual.

• Details of source file suffixes for that language and -x lang options supported, in
gcc/doc/invoke.texi.

• Entries in default_compilers in gcc.cc for source file suffixes for that language.

• Preferably testsuites, which may be under gcc/testsuite or runtime library directo-
ries. FIXME: document somewhere how to write testsuite harnesses.

• Probably a runtime library for the language, outside the gcc directory. FIXME: doc-
ument this further.

• Details of the directories of any runtime libraries in gcc/doc/sourcebuild.texi.

• Check targets in Makefile.def for the top-level Makefile to check just the compiler
or the compiler and runtime library for the language.

If the front end is added to the official GCC source repository, the following are also
necessary:

• At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be added to the Bugzilla database.

• Normally, one or more maintainers of that front end listed in MAINTAINERS.

• Mentions on the GCC web site in index.html and frontends.html, with any relevant
links on readings.html. (Front ends that are not an official part of GCC may also be
listed on frontends.html, with relevant links.)

• A news item on index.html, and possibly an announcement on the gcc-

announce@gcc.gnu.org mailing list.

• The front end’s manuals should be mentioned in maintainer-scripts/update_web_

docs_git (see Section 5.3.7.1 [Texinfo Manuals], page 72) and the online manuals
should be linked to from onlinedocs/index.html.

mailto:gcc-announce@gcc.gnu.org
mailto:gcc-announce@gcc.gnu.org

Chapter 5: Source Tree Structure and Build System 75

• If the front end has its own manual with its own index of options, the generated Option-

Index.html should be added to PER_LANGUAGE_OPTION_INDEXES in gcc/regenerate-

opt-urls.py and to OPT_URLS_HTML_DEPS in gcc/Makefile.in.

• Any old releases or CVS repositories of the front end, before its inclusion in GCC,
should be made available on the GCC web site at https://gcc.gnu.org/pub/gcc/

old-releases/.

• The release and snapshot script maintainer-scripts/gcc_release should be updated
to generate appropriate tarballs for this front end.

• If this front end includes its own version files that include the current date, maintainer-
scripts/update_version should be updated accordingly.

5.3.8.1 The Front End language Directory

A front end language directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the gcc directory). This includes documentation,
and possibly some subsidiary programs built alongside the front end. Certain files are special
and other parts of the compiler depend on their names:

config-lang.in

This file is required in all language subdirectories. See Section 5.3.8.2 [The
Front End config-lang.in File], page 75, for details of its contents

Make-lang.in

This file is required in all language subdirectories. See Section 5.3.8.3 [The
Front End Make-lang.in File], page 76, for details of its contents.

lang.opt This file registers the set of switches that the front end accepts on the command
line, and their --help text. See Chapter 7 [Options], page 135.

lang-specs.h

This file provides entries for default_compilers in gcc.cc which override the
default of giving an error that a compiler for that language is not installed.

language-tree.def

This file, which need not exist, defines any language-specific tree codes.

5.3.8.2 The Front End config-lang.in File

Each language subdirectory contains a config-lang.in file. This file is a shell script that
may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to --enable-languages.

lang_requires

If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Obj-C++ front end depends on the C++
and ObjC front ends, so sets ‘lang_requires="objc c++"’.

subdir_requires

If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++

https://gcc.gnu.org/pub/gcc/old-releases/
https://gcc.gnu.org/pub/gcc/old-releases/

76 GNU Compiler Collection (GCC) Internals

front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs

If defined, this variable lists (space-separated) targets in the top level Makefile
to build the runtime libraries for this language, such as target-libobjc.

lang_dirs

If defined, this variable lists (space-separated) top level directories (parallel to
gcc), apart from the runtime libraries, that should not be configured if this
front end is not built.

build_by_default

If defined to ‘no’, this language front end is not built unless enabled in a
--enable-languages argument. Otherwise, front ends are built by default,
subject to any special logic in configure.ac (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language

If defined to ‘yes’, this front end is built in stage1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers

If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$(exeext)’.

outputs If defined, a space-separated list of files that should be generated by configure

substituting values in them. This mechanism can be used to create a file
language/Makefile from language/Makefile.in, but this is deprecated,
building everything from the single gcc/Makefile is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by gengtype.cc

to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 22 [Type
Information], page 737.

5.3.8.3 The Front End Make-lang.in File

Each language subdirectory contains a Make-lang.in file. It contains targets lang.hook

(where lang is the setting of language in config-lang.in) for the following values of hook,
and any other Makefile rules required to build those targets (which may if necessary use
other Makefiles specified in outputs in config-lang.in, although this is deprecated). It
also adds any testsuite targets that can use the standard rule in gcc/Makefile.in to the
variable lang_checks.

all.cross

start.encap

rest.encap

FIXME: exactly what goes in each of these targets?

tags Build an etags TAGS file in the language subdirectory in the source tree.

Chapter 5: Source Tree Structure and Build System 77

info Build info documentation for the front end, in the build directory. This target
is only called by ‘make bootstrap’ if a suitable version of makeinfo is available,
so does not need to check for this, and should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory. This should
be done using $(TEXI2DVI), with appropriate -I arguments pointing to direc-
tories of included files.

pdf Build PDF documentation for the front end, in the build directory. This should
be done using $(TEXI2PDF), with appropriate -I arguments pointing to direc-
tories of included files.

html Build HTML documentation for the front end, in the build directory.

man Build generated man pages for the front end from Texinfo manuals (see Sec-
tion 5.3.7.2 [Man Page Generation], page 72), in the build directory. This target
is only called if the necessary tools are available, but should ignore errors so
as not to stop the build if errors occur; man pages are optional and the tools
involved may be installed in a broken way.

install-common

Install everything that is part of the front end, apart from the compiler exe-
cutables listed in compilers in config-lang.in.

install-info

Install info documentation for the front end, if it is present in the source direc-
tory. This target should have dependencies on info files that should be installed.

install-man

Install man pages for the front end. This target should ignore errors.

install-plugin

Install headers needed for plugins.

srcextra Copies its dependencies into the source directory. This generally should be used
for generated files such as Bison output files which are not version-controlled,
but should be included in any release tarballs. This target will be executed
during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified
as a configure option.

srcinfo

srcman Copies its dependencies into the source directory. These targets will be executed
during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified
as a configure option.

uninstall

Uninstall files installed by installing the compiler. This is currently documented
not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean

The language parts of the standard GNU ‘*clean’ targets. See Section “Stan-
dard Targets for Users” in GNU Coding Standards, for details of the standard

78 GNU Compiler Collection (GCC) Internals

targets. For GCC, maintainer-clean should delete all generated files in the
source directory that are not version-controlled, but should not delete anything
that is.

Make-lang.in must also define a variable lang_OBJS to a list of host object files that are
used by that language.

5.3.9 Anatomy of a Target Back End

A back end for a target architecture in GCC has the following parts:

• A directory machine under gcc/config, containing a machine description machine.md

file (see Chapter 16 [Machine Descriptions], page 369), header files machine.h and
machine-protos.h and a source file machine.c (see Chapter 17 [Target Description
Macros and Functions], page 529), possibly a target Makefile fragment t-machine

(see Section 19.1 [The Target Makefile Fragment], page 729), and maybe some other
files. The names of these files may be changed from the defaults given by explicit
specifications in config.gcc.

• If necessary, a file machine-modes.def in the machine directory, containing additional
machine modes to represent condition codes. See Section 17.17 [Condition Code],
page 628, for further details.

• An optional machine.opt file in the machine directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in config.gcc. See Chapter 7 [Options], page 135.

• Entries in config.gcc (see Section 5.3.2.2 [The config.gcc File], page 67) for the
systems with this target architecture.

• Documentation in gcc/doc/invoke.texi for any command-line options supported by
this target (see Section 17.3 [Run-time Target Specification], page 537). This means
both entries in the summary table of options and details of the individual options.

• An entry in gcc/regenerate-opt-urls.py’s TARGET SPECIFIC PAGES dictionary
mapping from target-specific HTML documentation pages to the target specific source
directory.

• Documentation in gcc/doc/extend.texi for any target-specific attributes supported
(see Section 17.26 [Defining target-specific uses of __attribute__], page 688), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

• Documentation in gcc/doc/extend.texi for any target-specific pragmas supported.

• Documentation in gcc/doc/extend.texi of any target-specific built-in functions sup-
ported.

• Documentation in gcc/doc/extend.texi of any target-specific format checking styles
supported.

• Documentation in gcc/doc/md.texi of any target-specific constraint letters (see Sec-
tion 16.9.5 [Constraints for Particular Machines], page 392).

• A note in gcc/doc/contrib.texi under the person or people who contributed the
target support.

Chapter 5: Source Tree Structure and Build System 79

• Entries in gcc/doc/install.texi for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

• Possibly other support outside the gcc directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

The machine.h header is included very early in GCC’s standard sequence of header files,
while machine-protos.h is included late in the sequence. Thus machine-protos.h can
include declarations referencing types that are not defined when machine.h is included,
specifically including those from rtl.h and tree.h. Since both RTL and tree types may
not be available in every context where machine-protos.h is included, in this file you
should guard declarations using these types inside appropriate #ifdef RTX_CODE or #ifdef
TREE_CODE conditional code segments.

If the backend uses shared data structures that require GTY markers for garbage collec-
tion (see Chapter 22 [Type Information], page 737), you must declare those in machine.h

rather than machine-protos.h. Any definitions required for building libgcc must also go
in machine.h.

GCC uses the macro IN_TARGET_CODE to distinguish between machine-specific .c and
.cc files and machine-independent .c and .cc files. Machine-specific files should use the
directive:

#define IN_TARGET_CODE 1

before including config.h.

If the back end is added to the official GCC source repository, the following are also
necessary:

• An entry for the target architecture in readings.html on the GCC web site, with any
relevant links.

• Details of the properties of the back end and target architecture in backends.html on
the GCC web site.

• A news item about the contribution of support for that target architecture, in
index.html on the GCC web site.

• Normally, one or more maintainers of that target listed in MAINTAINERS. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

• Target triplets covering all config.gcc stanzas for the target, in the list in
contrib/config-list.mk.

81

6 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

6.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing -n.c, starting with -1.c, in case other testcases with
similar names are added later. If the test is a test of some well-defined feature, it should
have a name referring to that feature such as feature-1.c. If it does not test a well-defined
feature but just happens to exercise a bug somewhere in the compiler, and a bug report
has been filed for this bug in the GCC bug database, prbug-number-1.c is the appropriate
form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug database), and
previously more generally, test cases are named after the date on which they were added.
This allows people to tell at a glance whether a test failure is because of a recently found bug
that has not yet been fixed, or whether it may be a regression, but does not give any other
information about the bug or where discussion of it may be found. Some other language
testsuites follow similar conventions.

In the gcc.dg testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with -pedantic-errors. The following idiom, where the first
line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */

/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) ? 1 : -1)];

In gcc.dg tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, gcc.dg/c99-condexpr-1.c. The more subtle uses depend on
the exact rules for the types of conditional expressions in the C standard; see, for example,
gcc.dg/c99-intconst-1.c.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in gcc.c-torture/execute. Where code should be
optimized away, a call to a nonexistent function such as link_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__

void

link_failure (void)

{

abort ();

}

#endif

82 GNU Compiler Collection (GCC) Internals

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

6.2 Directives used within DejaGnu tests

6.2.1 Syntax and Descriptions of test directives

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors (see Section 6.2.2 [Selectors], page 87) which are
usually preceded by the keyword target or xfail.

6.2.1.1 Specify how to build the test

{ dg-do do-what-keyword [{ target/xfail selector }] }

do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess

Compile with -E to run only the preprocessor.

compile Compile with -S to produce an assembly code file.

assemble Compile with -c to produce a relocatable object file.

link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector }’ then the test is
skipped unless the target system matches the selector.

If do-what-keyword is run and the directive includes the optional ‘{ xfail

selector }’ and the selector is met then the test is expected to fail. The
xfail clause is ignored for other values of do-what-keyword; those tests can
use directive dg-xfail-if.

Chapter 6: Testsuites 83

6.2.1.2 Specify additional compiler options

{ dg-options options [{ target selector }] }

This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-add-options feature ... }

Add any compiler options that are needed to access certain features. This
directive does nothing on targets that enable the features by default, or that
don’t provide them at all. It must come after all dg-options directives. For
supported values of feature see Section 6.2.4 [Add Options], page 116.

{ dg-remove-options feature ... }

Remove any compiler options that are needed to access certain features. This
directive does nothing on targets that disable the features by default, or that
don’t provide them at all. It must come after all dg-options and dg-add-

options directives. For supported values of feature see Section 6.2.5 [Remove
Options], page 118.

{ dg-additional-options options [{ target selector }] }

This directive provides a list of compiler options, to be used if the target system
matches selector, that are added to the default options used for this set of tests.

6.2.1.3 Modify the test timeout value

The normal timeout limit, in seconds, is found by searching the following in order:

• the value defined by an earlier dg-timeout directive in the test

• variable tool timeout defined by the set of tests

• gcc,timeout set in the target board

• 300

{ dg-timeout n [{target selector }] }

Set the time limit for the compilation and for the execution of the test to the
specified number of seconds.

{ dg-timeout-factor x [{ target selector }] }

Multiply the normal time limit for compilation and execution of the test by the
specified floating-point factor.

6.2.1.4 Skip a test for some targets

{ dg-do-if action { selector } }

Same as dg-do if the selector matches and the test hasn’t already been marked
as unsupported. Use it to override an action on a target while leaving the
default action alone for other targets.

{ dg-skip-if comment { selector } [{ include-opts } [{ exclude-opts }]] }

Arguments include-opts and exclude-opts are lists in which each element is
a string of zero or more GCC options. Skip the test if all of the following
conditions are met:

• the test system is included in selector

84 GNU Compiler Collection (GCC) Internals

• for at least one of the option strings in include-opts, every option from that
string is in the set of options with which the test would be compiled; use
‘"*"’ for an include-opts list that matches any options; that is the default
if include-opts is not specified

• for each of the option strings in exclude-opts, at least one option from that
string is not in the set of options with which the test would be compiled;
use ‘""’ for an empty exclude-opts list; that is the default if exclude-opts
is not specified

For example, to skip a test if option -Os is present:

/* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */

To skip a test if both options -O2 and -g are present:

/* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */

To skip a test if either -O2 or -O3 is present:

/* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */

To skip a test unless option -Os is present:

/* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */

To skip a test if either -O2 or -O3 is used with -g but not if -fpic is also
present:

/* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */

{ dg-require-effective-target keyword [{ target selector }] }

Skip the test if the test target, including current multilib flags, is not covered by
the effective-target keyword. If the directive includes the optional ‘{ selector

}’ then the effective-target test is only performed if the target system matches
the selector. This directive must appear after any dg-do directive in the test
and before any dg-additional-sources directive. See Section 6.2.3 [Effective-
Target Keywords], page 88.

{ dg-require-support args }

Skip the test if the target does not provide the required support. These di-
rectives must appear after any dg-do directive in the test and before any dg-

additional-sources directive. They require at least one argument, which can
be an empty string if the specific procedure does not examine the argument. See
Section 6.2.6 [Require Support], page 118, for a complete list of these directives.

6.2.1.5 Expect a test to fail for some targets

{ dg-xfail-if comment { selector } [{ include-opts } [{ exclude-opts }]] }

Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met. This does not affect the execute step.

{ dg-xfail-run-if comment { selector } [{ include-opts } [{ exclude-opts }]] }

Expect the execute step of a test to fail if the conditions (which are the same
as for dg-skip-if) are met.

Chapter 6: Testsuites 85

6.2.1.6 Expect the compiler to crash

{ dg-ice comment [{ selector } [{ include-opts } [{ exclude-opts }]]] }

Expect the compiler to crash with an internal compiler error and return a
nonzero exit status if the conditions (which are the same as for dg-skip-if)
are met. Used for tests that test bugs that have not been fixed yet.

6.2.1.7 Expect the test executable to fail

{ dg-shouldfail comment [{ selector } [{ include-opts } [{ exclude-opts }]]] }

Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

6.2.1.8 Verify compiler messages

Where line is an accepted argument for these commands, a value of ‘0’ can be used if there
is no line associated with the message.

{ dg-error regexp [comment [{ target/xfail selector } [line]]] }

This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘error’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line]]] }

This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘warning’ unless it is part of regexp.

{ dg-message regexp [comment [{ target/xfail selector } [line]]] }

The line is expected to get a message other than an error or warning. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message.

{ dg-note regexp [comment [{ target/xfail selector } [line]]] }

The line is expected to get a ‘note’ message. If there is no message for that
line or if the text of that message is not matched by regexp then the check fails
and comment is included in the FAIL message.

By default, any excess ‘note’ messages are pruned, meaning their appearance
doesn’t trigger excess errors. However, if ‘dg-note’ is used at least once in a
testcase, they’re not pruned and instead must all be handled explicitly. Thus,
if looking for just single instances of messages with ‘note: ’ prefixes without
caring for all of them, use ‘dg-message "note: [...]"’ instead of ‘dg-note’,
or use ‘dg-note’ together with ‘dg-prune-output "note: "’.

{ dg-bogus regexp [comment [{ target/xfail selector } [line]]] }

This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus

86 GNU Compiler Collection (GCC) Internals

message. It is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-line linenumvar }

This DejaGnu directive sets the variable linenumvar to the line number of the
source line. The variable linenumvar can then be used in subsequent dg-error,
dg-warning, dg-message, dg-note and dg-bogus directives. For example:

int a; /* { dg-line first_def_a } */

float a; /* { dg-error "conflicting types of" } */

/* { dg-message "previous declaration of" "" { target *-*-* } first_def_a } */

{ dg-excess-errors comment [{ target/xfail selector }] }

This DejaGnu directive indicates that the test is expected to fail due to com-
piler messages that are not handled by ‘dg-error’, ‘dg-warning’, dg-message,
‘dg-note’ or ‘dg-bogus’. For this directive ‘xfail’ has the same effect as
‘target’.

{ dg-prune-output regexp }

Prune messages matching regexp from the test output.

6.2.1.9 Verify output of the test executable

{ dg-output regexp [{ target/xfail selector }] }

This DejaGnu directive compares regexp to the combined output that the test
executable writes to stdout and stderr.

{ dg-output-file file [{ target/xfail selector }] }

Compares the content of file against the combined output that the test exe-
cutable writes to stdout and stderr.

6.2.1.10 Specify environment variables for a test

{ dg-set-compiler-env-var var_name "var_value" }

Specify that the environment variable var name needs to be set to var value
before invoking the compiler on the test file.

{ dg-set-target-env-var var_name "var_value" }

Specify that the environment variable var name needs to be set to var value
before execution of the program created by the test.

6.2.1.11 Specify additional files for a test

{ dg-additional-files "filelist" }

Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" [{ \[linkonly\] \[target selector\] }] }

Specify additional source files to appear in the compile line following the main
test file. If the directive includes the optional ‘{ selector }’ then the additional
sources are only added if the target system matches the selector. If ‘linkonly’
is specified, additional sources are used only in ‘link’ and ‘run’ tests; they are
reported as unsupported and discarded in other kinds of tests that direct the
compiler to output to a single file.

Chapter 6: Testsuites 87

6.2.1.12 Add checks at the end of a test

{ dg-final { local-directive } }

This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.
See Section 6.2.7 [Final Actions], page 120, for a list of directives that can be
used within dg-final.

6.2.2 Selecting targets to which a test applies

Several test directives include selectors to limit the targets for which a test is run or to
declare that a test is expected to fail on particular targets.

A selector is:

• one or more target triplets, possibly including wildcard characters; use ‘*-*-*’ to match
any target

• a single effective-target keyword (see Section 6.2.3 [Effective-Target Keywords],
page 88)

• a list of compiler options that should be included or excluded (as described in more
detail below)

• a logical expression

Depending on the context, the selector specifies whether a test is skipped and reported
as unsupported or is expected to fail. A context that allows either ‘target’ or ‘xfail’
also allows ‘{ target selector1 xfail selector2 }’ to skip the test for targets that don’t
match selector1 and the test to fail for targets that match selector2.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘!’, ‘&&’, or ‘||’. An operand is one of the following:

• another selector expression, in curly braces

• an effective-target keyword, such as lp64

• a single target triplet

• a list of target triplets within quotes or curly braces

• one of the following:

‘{ any-opts opt1 ... optn }’
Each of opt1 to optn is a space-separated list of option globs. The selector
expression evaluates to true if, for one of these strings, every glob in the
string matches an option that was passed to the compiler. For example:

{ any-opts "-O3 -flto" "-O[2g]" }

is true if any of the following are true:

• -O2 was passed to the compiler

• -Og was passed to the compiler

• both -O3 and -flto were passed to the compiler

This kind of selector can only be used within dg-final directives. Use
dg-skip-if, dg-xfail-if or dg-xfail-run-if to skip whole tests based
on options, or to mark them as expected to fail with certain options.

88 GNU Compiler Collection (GCC) Internals

‘{ no-opts opt1 ... optn }’
As for any-opts above, each of opt1 to optn is a space-separated list of
option globs. The selector expression evaluates to true if, for all of these
strings, there is at least one glob that does not match an option that was
passed to the compiler. It is shorthand for:

{ ! { any-opts opt1 ... optn } }

For example:
{ no-opts "-O3 -flto" "-O[2g]" }

is true if all of the following are true:

• -O2 was not passed to the compiler

• -Og was not passed to the compiler

• at least one of -O3 or -flto was not passed to the compiler

Like any-opts, this kind of selector can only be used within dg-final

directives.

Here are some examples of full target selectors:
{ target { ! "hppa*-*-* ia64*-*-*" } }

{ target { powerpc*-*-* && lp64 } }

{ xfail { lp64 || vect_no_align } }

{ xfail { aarch64*-*-* && { any-opts "-O2" } } }

6.2.3 Keywords describing target attributes

Effective-target keywords identify sets of targets that support particular functionality. They
are used to limit tests to be run only for particular targets, or to specify that particular
sets of targets are expected to fail some tests.

Effective-target keywords are defined in lib/target-supports.exp in the GCC testsuite,
with the exception of those that are documented as being local to a particular test directory.

The ‘effective target’ takes into account all of the compiler options with which the
test will be compiled, including the multilib options. By convention, keywords ending in
_nocache can also include options specified for the particular test in an earlier dg-options
or dg-add-options directive.

6.2.3.1 Endianness

be Target uses big-endian memory order for multi-byte and multi-word data.

le Target uses little-endian memory order for multi-byte and multi-word data.

6.2.3.2 Data type sizes

ilp32 Target has 32-bit int, long, and pointers.

lp64 Target has 32-bit int, 64-bit long and pointers.

llp64 Target has 32-bit int and long, 64-bit long long and pointers.

double64 Target has 64-bit double.

double64plus

Target has double that is 64 bits or longer.

Chapter 6: Testsuites 89

longdouble128

Target has 128-bit long double.

int32plus

Target has int that is at 32 bits or longer.

int16 Target has int that is 16 bits or shorter.

longlong64

Target has 64-bit long long.

long_neq_int

Target has int and long with different sizes.

short_eq_int

Target has short and int with the same size.

ptr_eq_short

Target has pointers (void *) and short with the same size.

int_eq_float

Target has int and float with the same size.

ptr_eq_long

Target has pointers (void *) and long with the same size.

large_double

Target supports double that is longer than float.

large_long_double

Target supports long double that is longer than double.

ptr32plus

Target has pointers that are 32 bits or longer.

size20plus

Target has a 20-bit or larger address space, so supports at least 16-bit array
and structure sizes.

size24plus

Target has a 24-bit or larger address space, so supports at least 20-bit array
and structure sizes.

size32plus

Target has a 32-bit or larger address space, so supports at least 24-bit array
and structure sizes.

4byte_wchar_t

Target has wchar_t that is at least 4 bytes.

floatn Target has the _Floatn type.

floatnx Target has the _Floatnx type.

floatn_runtime

Target has the _Floatn type, including runtime support for any options added
with dg-add-options.

90 GNU Compiler Collection (GCC) Internals

floatnx_runtime

Target has the _Floatnx type, including runtime support for any options added
with dg-add-options.

floatn_nx_runtime

Target has runtime support for any options added with dg-add-options for
any _Floatn or _Floatnx type.

inf Target supports floating point infinite (inf) for type double.

inff Target supports floating point infinite (inf) for type float.

6.2.3.3 Fortran-specific attributes

fortran_integer_16

Target supports Fortran integer that is 16 bytes or longer.

fortran_real_10

Target supports Fortran real that is 10 bytes or longer.

fortran_real_16

Target supports Fortran real that is 16 bytes or longer.

fortran_large_int

Target supports Fortran integer kinds larger than integer(8).

fortran_large_real

Target supports Fortran real kinds larger than real(8).

6.2.3.4 Vector-specific attributes

vect_align_stack_vars

The target’s ABI allows stack variables to be aligned to the preferred vector
alignment.

vect_avg_qi

Target supports both signed and unsigned averaging operations on vectors of
bytes.

vect_mulhrs_hi

Target supports both signed and unsigned multiply-high-with-round-and-scale
operations on vectors of half-words.

vect_sdiv_pow2_si

Target supports signed division by constant power-of-2 operations on vectors
of 4-byte integers.

vect_condition

Target supports vector conditional operations.

vect_cond_mixed

Target supports vector conditional operations where comparison operands have
different type from the value operands.

vect_double

Target supports hardware vectors of double.

Chapter 6: Testsuites 91

vect_double_cond_arith

Target supports conditional addition, subtraction, multiplication, division, min-
imum and maximum on vectors of double, via the cond_ optabs.

vect_element_align_preferred

The target’s preferred vector alignment is the same as the element alignment.

vect_float

Target supports hardware vectors of float when -funsafe-math-

optimizations is in effect.

vect_float_strict

Target supports hardware vectors of float when -funsafe-math-

optimizations is not in effect. This implies vect_float.

vect_early_break

Target supports vectorization codegen of loops with early breaks. This requires
an implementation of the cbranch optab for vectors.

vect_early_break_hw

Target supports hardware vectorization and running of loops with early breaks.
This requires an implementation of the cbranch optab for vectors.

vect_int Target supports hardware vectors of int.

vect_long

Target supports hardware vectors of long.

vect_long_long

Target supports hardware vectors of long long.

vect_check_ptrs

Target supports the check_raw_ptrs and check_war_ptrs optabs on vectors.

vect_fully_masked

Target supports fully-masked (also known as fully-predicated) loops, so that
vector loops can handle partial as well as full vectors.

vect_masked_load

Target supports vector masked loads.

vect_masked_store

Target supports vector masked stores.

vect_gather_load_ifn

Target supports vector gather loads using internal functions (rather than via
built-in functions or emulation).

vect_scatter_store

Target supports vector scatter stores.

vect_aligned_arrays

Target aligns arrays to vector alignment boundary.

vect_hw_misalign

Target supports a vector misalign access.

92 GNU Compiler Collection (GCC) Internals

vect_no_align

Target does not support a vector alignment mechanism.

vect_peeling_profitable

Target might require to peel loops for alignment purposes.

vect_no_int_min_max

Target does not support a vector min and max instruction on int.

vect_no_int_add

Target does not support a vector add instruction on int.

vect_no_bitwise

Target does not support vector bitwise instructions.

vect_bool_cmp

Target supports comparison of bool vectors for at least one vector length.

vect_char_add

Target supports addition of char vectors for at least one vector length.

vect_char_mult

Target supports vector char multiplication.

vect_short_mult

Target supports vector short multiplication.

vect_int_mult

Target supports vector int multiplication.

vect_long_mult

Target supports 64 bit vector long multiplication.

vect_extract_even_odd

Target supports vector even/odd element extraction.

vect_extract_even_odd_wide

Target supports vector even/odd element extraction of vectors with elements
SImode or larger.

vect_interleave

Target supports vector interleaving.

vect_strided

Target supports vector interleaving and extract even/odd.

vect_strided_wide

Target supports vector interleaving and extract even/odd for wide element
types.

vect_perm

Target supports vector permutation.

vect_perm_byte

Target supports permutation of vectors with 8-bit elements.

vect_perm_short

Target supports permutation of vectors with 16-bit elements.

Chapter 6: Testsuites 93

vect_perm3_byte

Target supports permutation of vectors with 8-bit elements, and for the default
vector length it is possible to permute:

{ a0, a1, a2, b0, b1, b2, ... }

to:

{ a0, a0, a0, b0, b0, b0, ... }

{ a1, a1, a1, b1, b1, b1, ... }

{ a2, a2, a2, b2, b2, b2, ... }

using only two-vector permutes, regardless of how long the sequence is.

vect_perm3_int

Like vect_perm3_byte, but for 32-bit elements.

vect_perm3_short

Like vect_perm3_byte, but for 16-bit elements.

vect_shift

Target supports a hardware vector shift operation.

vect_unaligned_possible

Target prefers vectors to have an alignment greater than element alignment,
but also allows unaligned vector accesses in some circumstances.

vect_variable_length

Target has variable-length vectors.

vect64 Target supports vectors of 64 bits.

vect32 Target supports vectors of 32 bits.

vect_widen_sum_hi_to_si

Target supports a vector widening summation of short operands into int re-
sults, or can promote (unpack) from short to int.

vect_widen_sum_qi_to_hi

Target supports a vector widening summation of char operands into short

results, or can promote (unpack) from char to short.

vect_widen_sum_qi_to_si

Target supports a vector widening summation of char operands into int results.

vect_widen_mult_qi_to_hi

Target supports a vector widening multiplication of char operands into short

results, or can promote (unpack) from char to short and perform non-widening
multiplication of short.

vect_widen_mult_hi_to_si

Target supports a vector widening multiplication of short operands into int

results, or can promote (unpack) from short to int and perform non-widening
multiplication of int.

vect_widen_mult_si_to_di_pattern

Target supports a vector widening multiplication of int operands into long

results.

94 GNU Compiler Collection (GCC) Internals

vect_sdot_qi

Target supports a vector dot-product of signed char.

vect_udot_qi

Target supports a vector dot-product of unsigned char.

vect_usdot_qi

Target supports a vector dot-product where one operand of the multiply is
signed char and the other of unsigned char.

vect_sdot_hi

Target supports a vector dot-product of signed short.

vect_udot_hi

Target supports a vector dot-product of unsigned short.

vect_pack_trunc

Target supports a vector demotion (packing) of short to char and from int to
short using modulo arithmetic.

vect_unpack

Target supports a vector promotion (unpacking) of char to short and from
char to int.

vect_intfloat_cvt

Target supports conversion from signed int to float.

vect_uintfloat_cvt

Target supports conversion from unsigned int to float.

vect_floatint_cvt

Target supports conversion from float to signed int.

vect_floatuint_cvt

Target supports conversion from float to unsigned int.

vect_intdouble_cvt

Target supports conversion from signed int to double.

vect_doubleint_cvt

Target supports conversion from double to signed int.

vect_max_reduc

Target supports max reduction for vectors.

vect_sizes_16B_8B

Target supports 16- and 8-bytes vectors.

vect_sizes_32B_16B

Target supports 32- and 16-bytes vectors.

vect_logical_reduc

Target supports AND, IOR and XOR reduction on vectors.

vect_fold_extract_last

Target supports the fold_extract_last optab.

Chapter 6: Testsuites 95

vect_len_load_store

Target supports the len_load and len_store optabs.

vect_partial_vectors_usage_1

Target supports loop vectorization with partial vectors and vect-partial-

vector-usage is set to 1.

vect_partial_vectors_usage_2

Target supports loop vectorization with partial vectors and vect-partial-

vector-usage is set to 2.

vect_partial_vectors

Target supports loop vectorization with partial vectors and vect-partial-

vector-usage is nonzero.

vect_slp_v2qi_store_align

Target supports vectorization of 2-byte char stores with 2-byte aligned address
at plain -O2.

vect_slp_v4qi_store_align

Target supports vectorization of 4-byte char stores with 4-byte aligned address
at plain -O2.

vect_slp_v4qi_store_unalign

Target supports vectorization of 4-byte char stores with unaligned address at
plain -O2.

struct_4char_block_move

Target supports block move for 8-byte aligned 4-byte size struct initialization.

vect_slp_v4qi_store_unalign_1

Target supports vectorization of 4-byte char stores with unaligned address or
store them with constant pool at plain -O2.

struct_8char_block_move

Target supports block move for 8-byte aligned 8-byte size struct initialization.

vect_slp_v8qi_store_unalign_1

Target supports vectorization of 8-byte char stores with unaligned address or
store them with constant pool at plain -O2.

struct_16char_block_move

Target supports block move for 8-byte aligned 16-byte size struct initialization.

vect_slp_v16qi_store_unalign_1

Target supports vectorization of 16-byte char stores with unaligned address or
store them with constant pool at plain -O2.

vect_slp_v2hi_store_align

Target supports vectorization of 4-byte short stores with 4-byte aligned addres-
sat plain -O2.

vect_slp_v2hi_store_unalign

Target supports vectorization of 4-byte short stores with unaligned address at
plain -O2.

96 GNU Compiler Collection (GCC) Internals

vect_slp_v4hi_store_unalign

Target supports vectorization of 8-byte short stores with unaligned address at
plain -O2.

vect_slp_v2si_store_align

Target supports vectorization of 8-byte int stores with 8-byte aligned address
at plain -O2.

vect_slp_v4si_store_unalign

Target supports vectorization of 16-byte int stores with unaligned address at
plain -O2.

6.2.3.5 Thread Local Storage attributes

tls Target supports thread-local storage.

tls_link Target supports linking TLS executables.

tls_native

Target supports native (rather than emulated) thread-local storage.

tls_runtime

Test system supports executing TLS executables.

6.2.3.6 Decimal floating point attributes

dfp Targets supports compiling decimal floating point extension to C.

dfp_nocache

Including the options used to compile this particular test, the target supports
compiling decimal floating point extension to C.

dfprt Test system can execute decimal floating point tests.

dfprt_nocache

Including the options used to compile this particular test, the test system can
execute decimal floating point tests.

hard_dfp Target generates decimal floating point instructions with current options.

dfp_bid Target uses the BID format for decimal floating point.

6.2.3.7 ARM-specific attributes

arm32 ARM target generates 32-bit code.

arm_little_endian

ARM target that generates little-endian code.

arm_eabi ARM target adheres to the ABI for the ARM Architecture.

arm_fp_ok

ARM target defines __ARM_FP using -mfloat-abi=softfp or equivalent op-
tions. Some multilibs may be incompatible with these options.

Chapter 6: Testsuites 97

arm_fp_dp_ok

ARM target defines __ARM_FP with double-precision support using -mfloat-

abi=softfp or equivalent options. Some multilibs may be incompatible with
these options.

arm_hf_eabi

ARM target adheres to the VFP and Advanced SIMD Register Arguments vari-
ant of the ABI for the ARM Architecture (as selected with -mfloat-abi=hard).

arm_softfloat

ARM target uses emulated floating point operations.

arm_hard_vfp_ok

ARM target supports -mfpu=vfp -mfloat-abi=hard. Some multilibs may be
incompatible with these options.

arm_neon ARM target supports generating NEON instructions.

arm_tune_string_ops_prefer_neon

Test CPU tune supports inlining string operations with NEON instructions.

arm_neon_hw

Test system supports executing NEON instructions.

arm_neonv2_hw

Test system supports executing NEON v2 instructions.

arm_neon_ok

ARM Target supports -mfpu=neon -mfloat-abi=softfp or compatible op-
tions. Some multilibs may be incompatible with these options.

arm_neon_ok_no_float_abi

ARM Target supports NEON with -mfpu=neon, but without any -mfloat-abi=
option. Some multilibs may be incompatible with this option.

arm_neonv2_ok

ARM Target supports -mfpu=neon-vfpv4 -mfloat-abi=softfp or compatible
options. Some multilibs may be incompatible with these options.

arm_fp16_ok

Target supports options to generate VFP half-precision floating-point instruc-
tions. Some multilibs may be incompatible with these options. This test is
valid for ARM only.

arm_fp16_hw

Target supports executing VFP half-precision floating-point instructions. This
test is valid for ARM only.

arm_neon_fp16_ok

ARM Target supports -mfpu=neon-fp16 -mfloat-abi=softfp or compatible
options, including -mfp16-format=ieee if necessary to obtain the __fp16 type.
Some multilibs may be incompatible with these options.

arm_neon_fp16_hw

Test system supports executing Neon half-precision float instructions. (Implies
previous.)

98 GNU Compiler Collection (GCC) Internals

arm_fp16_alternative_ok

ARM target supports the ARM FP16 alternative format. Some multilibs may
be incompatible with the options needed.

arm_fp16_none_ok

ARM target supports specifying none as the ARM FP16 format.

arm_thumb1_ok

ARM target generates Thumb-1 code for -mthumb.

arm_thumb2_ok

ARM target generates Thumb-2 code for -mthumb.

arm_nothumb

ARM target that is not using Thumb.

arm_vfp_ok

ARM target supports -mfpu=vfp -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.

arm_vfp3_ok

ARM target supports -mfpu=vfp3 -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.

arm_arch_v8a_hard_ok

The compiler is targeting arm*-*-* and can compile and assemble code using
the options -march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=hard. This
is not enough to guarantee that linking works.

arm_arch_v8a_hard_multilib

The compiler is targeting arm*-*-* and can build programs using the options
-march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=hard. The target can
also run the resulting binaries.

arm_v8_vfp_ok

ARM target supports -mfpu=fp-armv8 -mfloat-abi=softfp. Some multilibs
may be incompatible with these options.

arm_v8_neon_ok

ARM target supports -mfpu=neon-fp-armv8 -mfloat-abi=softfp. Some
multilibs may be incompatible with these options.

arm_v8_1a_neon_ok

ARM target supports options to generate ARMv8.1-A Adv.SIMD instructions.
Some multilibs may be incompatible with these options.

arm_v8_1a_neon_hw

ARM target supports executing ARMv8.1-A Adv.SIMD instructions.
Some multilibs may be incompatible with the options needed. Implies
arm v8 1a neon ok.

arm_acq_rel

ARM target supports acquire-release instructions.

Chapter 6: Testsuites 99

arm_v8_2a_fp16_scalar_ok

ARM target supports options to generate instructions for ARMv8.2-A and
scalar instructions from the FP16 extension. Some multilibs may be incom-
patible with these options.

arm_v8_2a_fp16_scalar_hw

ARM target supports executing instructions for ARMv8.2-A and scalar instruc-
tions from the FP16 extension. Some multilibs may be incompatible with these
options. Implies arm v8 2a fp16 neon ok.

arm_v8_2a_fp16_neon_ok

ARM target supports options to generate instructions from ARMv8.2-A with
the FP16 extension. Some multilibs may be incompatible with these options.
Implies arm v8 2a fp16 scalar ok.

arm_v8_2a_fp16_neon_hw

ARM target supports executing instructions from ARMv8.2-A with the FP16
extension. Some multilibs may be incompatible with these options. Implies
arm v8 2a fp16 neon ok and arm v8 2a fp16 scalar hw.

arm_v8_2a_dotprod_neon_ok

ARM target supports options to generate instructions from ARMv8.2-A with
the Dot Product extension. Some multilibs may be incompatible with these
options.

arm_v8_2a_dotprod_neon_hw

ARM target supports executing instructions from ARMv8.2-A with the Dot
Product extension. Some multilibs may be incompatible with these options.
Implies arm v8 2a dotprod neon ok.

arm_v8_2a_i8mm_neon_hw

ARM target supports executing instructions from ARMv8.2-A with the 8-bit
Matrix Multiply extension. Some multilibs may be incompatible with these
options. Implies arm v8 2a i8mm ok.

arm_fp16fml_neon_ok

ARM target supports extensions to generate the VFMAL and VFMLS half-precision
floating-point instructions available from ARMv8.2-A and onwards. Some mul-
tilibs may be incompatible with these options.

arm_v8_2a_bf16_neon_ok

ARM target supports options to generate instructions from ARMv8.2-A with
the BFloat16 extension (bf16). Some multilibs may be incompatible with these
options.

arm_v8_2a_i8mm_ok

ARM target supports options to generate instructions from ARMv8.2-A with
the 8-Bit Integer Matrix Multiply extension (i8mm). Some multilibs may be
incompatible with these options.

100 GNU Compiler Collection (GCC) Internals

arm_v8_1m_mve_ok

ARM target supports options to generate instructions from ARMv8.1-M with
the M-Profile Vector Extension (MVE). Some multilibs may be incompatible
with these options.

arm_v8_1m_mve_fp_ok

ARM target supports options to generate instructions from ARMv8.1-M with
the Half-precision floating-point instructions (HP), Floating-point Extension
(FP) along with M-Profile Vector Extension (MVE). Some multilibs may be
incompatible with these options.

arm_v8_1m_mve_nofp_ok

ARM target supports options to generate instructions from ARMv8.1-M with
the M-Profile Vector Extension (MVE) but without the Half-precision floating-
point instructions (HP) and Floating-point Extension (FP). Some multilibs may
be incompatible with these options.

arm_mve_hw

Test system supports executing MVE instructions.

arm_v8m_main_cde

ARM target supports options to generate instructions from ARMv8-M with the
Custom Datapath Extension (CDE). Some multilibs may be incompatible with
these options.

arm_v8m_main_cde_fp

ARM target supports options to generate instructions from ARMv8-M with the
Custom Datapath Extension (CDE) and floating-point (VFP). Some multilibs
may be incompatible with these options.

arm_v8_1m_main_cde_mve

Arm target supports options to generate instructions from Armv8.1-M with the
Custom Datapath Extension (CDE) and M-Profile Vector Extension (MVE).
Some multilibs may be incompatible with these options.

arm_v8_1m_main_cde_mve_fp

Arm target supports options to generate instructions from Armv8.1-M with the
Custom Datapath Extension (CDE) and M-Profile Vector Extension (MVE)
with floating-point support. Some multilibs may be incompatible with these
options.

arm_pacbti_hw

Test system supports executing Pointer Authentication and Branch Target
Identification instructions.

arm_prefer_ldrd_strd

ARM target prefers LDRD and STRD instructions over LDM and STM instructions.

arm_thumb1_movt_ok

ARM target generates Thumb-1 code for -mthumb with MOVW and MOVT instruc-
tions available.

Chapter 6: Testsuites 101

arm_thumb1_cbz_ok

ARM target generates Thumb-1 code for -mthumb with CBZ and CBNZ instruc-
tions available.

arm_divmod_simode

ARM target for which divmod transform is disabled, if it supports hardware
div instruction.

arm_cmse_ok

ARM target supports ARMv8-M Security Extensions, enabled by the -mcmse

option.

arm_cmse_hw

Test system supports executing CMSE instructions.

arm_coproc1_ok

ARM target supports the following coprocessor instructions: CDP, LDC, STC,
MCR and MRC.

arm_coproc2_ok

ARM target supports all the coprocessor instructions also listed as supported
in [arm coproc1 ok], page 101, in addition to the following: CDP2, LDC2, LDC2l,
STC2, STC2l, MCR2 and MRC2.

arm_coproc3_ok

ARM target supports all the coprocessor instructions also listed as supported
in [arm coproc2 ok], page 101, in addition the following: MCRR and MRRC.

arm_coproc4_ok

ARM target supports all the coprocessor instructions also listed as supported
in [arm coproc3 ok], page 101, in addition the following: MCRR2 and MRRC2.

arm_simd32_ok

ARM Target supports options suitable for accessing the SIMD32 intrinsics from
arm_acle.h. Some multilibs may be incompatible with these options.

arm_sat_ok

ARM Target supports options suitable for accessing the saturation intrinsics
from arm_acle.h. Some multilibs may be incompatible with these options.

arm_dsp_ok

ARM Target supports options suitable for accessing the DSP intrinsics from
arm_acle.h. Some multilibs may be incompatible with these options.

arm_softfp_ok

ARM target supports the -mfloat-abi=softfp option.

arm_hard_ok

ARM target supports the -mfloat-abi=hard option.

arm_mve ARM target supports generating MVE instructions.

arm_v8_1_lob_ok

ARM Target supports executing the Armv8.1-M Mainline Low Overhead Loop
instructions DLS and LE. Some multilibs may be incompatible with these op-
tions.

102 GNU Compiler Collection (GCC) Internals

arm_thumb2_no_arm_v8_1_lob

ARM target where Thumb-2 is used without options but does not support
executing the Armv8.1-M Mainline Low Overhead Loop instructions DLS and
LE.

arm_thumb2_ok_no_arm_v8_1_lob

ARM target generates Thumb-2 code for -mthumb but does not support exe-
cuting the Armv8.1-M Mainline Low Overhead Loop instructions DLS and LE.

mbranch_protection_ok

ARM target supporting -mbranch-protection=standard.

arm_pacbti_hw

Test system supports for executing non nop pacbti instructions.

6.2.3.8 AArch64-specific attributes

aarch64_asm_<ext>_ok

AArch64 assembler supports the architecture extension ext via the .arch_

extension pseudo-op.

aarch64_tiny

AArch64 target which generates instruction sequences for tiny memory model.

aarch64_small

AArch64 target which generates instruction sequences for small memory model.

aarch64_large

AArch64 target which generates instruction sequences for large memory model.

aarch64_little_endian

AArch64 target which generates instruction sequences for little endian.

aarch64_big_endian

AArch64 target which generates instruction sequences for big endian.

aarch64_small_fpic

Binutils installed on test system supports relocation types required by -fpic for
AArch64 small memory model.

aarch64_sme

AArch64 target that generates instructions for SME.

aarch64_sme2

AArch64 target that generates instructions for SME2.

aarch64_sve_hw

AArch64 target that is able to generate and execute SVE code (regardless of
whether it does so by default).

aarch64_sve128_hw

aarch64_sve256_hw

aarch64_sve512_hw

aarch64_sve1024_hw

aarch64_sve2048_hw

Like aarch64_sve_hw, but also test for an exact hardware vector length.

Chapter 6: Testsuites 103

aarch64_sve2_hw

AArch64 target that is able to generate and execute SVE2 code (regardless of
whether it does so by default).

aarch64_sve2p1_hw

AArch64 target that is able to generate and execute SVE2.1 code (regardless
of whether it does so by default).

aarch64_sme_hw

AArch64 target that is able to generate and execute SME code (regardless of
whether it does so by default).

aarch64_fjcvtzs_hw

AArch64 target that is able to generate and execute armv8.3-a FJCVTZS in-
struction.

6.2.3.9 LoongArch specific attributes

loongarch_sx

LoongArch target that generates instructions for SX.

loongarch_asx

LoongArch target that generates instructions for ASX.

loongarch_sx_hw

LoongArch target that is able to generate and execute SX code.

loongarch_asx_hw

LoongArch target that is able to generate and execute ASX code.

loongarch_call36_support

LoongArch binutils supports call36 relocation.

6.2.3.10 MIPS-specific attributes

mips64 MIPS target supports 64-bit instructions.

nomips16 MIPS target does not produce MIPS16 code.

mips16_attribute

MIPS target can generate MIPS16 code.

mips_loongson

MIPS target is a Loongson-2E or -2F target using an ABI that supports the
Loongson vector modes.

mips_msa MIPS target supports -mmsa, MIPS SIMD Architecture (MSA).

mips_newabi_large_long_double

MIPS target supports long double larger than double when using the new
ABI.

mpaired_single

MIPS target supports -mpaired-single.

104 GNU Compiler Collection (GCC) Internals

6.2.3.11 MSP430-specific attributes

msp430_small

MSP430 target has the small memory model enabled (-msmall).

msp430_large

MSP430 target has the large memory model enabled (-mlarge).

6.2.3.12 nvptx-specific attributes

nvptx_default_ptx_isa_version_at_least_6_0

nvptx code by default compiles for at least PTX ISA version 6.0.

nvptx_runtime_alias_ptx

The nvptx runtime environment supports the PTX ISA directive .alias.

nvptx_runtime_alloca_ptx

The nvptx runtime environment supports PTX ’alloca’.

nvptx_softstack

nvptx -msoft-stack is enabled.

6.2.3.13 PowerPC-specific attributes

dfp_hw PowerPC target supports executing hardware DFP instructions.

p8vector_hw

PowerPC target supports executing VSX instructions (ISA 2.07).

powerpc64

Test system supports executing 64-bit instructions.

powerpc_altivec

PowerPC target supports AltiVec.

powerpc_altivec_ok

PowerPC target supports -maltivec.

powerpc_eabi_ok

PowerPC target supports -meabi.

powerpc_elfv2

PowerPC target supports -mabi=elfv2.

powerpc_fprs

PowerPC target supports floating-point registers.

powerpc_hard_double

PowerPC target supports hardware double-precision floating-point.

powerpc_htm_ok

PowerPC target supports -mhtm

powerpc_popcntb_ok

PowerPC target supports the popcntb instruction, indicating that this target
supports -mcpu=power5.

Chapter 6: Testsuites 105

powerpc_ppu_ok

PowerPC target supports -mcpu=cell.

powerpc_spe

PowerPC target supports PowerPC SPE.

powerpc_spe_nocache

Including the options used to compile this particular test, the PowerPC target
supports PowerPC SPE.

powerpc_spu

PowerPC target supports PowerPC SPU.

powerpc_vsx_ok

PowerPC target supports -mvsx.

powerpc_405_nocache

Including the options used to compile this particular test, the PowerPC target
supports PowerPC 405.

ppc_recip_hw

PowerPC target supports executing reciprocal estimate instructions.

vmx_hw PowerPC target supports executing AltiVec instructions.

vsx_hw PowerPC target supports executing VSX instructions (ISA 2.06).

has_arch_pwr5

PowerPC target pre-defines macro ARCH PWR5 which means the -mcpu set-
ting is Power5 or later.

has_arch_pwr6

PowerPC target pre-defines macro ARCH PWR6 which means the -mcpu set-
ting is Power6 or later.

has_arch_pwr7

PowerPC target pre-defines macro ARCH PWR7 which means the -mcpu set-
ting is Power7 or later.

has_arch_pwr8

PowerPC target pre-defines macro ARCH PWR8 which means the -mcpu set-
ting is Power8 or later.

has_arch_pwr9

PowerPC target pre-defines macro ARCH PWR9 which means the -mcpu set-
ting is Power9 or later.

6.2.3.14 RISC-V specific attributes

rv32 Test system has an integer register width of 32 bits.

rv64 Test system has an integer register width of 64 bits.

riscv_a Test target architecture has support for the A extension.

riscv_b_ok

Test target architecture can execute code with B extension enabled.

106 GNU Compiler Collection (GCC) Internals

riscv_v_ok

Test target architecture can execute code with V extension enabled.

riscv_zaamo

Test target architecture has support for the zaamo extension.

riscv_zabha

Test target architecture has support for the zabha extension.

riscv_zacas

Test target architecture has support for the zacas extension.

riscv_zalrsc

Test target architecture has support for the zalrsc extension.

riscv_zbc

Test target architecture has support for the zbc extension.

riscv_zbc_ok

Test target architecture can execute code with zbc extension enabled.

riscv_zbkb

Test target architecture has support for the zbkb extension.

riscv_zbkb_ok

Test target architecture can execute code with zbkb extension enabled.

riscv_zbkc

Test target architecture has support for the zbkc extension.

riscv_zbkc_ok

Test target architecture can execute code with zbkc extension enabled.

riscv_ztso

Test target architecture has support for the ztso extension.

6.2.3.15 CORE-V specific attributes

cv_mac Test system has support for the CORE-V MAC extension.

cv_alu Test system has support for the CORE-V ALU extension.

cv_elw Test system has support for the CORE-V ELW extension.

cv_simd Test system has support for the CORE-V SIMD extension.

cv_bi Test system has support for the CORE-V BI extension.

6.2.3.16 Other hardware attributes

autoincdec

Target supports autoincrement/decrement addressing.

avx Target supports compiling avx instructions.

avx_runtime

Target supports the execution of avx instructions.

Chapter 6: Testsuites 107

avx10.1 Target supports the execution of avx10.1 instructions.

avx10.2 Target supports the execution of avx10.2 instructions.

avx2 Target supports compiling avx2 instructions.

avx2_runtime

Target supports the execution of avx2 instructions.

avxvnni Target supports the execution of avxvnni instructions.

avx512f Target supports compiling avx512f instructions.

avx512f_runtime

Target supports the execution of avx512f instructions.

avx512vp2intersect

Target supports the execution of avx512vp2intersect instructions.

avxifma Target supports the execution of avxifma instructions.

avxneconvert

Target supports the execution of avxneconvert instructions.

avxvnniint8

Target supports the execution of avxvnniint8 instructions.

avxvnniint16

Target supports the execution of avxvnniint16 instructions.

amx_tile Target supports the execution of amx-tile instructions.

amx_int8 Target supports the execution of amx-int8 instructions.

amx_bf16 Target supports the execution of amx-bf16 instructions.

amx_avx512

Target supports the execution of amx-avx512 instructions.

amx_complex

Target supports the execution of amx-complex instructions.

amx_fp16 Target supports the execution of amx-fp16 instructions.

amx_movrs

Target supports the execution of amx-movrs instructions.

amx_tf32 Target supports the execution of amx-tf32 instructions.

amx_fp8 Target supports the execution of amx-fp8 instructions.

cell_hw Test system can execute AltiVec and Cell PPU instructions.

clz Target supports a clz optab on int.

clzl Target supports a clz optab on long.

clzll Target supports a clz optab on long long.

ctz Target supports a ctz optab on int.

108 GNU Compiler Collection (GCC) Internals

ctzl Target supports a ctz optab on long.

ctzll Target supports a ctz optab on long long.

cmpccxadd

Target supports the execution of cmpccxadd instructions.

coldfire_fpu

Target uses a ColdFire FPU.

divmod Target supporting hardware divmod insn or divmod libcall.

divmod_simode

Target supporting hardware divmod insn or divmod libcall for SImode.

hard_float

Target supports FPU instructions.

movrs Target supports the execution of movrs instructions.

non_strict_align

Target does not require strict alignment.

opt_mstrict_align

Target supports -mstrict-align and -mno-strict-align.

pie_copyreloc

The x86-64 target linker supports PIE with copy reloc.

popcount Target supports a popcount optab on int.

popcountl

Target supports a popcount optab on long.

popcountll

Target supports a popcount optab on long long.

prefetchi

Target supports the execution of prefetchi instructions.

raoint Target supports the execution of raoint instructions.

rdrand Target supports x86 rdrand instruction.

sha512 Target supports the execution of sha512 instructions.

sm3 Target supports the execution of sm3 instructions.

sm4 Target supports the execution of sm4 instructions.

sqrt_insn

Target has a square root instruction that the compiler can generate.

sse Target supports compiling sse instructions.

sse_runtime

Target supports the execution of sse instructions.

sse2 Target supports compiling sse2 instructions.

Chapter 6: Testsuites 109

sse2_runtime

Target supports the execution of sse2 instructions.

sync_char_short

Target supports atomic operations on char and short.

sync_int_long

Target supports atomic operations on int and long.

ultrasparc_hw

Test environment appears to run executables on a simulator that accepts only
EM_SPARC executables and chokes on EM_SPARC32PLUS or EM_SPARCV9 executa-
bles.

user_msr Target supports the execution of user_msr instructions.

vect_cmdline_needed

Target requires a command line argument to enable a SIMD instruction set.

x86 Target is ia32 or x86 64.

xorsign Target supports the xorsign optab expansion.

ifn_copysign

Target supports the copysign optab expansion of float and double for both
scalar and vector modes.

6.2.3.17 Environment attributes

alarm Target supports alarm.

c The language for the compiler under test is C.

c++ The language for the compiler under test is C++.

c99_runtime

Target provides a full C99 runtime.

cfi Target supports DWARF CFI directives.

correct_iso_cpp_string_wchar_protos

Target string.h and wchar.h headers provide C++ required overloads for
strchr etc. functions.

d_runtime

Target provides the D runtime.

d_runtime_has_std_library

Target provides the D standard library (Phobos).

dummy_wcsftime

Target uses a dummy wcsftime function that always returns zero.

fd_truncate

Target can truncate a file from a file descriptor, as used by
libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or chsize.

fenv Target provides fenv.h include file.

110 GNU Compiler Collection (GCC) Internals

fenv_exceptions

Target supports fenv.h with all the standard IEEE exceptions and floating-
point exceptions are raised by arithmetic operations.

fenv_exceptions_dfp

Target supports fenv.h with all the standard IEEE exceptions and floating-
point exceptions are raised by arithmetic operations for decimal floating point.

fileio Target offers such file I/O library functions as fopen, fclose, tmpnam, and
remove. This is a link-time requirement for the presence of the functions in
the library; even if they fail at runtime, the requirement is still regarded as
satisfied.

freestanding

Target is ‘freestanding’ as defined in section 4 of the C99 standard. Effec-
tively, it is a target which supports no extra headers or libraries other than
what is considered essential.

hostedlib

Target is not ‘freestanding’, and, if the language is C++, libstdc++’s hosted
mode is not disabled.

gettimeofday

Target supports gettimeofday.

init_priority

Target supports constructors with initialization priority arguments.

inttypes_types

Target has the basic signed and unsigned types in inttypes.h. This is for
tests that GCC’s notions of these types agree with those in the header, as some
systems have only inttypes.h.

lax_strtofp

Target might have errors of a few ULP in string to floating-point conversion
functions and overflow is not always detected correctly by those functions.

mempcpy Target provides mempcpy function.

mmap Target supports mmap.

newlib Target supports Newlib.

newlib_nano_io

GCC was configured with --enable-newlib-nano-formatted-io, which re-
duces the code size of Newlib formatted I/O functions.

posix_memalign

Target supports posix_memalign.

pow10 Target provides pow10 function.

pthread Target can compile using pthread.h with no errors or warnings.

pthread_h

Target has pthread.h.

Chapter 6: Testsuites 111

sockets Target can compile using sys/socket.h with no errors or warnings.

run_expensive_tests

Expensive testcases (usually those that consume excessive amounts of CPU
time) should be run on this target. This can be enabled by setting the GCC_

TEST_RUN_EXPENSIVE environment variable to a non-empty string.

simulator

Test system runs executables on a simulator (i.e. slowly) rather than hardware
(i.e. fast).

signal Target has signal.h.

stabs Target supports the stabs debugging format.

stdint_types

Target has the basic signed and unsigned C types in stdint.h. This will be
obsolete when GCC ensures a working stdint.h for all targets.

stdint_types_mbig_endian

Target accepts the option -mbig-endian and stdint.h can be included without
error when -mbig-endian is passed.

stpcpy Target provides stpcpy function.

strndup Target provides strndup function.

sysconf Target supports sysconf.

trampolines

Target supports trampolines.

variadic_mi_thunk

Target supports C++ virtual variadic function calls with multiple inheritance.

two_plus_gigs

Target supports linking programs with 2+GiB of data.

uclibc Target supports uClibc.

unwrapped

Target does not use a status wrapper.

vxworks_kernel

Target is a VxWorks kernel.

vxworks_rtp

Target is a VxWorks RTP.

wchar Target supports wide characters.

weak_undefined

Target supports weak undefined symbols

112 GNU Compiler Collection (GCC) Internals

6.2.3.18 Other attributes

R_flag_in_section

Target supports the ’R’ flag in .section directive in assembly inputs.

asm_goto_with_outputs

Target supports ’asm goto’ with outputs.

automatic_stack_alignment

Target supports automatic stack alignment.

branch_cost

Target supports -branch-cost=N.

const_volatile_readonly_section

Target places const volatile variables in readonly sections.

cxa_atexit

Target uses __cxa_atexit.

default_packed

Target has packed layout of structure members by default.

exceptions

Target supports exception handling. Note that this is orthogonal to effective-
target exceptions_enabled.

exceptions_enabled

Testing configuration has exception handling enabled. Note that this is orthog-
onal to effective-target exceptions.

using_sjlj_exceptions

Target uses setjmp and longjmp for implementing exceptions.

fgraphite

Target supports Graphite optimizations.

fixed_point

Target supports fixed-point extension to C.

bitint Target supports BitInt(N).

bitint128

Target supports BitInt(128).

bitint575

Target supports BitInt(575).

bitint65535

Target supports BitInt(65535).

fopenacc Target supports OpenACC via -fopenacc.

fopenmp Target supports OpenMP via -fopenmp.

fpic Target supports -fpic and -fPIC.

freorder Target supports -freorder-blocks-and-partition.

Chapter 6: Testsuites 113

fstack_protector

Target supports -fstack-protector.

gas Target uses GNU as.

gc_sections

Target supports --gc-sections.

gld Target uses GNU ld.

keeps_null_pointer_checks

Target keeps null pointer checks, either due to the use of -fno-delete-null-
pointer-checks or hardwired into the target.

llvm_binutils

Target is using an LLVM assembler and/or linker, instead of GNU Binutils.

lra Target supports local register allocator (LRA). This must not be called (results
in ERROR) for targets that don’t do register allocation, and therefore neither use
nor don’t use LRA.

lto Compiler has been configured to support link-time optimization (LTO).

lto_incremental

Compiler and linker support link-time optimization relocatable linking with -r

and -flto options.

thread_fence

Target implements __atomic_thread_fence without relying on non-
implemented __sync_synchronize().

naked_functions

Target supports the naked function attribute.

named_sections

Target supports named sections.

natural_alignment_32

Target uses natural alignment (aligned to type size) for types of 32 bits or less.

tail_call

Target supports tail-call optimizations.

target_natural_alignment_64

Target uses natural alignment (aligned to type size) for types of 64 bits or less.

no_alignment_constraints

Target defines BIGGEST ALIGNMENT =1. Hence target imposes no
alignment constraints. This is similar, but not necessarily the same as
[default packed], page 112. Although BIGGEST_FIELD_ALIGNMENT defaults to
BIGGEST_ALIGNMENT for most targets, it is possible for a target to set those
two with different values and have different alignment constraints for aggregate
and non-aggregate types.

noinit Target supports the noinit variable attribute.

nonpic Target does not generate PIC by default.

114 GNU Compiler Collection (GCC) Internals

o_flag_in_section

Target supports the ’o’ flag in .section directive in assembly inputs.

offload_gcn

Target has been configured for OpenACC/OpenMP offloading on AMD GCN.

persistent

Target supports the persistent variable attribute.

pie_enabled

Target generates PIE by default.

pcc_bitfield_type_matters

Target defines PCC_BITFIELD_TYPE_MATTERS.

pe_aligned_commons

Target supports -mpe-aligned-commons.

pie Target supports -pie, -fpie and -fPIE.

linker_plugin

Target supports the linker plugin.

rdynamic Target supports -rdynamic.

scalar_all_fma

Target supports all four fused multiply-add optabs for both float and double.
These optabs are: fma_optab, fms_optab, fnma_optab and fnms_optab.

section_anchors

Target supports section anchors.

short_enums

Target defaults to short enums.

stack_size

Target has limited stack size. The stack size limit can be obtained using
the STACK SIZE macro defined by [dg-add-options feature stack_size],
page 118.

Note that for certain targets, stack size limits are relevant for execution only,
and therefore considered only if dg-do run is in effect, otherwise unlimited.

static Target supports -static.

static_libgfortran

Target supports statically linking ‘libgfortran’.

string_merging

Target supports merging string constants at link time.

strub Target supports attribute strub for stack scrubbing.

ucn Target supports compiling and assembling UCN.

ucn_nocache

Including the options used to compile this particular test, the target supports
compiling and assembling UCN.

Chapter 6: Testsuites 115

unaligned_stack

Target does not guarantee that its STACK_BOUNDARY is greater than or equal to
the required vector alignment.

vector_alignment_reachable

Vector alignment is reachable for types of 32 bits or less.

vector_alignment_reachable_for_64bit

Vector alignment is reachable for types of 64 bits or less.

vma_equals_lma

Target generates executable with VMA equal to LMA for .data section.

wchar_t_char16_t_compatible

Target supports wchar_t that is compatible with char16_t.

wchar_t_char32_t_compatible

Target supports wchar_t that is compatible with char32_t.

comdat_group

Target uses comdat groups.

indirect_calls

Target supports indirect calls, i.e. calls where the target is not constant.

lgccjit Target supports -lgccjit, i.e. libgccjit.so can be linked into jit tests.

__OPTIMIZE__

Optimizations are enabled (__OPTIMIZE__) per the current compiler flags.

6.2.3.19 Local to tests in gcc.target/i386

3dnow Target supports compiling 3dnow instructions.

aes Target supports compiling aes instructions.

fma4 Target supports compiling fma4 instructions.

mfentry Target supports the -mfentry option that alters the position of profiling calls
such that they precede the prologue.

ms_hook_prologue

Target supports attribute ms_hook_prologue.

pclmul Target supports compiling pclmul instructions.

sse3 Target supports compiling sse3 instructions.

sse4 Target supports compiling sse4 instructions.

sse4a Target supports compiling sse4a instructions.

ssse3 Target supports compiling ssse3 instructions.

vaes Target supports compiling vaes instructions.

vpclmul Target supports compiling vpclmul instructions.

xop Target supports compiling xop instructions.

116 GNU Compiler Collection (GCC) Internals

6.2.3.20 Local to tests in gcc.test-framework

no Always returns 0.

yes Always returns 1.

6.2.4 Features for dg-add-options

The supported values of feature for directive dg-add-options are:

arm_fp __ARM_FP definition. Only ARM targets support this feature, and only then in
certain modes; see the [arm fp ok effective target keyword], page 96.

arm_fp_dp

__ARM_FP definition with double-precision support. Only ARM targets support
this feature, and only then in certain modes; see the [arm fp dp ok effective
target keyword], page 97.

arm_neon NEON support. Only ARM targets support this feature, and only then in
certain modes; see the [arm neon ok effective target keyword], page 97.

arm_fp16 VFP half-precision floating point support. This does not select the FP16
format; for that, use [arm fp16 ieee], page 116, or [arm fp16 alternative],
page 116, instead. This feature is only supported by ARM targets and then
only in certain modes; see the [arm fp16 ok effective target keyword], page 97.

arm_fp16_ieee

ARM IEEE 754-2008 format VFP half-precision floating point support. This
feature is only supported by ARM targets and then only in certain modes; see
the [arm fp16 ok effective target keyword], page 97.

arm_fp16_alternative

ARM Alternative format VFP half-precision floating point support. This fea-
ture is only supported by ARM targets and then only in certain modes; see the
[arm fp16 ok effective target keyword], page 97.

arm_neon_fp16

NEON and half-precision floating point support. Only ARM targets support
this feature, and only then in certain modes; see the [arm neon fp16 ok effective
target keyword], page 97.

arm_vfp3 arm vfp3 floating point support; see the [arm vfp3 ok effective target keyword],
page 98.

arm_arch_v8a_hard

Add options for ARMv8-A and the hard-float variant of the AAPCS, if this is
supported by the compiler; see the [arm arch v8a hard ok], page 98, effective
target keyword.

arm_v8_1a_neon

Add options for ARMv8.1-A with Adv.SIMD support, if this is supported by
the target; see the [arm v8 1a neon ok], page 98, effective target keyword.

Chapter 6: Testsuites 117

arm_v8_2a_fp16_scalar

Add options for ARMv8.2-A with scalar FP16 support, if this is supported by
the target; see the [arm v8 2a fp16 scalar ok], page 99, effective target key-
word.

arm_v8_2a_fp16_neon

Add options for ARMv8.2-A with Adv.SIMD FP16 support, if this is supported
by the target; see the [arm v8 2a fp16 neon ok], page 99, effective target key-
word.

arm_v8_2a_dotprod_neon

Add options for ARMv8.2-A with Adv.SIMD Dot Product support, if this is
supported by the target; see the [arm v8 2a dotprod neon ok], page 99, effec-
tive target keyword.

arm_fp16fml_neon

Add options to enable generation of the VFMAL and VFMSL instructions, if this
is supported by the target; see the [arm fp16fml neon ok], page 99, effective
target keyword.

arm_dsp Add options for ARM DSP intrinsics support, if this is supported by the target;
see the [arm dsp ok effective target keyword], page 101.

bind_pic_locally

Add the target-specific flags needed to enable functions to bind locally when
using pic/PIC passes in the testsuite.

check_function_bodies

Add the target-specific flags needed to use check-function-bodies from dg-

final.

floatn Add the target-specific flags needed to use the _Floatn type.

floatnx Add the target-specific flags needed to use the _Floatnx type.

ieee Add the target-specific flags needed to enable full IEEE compliance mode.

mips16_attribute

mips16 function attributes. Only MIPS targets support this feature, and only
then in certain modes.

nvptx_alias_ptx

Enable using the PTX ISA directive .alias on nvptx targets.

nvptx_alloca_ptx

Enable PTX ’alloca’ on nvptx targets.

riscv_a Add the ’A’ extension to the -march string on RISC-V targets.

riscv_zaamo

Add the zaamo extension to the -march string on RISC-V targets.

riscv_zabha

Add the zabha extension to the -march string on RISC-V targets.

riscv_zacas

Add the zacas extension to the -march string on RISC-V targets.

118 GNU Compiler Collection (GCC) Internals

riscv_zalrsc

Add the zalrsc extension to the -march string on RISC-V targets.

riscv_ztso

Add the ztso extension to the -march string on RISC-V targets.

stack_size

Add the flags needed to define macro STACK SIZE and set it to the stack size
limit associated with the [stack_size effective target], page 114.

sqrt_insn

Add the target-specific flags needed to enable hardware square root instructions,
if any.

tls Add the target-specific flags needed to use thread-local storage.

vect_early_break

Add the target-specific flags needed to enable early break vectorization for a
target, if any. This requires the target to have an implementation of the cbranch
optab.

weak_undefined

Add the flags needed to enable support for weak undefined symbols.

6.2.5 Features for dg-remove-options

The supported values of feature for directive dg-remove-options are:

riscv_a Remove the ’A’ extension and all implied extensions from the -march string on
RISC-V targets.

riscv_zaamo

Remove the zaamo extension from the -march string on RISC-V. If the ’A’
extension is present downgrade it to zalrsc.

riscv_zabha

Remove the zabha extension and implied zaamo extension from the -march
string on RISC-V.

riscv_zacas

Remove the zacas extension and implied zaamo extension from the -march string
on RISC-V.

riscv_zalrsc

Remove the zalrsc extension from the -march string on RISC-V. If the ’A’
extension is present downgrade it to zaamo.

riscv_ztso

Remove the ztso extension from the -march string on RISC-V targets.

6.2.6 Variants of dg-require-support

A few of the dg-require directives take arguments.

dg-require-iconv codeset

Skip the test if the target does not support iconv. codeset is the codeset to
convert to.

Chapter 6: Testsuites 119

dg-require-profiling profopt

Skip the test if the target does not support profiling with option profopt.

dg-require-stack-check check

Skip the test if the target does not support the -fstack-check option. If check
is "", support for -fstack-check is checked, for -fstack-check=("check")

otherwise.

dg-require-stack-size size

Skip the test if the target does not support a stack size of size.

dg-require-visibility vis

Skip the test if the target does not support the visibility attribute. If vis
is "", support for visibility("hidden") is checked, for visibility("vis")
otherwise.

The original dg-require directives were defined before there was support for effective-
target keywords. The directives that do not take arguments could be replaced with effective-
target keywords.

dg-require-alias ""

Skip the test if the target does not support the ‘alias’ attribute.

dg-require-ascii-locale ""

Skip the test if the host does not support an ASCII locale.

dg-require-compat-dfp ""

Skip this test unless both compilers in a compat testsuite support decimal float-
ing point.

dg-require-cxa-atexit ""

Skip the test if the target does not support __cxa_atexit. This is equivalent
to dg-require-effective-target cxa_atexit.

dg-require-dll ""

Skip the test if the target does not support DLL attributes.

dg-require-dot ""

Skip the test if the host does not have dot.

dg-require-fork ""

Skip the test if the target does not support fork.

dg-require-gc-sections ""

Skip the test if the target’s linker does not support the --gc-sections flags.
This is equivalent to dg-require-effective-target gc-sections.

dg-require-host-local ""

Skip the test if the host is remote, rather than the same as the build system.
Some tests are incompatible with DejaGnu’s handling of remote hosts, which
involves copying the source file to the host and compiling it with a relative path
and "-o a.out".

dg-require-linker-plugin ""

Skip the test is the target does not support the linker plugin. This is equivalent
to dg-require-effective-target linker_plugin.

120 GNU Compiler Collection (GCC) Internals

dg-require-mkfifo ""

Skip the test if the target does not support mkfifo.

dg-require-named-sections ""

Skip the test is the target does not support named sections. This is equivalent
to dg-require-effective-target named_sections.

dg-require-weak ""

Skip the test if the target does not support weak symbols.

dg-require-weak-override ""

Skip the test if the target does not support overriding weak symbols.

6.2.7 Commands for use in dg-final

The GCC testsuite defines the following directives to be used within dg-final.

6.2.7.1 Scan a particular file

scan-file filename regexp [{ target/xfail selector }]

Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]

Passes if regexp does not match text in filename.

scan-module module regexp [{ target/xfail selector }]

Passes if regexp matches in Fortran module module.

dg-check-dot filename

Passes if filename is a valid .dot file (by running dot -Tpng on it, and verifying
the exit code is 0).

scan-sarif-file regexp [{ target/xfail selector }]

Passes if regexp matches text in the file generated by -fdiagnostics-

format=sarif-file.

scan-sarif-file-not regexp [{ target/xfail selector }]

Passes if regexp does not match text in the file generated by -fdiagnostics-

format=sarif-file.

6.2.7.2 Scan the assembly output

scan-assembler regex [{ target/xfail selector }]

Passes if regex matches text in the test’s assembler output, excluding LTO
sections.

scan-raw-assembler regex [{ target/xfail selector }]

Passes if regex matches text in the test’s assembler output, including LTO
sections.

scan-assembler-not regex [{ target/xfail selector }]

Passes if regex does not match text in the test’s assembler output, excluding
LTO sections.

Chapter 6: Testsuites 121

scan-assembler-times regex num [{ target/xfail selector }]

Passes if regex is matched exactly num times in the test’s assembler output,
excluding LTO sections.

scan-assembler-bound regex cmp num [{ target/xfail selector }]

Passes if regex is matched cmp num times in the test’s assembler output, ex-
cluding LTO sections. cmp is a comparitor.

scan-assembler-dem regex [{ target/xfail selector }]

Passes if regex matches text in the test’s demangled assembler output, excluding
LTO sections.

scan-assembler-dem-not regex [{ target/xfail selector }]

Passes if regex does not match text in the test’s demangled assembler output,
excluding LTO sections.

scan-assembler-symbol-section functions section [{ target/xfail selector }]

Passes if functions are all in section. The caller needs to allow for USER_LABEL_
PREFIX and different section name conventions.

scan-symbol-section filename functions section [{ target/xfail selector }]

Passes if functions are all in sectionin filename. The same caveats as for scan-
assembler-symbol-section apply.

scan-hidden symbol [{ target/xfail selector }]

Passes if symbol is defined as a hidden symbol in the test’s assembly output.

scan-not-hidden symbol [{ target/xfail selector }]

Passes if symbol is not defined as a hidden symbol in the test’s assembly output.

check-function-bodies prefix terminator [options [{ target/xfail selector }

[matched]]]

Looks through the source file for comments that give the expected assembly
output for selected functions. Each line of expected output starts with the
prefix string prefix and the expected output for a function as a whole is followed
by a line that starts with the string terminator. Specifying an empty terminator
is equivalent to specifying ‘"*/"’.

options, if specified, is a list of regular expressions, each of which matches a full
command-line option. A non-empty list prevents the test from running unless
all of the given options are present on the command line. This can help if a
source file is compiled both with and without optimization, since it is rarely
useful to check the full function body for unoptimized code.

The first line of the expected output for a function fn has the form:

prefix fn: [{ target/xfail selector }]

Subsequent lines of the expected output also start with prefix. In both cases,
whitespace after prefix is not significant.

Depending on the configuration (see configure_check-function-bodies in
gcc/testsuite/lib/scanasm.exp), the test may discard from the compiler’s
assembly output directives such as .cfi_startproc, local label definitions
such as .LFB0, and more. This behavior can be overridden using the optional

122 GNU Compiler Collection (GCC) Internals

matched argument, which specifies a regexp for lines that should not be dis-
carded in this way.

The test then matches the result against the expected output for a function as
a single regular expression. This means that later lines can use backslashes to
refer back to ‘(...)’ captures on earlier lines. For example:

/* { dg-final { check-function-bodies "**" "" "-DCHECK_ASM" } } */

...

/*

** add_w0_s8_m:

** mov (z[0-9]+\.b), w0

** add z0\.b, p0/m, z0\.b, \1

** ret

*/

svint8_t add_w0_s8_m (...) { ... }

...

/*

** add_b0_s8_m:

** mov (z[0-9]+\.b), b0

** add z1\.b, p0/m, z1\.b, \1

** ret

*/

svint8_t add_b0_s8_m (...) { ... }

checks whether the implementations of add_w0_s8_m and add_b0_s8_m match
the regular expressions given. The test only runs when ‘-DCHECK_ASM’ is passed
on the command line.

It is possible to create non-capturing multi-line regular expression groups of
the form ‘(a|b|...)’ by putting the ‘(’, ‘|’ and ‘)’ on separate lines (each still
using prefix). For example:

/*

** cmple_f16_tied:

** (

** fcmge p0\.h, p0/z, z1\.h, z0\.h

** |

** fcmle p0\.h, p0/z, z0\.h, z1\.h

**)

** ret

*/

svbool_t cmple_f16_tied (...) { ... }

checks whether cmple_f16_tied is implemented by the fcmge instruction fol-
lowed by ret or by the fcmle instruction followed by ret. The test is still a
single regular rexpression.

A line containing just:
prefix ...

stands for zero or more unmatched lines; the whitespace after prefix is again
not significant.

6.2.7.3 Scan optimization dump files

These commands are available for kind of tree, ltrans-tree, offload-tree, rtl, ltrans-
rtl, offload-rtl, ipa, offload-ipa, and wpa-ipa.

scan-kind-dump regex suffix [{ target/xfail selector }]

Passes if regex matches text in the dump file with suffix suffix.

Chapter 6: Testsuites 123

scan-kind-dump-not regex suffix [{ target/xfail selector }]

Passes if regex does not match text in the dump file with suffix suffix.

scan-kind-dump-times regex num suffix [{ target/xfail selector }]

Passes if regex is found exactly num times in the dump file with suffix suffix.

scan-kind-dump-dem regex suffix [{ target/xfail selector }]

Passes if regex matches demangled text in the dump file with suffix suffix.

scan-kind-dump-dem-not regex suffix [{ target/xfail selector }]

Passes if regex does not match demangled text in the dump file with suffix
suffix.

The suffix argument which describes the dump file to be scanned may contain a glob
pattern that must expand to exactly one file name. This is useful if, e.g., different pass
instances are executed depending on torture testing command-line flags, producing dump
files whose names differ only in their pass instance number suffix. For example, to scan
instances 1, 2, 3 of a tree pass “mypass” for occurrences of the string “code has been
optimized”, use:

/* { dg-options "-fdump-tree-mypass" } */

/* { dg-final { scan-tree-dump "code has been optimized" "mypass\[1-3\]" } } */

The offload-... ones by default separately scan the dump file of each enabled offload
target. You may use the only_for_offload_target wrapper to restrict the scanning to
one specific offload target:

/* { dg-do link { target offload_target_amdgcn } } */

/* { dg-additional-options -foffload-options=-fdump-ipa-simdclone-details } */

/* { dg-final { only_for_offload_target amdgcn-amdhsa scan-offload-ipa-dump regex_amdgcn simdclone } } */

This test case is active if GCN offload compilation is enabled (but potentially also ad-
ditional offload targets). The simdclone IPA dump file is (potentially) produced for all
offload targets, but only the GCN offload one is scanned.

If a test case doesn’t have a ‘{ target selector }’, and you need to scan, for example,
for different regexes for each of host and potentially several offload targets, use a pattern
like this:

/* { dg-final { scan-tree-dump regex_host optimized } }

{ dg-final { only_for_offload_target amdgcn-amdhsa scan-offload-tree-dump regex_amdgcn optimized { target offload_target_amdgcn } } }

{ dg-final { only_for_offload_target nvptx-none scan-offload-tree-dump regex_nvptx optimized { target offload_target_nvptx } } } */

Here, unconditionally regex host is scanned for in the host dump file. If GCN offloading
compilation is actually enabled, regex amdgcn is scanned for in the GCN offload compilation
dump file. If nvptx offloading compilation is actually enabled, regex nvptx is scanned for
in the nvptx offload compilation dump file.

6.2.7.4 Check for output files

output-exists [{ target/xfail selector }]

Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]

Passes if compiler output file does not exist.

scan-symbol regexp [{ target/xfail selector }]

Passes if the pattern is present in the final executable.

124 GNU Compiler Collection (GCC) Internals

scan-symbol-not regexp [{ target/xfail selector }]

Passes if the pattern is absent from the final executable.

6.2.7.5 Checks for gcov tests

run-gcov sourcefile

Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }

Check branch and/or call counts, in addition to line counts, in gcov tests.

run-gcov-pytest { sourcefile pytest_file }

Check output of gcov intermediate format with a pytest script.

6.2.7.6 Clean up generated test files

Usually the test-framework removes files that were generated during testing. If a testcase,
for example, uses any dumping mechanism to inspect a passes dump file, the testsuite
recognized the dump option passed to the tool and schedules a final cleanup to remove
these files.

There are, however, following additional cleanup directives that can be used to annotate
a testcase "manually".

cleanup-coverage-files

Removes coverage data files generated for this test.

cleanup-modules "list-of-extra-modules"

Removes Fortran module files generated for this test, excluding the module
names listed in keep-modules. Cleaning up module files is usually done au-
tomatically by the testsuite by looking at the source files and removing the
modules after the test has been executed.

module MoD1

end module MoD1

module Mod2

end module Mod2

module moD3

end module moD3

module mod4

end module mod4

! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant

! { dg-final { keep-modules "mod3 mod4" } }

keep-modules "list-of-modules-not-to-delete"

Whitespace separated list of module names that should not be deleted by
cleanup-modules. If the list of modules is empty, all modules defined in this file
are kept.

module maybe_unneeded

end module maybe_unneeded

module keep1

end module keep1

module keep2

end module keep2

! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two

! { dg-final { keep-modules "" } } ! keep all

Chapter 6: Testsuites 125

dg-keep-saved-temps "list-of-suffixes-not-to-delete"

Whitespace separated list of suffixes that should not be deleted automatically
in a testcase that uses -save-temps.

// { dg-options "-save-temps -fpch-preprocess -I." }

int main() { return 0; }

// { dg-keep-saved-temps ".s" } ! just keep assembler file

// { dg-keep-saved-temps ".s" ".i" } ! ... and .i

// { dg-keep-saved-temps ".ii" ".o" } ! or just .ii and .o

cleanup-profile-file

Removes profiling files generated for this test.

6.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS testsuite, publicly available
at http://www.ada-auth.org/acats.html.

These tests are integrated in the GCC testsuite in the ada/acats directory, and enabled
automatically when running make check, assuming the Ada language has been enabled
when configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:

$ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the Ada
Reference Manual. So for example, c9 corresponds to chapter 9, which deals with tasking
features of the language.

The tests are run using two sh scripts: run_acats and run_all.sh. To run the tests using
a simulator or a cross target, see the small customization section at the top of run_all.sh.

These tests are run using the build tree: they can be run without doing a make install.

6.4 C Language Testsuites

GCC contains the following C language testsuites, in the gcc/testsuite directory:

gcc.dg This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘-ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

gcc.dg/compat

This subdirectory contains tests for binary compatibility using
lib/compat.exp, which in turn uses the language-independent support (see
Section 6.8 [Support for testing binary compatibility], page 129).

gcc.dg/cpp

This subdirectory contains tests of the preprocessor.

http://www.ada-auth.org/acats.html

126 GNU Compiler Collection (GCC) Internals

gcc.dg/debug

This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

gcc.dg/format

This subdirectory contains tests of the -Wformat format checking. Tests in this
directory are run with and without -DWIDE.

gcc.dg/noncompile

This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

gcc.dg/special

FIXME: describe this.

gcc.c-torture

This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

gcc.c-torture/compat

FIXME: describe this.

This directory should probably not be used for new tests.

gcc.c-torture/compile

This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of .x files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as STACK_

SIZE are used.

gcc.c-torture/execute

This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for gcc.c-torture/compile apply.

gcc.c-torture/execute/ieee

This contains tests which are specific to IEEE floating point.

gcc.c-torture/unsorted

FIXME: describe this.

This directory should probably not be used for new tests.

gcc.misc-tests

This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

Chapter 6: Testsuites 127

bprob*.c Test -fbranch-probabilities using gcc.misc-

tests/bprob.exp, which in turn uses the generic,
language-independent framework (see Section 6.7 [Sup-
port for testing profile-directed optimizations], page 128).

gcov*.c Test gcov output using gcov.exp, which in turn uses the language-
independent support (see Section 6.6 [Support for testing gcov],
page 128).

i386-pf-*.c

Test i386-specific support for data prefetch using i386-

prefetch.exp.

gcc.test-framework

dg-*.c Test the testsuite itself using gcc.test-framework/test-

framework.exp.

FIXME: merge in testsuite/README.gcc and discuss the format of test cases and magic
comments more.

6.5 Support for testing link-time optimizations

Tests for link-time optimizations usually require multiple source files that are compiled
separately, perhaps with different sets of options. There are several special-purpose test
directives used for these tests.

{ dg-lto-do do-what-keyword }

do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

assemble Compile with -c to produce a relocatable object file.

link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is assemble. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

Unlike dg-do, dg-lto-do does not support an optional ‘target’ or ‘xfail’ list.
Use dg-skip-if, dg-xfail-if, or dg-xfail-run-if.

{ dg-lto-options { { options } [{ options }] } [{ target selector }]}

This directive provides a list of one or more sets of compiler options to override
LTO OPTIONS. Each test will be compiled and run with each of these sets of
options.

{ dg-extra-ld-options options [{ target selector }]}

This directive adds options to the linker options used.

{ dg-suppress-ld-options options [{ target selector }]}

This directive removes options from the set of linker options used.

128 GNU Compiler Collection (GCC) Internals

6.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file lib/gcov.exp. gcov tests also rely
on procedures in lib/gcc-dg.exp to compile and run the test program. A typical gcov
test contains the following DejaGnu commands within comments:

{ dg-options "--coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing -b to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count(cnt). A test should only check line counts
for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 && j > i && j < 20) /* branch(27 50 75) */

/* branch(end) */

foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

6.7 Support for testing profile-directed optimizations

The file profopt.exp provides language-independent support for checking correct execution
of a test built with profile-directed optimization. This testing requires that a test program
be built and executed twice. The first time it is compiled to generate profile data, and the

Chapter 6: Testsuites 129

second time it is compiled to use the data that was generated during the first execution.
The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with
the profile-directed optimizations. profopt.exp has the beginnings of this kind of support.

profopt.exp provides generic support for profile-directed optimizations. Each set of tests
that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option

options used to generate profile data

feedback_option

options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_OPTIONS

list of options with which to run each test, similar to the lists for torture tests

{ dg-final-generate { local-directive } }

This directive is similar to dg-final, but the local-directive is run after the
generation of profile data.

{ dg-final-use { local-directive } }

The local-directive is run after the profile data have been used.

6.8 Support for testing binary compatibility

The file compat.exp provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

testname_main.suffix

Contains the main program, which calls a function in file testname_x.suffix.

testname_x.suffix

Contains at least one call to a function in testname_y.suffix.

testname_y.suffix

Shares data with, or gets arguments from, testname_x.suffix.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

130 GNU Compiler Collection (GCC) Internals

compat.exp defines default pairs of compiler options. These can be overridden by defining
the environment variable COMPAT_OPTIONS as:

COMPAT_OPTIONS="[list [list {tst1} {alt1}]

...[list {tstn} {altn}]]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [list [list {-g -O0} {-O3}] [list

{-fpic} {-fPIC -O2}]], the test is first built with -g -O0 by the compiler under test and
with -O3 by the alternate compiler. The test is built a second time using -fpic by the
compiler under test and -fPIC -O2 by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the site.exp file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_

TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the basic C++ compatibility suite using the compiler under test and another
version of GCC using specific compiler options, do the following from objdir/gcc:

rm site.exp

make -k \

ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \

COMPAT_OPTIONS="lists as shown above" \

check-c++ \

RUNTESTFLAGS="compat.exp"

The file struct-layout-1.exp provides a few more test cases exercising pseudo-randomly
generated structure layouts. Defining RUN_ALL_COMPAT_TESTS would increase the number
of generated tests to yield even more coverage. As an example, to modify the above test
command to run the maximum number of ABI tests for C++, do:

rm site.exp

make -k \

ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \

COMPAT_OPTIONS="lists as shown above" \

check-c++ \

RUNTESTFLAGS="compat.exp struct-layout-1.exp" \

RUN_ALL_COMPAT_TESTS=1

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-*

These commands can be used in testname_main.suffix to skip the test if
specific support is not available on the target.

Chapter 6: Testsuites 131

dg-options

The specified options are used for compiling this particular source file, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
testname_main.suffix the options are also used to link the test program.

dg-xfail-if

This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

6.9 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run multiple
times, each with a different set of options. These are known as torture tests. lib/torture-
options.exp defines procedures to set up these lists:

torture-init

Initialize use of torture lists.

set-torture-options

Set lists of torture options to use for tests with and without loops. Optionally
combine a set of torture options with a set of other options, as is done with
Objective-C runtime options.

torture-finish

Finalize use of torture lists.

The .exp file for a set of tests that use torture options must include calls to these three
procedures if:

• It calls gcc-dg-runtest and overrides DG TORTURE OPTIONS.

• It calls ${tool}-torture or ${tool}-torture-execute, where tool is c, fortran, or
objc.

• It calls dg-pch.

It is not necessary for a .exp file that calls gcc-dg-runtest to call the torture procedures
if the tests should use the list in DG TORTURE OPTIONS defined in gcc-dg.exp.

Most uses of torture options can override the default lists by defin-
ing TORTURE OPTIONS or add to the default list by defining ADDI-
TIONAL TORTURE OPTIONS. Define these in a .dejagnurc file or add them
to the site.exp file; for example

set ADDITIONAL_TORTURE_OPTIONS [list \

{ -O2 -ftree-loop-linear } \

{ -O2 -fpeel-loops }]

6.10 Support for testing GIMPLE passes

As of gcc 7, C functions can be tagged with __GIMPLE to indicate that the function body
will be GIMPLE, rather than C. The compiler requires the option -fgimple to enable this
functionality. For example:

/* { dg-do compile } */

/* { dg-options "-O -fgimple" } */

132 GNU Compiler Collection (GCC) Internals

void __GIMPLE (startwith ("dse2")) foo ()

{

int a;

bb_2:

if (a > 4)

goto bb_3;

else

goto bb_4;

bb_3:

a_2 = 10;

goto bb_5;

bb_4:

a_3 = 20;

bb_5:

a_1 = __PHI (bb_3: a_2, bb_4: a_3);

a_4 = a_1 + 4;

return;

}

The startwith argument indicates at which pass to begin.

Use the dump modifier -gimple (e.g. -fdump-tree-all-gimple) to make tree dumps
more closely follow the format accepted by the GIMPLE parser.

Example DejaGnu tests of GIMPLE can be seen in the source tree at
gcc/testsuite/gcc.dg/gimplefe-*.c.

The __GIMPLE parser is integrated with the C tokenizer and preprocessor, so it should be
possible to use macros to build out test coverage.

6.11 Support for testing RTL passes

As of gcc 7, C functions can be tagged with __RTL to indicate that the function body will
be RTL, rather than C. For example:

double __RTL (startwith ("ira")) test (struct foo *f, const struct bar *b)

{

(function "test"

[...snip; various directives go in here...]

) ;; function "test"

}

The startwith argument indicates at which pass to begin.

The parser expects the RTL body to be in the format emitted by this dumping function:
DEBUG_FUNCTION void

print_rtx_function (FILE *outfile, function *fn, bool compact);

when "compact" is true. So you can capture RTL in the correct format from the debugger
using:

(gdb) print_rtx_function (stderr, cfun, true);

and copy and paste the output into the body of the C function.

Example DejaGnu tests of RTL can be seen in the source tree under
gcc/testsuite/gcc.dg/rtl.

Chapter 6: Testsuites 133

The __RTL parser is not integrated with the C tokenizer or preprocessor, and works simply
by reading the relevant lines within the braces. In particular, the RTL body must be on
separate lines from the enclosing braces, and the preprocessor is not usable within it.

135

7 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

7.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

• A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 7.2 [Option properties], page 137.

• A target specific save record to save additional information. These records have two
fields: the string ‘TargetSave’, and a declaration type to go in the cl_target_option
structure.

• A variable record to define a variable used to store option information. These records
have two fields: the string ‘Variable’, and a declaration of the type and name of the
variable, optionally with an initializer (but without any trailing ‘;’). These records may
be used for variables used for many options where declaring the initializer in a single
option definition record, or duplicating it in many records, would be inappropriate, or
for variables set in option handlers rather than referenced by Var properties.

• A variable record to define a variable used to store option information. These records
have two fields: the string ‘TargetVariable’, and a declaration of the type and
name of the variable, optionally with an initializer (but without any trailing ‘;’).
‘TargetVariable’ is a combination of ‘Variable’ and ‘TargetSave’ records in that the
variable is defined in the gcc_options structure, but these variables are also stored in
the cl_target_option structure. The variables are saved in the target save code and
restored in the target restore code.

• A variable record to record any additional files that the options.h file should include.
This is useful to provide enumeration or structure definitions needed for target variables.
These records have two fields: the string ‘HeaderInclude’ and the name of the include
file.

• A variable record to record any additional files that the options.cc or options-

save.cc file should include. This is useful to provide inline functions needed for target
variables and/or #ifdef sequences to properly set up the initialization. These records
have two fields: the string ‘SourceInclude’ and the name of the include file.

• An enumeration record to define a set of strings that may be used as arguments to an
option or options. These records have three fields: the string ‘Enum’, a space-separated
list of properties and help text used to describe the set of strings in --help output.
Properties use the same format as option properties; the following are valid:

Name(name)

This property is required; name must be a name (suitable for use in C
identifiers) used to identify the set of strings in Enum option properties.

136 GNU Compiler Collection (GCC) Internals

Type(type)

This property is required; type is the C type for variables set by options
using this enumeration together with Var.

UnknownError(message)

The message message will be used as an error message if the argument is
invalid; for enumerations without UnknownError, a generic error message
is used. message should contain a single ‘%qs’ format, which will be used
to format the invalid argument.

• An enumeration value record to define one of the strings in a set given in an ‘Enum’
record. These records have two fields: the string ‘EnumValue’ and a space-separated
list of properties. Properties use the same format as option properties; the following
are valid:

Enum(name)

This property is required; name says which ‘Enum’ record this ‘EnumValue’
record corresponds to.

String(string)

This property is required; string is the string option argument being de-
scribed by this record.

Value(value)

This property is required; it says what value (representable as int) should
be used for the given string.

Canonical

This property is optional. If present, it says the present string is the
canonical one among all those with the given value. Other strings yielding
that value will be mapped to this one so specs do not need to handle them.

DriverOnly

This property is optional. If present, the present string will only be ac-
cepted by the driver. This is used for cases such as -march=native that
are processed by the driver so that ‘gcc -v’ shows how the options chosen
depended on the system on which the compiler was run.

Set(number)

This property is optional, required for enumerations used in EnumSet op-
tions. number should be decimal number between 1 and 64 inclusive and
divides the enumeration into a set of sets of mutually exclusive arguments.
Arguments with the same number can’t be specified together in the same
option, but arguments with different number can. value needs to be chosen
such that a mask of all value values from the same set number bitwise ored
doesn’t overlap with masks for other sets. When -foption=arg_from_

set1,arg_from_set4 and -fno-option=arg_from_set3 are used, the ef-
fect is that previous value of the Var will get bits from set 1 and 4 masks
cleared, ored Value of arg_from_set1 and arg_from_set4 and then will
get bits from set 3 mask cleared.

• An option definition record. These records have the following fields:

1. the name of the option, with the leading “-” removed

Chapter 7: Option specification files 137

2. a space-separated list of option properties (see Section 7.2 [Option properties],
page 137)

3. the help text to use for --help (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “g”, “W” or “m” are implicitly assumed to
take a “no-” form. This form should not be listed separately. If an option beginning
with one of these letters does not have a “no-” form, you can use the RejectNegative
property to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

There is no support for different help texts for different languages. If an option is
supported for multiple languages, use a generic description that is correct for all of
them.

If an option has multiple option definition records (in different front ends’ *.opt files,
and/or gcc/common.opt, for example), convention is to not duplicate the help text for
each of them, but instead put a comment like ; documented in common.opt in place
of the help text for all but one of the multiple option definition records.

• A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 17.3
[Run-time Target], page 537) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

7.2 Option properties

The second field of an option record can specify any of the following properties. When an
option takes an argument, it is enclosed in parentheses following the option property name.
The parser that handles option files is quite simplistic, and will be tricked by any nested
parentheses within the argument text itself; in this case, the entire option argument can be
wrapped in curly braces within the parentheses to demarcate it, e.g.:

Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})

Common The option is available for all languages and targets.

Target The option is available for all languages but is target-specific.

Driver The option is handled by the compiler driver using code not shared with the
compilers proper (cc1 etc.).

language The option is available when compiling for the given language.

138 GNU Compiler Collection (GCC) Internals

It is possible to specify several different languages for the same option. Each
language must have been declared by an earlier Language record. See Sec-
tion 7.1 [Option file format], page 135.

RejectDriver

The option is only handled by the compilers proper (cc1 etc.) and should not
be accepted by the driver.

RejectNegative

The option does not have a “no-” form. All options beginning with “f”, “g”,
“W” or “m” are assumed to have a “no-” form unless this property is used.

Negative(othername)

The option will turn off another option othername, which is the option name
with the leading “-” removed. This chain action will propagate through the
Negative property of the option to be turned off. The driver will prune op-
tions, removing those that are turned off by some later option. This pruning is
not done for options with Joined or JoinedOrMissing properties, unless the
options have both the RejectNegative property and the Negative property
mentions itself.

As a consequence, if you have a group of mutually-exclusive options, their
Negative properties should form a circular chain. For example, if options -a,
-b and -c are mutually exclusive, their respective Negative properties should
be ‘Negative(b)’, ‘Negative(c)’ and ‘Negative(a)’.

Joined

Separate The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -o). An option is allowed to have both of these properties.

JoinedOrMissing

The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

MissingArgError(message)

For an option marked Joined or Separate, the message message will be used
as an error message if the mandatory argument is missing; for options without
MissingArgError, a generic error message is used. message should contain a
single ‘%qs’ format, which will be used to format the name of the option passed.

Args(n) For an option marked Separate, indicate that it takes n arguments. The default
is 1.

UInteger The option’s argument is a non-negative integer consisting of either decimal
or hexadecimal digits interpreted as int. Hexadecimal integers may optionally
start with the 0x or 0X prefix. The option parser validates and converts the
argument before passing it to the relevant option handler. UInteger should
also be used with options like -falign-loops where both -falign-loops and
-falign-loops=n are supported to make sure the saved options are given a

Chapter 7: Option specification files 139

full integer. Positive values of the argument in excess of INT_MAX wrap around
zero.

Host_Wide_Int

The option’s argument is a non-negative integer consisting of either decimal or
hexadecimal digits interpreted as the widest integer type on the host. As with
an UInteger argument, hexadecimal integers may optionally start with the 0x
or 0X prefix. The option parser validates and converts the argument before
passing it to the relevant option handler. Host_Wide_Int should be used with
options that need to accept very large values. Positive values of the argument
in excess of HOST_WIDE_INT_M1U are assigned HOST_WIDE_INT_M1U.

IntegerRange(n, m)

The options’s arguments are integers of type int. The option’s parser validates
that the value of an option integer argument is within the closed range [n, m].

ByteSize A property applicable only to UInteger or Host_Wide_Int arguments. The
option’s integer argument is interpreted as if in infinite precision using satu-
ration arithmetic in the corresponding type. The argument may be followed
by a ‘byte-size’ suffix designating a multiple of bytes such as kB and KiB for
kilobyte and kibibyte, respectively, MB and MiB for megabyte and mebibyte, GB
and GiB for gigabyte and gigibyte, and so on. ByteSize should be used for
with options that take a very large argument representing a size in bytes, such
as -Wlarger-than=.

ToLower The option’s argument should be converted to lowercase as part of putting it in
canonical form, and before comparing with the strings indicated by any Enum

property.

NoDriverArg

For an option marked Separate, the option only takes an argument in the com-
piler proper, not in the driver. This is for compatibility with existing options
that are used both directly and via -Wp,; new options should not have this
property.

Var(var) The state of this option should be stored in variable var (actually a macro for
global_options.x_var). The way that the state is stored depends on the type
of option:

• If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

• If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

• If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

• If the option takes an argument and has the Enum property, var is a variable
(type given in the Type property of the ‘Enum’ record whose Name property
has the same argument as the Enum property of this option) that stores the
value of the argument.

140 GNU Compiler Collection (GCC) Internals

• If the option has the Defer property, var is a pointer to a
VEC(cl_deferred_option,heap) that stores the option for later
processing. (var is declared with type void * and needs to be cast to
VEC(cl_deferred_option,heap) before use.)

• Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

The option-processing script will usually zero-initialize var. You can modify
this behavior using Init.

Var(var, set)

The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

Init(value)

The variable specified by the Var property should be statically initialized to
value. If more than one option using the same variable specifies Init, all must
specify the same initializer.

WarnRemoved

The option is removed and every usage of such option will result in a warning.
We use it option backward compatibility.

Mask(name)

The option is associated with a bit in the target_flags variable (see Sec-
tion 17.3 [Run-time Target], page 537) and is active when that bit is set. You
may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’ or Var which is defined by
TargetVariable, the script will set the macro MASK_name to the appropriate
bitmask. It will also declare a TARGET_name, TARGET_name_P and TARGET_name_

OPTS_P: TARGET_namemacros that has the value 1 when the option is active and
0 otherwise, TARGET_name_P is similar to TARGET_name but take an argument as
‘target_flags’ or TargetVariable, and TARGET_name_OPTS_P also similar to
TARGET_name but take an argument as gcc_options. If you use Var to attach
the option to a different variable which is not defined by TargetVariable, the
bitmask macro with be called OPTION_MASK_name.

InverseMask(othername)

InverseMask(othername, thisname)

The option is the inverse of another option that has the Mask(othername)

property. If thisname is given, the options-processing script will declare
TARGET_thisname, TARGET_name_P and TARGET_name_OPTS_P macros:
TARGET_thisname is 1 when the option is active and 0 otherwise, TARGET_

name_P is similar to TARGET_name but takes an argument as ‘target_flags’,
and TARGET_name_OPTS_P is also similar to TARGET_name but takes an
argument as gcc_options.

Chapter 7: Option specification files 141

Enum(name)

The option’s argument is a string from the set of strings associated with the
corresponding ‘Enum’ record. The string is checked and converted to the integer
specified in the corresponding ‘EnumValue’ record before being passed to option
handlers.

EnumSet Must be used together with the Enum(name) property. Corresponding ‘Enum’
record must use Set properties. The option’s argument is either a string from
the set like for Enum(name), but with a slightly different behavior that the
whole Var isn’t overwritten, but only the bits in all the enumeration values
with the same set bitwise ored together. Or option’s argument can be a comma
separated list of strings where each string is from a different Set(number).

EnumBitSet

Must be used together with the Enum(name) property. Similar to ‘EnumSet’,
but corresponding ‘Enum’ record must not use Set properties, each EnumValue

should have Value that is a power of 2, each value is treated as its own set and
its value as the set’s mask, so there are no mutually exclusive arguments.

Defer The option should be stored in a vector, specified with Var, for later processing.

Alias(opt)

Alias(opt, arg)

Alias(opt, posarg, negarg)

The option is an alias for -opt (or the negative form of that option, depending
on NegativeAlias). In the first form, any argument passed to the alias is
considered to be passed to -opt, and -opt is considered to be negated if the
alias is used in negated form. In the second form, the alias may not be negated
or have an argument, and posarg is considered to be passed as an argument
to -opt. In the third form, the alias may not have an argument, if the alias is
used in the positive form then posarg is considered to be passed to -opt, and
if the alias is used in the negative form then negarg is considered to be passed
to -opt.

Aliases should not specify Var or Mask or UInteger. Aliases should normally
specify the same languages as the target of the alias; the flags on the target
will be used to determine any diagnostic for use of an option for the wrong
language, while those on the alias will be used to identify what command-line
text is the option and what text is any argument to that option.

When an Alias definition is used for an option, driver specs do not need to
handle it and no ‘OPT_’ enumeration value is defined for it; only the canonical
form of the option will be seen in those places.

NegativeAlias

For an option marked with Alias(opt), the option is considered to be an alias
for the positive form of -opt if negated and for the negative form of -opt if
not negated. NegativeAlias may not be used with the forms of Alias taking
more than one argument.

142 GNU Compiler Collection (GCC) Internals

Ignore This option is ignored apart from printing any warning specified using Warn.
The option will not be seen by specs and no ‘OPT_’ enumeration value is defined
for it.

SeparateAlias

For an option marked with Joined, Separate and Alias, the option only acts
as an alias when passed a separate argument; with a joined argument it acts as
a normal option, with an ‘OPT_’ enumeration value. This is for compatibility
with the Java -d option and should not be used for new options.

Warn(message)

If this option is used, output the warning message. message is a format string,
either taking a single operand with a ‘%qs’ format which is the option name, or
not taking any operands, which is passed to the ‘warning’ function. If an alias
is marked Warn, the target of the alias must not also be marked Warn.

Warning This is a warning option and should be shown as such in --help output. This
flag does not currently affect anything other than --help.

Optimization

This is an optimization option. It should be shown as such in --help output,
and any associated variable named using Var should be saved and restored when
the optimization level is changed with optimize attributes.

PerFunction

This is an option that can be overridden on a per-function basis. Optimization
implies PerFunction, but options that do not affect executable code generation
may use this flag instead, so that the option is not taken into account in ways
that might affect executable code generation.

Param This is an option that is a parameter.

NoOffload

This option will not be passed through from the host compiler to any offload
target compilers via the LTO mechanism. It is intended for use with optimiza-
tion tuning parameters where settings appropriate for the host system are likely
to harm the performance of the offload device.

Undocumented

The option is deliberately missing documentation and should not be included
in the --help output.

Condition(cond)

The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the --help output.

Save Build the cl_target_option structure to hold a copy of the option, add the
functions cl_target_option_save and cl_target_option_restore to save
and restore the options.

Chapter 7: Option specification files 143

SetByCombined

The option may also be set by a combined option such as -ffast-math. This
causes the gcc_options struct to have a field frontend_set_name, where name
is the name of the field holding the value of this option (without the leading
x_). This gives the front end a way to indicate that the value has been set
explicitly and should not be changed by the combined option. For example,
some front ends use this to prevent -ffast-math and -fno-fast-math from
changing the value of -fmath-errno for languages that do not use errno.

EnabledBy(opt)

EnabledBy(opt || opt2)

EnabledBy(opt && opt2)

If not explicitly set, the option is set to the value of -opt; multiple options can
be given, separated by ||. The third form using && specifies that the option is
only set if both opt and opt2 are set. The options opt and opt2 must have the
Common property; otherwise, use LangEnabledBy.

LangEnabledBy(language, opt)

LangEnabledBy(language, opt, posarg, negarg)

When compiling for the given language, the option is set to the value of -opt, if
not explicitly set. opt can be also a list of || separated options. In the second
form, if opt is used in the positive form then posarg is considered to be passed
to the option, and if opt is used in the negative form then negarg is considered
to be passed to the option. It is possible to specify several different languages.
Each language must have been declared by an earlier Language record. See
Section 7.1 [Option file format], page 135.

NoDWARFRecord

The option is omitted from the producer string written by -grecord-gcc-

switches.

PchIgnore

Even if this is a target option, this option will not be recorded / compared to
determine if a precompiled header file matches.

CPP(var) The state of this option should be kept in sync with the preprocessor option
var. If this property is set, then properties Var and Init must be set as well.

CppReason(CPP_W_Enum)

This warning option corresponds to cpplib.h warning reason code
CPP W Enum. This should only be used for warning options of the C-family
front-ends.

UrlSuffix(url_suffix)

Adjacent to each human-written .opt file in the source tree is a corresponding
file with a .opt.urls extension. These files contain UrlSuffix directives giving
the ending part of the URL for the documentation of the option, such as:

Wabi-tag

UrlSuffix(gcc/C_002b_002b-Dialect-Options.html#index-Wabi-tag)

These URL suffixes are relative to DOCUMENTATION_ROOT_URL.

144 GNU Compiler Collection (GCC) Internals

There files are generated from the .opt files and the generated HTML documen-
tation by regenerate-opt-urls.py, and should be regenerated when adding
new options, via manually invoking make regenerate-opt-urls.

LangUrlSuffix_lang(url_suffix)

In addition to UrlSuffix directives, regenerate-opt-urls.py can generate
language-specific URLs, such as:

LangUrlSuffix_D(gdc/Code-Generation.html#index-MMD)

145

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (see Chapter 10 [GENERIC],
page 179), plus a double handful of language specific tree codes defined in c-common.def.
The Fortran front end uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (see
Chapter 11 [GIMPLE], page 231) on each function, and uses the gimplifier callbacks to
convert the language-specific tree nodes directly to GIMPLE before passing the function off
to be compiled. The Fortran front end converts from a private representation to GENERIC,
which is later lowered to GIMPLE when the function is compiled. Which route to choose
probably depends on how well GENERIC (plus extensions) can be made to match up with
the source language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: I know rest of compilation currently has all sorts of RTL generation semantics.
I plan to move all code generation bits (both Tree and RTL) to compile function. Should

146 GNU Compiler Collection (GCC) Internals

we hide cgraph from the front ends and move back to rest of compilation as the official
interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

8.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate represen-
tation of a function into the GIMPLE language (see Chapter 11 [GIMPLE], page 231). The
term stuck, and so words like “gimplification”, “gimplify”, “gimplifier” and the like are
sprinkled throughout this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in gimplify.cc.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_OK, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

8.3 Pass manager

The pass manager is located in passes.cc, tree-optimize.c and tree-pass.h. It pro-
cesses passes as described in passes.def. Its job is to run all of the individual passes in
the correct order, and take care of standard bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

Each pass should have a unique name. Each pass may have its own dump file (for GCC
debugging purposes). Passes with a name starting with a star do not dump anything.

Chapter 8: Passes and Files of the Compiler 147

Sometimes passes are supposed to share a dump file / option name. To still give these
unique names, you can use a prefix that is delimited by a space from the part that is used
for the dump file / option name. E.g. When the pass name is "ud dce", the name used for
dump file/options is "dce".

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info RTL passes use first. . .

8.4 Inter-procedural optimization passes

The inter-procedural optimization (IPA) passes use call graph information to perform trans-
formations across function boundaries. IPA is a critical part of link-time optimization (LTO)
and whole-program (WHOPR) optimization, and these passes are structured with the needs
of LTO and WHOPR in mind by dividing their operations into stages. For detailed discus-
sion of the LTO/WHOPR IPA pass stages and interfaces, see Section 24.3 [IPA], page 760.

The following briefly describes the inter-procedural optimization (IPA) passes, which
are split into small IPA passes, regular IPA passes, and late IPA passes, according to the
LTO/WHOPR processing model.

8.4.1 Small IPA passes

A small IPA pass is a pass derived from simple_ipa_opt_pass. As described in Section 24.3
[IPA], page 760, it does everything at once and defines only the Execute stage. During this
stage it accesses and modifies the function bodies. No generate_summary, read_summary,
or write_summary hooks are defined.

• IPA free lang data

This pass frees resources that are used by the front end but are not needed once it is
done. It is located in tree.cc and is described by pass_ipa_free_lang_data.

• IPA function and variable visibility

This is a local function pass handling visibilities of all symbols. This happens be-
fore LTO streaming, so -fwhole-program should be ignored at this level. It is lo-
cated in ipa-visibility.cc and is described by pass_ipa_function_and_variable_

visibility.

• IPA remove symbols

This pass performs reachability analysis and reclaims all unreachable nodes. It is
located in passes.cc and is described by pass_ipa_remove_symbols.

• IPA OpenACC

This is a pass group for OpenACC processing. It is located in tree-ssa-loop.cc and
is described by pass_ipa_oacc.

• IPA points-to analysis

This is a tree-based points-to analysis pass. The idea behind this analyzer is to gener-
ate set constraints from the program, then solve the resulting constraints in order to
generate the points-to sets. It is located in tree-ssa-structalias.cc and is described
by pass_ipa_pta.

148 GNU Compiler Collection (GCC) Internals

• IPA OpenACC kernels

This is a pass group for processing OpenACC kernels regions. It is a subpass of the IPA
OpenACC pass group that runs on offloaded functions containing OpenACC kernels
loops. It is located in tree-ssa-loop.cc and is described by pass_ipa_oacc_kernels.

• Target clone

This is a pass for parsing functions with multiple target attributes. It is located in
multiple_target.cc and is described by pass_target_clone.

• IPA auto profile

This pass uses AutoFDO profiling data to annotate the control flow graph. It is located
in auto-profile.cc and is described by pass_ipa_auto_profile.

• IPA tree profile

This pass does profiling for all functions in the call graph. It calculates branch prob-
abilities and basic block execution counts. It is located in tree-profile.cc and is
described by pass_ipa_tree_profile.

• IPA free function summary

This pass is a small IPA pass when argument small_p is true. It releases inline function
summaries and call summaries. It is located in ipa-fnsummary.cc and is described by
pass_ipa_free_free_fn_summary.

• IPA increase alignment

This pass increases the alignment of global arrays to improve vectorization. It is located
in tree-vectorizer.cc and is described by pass_ipa_increase_alignment.

• IPA transactional memory

This pass is for transactional memory support. It is located in trans-mem.cc and is
described by pass_ipa_tm.

• IPA lower emulated TLS

This pass lowers thread-local storage (TLS) operations to emulation functions provided
by libgcc. It is located in tree-emutls.cc and is described by pass_ipa_lower_

emutls.

8.4.2 Regular IPA passes

A regular IPA pass is a pass derived from ipa_opt_pass_d that is executed in WHOPR
compilation. Regular IPA passes may have summary hooks implemented in any of the
LGEN, WPA or LTRANS stages (see Section 24.3 [IPA], page 760).

• IPA whole program visibility

This pass performs various optimizations involving symbol visibility with -fwhole-

program, including symbol privatization, discovering local functions, and dismantling
comdat groups. It is located in ipa-visibility.cc and is described by pass_ipa_

whole_program_visibility.

• IPA profile

The IPA profile pass propagates profiling frequencies across the call graph. It is located
in ipa-profile.cc and is described by pass_ipa_profile.

Chapter 8: Passes and Files of the Compiler 149

• IPA identical code folding

This is the inter-procedural identical code folding pass. The goal of this transformation
is to discover functions and read-only variables that have exactly the same semantics.
It is located in ipa-icf.cc and is described by pass_ipa_icf.

• IPA devirtualization

This pass performs speculative devirtualization based on the type inheritance graph.
When a polymorphic call has only one likely target in the unit, it is turned into a
speculative call. It is located in ipa-devirt.cc and is described by pass_ipa_devirt.

• IPA constant propagation

The goal of this pass is to discover functions that are always invoked with some argu-
ments with the same known constant values and to modify the functions accordingly.
It can also do partial specialization and type-based devirtualization. It is located in
ipa-cp.cc and is described by pass_ipa_cp.

• IPA scalar replacement of aggregates

This pass can replace an aggregate parameter with a set of other parameters represent-
ing part of the original, turning those passed by reference into new ones which pass
the value directly. It also removes unused function return values and unused function
parameters. This pass is located in ipa-sra.cc and is described by pass_ipa_sra.

• IPA constructor/destructor merge

This pass merges multiple constructors and destructors for static objects into single
functions. It’s only run at LTO time unless the target doesn’t support constructors
and destructors natively. The pass is located in ipa.cc and is described by pass_ipa_

cdtor_merge.

• IPA function summary

This pass provides function analysis for inter-procedural passes. It collects estimates of
function body size, execution time, and frame size for each function. It also estimates
information about function calls: call statement size, time and how often the parameters
change for each call. It is located in ipa-fnsummary.cc and is described by pass_ipa_

fn_summary.

• IPA inline

The IPA inline pass handles function inlining with whole-program knowledge. Small
functions that are candidates for inlining are ordered in increasing badness, bounded
by unit growth parameters. Unreachable functions are removed from the call graph.
Functions called once and not exported from the unit are inlined. This pass is located
in ipa-inline.cc and is described by pass_ipa_inline.

• IPA pure/const analysis

This pass marks functions as being either const (TREE_READONLY) or pure (DECL_PURE_
P). The per-function information is produced by pure_const_generate_summary, then
the global information is computed by performing a transitive closure over the call
graph. It is located in ipa-pure-const.cc and is described by pass_ipa_pure_const.

• IPA free function summary

This pass is a regular IPA pass when argument small_p is false. It releases inline
function summaries and call summaries. It is located in ipa-fnsummary.cc and is
described by pass_ipa_free_fn_summary.

150 GNU Compiler Collection (GCC) Internals

• IPA reference

This pass gathers information about how variables whose scope is confined to the
compilation unit are used. It is located in ipa-reference.cc and is described by
pass_ipa_reference.

• IPA single use

This pass checks whether variables are used by a single function. It is located in ipa.cc

and is described by pass_ipa_single_use.

• IPA comdats

This pass looks for static symbols that are used exclusively within one comdat group,
and moves them into that comdat group. It is located in ipa-comdats.cc and is
described by pass_ipa_comdats.

8.4.3 Late IPA passes

Late IPA passes are simple IPA passes executed after the regular passes. In WHOPR mode
the passes are executed after partitioning and thus see just parts of the compiled unit.

• Materialize all clones

Once all functions from compilation unit are in memory, produce all clones and update
all calls. It is located in ipa.cc and is described by pass_materialize_all_clones.

• IPA points-to analysis

Points-to analysis; this is the same as the points-to-analysis pass run with the small
IPA passes (see Section 8.4.1 [Small IPA passes], page 147).

• OpenMP simd clone

This is the OpenMP constructs’ SIMD clone pass. It creates the appropriate SIMD
clones for functions tagged as elemental SIMD functions. It is located in omp-simd-

clone.cc and is described by pass_omp_simd_clone.

8.5 Tree SSA passes

The following briefly describes the Tree optimization passes that are run after gimplification
and what source files they are located in.

• OpenMP lowering

If OpenMP generation (-fopenmp) is enabled, this pass lowers OpenMP constructs into
GIMPLE.

Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation
of the control flow graph. The pass is located in omp-low.cc and is described by
pass_lower_omp.

• OpenMP expansion

If OpenMP generation (-fopenmp) is enabled, this pass expands parallel regions into
their own functions to be invoked by the thread library. The pass is located in omp-

low.cc and is described by pass_expand_omp.

Chapter 8: Passes and Files of the Compiler 151

• Lower control flow

This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found
in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in gimple-low.cc and is described by pass_lower_cf.

• Lower exception handling control flow

This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After
this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal or
tree_can_throw_external for exact semantics. Exact control flow may be extracted
from foreach_reachable_handler. The EH region nesting tree is defined in except.h

and built in except.cc. The lowering pass itself is in tree-eh.cc and is described by
pass_lower_eh.

• Build the control flow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in tree-cfg.cc and is described by pass_build_cfg.

• Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in tree-into-ssa.cc and is
described by pass_build_ssa.

• Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization (if turned on). In the first pass we only warn for uses that
are positively uninitialized; in the second pass we warn for uses that are possibly
uninitialized. The pass is located in tree-ssa-uninit.cc and is defined by pass_

early_warn_uninitialized and pass_late_warn_uninitialized.

• Dead code elimination

This pass scans the function for statements without side effects whose result is unused.
It does not do memory lifetime analysis, so any value that is stored in memory is
considered used. The pass is run multiple times throughout the optimization process.
It is located in tree-ssa-dce.cc and is described by pass_dce.

• Dominator optimizations

This pass performs trivial dominator-based copy and constant propagation, expression
simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It is located in tree-ssa-dom.cc and is described by pass_dominator.

• Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in tree-ssa-forwprop.cc and is described by pass_forwprop.

152 GNU Compiler Collection (GCC) Internals

• PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in tree-ssa-phiopt.cc

and is described by pass_phiopt.

• May-alias optimization

This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in tree-ssa-structalias.cc and is
described by pass_may_alias.

Interprocedural points-to information is described by pass_ipa_pta.

• Profiling

This pass instruments the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
tree-profile.cc and is described by pass_ipa_tree_profile.

• Static profile estimation

This pass implements series of heuristics to guess propababilities of branches. The
resulting predictions are turned into edge profile by propagating branches across the
control flow graphs. The pass is located in tree-profile.cc and is described by
pass_profile.

• Lower complex arithmetic

This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in tree-complex.cc and is described by pass_

lower_complex.

• Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in tree-sra.cc and is described by pass_sra.

• Dead store elimination

This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in tree-ssa-dse.cc and is
described by pass_dse.

• Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in tree-tailcall.cc and
is described by pass_tail_recursion.

• Forward store motion

This pass sinks stores and assignments down the flowgraph closer to their use point.
The pass is located in tree-ssa-sink.cc and is described by pass_sink_code.

Chapter 8: Passes and Files of the Compiler 153

• Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in tree-ssa-pre.cc and is described by pass_pre.

• CSE of reciprocals

If -funsafe-math-optimizations is on, GCC tries to convert divisions to multiplica-
tions by the reciprocal. The pass is located in tree-ssa-math-opts.cc and is described
by pass_cse_reciprocal.

• Full redundancy elimination

This is a simpler form of PRE that only eliminates redundancies that occur on all
paths. It is located in tree-ssa-pre.cc and described by pass_fre.

• Loop optimization

The main driver of the pass is placed in tree-ssa-loop.cc and described by pass_

loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on RTL level (function calls, operations that expand to nontrivial sequences of insns).
With -funswitch-loops it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in tree-ssa-loop-im.cc.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
tree-ssa-loop-ivcanon.cc.

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in tree-ssa-loop-ivopts.cc.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in tree-ssa-loop-unswitch.cc.

Loop splitting. If a loop contains a conditional statement that is always true for one
part of the iteration space and false for the other this pass splits the loop into two, one
dealing with one side the other only with the other, thereby removing one inner-loop
conditional. The pass is implemented in tree-ssa-loop-split.cc.

The optimizations also use various utility functions contained in tree-ssa-loop-

manip.cc, cfgloop.cc, cfgloopanal.cc and cfgloopmanip.cc.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration, and
the VF copies of each scalar operation are fused to form a vector operation. Additional
loop transformations such as peeling and versioning may take place to align the number
of iterations, and to align the memory accesses in the loop. The pass is implemented in

154 GNU Compiler Collection (GCC) Internals

tree-vectorizer.cc (the main driver), tree-vect-loop.cc and tree-vect-loop-

manip.cc (loop specific parts and general loop utilities), tree-vect-slp (loop-aware
SLP functionality), tree-vect-stmts.cc, tree-vect-data-refs.cc and tree-vect-

slp-patterns.cc containing the SLP pattern matcher. Analysis of data references is
in tree-data-ref.cc.

SLP Vectorization. This pass performs vectorization of straight-line code. The pass
is implemented in tree-vectorizer.cc (the main driver), tree-vect-slp.cc, tree-
vect-stmts.cc and tree-vect-data-refs.cc.

Autoparallelization. This pass splits the loop iteration space to run into several threads.
The pass is implemented in tree-parloops.cc.

Graphite is a loop transformation framework based on the polyhedral model. Graphite
stands for Gimple Represented as Polyhedra. The internals of this infrastructure are
documented in https://gcc.gnu.org/wiki/Graphite. The passes working on this
representation are implemented in the various graphite-* files.

• Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This pass is located in tree-if-conv.cc

and is described by pass_if_conversion.

• Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in tree-ssa-ccp.cc

and is described by pass_ccp.

• Conditional copy propagation

This is similar to constant propagation but the lattice of values is the “copy-of” relation.
It eliminates redundant copies from the code. The pass is located in tree-ssa-copy.cc

and described by pass_copy_prop.

• Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in tree-vrp.cc and is described by pass_vrp.

• Split critical edges

This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in tree-cfg.cc and is described by pass_

split_crit_edges.

• Control dependence dead code elimination

https://gcc.gnu.org/wiki/Graphite

Chapter 8: Passes and Files of the Compiler 155

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in tree-ssa-dce.cc and is described by pass_

cd_dce.

• Tail call elimination

This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.
The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
tree-tailcall.cc and is described by pass_tail_calls. The RTL transformation is
handled by fixup_tail_calls in calls.cc.

• Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in tree-cfg.cc and is described by
pass_warn_function_return.

• Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a for-
warder CFG block into another block with PHI nodes. The pass is located in tree-

cfgcleanup.cc and is described by pass_merge_phi.

• Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in tree-nrv.cc and is
described by pass_nrv.

• Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.cc and is described by pass_return_slot.

• Optimize calls to __builtin_object_size or __builtin_dynamic_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_

object_size when the upper or lower bound for the size of the object can be computed
at compile-time. It also tries to replace calls to __builtin_dynamic_object_size with
an expression that evaluates the upper or lower bound for the size of the object. This
pass is located in tree-object-size.cc and is described by pass_object_sizes.

• Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in tree-ssa-loop.cc and described by pass_lim.

• Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimization
of data locality in array traversals and the removal of dependencies that hamper op-

156 GNU Compiler Collection (GCC) Internals

timizations such as loop parallelization and vectorization. The pass is located in the
graphile-*.cc files and described by pass_graphite.

• Unrolling of small loops

This pass completely unrolls loops with few iterations. The pass is located in tree-

ssa-loop-ivcanon.cc and described by pass_complete_unroll.

• Predictive commoning

This pass makes the code reuse the computations from the previous iterations of the
loops, especially loads and stores to memory. It does so by storing the values of these
computations to a bank of temporary variables that are rotated at the end of loop. To
avoid the need for this rotation, the loop is then unrolled and the copies of the loop
body are rewritten to use the appropriate version of the temporary variable. This pass
is located in tree-predcom.cc and described by pass_predcom.

• Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in tree-ssa-loop-prefetch.cc and described by pass_loop_prefetch.

• Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate on
them, like redundancy elimination and vectorization. The pass is located in tree-

ssa-reassoc.cc and described by pass_reassoc.

• Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg.cc and described
by pass_stdarg.

8.6 RTL passes

The following briefly describes the RTL generation and optimization passes that are run
after the Tree optimization passes.

• RTL generation

The source files for RTL generation include stmt.cc, calls.cc, expr.cc, explow.cc,
expmed.cc, function.cc, optabs.cc and emit-rtl.cc. Also, the file insn-emit.cc,
generated from the machine description by the program genemit, is used in this pass.
The header file expr.h is used for communication within this pass.

The header files insn-flags.h and insn-codes.h, generated from the machine de-
scription by the programs genflags and gencodes, tell this pass which standard names
are available for use and which patterns correspond to them.

• Generation of exception landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in
the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located in except.cc.

Chapter 8: Passes and Files of the Compiler 157

• Control flow graph cleanup

This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in cfgcleanup.cc, and there are support routines in cfgrtl.cc and jump.cc.

• Forward propagation of single-def values

This pass attempts to remove redundant computation by substituting variables that
come from a single definition, and seeing if the result can be simplified. It performs
copy propagation and addressing mode selection. The pass is run twice, with values
being propagated into loops only on the second run. The code is located in fwprop.cc.

• Store forwarding avoidance

This pass attempts to reduce the overhead of store to load forwarding. It detects when
a load reads from one or more previous smaller stores and then rearranges them so
that the stores are done after the load. The loaded value is adjusted with a series of
bit insert instructions so that it stays the same. The code is located in avoid-store-

forwarding.cc.

• Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The code for this pass is located in
cse.cc.

• Global common subexpression elimination

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is gcse.cc, and the
LCM routines are in lcm.cc.

A third version of this pass is run on some targets to optimise assignments to specific
hard registers. This can be used in cases where a register has a single purpose, such
as specifying a mode as an extra input for specific instructions (see [mode switching
optimization], page 158, for another way of handling instruction modes).

• Loop optimization

This pass performs several loop related optimizations. The source files cfgloopanal.cc
and cfgloopmanip.cc contain generic loop analysis and manipulation code. Initializa-
tion and finalization of loop structures is handled by loop-init.cc. A loop invariant
motion pass is implemented in loop-invariant.cc. Basic block level optimizations—
unrolling, and peeling loops— are implemented in loop-unroll.cc. Replacing of the
exit condition of loops by special machine-dependent instructions is handled by loop-

doloop.cc.

158 GNU Compiler Collection (GCC) Internals

• Jump bypassing

This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is gcse.cc.

• If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload/LRA, it will generate predicated
instructions when supported by the target. The code is located in ifcvt.cc.

• Web construction

This pass splits independent uses of each pseudo-register. This can improve effect of
the other transformation, such as CSE or register allocation. The code for this pass is
located in web.cc.

• Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions
by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The code is located in combine.cc.

• Late instruction combination

This pass attempts to do further instruction combination, on top of that performed by
combine.cc. Its current purpose is to substitute definitions into all uses simultaneously,
so that the definition can be removed. This differs from the forward propagation
pass, whose purpose is instead to simplify individual uses on the assumption that the
definition will remain. It differs from combine.cc in that there is no hard-coded limit
on the number of instructions that can be combined at once. It also differs from
combine.cc in that it can move instructions, where necessary.

However, the pass is not in principle limited to this form of combination. It is intended
to be a home for other, future combination approaches as well.

The pass runs twice, once before register allocation and once after register allocation.
The code is located in late-combine.cc.

• Mode switching optimization

This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The code for this
pass is located in mode-switching.cc.

• Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The code for this pass is located in modulo-sched.cc.

• Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and floating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block

Chapter 8: Passes and Files of the Compiler 159

to try to separate the definition and use of items that otherwise would cause pipeline
stalls. This pass is performed twice, before and after register allocation. The code for
this pass is located in haifa-sched.cc, sched-deps.cc, sched-ebb.cc, sched-rgn.cc
and sched-vis.c.

• Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

• The integrated register allocator (IRA). It is called integrated because coalescing,
register live range splitting, and hard register preferencing are done on-the-fly
during coloring. It also has better integration with the reload/LRA pass. Pseudo-
registers spilled by the allocator or the reload/LRA have still a chance to get
hard-registers if the reload/LRA evicts some pseudo-registers from hard-registers.
The allocator helps to choose better pseudos for spilling based on their live ranges
and to coalesce stack slots allocated for the spilled pseudo-registers. IRA is a
regional register allocator which is transformed into Chaitin-Briggs allocator if
there is one region. By default, IRA chooses regions using register pressure but
the user can force it to use one region or regions corresponding to all loops.

Source files of the allocator are ira.cc, ira-build.cc, ira-costs.cc,
ira-conflicts.cc, ira-color.cc, ira-emit.cc, ira-lives, plus header files
ira.h and ira-int.h used for the communication between the allocator and the
rest of the compiler and between the IRA files.

• Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source files are reload.cc and reload1.cc, plus the header reload.h used for
communication between them.

• This pass is a modern replacement of the reload pass. Source files are lra.cc,
lra-assign.c, lra-coalesce.cc, lra-constraints.cc, lra-eliminations.cc,
lra-lives.cc, lra-remat.cc, lra-spills.cc, the header lra-int.h used for
communication between them, and the header lra.h used for communication be-
tween LRA and the rest of compiler.

Unlike the reload pass, intermediate LRA decisions are reflected in RTL as much as
possible. This reduces the number of target-dependent macros and hooks, leaving
instruction constraints as the primary source of control.

LRA is run on targets for which TARGET LRA P returns true.

• Basic block reordering

This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally

160 GNU Compiler Collection (GCC) Internals

coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file bb-reorder.cc, and the various prediction routines are in
predict.cc.

• Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists. The code is located in var-tracking.cc.

• Delayed branch scheduling

This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The code for this pass is located in reorg.cc.

• Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler
figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch. The code for this pass is located in final.cc.

• Register-to-stack conversion

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The code for this pass is located in reg-stack.cc.

• Final

This pass outputs the assembler code for the function. The source files are final.cc

plus insn-output.cc; the latter is generated automatically from the machine descrip-
tion by the tool genoutput. The header file conditions.h is used for communication
between these files.

• Debugging information output

This is run after final because it must output the stack slot offsets for pseudo registers
that did not get hard registers. Source files are dwarfout.c for DWARF symbol table
format, files dwarf2out.cc and dwarf2asm.cc for DWARF2 symbol table format, and
vmsdbgout.cc for VMS debug symbol table format.

8.7 Optimization info

This section is describes dump infrastructure which is common to both pass dumps as well
as optimization dumps. The goal for this infrastructure is to provide both gcc developers
and users detailed information about various compiler transformations and optimizations.

8.7.1 Dump setup

A dump manager class is defined in dumpfile.h. Various passes register dumping pass-
specific information via dump_register in passes.cc. During the registration, an opti-
mization pass can select its optimization group (see Section 8.7.2 [Optimization groups],
page 161). After that optimization information corresponding to the entire group (presum-
ably from multiple passes) can be output via command-line switches. Note that if a pass
does not fit into any of the pre-defined groups, it can select OPTGROUP_NONE.

Chapter 8: Passes and Files of the Compiler 161

Note that in general, a pass need not know its dump output file name, whether certain
flags are enabled, etc. However, for legacy reasons, passes could also call dump_begin which
returns a stream in case the particular pass has optimization dumps enabled. A pass could
call dump_end when the dump has ended. These methods should go away once all the passes
are converted to use the new dump infrastructure.

The recommended way to setup the dump output is via dump_start and dump_end.

8.7.2 Optimization groups

The optimization passes are grouped into several categories. Currently defined categories
in dumpfile.h are

OPTGROUP_IPA

IPA optimization passes. Enabled by -ipa

OPTGROUP_LOOP

Loop optimization passes. Enabled by -loop.

OPTGROUP_INLINE

Inlining passes. Enabled by -inline.

OPTGROUP_OMP

OMP (Offloading and Multi Processing) passes. Enabled by -omp.

OPTGROUP_VEC

Vectorization passes. Enabled by -vec.

OPTGROUP_OTHER

All other optimization passes which do not fall into one of the above.

OPTGROUP_ALL

All optimization passes. Enabled by -optall.

By using groups a user could selectively enable optimization information only for a group
of passes. By default, the optimization information for all the passes is dumped.

8.7.3 Dump files and streams

There are two separate output streams available for outputting optimization information
from passes. Note that both these streams accept stderr and stdout as valid streams and
thus it is possible to dump output to standard output or error. This is specially handy for
outputting all available information in a single file by redirecting stderr.

pstream This stream is for pass-specific dump output. For example, -fdump-tree-

vect=foo.v dumps tree vectorization pass output into the given file name
foo.v. If the file name is not provided, the default file name is based on
the source file and pass number. Note that one could also use special file names
stdout and stderr for dumping to standard output and standard error respec-
tively.

alt_stream

This stream is used for printing optimization specific output in response to the
-fopt-info. Again a file name can be given. If the file name is not given, it
defaults to stderr.

162 GNU Compiler Collection (GCC) Internals

8.7.4 Dump output verbosity

The dump verbosity has the following options

‘optimized’
Print information when an optimization is successfully applied. It is up to a
pass to decide which information is relevant. For example, the vectorizer passes
print the source location of loops which got successfully vectorized.

‘missed’ Print information about missed optimizations. Individual passes control which
information to include in the output. For example,

gcc -O2 -ftree-vectorize -fopt-info-vec-missed

will print information about missed optimization opportunities from vectoriza-
tion passes on stderr.

‘note’ Print verbose information about optimizations, such as certain transformations,
more detailed messages about decisions etc.

‘all’ Print detailed optimization information. This includes optimized, missed, and
note.

8.7.5 Dump types

dump_printf

This is a generic method for doing formatted output. It takes an additional
argument dump_kind which signifies the type of dump. This method outputs
information only when the dumps are enabled for this particular dump_kind.
Note that the caller doesn’t need to know if the particular dump is enabled
or not, or even the file name. The caller only needs to decide which dump
output information is relevant, and under what conditions. This determines
the associated flags.

Consider the following example from loop-unroll.cc where an informative
message about a loop (along with its location) is printed when any of the
following flags is enabled

− optimization messages

− RTL dumps

− detailed dumps

int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;

dump_printf_loc (report_flags, insn,

"loop turned into non-loop; it never loops.\n");

dump_basic_block

Output basic block.

dump_generic_expr

Output generic expression.

dump_gimple_stmt

Output gimple statement.

Note that the above methods also have variants prefixed with _loc, such as
dump_printf_loc, which are similar except they also output the source location

Chapter 8: Passes and Files of the Compiler 163

information. The _loc variants take a const dump_location_t &. This class
can be constructed from a gimple * or from a rtx_insn *, and so callers can
pass a gimple * or a rtx_insn * as the _loc argument. The dump_location_t
constructor will extract the source location from the statement or instruction,
along with the profile count, and the location in GCC’s own source code (or
the plugin) from which the dump call was emitted. Only the source location
is currently used. There is also a dump_user_location_t class, capturing the
source location and profile count, but not the dump emission location, so that
locations in the user’s code can be passed around. This can also be constructed
from a gimple * and from a rtx_insn *, and it too can be passed as the _loc
argument.

8.7.6 Dump examples
gcc -O3 -fopt-info-missed=missed.all

outputs missed optimization report from all the passes into missed.all.

As another example,
gcc -O3 -fopt-info-inline-optimized-missed=inline.txt

will output information about missed optimizations as well as optimized locations from
all the inlining passes into inline.txt.

If the filename is provided, then the dumps from all the applicable optimizations are
concatenated into the filename. Otherwise the dump is output onto stderr. If options
is omitted, it defaults to optimized-optall, which means dump all information about
successful optimizations from all the passes. In the following example, the optimization
information is output on to stderr.

gcc -O3 -fopt-info

Note that -fopt-info-vec-missed behaves the same as -fopt-info-missed-vec. The
order of the optimization group names and message types listed after -fopt-info does not
matter.

As another example, consider
gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt

Here the two output file names vec.miss and loop.opt are in conflict since only one
output file is allowed. In this case, only the first option takes effect and the subsequent
options are ignored. Thus only the vec.miss is produced which containts dumps from the
vectorizer about missed opportunities.

165

9 Sizes and offsets as runtime invariants

GCC allows the size of a hardware register to be a runtime invariant rather than a compile-
time constant. This in turn means that various sizes and offsets must also be runtime
invariants rather than compile-time constants, such as:

• the size of a general machine_mode (see Section 13.6 [Machine Modes], page 295);

• the size of a spill slot;

• the offset of something within a stack frame;

• the number of elements in a vector;

• the size and offset of a mem rtx (see Section 13.8 [Regs and Memory], page 306); and

• the byte offset in a subreg rtx (see Section 13.8 [Regs and Memory], page 306).

The motivating example is the Arm SVE ISA, whose vector registers can be any multiple
of 128 bits between 128 and 2048 inclusive. The compiler normally produces code that
works for all SVE register sizes, with the actual size only being known at runtime.

GCC’s main representation of such runtime invariants is the poly_int class. This chapter
describes what poly_int does, lists the available operations, and gives some general usage
guidelines.

9.1 Overview of poly_int

We define indeterminates x1, . . . , xn whose values are only known at runtime and use
polynomials of the form:

c0 + c1 * x1 + ... + cn * xn

to represent a size or offset whose value might depend on some of these indeterminates.
The coefficients c0, . . . , cn are always known at compile time, with the c0 term being the
“constant” part that does not depend on any runtime value.

GCC uses the poly_int class to represent these coefficients. The class has two template
parameters: the first specifies the number of coefficients (n + 1) and the second specifies
the type of the coefficients. For example, ‘poly_int<2, unsigned short>’ represents a
polynomial with two coefficients (and thus one indeterminate), with each coefficient having
type unsigned short. When n is 0, the class degenerates to a single compile-time constant
c0.

The number of coefficients needed for compilation is a fixed property of each target and
is specified by the configuration macro NUM_POLY_INT_COEFFS. The default value is 1, since
most targets do not have such runtime invariants. Targets that need a different value should
#define the macro in their cpu-modes.def file. See Section 5.3.9 [Back End], page 78.

poly_int makes the simplifying requirement that each indeterminate must be a nonneg-
ative integer. An indeterminate value of 0 should usually represent the minimum possible
runtime value, with c0 specifying the value in that case.

For example, when targetting the Arm SVE ISA, the single indeterminate represents the
number of 128-bit blocks in a vector beyond the minimum length of 128 bits. Thus the
number of 64-bit doublewords in a vector is 2 + 2 * x1. If an aggregate has a single SVE
vector and 16 additional bytes, its total size is 32 + 16 * x1 bytes.

166 GNU Compiler Collection (GCC) Internals

The header file poly-int-types.h provides typedefs for the most common forms of
poly_int, all having NUM_POLY_INT_COEFFS coefficients:

poly_uint16

a ‘poly_int’ with unsigned short coefficients.

poly_int64

a ‘poly_int’ with HOST_WIDE_INT coefficients.

poly_uint64

a ‘poly_int’ with unsigned HOST_WIDE_INT coefficients.

poly_offset_int

a ‘poly_int’ with offset_int coefficients.

poly_wide_int

a ‘poly_int’ with wide_int coefficients.

poly_widest_int

a ‘poly_int’ with widest_int coefficients.

Since the main purpose of poly_int is to represent sizes and offsets, the last two typedefs
are only rarely used.

9.2 Consequences of using poly_int

The two main consequences of using polynomial sizes and offsets are that:

• there is no total ordering between the values at compile time, and

• some operations might yield results that cannot be expressed as a poly_int.

For example, if x is a runtime invariant, we cannot tell at compile time whether:

3 + 4x <= 1 + 5x

since the condition is false when x <= 1 and true when x >= 2.

Similarly, poly_int cannot represent the result of:

(3 + 4x) * (1 + 5x)

since it cannot (and in practice does not need to) store powers greater than one. It also
cannot represent the result of:

(3 + 4x) / (1 + 5x)

The following sections describe how we deal with these restrictions.

As described earlier, a poly_int<1, T> has no indeterminates and so degenerates to a
compile-time constant of type T. It would be possible in that case to do all normal arithmetic
on the T, and to compare the T using the normal C++ operators. We deliberately prevent
target-independent code from doing this, since the compiler needs to support other poly_
int<n, T> as well, regardless of the current target’s NUM_POLY_INT_COEFFS.

However, it would be very artificial to force target-specific code to follow these restrictions
if the target has no runtime indeterminates. There is therefore an implicit conversion from
poly_int<1, T> to T when compiling target-specific translation units.

Chapter 9: Sizes and offsets as runtime invariants 167

9.3 Comparisons involving poly_int

In general we need to compare sizes and offsets in two situations: those in which the values
need to be ordered, and those in which the values can be unordered. More loosely, the
distinction is often between values that have a definite link (usually because they refer to
the same underlying register or memory location) and values that have no definite link.
An example of the former is the relationship between the inner and outer sizes of a subreg,
where we must know at compile time whether the subreg is paradoxical, partial, or complete.
An example of the latter is alias analysis: we might want to check whether two arbitrary
memory references overlap.

Referring back to the examples in the previous section, it makes sense to ask whether a
memory reference of size ‘3 + 4x’ overlaps one of size ‘1 + 5x’, but it does not make sense
to have a subreg in which the outer mode has ‘3 + 4x’ bytes and the inner mode has ‘1 +

5x’ bytes (or vice versa). Such subregs are always invalid and should trigger an internal
compiler error if formed.

The underlying operators are the same in both cases, but the distinction affects how they
are used.

9.3.1 Comparison functions for poly_int

poly_int provides the following routines for checking whether a particular condition “may
be” (might be) true:

maybe_lt maybe_le maybe_eq maybe_ge maybe_gt

maybe_ne

The functions have their natural meaning:

‘maybe_lt(a, b)’
Return true if a might be less than b.

‘maybe_le(a, b)’
Return true if a might be less than or equal to b.

‘maybe_eq(a, b)’
Return true if a might be equal to b.

‘maybe_ne(a, b)’
Return true if a might not be equal to b.

‘maybe_ge(a, b)’
Return true if a might be greater than or equal to b.

‘maybe_gt(a, b)’
Return true if a might be greater than b.

For readability, poly_int also provides “known” inverses of these functions:

known_lt (a, b) == !maybe_ge (a, b)

known_le (a, b) == !maybe_gt (a, b)

known_eq (a, b) == !maybe_ne (a, b)

known_ge (a, b) == !maybe_lt (a, b)

known_gt (a, b) == !maybe_le (a, b)

known_ne (a, b) == !maybe_eq (a, b)

168 GNU Compiler Collection (GCC) Internals

9.3.2 Properties of the poly_int comparisons

All “maybe” relations except maybe_ne are transitive, so for example:
maybe_lt (a, b) && maybe_lt (b, c) implies maybe_lt (a, c)

for all a, b and c. maybe_lt, maybe_gt and maybe_ne are irreflexive, so for example:
!maybe_lt (a, a)

is true for all a. maybe_le, maybe_eq and maybe_ge are reflexive, so for example:
maybe_le (a, a)

is true for all a. maybe_eq and maybe_ne are symmetric, so:
maybe_eq (a, b) == maybe_eq (b, a)

maybe_ne (a, b) == maybe_ne (b, a)

for all a and b. In addition:
maybe_le (a, b) == maybe_lt (a, b) || maybe_eq (a, b)

maybe_ge (a, b) == maybe_gt (a, b) || maybe_eq (a, b)

maybe_lt (a, b) == maybe_gt (b, a)

maybe_le (a, b) == maybe_ge (b, a)

However:
maybe_le (a, b) && maybe_le (b, a) does not imply !maybe_ne (a, b) [== known_eq (a, b)]

maybe_ge (a, b) && maybe_ge (b, a) does not imply !maybe_ne (a, b) [== known_eq (a, b)]

One example is again ‘a == 3 + 4x’ and ‘b == 1 + 5x’, where ‘maybe_le (a, b)’,
‘maybe_ge (a, b)’ and ‘maybe_ne (a, b)’ all hold. maybe_le and maybe_ge are therefore
not antisymetric and do not form a partial order.

From the above, it follows that:

• All “known” relations except known_ne are transitive.

• known_lt, known_ne and known_gt are irreflexive.

• known_le, known_eq and known_ge are reflexive.

Also:
known_lt (a, b) == known_gt (b, a)

known_le (a, b) == known_ge (b, a)

known_lt (a, b) implies !known_lt (b, a) [asymmetry]

known_gt (a, b) implies !known_gt (b, a)

known_le (a, b) && known_le (b, a) == known_eq (a, b) [== !maybe_ne (a, b)]

known_ge (a, b) && known_ge (b, a) == known_eq (a, b) [== !maybe_ne (a, b)]

known_le and known_ge are therefore antisymmetric and are partial orders. However:
known_le (a, b) does not imply known_lt (a, b) || known_eq (a, b)

known_ge (a, b) does not imply known_gt (a, b) || known_eq (a, b)

For example, ‘known_le (4, 4 + 4x)’ holds because the runtime indeterminate x is a
nonnegative integer, but neither known_lt (4, 4 + 4x) nor known_eq (4, 4 + 4x) hold.

9.3.3 Comparing potentially-unordered poly_ints

In cases where there is no definite link between two poly_ints, we can usually make a
conservatively-correct assumption. For example, the conservative assumption for alias anal-
ysis is that two references might alias.

One way of checking whether [begin1, end1) might overlap [begin2, end2) using the
poly_int comparisons is:

maybe_gt (end1, begin2) && maybe_gt (end2, begin1)

Chapter 9: Sizes and offsets as runtime invariants 169

and another (equivalent) way is:
!(known_le (end1, begin2) || known_le (end2, begin1))

However, in this particular example, it is better to use the range helper functions instead.
See Section 9.3.6 [Range checks on poly_ints], page 170.

9.3.4 Comparing ordered poly_ints

In cases where there is a definite link between two poly_ints, such as the outer and inner
sizes of subregs, we usually require the sizes to be ordered by the known_le partial order.
poly_int provides the following utility functions for ordered values:

‘ordered_p (a, b)’
Return true if a and b are ordered by the known_le partial order.

‘ordered_min (a, b)’
Assert that a and b are ordered by known_le and return the minimum of the
two. When using this function, please add a comment explaining why the values
are known to be ordered.

‘ordered_max (a, b)’
Assert that a and b are ordered by known_le and return the maximum of the
two. When using this function, please add a comment explaining why the values
are known to be ordered.

For example, if a subreg has an outer mode of size outer and an inner mode of size inner:

• the subreg is complete if known eq (inner, outer)

• otherwise, the subreg is paradoxical if known le (inner, outer)

• otherwise, the subreg is partial if known le (outer, inner)

• otherwise, the subreg is ill-formed

Thus the subreg is only valid if ‘ordered_p (outer, inner)’ is true. If this condition is
already known to be true then:

• the subreg is complete if known eq (inner, outer)

• the subreg is paradoxical if maybe lt (inner, outer)

• the subreg is partial if maybe lt (outer, inner)

with the three conditions being mutually exclusive.

Code that checks whether a subreg is valid would therefore generally check whether
ordered_p holds (in addition to whatever other checks are required for subreg validity).
Code that is dealing with existing subregs can assert that ordered_p holds and use either
of the classifications above.

9.3.5 Checking for a poly_int marker value

It is sometimes useful to have a special “marker value” that is not meant to be taken
literally. For example, some code uses a size of -1 to represent an unknown size, rather than
having to carry around a separate boolean to say whether the size is known.

The best way of checking whether something is a marker value is known_eq. Conversely
the best way of checking whether something is not a marker value is maybe_ne.

Thus in the size example just mentioned, ‘known_eq (size, -1)’ would check for an
unknown size and ‘maybe_ne (size, -1)’ would check for a known size.

170 GNU Compiler Collection (GCC) Internals

9.3.6 Range checks on poly_ints

As well as the core comparisons (see Section 9.3.1 [Comparison functions for poly_int],
page 167), poly_int provides utilities for various kinds of range check. In each case the
range is represented by a start position and a size rather than a start position and an end
position; this is because the former is used much more often than the latter in GCC. Also,
the sizes can be -1 (or all ones for unsigned sizes) to indicate a range with a known start
position but an unknown size. All other sizes must be nonnegative. A range of size 0 does
not contain anything or overlap anything.

‘known_size_p (size)’
Return true if size represents a known range size, false if it is -1 or all ones (for
signed and unsigned types respectively).

‘ranges_maybe_overlap_p (pos1, size1, pos2, size2)’
Return true if the range described by pos1 and size1 might overlap the range
described by pos2 and size2 (in other words, return true if we cannot prove
that the ranges are disjoint).

‘ranges_known_overlap_p (pos1, size1, pos2, size2)’
Return true if the range described by pos1 and size1 is known to overlap the
range described by pos2 and size2.

‘known_subrange_p (pos1, size1, pos2, size2)’
Return true if the range described by pos1 and size1 is known to be contained
in the range described by pos2 and size2.

‘maybe_in_range_p (value, pos, size)’
Return true if value might be in the range described by pos and size (in other
words, return true if we cannot prove that value is outside that range).

‘known_in_range_p (value, pos, size)’
Return true if value is known to be in the range described by pos and size.

‘endpoint_representable_p (pos, size)’
Return true if the range described by pos and size is open-ended or if the
endpoint (pos + size) is representable in the same type as pos and size. The
function returns false if adding size to pos makes conceptual sense but could
overflow.

There is also a poly_int version of the IN_RANGE_P macro:

‘coeffs_in_range_p (x, lower, upper)’
Return true if every coefficient of x is in the inclusive range [lower, upper].
This function can be useful when testing whether an operation would cause the
values of coefficients to overflow.

Note that the function does not indicate whether x itself is in the given range.
x can be either a constant or a poly_int.

9.3.7 Sorting poly_ints

poly_int provides the following routine for sorting:

Chapter 9: Sizes and offsets as runtime invariants 171

‘compare_sizes_for_sort (a, b)’
Compare a and b in reverse lexicographical order (that is, compare the highest-
indexed coefficients first). This can be useful when sorting data structures,
since it has the effect of separating constant and non-constant values. If all
values are nonnegative, the constant values come first.

Note that the values do not necessarily end up in numerical order. For example,
‘1 + 1x’ would come after ‘100’ in the sort order, but may well be less than ‘100’
at run time.

9.4 Arithmetic on poly_ints

Addition, subtraction, negation and bit inversion all work normally for poly_ints. Mul-
tiplication by a constant multiplier and left shifting by a constant shift amount also work
normally. General multiplication of two poly_ints is not supported and is not useful in
practice.

Other operations are only conditionally supported: the operation might succeed or might
fail, depending on the inputs.

This section describes both types of operation.

9.4.1 Using poly_int with C++ arithmetic operators

The following C++ expressions are supported, where p1 and p2 are poly_ints and where
c1 and c2 are scalars:

-p1

~p1

p1 + p2

p1 + c2

c1 + p2

p1 - p2

p1 - c2

c1 - p2

c1 * p2

p1 * c2

p1 << c2

p1 += p2

p1 += c2

p1 -= p2

p1 -= c2

p1 *= c2

p1 <<= c2

These arithmetic operations handle integer ranks in a similar way to C++. The main
difference is that every coefficient narrower than HOST_WIDE_INT promotes to HOST_WIDE_

INT, whereas in C++ everything narrower than int promotes to int. For example:

poly_uint16 + int -> poly_int64

unsigned int + poly_uint16 -> poly_int64

172 GNU Compiler Collection (GCC) Internals

poly_int64 + int -> poly_int64

poly_int32 + poly_uint64 -> poly_uint64

uint64 + poly_int64 -> poly_uint64

poly_offset_int + int32 -> poly_offset_int

offset_int + poly_uint16 -> poly_offset_int

In the first two examples, both coefficients are narrower than HOST_WIDE_INT, so the
result has coefficients of type HOST_WIDE_INT. In the other examples, the coefficient with
the highest rank “wins”.

If one of the operands is wide_int or poly_wide_int, the rules are the same as for
wide_int arithmetic.

9.4.2 wi arithmetic on poly_ints

As well as the C++ operators, poly_int supports the following wi routines:
wi::neg (p1, &overflow)

wi::add (p1, p2)

wi::add (p1, c2)

wi::add (c1, p1)

wi::add (p1, p2, sign, &overflow)

wi::sub (p1, p2)

wi::sub (p1, c2)

wi::sub (c1, p1)

wi::sub (p1, p2, sign, &overflow)

wi::mul (p1, c2)

wi::mul (c1, p1)

wi::mul (p1, c2, sign, &overflow)

wi::lshift (p1, c2)

These routines just check whether overflow occurs on any individual coefficient; it is not
possible to know at compile time whether the final runtime value would overflow.

9.4.3 Division of poly_ints

Division of poly_ints is possible for certain inputs. The functions for division return true
if the operation is possible and in most cases return the results by pointer. The routines
are:

‘multiple_p (a, b)’
‘multiple_p (a, b, "ient)’

Return true if a is an exact multiple of b, storing the result in quotient if so.
There are overloads for various combinations of polynomial and constant a, b
and quotient.

‘constant_multiple_p (a, b)’
‘constant_multiple_p (a, b, "ient)’

Like multiple_p, but also test whether the multiple is a compile-time constant.

‘can_div_trunc_p (a, b, "ient)’
‘can_div_trunc_p (a, b, "ient, &remainder)’

Return true if we can calculate ‘trunc (a / b)’ at compile time, storing the
result in quotient and remainder if so.

Chapter 9: Sizes and offsets as runtime invariants 173

‘can_div_away_from_zero_p (a, b, "ient)’
Return true if we can calculate ‘a / b’ at compile time, rounding away from
zero. Store the result in quotient if so.

Note that this is true if and only if can_div_trunc_p is true. The only difference
is in the rounding of the result.

There is also an asserting form of division:

‘exact_div (a, b)’
Assert that a is a multiple of b and return ‘a / b’. The result is a poly_int if
a is a poly_int.

9.4.4 Other poly_int arithmetic

There are tentative routines for other operations besides division:

‘can_ior_p (a, b, &result)’
Return true if we can calculate ‘a | b’ at compile time, storing the result in
result if so.

Also, ANDs with a value ‘(1 << y) - 1’ or its inverse can be treated as alignment opera-
tions. See Section 9.5 [Alignment of poly_ints], page 173.

In addition, the following miscellaneous routines are available:

‘coeff_gcd (a)’
Return the greatest common divisor of all nonzero coefficients in a, or zero if a
is known to be zero.

‘common_multiple (a, b)’
Return a value that is a multiple of both a and b, where one value is a poly_int
and the other is a scalar. The result will be the least common multiple for some
indeterminate values but not necessarily for all.

‘force_common_multiple (a, b)’
Return a value that is a multiple of both poly_int a and poly_int b, asserting
that such a value exists. The result will be the least common multiple for some
indeterminate values but not necessarily for all.

When using this routine, please add a comment explaining why the assertion is
known to hold.

Please add any other operations that you find to be useful.

9.5 Alignment of poly_ints

poly_int provides various routines for aligning values and for querying misalignments. In
each case the alignment must be a power of 2.

‘can_align_p (value, align)’
Return true if we can align value up or down to the nearest multiple of align
at compile time. The answer is the same for both directions.

‘can_align_down (value, align, &aligned)’
Return true if can_align_p; if so, set aligned to the greatest aligned value that
is less than or equal to value.

174 GNU Compiler Collection (GCC) Internals

‘can_align_up (value, align, &aligned)’
Return true if can_align_p; if so, set aligned to the lowest aligned value that
is greater than or equal to value.

‘known_equal_after_align_down (a, b, align)’
Return true if we can align a and b down to the nearest align boundary at
compile time and if the two results are equal.

‘known_equal_after_align_up (a, b, align)’
Return true if we can align a and b up to the nearest align boundary at compile
time and if the two results are equal.

‘aligned_lower_bound (value, align)’
Return a result that is no greater than value and that is aligned to align.
The result will the closest aligned value for some indeterminate values but not
necessarily for all.

For example, suppose we are allocating an object of size bytes in a downward-
growing stack whose current limit is given by limit. If the object requires align
bytes of alignment, the new stack limit is given by:

aligned_lower_bound (limit - size, align)

‘aligned_upper_bound (value, align)’
Likewise return a result that is no less than value and that is aligned to align.
This is the routine that would be used for upward-growing stacks in the scenario
just described.

‘known_misalignment (value, align, &misalign)’
Return true if we can calculate the misalignment of value with respect to align
at compile time, storing the result in misalign if so.

‘known_alignment (value)’
Return the minimum alignment that value is known to have (in other words,
the largest alignment that can be guaranteed whatever the values of the inde-
terminates turn out to be). Return 0 if value is known to be 0.

‘force_align_down (value, align)’
Assert that value can be aligned down to align at compile time and return the
result. When using this routine, please add a comment explaining why the
assertion is known to hold.

‘force_align_up (value, align)’
Likewise, but aligning up.

‘force_align_down_and_div (value, align)’
Divide the result of force_align_down by align. Again, please add a comment
explaining why the assertion in force_align_down is known to hold.

‘force_align_up_and_div (value, align)’
Likewise for force_align_up.

‘force_get_misalignment (value, align)’
Assert that we can calculate the misalignment of value with respect to align at
compile time and return the misalignment. When using this function, please
add a comment explaining why the assertion is known to hold.

Chapter 9: Sizes and offsets as runtime invariants 175

9.6 Computing bounds on poly_ints

poly_int also provides routines for calculating lower and upper bounds:

‘constant_lower_bound (a)’
Assert that a is nonnegative and return the smallest value it can have.

‘constant_lower_bound_with_limit (a, b)’
Return the least value a can have, given that the context in which a appears
guarantees that the answer is no less than b. In other words, the caller is
asserting that a is greater than or equal to b even if ‘known_ge (a, b)’ doesn’t
hold.

‘constant_upper_bound_with_limit (a, b)’
Return the greatest value a can have, given that the context in which a appears
guarantees that the answer is no greater than b. In other words, the caller is
asserting that a is less than or equal to b even if ‘known_le (a, b)’ doesn’t
hold.

‘lower_bound (a, b)’
Return a value that is always less than or equal to both a and b. It will be the
greatest such value for some indeterminate values but necessarily for all.

‘upper_bound (a, b)’
Return a value that is always greater than or equal to both a and b. It will be
the least such value for some indeterminate values but necessarily for all.

9.7 Converting poly_ints

A poly_int<n, T> can be constructed from up to n individual T coefficients, with the
remaining coefficients being implicitly zero. In particular, this means that every poly_

int<n, T> can be constructed from a single scalar T, or something compatible with T.

Also, a poly_int<n, T> can be constructed from a poly_int<n, U> if T can be con-
structed from U.

The following functions provide other forms of conversion, or test whether such a conver-
sion would succeed.

‘value.is_constant ()’
Return true if poly_int value is a compile-time constant.

‘value.is_constant (&c1)’
Return true if poly_int value is a compile-time constant, storing it in c1 if so.
c1 must be able to hold all constant values of value without loss of precision.

‘value.to_constant ()’
Assert that value is a compile-time constant and return its value. When using
this function, please add a comment explaining why the condition is known to
hold (for example, because an earlier phase of analysis rejected non-constants).

‘value.to_shwi (&p2)’
Return true if ‘poly_int<N, T>’ value can be represented without loss of pre-
cision as a ‘poly_int<N, HOST_WIDE_INT>’, storing it in that form in p2 if so.

176 GNU Compiler Collection (GCC) Internals

‘value.to_uhwi (&p2)’
Return true if ‘poly_int<N, T>’ value can be represented without loss of pre-
cision as a ‘poly_int<N, unsigned HOST_WIDE_INT>’, storing it in that form
in p2 if so.

‘value.force_shwi ()’
Forcibly convert each coefficient of ‘poly_int<N, T>’ value to HOST_WIDE_INT,
truncating any that are out of range. Return the result as a ‘poly_int<N,
HOST_WIDE_INT>’.

‘value.force_uhwi ()’
Forcibly convert each coefficient of ‘poly_int<N, T>’ value to unsigned

HOST_WIDE_INT, truncating any that are out of range. Return the result as a
‘poly_int<N, unsigned HOST_WIDE_INT>’.

‘wi::shwi (value, precision)’
Return a poly_int with the same value as value, but with the coefficients
converted from HOST_WIDE_INT to wide_int. precision specifies the precision of
the wide_int cofficients; if this is wider than a HOST_WIDE_INT, the coefficients
of value will be sign-extended to fit.

‘wi::uhwi (value, precision)’
Like wi::shwi, except that value has coefficients of type unsigned HOST_WIDE_

INT. If precision is wider than a HOST_WIDE_INT, the coefficients of value will
be zero-extended to fit.

‘wi::sext (value, precision)’
Return a poly_int of the same type as value, sign-extending every coefficient
from the low precision bits. This in effect applies wi::sext to each coefficient
individually.

‘wi::zext (value, precision)’
Like wi::sext, but for zero extension.

‘poly_wide_int::from (value, precision, sign)’
Convert value to a poly_wide_int in which each coefficient has precision bits.
Extend the coefficients according to sign if the coefficients have fewer bits.

‘poly_offset_int::from (value, sign)’
Convert value to a poly_offset_int, extending its coefficients according to
sign if they have fewer bits than offset_int.

‘poly_widest_int::from (value, sign)’
Convert value to a poly_widest_int, extending its coefficients according to
sign if they have fewer bits than widest_int.

9.8 Miscellaneous poly_int routines

‘print_dec (value, file, sign)’
‘print_dec (value, file)’

Print value to file as a decimal value, interpreting the coefficients according to
sign. The final argument is optional if value has an inherent sign; for example,

Chapter 9: Sizes and offsets as runtime invariants 177

poly_int64 values print as signed by default and poly_uint64 values print as
unsigned by default.

This is a simply a poly_int version of a wide-int routine.

9.9 Guidelines for using poly_int

One of the main design goals of poly_int was to make it easy to write target-independent
code that handles variable-sized registers even when the current target has fixed-sized reg-
isters. There are two aspects to this:

• The set of poly_int operations should be complete enough that the question in most
cases becomes “Can we do this operation on these particular poly_int values? If not,
bail out” rather than “Are these poly_int values constant? If so, do the operation,
otherwise bail out”.

• If target-independent code compiles and runs correctly on a target with one value
of NUM_POLY_INT_COEFFS, and if the code does not use asserting functions like to_

constant, it is reasonable to assume that the code also works on targets with other
values of NUM_POLY_INT_COEFFS. There is no need to check this during everyday de-
velopment.

So the general principle is: if target-independent code is dealing with a poly_int value,
it is better to operate on it as a poly_int if at all possible, choosing conservatively-correct
behavior if a particular operation fails. For example, the following code handles an index
pos into a sequence of vectors that each have nunits elements:

/* Calculate which vector contains the result, and which lane of

that vector we need. */

if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))

{

if (dump_enabled_p ())

dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,

"Cannot determine which vector holds the"

" final result.\n");

return false;

}

However, there are some contexts in which operating on a poly_int is not possible or
does not make sense. One example is when handling static initializers, since no current
target supports the concept of a variable-length static initializer. In these situations, a
reasonable fallback is:

if (poly_value.is_constant (&const_value))

{

...

/* Operate on const_value. */

...

}

else

{

...

/* Conservatively correct fallback. */

...

}

poly_int also provides some asserting functions like to_constant. Please only use these
functions if there is a good theoretical reason to believe that the assertion cannot fire. For

178 GNU Compiler Collection (GCC) Internals

example, if some work is divided into an analysis phase and an implementation phase, the
analysis phase might reject inputs that are not is_constant, in which case the implementa-
tion phase can reasonably use to_constant on the remaining inputs. The assertions should
not be used to discover whether a condition ever occurs “in the field”; in other words,
they should not be used to restrict code to constants at first, with the intention of only
implementing a poly_int version if a user hits the assertion.

If a particular asserting function like to_constant is needed more than once for the same
reason, it is probably worth adding a helper function or macro for that situation, so that
the justification only needs to be given once. For example:

/* Return the size of an element in a vector of size SIZE, given that

the vector has NELTS elements. The return value is in the same units

as SIZE (either bits or bytes).

to_constant () is safe in this situation because vector elements are

always constant-sized scalars. */

#define vector_element_size(SIZE, NELTS) \

(exact_div (SIZE, NELTS).to_constant ())

Target-specific code in config/cpu only needs to handle non-constant poly_ints if
NUM_POLY_INT_COEFFS is greater than one. For other targets, poly_int degenerates to
a compile-time constant and is often interchangable with a normal scalar integer. There
are two main exceptions:

• Sometimes an explicit cast to an integer type might be needed, such as to resolve
ambiguities in a ?: expression, or when passing values through ... to things like print
functions.

• Target macros are included in target-independent code and so do not have access to
the implicit conversion to a scalar integer. If this becomes a problem for a particular
target macro, the possible solutions, in order of preference, are:

• Convert the target macro to a target hook (for all targets).

• Put the target’s implementation of the target macro in its cpu.c file and call it
from the target macro in the cpu.h file.

• Add to_constant () calls where necessary. The previous option is preferable
because it will help with any future conversion of the macro to a hook.

179

10 GENERIC

The purpose of GENERIC is simply to provide a language-independent way of representing
an entire function in trees. To this end, it was necessary to add a few new tree codes to the
back end, but almost everything was already there. If you can express it with the codes in
gcc/tree.def, it’s GENERIC.

Early on, there was a great deal of debate about how to think about statements in a
tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is
ignored. A statement will always have TREE_SIDE_EFFECTS set (or it will be discarded),
but a non-statement expression may also have side effects. A CALL_EXPR, for instance.

It would be possible for some local optimizations to work on the GENERIC form of a
function; indeed, the adapted tree inliner works fine on GENERIC, but the current compiler
performs inlining after lowering to GIMPLE (a restricted form described in the next section).
Indeed, currently the frontends perform this lowering before handing off to tree_rest_of_

compilation, but this seems inelegant.

10.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

10.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

For safety, it is useful to configure GCC with --enable-checking. Although this results
in a significant performance penalty (since all tree types are checked at run-time), and is
therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))

x = 1;

and

int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple

180 GNU Compiler Collection (GCC) Internals

nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)

as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end”. These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some different kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

10.2.1 Trees

All GENERIC trees have two fields in common. First, TREE_CHAIN is a pointer that can be
used as a singly-linked list to other trees. The other is TREE_TYPE. Many trees store the
type of an expression or declaration in this field.

These are some other functions for handling trees:

tree_size

Return the number of bytes a tree takes.

build0

build1

build2

build3

build4

build5

build6

Chapter 10: GENERIC 181

These functions build a tree and supply values to put in each parameter. The
basic signature is ‘code, type, [operands]’. code is the TREE_CODE, and type

is a tree representing the TREE_TYPE. These are followed by the operands, each
of which is also a tree.

10.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept than the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

There are never two distinct IDENTIFIER_NODEs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp. Use get_identifier to obtain the unique IDENTIFIER_NODE for a
supplied string.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER

The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH

The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P

This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P

This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

10.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_

PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The first is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
zero.

182 GNU Compiler Collection (GCC) Internals

10.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often multiple nodes corre-
sponding to the same type.

For the most part, different kinds of types have different tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

The following functions and macros deal with cv-qualification of types:

TYPE_MAIN_VARIANT

This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE

The number of bits required to represent the type, represented as an INTEGER_

CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN

The alignment of the type, in bits, represented as an int.

TYPE_NAME

This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return an IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

TYPE_CANONICAL

This macro returns the “canonical” type for the given type node. Canonical
types are used to improve performance in the C++ and Objective-C++ front
ends by allowing efficient comparison between two type nodes in same_type_p:
if the TYPE_CANONICAL values of the types are equal, the types are equivalent;
otherwise, the types are not equivalent. The notion of equivalence for canonical
types is the same as the notion of type equivalence in the language itself. For
instance,

When TYPE_CANONICAL is NULL_TREE, there is no canonical type for the given
type node. In this case, comparison between this type and any other type
requires the compiler to perform a deep, “structural” comparison to see if the
two type nodes have the same form and properties.

The canonical type for a node is always the most fundamental type in the
equivalence class of types. For instance, int is its own canonical type. A type-
def I of int will have int as its canonical type. Similarly, I* and a typedef
IP (defined to I*) will has int* as their canonical type. When building a
new type node, be sure to set TYPE_CANONICAL to the appropriate canonical
type. If the new type is a compound type (built from other types), and any

Chapter 10: GENERIC 183

of those other types require structural equality, use SET_TYPE_STRUCTURAL_

EQUALITY to ensure that the new type also requires structural equality. Finally,
if for some reason you cannot guarantee that TYPE_CANONICAL will point to the
canonical type, use SET_TYPE_STRUCTURAL_EQUALITY to make sure that the
new type–and any type constructed based on it–requires structural equality.
If you suspect that the canonical type system is miscomparing types, config-
ure with --enable-checking to force the compiler to verify its canonical-type
comparisons against the structural comparisons; the compiler will then print
any warnings if the canonical types miscompare.

TYPE_STRUCTURAL_EQUALITY_P

This predicate holds when the node requires structural equality checks, e.g.,
when TYPE_CANONICAL is NULL_TREE.

SET_TYPE_STRUCTURAL_EQUALITY

This macro states that the type node it is given requires structural equality
checks, e.g., it sets TYPE_CANONICAL to NULL_TREE.

same_type_p

This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE

Used to represent the void type.

INTEGER_TYPE

Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool

type. The TYPE_PRECISION is the number of bits used in the representation,
represented as an unsigned int. (Note that in the general case this is not
the same value as TYPE_SIZE; suppose that there were a 24-bit integer type,
but that alignment requirements for the ABI required 32-bit alignment. Then,
TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be
24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is
signed.

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

BITINT_TYPE

Used to represent the bit-precise integer types, _BitInt(N). These types are
similar to INTEGER_TYPE, but can have arbitrary user selected precisions and

184 GNU Compiler Collection (GCC) Internals

do or can have different alignment, function argument and return value passing
conventions. Larger BITINT TYPEs can have BLKmode TYPE_MODE and need
to be lowered by a special BITINT TYPE lowering pass.

REAL_TYPE

Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

FIXED_POINT_TYPE

Used to represent the short _Fract, _Fract, long _Fract, long long _Fract,
short _Accum, _Accum, long _Accum, and long long _Accum types. The num-
ber of bits in the fixed-point representation is given by TYPE_PRECISION, as in
the INTEGER_TYPE case. There may be padding bits, fractional bits and integral
bits. The number of fractional bits is given by TYPE_FBIT, and the number of
integral bits is given by TYPE_IBIT. The fixed-point type is unsigned if TYPE_
UNSIGNED holds; otherwise, it is signed. The fixed-point type is saturating if
TYPE_SATURATING holds; otherwise, it is not saturating.

COMPLEX_TYPE

Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE

Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_

VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

OPAQUE_TYPE

Used for things that have a MODE_OPAQUE mode class in the backend. Opaque
types have a size and precision, and can be held in memory or registers. They
are used when we do not want the compiler to make assumptions about the
availability of other operations as would happen with integer types.

BOOLEAN_TYPE

Used to represent the bool type.

POINTER_TYPE

Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points.

Chapter 10: GENERIC 185

REFERENCE_TYPE

Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE

Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_

ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_

node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

Note that in C (but not in C++) a function declared like void f() is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES

of such a function will be NULL.

METHOD_TYPE

Used to represent the type of a non-static member function. Like a FUNCTION_

TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE

Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE

Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the fields in the type or whether one or more of them overlap.

UNION_TYPE

Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE

Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean
expression that indicates whether the field is present in the object. The type
will only have one field, so each field’s DECL_QUALIFIER is only evaluated if none
of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally

186 GNU Compiler Collection (GCC) Internals

these expressions will reference a field in the outer object using a PLACEHOLDER_
EXPR.

LANG_TYPE

This node is used to represent a language-specific type. The front end must
handle it.

OFFSET_TYPE

This node is used to represent a pointer-to-data member. For a data member
X::m the TYPE_OFFSET_BASETYPE is X and the TREE_TYPE is the type of m.

There are variables whose values represent some of the basic types. These include:

void_type_node

A node for void.

integer_type_node

A node for int.

unsigned_type_node.

A node for unsigned int.

char_type_node.

A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

10.4 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 10.8 [Functions], page 215.

10.4.1 Working with declarations

Some macros can be used with any kind of declaration. These include:

DECL_NAME

This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE

This macro returns the type of the entity declared.

EXPR_FILENAME

This macro returns the name of the file in which the entity was declared, as
a char*. For an entity declared implicitly by the compiler (like __builtin_

memcpy), this will be the string "<internal>".

EXPR_LINENO

This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL

This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,

Chapter 10: GENERIC 187

or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:

struct S {};

is roughly equivalent to C code like:
struct S {};

typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL

for which DECL_ARTIFICIAL holds.

The various kinds of declarations include:

LABEL_DECL

These nodes are used to represent labels in function bodies. For more informa-
tion, see Section 10.8 [Functions], page 215. These nodes only appear in block
scopes.

CONST_DECL

These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL

These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

TYPE_DECL

These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

VAR_DECL These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE

and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_

TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_

INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for
a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

188 GNU Compiler Collection (GCC) Internals

PARM_DECL

Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_

DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

DEBUG_EXPR_DECL

Used to represent an anonymous debug-information temporary created to hold
an expression as it is optimized away, so that its value can be referenced in
debug bind statements.

FIELD_DECL

These nodes represent non-static data members. The DECL_SIZE and DECL_

ALIGN behave as for VAR_DECL nodes. The position of the field within the
parent record is specified by a combination of three attributes. DECL_FIELD_

OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized
word containing the bit of the field closest to the beginning of the structure.
DECL_FIELD_BIT_OFFSET is the bit offset of the first bit of the field within this
word; this may be nonzero even for fields that are not bit-fields, since DECL_

OFFSET_ALIGN may be greater than the natural alignment of the field’s type.

If DECL_C_BIT_FIELD holds, this field is a bit-field. In a bit-field, DECL_BIT_
FIELD_TYPE also contains the type that was originally specified for it, while
DECL TYPE may be a modified type with lesser precision, according to the
size of the bit field.

NAMESPACE_DECL

Namespaces provide a name hierarchy for other declarations. They appear in
the DECL_CONTEXT of other _DECL nodes.

10.4.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.

10.4.2.1 Current structure hierarchy

struct tree_decl_minimal

This is the minimal structure to inherit from in order for common DECL macros
to work. The fields it contains are a unique ID, source location, context, and
name.

struct tree_decl_common

This structure inherits from struct tree_decl_minimal. It contains fields
that most DECL nodes need, such as a field to store alignment, machine mode,
size, and attributes.

struct tree_field_decl

This structure inherits from struct tree_decl_common. It is used to represent
FIELD_DECL.

Chapter 10: GENERIC 189

struct tree_label_decl

This structure inherits from struct tree_decl_common. It is used to represent
LABEL_DECL.

struct tree_translation_unit_decl

This structure inherits from struct tree_decl_common. It is used to represent
TRANSLATION_UNIT_DECL.

struct tree_decl_with_rtl

This structure inherits from struct tree_decl_common. It contains a field to
store the low-level RTL associated with a DECL node.

struct tree_result_decl

This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent RESULT_DECL.

struct tree_const_decl

This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent CONST_DECL.

struct tree_parm_decl

This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent PARM_DECL.

struct tree_decl_with_vis

This structure inherits from struct tree_decl_with_rtl. It contains fields
necessary to store visibility information, as well as a section name and assembler
name.

struct tree_var_decl

This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent VAR_DECL.

struct tree_function_decl

This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent FUNCTION_DECL.

10.4.2.2 Adding new DECL node types

Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language specific DECL nodes, there is a .def file in each frontend directory
where the tree code should be added. For DECL nodes that are part of the
middle-end, the code should be added to tree.def.

Create a new structure type for the DECL node
These structures should inherit from one of the existing structures in the lan-
guage hierarchy by using that structure as the first member.

struct tree_foo_decl

{

struct tree_decl_with_vis common;

}

190 GNU Compiler Collection (GCC) Internals

Would create a structure name tree_foo_decl that inherits from struct tree_

decl_with_vis.

For language specific DECL nodes, this new structure type should go in the ap-
propriate .h file. For DECL nodes that are part of the middle-end, the structure
type should go in tree.h.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node struc-
ture type is required to have a unique enumerator value specified with it. For
language specific DECL nodes, this new enumerator value should go in the appro-
priate .def file. For DECL nodes that are part of the middle-end, the enumerator
values are specified in treestruct.def.

Update union tree_node

In order to make your new structure type usable, it must be added to union

tree_node. For language specific DECL nodes, a new entry should be added to
the appropriate .h file of the form

struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes
directly into union tree_node in tree.h.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_

node is legal, and whether a certain DECL node contains one of the enumerated
DECL node structures in the hierarchy, a simple lookup table is used. This
lookup table needs to be kept up to date with the tree structure hierarchy, or
else checking and containment macros will fail inappropriately.

For language specific DECL nodes, there is an init_ts function in an appropriate
.c file, which initializes the lookup table. Code setting up the table for new DECL

nodes should be added there. For each DECL tree code and enumerator value
representing a member of the inheritance hierarchy, the table should contain
1 if that tree code inherits (directly or indirectly) from that member. Thus,
a FOO_DECL node derived from struct decl_with_rtl, and enumerator value
TS_FOO_DECL, would be set up as follows

tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;

tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;

tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;

tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;

For DECL nodes that are part of the middle-end, the setup code goes into
tree.cc.

Add macros to access any new fields and flags
Each added field or flag should have a macro that is used to access it, that
performs appropriate checking to ensure only the right type of DECL nodes
access the field.

These macros generally take the following form
#define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname

However, if the structure is simply a base class for further structures, something
like the following should be used

Chapter 10: GENERIC 191

#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)

#define BASE_STRUCT_FIELDNAME(NODE) \

(BASE_STRUCT_CHECK(NODE)->base_struct.fieldname

Reading them from the generated all-tree.def file (which in turn includes all
the tree.def files), gencheck.cc is used during GCC’s build to generate the
*_CHECK macros for all tree codes.

10.5 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there
are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed
with the following macros. All attributes are stored in this way, and many also cause other
changes to the declaration or type or to other internal compiler data structures.

[Tree Macro]tree DECL_ATTRIBUTES (tree decl)
This macro returns the attributes on the declaration decl.

[Tree Macro]tree TYPE_ATTRIBUTES (tree type)
This macro returns the attributes on the type type.

10.6 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression “tree”
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should you rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE

Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are docu-
mented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, 0)

As this example indicates, the operands are zero-indexed.

192 GNU Compiler Collection (GCC) Internals

10.6.1 Constant expressions

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST

These nodes represent integer constants. Note that the type of these constants is
obtained with TREE_TYPE; they are not always of type int. In particular, char
constants are represented with INTEGER_CST nodes. The value of the integer
constant e is represented in an array of HOST WIDE INT. There are enough
elements in the array to represent the value without taking extra elements for
redundant 0s or -1. The number of elements used to represent e is available via
TREE_INT_CST_NUNITS. Element i can be extracted by using TREE_INT_CST_

ELT (e, i). TREE_INT_CST_LOW is a shorthand for TREE_INT_CST_ELT (e, 0).

The functions tree_fits_shwi_p and tree_fits_uhwi_p can be used to tell if
the value is small enough to fit in a signed HOST WIDE INT or an unsigned
HOST WIDE INT respectively. The value can then be extracted using tree_

to_shwi and tree_to_uhwi.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

FIXED_CST

These nodes represent fixed-point constants. The type of these constants is
obtained with TREE_TYPE. TREE_FIXED_CST_PTR points to a struct fixed_

value; TREE_FIXED_CST returns the structure itself. struct fixed_value con-
tains data with the size of two HOST_BITS_PER_WIDE_INT and mode as the
associated fixed-point machine mode for data.

COMPLEX_CST

These nodes are used to represent complex number constants, that is a __

complex__ whose parts are constant nodes. The TREE_REALPART and TREE_

IMAGPART return the real and the imaginary parts respectively.

VECTOR_CST

These nodes are used to represent vector constants. Each vector constant v is
treated as a specific instance of an arbitrary-length sequence that itself contains
‘VECTOR_CST_NPATTERNS (v)’ interleaved patterns. Each pattern has the form:

{ base0, base1, base1 + step, base1 + step * 2, ... }

The first three elements in each pattern are enough to determine the values of
the other elements. However, if all steps are zero, only the first two elements
are needed. If in addition each base1 is equal to the corresponding base0, only
the first element in each pattern is needed. The number of encoded elements
per pattern is given by ‘VECTOR_CST_NELTS_PER_PATTERN (v)’.

For example, the constant:
{ 0, 1, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18 }

is interpreted as an interleaving of the sequences:
{ 0, 2, 3, 4, 5, 6, 7, 8 }

Chapter 10: GENERIC 193

{ 1, 6, 8, 10, 12, 14, 16, 18 }

where the sequences are represented by the following patterns:
base0 == 0, base1 == 2, step == 1

base0 == 1, base1 == 6, step == 2

In this case:
VECTOR_CST_NPATTERNS (v) == 2

VECTOR_CST_NELTS_PER_PATTERN (v) == 3

The vector is therefore encoded using the first 6 elements (‘{ 0, 1, 2, 6, 3, 8

}’), with the remaining 10 elements being implicit extensions of them.

Sometimes this scheme can create two possible encodings of the same vector.
For example { 0, 1 } could be seen as two patterns with one element each or
one pattern with two elements (base0 and base1). The canonical encoding is
always the one with the fewest patterns or (if both encodings have the same
number of patterns) the one with the fewest encoded elements.

‘vector_cst_encoding_nelts (v)’ gives the total number of encoded elements
in v, which is 6 in the example above. VECTOR_CST_ENCODED_ELTS (v) gives
a pointer to the elements encoded in v and VECTOR_CST_ENCODED_ELT (v, i)

accesses the value of encoded element i.

‘VECTOR_CST_DUPLICATE_P (v)’ is true if v simply contains repeated instances
of ‘VECTOR_CST_NPATTERNS (v)’ values. This is a shorthand for testing
‘VECTOR_CST_NELTS_PER_PATTERN (v) == 1’.

‘VECTOR_CST_STEPPED_P (v)’ is true if at least one pattern in v has a nonzero
step. This is a shorthand for testing ‘VECTOR_CST_NELTS_PER_PATTERN (v) ==

3’.

The utility function vector_cst_elt gives the value of an arbitrary index as a
tree. vector_cst_int_elt gives the same value as a wide_int.

STRING_CST

These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

POLY_INT_CST

These nodes represent invariants that depend on some target-specific runtime
parameters. They consist of NUM_POLY_INT_COEFFS coefficients, with the first
coefficient being the constant term and the others being multipliers that are
applied to the runtime parameters.

194 GNU Compiler Collection (GCC) Internals

POLY_INT_CST_ELT (x, i) references coefficient number i of POLY_INT_CST

node x. Each coefficient is an INTEGER_CST.

10.6.2 References to storage

ARRAY_REF

These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale
the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array. The third and
fourth operands are used after gimplification to represent the lower bound and
component size but should not be used directly; call array_ref_low_bound and
array_ref_element_size instead.

ARRAY_RANGE_REF

These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

COMPONENT_REF

These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member. The third operand represents the byte offset of the field,
but should not be used directly; call component_ref_field_offset instead.

ADDR_EXPR

These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is void*.

If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

INDIRECT_REF

These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

MEM_REF These nodes are used to represent the object pointed to by a pointer offset by a
constant. The first operand is the pointer being dereferenced; it will always have
pointer or reference type. The second operand is a pointer constant serving as
constant offset applied to the pointer being dereferenced with its type specifying
the type to be used for type-based alias analysis. The type of the node specifies
the alignment of the access.

Chapter 10: GENERIC 195

TARGET_MEM_REF

These nodes represent memory accesses whose address directly map to an ad-
dressing mode of the target architecture. The first argument is TMR_BASE and
is a pointer to the object being accessed. The second argument is TMR_OFFSET
which is a pointer constant with dual purpose serving both as constant offset
and holder of the type used for type-based alias analysis. The first two operands
have exactly the same semantics as MEM_REF. The third and fourth operand are
TMR_INDEX and TMR_STEP where the former is an integer and the latter an in-
teger constant. The fifth and last operand is TMR_INDEX2 which is an alternate
non-constant offset. Any of the third to last operands may be NULL if the
corresponding component does not appear in the address, but TMR_INDEX and
TMR_STEP shall be always supplied in pair. The Address of the TARGET_MEM_REF
is determined in the following way.

TMR_BASE + TMR_OFFSET + TMR_INDEX * TMR_STEP + TMR_INDEX2

The type of the node specifies the alignment of the access.

10.6.3 Unary and Binary Expressions

NEGATE_EXPR

These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

The behavior of this operation on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

ABS_EXPR These nodes represent the absolute value of the single operand, for both integer
and floating-point types. This is typically used to implement the abs, labs and
llabs builtins for integer types, and the fabs, fabsf and fabsl builtins for
floating point types. The type of abs operation can be determined by looking
at the type of the expression.

This node is not used for complex types. To represent the modulus or complex
abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_
CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in
functions.

ABSU_EXPR

These nodes represent the absolute value of the single operand in equivalent
unsigned type such that ABSU_EXPR of TYPE_MIN is well defined.

BIT_NOT_EXPR

These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

TRUTH_NOT_EXPR

These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated. The type of the
operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

196 GNU Compiler Collection (GCC) Internals

PREDECREMENT_EXPR

PREINCREMENT_EXPR

POSTDECREMENT_EXPR

POSTINCREMENT_EXPR

These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

FIX_TRUNC_EXPR

These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR

These nodes represent conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.

FIXME: How is the operand supposed to be rounded? Is this dependent on
-mieee?

COMPLEX_EXPR

These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR

These nodes represent the conjugate of their operand.

REALPART_EXPR

IMAGPART_EXPR

These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR

These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR

These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never

Chapter 10: GENERIC 197

used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR; instead, the function calls are made
explicit.

FIXED_CONVERT_EXPR

These nodes are used to represent conversions that involve fixed-point values.
For example, from a fixed-point value to another fixed-point value, from an
integer to a fixed-point value, from a fixed-point value to an integer, from a
floating-point value to a fixed-point value, or from a fixed-point value to a
floating-point value.

LSHIFT_EXPR

RSHIFT_EXPR

LROTATE_EXPR

RROTATE_EXPR

These nodes represent left and right shifts and rotates, respectively. The first
operand is the value to shift or rotate; it will always be of integral type. The
second operand is an expression for the number of bits by which to shift or
rotate. Right shift should be treated as arithmetic, i.e., the high-order bits
should be zero-filled when the expression has unsigned type and filled with the
sign bit when the expression has signed type. All other operations are logical,
operating on the bit representation. Note that the result is undefined if the
second operand is larger than or equal to the first operand’s type size. Unlike
most nodes, these can have a vector as first operand and a scalar as second
operand.

BIT_IOR_EXPR

BIT_XOR_EXPR

BIT_AND_EXPR

These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

TRUTH_ANDIF_EXPR

TRUTH_ORIF_EXPR

These nodes represent logical “and” and logical “or”, respectively. These oper-
ators are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of the
operands and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

TRUTH_AND_EXPR

TRUTH_OR_EXPR

TRUTH_XOR_EXPR

These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter. The type of the operands
and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

198 GNU Compiler Collection (GCC) Internals

POINTER_PLUS_EXPR

This node represents pointer arithmetic. The first operand is always a
pointer/reference type. The second operand is always an unsigned integer
type compatible with sizetype. This and POINTER DIFF EXPR are the only
binary arithmetic operators that can operate on pointer types.

POINTER_DIFF_EXPR

This node represents pointer subtraction. The two operands always have
pointer/reference type. It returns a signed integer of the same precision as the
pointers. The behavior is undefined if the difference of the two pointers, seen
as infinite precision non-negative integers, does not fit in the result type. The
result does not depend on the pointer type, it is not divided by the size of the
pointed-to type.

PLUS_EXPR

MINUS_EXPR

MULT_EXPR

These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first) and
multiplication. Their operands may have either integral or floating type, but
there will never be case in which one operand is of floating type and the other
is of integral type.

The behavior of these operations on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

WIDEN_MULT_EXPR

This node represents a widening multiplication. The operands have integral
types with same b bits of precision, producing an integral type result with
at least 2b bits of precision. The behaviour is equivalent to extending both
operands, possibly of different signedness, to the result type, then multiplying
them.

MULT_HIGHPART_EXPR

This node represents the “high-part” of a widening multiplication. For an
integral type with b bits of precision, the result is the most significant b bits
of the full 2b product. Both operands must have the same precision and same
signedness.

RDIV_EXPR

This node represents a floating point division operation.

TRUNC_DIV_EXPR

FLOOR_DIV_EXPR

CEIL_DIV_EXPR

ROUND_DIV_EXPR

These nodes represent integer division operations that return an integer result.
TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards nega-
tive infinity, CEIL_DIV_EXPR rounds towards positive infinity and ROUND_DIV_

EXPR rounds to the closest integer. Integer division in C and C++ is truncating,
i.e. TRUNC_DIV_EXPR.

Chapter 10: GENERIC 199

The behavior of these operations on signed arithmetic overflow, when dividing
the minimum signed integer by minus one, is controlled by the flag_wrapv and
flag_trapv variables.

TRUNC_MOD_EXPR

FLOOR_MOD_EXPR

CEIL_MOD_EXPR

ROUND_MOD_EXPR

These nodes represent the integer remainder or modulus operation. The integer
modulus of two operands a and b is defined as a - (a/b)*b where the division
calculated using the corresponding division operator. Hence for TRUNC_MOD_

EXPR this definition assumes division using truncation towards zero, i.e. TRUNC_
DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_
MOD_EXPR.

EXACT_DIV_EXPR

The EXACT_DIV_EXPR code is used to represent integer divisions where the nu-
merator is known to be an exact multiple of the denominator. This allows the
backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and
FLOOR_DIV_EXPR for the current target.

LT_EXPR

LE_EXPR

GT_EXPR

GE_EXPR

LTGT_EXPR

EQ_EXPR

NE_EXPR These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, less or greater than, equal, and not equal comparison opera-
tors. The first and second operands will either be both of integral type, both of
floating type or both of vector type, except for LTGT EXPR where they will
only be both of floating type. The result type of these expressions will always
be of integral, boolean or signed integral vector type. These operations return
the result type’s zero value for false, the result type’s one value for true, and a
vector whose elements are zero (false) or minus one (true) for vectors.

For floating point comparisons, if we honor IEEE NaNs and either operand is
NaN, then NE_EXPR always returns true and the remaining operators always
return false. On some targets, comparisons against an IEEE NaN, other than
equality and inequality, may generate a floating-point exception.

ORDERED_EXPR

UNORDERED_EXPR

These nodes represent non-trapping ordered and unordered comparison opera-
tors. These operations take two floating point operands and determine whether
they are ordered or unordered relative to each other. If either operand is an
IEEE NaN, their comparison is defined to be unordered, otherwise the compar-
ison is defined to be ordered. The result type of these expressions will always
be of integral or boolean type. These operations return the result type’s zero
value for false, and the result type’s one value for true.

200 GNU Compiler Collection (GCC) Internals

UNLT_EXPR

UNLE_EXPR

UNGT_EXPR

UNGE_EXPR

UNEQ_EXPR

These nodes represent the unordered comparison operators. These operations
take two floating point operands and determine whether the operands are un-
ordered or are less than, less than or equal to, greater than, greater than or
equal to, or equal respectively. For example, UNLT_EXPR returns true if either
operand is an IEEE NaN or the first operand is less than the second. All these
operations are guaranteed not to generate a floating point exception. The re-
sult type of these expressions will always be of integral or boolean type. These
operations return the result type’s zero value for false, and the result type’s one
value for true.

MODIFY_EXPR

These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.

These nodes are used to represent not only assignment with ‘=’ but also com-
pound assignments (like ‘+=’), by reduction to ‘=’ assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘i = i + 3’.

INIT_EXPR

These nodes are just like MODIFY_EXPR, but are used only when a variable
is initialized, rather than assigned to subsequently. This means that we can
assume that the target of the initialization is not used in computing its own
value; any reference to the lhs in computing the rhs is undefined.

COMPOUND_EXPR

These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

COND_EXPR

These nodes represent ?: expressions. The first operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&

i < 10) ? i : abort().

As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x ? : 3 is equivalent
to x ? x : 3, assuming that x is an expression without side effects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the first argument does cause side effects.

Chapter 10: GENERIC 201

CALL_EXPR

These nodes are used to represent calls to functions, including non-static mem-
ber functions. CALL_EXPRs are implemented as expression nodes with a variable
number of operands. Rather than using TREE_OPERAND to extract them, it is
preferable to use the specialized accessor macros and functions that operate
specifically on CALL_EXPR nodes.

CALL_EXPR_FN returns a pointer to the function to call; it is always an expression
whose type is a POINTER_TYPE.

The number of arguments to the call is returned by call_expr_nargs, while
the arguments themselves can be accessed with the CALL_EXPR_ARG macro. The
arguments are zero-indexed and numbered left-to-right. You can iterate over
the arguments using FOR_EACH_CALL_EXPR_ARG, as in:

tree call, arg;

call_expr_arg_iterator iter;

FOR_EACH_CALL_EXPR_ARG (arg, iter, call)

/* arg is bound to successive arguments of call. */

...;

For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

CALL_EXPRs also have a CALL_EXPR_STATIC_CHAIN operand that is used to im-
plement nested functions. This operand is otherwise null.

CLEANUP_POINT_EXPR

These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR

These nodes represent the brace-enclosed initializers for a structure or an ar-
ray. They contain a sequence of component values made out of a vector of
constructor elt, which is a (INDEX, VALUE) pair.

If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE, UNION_TYPE or QUAL_
UNION_TYPE then the INDEX of each node in the sequence will be a FIELD_DECL

and the VALUE will be the expression used to initialize that field.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the INDEX of
each node in the sequence will be an INTEGER_CST or a RANGE_EXPR of two
INTEGER_CSTs. A single INTEGER_CST indicates which element of the array is
being assigned to. A RANGE_EXPR indicates an inclusive range of elements to
initialize. In both cases the VALUE is the corresponding initializer. It is re-
evaluated for each element of a RANGE_EXPR. If the INDEX is NULL_TREE, then
the initializer is for the next available array element.

In the front end, you should not depend on the fields appearing in any particular
order. However, in the middle end, fields must appear in declaration order. You
should not assume that all fields will be represented. Unrepresented fields will

202 GNU Compiler Collection (GCC) Internals

be cleared (zeroed), unless the CONSTRUCTOR NO CLEARING flag is set,
in which case their value becomes undefined.

COMPOUND_LITERAL_EXPR

These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_

EXPR_DECL_EXPR is a DECL_EXPR containing an anonymous VAR_DECL for the
unnamed object represented by the compound literal; the DECL_INITIAL of that
VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

SAVE_EXPR

A SAVE_EXPR represents an expression (possibly involving side effects) that is
used more than once. The side effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR

A TARGET_EXPR represents a temporary object. The first operand is a VAR_

DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated and, if non-void, copied (bitwise) into
the temporary. If the initializer is void, that means that it will perform the
initialization itself.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;
otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.

VA_ARG_EXPR

This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_

TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

ANNOTATE_EXPR

This node is used to attach markers to an expression. The first operand is the
annotated expression, the second is an INTEGER_CST with a value from enum

annot_expr_kind, the third is an INTEGER_CST.

Chapter 10: GENERIC 203

10.6.4 Vectors

VEC_DUPLICATE_EXPR

This node has a single operand and represents a vector in which every element
is equal to that operand.

VEC_SERIES_EXPR

This node represents a vector formed from a scalar base and step, given as the
first and second operands respectively. Element i of the result is equal to ‘base
+ i*step’.

This node is restricted to integral types, in order to avoid specifying the round-
ing behavior for floating-point types.

VEC_LSHIFT_EXPR

VEC_RSHIFT_EXPR

These nodes represent whole vector left and right shifts, respectively. The first
operand is the vector to shift; it will always be of vector type. The second
operand is an expression for the number of bits by which to shift. Note that
the result is undefined if the second operand is larger than or equal to the first
operand’s type size.

VEC_WIDEN_MULT_HI_EXPR

VEC_WIDEN_MULT_LO_EXPR

These nodes represent widening vector multiplication of the high and low parts
of the two input vectors, respectively. Their operands are vectors that contain
the same number of elements (N) of the same integral type. The result is a
vector that contains half as many elements, of an integral type whose size is
twice as wide. In the case of VEC_WIDEN_MULT_HI_EXPR the high N/2 elements
of the two vector are multiplied to produce the vector of N/2 products. In the
case of VEC_WIDEN_MULT_LO_EXPR the low N/2 elements of the two vector are
multiplied to produce the vector of N/2 products.

IFN_VEC_WIDEN_PLUS

This internal function represents widening vector addition of two input vectors.
Its operands are vectors that contain the same number of elements (N) of the
same integral type. The result is a vector that contains the same amount
(N) of elements, of an integral type whose size is twice as wide, as the input
vectors. If the current target does not implement the corresponding optabs the
vectorizer may choose to split it into either a pair of IFN_VEC_WIDEN_PLUS_
HI and IFN_VEC_WIDEN_PLUS_LO or IFN_VEC_WIDEN_PLUS_EVEN and IFN_VEC_

WIDEN_PLUS_ODD, depending on what optabs the target implements.

IFN_VEC_WIDEN_PLUS_HI

IFN_VEC_WIDEN_PLUS_LO

These internal functions represent widening vector addition of the high and low
parts of the two input vectors, respectively. Their operands are vectors that
contain the same number of elements (N) of the same integral type. The result
is a vector that contains half as many elements, of an integral type whose size
is twice as wide. In the case of IFN_VEC_WIDEN_PLUS_HI the high N/2 elements
of the two vectors are added to produce the vector of N/2 additions. In the case

204 GNU Compiler Collection (GCC) Internals

of IFN_VEC_WIDEN_PLUS_LO the low N/2 elements of the two vectors are added
to produce the vector of N/2 additions.

IFN_VEC_WIDEN_PLUS_EVEN

IFN_VEC_WIDEN_PLUS_ODD

These internal functions represent widening vector addition of the even and odd
elements of the two input vectors, respectively. Their operands are vectors that
contain the same number of elements (N) of the same integral type. The result
is a vector that contains half as many elements, of an integral type whose size is
twice as wide. In the case of IFN_VEC_WIDEN_PLUS_EVEN the even N/2 elements
of the two vectors are added to produce the vector of N/2 additions. In the
case of IFN_VEC_WIDEN_PLUS_ODD the odd N/2 elements of the two vectors are
added to produce the vector of N/2 additions.

IFN_VEC_WIDEN_MINUS

This internal function represents widening vector subtraction of two input vec-
tors. Its operands are vectors that contain the same number of elements (N) of
the same integral type. The result is a vector that contains the same amount
(N) of elements, of an integral type whose size is twice as wide, as the input
vectors. If the current target does not implement the corresponding optabs the
vectorizer may choose to split it into either a pair of IFN_VEC_WIDEN_MINUS_HI
and IFN_VEC_WIDEN_MINUS_LO or IFN_VEC_WIDEN_MINUS_EVEN and IFN_VEC_

WIDEN_MINUS_ODD, depending on what optabs the target implements.

IFN_VEC_WIDEN_MINUS_HI

IFN_VEC_WIDEN_MINUS_LO

These internal functions represent widening vector subtraction of the high and
low parts of the two input vectors, respectively. Their operands are vectors
that contain the same number of elements (N) of the same integral type. The
high/low elements of the second vector are subtracted from the high/low ele-
ments of the first. The result is a vector that contains half as many elements,
of an integral type whose size is twice as wide. In the case of IFN_VEC_WIDEN_
MINUS_HI the high N/2 elements of the second vector are subtracted from the
high N/2 of the first to produce the vector of N/2 subtractions. In the case of
IFN_VEC_WIDEN_MINUS_LO the low N/2 elements of the second vector are sub-
tracted from the low N/2 of the first to produce the vector of N/2 subtractions.

IFN_VEC_WIDEN_MINUS_EVEN

IFN_VEC_WIDEN_MINUS_ODD

These internal functions represent widening vector subtraction of the even and
odd parts of the two input vectors, respectively. Their operands are vectors
that contain the same number of elements (N) of the same integral type. The
even/odd elements of the second vector are subtracted from the even/odd ele-
ments of the first. The result is a vector that contains half as many elements,
of an integral type whose size is twice as wide. In the case of IFN_VEC_WIDEN_
MINUS_EVEN the even N/2 elements of the second vector are subtracted from
the even N/2 of the first to produce the vector of N/2 subtractions. In the
case of IFN_VEC_WIDEN_MINUS_ODD the odd N/2 elements of the second vec-

Chapter 10: GENERIC 205

tor are subtracted from the odd N/2 of the first to produce the vector of N/2
subtractions.

IFN_VEC_TRUNC_ADD_HIGH

This internal function performs an addition of two input vectors, then extracts
the most significant half of each result element and narrows it to elements of
half the original width.

Concretely, it computes: (bits(a)/2)((a + b) >> bits(a)/2)

where bits(a) is the width in bits of each input element.

Its operands are vectors containing the same number of elements (N) of the same
integral type. The result is a vector of length N, with elements of an integral
type whose size is half that of the input element type.

This operation currently only used for early break result compression when the
result of a vector boolean can be represented as 0 or -1.

VEC_UNPACK_HI_EXPR

VEC_UNPACK_LO_EXPR

These nodes represent unpacking of the high and low parts of the input vector,
respectively. The single operand is a vector that contains N elements of the
same integral or floating point type. The result is a vector that contains half
as many elements, of an integral or floating point type whose size is twice as
wide. In the case of VEC_UNPACK_HI_EXPR the high N/2 elements of the vector
are extracted and widened (promoted). In the case of VEC_UNPACK_LO_EXPR
the low N/2 elements of the vector are extracted and widened (promoted).

VEC_UNPACK_FLOAT_HI_EXPR

VEC_UNPACK_FLOAT_LO_EXPR

These nodes represent unpacking of the high and low parts of the input vector,
where the values are converted from fixed point to floating point. The single
operand is a vector that contains N elements of the same integral type. The
result is a vector that contains half as many elements of a floating point type
whose size is twice as wide. In the case of VEC_UNPACK_FLOAT_HI_EXPR the high
N/2 elements of the vector are extracted, converted and widened. In the case of
VEC_UNPACK_FLOAT_LO_EXPR the low N/2 elements of the vector are extracted,
converted and widened.

VEC_UNPACK_FIX_TRUNC_HI_EXPR

VEC_UNPACK_FIX_TRUNC_LO_EXPR

These nodes represent unpacking of the high and low parts of the input vector,
where the values are truncated from floating point to fixed point. The single
operand is a vector that contains N elements of the same floating point type.
The result is a vector that contains half as many elements of an integral type
whose size is twice as wide. In the case of VEC_UNPACK_FIX_TRUNC_HI_EXPR the
high N/2 elements of the vector are extracted and converted with truncation.
In the case of VEC_UNPACK_FIX_TRUNC_LO_EXPR the low N/2 elements of the
vector are extracted and converted with truncation.

206 GNU Compiler Collection (GCC) Internals

VEC_PACK_TRUNC_EXPR

This node represents packing of truncated elements of the two input vectors into
the output vector. Input operands are vectors that contain the same number
of elements of the same integral or floating point type. The result is a vector
that contains twice as many elements of an integral or floating point type whose
size is half as wide. The elements of the two vectors are demoted and merged
(concatenated) to form the output vector.

VEC_PACK_SAT_EXPR

This node represents packing of elements of the two input vectors into the
output vector using saturation. Input operands are vectors that contain the
same number of elements of the same integral type. The result is a vector that
contains twice as many elements of an integral type whose size is half as wide.
The elements of the two vectors are demoted and merged (concatenated) to
form the output vector.

VEC_PACK_FIX_TRUNC_EXPR

This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from floating point to fixed point.
Input operands are vectors that contain the same number of elements of a
floating point type. The result is a vector that contains twice as many elements
of an integral type whose size is half as wide. The elements of the two vectors
are merged (concatenated) to form the output vector.

VEC_PACK_FLOAT_EXPR

This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from fixed point to floating point.
Input operands are vectors that contain the same number of elements of an
integral type. The result is a vector that contains twice as many elements of
floating point type whose size is half as wide. The elements of the two vectors
are merged (concatenated) to form the output vector.

VEC_COND_EXPR

These nodes represent ?: expressions. The three operands must be vectors of
the same size and number of elements. The second and third operands must
have the same type as the entire expression. The first operand is of signed
integral vector type. If an element of the first operand evaluates to a zero
value, the corresponding element of the result is taken from the third operand.
If it evaluates to a minus one value, it is taken from the second operand. It
should never evaluate to any other value currently, but optimizations should not
rely on that property. In contrast with a COND_EXPR, all operands are always
evaluated.

SAD_EXPR This node represents the Sum of Absolute Differences operation. The three
operands must be vectors of integral types. The first and second operand must
have the same type. The size of the vector element of the third operand must
be at lease twice of the size of the vector element of the first and second one.
The SAD is calculated between the first and second operands, added to the
third operand, and returned.

Chapter 10: GENERIC 207

10.7 Statements

Most statements in GIMPLE are assignment statements, represented by GIMPLE_ASSIGN.
No other C expressions can appear at statement level; a reference to a volatile object is
converted into a GIMPLE_ASSIGN.

There are also several varieties of complex statements.

10.7.1 Basic Statements

ASM_EXPR

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_

OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has
no clobbers. All of the strings will be NUL-terminated, and will contain no
embedded NUL-characters.

ASM_BASIC_P indicates whether the assembly statement used the “basic” syntax
(as for the first example above) or whether it used the extended syntax (as for
the second example above). In many cases this information could be inferred
from other accessors, but the flag is necessary to distinguish extended state-
ments that have no operands from basic statements. A key difference between
the two is that % substitution is applied to ASM_STRING for extended statements
but not for basic statements.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

DECL_EXPR

Used to represent a local declaration. The DECL_EXPR_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 10.8 [Functions], page 215.

LABEL_EXPR

Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

208 GNU Compiler Collection (GCC) Internals

GOTO_EXPR

Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the
GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

RETURN_EXPR

Used to represent a return statement. Operand 0 represents the value to
return. It should either be the RESULT_DECL for the containing function, or
a MODIFY_EXPR or INIT_EXPR setting the function’s RESULT_DECL. It will be
NULL_TREE if the statement was just

return;

LOOP_EXPR

These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

EXIT_EXPR

These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

SWITCH_EXPR

Used to represent a switch statement. The SWITCH_COND is the expression on
which the switch is occurring. The SWITCH_BODY is the body of the switch
statement. SWITCH_ALL_CASES_P is true if the switch includes a default label
or the case label ranges cover all possible values of the condition expression.

Note that TREE_TYPE for a SWITCH_EXPR represents the original type of switch
expression as given in the source, before any compiler conversions, instead of
the type of the switch expression itself (which is not meaningful).

CASE_LABEL_EXPR

Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH

are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... 5:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

DEBUG_BEGIN_STMT

Marks the beginning of a source statement, for purposes of debug information
generation.

Chapter 10: GENERIC 209

10.7.2 Blocks

Block scopes and the variables they declare in GENERIC are expressed using the BIND_EXPR
code, which in previous versions of GCC was primarily used for the C statement-expression
extension.

Variables in a block are collected into BIND_EXPR_VARS in declaration order through their
TREE_CHAIN field. Any runtime initialization is moved out of DECL_INITIAL and into a
statement in the controlled block. When gimplifying from C or C++, this initialization
replaces the DECL_STMT. These variables will never require cleanups. The scope of these
variables is just the body

Variable-length arrays (VLAs) complicate this process, as their size often refers to vari-
ables initialized earlier in the block and their initialization involves an explicit stack allo-
cation. To handle this, we add an indirection and replace them with a pointer to stack
space allocated by means of alloca. In most cases, we also arrange for this space to be
reclaimed when the enclosing BIND_EXPR is exited, the exception to this being when there
is an explicit call to alloca in the source code, in which case the stack is left depressed on
exit of the BIND_EXPR.

A C++ program will usually contain more BIND_EXPRs than there are syntactic blocks in
the source code, since several C++ constructs have implicit scopes associated with them.
On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for
objects with destructors, these don’t translate into the GIMPLE form; multiple declarations
at the same level use the same BIND_EXPR.

10.7.3 Statement Sequences

Multiple statements at the same nesting level are collected into a STATEMENT_LIST. State-
ment lists are modified and traversed using the interface in ‘tree-iterator.h’.

10.7.4 Empty Statements

Whenever possible, statements with no effect are discarded. But if they are nested within
another construct which cannot be discarded for some reason, they are instead replaced
with an empty statement, generated by build_empty_stmt. Initially, all empty statements
were shared, after the pattern of the Java front end, but this caused a lot of trouble in
practice.

An empty statement is represented as (void)0.

10.7.5 Jumps

Other jumps are expressed by either GOTO_EXPR or RETURN_EXPR.

The operand of a GOTO_EXPR must be either a label or a variable containing the address
to jump to.

The operand of a RETURN_EXPR is either NULL_TREE, RESULT_DECL, or a MODIFY_EXPR

which sets the return value. It would be nice to move the MODIFY_EXPR into a separate
statement, but the special return semantics in expand_return make that difficult. It may
still happen in the future, perhaps by moving most of that logic into expand_assignment.

210 GNU Compiler Collection (GCC) Internals

10.7.6 Cleanups

Destructors for local C++ objects and similar dynamic cleanups are represented in GIM-
PLE by a TRY_FINALLY_EXPR. TRY_FINALLY_EXPR has two operands, both of which are a
sequence of statements to execute. The first sequence is executed. When it completes the
second sequence is executed.

The first sequence may complete in the following ways:

1. Execute the last statement in the sequence and fall off the end.

2. Execute a goto statement (GOTO_EXPR) to an ordinary label outside the sequence.

3. Execute a return statement (RETURN_EXPR).

4. Throw an exception. This is currently not explicitly represented in GIMPLE.

The second sequence is not executed if the first sequence completes by calling setjmp or
exit or any other function that does not return. The second sequence is also not executed
if the first sequence completes via a non-local goto or a computed goto (in general the
compiler does not know whether such a goto statement exits the first sequence or not, so
we assume that it doesn’t).

After the second sequence is executed, if it completes normally by falling off the end,
execution continues wherever the first sequence would have continued, by falling off the
end, or doing a goto, etc.

If the second sequence is an EH_ELSE_EXPR selector, then the sequence in its first operand
is used when the first sequence completes normally, and that in its second operand is used
for exceptional cleanups, i.e., when an exception propagates out of the first sequence.

TRY_FINALLY_EXPR complicates the flow graph, since the cleanup needs to appear on
every edge out of the controlled block; this reduces the freedom to move code across these
edges. Therefore, the EH lowering pass which runs before most of the optimization passes
eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing the
exception is represented using RESX_EXPR.

10.7.7 OpenMP

All the statements starting with OMP_ represent directives and clauses used by the OpenMP
API https://www.openmp.org.

OMP_PARALLEL

Represents #pragma omp parallel [clause1 ... clauseN]. It has four
operands:

Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE
forms. It contains the body of code to be executed by all the threads. During
GIMPLE lowering, this operand becomes NULL and the body is emitted linearly
after OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the
FUNCTION_DECL for the function that will contain the body of the parallel
region.

https://www.openmp.org

Chapter 10: GENERIC 211

Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there
are shared variables to be communicated to the children threads, this operand
will contain the VAR_DECL that contains all the shared values and variables.

OMP_FOR

OMP_SIMD

OMP_DISTRIBUTE

OMP_TASKLOOP

OMP_LOOP

Represents #pragma omp for [clause1 ... clauseN] and related loop
constructs (respectively).

A single OMP_FOR node represents an entire nest of collapsed loops; as noted
below, some of its arguments are vectors of length equal to the collapse depth,
and the corresponding elements holding data specific to a particular loop in the
nest. These vectors are numbered from the outside in so that the outermost
loop is element 0.

These constructs have seven operands:

Operand OMP_FOR_BODY contains the loop body.

Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.

Operand OMP_FOR_INIT is a vector containing iteration variable initializations
of the form VAR = N1.

Operand OMP_FOR_COND is vector containing loop conditional expressions of the
form VAR {<,>,<=,>=,!=} N2.

Operand OMP_FOR_INCR is a vector containing loop index increment expressions
of the form VAR {+=,-=} INCR.

Operand OMP_FOR_PRE_BODY contains side effect code from operands OMP_FOR_
INIT, OMP_FOR_COND and OMP_FOR_INCR. These side effects are part of the
OMP_FOR block but must be evaluated before the start of loop body. OMP_

FOR_PRE_BODY specifically includes DECL_EXPRs for iteration variables that are
declared in the nested for loops. Note this field is not a vector; it may be null,
but otherwise is usually a statement list collecting the side effect code from all
the collapsed loops.

Operand OMP_FOR_ORIG_DECLS holds VAR_DECLS for the original user-specified
iterator variables in the source code. In some cases, like C++ class iterators or
range for with decomposition, the for loop is rewritten by the front end to use
a temporary iteration variable. The purpose of this field is to make the original
variables available to the gimplifier so it can adjust their data-sharing attributes
and diagnose errors. OMP_FOR_ORIG_DECLS is a vector field, with each element
holding a list of VAR_DECLS for the corresponding collapse level.

The loop index variable VAR must be an integer variable, which is implicitly
private to each thread. For rectangular loops, the bounds N1 and N2 and the
increment expression INCR are required to be loop-invariant integer expressions
that are evaluated without any synchronization. The evaluation order, fre-
quency of evaluation and side effects are otherwise unspecified by the standard.

212 GNU Compiler Collection (GCC) Internals

For non-rectangular loops, in which the bounds of an inner loop depend on the
index of an outer loop, the bit OMP_FOR_NON_RECTANGULAR must be set. In this
case N1 and N2 are not ordinary expressions, but instead a TREE_VEC with three
elements: the DECL for the outer loop variable, a multiplication factor, and an
offset.

OMP_SECTIONS

Represents #pragma omp sections [clause1 ... clauseN].

Operand OMP_SECTIONS_BODY contains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for each of the concurrent sections delimited
by #pragma omp section.

Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the di-
rective.

OMP_SECTION

Section delimiter for OMP_SECTIONS.

OMP_SINGLE

Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the direc-
tive.

OMP_MASTER

Represents #pragma omp master.

Operand OMP_MASTER_BODY contains the body of code to be executed by the
master thread.

OMP_ORDERED

Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains the body of code to be executed in the
sequential order dictated by the loop index variable.

OMP_CRITICAL

Represents #pragma omp critical [name].

Operand OMP_CRITICAL_BODY is the critical section.

Operand OMP_CRITICAL_NAME is an optional identifier to label the critical sec-
tion.

OMP_RETURN

This does not represent any OpenMP directive, it is an artificial marker to
indicate the end of the body of an OpenMP. It is used by the flow graph
(tree-cfg.cc) and OpenMP region building code (omp-low.cc).

OMP_CONTINUE

Similarly, this instruction does not represent an OpenMP directive, it is used by
OMP_FOR (and similar codes) as well as OMP_SECTIONS to mark the place where
the code needs to loop to the next iteration, or the next section, respectively.

Chapter 10: GENERIC 213

In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there
are cleanups that need to occur right after the looping body, it will be emitted
between OMP_CONTINUE and OMP_RETURN.

OMP_STRUCTURED_BLOCK

This is another statement that doesn’t correspond to an OpenMP directive. It is
used to mark sections of code in another directive that must be structured block
sequences, in particular for sequences of intervening code in the body of an OMP_

FOR. It is not necessary to use this when the entire body of a directive is required
to be a structured block sequence, since that is implicit in the representation
of the corresponding node.

This tree node is used only to allow error checking transfers of control in/out
of the structured block sequence after gimplification. It has a single operand
(OMP_STRUCTURED_BLOCK_BODY) that is the code within the structured block
sequence.

OMP_ATOMIC

Represents #pragma omp atomic.

Operand 0 is the address at which the atomic operation is to be performed.

Operand 1 is the expression to evaluate. The gimplifier tries three alternative
code generation strategies. Whenever possible, an atomic update built-in is
used. If that fails, a compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.

OMP_CLAUSE

Represents clauses associated with one of the OMP_ directives. Clauses are
represented by separate subcodes defined in tree.h. Clauses codes can be one
of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE,
OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_IF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT,
OMP_CLAUSE_REDUCTION, OMP_CLAUSE_COLLAPSE, OMP_CLAUSE_UNTIED,
OMP_CLAUSE_FINAL, and OMP_CLAUSE_MERGEABLE. Each code represents the
corresponding OpenMP clause.

Clauses associated with the same directive are chained together via
OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted
to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented as multiple C clauses chained
together. This facilitates adding new clauses during compilation.

OMP_METADIRECTIVE

Represents #pragma omp metadirective. This node has one field, accessed by
the OMP_METADIRECTIVE_VARIANTS (node) macro.

Metadirective variants are represented internally as TREE_LIST nodes but you
should use the interface provided in tree.h to access their components.

OMP_METADIRECTIVE_VARIANT_SELECTOR (variant) is the selector associated
with the variant; this is null for the ‘otherwise’/‘default’ alternative.

214 GNU Compiler Collection (GCC) Internals

OMP_METADIRECTIVE_VARIANT_DIRECTIVE (variant) is the nested directive for
the variant.

OMP_METADIRECTIVE_VARIANT_BODY (variant) represents statements follow-
ing a nested standalone or utility directive. In other cases, this field is null
and the body is part of the nested directive instead.

Metadirective context selectors (as well as context selectors for #pragma omp

declare variant) are also represented internally using a TREE_LIST represen-
tation but with accessors and constructors declared in omp-general.h. A com-
plete context selector is a list of trait-set selectors, which are in turn composed
of a list of trait selectors, each of which may have a list of trait properties.
Identifiers for trait-set selectors and trait selectors are enums defined in omp-

selectors.h, while trait property identifiers are string constants.

OMP_NEXT_VARIANT

Some OpenMP variant constructs cannot be resolved until the ompdevlow pass,
in omp-offload.cc. The gimplifier turns these into a switch statement in a
loop, using OMP_NEXT_VARIANT as a placeholder to set the switch control vari-
able. The ompdevlow pass replaces these with constant integers after resolution.

OMP_NEXT_VARIANT has two operands. Operand 0 is OMP_NEXT_VARIANT_

INDEX, an INTEGER_CST for the current current index. Operand 1 is
OMP_NEXT_VARIANT_STATE, a TREE_LIST shared among all OMP_NEXT_VARIANT
expressions for the same variant construct that holds resolution state
information for that construct.

OMP_TARGET_DEVICE_MATCHES

Similarly to OMP_NEXT_VARIANT, this tree node is a placeholder that is resolved
in the ompdevlow pass. It is used to implement the target_device dynamic
selector. The gimplifier generates these nodes and arranges for them to be
executed on the device_num specified in the selector. The ompdevlow pass
replaces each OMP_TARGET_DEVICE_MATCHES node with a constant value, de-
pending on the corresponding kind, arch, or isa properties configured for the
offload compiler.

OMP_TARGET_DEVICES has two operands. Operand 0 is OMP_TARGET_DEVICE_

MATCHES_SELECTOR, an INTEGER_CST encoding one of the constants OMP_TRAIT_
DEVICE_KIND, OMP_TRAIT_DEVICE_ARCH, or OMP_TRAIT_DEVICE_ISA. Operand
1 is OMP_TARGET_DEVICE_MATCHES_PROPERTIES, a TREE_LIST using the same
internal representation as the properties part of the selector.

10.7.8 OpenACC

All the statements starting with OACC_ represent directives and clauses used by the Ope-
nACC API https://www.openacc.org.

OACC_CACHE

Represents #pragma acc cache (var ...).

OACC_DATA

Represents #pragma acc data [clause1 ... clauseN].

https://www.openacc.org

Chapter 10: GENERIC 215

OACC_DECLARE

Represents #pragma acc declare [clause1 ... clauseN].

OACC_ENTER_DATA

Represents #pragma acc enter data [clause1 ... clauseN].

OACC_EXIT_DATA

Represents #pragma acc exit data [clause1 ... clauseN].

OACC_HOST_DATA

Represents #pragma acc host_data [clause1 ... clauseN].

OACC_KERNELS

Represents #pragma acc kernels [clause1 ... clauseN].

OACC_LOOP

Represents #pragma acc loop [clause1 ... clauseN].

See the description of the OMP_FOR code.

OACC_PARALLEL

Represents #pragma acc parallel [clause1 ... clauseN].

OACC_SERIAL

Represents #pragma acc serial [clause1 ... clauseN].

OACC_UPDATE

Represents #pragma acc update [clause1 ... clauseN].

10.8 Functions

A function is represented by a FUNCTION_DECL node. It stores the basic pieces of the function
such as body, parameters, and return type as well as information on the surrounding context,
visibility, and linkage.

10.8.1 Function Basics

A function has four core parts: the name, the parameters, the result, and the body. The
following macros and functions access these parts of a FUNCTION_DECL as well as other basic
features:

DECL_NAME

This macro returns the unqualified name of the function, as an IDENTIFIER_

NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like f<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME

This macro returns the mangled name of the function, also an IDENTIFIER_

NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object

216 GNU Compiler Collection (GCC) Internals

file format used on a particular platform, it is the responsibility of the back end
to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME itself.)

Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for
the mangled name of the entity) so it should be used only when emitting assem-
bly code. It should not be used within the optimizers to determine whether or
not two declarations are the same, even though some of the existing optimizers
do use it in that way. These uses will be removed over time.

DECL_ARGUMENTS

This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT

This macro returns the RESULT_DECL for the function.

DECL_SAVED_TREE

This macro returns the complete body of the function.

TREE_TYPE

This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

DECL_INITIAL

A function that has a definition in the current translation unit will have a non-
NULL DECL_INITIAL. However, back ends should not make use of the particular
value given by DECL_INITIAL.

It should contain a tree of BLOCK nodes that mirrors the scopes that variables
are bound in the function. Each block contains a list of decls declared in a
basic block, a pointer to a chain of blocks at the next lower scope level, then
a pointer to the next block at the same level and a backpointer to the parent
BLOCK or FUNCTION_DECL. So given a function as follows:

void foo()

{

int a;

{

int b;

}

int c;

}

you would get the following:
tree foo = FUNCTION_DECL;

tree decl_a = VAR_DECL;

tree decl_b = VAR_DECL;

tree decl_c = VAR_DECL;

tree block_a = BLOCK;

tree block_b = BLOCK;

tree block_c = BLOCK;

BLOCK_VARS(block_a) = decl_a;

BLOCK_SUBBLOCKS(block_a) = block_b;

BLOCK_CHAIN(block_a) = block_c;

BLOCK_SUPERCONTEXT(block_a) = foo;

BLOCK_VARS(block_b) = decl_b;

BLOCK_SUPERCONTEXT(block_b) = block_a;

Chapter 10: GENERIC 217

BLOCK_VARS(block_c) = decl_c;

BLOCK_SUPERCONTEXT(block_c) = foo;

DECL_INITIAL(foo) = block_a;

10.8.2 Function Properties

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_

DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

In C, the DECL_CONTEXT for a function maybe another function. This representation
indicates that the GNU nested function extension is in use. For details on the semantics of
nested functions, see the GCC Manual. The nested function can refer to local variables in
its containing function. Such references are not explicitly marked in the tree structure; back
ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT

for the referenced VAR_DECL is not the same as the function currently being processed, and
neither DECL_EXTERNAL nor TREE_STATIC hold, then the reference is to a local variable in a
containing function, and the back end must take appropriate action.

DECL_EXTERNAL

This predicate holds if the function is undefined.

TREE_PUBLIC

This predicate holds if the function has external linkage.

TREE_STATIC

This predicate holds if the function has been defined.

TREE_THIS_VOLATILE

This predicate holds if the function does not return normally.

TREE_READONLY

This predicate holds if the function can only read its arguments.

DECL_PURE_P

This predicate holds if the function can only read its arguments, but may also
read global memory.

DECL_VIRTUAL_P

This predicate holds if the function is virtual.

DECL_ARTIFICIAL

This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so
forth.

DECL_FUNCTION_SPECIFIC_TARGET

This macro returns a tree node that holds the target options that are to be
used to compile this particular function or NULL_TREE if the function is to be
compiled with the target options specified on the command line.

218 GNU Compiler Collection (GCC) Internals

DECL_FUNCTION_SPECIFIC_OPTIMIZATION

This macro returns a tree node that holds the optimization options that are to
be used to compile this particular function or NULL_TREE if the function is to
be compiled with the optimization options specified on the command line.

10.9 Language-dependent trees

Front ends may wish to keep some state associated with various GENERIC trees while
parsing. To support this, trees provide a set of flags that may be used by the front end.
They are accessed using TREE_LANG_FLAG_n where ‘n’ is currently 0 through 6.

If necessary, a front end can use some language-dependent tree codes in its GENERIC
representation, so long as it provides a hook for converting them to GIMPLE and doesn’t
expect them to work with any (hypothetical) optimizers that run before the conversion to
GIMPLE. The intermediate representation used while parsing C and C++ looks very little
like GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take it as input
and spit out GIMPLE.

10.10 C and C++ Trees

This section documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This section explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

The C and C++ front ends generate a mix of GENERIC trees and ones specific to C and
C++. These language-specific trees are higher-level constructs than the ones in GENERIC to
make the parser’s job easier. This section describes those trees that aren’t part of GENERIC
as well as aspects of GENERIC trees that are treated in a language-specific manner.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses
this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcc@gcc.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead

mailto:gcc@gcc.gnu.org

Chapter 10: GENERIC 219

might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

10.10.1 Types for C++

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int ()[7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

cp_type_quals

This function returns the set of type qualifiers applied to this type. This value
is TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P

This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P

This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P

This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P

This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

A few other macros and functions are usable with all types:

TYPE_SIZE

The number of bits required to represent the type, represented as an INTEGER_

CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN

The alignment of the type, in bits, represented as an int.

TYPE_NAME

This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return an IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

CP_INTEGRAL_TYPE

This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

220 GNU Compiler Collection (GCC) Internals

ARITHMETIC_TYPE_P

This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P

This predicate holds for a class-type.

TYPE_BUILT_IN

This predicate holds for a built-in type.

TYPE_PTRDATAMEM_P

This predicate holds if the type is a pointer to data member.

TYPE_PTR_P

This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P

This predicate holds for a pointer to function type.

TYPE_PTROB_P

This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

The table below describes types specific to C and C++ as well as language-dependent info
about GENERIC types.

POINTER_TYPE

Used to represent pointer types, and pointer to data member types. If TREE_
TYPE is a pointer to data member type, then TYPE_PTRDATAMEM_P will hold. For
a pointer to data member type of the form ‘T X::*’, TYPE_PTRMEM_CLASS_TYPE
will be the type X, while TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

RECORD_TYPE

Used to represent struct and class types in C and C++. If TYPE_PTRMEMFUNC_
P holds, then this type is a pointer-to-member type. In that case, the TYPE_

PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_TYPE. The
METHOD_TYPE is the type of a function pointed to by the pointer-to-member
function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class type. For
more information, see Section 10.10.3 [Classes], page 222.

UNKNOWN_TYPE

This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

TYPENAME_TYPE

Used to represent a construct of the form typename T::A. The TYPE_CONTEXT

is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

Chapter 10: GENERIC 221

TYPEOF_TYPE

Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

10.10.2 Namespaces

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace specified with :: in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

A namespace is represented by a NAMESPACE_DECL node.

The following macros and functions can be used on a NAMESPACE_DECL:

DECL_NAME

This macro is used to obtain the IDENTIFIER_NODE corresponding to the un-
qualified name of the name of the namespace (see Section 10.2.2 [Identifiers],
page 181). The name of the global namespace is ‘::’, even though in C++
the global namespace is unnamed. However, you should use comparison with
global_namespace, rather than DECL_NAME to determine whether or not a
namespace is the global one. An unnamed namespace will have a DECL_NAME

equal to anonymous_namespace_name. Within a single translation unit, all un-
named namespaces will have the same name.

DECL_CONTEXT

This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS

If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.

Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P

This predicate holds if the namespace is the special ::std namespace.

cp_namespace_decls

This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.

Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.

222 GNU Compiler Collection (GCC) Internals

For more information on the kinds of declarations that can occur on this list,
See Section 10.4 [Declarations], page 186. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_

ALIAS set.

10.10.3 Classes

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO
C++ Standard as classes; these include types defined with the class, struct, and union

keywords.)

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_

DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all members are available on the TYPE_FIELDS list. Given one member, the next
can be found by following the TREE_CHAIN. You should not depend in any way on the
order in which fields appear on this list. All nodes on this list will be ‘DECL’ nodes. A
FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to represent
a static data member, and a TYPE_DECL is used to represent a type. Note that the CONST_
DECL for an enumeration constant will appear on this list, if the enumeration type was
declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear here
as well.) There are no entries for base classes on this list. In particular, there is no FIELD_

DECL for the “base-class portion” of an object. If a function member is overloaded, each
of the overloaded functions appears; no OVERLOAD nodes appear on the TYPE_FIELDS list.
Implicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base binfos for a particular
binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base
binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add
a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with
BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated
with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_

BINFO (x)), because of typedefs and qualified types. Neither is it the case that TYPE_BINFO
(BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a
base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFO (BINFO_

TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

Chapter 10: GENERIC 223

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce
access_public_node, access_private_node or access_protected_node. If bases are
always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The
other flags, BINFO_FLAG_0 to BINFO_FLAG_6, can be used for language specific use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P

This predicate holds if the class is local class i.e. declared inside a function
body.

TYPE_POLYMORPHIC_P

This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR

This predicate holds whenever its argument represents a class-type with default
constructor.

CLASSTYPE_HAS_MUTABLE

TYPE_HAS_MUTABLE_P

These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P

This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR

This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR

This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR

This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF

This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW

This predicate holds for a class-type for which operator-> is overloaded.

10.10.4 Functions for C++

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by an OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_’ macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

224 GNU Compiler Collection (GCC) Internals

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_

DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

If a friend function is defined in a class scope, the DECL_FRIEND_CONTEXT macro can be
used to determine the class in which it was defined. For example, in

class C { friend void f() {} };

the DECL_CONTEXT for f will be the global_namespace, but the DECL_FRIEND_CONTEXT will
be the RECORD_TYPE for C.

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P

This predicate holds for a function that is the program entry point ::code.

DECL_LOCAL_FUNCTION_P

This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED

This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P

This predicate holds if the function is declared as an ‘extern "C"’ function.

DECL_LINKONCE_P

This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P

This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P

This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P

This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P

This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P

This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P

This macro holds if the function is a constructor.

Chapter 10: GENERIC 225

DECL_NONCONVERTING_P

This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P

This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P

This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P

This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P

This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P

This predicate holds if the function is the destructor for an object a complete
type.

DECL_OVERLOADED_OPERATOR_P

This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P

This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P

This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P

This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P

This predicate holds if the function is a thunk.

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_

DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this

pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA

if (THUNK_VCALL_OFFSET)

this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P

This predicate holds if the function is not a thunk function.

226 GNU Compiler Collection (GCC) Internals

GLOBAL_INIT_PRIORITY

If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

TYPE_RAISES_EXCEPTIONS

This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P

This predicate holds when the exception-specification of its arguments is of the
form ‘()’.

DECL_ARRAY_DELETE_OPERATOR_P

This predicate holds if the function an overloaded operator delete[].

10.10.5 Statements for C and C++

A function that has a definition in the current translation unit has a non-NULL DECL_

INITIAL. However, back ends should not make use of the particular value given by DECL_

INITIAL.

The DECL_SAVED_TREE gives the complete body of the function.

There are tree nodes corresponding to all of the source-level statement constructs, used
within the C and C++ frontends. These are enumerated here, together with a list of the
various macros that can be used to obtain information about them. There are a few macros
that can be used with all statements:

STMT_IS_FULL_EXPR_P

In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_

FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop has a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)

tree stmt;

Chapter 10: GENERIC 227

{

while (stmt)

{

switch (TREE_CODE (stmt))

{

case IF_STMT:

process_stmt (THEN_CLAUSE (stmt));

/* More processing here. */

break;

...

}

stmt = TREE_CHAIN (stmt);

}

}

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation sometimes uses several statements chained together.

BREAK_STMT

Used to represent a break statement. There are no additional fields.

CLEANUP_STMT

Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run
in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

CONTINUE_STMT

Used to represent a continue statement. There are no additional fields.

CTOR_STMT

Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

DO_STMT

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR

Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

EXPR_STMT

Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

228 GNU Compiler Collection (GCC) Internals

FOR_STMT

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_

EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. FOR_SCOPE holds the scope of the for statement (used in the C++
front end only). Note that FOR_INIT_STMT and FOR_BODY return statements,
while FOR_COND and FOR_EXPR return expressions.

HANDLER

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the code for the block itself.

IF_STMT

Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be
executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i = 7) ...

where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

C++ distinguishes between this and COND_EXPR for handling templates.

SUBOBJECT

In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT

Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT

for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions. The SWITCH_STMT_SCOPE is the statement scope (used in the C++
front end only).

There are also two boolean flags used with SWITCH_STMT. SWITCH_STMT_ALL_

CASES_P is true if the switch includes a default label or the case label ranges
cover all possible values of the condition expression. SWITCH_STMT_NO_BREAK_P
is true if there are no break statements in the switch.

Chapter 10: GENERIC 229

TRY_BLOCK

Used to represent a try block. The body of the try block is given by TRY_

STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_

CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT

Used to represent a using directive. The namespace is given by USING_STMT_

NAMESPACE, which will be a NAMESPACE DECL. This node is needed inside
template functions, to implement using directives during instantiation.

WHILE_STMT

Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.

The WHILE_BODY is the body of the loop.

10.10.6 C++ Expressions

This section describes expressions specific to the C and C++ front ends.

TYPEID_EXPR

Used to represent a typeid expression.

NEW_EXPR

VEC_NEW_EXPR

Used to represent a call to new and new[] respectively.

DELETE_EXPR

VEC_DELETE_EXPR

Used to represent a call to delete and delete[] respectively.

MEMBER_REF

Represents a reference to a member of a class.

THROW_EXPR

Represents an instance of throw in the program. Operand 0, which is the
expression to throw, may be NULL_TREE.

AGGR_INIT_EXPR

An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear
as a full-expression, or as the second operand of a TARGET_EXPR. AGGR_INIT_

EXPRs have a representation similar to that of CALL_EXPRs. You can use the
AGGR_INIT_EXPR_FN and AGGR_INIT_EXPR_ARG macros to access the function
to call and the arguments to pass.

230 GNU Compiler Collection (GCC) Internals

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the AGGR_INIT_EXPR_SLOT operand,
which is always a VAR_DECL, is taken, and this value replaces the first argument
in the argument list.

In either case, the expression is void.

231

11 GIMPLE

GIMPLE is a three-address representation derived from GENERIC by breaking down
GENERIC expressions into tuples of no more than 3 operands (with some exceptions like
function calls). GIMPLE was heavily influenced by the SIMPLE IL used by the McCAT
compiler project at McGill University, though we have made some different choices. For
one thing, SIMPLE doesn’t support goto.

Temporaries are introduced to hold intermediate values needed to compute complex ex-
pressions. Additionally, all the control structures used in GENERIC are lowered into con-
ditional jumps, lexical scopes are removed and exception regions are converted into an on
the side exception region tree.

The compiler pass which converts GENERIC into GIMPLE is referred to as the
‘gimplifier’. The gimplifier works recursively, generating GIMPLE tuples out of the
original GENERIC expressions.

One of the early implementation strategies used for the GIMPLE representation was to
use the same internal data structures used by front ends to represent parse trees. This
simplified implementation because we could leverage existing functionality and interfaces.
However, GIMPLE is a much more restrictive representation than abstract syntax trees
(AST), therefore it does not require the full structural complexity provided by the main
tree data structure.

The GENERIC representation of a function is stored in the DECL_SAVED_TREE field of the
associated FUNCTION_DECL tree node. It is converted to GIMPLE by a call to gimplify_

function_tree.

If a front end wants to include language-specific tree codes in the tree representation
which it provides to the back end, it must provide a definition of LANG_HOOKS_GIMPLIFY_
EXPR which knows how to convert the front end trees to GIMPLE. Usually such a hook will
involve much of the same code for expanding front end trees to RTL. This function can
return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier
lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is
known as “High GIMPLE” and consists of the IL before the pass pass_lower_cf. High
GIMPLE contains some container statements like lexical scopes (represented by GIMPLE_

BIND) and nested expressions (e.g., GIMPLE_TRY), while “Low GIMPLE” exposes all of the
implicit jumps for control and exception expressions directly in the IL and EH region trees.

The C and C++ front ends currently convert directly from front end trees to GIMPLE, and
hand that off to the back end rather than first converting to GENERIC. Their gimplifier
hooks know about all the _STMT nodes and how to convert them to GENERIC forms. There
was some work done on a genericization pass which would run first, but the existence of
STMT_EXPRmeant that in order to convert all of the C statements into GENERIC equivalents
would involve walking the entire tree anyway, so it was simpler to lower all the way. This
might change in the future if someone writes an optimization pass which would work better
with higher-level trees, but currently the optimizers all expect GIMPLE.

You can request to dump a C-like representation of the GIMPLE form with the flag
-fdump-tree-gimple.

232 GNU Compiler Collection (GCC) Internals

11.1 Tuple representation

GIMPLE instructions are tuples of variable size divided in two groups: a header describing
the instruction and its locations, and a variable length body with all the operands. Tuples
are organized into a hierarchy with 3 main classes of tuples.

11.1.1 gimple (gsbase)

This is the root of the hierarchy, it holds basic information needed by most GIMPLE
statements. There are some fields that may not be relevant to every GIMPLE statement,
but those were moved into the base structure to take advantage of holes left by other fields
(thus making the structure more compact). The structure takes 4 words (32 bytes) on 64
bit hosts:

Field Size (bits)
code 8
subcode 16
no_warning 1
visited 1
nontemporal_move 1
plf 2
modified 1
has_volatile_ops 1
references_memory_p 1
uid 32
location 32
num_ops 32
bb 64
block 63
Total size 32 bytes

• code Main identifier for a GIMPLE instruction.

• subcode Used to distinguish different variants of the same basic instruction or provide
flags applicable to a given code. The subcode flags field has different uses depending on
the code of the instruction, but mostly it distinguishes instructions of the same family.
The most prominent use of this field is in assignments, where subcode indicates the
operation done on the RHS of the assignment. For example, a = b + c is encoded as
GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>.

• no_warning Bitflag to indicate whether a warning has already been issued on this
statement.

• visited General purpose “visited” marker. Set and cleared by each pass when needed.

• nontemporal_move Bitflag used in assignments that represent non-temporal moves.
Although this bitflag is only used in assignments, it was moved into the base to take
advantage of the bit holes left by the previous fields.

• plf Pass Local Flags. This 2-bit mask can be used as general purpose markers by any
pass. Passes are responsible for clearing and setting these two flags accordingly.

• modified Bitflag to indicate whether the statement has been modified. Used mainly
by the operand scanner to determine when to re-scan a statement for operands.

Chapter 11: GIMPLE 233

• has_volatile_ops Bitflag to indicate whether this statement contains operands that
have been marked volatile.

• references_memory_p Bitflag to indicate whether this statement contains memory ref-
erences (i.e., its operands are either global variables, or pointer dereferences or anything
that must reside in memory).

• uid This is an unsigned integer used by passes that want to assign IDs to every state-
ment. These IDs must be assigned and used by each pass.

• location This is a location_t identifier to specify source code location for this state-
ment. It is inherited from the front end.

• num_ops Number of operands that this statement has. This specifies the size of the
operand vector embedded in the tuple. Only used in some tuples, but it is declared in
the base tuple to take advantage of the 32-bit hole left by the previous fields.

• bb Basic block holding the instruction.

• block Lexical block holding this statement. Also used for debug information genera-
tion.

11.1.2 gimple_statement_with_ops

This tuple is actually split in two: gimple_statement_with_ops_base and gimple_

statement_with_ops. This is needed to accommodate the way the operand vector is
allocated. The operand vector is defined to be an array of 1 element. So, to allocate a
dynamic number of operands, the memory allocator (gimple_alloc) simply allocates
enough memory to hold the structure itself plus N - 1 operands which run “off the end” of
the structure. For example, to allocate space for a tuple with 3 operands, gimple_alloc
reserves sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree) bytes.

On the other hand, several fields in this tuple need to be shared with the
gimple_statement_with_memory_ops tuple. So, these common fields are placed in
gimple_statement_with_ops_base which is then inherited from the other two tuples.

gsbase 256
def_ops 64
use_ops 64
op num_ops * 64
Total
size

48 + 8 * num_ops bytes

• gsbase Inherited from struct gimple.

• def_ops Array of pointers into the operand array indicating all the slots that contain
a variable written-to by the statement. This array is also used for immediate use
chaining. Note that it would be possible to not rely on this array, but the changes
required to implement this are pretty invasive.

• use_ops Similar to def_ops but for variables read by the statement.

• op Array of trees with num_ops slots.

11.1.3 gimple_statement_with_memory_ops

This tuple is essentially identical to gimple_statement_with_ops, except that it contains
4 additional fields to hold vectors related memory stores and loads. Similar to the pre-

234 GNU Compiler Collection (GCC) Internals

vious case, the structure is split in two to accommodate for the operand vector (gimple_
statement_with_memory_ops_base and gimple_statement_with_memory_ops).

Field Size (bits)
gsbase 256
def_ops 64
use_ops 64
vdef_ops 64
vuse_ops 64
stores 64
loads 64
op num_ops * 64
Total size 80 + 8 * num_ops bytes

• vdef_ops Similar to def_ops but for VDEF operators. There is one entry per memory
symbol written by this statement. This is used to maintain the memory SSA use-def
and def-def chains.

• vuse_ops Similar to use_ops but for VUSE operators. There is one entry per memory
symbol loaded by this statement. This is used to maintain the memory SSA use-def
chains.

• stores Bitset with all the UIDs for the symbols written-to by the statement. This is
different than vdef_ops in that all the affected symbols are mentioned in this set. If
memory partitioning is enabled, the vdef_ops vector will refer to memory partitions.
Furthermore, no SSA information is stored in this set.

• loads Similar to stores, but for memory loads. (Note that there is some amount
of redundancy here, it should be possible to reduce memory utilization further by
removing these sets).

All the other tuples are defined in terms of these three basic ones. Each tuple will add
some fields.

11.2 Class hierarchy of GIMPLE statements

The following diagram shows the C++ inheritance hierarchy of statement kinds, along with
their relationships to GSS_ values (layouts) and GIMPLE_ values (codes):

gimple

| layout: GSS_BASE

| used for 4 codes: GIMPLE_ERROR_MARK

| GIMPLE_NOP

| GIMPLE_OMP_SECTIONS_SWITCH

| GIMPLE_PREDICT

|

+ gimple_statement_with_ops_base

| | (no GSS layout)

| |

| + gimple_statement_with_ops

| | | layout: GSS_WITH_OPS

| | |

| | + gcond

| | | code: GIMPLE_COND

| | |

| | + gdebug

Chapter 11: GIMPLE 235

| | | code: GIMPLE_DEBUG

| | |

| | + ggoto

| | | code: GIMPLE_GOTO

| | |

| | + glabel

| | | code: GIMPLE_LABEL

| | |

| | + gswitch

| | code: GIMPLE_SWITCH

| |

| + gimple_statement_with_memory_ops_base

| | layout: GSS_WITH_MEM_OPS_BASE

| |

| + gimple_statement_with_memory_ops

| | | layout: GSS_WITH_MEM_OPS

| | |

| | + gassign

| | | code GIMPLE_ASSIGN

| | |

| | + greturn

| | code GIMPLE_RETURN

| |

| + gcall

| | layout: GSS_CALL, code: GIMPLE_CALL

| |

| + gasm

| | layout: GSS_ASM, code: GIMPLE_ASM

| |

| + gtransaction

| layout: GSS_TRANSACTION, code: GIMPLE_TRANSACTION

|

+ gimple_statement_omp

| | layout: GSS_OMP. Used for code GIMPLE_OMP_SECTION

| |

| + gomp_critical

| | layout: GSS_OMP_CRITICAL, code: GIMPLE_OMP_CRITICAL

| |

| + gomp_for

| | layout: GSS_OMP_FOR, code: GIMPLE_OMP_FOR

| |

| + gomp_parallel_layout

| | | layout: GSS_OMP_PARALLEL_LAYOUT

| | |

| | + gimple_statement_omp_taskreg

| | | |

| | | + gomp_parallel

| | | | code: GIMPLE_OMP_PARALLEL

| | | |

| | | + gomp_task

| | | code: GIMPLE_OMP_TASK

| | |

| | + gimple_statement_omp_target

| | code: GIMPLE_OMP_TARGET

| |

| + gomp_sections

| | layout: GSS_OMP_SECTIONS, code: GIMPLE_OMP_SECTIONS

| |

236 GNU Compiler Collection (GCC) Internals

| + gimple_statement_omp_single_layout

| | layout: GSS_OMP_SINGLE_LAYOUT

| |

| + gomp_single

| | code: GIMPLE_OMP_SINGLE

| |

| + gomp_teams

| code: GIMPLE_OMP_TEAMS

|

+ gbind

| layout: GSS_BIND, code: GIMPLE_BIND

|

+ gcatch

| layout: GSS_CATCH, code: GIMPLE_CATCH

|

+ geh_filter

| layout: GSS_EH_FILTER, code: GIMPLE_EH_FILTER

|

+ geh_else

| layout: GSS_EH_ELSE, code: GIMPLE_EH_ELSE

|

+ geh_mnt

| layout: GSS_EH_MNT, code: GIMPLE_EH_MUST_NOT_THROW

|

+ gphi

| layout: GSS_PHI, code: GIMPLE_PHI

|

+ gimple_statement_eh_ctrl

| | layout: GSS_EH_CTRL

| |

| + gresx

| | code: GIMPLE_RESX

| |

| + geh_dispatch

| code: GIMPLE_EH_DISPATCH

|

+ gtry

| layout: GSS_TRY, code: GIMPLE_TRY

|

+ gimple_statement_wce

| layout: GSS_WCE, code: GIMPLE_WITH_CLEANUP_EXPR

|

+ gomp_continue

| layout: GSS_OMP_CONTINUE, code: GIMPLE_OMP_CONTINUE

|

+ gomp_atomic_load

| layout: GSS_OMP_ATOMIC_LOAD, code: GIMPLE_OMP_ATOMIC_LOAD

|

+ gimple_statement_omp_atomic_store_layout

| layout: GSS_OMP_ATOMIC_STORE_LAYOUT,

| code: GIMPLE_OMP_ATOMIC_STORE

|

+ gomp_atomic_store

| code: GIMPLE_OMP_ATOMIC_STORE

|

+ gomp_return

code: GIMPLE_OMP_RETURN

Chapter 11: GIMPLE 237

11.3 GIMPLE instruction set

The following table briefly describes the GIMPLE instruction set.

Instruction High GIMPLE Low GIMPLE
GIMPLE_ASM x x
GIMPLE_ASSIGN x x
GIMPLE_BIND x
GIMPLE_CALL x x
GIMPLE_CATCH x
GIMPLE_COND x x
GIMPLE_DEBUG x x
GIMPLE_EH_FILTER x
GIMPLE_GOTO x x
GIMPLE_LABEL x x
GIMPLE_NOP x x
GIMPLE_OMP_ATOMIC_LOAD x x
GIMPLE_OMP_ATOMIC_STORE x x
GIMPLE_OMP_CONTINUE x x
GIMPLE_OMP_CRITICAL x x
GIMPLE_OMP_FOR x x
GIMPLE_OMP_MASTER x x
GIMPLE_OMP_ORDERED x x
GIMPLE_OMP_PARALLEL x x
GIMPLE_OMP_RETURN x x
GIMPLE_OMP_SECTION x x
GIMPLE_OMP_SECTIONS x x
GIMPLE_OMP_SECTIONS_SWITCH x x
GIMPLE_OMP_SINGLE x x
GIMPLE_PHI x
GIMPLE_OMP_STRUCTURED_

BLOCK

x

GIMPLE_RESX x
GIMPLE_RETURN x x
GIMPLE_SWITCH x x
GIMPLE_TRY x

11.4 Exception Handling

Other exception handling constructs are represented using GIMPLE_TRY_CATCH. GIMPLE_

TRY_CATCH has two operands. The first operand is a sequence of statements to execute. If
executing these statements does not throw an exception, then the second operand is ignored.
Otherwise, if an exception is thrown, then the second operand of the GIMPLE_TRY_CATCH is
checked. The second operand may have the following forms:

1. A sequence of statements to execute. When an exception occurs, these statements are
executed, and then the exception is rethrown.

2. A sequence of GIMPLE_CATCH statements. Each GIMPLE_CATCH has a list of applicable
exception types and handler code. If the thrown exception matches one of the caught

238 GNU Compiler Collection (GCC) Internals

types, the associated handler code is executed. If the handler code falls off the bottom,
execution continues after the original GIMPLE_TRY_CATCH.

3. A GIMPLE_EH_FILTER statement. This has a list of permitted exception types, and
code to handle a match failure. If the thrown exception does not match one of the
allowed types, the associated match failure code is executed. If the thrown exception
does match, it continues unwinding the stack looking for the next handler.

Currently throwing an exception is not directly represented in GIMPLE, since it is im-
plemented by calling a function. At some point in the future we will want to add some way
to express that the call will throw an exception of a known type.

Just before running the optimizers, the compiler lowers the high-level EH constructs
above into a set of ‘goto’s, magic labels, and EH regions. Continuing to unwind at the end
of a cleanup is represented with a GIMPLE_RESX.

11.5 Temporaries

When gimplification encounters a subexpression that is too complex, it creates a new tem-
porary variable to hold the value of the subexpression, and adds a new statement to initial-
ize it before the current statement. These special temporaries are known as ‘expression
temporaries’, and are allocated using get_formal_tmp_var. The compiler tries to always
evaluate identical expressions into the same temporary, to simplify elimination of redundant
calculations.

We can only use expression temporaries when we know that it will not be reevaluated
before its value is used, and that it will not be otherwise modified1. Other temporaries can
be allocated using get_initialized_tmp_var or create_tmp_var.

Currently, an expression like a = b + 5 is not reduced any further. We tried converting it
to something like

T1 = b + 5;

a = T1;

but this bloated the representation for minimal benefit. However, a variable which must
live in memory cannot appear in an expression; its value is explicitly loaded into a temporary
first. Similarly, storing the value of an expression to a memory variable goes through a
temporary.

11.6 Operands

In general, expressions in GIMPLE consist of an operation and the appropriate number of
simple operands; these operands must either be a GIMPLE rvalue (is_gimple_val), i.e. a
constant or a register variable. More complex operands are factored out into temporaries,
so that

a = b + c + d

becomes
T1 = b + c;

a = T1 + d;

The same rule holds for arguments to a GIMPLE_CALL.

1 These restrictions are derived from those in Morgan 4.8.

Chapter 11: GIMPLE 239

The target of an assignment is usually a variable, but can also be a MEM_REF or a compound
lvalue as described below.

11.6.1 Compound Expressions

The left-hand side of a C comma expression is simply moved into a separate statement.

11.6.2 Compound Lvalues

Currently compound lvalues involving array and structure field references are not broken
down; an expression like a.b[2] = 42 is not reduced any further (though complex array
subscripts are). This restriction is a workaround for limitations in later optimizers; if we
were to convert this to

T1 = &a.b;

T1[2] = 42;

alias analysis would not remember that the reference to T1[2] came by way of a.b, so
it would think that the assignment could alias another member of a; this broke struct-

alias-1.c. Future optimizer improvements may make this limitation unnecessary.

11.6.3 Conditional Expressions

A C ?: expression is converted into an if statement with each branch assigning to the same
temporary. So,

a = b ? c : d;

becomes
if (b == 1)

T1 = c;

else

T1 = d;

a = T1;

The GIMPLE level if-conversion pass re-introduces ?: expression, if appropriate. It is
used to vectorize loops with conditions using vector conditional operations.

Note that in GIMPLE, if statements are represented using GIMPLE_COND, as described
below.

11.6.4 Logical Operators

Except when they appear in the condition operand of a GIMPLE_COND, logical ‘and’ and ‘or’
operators are simplified as follows: a = b && c becomes

T1 = (bool)b;

if (T1 == true)

T1 = (bool)c;

a = T1;

Note that T1 in this example cannot be an expression temporary, because it has two
different assignments.

11.6.5 Manipulating operands

All gimple operands are of type tree. But only certain types of trees are allowed to be
used as operand tuples. Basic validation is controlled by the function get_gimple_rhs_

class, which given a tree code, returns an enum with the following values of type enum

gimple_rhs_class

240 GNU Compiler Collection (GCC) Internals

• GIMPLE_INVALID_RHS The tree cannot be used as a GIMPLE operand.

• GIMPLE_TERNARY_RHS The tree is a valid GIMPLE ternary operation.

• GIMPLE_BINARY_RHS The tree is a valid GIMPLE binary operation.

• GIMPLE_UNARY_RHS The tree is a valid GIMPLE unary operation.

• GIMPLE_SINGLE_RHS The tree is a single object, that cannot be split into simpler
operands (for instance, SSA_NAME, VAR_DECL, COMPONENT_REF, etc).

This operand class also acts as an escape hatch for tree nodes that may be flattened out
into the operand vector, but would need more than two slots on the RHS. For instance,
a COND_EXPR expression of the form (a op b) ? x : y could be flattened out on the
operand vector using 4 slots, but it would also require additional processing to distin-
guish c = a op b from c = a op b ? x : y. In time, these special case tree expressions
should be flattened into the operand vector.

For tree nodes in the categories GIMPLE_TERNARY_RHS, GIMPLE_BINARY_RHS and GIMPLE_

UNARY_RHS, they cannot be stored inside tuples directly. They first need to be flattened and
separated into individual components. For instance, given the GENERIC expression

a = b + c

its tree representation is:
MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL , VAR_DECL <c>>>

In this case, the GIMPLE form for this statement is logically identical to its GENERIC
form but in GIMPLE, the PLUS_EXPR on the RHS of the assignment is not represented as a
tree, instead the two operands are taken out of the PLUS_EXPR sub-tree and flattened into
the GIMPLE tuple as follows:

GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL , VAR_DECL <c>>

11.6.6 Operand vector allocation

The operand vector is stored at the bottom of the three tuple structures that accept
operands. This means, that depending on the code of a given statement, its operand vector
will be at different offsets from the base of the structure. To access tuple operands use the
following accessors

[GIMPLE function]unsigned gimple_num_ops (gimple g)
Returns the number of operands in statement G.

[GIMPLE function]tree gimple_op (gimple g, unsigned i)
Returns operand I from statement G.

[GIMPLE function]tree * gimple_ops (gimple g)
Returns a pointer into the operand vector for statement G. This is computed using
an internal table called gimple_ops_offset_[]. This table is indexed by the gimple
code of G.

When the compiler is built, this table is filled-in using the sizes of the structures used
by each statement code defined in gimple.def. Since the operand vector is at the
bottom of the structure, for a gimple code C the offset is computed as sizeof (struct-of
C) - sizeof (tree).

This mechanism adds one memory indirection to every access when using gimple_

op(), if this becomes a bottleneck, a pass can choose to memoize the result from
gimple_ops() and use that to access the operands.

Chapter 11: GIMPLE 241

11.6.7 Operand validation

When adding a new operand to a gimple statement, the operand will be validated according
to what each tuple accepts in its operand vector. These predicates are called by the gimple_
name_set_...(). Each tuple will use one of the following predicates (Note, this list is not
exhaustive):

[GIMPLE function]bool is_gimple_val (tree t)
Returns true if t is a "GIMPLE value", which are all the non-addressable stack
variables (variables for which is_gimple_reg returns true) and constants (expressions
for which is_gimple_min_invariant returns true).

[GIMPLE function]bool is_gimple_addressable (tree t)
Returns true if t is a symbol or memory reference whose address can be taken.

[GIMPLE function]bool is_gimple_asm_val (tree t)
Similar to is_gimple_val but it also accepts hard registers.

[GIMPLE function]bool is_gimple_call_addr (tree t)
Return true if t is a valid expression to use as the function called by a GIMPLE_CALL.

[GIMPLE function]bool is_gimple_mem_ref_addr (tree t)
Return true if t is a valid expression to use as first operand of a MEM_REF expression.

[GIMPLE function]bool is_gimple_constant (tree t)
Return true if t is a valid gimple constant.

[GIMPLE function]bool is_gimple_min_invariant (tree t)
Return true if t is a valid minimal invariant. This is different from constants, in that
the specific value of t may not be known at compile time, but it is known that it
doesn’t change (e.g., the address of a function local variable).

[GIMPLE function]bool is_gimple_ip_invariant (tree t)
Return true if t is an interprocedural invariant. This means that t is a valid invariant
in all functions (e.g. it can be an address of a global variable but not of a local one).

[GIMPLE function]bool is_gimple_ip_invariant_address (tree t)
Return true if t is an ADDR_EXPR that does not change once the program is running
(and which is valid in all functions).

11.6.8 Statement validation

[GIMPLE function]bool is_gimple_assign (gimple g)
Return true if the code of g is GIMPLE_ASSIGN.

[GIMPLE function]bool is_gimple_call (gimple g)
Return true if the code of g is GIMPLE_CALL.

[GIMPLE function]bool is_gimple_debug (gimple g)
Return true if the code of g is GIMPLE_DEBUG.

[GIMPLE function]bool gimple_assign_cast_p (const_gimple g)
Return true if g is a GIMPLE_ASSIGN that performs a type cast operation.

242 GNU Compiler Collection (GCC) Internals

[GIMPLE function]bool gimple_debug_bind_p (gimple g)
Return true if g is a GIMPLE_DEBUG that binds the value of an expression to a variable.

[GIMPLE function]bool is_gimple_omp (gimple g)
Return true if g is any of the OpenMP codes.

[GIMPLE function]bool gimple_debug_begin_stmt_p (gimple g)
Return true if g is a GIMPLE_DEBUG that marks the beginning of a source statement.

[GIMPLE function]bool gimple_debug_inline_entry_p (gimple g)
Return true if g is a GIMPLE_DEBUG that marks the entry point of an inlined function.

[GIMPLE function]bool gimple_debug_nonbind_marker_p (gimple g)
Return true if g is a GIMPLE_DEBUG that marks a program location, without any
variable binding.

11.7 Manipulating GIMPLE statements

This section documents all the functions available to handle each of the GIMPLE instruc-
tions.

11.7.1 Common accessors

The following are common accessors for gimple statements.

[GIMPLE function]enum gimple_code gimple_code (gimple g)
Return the code for statement G.

[GIMPLE function]basic_block gimple_bb (gimple g)
Return the basic block to which statement G belongs to.

[GIMPLE function]tree gimple_block (gimple g)
Return the lexical scope block holding statement G.

[GIMPLE function]enum tree_code gimple_expr_code (gimple stmt)
Return the tree code for the expression computed by STMT. This is only meaningful
for GIMPLE_CALL, GIMPLE_ASSIGN and GIMPLE_COND. If STMT is GIMPLE_CALL, it will
return CALL_EXPR. For GIMPLE_COND, it returns the code of the comparison predicate.
For GIMPLE_ASSIGN it returns the code of the operation performed by the RHS of the
assignment.

[GIMPLE function]void gimple_set_block (gimple g, tree block)
Set the lexical scope block of G to BLOCK.

[GIMPLE function]location_t gimple_locus (gimple g)
Return locus information for statement G.

[GIMPLE function]void gimple_set_locus (gimple g, location_t locus)
Set locus information for statement G.

[GIMPLE function]bool gimple_locus_empty_p (gimple g)
Return true if G does not have locus information.

Chapter 11: GIMPLE 243

[GIMPLE function]bool gimple_no_warning_p (gimple stmt)
Return true if no warnings should be emitted for statement STMT.

[GIMPLE function]void gimple_set_visited (gimple stmt, bool
visited_p)

Set the visited status on statement STMT to VISITED_P.

[GIMPLE function]bool gimple_visited_p (gimple stmt)
Return the visited status on statement STMT.

[GIMPLE function]void gimple_set_plf (gimple stmt, enum plf_mask
plf, bool val_p)

Set pass local flag PLF on statement STMT to VAL_P.

[GIMPLE function]unsigned int gimple_plf (gimple stmt, enum plf_mask
plf)

Return the value of pass local flag PLF on statement STMT.

[GIMPLE function]bool gimple_has_ops (gimple g)
Return true if statement G has register or memory operands.

[GIMPLE function]bool gimple_has_mem_ops (gimple g)
Return true if statement G has memory operands.

[GIMPLE function]unsigned gimple_num_ops (gimple g)
Return the number of operands for statement G.

[GIMPLE function]tree * gimple_ops (gimple g)
Return the array of operands for statement G.

[GIMPLE function]tree gimple_op (gimple g, unsigned i)
Return operand I for statement G.

[GIMPLE function]tree * gimple_op_ptr (gimple g, unsigned i)
Return a pointer to operand I for statement G.

[GIMPLE function]void gimple_set_op (gimple g, unsigned i, tree op)
Set operand I of statement G to OP.

[GIMPLE function]bitmap gimple_addresses_taken (gimple stmt)
Return the set of symbols that have had their address taken by STMT.

[GIMPLE function]struct def_optype_d * gimple_def_ops (gimple g)
Return the set of DEF operands for statement G.

[GIMPLE function]void gimple_set_def_ops (gimple g, struct
def_optype_d *def)

Set DEF to be the set of DEF operands for statement G.

[GIMPLE function]struct use_optype_d * gimple_use_ops (gimple g)
Return the set of USE operands for statement G.

244 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_set_use_ops (gimple g, struct
use_optype_d *use)

Set USE to be the set of USE operands for statement G.

[GIMPLE function]struct voptype_d * gimple_vuse_ops (gimple g)
Return the set of VUSE operands for statement G.

[GIMPLE function]void gimple_set_vuse_ops (gimple g, struct
voptype_d *ops)

Set OPS to be the set of VUSE operands for statement G.

[GIMPLE function]struct voptype_d * gimple_vdef_ops (gimple g)
Return the set of VDEF operands for statement G.

[GIMPLE function]void gimple_set_vdef_ops (gimple g, struct
voptype_d *ops)

Set OPS to be the set of VDEF operands for statement G.

[GIMPLE function]bitmap gimple_loaded_syms (gimple g)
Return the set of symbols loaded by statement G. Each element of the set is the
DECL_UID of the corresponding symbol.

[GIMPLE function]bitmap gimple_stored_syms (gimple g)
Return the set of symbols stored by statement G. Each element of the set is the
DECL_UID of the corresponding symbol.

[GIMPLE function]bool gimple_modified_p (gimple g)
Return true if statement G has operands and the modified field has been set.

[GIMPLE function]bool gimple_has_volatile_ops (gimple stmt)
Return true if statement STMT contains volatile operands.

[GIMPLE function]void gimple_set_has_volatile_ops (gimple stmt, bool
volatilep)

Return true if statement STMT contains volatile operands.

[GIMPLE function]void update_stmt (gimple s)
Mark statement S as modified, and update it.

[GIMPLE function]void update_stmt_if_modified (gimple s)
Update statement S if it has been marked modified.

[GIMPLE function]gimple gimple_copy (gimple stmt)
Return a deep copy of statement STMT.

Chapter 11: GIMPLE 245

11.8 Tuple specific accessors

11.8.1 GIMPLE_ASM

[GIMPLE function]gasm *gimple_build_asm_vec (const char *string,
vec<tree, va_gc> *inputs, vec<tree, va_gc> *outputs,
vec<tree, va_gc> *clobbers, vec<tree, va_gc> *labels)

Build a GIMPLE_ASM statement. This statement is used for building in-line assembly
constructs. STRING is the assembly code. INPUTS, OUTPUTS, CLOBBERS and LABELS

are the inputs, outputs, clobbered registers and labels.

[GIMPLE function]unsigned gimple_asm_ninputs (const gasm *g)
Return the number of input operands for GIMPLE_ASM G.

[GIMPLE function]unsigned gimple_asm_noutputs (const gasm *g)
Return the number of output operands for GIMPLE_ASM G.

[GIMPLE function]unsigned gimple_asm_nclobbers (const gasm *g)
Return the number of clobber operands for GIMPLE_ASM G.

[GIMPLE function]tree gimple_asm_input_op (const gasm *g, unsigned
index)

Return input operand INDEX of GIMPLE_ASM G.

[GIMPLE function]void gimple_asm_set_input_op (gasm *g, unsigned
index, tree in_op)

Set IN_OP to be input operand INDEX in GIMPLE_ASM G.

[GIMPLE function]tree gimple_asm_output_op (const gasm *g, unsigned
index)

Return output operand INDEX of GIMPLE_ASM G.

[GIMPLE function]void gimple_asm_set_output_op (gasm *g, unsigned
index, tree out_op)

Set OUT_OP to be output operand INDEX in GIMPLE_ASM G.

[GIMPLE function]tree gimple_asm_clobber_op (const gasm *g, unsigned
index)

Return clobber operand INDEX of GIMPLE_ASM G.

[GIMPLE function]void gimple_asm_set_clobber_op (gasm *g, unsigned
index, tree clobber_op)

Set CLOBBER_OP to be clobber operand INDEX in GIMPLE_ASM G.

[GIMPLE function]const char * gimple_asm_string (const gasm *g)
Return the string representing the assembly instruction in GIMPLE_ASM G.

[GIMPLE function]bool gimple_asm_basic_p (const gasm *g)
Return true if G is a basic asm rather than an extended asm.

[GIMPLE function]void gimple_asm_set_basic (gasm *g, bool basic_p)
Mark asm statement G as a basic asm or an extended asm based on BASIC_P.

246 GNU Compiler Collection (GCC) Internals

[GIMPLE function]bool gimple_asm_volatile_p (const gasm *g)
Return true if G is an asm statement marked volatile.

[GIMPLE function]void gimple_asm_set_volatile (gasm *g, bool
volatile_p)

Mark asm statement G as volatile or non-volatile based on VOLATILE_P.

11.8.2 GIMPLE_ASSIGN

[GIMPLE function]gassign *gimple_build_assign (tree lhs, tree rhs)
Build a GIMPLE_ASSIGN statement. The left-hand side is an lvalue passed in lhs. The
right-hand side can be either a unary or binary tree expression. The expression tree
rhs will be flattened and its operands assigned to the corresponding operand slots in
the new statement. This function is useful when you already have a tree expression
that you want to convert into a tuple. However, try to avoid building expression
trees for the sole purpose of calling this function. If you already have the operands
in separate trees, it is better to use gimple_build_assign with enum tree_code

argument and separate arguments for each operand.

[GIMPLE function]gassign *gimple_build_assign (tree lhs, enum
tree_code subcode, tree op1, tree op2, tree op3)

This function is similar to two operand gimple_build_assign, but is used to build a
GIMPLE_ASSIGN statement when the operands of the right-hand side of the assignment
are already split into different operands.

The left-hand side is an lvalue passed in lhs. Subcode is the tree_code for the
right-hand side of the assignment. Op1, op2 and op3 are the operands.

[GIMPLE function]gassign *gimple_build_assign (tree lhs, enum
tree_code subcode, tree op1, tree op2)

Like the above 5 operand gimple_build_assign, but with the last argument NULL -
this overload should not be used for GIMPLE_TERNARY_RHS assignments.

[GIMPLE function]gassign *gimple_build_assign (tree lhs, enum
tree_code subcode, tree op1)

Like the above 4 operand gimple_build_assign, but with the last argument NULL
- this overload should be used only for GIMPLE_UNARY_RHS and GIMPLE_SINGLE_RHS

assignments.

[GIMPLE function]gimple gimplify_assign (tree dst, tree src,
gimple_seq *seq_p)

Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.

DST/SRC are the destination and source respectively. You can pass ungimplified trees in
DST or SRC, in which case they will be converted to a gimple operand if necessary.

This function returns the newly created GIMPLE_ASSIGN tuple.

[GIMPLE function]enum tree_code gimple_assign_rhs_code (gimple g)
Return the code of the expression computed on the RHS of assignment statement G.

Chapter 11: GIMPLE 247

[GIMPLE function]enum gimple_rhs_class gimple_assign_rhs_class
(gimple g)

Return the gimple rhs class of the code for the expression computed on the rhs of
assignment statement G. This will never return GIMPLE_INVALID_RHS.

[GIMPLE function]tree gimple_assign_lhs (gimple g)
Return the LHS of assignment statement G.

[GIMPLE function]tree * gimple_assign_lhs_ptr (gimple g)
Return a pointer to the LHS of assignment statement G.

[GIMPLE function]tree gimple_assign_rhs1 (gimple g)
Return the first operand on the RHS of assignment statement G.

[GIMPLE function]tree * gimple_assign_rhs1_ptr (gimple g)
Return the address of the first operand on the RHS of assignment statement G.

[GIMPLE function]tree gimple_assign_rhs2 (gimple g)
Return the second operand on the RHS of assignment statement G.

[GIMPLE function]tree * gimple_assign_rhs2_ptr (gimple g)
Return the address of the second operand on the RHS of assignment statement G.

[GIMPLE function]tree gimple_assign_rhs3 (gimple g)
Return the third operand on the RHS of assignment statement G.

[GIMPLE function]tree * gimple_assign_rhs3_ptr (gimple g)
Return the address of the third operand on the RHS of assignment statement G.

[GIMPLE function]void gimple_assign_set_lhs (gimple g, tree lhs)
Set LHS to be the LHS operand of assignment statement G.

[GIMPLE function]void gimple_assign_set_rhs1 (gimple g, tree rhs)
Set RHS to be the first operand on the RHS of assignment statement G.

[GIMPLE function]void gimple_assign_set_rhs2 (gimple g, tree rhs)
Set RHS to be the second operand on the RHS of assignment statement G.

[GIMPLE function]void gimple_assign_set_rhs3 (gimple g, tree rhs)
Set RHS to be the third operand on the RHS of assignment statement G.

[GIMPLE function]bool gimple_assign_cast_p (const_gimple s)
Return true if S is a type-cast assignment.

11.8.3 GIMPLE_BIND

[GIMPLE function]gbind *gimple_build_bind (tree vars, gimple_seq
body)

Build a GIMPLE_BIND statement with a list of variables in VARS and a body of state-
ments in sequence BODY.

[GIMPLE function]tree gimple_bind_vars (const gbind *g)
Return the variables declared in the GIMPLE_BIND statement G.

248 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_bind_set_vars (gbind *g, tree vars)
Set VARS to be the set of variables declared in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_append_vars (gbind *g, tree vars)
Append VARS to the set of variables declared in the GIMPLE_BIND statement G.

[GIMPLE function]gimple_seq gimple_bind_body (gbind *g)
Return the GIMPLE sequence contained in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_set_body (gbind *g, gimple_seq
seq)

Set SEQ to be sequence contained in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_add_stmt (gbind *gs, gimple stmt)
Append a statement to the end of a GIMPLE_BIND’s body.

[GIMPLE function]void gimple_bind_add_seq (gbind *gs, gimple_seq
seq)

Append a sequence of statements to the end of a GIMPLE_BIND’s body.

[GIMPLE function]tree gimple_bind_block (const gbind *g)
Return the TREE_BLOCK node associated with GIMPLE_BIND statement G. This is
analogous to the BIND_EXPR_BLOCK field in trees.

[GIMPLE function]void gimple_bind_set_block (gbind *g, tree block)
Set BLOCK to be the TREE_BLOCK node associated with GIMPLE_BIND statement G.

11.8.4 GIMPLE_CALL

[GIMPLE function]gcall *gimple_build_call (tree fn, unsigned nargs,
...)

Build a GIMPLE_CALL statement to function FN. The argument FN must be either
a FUNCTION_DECL or a gimple call address as determined by is_gimple_call_addr.
NARGS are the number of arguments. The rest of the arguments follow the argument
NARGS, and must be trees that are valid as rvalues in gimple (i.e., each operand is
validated with is_gimple_operand).

[GIMPLE function]gcall *gimple_build_call_from_tree (tree call_expr,
tree fnptrtype)

Build a GIMPLE_CALL from a CALL_EXPR node. The arguments and the function are
taken from the expression directly. The type of the GIMPLE_CALL is set from the
second parameter passed by a caller. This routine assumes that call_expr is already
in GIMPLE form. That is, its operands are GIMPLE values and the function call
needs no further simplification. All the call flags in call_expr are copied over to the
new GIMPLE_CALL.

[GIMPLE function]gcall *gimple_build_call_vec (tree fn, vec<tree>
args)

Identical to gimple_build_call but the arguments are stored in a vec<tree>.

Chapter 11: GIMPLE 249

[GIMPLE function]tree gimple_call_lhs (gimple g)
Return the LHS of call statement G.

[GIMPLE function]tree * gimple_call_lhs_ptr (gimple g)
Return a pointer to the LHS of call statement G.

[GIMPLE function]void gimple_call_set_lhs (gimple g, tree lhs)
Set LHS to be the LHS operand of call statement G.

[GIMPLE function]tree gimple_call_fn (gimple g)
Return the tree node representing the function called by call statement G.

[GIMPLE function]void gimple_call_set_fn (gcall *g, tree fn)
Set FN to be the function called by call statement G. This has to be a gimple value
specifying the address of the called function.

[GIMPLE function]tree gimple_call_fndecl (gimple g)
If a given GIMPLE_CALL’s callee is a FUNCTION_DECL, return it. Otherwise return NULL.
This function is analogous to get_callee_fndecl in GENERIC.

[GIMPLE function]tree gimple_call_set_fndecl (gimple g, tree fndecl)
Set the called function to FNDECL.

[GIMPLE function]tree gimple_call_return_type (const gcall *g)
Return the type returned by call statement G.

[GIMPLE function]tree gimple_call_chain (gimple g)
Return the static chain for call statement G.

[GIMPLE function]void gimple_call_set_chain (gcall *g, tree chain)
Set CHAIN to be the static chain for call statement G.

[GIMPLE function]unsigned gimple_call_num_args (gimple g)
Return the number of arguments used by call statement G.

[GIMPLE function]tree gimple_call_arg (gimple g, unsigned index)
Return the argument at position INDEX for call statement G. The first argument is 0.

[GIMPLE function]tree * gimple_call_arg_ptr (gimple g, unsigned
index)

Return a pointer to the argument at position INDEX for call statement G.

[GIMPLE function]void gimple_call_set_arg (gimple g, unsigned index,
tree arg)

Set ARG to be the argument at position INDEX for call statement G.

[GIMPLE function]void gimple_call_set_tail (gcall *s)
Mark call statement S as being a tail call (i.e., a call just before the exit of a function).
These calls are candidate for tail call optimization.

[GIMPLE function]bool gimple_call_tail_p (gcall *s)
Return true if GIMPLE_CALL S is marked as a tail call.

250 GNU Compiler Collection (GCC) Internals

[GIMPLE function]bool gimple_call_noreturn_p (gimple s)
Return true if S is a noreturn call.

[GIMPLE function]gimple gimple_call_copy_skip_args (gcall *stmt,
bitmap args_to_skip)

Build a GIMPLE_CALL identical to STMT but skipping the arguments in the positions
marked by the set ARGS_TO_SKIP.

11.8.5 GIMPLE_CATCH

[GIMPLE function]gcatch *gimple_build_catch (tree types, gimple_seq
handler)

Build a GIMPLE_CATCH statement. TYPES are the tree types this catch handles.
HANDLER is a sequence of statements with the code for the handler.

[GIMPLE function]tree gimple_catch_types (const gcatch *g)
Return the types handled by GIMPLE_CATCH statement G.

[GIMPLE function]tree * gimple_catch_types_ptr (gcatch *g)
Return a pointer to the types handled by GIMPLE_CATCH statement G.

[GIMPLE function]gimple_seq gimple_catch_handler (gcatch *g)
Return the GIMPLE sequence representing the body of the handler of GIMPLE_CATCH
statement G.

[GIMPLE function]void gimple_catch_set_types (gcatch *g, tree t)
Set T to be the set of types handled by GIMPLE_CATCH G.

[GIMPLE function]void gimple_catch_set_handler (gcatch *g,
gimple_seq handler)

Set HANDLER to be the body of GIMPLE_CATCH G.

11.8.6 GIMPLE_COND

[GIMPLE function]gcond *gimple_build_cond (enum tree_code
pred_code, tree lhs, tree rhs, tree t_label, tree f_label)

Build a GIMPLE_COND statement. A GIMPLE_COND statement compares LHS and RHS

and if the condition in PRED_CODE is true, jump to the label in t_label, otherwise
jump to the label in f_label. PRED_CODE are relational operator tree codes like
EQ_EXPR, LT_EXPR, LE_EXPR, NE_EXPR, etc.

[GIMPLE function]gcond *gimple_build_cond_from_tree (tree cond, tree
t_label, tree f_label)

Build a GIMPLE_COND statement from the conditional expression tree COND. T_LABEL
and F_LABEL are as in gimple_build_cond.

[GIMPLE function]enum tree_code gimple_cond_code (gimple g)
Return the code of the predicate computed by conditional statement G.

[GIMPLE function]void gimple_cond_set_code (gcond *g, enum tree_code
code)

Set CODE to be the predicate code for the conditional statement G.

Chapter 11: GIMPLE 251

[GIMPLE function]tree gimple_cond_lhs (gimple g)
Return the LHS of the predicate computed by conditional statement G.

[GIMPLE function]void gimple_cond_set_lhs (gcond *g, tree lhs)
Set LHS to be the LHS operand of the predicate computed by conditional statement G.

[GIMPLE function]tree gimple_cond_rhs (gimple g)
Return the RHS operand of the predicate computed by conditional G.

[GIMPLE function]void gimple_cond_set_rhs (gcond *g, tree rhs)
Set RHS to be the RHS operand of the predicate computed by conditional statement G.

[GIMPLE function]tree gimple_cond_true_label (const gcond *g)
Return the label used by conditional statement G when its predicate evaluates to true.

[GIMPLE function]void gimple_cond_set_true_label (gcond *g, tree
label)

Set LABEL to be the label used by conditional statement G when its predicate evaluates
to true.

[GIMPLE function]void gimple_cond_set_false_label (gcond *g, tree
label)

Set LABEL to be the label used by conditional statement G when its predicate evaluates
to false.

[GIMPLE function]tree gimple_cond_false_label (const gcond *g)
Return the label used by conditional statement G when its predicate evaluates to false.

[GIMPLE function]void gimple_cond_make_false (gcond *g)
Set the conditional COND_STMT to be of the form ’if (1 == 0)’.

[GIMPLE function]void gimple_cond_make_true (gcond *g)
Set the conditional COND_STMT to be of the form ’if (1 == 1)’.

11.8.7 GIMPLE_DEBUG

[GIMPLE function]gdebug *gimple_build_debug_bind (tree var, tree
value, gimple stmt)

Build a GIMPLE_DEBUG statement with GIMPLE_DEBUG_BIND subcode. The effect of
this statement is to tell debug information generation machinery that the value of
user variable var is given by value at that point, and to remain with that value until
var runs out of scope, a dynamically-subsequent debug bind statement overrides the
binding, or conflicting values reach a control flow merge point. Even if components of
the value expression change afterwards, the variable is supposed to retain the same
value, though not necessarily the same location.

It is expected that var be most often a tree for automatic user variables (VAR_DECL
or PARM_DECL) that satisfy the requirements for gimple registers, but it may also be
a tree for a scalarized component of a user variable (ARRAY_REF, COMPONENT_REF), or
a debug temporary (DEBUG_EXPR_DECL).

252 GNU Compiler Collection (GCC) Internals

As for value, it can be an arbitrary tree expression, but it is recommended that it be
in a suitable form for a gimple assignment RHS. It is not expected that user variables
that could appear as var ever appear in value, because in the latter we’d have their
SSA_NAMEs instead, but even if they were not in SSA form, user variables appearing
in value are to be regarded as part of the executable code space, whereas those in
var are to be regarded as part of the source code space. There is no way to refer to
the value bound to a user variable within a value expression.

If value is GIMPLE_DEBUG_BIND_NOVALUE, debug information generation machinery is
informed that the variable var is unbound, i.e., that its value is indeterminate, which
sometimes means it is really unavailable, and other times that the compiler could not
keep track of it.

Block and location information for the newly-created stmt are taken from stmt, if
given.

[GIMPLE function]tree gimple_debug_bind_get_var (gimple stmt)
Return the user variable var that is bound at stmt.

[GIMPLE function]tree gimple_debug_bind_get_value (gimple stmt)
Return the value expression that is bound to a user variable at stmt.

[GIMPLE function]tree * gimple_debug_bind_get_value_ptr (gimple
stmt)

Return a pointer to the value expression that is bound to a user variable at stmt.

[GIMPLE function]void gimple_debug_bind_set_var (gimple stmt, tree
var)

Modify the user variable bound at stmt to var.

[GIMPLE function]void gimple_debug_bind_set_value (gimple stmt, tree
var)

Modify the value bound to the user variable bound at stmt to value.

[GIMPLE function]void gimple_debug_bind_reset_value (gimple stmt)
Modify the value bound to the user variable bound at stmt so that the variable
becomes unbound.

[GIMPLE function]bool gimple_debug_bind_has_value_p (gimple stmt)
Return TRUE if stmt binds a user variable to a value, and FALSE if it unbinds the
variable.

[GIMPLE function]gimple gimple_build_debug_begin_stmt (tree block,
location_t location)

Build a GIMPLE_DEBUG statement with GIMPLE_DEBUG_BEGIN_STMT subcode. The
effect of this statement is to tell debug information generation machinery that the
user statement at the given location and block starts at the point at which the
statement is inserted. The intent is that side effects (e.g. variable bindings) of all
prior user statements are observable, and that none of the side effects of subsequent
user statements are.

Chapter 11: GIMPLE 253

[GIMPLE function]gimple gimple_build_debug_inline_entry (tree block,
location_t location)

Build a GIMPLE_DEBUG statement with GIMPLE_DEBUG_INLINE_ENTRY subcode. The
effect of this statement is to tell debug information generation machinery that a
function call at location underwent inline substitution, that block is the enclosing
lexical block created for the substitution, and that at the point of the program in
which the stmt is inserted, all parameters for the inlined function are bound to the
respective arguments, and none of the side effects of its stmts are observable.

11.8.8 GIMPLE_EH_FILTER

[GIMPLE function]geh_filter *gimple_build_eh_filter (tree types,
gimple_seq failure)

Build a GIMPLE_EH_FILTER statement. TYPES are the filter’s types. FAILURE is a
sequence with the filter’s failure action.

[GIMPLE function]tree gimple_eh_filter_types (gimple g)
Return the types handled by GIMPLE_EH_FILTER statement G.

[GIMPLE function]tree * gimple_eh_filter_types_ptr (gimple g)
Return a pointer to the types handled by GIMPLE_EH_FILTER statement G.

[GIMPLE function]gimple_seq gimple_eh_filter_failure (gimple g)
Return the sequence of statement to execute when GIMPLE_EH_FILTER statement fails.

[GIMPLE function]void gimple_eh_filter_set_types (geh_filter *g,
tree types)

Set TYPES to be the set of types handled by GIMPLE_EH_FILTER G.

[GIMPLE function]void gimple_eh_filter_set_failure (geh_filter *g,
gimple_seq failure)

Set FAILURE to be the sequence of statements to execute on failure for GIMPLE_EH_
FILTER G.

[GIMPLE function]tree gimple_eh_must_not_throw_fndecl (geh_mnt
*eh_mnt_stmt)

Get the function decl to be called by the MUST NOT THROW region.

[GIMPLE function]void gimple_eh_must_not_throw_set_fndecl (geh_mnt
*eh_mnt_stmt, tree decl)

Set the function decl to be called by GS to DECL.

11.8.9 GIMPLE_LABEL

[GIMPLE function]glabel *gimple_build_label (tree label)
Build a GIMPLE_LABEL statement with corresponding to the tree label, LABEL.

[GIMPLE function]tree gimple_label_label (const glabel *g)
Return the LABEL_DECL node used by GIMPLE_LABEL statement G.

[GIMPLE function]void gimple_label_set_label (glabel *g, tree label)
Set LABEL to be the LABEL_DECL node used by GIMPLE_LABEL statement G.

254 GNU Compiler Collection (GCC) Internals

11.8.10 GIMPLE_GOTO

[GIMPLE function]ggoto *gimple_build_goto (tree dest)
Build a GIMPLE_GOTO statement to label DEST.

[GIMPLE function]tree gimple_goto_dest (gimple g)
Return the destination of the unconditional jump G.

[GIMPLE function]void gimple_goto_set_dest (ggoto *g, tree dest)
Set DEST to be the destination of the unconditional jump G.

11.8.11 GIMPLE_NOP

[GIMPLE function]gimple gimple_build_nop (void)
Build a GIMPLE_NOP statement.

[GIMPLE function]bool gimple_nop_p (gimple g)
Returns TRUE if statement G is a GIMPLE_NOP.

11.8.12 GIMPLE_OMP_ATOMIC_LOAD

[GIMPLE function]gomp_atomic_load *gimple_build_omp_atomic_load (
tree lhs, tree rhs)

Build a GIMPLE_OMP_ATOMIC_LOAD statement. LHS is the left-hand side of the assign-
ment. RHS is the right-hand side of the assignment.

[GIMPLE function]void gimple_omp_atomic_load_set_lhs (
gomp_atomic_load *g, tree lhs)

Set the LHS of an atomic load.

[GIMPLE function]tree gimple_omp_atomic_load_lhs (const
gomp_atomic_load *g)

Get the LHS of an atomic load.

[GIMPLE function]void gimple_omp_atomic_load_set_rhs (
gomp_atomic_load *g, tree rhs)

Set the RHS of an atomic set.

[GIMPLE function]tree gimple_omp_atomic_load_rhs (const
gomp_atomic_load *g)

Get the RHS of an atomic set.

11.8.13 GIMPLE_OMP_ATOMIC_STORE

[GIMPLE function]gomp_atomic_store *gimple_build_omp_atomic_store (
tree val)

Build a GIMPLE_OMP_ATOMIC_STORE statement. VAL is the value to be stored.

[GIMPLE function]void gimple_omp_atomic_store_set_val (
gomp_atomic_store *g, tree val)

Set the value being stored in an atomic store.

Chapter 11: GIMPLE 255

[GIMPLE function]tree gimple_omp_atomic_store_val (const
gomp_atomic_store *g)

Return the value being stored in an atomic store.

11.8.14 GIMPLE_OMP_CONTINUE

[GIMPLE function]gomp_continue *gimple_build_omp_continue (tree
control_def, tree control_use)

Build a GIMPLE_OMP_CONTINUE statement. CONTROL_DEF is the definition of the con-
trol variable. CONTROL_USE is the use of the control variable.

[GIMPLE function]tree gimple_omp_continue_control_def (const
gomp_continue *s)

Return the definition of the control variable on a GIMPLE_OMP_CONTINUE in S.

[GIMPLE function]tree gimple_omp_continue_control_def_ptr (
gomp_continue *s)

Same as above, but return the pointer.

[GIMPLE function]tree gimple_omp_continue_set_control_def (
gomp_continue *s)

Set the control variable definition for a GIMPLE_OMP_CONTINUE statement in S.

[GIMPLE function]tree gimple_omp_continue_control_use (const
gomp_continue *s)

Return the use of the control variable on a GIMPLE_OMP_CONTINUE in S.

[GIMPLE function]tree gimple_omp_continue_control_use_ptr (
gomp_continue *s)

Same as above, but return the pointer.

[GIMPLE function]tree gimple_omp_continue_set_control_use (
gomp_continue *s)

Set the control variable use for a GIMPLE_OMP_CONTINUE statement in S.

11.8.15 GIMPLE_OMP_CRITICAL

[GIMPLE function]gomp_critical *gimple_build_omp_critical (
gimple_seq body, tree name)

Build a GIMPLE_OMP_CRITICAL statement. BODY is the sequence of statements for
which only one thread can execute. NAME is an optional identifier for this critical
block.

[GIMPLE function]tree gimple_omp_critical_name (const gomp_critical
*g)

Return the name associated with OMP_CRITICAL statement G.

[GIMPLE function]tree * gimple_omp_critical_name_ptr (gomp_critical
*g)

Return a pointer to the name associated with OMP critical statement G.

256 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_omp_critical_set_name (gomp_critical
*g, tree name)

Set NAME to be the name associated with OMP critical statement G.

11.8.16 GIMPLE_OMP_FOR

[GIMPLE function]gomp_for *gimple_build_omp_for (gimple_seq body,
tree clauses, tree index, tree initial, tree final, tree
incr, gimple_seq pre_body, enum tree_code omp_for_cond)

Build a GIMPLE_OMP_FOR statement. BODY is sequence of statements inside the for
loop. CLAUSES, are any of the loop construct’s clauses. PRE_BODY is the sequence of
statements that are loop invariant. INDEX is the index variable. INITIAL is the initial
value of INDEX. FINAL is final value of INDEX. OMP FOR COND is the predicate
used to compare INDEX and FINAL. INCR is the increment expression.

[GIMPLE function]tree gimple_omp_for_clauses (gimple g)
Return the clauses associated with OMP_FOR G.

[GIMPLE function]tree * gimple_omp_for_clauses_ptr (gimple g)
Return a pointer to the OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_clauses (gimple g, tree
clauses)

Set CLAUSES to be the list of clauses associated with OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_index (gimple g)
Return the index variable for OMP_FOR G.

[GIMPLE function]tree * gimple_omp_for_index_ptr (gimple g)
Return a pointer to the index variable for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_index (gimple g, tree
index)

Set INDEX to be the index variable for OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_initial (gimple g)
Return the initial value for OMP_FOR G.

[GIMPLE function]tree * gimple_omp_for_initial_ptr (gimple g)
Return a pointer to the initial value for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_initial (gimple g, tree
initial)

Set INITIAL to be the initial value for OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_final (gimple g)
Return the final value for OMP_FOR G.

[GIMPLE function]tree * gimple_omp_for_final_ptr (gimple g)
turn a pointer to the final value for OMP_FOR G.

Chapter 11: GIMPLE 257

[GIMPLE function]void gimple_omp_for_set_final (gimple g, tree
final)

Set FINAL to be the final value for OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_incr (gimple g)
Return the increment value for OMP_FOR G.

[GIMPLE function]tree * gimple_omp_for_incr_ptr (gimple g)
Return a pointer to the increment value for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_incr (gimple g, tree incr)
Set INCR to be the increment value for OMP_FOR G.

[GIMPLE function]gimple_seq gimple_omp_for_pre_body (gimple g)
Return the sequence of statements to execute before the OMP_FOR statement G starts.

[GIMPLE function]void gimple_omp_for_set_pre_body (gimple g,
gimple_seq pre_body)

Set PRE_BODY to be the sequence of statements to execute before the OMP_FOR state-
ment G starts.

[GIMPLE function]void gimple_omp_for_set_cond (gimple g, enum
tree_code cond)

Set COND to be the condition code for OMP_FOR G.

[GIMPLE function]enum tree_code gimple_omp_for_cond (gimple g)
Return the condition code associated with OMP_FOR G.

11.8.17 GIMPLE_OMP_MASTER

[GIMPLE function]gimple gimple_build_omp_master (gimple_seq body)
Build a GIMPLE_OMP_MASTER statement. BODY is the sequence of statements to be
executed by just the master.

11.8.18 GIMPLE_OMP_ORDERED

[GIMPLE function]gimple gimple_build_omp_ordered (gimple_seq body)
Build a GIMPLE_OMP_ORDERED statement.

BODY is the sequence of statements inside a loop that will executed in sequence.

11.8.19 GIMPLE_OMP_PARALLEL

[GIMPLE function]gomp_parallel *gimple_build_omp_parallel (
gimple_seq body, tree clauses, tree child_fn, tree data_arg)

Build a GIMPLE_OMP_PARALLEL statement.

BODY is sequence of statements which are executed in parallel. CLAUSES, are the OMP

parallel construct’s clauses. CHILD_FN is the function created for the parallel threads
to execute. DATA_ARG are the shared data argument(s).

[GIMPLE function]bool gimple_omp_parallel_combined_p (gimple g)
Return true if OMP parallel statement G has the GF_OMP_PARALLEL_COMBINED flag set.

258 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_omp_parallel_set_combined_p (gimple g)
Set the GF_OMP_PARALLEL_COMBINED field in OMP parallel statement G.

[GIMPLE function]gimple_seq gimple_omp_body (gimple g)
Return the body for the OMP statement G.

[GIMPLE function]void gimple_omp_set_body (gimple g, gimple_seq
body)

Set BODY to be the body for the OMP statement G.

[GIMPLE function]tree gimple_omp_parallel_clauses (gimple g)
Return the clauses associated with OMP_PARALLEL G.

[GIMPLE function]tree * gimple_omp_parallel_clauses_ptr (
gomp_parallel *g)

Return a pointer to the clauses associated with OMP_PARALLEL G.

[GIMPLE function]void gimple_omp_parallel_set_clauses (
gomp_parallel *g, tree clauses)

Set CLAUSES to be the list of clauses associated with OMP_PARALLEL G.

[GIMPLE function]tree gimple_omp_parallel_child_fn (const
gomp_parallel *g)

Return the child function used to hold the body of OMP_PARALLEL G.

[GIMPLE function]tree * gimple_omp_parallel_child_fn_ptr (
gomp_parallel *g)

Return a pointer to the child function used to hold the body of OMP_PARALLEL G.

[GIMPLE function]void gimple_omp_parallel_set_child_fn (
gomp_parallel *g, tree child_fn)

Set CHILD_FN to be the child function for OMP_PARALLEL G.

[GIMPLE function]tree gimple_omp_parallel_data_arg (const
gomp_parallel *g)

Return the artificial argument used to send variables and values from the parent to
the children threads in OMP_PARALLEL G.

[GIMPLE function]tree * gimple_omp_parallel_data_arg_ptr (
gomp_parallel *g)

Return a pointer to the data argument for OMP_PARALLEL G.

[GIMPLE function]void gimple_omp_parallel_set_data_arg (
gomp_parallel *g, tree data_arg)

Set DATA_ARG to be the data argument for OMP_PARALLEL G.

11.8.20 GIMPLE_OMP_RETURN

[GIMPLE function]gimple gimple_build_omp_return (bool wait_p)
Build a GIMPLE_OMP_RETURN statement. WAIT_P is true if this is a non-waiting return.

Chapter 11: GIMPLE 259

[GIMPLE function]void gimple_omp_return_set_nowait (gimple s)
Set the nowait flag on GIMPLE_OMP_RETURN statement S.

[GIMPLE function]bool gimple_omp_return_nowait_p (gimple g)
Return true if OMP return statement G has the GF_OMP_RETURN_NOWAIT flag set.

11.8.21 GIMPLE_OMP_SECTION

[GIMPLE function]gimple gimple_build_omp_section (gimple_seq body)
Build a GIMPLE_OMP_SECTION statement for a sections statement.

BODY is the sequence of statements in the section.

[GIMPLE function]bool gimple_omp_section_last_p (gimple g)
Return true if OMP section statement G has the GF_OMP_SECTION_LAST flag set.

[GIMPLE function]void gimple_omp_section_set_last (gimple g)
Set the GF_OMP_SECTION_LAST flag on G.

11.8.22 GIMPLE_OMP_SECTIONS

[GIMPLE function]gomp_sections *gimple_build_omp_sections (
gimple_seq body, tree clauses)

Build a GIMPLE_OMP_SECTIONS statement. BODY is a sequence of section statements.
CLAUSES are any of the OMP sections construct’s clauses: private, firstprivate, lastpri-
vate, reduction, and nowait.

[GIMPLE function]gimple gimple_build_omp_sections_switch (void)
Build a GIMPLE_OMP_SECTIONS_SWITCH statement.

[GIMPLE function]tree gimple_omp_sections_control (gimple g)
Return the control variable associated with the GIMPLE_OMP_SECTIONS in G.

[GIMPLE function]tree * gimple_omp_sections_control_ptr (gimple g)
Return a pointer to the clauses associated with the GIMPLE_OMP_SECTIONS in G.

[GIMPLE function]void gimple_omp_sections_set_control (gimple g,
tree control)

Set CONTROL to be the set of clauses associated with the GIMPLE_OMP_SECTIONS in G.

[GIMPLE function]tree gimple_omp_sections_clauses (gimple g)
Return the clauses associated with OMP_SECTIONS G.

[GIMPLE function]tree * gimple_omp_sections_clauses_ptr (gimple g)
Return a pointer to the clauses associated with OMP_SECTIONS G.

[GIMPLE function]void gimple_omp_sections_set_clauses (gimple g,
tree clauses)

Set CLAUSES to be the set of clauses associated with OMP_SECTIONS G.

260 GNU Compiler Collection (GCC) Internals

11.8.23 GIMPLE_OMP_SINGLE

[GIMPLE function]gomp_single *gimple_build_omp_single (gimple_seq
body, tree clauses)

Build a GIMPLE_OMP_SINGLE statement. BODY is the sequence of statements that will
be executed once. CLAUSES are any of the OMP single construct’s clauses: private,
firstprivate, copyprivate, nowait.

[GIMPLE function]tree gimple_omp_single_clauses (gimple g)
Return the clauses associated with OMP_SINGLE G.

[GIMPLE function]tree * gimple_omp_single_clauses_ptr (gimple g)
Return a pointer to the clauses associated with OMP_SINGLE G.

[GIMPLE function]void gimple_omp_single_set_clauses (gomp_single
*g, tree clauses)

Set CLAUSES to be the clauses associated with OMP_SINGLE G.

11.8.24 GIMPLE_OMP_STRUCTURED_BLOCK

Like the GENERIC equivalent OMP_STRUCTURED_BLOCK, this GIMPLE statement does not
correspond directly to an OpenMP directive, and exists only to permit error checking of
transfers of control in/out of structured block sequences (the diagnose_omp_blocks pass in
omp-low.cc). All GIMPLE_OMP_STRUCTURED_BLOCK nodes are eliminated during OpenMP
lowering.

[GIMPLE function]gimple gimple_build_omp_structured_block
(gimple_seq body)

Build a GIMPLE_OMP_STRUCTURED_BLOCK statement. BODY is the sequence of state-
ments in the structured block sequence.

11.8.25 GIMPLE_PHI

[GIMPLE function]unsigned gimple_phi_capacity (gimple g)
Return the maximum number of arguments supported by GIMPLE_PHI G.

[GIMPLE function]unsigned gimple_phi_num_args (gimple g)
Return the number of arguments in GIMPLE_PHI G. This must always be exactly the
number of incoming edges for the basic block holding G.

[GIMPLE function]tree gimple_phi_result (gimple g)
Return the SSA name created by GIMPLE_PHI G.

[GIMPLE function]tree * gimple_phi_result_ptr (gimple g)
Return a pointer to the SSA name created by GIMPLE_PHI G.

[GIMPLE function]void gimple_phi_set_result (gphi *g, tree result)
Set RESULT to be the SSA name created by GIMPLE_PHI G.

[GIMPLE function]struct phi_arg_d * gimple_phi_arg (gimple g, index)
Return the PHI argument corresponding to incoming edge INDEX for GIMPLE_PHI G.

Chapter 11: GIMPLE 261

[GIMPLE function]void gimple_phi_set_arg (gphi *g, index, struct
phi_arg_d * phiarg)

Set PHIARG to be the argument corresponding to incoming edge INDEX for GIMPLE_PHI
G.

11.8.26 GIMPLE_RESX

[GIMPLE function]gresx *gimple_build_resx (int region)
Build a GIMPLE_RESX statement which is a statement. This statement is a placeholder
for Unwind Resume before we know if a function call or a branch is needed. REGION
is the exception region from which control is flowing.

[GIMPLE function]int gimple_resx_region (const gresx *g)
Return the region number for GIMPLE_RESX G.

[GIMPLE function]void gimple_resx_set_region (gresx *g, int region)
Set REGION to be the region number for GIMPLE_RESX G.

11.8.27 GIMPLE_RETURN

[GIMPLE function]greturn *gimple_build_return (tree retval)
Build a GIMPLE_RETURN statement whose return value is retval.

[GIMPLE function]tree gimple_return_retval (const greturn *g)
Return the return value for GIMPLE_RETURN G.

[GIMPLE function]void gimple_return_set_retval (greturn *g, tree
retval)

Set RETVAL to be the return value for GIMPLE_RETURN G.

11.8.28 GIMPLE_SWITCH

[GIMPLE function]gswitch *gimple_build_switch (tree index, tree
default_label, vec<tree> *args)

Build a GIMPLE_SWITCH statement. INDEX is the index variable to switch on, and
DEFAULT_LABEL represents the default label. ARGS is a vector of CASE_LABEL_EXPR
trees that contain the non-default case labels. Each label is a tree of code CASE_

LABEL_EXPR.

[GIMPLE function]unsigned gimple_switch_num_labels (const gswitch
*g)

Return the number of labels associated with the switch statement G.

[GIMPLE function]void gimple_switch_set_num_labels (gswitch *g,
unsigned nlabels)

Set NLABELS to be the number of labels for the switch statement G.

[GIMPLE function]tree gimple_switch_index (const gswitch *g)
Return the index variable used by the switch statement G.

262 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_switch_set_index (gswitch *g, tree
index)

Set INDEX to be the index variable for switch statement G.

[GIMPLE function]tree gimple_switch_label (const gswitch *g,
unsigned index)

Return the label numbered INDEX. The default label is 0, followed by any labels in a
switch statement.

[GIMPLE function]void gimple_switch_set_label (gswitch *g, unsigned
index, tree label)

Set the label number INDEX to LABEL. 0 is always the default label.

[GIMPLE function]tree gimple_switch_default_label (const gswitch
*g)

Return the default label for a switch statement.

[GIMPLE function]void gimple_switch_set_default_label (gswitch *g,
tree label)

Set the default label for a switch statement.

11.8.29 GIMPLE_TRY

[GIMPLE function]gtry *gimple_build_try (gimple_seq eval, gimple_seq
cleanup, unsigned int kind)

Build a GIMPLE_TRY statement. EVAL is a sequence with the expression to evaluate.
CLEANUP is a sequence of statements to run at clean-up time. KIND is the enumeration
value GIMPLE_TRY_CATCH if this statement denotes a try/catch construct or GIMPLE_
TRY_FINALLY if this statement denotes a try/finally construct.

[GIMPLE function]enum gimple_try_flags gimple_try_kind (gimple g)
Return the kind of try block represented by GIMPLE_TRY G. This is either GIMPLE_
TRY_CATCH or GIMPLE_TRY_FINALLY.

[GIMPLE function]bool gimple_try_catch_is_cleanup (gimple g)
Return the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

[GIMPLE function]gimple_seq gimple_try_eval (gimple g)
Return the sequence of statements used as the body for GIMPLE_TRY G.

[GIMPLE function]gimple_seq gimple_try_cleanup (gimple g)
Return the sequence of statements used as the cleanup body for GIMPLE_TRY G.

[GIMPLE function]void gimple_try_set_catch_is_cleanup (gimple g,
bool catch_is_cleanup)

Set the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

[GIMPLE function]void gimple_try_set_eval (gtry *g, gimple_seq eval)
Set EVAL to be the sequence of statements to use as the body for GIMPLE_TRY G.

Chapter 11: GIMPLE 263

[GIMPLE function]void gimple_try_set_cleanup (gtry *g, gimple_seq
cleanup)

Set CLEANUP to be the sequence of statements to use as the cleanup body for GIMPLE_
TRY G.

11.8.30 GIMPLE_WITH_CLEANUP_EXPR

[GIMPLE function]gimple gimple_build_wce (gimple_seq cleanup)
Build a GIMPLE_WITH_CLEANUP_EXPR statement. CLEANUP is the clean-up expression.

[GIMPLE function]gimple_seq gimple_wce_cleanup (gimple g)
Return the cleanup sequence for cleanup statement G.

[GIMPLE function]void gimple_wce_set_cleanup (gimple g, gimple_seq
cleanup)

Set CLEANUP to be the cleanup sequence for G.

[GIMPLE function]bool gimple_wce_cleanup_eh_only (gimple g)
Return the CLEANUP_EH_ONLY flag for a WCE tuple.

[GIMPLE function]void gimple_wce_set_cleanup_eh_only (gimple g, bool
eh_only_p)

Set the CLEANUP_EH_ONLY flag for a WCE tuple.

11.9 GIMPLE sequences

GIMPLE sequences are the tuple equivalent of STATEMENT_LIST’s used in GENERIC. They
are used to chain statements together, and when used in conjunction with sequence iterators,
provide a framework for iterating through statements.

GIMPLE sequences are of type struct gimple_sequence, but are more commonly passed
by reference to functions dealing with sequences. The type for a sequence pointer is gimple_
seq which is the same as struct gimple_sequence *. When declaring a local sequence, you
can define a local variable of type struct gimple_sequence. When declaring a sequence
allocated on the garbage collected heap, use the function gimple_seq_alloc documented
below.

There are convenience functions for iterating through sequences in the section entitled
Sequence Iterators.

Below is a list of functions to manipulate and query sequences.

[GIMPLE function]void gimple_seq_add_stmt (gimple_seq *seq, gimple
g)

Link a gimple statement to the end of the sequence *SEQ if G is not NULL. If *SEQ is
NULL, allocate a sequence before linking.

[GIMPLE function]void gimple_seq_add_seq (gimple_seq *dest,
gimple_seq src)

Append sequence SRC to the end of sequence *DEST if SRC is not NULL. If *DEST is
NULL, allocate a new sequence before appending.

264 GNU Compiler Collection (GCC) Internals

[GIMPLE function]gimple_seq gimple_seq_deep_copy (gimple_seq src)
Perform a deep copy of sequence SRC and return the result.

[GIMPLE function]gimple_seq gimple_seq_reverse (gimple_seq seq)
Reverse the order of the statements in the sequence SEQ. Return SEQ.

[GIMPLE function]gimple gimple_seq_first (gimple_seq s)
Return the first statement in sequence S.

[GIMPLE function]gimple gimple_seq_last (gimple_seq s)
Return the last statement in sequence S.

[GIMPLE function]void gimple_seq_set_last (gimple_seq s, gimple
last)

Set the last statement in sequence S to the statement in LAST.

[GIMPLE function]void gimple_seq_set_first (gimple_seq s, gimple
first)

Set the first statement in sequence S to the statement in FIRST.

[GIMPLE function]void gimple_seq_init (gimple_seq s)
Initialize sequence S to an empty sequence.

[GIMPLE function]gimple_seq gimple_seq_alloc (void)
Allocate a new sequence in the garbage collected store and return it.

[GIMPLE function]void gimple_seq_copy (gimple_seq dest, gimple_seq
src)

Copy the sequence SRC into the sequence DEST.

[GIMPLE function]bool gimple_seq_empty_p (gimple_seq s)
Return true if the sequence S is empty.

[GIMPLE function]gimple_seq bb_seq (basic_block bb)
Returns the sequence of statements in BB.

[GIMPLE function]void set_bb_seq (basic_block bb, gimple_seq seq)
Sets the sequence of statements in BB to SEQ.

[GIMPLE function]bool gimple_seq_singleton_p (gimple_seq seq)
Determine whether SEQ contains exactly one statement.

11.10 Sequence iterators

Sequence iterators are convenience constructs for iterating through statements in a sequence.
Given a sequence SEQ, here is a typical use of gimple sequence iterators:

gimple_stmt_iterator gsi;

for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))

{

gimple g = gsi_stmt (gsi);

/* Do something with gimple statement G. */

Chapter 11: GIMPLE 265

}

Backward iterations are possible:
for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))

Forward and backward iterations on basic blocks are possible with gsi_start_bb and
gsi_last_bb.

In the documentation below we sometimes refer to enum gsi_iterator_update. The
valid options for this enumeration are:

• GSI_NEW_STMT Only valid when a single statement is added. Move the iterator to it.

• GSI_SAME_STMT Leave the iterator at the same statement.

• GSI_CONTINUE_LINKING Move iterator to whatever position is suitable for linking other
statements in the same direction.

Below is a list of the functions used to manipulate and use statement iterators.

[GIMPLE function]gimple_stmt_iterator gsi_start (gimple_seq seq)
Return a new iterator pointing to the sequence SEQ’s first statement. If SEQ is empty,
the iterator’s basic block is NULL. Use gsi_start_bb instead when the iterator needs
to always have the correct basic block set.

[GIMPLE function]gimple_stmt_iterator gsi_start_bb (basic_block bb)
Return a new iterator pointing to the first statement in basic block BB.

[GIMPLE function]gimple_stmt_iterator gsi_last (gimple_seq seq)
Return a new iterator initially pointing to the last statement of sequence SEQ. If
SEQ is empty, the iterator’s basic block is NULL. Use gsi_last_bb instead when the
iterator needs to always have the correct basic block set.

[GIMPLE function]gimple_stmt_iterator gsi_last_bb (basic_block bb)
Return a new iterator pointing to the last statement in basic block BB.

[GIMPLE function]bool gsi_end_p (gimple_stmt_iterator i)
Return TRUE if at the end of I.

[GIMPLE function]bool gsi_one_before_end_p (gimple_stmt_iterator i)
Return TRUE if we’re one statement before the end of I.

[GIMPLE function]void gsi_next (gimple_stmt_iterator *i)
Advance the iterator to the next gimple statement.

[GIMPLE function]void gsi_prev (gimple_stmt_iterator *i)
Advance the iterator to the previous gimple statement.

[GIMPLE function]gimple gsi_stmt (gimple_stmt_iterator i)
Return the current stmt.

[GIMPLE function]gimple_stmt_iterator gsi_after_labels (basic_block
bb)

Return a block statement iterator that points to the first non-label statement in block
BB.

266 GNU Compiler Collection (GCC) Internals

[GIMPLE function]gimple * gsi_stmt_ptr (gimple_stmt_iterator *i)
Return a pointer to the current stmt.

[GIMPLE function]basic_block gsi_bb (gimple_stmt_iterator i)
Return the basic block associated with this iterator.

[GIMPLE function]gimple_seq gsi_seq (gimple_stmt_iterator i)
Return the sequence associated with this iterator.

[GIMPLE function]void gsi_remove (gimple_stmt_iterator *i, bool
remove_eh_info)

Remove the current stmt from the sequence. The iterator is updated to point to the
next statement. When REMOVE_EH_INFO is true we remove the statement pointed to
by iterator I from the EH tables. Otherwise we do not modify the EH tables. Generally,
REMOVE_EH_INFO should be true when the statement is going to be removed from the
IL and not reinserted elsewhere.

[GIMPLE function]void gsi_link_seq_before (gimple_stmt_iterator *i,
gimple_seq seq, enum gsi_iterator_update mode)

Links the sequence of statements SEQ before the statement pointed by iterator I. MODE
indicates what to do with the iterator after insertion (see enum gsi_iterator_update

above).

[GIMPLE function]void gsi_link_before (gimple_stmt_iterator *i,
gimple g, enum gsi_iterator_update mode)

Links statement G before the statement pointed-to by iterator I. Updates iterator I
according to MODE.

[GIMPLE function]void gsi_link_seq_after (gimple_stmt_iterator *i,
gimple_seq seq, enum gsi_iterator_update mode)

Links sequence SEQ after the statement pointed-to by iterator I. MODE is as in gsi_

insert_after.

[GIMPLE function]void gsi_link_after (gimple_stmt_iterator *i,
gimple g, enum gsi_iterator_update mode)

Links statement G after the statement pointed-to by iterator I. MODE is as in gsi_

insert_after.

[GIMPLE function]gimple_seq gsi_split_seq_after
(gimple_stmt_iterator i)

Move all statements in the sequence after I to a new sequence. Return this new
sequence.

[GIMPLE function]gimple_seq gsi_split_seq_before
(gimple_stmt_iterator *i)

Move all statements in the sequence before I to a new sequence. Return this new
sequence.

[GIMPLE function]void gsi_replace (gimple_stmt_iterator *i, gimple
stmt, bool update_eh_info)

Replace the statement pointed-to by I to STMT. If UPDATE_EH_INFO is true, the excep-
tion handling information of the original statement is moved to the new statement.

Chapter 11: GIMPLE 267

[GIMPLE function]void gsi_insert_before (gimple_stmt_iterator *i,
gimple stmt, enum gsi_iterator_update mode)

Insert statement STMT before the statement pointed-to by iterator I, update STMT’s
basic block and scan it for new operands. MODE specifies how to update iterator I

after insertion (see enum gsi_iterator_update).

[GIMPLE function]void gsi_insert_seq_before (gimple_stmt_iterator
*i, gimple_seq seq, enum gsi_iterator_update mode)

Like gsi_insert_before, but for all the statements in SEQ.

[GIMPLE function]void gsi_insert_after (gimple_stmt_iterator *i,
gimple stmt, enum gsi_iterator_update mode)

Insert statement STMT after the statement pointed-to by iterator I, update STMT’s
basic block and scan it for new operands. MODE specifies how to update iterator I

after insertion (see enum gsi_iterator_update).

[GIMPLE function]void gsi_insert_seq_after (gimple_stmt_iterator *i,
gimple_seq seq, enum gsi_iterator_update mode)

Like gsi_insert_after, but for all the statements in SEQ.

[GIMPLE function]gimple_stmt_iterator gsi_for_stmt (gimple stmt)
Finds iterator for STMT.

[GIMPLE function]void gsi_move_after (gimple_stmt_iterator *from,
gimple_stmt_iterator *to)

Move the statement at FROM so it comes right after the statement at TO.

[GIMPLE function]void gsi_move_before (gimple_stmt_iterator *from,
gimple_stmt_iterator *to)

Move the statement at FROM so it comes right before the statement at TO.

[GIMPLE function]void gsi_move_to_bb_end (gimple_stmt_iterator
*from, basic_block bb)

Move the statement at FROM to the end of basic block BB.

[GIMPLE function]void gsi_insert_on_edge (edge e, gimple stmt)
Add STMT to the pending list of edge E. No actual insertion is made until a call to
gsi_commit_edge_inserts() is made.

[GIMPLE function]void gsi_insert_seq_on_edge (edge e, gimple_seq
seq)

Add the sequence of statements in SEQ to the pending list of edge E. No actual
insertion is made until a call to gsi_commit_edge_inserts() is made.

[GIMPLE function]basic_block gsi_insert_on_edge_immediate (edge e,
gimple stmt)

Similar to gsi_insert_on_edge+gsi_commit_edge_inserts. If a new block has to
be created, it is returned.

268 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gsi_commit_one_edge_insert (edge e,
basic_block *new_bb)

Commit insertions pending at edge E. If a new block is created, set NEW_BB to this
block, otherwise set it to NULL.

[GIMPLE function]void gsi_commit_edge_inserts (void)
This routine will commit all pending edge insertions, creating any new basic blocks
which are necessary.

11.11 Adding a new GIMPLE statement code

The first step in adding a new GIMPLE statement code, is modifying the file gimple.def,
which contains all the GIMPLE codes. Then you must add a corresponding gimple subclass
located in gimple.h. This in turn, will require you to add a corresponding GTY tag in
gsstruct.def, and code to handle this tag in gss_for_code which is located in gimple.cc.

In order for the garbage collector to know the size of the structure you created in
gimple.h, you need to add a case to handle your new GIMPLE statement in gimple_size

which is located in gimple.cc.

You will probably want to create a function to build the new gimple statement in
gimple.cc. The function should be called gimple_build_new-tuple-name, and should
return the new tuple as a pointer to the appropriate gimple subclass.

If your new statement requires accessors for any members or operands it may have, put
simple inline accessors in gimple.h and any non-trivial accessors in gimple.cc with a
corresponding prototype in gimple.h.

You should add the new statement subclass to the class hierarchy diagram in
gimple.texi.

11.12 Statement and operand traversals

There are two functions available for walking statements and sequences: walk_gimple_

stmt and walk_gimple_seq, accordingly, and a third function for walking the operands in
a statement: walk_gimple_op.

[GIMPLE function]tree walk_gimple_stmt (gimple_stmt_iterator *gsi,
walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct
walk_stmt_info *wi)

This function is used to walk the current statement in GSI, optionally using traversal
state stored in WI. If WI is NULL, no state is kept during the traversal.

The callback CALLBACK_STMT is called. If CALLBACK_STMT returns true, it means that
the callback function has handled all the operands of the statement and it is not
necessary to walk its operands.

If CALLBACK_STMT is NULL or it returns false, CALLBACK_OP is called on each operand
of the statement via walk_gimple_op. If walk_gimple_op returns non-NULL for any
operand, the remaining operands are not scanned.

The return value is that returned by the last call to walk_gimple_op, or NULL_TREE
if no CALLBACK_OP is specified.

Chapter 11: GIMPLE 269

[GIMPLE function]tree walk_gimple_op (gimple stmt, walk_tree_fn
callback_op, struct walk_stmt_info *wi)

Use this function to walk the operands of statement STMT. Every operand is walked
via walk_tree with optional state information in WI.

CALLBACK_OP is called on each operand of STMT via walk_tree. Additional parameters
to walk_tree must be stored in WI. For each operand OP, walk_tree is called as:

walk_tree (&OP, CALLBACK_OP, WI, PSET)

If CALLBACK_OP returns non-NULL for an operand, the remaining operands are not
scanned. The return value is that returned by the last call to walk_tree, or NULL_
TREE if no CALLBACK_OP is specified.

[GIMPLE function]tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn
callback_stmt, walk_tree_fn callback_op, struct
walk_stmt_info *wi)

This function walks all the statements in the sequence SEQ calling walk_gimple_stmt
on each one. WI is as in walk_gimple_stmt. If walk_gimple_stmt returns non-NULL,
the walk is stopped and the value returned. Otherwise, all the statements are walked
and NULL_TREE returned.

271

12 Analysis and Optimization of GIMPLE tuples

GCC uses three main intermediate languages to represent the program during compilation:
GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation gener-
ated by each front end. It is used to serve as an interface between the parser and optimizer.
GENERIC is a common representation that is able to represent programs written in all the
languages supported by GCC.

GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and lan-
guage independent optimizations (e.g., inlining, constant propagation, tail call elimination,
redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent,
tree based representation. However, it differs from GENERIC in that the GIMPLE gram-
mar is more restrictive: expressions contain no more than 3 operands (except function calls),
it has no control flow structures and expressions with side effects are only allowed on the
right hand side of assignments. See the chapter describing GENERIC and GIMPLE for
more details.

This chapter describes the data structures and functions used in the GIMPLE optimiz-
ers (also known as “tree optimizers” or “middle end”). In particular, it focuses on all
the macros, data structures, functions and programming constructs needed to implement
optimization passes for GIMPLE.

12.1 Annotations

The optimizers need to associate attributes with variables during the optimization process.
For instance, we need to know whether a variable has aliases. All these attributes are stored
in data structures called annotations which are then linked to the field ann in struct tree_

common.

12.2 SSA Operands

Almost every GIMPLE statement will contain a reference to a variable or memory location.
Since statements come in different shapes and sizes, their operands are going to be located
at various spots inside the statement’s tree. To facilitate access to the statement’s operands,
they are organized into lists associated inside each statement’s annotation. Each element
in an operand list is a pointer to a VAR_DECL, PARM_DECL or SSA_NAME tree node. This
provides a very convenient way of examining and replacing operands.

Data flow analysis and optimization is done on all tree nodes representing variables.
Any node for which SSA_VAR_P returns nonzero is considered when scanning statement
operands. However, not all SSA_VAR_P variables are processed in the same way. For the
purposes of optimization, we need to distinguish between references to local scalar variables
and references to globals, statics, structures, arrays, aliased variables, etc. The reason is
simple, the compiler can gather complete data flow information for a local scalar. On the
other hand, a global variable may be modified by a function call, it may not be possible to
keep track of all the elements of an array or the fields of a structure, etc.

The operand scanner gathers two kinds of operands: real and virtual. An operand for
which is_gimple_reg returns true is considered real, otherwise it is a virtual operand. We
also distinguish between uses and definitions. An operand is used if its value is loaded by
the statement (e.g., the operand at the RHS of an assignment). If the statement assigns a

272 GNU Compiler Collection (GCC) Internals

new value to the operand, the operand is considered a definition (e.g., the operand at the
LHS of an assignment).

Virtual and real operands also have very different data flow properties. Real operands
are unambiguous references to the full object that they represent. For instance, given

{

int a, b;

a = b

}

Since a and b are non-aliased locals, the statement a = b will have one real definition and
one real use because variable a is completely modified with the contents of variable b. Real
definition are also known as killing definitions. Similarly, the use of b reads all its bits.

In contrast, virtual operands are used with variables that can have a partial or ambiguous
reference. This includes structures, arrays, globals, and aliased variables. In these cases, we
have two types of definitions. For globals, structures, and arrays, we can determine from
a statement whether a variable of these types has a killing definition. If the variable does,
then the statement is marked as having a must definition of that variable. However, if a
statement is only defining a part of the variable (i.e. a field in a structure), or if we know
that a statement might define the variable but we cannot say for sure, then we mark that
statement as having a may definition. For instance, given

{

int a, b, *p;

if (...)

p = &a;

else

p = &b;

*p = 5;

return *p;

}

The assignment *p = 5 may be a definition of a or b. If we cannot determine statically
where p is pointing to at the time of the store operation, we create virtual definitions to
mark that statement as a potential definition site for a and b. Memory loads are similarly
marked with virtual use operands. Virtual operands are shown in tree dumps right before
the statement that contains them. To request a tree dump with virtual operands, use the
-vops option to -fdump-tree:

{

int a, b, *p;

if (...)

p = &a;

else

p = &b;

a = VDEF <a>

b = VDEF

*p = 5;

VUSE <a>

VUSE

return *p;

}

Chapter 12: Analysis and Optimization of GIMPLE tuples 273

Notice that VDEF operands have two copies of the referenced variable. This indicates that
this is not a killing definition of that variable. In this case we refer to it as a may definition
or aliased store. The presence of the second copy of the variable in the VDEF operand will
become important when the function is converted into SSA form. This will be used to link
all the non-killing definitions to prevent optimizations from making incorrect assumptions
about them.

Operands are updated as soon as the statement is finished via a call to update_stmt.
If statement elements are changed via SET_USE or SET_DEF, then no further action is re-
quired (i.e., those macros take care of updating the statement). If changes are made by
manipulating the statement’s tree directly, then a call must be made to update_stmt when
complete. Calling one of the bsi_insert routines or bsi_replace performs an implicit call
to update_stmt.

12.2.1 Operand Iterators And Access Routines

Operands are collected by tree-ssa-operands.cc. They are stored inside each statement’s
annotation and can be accessed through either the operand iterators or an access routine.

The following access routines are available for examining operands:

1. SINGLE_SSA_{USE,DEF,TREE}_OPERAND: These accessors will return NULL unless
there is exactly one operand matching the specified flags. If there is exactly one
operand, the operand is returned as either a tree, def_operand_p, or use_operand_p.

tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);

use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);

def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);

2. ZERO_SSA_OPERANDS: This macro returns true if there are no operands matching the
specified flags.

if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))

return;

3. NUM_SSA_OPERANDS: This macro Returns the number of operands matching ’flags’. This
actually executes a loop to perform the count, so only use this if it is really needed.

int count = NUM_SSA_OPERANDS (stmt, flags)

If you wish to iterate over some or all operands, use the FOR_EACH_SSA_{USE,DEF,TREE}_
OPERAND iterator. For example, to print all the operands for a statement:

void

print_ops (tree stmt)

{

ssa_op_iter;

tree var;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)

print_generic_expr (stderr, var, TDF_SLIM);

}

How to choose the appropriate iterator:

1. Determine whether you are need to see the operand pointers, or just the trees, and
choose the appropriate macro:

Need Macro:

---- -------

use_operand_p FOR_EACH_SSA_USE_OPERAND

274 GNU Compiler Collection (GCC) Internals

def_operand_p FOR_EACH_SSA_DEF_OPERAND

tree FOR_EACH_SSA_TREE_OPERAND

2. You need to declare a variable of the type you are interested in, and an ssa op iter
structure which serves as the loop controlling variable.

3. Determine which operands you wish to use, and specify the flags of those you are
interested in. They are documented in tree-ssa-operands.h:

#define SSA_OP_USE 0x01 /* Real USE operands. */

#define SSA_OP_DEF 0x02 /* Real DEF operands. */

#define SSA_OP_VUSE 0x04 /* VUSE operands. */

#define SSA_OP_VDEF 0x08 /* VDEF operands. */

/* These are commonly grouped operand flags. */

#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE)

#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)

#define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS)

#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)

#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)

#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)

So if you want to look at the use pointers for all the USE and VUSE operands, you would
do something like:

use_operand_p use_p;

ssa_op_iter iter;

FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))

{

process_use_ptr (use_p);

}

The TREE macro is basically the same as the USE and DEF macros, only with the use or
def dereferenced via USE_FROM_PTR (use_p) and DEF_FROM_PTR (def_p). Since we aren’t
using operand pointers, use and defs flags can be mixed.

tree var;

ssa_op_iter iter;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)

{

print_generic_expr (stderr, var, TDF_SLIM);

}

VDEFs are broken into two flags, one for the DEF portion (SSA_OP_VDEF) and one for the
USE portion (SSA_OP_VUSE).

There are many examples in the code, in addition to the documentation in tree-ssa-

operands.h and ssa-iterators.h.

There are also a couple of variants on the stmt iterators regarding PHI nodes.

FOR_EACH_PHI_ARG Works exactly like FOR_EACH_SSA_USE_OPERAND, except it works over
PHI arguments instead of statement operands.

/* Look at every virtual PHI use. */

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)

{

my_code;

}

/* Look at every real PHI use. */

Chapter 12: Analysis and Optimization of GIMPLE tuples 275

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)

my_code;

/* Look at every PHI use. */

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)

my_code;

FOR_EACH_PHI_OR_STMT_{USE,DEF} works exactly like FOR_EACH_SSA_{USE,DEF}_

OPERAND, except it will function on either a statement or a PHI node. These should be used
when it is appropriate but they are not quite as efficient as the individual FOR_EACH_PHI
and FOR_EACH_SSA routines.

FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)

{

my_code;

}

FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)

{

my_code;

}

12.2.2 Immediate Uses

Immediate use information is now always available. Using the immediate use iterators, you
may examine every use of any SSA_NAME. For instance, to change each use of ssa_var to
val and call fold stmt on each stmt after that is done:

use_operand_p imm_use_p;

imm_use_iterator iterator;

tree ssa_var, stmt;

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)

{

FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)

SET_USE (imm_use_p, val);

fold_stmt (stmt);

update_stmt (stmt);

}

There are 2 iterators which can be used. FOR_EACH_IMM_USE_FAST is used when the
immediate uses are not changed, i.e., you are looking at the uses, but not setting them.

If they do get changed, then care must be taken that things are not changed under the
iterators, so use the FOR_EACH_IMM_USE_STMT and FOR_EACH_IMM_USE_ON_STMT iterators.
They attempt to preserve the sanity of the use list by moving all the uses for a statement
into a controlled position, and then iterating over those uses. Then the optimization can
manipulate the stmt when all the uses have been processed. Only the current active imm_

use_p may be altered when using an inner FOR_EACH_IMM_USE_ON_STMT iteration. You
have to be careful to not inadvertedly modify the immediate use list by working on another
stmt than the the current stmt during the iteration. In particular calling update_stmt is
destructive on all SSA uses immediate use lists related to the updated stmt. This slower
than the FAST version since it sorts through the list for each statement.

FOR_EACH_IMM_USE_ON_STMT iteration may not be nested inside another FOR_EACH_IMM_
USE_ON_STMT or FOR_EACH_IMM_USE_FAST iteration of the same immediate use list.

276 GNU Compiler Collection (GCC) Internals

There is the gather_imm_use_stmts helper that trades memory for removing the need
to care about the immediate use list consistency and which also avoids duplicate visiting
of stmts that can occur with FOR_EACH_IMM_USE_FAST when there are multiple uses of an
SSA name on a stmt. This can be used to iterate safely over all use stmts like this:

tree ssa_var;

for (gimple *use_stmt : gather_imm_use_stmts (ssa_var))

{

// do something with use_stmt

}

There are checks in verify_ssa which verify that the immediate use list is up to date.

Some useful functions and macros:

1. has_zero_uses (ssa_var) : Returns true if there are no uses of ssa_var.

2. has_single_use (ssa_var) : Returns true if there is only a single use of ssa_var.

3. single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt) : Returns true if
there is only a single use of ssa_var, and also returns the use pointer and statement
it occurs in, in the second and third parameters.

4. num_imm_uses (ssa_var) : Returns the number of immediate uses of ssa_var. It is
better not to use this if possible since it simply utilizes a loop to count the uses.

5. PHI_ARG_INDEX_FROM_USE (use_p) : Given a use within a PHI node, return the index
number for the use. An assert is triggered if the use isn’t located in a PHI node.

6. USE_STMT (use_p) : Return the statement a use occurs in.

Note that uses are not put into an immediate use list until their statement is actually
inserted into the instruction stream via a gsi_* routine which calls update_stmt to re-scan
SSA operands and update the immediate use lists.

It is also still possible to utilize lazy updating of statements, but this should be used only
when absolutely required. Both alias analysis and the dominator optimizations currently
do this.

When lazy updating is being used, the immediate use information is out of date and
cannot be used reliably. Lazy updating is achieved by simply marking statements modified
via calls to gimple_set_modified instead of update_stmt. When lazy updating is no longer
required, all the modified statements must have update_stmt called in order to bring them
up to date. This must be done before the optimization is finished, or verify_ssa will
trigger an abort.

This is done with a simple loop over the instruction stream:
block_stmt_iterator bsi;

basic_block bb;

FOR_EACH_BB (bb)

{

for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))

update_stmt_if_modified (bsi_stmt (bsi));

}

12.3 Static Single Assignment

Most of the tree optimizers rely on the data flow information provided by the Static Single
Assignment (SSA) form. We implement the SSA form as described in R. Cytron, J. Ferrante,

Chapter 12: Analysis and Optimization of GIMPLE tuples 277

B. Rosen, M. Wegman, and K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

The SSA form is based on the premise that program variables are assigned in exactly one
location in the program. Multiple assignments to the same variable create new versions of
that variable. Naturally, actual programs are seldom in SSA form initially because variables
tend to be assigned multiple times. The compiler modifies the program representation so
that every time a variable is assigned in the code, a new version of the variable is created.
Different versions of the same variable are distinguished by subscripting the variable name
with its version number. Variables used in the right-hand side of expressions are renamed
so that their version number matches that of the most recent assignment.

We represent variable versions using SSA_NAME nodes. The renaming process in tree-

ssa.cc wraps every real and virtual operand with an SSA_NAME node which contains the
version number and the statement that created the SSA_NAME. Only definitions and virtual
definitions may create new SSA_NAME nodes.

Sometimes, flow of control makes it impossible to determine the most recent version of a
variable. In these cases, the compiler inserts an artificial definition for that variable called
PHI function or PHI node. This new definition merges all the incoming versions of the
variable to create a new name for it. For instance,

if (...)

a_1 = 5;

else if (...)

a_2 = 2;

else

a_3 = 13;

a_4 = PHI <a_1, a_2, a_3>

return a_4;

Since it is not possible to determine which of the three branches will be taken at runtime,
we don’t know which of a_1, a_2 or a_3 to use at the return statement. So, the SSA
renamer creates a new version a_4 which is assigned the result of “merging” a_1, a_2 and
a_3. Hence, PHI nodes mean “one of these operands. I don’t know which”.

The following functions can be used to examine PHI nodes

[Function]gimple_phi_result (phi)
Returns the SSA_NAME created by PHI node phi (i.e., phi’s LHS).

[Function]gimple_phi_num_args (phi)
Returns the number of arguments in phi. This number is exactly the number of
incoming edges to the basic block holding phi.

[Function]gimple_phi_arg (phi, i)
Returns ith argument of phi.

[Function]gimple_phi_arg_edge (phi, i)
Returns the incoming edge for the ith argument of phi.

[Function]gimple_phi_arg_def (phi, i)
Returns the SSA_NAME for the ith argument of phi.

278 GNU Compiler Collection (GCC) Internals

12.3.1 Preserving the SSA form

Some optimization passes make changes to the function that invalidate the SSA property.
This can happen when a pass has added new symbols or changed the program so that vari-
ables that were previously aliased aren’t anymore. Whenever something like this happens,
the affected symbols must be renamed into SSA form again. Transformations that emit
new code or replicate existing statements will also need to update the SSA form.

Since GCC implements two different SSA forms for register and virtual variables, keeping
the SSA form up to date depends on whether you are updating register or virtual names.
In both cases, the general idea behind incremental SSA updates is similar: when new SSA
names are created, they typically are meant to replace other existing names in the program.

For instance, given the following code:
1 L0:

2 x_1 = PHI (0, x_5)

3 if (x_1 < 10)

4 if (x_1 > 7)

5 y_2 = 0

6 else

7 y_3 = x_1 + x_7

8 endif

9 x_5 = x_1 + 1

10 goto L0;

11 endif

Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
1 L0:

2 x_1 = PHI (0, x_5)

3 if (x_1 < 10)

4 x_10 = ...

5 if (x_1 > 7)

6 y_2 = 0

7 else

8 x_11 = ...

9 y_3 = x_1 + x_7

10 endif

11 x_5 = x_1 + 1

12 goto L0;

13 endif

We want to replace all the uses of x_1 with the new definitions of x_10 and x_11. Note
that the only uses that should be replaced are those at lines 5, 9 and 11. Also, the use of x_7
at line 9 should not be replaced (this is why we cannot just mark symbol x for renaming).

Additionally, we may need to insert a PHI node at line 11 because that is a merge point
for x_10 and x_11. So the use of x_1 at line 11 will be replaced with the new PHI node.
The insertion of PHI nodes is optional. They are not strictly necessary to preserve the
SSA form, and depending on what the caller inserted, they may not even be useful for the
optimizers.

Updating the SSA form is a two step process. First, the pass has to identify which
names need to be updated and/or which symbols need to be renamed into SSA form for
the first time. When new names are introduced to replace existing names in the program,
the mapping between the old and the new names are registered by calling register_new_

name_mapping (note that if your pass creates new code by duplicating basic blocks, the call
to tree_duplicate_bb will set up the necessary mappings automatically).

Chapter 12: Analysis and Optimization of GIMPLE tuples 279

After the replacement mappings have been registered and new symbols marked for re-
naming, a call to update_ssa makes the registered changes. This can be done with an
explicit call or by creating TODO flags in the tree_opt_pass structure for your pass. There
are several TODO flags that control the behavior of update_ssa:

• TODO_update_ssa. Update the SSA form inserting PHI nodes for newly exposed sym-
bols and virtual names marked for updating. When updating real names, only insert
PHI nodes for a real name O_j in blocks reached by all the new and old definitions for
O_j. If the iterated dominance frontier for O_j is not pruned, we may end up inserting
PHI nodes in blocks that have one or more edges with no incoming definition for O_j.
This would lead to uninitialized warnings for O_j’s symbol.

• TODO_update_ssa_no_phi. Update the SSA form without inserting any new PHI nodes
at all. This is used by passes that have either inserted all the PHI nodes themselves or
passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE).

• TODO_update_ssa_full_phi. Insert PHI nodes everywhere they are needed. No prun-
ing of the IDF is done. This is used by passes that need the PHI nodes for O_j even
if it means that some arguments will come from the default definition of O_j’s symbol
(e.g., pass_linear_transform).

WARNING: If you need to use this flag, chances are that your pass may be doing
something wrong. Inserting PHI nodes for an old name where not all edges carry a
new replacement may lead to silent codegen errors or spurious uninitialized warnings.

• TODO_update_ssa_only_virtuals. Passes that update the SSA form on their own
may want to delegate the updating of virtual names to the generic updater. Since
FUD chains are easier to maintain, this simplifies the work they need to do. NOTE:
If this flag is used, any OLD->NEW mappings for real names are explicitly destroyed
and only the symbols marked for renaming are processed.

12.3.2 Examining SSA_NAME nodes

The following macros can be used to examine SSA_NAME nodes

[Macro]SSA_NAME_DEF_STMT (var)
Returns the statement s that creates the SSA_NAME var. If s is an empty statement
(i.e., IS_EMPTY_STMT (s) returns true), it means that the first reference to this vari-
able is a USE or a VUSE.

[Macro]SSA_NAME_VERSION (var)
Returns the version number of the SSA_NAME object var.

12.3.3 Walking the dominator tree

[Tree SSA function]void walk_dominator_tree (walk_data, bb)
This function walks the dominator tree for the current CFG calling a set of callback
functions defined in struct dom walk data in domwalk.h. The call back functions
you need to define give you hooks to execute custom code at various points during
traversal:

1. Once to initialize any local data needed while processing bb and its children.
This local data is pushed into an internal stack which is automatically pushed
and popped as the walker traverses the dominator tree.

280 GNU Compiler Collection (GCC) Internals

2. Once before traversing all the statements in the bb.

3. Once for every statement inside bb.

4. Once after traversing all the statements and before recursing into bb’s dominator
children.

5. It then recurses into all the dominator children of bb.

6. After recursing into all the dominator children of bb it can, optionally, traverse
every statement in bb again (i.e., repeating steps 2 and 3).

7. Once after walking the statements in bb and bb’s dominator children. At this
stage, the block local data stack is popped.

12.4 Alias analysis

Alias analysis in GIMPLE SSA form consists of two pieces. First the virtual SSA web
ties conflicting memory accesses and provides a SSA use-def chain and SSA immediate-
use chains for walking possibly dependent memory accesses. Second an alias-oracle can be
queried to disambiguate explicit and implicit memory references.

1. Memory SSA form.

All statements that may use memory have exactly one accompanied use of a virtual
SSA name that represents the state of memory at the given point in the IL.

All statements that may define memory have exactly one accompanied definition of a
virtual SSA name using the previous state of memory and defining the new state of
memory after the given point in the IL.

int i;

int foo (void)

{

.MEM_3 = VDEF <.MEM_2(D)>

i = 1;

VUSE <.MEM_3>

return i;

}

The virtual SSA names in this case are .MEM_2(D) and .MEM_3. The store to the global
variable i defines .MEM_3 invalidating .MEM_2(D). The load from i uses that new state
.MEM_3.

The virtual SSA web serves as constraints to SSA optimizers preventing illegitimate
code-motion and optimization. It also provides a way to walk related memory state-
ments.

2. Points-to and escape analysis.

Points-to analysis builds a set of constraints from the GIMPLE SSA IL representing
all pointer operations and facts we do or do not know about pointers. Solving this
set of constraints yields a conservatively correct solution for each pointer variable in
the program (though we are only interested in SSA name pointers) as to what it may
possibly point to.

This points-to solution for a given SSA name pointer is stored in the pt_solution

sub-structure of the SSA_NAME_PTR_INFO record. The following accessor functions are
available:

• pt_solution_includes

Chapter 12: Analysis and Optimization of GIMPLE tuples 281

• pt_solutions_intersect

Points-to analysis also computes the solution for two special set of pointers, ESCAPED
and CALLUSED. Those represent all memory that has escaped the scope of analysis or
that is used by pure or nested const calls.

3. Type-based alias analysis

Type-based alias analysis is frontend dependent though generic support is provided by
the middle-end in alias.cc. TBAA code is used by both tree optimizers and RTL
optimizers.

Every language that wishes to perform language-specific alias analysis should define a
function that computes, given a tree node, an alias set for the node. Nodes in different
alias sets are not allowed to alias. For an example, see the C front-end function c_get_

alias_set.

4. Tree alias-oracle

The tree alias-oracle provides means to disambiguate two memory references and mem-
ory references against statements. The following queries are available:

• refs_may_alias_p

• ref_maybe_used_by_stmt_p

• stmt_may_clobber_ref_p

In addition to those two kind of statement walkers are available walking statements
related to a reference ref. walk_non_aliased_vuses walks over dominating memory
defining statements and calls back if the statement does not clobber ref providing the
non-aliased VUSE. The walk stops at the first clobbering statement or if asked to.
walk_aliased_vdefs walks over dominating memory defining statements and calls
back on each statement clobbering ref providing its aliasing VDEF. The walk stops if
asked to.

12.5 Memory model

The memory model used by the middle-end models that of the C/C++ languages. The
middle-end has the notion of an effective type of a memory region which is used for type-
based alias analysis.

The following is a refinement of ISO C99 6.5/6, clarifying the block copy case to follow
common sense and extending the concept of a dynamic effective type to objects with a
declared type as required for C++.

The effective type of an object for an access to its stored value is

the declared type of the object or the effective type determined by

a previous store to it. If a value is stored into an object through

an lvalue having a type that is not a character type, then the

type of the lvalue becomes the effective type of the object for that

access and for subsequent accesses that do not modify the stored value.

If a value is copied into an object using memcpy or memmove,

or is copied as an array of character type, then the effective type

of the modified object for that access and for subsequent accesses that

do not modify the value is undetermined. For all other accesses to an

object, the effective type of the object is simply the type of the

lvalue used for the access.

283

13 RTL Representation

The last part of the compiler work is done on a low-level intermediate representation called
Register Transfer Language. In this language, the instructions to be output are described,
pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

13.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded in
a machine description. Wherever a string can appear, it is also valid to write a C-style brace
block. The entire brace block, including the outermost pair of braces, is considered to be
the string constant. Double quote characters inside the braces are not special. Therefore, if
you write string constants in the C code, you need not escape each quote character with a
backslash. Note escaped quotes are treated the same as a plain quote character and if you
need a escaped quote in a C string, you need an extra backslash to escape the backslash
like "a=\\"c\\";".

A vector contains an arbitrary number of pointers to expressions. The number of elements
in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]’) surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in rtl.def, which is also (in uppercase) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of

284 GNU Compiler Collection (GCC) Internals

an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,

newcode).

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand
what kind of object it is. Instead, you must know from its context—from the expression
code of the containing expression. For example, in an expression of code subreg, the first
operand is to be regarded as an expression and the second operand as a polynomial integer.
In an expression of code plus, there are two operands, both of which are to be regarded as
expressions. In a symbol_ref expression, there is one operand, which is to be regarded as
a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lowercase, but when they appear in C
code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

13.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS

(code). Currently, rtl.def defines these classes:

RTX_OBJ An RTX code that represents an actual object, such as a register (REG) or a
memory location (MEM, SYMBOL_REF). LO_SUM is also included; instead, SUBREG
and STRICT_LOW_PART are not in this class, but in class RTX_EXTRA.

RTX_CONST_OBJ

An RTX code that represents a constant object. HIGH is also included in this
class.

RTX_COMPARE

An RTX code for a non-symmetric comparison, such as GEU or LT.

RTX_COMM_COMPARE

An RTX code for a symmetric (commutative) comparison, such as EQ or
ORDERED.

RTX_UNARY

An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

RTX_COMM_ARITH

An RTX code for a commutative binary operation, such as PLUS or AND. NE

and EQ are comparisons, so they have class RTX_COMM_COMPARE.

RTX_BIN_ARITH

An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHIFTRT.

Chapter 13: RTL Representation 285

RTX_BITFIELD_OPS

An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 13.11 [Bit-Fields], page 318.

RTX_TERNARY

An RTX code for other three input operations. Currently only IF_THEN_ELSE,
VEC_MERGE, SIGN_EXTRACT, ZERO_EXTRACT, and FMA.

RTX_INSN An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 13.19 [Insns], page 328.

RTX_MATCH

An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

RTX_AUTOINC

An RTX code for an auto-increment addressing mode, such as POST_INC. ‘XEXP
(x, 0)’ gives the auto-modified register.

RTX_EXTRA

All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_*, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on
an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of
this class.

For each expression code, rtl.def specifies the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is ‘ep’.

These are the most commonly used format characters:

e An expression (actually a pointer to an expression).

i An integer.

w A wide integer.

s A string.

E A vector of expressions.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

286 GNU Compiler Collection (GCC) Internals

V ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

B ‘B’ indicates a pointer to basic block structure.

p A polynomial integer. At present this is used only for SUBREG_BYTE.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)

Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)

The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume
that all comparison operations have format ee.

RTX_UNARY

All codes of this class have format e.

RTX_BIN_ARITH

RTX_COMM_ARITH

RTX_COMM_COMPARE

RTX_COMPARE

All codes of these classes have format ee.

RTX_BITFIELD_OPS

RTX_TERNARY

All codes of these classes have format eee.

RTX_INSN All codes of this class have formats that begin with iuueiee. See Section 13.19
[Insns], page 328. Note that not all RTL objects linked onto an insn chain are
of class RTX_INSN.

RTX_CONST_OBJ

RTX_OBJ

RTX_MATCH

RTX_EXTRA

You can make no assumptions about the format of these codes.

13.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)

Chapter 13: RTL Representation 287

accesses operand 2 of expression x, as an expression.
XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

For example, if x is an int_list expression, you know that it has two operands which
can be correctly accessed as XINT (x, 0) and XEXP (x, 1). Incorrect accesses like XEXP

(x, 0) and XINT (x, 1) would compile, but would trigger an internal compiler error when
rtl checking is enabled. Nothing stops you from writing XEXP (x, 28) either, but this will
access memory past the end of the expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC

to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)

Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)

Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)

Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN

(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

13.4 Access to Special Operands

Some RTL nodes have special annotations associated with them.

MEM

MEM_ALIAS_SET (x)

If 0, x is not in any alias set, and may alias anything. Otherwise,
x can only alias MEMs in a conflicting alias set. This value is set in
a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may
correspond in some way to types, or other language-level entities,
but they need not, and the back-end makes no such assumptions.
These set numbers are tested with alias_sets_conflict_p.

MEM_EXPR (x)

If this register is known to hold the value of some user-level dec-
laration, this is that tree node. It may also be a COMPONENT_REF,

288 GNU Compiler Collection (GCC) Internals

in which case this is some field reference, and TREE_OPERAND (x,

0) contains the declaration, or another COMPONENT_REF, or null if
there is no compile-time object associated with the reference.

MEM_OFFSET_KNOWN_P (x)

True if the offset of the memory reference from MEM_EXPR is known.
‘MEM_OFFSET (x)’ provides the offset if so.

MEM_OFFSET (x)

The offset from the start of MEM_EXPR. The value is only valid if
‘MEM_OFFSET_KNOWN_P (x)’ is true.

MEM_SIZE_KNOWN_P (x)

True if the size of the memory reference is known. ‘MEM_SIZE (x)’
provides its size if so.

MEM_SIZE (x)

The size in bytes of the memory reference. This is mostly relevant
for BLKmode references as otherwise the size is implied by the mode.
The value is only valid if ‘MEM_SIZE_KNOWN_P (x)’ is true.

MEM_ALIGN (x)

The known alignment in bits of the memory reference.

MEM_ADDR_SPACE (x)

The address space of the memory reference. This will commonly
be zero for the generic address space.

REG

ORIGINAL_REGNO (x)

This field holds the number the register “originally” had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.

REG_EXPR (x)

If this register is known to hold the value of some user-level decla-
ration, this is that tree node.

REG_OFFSET (x)

If this register is known to hold the value of some user-level decla-
ration, this is the offset into that logical storage.

SYMBOL_REF

SYMBOL_REF_DECL (x)

If the symbol_ref x was created for a VAR_DECL or a FUNCTION_

DECL, that tree is recorded here. If this value is null, then x was
created by back end code generation routines, and there is no as-
sociated front end symbol table entry.

SYMBOL_REF_DECL may also point to a tree of class 'c', that is,
some sort of constant. In this case, the symbol_ref is an entry in
the per-file constant pool; again, there is no associated front end
symbol table entry.

Chapter 13: RTL Representation 289

SYMBOL_REF_CONSTANT (x)

If ‘CONSTANT_POOL_ADDRESS_P (x)’ is true, this is the constant pool
entry for x. It is null otherwise.

SYMBOL_REF_DATA (x)

A field of opaque type used to store SYMBOL_REF_DECL or SYMBOL_
REF_CONSTANT.

SYMBOL_REF_FLAGS (x)

In a symbol_ref, this is used to communicate various predicates
about the symbol. Some of these are common enough to be com-
puted by common code, some are specific to the target. The com-
mon bits are:

SYMBOL_FLAG_FUNCTION

Set if the symbol refers to a function.

SYMBOL_FLAG_LOCAL

Set if the symbol is local to this “module”. See TARGET_
BINDS_LOCAL_P.

SYMBOL_FLAG_EXTERNAL

Set if this symbol is not defined in this translation
unit. Note that this is not the inverse of SYMBOL_FLAG_
LOCAL.

SYMBOL_FLAG_SMALL

Set if the symbol is located in the small data section.
See TARGET_IN_SMALL_DATA_P.

SYMBOL_REF_TLS_MODEL (x)

This is a multi-bit field accessor that returns the tls_
model to be used for a thread-local storage symbol. It
returns zero for non-thread-local symbols.

SYMBOL_FLAG_HAS_BLOCK_INFO

Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_

REF_BLOCK_OFFSET fields.

SYMBOL_FLAG_ANCHOR

Set if the symbol is used as a section anchor. “Sec-
tion anchors” are symbols that have a known position
within an object_block and that can be used to ac-
cess nearby members of that block. They are used to
implement -fsection-anchors.

If this flag is set, then SYMBOL_FLAG_HAS_BLOCK_INFO

will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the
target’s use.

SYMBOL_REF_BLOCK (x)

If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the ‘object_block’ structure
to which the symbol belongs, or NULL if it has not been assigned a block.

290 GNU Compiler Collection (GCC) Internals

SYMBOL_REF_BLOCK_OFFSET (x)

If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the offset of x from the first
object in ‘SYMBOL_REF_BLOCK (x)’. The value is negative if x has not yet been
assigned to a block, or it has not been given an offset within that block.

13.5 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CROSSING_JUMP_P (x)

Nonzero in a jump_insn if it crosses between hot and cold sections, which
could potentially be very far apart in the executable. The presence of this flag
indicates to other optimizations that this branching instruction should not be
“collapsed” into a simpler branching construct. It is used when the optimization
to partition basic blocks into hot and cold sections is turned on.

CONSTANT_POOL_ADDRESS_P (x)

Nonzero in a symbol_ref if it refers to part of the current function’s constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging field
and printed as ‘/u’.

INSN_ANNULLED_BRANCH_P (x)

In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging field
and printed as ‘/u’.

INSN_DELETED_P (x)

In an insn, call_insn, jump_insn, code_label, jump_table_data, barrier,
or note, nonzero if the insn has been deleted. Stored in the volatil field and
printed as ‘/v’.

INSN_FROM_TARGET_P (x)

In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct field and printed as ‘/s’.

LABEL_PRESERVE_P (x)

In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

LABEL_REF_NONLOCAL_P (x)

In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil field and printed as ‘/v’.

Chapter 13: RTL Representation 291

MEM_KEEP_ALIAS_SET_P (x)

In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in
a non-addressable component of an aggregate. Stored in the jump field and
printed as ‘/j’.

MEM_VOLATILE_P (x)

In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil field and printed as ‘/v’.

MEM_NOTRAP_P (x)

In mem, nonzero for memory references that will not trap. Stored in the call

field and printed as ‘/c’.

MEM_POINTER (x)

Nonzero in a mem if the memory reference holds a pointer. Stored in the frame_
related field and printed as ‘/f’.

MEM_READONLY_P (x)

Nonzero in a mem, if the memory is statically allocated and read-only.

Read-only in this context means never modified during the lifetime of the pro-
gram, not necessarily in ROM or in write-disabled pages. A common example
of the later is a shared library’s global offset table. This table is initialized by
the runtime loader, so the memory is technically writable, but after control is
transferred from the runtime loader to the application, this memory will never
be subsequently modified.

Stored in the unchanging field and printed as ‘/u’.

PREFETCH_SCHEDULE_BARRIER_P (x)

In a prefetch, indicates that the prefetch is a scheduling barrier. No other
INSNs will be moved over it. Stored in the volatil field and printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)

Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the return_val

field and printed as ‘/i’.

REG_POINTER (x)

Nonzero in a reg if the register holds a pointer. Stored in the frame_related

field and printed as ‘/f’.

REG_USERVAR_P (x)

In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTL_CONST_CALL_P (x)

In a call_insn indicates that the insn represents a call to a const function.
Stored in the unchanging field and printed as ‘/u’.

292 GNU Compiler Collection (GCC) Internals

RTL_PURE_CALL_P (x)

In a call_insn indicates that the insn represents a call to a pure function.
Stored in the return_val field and printed as ‘/i’.

RTL_CONST_OR_PURE_CALL_P (x)

In a call_insn, true if RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

RTL_LOOPING_CONST_OR_PURE_CALL_P (x)

In a call_insn indicates that the insn represents a possibly infinite looping
call to a const or pure function. Stored in the call field and printed as ‘/c’.
Only true if one of RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

RTX_FRAME_RELATED_P (x)

Nonzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related field
and printed as ‘/f’.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL pro-
logues.

SCHED_GROUP_P (x)

During instruction scheduling, in an insn, call_insn, jump_insn or jump_

table_data, indicates that the previous insn must be scheduled together with
this insn. This is used to ensure that certain groups of instructions will not
be split up by the instruction scheduling pass, for example, use insns before a
call_insnmay not be separated from the call_insn. Stored in the in_struct
field and printed as ‘/s’.

SET_IS_RETURN_P (x)

For a set, nonzero if it is for a return. Stored in the jump field and printed as
‘/j’.

SIBLING_CALL_P (x)

For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field
and printed as ‘/j’.

Chapter 13: RTL Representation 293

STRING_POOL_ADDRESS_P (x)

For a symbol_ref expression, nonzero if it addresses this function’s string con-
stant pool. Stored in the frame_related field and printed as ‘/f’.

SUBREG_PROMOTED_UNSIGNED_P (x)

Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_

VAR_P nonzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging field and volatil field,
printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)

Set the unchanging and volatil fields in a subreg to reflect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero
extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 17.5 [Storage Layout], page 541). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

SYMBOL_REF_USED (x)

In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_WEAK (x)

In a symbol_ref, indicates that x has been declared weak. Stored in the
return_val field and printed as ‘/i’.

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.

Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_

REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the fields to which the above macros refer:

call In a mem, 1 means that the memory reference will not trap.

In a call, 1 means that this pure or const call may possibly infinite loop.

In an RTL dump, this flag is represented as ‘/c’.

294 GNU Compiler Collection (GCC) Internals

frame_related

In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.

In mem expressions, 1 means that the memory reference holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function’s
string constant pool.

In an RTL dump, this flag is represented as ‘/f’.

in_struct

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.

In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In an RTL dump, this flag is represented as ‘/s’.

return_val

In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on
such uses.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In call expressions, 1 means the call is pure.

In an RTL dump, this flag is represented as ‘/i’.

jump In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In a jump_insn, 1 means it is a crossing jump.

In an RTL dump, this flag is represented as ‘/j’.

unchanging

In reg and mem expressions, 1 means that the value of the expression never
changes.

Chapter 13: RTL Representation 295

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.

In a call_insn 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.

used This flag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 13.22 [Sharing], page 347).

For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

volatil In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local
label.

In prefetch expressions, 1 means that the containing insn is a scheduling bar-
rier.

In an RTL dump, this flag is represented as ‘/v’.

13.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the
C code, machine modes are represented by an enumeration type, machine_mode, defined in
machmode.def. Each RTL expression has room for a machine mode and so do certain kinds
of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 17.5 [Storage Layout], page 541).

BImode “Bit” mode represents a single bit, for predicate registers.

296 GNU Compiler Collection (GCC) Internals

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes
but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (?) mode represents a sixteen-byte integer.

OImode “Octa Integer” (?) mode represents a thirty-two-byte integer.

XImode “Hexadeca Integer” (?) mode represents a sixty-four-byte integer.

QFmode “Quarter-Floating” mode represents a quarter-precision (single byte) floating
point number.

HFmode “Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.

TQFmode “Three-Quarter-Floating” (?) mode represents a three-quarter-precision (three
byte) floating point number.

SFmode “Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM
types.

DFmode “Double Floating” mode represents an eight byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

XFmode “Extended Floating” mode represents an IEEE extended floating point number.
This mode only has 80 meaningful bits (ten bytes). Some processors require
such numbers to be padded to twelve bytes, others to sixteen; this mode is used
for either.

SDmode “Single Decimal Floating” mode represents a four byte decimal floating point
number (as distinct from conventional binary floating point).

DDmode “Double Decimal Floating” mode represents an eight byte decimal floating point
number.

TDmode “Tetra Decimal Floating” mode represents a sixteen byte decimal floating point
number all 128 of whose bits are meaningful.

TFmode “Tetra Floating” mode represents a sixteen byte floating point number all 128
of whose bits are meaningful. One common use is the IEEE quad-precision
format.

Chapter 13: RTL Representation 297

QQmode “Quarter-Fractional” mode represents a single byte treated as a signed frac-
tional number. The default format is “s.7”.

HQmode “Half-Fractional” mode represents a two-byte signed fractional number. The
default format is “s.15”.

SQmode “Single Fractional” mode represents a four-byte signed fractional number. The
default format is “s.31”.

DQmode “Double Fractional” mode represents an eight-byte signed fractional number.
The default format is “s.63”.

TQmode “Tetra Fractional” mode represents a sixteen-byte signed fractional number.
The default format is “s.127”.

UQQmode “Unsigned Quarter-Fractional” mode represents a single byte treated as an
unsigned fractional number. The default format is “.8”.

UHQmode “Unsigned Half-Fractional” mode represents a two-byte unsigned fractional
number. The default format is “.16”.

USQmode “Unsigned Single Fractional” mode represents a four-byte unsigned fractional
number. The default format is “.32”.

UDQmode “Unsigned Double Fractional” mode represents an eight-byte unsigned frac-
tional number. The default format is “.64”.

UTQmode “Unsigned Tetra Fractional” mode represents a sixteen-byte unsigned fractional
number. The default format is “.128”.

HAmode “Half-Accumulator” mode represents a two-byte signed accumulator. The de-
fault format is “s8.7”.

SAmode “Single Accumulator” mode represents a four-byte signed accumulator. The
default format is “s16.15”.

DAmode “Double Accumulator” mode represents an eight-byte signed accumulator. The
default format is “s32.31”.

TAmode “Tetra Accumulator” mode represents a sixteen-byte signed accumulator. The
default format is “s64.63”.

UHAmode “Unsigned Half-Accumulator” mode represents a two-byte unsigned accumula-
tor. The default format is “8.8”.

USAmode “Unsigned Single Accumulator” mode represents a four-byte unsigned accumu-
lator. The default format is “16.16”.

UDAmode “Unsigned Double Accumulator” mode represents an eight-byte unsigned accu-
mulator. The default format is “32.32”.

UTAmode “Unsigned Tetra Accumulator” mode represents a sixteen-byte unsigned accu-
mulator. The default format is “64.64”.

CCmode “Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
(see Section 17.17 [Condition Code], page 628).

298 GNU Compiler Collection (GCC) Internals

BLKmode “Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

VOIDmode Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode, CPSImode

These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, OImode,
and PSImode, respectively.

BND32mode BND64mode

These modes stand for bounds for pointer of 32 and 64 bit size respectively.
Mode size is double pointer mode size.

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, C type float and C type double. The compiler will
attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in machmode.h.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT

The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT

Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_DECIMAL_FLOAT

Decimal floating point modes. By default these are SDmode, DDmode and TDmode.

Chapter 13: RTL Representation 299

MODE_FRACT

Signed fractional modes. By default these are QQmode, HQmode, SQmode, DQmode
and TQmode.

MODE_UFRACT

Unsigned fractional modes. By default these are UQQmode, UHQmode, USQmode,
UDQmode and UTQmode.

MODE_ACCUM

Signed accumulator modes. By default these are HAmode, SAmode, DAmode and
TAmode.

MODE_UACCUM

Unsigned accumulator modes. By default these are UHAmode, USAmode, UDAmode
and UTAmode.

MODE_COMPLEX_INT

Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT

Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_CC Modes representing condition code values. These are CCmode plus any CC_MODE

modes listed in the machine-modes.def. See Section 16.13 [Jump Patterns],
page 482, also see Section 17.17 [Condition Code], page 628.

MODE_POINTER_BOUNDS

Pointer bounds modes. Used to represent values of pointer bounds type. Opera-
tions in these modes may be executed as NOPs depending on hardware features
and environment setup.

MODE_OPAQUE

This is a mode class for modes that don’t want to provide operations other than
register moves, memory moves, loads, stores, and unspecs. They have a size
and precision and that’s all.

MODE_RANDOM

This is a catchall mode class for modes which don’t fit into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

machmode.h also defines various wrapper classes that combine a machine_mode with a
static assertion that a particular condition holds. The classes are:

scalar_int_mode

A mode that has class MODE_INT or MODE_PARTIAL_INT.

scalar_float_mode

A mode that has class MODE_FLOAT or MODE_DECIMAL_FLOAT.

scalar_mode

A mode that holds a single numerical value. In practice this means that the
mode is a scalar_int_mode, is a scalar_float_mode, or has class MODE_FRACT,
MODE_UFRACT, MODE_ACCUM, MODE_UACCUM or MODE_POINTER_BOUNDS.

300 GNU Compiler Collection (GCC) Internals

complex_mode

A mode that has class MODE_COMPLEX_INT or MODE_COMPLEX_FLOAT.

fixed_size_mode

A mode whose size is known at compile time.

Named modes use the most constrained of the available wrapper classes, if one exists,
otherwise they use machine_mode. For example, QImode is a scalar_int_mode, SFmode is
a scalar_float_mode and BLKmode is a plain machine_mode. It is possible to refer to any
mode as a raw machine_mode by adding the E_ prefix, where E stands for “enumeration”.
For example, the raw machine_mode names of the modes just mentioned are E_QImode,
E_SFmode and E_BLKmode respectively.

The wrapper classes implicitly convert to machine_mode and to any wrapper class that
represents a more general condition; for example scalar_int_mode and scalar_float_

mode both convert to scalar_mode and all three convert to fixed_size_mode. The classes
act like machine_modes that accept only certain named modes.

machmode.h also defines a template class opt_mode<T> that holds a T or nothing, where
T can be either machine_mode or one of the wrapper classes above. The main operations
on an opt_mode<T> x are as follows:

‘x.exists ()’
Return true if x holds a mode rather than nothing.

‘x.exists (&y)’
Return true if x holds a mode rather than nothing, storing the mode in y if so.
y must be assignment-compatible with T.

‘x.require ()’
Assert that x holds a mode rather than nothing and return that mode.

‘x = y’ Set x to y, where y is a T or implicitly converts to a T.

The default constructor sets an opt_mode<T> to nothing. There is also a constructor that
takes an initial value of type T.

It is possible to use the is-a.h accessors on a machine_mode or machine mode wrapper
x:

‘is_a <T> (x)’
Return true if x meets the conditions for wrapper class T.

‘is_a <T> (x, &y)’
Return true if x meets the conditions for wrapper class T, storing it in y if so.
y must be assignment-compatible with T.

‘as_a <T> (x)’
Assert that x meets the conditions for wrapper class T and return it as a T.

‘dyn_cast <T> (x)’
Return an opt_mode<T> that holds x if x meets the conditions for wrapper class
T and that holds nothing otherwise.

The purpose of these wrapper classes is to give stronger static type checking. For example,
if a function takes a scalar_int_mode, a caller that has a general machine_modemust either
check or assert that the code is indeed a scalar integer first, using one of the functions above.

Chapter 13: RTL Representation 301

The wrapper classes are normal C++ classes, with user-defined constructors. Sometimes
it is useful to have a POD version of the same type, particularly if the type appears in a
union. The template class pod_mode<T> provides a POD version of wrapper class T. It is
assignment-compatible with T and implicitly converts to both machine_mode and T.

Here are some C macros that relate to machine modes:

GET_MODE (x)

Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)

Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES

Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)

Returns the name of mode m as a string.

GET_MODE_CLASS (m)

Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)

Returns the next wider natural mode. For example, the expression GET_MODE_

WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)

Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)

Returns the size in bits of a datum of mode m.

GET_MODE_IBIT (m)

Returns the number of integral bits of a datum of fixed-point mode m.

GET_MODE_FBIT (m)

Returns the number of fractional bits of a datum of fixed-point mode m.

GET_MODE_MASK (m)

Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m)

Return the required alignment, in bits, for an object of mode m.

GET_MODE_INNER (m)

Returns the mode of the basic parts of mode m. For vector modes this is the
mode of the vector elements. For complex modes it is the mode of the real and
imaginary parts. For other modes it is mode m itself.

GET_MODE_UNIT_SIZE (m)

Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

302 GNU Compiler Collection (GCC) Internals

GET_MODE_NUNITS (m)

Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)

Returns the narrowest mode in mode class c.

The following 3 variables are defined on every target. They can be used to allocate buffers
that are guaranteed to be large enough to hold any value that can be represented on the
target. The first two can be overridden by defining them in the target’s mode.def file,
however, the value must be a constant that can determined very early in the compilation
process. The third symbol cannot be overridden.

BITS_PER_UNIT

The number of bits in an addressable storage unit (byte). If you do not define
this, the default is 8.

MAX_BITSIZE_MODE_ANY_INT

The maximum bitsize of any mode that is used in integer math. This should be
overridden by the target if it uses large integers as containers for larger vectors
but otherwise never uses the contents to compute integer values.

MAX_BITSIZE_MODE_ANY_MODE

The bitsize of the largest mode on the target. The default value is the largest
mode size given in the mode definition file, which is always correct for targets
whose modes have a fixed size. Targets that might increase the size of a mode
beyond this default should define MAX_BITSIZE_MODE_ANY_MODE to the actual
upper limit in machine-modes.def.

The global variables byte_mode and word_mode contain modes whose classes are MODE_

INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

13.7 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)

This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,

0).

Constants generated for modes with fewer bits than in HOST_WIDE_INT must be
sign extended to full width (e.g., with gen_int_mode). For constants for modes
with more bits than in HOST_WIDE_INT the implied high order bits of that con-
stant are copies of the top bit. Note however that values are neither inherently
signed nor inherently unsigned; where necessary, signedness is determined by
the rtl operation instead.

There is only one expression object for the integer value zero; it is the value
of the variable const0_rtx. Likewise, the only expression for integer value one
is found in const1_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found

Chapter 13: RTL Representation 303

in constm1_rtx. Any attempt to create an expression of code const_int

and value zero, one, two or negative one will return const0_rtx, const1_rtx,
const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE
is −1, const_true_rtx and constm1_rtx will point to the same object.

(const_double:m i0 i1 ...)

This represents either a floating-point constant of mode m or (on older ports
that do not define TARGET_SUPPORTS_WIDE_INT) an integer constant too large
to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice
that number of bits. In the latter case, m will be VOIDmode. For integral values
constants for modes with more bits than twice the number in HOST_WIDE_INT

the implied high order bits of that constant are copies of the top bit of CONST_
DOUBLE_HIGH. Note however that integral values are neither inherently signed
nor inherently unsigned; where necessary, signedness is determined by the rtl
operation instead.

On more modern ports, CONST_DOUBLE only represents floating point values.
New ports define TARGET_SUPPORTS_WIDE_INT to make this designation.

If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE
(see Section 17.24 [Floating Point], page 685). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 17.22.2 [Data Output], page 656).

The host dependency for the number of integers used to store a double value
makes it problematic for machine descriptions to use expressions of code const_
double and therefore a syntactic alias has been provided:

(const_double_zero:m)

standing for:
(const_double:m 0 0 ...)

for matching the floating-point value zero, possibly the only useful one.

(const_wide_int:m nunits elt0 ...)

This contains an array of HOST_WIDE_INTs that is large enough to hold any
constant that can be represented on the target. This form of rtl is only used
on targets that define TARGET_SUPPORTS_WIDE_INT to be nonzero and then
CONST_DOUBLEs are only used to hold floating-point values. If the target leaves
TARGET_SUPPORTS_WIDE_INT defined as 0, CONST_WIDE_INTs are not used and
CONST_DOUBLEs are as they were before.

The values are stored in a compressed format. The higher-order 0s or -1s are
not represented if they are just the logical sign extension of the number that is
represented.

304 GNU Compiler Collection (GCC) Internals

CONST_WIDE_INT_VEC (code)

Returns the entire array of HOST_WIDE_INTs that are used to store the value.
This macro should be rarely used.

CONST_WIDE_INT_NUNITS (code)

The number of HOST_WIDE_INTs used to represent the number. Note that this
generally is smaller than the number of HOST_WIDE_INTs implied by the mode
size.

CONST_WIDE_INT_ELT (code,i)

Returns the ith element of the array. Element 0 is contains the low order bits
of the constant.

(const_fixed:m ...)

Represents a fixed-point constant of mode m. The operand is a data structure
of type struct fixed_value and is accessed with the macro CONST_FIXED_

VALUE. The high part of data is accessed with CONST_FIXED_VALUE_HIGH; the
low part is accessed with CONST_FIXED_VALUE_LOW.

(const_poly_int:m [c0 c1 ...])

Represents a poly_int-style polynomial integer with coefficients c0, c1,
The coefficients are wide_int-based integers rather than rtxes. CONST_POLY_

INT_COEFFS gives the values of individual coefficients (which is mostly only
useful in low-level routines) and const_poly_int_value gives the full poly_
int value.

(const_vector:m [x0 x1 ...])

Represents a vector constant. The values in square brackets are elements of
the vector, which are always const_int, const_wide_int, const_double or
const_fixed expressions.

Each vector constant v is treated as a specific instance of an arbitrary-length
sequence that itself contains ‘CONST_VECTOR_NPATTERNS (v)’ interleaved pat-
terns. Each pattern has the form:

{ base0, base1, base1 + step, base1 + step * 2, ... }

The first three elements in each pattern are enough to determine the values of
the other elements. However, if all steps are zero, only the first two elements are
needed. If in addition each base1 is equal to the corresponding base0, only the
first element in each pattern is needed. The number of determining elements
per pattern is given by ‘CONST_VECTOR_NELTS_PER_PATTERN (v)’.

For example, the constant:
{ 0, 1, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18 }

is interpreted as an interleaving of the sequences:
{ 0, 2, 3, 4, 5, 6, 7, 8 }

{ 1, 6, 8, 10, 12, 14, 16, 18 }

where the sequences are represented by the following patterns:
base0 == 0, base1 == 2, step == 1

base0 == 1, base1 == 6, step == 2

In this case:
CONST_VECTOR_NPATTERNS (v) == 2

Chapter 13: RTL Representation 305

CONST_VECTOR_NELTS_PER_PATTERN (v) == 3

Thus the first 6 elements (‘{ 0, 1, 2, 6, 3, 8 }’) are enough to determine the
whole sequence; we refer to them as the “encoded” elements. They are the
only elements present in the square brackets for variable-length const_vectors
(i.e. for const_vectors whose mode m has a variable number of elements).
However, as a convenience to code that needs to handle both const_vectors
and parallels, all elements are present in the square brackets for fixed-length
const_vectors; the encoding scheme simply reduces the amount of work in-
volved in processing constants that follow a regular pattern.

Sometimes this scheme can create two possible encodings of the same vector.
For example { 0, 1 } could be seen as two patterns with one element each or
one pattern with two elements (base0 and base1). The canonical encoding is
always the one with the fewest patterns or (if both encodings have the same
number of patterns) the one with the fewest encoded elements.

‘const_vector_encoding_nelts (v)’ gives the total number of encoded ele-
ments in v, which is 6 in the example above. CONST_VECTOR_ENCODED_ELT (v,

i) accesses the value of encoded element i.

‘CONST_VECTOR_DUPLICATE_P (v)’ is true if v simply contains repeated in-
stances of ‘CONST_VECTOR_NPATTERNS (v)’ values. This is a shorthand for test-
ing ‘CONST_VECTOR_NELTS_PER_PATTERN (v) == 1’.

‘CONST_VECTOR_STEPPED_P (v)’ is true if at least one pattern in v has a nonzero
step. This is a shorthand for testing ‘CONST_VECTOR_NELTS_PER_PATTERN (v)

== 3’.

CONST_VECTOR_NUNITS (v) gives the total number of elements in v ; it is a
shorthand for getting the number of units in ‘GET_MODE (v)’.

The utility function const_vector_elt gives the value of an arbitrary element
as an rtx. const_vector_int_elt gives the same value as a wide_int.

(const_string str)

Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 16.20 [Insn Attributes], page 499) since constant strings
in C are placed in memory.

(symbol_ref:mode symbol)

Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ‘_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref:mode label)

Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_

DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.

306 GNU Compiler Collection (GCC) Internals

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

The label_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a label is directly valid.

(const:m exp)

Represents a constant that is the result of an assembly-time arithmetic compu-
tation. The operand, exp, contains only const_int, symbol_ref, label_ref
or unspec expressions, combined with plus and minus. Any such unspecs
are target-specific and typically represent some form of relocation operator. m
should be a valid address mode.

(high:m exp)

Represents the high-order bits of exp. The number of bits is machine-dependent
and is normally the number of bits specified in an instruction that initializes the
high order bits of a register. It is used with lo_sum to represent the typical two-
instruction sequence used in RISC machines to reference large immediate values
and/or link-time constants such as global memory addresses. In the latter case,
m is Pmode and exp is usually a constant expression involving symbol_ref.

The macro CONST0_RTX (mode) refers to an expression with value 0 in mode mode. If
modemode is of mode class MODE_INT, it returns const0_rtx. If modemode is of mode class
MODE_FLOAT, it returns a CONST_DOUBLE expression in mode mode. Otherwise, it returns a
CONST_VECTOR expression in mode mode. Similarly, the macro CONST1_RTX (mode) refers to
an expression with value 1 in mode mode and similarly for CONST2_RTX. The CONST1_RTX

and CONST2_RTX macros are undefined for vector modes.

13.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

(reg:m n) For small values of the integer n (those that are less than FIRST_PSEUDO_

REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data

Chapter 13: RTL Representation 307

are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_

REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM

This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM

If FRAME_GROWS_DOWNWARD is defined to a nonzero value, this points
to immediately above the first variable on the stack. Otherwise, it
points to the first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of
the register given by FRAME_POINTER_REGNUM and the value
TARGET_STARTING_FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM

This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM

This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

308 GNU Compiler Collection (GCC) Internals

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m1 reg:m2 bytenum)

subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

Each pseudo register has a natural mode. If it is necessary to operate on it in
a different mode, the register must be enclosed in a subreg.

There are currently three supported types for the first operand of a subreg:

pseudo registers
This is the most common case. Most subregs have pseudo regs as
their first operand.

mem subregs of mem were common in earlier versions of GCC and are
still supported. During the reload pass these are replaced by plain
mems. On machines that do not do instruction scheduling, use of
subregs of mem are still used, but this is no longer recommended.
Such subregs are considered to be register_operands rather
than memory_operands before and during reload. Because of this,
the scheduling passes cannot properly schedule instructions with
subregs of mem, so for machines that do scheduling, subregs of
mem should never be used. To support this, the combine and recog
passes have explicit code to inhibit the creation of subregs of mem
when INSN_SCHEDULING is defined.

The use of subregs of mem after the reload pass is an area that
is not well understood and should be avoided. There is still some
code in the compiler to support this, but this code has possibly
rotted. This use of subregs is discouraged and will most likely not
be supported in the future.

hard registers
It is seldom necessary to wrap hard registers in subregs; such regis-
ters would normally reduce to a single reg rtx. This use of subregs
is discouraged and may not be supported in the future.

subregs of subregs are not supported. Using simplify_gen_subreg is the
recommended way to avoid this problem.

subregs come in two distinct flavors, each having its own usage and rules:

Paradoxical subregs
When m1 is strictly wider than m2, the subreg expression is called
paradoxical. The canonical test for this class of subreg is:

paradoxical_subreg_p (m1, m2)

Paradoxical subregs can be used as both lvalues and rvalues. When
used as an lvalue, the low-order bits of the source value are stored
in reg and the high-order bits are discarded. When used as an
rvalue, the low-order bits of the subreg are taken from reg while
the high-order bits may or may not be defined.

Chapter 13: RTL Representation 309

The high-order bits of rvalues are defined in the following circum-
stances:

subregs of mem
When m2 is smaller than a word, the macro LOAD_

EXTEND_OP, can control how the high-order bits are de-
fined.

subreg of regs
The upper bits are defined when SUBREG_PROMOTED_

VAR_P is true. SUBREG_PROMOTED_UNSIGNED_P

describes what the upper bits hold. Such subregs
usually represent local variables, register variables and
parameter pseudo variables that have been promoted
to a wider mode.

bytenum is always zero for a paradoxical subreg, even on big-
endian targets.

For example, the paradoxical subreg:

(set (subreg:SI (reg:HI x) 0) y)

stores the lower 2 bytes of y in x and discards the upper 2 bytes.
A subsequent:

(set z (subreg:SI (reg:HI x) 0))

would set the lower two bytes of z to y and set the upper two bytes
to an unknown value assuming SUBREG_PROMOTED_VAR_P is false.

Normal subregs
When m1 is at least as narrow as m2 the subreg expression is
called normal.

Normal subregs restrict consideration to certain bits of reg. For
this purpose, reg is divided into individually-addressable blocks in
which each block has:

REGMODE_NATURAL_SIZE (m2)

bytes. Usually the value is UNITS_PER_WORD; that is, most tar-
gets usually treat each word of a register as being independently
addressable.

There are two types of normal subreg. If m1 is known to be no
bigger than a block, the subreg refers to the least-significant part
(or lowpart) of one block of reg. If m1 is known to be larger than
a block, the subreg refers to two or more complete blocks.

When used as an lvalue, subreg is a block-based accessor. Storing
to a subreg modifies all the blocks of reg that overlap the subreg,
but it leaves the other blocks of reg alone.

When storing to a normal subreg that is smaller than a block, the
other bits of the referenced block are usually left in an undefined
state. This laxity makes it easier to generate efficient code for
such instructions. To represent an instruction that preserves all

310 GNU Compiler Collection (GCC) Internals

the bits outside of those in the subreg, use strict_low_part or
zero_extract around the subreg.

bytenum must identify the offset of the first byte of the subreg

from the start of reg, assuming that reg is laid out in memory
order. The memory order of bytes is defined by two target macros,
WORDS_BIG_ENDIAN and BYTES_BIG_ENDIAN:

• WORDS_BIG_ENDIAN, if set to 1, says that byte number zero is
part of the most significant word; otherwise, it is part of the
least significant word.

• BYTES_BIG_ENDIAN, if set to 1, says that byte number zero is
the most significant byte within a word; otherwise, it is the
least significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_

BIG_ENDIAN. However, most parts of the compiler treat floating
point values as if they had the same endianness as integer values.
This works because they handle them solely as a collection of integer
values, with no particular numerical value. Only real.cc and the
runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Thus,

(subreg:HI (reg:SI x) 2)

on a BYTES_BIG_ENDIAN, ‘UNITS_PER_WORD == 4’ target is the same
as

(subreg:HI (reg:SI x) 0)

on a little-endian, ‘UNITS_PER_WORD == 4’ target. Both subregs
access the lower two bytes of register x.

Note that the byte offset is a polynomial integer; it may not be a
compile-time constant on targets with variable-sized modes. How-
ever, the restrictions above mean that there are only a certain set
of acceptable offsets for a given combination of m1 and m2. The
compiler can always tell which blocks a valid subreg occupies, and
whether the subreg is a lowpart of a block.

A MODE_PARTIAL_INT mode behaves as if it were as wide as the correspond-
ing MODE_INT mode, except that it has a number of undefined bits, which are
determined by the precision of the mode.

For example, on a little-endian target which defines PSImode to have a precision
of 20 bits:

(subreg:PSI (reg:SI 0) 0)

accesses the low 20 bits of ‘(reg:SI 0)’.

Continuing with a PSImode precision of 20 bits, if we assume
‘REGMODE_NATURAL_SIZE (DImode) <= 4’, then the following two subregs:

(subreg:PSI (reg:DI 0) 0)

(subreg:PSI (reg:DI 0) 4)

represent accesses to the low 20 bits of the two halves of ‘(reg:DI 0)’.

Chapter 13: RTL Representation 311

If ‘REGMODE_NATURAL_SIZE (PSImode) <= 2’ then these two subregs:
(subreg:HI (reg:PSI 0) 0)

(subreg:HI (reg:PSI 0) 2)

represent independent 2-byte accesses that together span the whole of
‘(reg:PSI 0)’. Storing to the first subreg does not affect the value of the
second, and vice versa, so the assignment:

(set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))

sets the low 16 bits of ‘(reg:PSI 0)’ to ‘(reg:HI 4)’, and the high 4 defined
bits of ‘(reg:PSI 0)’ retain their original value. The behavior here is the same
as for normal subregs, when there are no MODE_PARTIAL_INT modes involved.

The rules above apply to both pseudo regs and hard regs. If the semantics
are not correct for particular combinations of m1, m2 and hard reg, the target-
specific code must ensure that those combinations are never used. For example:

TARGET_CAN_CHANGE_MODE_CLASS (m2, m1, class)

must be false for every class class that includes reg.

GCC must be able to determine at compile time whether a subreg is paradoxical,
whether it occupies a whole number of blocks, or whether it is a lowpart of a
block. This means that certain combinations of variable-sized mode are not
permitted. For example, if m2 holds n SI values, where n is greater than zero,
it is not possible to form a DI subreg of it; such a subreg would be paradoxical
when n is 1 but not when n is greater than 1.

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

It has been several years since a platform in which BYTES_BIG_ENDIAN not
equal to WORDS_BIG_ENDIAN has been tested. Anyone wishing to support such
a platform in the future may be confronted with code rot.

(scratch:m)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 13.15 [Side
Effects], page 321).

On some machines, the condition code register is given a register number and a
reg is used. Other machines store condition codes in general registers; in such
cases a pseudo register should be used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register. For examples, search for ‘addcc’ and ‘andcc’
in sparc.md.

(pc) This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

312 GNU Compiler Collection (GCC) Internals

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr alias)

This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

(concatm rtx rtx)

This RTX represents the concatenation of two other RTXs. This is used for
complex values. It should only appear in the RTL attached to declarations and
during RTL generation. It should not appear in the ordinary insn chain.

(concatnm [rtx ...])

This RTX represents the concatenation of all the rtx to make a single value.
Like concat, this should only appear in declarations, and not in the insn chain.

13.9 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

(ss_plus:m x y)

(us_plus:m x y)

These three expressions all represent the sum of the values represented by x
and y carried out in machine mode m. They differ in their behavior on overflow
of integer modes. plus wraps round modulo the width of m; ss_plus saturates
at the maximum signed value representable in m; us_plus saturates at the
maximum unsigned value.

(lo_sum:m x y)

This expression represents the sum of x and the low-order bits of y. It is used
with high (see Section 13.7 [Constants], page 302) to represent the typical two-
instruction sequence used in RISC machines to reference large immediate values
and/or link-time constants such as global memory addresses. In the latter case,
m is Pmode and y is usually a constant expression involving symbol_ref.

The number of low order bits is machine-dependent but is normally the number
of bits in mode m minus the number of bits set by high.

Chapter 13: RTL Representation 313

(minus:m x y)

(ss_minus:m x y)

(us_minus:m x y)

These three expressions represent the result of subtracting y from x, carried
out in mode M. Behavior on overflow is the same as for the three variants of
plus (see above).

(compare:m x y)

Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.

Of course, machines cannot really subtract with infinite precision. However,
they can pretend to do so when only the sign of the result will be used, which
is the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes, in a register. See Section 13.10 [Comparisons], page 316.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. It is some mode in class MODE_CC, often CCmode.
See Section 17.17 [Condition Code], page 628. If m is CCmode, the operation
returns sufficient information (in an unspecified format) so that any comparison
operator can be applied to the result of the COMPARE operation. For other modes
in class MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

(neg:m x)

(ss_neg:m x)

(us_neg:m x)

These two expressions represent the negation (subtraction from zero) of the
value represented by x, carried out in mode m. They differ in the behavior
on overflow of integer modes. In the case of neg, the negation of the operand
may be a number not representable in mode m, in which case it is truncated
to m. ss_neg and us_neg ensure that an out-of-bounds result saturates to the
maximum or minimum signed or unsigned value.

(mult:m x y)

(ss_mult:m x y)

(us_mult:m x y)

Represents the signed product of the values represented by x and y carried out
in machine mode m. ss_mult and us_mult ensure that an out-of-bounds result
saturates to the maximum or minimum signed or unsigned value.

314 GNU Compiler Collection (GCC) Internals

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

For unsigned widening multiplication, use the same idiom, but with zero_

extend instead of sign_extend.

(smul_highpart:m x y)

(umul_highpart:m x y)

Represents the high-part multiplication of x and y carried out in machine mode
m. smul_highpart returns the high part of a signed multiplication, umul_

highpart returns the high part of an unsigned multiplication.

(fma:m x y z)

Represents the fma, fmaf, and fmal builtin functions, which compute ‘x * y +

z’ without doing an intermediate rounding step.

(div:m x y)

(ss_div:m x y)

Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient. ss_div ensures that an out-of-bounds result saturates
to the maximum or minimum signed value.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

(us_div:m x y)

Like div but represents unsigned division. us_div ensures that an out-of-
bounds result saturates to the maximum or minimum unsigned value.

(mod:m x y)

(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed values in mode m. When used with floating point, if both operands
are zeros, or if either operand is NaN, then it is unspecified which of the two
operands is returned as the result.

(umin:m x y)

(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x) Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

Chapter 13: RTL Representation 315

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)

Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)

Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(ashift:m x c)

(ss_ashift:m x c)

(us_ashift:m x c)

These three expressions represent the result of arithmetically shifting x left by
c places. They differ in their behavior on overflow of integer modes. An ashift

operation is a plain shift with no special behavior in case of a change in the
sign bit; ss_ashift and us_ashift saturates to the minimum or maximum
representable value if any of the bits shifted out differs from the final sign bit.

x have mode m, a fixed-point machine mode. c be a fixed-point mode or be a
constant with mode VOIDmode; which mode is determined by the mode called
for in the machine description entry for the left-shift instruction. For example,
on the VAX, the mode of c is QImode regardless of m.

(lshiftrt:m x c)

(ashiftrt:m x c)

Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x c)

(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant, use rotate.

(abs:m x)

(ss_abs:m x)

Represents the absolute value of x, computed in mode m. ss_abs ensures that
an out-of-bounds result saturates to the maximum signed value.

(sqrt:m x)

Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x) Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x must be
m or VOIDmode.

(clrsb:m x)

Represents the number of redundant leading sign bits in x, represented as an
integer of mode m, starting at the most significant bit position. This is one less
than the number of leading sign bits (either 0 or 1), with no special cases. The
mode of x must be m or VOIDmode.

316 GNU Compiler Collection (GCC) Internals

(clz:m x) Represents the number of leading 0-bits in x, represented as an integer of mode
m, starting at the most significant bit position. If x is zero, the value is deter-
mined by CLZ_DEFINED_VALUE_AT_ZERO (see Section 17.35 [Misc], page 701).
Note that this is one of the few expressions that is not invariant under widening.
The mode of x must be m or VOIDmode.

(ctz:m x) Represents the number of trailing 0-bits in x, represented as an integer of mode
m, starting at the least significant bit position. If x is zero, the value is deter-
mined by CTZ_DEFINED_VALUE_AT_ZERO (see Section 17.35 [Misc], page 701).
Except for this case, ctz(x) is equivalent to ffs(x) - 1. The mode of x must
be m or VOIDmode.

(popcount:m x)

Represents the number of 1-bits in x, represented as an integer of mode m. The
mode of x must be m or VOIDmode.

(parity:m x)

Represents the number of 1-bits modulo 2 in x, represented as an integer of
mode m. The mode of x must be m or VOIDmode.

(bswap:m x)

Represents the value x with the order of bytes reversed, carried out in mode
m, which must be a fixed-point machine mode. The mode of x must be m or
VOIDmode.

(bitreverse:m x)

Represents the value x with the order of bits reversed, carried out in mode
m, which must be a fixed-point machine mode. The mode of x must be m or
VOIDmode.

(copysign:m x y)

Represents the value x with the sign of y. Both x and y must have floating
point machine mode m.

13.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 17.35 [Misc], page 701) if the relation holds, or zero if it does not, for
comparison operators whose results have a ‘MODE INT’ mode, FLOAT_STORE_FLAG_VALUE
(see Section 17.35 [Misc], page 701) if the relation holds, or zero if it does not, for comparison
operators that return floating-point values, and a vector of either VECTOR_STORE_FLAG_

VALUE (see Section 17.35 [Misc], page 701) if the relation holds, or of zeros if it does not, for
comparison operators that return vector results. The mode of the comparison operation is
independent of the mode of the data being compared. If the comparison operation is being
tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode.

A comparison operation compares two data objects. The mode of the comparison is
determined by the operands; they must both be valid for a common machine mode. A
comparison with both operands constant would be invalid as the machine mode could not
be deduced from it, but such a comparison should never exist in RTL due to constant
folding.

Chapter 13: RTL Representation 317

Usually only one style of comparisons is supported on a particular machine, but the
combine pass will try to merge operations to produce code like (eq x y), in case it exists
in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than −1 but
not unsigned greater-than, because −1 when regarded as unsigned is actually 0xffffffff

which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons
are distinguished by the machine modes of the operands.

(eq:m x y)

STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.

(ne:m x y)

STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

(gt:m x y)

STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-
parison is done in a signed sense.

(gtu:m x y)

Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:m x y)

(ltu:m x y)

Like gt and gtu but test for “less than”.

(ge:m x y)

(geu:m x y)

Like gt and gtu but test for “greater than or equal”.

(le:m x y)

(leu:m x y)

Like gt and gtu but test for “less than or equal”.

(if_then_else cond then else)

This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express condi-
tional jumps.

(cond [test1 value1 test2 value2 ...] default)

Similar to if_then_else, but more general. Each of test1, test2, . . . is per-
formed in turn. The result of this expression is the value corresponding to the
first nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 16.20 [Insn Attributes], page 499.

318 GNU Compiler Collection (GCC) Internals

13.11 Bit-Fields

Special expression codes exist to represent bit-field instructions.

(sign_extract:m loc size pos)

This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 16.10 [Standard Names], page 426) and is usually a full-word integer
mode, which is the default if none is specified.

The mode of pos is machine-specific and is also specified in the insv or extv
pattern.

The mode m is the same as the mode that would be used for loc if it were a
register.

A sign_extract cannot appear as an lvalue, or part thereof, in RTL.

(zero_extract:m loc size pos)

Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.

Unlike sign_extract, this type of expressions can be lvalues in RTL; they may
appear on the left side of an assignment, indicating insertion of a value into the
specified bit-field.

13.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe specific vector operations.

(vec_merge:m vec1 vec2 items)

This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vec1 or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vec1.

(vec_select:m vec1 selection)

This describes an operation that selects parts of a vector. vec1 is the source
vector, and selection is a parallel that contains a const_int (or another
expression, if the selection can be made at runtime) for each of the subparts
of the result vector, giving the number of the source subpart that should be
stored into it. The result mode m is either the submode for a single element of
vec1 (if only one subpart is selected), or another vector mode with that element
submode (if multiple subparts are selected).

Chapter 13: RTL Representation 319

(vec_concat:m x1 x2)

Describes a vector concat operation. The result is a concatenation of the vectors
or scalars x1 and x2; its length is the sum of the lengths of the two inputs.

(vec_duplicate:m x)

This operation converts a scalar into a vector or a small vector into a larger
one by duplicating the input values. The output vector mode must have the
same submodes as the input vector mode or the scalar modes, and the number
of output parts must be an integer multiple of the number of input parts.

(vec_series:m base step)

This operation creates a vector in which element i is equal to ‘base + i*step’.
m must be a vector integer mode.

13.13 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one
way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be VOIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)

Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)

Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)

Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)

Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)

Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.

320 GNU Compiler Collection (GCC) Internals

(us_truncate:m x)

Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)

Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)

Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)

Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x) When m is a floating-point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

When m is a fixed-point mode, represents the result of converting floating point
value x to modem, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)

Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fract_convert:m x)

Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, floating-point value x to fixed-
point mode m, fixed-point value x to integer mode m regarded as signed, or
fixed-point value x to floating-point mode m. When overflows or underflows
happen, the results are undefined.

(sat_fract:m x)

Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, or floating-point value x to fixed-
point mode m. When overflows or underflows happen, the results are saturated
to the maximum or the minimum.

(unsigned_fract_convert:m x)

Represents the result of converting fixed-point value x to integer mode m re-
garded as unsigned, or unsigned integer value x to fixed-point mode m. When
overflows or underflows happen, the results are undefined.

(unsigned_sat_fract:m x)

Represents the result of converting unsigned integer value x to fixed-point mode
m. When overflows or underflows happen, the results are saturated to the
maximum or the minimum.

Chapter 13: RTL Representation 321

13.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))

This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of modem, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is smaller than ‘REGMODE_NATURAL_SIZE (n)’.

13.15 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side effects on the state of
the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

(set lval x)

Represents the action of storing the value of x into the place represented by
lval. lval must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, or parallel.

If lval is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If lval is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if lval is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.

If lval is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.

If lval is a zero_extract, then the referenced part of the bit-field (a memory
or register reference) specified by the zero_extract is given the value x and
the rest of the bit-field is not changed. Note that sign_extract cannot appear
in lval.

If lval is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list

whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.

If lval is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an

322 GNU Compiler Collection (GCC) Internals

if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem

or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If lval is not (pc), the mode of lval must not be VOIDmode and the mode of x
must be valid for the mode of lval.

lval is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

(return) As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)

(return)), but the latter form is never used.

(simple_return)

Like (return), but truly represents only a function return, while (return)may
represent an insn that also performs other functions of the function epilogue.
Like (return), this may also occur in conditional jumps.

(call function nargs)

Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber

Chapter 13: RTL Representation 323

these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 16.4 [RTL Template],
page 371) expressions, the combiner phase can add the appropriate clobber

expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn if it is a hard register clobber. For pseudo-
register clobber, the register allocator and the reload pass do not assign the
same hard register to the clobber and the input operands if there is an insn al-
ternative containing the ‘&’ constraint (see Section 16.9.4 [Modifiers], page 390)
for the clobber and the hard register is in register classes of the clobber in the
alternative. You can clobber either a specific hard register, a pseudo register, or
a scratch expression; in the latter two cases, GCC will allocate a hard register
that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch

instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
. . .)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

(use x) Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel

to describe a situation where the value of a special register will modify the
behavior of the instruction. A hypothetical example might be a pattern for an
addition that can either wrap around or use saturating addition depending on
the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)

(reg:SI 4)] 0))

(use (reg:SI 1))])

324 GNU Compiler Collection (GCC) Internals

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘cpymemm’ or ‘call’ patterns.

During the reload phase, an insn that has a use as pattern can carry a reg equal
note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])

Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, x1 and so
on are individual side effect expressions—expressions of code set, call, return,
simple_return, clobber or use.

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))

(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (reg:CC CC_REG) (reg:SI 34))

(set (pc) (if_then_else

(eq (reg:CC CC_REG) (const_int 0))

(label_ref ...)

(pc)))])

But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is OK then because no further optimization remains to
be done.

Chapter 13: RTL Representation 325

(cond_exec [cond expr])

Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

(sequence [insns ...])

Represents a sequence of insns. If a sequence appears in the chain of insns, then
each of the insns that appears in the sequence must be suitable for appearing
in the chain of insns, i.e. must satisfy the INSN_P predicate.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 16.20.8 [Delay Slots], page 507.

Some back ends also use sequence objects for purposes other than delay-slot
groups. This is not supported in the common parts of the compiler, which treat
such sequences as delay-slot groups.

DWARF2 Call Frame Address (CFA) adjustments are sometimes also expressed
using sequence objects as the value of a RTX_FRAME_RELATED_P note. This only
happens if the CFA adjustments cannot be easily derived from the pattern of
the instruction to which the note is attached. In such cases, the value of the
note is used instead of best-guesing the semantics of the instruction. The back
end can attach notes containing a sequence of set patterns that express the
effect of the parent instruction.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)

Represents literal assembler code as described by the string s.

(unspec [operands ...] index)

(unspec_volatile [operands ...] index)

Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [lr0 lr1 ...])

Represents a table of jump addresses. The vector elements lr0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

326 GNU Compiler Collection (GCC) Internals

(addr_diff_vec:m base [lr0 lr1 ...] min max flags)

Represents a table of jump addresses expressed as offsets from base. The vector
elements lr0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rws locality cache)

Represents prefetch of memory at address addr. Operand rws is 0 if the prefetch
is for data to be read, 1 for being written; 2 if read shared; targets that do not
support write or read shared prefetches should treat this as a normal prefetch.
Operand locality specifies the amount of temporal locality; 0 if there is none or
1, 2, or 3 for increasing levels of temporal locality; targets that do not support
locality hints should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

13.16 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)

Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)

Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)

Represents the side effect of setting x to y and represents x before x is modified.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.

The expression y must be one of three forms: (plus:m x z), (minus:m x z),
or (plus:m x i), where z is an index register and i is a constant.

Chapter 13: RTL Representation 327

Here is an example of its use:

(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)

(reg:SI 48))))

This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)

Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns may
not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes
onto the stack. The ‘flow’ pass finds cases where registers are incremented or decremented
in one instruction and used as an address shortly before or after; these cases are then
transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

13.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:

(set rtx-for-outputvar

(asm_operands "foo %1,%2,%0" "a" 0

[rtx-for-addition-result rtx-for-*z]

[(asm_input:m1 "g")

(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains an asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
. . . for successive output operands.

328 GNU Compiler Collection (GCC) Internals

13.18 Variable Location Debug Information in RTL

Variable tracking relies on MEM_EXPR and REG_EXPR annotations to determine what user
variables memory and register references refer to.

Variable tracking at assignments uses these notes only when they refer to variables that
live at fixed locations (e.g., addressable variables, global non-automatic variables). For
variables whose location may vary, it relies on the following types of notes.

(var_location:mode var exp stat)

Binds variable var, a tree, to value exp, an RTL expression. It appears only in
NOTE_INSN_VAR_LOCATION and DEBUG_INSNs, with slightly different meanings.
mode, if present, represents the mode of exp, which is useful if it is a modeless
expression. stat is only meaningful in notes, indicating whether the variable is
known to be initialized or uninitialized.

(debug_expr:mode decl)

Stands for the value bound to the DEBUG_EXPR_DECL decl, that points back to
it, within value expressions in VAR_LOCATION nodes.

(debug_implicit_ptr:mode decl)

Stands for the location of a decl that is no longer addressable.

(entry_value:mode decl)

Stands for the value a decl had at the entry point of the containing function.

(debug_parameter_ref:mode decl)

Refers to a parameter that was completely optimized out.

(debug_marker:mode)

Marks a program location. With VOIDmode, it stands for the beginning of a
statement, a recommended inspection point logically after all prior side effects,
and before any subsequent side effects. With BLKmode, it indicates an inline
entry point: the lexical block encoded in the INSN_LOCATION is the enclosing
block that encloses the inlined function.

13.19 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)

Accesses the unique id of insn i.

Chapter 13: RTL Representation 329

PREV_INSN (i)

Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)

Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,

PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence

expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN

(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN

(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn

The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions to which pc can be set in
that instruction). If there is an instruction to return from the current function,
it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_

label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; other jump
target labels are recorded as REG_LABEL_TARGET notes. The exception is addr_
vec and addr_diff_vec, where JUMP_LABEL is NULL_RTX and the only way to
find the labels is to scan the entire body of the insn.

330 GNU Compiler Collection (GCC) Internals

Return insns count as jumps, but their JUMP_LABEL is RETURN or SIMPLE_

RETURN.

call_insn

The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use, clobber and sometimes
set expressions that denote hard registers and mems used or clobbered by the
called function.

A mem generally points to a stack slot in which arguments passed to the libcall by
reference (see Section 17.9.7 [Register Arguments], page 589) are stored. If the
argument is caller-copied (see Section 17.9.7 [Register Arguments], page 589),
the stack slot will be mentioned in clobber and use entries; if it’s callee-copied,
only a use will appear, and the mem may point to addresses that are not stack
slots.

Registers occurring inside a clobber in this list augment registers specified in
CALL_USED_REGISTERS (see Section 17.7.1 [Register Basics], page 556).

If the list contains a set involving two registers, it indicates that the function
returns one of its arguments. Such a set may look like a no-op if the same
register holds the argument and the return value.

code_label

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_

LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.

The field LABEL_NUSES is only defined once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.

The field LABEL_KIND differentiates four different types of labels: LABEL_

NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,

Chapter 13: RTL Representation 331

the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_

point, in final.cc.

To set the kind of a label, use the SET_LABEL_KIND macro.

jump_table_data

A jump_table_data insn is a placeholder for the jump-table data of a casesi

or tablejump insn. They are placed after a tablejump_p insn. A jump_table_

data insn is not part of a basic block but it is associated with the basic block
that ends with the tablejump_p insn. The PATTERN of a jump_table_data

is always either an addr_vec or an addr_diff_vec, and a jump_table_data

insn is always preceded by a code_label. The tablejump_p insn refers to that
code_label via its JUMP_LABEL.

barrier Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
fields.

note note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED

Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL

This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG

NOTE_INSN_EH_REGION_END

These types of notes indicate the position of the beginning and
end of a level of scoping for exception handling. NOTE_EH_HANDLER
identifies which region is associated with these notes.

332 GNU Compiler Collection (GCC) Internals

NOTE_INSN_FUNCTION_BEG

Appears at the start of the function body, after the function pro-
logue.

NOTE_INSN_VAR_LOCATION

This note is used to generate variable location debugging infor-
mation. It indicates that the user variable in its VAR_LOCATION

operand is at the location given in the RTL expression, or holds a
value that can be computed by evaluating the RTL expression from
that static point in the program up to the next such note for the
same user variable.

NOTE_INSN_BEGIN_STMT

This note is used to generate is_stmt markers in line number de-
bugging information. It indicates the beginning of a user statement.

NOTE_INSN_INLINE_ENTRY

This note is used to generate entry_pc for inlined subroutines in
debugging information. It indicates an inspection point at which
all arguments for the inlined function have been bound, and before
its first statement.

These codes are printed symbolically when they appear in debugging dumps.

debug_insn

The expression code debug_insn is used for pseudo-instructions that hold de-
bugging information for variable tracking at assignments (see -fvar-tracking-
assignments option). They are the RTL representation of GIMPLE_DEBUG state-
ments (Section 11.8.7 [GIMPLE_DEBUG], page 251), with a VAR_LOCATION operand
that binds a user variable tree to an RTL representation of the value in the
corresponding statement. A DEBUG_EXPR in it stands for the value bound to the
corresponding DEBUG_EXPR_DECL.

GIMPLE_DEBUG_BEGIN_STMT and GIMPLE_DEBUG_INLINE_ENTRY are expanded to
RTL as a DEBUG_INSN with a DEBUG_MARKER PATTERN; the difference is the RTL
mode: the former’s DEBUG_MARKER is VOIDmode, whereas the latter is BLKmode;
information about the inlined function can be taken from the lexical block
encoded in the INSN_LOCATION. These DEBUG_INSNs, that do not carry VAR_

LOCATION information, just DEBUG_MARKERs, can be detected by testing DEBUG_

MARKER_INSN_P, whereas those that do can be recognized as DEBUG_BIND_INSN_
P.

Throughout optimization passes, DEBUG_INSNs are not reordered with respect
to each other, particularly during scheduling. Binding information is kept in
pseudo-instruction form, so that, unlike notes, it gets the same treatment and
adjustments that regular instructions would. It is the variable tracking pass that
turns these pseudo-instructions into NOTE_INSN_VAR_LOCATION, NOTE_INSN_

BEGIN_STMT and NOTE_INSN_INLINE_ENTRY notes, analyzing control flow, value
equivalences and changes to registers and memory referenced in value expres-
sions, propagating the values of debug temporaries and determining expressions
that can be used to compute the value of each user variable at as many points
(ranges, actually) in the program as possible.

Chapter 13: RTL Representation 333

Unlike NOTE_INSN_VAR_LOCATION, the value expression in an INSN_VAR_

LOCATION denotes a value at that specific point in the program, rather than
an expression that can be evaluated at any later point before an overriding
VAR_LOCATION is encountered. E.g., if a user variable is bound to a REG

and then a subsequent insn modifies the REG, the note location would keep
mapping the user variable to the register across the insn, whereas the insn
location would keep the variable bound to the value, so that the variable
tracking pass would emit another location note for the variable at the point in
which the register is modified.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it
is the first insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, simple_return, asm_input,
asm_output, addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile,
parallel, cond_exec, or sequence. If it is a parallel, each element of the
parallel must be one these codes, except that parallel expressions cannot be
nested and addr_vec and addr_diff_vec are not permitted inside a parallel

expression.

INSN_CODE (i)

An integer that says which pattern in the machine description matches this
insn, or −1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains −1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the md file as some small positive or
negative offset from a named pattern.

REG_NOTES (i)

A list (chain of expr_list, insn_list and int_list expressions) giving mis-
cellaneous information about the insn. It is often information pertaining to the
registers used in this insn.

The REG_NOTES field of an insn is a chain that includes expr_list and int_list expres-
sions as well as insn_list expressions. There are several kinds of register notes, which are

334 GNU Compiler Collection (GCC) Internals

distinguished by the machine mode, which in a register note is really understood as being
an enum reg_note. The first operand op of the note is data whose meaning depends on the
kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED

The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG

The register op is known to have a nonnegative value when this insn is reached.
This is used by special looping instructions that terminate when the register
goes negative.

The REG_NONNEG note is added only to ‘doloop_end’ insns, if its pattern uses a
ge condition.

REG_LABEL_OPERAND

This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that refers to the operand as an
ordinary operand. The label may still eventually be a jump target, but if so in
an indirect jump in a subsequent insn. The presence of this note allows jump
optimization to be aware that op is, in fact, being used, and flow optimization
to build an accurate flow graph.

REG_LABEL_TARGET

This insn is a jump_insn but not an addr_vec or addr_diff_vec. It uses op,
a code_label as a direct or indirect jump target. Its purpose is similar to
that of REG_LABEL_OPERAND. This note is only present if the insn has multiple
targets; the last label in the insn (in the highest numbered insn-field) goes
into the JUMP_LABEL field and does not have a REG_LABEL_TARGET note. See
Section 13.19 [Insns], page 328.

Chapter 13: RTL Representation 335

REG_SETJMP

Appears attached to each CALL_INSN to setjmp or a related function.

The following notes describe attributes of outputs of an insn:

REG_EQUIV

REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part or zero_extract expression,
the note refers to the register that is contained in its first operand.

For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where
that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 17.9.6
[Stack Arguments], page 587.

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that

336 GNU Compiler Collection (GCC) Internals

are equivalent to a memory location throughout their entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_

EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the
first insn.

REG_DEP_TRUE

This indicates a true dependence (a read after write dependence).

REG_DEP_OUTPUT

This indicates an output dependence (a write after write dependence).

REG_DEP_ANTI

This indicates an anti dependence (a write after read dependence).

These notes describe information gathered from gcov profile data. They are stored in the
REG_NOTES field of an insn.

REG_BR_PROB

This is used to specify the ratio of branches to non-branches of a branch insn
according to the profile data. The note is represented as an int_list expression
whose integer value is an encoding of profile_probability type. profile_

probability provide member function from_reg_br_prob_note and to_reg_

br_prob_note to extract and store the probability into the RTL encoding.

REG_BR_PRED

These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR FLAG * values.

REG_FRAME_RELATED_EXPR

This is used on an RTX FRAME RELATED P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

The note REG_CALL_NOCF_CHECK is used in conjunction with the -fcf-

protection=branch option. The note is set if a nocf_check attribute is specified for a
function type or a pointer to function type. The note is stored in the REG_NOTES field of
an insn.

REG_CALL_NOCF_CHECK

Users have control through the nocf_check attribute to identify which calls to a
function should be skipped from control-flow instrumentation when the option
-fcf-protection=branch is specified. The compiler puts a REG_CALL_NOCF_

CHECK note on each CALL_INSN instruction that has a function type marked
with a nocf_check attribute.

Chapter 13: RTL Representation 337

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

13.20 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)

(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain
the return address. call_insn insns on these machines should have a body which is a
parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned in its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 17.7.1 [Register Basics], page 556) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

338 GNU Compiler Collection (GCC) Internals

13.21 On-the-Side SSA Form for RTL

The patterns of an individual RTL instruction describe which registers are inputs to that
instruction and which registers are outputs from that instruction. However, it is often useful
to know where the definition of a register input comes from and where the result of a register
output is used. One way of obtaining this information is to use the RTL SSA form, which
provides a Static Single Assignment representation of the RTL instructions.

The RTL SSA code is located in the rtl-ssa subdirectory of the GCC source tree. This
section only gives a brief overview of it; please see the comments in the source code for more
details.

13.21.1 Using RTL SSA in a pass

A pass that wants to use the RTL SSA form should start with the following:
#define INCLUDE_ALGORITHM

#define INCLUDE_FUNCTIONAL

#define INCLUDE_ARRAY

#include "config.h"

#include "system.h"

#include "coretypes.h"

#include "backend.h"

#include "rtl.h"

#include "df.h"

#include "rtl-ssa.h"

All the RTL SSA code is contained in the rtl_ssa namespace, so most passes will then
want to do:

using namespace rtl_ssa;

However, this is purely a matter of taste, and the examples in the rest of this section do
not require it.

The RTL SSA represention is an optional on-the-side feature that applies on top of
the normal RTL instructions. It is currently local to individual RTL passes and is not
maintained across passes.

However, in order to allow the RTL SSA information to be preserved across passes in
future, ‘crtl->ssa’ points to the current function’s SSA form (if any). Passes that want to
use the RTL SSA form should first do:

crtl->ssa = new rtl_ssa::function_info (fn);

where fn is the function that the pass is processing. (Passes that are using namespace

rtl_ssa do not need the ‘rtl_ssa::’.)

Once the pass has finished with the SSA form, it should do the following:
free_dominance_info (CDI_DOMINATORS);

if (crtl->ssa->perform_pending_updates ())

cleanup_cfg (0);

delete crtl->ssa;

crtl->ssa = nullptr;

The free_dominance_info call is necessary because dominance information is not cur-
rently maintained between RTL passes. The next two lines commit any changes to the RTL
instructions that were queued for later; see the comment above the declaration of perform_
pending_updates for details. The final two lines discard the RTL SSA form and free the
associated memory.

Chapter 13: RTL Representation 339

13.21.2 RTL SSA Instructions

RTL SSA instructions are represented by an rtl_ssa::insn_info. These instructions are
chained together in a single list that follows a reverse postorder (RPO) traversal of the
function. This means that if any path through the function can execute an instruction I1
and then later execute an instruction I2 for the first time, I1 appears before I2 in the list1.

Two RTL SSA instructions can be compared to find which instruction occurs earlier than
the other in the RPO. One way to do this is to use the C++ comparison operators, such as:

*insn1 < *insn2

Another way is to use the compare_with function:

insn1->compare_with (insn2)

This expression is greater than zero if insn1 comes after insn2 in the RPO, less than zero
if insn1 comes before insn2 in the RPO, or zero if insn1 and insn2 are the same. This order
is maintained even if instructions are added to the function or moved around.

The main purpose of rtl_ssa::insn_info is to hold SSA information about an instruc-
tion. However, it also caches certain properties of the instruction, such as whether it is an
inline assembly instruction, whether it has volatile accesses, and so on.

13.21.3 RTL SSA Basic Blocks

RTL SSA instructions (see Section 13.21.2 [RTL SSA Instructions], page 339) are organized
into basic blocks, with each block being represented by an rtl_ssa:bb_info. There is a
one-to-one mapping between these rtl_ssa:bb_info structures and the underlying CFG
basic_block structures (see Section 14.1 [Basic Blocks], page 349).

If a CFG basic block bb contains an RTL instruction insn, the RTL SSA represenation of
bb also contains an RTL SSA representation of insn2. Within RTL SSA, these instructions
are referred to as “real” instructions. These real instructions fall into two groups: debug
instructions and nondebug instructions. Only nondebug instructions should affect code
generation decisions.

In addition, each RTL SSA basic block has two “artificial” instructions: a “head” in-
struction that comes before all the real instructions and an “end” instruction that comes
after all real instructions. These instructions exist to represent things that are conceptually
defined or used at the start and end of a basic block. The instructions always exist, even if
they do not currently do anything.

Like instructions, these blocks are chained together in a reverse postorder. This list
includes the entry block (which always comes first) and the exit block (which always comes
last).

RTL SSA basic blocks are chained together into “extended basic blocks” (EBBs), repre-
sented by an rtl_ssa::ebb_info. Extended basic blocks contain one or more basic blocks.
They have the property that if a block bby comes immediately after a block bbx in an EBB,
then bby can only be reached by bbx; in other words, bbx is the sole predecessor of bby.

1 Note that this order is different from the order of the underlying RTL instructions, which follow machine
code order instead.

2 Note that this excludes non-instruction things like notes and barriers that also appear in the chain of
RTL instructions.

340 GNU Compiler Collection (GCC) Internals

Each extended basic block starts with an artificial “phi node” instruction. This instruc-
tion defines all phi nodes for the EBB (see Section 13.21.6 [RTL SSA Phi Nodes], page 341).
(Individual blocks in an EBB do not need phi nodes because their live values can only come
from one source.)

The contents of a function are therefore represented using a four-level hierarchy:

• functions (rtl_ssa::function_info), which contain . . .

• extended basic blocks (rtl_ssa::ebb_info), which contain . . .

• basic blocks (rtl_ssa::bb_info), which contain . . .

• instructions (rtl_ssa::insn_info)

In dumps, a basic block is identified as bbn, where n is the index of the associated CFG
basic_block structure. An EBB is in turn identified by the index of its first block. For
example, an EBB that contains ‘bb10’, bb5, bb6 and bb9 is identified as ebb10.

13.21.4 RTL SSA Resources

The RTL SSA form tracks two types of “resource”: registers and memory. Each hard and
pseudo register is a separate resource. Memory is a single unified resource, like it is in
GIMPLE (see Chapter 11 [GIMPLE], page 231).

Each resource has a unique identifier. The unique identifier for a register is simply its
register number. The unique identifier for memory is a special register number called MEM_

REGNO.

Since resource numbers so closely match register numbers, it is sometimes convenient to
refer to them simply as register numbers, or “regnos” for short. However, the RTL SSA
form also provides an abstraction of resources in the form of rtl_ssa::resource_info.
This is a lightweight class that records both the regno of a resource and the machine_mode
that the resource has (see Section 13.6 [Machine Modes], page 295). It has functions for
testing whether a resource is a register or memory. In principle it could be extended to
other kinds of resource in future.

13.21.5 RTL SSA Register and Memory Accesses

In the RTL SSA form, most reads or writes of a resource are represented as a rtl_

ssa::access_info3. These rtl_ssa::access_infos are organized into the following class
hierarchy:

rtl_ssa::access_info

|

+-- rtl_ssa::use_info

|

+-- rtl_ssa::def_info

|

+-- rtl_ssa::clobber_info

|

+-- rtl_ssa::set_info

|

+-- rtl_ssa::phi_info

3 The exceptions are call clobbers, which are generally represented separately. See the comment above
rtl_ssa::insn_info for details.

Chapter 13: RTL Representation 341

A rtl_ssa::use_info represents a read or use of a resource and a rtl_ssa::def_info

represents a write or definition of a resource. As in the main RTL representation, there are
two basic types of definition: clobbers and sets. The difference is that a clobber leaves the
register with an unspecified value that cannot be used or relied on by later instructions,
while a set leaves the register with a known value that later instructions could use if they
wanted to. A rtl_ssa::clobber_info represents a clobber and a rtl_ssa::set_info

represent a set.

Each rtl_ssa::use_info records which single rtl_ssa::set_info provides the value
of the resource; this is null if the resource is completely undefined at the point of use. Each
rtl_ssa::set_info in turn records all the rtl_ssa::use_infos that use its value.

If a value of a resource can come from multiple sources, a rtl_ssa::phi_info brings
those multiple sources together into a single definition (see Section 13.21.6 [RTL SSA Phi
Nodes], page 341).

13.21.6 RTL SSA Phi Nodes

If a resource is live on entry to an extended basic block and if the resource’s value can come
from multiple sources, the extended basic block has a “phi node” that collects together
these multiple sources. The phi node conceptually has one input for each incoming edge of
the extended basic block, with the input specifying the value of the resource on that edge.
For example, suppose a function contains the following RTL:

;; Basic block bb3

...

(set (reg:SI R1) (const_int 0)) ;; A

(set (pc) (label_ref bb5))

;; Basic block bb4

...

(set (reg:SI R1) (const_int 1)) ;; B

;; Fall through

;; Basic block bb5

;; preds: bb3, bb4

;; live in: R1 ...

(code_label bb5)

...

(set (reg:SI R2)

(plus:SI (reg:SI R1) ...)) ;; C

The value of R1 on entry to block 5 can come from either A or B. The extended basic
block that contains block 5 would therefore have a phi node with two inputs: the first input
would have the value of R1 defined by A and the second input would have the value of R1
defined by B. This phi node would then provide the value of R1 for C (assuming that R1
does not change again between the start of block 5 and C).

Since RTL is not a “native” SSA representation, these phi nodes simply collect together
definitions that already exist. Each input to a phi node for a resource R is itself a definition
of resource R (or is null if the resource is completely undefined for a particular incoming
edge). This is in contrast to a native SSA representation like GIMPLE, where the phi inputs
can be arbitrary expressions. As a result, RTL SSA phi nodes never involve “hidden” moves:
all moves are instead explicit.

342 GNU Compiler Collection (GCC) Internals

Phi nodes are represented as a rtl_ssa::phi_node. Each input to a phi node is repre-
sented as an rtl_ssa::use_info.

13.21.7 RTL SSA Access Lists

All the definitions of a resource are chained together in reverse postorder. In general, this
list can contain an arbitrary mix of both sets (rtl_ssa::set_info) and clobbers (rtl_
ssa::clobber_info). However, it is often useful to skip over all intervening clobbers of a
resource in order to find the next set. The list is constructed in such a way that this can
be done in amortized constant time.

All uses (rtl_ssa::use_info) of a given set are also chained together into a list. This
list of uses is divided into three parts:

1. uses by “real” nondebug instructions (see [real RTL SSA insns], page 339)

2. uses by real debug instructions

3. uses by phi nodes (see Section 13.21.6 [RTL SSA Phi Nodes], page 341)

The first and second parts individually follow reverse postorder. The third part has no
particular order.

The last use by a real nondebug instruction always comes earlier in the reverse postorder
than the next definition of the resource (if any). This means that the accesses follow a
linear sequence of the form:

• first definition of resource R

• first use by a real nondebug instruction of the first definition of resource R

• . . .

• last use by a real nondebug instruction of the first definition of resource R

• second definition of resource R

• first use by a real nondebug instruction of the second definition of resource R

• . . .

• last use by a real nondebug instruction of the second definition of resource R

• . . .

• last definition of resource R

• first use by a real nondebug instruction of the last definition of resource R

• . . .

• last use by a real nondebug instruction of the last definition of resource R

(Note that clobbers never have uses; only sets do.)

This linear view is easy to achieve when there is only a single definition of a resource,
which is commonly true for pseudo registers. However, things are more complex if code has
a structure like the following:

// ebb2, bb2

R = va; // A

if (...)

{

// ebb2, bb3

use1 (R); // B

...

Chapter 13: RTL Representation 343

R = vc; // C

}

else

{

// ebb4, bb4

use2 (R); // D

}

The list of accesses would begin as follows:

• definition of R by A

• use of A’s definition of R by B

• definition of R by C

The next access to R is in D, but the value of R that D uses comes from A rather than
C.

This is resolved by adding a phi node for ebb4. All inputs to this phi node have the
same value, which in the example above is A’s definition of R. In other circumstances, it
would not be necessary to create a phi node when all inputs are equal, so these phi nodes
are referred to as “degenerate” phi nodes.

The full list of accesses to R is therefore:

• definition of R by A

• use of A’s definition of R by B

• definition of R by C

• definition of R by ebb4’s phi instruction, with the input coming from A

• use of the ebb4’s R phi definition of R by B

Note that A’s definition is also used by ebb4’s phi node, but this use belongs to the third
part of the use list described above and so does not form part of the linear sequence.

It is possible to “look through” any degenerate phi to the ultimate definition using the
function look_through_degenerate_phi. Note that the input to a degenerate phi is never
itself provided by a degenerate phi.

At present, the SSA form takes this principle one step further and guarantees that, for
any given resource res, one of the following is true:

• The resource has a single definition def, which is not a phi node. Excluding uses of
undefined registers, all uses of res by real nondebug instructions use the value provided
by def.

• Excluding uses of undefined registers, all uses of res use values provided by definitions
that occur earlier in the same extended basic block. These definitions might come from
phi nodes or from real instructions.

13.21.8 Using the RTL SSA framework to change instructions

There are various routines that help to change a single RTL instruction or a group of RTL
instructions while keeping the RTL SSA form up-to-date. This section first describes the
process for changing a single instruction, then goes on to describe the differences when
changing multiple instructions.

344 GNU Compiler Collection (GCC) Internals

13.21.8.1 Changing One RTL SSA Instruction

Before making a change, passes should first use a statement like the following:

auto attempt = crtl->ssa->new_change_attempt ();

Here, attempt is an RAII object that should remain in scope for the entire change at-
tempt. It automatically frees temporary memory related to the changes when it goes out
of scope.

Next, the pass should create an rtl_ssa::insn_change object for the instruction that
it wants to change. This object specifies several things:

• what the instruction’s new list of uses should be (new_uses). By default this is the
same as the instruction’s current list of uses.

• what the instruction’s new list of definitions should be (new_defs). By default this is
the same as the instruction’s current list of definitions.

• where the instruction should be located (move_range). This is a range of instructions
after which the instruction could be placed, represented as an rtl_ssa::insn_range.
By default the instruction must remain at its current position.

If a pass was attempting to change all these properties of an instruction insn, it might
do something like this:

rtl_ssa::insn_change change (insn);

change.new_defs = ...;

change.new_uses = ...;

change.move_range = ...;

This rtl_ssa::insn_change only describes something that the pass might do; at this
stage, nothing has actually changed.

As noted above, the default move_range requires the instruction to remain where it is.
At the other extreme, it is possible to allow the instruction to move anywhere within its
extended basic block, provided that all the new uses and definitions can be performed at
the new location. The way to do this is:

change.move_range = insn->ebb ()->insn_range ();

In either case, the next step is to make sure that move range is consistent with the new
uses and definitions. The way to do this is:

if (!rtl_ssa::restrict_movement (change))

return false;

This function tries to limit move_range to a range of instructions at which new_uses

and new_defs can be correctly performed. It returns true on success or false if no suitable
location exists.

The pass should also tentatively change the pattern of the instruction to whatever form
the pass wants the instruction to have. This should use the facilities provided by recog.cc.
For example:

rtl_insn *rtl = insn->rtl ();

insn_change_watermark watermark;

validate_change (rtl, &PATTERN (rtl), new_pat, 1);

will tentatively replace insn’s pattern with new_pat.

These changes and the construction of the rtl_ssa::insn_change can happen in either
order or be interleaved.

Chapter 13: RTL Representation 345

After the tentative changes to the instruction are complete, the pass should check whether
the new pattern matches a target instruction or satisfies the requirements of an inline asm:

if (!rtl_ssa::recog (attempt, change))

return false;

This step might change the instruction pattern further in order to make it match. It
might also add new definitions or restrict the range of the move. For example, if the new
pattern did not match in its original form, but could be made to match by adding a clobber
of the flags register, rtl_ssa::recog will check whether the flags register is free at an
appropriate point. If so, it will add a clobber of the flags register to new_defs and restrict
move_range to the locations at which the flags register can be safely clobbered.

Even if the proposed new instruction is valid according to rtl_ssa::recog, the change
might not be worthwhile. For example, when optimizing for speed, the new instruction
might turn out to be slower than the original one. When optimizing for size, the new
instruction might turn out to be bigger than the original one.

Passes should check for this case using change_is_worthwhile. For example:

if (!rtl_ssa::change_is_worthwhile (change))

return false;

If the change passes this test too then the pass can perform the change using:

confirm_change_group ();

crtl->ssa->change_insn (change);

Putting all this together, the change has the following form:

auto attempt = crtl->ssa->new_change_attempt ();

rtl_ssa::insn_change change (insn);

change.new_defs = ...;

change.new_uses = ...;

change.move_range = ...;

if (!rtl_ssa::restrict_movement (change))

return false;

insn_change_watermark watermark;

// Use validate_change etc. to change INSN's pattern.

...

if (!rtl_ssa::recog (attempt, change)

|| !rtl_ssa::change_is_worthwhile (change))

return false;

confirm_change_group ();

crtl->ssa->change_insn (change);

13.21.8.2 Changing Multiple RTL SSA Instructions

The process for changing multiple instructions is similar to the process for changing single
instructions (see Section 13.21.8.1 [Changing One RTL SSA Instruction], page 344). The
pass should again start the change attempt with:

auto attempt = crtl->ssa->new_change_attempt ();

and keep attempt in scope for the duration of the change attempt. It should then
construct an rtl_ssa::insn_change for each change that it wants to make.

346 GNU Compiler Collection (GCC) Internals

After this, it should combine the changes into a sequence of rtl_ssa::insn_change

pointers. This sequence must be in reverse postorder; the instructions will remain strictly
in the order that the sequence specifies.

For example, if a pass is changing exactly two instructions, it might do:
rtl_ssa::insn_change *changes[] = { &change1, &change2 };

where change1’s instruction must come before change2’s. Alternatively, if the pass is
changing a variable number of instructions, it might build up the sequence in a vec<rtl_

ssa::insn_change *>.

By default, rtl_ssa::restrict_movement assumes that all instructions other than the
one passed to it will remain in their current positions and will retain their current uses
and definitions. When changing multiple instructions, it is usually more effective to ignore
the other instructions that are changing. The sequencing described above ensures that the
changing instructions remain in the correct order with respect to each other. The way to
do this is:

if (!rtl_ssa::restrict_movement (change, ignore_changing_insns (changes)))

return false;

Similarly, when rtl_ssa::restrict_movement is detecting whether a register can be
clobbered, it by default assumes that all other instructions will remain in their current
positions and retain their current form. It is again more effective to ignore changing in-
structions (which might, for example, no longer need to clobber the flags register). The way
to do this is:

if (!rtl_ssa::recog (attempt, change, ignore_changing_insns (changes)))

return false;

When changing multiple instructions, the important question is usually not whether each
individual change is worthwhile, but whether the changes as a whole are worthwhile. The
way to test this is:

if (!rtl_ssa::changes_are_worthwhile (changes))

return false;

The process for changing single instructions makes sure that one rtl_ssa::insn_change
in isolation is valid. But when changing multiple instructions, it is also necessary to test
whether the sequence as a whole is valid. For example, it might be impossible to satisfy all
of the move_ranges at once.

Therefore, once the pass has a sequence of changes that are individually correct, it should
use:

if (!crtl->ssa->verify_insn_changes (changes))

return false;

to check whether the sequence as a whole is valid. If all checks pass, the final step is:
confirm_change_group ();

crtl->ssa->change_insns (changes);

Putting all this together, the process for a two-instruction change is:
auto attempt = crtl->ssa->new_change_attempt ();

rtl_ssa::insn_change change1 (insn1);

change1.new_defs = ...;

change1.new_uses = ...;

change1.move_range = ...;

Chapter 13: RTL Representation 347

rtl_ssa::insn_change change2 (insn2);

change2.new_defs = ...;

change2.new_uses = ...;

change2.move_range = ...;

rtl_ssa::insn_change *changes[] = { &change1, &change2 };

auto ignore = ignore_changing_insns (changes);

if (!rtl_ssa::restrict_movement (change1, ignore)

|| !rtl_ssa::restrict_movement (change2, ignore))

return false;

insn_change_watermark watermark;

// Use validate_change etc. to change INSN1's and INSN2's patterns.

...

if (!rtl_ssa::recog (attempt, change1, ignore)

|| !rtl_ssa::recog (attempt, change2, ignore)

|| !rtl_ssa::changes_are_worthwhile (changes)

|| !crtl->ssa->verify_insn_changes (changes))

return false;

confirm_change_group ();

crtl->ssa->change_insns (changes);

13.22 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist
two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

• Each pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.

• For any symbolic label, there is only one symbol_ref object referring to it.

• All const_int expressions with equal values are shared.

• All const_poly_int expressions with equal modes and values are shared.

• There is only one pc expression.

• There is only one const_double expression with value 0 for each floating point mode.
Likewise for values 1 and 2.

• There is only one const_vector expression with value 0 for each vector mode, be it
an integer or a double constant vector.

• No label_ref or scratch appears in more than one place in the RTL structure; in
other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

• Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

348 GNU Compiler Collection (GCC) Internals

• When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

• No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

• During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl

in emit-rtl.cc, after which the above rules are guaranteed to be followed.

• During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

13.23 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is defined in read-rtl.cc. It is not available
in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data
structure, described in the files tree.h and tree.def. The documentation for this structure
(see Chapter 10 [GENERIC], page 179) is incomplete.

349

14 Control Flow Graph

A control flow graph (CFG) is a data structure built on top of the intermediate code
representation (the RTL or GIMPLE instruction stream) abstracting the control flow behavior
of a function that is being compiled. The CFG is a directed graph where the vertices
represent basic blocks and edges represent possible transfer of control flow from one basic
block to another. The data structures used to represent the control flow graph are defined
in basic-block.h.

In GCC, the representation of control flow is maintained throughout the compilation
process, from constructing the CFG early in pass_build_cfg to pass_free_cfg (see
passes.def). The CFG takes various different modes and may undergo extensive
manipulations, but the graph is always valid between its construction and its release. This
way, transfer of information such as data flow, a measured profile, or the loop tree, can be
propagated through the passes pipeline, and even from GIMPLE to RTL.

Often the CFG may be better viewed as integral part of instruction chain, than structure
built on the top of it. Updating the compiler’s intermediate representation for instructions
cannot be easily done without proper maintenance of the CFG simultaneously.

14.1 Basic Blocks

A basic block is a straight-line sequence of code with only one entry point and only one
exit. In GCC, basic blocks are represented using the basic_block data type.

Special basic blocks represent possible entry and exit points of a function. These blocks
are called ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR. These blocks do not contain any code.

The BASIC_BLOCK array contains all basic blocks in an unspecified order. Each basic_

block structure has a field that holds a unique integer identifier index that is the index of
the block in the BASIC_BLOCK array. The total number of basic blocks in the function is
n_basic_blocks. Both the basic block indices and the total number of basic blocks may
vary during the compilation process, as passes reorder, create, duplicate, and destroy basic
blocks. The index for any block should never be greater than last_basic_block. The
indices 0 and 1 are special codes reserved for ENTRY_BLOCK and EXIT_BLOCK, the indices of
ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR.

Two pointer members of the basic_block structure are the pointers next_bb and prev_

bb. These are used to keep doubly linked chain of basic blocks in the same order as the
underlying instruction stream. The chain of basic blocks is updated transparently by the
provided API for manipulating the CFG. The macro FOR_EACH_BB can be used to visit all
the basic blocks in lexicographical order, except ENTRY_BLOCK and EXIT_BLOCK. The macro
FOR_ALL_BB also visits all basic blocks in lexicographical order, including ENTRY_BLOCK and
EXIT_BLOCK.

The functions post_order_compute and inverted_post_order_compute can be used
to compute topological orders of the CFG. The orders are stored as vectors of basic block
indices. The BASIC_BLOCK array can be used to iterate each basic block by index. Dominator
traversals are also possible using dom_walker::walk. Given two basic blocks A and B, block
A dominates block B if A is always executed before B.

Each basic_block also contains pointers to the first instruction (the head) and the last
instruction (the tail) or end of the instruction stream contained in a basic block. In fact,

350 GNU Compiler Collection (GCC) Internals

since the basic_block data type is used to represent blocks in both major intermediate
representations of GCC (GIMPLE and RTL), there are pointers to the head and end of a
basic block for both representations, stored in intermediate representation specific data in
the il field of struct basic_block_def.

For RTL, these pointers are BB_HEAD and BB_END.

In the RTL representation of a function, the instruction stream contains not only the
“real” instructions, but also notes or insn notes (to distinguish them from reg notes). Any
function that moves or duplicates the basic blocks needs to take care of updating of these
notes. Many of these notes expect that the instruction stream consists of linear regions, so
updating can sometimes be tedious. All types of insn notes are defined in insn-notes.def.

In the RTL function representation, the instructions contained in a basic block always
follow a NOTE_INSN_BASIC_BLOCK, but zero or more CODE_LABEL nodes can precede the
block note. A basic block ends with a control flow instruction or with the last instruction
before the next CODE_LABEL or NOTE_INSN_BASIC_BLOCK. By definition, a CODE_LABEL

cannot appear in the middle of the instruction stream of a basic block.

In addition to notes, the jump table vectors are also represented as “pseudo-instructions”
inside the insn stream. These vectors never appear in the basic block and should always be
placed just after the table jump instructions referencing them. After removing the table-
jump it is often difficult to eliminate the code computing the address and referencing the
vector, so cleaning up these vectors is postponed until after liveness analysis. Thus the
jump table vectors may appear in the insn stream unreferenced and without any purpose.
Before any edge is made fall-thru, the existence of such construct in the way needs to be
checked by calling can_fallthru function.

For the GIMPLE representation, the PHI nodes and statements contained in a basic block
are in a gimple_seq pointed to by the basic block intermediate language specific pointers.
Abstract containers and iterators are used to access the PHI nodes and statements in a
basic blocks. These iterators are called GIMPLE statement iterators (GSIs). Grep for
^gsi in the various gimple-* and tree-* files. There is a gimple_stmt_iterator type for
iterating over all kinds of statement, and a gphi_iterator subclass for iterating over PHI
nodes. The following snippet will pretty-print all PHI nodes the statements of the current
function in the GIMPLE representation.

basic_block bb;

FOR_EACH_BB (bb)

{

gphi_iterator pi;

gimple_stmt_iterator si;

for (pi = gsi_start_phis (bb); !gsi_end_p (pi); gsi_next (&pi))

{

gphi *phi = pi.phi ();

print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);

}

for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))

{

gimple stmt = gsi_stmt (si);

print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);

}

}

Chapter 14: Control Flow Graph 351

14.2 Edges

Edges represent possible control flow transfers from the end of some basic block A to the
head of another basic block B. We say that A is a predecessor of B, and B is a successor
of A. Edges are represented in GCC with the edge data type. Each edge acts as a link
between two basic blocks: The src member of an edge points to the predecessor basic block
of the dest basic block. The members preds and succs of the basic_block data type
point to type-safe vectors of edges to the predecessors and successors of the block.

When walking the edges in an edge vector, edge iterators should be used. Edge iterators
are constructed using the edge_iterator data structure and several methods are available
to operate on them:

ei_start This function initializes an edge_iterator that points to the first edge in a
vector of edges.

ei_last This function initializes an edge_iterator that points to the last edge in a
vector of edges.

ei_end_p This predicate is true if an edge_iterator represents the last edge in an edge
vector.

ei_one_before_end_p

This predicate is true if an edge_iterator represents the second last edge in
an edge vector.

ei_next This function takes a pointer to an edge_iterator and makes it point to the
next edge in the sequence.

ei_prev This function takes a pointer to an edge_iterator and makes it point to the
previous edge in the sequence.

ei_edge This function returns the edge currently pointed to by an edge_iterator.

ei_safe_edge

This function returns the edge currently pointed to by an edge_iterator,
but returns NULL if the iterator is pointing at the end of the sequence. This
function has been provided for existing code makes the assumption that a NULL

edge indicates the end of the sequence.

The convenience macro FOR_EACH_EDGE can be used to visit all of the edges in a sequence
of predecessor or successor edges. It must not be used when an element might be removed
during the traversal, otherwise elements will be missed. Here is an example of how to use
the macro:

edge e;

edge_iterator ei;

FOR_EACH_EDGE (e, ei, bb->succs)

{

if (e->flags & EDGE_FALLTHRU)

break;

}

There are various reasons why control flow may transfer from one block to another. One
possibility is that some instruction, for example a CODE_LABEL, in a linearized instruction

352 GNU Compiler Collection (GCC) Internals

stream just always starts a new basic block. In this case a fall-thru edge links the basic
block to the first following basic block. But there are several other reasons why edges may
be created. The flags field of the edge data type is used to store information about the
type of edge we are dealing with. Each edge is of one of the following types:

jump No type flags are set for edges corresponding to jump instructions. These edges
are used for unconditional or conditional jumps and in RTL also for table jumps.
They are the easiest to manipulate as they may be freely redirected when the
flow graph is not in SSA form.

fall-thru Fall-thru edges are present in case where the basic block may continue exe-
cution to the following one without branching. These edges have the EDGE_

FALLTHRU flag set. Unlike other types of edges, these edges must come into
the basic block immediately following in the instruction stream. The function
force_nonfallthru is available to insert an unconditional jump in the case
that redirection is needed. Note that this may require creation of a new basic
block.

exception handling
Exception handling edges represent possible control transfers from a trapping
instruction to an exception handler. The definition of “trapping” varies. In
C++, only function calls can throw, but for Ada exceptions like division by zero
or segmentation fault are defined and thus each instruction possibly throwing
this kind of exception needs to be handled as control flow instruction. Exception
edges have the EDGE_ABNORMAL and EDGE_EH flags set.

When updating the instruction stream it is easy to change possibly trapping
instruction to non-trapping, by simply removing the exception edge. The op-
posite conversion is difficult, but should not happen anyway. The edges can be
eliminated via purge_dead_edges call.

In the RTL representation, a REG_EH_REGION note is attached to an instruction
that can throw an exception. The destination of the exception edge originating
at such an instruction is specified by the value of the REG_EH_REGION note. In
case of a trapping call the EDGE_ABNORMAL_CALL flag is set too. In the GIMPLE

representation, this extra flag is not set.

In the RTL representation, the predicate may_trap_p may be used to check
whether instruction still may trap or not. For the tree representation, the
tree_could_trap_p predicate is available, but this predicate only checks for
possible memory traps, as in dereferencing an invalid pointer location.

sibling calls
Sibling calls or tail calls terminate the function in a non-standard way and thus
an edge to the exit must be present. EDGE_SIBCALL and EDGE_ABNORMAL are
set in such case. These edges only exist in the RTL representation.

computed jumps
Computed jumps contain edges to all labels in the function referenced from
the code. All those edges have EDGE_ABNORMAL flag set. The edges used to
represent computed jumps often cause compile time performance problems,
since functions consisting of many taken labels and many computed jumps may

Chapter 14: Control Flow Graph 353

have very dense flow graphs, so these edges need to be handled with special
care. During the earlier stages of the compilation process, GCC tries to avoid
such dense flow graphs by factoring computed jumps. For example, given the
following series of jumps,

goto *x;

[...]

goto *x;

[...]

goto *x;

[...]

factoring the computed jumps results in the following code sequence which has
a much simpler flow graph:

goto y;

[...]

goto y;

[...]

goto y;

[...]

y:

goto *x;

However, the classic problem with this transformation is that it has a runtime
cost in there resulting code: An extra jump. Therefore, the computed jumps
are un-factored in the later passes of the compiler (in the pass called pass_

duplicate_computed_gotos). Be aware of that when you work on passes in
that area. There have been numerous examples already where the compile time
for code with unfactored computed jumps caused some serious headaches.

nonlocal goto handlers
GCC allows nested functions to return into caller using a goto to a label passed
to as an argument to the callee. The labels passed to nested functions contain
special code to cleanup after function call. Such sections of code are referred to
as “nonlocal goto receivers”. If a function contains such nonlocal goto receivers,
an edge from the call to the label is created with the EDGE_ABNORMAL and EDGE_

ABNORMAL_CALL flags set.

function entry points
By definition, execution of function starts at basic block 0, so there is always
an edge from the ENTRY_BLOCK_PTR to basic block 0. There is no GIMPLE

representation for alternate entry points at this moment. In RTL, alternate
entry points are specified by CODE_LABEL with LABEL_ALTERNATE_NAME defined.
This feature is currently used for multiple entry point prologues and is limited
to post-reload passes only. This can be used by back-ends to emit alternate
prologues for functions called from different contexts. In future full support for
multiple entry functions defined by Fortran 90 needs to be implemented.

354 GNU Compiler Collection (GCC) Internals

function exits
In the pre-reload representation a function terminates after the last instruction
in the insn chain and no explicit return instructions are used. This corresponds
to the fall-thru edge into exit block. After reload, optimal RTL epilogues are
used that use explicit (conditional) return instructions that are represented by
edges with no flags set.

14.3 Profile information

In many cases a compiler must make a choice whether to trade speed in one part of code
for speed in another, or to trade code size for code speed. In such cases it is useful to know
information about how often some given block will be executed. That is the purpose for
maintaining profile within the flow graph. GCC can handle profile information obtained
through profile feedback, but it can also estimate branch probabilities based on statics and
heuristics.

The feedback based profile is produced by compiling the program with instrumentation,
executing it on a train run and reading the numbers of executions of basic blocks and edges
back to the compiler while re-compiling the program to produce the final executable. This
method provides very accurate information about where a program spends most of its time
on the train run. Whether it matches the average run of course depends on the choice
of train data set, but several studies have shown that the behavior of a program usually
changes just marginally over different data sets.

When profile feedback is not available, the compiler may be asked to attempt to predict
the behavior of each branch in the program using a set of heuristics (see predict.def

for details) and compute estimated frequencies of each basic block by propagating the
probabilities over the graph.

Each basic_block contains two integer fields to represent profile information: frequency
and count. The frequency is an estimation how often is basic block executed within a
function. It is represented as an integer scaled in the range from 0 to BB_FREQ_BASE. The
most frequently executed basic block in function is initially set to BB_FREQ_BASE and the
rest of frequencies are scaled accordingly. During optimization, the frequency of the most
frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance
by cross-jumping optimization), so scaling sometimes has to be performed multiple times.

The count contains hard-counted numbers of execution measured during training runs
and is nonzero only when profile feedback is available. This value is represented as the
host’s widest integer (typically a 64 bit integer) of the special type gcov_type.

Most optimization passes can use only the frequency information of a basic block, but a
few passes may want to know hard execution counts. The frequencies should always match
the counts after scaling, however during updating of the profile information numerical error
may accumulate into quite large errors.

Each edge also contains a branch probability field: an integer in the range from 0 to
REG_BR_PROB_BASE. It represents probability of passing control from the end of the src

basic block to the dest basic block, i.e. the probability that control will flow along this
edge. The EDGE_FREQUENCY macro is available to compute how frequently a given edge is
taken. There is a count field for each edge as well, representing same information as for a
basic block.

Chapter 14: Control Flow Graph 355

The basic block frequencies are not represented in the instruction stream, but in the RTL
representation the edge frequencies are represented for conditional jumps (via the REG_BR_
PROB macro) since they are used when instructions are output to the assembly file and the
flow graph is no longer maintained.

The probability that control flow arrives via a given edge to its destination basic block
is called reverse probability and is not directly represented, but it may be easily computed
from frequencies of basic blocks.

Updating profile information is a delicate task that can unfortunately not be easily in-
tegrated with the CFG manipulation API. Many of the functions and hooks to modify
the CFG, such as redirect_edge_and_branch, do not have enough information to easily
update the profile, so updating it is in the majority of cases left up to the caller. It is
difficult to uncover bugs in the profile updating code, because they manifest themselves
only by producing worse code, and checking profile consistency is not possible because of
numeric error accumulation. Hence special attention needs to be given to this issue in each
pass that modifies the CFG.

It is important to point out that REG_BR_PROB_BASE and BB_FREQ_BASE are both set low
enough to be possible to compute second power of any frequency or probability in the flow
graph, it is not possible to even square the count field, as modern CPUs are fast enough to
execute 2^32 operations quickly.

14.4 Maintaining the CFG

An important task of each compiler pass is to keep both the control flow graph and all profile
information up-to-date. Reconstruction of the control flow graph after each pass is not an
option, since it may be very expensive and lost profile information cannot be reconstructed
at all.

GCC has two major intermediate representations, and both use the basic_block and
edge data types to represent control flow. Both representations share as much of the CFG
maintenance code as possible. For each representation, a set of hooks is defined so that
each representation can provide its own implementation of CFG manipulation routines when
necessary. These hooks are defined in cfghooks.h. There are hooks for almost all common
CFG manipulations, including block splitting and merging, edge redirection and creating
and deleting basic blocks. These hooks should provide everything you need to maintain and
manipulate the CFG in both the RTL and GIMPLE representation.

At the moment, the basic block boundaries are maintained transparently when modifying
instructions, so there rarely is a need to move them manually (such as in case someone wants
to output instruction outside basic block explicitly).

In the RTL representation, each instruction has a BLOCK_FOR_INSN value that represents
pointer to the basic block that contains the instruction. In the GIMPLE representation, the
function gimple_bb returns a pointer to the basic block containing the queried statement.

When changes need to be applied to a function in its GIMPLE representation, GIMPLE
statement iterators should be used. These iterators provide an integrated abstraction of
the flow graph and the instruction stream. Block statement iterators are constructed using
the gimple_stmt_iterator data structure and several modifiers are available, including
the following:

356 GNU Compiler Collection (GCC) Internals

gsi_start

This function initializes a gimple_stmt_iterator that points to the first non-
empty statement in a basic block.

gsi_last This function initializes a gimple_stmt_iterator that points to the last state-
ment in a basic block.

gsi_end_p

This predicate is true if a gimple_stmt_iterator represents the end of a basic
block.

gsi_next This function takes a gimple_stmt_iterator and makes it point to its succes-
sor.

gsi_prev This function takes a gimple_stmt_iterator and makes it point to its prede-
cessor.

gsi_insert_after

This function inserts a statement after the gimple_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

gsi_insert_before

This function inserts a statement before the gimple_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

gsi_remove

This function removes the gimple_stmt_iterator passed in and rechains the
remaining statements in a basic block, if any.

In the RTL representation, the macros BB_HEAD and BB_END may be used to get the head
and end rtx of a basic block. No abstract iterators are defined for traversing the insn chain,
but you can just use NEXT_INSN and PREV_INSN instead. See Section 13.19 [Insns], page 328.

Usually a code manipulating pass simplifies the instruction stream and the flow of control,
possibly eliminating some edges. This may for example happen when a conditional jump
is replaced with an unconditional jump. Updating of edges is not transparent and each
optimization pass is required to do so manually. However only few cases occur in practice.
The pass may call purge_dead_edges on a given basic block to remove superfluous edges,
if any.

Another common scenario is redirection of branch instructions, but this is best modeled as
redirection of edges in the control flow graph and thus use of redirect_edge_and_branch is
preferred over more low level functions, such as redirect_jump that operate on RTL chain
only. The CFG hooks defined in cfghooks.h should provide the complete API required for
manipulating and maintaining the CFG.

It is also possible that a pass has to insert control flow instruction into the middle of a
basic block, thus creating an entry point in the middle of the basic block, which is impossible
by definition: The block must be split to make sure it only has one entry point, i.e. the
head of the basic block. The CFG hook split_block may be used when an instruction in
the middle of a basic block has to become the target of a jump or branch instruction.

Chapter 14: Control Flow Graph 357

For a global optimizer, a common operation is to split edges in the flow graph and
insert instructions on them. In the RTL representation, this can be easily done using the
insert_insn_on_edge function that emits an instruction “on the edge”, caching it for a
later commit_edge_insertions call that will take care of moving the inserted instructions
off the edge into the instruction stream contained in a basic block. This includes the
creation of new basic blocks where needed. In the GIMPLE representation, the equivalent
functions are gsi_insert_on_edge which inserts a block statement iterator on an edge,
and gsi_commit_edge_inserts which flushes the instruction to actual instruction stream.

While debugging the optimization pass, the verify_flow_info function may be useful
to find bugs in the control flow graph updating code.

14.5 Liveness information

Liveness information is useful to determine whether some register is “live” at given point
of program, i.e. that it contains a value that may be used at a later point in the program.
This information is used, for instance, during register allocation, as the pseudo registers
only need to be assigned to a unique hard register or to a stack slot if they are live. The
hard registers and stack slots may be freely reused for other values when a register is dead.

Liveness information is available in the back end starting with pass_df_initialize and
ending with pass_df_finish. Three flavors of live analysis are available: With LR, it is
possible to determine at any point P in the function if the register may be used on some
path from P to the end of the function. With UR, it is possible to determine if there is a path
from the beginning of the function to P that defines the variable. LIVE is the intersection
of the LR and UR and a variable is live at P if there is both an assignment that reaches it
from the beginning of the function and a use that can be reached on some path from P to
the end of the function.

In general LIVE is the most useful of the three. The macros DF_[LR,UR,LIVE]_[IN,OUT]
can be used to access this information. The macros take a basic block number and return a
bitmap that is indexed by the register number. This information is only guaranteed to be
up to date after calls are made to df_analyze. See the file df-core.cc for details on using
the dataflow.

The liveness information is stored partly in the RTL instruction stream and partly in the
flow graph. Local information is stored in the instruction stream: Each instruction may
contain REG_DEAD notes representing that the value of a given register is no longer needed,
or REG_UNUSED notes representing that the value computed by the instruction is never used.
The second is useful for instructions computing multiple values at once.

359

15 Analysis and Representation of Loops

GCC provides extensive infrastructure for work with natural loops, i.e., strongly connected
components of CFG with only one entry block. This chapter describes representation of
loops in GCC, both on GIMPLE and in RTL, as well as the interfaces to loop-related
analyses (induction variable analysis and number of iterations analysis).

15.1 Loop representation

This chapter describes the representation of loops in GCC, and functions that can be used
to build, modify and analyze this representation. Most of the interfaces and data structures
are declared in cfgloop.h. Loop structures are analyzed and this information disposed or
updated at the discretion of individual passes. Still most of the generic CFG manipulation
routines are aware of loop structures and try to keep them up-to-date. By this means an
increasing part of the compilation pipeline is setup to maintain loop structure across passes
to allow attaching meta information to individual loops for consumption by later passes.

In general, a natural loop has one entry block (header) and possibly several back edges
(latches) leading to the header from the inside of the loop. Loops with several latches may
appear if several loops share a single header, or if there is a branching in the middle of the
loop. The representation of loops in GCC however allows only loops with a single latch.
During loop analysis, headers of such loops are split and forwarder blocks are created in
order to disambiguate their structures. Heuristic based on profile information and structure
of the induction variables in the loops is used to determine whether the latches correspond
to sub-loops or to control flow in a single loop. This means that the analysis sometimes
changes the CFG, and if you run it in the middle of an optimization pass, you must be
able to deal with the new blocks. You may avoid CFG changes by passing LOOPS_MAY_

HAVE_MULTIPLE_LATCHES flag to the loop discovery, note however that most other loop
manipulation functions will not work correctly for loops with multiple latch edges (the
functions that only query membership of blocks to loops and subloop relationships, or
enumerate and test loop exits, can be expected to work).

Body of the loop is the set of blocks that are dominated by its header, and reachable from
its latch against the direction of edges in CFG. The loops are organized in a containment
hierarchy (tree) such that all the loops immediately contained inside loop L are the children
of L in the tree. This tree is represented by the struct loops structure. The root of this
tree is a fake loop that contains all blocks in the function. Each of the loops is represented
in a struct loop structure. Each loop is assigned an index (num field of the struct loop

structure), and the pointer to the loop is stored in the corresponding field of the larray

vector in the loops structure. The indices do not have to be continuous, there may be
empty (NULL) entries in the larray created by deleting loops. Also, there is no guarantee
on the relative order of a loop and its subloops in the numbering. The index of a loop never
changes.

The entries of the larray field should not be accessed directly. The function get_loop

returns the loop description for a loop with the given index. number_of_loops function
returns number of loops in the function. To traverse all loops, use a range-based for loop
with class loops_list instance. The flags argument passed to the constructor function of
class loops_list is used to determine the direction of traversal and the set of loops visited.

360 GNU Compiler Collection (GCC) Internals

Each loop is guaranteed to be visited exactly once, regardless of the changes to the loop
tree, and the loops may be removed during the traversal. The newly created loops are never
traversed, if they need to be visited, this must be done separately after their creation.

Each basic block contains the reference to the innermost loop it belongs to (loop_father).
For this reason, it is only possible to have one struct loops structure initialized at the
same time for each CFG. The global variable current_loops contains the struct loops

structure. Many of the loop manipulation functions assume that dominance information is
up-to-date.

The loops are analyzed through loop_optimizer_init function. The argument of this
function is a set of flags represented in an integer bitmask. These flags specify what other
properties of the loop structures should be calculated/enforced and preserved later:

• LOOPS_MAY_HAVE_MULTIPLE_LATCHES: If this flag is set, no changes to CFG will be
performed in the loop analysis, in particular, loops with multiple latch edges will not
be disambiguated. If a loop has multiple latches, its latch block is set to NULL. Most
of the loop manipulation functions will not work for loops in this shape. No other flags
that require CFG changes can be passed to loop optimizer init.

• LOOPS_HAVE_PREHEADERS: Forwarder blocks are created in such a way that each loop
has only one entry edge, and additionally, the source block of this entry edge has only
one successor. This creates a natural place where the code can be moved out of the
loop, and ensures that the entry edge of the loop leads from its immediate super-loop.

• LOOPS_HAVE_SIMPLE_LATCHES: Forwarder blocks are created to force the latch block
of each loop to have only one successor. This ensures that the latch of the loop does
not belong to any of its sub-loops, and makes manipulation with the loops significantly
easier. Most of the loop manipulation functions assume that the loops are in this shape.
Note that with this flag, the “normal” loop without any control flow inside and with
one exit consists of two basic blocks.

• LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS: Basic blocks and edges in the strongly
connected components that are not natural loops (have more than one entry block) are
marked with BB_IRREDUCIBLE_LOOP and EDGE_IRREDUCIBLE_LOOP flags. The flag is
not set for blocks and edges that belong to natural loops that are in such an irreducible
region (but it is set for the entry and exit edges of such a loop, if they lead to/from
this region).

• LOOPS_HAVE_RECORDED_EXITS: The lists of exits are recorded and updated for each
loop. This makes some functions (e.g., get_loop_exit_edges) more efficient. Some
functions (e.g., single_exit) can be used only if the lists of exits are recorded.

These properties may also be computed/enforced later, using functions create_

preheaders, force_single_succ_latches, mark_irreducible_loops and
record_loop_exits. The properties can be queried using loops_state_satisfies_p.

The memory occupied by the loops structures should be freed with loop_optimizer_

finalize function. When loop structures are setup to be preserved across passes this
function reduces the information to be kept up-to-date to a minimum (only LOOPS_MAY_

HAVE_MULTIPLE_LATCHES set).

The CFG manipulation functions in general do not update loop structures. Specialized
versions that additionally do so are provided for the most common tasks. On GIMPLE,

Chapter 15: Analysis and Representation of Loops 361

cleanup_tree_cfg_loop function can be used to cleanup CFG while updating the loops
structures if current_loops is set.

At the moment loop structure is preserved from the start of GIMPLE loop optimizations
until the end of RTL loop optimizations. During this time a loop can be tracked by its
struct loop and number.

15.2 Loop querying

The functions to query the information about loops are declared in cfgloop.h. Some of
the information can be taken directly from the structures. loop_father field of each basic
block contains the innermost loop to that the block belongs. The most useful fields of loop
structure (that are kept up-to-date at all times) are:

• header, latch: Header and latch basic blocks of the loop.

• num_nodes: Number of basic blocks in the loop (including the basic blocks of the
sub-loops).

• outer, inner, next: The super-loop, the first sub-loop, and the sibling of the loop in
the loops tree.

There are other fields in the loop structures, many of them used only by some of the passes,
or not updated during CFG changes; in general, they should not be accessed directly.

The most important functions to query loop structures are:

• loop_depth: The depth of the loop in the loops tree, i.e., the number of super-loops
of the loop.

• flow_loops_dump: Dumps the information about loops to a file.

• verify_loop_structure: Checks consistency of the loop structures.

• loop_latch_edge: Returns the latch edge of a loop.

• loop_preheader_edge: If loops have preheaders, returns the preheader edge of a loop.

• flow_loop_nested_p: Tests whether loop is a sub-loop of another loop.

• flow_bb_inside_loop_p: Tests whether a basic block belongs to a loop (including its
sub-loops).

• find_common_loop: Finds the common super-loop of two loops.

• superloop_at_depth: Returns the super-loop of a loop with the given depth.

• tree_num_loop_insns, num_loop_insns: Estimates the number of insns in the loop,
on GIMPLE and on RTL.

• loop_exit_edge_p: Tests whether edge is an exit from a loop.

• mark_loop_exit_edges: Marks all exit edges of all loops with EDGE_LOOP_EXIT flag.

• get_loop_body, get_loop_body_in_dom_order, get_loop_body_in_bfs_order:
Enumerates the basic blocks in the loop in depth-first search order in reversed CFG,
ordered by dominance relation, and breath-first search order, respectively.

• single_exit: Returns the single exit edge of the loop, or NULL if the loop has more
than one exit. You can only use this function if LOOPS_HAVE_RECORDED_EXITS is used.

• get_loop_exit_edges: Enumerates the exit edges of a loop.

362 GNU Compiler Collection (GCC) Internals

• just_once_each_iteration_p: Returns true if the basic block is executed exactly
once during each iteration of a loop (that is, it does not belong to a sub-loop, and it
dominates the latch of the loop).

15.3 Loop manipulation

The loops tree can be manipulated using the following functions:

• flow_loop_tree_node_add: Adds a node to the tree.

• flow_loop_tree_node_remove: Removes a node from the tree.

• add_bb_to_loop: Adds a basic block to a loop.

• remove_bb_from_loops: Removes a basic block from loops.

Most low-level CFG functions update loops automatically. The following functions handle
some more complicated cases of CFG manipulations:

• remove_path: Removes an edge and all blocks it dominates.

• split_loop_exit_edge: Splits exit edge of the loop, ensuring that PHI node argu-
ments remain in the loop (this ensures that loop-closed SSA form is preserved). Only
useful on GIMPLE.

Finally, there are some higher-level loop transformations implemented. While some of
them are written so that they should work on non-innermost loops, they are mostly untested
in that case, and at the moment, they are only reliable for the innermost loops:

• create_iv: Creates a new induction variable. Only works on GIMPLE. standard_

iv_increment_position can be used to find a suitable place for the iv increment.

• duplicate_loop_body_to_header_edge, tree_duplicate_loop_body_to_header_

edge: These functions (on RTL and on GIMPLE) duplicate the body of the loop
prescribed number of times on one of the edges entering loop header, thus performing
either loop unrolling or loop peeling. can_duplicate_loop_p (can_unroll_loop_p
on GIMPLE) must be true for the duplicated loop.

• loop_version: This function creates a copy of a loop, and a branch before them
that selects one of them depending on the prescribed condition. This is useful for
optimizations that need to verify some assumptions in runtime (one of the copies of
the loop is usually left unchanged, while the other one is transformed in some way).

• tree_unroll_loop: Unrolls the loop, including peeling the extra iterations to make
the number of iterations divisible by unroll factor, updating the exit condition, and
removing the exits that now cannot be taken. Works only on GIMPLE.

15.4 Loop-closed SSA form

Throughout the loop optimizations on tree level, one extra condition is enforced on the
SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form
satisfying this condition is called “loop-closed SSA form” – LCSSA. To enforce LCSSA,
PHI nodes must be created at the exits of the loops for the SSA names that are used outside
of them. Only the real operands (not virtual SSA names) are held in LCSSA, in order to
save memory.

Chapter 15: Analysis and Representation of Loops 363

There are various benefits of LCSSA:

• Many optimizations (value range analysis, final value replacement) are interested in
the values that are defined in the loop and used outside of it, i.e., exactly those for that
we create new PHI nodes.

• In induction variable analysis, it is not necessary to specify the loop in that the analysis
should be performed – the scalar evolution analysis always returns the results with
respect to the loop in that the SSA name is defined.

• It makes updating of SSA form during loop transformations simpler. Without LCSSA,
operations like loop unrolling may force creation of PHI nodes arbitrarily far from
the loop, while in LCSSA, the SSA form can be updated locally. However, since we
only keep real operands in LCSSA, we cannot use this advantage (we could have local
updating of real operands, but it is not much more efficient than to use generic SSA
form updating for it as well; the amount of changes to SSA is the same).

However, it also means LCSSA must be updated. This is usually straightforward, unless
you create a new value in loop and use it outside, or unless you manipulate loop exit
edges (functions are provided to make these manipulations simple). rewrite_into_loop_
closed_ssa is used to rewrite SSA form to LCSSA, and verify_loop_closed_ssa to check
that the invariant of LCSSA is preserved.

15.5 Scalar evolutions

Scalar evolutions (SCEV) are used to represent results of induction variable analysis on
GIMPLE. They enable us to represent variables with complicated behavior in a simple and
consistent way (we only use it to express values of polynomial induction variables, but it
is possible to extend it). The interfaces to SCEV analysis are declared in tree-scalar-

evolution.h. To use scalar evolutions analysis, scev_initialize must be used. To stop
using SCEV, scev_finalize should be used. SCEV analysis caches results in order to save
time and memory. This cache however is made invalid by most of the loop transformations,
including removal of code. If such a transformation is performed, scev_reset must be
called to clean the caches.

Given an SSA name, its behavior in loops can be analyzed using the analyze_scalar_

evolution function. The returned SCEV however does not have to be fully analyzed
and it may contain references to other SSA names defined in the loop. To resolve these
(potentially recursive) references, instantiate_parameters or resolve_mixers functions
must be used. instantiate_parameters is useful when you use the results of SCEV only
for some analysis, and when you work with whole nest of loops at once. It will try replacing
all SSA names by their SCEV in all loops, including the super-loops of the current loop,
thus providing a complete information about the behavior of the variable in the loop nest.
resolve_mixers is useful if you work with only one loop at a time, and if you possibly need
to create code based on the value of the induction variable. It will only resolve the SSA
names defined in the current loop, leaving the SSA names defined outside unchanged, even
if their evolution in the outer loops is known.

The SCEV is a normal tree expression, except for the fact that it may contain several
special tree nodes. One of them is SCEV_NOT_KNOWN, used for SSA names whose value cannot
be expressed. The other one is POLYNOMIAL_CHREC. Polynomial chrec has three arguments –
base, step and loop (both base and step may contain further polynomial chrecs). Type of the

364 GNU Compiler Collection (GCC) Internals

expression and of base and step must be the same. A variable has evolution POLYNOMIAL_

CHREC(base, step, loop) if it is (in the specified loop) equivalent to x_1 in the following
example

while (...)

{

x_1 = phi (base, x_2);

x_2 = x_1 + step;

}

Note that this includes the language restrictions on the operations. For example, if we
compile C code and x has signed type, then the overflow in addition would cause undefined
behavior, and we may assume that this does not happen. Hence, the value with this SCEV
cannot overflow (which restricts the number of iterations of such a loop).

In many cases, one wants to restrict the attention just to affine induction variables.
In this case, the extra expressive power of SCEV is not useful, and may complicate the
optimizations. In this case, simple_iv function may be used to analyze a value – the result
is a loop-invariant base and step.

15.6 IV analysis on RTL

The induction variable on RTL is simple and only allows analysis of affine induction vari-
ables, and only in one loop at once. The interface is declared in cfgloop.h. Before analyz-
ing induction variables in a loop L, iv_analysis_loop_init function must be called on L.
After the analysis (possibly calling iv_analysis_loop_init for several loops) is finished,
iv_analysis_done should be called. The following functions can be used to access the
results of the analysis:

• iv_analyze: Analyzes a single register used in the given insn. If no use of the register
in this insn is found, the following insns are scanned, so that this function can be called
on the insn returned by get condition.

• iv_analyze_result: Analyzes result of the assignment in the given insn.

• iv_analyze_expr: Analyzes a more complicated expression. All its operands are ana-
lyzed by iv_analyze, and hence they must be used in the specified insn or one of the
following insns.

The description of the induction variable is provided in struct rtx_iv. In order to
handle subregs, the representation is a bit complicated; if the value of the extend field is
not UNKNOWN, the value of the induction variable in the i-th iteration is

delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),

with the following exception: if first_special is true, then the value in the first iteration
(when i is zero) is delta + mult * base. However, if extend is equal to UNKNOWN, then
first_special must be false, delta 0, mult 1 and the value in the i-th iteration is

subreg_{mode} (base + i * step)

The function get_iv_value can be used to perform these calculations.

15.7 Number of iterations analysis

Both on GIMPLE and on RTL, there are functions available to determine the number of
iterations of a loop, with a similar interface. The number of iterations of a loop in GCC

Chapter 15: Analysis and Representation of Loops 365

is defined as the number of executions of the loop latch. In many cases, it is not possible
to determine the number of iterations unconditionally – the determined number is correct
only if some assumptions are satisfied. The analysis tries to verify these conditions using
the information contained in the program; if it fails, the conditions are returned together
with the result. The following information and conditions are provided by the analysis:

• assumptions: If this condition is false, the rest of the information is invalid.

• noloop_assumptions on RTL, may_be_zero on GIMPLE: If this condition is true, the
loop exits in the first iteration.

• infinite: If this condition is true, the loop is infinite. This condition is only avail-
able on RTL. On GIMPLE, conditions for finiteness of the loop are included in
assumptions.

• niter_expr on RTL, niter on GIMPLE: The expression that gives number of iter-
ations. The number of iterations is defined as the number of executions of the loop
latch.

Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework
to be initialized (SCEV on GIMPLE, loop-iv on RTL). On GIMPLE, the results are stored
to struct tree_niter_desc structure. Number of iterations before the loop is exited
through a given exit can be determined using number_of_iterations_exit function. On
RTL, the results are returned in struct niter_desc structure. The corresponding function
is named check_simple_exit. There are also functions that pass through all the exits of
a loop and try to find one with easy to determine number of iterations – find_loop_niter

on GIMPLE and find_simple_exit on RTL. Finally, there are functions that provide the
same information, but additionally cache it, so that repeated calls to number of iterations
are not so costly – number_of_latch_executions on GIMPLE and get_simple_loop_

desc on RTL.

Note that some of these functions may behave slightly differently than others – some of
them return only the expression for the number of iterations, and fail if there are some
assumptions. The function number_of_latch_executions works only for single-exit loops.
The function number_of_cond_exit_executions can be used to determine number of ex-
ecutions of the exit condition of a single-exit loop (i.e., the number_of_latch_executions
increased by one).

On GIMPLE, below constraint flags affect semantics of some APIs of number of iterations
analyzer:

• LOOP_C_INFINITE: If this constraint flag is set, the loop is known to be infinite. APIs
like number_of_iterations_exit can return false directly without doing any analysis.

• LOOP_C_FINITE: If this constraint flag is set, the loop is known to be finite, in other
words, loop’s number of iterations can be computed with assumptions be true.

Generally, the constraint flags are set/cleared by consumers which are loop optimizers.
It’s also the consumers’ responsibility to set/clear constraints correctly. Failing to do that
might result in hard to track down bugs in scev/niter consumers. One typical use case is
vectorizer: it drives number of iterations analyzer by setting LOOP_C_FINITE and vectorizes
possibly infinite loop by versioning loop with analysis result. In return, constraints set by
consumers can also help number of iterations analyzer in following optimizers. For example,
niter of a loop versioned under assumptions is valid unconditionally.

366 GNU Compiler Collection (GCC) Internals

Other constraints may be added in the future, for example, a constraint indicating that
loops’ latch must roll thus may_be_zero would be false unconditionally.

15.8 Data Dependency Analysis

The code for the data dependence analysis can be found in tree-data-ref.cc and its in-
terface and data structures are described in tree-data-ref.h. The function that computes
the data dependences for all the array and pointer references for a given loop is compute_
data_dependences_for_loop. This function is currently used by the linear loop transform
and the vectorization passes. Before calling this function, one has to allocate two vectors:
a first vector will contain the set of data references that are contained in the analyzed loop
body, and the second vector will contain the dependence relations between the data refer-
ences. Thus if the vector of data references is of size n, the vector containing the dependence
relations will contain n*n elements. However if the analyzed loop contains side effects, such
as calls that potentially can interfere with the data references in the current analyzed loop,
the analysis stops while scanning the loop body for data references, and inserts a single
chrec_dont_know in the dependence relation array.

The data references are discovered in a particular order during the scanning of the loop
body: the loop body is analyzed in execution order, and the data references of each state-
ment are pushed at the end of the data reference array. Two data references syntactically
occur in the program in the same order as in the array of data references. This syntactic
order is important in some classical data dependence tests, and mapping this order to the
elements of this array avoids costly queries to the loop body representation.

Three types of data references are currently handled: ARRAY REF, INDIRECT REF
and COMPONENT REF. The data structure for the data reference is data_reference,
where data_reference_p is a name of a pointer to the data reference structure. The
structure contains the following elements:

• base_object_info: Provides information about the base object of the data reference
and its access functions. These access functions represent the evolution of the data
reference in the loop relative to its base, in keeping with the classical meaning of the
data reference access function for the support of arrays. For example, for a reference
a.b[i][j], the base object is a.b and the access functions, one for each array subscript,
are: {i_init, + i_step}_1, {j_init, +, j_step}_2.

• first_location_in_loop: Provides information about the first location accessed by
the data reference in the loop and about the access function used to represent evolution
relative to this location. This data is used to support pointers, and is not used for arrays
(for which we have base objects). Pointer accesses are represented as a one-dimensional
access that starts from the first location accessed in the loop. For example:

for1 i

for2 j

*((int *)p + i + j) = a[i][j];

The access function of the pointer access is {0, + 4B}_for2 relative to p + i. The access
functions of the array are {i_init, + i_step}_for1 and {j_init, +, j_step}_for2

relative to a.

Usually, the object the pointer refers to is either unknown, or we cannot prove that the
access is confined to the boundaries of a certain object.

Chapter 15: Analysis and Representation of Loops 367

Two data references can be compared only if at least one of these two representations
has all its fields filled for both data references.

The current strategy for data dependence tests is as follows: If both a and b are
represented as arrays, compare a.base_object and b.base_object; if they are equal,
apply dependence tests (use access functions based on base objects). Else if both a and
b are represented as pointers, compare a.first_location and b.first_location; if
they are equal, apply dependence tests (use access functions based on first location).
However, if a and b are represented differently, only try to prove that the bases are
definitely different.

• Aliasing information.

• Alignment information.

The structure describing the relation between two data references is data_dependence_
relation and the shorter name for a pointer to such a structure is ddr_p. This structure
contains:

• a pointer to each data reference,

• a tree node are_dependent that is set to chrec_known if the analysis has proved that
there is no dependence between these two data references, chrec_dont_know if the
analysis was not able to determine any useful result and potentially there could exist
a dependence between these data references, and are_dependent is set to NULL_TREE

if there exist a dependence relation between the data references, and the description
of this dependence relation is given in the subscripts, dir_vects, and dist_vects

arrays,

• a boolean that determines whether the dependence relation can be represented by a
classical distance vector,

• an array subscripts that contains a description of each subscript of the data references.
Given two array accesses a subscript is the tuple composed of the access functions for
a given dimension. For example, given A[f1][f2][f3] and B[g1][g2][g3], there are
three subscripts: (f1, g1), (f2, g2), (f3, g3).

• two arrays dir_vects and dist_vects that contain classical representations of the
data dependences under the form of direction and distance dependence vectors,

• an array of loops loop_nest that contains the loops to which the distance and direction
vectors refer to.

Several functions for pretty printing the information extracted by the data dependence
analysis are available: dump_ddrs prints with a maximum verbosity the details of a data
dependence relations array, dump_dist_dir_vectors prints only the classical distance and
direction vectors for a data dependence relations array, and dump_data_references prints
the details of the data references contained in a data reference array.

369

16 Machine Descriptions

A machine description has two parts: a file of instruction patterns (.md file) and a C header
file of macro definitions.

The .md file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

16.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:

1. The front end reads the source code and builds a parse tree.

2. The parse tree is used to generate an RTL insn list based on named instruction patterns.

3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_

insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names
it doesn’t know about, but if you don’t provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_

expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rearrange
the insns in the insn list. This is where the define_split and define_peephole patterns
get used, for example.

Finally, the insn list’s RTL is matched up with the RTL templates in the define_insn

patterns, and those patterns are used to emit the final assembly code. For this purpose,
each named define_insn acts like it’s unnamed, since the names are ignored.

16.2 Everything about Instruction Patterns

A define_insn expression is used to define instruction patterns to which insns may be
matched. A define_insn expression contains an incomplete RTL expression, with pieces
to be filled in later, operand constraints that restrict how the pieces can be filled in, and an
output template or C code to generate the assembler output.

A define_insn is an RTL expression containing four or five operands:

1. An optional name n. When a name is present, the compiler automically generates
a C++ function ‘gen_n’ that takes the operands of the instruction as arguments and

370 GNU Compiler Collection (GCC) Internals

returns the instruction’s rtx pattern. The compiler also assigns the instruction a unique
code ‘CODE_FOR_n’, with all such codes belonging to an enum called insn_code.

These names serve one of two purposes. The first is to indicate that the instruction
performs a certain standard job for the RTL-generation pass of the compiler, such as
a move, an addition, or a conditional jump. The second is to help the target generate
certain target-specific operations, such as when implementing target-specific intrinsic
functions.

It is better to prefix target-specific names with the name of the target, to avoid any
clash with current or future standard names.

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.

For the purpose of debugging the compiler, you may also specify a name beginning
with the ‘*’ character. Such a name is used only for identifying the instruction in RTL
dumps; it is equivalent to having a nameless pattern for all other purposes. Names
beginning with the ‘*’ character are not required to be unique.

The name may also have the form ‘@n’. This has the same effect as a name ‘n’, but
in addition tells the compiler to generate further helper functions; see Section 16.24.5
[Parameterized Names], page 526, for details.

2. The RTL template: This is a vector of incomplete RTL expressions which describe
the semantics of the instruction (see Section 16.4 [RTL Template], page 371). It is
incomplete because it may contain match_operand, match_operator, and match_dup

expressions that stand for operands of the instruction.

If the vector has multiple elements, the RTL template is treated as a parallel expres-
sion.

3. The condition: This is a string which contains a C expression. When the compiler
attempts to match RTL against a pattern, the condition is evaluated. If the condition
evaluates to true, the match is permitted. The condition may be an empty string,
which is treated as always true.

For a named pattern, the condition may not depend on the data in the insn being
matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands.

An instruction condition cannot become more restrictive as compilation progresses.
If the condition accepts a particular RTL instruction at one stage of compilation,
it must continue to accept that instruction until the final pass. For example,
‘!reload_completed’ and ‘can_create_pseudo_p ()’ are both invalid instruction
conditions, because they are true during the earlier RTL passes and false during the
later ones. For the same reason, if a condition accepts an instruction before register
allocation, it cannot later try to control register allocation by excluding certain
register or value combinations.

Chapter 16: Machine Descriptions 371

Although a condition cannot become more restrictive as compilation progresses, the
condition for a nameless pattern can become more permissive. For example, a nameless
instruction can require ‘reload_completed’ to be true, in which case it only matches
after register allocation.

4. The output template or output statement: This is either a string, or a fragment of C
code which returns a string.

When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 16.6 [Output Statement], page 376.

5. The insn attributes: This is an optional vector containing the values of attributes for
insns matching this pattern (see Section 16.20 [Insn Attributes], page 499).

16.3 Example of define_insn

Here is an example of an instruction pattern, taken from the machine description for the
68000/68020.

(define_insn "tstsi"

[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]

""

"*

{

if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))

return \"tstl %0\";

return \"cmpl #0,%0\";

}")

This can also be written using braced strings:
(define_insn "tstsi"

[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]

""

{

if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))

return "tstl %0";

return "cmpl #0,%0";

})

This describes an instruction which sets the condition codes based on the value of a
general operand. It has no condition, so any insn with an RTL description of the form
shown may be matched to this pattern. The name ‘tstsi’ means “test a SImode value”
and tells the RTL generation pass that, when it is necessary to test such a value, an insn
to do so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

‘"rm"’ is an operand constraint. Its meaning is explained below.

16.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how to
find their operands. For named patterns, the RTL template also says how to construct an
insn from specified operands.

372 GNU Compiler Collection (GCC) Internals

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)

This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,
any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.

predicate is a string that is the name of a function that accepts two arguments,
an expression and a machine mode. See Section 16.8 [Predicates], page 380.
During matching, the function will be called with the putative operand as the
expression and m as the mode argument (if m is not specified, VOIDmode will be
used, which normally causes predicate to accept any mode). If it returns zero,
this instruction pattern fails to match. predicate may be an empty string; then
it means no test is to be done on the operand, so anything which occurs in this
position is valid.

Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int

nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 16.9 [Constraints], page 385). If the
constraint would be an empty string, it can be omitted.

People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

(match_scratch:m n constraint)

This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.

When matching patterns, this is equivalent to

(match_operand:m n "scratch_operand" constraint)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 13.15 [Side Effects], page 321.

Chapter 16: Machine Descriptions 373

(match_dup n)

This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.

Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 16.9.1 [Simple Constraints], page 385)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for
the remainder pattern.

(match_operator:m n predicate [operands...])

This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.

Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:

int

commutative_operator (x, mode)

rtx x;

machine_mode mode;

{

enum rtx_code code = GET_CODE (x);

if (GET_MODE (x) != mode)

return 0;

return (GET_RTX_CLASS (code) == RTX_COMM_ARITH

|| code == EQ || code == NE);

}

Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"

[(match_operand:SI 1 "general_operand" "g")

(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands...] contains two patterns because the expressions
to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances

374 GNU Compiler Collection (GCC) Internals

of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.

The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.

There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

(match_op_dup:m n[operands...])

Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])

This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel

expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel

that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""

[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

Chapter 16: Machine Descriptions 375

(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))

(clobber (reg:SI 179))])]

""

"loadm 0,0,%1,%2")

This example comes from a29k.md. The function load_multiple_operation

is defined in a29k.c and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:
(parallel

[(set (reg:SI 20) (mem:SI (reg:SI 100)))

(use (reg:SI 179))

(clobber (reg:SI 179))

(set (reg:SI 21)

(mem:SI (plus:SI (reg:SI 100)

(const_int 4))))

(set (reg:SI 22)

(mem:SI (plus:SI (reg:SI 100)

(const_int 8))))])

(match_par_dup n [subpat...])

Like match_op_dup, but for match_parallel instead of match_operator.

16.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an
instruction pattern. Most of the template is a fixed string which is output literally. The
character ‘%’ is used to specify where to substitute an operand; it can also be used to identify
places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in
the string.

‘%’ followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

‘%cdigit’ can be used to substitute an operand that is a constant value without the
syntax that normally indicates an immediate operand.

‘%ndigit’ is like ‘%cdigit’ except that the value of the constant is negated before printing.

‘%adigit’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load
address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

‘%ldigit’ is used to substitute a label_ref into a jump instruction.

‘%=’ outputs a number which is unique to each instruction in the entire compilation. This
is useful for making local labels to be referred to more than once in a single template that
generates multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an
operand. Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other

376 GNU Compiler Collection (GCC) Internals

nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the in-
structions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘%.’ is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is a matching define_split already
defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

Note that # only has an effect while generating assembly code; it does not affect whether
a split occurs earlier. An associated define_split must exist and it must be suitable for
use after register allocation.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form
‘{option0|option1|option2}’ in the templates. These describe multiple variants of
assembler language syntax. See Section 17.22.7 [Instruction Output], page 672.

16.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for
all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 16.9.2 [Multi-Alternative],
page 389). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"

[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")

(match_operand:SI 2 "general_operand" "g,r")))]

""

"@

Chapter 16: Machine Descriptions 377

addr %2,%0

addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a
piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether
an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and
‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]

""

{

return (which_alternative == 0

? "clrreg %0" : "clrmem %0");

})

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been specified as follows, having the output control string start
with a ‘@’:

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]

""

"@

clrreg %0

clrmem %0")

If you just need a little bit of C code in one (or a few) alternatives, you can use ‘*’ inside
of a ‘@’ multi-alternative template:

378 GNU Compiler Collection (GCC) Internals

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,<,m")

(const_int 0))]

""

"@

clrreg %0

* return stack_mem_p (operands[0]) ? \"push 0\" : \"clrmem %0\";

clrmem %0")

16.7 Compact Syntax

When a define_insn or define_insn_and_split has multiple alternatives it may be ben-
eficial to use the compact syntax when specifying alternatives.

This syntax puts the constraints and attributes on the same horizontal line as the in-
struction assembly template.

As an example

(define_insn_and_split ""

[(set (match_operand:SI 0 "nonimmediate_operand" "=r,k,r,r,r,r")

(match_operand:SI 1 "aarch64_mov_operand" " r,r,k,M,n,Usv"))]

""

"@

mov\\t%w0, %w1

mov\\t%w0, %w1

mov\\t%w0, %w1

mov\\t%w0, %1

#

* return aarch64_output_sve_cnt_immediate ('cnt', '%x0', operands[1]);"

"&& true"

[(const_int 0)]

{

aarch64_expand_mov_immediate (operands[0], operands[1]);

DONE;

}

[(set_attr "type" "mov_reg,mov_reg,mov_reg,mov_imm,mov_imm,mov_imm")

(set_attr "arch" "*,*,*,*,*,sve")

(set_attr "length" "4,4,4,4,*, 4")

]

)

can be better expressed as:

Chapter 16: Machine Descriptions 379

(define_insn_and_split ""

[(set (match_operand:SI 0 "nonimmediate_operand")

(match_operand:SI 1 "aarch64_mov_operand"))]

""

{@ [cons: =0, 1; attrs: type, arch, length]

[r , r ; mov_reg , * , 4] mov\t%w0, %w1

[k , r ; mov_reg , * , 4] ^

[r , k ; mov_reg , * , 4] ^

[r , M ; mov_imm , * , 4] mov\t%w0, %1

[r , n ; mov_imm , * , *] #

[r , Usv; mov_imm , sve , 4] << aarch64_output_sve_cnt_immediate ("cnt", "%x0", operands[1]);

}

"&& true"

[(const_int 0)]

{

aarch64_expand_mov_immediate (operands[0], operands[1]);

DONE;

}

)

The syntax rules are as follows:

• Templates must start with ‘{@’ to use the new syntax.

• ‘{@’ is followed by a layout in square brackets which is ‘cons:’ followed by a comma-
separated list of match_operand/match_scratch operand numbers, then a semicolon,
followed by the same for attributes (‘attrs:’). Operand modifiers like = and + can
be placed before an operand number. Both sections are optional (so you can use only
‘cons’, or only ‘attrs’, or both), and ‘cons’ must come before ‘attrs’ if present.

• Each alternative begins with any amount of whitespace.

• Following the whitespace is a comma-separated list of "constraints" and/or "attributes"
within brackets [], with sections separated by a semicolon.

• Should you want to copy the previous asm line, the symbol ^ can be used. This allows
less copy pasting between alternative and reduces the number of lines to update on
changes.

• When using C functions for output, the idiom ‘* return function;’ can be replaced
with the shorthand ‘<< function;’.

• Following the closing ‘]’ is any amount of whitespace, and then the actual asm output.

• Spaces are allowed in the list (they will simply be removed).

• All constraint alternatives should be specified. For example, a list of of three blank
alternatives should be written ‘[,,]’ rather than ‘[]’.

• All attribute alternatives should be non-empty, with ‘*’ representing the default at-
tribute value. For example, a list of three default attribute values should be written
‘[*,*,*]’ rather than ‘[]’.

• Within an ‘{@’ block both multiline and singleline C comments are allowed, but when
used outside of a C block they must be the only non-whitespace blocks on the line.

• Within an ‘{@’ block, any iterators that do not get expanded will result in an error. If
for some reason it is required to have < or > in the output then these must be escaped
using ‘\’.

380 GNU Compiler Collection (GCC) Internals

• It is possible to use the ‘attrs’ list to specify some attributes and to use the normal
set_attr syntax to specify other attributes. There must not be any overlap between
the two lists.

In other words, the following is valid:

(define_insn_and_split ""

[(set (match_operand:SI 0 "nonimmediate_operand")

(match_operand:SI 1 "aarch64_mov_operand"))]

""

{@ [cons: 0, 1; attrs: type, arch, length]}

...

[(set_attr "foo" "mov_imm")]

)

but this is not valid:

(define_insn_and_split ""

[(set (match_operand:SI 0 "nonimmediate_operand")

(match_operand:SI 1 "aarch64_mov_operand"))]

""

{@ [cons: 0, 1; attrs: type, arch, length]}

...

[(set_attr "arch" "bar")

(set_attr "foo" "mov_imm")]

)

because it specifies arch twice.

16.8 Predicates

A predicate determines whether a match_operand or match_operator expression matches,
and therefore whether the surrounding instruction pattern will be used for that combination
of operands. GCC has a number of machine-independent predicates, and you can define
machine-specific predicates as needed. By convention, predicates used with match_operand

have names that end in ‘_operand’, and those used with match_operator have names that
end in ‘_operator’.

All predicates are boolean functions (in the mathematical sense) of two arguments: the
RTL expression that is being considered at that position in the instruction pattern, and
the machine mode that the match_operand or match_operator specifies. In this section,
the first argument is called op and the second argument mode. Predicates can be called
from C as ordinary two-argument functions; this can be useful in output templates or other
machine-specific code.

Operand predicates can allow operands that are not actually acceptable to the hard-
ware, as long as the constraints give reload the ability to fix them up (see Section 16.9
[Constraints], page 385). However, GCC will usually generate better code if the predicates
specify the requirements of the machine instructions as closely as possible. Reload cannot
fix up operands that must be constants (“immediate operands”); you must use a predicate
that allows only constants, or else enforce the requirement in the extra condition.

Most predicates handle their mode argument in a uniform manner. If mode is VOIDmode
(unspecified), then op can have any mode. If mode is anything else, then op must have the
same mode, unless op is a CONST_INT or integer CONST_DOUBLE. These RTL expressions
always have VOIDmode, so it would be counterproductive to check that their mode matches.

Chapter 16: Machine Descriptions 381

Instead, predicates that accept CONST_INT and/or integer CONST_DOUBLE check that the
value stored in the constant will fit in the requested mode.

Predicates with this behavior are called normal. genrecog can optimize the instruction
recognizer based on knowledge of how normal predicates treat modes. It can also diagnose
certain kinds of common errors in the use of normal predicates; for instance, it is almost
always an error to use a normal predicate without specifying a mode.

Predicates that do something different with their mode argument are called special. The
generic predicates address_operand and pmode_register_operand are special predicates.
genrecog does not do any optimizations or diagnosis when special predicates are used.

16.8.1 Machine-Independent Predicates

These are the generic predicates available to all back ends. They are defined in recog.cc.
The first category of predicates allow only constant, or immediate, operands.

[Function]immediate_operand
This predicate allows any sort of constant that fits in mode. It is an appropriate
choice for instructions that take operands that must be constant.

[Function]const_int_operand
This predicate allows any CONST_INT expression that fits inmode. It is an appropriate
choice for an immediate operand that does not allow a symbol or label.

[Function]const_double_operand
This predicate accepts any CONST_DOUBLE expression that has exactly mode. If mode
is VOIDmode, it will also accept CONST_INT. It is intended for immediate floating point
constants.

The second category of predicates allow only some kind of machine register.

[Function]register_operand
This predicate allows any REG or SUBREG expression that is valid for mode. It is often
suitable for arithmetic instruction operands on a RISC machine.

[Function]pmode_register_operand
This is a slight variant on register_operand which works around a limitation in the
machine-description reader.

(match_operand n "pmode_register_operand" constraint)

means exactly what
(match_operand:P n "register_operand" constraint)

would mean, if the machine-description reader accepted ‘:P’ mode suffixes. Unfor-
tunately, it cannot, because Pmode is an alias for some other mode, and might vary
with machine-specific options. See Section 17.35 [Misc], page 701.

[Function]scratch_operand
This predicate allows hard registers and SCRATCH expressions, but not pseudo-
registers. It is used internally by match_scratch; it should not be used
directly.

The third category of predicates allow only some kind of memory reference.

382 GNU Compiler Collection (GCC) Internals

[Function]memory_operand
This predicate allows any valid reference to a quantity of mode mode in memory,
as determined by the weak form of GO_IF_LEGITIMATE_ADDRESS (see Section 17.13
[Addressing Modes], page 616).

[Function]address_operand
This predicate is a little unusual; it allows any operand that is a valid expression
for the address of a quantity of mode mode, again determined by the weak form of
GO_IF_LEGITIMATE_ADDRESS. To first order, if ‘(mem:mode (exp))’ is acceptable to
memory_operand, then exp is acceptable to address_operand. Note that exp does
not necessarily have the mode mode.

[Function]indirect_operand
This is a stricter form of memory_operand which allows only memory references with
a general_operand as the address expression. New uses of this predicate are dis-
couraged, because general_operand is very permissive, so it’s hard to tell what an
indirect_operand does or does not allow. If a target has different requirements
for memory operands for different instructions, it is better to define target-specific
predicates which enforce the hardware’s requirements explicitly.

[Function]push_operand
This predicate allows a memory reference suitable for pushing a value onto the stack.
This will be a MEM which refers to stack_pointer_rtx, with a side effect in its address
expression (see Section 13.16 [Incdec], page 326); which one is determined by the
STACK_PUSH_CODE macro (see Section 17.9.1 [Frame Layout], page 574).

[Function]pop_operand
This predicate allows a memory reference suitable for popping a value off the stack.
Again, this will be a MEM referring to stack_pointer_rtx, with a side effect in its
address expression. However, this time STACK_POP_CODE is expected.

The fourth category of predicates allow some combination of the above operands.

[Function]nonmemory_operand
This predicate allows any immediate or register operand valid for mode.

[Function]nonimmediate_operand
This predicate allows any register or memory operand valid for mode.

[Function]general_operand
This predicate allows any immediate, register, or memory operand valid for mode.

Finally, there are two generic operator predicates.

[Function]comparison_operator
This predicate matches any expression which performs an arithmetic comparison in
mode; that is, COMPARISON_P is true for the expression code.

[Function]ordered_comparison_operator
This predicate matches any expression which performs an arithmetic comparison in
mode and whose expression code is valid for integer modes; that is, the expression
code will be one of eq, ne, lt, ltu, le, leu, gt, gtu, ge, geu.

Chapter 16: Machine Descriptions 383

16.8.2 Defining Machine-Specific Predicates

Many machines have requirements for their operands that cannot be expressed precisely
using the generic predicates. You can define additional predicates using define_predicate
and define_special_predicate expressions. These expressions have three operands:

• The name of the predicate, as it will be referred to in match_operand or match_

operator expressions.

• An RTL expression which evaluates to true if the predicate allows the operand op, false
if it does not. This expression can only use the following RTL codes:

MATCH_OPERAND

When written inside a predicate expression, a MATCH_OPERAND expression
evaluates to true if the predicate it names would allow op. The operand
number and constraint are ignored. Due to limitations in genrecog, you
can only refer to generic predicates and predicates that have already been
defined.

MATCH_CODE

This expression evaluates to true if op or a specified subexpression of op
has one of a given list of RTX codes.

The first operand of this expression is a string constant containing a
comma-separated list of RTX code names (in lower case). These are the
codes for which the MATCH_CODE will be true.

The second operand is a string constant which indicates what subexpres-
sion of op to examine. If it is absent or the empty string, op itself is
examined. Otherwise, the string constant must be a sequence of digits
and/or lowercase letters. Each character indicates a subexpression to ex-
tract from the current expression; for the first character this is op, for the
second and subsequent characters it is the result of the previous character.
A digit n extracts ‘XEXP (e, n)’; a letter l extracts ‘XVECEXP (e, 0, n)’
where n is the alphabetic ordinal of l (0 for ‘a’, 1 for ’b’, and so on). The
MATCH_CODE then examines the RTX code of the subexpression extracted
by the complete string. It is not possible to extract components of an
rtvec that is not at position 0 within its RTX object.

MATCH_TEST

This expression has one operand, a string constant containing a C expres-
sion. The predicate’s arguments, op and mode, are available with those
names in the C expression. The MATCH_TEST evaluates to true if the C
expression evaluates to a nonzero value. MATCH_TEST expressions must not
have side effects.

AND

IOR

NOT

IF_THEN_ELSE

The basic ‘MATCH_’ expressions can be combined using these logical opera-
tors, which have the semantics of the C operators ‘&&’, ‘||’, ‘!’, and ‘? :’

384 GNU Compiler Collection (GCC) Internals

respectively. As in Common Lisp, you may give an AND or IOR expres-
sion an arbitrary number of arguments; this has exactly the same effect as
writing a chain of two-argument AND or IOR expressions.

• An optional block of C code, which should execute ‘return true’ if the predicate is
found to match and ‘return false’ if it does not. It must not have any side effects.
The predicate arguments, op and mode, are available with those names.

If a code block is present in a predicate definition, then the RTL expression must
evaluate to true and the code block must execute ‘return true’ for the predicate to
allow the operand. The RTL expression is evaluated first; do not re-check anything in
the code block that was checked in the RTL expression.

The program genrecog scans define_predicate and define_special_predicate ex-
pressions to determine which RTX codes are possibly allowed. You should always make this
explicit in the RTL predicate expression, using MATCH_OPERAND and MATCH_CODE.

Here is an example of a simple predicate definition, from the IA64 machine description:

;; True if op is a SYMBOL_REF which refers to the sdata section.
(define_predicate "small_addr_symbolic_operand"

(and (match_code "symbol_ref")

(match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))

And here is another, showing the use of the C block.

;; True if op is a register operand that is (or could be) a GR reg.
(define_predicate "gr_register_operand"

(match_operand 0 "register_operand")

{

unsigned int regno;

if (GET_CODE (op) == SUBREG)

op = SUBREG_REG (op);

regno = REGNO (op);

return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));

})

Predicates written with define_predicate automatically include a test that mode is
VOIDmode, or op has the same mode as mode, or op is a CONST_INT or CONST_DOUBLE. They
do not check specifically for integer CONST_DOUBLE, nor do they test that the value of either
kind of constant fits in the requested mode. This is because target-specific predicates that
take constants usually have to do more stringent value checks anyway. If you need the
exact same treatment of CONST_INT or CONST_DOUBLE that the generic predicates provide,
use a MATCH_OPERAND subexpression to call const_int_operand, const_double_operand,
or immediate_operand.

Predicates written with define_special_predicate do not get any automatic mode
checks, and are treated as having special mode handling by genrecog.

The program genpreds is responsible for generating code to test predicates. It also writes
a header file containing function declarations for all machine-specific predicates. It is not
necessary to declare these predicates in cpu-protos.h.

Chapter 16: Machine Descriptions 385

16.9 Operand Constraints

Each match_operand in an instruction pattern can specify constraints for the operands
allowed. The constraints allow you to fine-tune matching within the set of operands allowed
by the predicate.

Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match. Side-effects aren’t allowed in operands of inline
asm, unless ‘<’ or ‘>’ constraints are used, because there is no guarantee that the side effects
will happen exactly once in an instruction that can update the addressing register.

16.9.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

‘m’ A memory operand is allowed, with any kind of address that the machine sup-
ports in general. Note that the letter used for the general memory constraint
can be re-defined by a back end using the TARGET_MEM_CONSTRAINT macro.

‘o’ A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed. In inline asm this constraint is only allowed if the
operand is used exactly once in an instruction that can handle the side effects.
Not using an operand with ‘<’ in constraint string in the inline asm pattern
at all or using it in multiple instructions isn’t valid, because the side effects

386 GNU Compiler Collection (GCC) Internals

wouldn’t be performed or would be performed more than once. Furthermore,
on some targets the operand with ‘<’ in constraint string must be accompanied
by special instruction suffixes like %U0 instruction suffix on PowerPC or %P0 on
IA-64.

‘>’ A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed. In inline asm the same restrictions as for ‘<’ ap-
ply.

‘r’ A register operand is allowed provided that it is in a general register.

‘{r}’ An operand is bound to hard register ‘r’ which may be any general, floating-
point, or vector register except a fixed register like a stack pointer register. The
set of fixed registers is target dependent.

‘i’ An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

‘n’ An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

‘F’ An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between −128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range −128 to 127”, and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

Chapter 16: Machine Descriptions 387

‘X’ Any operand whatsoever is allowed, even if it does not satisfy general_

operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the
RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

‘p’ An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

‘:’ This constraint, allowed only in input operands, says the inline asm pattern
defines specific function or variable symbol. The constraint shouldn’t be mixed
with other constraints on the same operand and the operand should be address
of a function or non-automatic variable. Best used with the ‘cc’ modifier when
printing the operand, so that even in position independent code it prints as a
label.

void foo (void);

asm (".globl %cc0; %cc0: ret" : : ":" (foo));

other-letters
Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’

388 GNU Compiler Collection (GCC) Internals

are defined on the 68000/68020 to stand for data, address and floating point
registers.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)

(match_operand:SI 1 "general_operand" "r")))]

""

"...")

which has two operands, one of which must appear in two places, and

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "r")))]

""

"...")

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)

the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an
add instruction; try other patterns”. The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it”. It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:

(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))

...)

(insn n n2 next

(set (reg:SI 3)

(plus:SI (reg:SI 3) (reg:SI 109)))

...)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.

• If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.

Chapter 16: Machine Descriptions 389

For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than
‘i’ will do; if the predicate is more selective, then the constraints may also be more
selective.

• Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

• A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care
of.

• A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

• If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

16.9.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative. All
operands for a single instruction must have the same number of alternatives. Here is how
it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"

[(set (match_operand:SI 0 "general_operand" "=m,d")

390 GNU Compiler Collection (GCC) Internals

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")

(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

...)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must
match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register)
for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘%’ in the constraints
apply to all the alternatives; their meaning is explained in a later section (see Section 16.9.4
[Modifiers], page 390).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

^ This constraint is analogous to ‘?’ but it disparages slightly the alternative only
if the operand with the ‘^’ needs a reload.

$ This constraint is analogous to ‘!’ but it disparages severely the alternative
only if the operand with the ‘$’ needs a reload.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,
which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 16.6 [Output Statement], page 376.

16.9.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

16.9.4 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is written to by this instruction: the previous value is
discarded and replaced by new data.

Chapter 16: Machine Descriptions 391

‘+’ Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to
know which operands are read by the instruction and which are written by it.
‘=’ identifies an operand which is only written; ‘+’ identifies an operand that is
both read and written; all other operands are assumed to only be read.

If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is written before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is read by the instruction
or as part of any memory address.

‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.

An operand which is read by the instruction can be tied to an earlyclobber
operand if its only use as an input occurs before the early result is written.
Adding alternatives of this form often allows GCC to produce better code when
only some of the read operands can be affected by the earlyclobber. See, for
example, the ‘mulsi3’ insn of the ARM.

Furthermore, if the earlyclobber operand is also a read/write operand, then
that operand is written only after it’s used.

‘&’ does not obviate the need to write ‘=’ or ‘+’. As earlyclobber operands
are always written, a read-only earlyclobber operand is ill-formed and will be
rejected by the compiler.

‘%’ Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. ‘%’ applies to
all alternatives and must appear as the first character in the constraint. Only
read-only operands can use ‘%’.

This is often used in patterns for addition instructions that really have only
two operands: the result must go in one of the arguments. Here for example,
is how the 68000 halfword-add instruction is defined:

(define_insn "addhi3"

[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")

(match_operand:HI 2 "general_operand" "di,g")))]

...)

GCC can only handle one commutative pair in an asm; if you use more, the
compiler may fail. Note that you need not use the modifier if the two alterna-
tives are strictly identical; this would only waste time in the reload pass. The
modifier is not operational after register allocation, so the result of define_
peephole2 and define_splits performed after reload cannot rely on ‘%’ to
make the intended insn match.

‘#’ Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

392 GNU Compiler Collection (GCC) Internals

‘*’ Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading. For LRA ‘*’ additionally disparages slightly the
alternative if the following character matches the operand.

Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"

[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI

(match_operand:HI 1 "general_operand" "0,g")))]

...)

‘-’ Says that the selected following constraints within the same alternative should
be matched differently. Normally in PIC code symbolic operands in constraints
like ‘i’, ‘s’ or ‘n’ are not allowed at all or severely restricted. The ‘-’ modifier,
which is only allowed outside of functions, allows symbolic operands even in
PIC code. This modifier is usually used together with the cc operand modifier.

extern void foo (void), bar (void);

int v;

extern int w;

asm (".globl %cc0, %cc2; .text; %cc0: call %cc1; ret; .data; %cc2: .word %cc3"

:: ":" (foo), "-s" (&bar), ":" (&w), "-i" (&v));

This asm declaration tells the compiler it defines function foo and variable w

and uses function bar and variable v. This will compile even with PIC, but
it is up to the user to ensure it will assemble correctly and have the expected
behavior.

16.9.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
respectively; see Section 16.9.1 [Simple Constraints], page 385), and ‘I’, usually the letter
indicating the most common immediate-constant format.

Each architecture defines additional constraints. These constraints are used by the com-
piler itself for instruction generation, as well as for asm statements; therefore, some of the
constraints are not particularly useful for asm. Here is a summary of some of the machine-
dependent constraints available on some particular machines; it includes both constraints
that are useful for asm and constraints that aren’t. The compiler source file mentioned in
the table heading for each architecture is the definitive reference for the meanings of that
architecture’s constraints.

AArch64 family—config/aarch64/constraints.md

k The stack pointer register (SP)

Chapter 16: Machine Descriptions 393

w Floating point register, Advanced SIMD vector register or SVE
vector register

x Like w, but restricted to registers 0 to 15 inclusive.

y Like w, but restricted to registers 0 to 7 inclusive.

Upl One of the low eight SVE predicate registers (P0 to P7)

Upa Any of the SVE predicate registers (P0 to P15)

I Integer constant that is valid as an immediate operand in an ADD

instruction

J Integer constant that is valid as an immediate operand in a SUB

instruction (once negated)

K Integer constant that can be used with a 32-bit logical instruction

L Integer constant that can be used with a 64-bit logical instruction

M Integer constant that is valid as an immediate operand in a 32-
bit MOV pseudo instruction. The MOV may be assembled to one of
several different machine instructions depending on the value

N Integer constant that is valid as an immediate operand in a 64-bit
MOV pseudo instruction

S An absolute symbolic address or a label reference

Y Floating point constant zero

Z Integer constant zero

Ush The high part (bits 12 and upwards) of the pc-relative address of a
symbol within 4GB of the instruction

Q A memory address which uses a single base register with no offset

Ump A memory address suitable for a load/store pair instruction in SI,
DI, SF and DF modes

AMD GCN —config/gcn/constraints.md

I Immediate integer in the range −16 to 64

J Immediate 16-bit signed integer

Kf Immediate constant −1

L Immediate 15-bit unsigned integer

A Immediate constant that can be inlined in an instruction encod-
ing: integer −16..64, or float 0.0, +/−0.5, +/−1.0, +/−2.0, +/−4.0,
1.0/(2.0*PI)

B Immediate 32-bit signed integer that can be attached to an instruc-
tion encoding

C Immediate 32-bit integer in range −16..4294967295 (i.e. 32-bit un-
signed integer or ‘A’ constraint)

394 GNU Compiler Collection (GCC) Internals

DA Immediate 64-bit constant that can be split into two ‘A’ constants

DB Immediate 64-bit constant that can be split into two ‘B’ constants

U Any unspec

Y Any symbol_ref or label_ref

v VGPR register

a Accelerator VGPR register (CDNA1 onwards)

Sg SGPR register

SD SGPR registers valid for instruction destinations, including VCC,
M0 and EXEC

SS SGPR registers valid for instruction sources, including VCC, M0,
EXEC and SCC

Sm SGPR registers valid as a source for scalar memory instructions
(excludes M0 and EXEC)

Sv SGPR registers valid as a source or destination for vector instruc-
tions (excludes EXEC)

ca All condition registers: SCC, VCCZ, EXECZ

cs Scalar condition register: SCC

cV Vector condition register: VCC, VCC LO, VCC HI

e EXEC register (EXEC LO and EXEC HI)

RB Memory operand with address space suitable for buffer_* instruc-
tions

RF Memory operand with address space suitable for flat_* instruc-
tions

RS Memory operand with address space suitable for s_* instructions

RL Memory operand with address space suitable for ds_* LDS instruc-
tions

RG Memory operand with address space suitable for ds_* GDS instruc-
tions

RD Memory operand with address space suitable for any ds_* instruc-
tions

RM Memory operand with address space suitable for global_* instruc-
tions

ARC —config/arc/constraints.md

q Registers usable in ARCompact 16-bit instructions: r0-r3, r12-
r15. This constraint can only match when the -mq option is in
effect.

Chapter 16: Machine Descriptions 395

e Registers usable as base-regs of memory addresses in ARCompact
16-bit memory instructions: r0-r3, r12-r15, sp. This constraint
can only match when the -mq option is in effect.

D ARC FPX (dpfp) 64-bit registers. D0, D1.

I A signed 12-bit integer constant.

Cal constant for arithmetic/logical operations. This might be any con-
stant that can be put into a long immediate by the assmbler or
linker without involving a PIC relocation.

K A 3-bit unsigned integer constant.

L A 6-bit unsigned integer constant.

CnL One’s complement of a 6-bit unsigned integer constant.

CmL Two’s complement of a 6-bit unsigned integer constant.

M A 5-bit unsigned integer constant.

O A 7-bit unsigned integer constant.

P A 8-bit unsigned integer constant.

H Any const double value.

ARM family—config/arm/constraints.md

h In Thumb state, the core registers r8-r15.

k The stack pointer register.

l In Thumb State the core registers r0-r7. In ARM state this is an
alias for the r constraint.

t VFP floating-point registers s0-s31. Used for 32 bit values.

w VFP floating-point registers d0-d31 and the appropriate subset d0-
d15 based on command line options. Used for 64 bit values only.
Not valid for Thumb1.

G The floating-point constant 0.0

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range −4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(‘‘m’’ is preferable for asm statements)

396 GNU Compiler Collection (GCC) Internals

R An item in the constant pool

S A symbol in the text segment of the current file

Uv A memory reference suitable for VFP load/store insns
(reg+constant offset)

Uq A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family—config/avr/constraints.md

l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in ‘adiw’
command

e Pointer register (r26–r31)

b Base pointer register (r28–r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than −1, less than 64

J Constant greater than −64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer −1

O Constant integer 8, 16, or 24

P Constant integer 1

G A floating point constant 0.0

Q A memory address based on Y or Z pointer with displacement.

Blackfin family—config/bfin/constraints.md

a P register

d D register

z A call clobbered P register.

qn A single register. If n is in the range 0 to 7, the corresponding D
register. If it is A, then the register P0.

Chapter 16: Machine Descriptions 397

D Even-numbered D register

W Odd-numbered D register

e Accumulator register.

A Even-numbered accumulator register.

B Odd-numbered accumulator register.

b I register

v B register

f M register

c Registers used for circular buffering, i.e. I, B, or L registers.

C The CC register.

t LT0 or LT1.

k LC0 or LC1.

u LB0 or LB1.

x Any D, P, B, M, I or L register.

y Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

w Any register except accumulators or CC.

Ksh Signed 16 bit integer (in the range −32768 to 32767)

Kuh Unsigned 16 bit integer (in the range 0 to 65535)

Ks7 Signed 7 bit integer (in the range −64 to 63)

Ku7 Unsigned 7 bit integer (in the range 0 to 127)

Ku5 Unsigned 5 bit integer (in the range 0 to 31)

Ks4 Signed 4 bit integer (in the range −8 to 7)

Ks3 Signed 3 bit integer (in the range −3 to 4)

Ku3 Unsigned 3 bit integer (in the range 0 to 7)

Pn Constant n, where n is a single-digit constant in the range 0 to 4.

PA An integer equal to one of the MACFLAG XXX constants that is
suitable for use with either accumulator.

PB An integer equal to one of the MACFLAG XXX constants that is
suitable for use only with accumulator A1.

M1 Constant 255.

M2 Constant 65535.

J An integer constant with exactly a single bit set.

L An integer constant with all bits set except exactly one.

398 GNU Compiler Collection (GCC) Internals

H

Q Any SYMBOL REF.

C-SKY—config/csky/constraints.md

a The mini registers r0 - r7.

b The low registers r0 - r15.

c C register.

y HI and LO registers.

l LO register.

h HI register.

v Vector registers.

z Stack pointer register (SP).

Q A memory address which uses a base register with a short offset or
with a index register with its scale.

W A memory address which uses a base register with a index register
with its scale.

The C-SKY back end supports a large set of additional constraints that are only
useful for instruction selection or splitting rather than inline asm, such as con-
straints representing constant integer ranges accepted by particular instruction
encodings. Refer to the source code for details.

Epiphany—config/epiphany/constraints.md

U16 An unsigned 16-bit constant.

K An unsigned 5-bit constant.

L A signed 11-bit constant.

Cm1 A signed 11-bit constant added to −1. Can only match when the
-m1reg-reg option is active.

Cl1 Left-shift of −1, i.e., a bit mask with a block of leading ones, the
rest being a block of trailing zeroes. Can only match when the
-m1reg-reg option is active.

Cr1 Right-shift of −1, i.e., a bit mask with a trailing block of ones, the
rest being zeroes. Or to put it another way, one less than a power
of two. Can only match when the -m1reg-reg option is active.

Cal Constant for arithmetic/logical operations. This is like i, except
that for position independent code, no symbols / expressions need-
ing relocations are allowed.

Csy Symbolic constant for call/jump instruction.

Rcs The register class usable in short insns. This is a register class
constraint, and can thus drive register allocation. This constraint
won’t match unless -mprefer-short-insn-regs is in effect.

Chapter 16: Machine Descriptions 399

Rsc The register class of registers that can be used to hold a sibcall call
address. I.e., a caller-saved register.

Rct Core control register class.

Rgs The register group usable in short insns. This constraint does not
use a register class, so that it only passively matches suitable reg-
isters, and doesn’t drive register allocation.

Car Constant suitable for the addsi3 r pattern. This is a valid offset
For byte, halfword, or word addressing.

Rra Matches the return address if it can be replaced with the link reg-
ister.

Rcc Matches the integer condition code register.

Sra Matches the return address if it is in a stack slot.

Cfm Matches control register values to switch fp mode, which are en-
capsulated in UNSPEC_FP_MODE.

FRV—config/frv/frv.h

a Register in the class ACC_REGS (acc0 to acc7).

b Register in the class EVEN_ACC_REGS (acc0 to acc7).

c Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).

d Register in the class GPR_REGS (gr0 to gr63).

e Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

f Register in the class FPR_REGS (fr0 to fr63).

h Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

l Register in the class LR_REG (the lr register).

q Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

t Register in the class ICC_REGS (icc0 to icc3).

u Register in the class FCC_REGS (fcc0 to fcc3).

v Register in the class ICR_REGS (cc4 to cc7).

w Register in the class FCR_REGS (cc0 to cc3).

x Register in the class QUAD_FPR_REGS (fr0 to fr63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

400 GNU Compiler Collection (GCC) Internals

z Register in the class SPR_REGS (lcr and lr).

A Register in the class QUAD_ACC_REGS (acc0 to acc7).

B Register in the class ACCG_REGS (accg0 to accg7).

C Register in the class CR_REGS (cc0 to cc7).

G Floating point constant zero

I 6-bit signed integer constant

J 10-bit signed integer constant

L 16-bit signed integer constant

M 16-bit unsigned integer constant

N 12-bit signed integer constant that is negative—i.e. in the range of
−2048 to −1

O Constant zero

P 12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.

FT32—config/ft32/constraints.md

A An absolute address

B An offset address

W A register indirect memory operand

e An offset address.

f An offset address.

O The constant zero or one

I A 16-bit signed constant (−32768 . . . 32767)

w A bitfield mask suitable for bext or bins

x An inverted bitfield mask suitable for bext or bins

L A 16-bit unsigned constant, multiple of 4 (0 . . . 65532)

S A 20-bit signed constant (−524288 . . . 524287)

b A constant for a bitfield width (1 . . . 16)

KA A 10-bit signed constant (−512 . . . 511)

Hewlett-Packard PA-RISC—config/pa/pa.h

a General register 1

f Floating point register

q Shift amount register

x Floating point register (deprecated)

Chapter 16: Machine Descriptions 401

y Upper floating point register (32-bit), floating point register (64-
bit)

Z Any register

I Signed 11-bit integer constant

J Signed 14-bit integer constant

K Integer constant that can be deposited with a zdepi instruction

L Signed 5-bit integer constant

M Integer constant 0

N Integer constant that can be loaded with a ldil instruction

O Integer constant whose value plus one is a power of 2

P Integer constant that can be used for and operations in depi and
extru instructions

S Integer constant 31

U Integer constant 63

G Floating-point constant 0.0

A A lo_sum data-linkage-table memory operand

Q A memory operand that can be used as the destination operand of
an integer store instruction

R A scaled or unscaled indexed memory operand

T A memory operand for floating-point loads and stores

W A register indirect memory operand

Intel IA-64—config/ia64/ia64.h

a General register r0 to r3 for addl instruction

b Branch register

c Predicate register (‘c’ as in “conditional”)

d Application register residing in M-unit

e Application register residing in I-unit

f Floating-point register

m Memory operand. If used together with ‘<’ or ‘>’, the operand can
have postincrement and postdecrement which require printing with
‘%Pn’ on IA-64.

G Floating-point constant 0.0 or 1.0

I 14-bit signed integer constant

J 22-bit signed integer constant

402 GNU Compiler Collection (GCC) Internals

K 8-bit signed integer constant for logical instructions

L 8-bit adjusted signed integer constant for compare pseudo-ops

M 6-bit unsigned integer constant for shift counts

N 9-bit signed integer constant for load and store postincrements

O The constant zero

P 0 or −1 for dep instruction

Q Non-volatile memory for floating-point loads and stores

R Integer constant in the range 1 to 4 for shladd instruction

S Memory operand except postincrement and postdecrement. This
is now roughly the same as ‘m’ when not used together with ‘<’ or
‘>’.

M32C—config/m32c/m32c.cc

Rsp

Rfb

Rsb ‘$sp’, ‘$fb’, ‘$sb’.

Rcr Any control register, when they’re 16 bits wide (nothing if control
registers are 24 bits wide)

Rcl Any control register, when they’re 24 bits wide.

R0w

R1w

R2w

R3w $r0, $r1, $r2, $r3.

R02 $r0 or $r2, or $r2r0 for 32 bit values.

R13 $r1 or $r3, or $r3r1 for 32 bit values.

Rdi A register that can hold a 64 bit value.

Rhl $r0 or $r1 (registers with addressable high/low bytes)

R23 $r2 or $r3

Raa Address registers

Raw Address registers when they’re 16 bits wide.

Ral Address registers when they’re 24 bits wide.

Rqi Registers that can hold QI values.

Rad Registers that can be used with displacements ($a0, $a1, $sb).

Rsi Registers that can hold 32 bit values.

Rhi Registers that can hold 16 bit values.

Rhc Registers chat can hold 16 bit values, including all control registers.

Chapter 16: Machine Descriptions 403

Rra $r0 through R1, plus $a0 and $a1.

Rfl The flags register.

Rmm The memory-based pseudo-registers $mem0 through $mem15.

Rpi Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).

Rpa Matches multiple registers in a PARALLEL to form a larger regis-
ter. Used to match function return values.

Is3 −8 . . . 7

IS1 −128 . . . 127

IS2 −32768 . . . 32767

IU2 0 . . . 65535

In4 −8 . . . −1 or 1 . . . 8

In5 −16 . . . −1 or 1 . . . 16

In6 −32 . . . −1 or 1 . . . 32

IM2 −65536 . . . −1

Ilb An 8 bit value with exactly one bit set.

Ilw A 16 bit value with exactly one bit set.

Sd The common src/dest memory addressing modes.

Sa Memory addressed using $a0 or $a1.

Si Memory addressed with immediate addresses.

Ss Memory addressed using the stack pointer ($sp).

Sf Memory addressed using the frame base register ($fb).

Ss Memory addressed using the small base register ($sb).

S1 $r1h

LoongArch—config/loongarch/constraints.md

f A floating-point or vector register (if available).

k A memory operand whose address is formed by a base register and
(optionally scaled) index register.

l A signed 16-bit constant.

m A memory operand whose address is formed by a base register
and offset that is suitable for use in instructions with the same
addressing mode as st.w and ld.w.

q A general-purpose register except for $r0 and $r1 (for the csrxchg
instruction)

I A signed 12-bit constant (for arithmetic instructions).

404 GNU Compiler Collection (GCC) Internals

K An unsigned 12-bit constant (for logic instructions).

M A constant that cannot be loaded using lui, addiu or ori.

N A constant in the range -65535 to -1 (inclusive).

O A signed 15-bit constant.

P A constant in the range 1 to 65535 (inclusive).

R An address that can be used in a non-macro load or store.

ZB An address that is held in a general-purpose register. The offset is
zero.

ZC A memory operand whose address is formed by a base register
and offset that is suitable for use in instructions with the same
addressing mode as ll.w and sc.w.

MicroBlaze—config/microblaze/constraints.md

d A general register (r0 to r31).

z A status register (rmsr, $fcc1 to $fcc7).

MIPS—config/mips/constraints.md

d A general-purpose register. This is equivalent to r unless generating
MIPS16 code, in which case the MIPS16 register set is used.

f A floating-point register (if available).

h Formerly the hi register. This constraint is no longer supported.

l The lo register. Use this register to store values that are no bigger
than a word.

x The concatenated hi and lo registers. Use this register to store
doubleword values.

c A register suitable for use in an indirect jump. This will always be
$25 for -mabicalls.

v Register $3. Do not use this constraint in new code; it is retained
only for compatibility with glibc.

y Equivalent to r; retained for backwards compatibility.

z A floating-point condition code register.

I A signed 16-bit constant (for arithmetic instructions).

J Integer zero.

K An unsigned 16-bit constant (for logic instructions).

L A signed 32-bit constant in which the lower 16 bits are zero. Such
constants can be loaded using lui.

M A constant that cannot be loaded using lui, addiu or ori.

N A constant in the range −65535 to −1 (inclusive).

Chapter 16: Machine Descriptions 405

O A signed 15-bit constant.

P A constant in the range 1 to 65535 (inclusive).

G Floating-point zero.

R An address that can be used in a non-macro load or store.

ZC A memory operand whose address is formed by a base register
and offset that is suitable for use in instructions with the same
addressing mode as ll and sc.

ZD An address suitable for a prefetch instruction, or for any other
instruction with the same addressing mode as prefetch.

Motorola 680x0—config/m68k/constraints.md

a Address register

d Data register

f 68881 floating-point register, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range −8 to −1

M Signed number whose magnitude is greater than 0x100

N Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate

O 16 (for rotate using swap)

P Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate

R Numbers that mov3q can handle

G Floating point constant that is not a 68881 constant

S Operands that satisfy ’m’ when -mpcrel is in effect

T Operands that satisfy ’s’ when -mpcrel is not in effect

Q Address register indirect addressing mode

U Register offset addressing

W const call operand

Cs symbol ref or const

Ci const int

C0 const int 0

Cj Range of signed numbers that don’t fit in 16 bits

Cmvq Integers valid for mvq

Capsw Integers valid for a moveq followed by a swap

406 GNU Compiler Collection (GCC) Internals

Cmvz Integers valid for mvz

Cmvs Integers valid for mvs

Ap push operand

Ac Non-register operands allowed in clr

Moxie—config/moxie/constraints.md

A An absolute address

B An offset address

W A register indirect memory operand

I A constant in the range of 0 to 255.

N A constant in the range of 0 to −255.

MSP430–config/msp430/constraints.md

R12 Register R12.

R13 Register R13.

K Integer constant 1.

L Integer constant -1^20..1^19.

M Integer constant 1-4.

Ya Memory references which do not require an extended MOVX in-
struction.

Yl Memory reference, labels only.

Ys Memory reference, stack only.

NDS32—config/nds32/constraints.md

w LOW register class $r0 to $r7 constraint for V3/V3M ISA.

l LOW register class $r0 to $r7.

d MIDDLE register class $r0 to $r11, $r16 to $r19.

h HIGH register class $r12 to $r14, $r20 to $r31.

t Temporary assist register $ta (i.e. $r15).

k Stack register $sp.

Iu03 Unsigned immediate 3-bit value.

In03 Negative immediate 3-bit value in the range of −7–0.

Iu04 Unsigned immediate 4-bit value.

Is05 Signed immediate 5-bit value.

Iu05 Unsigned immediate 5-bit value.

In05 Negative immediate 5-bit value in the range of −31–0.

Chapter 16: Machine Descriptions 407

Ip05 Unsigned immediate 5-bit value for movpi45 instruction with range
16–47.

Iu06 Unsigned immediate 6-bit value constraint for addri36.sp instruc-
tion.

Iu08 Unsigned immediate 8-bit value.

Iu09 Unsigned immediate 9-bit value.

Is10 Signed immediate 10-bit value.

Is11 Signed immediate 11-bit value.

Is15 Signed immediate 15-bit value.

Iu15 Unsigned immediate 15-bit value.

Ic15 A constant which is not in the range of imm15u but ok for bclr
instruction.

Ie15 A constant which is not in the range of imm15u but ok for bset
instruction.

It15 A constant which is not in the range of imm15u but ok for btgl
instruction.

Ii15 A constant whose compliment value is in the range of imm15u and
ok for bitci instruction.

Is16 Signed immediate 16-bit value.

Is17 Signed immediate 17-bit value.

Is19 Signed immediate 19-bit value.

Is20 Signed immediate 20-bit value.

Ihig The immediate value that can be simply set high 20-bit.

Izeb The immediate value 0xff.

Izeh The immediate value 0xffff.

Ixls The immediate value 0x01.

Ix11 The immediate value 0x7ff.

Ibms The immediate value with power of 2.

Ifex The immediate value with power of 2 minus 1.

U33 Memory constraint for 333 format.

U45 Memory constraint for 45 format.

U37 Memory constraint for 37 format.

OpenRISC—config/or1k/constraints.md

I Integer that is valid as an immediate operand in an instruction
taking a signed 16-bit number. Range −32768 to 32767.

408 GNU Compiler Collection (GCC) Internals

K Integer that is valid as an immediate operand in an instruction
taking an unsigned 16-bit number. Range 0 to 65535.

M Signed 16-bit constant shifted left 16 bits. (Used with l.movhi)

O Zero

c Register usable for sibcalls.

PDP-11—config/pdp11/constraints.md

a Floating point registers AC0 through AC3. These can be loaded
from/to memory with a single instruction.

d Odd numbered general registers (R1, R3, R5). These are used for
16-bit multiply operations.

D A memory reference that is encoded within the opcode, but not
auto-increment or auto-decrement.

f Any of the floating point registers (AC0 through AC5).

G Floating point constant 0.

h Floating point registers AC4 and AC5. These cannot be loaded
from/to memory with a single instruction.

I An integer constant that fits in 16 bits.

J An integer constant whose low order 16 bits are zero.

K An integer constant that does not meet the constraints for codes
‘I’ or ‘J’.

L The integer constant 1.

M The integer constant −1.

N The integer constant 0.

O Integer constants 0 through 3; shifts by these amounts are han-
dled as multiple single-bit shifts rather than a single variable-length
shift.

Q A memory reference which requires an additional word (address or
offset) after the opcode.

R A memory reference that is encoded within the opcode.

PowerPC and IBM RS6000—config/rs6000/constraints.md

r A general purpose register (GPR), r0. . .r31.

b A base register. Like r, but r0 is not allowed, so r1. . .r31.

f A floating point register (FPR), f0. . .f31.

d A floating point register. This is the same as f nowadays; his-
torically f was for single-precision and d was for double-precision
floating point.

Chapter 16: Machine Descriptions 409

v An Altivec vector register (VR), v0. . .v31.

wa A VSX register (VSR), vs0. . .vs63. This is either an FPR
(vs0. . .vs31 are f0. . .f31) or a VR (vs32. . .vs63 are v0. . .v31).

When using wa, you should use the %x output modifier, so that the
correct register number is printed. For example:

asm ("xvadddp %x0,%x1,%x2"

: "=wa" (v1)

: "wa" (v2), "wa" (v3));

You should not use %x for v operands:
asm ("xsaddqp %0,%1,%2"

: "=v" (v1)

: "v" (v2), "v" (v3));

h A special register (vrsave, ctr, or lr).

c The count register, ctr.

l The link register, lr.

x Condition register field 0, cr0.

y Any condition register field, cr0. . .cr7.

z The carry bit, XER[CA].

we Like wa, if this is a POWER9 or later and -mvsx and -m64 are used;
otherwise, NO_REGS.

wn No register (NO_REGS).

wr Like r, if -mpowerpc64 is used; otherwise, NO_REGS.

wx Like d, if -mpowerpc-gfxopt is used; otherwise, NO_REGS.

wA Like b, if -mpowerpc64 is used; otherwise, NO_REGS.

wB Signed 5-bit constant integer that can be loaded into an Altivec
register.

wE Vector constant that can be loaded with the XXSPLTIB instruc-
tion.

wF Memory operand suitable for power8 GPR load fusion.

wL Int constant that is the element number mfvsrld accesses in a vector.

wM Match vector constant with all 1’s if the XXLORC instruction is
available.

wO Memory operand suitable for the ISA 3.0 vector d-form instruc-
tions.

wQ Memory operand suitable for the load/store quad instructions.

wS Vector constant that can be loaded with XXSPLTIB & sign exten-
sion.

wY A memory operand for a DS-form instruction.

410 GNU Compiler Collection (GCC) Internals

wZ An indexed or indirect memory operand, ignoring the bottom 4
bits.

I A signed 16-bit constant.

J An unsigned 16-bit constant shifted left 16 bits (use L instead for
SImode constants).

K An unsigned 16-bit constant.

L A signed 16-bit constant shifted left 16 bits.

M An integer constant greater than 31.

N An exact power of 2.

O The integer constant zero.

P A constant whose negation is a signed 16-bit constant.

eI A signed 34-bit integer constant if prefixed instructions are sup-
ported.

eP A scalar floating point constant or a vector constant that can be
loaded to a VSX register with one prefixed instruction.

eQ An IEEE 128-bit constant that can be loaded into a VSX register
with the lxvkq instruction.

G A floating point constant that can be loaded into a register with
one instruction per word.

H A floating point constant that can be loaded into a register using
three instructions.

m A memory operand. Normally, m does not allow addresses that up-
date the base register. If the < or > constraint is also used, they are
allowed and therefore on PowerPC targets in that case it is only safe
to use m<> in an asm statement if that asm statement accesses the
operand exactly once. The asm statement must also use %U<opno>

as a placeholder for the “update” flag in the corresponding load or
store instruction. For example:

asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));

is correct but:
asm ("st %1,%0" : "=m<>" (mem) : "r" (val));

is not.

es A “stable” memory operand; that is, one which does not include
any automodification of the base register. This used to be useful
when m allowed automodification of the base register, but as those
are now only allowed when < or > is used, es is basically the same
as m without < and >.

Q A memory operand addressed by just a base register.

Y A memory operand for a DQ-form instruction.

Chapter 16: Machine Descriptions 411

Z A memory operand accessed with indexed or indirect addressing.

R An AIX TOC entry.

a An indexed or indirect address.

U A V.4 small data reference.

W A vector constant that does not require memory.

j The zero vector constant.

PRU—config/pru/constraints.md

I An unsigned 8-bit integer constant.

J An unsigned 16-bit integer constant.

L An unsigned 5-bit integer constant (for shift counts).

T A text segment (program memory) constant label.

Z Integer constant zero.

RL78—config/rl78/constraints.md

Int3 An integer constant in the range 1 . . . 7.

Int8 An integer constant in the range 0 . . . 255.

J An integer constant in the range −255 . . . 0

K The integer constant 1.

L The integer constant -1.

M The integer constant 0.

N The integer constant 2.

O The integer constant -2.

P An integer constant in the range 1 . . . 15.

Qbi The built-in compare types–eq, ne, gtu, ltu, geu, and leu.

Qsc The synthetic compare types–gt, lt, ge, and le.

Wab A memory reference with an absolute address.

Wbc A memory reference using BC as a base register, with an optional
offset.

Wca A memory reference using AX, BC, DE, or HL for the address, for
calls.

Wcv A memory reference using any 16-bit register pair for the address,
for calls.

Wd2 A memory reference using DE as a base register, with an optional
offset.

Wde A memory reference using DE as a base register, without any offset.

412 GNU Compiler Collection (GCC) Internals

Wfr Any memory reference to an address in the far address space.

Wh1 A memory reference using HL as a base register, with an optional
one-byte offset.

Whb A memory reference using HL as a base register, with B or C as the
index register.

Whl A memory reference using HL as a base register, without any offset.

Ws1 A memory reference using SP as a base register, with an optional
one-byte offset.

Y Any memory reference to an address in the near address space.

A The AX register.

B The BC register.

D The DE register.

R A through L registers.

S The SP register.

T The HL register.

Z08W The 16-bit R8 register.

Z10W The 16-bit R10 register.

Zint The registers reserved for interrupts (R24 to R31).

a The A register.

b The B register.

c The C register.

d The D register.

e The E register.

h The H register.

l The L register.

v The virtual registers.

w The PSW register.

x The X register.

RISC-V—config/riscv/constraints.md

f A floating-point register (if available).

I An I-type 12-bit signed immediate.

J Integer zero.

K A 5-bit unsigned immediate for CSR access instructions.

A An address that is held in a general-purpose register.

Chapter 16: Machine Descriptions 413

S A constraint that matches an absolute symbolic address.

vr A vector register (if available)..

vd A vector register, excluding v0 (if available).

vm A vector register, only v0 (if available).

cr RVC general purpose register (x8-x15).

cf RVC floating-point registers (f8-f15), if available, reuse GPR as
FPR when use zfinx.

cR Even-odd RVC general purpose register pair.

R Even-odd general purpose register pair.

RX—config/rx/constraints.md

Q An address which does not involve register indirect addressing or
pre/post increment/decrement addressing.

Symbol A symbol reference.

Int08 A constant in the range −256 to 255, inclusive.

Sint08 A constant in the range −128 to 127, inclusive.

Sint16 A constant in the range −32768 to 32767, inclusive.

Sint24 A constant in the range −8388608 to 8388607, inclusive.

Uint04 A constant in the range 0 to 15, inclusive.

S/390 and zSeries—config/s390/s390.h

a Address register (general purpose register except r0)

c Condition code register

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0–255)

J Unsigned 12-bit constant (0–4095)

K Signed 16-bit constant (−32768–32767)

L Value appropriate as displacement.

(0..4095)

for short displacement

(−524288..524287)
for long displacement

M Constant integer with a value of 0x7fffffff.

N Multiple letter constraint followed by 4 parameter letters.

0..9: number of the part counting from most to least signif-
icant

414 GNU Compiler Collection (GCC) Internals

H,Q: mode of the part

D,S,H: mode of the containing operand

0,F: value of the other parts (F—all bits set)

The constraint matches if the specified part of a constant has a
value different from its other parts.

Q Memory reference without index register and with short displace-
ment.

R Memory reference with index register and short displacement.

S Memory reference without index register but with long displace-
ment.

T Memory reference with index register and long displacement.

U Pointer with short displacement.

W Pointer with long displacement.

Y Shift count operand.

SPARC—config/sparc/sparc.h

f Floating-point register on the SPARC-V8 architecture and lower
floating-point register on the SPARC-V9 architecture.

e Floating-point register. It is equivalent to ‘f’ on the SPARC-V8
architecture and contains both lower and upper floating-point reg-
isters on the SPARC-V9 architecture.

c Floating-point condition code register.

d Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

b Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

h 64-bit global or out register for the SPARC-V8+ architecture.

C The constant all-ones, for floating-point.

A Signed 5-bit constant

D A vector constant

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

L A constant in the range supported by movcc instructions (11-bit
signed immediate)

Chapter 16: Machine Descriptions 415

M A constant in the range supported by movrcc instructions (10-bit
signed immediate)

N Same as ‘K’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘K’ for
modes wider than SImode

O The constant 4096

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

P The constant -1

Q Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved
into an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

W Memory address for ‘e’ constraint registers

w Memory address with only a base register

Y Vector zero

TI C6X family—config/c6x/constraints.md

a Register file A (A0–A31).

b Register file B (B0–B31).

A Predicate registers in register file A (A0–A2 on C64X and higher,
A1 and A2 otherwise).

B Predicate registers in register file B (B0–B2).

C A call-used register in register file B (B0–B9, B16–B31).

Da Register file A, excluding predicate registers (A3–A31, plus A0 if
not C64X or higher).

Db Register file B, excluding predicate registers (B3–B31).

Iu4 Integer constant in the range 0 . . . 15.

Iu5 Integer constant in the range 0 . . . 31.

In5 Integer constant in the range −31 . . . 0.

Is5 Integer constant in the range −16 . . . 15.

I5x Integer constant that can be the operand of an ADDA or a SUBA
insn.

IuB Integer constant in the range 0 . . . 65535.

416 GNU Compiler Collection (GCC) Internals

IsB Integer constant in the range −32768 . . . 32767.

IsC Integer constant in the range −220 . . . 220 − 1.

Jc Integer constant that is a valid mask for the clr instruction.

Js Integer constant that is a valid mask for the set instruction.

Q Memory location with A base register.

R Memory location with B base register.

S0 On C64x+ targets, a GP-relative small data reference.

S1 Any kind of SYMBOL_REF, for use in a call address.

Si Any kind of immediate operand, unless it matches the S0 con-
straint.

T Memory location with B base register, but not using a long offset.

W A memory operand with an address that cannot be used in an
unaligned access.

Z Register B14 (aka DP).

Visium—config/visium/constraints.md

b EAM register mdb

c EAM register mdc

f Floating point register

k Register for sibcall optimization

l General register, but not r29, r30 and r31

t Register r1

u Register r2

v Register r3

G Floating-point constant 0.0

J Integer constant in the range 0 .. 65535 (16-bit immediate)

K Integer constant in the range 1 .. 31 (5-bit immediate)

L Integer constant in the range −65535 .. −1 (16-bit negative imme-
diate)

M Integer constant −1

O Integer constant 0

P Integer constant 32

x86 family—config/i386/constraints.md

R Legacy register—the eight integer registers available on all i386
processors (a, b, c, d, si, di, bp, sp).

Chapter 16: Machine Descriptions 417

q Any register accessible as rl. In 32-bit mode, a, b, c, and d; in
64-bit mode, any integer register.

Q Any register accessible as rh: a, b, c, and d.

l Any register that can be used as the index in a base+index memory
access: that is, any general register except the stack pointer.

a The a register.

b The b register.

c The c register.

d The d register.

S The si register.

D The di register.

A The a and d registers. This class is used for instructions that re-
turn double word results in the ax:dx register pair. Single word
values will be allocated either in ax or dx. For example on i386 the
following implements rdtsc:

unsigned long long rdtsc (void)

{

unsigned long long tick;

__asm__ __volatile__("rdtsc":"=A"(tick));

return tick;

}

This is not correct on x86-64 as it would allocate tick in either ax
or dx. You have to use the following variant instead:

unsigned long long rdtsc (void)

{

unsigned int tickl, tickh;

__asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));

return ((unsigned long long)tickh << 32)|tickl;

}

U The call-clobbered integer registers.

f Any 80387 floating-point (stack) register.

t Top of 80387 floating-point stack (%st(0)).

u Second from top of 80387 floating-point stack (%st(1)).

Yk Any mask register that can be used as a predicate, i.e. k1-k7.

k Any mask register.

y Any MMX register.

x Any SSE register.

v Any EVEX encodable SSE register (%xmm0-%xmm31).

w Any bound register.

Yz First SSE register (%xmm0).

418 GNU Compiler Collection (GCC) Internals

Yi Any SSE register, when SSE2 and inter-unit moves are enabled.

Yj Any SSE register, when SSE2 and inter-unit moves from vector
registers are enabled.

Ym Any MMX register, when inter-unit moves are enabled.

Yn Any MMX register, when inter-unit moves from vector registers are
enabled.

Yp Any integer register when TARGET_PARTIAL_REG_STALL is disabled.

Ya Any integer register when zero extensions with AND are disabled.

Yb Any register that can be used as the GOT base when calling
___tls_get_addr: that is, any general register except a and sp

registers, for -fno-plt if linker supports it. Otherwise, b register.

Yf Any x87 register when 80387 floating-point arithmetic is enabled.

Yr Lower SSE register when avoiding REX prefix and all SSE registers
otherwise.

Yv For AVX512VL, any EVEX-encodable SSE register (%xmm0-
%xmm31), otherwise any SSE register.

Yh Any EVEX-encodable SSE register, that has number factor of four.

Bf Flags register operand.

Bg GOT memory operand.

Bm Vector memory operand.

Bc Constant memory operand.

Bn Memory operand without REX prefix.

Bs Sibcall memory operand.

Bw Call memory operand.

Bz Constant call address operand.

BC SSE constant -1 operand.

I Integer constant in the range 0 . . . 31, for 32-bit shifts.

J Integer constant in the range 0 . . . 63, for 64-bit shifts.

K Signed 8-bit integer constant.

L 0xFF or 0xFFFF, for andsi as a zero-extending move.

M 0, 1, 2, or 3 (shifts for the lea instruction).

N Unsigned 8-bit integer constant (for in and out instructions).

O Integer constant in the range 0 . . . 127, for 128-bit shifts.

G Standard 80387 floating point constant.

C SSE constant zero operand.

Chapter 16: Machine Descriptions 419

e 32-bit signed integer constant, or a symbolic reference known to
fit that range (for immediate operands in sign-extending x86-64
instructions).

We 32-bit signed integer constant, or a symbolic reference known to fit
that range (for sign-extending conversion operations that require
non-VOIDmode immediate operands).

Wz 32-bit unsigned integer constant, or a symbolic reference known to
fit that range (for zero-extending conversion operations that require
non-VOIDmode immediate operands).

Wd 128-bit integer constant where both the high and low 64-bit word
satisfy the e constraint.

Ws A symbolic reference or label reference. You can use the %pmodifier
to print the raw symbol.

Z 32-bit unsigned integer constant, or a symbolic reference known to
fit that range (for immediate operands in zero-extending x86-64
instructions).

Tv VSIB address operand.

Ts Address operand without segment register.

Xstormy16—config/stormy16/stormy16.h

a Register r0.

b Register r1.

c Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and r1.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between −255 and 0 inclusive.

N A constant between −3 and 0 inclusive.

O A constant between 1 and 4 inclusive.

P A constant between −4 and −1 inclusive.

Q A memory reference that is a stack push.

420 GNU Compiler Collection (GCC) Internals

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known
value.

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Z The constant 0.

Xtensa—config/xtensa/constraints.md

a General-purpose 32-bit register

b One-bit boolean register

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVI instructions

J Signed 8-bit integer constant, for use in ADDI instructions

K Integer constant valid for BccI instructions

L Unsigned constant valid for BccUI instructions

16.9.6 Disable insn alternatives using the enabled attribute

There are three insn attributes that may be used to selectively disable instruction alterna-
tives:

enabled Says whether an alternative is available on the current subtarget.

preferred_for_size

Says whether an enabled alternative should be used in code that is optimized
for size.

preferred_for_speed

Says whether an enabled alternative should be used in code that is optimized
for speed.

All these attributes should use (const_int 1) to allow an alternative or (const_int 0)

to disallow it. The attributes must be a static property of the subtarget; they cannot for
example depend on the current operands, on the current optimization level, on the location
of the insn within the body of a loop, on whether register allocation has finished, or on the
current compiler pass.

The enabled attribute is a correctness property. It tells GCC to act as though the
disabled alternatives were never defined in the first place. This is useful when adding new
instructions to an existing pattern in cases where the new instructions are only available for
certain cpu architecture levels (typically mapped to the -march= command-line option).

In contrast, the preferred_for_size and preferred_for_speed attributes are strong
optimization hints rather than correctness properties. preferred_for_size tells GCC
which alternatives to consider when adding or modifying an instruction that GCC wants to
optimize for size. preferred_for_speed does the same thing for speed. Note that things
like code motion can lead to cases where code optimized for size uses alternatives that are
not preferred for size, and similarly for speed.

Chapter 16: Machine Descriptions 421

Although define_insns can in principle specify the enabled attribute directly, it is
often clearer to have subsiduary attributes for each architectural feature of interest. The
define_insns can then use these subsiduary attributes to say which alternatives require
which features. The example below does this for cpu_facility.

E.g. the following two patterns could easily be merged using the enabled attribute:

(define_insn "*movdi_old"

[(set (match_operand:DI 0 "register_operand" "=d")

(match_operand:DI 1 "register_operand" " d"))]

"!TARGET_NEW"

"lgr %0,%1")

(define_insn "*movdi_new"

[(set (match_operand:DI 0 "register_operand" "=d,f,d")

(match_operand:DI 1 "register_operand" " d,d,f"))]

"TARGET_NEW"

"@

lgr %0,%1

ldgr %0,%1

lgdr %0,%1")

to:

(define_insn "*movdi_combined"

[(set (match_operand:DI 0 "register_operand" "=d,f,d")

(match_operand:DI 1 "register_operand" " d,d,f"))]

""

"@

lgr %0,%1

ldgr %0,%1

lgdr %0,%1"

[(set_attr "cpu_facility" "*,new,new")])

with the enabled attribute defined like this:

(define_attr "cpu_facility" "standard,new" (const_string "standard"))

(define_attr "enabled" ""

(cond [(eq_attr "cpu_facility" "standard") (const_int 1)

(and (eq_attr "cpu_facility" "new")

(ne (symbol_ref "TARGET_NEW") (const_int 0)))

(const_int 1)]

(const_int 0)))

16.9.7 Defining Machine-Specific Constraints

Machine-specific constraints fall into two categories: register and non-register constraints.
Within the latter category, constraints which allow subsets of all possible memory or address
operands should be specially marked, to give reload more information.

Machine-specific constraints can be given names of arbitrary length, but they must be
entirely composed of letters, digits, underscores (‘_’), and angle brackets (‘< >’). Like C
identifiers, they must begin with a letter or underscore.

422 GNU Compiler Collection (GCC) Internals

In order to avoid ambiguity in operand constraint strings, no constraint can have a name
that begins with any other constraint’s name. For example, if x is defined as a constraint
name, xy may not be, and vice versa. As a consequence of this rule, no constraint may
begin with one of the generic constraint letters: ‘E F V X g i m n o p r s’.

Register constraints correspond directly to register classes. See Section 17.8 [Register
Classes], page 563. There is thus not much flexibility in their definitions.

[MD Expression]define_register_constraint name regclass docstring [filter]
All arguments are string constants. name is the name of the constraint, as it will
appear in match_operand expressions. If name is a multi-letter constraint its length
shall be the same for all constraints starting with the same letter. regclass can be
either the name of the corresponding register class (see Section 17.8 [Register Classes],
page 563), or a C expression which evaluates to the appropriate register class. If it is
an expression, it must have no side effects, and it cannot look at the operand. The
usual use of expressions is to map some register constraints to NO_REGS when the
register class is not available on a given subarchitecture.

If an operand occupies multiple hard registers, the constraint requires all of those
registers to belong to regclass. For example, if regclass is GENERAL_REGS and GENERAL_

REGS contains registers r0 to r15, the constraint does not allow r15 to be used for
modes that occupy more than one register.

The choice of register is also constrained by TARGET_HARD_REGNO_MODE_OK. For ex-
ample, if TARGET_HARD_REGNO_MODE_OK disallows ‘(reg:DI r1)’, that requirement
applies to all constraints whose classes include r1.

However, it is sometimes useful to impose extra operand-specific requirements on the
register number. For example, a target might not want to prevent all odd-even pairs
from holding DImode values, but it might still need to prevent specific operands from
having an odd-numbered register. The optional filter argument exists for such cases.
When given, filter is a C++ expression that evaluates to true if regno is a valid register
for the operand. If an operand occupies multiple registers, the condition applies only
to the first register.

For example:
(define_register_constraint "e" "GENERAL_REGS" "..." "regno % 2 == 0")

defines a constraint that requires an even-numbered general register.

Filter conditions that impose an alignment are encouraged to test the alignment of
regno itself, as in the example, rather than calculate an offset relative to the start of
the class. If it is sometimes necessary for a register of class c to be aligned to n, the
first register in c should itself by divisible by n.

docstring is a sentence documenting the meaning of the constraint. Docstrings are
explained further below.

Non-register constraints are more like predicates: the constraint definition gives a boolean
expression which indicates whether the constraint matches.

[MD Expression]define_constraint name docstring exp
The name and docstring arguments are the same as for define_register_

constraint, but note that the docstring comes immediately after the name for

Chapter 16: Machine Descriptions 423

these expressions. exp is an RTL expression, obeying the same rules as the RTL
expressions in predicate definitions. See Section 16.8.2 [Defining Predicates],
page 383, for details. If it evaluates true, the constraint matches; if it evaluates false,
it doesn’t. Constraint expressions should indicate which RTL codes they might
match, just like predicate expressions.

match_test C expressions have access to the following variables:

op The RTL object defining the operand.

mode The machine mode of op.

ival ‘INTVAL (op)’, if op is a const_int.

hval ‘CONST_DOUBLE_HIGH (op)’, if op is an integer const_double.

lval ‘CONST_DOUBLE_LOW (op)’, if op is an integer const_double.

rval ‘CONST_DOUBLE_REAL_VALUE (op)’, if op is a floating-point
const_double.

The *val variables should only be used once another piece of the expression has verified
that op is the appropriate kind of RTL object.

Most non-register constraints should be defined with define_constraint. The remain-
ing two definition expressions are only appropriate for constraints that should be handled
specially by reload if they fail to match.

[MD Expression]define_memory_constraint name docstring exp
Use this expression for constraints that match a subset of all memory operands:
that is, reload can make them match by converting the operand to the form
‘(mem (reg X))’, where X is a base register (from the register class specified by
BASE_REG_CLASS, see Section 17.8 [Register Classes], page 563).

For example, on the S/390, some instructions do not accept arbitrary memory ref-
erences, but only those that do not make use of an index register. The constraint
letter ‘Q’ is defined to represent a memory address of this type. If ‘Q’ is defined
with define_memory_constraint, a ‘Q’ constraint can handle any memory operand,
because reload knows it can simply copy the memory address into a base register
if required. This is analogous to the way an ‘o’ constraint can handle any memory
operand.

The syntax and semantics are otherwise identical to define_constraint.

[MD Expression]define_special_memory_constraint name docstring exp
Use this expression for constraints that match a subset of all memory operands: that
is, reload cannot make them match by reloading the address as it is described for
define_memory_constraint or such address reload is undesirable with the perfor-
mance point of view.

For example, define_special_memory_constraint can be useful if specifically
aligned memory is necessary or desirable for some insn operand.

The syntax and semantics are otherwise identical to define_memory_constraint.

424 GNU Compiler Collection (GCC) Internals

[MD Expression]define_relaxed_memory_constraint name docstring exp
The test expression in a define_memory_constraint can assume that TARGET_

LEGITIMATE_ADDRESS_P holds for the address inside a mem rtx and so it does not
need to test this condition itself. In other words, a define_memory_constraint test
of the form:

(match_test "mem")

is enough to test whether an rtx is a mem and whether its address satisfies TARGET_
MEM_CONSTRAINT (which is usually ‘'m'’). Thus the conditions imposed by a define_

memory_constraint always apply on top of the conditions imposed by TARGET_MEM_

CONSTRAINT.

However, it is sometimes useful to define memory constraints that allow addresses be-
yond those accepted by TARGET_LEGITIMATE_ADDRESS_P. define_relaxed_memory_
constraint exists for this case. The test expression in a define_relaxed_memory_

constraint is applied with no preconditions, so that the expression can determine
“from scratch” exactly which addresses are valid and which are not.

The syntax and semantics are otherwise identical to define_memory_constraint.

[MD Expression]define_address_constraint name docstring exp
Use this expression for constraints that match a subset of all address operands: that
is, reload can make the constraint match by converting the operand to the form
‘(reg X)’, again with X a base register.

Constraints defined with define_address_constraint can only be used with the
address_operand predicate, or machine-specific predicates that work the same way.
They are treated analogously to the generic ‘p’ constraint.

The syntax and semantics are otherwise identical to define_constraint.

For historical reasons, names beginning with the letters ‘G H’ are reserved for constraints
that match only const_doubles, and names beginning with the letters ‘I J K L M N O P’ are
reserved for constraints that match only const_ints. This may change in the future. For
the time being, constraints with these names must be written in a stylized form, so that
genpreds can tell you did it correctly:

(define_constraint "[GHIJKLMNOP]..."

"doc..."

(and (match_code "const_int") ; const_double for G/H
condition...)) ; usually a match_test

It is fine to use names beginning with other letters for constraints that match const_

doubles or const_ints.

Each docstring in a constraint definition should be one or more complete sentences,
marked up in Texinfo format. They are currently unused. In the future they will be copied
into the GCC manual, in Section 16.9.5 [Machine Constraints], page 392, replacing the
hand-maintained tables currently found in that section. Also, in the future the compiler
may use this to give more helpful diagnostics when poor choice of asm constraints causes a
reload failure.

If you put the pseudo-Texinfo directive ‘@internal’ at the beginning of a docstring, then
(in the future) it will appear only in the internals manual’s version of the machine-specific
constraint tables. Use this for constraints that should not appear in asm statements.

Chapter 16: Machine Descriptions 425

16.9.8 Testing constraints from C

It is occasionally useful to test a constraint from C code rather than implicitly via the
constraint string in a match_operand. The generated file tm_p.h declares a few interfaces
for working with constraints. At present these are defined for all constraints except g (which
is equivalent to general_operand).

Some valid constraint names are not valid C identifiers, so there is a mangling scheme
for referring to them from C. Constraint names that do not contain angle brackets or
underscores are left unchanged. Underscores are doubled, each ‘<’ is replaced with ‘_l’, and
each ‘>’ with ‘_g’. Here are some examples:

Original Mangled
x x

P42x P42x

P4_x P4__x

P4>x P4_gx

P4>> P4_g_g

P4_g> P4__g_g

Throughout this section, the variable c is either a constraint in the abstract sense, or a
constant from enum constraint_num; the variable m is a mangled constraint name (usually
as part of a larger identifier).

[Enum]constraint_num
For each constraint except g, there is a corresponding enumeration constant:
‘CONSTRAINT_’ plus the mangled name of the constraint. Functions that take an
enum constraint_num as an argument expect one of these constants.

[Function]inline bool satisfies_constraint_m (rtx exp)
For each non-register constraint m except g, there is one of these functions; it returns
true if exp satisfies the constraint. These functions are only visible if rtl.h was
included before tm_p.h.

[Function]bool constraint_satisfied_p (rtx exp, enum constraint_num
c)

Like the satisfies_constraint_m functions, but the constraint to test is given as
an argument, c. If c specifies a register constraint, this function will always return
false.

[Function]enum reg_class reg_class_for_constraint (enum
constraint_num c)

Returns the register class associated with c. If c is not a register constraint, or those
registers are not available for the currently selected subtarget, returns NO_REGS.

Here is an example use of satisfies_constraint_m. In peephole optimizations (see
Section 16.19 [Peephole Definitions], page 495), operand constraint strings are ignored, so if
there are relevant constraints, they must be tested in the C condition. In the example, the
optimization is applied if operand 2 does not satisfy the ‘K’ constraint. (This is a simplified
version of a peephole definition from the i386 machine description.)

(define_peephole2

[(match_scratch:SI 3 "r")

426 GNU Compiler Collection (GCC) Internals

(set (match_operand:SI 0 "register_operand" "")

(mult:SI (match_operand:SI 1 "memory_operand" "")

(match_operand:SI 2 "immediate_operand" "")))]

"!satisfies_constraint_K (operands[2])"

[(set (match_dup 3) (match_dup 1))

(set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]

"")

16.10 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of
the compiler. Giving one of these names to an instruction pattern tells the RTL generation
pass that it can use the pattern to accomplish a certain task.

‘movm’ Here m stands for a two-letter machine mode name, in lowercase. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, ‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the effect of this instruction is to store the specified value in the part
of the register that corresponds to mode m. Bits outside of m, but which
are within the same target word as the subreg are undefined. Bits which are
outside the target word are left unchanged.

This class of patterns is special in several ways. First of all, each of these names
up to and including full word size must be defined, because there is no other
way to copy a datum from one place to another. If there are patterns accepting
operands in larger modes, ‘movm’ must be defined for integer modes of those
sizes.

Second, these patterns are not used solely in the RTL generation pass. Even
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers—no registers other
than the operands. For example, if you support the pattern with a define_

expand, then in such a case the define_expand mustn’t call force_reg or any
other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers.

During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.

Chapter 16: Machine Descriptions 427

The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can be
allocated using gen_reg_rtx prior to life analysis.

If there are cases which need scratch registers during or after reload, you must
provide an appropriate secondary reload target hook.

The macro can_create_pseudo_p can be used to determine if it is unsafe to
create new pseudo registers. If this variable is nonzero, then it is unsafe to call
gen_reg_rtx to allocate a new pseudo.

The constraints on a ‘movm’ must permit moving any hard register to any other
hard register provided that TARGET_HARD_REGNO_MODE_OK permits mode m in
both registers and TARGET_REGISTER_MOVE_COST applied to their classes returns
a value of 2.

It is obligatory to support floating point ‘movm’ instructions into and out of any
registers that can hold fixed point values, because unions and structures (which
have modes SImode or DImode) can be in those registers and they may have
floating point members.

There may also be a need to support fixed point ‘movm’ instructions in and out
of floating point registers. Unfortunately, I have forgotten why this was so, and
I don’t know whether it is still true. If TARGET_HARD_REGNO_MODE_OK rejects
fixed point values in floating point registers, then the constraints of the fixed
point ‘movm’ instructions must be designed to avoid ever trying to reload into a
floating point register.

‘reload_inm’
‘reload_outm’

These named patterns have been obsoleted by the target hook secondary_

reload.

Like ‘movm’, but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 17.8 [Register
Classes], page 563.

There are special restrictions on the form of the match_operands used in these
patterns. First, only the predicate for the reload operand is examined, i.e.,
reload_in examines operand 1, but not the predicates for operand 0 or 2.
Second, there may be only one alternative in the constraints. Third, only a
single register class letter may be used for the constraint; subsequent constraint
letters are ignored. As a special exception, an empty constraint string matches
the ALL_REGS register class. This may relieve ports of the burden of defining
an ALL_REGS constraint letter just for these patterns.

428 GNU Compiler Collection (GCC) Internals

‘movstrictm’
Like ‘movm’ except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the ‘movstrictm’ instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

‘movmisalignm’
This variant of a move pattern is designed to load or store a value from a
memory address that is not naturally aligned for its mode. For a store, the
memory will be in operand 0; for a load, the memory will be in operand 1.
The other operand is guaranteed not to be a memory, so that it’s easy to tell
whether this is a load or store.

This pattern is used by the autovectorizer, and when expanding a MISALIGNED_
INDIRECT_REF expression.

‘load_multiple’
Load several consecutive memory locations into consecutive registers. Operand
0 is the first of the consecutive registers, operand 1 is the first memory location,
and operand 2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not
define this if the most efficient way of loading consecutive registers from memory
is to do them one at a time.

On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 16.16 [Expander Definitions], page 486) and make the pattern fail if the
restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber

elements). Use a match_parallel (see Section 16.4 [RTL Template], page 371)
to recognize the insn. See rs6000.md for examples of the use of this insn
pattern.

‘store_multiple’
Similar to ‘load_multiple’, but store several consecutive registers into con-
secutive memory locations. Operand 0 is the first of the consecutive memory
locations, operand 1 is the first register, and operand 2 is a constant: the
number of consecutive registers.

‘vec_load_lanesmn’
Perform an interleaved load of several vectors from memory operand 1 into
register operand 0. Both operands have mode m. The register operand is
viewed as holding consecutive vectors of mode n, while the memory operand
is a flat array that contains the same number of elements. The operation is
equivalent to:

int c = GET_MODE_SIZE (m) / GET_MODE_SIZE (n);

for (j = 0; j < GET_MODE_NUNITS (n); j++)

for (i = 0; i < c; i++)

operand0[i][j] = operand1[j * c + i];

Chapter 16: Machine Descriptions 429

For example, ‘vec_load_lanestiv4hi’ loads 8 16-bit values from memory into
a register of mode ‘TI’. The register contains two consecutive vectors of mode
‘V4HI’.

This pattern can only be used if:

TARGET_ARRAY_MODE_SUPPORTED_P (n, c)

is true. GCC assumes that, if a target supports this kind of instruction for
some mode n, it also supports unaligned loads for vectors of mode n.

This pattern is not allowed to FAIL.

‘vec_mask_load_lanesmn’
Like ‘vec_load_lanesmn’, but takes an additional mask operand (operand 2)
that specifies which elements of the destination vectors should be loaded. Other
elements of the destination vectors are taken from operand 3, which is an else
operand in the subvector mode n, similar to the one in maskload. The operation
is equivalent to:

int c = GET_MODE_SIZE (m) / GET_MODE_SIZE (n);

for (j = 0; j < GET_MODE_NUNITS (n); j++)

if (operand2[j])

for (i = 0; i < c; i++)

operand0[i][j] = operand1[j * c + i];

else

for (i = 0; i < c; i++)

operand0[i][j] = operand3[j];

This pattern is not allowed to FAIL.

‘vec_mask_len_load_lanesmn’
Like ‘vec_load_lanesmn’, but takes an additional mask operand (operand 2),
length operand (operand 4) as well as bias operand (operand 5) that specifies
which elements of the destination vectors should be loaded. Other elements
of the destination vectors are taken from operand 3, which is an else operand
similar to the one in maskload. The operation is equivalent to:

int c = GET_MODE_SIZE (m) / GET_MODE_SIZE (n);

for (j = 0; j < operand4 + operand5; j++)

for (i = 0; i < c; i++)

if (operand2[j])

operand0[i][j] = operand1[j * c + i];

else

operand0[i][j] = operand3[j];

This pattern is not allowed to FAIL.

‘vec_store_lanesmn’
Equivalent to ‘vec_load_lanesmn’, with the memory and register operands
reversed. That is, the instruction is equivalent to:

int c = GET_MODE_SIZE (m) / GET_MODE_SIZE (n);

for (j = 0; j < GET_MODE_NUNITS (n); j++)

for (i = 0; i < c; i++)

operand0[j * c + i] = operand1[i][j];

for a memory operand 0 and register operand 1.

This pattern is not allowed to FAIL.

430 GNU Compiler Collection (GCC) Internals

‘vec_mask_store_lanesmn’
Like ‘vec_store_lanesmn’, but takes an additional mask operand (operand
2) that specifies which elements of the source vectors should be stored. The
operation is equivalent to:

int c = GET_MODE_SIZE (m) / GET_MODE_SIZE (n);

for (j = 0; j < GET_MODE_NUNITS (n); j++)

if (operand2[j])

for (i = 0; i < c; i++)

operand0[j * c + i] = operand1[i][j];

This pattern is not allowed to FAIL.

‘vec_mask_len_store_lanesmn’
Like ‘vec_store_lanesmn’, but takes an additional mask operand (operand 2),
length operand (operand 3) as well as bias operand (operand 4) that speci-
fies which elements of the source vectors should be stored. The operation is
equivalent to:

int c = GET_MODE_SIZE (m) / GET_MODE_SIZE (n);

for (j = 0; j < operand3 + operand4; j++)

if (operand2[j])

for (i = 0; i < c; i++)

operand0[j * c + i] = operand1[i][j];

This pattern is not allowed to FAIL.

‘gather_loadmn’
Load several separate memory locations into a vector of mode m. Operand 1
is a scalar base address and operand 2 is a vector of mode n containing offsets
from that base. Operand 0 is a destination vector with the same number of
elements as n. For each element index i:

• extend the offset element i to address width, using zero extension if operand
3 is 1 and sign extension if operand 3 is zero;

• multiply the extended offset by operand 4;

• add the result to the base; and

• load the value at that address into element i of operand 0.

The value of operand 3 does not matter if the offsets are already address width.

‘mask_gather_loadmn’
Like ‘gather_loadmn’, but takes an extra mask operand as operand 5. Other
elements of the destination vectors are taken from operand 6, which is an else
operand similar to the one in maskload. Bit i of the mask is set if element i
of the result should be loaded from memory and clear if element i of the result
should be set to operand 6.

‘mask_len_gather_loadmn’
Like ‘gather_loadmn’, but takes an extra mask operand (operand 5) and an else
operand (operand 6) as well as a len operand (operand 7) and a bias operand
(operand 8).

Similar to mask len load the instruction loads at most (operand 7 + operand
8) elements from memory. Bit i of the mask is set if element i of the result
should be loaded from memory and clear if element i of the result should be set

Chapter 16: Machine Descriptions 431

to element i of operand 6. Mask elements i with i > (operand 7 + operand 8)
are ignored.

‘mask_len_strided_loadm’
Load several separate memory locations into a destination vector of mode m.
Operand 0 is a destination vector of mode m. Operand 1 is a scalar base address
and operand 2 is a scalar stride of Pmode. operand 3 is mask operand, operand
4 is length operand and operand 5 is bias operand. The instruction can be seen
as a special case of mask_len_gather_loadmn with an offset vector that is a
vec_series with zero as base and operand 2 as step. For each element the load
address is operand 1 + i * operand 2. Similar to mask len load, the instruction
loads at most (operand 4 + operand 5) elements from memory. Element i of the
mask (operand 3) is set if element i of the result should be loaded from memory
and clear if element i of the result should be zero. Mask elements i with i >
(operand 4 + operand 5) are ignored.

‘scatter_storemn’
Store a vector of mode m into several distinct memory locations. Operand 0
is a scalar base address and operand 1 is a vector of mode n containing offsets
from that base. Operand 4 is the vector of values that should be stored, which
has the same number of elements as n. For each element index i:

• extend the offset element i to address width, using zero extension if operand
2 is 1 and sign extension if operand 2 is zero;

• multiply the extended offset by operand 3;

• add the result to the base; and

• store element i of operand 4 to that address.

The value of operand 2 does not matter if the offsets are already address width.

‘mask_scatter_storemn’
Like ‘scatter_storemn’, but takes an extra mask operand as operand 5. Bit i
of the mask is set if element i of the result should be stored to memory.

‘mask_len_scatter_storemn’
Like ‘scatter_storemn’, but takes an extra mask operand (operand 5), a len
operand (operand 6) as well as a bias operand (operand 7). The instruction
stores at most (operand 6 + operand 7) elements of (operand 4) to memory. Bit
i of the mask is set if element i of (operand 4) should be stored. Mask elements
i with i > (operand 6 + operand 7) are ignored.

‘mask_len_strided_storem’
Store a vector of mode m into several distinct memory locations. Operand 0
is a scalar base address and operand 1 is scalar stride of Pmode. Operand 2 is
the vector of values that should be stored, which is of mode m. operand 3 is
mask operand, operand 4 is length operand and operand 5 is bias operand. The
instruction can be seen as a special case of mask_len_scatter_storemn with
an offset vector that is a vec_series with zero as base and operand 1 as step.
For each element the store address is operand 0 + i * operand 1. Similar to
mask len store, the instruction stores at most (operand 4 + operand 5) elements

432 GNU Compiler Collection (GCC) Internals

of mask (operand 3) to memory. Element i of the mask is set if element i of
(operand 3) should be stored. Mask elements i with i > (operand 4 + operand
5) are ignored.

‘vec_setm’
Set given field in the vector value. Operand 0 is the vector to modify, operand
1 is new value of field and operand 2 specify the field index.

This pattern is not allowed to FAIL.

‘vec_extractmn’
Extract given field from the vector value. Operand 1 is the vector, operand
2 specify field index and operand 0 place to store value into. The n mode is
the mode of the field or vector of fields that should be extracted, should be
either element mode of the vector mode m, or a vector mode with the same
element mode and smaller number of elements. If n is a vector mode the index
is counted in multiples of mode n.

This pattern is not allowed to FAIL.

‘vec_initmn’
Initialize the vector to given values. Operand 0 is the vector to initialize and
operand 1 is parallel containing values for individual fields. The n mode is the
mode of the elements, should be either element mode of the vector mode m, or
a vector mode with the same element mode and smaller number of elements.

‘vec_duplicatem’
Initialize vector output operand 0 so that each element has the value given by
scalar input operand 1. The vector has mode m and the scalar has the mode
appropriate for one element of m.

This pattern only handles duplicates of non-constant inputs. Constant vectors
go through the movm pattern instead.

This pattern is not allowed to FAIL.

‘vec_seriesm’
Initialize vector output operand 0 so that element i is equal to operand 1 plus
i times operand 2. In other words, create a linear series whose base value is
operand 1 and whose step is operand 2.

The vector output has mode m and the scalar inputs have the mode appropriate
for one element ofm. This pattern is not used for floating-point vectors, in order
to avoid having to specify the rounding behavior for i > 1.

This pattern is not allowed to FAIL.

while_ultmn

Set operand 0 to a mask that is true while incrementing operand 1 gives a value
that is less than operand 2, for a vector length up to operand 3. Operand 0
has mode n and operands 1 and 2 are scalar integers of mode m. Operand 3
should be omitted when n is a vector mode, and a CONST_INT otherwise. The
operation for vector modes is equivalent to:

operand0[0] = operand1 < operand2;

for (i = 1; i < GET_MODE_NUNITS (n); i++)

Chapter 16: Machine Descriptions 433

operand0[i] = operand0[i - 1] && (operand1 + i < operand2);

And for non-vector modes the operation is equivalent to:
operand0[0] = operand1 < operand2;

for (i = 1; i < operand3; i++)

operand0[i] = operand0[i - 1] && (operand1 + i < operand2);

select_vlmn

Set operand 0 (of mode n) to the number of scalar iterations that should be han-
dled by one iteration of a vector loop. Operand 1 is the total number of scalar
iterations that the loop needs to process and operand 2 is a maximum bound
on the result (also known as the maximum “vectorization factor”). Operand 3
(of mode m) is a dummy parameter to pass the vector mode to be used.

The maximum value of operand 0 is given by:
operand0 = MIN (operand1, operand2)

However, targets might choose a lower value than this, based on target-specific
criteria. Each iteration of the vector loop might therefore process a different
number of scalar iterations, which in turn means that induction variables will
have a variable step. Because of this, it is generally not useful to define this
instruction if it will always calculate the maximum value.

This optab is only useful on targets that implement ‘len_load_m’ and/or
‘len_store_m’ or the associated ‘_len’ variants.

‘check_raw_ptrsm’
Check whether, given two pointers a and b and a length len, a write of len
bytes at a followed by a read of len bytes at b can be split into interleaved
byte accesses ‘a[0], b[0], a[1], b[1], ...’ without affecting the dependen-
cies between the bytes. Set operand 0 to true if the split is possible and false
otherwise.

Operands 1, 2 and 3 provide the values of a, b and len respectively. Operand
4 is a constant integer that provides the known common alignment of a and b.
All inputs have mode m.

This split is possible if:
a == b || a + len <= b || b + len <= a

You should only define this pattern if the target has a way of accelerating the
test without having to do the individual comparisons.

‘check_war_ptrsm’
Like ‘check_raw_ptrsm’, but with the read and write swapped round. The split
is possible in this case if:

b <= a || a + len <= b

‘vec_cmpmn’
Output a vector comparison. Operand 0 of mode n is the destination for pred-
icate in operand 1 which is a signed vector comparison with operands of mode
m in operands 2 and 3. Predicate is computed by elementwise evaluation of the
vector comparison with a truth value of all-ones and a false value of all-zeros.

‘vec_cmpumn’
Similar to vec_cmpmn but perform unsigned vector comparison.

434 GNU Compiler Collection (GCC) Internals

‘vec_cmpeqmn’
Similar to vec_cmpmn but perform equality or non-equality vector comparison
only. If vec_cmpmn or vec_cmpumn instruction pattern is supported, it will
be preferred over vec_cmpeqmn, so there is no need to define this instruction
pattern if the others are supported.

‘vcond_mask_mn’
Output a conditional vector move. Operand 0 is the destination to receive a
combination of operand 1 and operand 2, depending on the mask in operand 3.
Operands 0, 1, and 2 have mode m while operand 3 has mode n.

Suppose that m has e elements. There are then two supported forms of n.
The first form is an integer or boolean vector that also has e elements. In this
case, each element is -1 or 0, with -1 selecting elements from operand 1 and 0
selecting elements from operand 2. The second supported form of n is a scalar
integer that has at least e bits. A set bit then selects from operand 1 and a
clear bit selects from operand 2. Bits e and above have no effect.

Subject to those restrictions, the behavior is equivalent to:
for (i = 0; i < e; i++)

op0[i] = op3[i] ? op1[i] : op2[i];

‘vcond_mask_len_mn’
Set each element of operand 0 to the corresponding element of operand 2 or
operand 3. Choose operand 2 if both the element index is less than operand 4
plus operand 5 and the corresponding element of operand 1 is nonzero:

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = i < op4 + op5 && op1[i] ? op2[i] : op3[i];

Operands 0, 2 and 3 have mode m. Operand 1 has mode n. Operands 4 and 5
have a target-dependent scalar integer mode.

‘maskloadmn’
Perform a masked load of vector from memory operand 1 of modem into register
operand 0. The mask is provided in register operand 2 of mode n. Operand 3
(the “else value”) is of mode m and specifies which value is loaded when the
mask is unset. The predicate of operand 3 must only accept the else values
that the target actually supports. Currently three values are attempted, zero,
-1, and undefined. GCC handles an else value of zero more efficiently than -1
or undefined.

This pattern is not allowed to FAIL.

‘maskstoremn’
Perform a masked store of vector from register operand 1 of mode m into
memory operand 0. Mask is provided in register operand 2 of mode n.

This pattern is not allowed to FAIL.

‘len_load_m’
Load (operand 3 + operand 4) elements from memory operand 1 into vector
register operand 0. Operands 0 and 1 have mode m, which must be a vector
mode. Operand 3 has whichever integer mode the target prefers. Operand
2 (the “else value”) is of mode m and specifies which value is loaded for the

Chapter 16: Machine Descriptions 435

remaining elements. The predicate of operand 2 must only accept the else
values that the target actually supports. Operand 4 conceptually has mode QI.

Operand 3 can be a variable or a constant amount. Operand 4 specifies a
constant bias: it is either a constant 0 or a constant -1. The predicate on
operand 4 must only accept the bias values that the target actually supports.
GCC handles a bias of 0 more efficiently than a bias of -1.

If (operand 3 + operand 4) exceeds the number of elements in mode m, the
behavior is undefined.

If the target prefers the length to be measured in bytes rather than elements,
it should only implement this pattern for vectors of QI elements.

This pattern is not allowed to FAIL.

‘len_store_m’
Store (operand 2 + operand 3) vector elements from vector register operand 1
into memory operand 0, leaving the other elements of operand 0 unchanged.
Operands 0 and 1 have mode m, which must be a vector mode. Operand 2 has
whichever integer mode the target prefers. Operand 3 conceptually has mode
QI.

Operand 2 can be a variable or a constant amount. Operand 3 specifies a
constant bias: it is either a constant 0 or a constant -1. The predicate on
operand 3 must only accept the bias values that the target actually supports.
GCC handles a bias of 0 more efficiently than a bias of -1.

If (operand 2 + operand 3) exceeds the number of elements in mode m, the
behavior is undefined.

If the target prefers the length to be measured in bytes rather than elements,
it should only implement this pattern for vectors of QI elements.

This pattern is not allowed to FAIL.

‘mask_len_loadmn’
Perform a masked load from the memory location pointed to by operand 1
into register operand 0. (operand 3 + operand 4) elements are loaded from
memory and other elements in operand 0 are set to undefined values. This is a
combination of len load and maskload. Operands 0 and 1 have mode m, which
must be a vector mode. Operand 3 has whichever integer mode the target
prefers. A mask is specified in operand 2 which must be of type n. The mask
has lower precedence than the length and is itself subject to length masking,
i.e. only mask indices < (operand 4 + operand 5) are used. Operand 3 is an else
operand similar to the one in maskload. Operand 4 conceptually has mode QI.

Operand 4 can be a variable or a constant amount. Operand 5 specifies a
constant bias: it is either a constant 0 or a constant -1. The predicate on
operand 5 must only accept the bias values that the target actually supports.
GCC handles a bias of 0 more efficiently than a bias of -1.

If (operand 4 + operand 5) exceeds the number of elements in mode m, the
behavior is undefined.

If the target prefers the length to be measured in bytes rather than elements,
it should only implement this pattern for vectors of QI elements.

436 GNU Compiler Collection (GCC) Internals

This pattern is not allowed to FAIL.

‘mask_len_storemn’
Perform a masked store from vector register operand 1 into memory operand
0. (operand 3 + operand 4) elements are stored to memory and leave the
other elements of operand 0 unchanged. This is a combination of len store and
maskstore. Operands 0 and 1 have mode m, which must be a vector mode.
Operand 3 has whichever integer mode the target prefers. A mask is specified
in operand 2 which must be of type n. The mask has lower precedence than the
length and is itself subject to length masking, i.e. only mask indices < (operand
3 + operand 4) are used. Operand 4 conceptually has mode QI.

Operand 2 can be a variable or a constant amount. Operand 3 specifies a
constant bias: it is either a constant 0 or a constant -1. The predicate on
operand 4 must only accept the bias values that the target actually supports.
GCC handles a bias of 0 more efficiently than a bias of -1.

If (operand 2 + operand 4) exceeds the number of elements in mode m, the
behavior is undefined.

If the target prefers the length to be measured in bytes rather than elements,
it should only implement this pattern for vectors of QI elements.

This pattern is not allowed to FAIL.

‘vec_permm’
Output a (variable) vector permutation. Operand 0 is the destination to receive
elements from operand 1 and operand 2, which are of mode m. Operand 3 is
the selector. It is an integral mode vector of the same width and number of
elements as mode m.

The input elements are numbered from 0 in operand 1 through 2 ∗ N − 1 in
operand 2. The elements of the selector must be computed modulo 2∗N . Note
that if rtx_equal_p(operand1, operand2), this can be implemented with just
operand 1 and selector elements modulo N.

In order to make things easy for a number of targets, if there is no ‘vec_perm’
pattern for mode m, but there is for mode q where q is a vector of QImode of
the same width as m, the middle-end will lower the mode m VEC_PERM_EXPR to
mode q.

See also TARGET_VECTORIZER_VEC_PERM_CONST, which performs the analogous
operation for constant selectors.

‘pushm1’ Output a push instruction. Operand 0 is value to push. Used only when PUSH_

ROUNDING is defined. For historical reason, this pattern may be missing and in
such case an mov expander is used instead, with a MEM expression forming the
push operation. The mov expander method is deprecated.

‘addm3’ Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

Chapter 16: Machine Descriptions 437

‘ssaddm3’, ‘usaddm3’
‘subm3’, ‘sssubm3’, ‘ussubm3’
‘mulm3’, ‘ssmulm3’, ‘usmulm3’
‘divm3’, ‘ssdivm3’
‘udivm3’, ‘usdivm3’
‘modm3’, ‘umodm3’
‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’, ‘xorm3’

Similar, for other arithmetic operations.

‘ustruncmn2’
Truncate the operand 1, and storing the result in operand 0. There will be
saturation during the trunction. The result will be saturated to the maximal
value of operand 0 type if there is overflow when truncation. The operand 1
must have mode n, and the operand 0 must have mode m. Both scalar and
vector integer modes are allowed.

‘sstruncmn2’
Similar but for signed.

‘andnm3’ Like andm3, but it uses bitwise-complement of operand 2 rather than operand
2 itself.

‘iornm3’ Like iorm3, but it uses bitwise-complement of operand 2 rather than operand
2 itself.

‘addvm4’ Like addm3 but takes a code_label as operand 3 and emits code to jump to it if
signed overflow occurs during the addition. This pattern is used to implement
the built-in functions performing signed integer addition with overflow checking.

‘subvm4’, ‘mulvm4’
Similar, for other signed arithmetic operations.

‘uaddvm4’ Like addvm4 but for unsigned addition. That is to say, the operation is the
same as signed addition but the jump is taken only on unsigned overflow.

‘usubvm4’, ‘umulvm4’
Similar, for other unsigned arithmetic operations.

‘uaddcm5’ Adds unsigned operands 2, 3 and 4 (where the last operand is guaranteed to
have only values 0 or 1) together, sets operand 0 to the result of the addition of
the 3 operands and sets operand 1 to 1 iff there was overflow on the unsigned
additions, and to 0 otherwise. So, it is an addition with carry in (operand 4)
and carry out (operand 1). All operands have the same mode.

‘usubcm5’ Similarly to ‘uaddcm5’, except subtracts unsigned operands 3 and 4 from
operand 2 instead of adding them. So, it is a subtraction with carry/borrow
in (operand 4) and carry/borrow out (operand 1). All operands have the same
mode.

‘addptrm3’
Like addm3 but is guaranteed to only be used for address calculations. The
expanded code is not allowed to clobber the condition code. It only needs to be

438 GNU Compiler Collection (GCC) Internals

defined if addm3 sets the condition code. If adds used for address calculations
and normal adds are not compatible it is required to expand a distinct pattern
(e.g. using an unspec). The pattern is used by LRA to emit address calculations.
addm3 is used if addptrm3 is not defined.

‘fmam4’ Multiply operand 2 and operand 1, then add operand 3, storing the result in
operand 0 without doing an intermediate rounding step. All operands must
have mode m. This pattern is used to implement the fma, fmaf, and fmal

builtin functions from the ISO C99 standard.

‘fmsm4’ Like fmam4, except operand 3 subtracted from the product instead of added to
the product. This is represented in the rtl as

(fma:m op1 op2 (neg:m op3))

‘fnmam4’ Like fmam4 except that the intermediate product is negated before being added
to operand 3. This is represented in the rtl as

(fma:m (neg:m op1) op2 op3)

‘fnmsm4’ Like fmsm4 except that the intermediate product is negated before subtracting
operand 3. This is represented in the rtl as

(fma:m (neg:m op1) op2 (neg:m op3))

‘sminm3’, ‘smaxm3’
Signed minimum and maximum operations. When used with floating point, if
both operands are zeros, or if either operand is NaN, then it is unspecified which
of the two operands is returned as the result.

‘fminm3’, ‘fmaxm3’
IEEE-conformant minimum and maximum operations. If one operand is a quiet
NaN, then the other operand is returned. If both operands are quiet NaN, then a
quiet NaN is returned. In the case when gcc supports signaling NaN (-fsignaling-
nans) an invalid floating point exception is raised and a quiet NaN is returned.

All operands have mode m, which is a scalar or vector floating-point mode.
These patterns are not allowed to FAIL.

‘reduc_smin_scal_m’, ‘reduc_smax_scal_m’
Find the signed minimum/maximum of the elements of a vector. The vector is
operand 1, and operand 0 is the scalar result, with mode equal to the mode of
the elements of the input vector.

‘reduc_umin_scal_m’, ‘reduc_umax_scal_m’
Find the unsigned minimum/maximum of the elements of a vector. The vector
is operand 1, and operand 0 is the scalar result, with mode equal to the mode
of the elements of the input vector.

‘reduc_fmin_scal_m’, ‘reduc_fmax_scal_m’
Find the floating-point minimum/maximum of the elements of a vector, using
the same rules as fminm3 and fmaxm3. Operand 1 is a vector of mode m and
operand 0 is the scalar result, which has mode GET_MODE_INNER (m).

Chapter 16: Machine Descriptions 439

‘reduc_plus_scal_m’
Compute the sum of the elements of a vector. The vector is operand 1, and
operand 0 is the scalar result, with mode equal to the mode of the elements of
the input vector.

‘reduc_and_scal_m’
‘reduc_ior_scal_m’
‘reduc_xor_scal_m’

Compute the bitwise AND/IOR/XOR reduction of the elements of a vector of mode
m. Operand 1 is the vector input and operand 0 is the scalar result. The mode
of the scalar result is the same as one element of m.

‘reduc_sbool_and_scal_m’
‘reduc_sbool_ior_scal_m’
‘reduc_sbool_xor_scal_m’

Compute the bitwise AND/IOR/XOR reduction of the elements of a vector boolean
of mode m. Operand 1 is the vector input and operand 0 is the scalar result.
The mode of the scalar result is QImode with its value either zero or one. If
mode m is a scalar integer mode then operand 2 is the number of elements in
the input vector to provide disambiguation for the case m is ambiguous.

extract_last_m

Find the last set bit in mask operand 1 and extract the associated element
of vector operand 2. Store the result in scalar operand 0. Operand 2 has
vector mode m while operand 0 has the mode appropriate for one element of
m. Operand 1 has the usual mask mode for vectors of mode m; see TARGET_

VECTORIZE_GET_MASK_MODE.

fold_extract_last_m

If any bits of mask operand 2 are set, find the last set bit, extract the associated
element from vector operand 3, and store the result in operand 0. Store operand
1 in operand 0 otherwise. Operand 3 has mode m and operands 0 and 1 have
the mode appropriate for one element of m. Operand 2 has the usual mask
mode for vectors of mode m; see TARGET_VECTORIZE_GET_MASK_MODE.

len_fold_extract_last_m

Like ‘fold_extract_last_m’, but takes an extra length operand as operand
4 and an extra bias operand as operand 5. The last associated element is
extracted should have the index i < len (operand 4) + bias (operand 5).

fold_left_plus_m

Take scalar operand 1 and successively add each element from vector operand
2. Store the result in scalar operand 0. The vector has mode m and the scalars
have the mode appropriate for one element of m. The operation is strictly
in-order: there is no reassociation.

mask_fold_left_plus_m

Like ‘fold_left_plus_m’, but takes an additional mask operand (operand 3)
that specifies which elements of the source vector should be added.

440 GNU Compiler Collection (GCC) Internals

mask_len_fold_left_plus_m

Like ‘fold_left_plus_m’, but takes an additional mask operand (operand 3),
len operand (operand 4) and bias operand (operand 5) that performs following
operations strictly in-order (no reassociation):

operand0 = operand1;

for (i = 0; i < LEN + BIAS; i++)

if (operand3[i])

operand0 += operand2[i];

‘sdot_prodmn’
Multiply operand 1 by operand 2 without loss of precision, given that both
operands contain signed elements. Add each product to the overlapping element
of operand 3 and store the result in operand 0. Operands 0 and 3 have mode
m and operands 1 and 2 have mode n, with n having narrower elements than
m.

Semantically the expressions perform the multiplication in the following signs
sdot<signed op0, signed op1, signed op2, signed op3> ==

op0 = sign-ext (op1) * sign-ext (op2) + op3

...

‘udot_prodmn’
Multiply operand 1 by operand 2 without loss of precision, given that both
operands contain unsigned elements. Add each product to the overlapping
element of operand 3 and store the result in operand 0. Operands 0 and 3 have
mode m and operands 1 and 2 have mode n, with n having narrower elements
than m.

Semantically the expressions perform the multiplication in the following signs
udot<unsigned op0, unsigned op1, unsigned op2, unsigned op3> ==

op0 = zero-ext (op1) * zero-ext (op2) + op3

...

‘usdot_prodmn’
Compute the sum of the products of elements of different signs. Multiply
operand 1 by operand 2 without loss of precision, given that operand 1 is un-
signed and operand 2 is signed. Add each product to the overlapping element
of operand 3 and store the result in operand 0. Operands 0 and 3 have mode
m and operands 1 and 2 have mode n, with n having narrower elements than
m.

Semantically the expressions perform the multiplication in the following signs
usdot<signed op0, unsigned op1, signed op2, signed op3> ==

op0 = ((signed-conv) zero-ext (op1)) * sign-ext (op2) + op3

...

‘ssadm’

‘usadm’ Compute the sum of absolute differences of two signed/unsigned elements.
Operand 1 and operand 2 are of the same mode. Their absolute difference,
which is of a wider mode, is computed and added to operand 3. Operand 3 is
of a mode equal or wider than the mode of the absolute difference. The result
is placed in operand 0, which is of the same mode as operand 3. m is the mode
of operand 1 and operand 2.

Chapter 16: Machine Descriptions 441

‘widen_ssumnm3’
‘widen_usumnm3’

Operands 0 and 2 are of the same mode, which is wider than the mode of
operand 1. Add operand 1 to operand 2 and place the widened result in operand
0. (This is used express accumulation of elements into an accumulator of a wider
mode.) m is the mode of operand 1 and n is the mode of operand 0.

‘smulhsm3’
‘umulhsm3’

Signed/unsigned multiply high with scale. This is equivalent to the C code:
narrow op0, op1, op2;

...

op0 = (narrow) (((wide) op1 * (wide) op2) >> (N / 2 - 1));

where the sign of ‘narrow’ determines whether this is a signed or unsigned
operation, and N is the size of ‘wide’ in bits. m is the mode for all 3 operands
(narrow). The wide mode is not specified and is defined to fit the whole multiply.

‘smulhrsm3’
‘umulhrsm3’

Signed/unsigned multiply high with round and scale. This is equivalent to the
C code:

narrow op0, op1, op2;

...

op0 = (narrow) (((((wide) op1 * (wide) op2) >> (N / 2 - 2)) + 1) >> 1);

where the sign of ‘narrow’ determines whether this is a signed or unsigned
operation, and N is the size of ‘wide’ in bits. m is the mode for all 3 operands
(narrow). The wide mode is not specified and is defined to fit the whole multiply.

‘sdiv_pow2m3’
‘sdiv_pow2m3’

Signed division by power-of-2 immediate. Equivalent to:
signed op0, op1;

...

op0 = op1 / (1 << imm);

‘vec_shl_insert_m’
Shift the elements in vector input operand 1 left one element (i.e. away from
element 0) and fill the vacated element 0 with the scalar in operand 2. Store
the result in vector output operand 0. Operands 0 and 1 have mode m and
operand 2 has the mode appropriate for one element of m.

‘vec_shl_m’
Whole vector left shift in bits, i.e. away from element 0. Operand 1 is a vector
to be shifted. Operand 2 is an integer shift amount in bits. Operand 0 is where
the resulting shifted vector is stored. The output and input vectors should have
the same modes.

‘vec_shr_m’
Whole vector right shift in bits, i.e. towards element 0. Operand 1 is a vector
to be shifted. Operand 2 is an integer shift amount in bits. Operand 0 is where
the resulting shifted vector is stored. The output and input vectors should have
the same modes.

442 GNU Compiler Collection (GCC) Internals

‘vec_pack_trunc_m’
Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
are vectors of the same mode having N integral or floating point elements of
size S. Operand 0 is the resulting vector in which 2*N elements of size S/2 are
concatenated after narrowing them down using truncation.

‘vec_pack_sbool_trunc_m’
Narrow and merge the elements of two vectors. Operands 1 and 2 are vectors
of the same type having N boolean elements. Operand 0 is the resulting vector
in which 2*N elements are concatenated. The last operand (operand 3) is the
number of elements in the output vector 2*N as a CONST_INT. This instruction
pattern is used when all the vector input and output operands have the same
scalar mode m and thus using vec_pack_trunc_m would be ambiguous.

‘vec_pack_ssat_m’, ‘vec_pack_usat_m’
Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are
vectors of the same mode having N integral elements of size S. Operand 0 is the
resulting vector in which the elements of the two input vectors are concatenated
after narrowing them down using signed/unsigned saturating arithmetic.

‘vec_pack_sfix_trunc_m’, ‘vec_pack_ufix_trunc_m’
Narrow, convert to signed/unsigned integral type and merge the elements of two
vectors. Operands 1 and 2 are vectors of the same mode having N floating point
elements of size S. Operand 0 is the resulting vector in which 2*N elements of
size S/2 are concatenated.

‘vec_packs_float_m’, ‘vec_packu_float_m’
Narrow, convert to floating point type and merge the elements of two vectors.
Operands 1 and 2 are vectors of the same mode having N signed/unsigned
integral elements of size S. Operand 0 is the resulting vector in which 2*N
elements of size S/2 are concatenated.

‘vec_unpacks_hi_m’, ‘vec_unpacks_lo_m’
Extract and widen (promote) the high/low part of a vector of signed integral or
floating point elements. The input vector (operand 1) has N elements of size S.
Widen (promote) the high/low elements of the vector using signed or floating
point extension and place the resulting N/2 values of size 2*S in the output
vector (operand 0).

‘vec_unpacku_hi_m’, ‘vec_unpacku_lo_m’
Extract and widen (promote) the high/low part of a vector of unsigned inte-
gral elements. The input vector (operand 1) has N elements of size S. Widen
(promote) the high/low elements of the vector using zero extension and place
the resulting N/2 values of size 2*S in the output vector (operand 0).

‘vec_unpacks_sbool_hi_m’, ‘vec_unpacks_sbool_lo_m’
Extract the high/low part of a vector of boolean elements that have scalar
mode m. The input vector (operand 1) has N elements, the output vector
(operand 0) has N/2 elements. The last operand (operand 2) is the number
of elements of the input vector N as a CONST_INT. These patterns are used if

Chapter 16: Machine Descriptions 443

both the input and output vectors have the same scalar mode m and thus using
vec_unpacks_hi_m or vec_unpacks_lo_m would be ambiguous.

‘vec_unpacks_float_hi_m’, ‘vec_unpacks_float_lo_m’
‘vec_unpacku_float_hi_m’, ‘vec_unpacku_float_lo_m’

Extract, convert to floating point type and widen the high/low part of a vector
of signed/unsigned integral elements. The input vector (operand 1) has N
elements of size S. Convert the high/low elements of the vector using floating
point conversion and place the resulting N/2 values of size 2*S in the output
vector (operand 0).

‘vec_unpack_sfix_trunc_hi_m’,
‘vec_unpack_sfix_trunc_lo_m’
‘vec_unpack_ufix_trunc_hi_m’
‘vec_unpack_ufix_trunc_lo_m’

Extract, convert to signed/unsigned integer type and widen the high/low part
of a vector of floating point elements. The input vector (operand 1) has N
elements of size S. Convert the high/low elements of the vector to integers and
place the resulting N/2 values of size 2*S in the output vector (operand 0).

‘vec_widen_umult_hi_m’, ‘vec_widen_umult_lo_m’
‘vec_widen_smult_hi_m’, ‘vec_widen_smult_lo_m’
‘vec_widen_umult_even_m’, ‘vec_widen_umult_odd_m’
‘vec_widen_smult_even_m’, ‘vec_widen_smult_odd_m’

Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2)
are vectors with N signed/unsigned elements of size S. Multiply the high/low or
even/odd elements of the two vectors, and put the N/2 products of size 2*S in
the output vector (operand 0). A target shouldn’t implement even/odd pattern
pair if it is less efficient than lo/hi one.

‘vec_widen_ushiftl_hi_m’, ‘vec_widen_ushiftl_lo_m’
‘vec_widen_sshiftl_hi_m’, ‘vec_widen_sshiftl_lo_m’

Signed/Unsigned widening shift left. The first input (operand 1) is a vector
with N signed/unsigned elements of size S. Operand 2 is a constant. Shift
the high/low elements of operand 1, and put the N/2 results of size 2*S in the
output vector (operand 0).

‘vec_widen_uaddl_hi_m’, ‘vec_widen_uaddl_lo_m’
‘vec_widen_saddl_hi_m’, ‘vec_widen_saddl_lo_m’

Signed/Unsigned widening add long. Operands 1 and 2 are vectors with N
signed/unsigned elements of size S. Add the high/low elements of 1 and 2
together, widen the resulting elements and put the N/2 results of size 2*S in
the output vector (operand 0).

‘vec_widen_usubl_hi_m’, ‘vec_widen_usubl_lo_m’
‘vec_widen_ssubl_hi_m’, ‘vec_widen_ssubl_lo_m’

Signed/Unsigned widening subtract long. Operands 1 and 2 are vectors with N
signed/unsigned elements of size S. Subtract the high/low elements of 2 from 1
and widen the resulting elements. Put the N/2 results of size 2*S in the output
vector (operand 0).

444 GNU Compiler Collection (GCC) Internals

‘vec_widen_uabd_hi_m’, ‘vec_widen_uabd_lo_m’
‘vec_widen_uabd_odd_m’, ‘vec_widen_uabd_even_m’
‘vec_widen_sabd_hi_m’, ‘vec_widen_sabd_lo_m’
‘vec_widen_sabd_odd_m’, ‘vec_widen_sabd_even_m’

Signed/Unsigned widening absolute difference. Operands 1 and 2 are vectors
with N signed/unsigned elements of size S. Find the absolute difference between
operands 1 and 2 and widen the resulting elements. Put the N/2 results of size
2*S in the output vector (operand 0).

‘vec_trunc_add_highm’
Signed or unsigned addition of two input integer vectors of mode m, then ex-
tracts the most significant half of each result element and narrows it to elements
of half the original width.

Concretely, it computes: (bits(a)/2)((a + b) >> bits(a)/2)

where bits(a) is the width in bits of each input element.

Operand 1 and 2 are of integer vector mode m containing the same number of
signed or unsigned integral elements. The result (operand 0) is of an integer
vector mode with the same number of elements but elements of half of the width
of those of mode m.

This operation currently only used for early break result compression when the
result of a vector boolean can be represented as 0 or -1.

‘vec_addsubm3’
Alternating subtract, add with even lanes doing subtract and odd lanes doing
addition. Operands 1 and 2 and the outout operand are vectors with mode m.

‘vec_fmaddsubm4’
Alternating multiply subtract, add with even lanes doing subtract and odd lanes
doing addition of the third operand to the multiplication result of the first two
operands. Operands 1, 2 and 3 and the outout operand are vectors with mode
m.

‘vec_fmsubaddm4’
Alternating multiply add, subtract with even lanes doing addition and odd
lanes doing subtraction of the third operand to the multiplication result of the
first two operands. Operands 1, 2 and 3 and the outout operand are vectors
with mode m.

These instructions are not allowed to FAIL.

‘mulhisi3’
Multiply operands 1 and 2, which have mode HImode, and store a SImode

product in operand 0.

‘mulqihi3’, ‘mulsidi3’
Similar widening-multiplication instructions of other widths.

‘umulqihi3’, ‘umulhisi3’, ‘umulsidi3’
Similar widening-multiplication instructions that do unsigned multiplication.

Chapter 16: Machine Descriptions 445

‘usmulqihi3’, ‘usmulhisi3’, ‘usmulsidi3’
Similar widening-multiplication instructions that interpret the first operand as
unsigned and the second operand as signed, then do a signed multiplication.

‘smulm3_highpart’
Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most significant half of the product in operand 0. The least significant
half of the product is discarded. This may be represented in RTL using a smul_
highpart RTX expression.

‘umulm3_highpart’
Similar, but the multiplication is unsigned. This may be represented in RTL
using an umul_highpart RTX expression.

‘maddmn4’ Multiply operands 1 and 2, sign-extend them to mode n, add operand 3, and
store the result in operand 0. Operands 1 and 2 have mode m and operands 0
and 3 have mode n. Both modes must be integer or fixed-point modes and n
must be twice the size of m.

In other words, maddmn4 is like mulmn3 except that it also adds operand 3.

These instructions are not allowed to FAIL.

‘umaddmn4’
Like maddmn4, but zero-extend the multiplication operands instead of sign-
extending them.

‘ssmaddmn4’
Like maddmn4, but all involved operations must be signed-saturating.

‘usmaddmn4’
Like umaddmn4, but all involved operations must be unsigned-saturating.

‘msubmn4’ Multiply operands 1 and 2, sign-extend them to mode n, subtract the result
from operand 3, and store the result in operand 0. Operands 1 and 2 have
mode m and operands 0 and 3 have mode n. Both modes must be integer or
fixed-point modes and n must be twice the size of m.

In other words, msubmn4 is like mulmn3 except that it also subtracts the result
from operand 3.

These instructions are not allowed to FAIL.

‘umsubmn4’
Like msubmn4, but zero-extend the multiplication operands instead of sign-
extending them.

‘ssmsubmn4’
Like msubmn4, but all involved operations must be signed-saturating.

‘usmsubmn4’
Like umsubmn4, but all involved operations must be unsigned-saturating.

‘divmodm4’
Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.

446 GNU Compiler Collection (GCC) Internals

For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’
and ‘modm3’. This allows optimization in the relatively common case when both
the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is
more efficient than the instruction that produces both, write the output routine
of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

‘udivmodm4’
Similar, but does unsigned division.

‘ashlm3’, ‘ssashlm3’, ‘usashlm3’
Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction. The shift
or rotate expander or instruction pattern should explicitly specify the mode of
the operand 2, it should never be VOIDmode. The meaning of out-of-range shift
counts can optionally be specified by TARGET_SHIFT_TRUNCATION_MASK. See
[TARGET SHIFT TRUNCATION MASK], page 704. Operand 2 is always a
scalar type.

‘ashrm3’, ‘lshrm3’, ‘rotlm3’, ‘rotrm3’
Other shift and rotate instructions, analogous to the ashlm3 instructions.
Operand 2 is always a scalar type.

‘vashlm3’, ‘vashrm3’, ‘vlshrm3’, ‘vrotlm3’, ‘vrotrm3’
Vector shift and rotate instructions that take vectors as operand 2 instead of a
scalar type.

‘uabdm’, ‘sabdm’
Signed and unsigned absolute difference instructions. These instructions find
the difference between operands 1 and 2 then return the absolute value. A C
code equivalent would be:

op0 = op1 > op2 ? op1 - op2 : op2 - op1;

‘avgm3_floor’
‘uavgm3_floor’

Signed and unsigned average instructions. These instructions add operands 1
and 2 without truncation, divide the result by 2, round towards -Inf, and store
the result in operand 0. This is equivalent to the C code:

narrow op0, op1, op2;

...

op0 = (narrow) (((wide) op1 + (wide) op2) >> 1);

where the sign of ‘narrow’ determines whether this is a signed or unsigned
operation.

‘avgm3_ceil’
‘uavgm3_ceil’

Like ‘avgm3_floor’ and ‘uavgm3_floor’, but round towards +Inf. This is equiv-
alent to the C code:

Chapter 16: Machine Descriptions 447

narrow op0, op1, op2;

...

op0 = (narrow) (((wide) op1 + (wide) op2 + 1) >> 1);

‘bswapm2’ Reverse the order of bytes of operand 1 and store the result in operand 0.

‘negm2’, ‘ssnegm2’, ‘usnegm2’
Negate operand 1 and store the result in operand 0.

‘negvm3’ Like negm2 but takes a code_label as operand 2 and emits code to jump to it
if signed overflow occurs during the negation.

‘absm2’ Store the absolute value of operand 1 into operand 0.

‘sqrtm2’ Store the square root of operand 1 into operand 0. Both operands have mode
m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘rsqrtm2’ Store the reciprocal of the square root of operand 1 into operand 0. Both
operands have mode m, which is a scalar or vector floating-point mode.

On most architectures this pattern is only approximate, so either its C condi-
tion or the TARGET_OPTAB_SUPPORTED_P hook should check for the appropriate
math flags. (Using the C condition is more direct, but using TARGET_OPTAB_

SUPPORTED_P can be useful if a target-specific built-in also uses the ‘rsqrtm2’
pattern.)

This pattern is not allowed to FAIL.

‘fmodm3’ Store the remainder of dividing operand 1 by operand 2 into operand 0, rounded
towards zero to an integer. All operands have mode m, which is a scalar or
vector floating-point mode.

This pattern is not allowed to FAIL.

‘remainderm3’
Store the remainder of dividing operand 1 by operand 2 into operand 0, rounded
to the nearest integer. All operands have mode m, which is a scalar or vector
floating-point mode.

This pattern is not allowed to FAIL.

‘scalbm3’ Raise FLT_RADIX to the power of operand 2, multiply it by operand 1, and store
the result in operand 0. All operands have mode m, which is a scalar or vector
floating-point mode.

This pattern is not allowed to FAIL.

‘ldexpm3’ Raise 2 to the power of operand 2, multiply it by operand 1, and store the
result in operand 0. Operands 0 and 1 have mode m, which is a scalar or vector
floating-point mode. Operand 2’s mode has the same number of elements as m
and each element is wide enough to store an int. The integers are signed.

This pattern is not allowed to FAIL.

‘cosm2’ Store the cosine of operand 1 into operand 0. Both operands have mode m,
which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

448 GNU Compiler Collection (GCC) Internals

‘sinm2’ Store the sine of operand 1 into operand 0. Both operands have mode m, which
is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘sincosm3’
Store the cosine of operand 2 into operand 0 and the sine of operand 2 into
operand 1. All operands have mode m, which is a scalar or vector floating-
point mode.

Targets that can calculate the sine and cosine simultaneously can implement
this pattern as opposed to implementing individual sinm2 and cosm2 patterns.
The sin and cos built-in functions will then be expanded to the sincosm3

pattern, with one of the output values left unused.

‘tanm2’ Store the tangent of operand 1 into operand 0. Both operands have mode m,
which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘asinm2’ Store the arc sine of operand 1 into operand 0. Both operands have mode m,
which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘acosm2’ Store the arc cosine of operand 1 into operand 0. Both operands have mode m,
which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘atanm2’ Store the arc tangent of operand 1 into operand 0. Both operands have mode
m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘fegetroundm’
Store the current machine floating-point rounding mode into operand 0.
Operand 0 has mode m, which is scalar. This pattern is used to implement
the fegetround function from the ISO C99 standard.

‘feclearexceptm’
‘feraiseexceptm’

Clears or raises the supported machine floating-point exceptions represented
by the bits in operand 1. Error status is stored as nonzero value in operand
0. Both operands have mode m, which is a scalar. These patterns are used
to implement the feclearexcept and feraiseexcept functions from the ISO
C99 standard.

‘expm2’ Raise e (the base of natural logarithms) to the power of operand 1 and store the
result in operand 0. Both operands have mode m, which is a scalar or vector
floating-point mode.

This pattern is not allowed to FAIL.

‘expm1m2’ Raise e (the base of natural logarithms) to the power of operand 1, subtract
1, and store the result in operand 0. Both operands have mode m, which is a
scalar or vector floating-point mode.

Chapter 16: Machine Descriptions 449

For inputs close to zero, the pattern is expected to be more accurate than a
separate expm2 and subm3 would be.

This pattern is not allowed to FAIL.

‘exp10m2’ Raise 10 to the power of operand 1 and store the result in operand 0. Both
operands have mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘exp2m2’ Raise 2 to the power of operand 1 and store the result in operand 0. Both
operands have mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘logm2’ Store the natural logarithm of operand 1 into operand 0. Both operands have
mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘log1pm2’ Add 1 to operand 1, compute the natural logarithm, and store the result in
operand 0. Both operands have mode m, which is a scalar or vector floating-
point mode.

For inputs close to zero, the pattern is expected to be more accurate than a
separate addm3 and logm2 would be.

This pattern is not allowed to FAIL.

‘log10m2’ Store the base-10 logarithm of operand 1 into operand 0. Both operands have
mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘log2m2’ Store the base-2 logarithm of operand 1 into operand 0. Both operands have
mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘logbm2’ Store the base-FLT_RADIX logarithm of operand 1 into operand 0. Both
operands have mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘signbitm2’
Store the sign bit of floating-point operand 1 in operand 0. m is either a scalar
or vector mode. When it is a scalar, operand 1 has mode m but operand 0 must
have mode SImode. Whenm is a vector, operand 1 has the modem. operand 0’s
mode should be an vector integer mode which has the same number of elements
and the same size as mode m.

This pattern is not allowed to FAIL.

‘significandm2’
Store the significand of floating-point operand 1 in operand 0. Both operands
have mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘powm3’ Store the value of operand 1 raised to the exponent operand 2 into operand 0.
All operands have mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

450 GNU Compiler Collection (GCC) Internals

‘atan2m3’ Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into
operand 0, using the signs of both arguments to determine the quadrant of the
result. All operands have mode m, which is a scalar or vector floating-point
mode.

This pattern is not allowed to FAIL.

‘floorm2’ Store the largest integral value not greater than operand 1 in operand 0. Both
operands have mode m, which is a scalar or vector floating-point mode. If
-ffp-int-builtin-inexact is in effect, the “inexact” exception may be raised
for noninteger operands; otherwise, it may not.

This pattern is not allowed to FAIL.

‘btruncm2’
Round operand 1 to an integer, towards zero, and store the result in operand 0.
Both operands have mode m, which is a scalar or vector floating-point mode. If
-ffp-int-builtin-inexact is in effect, the “inexact” exception may be raised
for noninteger operands; otherwise, it may not.

This pattern is not allowed to FAIL.

‘roundm2’ Round operand 1 to the nearest integer, rounding away from zero in the event of
a tie, and store the result in operand 0. Both operands have mode m, which is a
scalar or vector floating-point mode. If -ffp-int-builtin-inexact is in effect,
the “inexact” exception may be raised for noninteger operands; otherwise, it
may not.

This pattern is not allowed to FAIL.

‘ceilm2’ Store the smallest integral value not less than operand 1 in operand 0. Both
operands have mode m, which is a scalar or vector floating-point mode. If
-ffp-int-builtin-inexact is in effect, the “inexact” exception may be raised
for noninteger operands; otherwise, it may not.

This pattern is not allowed to FAIL.

‘nearbyintm2’
Round operand 1 to an integer, using the current rounding mode, and store
the result in operand 0. Do not raise an inexact condition when the result is
different from the argument. Both operands have mode m, which is a scalar or
vector floating-point mode.

This pattern is not allowed to FAIL.

‘rintm2’ Round operand 1 to an integer, using the current rounding mode, and store
the result in operand 0. Raise an inexact condition when the result is different
from the argument. Both operands have mode m, which is a scalar or vector
floating-point mode.

This pattern is not allowed to FAIL.

‘lrintmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number according to the current rounding mode and store in operand
0 (which has mode n).

Chapter 16: Machine Descriptions 451

‘lroundmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number rounding to nearest and away from zero and store in operand
0 (which has mode n).

‘lfloormn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number rounding down and store in operand 0 (which has mode n).

‘lceilmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number rounding up and store in operand 0 (which has mode n).

‘copysignm3’
Store a value with the magnitude of operand 1 and the sign of operand 2 into
operand 0. All operands have mode m, which is a scalar or vector floating-point
mode.

This pattern is not allowed to FAIL.

‘xorsignm3’
Equivalent to ‘op0 = op1 * copysign (1.0, op2)’: store a value with the mag-
nitude of operand 1 and the sign of operand 2 into operand 0. All operands
have mode m, which is a scalar or vector floating-point mode.

This pattern is not allowed to FAIL.

‘issignalingm2’
Set operand 0 to 1 if operand 1 is a signaling NaN and to 0 otherwise.

‘cadd90m3’
Perform vector add and subtract on even/odd number pairs. The operation
being matched is semantically described as

for (int i = 0; i < N; i += 2)

{

c[i] = a[i] - b[i+1];

c[i+1] = a[i+1] + b[i];

}

This operation is semantically equivalent to performing a vector addition of
complex numbers in operand 1 with operand 2 rotated by 90 degrees around
the argand plane and storing the result in operand 0.

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cadd270m3’
Perform vector add and subtract on even/odd number pairs. The operation
being matched is semantically described as

for (int i = 0; i < N; i += 2)

{

c[i] = a[i] + b[i+1];

c[i+1] = a[i+1] - b[i];

452 GNU Compiler Collection (GCC) Internals

}

This operation is semantically equivalent to performing a vector addition of
complex numbers in operand 1 with operand 2 rotated by 270 degrees around
the argand plane and storing the result in operand 0.

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cmlam4’ Perform a vector multiply and accumulate that is semantically the same as a
multiply and accumulate of complex numbers.

complex TYPE op0[N];

complex TYPE op1[N];

complex TYPE op2[N];

complex TYPE op3[N];

for (int i = 0; i < N; i += 1)

{

op0[i] = op1[i] * op2[i] + op3[i];

}

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cmla_conjm4’
Perform a vector multiply by conjugate and accumulate that is semantically
the same as a multiply and accumulate of complex numbers where the second
multiply arguments is conjugated.

complex TYPE op0[N];

complex TYPE op1[N];

complex TYPE op2[N];

complex TYPE op3[N];

for (int i = 0; i < N; i += 1)

{

op0[i] = op1[i] * conj (op2[i]) + op3[i];

}

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cmlsm4’ Perform a vector multiply and subtract that is semantically the same as a
multiply and subtract of complex numbers.

complex TYPE op0[N];

complex TYPE op1[N];

complex TYPE op2[N];

complex TYPE op3[N];

for (int i = 0; i < N; i += 1)

{

op0[i] = op1[i] * op2[i] - op3[i];

}

Chapter 16: Machine Descriptions 453

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cmls_conjm4’
Perform a vector multiply by conjugate and subtract that is semantically the
same as a multiply and subtract of complex numbers where the second multiply
arguments is conjugated.

complex TYPE op0[N];

complex TYPE op1[N];

complex TYPE op2[N];

complex TYPE op3[N];

for (int i = 0; i < N; i += 1)

{

op0[i] = op1[i] * conj (op2[i]) - op3[i];

}

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cmulm4’ Perform a vector multiply that is semantically the same as multiply of complex
numbers.

complex TYPE op0[N];

complex TYPE op1[N];

complex TYPE op2[N];

for (int i = 0; i < N; i += 1)

{

op0[i] = op1[i] * op2[i];

}

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

‘cmul_conjm4’
Perform a vector multiply by conjugate that is semantically the same as a mul-
tiply of complex numbers where the second multiply arguments is conjugated.

complex TYPE op0[N];

complex TYPE op1[N];

complex TYPE op2[N];

for (int i = 0; i < N; i += 1)

{

op0[i] = op1[i] * conj (op2[i]);

}

In GCC lane ordering the real part of the number must be in the even lanes
with the imaginary part in the odd lanes.

The operation is only supported for vector modes m.

This pattern is not allowed to FAIL.

454 GNU Compiler Collection (GCC) Internals

‘ffsm2’ Store into operand 0 one plus the index of the least significant 1-bit of operand
1. If operand 1 is zero, store zero.

m is either a scalar or vector integer mode. When it is a scalar, operand 1 has
mode m but operand 0 can have whatever scalar integer mode is suitable for the
target. The compiler will insert conversion instructions as necessary (typically
to convert the result to the same width as int). When m is a vector, both
operands must have mode m.

This pattern is not allowed to FAIL.

‘clrsbm2’ Count leading redundant sign bits. Store into operand 0 the number of redun-
dant sign bits in operand 1, starting at the most significant bit position. A
redundant sign bit is defined as any sign bit after the first. As such, this count
will be one less than the count of leading sign bits.

m is either a scalar or vector integer mode. When it is a scalar, operand 1 has
mode m but operand 0 can have whatever scalar integer mode is suitable for the
target. The compiler will insert conversion instructions as necessary (typically
to convert the result to the same width as int). When m is a vector, both
operands must have mode m.

This pattern is not allowed to FAIL.

‘clzm2’ Store into operand 0 the number of leading 0-bits in operand 1, starting at the
most significant bit position. If operand 1 is 0, the CLZ_DEFINED_VALUE_AT_

ZERO (see Section 17.35 [Misc], page 701) macro defines if the result is undefined
or has a useful value.

m is either a scalar or vector integer mode. When it is a scalar, operand 1 has
mode m but operand 0 can have whatever scalar integer mode is suitable for the
target. The compiler will insert conversion instructions as necessary (typically
to convert the result to the same width as int). When m is a vector, both
operands must have mode m.

This pattern is not allowed to FAIL.

‘ctzm2’ Store into operand 0 the number of trailing 0-bits in operand 1, starting at the
least significant bit position. If operand 1 is 0, the CTZ_DEFINED_VALUE_AT_

ZERO (see Section 17.35 [Misc], page 701) macro defines if the result is undefined
or has a useful value.

m is either a scalar or vector integer mode. When it is a scalar, operand 1 has
mode m but operand 0 can have whatever scalar integer mode is suitable for the
target. The compiler will insert conversion instructions as necessary (typically
to convert the result to the same width as int). When m is a vector, both
operands must have mode m.

This pattern is not allowed to FAIL.

‘popcountm2’
Store into operand 0 the number of 1-bits in operand 1.

m is either a scalar or vector integer mode. When it is a scalar, operand 1 has
mode m but operand 0 can have whatever scalar integer mode is suitable for the
target. The compiler will insert conversion instructions as necessary (typically

Chapter 16: Machine Descriptions 455

to convert the result to the same width as int). When m is a vector, both
operands must have mode m.

This pattern is not allowed to FAIL.

‘paritym2’
Store into operand 0 the parity of operand 1, i.e. the number of 1-bits in operand
1 modulo 2.

m is either a scalar or vector integer mode. When it is a scalar, operand 1 has
mode m but operand 0 can have whatever scalar integer mode is suitable for the
target. The compiler will insert conversion instructions as necessary (typically
to convert the result to the same width as int). When m is a vector, both
operands must have mode m.

This pattern is not allowed to FAIL.

‘one_cmplm2’
Store the bitwise-complement of operand 1 into operand 0.

‘cpymemm’ Block copy instruction. The destination and source blocks of memory are the
first two operands, and both are mem:BLKs with an address in mode Pmode.

The number of bytes to copy is the third operand, in mode m. Usually, you
specify Pmode form. However, if you can generate better code knowing the range
of valid lengths is smaller than those representable in a full Pmode pointer, you
should provide a pattern with a mode corresponding to the range of values you
can handle efficiently (e.g., QImode for values in the range 0–127; note we avoid
numbers that appear negative) and also a pattern with Pmode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

Optional operands 5 and 6 specify expected alignment and size of block respec-
tively. The expected alignment differs from alignment in operand 4 in a way
that the blocks are not required to be aligned according to it in all cases. This
expected alignment is also in bytes, just like operand 4. Expected size, when
unknown, is set to (const_int -1).

Descriptions of multiple cpymemm patterns can only be beneficial if the pat-
terns for smaller modes have fewer restrictions on their first, second and fourth
operands. Note that the mode m in cpymemm does not impose any restriction
on the mode of individually copied data units in the block.

The cpymemm patterns need not give special consideration to the possibility
that the source and destination strings might overlap. An exception is the case
where source and destination are equal, this case needs to be handled correctly.
These patterns are used to do inline expansion of __builtin_memcpy.

‘movmemm’ Block move instruction. The destination and source blocks of memory are the
first two operands, and both are mem:BLKs with an address in mode Pmode.

The number of bytes to copy is the third operand, in mode m. Usually, you
specify Pmode form. However, if you can generate better code knowing the range
of valid lengths is smaller than those representable in a full Pmode pointer, you

456 GNU Compiler Collection (GCC) Internals

should provide a pattern with a mode corresponding to the range of values you
can handle efficiently (e.g., QImode for values in the range 0–127; note we avoid
numbers that appear negative) and also a pattern with Pmode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

Optional operands 5 and 6 specify expected alignment and size of block respec-
tively. The expected alignment differs from alignment in operand 4 in a way
that the blocks are not required to be aligned according to it in all cases. This
expected alignment is also in bytes, just like operand 4. Expected size, when
unknown, is set to (const_int -1).

Descriptions of multiple movmemm patterns can only be beneficial if the pat-
terns for smaller modes have fewer restrictions on their first, second and fourth
operands. Note that the mode m in movmemm does not impose any restriction
on the mode of individually copied data units in the block.

The movmemm patterns must correctly handle the case where the source and
destination strings overlap. These patterns are used to do inline expansion of
__builtin_memmove.

‘movstr’ String copy instruction, with stpcpy semantics. Operand 0 is an output
operand in mode Pmode. The addresses of the destination and source strings
are operands 1 and 2, and both are mem:BLKs with addresses in mode Pmode.
The execution of the expansion of this pattern should store in operand 0 the
address in which the NUL terminator was stored in the destination string.

This pattern has also several optional operands that are same as in setmem.

‘setmemm’ Block set instruction. The destination string is the first operand, given as a
mem:BLK whose address is in mode Pmode. The number of bytes to set is the
second operand, in mode m. The value to initialize the memory with is the
third operand. Targets that only support the clearing of memory should reject
any value that is not the constant 0. See ‘cpymemm’ for a discussion of the choice
of mode.

The fourth operand is the known alignment of the destination, in the form of
a const_int rtx. Thus, if the compiler knows that the destination is word-
aligned, it may provide the value 4 for this operand.

Optional operands 5 and 6 specify expected alignment and size of block re-
spectively. The expected alignment differs from alignment in operand 4 in a
way that the blocks are not required to be aligned according to it in all cases.
This expected alignment is also in bytes, just like operand 4. Expected size,
when unknown, is set to (const_int -1). Operand 7 is the minimal size of the
block and operand 8 is the maximal size of the block (NULL if it cannot be
represented as CONST INT). Operand 9 is the probable maximal size (i.e. we
cannot rely on it for correctness, but it can be used for choosing proper code
sequence for a given size).

The use for multiple setmemm is as for cpymemm.

Chapter 16: Machine Descriptions 457

‘cmpstrnm’
String compare instruction, with five operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of ‘cpymemm’.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the first
byte and reading past that may access an invalid page or segment and cause
a fault. The comparison terminates early if the fetched bytes are different or
if they are equal to zero. The effect of the instruction is to store a value in
operand 0 whose sign indicates the result of the comparison.

‘cmpstrm’ String compare instruction, without known maximum length. Operand 0 is the
output; it has mode m. The second and third operand are the blocks of memory
to be compared; both are mem:BLK with an address in mode Pmode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the first
byte and reading past that may access an invalid page or segment and cause
a fault. The comparison will terminate when the fetched bytes are different or
if they are equal to zero. The effect of the instruction is to store a value in
operand 0 whose sign indicates the result of the comparison.

‘cmpmemm’ Block compare instruction, with five operands like the operands of ‘cmpstrm’.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each block. Unlike ‘cmpstrm’ the instruction
can prefetch any bytes in the two memory blocks. Also unlike ‘cmpstrm’ the
comparison will not stop if both bytes are zero. The effect of the instruction is
to store a value in operand 0 whose sign indicates the result of the comparison.

‘strlenm’ Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the first character of the string,
operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

‘rawmemchrm’
Scan memory referred to by operand 1 for the first occurrence of operand 2.
Operand 1 is a mem and operand 2 a const_int of mode m. Operand 0 is the
result, i.e., a pointer to the first occurrence of operand 2 in the memory block
given by operand 1.

‘floatmn2’
Convert signed integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘floatunsmn2’
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

458 GNU Compiler Collection (GCC) Internals

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

If the machine description defines this pattern, it also needs to define the ftrunc
pattern.

‘fixunsmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘ftruncm2’
Convert operand 1 (valid for floating point mode m) to an integer value, still
represented in floating point modem, and store it in operand 0 (valid for floating
point mode m).

‘fix_truncmn2’
Like ‘fixmn2’ but works for any floating point value of mode m by converting
the value to an integer.

‘fixuns_truncmn2’
Like ‘fixunsmn2’ but works for any floating point value of modem by converting
the value to an integer.

‘truncmn2’
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

‘extendmn2’
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point or both floating point.

‘zero_extendmn2’
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point.

‘fractmn2’
Convert operand 1 of modem to mode n and store in operand 0 (which has mode
n). Mode m and mode n could be fixed-point to fixed-point, signed integer to
fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-
point to floating-point. When overflows or underflows happen, the results are
undefined.

‘satfractmn2’
Convert operand 1 of mode m to mode n and store in operand 0 (which has
mode n). Modem and mode n could be fixed-point to fixed-point, signed integer
to fixed-point, or floating-point to fixed-point. When overflows or underflows
happen, the instruction saturates the results to the maximum or the minimum.

‘fractunsmn2’
Convert operand 1 of mode m to mode n and store in operand 0 (which has
mode n). Mode m and mode n could be unsigned integer to fixed-point, or

Chapter 16: Machine Descriptions 459

fixed-point to unsigned integer. When overflows or underflows happen, the
results are undefined.

‘satfractunsmn2’
Convert unsigned integer operand 1 of mode m to fixed-point mode n and store
in operand 0 (which has mode n). When overflows or underflows happen, the
instruction saturates the results to the maximum or the minimum.

‘extvm’ Extract a bit-field from register operand 1, sign-extend it, and store it in
operand 0. Operand 2 specifies the width of the field in bits and operand 3 the
starting bit, which counts from the most significant bit if ‘BITS_BIG_ENDIAN’
is true and from the least significant bit otherwise.

Operands 0 and 1 both have mode m. Operands 2 and 3 have a target-specific
mode.

‘extvmisalignm’
Extract a bit-field from memory operand 1, sign extend it, and store it in
operand 0. Operand 2 specifies the width in bits and operand 3 the starting
bit. The starting bit is always somewhere in the first byte of operand 1; it
counts from the most significant bit if ‘BITS_BIG_ENDIAN’ is true and from the
least significant bit otherwise.

Operand 0 has mode m while operand 1 has BLK mode. Operands 2 and 3 have
a target-specific mode.

The instruction must not read beyond the last byte of the bit-field.

‘extzvm’ Like ‘extvm’ except that the bit-field value is zero-extended.

‘extzvmisalignm’
Like ‘extvmisalignm’ except that the bit-field value is zero-extended.

‘insvm’ Insert operand 3 into a bit-field of register operand 0. Operand 1 specifies the
width of the field in bits and operand 2 the starting bit, which counts from the
most significant bit if ‘BITS_BIG_ENDIAN’ is true and from the least significant
bit otherwise.

Operands 0 and 3 both have mode m. Operands 1 and 2 have a target-specific
mode.

‘insvmisalignm’
Insert operand 3 into a bit-field of memory operand 0. Operand 1 specifies
the width of the field in bits and operand 2 the starting bit. The starting bit
is always somewhere in the first byte of operand 0; it counts from the most
significant bit if ‘BITS_BIG_ENDIAN’ is true and from the least significant bit
otherwise.

Operand 3 has mode m while operand 0 has BLK mode. Operands 1 and 2 have
a target-specific mode.

The instruction must not read or write beyond the last byte of the bit-field.

‘extv’ Extract a bit-field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have

460 GNU Compiler Collection (GCC) Internals

mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 2 and 3 and the constant is never zero for operand 2.

The bit-field value is sign-extended to a full word integer before it is stored in
operand 0.

This pattern is deprecated; please use ‘extvm’ and extvmisalignm instead.

‘extzv’ Like ‘extv’ except that the bit-field value is zero-extended.

This pattern is deprecated; please use ‘extzvm’ and extzvmisalignm instead.

‘insv’ Store operand 3 (which must be valid for word_mode) into a bit-field in operand
0, where operand 1 specifies the width in bits and operand 2 the starting bit.
Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 1 and 2 and the constant is never zero for operand 1.

This pattern is deprecated; please use ‘insvm’ and insvmisalignm instead.

‘movmodecc’
Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition codes
and vice versa.

If the machine does not have conditional move instructions, do not define these
patterns.

‘addmodecc’
Similar to ‘movmodecc’ but for conditional addition. Conditionally move
operand 2 or (operands 2 + operand 3) into operand 0 according to the
comparison in operand 1. If the comparison is false, operand 2 is moved into
operand 0, otherwise (operand 2 + operand 3) is moved.

‘cond_negmode’
‘cond_one_cmplmode’
‘cond_sqrtmode’
‘cond_ceilmode’
‘cond_floormode’
‘cond_roundmode’
‘cond_rintmode’

When operand 1 is true, perform an operation on operands 2 and store the
result in operand 0, otherwise store operand 3 in operand 0. The operation
works elementwise if the operands are vectors.

The scalar case is equivalent to:
op0 = op1 ? op op2 : op3;

Chapter 16: Machine Descriptions 461

while the vector case is equivalent to:

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = op1[i] ? op op2[i] : op3[i];

where, for example, op is ~ for ‘cond_one_cmplmode’.

When defined for floating-point modes, the contents of ‘op2[i]’ are not in-
terpreted if ‘op1[i]’ is false, just like they would not be in a normal C ‘?:’
condition.

Operands 0, 2, and 3 all have mode m. Operand 1 is a scalar integer if m is
scalar, otherwise it has the mode returned by TARGET_VECTORIZE_GET_MASK_

MODE.

‘cond_opmode’ generally corresponds to a conditional form of ‘opmode2’.

‘cond_addmode’
‘cond_submode’
‘cond_mulmode’
‘cond_divmode’
‘cond_udivmode’
‘cond_modmode’
‘cond_umodmode’
‘cond_andmode’
‘cond_iormode’
‘cond_xormode’
‘cond_sminmode’
‘cond_smaxmode’
‘cond_uminmode’
‘cond_umaxmode’
‘cond_copysignmode’
‘cond_fminmode’
‘cond_fmaxmode’
‘cond_ashlmode’
‘cond_ashrmode’
‘cond_lshrmode’

When operand 1 is true, perform an operation on operands 2 and 3 and store
the result in operand 0, otherwise store operand 4 in operand 0. The operation
works elementwise if the operands are vectors.

The scalar case is equivalent to:

op0 = op1 ? op2 op op3 : op4;

while the vector case is equivalent to:

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = op1[i] ? op2[i] op op3[i] : op4[i];

where, for example, op is + for ‘cond_addmode’.

When defined for floating-point modes, the contents of ‘op3[i]’ are not in-
terpreted if ‘op1[i]’ is false, just like they would not be in a normal C ‘?:’
condition.

462 GNU Compiler Collection (GCC) Internals

Operands 0, 2, 3 and 4 all have mode m. Operand 1 is a scalar integer if m is
scalar, otherwise it has the mode returned by TARGET_VECTORIZE_GET_MASK_

MODE.

‘cond_opmode’ generally corresponds to a conditional form of ‘opmode3’. As an
exception, the vector forms of shifts correspond to patterns like vashlmode3

rather than patterns like ashlmode3.

‘cond_copysignmode’ is only defined for floating point modes.

‘cond_fmamode’
‘cond_fmsmode’
‘cond_fnmamode’
‘cond_fnmsmode’

Like ‘cond_addm’, except that the conditional operation takes 3 operands rather
than two. For example, the vector form of ‘cond_fmamode’ is equivalent to:

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = op1[i] ? fma (op2[i], op3[i], op4[i]) : op5[i];

‘cond_len_negmode’
‘cond_len_one_cmplmode’
‘cond_len_sqrtmode’
‘cond_len_ceilmode’
‘cond_len_floormode’
‘cond_len_roundmode’
‘cond_len_rintmode’

When operand 1 is true and element index < operand 4 + operand 5, perform
an operation on operands 1 and store the result in operand 0, otherwise store
operand 2 in operand 0. The operation only works for the operands are vectors.

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = (i < ops[4] + ops[5] && op1[i]

? op op2[i]

: op3[i]);

where, for example, op is ~ for ‘cond_len_one_cmplmode’.

When defined for floating-point modes, the contents of ‘op2[i]’ are not in-
terpreted if ‘op1[i]’ is false, just like they would not be in a normal C ‘?:’
condition.

Operands 0, 2, and 3 all have mode m. Operand 1 is a scalar integer if m is
scalar, otherwise it has the mode returned by TARGET_VECTORIZE_GET_MASK_

MODE. Operand 4 has whichever integer mode the target prefers.

‘cond_len_opmode’ generally corresponds to a conditional form of ‘opmode2’.

Chapter 16: Machine Descriptions 463

‘cond_len_addmode’
‘cond_len_submode’
‘cond_len_mulmode’
‘cond_len_divmode’
‘cond_len_udivmode’
‘cond_len_modmode’
‘cond_len_umodmode’
‘cond_len_andmode’
‘cond_len_iormode’
‘cond_len_xormode’
‘cond_len_sminmode’
‘cond_len_smaxmode’
‘cond_len_uminmode’
‘cond_len_umaxmode’
‘cond_len_copysignmode’
‘cond_len_fminmode’
‘cond_len_fmaxmode’
‘cond_len_ashlmode’
‘cond_len_ashrmode’
‘cond_len_lshrmode’

When operand 1 is true and element index < operand 5 + operand 6, perform
an operation on operands 2 and 3 and store the result in operand 0, otherwise
store operand 4 in operand 0. The operation only works for the operands are
vectors.

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = (i < ops[5] + ops[6] && op1[i]

? op2[i] op op3[i]

: op4[i]);

where, for example, op is + for ‘cond_len_addmode’.

When defined for floating-point modes, the contents of ‘op3[i]’ are not in-
terpreted if ‘op1[i]’ is false, just like they would not be in a normal C ‘?:’
condition.

Operands 0, 2, 3 and 4 all have mode m. Operand 1 is a scalar integer if m is
scalar, otherwise it has the mode returned by TARGET_VECTORIZE_GET_MASK_

MODE. Operand 5 has whichever integer mode the target prefers.

‘cond_len_opmode’ generally corresponds to a conditional form of ‘opmode3’.
As an exception, the vector forms of shifts correspond to patterns like
vashlmode3 rather than patterns like ashlmode3.

‘cond_len_copysignmode’ is only defined for floating point modes.

‘cond_len_fmamode’
‘cond_len_fmsmode’
‘cond_len_fnmamode’
‘cond_len_fnmsmode’

Like ‘cond_len_addm’, except that the conditional operation takes 3 operands
rather than two. For example, the vector form of ‘cond_len_fmamode’ is equiv-
alent to:

464 GNU Compiler Collection (GCC) Internals

for (i = 0; i < GET_MODE_NUNITS (m); i++)

op0[i] = (i < ops[6] + ops[7] && op1[i]

? fma (op2[i], op3[i], op4[i])

: op5[i]);

‘negmodecc’
Similar to ‘movmodecc’ but for conditional negation. Conditionally move the
negation of operand 2 or the unchanged operand 3 into operand 0 according to
the comparison in operand 1. If the comparison is true, the negation of operand
2 is moved into operand 0, otherwise operand 3 is moved.

‘notmodecc’
Similar to ‘negmodecc’ but for conditional complement. Conditionally move
the bitwise complement of operand 2 or the unchanged operand 3 into operand
0 according to the comparison in operand 1. If the comparison is true, the
complement of operand 2 is moved into operand 0, otherwise operand 3 is
moved.

‘cstoremode4’
Store zero or nonzero in operand 0 according to whether a comparison is true.
Operand 1 is a comparison operator. Operand 2 and operand 3 are the first
and second operand of the comparison, respectively. You specify the mode
that operand 0 must have when you write the match_operand expression. The
compiler automatically sees which mode you have used and supplies an operand
of that mode.

The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it
from the machine description. You describe to the compiler exactly which value
is stored by defining the macro STORE_FLAG_VALUE (see Section 17.35 [Misc],
page 701). If a description cannot be found that can be used for all the possible
comparison operators, you should pick one and use a define_expand to map
all results onto the one you chose.

These operations may FAIL, but should do so only in relatively uncommon
cases; if they would FAIL for common cases involving integer comparisons, it is
best to restrict the predicates to not allow these operands. Likewise if a given
comparison operator will always fail, independent of the operands (for floating-
point modes, the ordered_comparison_operator predicate is often useful in
this case).

If this pattern is omitted, the compiler will generate a conditional branch—for
example, it may copy a constant one to the target and branching around an
assignment of zero to the target—or a libcall. If the predicate for operand
1 only rejects some operators, it will also try reordering the operands and/or
inverting the result value (e.g. by an exclusive OR). These possibilities could
be cheaper or equivalent to the instructions used for the ‘cstoremode4’ pattern
followed by those required to convert a positive result from STORE_FLAG_VALUE

to 1; in this case, you can and should make operand 1’s predicate reject some
operators in the ‘cstoremode4’ pattern, or remove the pattern altogether from
the machine description.

Chapter 16: Machine Descriptions 465

‘tbranch_opmode3’
Conditional branch instruction combined with a bit test-and-compare instruc-
tion. Operand 0 is the operand of the comparison. Operand 1 is the bit position
of Operand 1 to test. Operand 3 is the code_label to jump to. op is one of eq
or ne.

‘cbranchmode4’
Conditional branch instruction combined with a compare instruction. Operand
0 is a comparison operator. Operand 1 and operand 2 are the first and sec-
ond operands of the comparison, respectively. Operand 3 is the code_label

to jump to. For vectors this optab is only used for comparisons of VEC-
TOR BOOLEAN TYPE P values and it never called for data-registers. Data
vector operands should use one of the patterns below instead.

‘vec_cbranch_anymode’
Conditional branch instruction based on a vector compare that branches when
at least one of the elementwise comparisons of the two input vectors is true.
Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and
second operands of the comparison, respectively. Operand 3 is the code_label
to jump to.

‘vec_cbranch_allmode’
Conditional branch instruction based on a vector compare that branches when
all of the elementwise comparisons of the two input vectors is true. Operand
0 is a comparison operator. Operand 1 and operand 2 are the first and second
operands of the comparison, respectively. Operand 3 is the code_label to jump
to.

‘cond_vec_cbranch_anymode’
Masked conditional branch instruction based on a vector compare that branches
when at least one of the elementwise comparisons of the two input vectors is
true. Operand 0 is a comparison operator. Operand 1 is the mask operand.
Operand 2 and operand 3 are the first and second operands of the comparison,
respectively. Operand 5 is the code_label to jump to. Inactive lanes in the
mask operand should not influence the decision to branch.

‘cond_vec_cbranch_allmode’
Masked conditional branch instruction based on a vector compare that branches
when all of the elementwise comparisons of the two input vectors is true.
Operand 0 is a comparison operator. Operand 1 is the mask operand. Operand
2 and operand 3 are the first and second operands of the comparison, respec-
tively. Operand 5 is the code_label to jump to. Inactive lanes in the mask
operand should not influence the decision to branch.

‘cond_len_vec_cbranch_anymode’
Len based conditional branch instruction based on a vector compare that
branches when at least one of the elementwise comparisons of the two input
vectors is true. Operand 0 is a comparison operator. Operand 1 is the mask
operand. Operand 2 and operand 3 are the first and second operands of the
comparison, respectively. Operand 4 is the len operand and Operand 5 is the

466 GNU Compiler Collection (GCC) Internals

bias operand. Operand 6 is the code_label to jump to. Inactive lanes in the
mask operand should not influence the decision to branch.

‘cond_len_vec_cbranch_allmode’
Len based conditional branch instruction based on a vector compare that
branches when all of the elementwise comparisons of the two input vectors is
true. Operand 0 is a comparison operator. Operand 1 is the mask operand.
Operand 2 and operand 3 are the first and second operands of the comparison,
respectively. Operand 4 is the len operand and Operand 5 is the bias operand.
Operand 6 is the code_label to jump to. Inactive lanes in the mask operand
should not influence the decision to branch.

‘jump’ A jump inside a function; an unconditional branch. Operand 0 is the code_

label to jump to. This pattern name is mandatory on all machines.

‘call’ Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed as a const_int.
Operand 2 is the result of calling the target hook TARGET_FUNCTION_ARG with
the second argument arg yielding true for arg.end_marker_p (), in a call after
all parameters have been passed to that hook. By default this is the first register
beyond those used for arguments in the call, or NULL if all the argument-registers
are used in the call.

On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 16.16 [Expander Definitions], page 486) that
places the address into a register and uses that register in the call instruction.

‘call_value’
Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’
Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_
ARGS is nonzero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be nonzero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

‘untyped_call’
Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the

Chapter 16: Machine Descriptions 467

function is to be stored; operand 2 is a parallel expression where each element
is a set expression that indicates the saving of a function return value into the
result block.

This instruction pattern should be defined to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

‘return’ Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.

It is valid for this pattern to expand to an instruction using simple_return if
no epilogue is required.

‘simple_return’
Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function on a
path where no epilogue is required. This pattern is very similar to the return

instruction pattern, but it is emitted only by the shrink-wrapping optimization
on paths where the function prologue has not been executed, and a function
return should occur without any of the effects of the epilogue. Additional uses
may be introduced on paths where both the prologue and the epilogue have
executed.

For such machines, the condition specified in this pattern should only be true
when reload_completed is nonzero and the function’s epilogue would only be
a single instruction. For machines with register windows, the routine leaf_

function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such
as

(define_insn ""

[(set (pc)

(if_then_else (match_operator

0 "comparison_operator"

[(reg:CC CC_REG) (const_int 0)])

(return)

(pc)))]

"condition"

"...")

where condition would normally be the same condition specified on the named
‘return’ pattern.

468 GNU Compiler Collection (GCC) Internals

‘untyped_return’
Untyped subroutine return instruction. This instruction pattern should be
defined to support __builtin_return on machines where special instructions
are needed to return a value of any type.

Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

‘nop’ No-op instruction. This instruction pattern name should always be defined to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’
An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

‘casesi’ Instruction to jump through a dispatch table, including bounds checking. This
instruction takes five operands:

1. The index to dispatch on, which has mode SImode.

2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table—the largest index minus the smallest
one (both inclusive).

4. A label that precedes the table itself.

5. A label to jump to if the index has a value outside the bounds.

The table is an addr_vec or addr_diff_vec inside of a jump_table_data. The
number of elements in the table is one plus the difference between the upper
bound and the lower bound.

‘tablejump’
Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_

RELATIVE evaluates to a nonzero value then the first operand is an offset which
counts from the address of the table; otherwise, it is an absolute address to
jump to. In either case, the first operand has mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

‘doloop_end’
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. Operand 0 is the register to decrement and test; operand
1 is the label to jump to if the register is nonzero. See Section 16.14 [Looping
Patterns], page 482.

This optional instruction pattern should be defined for machines with low-
overhead looping instructions as the loop optimizer will try to modify suitable

Chapter 16: Machine Descriptions 469

loops to utilize it. The target hook TARGET_CAN_USE_DOLOOP_P controls the
conditions under which low-overhead loops can be used.

‘doloop_begin’
Companion instruction to doloop_end required for machines that need to per-
form some initialization, such as loading a special counter register. Operand
1 is the associated doloop_end pattern and operand 0 is the register that it
decrements.

If initialization insns do not always need to be emitted, use a define_expand

(see Section 16.16 [Expander Definitions], page 486) and make it fail.

‘canonicalize_funcptr_for_compare’
Canonicalize the function pointer in operand 1 and store the result into operand
0.

Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem,
symbol_ref, const_int, etc and also has mode Pmode.

Canonicalization of a function pointer usually involves computing the address
of the function which would be called if the function pointer were used in an
indirect call.

Only define this pattern if function pointers on the target machine can have
different values but still call the same function when used in an indirect call.

‘save_stack_block’
‘save_stack_function’
‘save_stack_nonlocal’
‘restore_stack_block’
‘restore_stack_function’
‘restore_stack_nonlocal’

Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On
those machines, define the patterns corresponding to the non-standard cases by
using a define_expand (see Section 16.16 [Expander Definitions], page 486)
that produces the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that
allocates a variable-sized object, and ‘restore_stack_block’ restores the
stack pointer when the block is exited.

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. ‘save_stack_nonlocal’ is used in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use ‘restore_stack_nonlocal’ to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer
registers, but some machines require saving and restoring additional data

470 GNU Compiler Collection (GCC) Internals

such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area defaults to Pmode but
you can override that choice by defining the STACK_SAVEAREA_MODE macro (see
Section 17.5 [Storage Layout], page 541). You must specify an integral mode, or
VOIDmode if no save area is needed for a particular type of save (either because
no save is needed or because a machine-specific save area can be used). Operand
0 is the stack pointer and operand 1 is the save area for restore operations. If
‘save_stack_block’ is defined, operand 0 must not be VOIDmode since these
saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx

when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

‘allocate_stack’
Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 1 from the
stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating
space from the main stack, do this by emitting a move insn to copy virtual_

stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere,
generate code to copy the location of the space to operand 0. In the latter
case, you must ensure this space gets freed when the corresponding space on
the main stack is free.

Do not define this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. Define this pattern to emit those operations in addition to updating the
stack pointer.

‘check_stack’
If stack checking (see Section 17.9.3 [Stack Checking], page 581) cannot be done
on your system by probing the stack, define this pattern to perform the needed
check and signal an error if the stack has overflowed. The single operand is
the address in the stack farthest from the current stack pointer that you need
to validate. Normally, on platforms where this pattern is needed, you would
obtain the stack limit from a global or thread-specific variable or register.

‘probe_stack_address’
If stack checking (see Section 17.9.3 [Stack Checking], page 581) can be done
on your system by probing the stack but without the need to actually access it,
define this pattern and signal an error if the stack has overflowed. The single
operand is the memory address in the stack that needs to be probed.

‘probe_stack’
If stack checking (see Section 17.9.3 [Stack Checking], page 581) can be done on
your system by probing the stack but doing it with a “store zero” instruction
is not valid or optimal, define this pattern to do the probing differently and
signal an error if the stack has overflowed. The single operand is the memory
reference in the stack that needs to be probed.

Chapter 16: Machine Descriptions 471

‘nonlocal_goto’
Emit code to generate a non-local goto, e.g., a jump from one function to a
label in an outer function. This pattern has four arguments, each representing
a value to be used in the jump. The first argument is to be loaded into the
frame pointer, the second is the address to branch to (code to dispatch to the
actual label), the third is the address of a location where the stack is saved, and
the last is the address of the label, to be placed in the location for the incoming
static chain.

On most machines you need not define this pattern, since GCC will already
generate the correct code, which is to load the frame pointer and static chain,
restore the stack (using the ‘restore_stack_nonlocal’ pattern, if defined),
and jump indirectly to the dispatcher. You need only define this pattern if this
code will not work on your machine.

‘nonlocal_goto_receiver’
This pattern, if defined, contains code needed at the target of a nonlocal goto
after the code already generated by GCC. You will not normally need to define
this pattern. A typical reason why you might need this pattern is if some value,
such as a pointer to a global table, must be restored when the frame pointer
is restored. Note that a nonlocal goto only occurs within a unit-of-translation,
so a global table pointer that is shared by all functions of a given module need
not be restored. There are no arguments.

‘exception_receiver’
This pattern, if defined, contains code needed at the site of an exception handler
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored after control
flow is branched to the handler of an exception. There are no arguments.

‘builtin_setjmp_setup’
This pattern, if defined, contains additional code needed to initialize the jmp_

buf. You will not normally need to define this pattern. A typical reason why
you might need this pattern is if some value, such as a pointer to a global table,
must be restored. Though it is preferred that the pointer value be recalculated
if possible (given the address of a label for instance). The single argument is
a pointer to the jmp_buf. Note that the buffer is five words long and that the
first three are normally used by the generic mechanism.

‘builtin_setjmp_receiver’
This pattern, if defined, contains code needed at the site of a built-in setjmp
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored. It takes one
argument, which is the label to which builtin longjmp transferred control; this
pattern may be emitted at a small offset from that label.

472 GNU Compiler Collection (GCC) Internals

‘builtin_longjmp’
This pattern, if defined, performs the entire action of the longjmp. You will not
normally need to define this pattern unless you also define builtin_setjmp_

setup. The single argument is a pointer to the jmp_buf.

‘eh_return’
This pattern, if defined, affects the way __builtin_eh_return, and thence the
call frame exception handling library routines, are built. It is intended to handle
non-trivial actions needed along the abnormal return path.

The address of the exception handler to which the function should return is
passed as operand to this pattern. It will normally need to copied by the
pattern to some special register or memory location. If the pattern needs to
determine the location of the target call frame in order to do so, it may use
EH_RETURN_STACKADJ_RTX, if defined; it will have already been assigned.

If this pattern is not defined, the default action will be to simply copy the return
address to EH_RETURN_HANDLER_RTX. Either that macro or this pattern needs
to be defined if call frame exception handling is to be used.

‘prologue’
This pattern, if defined, emits RTL for entry to a function. The function entry is
responsible for setting up the stack frame, initializing the frame pointer register,
saving callee saved registers, etc.

Using a prologue pattern is generally preferred over defining TARGET_ASM_

FUNCTION_PROLOGUE to emit assembly code for the prologue.

The prologue pattern is particularly useful for targets which perform instruc-
tion scheduling.

‘window_save’
This pattern, if defined, emits RTL for a register window save. It should be
defined if the target machine has register windows but the window events are
decoupled from calls to subroutines. The canonical example is the SPARC
architecture.

‘epilogue’
This pattern emits RTL for exit from a function. The function exit is responsible
for deallocating the stack frame, restoring callee saved registers and emitting
the return instruction.

Using an epilogue pattern is generally preferred over defining TARGET_ASM_

FUNCTION_EPILOGUE to emit assembly code for the epilogue.

The epilogue pattern is particularly useful for targets which perform instruc-
tion scheduling or which have delay slots for their return instruction.

‘sibcall_epilogue’
This pattern, if defined, emits RTL for exit from a function without the final
branch back to the calling function. This pattern will be emitted before any
sibling call (aka tail call) sites.

The sibcall_epilogue pattern must not clobber any arguments used for pa-
rameter passing or any stack slots for arguments passed to the current function.

Chapter 16: Machine Descriptions 473

‘trap’ This pattern, if defined, signals an error, typically by causing some kind of
signal to be raised.

‘ctrapMM4’
Conditional trap instruction. Operand 0 is a piece of RTL which performs a
comparison, and operands 1 and 2 are the arms of the comparison. Operand 3
is the trap code, an integer.

A typical ctrap pattern looks like
(define_insn "ctrapsi4"

[(trap_if (match_operator 0 "trap_operator"

[(match_operand 1 "register_operand")

(match_operand 2 "immediate_operand")])

(match_operand 3 "const_int_operand" "i"))]

""

"...")

‘prefetch’
This pattern, if defined, emits code for a non-faulting data prefetch instruction.
Operand 0 is the address of the memory to prefetch. Operand 1 is a constant
1 if the prefetch is preparing for a write to the memory address, or a constant
0 otherwise. Operand 2 is the expected degree of temporal locality of the data
and is a value between 0 and 3, inclusive; 0 means that the data has no temporal
locality, so it need not be left in the cache after the access; 3 means that the
data has a high degree of temporal locality and should be left in all levels of
cache possible; 1 and 2 mean, respectively, a low or moderate degree of temporal
locality.

Targets that do not support write prefetches or locality hints can ignore the
values of operands 1 and 2.

‘blockage’
This pattern defines a pseudo insn that prevents the instruction scheduler
and other passes from moving instructions and using register equivalences
across the boundary defined by the blockage insn. This needs to be an
UNSPEC VOLATILE pattern or a volatile ASM.

‘memory_blockage’
This pattern, if defined, represents a compiler memory barrier, and will be
placed at points across which RTL passes may not propagate memory accesses.
This instruction needs to read and write volatile BLKmode memory. It does
not need to generate any machine instruction. If this pattern is not defined, the
compiler falls back to emitting an instruction corresponding to asm volatile

("" ::: "memory").

‘memory_barrier’
If the target memory model is not fully synchronous, then this pattern should be
defined to an instruction that orders both loads and stores before the instruction
with respect to loads and stores after the instruction. This pattern has no
operands.

‘speculation_barrier’
If the target can support speculative execution, then this pattern should be
defined to an instruction that will block subsequent execution until any prior

474 GNU Compiler Collection (GCC) Internals

speculation conditions has been resolved. The pattern must also ensure that
the compiler cannot move memory operations past the barrier, so it needs to
be an UNSPEC VOLATILE pattern. The pattern has no operands.

If this pattern is not defined then the default expansion of __builtin_

speculation_safe_value will emit a warning. You can suppress this warning
by defining this pattern with a final condition of 0 (zero), which tells the
compiler that a speculation barrier is not needed for this target.

‘sync_compare_and_swapmode’
This pattern, if defined, emits code for an atomic compare-and-swap operation.
Operand 1 is the memory on which the atomic operation is performed. Operand
2 is the “old” value to be compared against the current contents of the memory
location. Operand 3 is the “new” value to store in the memory if the compare
succeeds. Operand 0 is the result of the operation; it should contain the contents
of the memory before the operation. If the compare succeeds, this should
obviously be a copy of operand 2.

This pattern must show that both operand 0 and operand 1 are modified.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

For targets where the success or failure of the compare-and-swap operation is
available via the status flags, it is possible to avoid a separate compare opera-
tion and issue the subsequent branch or store-flag operation immediately after
the compare-and-swap. To this end, GCC will look for a MODE_CC set in the
output of sync_compare_and_swapmode; if the machine description includes
such a set, the target should also define special cbranchcc4 and/or cstorecc4
instructions. GCC will then be able to take the destination of the MODE_CC set
and pass it to the cbranchcc4 or cstorecc4 pattern as the first operand of the
comparison (the second will be (const_int 0)).

For targets where the operating system may provide support for this opera-
tion via library calls, the sync_compare_and_swap_optab may be initialized
to a function with the same interface as the __sync_val_compare_and_swap_n
built-in. If the entire set of sync builtins are supported via library calls, the
target can initialize all of the optabs at once with init_sync_libfuncs. For
the purposes of C++11 std::atomic::is_lock_free, it is assumed that these
library calls do not use any kind of interruptable locking.

‘sync_addmode’, ‘sync_submode’
‘sync_iormode’, ‘sync_andmode’
‘sync_xormode’, ‘sync_nandmode’

These patterns emit code for an atomic operation on memory. Operand 0 is the
memory on which the atomic operation is performed. Operand 1 is the second
operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

Chapter 16: Machine Descriptions 475

If these patterns are not defined, the operation will be constructed from a
compare-and-swap operation, if defined.

‘sync_old_addmode’, ‘sync_old_submode’
‘sync_old_iormode’, ‘sync_old_andmode’
‘sync_old_xormode’, ‘sync_old_nandmode’

These patterns emit code for an atomic operation on memory, and return the
value that the memory contained before the operation. Operand 0 is the result
value, operand 1 is the memory on which the atomic operation is performed,
and operand 2 is the second operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

If these patterns are not defined, the operation will be constructed from a
compare-and-swap operation, if defined.

‘sync_new_addmode’, ‘sync_new_submode’
‘sync_new_iormode’, ‘sync_new_andmode’
‘sync_new_xormode’, ‘sync_new_nandmode’

These patterns are like their sync_old_op counterparts, except that they return
the value that exists in the memory location after the operation, rather than
before the operation.

‘sync_lock_test_and_setmode’
This pattern takes two forms, based on the capabilities of the target. In either
case, operand 0 is the result of the operand, operand 1 is the memory on which
the atomic operation is performed, and operand 2 is the value to set in the lock.

In the ideal case, this operation is an atomic exchange operation, in which the
previous value in memory operand is copied into the result operand, and the
value operand is stored in the memory operand.

For less capable targets, any value operand that is not the constant 1 should
be rejected with FAIL. In this case the target may use an atomic test-and-set
bit operation. The result operand should contain 1 if the bit was previously set
and 0 if the bit was previously clear. The true contents of the memory operand
are implementation defined.

This pattern must issue any memory barrier instructions such that the pattern
as a whole acts as an acquire barrier, that is all memory operations after the
pattern do not occur until the lock is acquired.

If this pattern is not defined, the operation will be constructed from a compare-
and-swap operation, if defined.

‘sync_lock_releasemode’
This pattern, if defined, releases a lock set by sync_lock_test_and_setmode.
Operand 0 is the memory that contains the lock; operand 1 is the value to store
in the lock.

If the target doesn’t implement full semantics for sync_lock_test_and_

setmode, any value operand which is not the constant 0 should be rejected

476 GNU Compiler Collection (GCC) Internals

with FAIL, and the true contents of the memory operand are implementation
defined.

This pattern must issue any memory barrier instructions such that the pattern
as a whole acts as a release barrier, that is the lock is released only after all
previous memory operations have completed.

If this pattern is not defined, then a memory_barrier pattern will be emitted,
followed by a store of the value to the memory operand.

‘atomic_compare_and_swapmode’
This pattern, if defined, emits code for an atomic compare-and-swap operation
with memory model semantics. Operand 2 is the memory on which the atomic
operation is performed. Operand 0 is an output operand which is set to true
or false based on whether the operation succeeded. Operand 1 is an output
operand which is set to the contents of the memory before the operation was
attempted. Operand 3 is the value that is expected to be in memory. Operand 4
is the value to put in memory if the expected value is found there. Operand 5 is
set to 1 if this compare and swap is to be treated as a weak operation. Operand
6 is the memory model to be used if the operation is a success. Operand 7 is
the memory model to be used if the operation fails.

If memory referred to in operand 2 contains the value in operand 3, then operand
4 is stored in memory pointed to by operand 2 and fencing based on the memory
model in operand 6 is issued.

If memory referred to in operand 2 does not contain the value in operand 3,
then fencing based on the memory model in operand 7 is issued.

If a target does not support weak compare-and-swap operations, or the port
elects not to implement weak operations, the argument in operand 5 can be
ignored. Note a strong implementation must be provided.

If this pattern is not provided, the __atomic_compare_exchange built-in
functions will utilize the legacy sync_compare_and_swap pattern with an
__ATOMIC_SEQ_CST memory model.

‘atomic_loadmode’
This pattern implements an atomic load operation with memory model seman-
tics. Operand 1 is the memory address being loaded from. Operand 0 is the
result of the load. Operand 2 is the memory model to be used for the load
operation.

If not present, the __atomic_load built-in function will either resort to a normal
load with memory barriers, or a compare-and-swap operation if a normal load
would not be atomic.

‘atomic_storemode’
This pattern implements an atomic store operation with memory model seman-
tics. Operand 0 is the memory address being stored to. Operand 1 is the value
to be written. Operand 2 is the memory model to be used for the operation.

If not present, the __atomic_store built-in function will attempt to perform
a normal store and surround it with any required memory fences. If the store

Chapter 16: Machine Descriptions 477

would not be atomic, then an __atomic_exchange is attempted with the result
being ignored.

‘atomic_exchangemode’
This pattern implements an atomic exchange operation with memory model
semantics. Operand 1 is the memory location the operation is performed on.
Operand 0 is an output operand which is set to the original value contained
in the memory pointed to by operand 1. Operand 2 is the value to be stored.
Operand 3 is the memory model to be used.

If this pattern is not present, the built-in function __atomic_exchange will
attempt to preform the operation with a compare and swap loop.

‘atomic_addmode’, ‘atomic_submode’
‘atomic_ormode’, ‘atomic_andmode’
‘atomic_xormode’, ‘atomic_nandmode’

These patterns emit code for an atomic operation on memory with memory
model semantics. Operand 0 is the memory on which the atomic operation is
performed. Operand 1 is the second operand to the binary operator. Operand
2 is the memory model to be used by the operation.

If these patterns are not defined, attempts will be made to use legacy sync

patterns, or equivalent patterns which return a result. If none of these are
available a compare-and-swap loop will be used.

‘atomic_fetch_addmode’, ‘atomic_fetch_submode’
‘atomic_fetch_ormode’, ‘atomic_fetch_andmode’
‘atomic_fetch_xormode’, ‘atomic_fetch_nandmode’

These patterns emit code for an atomic operation on memory with memory
model semantics, and return the original value. Operand 0 is an output operand
which contains the value of the memory location before the operation was per-
formed. Operand 1 is the memory on which the atomic operation is performed.
Operand 2 is the second operand to the binary operator. Operand 3 is the
memory model to be used by the operation.

If these patterns are not defined, attempts will be made to use legacy sync

patterns. If none of these are available a compare-and-swap loop will be used.

‘atomic_add_fetchmode’, ‘atomic_sub_fetchmode’
‘atomic_or_fetchmode’, ‘atomic_and_fetchmode’
‘atomic_xor_fetchmode’, ‘atomic_nand_fetchmode’

These patterns emit code for an atomic operation on memory with mem-
ory model semantics and return the result after the operation is performed.
Operand 0 is an output operand which contains the value after the operation.
Operand 1 is the memory on which the atomic operation is performed. Operand
2 is the second operand to the binary operator. Operand 3 is the memory model
to be used by the operation.

If these patterns are not defined, attempts will be made to use legacy sync

patterns, or equivalent patterns which return the result before the operation
followed by the arithmetic operation required to produce the result. If none of
these are available a compare-and-swap loop will be used.

478 GNU Compiler Collection (GCC) Internals

‘atomic_test_and_set’
This pattern emits code for __builtin_atomic_test_and_set. Operand 0 is
an output operand which is set to true if the previous previous contents of the
byte was "set", and false otherwise. Operand 1 is the QImode memory to be
modified. Operand 2 is the memory model to be used.

The specific value that defines "set" is implementation defined, and is normally
based on what is performed by the native atomic test and set instruction.

‘atomic_bit_test_and_setmode’
‘atomic_bit_test_and_complementmode’
‘atomic_bit_test_and_resetmode’

These patterns emit code for an atomic bitwise operation on memory with mem-
ory model semantics, and return the original value of the specified bit. Operand
0 is an output operand which contains the value of the specified bit from the
memory location before the operation was performed. Operand 1 is the memory
on which the atomic operation is performed. Operand 2 is the bit within the
operand, starting with least significant bit. Operand 3 is the memory model to
be used by the operation. Operand 4 is a flag - it is const1_rtx if operand 0
should contain the original value of the specified bit in the least significant bit
of the operand, and const0_rtx if the bit should be in its original position in
the operand. atomic_bit_test_and_setmode atomically sets the specified bit
after remembering its original value, atomic_bit_test_and_complementmode
inverts the specified bit and atomic_bit_test_and_resetmode clears the spec-
ified bit.

If these patterns are not defined, attempts will be made to use atomic_fetch_
ormode, atomic_fetch_xormode or atomic_fetch_andmode instruction pat-
terns, or their sync counterparts. If none of these are available a compare-and-
swap loop will be used.

‘atomic_add_fetch_cmp_0mode’
‘atomic_sub_fetch_cmp_0mode’
‘atomic_and_fetch_cmp_0mode’
‘atomic_or_fetch_cmp_0mode’
‘atomic_xor_fetch_cmp_0mode’

These patterns emit code for an atomic operation on memory with memory
model semantics if the fetch result is used only in a comparison against zero.
Operand 0 is an output operand which contains a boolean result of comparison
of the value after the operation against zero. Operand 1 is the memory on
which the atomic operation is performed. Operand 2 is the second operand
to the binary operator. Operand 3 is the memory model to be used by the
operation. Operand 4 is an integer holding the comparison code, one of EQ, NE,
LT, GT, LE or GE.

If these patterns are not defined, attempts will be made to use separate atomic
operation and fetch pattern followed by comparison of the result against zero.

‘mem_thread_fence’
This pattern emits code required to implement a thread fence with memory
model semantics. Operand 0 is the memory model to be used.

Chapter 16: Machine Descriptions 479

For the __ATOMIC_RELAXED model no instructions need to be issued and this
expansion is not invoked.

The compiler always emits a compiler memory barrier regardless of what ex-
panding this pattern produced.

If this pattern is not defined, the compiler falls back to expanding the memory_
barrier pattern, then to emitting __sync_synchronize library call, and finally
to just placing a compiler memory barrier.

‘get_thread_pointermode’
‘set_thread_pointermode’

These patterns emit code that reads/sets the TLS thread pointer. Currently,
these are only needed if the target needs to support the __builtin_thread_

pointer and __builtin_set_thread_pointer builtins.

The get/set patterns have a single output/input operand respectively, with
mode intended to be Pmode.

‘stack_protect_combined_set’
This pattern, if defined, moves a ptr_mode value from an address whose decla-
ration RTX is given in operand 1 to the memory in operand 0 without leaving
the value in a register afterward. If several instructions are needed by the target
to perform the operation (eg. to load the address from a GOT entry then load
the ptr_mode value and finally store it), it is the backend’s responsibility to en-
sure no intermediate result gets spilled. This is to avoid leaking the value some
place that an attacker might use to rewrite the stack guard slot after having
clobbered it.

If this pattern is not defined, then the address declaration is expanded first in
the standard way and a stack_protect_set pattern is then generated to move
the value from that address to the address in operand 0.

‘stack_protect_set’
This pattern, if defined, moves a ptr_mode value from the valid memory location
in operand 1 to the memory in operand 0 without leaving the value in a register
afterward. This is to avoid leaking the value some place that an attacker might
use to rewrite the stack guard slot after having clobbered it.

Note: on targets where the addressing modes do not allow to load directly from
stack guard address, the address is expanded in a standard way first which
could cause some spills.

If this pattern is not defined, then a plain move pattern is generated.

‘stack_protect_combined_test’
This pattern, if defined, compares a ptr_mode value from an address whose
declaration RTX is given in operand 1 with the memory in operand 0 without
leaving the value in a register afterward and branches to operand 2 if the values
were equal. If several instructions are needed by the target to perform the
operation (eg. to load the address from a GOT entry then load the ptr_

mode value and finally store it), it is the backend’s responsibility to ensure no
intermediate result gets spilled. This is to avoid leaking the value some place

480 GNU Compiler Collection (GCC) Internals

that an attacker might use to rewrite the stack guard slot after having clobbered
it.

If this pattern is not defined, then the address declaration is expanded first
in the standard way and a stack_protect_test pattern is then generated to
compare the value from that address to the value at the memory in operand 0.

‘stack_protect_test’
This pattern, if defined, compares a ptr_mode value from the valid memory
location in operand 1 with the memory in operand 0 without leaving the value
in a register afterward and branches to operand 2 if the values were equal.

If this pattern is not defined, then a plain compare pattern and conditional
branch pattern is used.

This pattern tags an object that begins at the address specified by operand 0,
has the byte size indicated by the operand 2, and uses the tag from operand 1.

This pattern composes a tagged address specified by operand 1 with mode ptr_
mode, with an integer operand 2 representing the tag offset. It returns the result
in operand 0 with mode ptr_mode.

‘clear_cache’
This pattern, if defined, flushes the instruction cache for a region of memory.
The region is bounded to by the Pmode pointers in operand 0 inclusive and
operand 1 exclusive.

If this pattern is not defined, a call to the library function __clear_cache is
used.

‘spaceshipm4’
Initialize output operand 0 with mode of integer type to -1, 0, 1 or -128 if
operand 1 with mode m compares less than operand 2, equal to operand 2,
greater than operand 2 or is unordered with operand 2. Operand 3 should be
const0_rtx if the result is used in comparisons, const1_rtx if the result is
used as integer value and the comparison is integral unsigned, constm1_rtx if
the result is used as integer value and the comparison is integral signed and
some other CONST_INT if the result is used as integer value and the comparison
is floating point. In the last case, instead of setting output operand 0 to -128
for unordered, set it to operand 3. m should be a scalar floating point mode.

This pattern is not allowed to FAIL.

‘isfinitem2’
Return 1 if operand 1 is a finite floating point number and 0 otherwise. m is
a scalar floating point mode. Operand 0 has mode SImode, and operand 1 has
mode m.

‘isnanm2’ Return 1 if operand 1 is a NaN and 0 otherwise. m is a scalar floating point
mode. Operand 0 has mode SImode, and operand 1 has mode m.

‘isnormalm2’
Return 1 if operand 1 is a normal floating point number and 0 otherwise. m is
a scalar floating point mode. Operand 0 has mode SImode, and operand 1 has
mode m.

Chapter 16: Machine Descriptions 481

‘crcmn4’ Calculate a bit-forward CRC using operands 1, 2 and 3, then store the result in
operand 0. Operands 1 is the initial CRC, operands 2 is the data and operands
3 is the polynomial without leading 1. Operands 0, 1 and 3 have mode n and
operand 2 has mode m, where both modes are integers. The size of CRC to be
calculated is determined by the mode; for example, if n is HImode, a CRC16 is
calculated.

‘crc_revmn4’
Similar to ‘crcmn4’, but calculates a bit-reversed CRC.

16.11 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that
appears first in the machine description is the one used. Therefore, more specific patterns
(patterns that will match fewer things) and faster instructions (those that will produce
better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it is
not valid. For example, the 68000 has an instruction for converting a fullword to floating
point and another for converting a byte to floating point. An instruction converting an
integer to floating point could match either one. We put the pattern to convert the fullword
first to make sure that one will be used rather than the other. (Otherwise a large integer
might be generated as a single-byte immediate quantity, which would not work.) Instead
of using this pattern ordering it would be possible to make the pattern for convert-a-byte
smart enough to deal properly with any constant value.

16.12 Interdependence of Patterns

In some cases machines support instructions identical except for the machine mode of one
or more operands. For example, there may be “sign-extend halfword” and “sign-extend
byte” instructions whose patterns are

(set (match_operand:SI 0 ...)

(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI 0 ...)

(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant
value could match either pattern. The pattern it actually will match is the one that appears
first in the file. For correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the results will be incorrect
if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized
away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with
a constant permitted by the constraint in some cases. Similarly for memory references.
Because of this substitution, you should not provide separate patterns for increment and
decrement instructions. Instead, they should be generated from the same pattern that sup-
ports register-register add insns by examining the operands and generating the appropriate
machine instruction.

482 GNU Compiler Collection (GCC) Internals

16.13 Defining Jump Instruction Patterns

GCC does not assume anything about how the machine realizes jumps. The machine
description should define a single pattern, usually a define_expand, which expands to all
the required insns.

Usually, this would be a comparison insn to set the condition code and a separate branch
insn testing the condition code and branching or not according to its value. For many
machines, however, separating compares and branches is limiting, which is why the more
flexible approach with one define_expand is used in GCC. The machine description be-
comes clearer for architectures that have compare-and-branch instructions but no condition
code. It also works better when different sets of comparison operators are supported by
different kinds of conditional branches (e.g. integer vs. floating-point), or by conditional
branches with respect to conditional stores.

Two separate insns are always used on most machines that use a separate condition code
register (see Section 17.17 [Condition Code], page 628).

Even in this case having a single entry point for conditional branches is advantageous,
because it handles equally well the case where a single comparison instruction records the
results of both signed and unsigned comparison of the given operands (with the branch
insns coming in distinct signed and unsigned flavors) as in the x86 or SPARC, and the
case where there are distinct signed and unsigned compare instructions and only one set of
conditional branch instructions as in the PowerPC.

16.14 Defining Looping Instruction Patterns

Some machines have special jump instructions that can be utilized to make loops more
efficient. A common example is the 68000 ‘dbra’ instruction which performs a decrement
of a register and a branch if the result was greater than zero. Other machines, in particular
digital signal processors (DSPs), have special block repeat instructions to provide low-
overhead loop support. For example, the TI TMS320C3x/C4x DSPs have a block repeat
instruction that loads special registers to mark the top and end of a loop and to count the
number of loop iterations. This avoids the need for fetching and executing a ‘dbra’-like
instruction and avoids pipeline stalls associated with the jump.

GCC has two special named patterns to support low overhead looping. They are
‘doloop_begin’ and ‘doloop_end’. These are emitted by the loop optimizer for certain
well-behaved loops with a finite number of loop iterations using information collected
during strength reduction.

The ‘doloop_end’ pattern describes the actual looping instruction (or the implicit looping
operation) and the ‘doloop_begin’ pattern is an optional companion pattern that can be
used for initialization needed for some low-overhead looping instructions.

Note that some machines require the actual looping instruction to be emitted at the
top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping
instruction at the top of the loop can cause problems with flow analysis. So instead, a
dummy doloop insn is emitted at the end of the loop. The machine dependent reorg pass
checks for the presence of this doloop insn and then searches back to the top of the loop,
where it inserts the true looping insn (provided there are no instructions in the loop which
would cause problems). Any additional labels can be emitted at this point. In addition,

Chapter 16: Machine Descriptions 483

if the desired special iteration counter register was not allocated, this machine dependent
reorg pass could emit a traditional compare and jump instruction pair.

For the ‘doloop_end’ pattern, the loop optimizer allocates an additional pseudo register
as an iteration counter. This pseudo register cannot be used within the loop (i.e., general
induction variables cannot be derived from it), however, in many cases the loop induction
variable may become redundant and removed by the flow pass.

The ‘doloop_end’ pattern must have a specific structure to be handled correctly by GCC.
The example below is taken (slightly simplified) from the PDP-11 target:

(define_expand "doloop_end"

[(parallel [(set (pc)

(if_then_else

(ne (match_operand:HI 0 "nonimmediate_operand" "+r,!m")

(const_int 1))

(label_ref (match_operand 1 "" ""))

(pc)))

(set (match_dup 0)

(plus:HI (match_dup 0)

(const_int -1)))])]

""

"{

if (GET_MODE (operands[0]) != HImode)

FAIL;

}")

(define_insn "doloop_end_insn"

[(set (pc)

(if_then_else

(ne (match_operand:HI 0 "nonimmediate_operand" "+r,!m")

(const_int 1))

(label_ref (match_operand 1 "" ""))

(pc)))

(set (match_dup 0)

(plus:HI (match_dup 0)

(const_int -1)))]

""

{

if (which_alternative == 0)

return "sob %0,%l1";

/* emulate sob */

output_asm_insn ("dec %0", operands);

return "bne %l1";

})

The first part of the pattern describes the branch condition. GCC supports three cases
for the way the target machine handles the loop counter:

• Loop terminates when the loop register decrements to zero. This is represented by a
ne comparison of the register (its old value) with constant 1 (as in the example above).

• Loop terminates when the loop register decrements to −1. This is represented by a ne

comparison of the register with constant zero.

• Loop terminates when the loop register decrements to a negative value. This is repre-
sented by a ge comparison of the register with constant zero. For this case, GCC will

484 GNU Compiler Collection (GCC) Internals

attach a REG_NONNEG note to the doloop_end insn if it can determine that the register
will be non-negative.

Since the doloop_end insn is a jump insn that also has an output, the reload pass does
not handle the output operand. Therefore, the constraint must allow for that operand to
be in memory rather than a register. In the example shown above, that is handled (in the
doloop_end_insn pattern) by using a loop instruction sequence that can handle memory
operands when the memory alternative appears.

GCC does not check the mode of the loop register operand when generating the doloop_
end pattern. If the pattern is only valid for some modes but not others, the pattern should
be a define_expand pattern that checks the operand mode in the preparation code, and
issues FAIL if an unsupported mode is found. The example above does this, since the
machine instruction to be used only exists for HImode.

If the doloop_end pattern is a define_expand, there must also be a define_insn or
define_insn_and_split matching the generated pattern. Otherwise, the compiler will fail
during loop optimization.

16.15 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation per-
formed by a single machine instruction. This situation is most commonly encountered with
logical, branch, and multiply-accumulate instructions. In such cases, the compiler attempts
to convert these multiple RTL expressions into a single canonical form to reduce the number
of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

• For commutative and comparison operators, a constant is always made the second
operand. If a machine only supports a constant as the second operand, only patterns
that match a constant in the second operand need be supplied.

• For the vec_merge with constant mask(the third operand), the first and the second
operand can be exchanged by inverting the mask. In such cases, a constant is always
made the second operand, otherwise the least significant bit of the mask is always
set(select the first operand first).

• For associative operators, a sequence of operators will always chain to the left; for
instance, only the left operand of an integer plus can itself be a plus. and, ior, xor,
plus, mult, smin, smax, umin, and umax are associative when applied to integers, and
sometimes to floating-point.

• For these operators, if only one operand is a neg, not, mult, plus, or minus expression,
it will be the first operand.

• In combinations of neg, mult, plus, and minus, the neg operations (if any) will be
moved inside the operations as far as possible. For instance, (neg (mult A B)) is
canonicalized as (mult (neg A) B), but (plus (mult (neg B) C) A) is canonicalized
as (minus A (mult B C)).

• For the compare operator, a constant is always the second operand if the first argument
is a condition code register.

Chapter 16: Machine Descriptions 485

• For instructions that inherently set a condition code register, the compare operator is
always written as the first RTL expression of the parallel instruction pattern. For
example,

(define_insn ""

[(set (reg:CCZ FLAGS_REG)

(compare:CCZ

(plus:SI

(match_operand:SI 1 "register_operand" "%r")

(match_operand:SI 2 "register_operand" "r"))

(const_int 0)))

(set (match_operand:SI 0 "register_operand" "=r")

(plus:SI (match_dup 1) (match_dup 2)))]

""

"addl %0, %1, %2")

• An operand of neg, not, mult, plus, or minus is made the first operand under the
same conditions as above.

• (ltu (plus a b) b) is converted to (ltu (plus a b) a). Likewise with geu instead of
ltu.

• (minus x (const_int n)) is converted to (plus x (const_int -n)).

• Within address computations (i.e., inside mem), a left shift is converted into the appro-
priate multiplication by a power of two.

• De Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or
logical-or operation. If this results in only one operand being a not expression, it will
be the first one.

A machine that has an instruction that performs a bitwise logical-and of one operand
with the bitwise negation of the other should specify the pattern for that instruction
as

(define_insn ""

[(set (match_operand:m 0 ...)

(and:m (not:m (match_operand:m 1 ...))

(match_operand:m 2 ...)))]

"..."

"...")

Similarly, a pattern for a “NAND” instruction should be written

(define_insn ""

[(set (match_operand:m 0 ...)

(ior:m (not:m (match_operand:m 1 ...))

(not:m (match_operand:m 2 ...))))]

"..."

"...")

In both cases, it is not necessary to include patterns for the many logically equivalent
RTL expressions.

• The only possible RTL expressions involving both bitwise exclusive-or and bitwise
negation are (xor:m x y) and (not:m (xor:m x y)).

• The sum of three items, one of which is a constant, will only appear in the form

(plus:m (plus:m x y) constant)

• Equality comparisons of a group of bits (usually a single bit) with zero will be written
using zero_extract rather than the equivalent and or sign_extract operations.

486 GNU Compiler Collection (GCC) Internals

• (sign_extend:m1 (mult:m2 (sign_extend:m2 x) (sign_extend:m2 y))) is
converted to (mult:m1 (sign_extend:m1 x) (sign_extend:m1 y)), and likewise for
zero_extend.

• (sign_extend:m1 (mult:m2 (ashiftrt:m2 x s) (sign_extend:m2 y))) is converted
to (mult:m1 (sign_extend:m1 (ashiftrt:m2 x s)) (sign_extend:m1 y)), and like-
wise for patterns using zero_extend and lshiftrt. If the second operand of mult is
also a shift, then that is extended also. This transformation is only applied when it
can be proven that the original operation had sufficient precision to prevent overflow.

Further canonicalization rules are defined in the function commutative_operand_

precedence in gcc/rtlanal.cc.

16.16 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be
handled with single insn, but a sequence of RTL insns can represent them. For these target
machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike
the latter, a define_expand is used only for RTL generation and it can produce more than
one RTL insn.

A define_expand RTX has four operands:

• The name. Each define_expand must have a name, since the only use for it is to refer
to it by name.

• The RTL template. This is a vector of RTL expressions representing a sequence of
separate instructions. Unlike define_insn, there is no implicit surrounding PARALLEL.

• The condition, a string containing a C expression. This expression is used to express
how the availability of this pattern depends on subclasses of target machine, selected
by command-line options when GCC is run. This is just like the condition of a define_
insn that has a standard name. Therefore, the condition (if present) may not depend
on the data in the insn being matched, but only the target-machine-type flags. The
compiler needs to test these conditions during initialization in order to learn exactly
which named instructions are available in a particular run.

• The preparation statements, a string containing zero or more C statements which are
to be executed before RTL code is generated from the RTL template.

Usually these statements prepare temporary registers for use as internal operands in
the RTL template, but they can also generate RTL insns directly by calling routines
such as emit_insn, etc. Any such insns precede the ones that come from the RTL
template.

• Optionally, a vector containing the values of attributes. See Section 16.20 [Insn At-
tributes], page 499.

Every RTL insn emitted by a define_expand must match some define_insn in the
machine description. Otherwise, the compiler will crash when trying to generate code for
the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes
the operands that need to be specified when this pattern is used. In particular, it gives a
predicate for each operand.

Chapter 16: Machine Descriptions 487

A true operand, which needs to be specified in order to generate RTL from the pattern,
should be described with a match_operand in its first occurrence in the RTL template.
This enters information on the operand’s predicate into the tables that record such things.
GCC uses the information to preload the operand into a register if that is required for valid
RTL code. If the operand is referred to more than once, subsequent references should use
match_dup.

The RTL template may also refer to internal “operands” which are temporary registers
or labels used only within the sequence made by the define_expand. Internal operands are
substituted into the RTL template with match_dup, never with match_operand. The values
of the internal operands are not passed in as arguments by the compiler when it requests
use of this pattern. Instead, they are computed within the pattern, in the preparation
statements. These statements compute the values and store them into the appropriate
elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL
insns resulting from the pattern on this occasion will be those already emitted
by explicit calls to emit_insn within the preparation statements; the RTL
template will not be generated.

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the
pattern was not truly available. The calling routines in the compiler will try
other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting,
etc.) and bit-field (extv, extzv, and insv) operations.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_expand
acts like a define_insn in that the RTL template is used to generate the insn.

The RTL template is not used for matching, only for generating the initial insn list. If
the preparation statement always invokes DONE or FAIL, the RTL template may be reduced
to a simple list of operands, such as this example:

(define_expand "addsi3"

[(match_operand:SI 0 "register_operand" "")

(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")]

""

"

{

handle_add (operands[0], operands[1], operands[2]);

DONE;

}")

Here is an example, the definition of left-shift for the SPUR chip:

488 GNU Compiler Collection (GCC) Internals

(define_expand "ashlsi3"

[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI

(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "nonmemory_operand" "")))]

""

"

{

if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)

FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for shifting when the
shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns
aren’t available. When it fails, the compiler tries another strategy using different patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names,
then it would be possible to use a define_insn in that case. Here is another case (zero-
extension on the 68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"

[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))

(set (strict_low_part

(subreg:HI

(match_dup 0)

0))

(match_operand:HI 1 "general_operand" ""))]

""

"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to
copy the input operand into its low half. This sequence is incorrect if the input operand
refers to [the old value of] the output operand, so the preparation statement makes sure this
isn’t so. The function make_safe_from copies the operands[1] into a temporary register
if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the
SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot
be represented by a const_int because the constant value is too large to be legitimate on
this machine. So it must be copied into a register with force_reg and then the register
used in the and.

(define_expand "zero_extendhisi2"

[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI

(match_operand:HI 1 "register_operand" "")

0)

(match_dup 2)))]

""

"operands[2]

= force_reg (SImode, GEN_INT (65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic
operation or a bit-field operation, then the last insn it generates must not be a code_label,
barrier or note. It must be an insn, jump_insn or call_insn. If you don’t need a real

Chapter 16: Machine Descriptions 489

insn at the end, emit an insn to copy the result of the operation into itself. Such an insn
will generate no code, but it can avoid problems in the compiler.

16.17 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns.
On machines that have instructions requiring delay slots (see Section 16.20.8 [Delay Slots],
page 507) or that have instructions whose output is not available for multiple cycles (see
Section 16.20.9 [Processor pipeline description], page 508), the compiler phases that optimize
these cases need to be able to move insns into one-instruction delay slots. However, some
insns may generate more than one machine instruction. These insns cannot be placed into
a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to
one machine instruction. The disadvantage of doing so is that it will cause the compilation
to be slower and require more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a reason to believe
that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one
insn with a complex expression that cannot be matched by some define_insn pattern,
the combiner phase attempts to split the complex pattern into two insns that are recog-
nized. Usually it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an addition of a large
constant in two insns on a RISC machine, the way to split the addition into two insns is
machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several
simpler insns. It looks like this:

(define_split

[insn-pattern]

"condition"

[new-insn-pattern-1

new-insn-pattern-2

...]

"preparation-statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be
tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition
is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-
pattern-2, etc.

The preparation-statements are similar to those statements that are specified for define_
expand (see Section 16.16 [Expander Definitions], page 486) and are executed before the
new RTL is generated to prepare for the generated code or emit some insns whose pattern
is not fixed. Unlike those in define_expand, however, these statements must not generate
any new pseudo-registers. Once reload has completed, they also must not allocate any space
in the stack frame.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the splitter. The only RTL
insns generated as replacement for the matched input insn will be those already

490 GNU Compiler Collection (GCC) Internals

emitted by explicit calls to emit_insn within the preparation statements; the
replacement pattern is not used.

FAIL Make the define_split fail on this occasion. When a define_split fails, it
means that the splitter was not truly available for the inputs it was given, and
the input insn will not be split.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_split
uses the replacement template.

Patterns are matched against insn-pattern in two different circumstances. If an insn
needs to be split for delay slot scheduling or insn scheduling, the insn is already known
to be valid, which means that it must have been matched by some define_insn and, if
reload_completed is nonzero, is known to satisfy the constraints of that define_insn. In
that case, the new insn patterns must also be insns that are matched by some define_insn
and, if reload_completed is nonzero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from
a29k.md, which splits a sign_extend from HImode to SImode into a pair of shift insns:

(define_split

[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]

""

[(set (match_dup 0)

(ashift:SI (match_dup 1)

(const_int 16)))

(set (match_dup 0)

(ashiftrt:SI (match_dup 0)

(const_int 16)))]

"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the
pattern is not matched by any define_insn. The combiner pass first tries to split a single
set expression and then the same set expression inside a parallel, but followed by a
clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects
exactly one or two new insn patterns to be generated. It will verify that these patterns
match some define_insn definitions, so you need not do this test in the define_split

(of course, there is no point in writing a define_split that will never produce insns that
match).

Here is an example of this use of define_split, taken from rs6000.md:
(define_split

[(set (match_operand:SI 0 "gen_reg_operand" "")

(plus:SI (match_operand:SI 1 "gen_reg_operand" "")

(match_operand:SI 2 "non_add_cint_operand" "")))]

""

[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))

(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"

{

int low = INTVAL (operands[2]) & 0xffff;

int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)

high++, low |= 0xffff0000;

Chapter 16: Machine Descriptions 491

operands[3] = GEN_INT (high << 16);

operands[4] = GEN_INT (low);

}")

Here the predicate non_add_cint_operand matches any const_int that is not a valid
operand of a single add insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality com-
parison of a register and a large constant:

(define_split

[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")

(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]

"find_single_use (operands[0], insn, 0)

&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"

[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))

(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]

"

{

/* Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);

int sextc = (c << 16) >> 16;

int xorv = c ^ sextc;

operands[4] = GEN_INT (xorv);

operands[5] = GEN_INT (sextc);

}")

To avoid confusion, don’t write a single define_split that accepts some insns that
match some define_insn as well as some insns that don’t. Instead, write two separate
define_split definitions, one for the insns that are valid and one for the insns that are
not valid.

The splitter is allowed to split jump instructions into a sequence of jumps or create
new jumps while splitting non-jump instructions. As the control flow graph and branch
prediction information needs to be updated after the splitter runs, several restrictions apply.

Splitting of a jump instruction into a sequence that has another jump instruction to
the same label is always valid, as the compiler expects identical behavior of the new jump.
When the new sequence contains multiple jump instructions or new labels, more assistance is
needed. The splitter is permitted to create only unconditional jumps, or simple conditional
jump instructions. Additionally it must attach a REG_BR_PROB note to each conditional
jump. A global variable split_branch_probability holds the probability of the original
branch in case it was a simple conditional jump, −1 otherwise. To simplify recomputing of
edge frequencies, the new sequence is permitted to have only forward jumps to the newly-
created labels.

For the common case where the pattern of a define split exactly matches the pattern of
a define insn, use define_insn_and_split. It looks like this:

(define_insn_and_split

492 GNU Compiler Collection (GCC) Internals

[insn-pattern]

"condition"

"output-template"

"split-condition"

[new-insn-pattern-1

new-insn-pattern-2

...]

"preparation-statements"

[insn-attributes])

insn-pattern, condition, output-template, and insn-attributes are used as in define_insn.
The new-insn-pattern vector and the preparation-statements are used as in a define_split.
The split-condition is also used as in define_split, with the additional behavior that if
the condition starts with ‘&&’, the condition used for the split will be the constructed as a
logical “and” of the split condition with the insn condition. For example, from i386.md:

(define_insn_and_split "zero_extendhisi2_and"

[(set (match_operand:SI 0 "register_operand" "=r")

(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))

(clobber (reg:CC 17))]

"TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"

"#"

"&& reload_completed"

[(parallel [(set (match_dup 0)

(and:SI (match_dup 0) (const_int 65535)))

(clobber (reg:CC 17))])]

""

[(set_attr "type" "alu1")])

In this case, the actual split condition will be ‘TARGET_ZERO_EXTEND_WITH_AND &&

!optimize_size && reload_completed’.

The define_insn_and_split construction provides exactly the same functionality as
two separate define_insn and define_split patterns. It exists for compactness, and as
a maintenance tool to prevent having to ensure the two patterns’ templates match.

It is sometimes useful to have a define_insn_and_split that replaces specific operands
of an instruction but leaves the rest of the instruction pattern unchanged. You can do
this directly with a define_insn_and_split, but it requires a new-insn-pattern-1 that
repeats most of the original insn-pattern. There is also the complication that an implicit
parallel in insn-pattern must become an explicit parallel in new-insn-pattern-1, which
is easy to overlook. A simpler alternative is to use define_insn_and_rewrite, which
is a form of define_insn_and_split that automatically generates new-insn-pattern-1 by
replacing each match_operand in insn-pattern with a corresponding match_dup, and each
match_operator in the pattern with a corresponding match_op_dup. The arguments are
otherwise identical to define_insn_and_split:

(define_insn_and_rewrite

[insn-pattern]

"condition"

"output-template"

"split-condition"

"preparation-statements"

[insn-attributes])

Chapter 16: Machine Descriptions 493

The match_dups and match_op_dups in the new instruction pattern use any new operand
values that the preparation-statements store in the operands array, as for a normal define_
insn_and_split. preparation-statements can also emit additional instructions before the
new instruction. They can even emit an entirely different sequence of instructions and use
DONE to avoid emitting a new form of the original instruction.

The split in a define_insn_and_rewrite is only intended to apply to existing instruc-
tions that match insn-pattern. split-condition must therefore start with &&, so that the split
condition applies on top of condition.

Here is an example from the AArch64 SVE port, in which operand 1 is known to be
equivalent to an all-true constant and isn’t used by the output template:

(define_insn_and_rewrite "*while_ult<GPI:mode><PRED_ALL:mode>_cc"

[(set (reg:CC CC_REGNUM)

(compare:CC

(unspec:SI [(match_operand:PRED_ALL 1)

(unspec:PRED_ALL

[(match_operand:GPI 2 "aarch64_reg_or_zero" "rZ")

(match_operand:GPI 3 "aarch64_reg_or_zero" "rZ")]

UNSPEC_WHILE_LO)]

UNSPEC_PTEST_PTRUE)

(const_int 0)))

(set (match_operand:PRED_ALL 0 "register_operand" "=Upa")

(unspec:PRED_ALL [(match_dup 2)

(match_dup 3)]

UNSPEC_WHILE_LO))]

"TARGET_SVE"

"whilelo\t%0.<PRED_ALL:Vetype>, %<w>2, %<w>3"

;; Force the compiler to drop the unused predicate operand, so that we

;; don't have an unnecessary PTRUE.

"&& !CONSTANT_P (operands[1])"

{

operands[1] = CONSTM1_RTX (<MODE>mode);

}

)

The splitter in this case simply replaces operand 1 with the constant value that it is
known to have. The equivalent define_insn_and_split would be:

(define_insn_and_split "*while_ult<GPI:mode><PRED_ALL:mode>_cc"

[(set (reg:CC CC_REGNUM)

(compare:CC

(unspec:SI [(match_operand:PRED_ALL 1)

(unspec:PRED_ALL

[(match_operand:GPI 2 "aarch64_reg_or_zero" "rZ")

(match_operand:GPI 3 "aarch64_reg_or_zero" "rZ")]

UNSPEC_WHILE_LO)]

UNSPEC_PTEST_PTRUE)

(const_int 0)))

(set (match_operand:PRED_ALL 0 "register_operand" "=Upa")

(unspec:PRED_ALL [(match_dup 2)

(match_dup 3)]

UNSPEC_WHILE_LO))]

"TARGET_SVE"

"whilelo\t%0.<PRED_ALL:Vetype>, %<w>2, %<w>3"

;; Force the compiler to drop the unused predicate operand, so that we

;; don't have an unnecessary PTRUE.

"&& !CONSTANT_P (operands[1])"

494 GNU Compiler Collection (GCC) Internals

[(parallel

[(set (reg:CC CC_REGNUM)

(compare:CC

(unspec:SI [(match_dup 1)

(unspec:PRED_ALL [(match_dup 2)

(match_dup 3)]

UNSPEC_WHILE_LO)]

UNSPEC_PTEST_PTRUE)

(const_int 0)))

(set (match_dup 0)

(unspec:PRED_ALL [(match_dup 2)

(match_dup 3)]

UNSPEC_WHILE_LO))])]

{

operands[1] = CONSTM1_RTX (<MODE>mode);

}

)

16.18 Including Patterns in Machine Descriptions.

The include pattern tells the compiler tools where to look for patterns that are in files
other than in the file .md. This is used only at build time and there is no preprocessing
allowed.

It looks like:

(include pathname)

For example:

(include "filestuff")

Where pathname is a string that specifies the location of the file, specifies the include file
to be in gcc/config/target/filestuff. The directory gcc/config/target is regarded
as the default directory.

Machine descriptions may be split up into smaller more manageable subsections and
placed into subdirectories.

By specifying:

(include "BOGUS/filestuff")

the include file is specified to be in gcc/config/target/BOGUS/filestuff.

Specifying an absolute path for the include file such as;

(include "/u2/BOGUS/filestuff")

is permitted but is not encouraged.

16.18.1 RTL Generation Tool Options for Directory Search

The -Idir option specifies directories to search for machine descriptions. For example:

genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md

Chapter 16: Machine Descriptions 495

Add the directory dir to the head of the list of directories to be searched for header files.
This can be used to override a system machine definition file, substituting your own version,
since these directories are searched before the default machine description file directories.
If you use more than one -I option, the directories are scanned in left-to-right order; the
standard default directory come after.

16.19 Machine-Specific Peephole Optimizers

In addition to instruction patterns the md file may contain definitions of machine-specific
peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the
program does not suggest that it should try them. For example, sometimes two consecutive
insns related in purpose can be combined even though the second one does not appear to
use a register computed in the first one. A machine-specific peephole optimizer can detect
such opportunities.

There are two forms of peephole definitions that may be used. The original define_
peephole is run at assembly output time to match insns and substitute assembly text. Use
of define_peephole is deprecated.

A newer define_peephole2 matches insns and substitutes new insns. The peephole2

pass is run after register allocation but before scheduling, which may result in much better
code for targets that do scheduling.

16.19.1 RTL to Text Peephole Optimizers

A definition looks like this:
(define_peephole

[insn-pattern-1

insn-pattern-2

...]

"condition"

"template"

"optional-insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information
in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The
optimization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-
pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore,
any insn which would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and
match_dup, as usual. What is not usual is that the operand numbers apply to all the insn
patterns in the definition. So, you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect
on the applicability of the peephole, but they will be validated afterward, so make sure your

496 GNU Compiler Collection (GCC) Internals

constraints are general enough to apply whenever the peephole matches. If the peephole
matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write con-
straints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C
expression which makes the final decision whether to perform the optimization (we do so
if the expression is nonzero). If condition is omitted (in other words, the string is empty)
then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete.
Therefore, the peephole definition can check which operands have ended up in which kinds
of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand number
i (as matched by (match_operand i ...)). Use the variable insn to refer to the last of the
insns being matched; use prev_active_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match
only when the intermediate results are not used elsewhere. Use the C expression dead_or_

set_p (insn, op), where insn is the insn in which you expect the value to be used for the
last time (from the value of insn, together with use of prev_nonnote_insn), and op is the
intermediate value (from operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn. The
template controls ultimate output of assembler code for this combined insn. It works exactly
like the template of a define_insn. Operand numbers in this template are the same ones
used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn patterns
in the machine description; it does not even have an opportunity to match them. The
peephole optimizer definition itself serves as the insn pattern to control how the insn is
output.

Defined peephole optimizers are run as assembler code is being output, so the insns they
produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:
(define_peephole

[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))

(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]

"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"

{

rtx xoperands[2];

xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA

output_asm_insn ("move.l %1,(sp)", xoperands);

output_asm_insn ("move.l %1,-(sp)", operands);

return "fmove.d (sp)+,%0";

#else

output_asm_insn ("movel %1,sp@", xoperands);

output_asm_insn ("movel %1,sp@-", operands);

return "fmoved sp@+,%0";

#endif

})

Chapter 16: Machine Descriptions 497

The effect of this optimization is to change

jbsr _foobar

addql #4,sp

movel d1,sp@-

movel d0,sp@-

fmoved sp@+,fp0

into

jbsr _foobar

movel d1,sp@

movel d0,sp@-

fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There
is one important difference: the second operand of define_insn consists of one or more
RTX’s enclosed in square brackets. Usually, there is only one: then the same action can
be written as an element of a define_peephole. But when there are multiple actions in a
define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write
the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn
pattern looks like this,

(define_insn "divmodsi4"

[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")

(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"

"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

(define_peephole

[...

(parallel

[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")

(mod:SI (match_dup 1) (match_dup 2)))])

...]

...)

16.19.2 RTL to RTL Peephole Optimizers

The define_peephole2 definition tells the compiler how to substitute one sequence of
instructions for another sequence, what additional scratch registers may be needed and
what their lifetimes must be.

(define_peephole2

[insn-pattern-1

insn-pattern-2

...]

"condition"

[new-insn-pattern-1

new-insn-pattern-2

...]

"preparation-statements")

498 GNU Compiler Collection (GCC) Internals

The definition is almost identical to define_split (see Section 16.17 [Insn Splitting],
page 489) except that the pattern to match is not a single instruction, but a sequence of
instructions.

It is possible to request additional scratch registers for use in the output template. If
appropriate registers are not free, the pattern will simply not match.

Scratch registers are requested with a match_scratch pattern at the top level of the input
pattern. The allocated register (initially) will be dead at the point requested within the
original sequence. If the scratch is used at more than a single point, a match_dup pattern
at the top level of the input pattern marks the last position in the input sequence at which
the register must be available.

Here is an example from the IA-32 machine description:
(define_peephole2

[(match_scratch:SI 2 "r")

(parallel [(set (match_operand:SI 0 "register_operand" "")

(match_operator:SI 3 "arith_or_logical_operator"

[(match_dup 0)

(match_operand:SI 1 "memory_operand" "")]))

(clobber (reg:CC 17))])]

"! optimize_size && ! TARGET_READ_MODIFY"

[(set (match_dup 2) (match_dup 1))

(parallel [(set (match_dup 0)

(match_op_dup 3 [(match_dup 0) (match_dup 2)]))

(clobber (reg:CC 17))])]

"")

This pattern tries to split a load from its use in the hopes that we’ll be able to schedule
around the memory load latency. It allocates a single SImode register of class GENERAL_REGS
("r") that needs to be live only at the point just before the arithmetic.

A real example requiring extended scratch lifetimes is harder to come by, so here’s a silly
made-up example:

(define_peephole2

[(match_scratch:SI 4 "r")

(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))

(set (match_operand:SI 2 "" "") (match_dup 1))

(match_dup 4)

(set (match_operand:SI 3 "" "") (match_dup 1))]

"/* determine 1 does not overlap 0 and 2 */"

[(set (match_dup 4) (match_dup 1))

(set (match_dup 0) (match_dup 4))

(set (match_dup 2) (match_dup 4))

(set (match_dup 3) (match_dup 4))]

"")

If we had not added the (match_dup 4) in the middle of the input sequence, it might have
been the case that the register we chose at the beginning of the sequence is killed by the
first or second set.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the peephole. The only RTL
insns generated as replacement for the matched input insn will be those already
emitted by explicit calls to emit_insn within the preparation statements; the
replacement pattern is not used.

Chapter 16: Machine Descriptions 499

FAIL Make the define_peephole2 fail on this occasion. When a define_peephole2

fails, it means that the replacement was not truly available for the particular in-
puts it was given. In that case, GCC may still apply a later define_peephole2
that also matches the given insn pattern. (Note that this is different from
define_split, where FAIL prevents the input insn from being split at all.)

If the preparation falls through (invokes neither DONE nor FAIL), then the define_

peephole2 uses the replacement template.

Insns are scanned in forward order from beginning to end for each basic block. Matches
are attempted in order of define_peephole2 appearance in the md file. After a success-
ful replacement, scanning for further opportunities for define_peephole2, resumes with
the first generated replacement insn as the first insn to be matched against all define_
peephole2. For the example above, after its successful replacement, the first insn that can
be matched by a define_peephole2 is (set (match_dup 4) (match_dup 1)).

16.20 Instruction Attributes

In addition to describing the instruction supported by the target machine, the md file also
defines a group of attributes and a set of values for each. Every generated insn is assigned
a value for each attribute. One possible attribute would be the effect that the insn has on
the machine’s condition code.

16.20.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine.
It looks like:

(define_attr name list-of-values default)

name is a string specifying the name of the attribute being defined. Some attributes
are used in a special way by the rest of the compiler. The enabled attribute can be
used to conditionally enable or disable insn alternatives (see Section 16.9.6 [Disable Insn
Alternatives], page 420). The predicable attribute, together with a suitable define_cond_
exec (see Section 16.21 [Conditional Execution], page 514), can be used to automatically
generate conditional variants of instruction patterns. The mnemonic attribute can be used
to check for the instruction mnemonic (see Section 16.20.7 [Mnemonic Attribute], page 507).
The compiler internally uses the names ce_enabled and nonce_enabled, so they should
not be used elsewhere as alternative names.

list-of-values is either a string that specifies a comma-separated list of values that can
be assigned to the attribute, or a null string to indicate that the attribute takes numeric
values.

default is an attribute expression that gives the value of this attribute for insns that
match patterns whose definition does not include an explicit value for this attribute. See
Section 16.20.4 [Attr Example], page 505, for more information on the handling of defaults.
See Section 16.20.6 [Constant Attributes], page 507, for information on attributes that do
not depend on any particular insn.

For each defined attribute, a number of definitions are written to the insn-attr.h file.
For cases where an explicit set of values is specified for an attribute, the following are
defined:

• A ‘#define’ is written for the symbol ‘HAVE_ATTR_name’.

500 GNU Compiler Collection (GCC) Internals

• An enumerated class is defined for ‘attr_name’ with elements of the form
‘upper-name_upper-value’ where the attribute name and value are first converted to
uppercase.

• A function ‘get_attr_name’ is defined that is passed an insn and returns the attribute
value for that insn.

For example, if the following is present in the md file:
(define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the file insn-attr.h.
#define HAVE_ATTR_type 1

enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

TYPE_STORE, TYPE_ARITH};

extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to
obtain the attribute’s value will return int.

There are attributes which are tied to a specific meaning. These attributes are not free
to use for other purposes:

length The length attribute is used to calculate the length of emitted code
chunks. This is especially important when verifying branch distances. See
Section 16.20.5 [Insn Lengths], page 505.

enabled The enabled attribute can be defined to prevent certain alternatives of an insn
definition from being used during code generation. See Section 16.9.6 [Disable
Insn Alternatives], page 420.

mnemonic The mnemonic attribute can be defined to implement instruction specific checks
in e.g. the pipeline description. See Section 16.20.7 [Mnemonic Attribute],
page 507.

For each of these special attributes, the corresponding ‘HAVE_ATTR_name’ ‘#define’ is
also written when the attribute is not defined; in that case, it is defined as ‘0’.

Another way of defining an attribute is to use:
(define_enum_attr "attr" "enum" default)

This works in just the same way as define_attr, except that the list of values is taken
from a separate enumeration called enum (see [define enum], page 520). This form allows
you to use the same list of values for several attributes without having to repeat the list
each time. For example:

(define_enum "processor" [

model_a

model_b

...

])

(define_enum_attr "arch" "processor"

(const (symbol_ref "target_arch")))

(define_enum_attr "tune" "processor"

(const (symbol_ref "target_tune")))

defines the same attributes as:
(define_attr "arch" "model_a,model_b,..."

(const (symbol_ref "target_arch")))

(define_attr "tune" "model_a,model_b,..."

Chapter 16: Machine Descriptions 501

(const (symbol_ref "target_tune")))

but without duplicating the processor list. The second example defines two separate C

enums (attr_arch and attr_tune) whereas the first defines a single C enum (processor).

16.20.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific
to attribute definitions, to be discussed below. Attribute value expressions must have one
of the following forms:

(const_int i)

The integer i specifies the value of a numeric attribute. i must be non-negative.

The value of a numeric attribute can be specified either with a const_int, or
as an integer represented as a string in const_string, eq_attr (see below),
attr, symbol_ref, simple arithmetic expressions, and set_attr overrides on
specific instructions (see Section 16.20.3 [Tagging Insns], page 503).

(const_string value)

The string value specifies a constant attribute value. If value is specified as
‘"*"’, it means that the default value of the attribute is to be used for the
insn containing this expression. ‘"*"’ obviously cannot be used in the default
expression of a define_attr.

If the attribute whose value is being specified is numeric, value must be a string
containing a non-negative integer (normally const_int would be used in this
case). Otherwise, it must contain one of the valid values for the attribute.

(if_then_else test true-value false-value)

test specifies an attribute test, whose format is defined below. The value of this
expression is true-value if test is true, otherwise it is false-value.

(cond [test1 value1 ...] default)

The first operand of this expression is a vector containing an even number of
expressions and consisting of pairs of test and value expressions. The value
of the cond expression is that of the value corresponding to the first true test
expression. If none of the test expressions are true, the value of the cond

expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)

This test is true if i is nonzero and false otherwise.

(not test)

(ior test1 test2)

(and test1 test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)

This test is true if operand n of the insn whose attribute value is being de-
termined has mode m (this part of the test is ignored if m is VOIDmode) and
the function specified by the string pred returns a nonzero value when passed
operand n and mode m (this part of the test is ignored if pred is the null string).

502 GNU Compiler Collection (GCC) Internals

The constraints operand is ignored and should be the null string.

(match_test c-expr)

The test is true if C expression c-expr is true. In non-constant attributes, c-expr
has access to the following variables:

insn The rtl instruction under test.

which alternative
The define_insn alternative that insn matches. See Section 16.6
[Output Statement], page 376.

operands An array of insn’s rtl operands.

c-expr behaves like the condition in a C if statement, so there is no need to
explicitly convert the expression into a boolean 0 or 1 value. For example, the
following two tests are equivalent:

(match_test "x & 2")

(match_test "(x & 2) != 0")

(le arith1 arith2)

(leu arith1 arith2)

(lt arith1 arith2)

(ltu arith1 arith2)

(gt arith1 arith2)

(gtu arith1 arith2)

(ge arith1 arith2)

(geu arith1 arith2)

(ne arith1 arith2)

(eq arith1 arith2)

These tests are true if the indicated comparison of the two arithmetic expres-
sions is true. Arithmetic expressions are formed with plus, minus, mult, div,
mod, abs, neg, and, ior, xor, not, ashift, lshiftrt, and ashiftrt expres-
sions.

const_int and symbol_ref are always valid terms (see Section 16.20.5 [Insn
Lengths], page 505,for additional forms). symbol_ref is a string denoting a C
expression that yields an int when evaluated by the ‘get_attr_...’ routine.
It should normally be a global variable.

(eq_attr name value)

name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name, a comma-
separated list of values, or ‘!’ followed by a value or list. If value does not
begin with a ‘!’, this test is true if the value of the name attribute of the
current insn is in the list specified by value. If value begins with a ‘!’, this test
is true if the attribute’s value is not in the specified list.

For example,
(eq_attr "type" "load,store")

is equivalent to
(ior (eq_attr "type" "load") (eq_attr "type" "store"))

Chapter 16: Machine Descriptions 503

If name specifies an attribute of ‘alternative’, it refers to the value of the
compiler variable which_alternative (see Section 16.6 [Output Statement],
page 376) and the values must be small integers. For example,

(eq_attr "alternative" "2,3")

is equivalent to

(ior (eq (symbol_ref "which_alternative") (const_int 2))

(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the
value of the attribute being tested is known for all insns matching a particular
pattern. This is by far the most common case.

(attr_flag name)

The value of an attr_flag expression is true if the flag specified by name is
true for the insn currently being scheduled.

name is a string specifying one of a fixed set of flags to test. Test the flags
forward and backward to determine the direction of a conditional branch.

This example describes a conditional branch delay slot which can be nullified for
forward branches that are taken (annul-true) or for backward branches which
are not taken (annul-false).

(define_delay (eq_attr "type" "cbranch")

[(eq_attr "in_branch_delay" "true")

(and (eq_attr "in_branch_delay" "true")

(attr_flag "forward"))

(and (eq_attr "in_branch_delay" "true")

(attr_flag "backward"))])

The forward and backward flags are false if the current insn being scheduled
is not a conditional branch.

attr_flag is only used during delay slot scheduling and has no meaning to
other passes of the compiler.

(attr name)

The value of another attribute is returned. This is most useful for numeric
attributes, as eq_attr and attr_flag produce more efficient code for non-
numeric attributes.

16.20.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is
matched by that insn (or which define_peephole generated it). Every define_insn and
define_peephole can have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not specified in a particular insn is set to the
default value for that attribute, as specified in its define_attr. Extensive use of default
values for attributes permits the specification of the values for only one or two attributes
in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of ex-
pressions, each of which defines the value for a single attribute. The most general way of
assigning an attribute’s value is to use a set expression whose first operand is an attr

expression giving the name of the attribute being set. The second operand of the set is

504 GNU Compiler Collection (GCC) Internals

an attribute expression (see Section 16.20.2 [Expressions], page 501) giving the value of the
attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the
applicable alternative in the constraint of the insn), the set_attr_alternative expression
can be used. It allows the specification of a vector of attribute expressions, one for each
alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_
attr expression can be used, which allows specifying a string giving either a single attribute
value or a list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, name is a
string specifying the attribute to be set.

(set_attr name value-string)

value-string is either a string giving the desired attribute value, or a string
containing a comma-separated list giving the values for succeeding alternatives.
The number of elements must match the number of alternatives in the constraint
of the insn pattern.

Note that it may be useful to specify ‘*’ for some alternative, in which case the
attribute will assume its default value for insns matching that alternative.

(set_attr_alternative name [value1 value2 ...])

Depending on the alternative of the insn, the value will be one of the specified
values. This is a shorthand for using a cond with tests on the ‘alternative’
attribute.

(set (attr name) value)

The first operand of this set must be the special RTL expression attr, whose
sole operand is a string giving the name of the attribute being set. value is the
value of the attribute.

The following shows three different ways of representing the same attribute value speci-
fication:

(set_attr "type" "load,store,arith")

(set_attr_alternative "type"

[(const_string "load") (const_string "store")

(const_string "arith")])

(set (attr "type")

(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]

(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes
assigned to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole
expressions.

These values will typically be the “worst case” attribute values. For example, they might
indicate that the condition code will be clobbered.

Chapter 16: Machine Descriptions 505

A specification for a length attribute is handled specially. The way to compute the length
of an asm insn is to multiply the length specified in the expression define_asm_attributes

by the number of machine instructions specified in the asm statement, determined by count-
ing the number of semicolons and newlines in the string. Therefore, the value of the length
attribute specified in a define_asm_attributes should be the maximum possible length
of a single machine instruction.

16.20.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typ-
ically, insns are divided into types and an attribute, customarily called type, is used to
represent this value. This attribute is normally used only to define the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word
operations are performed in registers. Let us assume that we can divide all insns into loads,
stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition
code and will limit ourselves to the following possible effects: The condition code can be set
unpredictably (clobbered), not be changed, be set to agree with the results of the operation,
or only changed if the item previously set into the condition code has been modified.

Here is part of a sample md file for such a machine:
(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"

(cond [(eq_attr "type" "load")

(const_string "change0")

(eq_attr "type" "store,branch")

(const_string "unchanged")

(eq_attr "type" "arith")

(if_then_else (match_operand:SI 0 "" "")

(const_string "set")

(const_string "clobber"))]

(const_string "clobber")))

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]

""

"@

move %0,%1

load %0,%1

store %0,%1"

[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on
quantities smaller than a machine word clobber the condition code since they will set the
condition code to a value corresponding to the full-word result.

16.20.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different
length branch displacements. In most cases, the assembler will choose the correct instruction
to use. However, when the assembler cannot do so, GCC can when a special attribute, the

506 GNU Compiler Collection (GCC) Internals

length attribute, is defined. This attribute must be defined to have numeric values by
specifying a null string in its define_attr.

In the case of the length attribute, two additional forms of arithmetic terms are allowed
in test expressions:

(match_dup n)

This refers to the address of operand n of the current insn, which must be a
label_ref.

(pc) For non-branch instructions and backward branch instructions, this refers to
the address of the current insn. But for forward branch instructions, this refers
to the address of the next insn, because the length of the current insn is to be
computed.

For normal insns, the length will be determined by value of the length attribute. In the
case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number
of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

Note that it is possible to call functions via the symbol_ref mechanism to compute the
length of an insn. However, if you use this mechanism you must provide dummy clauses to
express the maximum length without using the function call. You can see an example of
this in the pa machine description for the call_symref pattern.

The following macros can be used to refine the length computation:

ADJUST_INSN_LENGTH (insn, length)

If defined, modifies the length assigned to instruction insn as a function of
the context in which it is used. length is an lvalue that contains the initially
computed length of the insn and should be updated with the correct length of
the insn.

This macro will normally not be required. A case in which it is required is the
ROMP. On this machine, the size of an addr_vec insn must be increased by
two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be
used by the output routine to determine the form of the branch instruction to be written,
as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If
we adopt the convention that a register will be set to the starting address of a function, we
can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need
a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:
(define_insn "jump"

[(set (pc)

(label_ref (match_operand 0 "" "")))]

""

{

return (get_attr_length (insn) == 4

? "b %l0" : "l r15,=a(%l0); br r15");

}

[(set (attr "length")

Chapter 16: Machine Descriptions 507

(if_then_else (lt (match_dup 0) (const_int 4096))

(const_int 4)

(const_int 6)))])

16.20.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const

expression, indicates an attribute that is constant for a given run of the compiler. Constant
attributes may be used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"

(const

(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]

(const_string "m88000"))))

(define_attr "memory" "fast,slow"

(const

(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")

(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend
on any particular insn. RTL expressions used to define the value of a constant attribute
may use the symbol_ref form, but may not use either the match_operand form or eq_attr
forms involving insn attributes.

16.20.7 Mnemonic Attribute

The mnemonic attribute is a string type attribute holding the instruction mnemonic for
an insn alternative. The attribute values will automatically be generated by the machine
description parser if there is an attribute definition in the md file:

(define_attr "mnemonic" "unknown" (const_string "unknown"))

The default value can be freely chosen as long as it does not collide with any of the
instruction mnemonics. This value will be used whenever the machine description parser is
not able to determine the mnemonic string. This might be the case for output templates
containing more than a single instruction as in "mvcle\t%0,%1,0\;jo\t.-4".

The mnemonic attribute set is not generated automatically if the instruction string is
generated via C code.

An existing mnemonic attribute set in an insn definition will not be overriden by the md
file parser. That way it is possible to manually set the instruction mnemonics for the cases
where the md file parser fails to determine it automatically.

The mnemonic attribute is useful for dealing with instruction specific properties in the
pipeline description without defining additional insn attributes.

(define_attr "ooo_expanded" ""

(cond [(eq_attr "mnemonic" "dlr,dsgr,d,dsgf,stam,dsgfr,dlgr")

(const_int 1)]

(const_int 0)))

16.20.8 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any,
on a target machine. An instruction is said to require a delay slot if some instructions that

508 GNU Compiler Collection (GCC) Internals

are physically after the instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the following instruction
before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in
the delay slot. This means that the instruction will not be executed for certain branch
outcomes. Both instructions that annul if the branch is true and instructions that annul if
the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an
instruction needs a delay slot is dependent only on the type of instruction being generated,
not on data flow between the instructions. See the next section for a discussion of data-
dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_
delay expression. It has the following form:

(define_delay test

[delay-1 annul-true-1 annul-false-1

delay-2 annul-true-2 annul-false-2

...])

test is an attribute test that indicates whether this define_delay applies to a particular
insn. If so, the number of required delay slots is determined by the length of the vector
specified as the second argument. An insn placed in delay slot n must satisfy attribute
test delay-n. annul-true-n is an attribute test that specifies which insns may be annulled
if the branch is true. Similarly, annul-false-n specifies which insns in the delay slot may
be annulled if the branch is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require a single delay slot,
which may contain any insn other than a branch or call, the following would be placed in
the md file:

(define_delay (eq_attr "type" "branch,call")

[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression
specifies different delay slot requirements and there must be no insn for which tests in two
define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for
calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot
for the branch can be annulled if the branch is true, we might represent this as follows:

(define_delay (eq_attr "type" "branch")

[(eq_attr "type" "!branch,call")

(eq_attr "type" "!branch,call")

(nil)])

(define_delay (eq_attr "type" "call")

[(eq_attr "type" "!branch,call") (nil) (nil)

(eq_attr "type" "!branch,call") (nil) (nil)])

16.20.9 Specifying processor pipeline description

To achieve better performance, most modern processors (super-pipelined, superscalar RISC,
and VLIW processors) have many functional units on which several instructions can be exe-
cuted simultaneously. An instruction starts execution if its issue conditions are satisfied. If

Chapter 16: Machine Descriptions 509

not, the instruction is stalled until its conditions are satisfied. Such interlock (pipeline) delay
causes interruption of the fetching of successor instructions (or demands nop instructions,
e.g. for some MIPS processors).

There are two major kinds of interlock delays in modern processors. The first one is
a data dependence delay determining instruction latency time. The instruction execution
is not started until all source data have been evaluated by prior instructions (there are
more complex cases when the instruction execution starts even when the data are not avail-
able but will be ready in given time after the instruction execution start). Taking the
data dependence delays into account is simple. The data dependence (true, output, and
anti-dependence) delay between two instructions is given by a constant. In most cases
this approach is adequate. The second kind of interlock delays is a reservation delay. The
reservation delay means that two instructions under execution will be in need of shared pro-
cessors resources, i.e. buses, internal registers, and/or functional units, which are reserved
for some time. Taking this kind of delay into account is complex especially for modern RISC

processors.

The task of exploiting more processor parallelism is solved by an instruction scheduler.
For a better solution to this problem, the instruction scheduler has to have an adequate
description of the processor parallelism (or pipeline description). GCC machine descriptions
describe processor parallelism and functional unit reservations for groups of instructions
with the aid of regular expressions.

The GCC instruction scheduler uses a pipeline hazard recognizer to figure out the pos-
sibility of the instruction issue by the processor on a given simulated processor cycle. The
pipeline hazard recognizer is automatically generated from the processor pipeline descrip-
tion. The pipeline hazard recognizer generated from the machine description is based on
a deterministic finite state automaton (DFA): the instruction issue is possible if there is
a transition from one automaton state to another one. This algorithm is very fast, and
furthermore, its speed is not dependent on processor complexity1.

The rest of this section describes the directives that constitute an automaton-based pro-
cessor pipeline description. The order of these constructions within the machine description
file is not important.

The following optional construction describes names of automata generated and used
for the pipeline hazards recognition. Sometimes the generated finite state automaton used
by the pipeline hazard recognizer is large. If we use more than one automaton and bind
functional units to the automata, the total size of the automata is usually less than the
size of the single automaton. If there is no one such construction, only one finite state
automaton is generated.

(define_automaton automata-names)

automata-names is a string giving names of the automata. The names are separated by
commas. All the automata should have unique names. The automaton name is used in the
constructions define_cpu_unit and define_query_cpu_unit.

1 However, the size of the automaton depends on processor complexity. To limit this effect, machine
descriptions can split orthogonal parts of the machine description among several automata: but then,
since each of these must be stepped independently, this does cause a small decrease in the algorithm’s
performance.

510 GNU Compiler Collection (GCC) Internals

Each processor functional unit used in the description of instruction reservations should
be described by the following construction.

(define_cpu_unit unit-names [automaton-name])

unit-names is a string giving the names of the functional units separated by commas.
Don’t use name ‘nothing’, it is reserved for other goals.

automaton-name is a string giving the name of the automaton with which the unit is
bound. The automaton should be described in construction define_automaton. You should
give automaton-name, if there is a defined automaton.

The assignment of units to automata are constrained by the uses of the units in insn
reservations. The most important constraint is: if a unit reservation is present on a partic-
ular cycle of an alternative for an insn reservation, then some unit from the same automaton
must be present on the same cycle for the other alternatives of the insn reservation. The
rest of the constraints are mentioned in the description of the subsequent constructions.

The following construction describes CPU functional units analogously to define_cpu_

unit. The reservation of such units can be queried for an automaton state. The instruction
scheduler never queries reservation of functional units for given automaton state. So as
a rule, you don’t need this construction. This construction could be used for future code
generation goals (e.g. to generate VLIW insn templates).

(define_query_cpu_unit unit-names [automaton-name])

unit-names is a string giving names of the functional units separated by commas.

automaton-name is a string giving the name of the automaton with which the unit is
bound.

The following construction is the major one to describe pipeline characteristics of an
instruction.

(define_insn_reservation insn-name default_latency

condition regexp)

default latency is a number giving latency time of the instruction. There is an important
difference between the old description and the automaton based pipeline description. The
latency time is used for all dependencies when we use the old description. In the automa-
ton based pipeline description, the given latency time is only used for true dependencies.
The cost of anti-dependencies is always zero and the cost of output dependencies is the
difference between latency times of the producing and consuming insns (if the difference is
negative, the cost is considered to be zero). You can always change the default costs for
any description by using the target hook TARGET_SCHED_ADJUST_COST (see Section 17.19
[Scheduling], page 639).

insn-name is a string giving the internal name of the insn. The internal names are
used in constructions define_bypass and in the automaton description file generated for
debugging. The internal name has nothing in common with the names in define_insn. It
is a good practice to use insn classes described in the processor manual.

condition defines what RTL insns are described by this construction. You should re-
member that you will be in trouble if condition for two or more different define_insn_

reservation constructions is TRUE for an insn. In this case what reservation will be used
for the insn is not defined. Such cases are not checked during generation of the pipeline haz-
ards recognizer because in general recognizing that two conditions may have the same value
is quite difficult (especially if the conditions contain symbol_ref). It is also not checked

Chapter 16: Machine Descriptions 511

during the pipeline hazard recognizer work because it would slow down the recognizer con-
siderably.

regexp is a string describing the reservation of the cpu’s functional units by the instruc-
tion. The reservations are described by a regular expression according to the following
syntax:

regexp = regexp "," oneof

| oneof

oneof = oneof "|" allof

| allof

allof = allof "+" repeat

| repeat

repeat = element "*" number

| element

element = cpu_function_unit_name

| reservation_name

| result_name

| "nothing"

| "(" regexp ")"

• ‘,’ is used for describing the start of the next cycle in the reservation.

• ‘|’ is used for describing a reservation described by the first regular expression or a
reservation described by the second regular expression or etc.

• ‘+’ is used for describing a reservation described by the first regular expression and a
reservation described by the second regular expression and etc.

• ‘*’ is used for convenience and simply means a sequence in which the regular expression
are repeated number times with cycle advancing (see ‘,’).

• ‘cpu_function_unit_name’ denotes reservation of the named functional unit.

• ‘reservation_name’ — see description of construction ‘define_reservation’.

• ‘nothing’ denotes no unit reservations.

Sometimes unit reservations for different insns contain common parts. In such case,
you can simplify the pipeline description by describing the common part by the following
construction

(define_reservation reservation-name regexp)

reservation-name is a string giving name of regexp. Functional unit names and reservation
names are in the same name space. So the reservation names should be different from the
functional unit names and cannot be the reserved name ‘nothing’.

The following construction is used to describe exceptions in the latency time for given
instruction pair. This is so called bypasses.

(define_bypass number out_insn_names in_insn_names

[guard])

number defines when the result generated by the instructions given in string
out insn names will be ready for the instructions given in string in insn names. Each of
these strings is a comma-separated list of filename-style globs and they refer to the names
of define_insn_reservations. For example:

(define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*")

512 GNU Compiler Collection (GCC) Internals

defines a bypass between instructions that start with ‘cpu1_load_’ or ‘cpu1_store_’ and
those that start with ‘cpu1_load_’.

guard is an optional string giving the name of a C function which defines an additional
guard for the bypass. The function will get the two insns as parameters. If the function
returns zero the bypass will be ignored for this case. The additional guard is necessary to
recognize complicated bypasses, e.g. when the consumer is only an address of insn ‘store’
(not a stored value).

If there are more one bypass with the same output and input insns, the chosen bypass is
the first bypass with a guard in description whose guard function returns nonzero. If there
is no such bypass, then bypass without the guard function is chosen.

The following five constructions are usually used to describe VLIW processors, or more
precisely, to describe a placement of small instructions into VLIW instruction slots. They
can be used for RISC processors, too.

(exclusion_set unit-names unit-names)

(presence_set unit-names patterns)

(final_presence_set unit-names patterns)

(absence_set unit-names patterns)

(final_absence_set unit-names patterns)

unit-names is a string giving names of functional units separated by commas.

patterns is a string giving patterns of functional units separated by comma. Currently
pattern is one unit or units separated by white-spaces.

The first construction (‘exclusion_set’) means that each functional unit in the first
string cannot be reserved simultaneously with a unit whose name is in the second string
and vice versa. For example, the construction is useful for describing processors (e.g. some
SPARC processors) with a fully pipelined floating point functional unit which can execute
simultaneously only single floating point insns or only double floating point insns.

The second construction (‘presence_set’) means that each functional unit in the first
string cannot be reserved unless at least one of pattern of units whose names are in the
second string is reserved. This is an asymmetric relation. For example, it is useful for
description that VLIW ‘slot1’ is reserved after ‘slot0’ reservation. We could describe it
by the following construction

(presence_set "slot1" "slot0")

Or ‘slot1’ is reserved only after ‘slot0’ and unit ‘b0’ reservation. In this case we could
write

(presence_set "slot1" "slot0 b0")

The third construction (‘final_presence_set’) is analogous to ‘presence_set’. The
difference between them is when checking is done. When an instruction is issued in given
automaton state reflecting all current and planned unit reservations, the automaton state
is changed. The first state is a source state, the second one is a result state. Checking for
‘presence_set’ is done on the source state reservation, checking for ‘final_presence_set’
is done on the result reservation. This construction is useful to describe a reservation which
is actually two subsequent reservations. For example, if we use

(presence_set "slot1" "slot0")

the following insn will be never issued (because ‘slot1’ requires ‘slot0’ which is absent
in the source state).

(define_reservation "insn_and_nop" "slot0 + slot1")

Chapter 16: Machine Descriptions 513

but it can be issued if we use analogous ‘final_presence_set’.

The forth construction (‘absence_set’) means that each functional unit in the first string
can be reserved only if each pattern of units whose names are in the second string is not
reserved. This is an asymmetric relation (actually ‘exclusion_set’ is analogous to this
one but it is symmetric). For example it might be useful in a VLIW description to say that
‘slot0’ cannot be reserved after either ‘slot1’ or ‘slot2’ have been reserved. This can be
described as:

(absence_set "slot0" "slot1, slot2")

Or ‘slot2’ cannot be reserved if ‘slot0’ and unit ‘b0’ are reserved or ‘slot1’ and unit
‘b1’ are reserved. In this case we could write

(absence_set "slot2" "slot0 b0, slot1 b1")

All functional units mentioned in a set should belong to the same automaton.

The last construction (‘final_absence_set’) is analogous to ‘absence_set’ but checking
is done on the result (state) reservation. See comments for ‘final_presence_set’.

You can control the generator of the pipeline hazard recognizer with the following con-
struction.

(automata_option options)

options is a string giving options which affect the generated code. Currently there are
the following options:

• no-minimization makes no minimization of the automaton. This is only worth to do
when we are debugging the description and need to look more accurately at reservations
of states.

• time means printing time statistics about the generation of automata.

• stats means printing statistics about the generated automata such as the number of
DFA states, NDFA states and arcs.

• v means a generation of the file describing the result automata. The file has suffix
‘.dfa’ and can be used for the description verification and debugging.

• w means a generation of warning instead of error for non-critical errors.

• no-comb-vect prevents the automaton generator from generating two data structures
and comparing them for space efficiency. Using a comb vector to represent transitions
may be better, but it can be very expensive to construct. This option is useful if the
build process spends an unacceptably long time in genautomata.

• ndfa makes nondeterministic finite state automata. This affects the treatment of op-
erator ‘|’ in the regular expressions. The usual treatment of the operator is to try the
first alternative and, if the reservation is not possible, the second alternative. The non-
deterministic treatment means trying all alternatives, some of them may be rejected
by reservations in the subsequent insns.

• collapse-ndfa modifies the behavior of the generator when producing an automaton. An
additional state transition to collapse a nondeterministic NDFA state to a deterministic
DFA state is generated. It can be triggered by passing const0_rtx to state transition.
In such an automaton, cycle advance transitions are available only for these collapsed
states. This option is useful for ports that want to use the ndfa option, but also want
to use define_query_cpu_unit to assign units to insns issued in a cycle.

514 GNU Compiler Collection (GCC) Internals

• progress means output of a progress bar showing how many states were generated so
far for automaton being processed. This is useful during debugging a DFA description.
If you see too many generated states, you could interrupt the generator of the pipeline
hazard recognizer and try to figure out a reason for generation of the huge automaton.

As an example, consider a superscalar RISC machine which can issue three insns (two
integer insns and one floating point insn) on the cycle but can finish only two insns. To
describe this, we define the following functional units.

(define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")

(define_cpu_unit "port0, port1")

All simple integer insns can be executed in any integer pipeline and their result is ready
in two cycles. The simple integer insns are issued into the first pipeline unless it is reserved,
otherwise they are issued into the second pipeline. Integer division and multiplication insns
can be executed only in the second integer pipeline and their results are ready correspond-
ingly in 9 and 4 cycles. The integer division is not pipelined, i.e. the subsequent integer
division insn cannot be issued until the current division insn finished. Floating point insns
are fully pipelined and their results are ready in 3 cycles. Where the result of a floating point
insn is used by an integer insn, an additional delay of one cycle is incurred. To describe all
of this we could specify

(define_cpu_unit "div")

(define_insn_reservation "simple" 2 (eq_attr "type" "int")

"(i0_pipeline | i1_pipeline), (port0 | port1)")

(define_insn_reservation "mult" 4 (eq_attr "type" "mult")

"i1_pipeline, nothing*2, (port0 | port1)")

(define_insn_reservation "div" 9 (eq_attr "type" "div")

"i1_pipeline, div*7, div + (port0 | port1)")

(define_insn_reservation "float" 3 (eq_attr "type" "float")

"f_pipeline, nothing, (port0 | port1))

(define_bypass 4 "float" "simple,mult,div")

To simplify the description we could describe the following reservation
(define_reservation "finish" "port0|port1")

and use it in all define_insn_reservation as in the following construction
(define_insn_reservation "simple" 2 (eq_attr "type" "int")

"(i0_pipeline | i1_pipeline), finish")

16.21 Conditional Execution

A number of architectures provide for some form of conditional execution, or predication.
The hallmark of this feature is the ability to nullify most of the instructions in the instruction
set. When the instruction set is large and not entirely symmetric, it can be quite tedious
to describe these forms directly in the .md file. An alternative is the define_cond_exec

template.
(define_cond_exec

[predicate-pattern]

"condition"

"output-template"

Chapter 16: Machine Descriptions 515

"optional-insn-attribues")

predicate-pattern is the condition that must be true for the insn to be executed at runtime
and should match a relational operator. One can use match_operator to match several
relational operators at once. Any match_operand operands must have no more than one
alternative.

condition is a C expression that must be true for the generated pattern to match.

output-template is a string similar to the define_insn output template (see Section 16.5
[Output Template], page 375), except that the ‘*’ and ‘@’ special cases do not apply. This
is only useful if the assembly text for the predicate is a simple prefix to the main insn. In
order to handle the general case, there is a global variable current_insn_predicate that
will contain the entire predicate if the current insn is predicated, and will otherwise be NULL.

optional-insn-attributes is an optional vector of attributes that gets appended to the
insn attributes of the produced cond exec rtx. It can be used to add some distinguishing
attribute to cond exec rtxs produced that way. An example usage would be to use this at-
tribute in conjunction with attributes on the main pattern to disable particular alternatives
under certain conditions.

When define_cond_exec is used, an implicit reference to the predicable instruction
attribute is made. See Section 16.20 [Insn Attributes], page 499. This attribute must be
a boolean (i.e. have exactly two elements in its list-of-values), with the possible values
being no and yes. The default and all uses in the insns must be a simple constant, not
a complex expressions. It may, however, depend on the alternative, by using a comma-
separated list of values. If that is the case, the port should also define an enabled attribute
(see Section 16.9.6 [Disable Insn Alternatives], page 420), which should also allow only no

and yes as its values.

For each define_insn for which the predicable attribute is true, a new define_insn

pattern will be generated that matches a predicated version of the instruction. For example,

(define_insn "addsi"

[(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))]

"test1"

"add %2,%1,%0")

(define_cond_exec

[(ne (match_operand:CC 0 "register_operand" "c")

(const_int 0))]

"test2"

"(%0)")

generates a new pattern

(define_insn ""

[(cond_exec

(ne (match_operand:CC 3 "register_operand" "c") (const_int 0))

(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r"))))]

"(test2) && (test1)"

"(%3) add %2,%1,%0")

516 GNU Compiler Collection (GCC) Internals

16.22 RTL Templates Transformations

For some hardware architectures there are common cases when the RTL templates for the
instructions can be derived from the other RTL templates using simple transformations.
E.g., i386.md contains an RTL template for the ordinary sub instruction— *subsi_1, and
for the sub instruction with subsequent zero-extension—*subsi_1_zext. Such cases can be
easily implemented by a single meta-template capable of generating a modified case based
on the initial one:

(define_subst "name"

[input-template]

"condition"

[output-template])

input-template is a pattern describing the source RTL template, which will be trans-
formed.

condition is a C expression that is conjunct with the condition from the input-template
to generate a condition to be used in the output-template.

output-template is a pattern that will be used in the resulting template.

define_subst mechanism is tightly coupled with the notion of the subst attribute (see
Section 16.24.4 [Subst Iterators], page 525). The use of define_subst is triggered by a
reference to a subst attribute in the transforming RTL template. This reference initiates
duplication of the source RTL template and substitution of the attributes with their values.
The source RTL template is left unchanged, while the copy is transformed by define_

subst. This transformation can fail in the case when the source RTL template is not
matched against the input-template of the define_subst. In such case the copy is deleted.

define_subst can be used only in define_insn and define_expand, it cannot be used
in other expressions (e.g. in define_insn_and_split).

16.22.1 define_subst Example

To illustrate how define_subst works, let us examine a simple template transformation.

Suppose there are two kinds of instructions: one that touches flags and the other that
does not. The instructions of the second type could be generated with the following define_
subst:

(define_subst "add_clobber_subst"

[(set (match_operand:SI 0 "" "")

(match_operand:SI 1 "" ""))]

""

[(set (match_dup 0)

(match_dup 1))

(clobber (reg:CC FLAGS_REG))])

This define_subst can be applied to any RTL pattern containing set of mode SI and
generates a copy with clobber when it is applied.

Assume there is an RTL template for a max instruction to be used in define_subst

mentioned above:
(define_insn "maxsi"

[(set (match_operand:SI 0 "register_operand" "=r")

(max:SI

(match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))]

Chapter 16: Machine Descriptions 517

""

"max\t{%2, %1, %0|%0, %1, %2}"

[...])

To mark the RTL template for define_subst application, subst-attributes are used.
They should be declared in advance:

(define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber")

Here ‘add_clobber_name’ is the attribute name, ‘add_clobber_subst’ is the name of the
corresponding define_subst, the third argument (‘_noclobber’) is the attribute value that
would be substituted into the unchanged version of the source RTL template, and the last
argument (‘_clobber’) is the value that would be substituted into the second, transformed,
version of the RTL template.

Once the subst-attribute has been defined, it should be used in RTL templates which need
to be processed by the define_subst. So, the original RTL template should be changed:

(define_insn "maxsi<add_clobber_name>"

[(set (match_operand:SI 0 "register_operand" "=r")

(max:SI

(match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))]

""

"max\t{%2, %1, %0|%0, %1, %2}"

[...])

The result of the define_subst usage would look like the following:

(define_insn "maxsi_noclobber"

[(set (match_operand:SI 0 "register_operand" "=r")

(max:SI

(match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))]

""

"max\t{%2, %1, %0|%0, %1, %2}"

[...])

(define_insn "maxsi_clobber"

[(set (match_operand:SI 0 "register_operand" "=r")

(max:SI

(match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))

(clobber (reg:CC FLAGS_REG))]

""

"max\t{%2, %1, %0|%0, %1, %2}"

[...])

16.22.2 Pattern Matching in define_subst

All expressions, allowed in define_insn or define_expand, are allowed in the input-
template of define_subst, except match_par_dup, match_scratch, match_parallel. The
meanings of expressions in the input-template were changed:

match_operand matches any expression (possibly, a subtree in RTL-template), if modes
of the match_operand and this expression are the same, or mode of the match_operand

is VOIDmode, or this expression is match_dup, match_op_dup. If the expression is match_
operand too, and predicate of match_operand from the input pattern is not empty, then
the predicates are compared. That can be used for more accurate filtering of accepted
RTL-templates.

518 GNU Compiler Collection (GCC) Internals

match_operator matches common operators (like plus, minus), unspec, unspec_

volatile operators and match_operators from the original pattern if the modes match
and match_operator from the input pattern has the same number of operands as the
operator from the original pattern.

16.22.3 Generation of output template in define_subst

If all necessary checks for define_subst application pass, a new RTL-pattern, based on the
output-template, is created to replace the old template. Like in input-patterns, meanings
of some RTL expressions are changed when they are used in output-patterns of a define_

subst. Thus, match_dup is used for copying the whole expression from the original pattern,
which matched corresponding match_operand from the input pattern.

match_dup N is used in the output template to be replaced with the expression from the
original pattern, which matched match_operand N from the input pattern. As a conse-
quence, match_dup cannot be used to point to match_operands from the output pattern, it
should always refer to a match_operand from the input pattern. If a match_dup N occurs
more than once in the output template, its first occurrence is replaced with the expression
from the original pattern, and the subsequent expressions are replaced with match_dup N,
i.e., a reference to the first expression.

In the output template one can refer to the expressions from the original pattern and
create new ones. For instance, some operands could be added by means of standard match_

operand.

After replacing match_dup with some RTL-subtree from the original pattern, it could
happen that several match_operands in the output pattern have the same indexes. It
is unknown, how many and what indexes would be used in the expression which would
replace match_dup, so such conflicts in indexes are inevitable. To overcome this issue,
match_operands and match_operators, which were introduced into the output pattern,
are renumerated when all match_dups are replaced.

Number of alternatives in match_operands introduced into the output template M could
differ from the number of alternatives in the original pattern N, so in the resultant pat-
tern there would be N*M alternatives. Thus, constraints from the original pattern would
be duplicated N times, constraints from the output pattern would be duplicated M times,
producing all possible combinations.

16.23 Constant Definitions

Using literal constants inside instruction patterns reduces legibility and can be a mainte-
nance problem.

To overcome this problem, you may use the define_constants expression. It contains
a vector of name-value pairs. From that point on, wherever any of the names appears in
the MD file, it is as if the corresponding value had been written instead. You may use
define_constants multiple times; each appearance adds more constants to the table. It
is an error to redefine a constant with a different value.

To come back to the a29k load multiple example, instead of

(define_insn ""

[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

Chapter 16: Machine Descriptions 519

(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))

(clobber (reg:SI 179))])]

""

"loadm 0,0,%1,%2")

You could write:
(define_constants [

(R_BP 177)

(R_FC 178)

(R_CR 179)

(R_Q 180)

])

(define_insn ""

[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI R_CR))

(clobber (reg:SI R_CR))])]

""

"loadm 0,0,%1,%2")

The constants that are defined with a define constant are also output in the insn-codes.h
header file as #defines.

You can also use the machine description file to define enumerations. Like the constants
defined by define_constant, these enumerations are visible to both the machine description
file and the main C code.

The syntax is as follows:
(define_c_enum "name" [

value0

value1

(value32 32)

value33

...

valuen

])

This definition causes the equivalent of the following C code to appear in
insn-constants.h:

enum name {

value0 = 0,

value1 = 1,

value32 = 32,

value33 = 33,

...

valuen = n

};

#define NUM_cname_VALUES (n + 1)

where cname is the capitalized form of name. It also makes each valuei available in the
machine description file, just as if it had been declared with:

(define_constants [(valuei i)])

Each valuei is usually an upper-case identifier and usually begins with cname.

You can split the enumeration definition into as many statements as you like. The above
example is directly equivalent to:

520 GNU Compiler Collection (GCC) Internals

(define_c_enum "name" [value0])

(define_c_enum "name" [value1])

...

(define_c_enum "name" [valuen])

Splitting the enumeration helps to improve the modularity of each individual .md file.
For example, if a port defines its synchronization instructions in a separate sync.md file,
it is convenient to define all synchronization-specific enumeration values in sync.md rather
than in the main .md file.

Some enumeration names have special significance to GCC:

unspecv If an enumeration called unspecv is defined, GCC will use it when printing out
unspec_volatile expressions. For example:

(define_c_enum "unspecv" [

UNSPECV_BLOCKAGE

])

causes GCC to print ‘(unspec_volatile ... 0)’ as:
(unspec_volatile ... UNSPECV_BLOCKAGE)

unspec If an enumeration called unspec is defined, GCC will use it when printing out
unspec expressions. GCC will also use it when printing out unspec_volatile
expressions unless an unspecv enumeration is also defined. You can therefore
decide whether to keep separate enumerations for volatile and non-volatile ex-
pressions or whether to use the same enumeration for both.

Another way of defining an enumeration is to use define_enum:
(define_enum "name" [

value0

value1

...

valuen

])

This directive implies:
(define_c_enum "name" [

cname_cvalue0

cname_cvalue1

...

cname_cvaluen

])

where cvaluei is the capitalized form of valuei. However, unlike define_c_enum, the

enumerations defined by define_enum can be used in attribute specifications (see [de-

fine enum attr], page 500).

16.24 Iterators

Ports often need to define similar patterns for more than one machine mode or for more
than one rtx code. GCC provides some simple iterator facilities to make this process easier.

16.24.1 Mode Iterators

Ports often need to define similar patterns for two or more different modes. For example:

• If a processor has hardware support for both single and double floating-point arithmetic,
the SFmode patterns tend to be very similar to the DFmode ones.

Chapter 16: Machine Descriptions 521

• If a port uses SImode pointers in one configuration and DImode pointers in another, it
will usually have very similar SImode and DImode patterns for manipulating pointers.

Mode iterators allow several patterns to be instantiated from one .md file template. They
can be used with any type of rtx-based construct, such as a define_insn, define_split,
or define_peephole2.

16.24.1.1 Defining Mode Iterators

The syntax for defining a mode iterator is:

(define_mode_iterator name [(mode1 "cond1") ... (moden "condn")])

This allows subsequent .md file constructs to use the mode suffix :name. Every construct
that does so will be expanded n times, once with every use of :name replaced by :mode1,
once with every use replaced by :mode2, and so on. In the expansion for a particular modei,
every C condition will also require that condi be true.

For example:

(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])

defines a new mode suffix :P. Every construct that uses :P will be expanded twice, once
with every :P replaced by :SI and once with every :P replaced by :DI. The :SI version
will only apply if Pmode == SImode and the :DI version will only apply if Pmode == DImode.

As with other .md conditions, an empty string is treated as “always true”. (mode "")

can also be abbreviated to mode. For example:

(define_mode_iterator GPR [SI (DI "TARGET_64BIT")])

means that the :DI expansion only applies if TARGET_64BIT but that the :SI expansion
has no such constraint.

It is also possible to include iterators in other iterators. For example:

(define_mode_iterator VI [V16QI V8HI V4SI V2DI])

(define_mode_iterator VF [V8HF V4SF (V2DF "TARGET_DOUBLE")])

(define_mode_iterator V [VI (VF "TARGET_FLOAT")])

makes ‘:V’ iterate over the modes in VI and the modes in VF. When a construct uses ‘:V’,
the V8HF and V4SF expansions require ‘TARGET_FLOAT’ while the V2DF expansion requires
‘TARGET_DOUBLE && TARGET_FLOAT’.

Iterators are applied in the order they are defined. This can be significant if two iterators
are used in a construct that requires substitutions. See Section 16.24.1.2 [Substitutions],
page 521.

16.24.1.2 Substitution in Mode Iterators

If an .md file construct uses mode iterators, each version of the construct will often need
slightly different strings or modes. For example:

• When a define_expand defines several addm3 patterns (see Section 16.10 [Standard
Names], page 426), each expander will need to use the appropriate mode name for m.

• When a define_insn defines several instruction patterns, each instruction will often
use a different assembler mnemonic.

• When a define_insn requires operands with different modes, using an iterator for one
of the operand modes usually requires a specific mode for the other operand(s).

522 GNU Compiler Collection (GCC) Internals

GCC supports such variations through a system of “mode attributes”. There are two
standard attributes: mode, which is the name of the mode in lower case, and MODE, which
is the same thing in upper case. You can define other attributes using:

(define_mode_attr name [(mode1 "value1") ... (moden "valuen")])

where name is the name of the attribute and valuei is the value associated with modei.

When GCC replaces some :iterator with :mode, it will scan each string and mode in the
pattern for sequences of the form <iterator:attr>, where attr is the name of a mode
attribute. If the attribute is defined for mode, the whole <...> sequence will be replaced
by the appropriate attribute value.

For example, suppose an .md file has:
(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])

(define_mode_attr load [(SI "lw") (DI "ld")])

If one of the patterns that uses :P contains the string "<P:load>\t%0,%1", the SI version
of that pattern will use "lw\t%0,%1" and the DI version will use "ld\t%0,%1".

Here is an example of using an attribute for a mode:
(define_mode_iterator LONG [SI DI])

(define_mode_attr SHORT [(SI "HI") (DI "SI")])

(define_insn ...

(sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)

The iterator: prefix may be omitted, in which case the substitution will be attempted
for every iterator expansion.

16.24.1.3 Mode Iterator Examples

Here is an example from the MIPS port. It defines the following modes and attributes
(among others):

(define_mode_iterator GPR [SI (DI "TARGET_64BIT")])

(define_mode_attr d [(SI "") (DI "d")])

and uses the following template to define both subsi3 and subdi3:
(define_insn "sub<mode>3"

[(set (match_operand:GPR 0 "register_operand" "=d")

(minus:GPR (match_operand:GPR 1 "register_operand" "d")

(match_operand:GPR 2 "register_operand" "d")))]

""

"<d>subu\t%0,%1,%2"

[(set_attr "type" "arith")

(set_attr "mode" "<MODE>")])

This is exactly equivalent to:
(define_insn "subsi3"

[(set (match_operand:SI 0 "register_operand" "=d")

(minus:SI (match_operand:SI 1 "register_operand" "d")

(match_operand:SI 2 "register_operand" "d")))]

""

"subu\t%0,%1,%2"

[(set_attr "type" "arith")

(set_attr "mode" "SI")])

(define_insn "subdi3"

[(set (match_operand:DI 0 "register_operand" "=d")

(minus:DI (match_operand:DI 1 "register_operand" "d")

(match_operand:DI 2 "register_operand" "d")))]

Chapter 16: Machine Descriptions 523

"TARGET_64BIT"

"dsubu\t%0,%1,%2"

[(set_attr "type" "arith")

(set_attr "mode" "DI")])

16.24.2 Code Iterators

Code iterators operate in a similar way to mode iterators. See Section 16.24.1 [Mode
Iterators], page 520.

The construct:

(define_code_iterator name [(code1 "cond1") ... (coden "condn")])

defines a pseudo rtx code name that can be instantiated as codei if condition condi is
true. Each codei must have the same rtx format. See Section 13.2 [RTL Classes], page 284.

As with mode iterators, each pattern that uses name will be expanded n times, once with
all uses of name replaced by code1, once with all uses replaced by code2, and so on. See
Section 16.24.1.1 [Defining Mode Iterators], page 521.

It is possible to define attributes for codes as well as for modes. There are two standard
code attributes: code, the name of the code in lower case, and CODE, the name of the code
in upper case. Other attributes are defined using:

(define_code_attr name [(code1 "value1") ... (coden "valuen")])

Instruction patterns can use code attributes as rtx codes, which can be useful if two
sets of codes act in tandem. For example, the following define_insn defines two patterns,
one calculating a signed absolute difference and another calculating an unsigned absolute
difference:

(define_code_iterator any_max [smax umax])

(define_code_attr paired_min [(smax "smin") (umax "umin")])

(define_insn ...

[(set (match_operand:SI 0 ...)

(minus:SI (any_max:SI (match_operand:SI 1 ...)

(match_operand:SI 2 ...))

(<paired_min>:SI (match_dup 1) (match_dup 2))))]

...)

The signed version of the instruction uses smax and smin while the unsigned version uses
umax and umin. There are no versions that pair smax with umin or umax with smin.

It is also possible to use other types of attributes as codes, in a similar way. For example,
an int iterator could be used to iterate over unspec numbers, with an int attribute specifying
an associated rtx code. See Section 16.24.3 [Int Iterators], page 524.

Here’s an example of code iterators in action, taken from the MIPS port:

(define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt

eq ne gt ge lt le gtu geu ltu leu])

(define_expand "b<code>"

[(set (pc)

(if_then_else (any_cond:CC (cc0)

(const_int 0))

(label_ref (match_operand 0 ""))

(pc)))]

""

{

gen_conditional_branch (operands, <CODE>);

524 GNU Compiler Collection (GCC) Internals

DONE;

})

This is equivalent to:
(define_expand "bunordered"

[(set (pc)

(if_then_else (unordered:CC (cc0)

(const_int 0))

(label_ref (match_operand 0 ""))

(pc)))]

""

{

gen_conditional_branch (operands, UNORDERED);

DONE;

})

(define_expand "bordered"

[(set (pc)

(if_then_else (ordered:CC (cc0)

(const_int 0))

(label_ref (match_operand 0 ""))

(pc)))]

""

{

gen_conditional_branch (operands, ORDERED);

DONE;

})

...

16.24.3 Int Iterators

Int iterators operate in a similar way to code iterators. See Section 16.24.2 [Code Iterators],
page 523.

The construct:
(define_int_iterator name [(int1 "cond1") ... (intn "condn")])

defines a pseudo integer constant name that can be instantiated as inti if condition condi
is true. Int iterators can appear in only those rtx fields that have ‘i’, ‘n’, ‘w’, or ‘p’ as the
specifier. This means that each int has to be a constant defined using ‘define_constant’
or ‘define_c_enum’.

As with mode and code iterators, each pattern that uses name will be expanded n times,
once with all uses of name replaced by int1, once with all uses replaced by int2, and so on.
See Section 16.24.1.1 [Defining Mode Iterators], page 521.

It is possible to define attributes for ints as well as for codes and modes. Attributes are
defined using:

(define_int_attr attr_name [(int1 "value1") ... (intn "valuen")])

In additon to these user-defined attributes, it is possible to use ‘<name>’ to refer to the
current expansion of iterator name (such as int1, int2, and so on).

Here’s an example of int iterators in action, taken from the ARM port:
(define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])

(define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])

Chapter 16: Machine Descriptions 525

(define_insn "neon_vq<absneg><mode>"

[(set (match_operand:VDQIW 0 "s_register_operand" "=w")

(unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")

(match_operand:SI 2 "immediate_operand" "i")]

QABSNEG))]

"TARGET_NEON"

"vq<absneg>.<V_s_elem>\t%<V_reg>0, %<V_reg>1"

[(set_attr "type" "neon_vqneg_vqabs")]

)

This is equivalent to:

(define_insn "neon_vqabs<mode>"

[(set (match_operand:VDQIW 0 "s_register_operand" "=w")

(unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")

(match_operand:SI 2 "immediate_operand" "i")]

UNSPEC_VQABS))]

"TARGET_NEON"

"vqabs.<V_s_elem>\t%<V_reg>0, %<V_reg>1"

[(set_attr "type" "neon_vqneg_vqabs")]

)

(define_insn "neon_vqneg<mode>"

[(set (match_operand:VDQIW 0 "s_register_operand" "=w")

(unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")

(match_operand:SI 2 "immediate_operand" "i")]

UNSPEC_VQNEG))]

"TARGET_NEON"

"vqneg.<V_s_elem>\t%<V_reg>0, %<V_reg>1"

[(set_attr "type" "neon_vqneg_vqabs")]

)

16.24.4 Subst Iterators

Subst iterators are special type of iterators with the following restrictions: they could not
be declared explicitly, they always have only two values, and they do not have explicit
dedicated name. Subst-iterators are triggered only when corresponding subst-attribute is
used in RTL-pattern.

Subst iterators transform templates in the following way: the templates are duplicated,
the subst-attributes in these templates are replaced with the corresponding values, and a
new attribute is implicitly added to the given define_insn/define_expand. The name
of the added attribute matches the name of define_subst. Such attributes are declared
implicitly, and it is not allowed to have a define_attr named as a define_subst.

Each subst iterator is linked to a define_subst. It is declared implicitly by the first
appearance of the corresponding define_subst_attr, and it is not allowed to define it
explicitly.

Declarations of subst-attributes have the following syntax:

(define_subst_attr "name"

"subst-name"

"no-subst-value"

"subst-applied-value")

name is a string with which the given subst-attribute could be referred to.

526 GNU Compiler Collection (GCC) Internals

subst-name shows which define_subst should be applied to an RTL-template if the
given subst-attribute is present in the RTL-template.

no-subst-value is a value with which subst-attribute would be replaced in the first copy
of the original RTL-template.

subst-applied-value is a value with which subst-attribute would be replaced in the second
copy of the original RTL-template.

16.24.5 Parameterized Names

Ports sometimes need to apply iterators using C++ code, in order to get the code or RTL pat-
tern for a specific instruction. For example, suppose we have the ‘neon_vq<absneg><mode>’
pattern given above:

(define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])

(define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])

(define_insn "neon_vq<absneg><mode>"

[(set (match_operand:VDQIW 0 "s_register_operand" "=w")

(unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")

(match_operand:SI 2 "immediate_operand" "i")]

QABSNEG))]

...

)

A port might need to generate this pattern for a variable ‘QABSNEG’ value and a variable
‘VDQIW’ mode. There are two ways of doing this. The first is to build the rtx for the pattern
directly from C++ code; this is a valid technique and avoids any risk of combinatorial
explosion. The second is to prefix the instruction name with the special character ‘@’,
which tells GCC to generate the four additional functions below. In each case, name is the
name of the instruction without the leading ‘@’ character, without the ‘<...>’ placeholders,
and with any underscore before a ‘<...>’ placeholder removed if keeping it would lead to a
double or trailing underscore.

‘insn_code maybe_code_for_name (i1, i2, ...)’
See whether replacing the first ‘<...>’ placeholder with iterator value i1, the
second with iterator value i2, and so on, gives a valid instruction. Return its
code if so, otherwise return CODE_FOR_nothing.

‘insn_code code_for_name (i1, i2, ...)’
Same, but abort the compiler if the requested instruction does not exist.

‘rtx maybe_gen_name (i1, i2, ..., op0, op1, ...)’
Check for a valid instruction in the same way as maybe_code_for_name. If the
instruction exists, generate an instance of it using the operand values given by
op0, op1, and so on, otherwise return null.

‘rtx gen_name (i1, i2, ..., op0, op1, ...)’
Same, but abort the compiler if the requested instruction does not exist, or if
the instruction generator invoked the FAIL macro.

For example, changing the pattern above to:
(define_insn "@neon_vq<absneg><mode>"

[(set (match_operand:VDQIW 0 "s_register_operand" "=w")

Chapter 16: Machine Descriptions 527

(unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")

(match_operand:SI 2 "immediate_operand" "i")]

QABSNEG))]

...

)

would define the same patterns as before, but in addition would generate the four func-
tions below:

insn_code maybe_code_for_neon_vq (int, machine_mode);

insn_code code_for_neon_vq (int, machine_mode);

rtx maybe_gen_neon_vq (int, machine_mode, rtx, rtx, rtx);

rtx gen_neon_vq (int, machine_mode, rtx, rtx, rtx);

Calling ‘code_for_neon_vq (UNSPEC_VQABS, V8QImode)’ would then give CODE_FOR_

neon_vqabsv8qi.

It is possible to have multiple ‘@’ patterns with the same name and same types of iterator.
For example:

(define_insn "@some_arithmetic_op<mode>"

[(set (match_operand:INTEGER_MODES 0 "register_operand") ...)]

...

)

(define_insn "@some_arithmetic_op<mode>"

[(set (match_operand:FLOAT_MODES 0 "register_operand") ...)]

...

)

would produce a single set of functions that handles both INTEGER_MODES and FLOAT_

MODES.

It is also possible for these ‘@’ patterns to have different numbers of operands from each
other. For example, patterns with a binary rtl code might take three operands (one output
and two inputs) while patterns with a ternary rtl code might take four operands (one
output and three inputs). This combination would produce separate ‘maybe_gen_name’
and ‘gen_name’ functions for each operand count, but it would still produce a single
‘maybe_code_for_name’ and a single ‘code_for_name’.

Currently, these @ patterns only take into account patterns for which no define_subst

has been applied (see Section 16.22 [Define Subst], page 516). Any ‘<...>’ placeholders
that refer to subst attributes (see Section 16.24.4 [Subst Iterators], page 525) are ignored.

529

17 Target Description Macros and Functions

In addition to the file machine.md, a machine description includes a C header file conven-
tionally given the name machine.h and a C source file named machine.c. The header file
defines numerous macros that convey the information about the target machine that does
not fit into the scheme of the .md file. The file tm.h should be a link to machine.h. The
header file config.h includes tm.h and most compiler source files include config.h. The
source file defines a variable targetm, which is a structure containing pointers to functions
and data relating to the target machine. machine.c should also contain their definitions,
if they are not defined elsewhere in GCC, and other functions called through the macros
defined in the .h file.

17.1 The Global targetm Variable

[Variable]struct gcc_target targetm
The target .c file must define the global targetm variable which contains pointers
to functions and data relating to the target machine. The variable is declared in
target.h; target-def.h defines the macro TARGET_INITIALIZER which is used to
initialize the variable, and macros for the default initializers for elements of the struc-
ture. The .c file should override those macros for which the default definition is
inappropriate. For example:

#include "target.h"

#include "target-def.h"

/* Initialize the GCC target structure. */

#undef TARGET_COMP_TYPE_ATTRIBUTES

#define TARGET_COMP_TYPE_ATTRIBUTES machine_comp_type_attributes

struct gcc_target targetm = TARGET_INITIALIZER;

Where a macro should be defined in the .c file in this manner to form part of the targetm
structure, it is documented below as a “Target Hook” with a prototype. Many macros will
change in future from being defined in the .h file to being part of the targetm structure.

Similarly, there is a targetcm variable for hooks that are specific to front ends for C-family
languages, documented as “C Target Hook”. This is declared in c-family/c-target.h,
the initializer TARGETCM_INITIALIZER in c-family/c-target-def.h. If targets initialize
targetcm themselves, they should set target_has_targetcm=yes in config.gcc; otherwise
a default definition is used.

Similarly, there is a targetm_common variable for hooks that are shared between the
compiler driver and the compilers proper, documented as “Common Target Hook”. This
is declared in common/common-target.h, the initializer TARGETM_COMMON_INITIALIZER

in common/common-target-def.h. If targets initialize targetm_common themselves,
they should set target_has_targetm_common=yes in config.gcc; otherwise a default
definition is used.

Similarly, there is a targetdm variable for hooks that are specific to the D language front
end, documented as “D Target Hook”. This is declared in d/d-target.h, the initializer
TARGETDM_INITIALIZER in d/d-target-def.h. If targets initialize targetdm themselves,

530 GNU Compiler Collection (GCC) Internals

they should set target_has_targetdm=yes in config.gcc; otherwise a default definition
is used.

Similarly, there is a targetrustm variable for hooks that are specific to the Rust language
front end, documented as “Rust Target Hook”. This is declared in rust/rust-target.h,
the initializer TARGETRUSTM_INITIALIZER in rust/rust-target-def.h. If targets initialize
targetrustm themselves, they should set target_has_targetrustm=yes in config.gcc;
otherwise a default definition is used.

Similarly, there is a targetjitm variable for hooks that are specific to the jit front end,
documented as “JIT Target Hook”. This is declared in jit/jit-target.h, the initial-
izer TARGETJITM_INITIALIZER in jit/jit-target-def.h. If targets initialize targetjitm
themselves, they should set target_has_targetjitm=yes in config.gcc; otherwise a de-
fault definition is used.

17.2 Controlling the Compilation Driver, gcc

You can control the compilation driver.

[Macro]DRIVER_SELF_SPECS
A list of specs for the driver itself. It should be a suitable initializer for an array of
strings, with no surrounding braces.

The driver applies these specs to its own command line between loading default
specs files (but not command-line specified ones) and choosing the multilib directory
or running any subcommands. It applies them in the order given, so each spec can
depend on the options added by earlier ones. It is also possible to remove options
using ‘%<option’ in the usual way.

This macro can be useful when a port has several interdependent target options. It
provides a way of standardizing the command line so that the other specs are easier
to write.

Do not define this macro if it does not need to do anything.

[Macro]OPTION_DEFAULT_SPECS
A list of specs used to support configure-time default options (i.e. --with options) in
the driver. It should be a suitable initializer for an array of structures, each containing
two strings, without the outermost pair of surrounding braces.

The first item in the pair is the name of the default. This must match the code in
config.gcc for the target. The second item is a spec to apply if a default with this
name was specified. The string ‘%(VALUE)’ in the spec will be replaced by the value
of the default everywhere it occurs.

The driver will apply these specs to its own command line between loading de-
fault specs files and processing DRIVER_SELF_SPECS, using the same mechanism as
DRIVER_SELF_SPECS.

Do not define this macro if it does not need to do anything.

[Macro]CPP_SPEC
A C string constant that tells the GCC driver program options to pass to CPP. It
can also specify how to translate options you give to GCC into options for GCC to
pass to the CPP.

Chapter 17: Target Description Macros and Functions 531

Do not define this macro if it does not need to do anything.

[Macro]LIBC_CPP_SPEC
A C string constant which is appended to the value of CPP_SPEC. LIBC_CPP_SPEC is
intended to depend upon the C library in use.

Do not define this macro if it does not need to do anything.

[Macro]CPLUSPLUS_CPP_SPEC
This macro is just like CPP_SPEC, but is used for C++, rather than C. If you do not
define this macro, then the value of CPP_SPEC (if any) will be used instead.

[Macro]CC1_SPEC
A C string constant that tells the GCC driver program options to pass to cc1,
cc1plus, f771, and the other language front ends. It can also specify how to translate
options you give to GCC into options for GCC to pass to front ends.

Do not define this macro if it does not need to do anything.

[Macro]CC1PLUS_SPEC
A C string constant that tells the GCC driver program options to pass to cc1plus.
It can also specify how to translate options you give to GCC into options for GCC to
pass to the cc1plus.

Do not define this macro if it does not need to do anything. Note that everything
defined in CC1 SPEC is already passed to cc1plus so there is no need to duplicate
the contents of CC1 SPEC in CC1PLUS SPEC.

[Macro]ASM_SPEC
A C string constant that tells the GCC driver program options to pass to the assem-
bler. It can also specify how to translate options you give to GCC into options for
GCC to pass to the assembler. See the file sun3.h for an example of this.

Do not define this macro if it does not need to do anything.

[Macro]ASM_FINAL_SPEC
A C string constant that tells the GCC driver program how to run any programs
which cleanup after the normal assembler. Normally, this is not needed. See the file
mips.h for an example of this.

Do not define this macro if it does not need to do anything.

[Macro]AS_NEEDS_DASH_FOR_PIPED_INPUT
Define this macro, with no value, if the driver should give the assembler an argument
consisting of a single dash, -, to instruct it to read from its standard input (which
will be a pipe connected to the output of the compiler proper). This argument is
given after any -o option specifying the name of the output file.

If you do not define this macro, the assembler is assumed to read its standard input
if given no non-option arguments. If your assembler cannot read standard input at
all, use a ‘%{pipe:%e}’ construct; see mips.h for instance.

532 GNU Compiler Collection (GCC) Internals

[Macro]LINK_SPEC
A C string constant that tells the GCC driver program options to pass to the linker.
It can also specify how to translate options you give to GCC into options for GCC to
pass to the linker.

Do not define this macro if it does not need to do anything.

[Macro]LIBC_LINK_SPEC
A C string constant which is appended to the value of LINK_SPEC. LIBC_LINK_SPEC
is intended to depend upon the C library in use.

Do not define this macro if it does not need to do anything.

[Macro]LIB_SPEC
Another C string constant used much like LINK_SPEC. The difference between the
two is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C library
from the usual place. See gcc.cc.

[Macro]LIBGCC_SPEC
Another C string constant that tells the GCC driver program how and when to place
a reference to libgcc.a into the linker command line. This constant is placed both
before and after the value of LIB_SPEC.

If this macro is not defined, the GCC driver provides a default that passes the string
-lgcc to the linker.

[Macro]REAL_LIBGCC_SPEC
By default, if ENABLE_SHARED_LIBGCC is defined, the LIBGCC_SPEC is not directly
used by the driver program but is instead modified to refer to different versions of
libgcc.a depending on the values of the command line flags -static, -shared,
-static-libgcc, and -shared-libgcc. On targets where these modifications are
inappropriate, define REAL_LIBGCC_SPEC instead. REAL_LIBGCC_SPEC tells the driver
how to place a reference to libgcc on the link command line, but, unlike LIBGCC_

SPEC, it is used unmodified.

[Macro]USE_LD_AS_NEEDED
A macro that controls the modifications to LIBGCC_SPEC mentioned in REAL_LIBGCC_

SPEC. If nonzero, a spec will be generated that uses --as-needed or equivalent options
and the shared libgcc in place of the static exception handler library, when linking
without any of -static, -static-libgcc, or -shared-libgcc.

[Macro]LINK_EH_SPEC
If defined, this C string constant is added to LINK_SPEC. When USE_LD_AS_NEEDED

is zero or undefined, it also affects the modifications to LIBGCC_SPEC mentioned in
REAL_LIBGCC_SPEC.

[Macro]STARTFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between the
two is that STARTFILE_SPEC is used at the very beginning of the command given to
the linker.

If this macro is not defined, a default is provided that loads the standard C startup
file from the usual place. See gcc.cc.

Chapter 17: Target Description Macros and Functions 533

[Macro]ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between the
two is that ENDFILE_SPEC is used at the very end of the command given to the linker.

Do not define this macro if it does not need to do anything.

[Macro]THREAD_MODEL_SPEC
GCC -v will print the thread model GCC was configured to use. However, this doesn’t
work on platforms that are multilibbed on thread models, such as AIX 4.3. On such
platforms, define THREAD_MODEL_SPEC such that it evaluates to a string without blanks
that names one of the recognized thread models. %*, the default value of this macro,
will expand to the value of thread_file set in config.gcc.

[Macro]SYSROOT_SUFFIX_SPEC
Define this macro to add a suffix to the target sysroot when GCC is configured with
a sysroot. This will cause GCC to search for usr/lib, et al, within sysroot+suffix.

[Macro]SYSROOT_HEADERS_SUFFIX_SPEC
Define this macro to add a headers suffix to the target sysroot when GCC is configured
with a sysroot. This will cause GCC to pass the updated sysroot+headers suffix to
CPP, causing it to search for usr/include, et al, within sysroot+headers suffix.

[Macro]EXTRA_SPECS
Define this macro to provide additional specifications to put in the specs file that
can be used in various specifications like CC1_SPEC.

The definition should be an initializer for an array of structures, containing a string
constant, that defines the specification name, and a string constant that provides the
specification.

Do not define this macro if it does not need to do anything.

EXTRA_SPECS is useful when an architecture contains several related targets, which
have various ..._SPECS which are similar to each other, and the maintainer would
like one central place to keep these definitions.

For example, the PowerPC System V.4 targets use EXTRA_SPECS to define either _

CALL_SYSV when the System V calling sequence is used or _CALL_AIX when the older
AIX-based calling sequence is used.

The config/rs6000/rs6000.h target file defines:
#define EXTRA_SPECS \

{ "cpp_sysv_default", CPP_SYSV_DEFAULT },

#define CPP_SYS_DEFAULT ""

The config/rs6000/sysv.h target file defines:
#undef CPP_SPEC

#define CPP_SPEC \

"%{posix: -D_POSIX_SOURCE } \

%{mcall-sysv: -D_CALL_SYSV } \

%{!mcall-sysv: %(cpp_sysv_default) } \

%{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"

#undef CPP_SYSV_DEFAULT

#define CPP_SYSV_DEFAULT "-D_CALL_SYSV"

534 GNU Compiler Collection (GCC) Internals

while the config/rs6000/eabiaix.h target file defines CPP_SYSV_DEFAULT as:

#undef CPP_SYSV_DEFAULT

#define CPP_SYSV_DEFAULT "-D_CALL_AIX"

[Macro]LINK_LIBGCC_SPECIAL_1
Define this macro if the driver program should find the library libgcc.a. If you do
not define this macro, the driver program will pass the argument -lgcc to tell the
linker to do the search.

[Macro]LINK_GCC_C_SEQUENCE_SPEC
The sequence in which libgcc and libc are specified to the linker. By default this is
%G %L %G.

[Macro]POST_LINK_SPEC
Define this macro to add additional steps to be executed after linker. The default
value of this macro is empty string.

[Macro]LINK_COMMAND_SPEC
A C string constant giving the complete command line need to execute the linker.
When you do this, you will need to update your port each time a change is made to
the link command line within gcc.cc. Therefore, define this macro only if you need
to completely redefine the command line for invoking the linker and there is no other
way to accomplish the effect you need. Overriding this macro may be avoidable by
overriding LINK_GCC_C_SEQUENCE_SPEC instead.

[Common Target Hook]bool TARGET_ALWAYS_STRIP_DOTDOT
True if .. components should always be removed from directory names computed
relative to GCC’s internal directories, false (default) if such components should be
preserved and directory names containing them passed to other tools such as the
linker.

[Macro]MULTILIB_DEFAULTS
Define this macro as a C expression for the initializer of an array of string to tell the
driver program which options are defaults for this target and thus do not need to be
handled specially when using MULTILIB_OPTIONS.

Do not define this macro if MULTILIB_OPTIONS is not defined in the target makefile
fragment or if none of the options listed in MULTILIB_OPTIONS are set by default. See
Section 19.1 [Target Fragment], page 729.

[Macro]RELATIVE_PREFIX_NOT_LINKDIR
Define this macro to tell gcc that it should only translate a -B prefix into a -L linker
option if the prefix indicates an absolute file name.

[Macro]MD_EXEC_PREFIX
If defined, this macro is an additional prefix to try after STANDARD_EXEC_PREFIX.
MD_EXEC_PREFIX is not searched when the compiler is built as a cross compiler. If
you define MD_EXEC_PREFIX, then be sure to add it to the list of directories used to
find the assembler in configure.ac.

Chapter 17: Target Description Macros and Functions 535

[Macro]STANDARD_STARTFILE_PREFIX
Define this macro as a C string constant if you wish to override the standard choice
of libdir as the default prefix to try when searching for startup files such as crt0.o.
STANDARD_STARTFILE_PREFIX is not searched when the compiler is built as a cross
compiler.

[Macro]STANDARD_STARTFILE_PREFIX_1
Define this macro as a C string constant if you wish to override the standard choice of
/lib as a prefix to try after the default prefix when searching for startup files such as
crt0.o. STANDARD_STARTFILE_PREFIX_1 is not searched when the compiler is built
as a cross compiler.

[Macro]STANDARD_STARTFILE_PREFIX_2
Define this macro as a C string constant if you wish to override the standard choice of
/lib as yet another prefix to try after the default prefix when searching for startup files
such as crt0.o. STANDARD_STARTFILE_PREFIX_2 is not searched when the compiler
is built as a cross compiler.

[Macro]MD_STARTFILE_PREFIX
If defined, this macro supplies an additional prefix to try after the standard prefixes.
MD_EXEC_PREFIX is not searched when the compiler is built as a cross compiler.

[Macro]MD_STARTFILE_PREFIX_1
If defined, this macro supplies yet another prefix to try after the standard prefixes.
It is not searched when the compiler is built as a cross compiler.

[Macro]INIT_ENVIRONMENT
Define this macro as a C string constant if you wish to set environment variables for
programs called by the driver, such as the assembler and loader. The driver passes
the value of this macro to putenv to initialize the necessary environment variables.

[Macro]LOCAL_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard choice of
/usr/local/include as the default prefix to try when searching for local header files.
LOCAL_INCLUDE_DIR comes before NATIVE_SYSTEM_HEADER_DIR (set in config.gcc,
normally /usr/include) in the search order.

Cross compilers do not search either /usr/local/include or its replacement.

[Macro]NATIVE_SYSTEM_HEADER_COMPONENT
The “component” corresponding to NATIVE_SYSTEM_HEADER_DIR. See INCLUDE_

DEFAULTS, below, for the description of components. If you do not define this macro,
no component is used.

[Macro]INCLUDE_DEFAULTS
Define this macro if you wish to override the entire default search path for include
files. For a native compiler, the default search path usually consists of GCC_INCLUDE_
DIR, LOCAL_INCLUDE_DIR, GPLUSPLUS_INCLUDE_DIR, and NATIVE_SYSTEM_HEADER_

DIR. In addition, GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are defined au-
tomatically by Makefile, and specify private search areas for GCC. The directory
GPLUSPLUS_INCLUDE_DIR is used only for C++ programs.

536 GNU Compiler Collection (GCC) Internals

The definition should be an initializer for an array of structures. Each array element
should have four elements: the directory name (a string constant), the component
name (also a string constant), a flag for C++-only directories, and a flag showing that
the includes in the directory don’t need to be wrapped in extern ‘C’ when compiling
C++. Mark the end of the array with a null element.

The component name denotes what GNU package the include file is part of, if any,
in all uppercase letters. For example, it might be ‘GCC’ or ‘BINUTILS’. If the package
is part of a vendor-supplied operating system, code the component name as ‘0’.

For example, here is the definition used for VAX/VMS:

#define INCLUDE_DEFAULTS \

{ \

{ "GNU_GXX_INCLUDE:", "G++", 1, 1}, \

{ "GNU_CC_INCLUDE:", "GCC", 0, 0}, \

{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \

{ ".", 0, 0, 0}, \

{ 0, 0, 0, 0} \

}

Here is the order of prefixes tried for exec files:

1. Any prefixes specified by the user with -B.

2. The environment variable GCC_EXEC_PREFIX or, if GCC_EXEC_PREFIX is not set and the
compiler has not been installed in the configure-time prefix, the location in which the
compiler has actually been installed.

3. The directories specified by the environment variable COMPILER_PATH.

4. The macro STANDARD_EXEC_PREFIX, if the compiler has been installed in the configured-
time prefix.

5. The location /usr/libexec/gcc/, but only if this is a native compiler.

6. The location /usr/lib/gcc/, but only if this is a native compiler.

7. The macro MD_EXEC_PREFIX, if defined, but only if this is a native compiler.

Here is the order of prefixes tried for startfiles:

1. Any prefixes specified by the user with -B.

2. The environment variable GCC_EXEC_PREFIX or its automatically determined value
based on the installed toolchain location.

3. The directories specified by the environment variable LIBRARY_PATH (or port-specific
name; native only, cross compilers do not use this).

4. The macro STANDARD_EXEC_PREFIX, but only if the toolchain is installed in the config-
ured prefix or this is a native compiler.

5. The location /usr/lib/gcc/, but only if this is a native compiler.

6. The macro MD_EXEC_PREFIX, if defined, but only if this is a native compiler.

7. The macro MD_STARTFILE_PREFIX, if defined, but only if this is a native compiler, or
we have a target system root.

8. The macro MD_STARTFILE_PREFIX_1, if defined, but only if this is a native compiler,
or we have a target system root.

Chapter 17: Target Description Macros and Functions 537

9. The macro STANDARD_STARTFILE_PREFIX, with any sysroot modifications. If this path
is relative it will be prefixed by GCC_EXEC_PREFIX and the machine suffix or STANDARD_
EXEC_PREFIX and the machine suffix.

10. The macro STANDARD_STARTFILE_PREFIX_1, but only if this is a native compiler, or
we have a target system root. The default for this macro is /lib/.

11. The macro STANDARD_STARTFILE_PREFIX_2, but only if this is a native compiler, or
we have a target system root. The default for this macro is /usr/lib/.

17.3 Run-time Target Specification

Here are run-time target specifications.

[Macro]TARGET_CPU_CPP_BUILTINS ()
This function-like macro expands to a block of code that defines built-in preproces-
sor macros and assertions for the target CPU, using the functions builtin_define,
builtin_define_std and builtin_assert. When the front end calls this macro it
provides a trailing semicolon, and since it has finished command line option processing
your code can use those results freely.

builtin_assert takes a string in the form you pass to the command-line option -A,
such as cpu=mips, and creates the assertion. builtin_define takes a string in the
form accepted by option -D and unconditionally defines the macro.

builtin_define_std takes a string representing the name of an object-like macro. If
it doesn’t lie in the user’s namespace, builtin_define_std defines it unconditionally.
Otherwise, it defines a version with two leading underscores, and another version with
two leading and trailing underscores, and defines the original only if an ISO standard
was not requested on the command line. For example, passing unix defines __unix,
__unix__ and possibly unix; passing _mips defines __mips, __mips__ and possibly
_mips, and passing _ABI64 defines only _ABI64.

You can also test for the C dialect being compiled. The variable c_language is set to
one of clk_c, clk_cplusplus or clk_objective_c. Note that if we are preprocessing
assembler, this variable will be clk_c but the function-like macro preprocessing_

asm_p() will return true, so you might want to check for that first. If you need to
check for strict ANSI, the variable flag_iso can be used. The function-like macro
preprocessing_trad_p() can be used to check for traditional preprocessing.

[Macro]TARGET_OS_CPP_BUILTINS ()
Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for
the target operating system instead.

[Macro]TARGET_OBJFMT_CPP_BUILTINS ()
Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for the
target object format. elfos.h uses this macro to define __ELF__, so you probably do
not need to define it yourself.

[Variable]extern int target_flags
This variable is declared in options.h, which is included before any target-specific
headers.

538 GNU Compiler Collection (GCC) Internals

[Common Target Hook]int TARGET_DEFAULT_TARGET_FLAGS
This variable specifies the initial value of target_flags. Its default setting is 0.

[Common Target Hook]bool TARGET_HANDLE_OPTION (struct gcc_options
*opts, struct gcc_options *opts_set, const struct
cl_decoded_option *decoded, location_t loc)

This hook is called whenever the user specifies one of the target-specific options
described by the .opt definition files (see Chapter 7 [Options], page 135). It has the
opportunity to do some option-specific processing and should return true if the option
is valid. The default definition does nothing but return true.

decoded specifies the option and its arguments. opts and opts set are the gcc_

options structures to be used for storing option state, and loc is the location at which
the option was passed (UNKNOWN_LOCATION except for options passed via attributes).

[C Target Hook]bool TARGET_HANDLE_C_OPTION (size_t code, const char
*arg, int value)

This target hook is called whenever the user specifies one of the target-specific C
language family options described by the .opt definition files(see Chapter 7 [Options],
page 135). It has the opportunity to do some option-specific processing and should
return true if the option is valid. The arguments are like for TARGET_HANDLE_OPTION.
The default definition does nothing but return false.

In general, you should use TARGET_HANDLE_OPTION to handle options. However, if
processing an option requires routines that are only available in the C (and related
language) front ends, then you should use TARGET_HANDLE_C_OPTION instead.

[C Target Hook]tree TARGET_OBJC_CONSTRUCT_STRING_OBJECT (tree string)
Targets may provide a string object type that can be used within and between C, C++
and their respective Objective-C dialects. A string object might, for example, embed
encoding and length information. These objects are considered opaque to the compiler
and handled as references. An ideal implementation makes the composition of the
string object match that of the Objective-C NSString (NXString for GNUStep),
allowing efficient interworking between C-only and Objective-C code. If a target
implements string objects then this hook should return a reference to such an object
constructed from the normal ‘C’ string representation provided in string. At present,
the hook is used by Objective-C only, to obtain a common-format string object when
the target provides one.

[C Target Hook]void TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE
(const char *classname)

Declare that Objective C class classname is referenced by the current TU.

[C Target Hook]void TARGET_OBJC_DECLARE_CLASS_DEFINITION (const char
*classname)

Declare that Objective C class classname is defined by the current TU.

[C Target Hook]bool TARGET_STRING_OBJECT_REF_TYPE_P (const_tree
stringref)

If a target implements string objects then this hook should return true if stringref
is a valid reference to such an object.

Chapter 17: Target Description Macros and Functions 539

[C Target Hook]void TARGET_CHECK_STRING_OBJECT_FORMAT_ARG (tree
format_arg, tree args_list)

If a target implements string objects then this hook should provide a facility to check
the function arguments in args list against the format specifiers in format arg where
the type of format arg is one recognized as a valid string reference type.

[Target Hook]void TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE (void)
This target function is similar to the hook TARGET_OPTION_OVERRIDE but is called
when the optimize level is changed via an attribute or pragma or when it is reset
at the end of the code affected by the attribute or pragma. It is not called at the
beginning of compilation when TARGET_OPTION_OVERRIDE is called so if you want to
perform these actions then, you should have TARGET_OPTION_OVERRIDE call TARGET_
OVERRIDE_OPTIONS_AFTER_CHANGE.

[Macro]C_COMMON_OVERRIDE_OPTIONS
This is similar to the TARGET_OPTION_OVERRIDE hook but is only used in the C lan-
guage frontends (C, Objective-C, C++, Objective-C++) and so can be used to alter
option flag variables which only exist in those frontends.

[Common Target Hook]const struct default_options *
TARGET_OPTION_OPTIMIZATION_TABLE

Some machines may desire to change what optimizations are performed for various
optimization levels. This variable, if defined, describes options to enable at particular
sets of optimization levels. These options are processed once just after the optimiza-
tion level is determined and before the remainder of the command options have been
parsed, so may be overridden by other options passed explicitly.

This processing is run once at program startup and when the optimization options
are changed via #pragma GCC optimize or by using the optimize attribute.

[Common Target Hook]void TARGET_OPTION_INIT_STRUCT (struct
gcc_options *opts)

Set target-dependent initial values of fields in opts.

[Common Target Hook]const char * TARGET_COMPUTE_MULTILIB (const
struct switchstr *switches, int n_switches, const char
*multilib_dir, const char *multilib_defaults, const char
*multilib_select, const char *multilib_matches, const char
*multilib_exclusions, const char *multilib_reuse)

Some targets like RISC-V might have complicated multilib reuse rules which are hard
to implement with the current multilib scheme. This hook allows targets to over-
ride the result from the built-in multilib mechanism. switches is the raw option list
with n switches items; multilib dir is the multi-lib result which is computed by the
built-in multi-lib mechanism; multilib defaults is the default options list for multi-
lib; multilib select is the string containing the list of supported multi-libs, and the
option checking list. multilib matches, multilib exclusions, and multilib reuse are
corresponding to MULTILIB MATCHES, MULTILIB EXCLUSIONS, and MULTI-
LIB REUSE. The default definition does nothing but return multilib dir directly.

540 GNU Compiler Collection (GCC) Internals

[Macro]SWITCHABLE_TARGET
Some targets need to switch between substantially different subtargets during com-
pilation. For example, the MIPS target has one subtarget for the traditional MIPS
architecture and another for MIPS16. Source code can switch between these two
subarchitectures using the mips16 and nomips16 attributes.

Such subtargets can differ in things like the set of available registers, the set of avail-
able instructions, the costs of various operations, and so on. GCC caches a lot of
this type of information in global variables, and recomputing them for each subtar-
get takes a significant amount of time. The compiler therefore provides a facility for
maintaining several versions of the global variables and quickly switching between
them; see target-globals.h for details.

Define this macro to 1 if your target needs this facility. The default is 0.

[Target Hook]bool TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P (void)
Returns true if the target supports IEEE 754 floating-point exceptions and rounding
modes, false otherwise. This is intended to relate to the float and double types,
but not necessarily long double. By default, returns true if the adddf3 instruction
pattern is available and false otherwise, on the assumption that hardware floating
point supports exceptions and rounding modes but software floating point does not.

17.4 Defining data structures for per-function information.

If the target needs to store information on a per-function basis, GCC provides a macro and
a couple of variables to allow this. Note, just using statics to store the information is a bad
idea, since GCC supports nested functions, so you can be halfway through encoding one
function when another one comes along.

GCC defines a data structure called struct function which contains all of the data
specific to an individual function. This structure contains a field called machine whose
type is struct machine_function *, which can be used by targets to point to their own
specific data.

If a target needs per-function specific data it should define the type struct machine_

function and also the macro INIT_EXPANDERS. This macro should be used to initialize the
function pointer init_machine_status. This pointer is explained below.

One typical use of per-function, target specific data is to create an RTX to hold the
register containing the function’s return address. This RTX can then be used to implement
the __builtin_return_address function, for level 0.

Note—earlier implementations of GCC used a single data area to hold all of the per-
function information. Thus when processing of a nested function began the old per-function
data had to be pushed onto a stack, and when the processing was finished, it had to be
popped off the stack. GCC used to provide function pointers called save_machine_status

and restore_machine_status to handle the saving and restoring of the target specific
information. Since the single data area approach is no longer used, these pointers are no
longer supported.

Chapter 17: Target Description Macros and Functions 541

[Macro]INIT_EXPANDERS
Macro called to initialize any target specific information. This macro is called once
per function, before generation of any RTL has begun. The intention of this macro
is to allow the initialization of the function pointer init_machine_status.

[Variable]void (*)(struct function *) init_machine_status
If this function pointer is non-NULL it will be called once per function, before function
compilation starts, in order to allow the target to perform any target specific initial-
ization of the struct function structure. It is intended that this would be used to
initialize the machine of that structure.

struct machine_function structures are expected to be freed by GC. Generally,
any memory that they reference must be allocated by using GC allocation, including
the structure itself.

17.5 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments measured
in bits do not need to be constant. They can be C expressions that refer to static variables,
such as the target_flags. See Section 17.3 [Run-time Target], page 537.

[Macro]BITS_BIG_ENDIAN
Define this macro to have the value 1 if the most significant bit in a byte has the
lowest number; otherwise define it to have the value zero. This means that bit-
field instructions count from the most significant bit. If the machine has no bit-field
instructions, then this must still be defined, but it doesn’t matter which value it is
defined to. This macro need not be a constant.

This macro does not affect the way structure fields are packed into bytes or words;
that is controlled by BYTES_BIG_ENDIAN.

[Macro]BYTES_BIG_ENDIAN
Define this macro to have the value 1 if the most significant byte in a word has the
lowest number. This macro need not be a constant.

[Macro]WORDS_BIG_ENDIAN
Define this macro to have the value 1 if, in a multiword object, the most significant
word has the lowest number. This applies to both memory locations and registers;
see REG_WORDS_BIG_ENDIAN if the order of words in memory is not the same as the
order in registers. This macro need not be a constant.

[Macro]REG_WORDS_BIG_ENDIAN
On some machines, the order of words in a multiword object differs between registers
in memory. In such a situation, define this macro to describe the order of words in a
register. The macro WORDS_BIG_ENDIAN controls the order of words in memory.

[Macro]FLOAT_WORDS_BIG_ENDIAN
Define this macro to have the value 1 if DFmode, XFmode or TFmode floating point
numbers are stored in memory with the word containing the sign bit at the lowest
address; otherwise define it to have the value 0. This macro need not be a constant.

You need not define this macro if the ordering is the same as for multi-word integers.

542 GNU Compiler Collection (GCC) Internals

[Macro]BITS_PER_WORD
Number of bits in a word. If you do not define this macro, the default is BITS_PER_
UNIT * UNITS_PER_WORD.

[Macro]MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is undefined, the default is BITS_PER_

WORD. Otherwise, it is the constant value that is the largest value that BITS_PER_WORD
can have at run-time.

[Macro]UNITS_PER_WORD
Number of storage units in a word; normally the size of a general-purpose register, a
power of two from 1 or 8.

[Macro]MIN_UNITS_PER_WORD
Minimum number of units in a word. If this is undefined, the default is UNITS_PER_
WORD. Otherwise, it is the constant value that is the smallest value that UNITS_PER_
WORD can have at run-time.

[Macro]POINTER_SIZE
Width of a pointer, in bits. You must specify a value no wider than the width of
Pmode. If it is not equal to the width of Pmode, you must define POINTERS_EXTEND_

UNSIGNED. If you do not specify a value the default is BITS_PER_WORD.

[Macro]POINTERS_EXTEND_UNSIGNED
A C expression that determines how pointers should be extended from ptr_mode to
either Pmode or word_mode. It is greater than zero if pointers should be zero-extended,
zero if they should be sign-extended, and negative if some other sort of conversion is
needed. In the last case, the extension is done by the target’s ptr_extend instruction.

You need not define this macro if the ptr_mode, Pmode and word_mode are all the
same width.

[Macro]PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is type and which
has the specified mode and signedness is to be stored in a register. This macro is only
called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full register,
define this macro to set m to word_mode if m is an integer mode narrower than
BITS_PER_WORD. In most cases, only integer modes should be widened because wider-
precision floating-point operations are usually more expensive than their narrower
counterparts.

For most machines, the macro definition does not change unsignedp. However, some
machines, have instructions that preferentially handle either signed or unsigned quan-
tities of certain modes. For example, on the DEC Alpha, 32-bit loads from memory
and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set
unsignedp according to which kind of extension is more efficient.

Do not define this macro if it would never modify m.

Chapter 17: Target Description Macros and Functions 543

[Target Hook]enum flt_eval_method TARGET_C_EXCESS_PRECISION (enum
excess_precision_type type)

Return a value, with the same meaning as the C99 macro FLT_EVAL_

METHOD that describes which excess precision should be applied. type is
either EXCESS_PRECISION_TYPE_IMPLICIT, EXCESS_PRECISION_TYPE_FAST,
EXCESS_PRECISION_TYPE_STANDARD, or EXCESS_PRECISION_TYPE_FLOAT16. For
EXCESS_PRECISION_TYPE_IMPLICIT, the target should return which precision and
range operations will be implictly evaluated in regardless of the excess precision
explicitly added. For EXCESS_PRECISION_TYPE_STANDARD, EXCESS_PRECISION_

TYPE_FLOAT16, and EXCESS_PRECISION_TYPE_FAST, the target should return
the explicit excess precision that should be added depending on the value set
for -fexcess-precision=[standard|fast|16]. Note that unpredictable explicit
excess precision does not make sense, so a target should never return FLT_

EVAL_METHOD_UNPREDICTABLE when type is EXCESS_PRECISION_TYPE_STANDARD,
EXCESS_PRECISION_TYPE_FLOAT16 or EXCESS_PRECISION_TYPE_FAST.

Return a value, with the same meaning as the C99 macro FLT_EVAL_METHOD that describes
which excess precision should be applied.

[Target Hook]bool TARGET_C_BITINT_TYPE_INFO (int n, struct
bitint_info *info)

This target hook returns true if _BitInt(N) is supported and provides details on it.
_BitInt(N) is to be represented as series of info->abi_limb_mode CEIL (N, GET_

MODE_PRECISION (info->abi_limb_mode)) limbs, ordered from least significant to
most significant if !info->big_endian, otherwise from most significant to least sig-
nificant. If info->extended is false, the bits above or equal to N are undefined when
stored in a register or memory, otherwise they are zero or sign extended depend-
ing on if it is unsigned _BitInt(N) or one of _BitInt(N) or signed _BitInt(N).
Alignment of the type is GET_MODE_ALIGNMENT (info->limb_mode).

[Target Hook]machine_mode TARGET_C_MODE_FOR_FLOATING_TYPE (enum
tree_index ti)

Return machine mode for a C floating point type which is indicated by a given enum

tree_index ti, ti should be TI_FLOAT_TYPE, TI_DOUBLE_TYPE or TI_LONG_DOUBLE_
TYPE. The default implementation returns SFmode for TI_FLOAT_TYPE, and DFmode

for TI_DOUBLE_TYPE or TI_LONG_DOUBLE_TYPE.

[Target Hook]machine_mode TARGET_PROMOTE_FUNCTION_MODE (const_tree
type, machine_mode mode, int *punsignedp, const_tree
funtype, int for_return)

Like PROMOTE_MODE, but it is applied to outgoing function arguments or function
return values. The target hook should return the new mode and possibly change
*punsignedp if the promotion should change signedness. This function is called only
for scalar or pointer types.

for return allows to distinguish the promotion of arguments and return values. If it
is 1, a return value is being promoted and TARGET_FUNCTION_VALUE must perform
the same promotions done here. If it is 2, the returned mode should be that of the
register in which an incoming parameter is copied, or the outgoing result is computed;

544 GNU Compiler Collection (GCC) Internals

then the hook should return the same mode as promote_mode, though the signedness
may be different.

type can be NULL when promoting function arguments of libcalls.

The default is to not promote arguments and return values. You can also define
the hook to default_promote_function_mode_always_promote if you would like to
apply the same rules given by PROMOTE_MODE.

[Macro]PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in bits. All stack
parameters receive at least this much alignment regardless of data type. On most
machines, this is the same as the size of an integer.

[Macro]STACK_BOUNDARY
Define this macro to the minimum alignment enforced by hardware for the stack
pointer on this machine. The definition is a C expression for the desired alignment
(measured in bits). This value is used as a default if PREFERRED_STACK_BOUNDARY is
not defined. On most machines, this should be the same as PARM_BOUNDARY.

[Macro]PREFERRED_STACK_BOUNDARY
Define this macro if you wish to preserve a certain alignment for the stack pointer,
greater than what the hardware enforces. The definition is a C expression for the
desired alignment (measured in bits). This macro must evaluate to a value equal to
or larger than STACK_BOUNDARY.

[Macro]INCOMING_STACK_BOUNDARY
Define this macro if the incoming stack boundary may be different from PREFERRED_

STACK_BOUNDARY. This macro must evaluate to a value equal to or larger than STACK_

BOUNDARY.

[Macro]FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

[Macro]BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine, in bits. Note that
this is not the biggest alignment that is supported, just the biggest alignment that,
when violated, may cause a fault.

[Target Hook]HOST_WIDE_INT TARGET_ABSOLUTE_BIGGEST_ALIGNMENT
If defined, this target hook specifies the absolute biggest alignment that a type or
variable can have on this machine, otherwise, BIGGEST_ALIGNMENT is used.

[Macro]MALLOC_ABI_ALIGNMENT
Alignment, in bits, a C conformant malloc implementation has to provide. If not
defined, the default value is BITS_PER_WORD.

[Macro]ATTRIBUTE_ALIGNED_VALUE
Alignment used by the __attribute__ ((aligned)) construct. If not defined, the
default value is BIGGEST_ALIGNMENT.

Chapter 17: Target Description Macros and Functions 545

[Macro]MINIMUM_ATOMIC_ALIGNMENT
If defined, the smallest alignment, in bits, that can be given to an object that can
be referenced in one operation, without disturbing any nearby object. Normally, this
is BITS_PER_UNIT, but may be larger on machines that don’t have byte or half-word
store operations.

[Macro]BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure or union field can require on this machine,
in bits. If defined, this overrides BIGGEST_ALIGNMENT for structure and union fields
only, unless the field alignment has been set by the __attribute__ ((aligned (n)))

construct.

[Macro]ADJUST_FIELD_ALIGN (field, type, computed)
An expression for the alignment of a structure field field of type type if the alignment
computed in the usual way (including applying of BIGGEST_ALIGNMENT and BIGGEST_

FIELD_ALIGNMENT to the alignment) is computed. It overrides alignment only if the
field alignment has not been set by the __attribute__ ((aligned (n))) construct.
Note that field may be NULL_TREE in case we just query for the minimum alignment
of a field of type type in structure context.

[Macro]MAX_STACK_ALIGNMENT
Biggest stack alignment guaranteed by the backend. Use this macro to specify the
maximum alignment of a variable on stack.

If not defined, the default value is STACK_BOUNDARY.

[Macro]MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object file format of this machine. Use this macro
to limit the alignment which can be specified using the __attribute__ ((aligned

(n))) construct for functions and objects with static storage duration. The alignment
of automatic objects may exceed the object file format maximum up to the maximum
supported by GCC. If not defined, the default value is BIGGEST_ALIGNMENT.

On systems that use ELF, the default (in config/elfos.h) is the largest supported
32-bit ELF section alignment representable on a 32-bit host e.g. ‘(((uint64_t) 1

<< 28) * 8)’. On 32-bit ELF the largest supported section alignment in bits is
‘(0x80000000 * 8)’, but this is not representable on 32-bit hosts.

[Target Hook]void TARGET_LOWER_LOCAL_DECL_ALIGNMENT (tree decl)
Define this hook to lower alignment of local, parm or result decl ‘(decl)’.

[Target Hook]HOST_WIDE_INT TARGET_STATIC_RTX_ALIGNMENT (machine_mode
mode)

This hook returns the preferred alignment in bits for a statically-allocated rtx, such
as a constant pool entry. mode is the mode of the rtx. The default implementation
returns ‘GET_MODE_ALIGNMENT (mode)’.

[Macro]DATA_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the static store.
type is the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the object.

546 GNU Compiler Collection (GCC) Internals

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines. Another is to cause character arrays to be word-aligned so that
strcpy calls that copy constants to character arrays can be done inline.

[Macro]DATA_ABI_ALIGNMENT (type, basic-align)
Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates some align-
ment increase, instead of optimization only purposes. E.g. AMD x86-64 psABI says
that variables with array type larger than 15 bytes must be aligned to 16 byte bound-
aries.

If this macro is not defined, then basic-align is used.

[Target Hook]HOST_WIDE_INT TARGET_CONSTANT_ALIGNMENT (const_tree
constant, HOST_WIDE_INT basic_align)

This hook returns the alignment in bits of a constant that is being placed in mem-
ory. constant is the constant and basic align is the alignment that the object would
ordinarily have.

The default definition just returns basic align.

The typical use of this hook is to increase alignment for string constants to be word
aligned so that strcpy calls that copy constants can be done inline. The function
constant_alignment_word_strings provides such a definition.

[Macro]LOCAL_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the local store.
type is the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines.

If the value of this macro has a type, it should be an unsigned type.

[Target Hook]HOST_WIDE_INT TARGET_VECTOR_ALIGNMENT (const_tree type)
This hook can be used to define the alignment for a vector of type type, in order to
comply with a platform ABI. The default is to require natural alignment for vector
types. The alignment returned by this hook must be a power-of-two multiple of the
default alignment of the vector element type.

[Macro]STACK_SLOT_ALIGNMENT (type, mode, basic-align)
If defined, a C expression to compute the alignment for stack slot. type is the data
type, mode is the widest mode available, and basic-align is the alignment that the
slot would ordinarily have. The value of this macro is used instead of that alignment
to align the slot.

If this macro is not defined, then basic-align is used when type is NULL. Otherwise,
LOCAL_ALIGNMENT will be used.

This macro is to set alignment of stack slot to the maximum alignment of all possible
modes which the slot may have.

If the value of this macro has a type, it should be an unsigned type.

Chapter 17: Target Description Macros and Functions 547

[Macro]LOCAL_DECL_ALIGNMENT (decl)
If defined, a C expression to compute the alignment for a local variable decl.

If this macro is not defined, then LOCAL_ALIGNMENT (TREE_TYPE (decl),

DECL_ALIGN (decl)) is used.

One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines.

If the value of this macro has a type, it should be an unsigned type.

[Macro]MINIMUM_ALIGNMENT (exp, mode, align)
If defined, a C expression to compute the minimum required alignment for dynamic
stack realignment purposes for exp (a type or decl), mode, assuming normal alignment
align.

If this macro is not defined, then align will be used.

[Macro]EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit-field that follows an empty field such
as int : 0;.

If PCC_BITFIELD_TYPE_MATTERS is true, it overrides this macro.

[Macro]STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union’s size must be a multiple of. Each
structure or union’s size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as BITS_PER_UNIT.

[Macro]STRICT_ALIGNMENT
Define this macro to be the value 1 if instructions will fail to work if given data not
on the nominal alignment. If instructions will merely go slower in that case, define
this macro as 0.

[Macro]PCC_BITFIELD_TYPE_MATTERS
Define this if you wish to imitate the way many other C compilers handle alignment
of bit-fields and the structures that contain them.

The behavior is that the type written for a named bit-field (int, short, or other
integer type) imposes an alignment for the entire structure, as if the structure really
did contain an ordinary field of that type. In addition, the bit-field is placed within
the structure so that it would fit within such a field, not crossing a boundary for it.

Thus, on most machines, a named bit-field whose type is written as int would not
cross a four-byte boundary, and would force four-byte alignment for the whole struc-
ture. (The alignment used may not be four bytes; it is controlled by the other align-
ment parameters.)

An unnamed bit-field will not affect the alignment of the containing structure.

If the macro is defined, its definition should be a C expression; a nonzero value for
the expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some bit-fields may cross
more than one alignment boundary. The compiler can support such references if there
are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference memory.

548 GNU Compiler Collection (GCC) Internals

The other known way of making bit-fields work is to define STRUCTURE_SIZE_

BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be accessed
with fullwords.

Unless the machine has bit-field instructions or you define STRUCTURE_SIZE_BOUNDARY
that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

If your aim is to make GCC use the same conventions for laying out bit-fields as are
used by another compiler, here is how to investigate what the other compiler does.
Compile and run this program:

struct foo1

{

char x;

char :0;

char y;

};

struct foo2

{

char x;

int :0;

char y;

};

main ()

{

printf ("Size of foo1 is %d\n",

sizeof (struct foo1));

printf ("Size of foo2 is %d\n",

sizeof (struct foo2));

exit (0);

}

If this prints 2 and 5, then the compiler’s behavior is what you would get from PCC_

BITFIELD_TYPE_MATTERS.

[Macro]BITFIELD_NBYTES_LIMITED
Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to aligning a bit-
field within the structure.

[Target Hook]bool TARGET_ALIGN_ANON_BITFIELD (void)
When PCC_BITFIELD_TYPE_MATTERS is true this hook will determine whether un-
named bitfields affect the alignment of the containing structure. The hook should
return true if the structure should inherit the alignment requirements of an unnamed
bitfield’s type.

[Target Hook]bool TARGET_NARROW_VOLATILE_BITFIELD (void)
This target hook should return true if accesses to volatile bitfields should use the
narrowest mode possible. It should return false if these accesses should use the
bitfield container type.

The default is false.

Chapter 17: Target Description Macros and Functions 549

[Target Hook]bool TARGET_MEMBER_TYPE_FORCES_BLK (const_tree field,
machine_mode mode)

Return true if a structure, union or array containing field should be accessed using
BLKMODE.

If field is the only field in the structure, mode is its mode, otherwise mode is VOID-
mode. mode is provided in the case where structures of one field would require the
structure’s mode to retain the field’s mode.

Normally, this is not needed.

[Macro]ROUND_TYPE_ALIGN (type, computed, specified)
Define this macro as an expression for the alignment of a type (given by type as a
tree node) if the alignment computed in the usual way is computed and the alignment
explicitly specified was specified.

The default is to use specified if it is larger; otherwise, use the smaller of computed
and BIGGEST_ALIGNMENT

[Macro]MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer machine mode that
should actually be used by GCC internally. All integer machine modes of this size
or smaller can be used for structures and unions with the appropriate sizes. If this
macro is undefined, MAX (BITS_PER_WORD * 2, 64) is assumed.

[Macro]STACK_SAVEAREA_MODE (save_level)
If defined, an expression of type machine_mode that specifies the mode of the save area
operand of a save_stack_level named pattern (see Section 16.10 [Standard Names],
page 426). save level is one of SAVE_BLOCK, SAVE_FUNCTION, or SAVE_NONLOCAL and
selects which of the three named patterns is having its mode specified.

You need not define this macro if it always returns Pmode. You would most commonly
define this macro if the save_stack_level patterns need to support both a 32- and
a 64-bit mode.

[Macro]STACK_SIZE_MODE
If defined, an expression of type machine_mode that specifies the mode of the size
increment operand of an allocate_stack named pattern (see Section 16.10 [Standard
Names], page 426).

You need not define this macro if it always returns word_mode. You would most
commonly define this macro if the allocate_stack pattern needs to support both a
32- and a 64-bit mode.

[Target Hook]scalar_int_mode TARGET_LIBGCC_CMP_RETURN_MODE (void)
This target hook should return the mode to be used for the return value of compare
instructions expanded to libgcc calls. If not defined word_mode is returned which is
the right choice for a majority of targets.

[Target Hook]scalar_int_mode TARGET_LIBGCC_SHIFT_COUNT_MODE (void)
This target hook should return the mode to be used for the shift count operand of
shift instructions expanded to libgcc calls. If not defined word_mode is returned which
is the right choice for a majority of targets.

550 GNU Compiler Collection (GCC) Internals

[Target Hook]scalar_int_mode TARGET_UNWIND_WORD_MODE (void)
Return machine mode to be used for _Unwind_Word type. The default is to use
word_mode.

[Target Hook]bool TARGET_MS_BITFIELD_LAYOUT_P (const_tree
record_type)

This target hook returns true if bit-fields in the given record type are to be laid out
following the rules of Microsoft Visual C/C++, namely: (i) a bit-field won’t share the
same storage unit with the previous bit-field if their underlying types have different
sizes, and the bit-field will be aligned to the highest alignment of the underlying types
of itself and of the previous bit-field; (ii) a zero-sized bit-field will affect the alignment
of the whole enclosing structure, even if it is unnamed; except that (iii) a zero-sized
bit-field will be disregarded unless it follows another bit-field of nonzero size. If this
hook returns true, other macros that control bit-field layout are ignored.

When a bit-field is inserted into a packed record, the whole size of the underlying type
is used by one or more same-size adjacent bit-fields (that is, if its long:3, 32 bits is used
in the record, and any additional adjacent long bit-fields are packed into the same
chunk of 32 bits. However, if the size changes, a new field of that size is allocated).
In an unpacked record, this is the same as using alignment, but not equivalent when
packing.

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will take
precedence. If ‘__attribute__((packed))’ is used on a single field when MS bit-
fields are in use, it will take precedence for that field, but the alignment of the rest
of the structure may affect its placement.

[Target Hook]bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void)
Returns true if the target supports decimal floating point.

[Target Hook]bool TARGET_FIXED_POINT_SUPPORTED_P (void)
Returns true if the target supports fixed-point arithmetic.

[Target Hook]void TARGET_EXPAND_TO_RTL_HOOK (void)
This hook is called just before expansion into rtl, allowing the target to perform
additional initializations or analysis before the expansion. For example, the rs6000
port uses it to allocate a scratch stack slot for use in copying SDmode values between
memory and floating point registers whenever the function being expanded has any
SDmode usage.

[Target Hook]void TARGET_INSTANTIATE_DECLS (void)
This hook allows the backend to perform additional instantiations on rtl that are not
actually in any insns yet, but will be later.

[Target Hook]const char * TARGET_MANGLE_TYPE (const_tree type)
If your target defines any fundamental types, or any types your target uses should
be mangled differently from the default, define this hook to return the appropriate
encoding for these types as part of a C++ mangled name. The type argument is the
tree structure representing the type to be mangled. The hook may be applied to trees
which are not target-specific fundamental types; it should return NULL for all such

Chapter 17: Target Description Macros and Functions 551

types, as well as arguments it does not recognize. If the return value is not NULL, it
must point to a statically-allocated string constant.

Target-specific fundamental types might be new fundamental types or qualified ver-
sions of ordinary fundamental types. Encode new fundamental types as ‘u n name’,
where name is the name used for the type in source code, and n is the length of name
in decimal. Encode qualified versions of ordinary types as ‘U n name code’, where
name is the name used for the type qualifier in source code, n is the length of name
as above, and code is the code used to represent the unqualified version of this type.
(See write_builtin_type in cp/mangle.cc for the list of codes.) In both cases the
spaces are for clarity; do not include any spaces in your string.

This hook is applied to types prior to typedef resolution. If the mangled name for a
particular type depends only on that type’s main variant, you can perform typedef
resolution yourself using TYPE_MAIN_VARIANT before mangling.

The default version of this hook always returns NULL, which is appropriate for a target
that does not define any new fundamental types.

[Target Hook]void TARGET_EMIT_SUPPORT_TINFOS
(emit_support_tinfos_callback callback)

If your target defines any fundamental types which depend on ISA flags, they might
need C++ tinfo symbols in libsupc++/libstdc++ regardless of ISA flags the library
is compiled with. This hook allows creating tinfo symbols even for those cases, by
temporarily creating each corresponding fundamental type trees, calling the callback
function on it and setting the type back to nullptr.

17.6 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types
used in programs being compiled. Unlike the macros in the previous section, these apply to
specific features of C and related languages, rather than to fundamental aspects of storage
layout.

[Macro]INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target machine. If you don’t
define this, the default is one word.

[Macro]SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the target machine. If you
don’t define this, the default is half a word. (If this would be less than one storage
unit, it is rounded up to one unit.)

[Macro]LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target machine. If you
don’t define this, the default is one word.

[Macro]ADA_LONG_TYPE_SIZE
On some machines, the size used for the Ada equivalent of the type long by a native
Ada compiler differs from that used by C. In that situation, define this macro to be a
C expression to be used for the size of that type. If you don’t define this, the default
is the value of LONG_TYPE_SIZE.

552 GNU Compiler Collection (GCC) Internals

[Macro]LONG_LONG_TYPE_SIZE
A C expression for the size in bits of the type long long on the target machine. If
you don’t define this, the default is two words. If you want to support GNU Ada on
your machine, the value of this macro must be at least 64.

[Macro]CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target machine. If you
don’t define this, the default is BITS_PER_UNIT.

[Macro]BOOL_TYPE_SIZE
A C expression for the size in bits of the C++ type bool and C99 type _Bool on the
target machine. If you don’t define this, and you probably shouldn’t, the default is
CHAR_TYPE_SIZE.

[Macro]SHORT_FRACT_TYPE_SIZE
A C expression for the size in bits of the type short _Fract on the target machine.
If you don’t define this, the default is BITS_PER_UNIT.

[Macro]FRACT_TYPE_SIZE
A C expression for the size in bits of the type _Fract on the target machine. If you
don’t define this, the default is BITS_PER_UNIT * 2.

[Macro]LONG_FRACT_TYPE_SIZE
A C expression for the size in bits of the type long _Fract on the target machine. If
you don’t define this, the default is BITS_PER_UNIT * 4.

[Macro]LONG_LONG_FRACT_TYPE_SIZE
A C expression for the size in bits of the type long long _Fract on the target machine.
If you don’t define this, the default is BITS_PER_UNIT * 8.

[Macro]SHORT_ACCUM_TYPE_SIZE
A C expression for the size in bits of the type short _Accum on the target machine.
If you don’t define this, the default is BITS_PER_UNIT * 2.

[Macro]ACCUM_TYPE_SIZE
A C expression for the size in bits of the type _Accum on the target machine. If you
don’t define this, the default is BITS_PER_UNIT * 4.

[Macro]LONG_ACCUM_TYPE_SIZE
A C expression for the size in bits of the type long _Accum on the target machine. If
you don’t define this, the default is BITS_PER_UNIT * 8.

[Macro]LONG_LONG_ACCUM_TYPE_SIZE
A C expression for the size in bits of the type long long _Accum on the target machine.
If you don’t define this, the default is BITS_PER_UNIT * 16.

[Macro]LIBGCC2_GNU_PREFIX
This macro corresponds to the TARGET_LIBFUNC_GNU_PREFIX target hook and should
be defined if that hook is overriden to be true. It causes function names in libgcc
to be changed to use a __gnu_ prefix for their name rather than the default __. A
port which uses this macro should also arrange to use t-gnu-prefix in the libgcc
config.host.

Chapter 17: Target Description Macros and Functions 553

[Macro]WIDEST_HARDWARE_FP_SIZE
A C expression for the size in bits of the widest floating-point format supported by the
hardware. If you define this macro, you must specify a value less than or equal to mode
precision of the mode used for C type long double (from hook targetm.c.mode_

for_floating_type with argument TI_LONG_DOUBLE_TYPE). If you do not define
this macro, mode precision of the mode used for C type long double is the default.

[Macro]DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type char should be
signed or unsigned by default. The user can always override this default with the
options -fsigned-char and -funsigned-char.

[Target Hook]bool TARGET_DEFAULT_SHORT_ENUMS (void)
This target hook should return true if the compiler should give an enum type only
as many bytes as it takes to represent the range of possible values of that type. It
should return false if all enum types should be allocated like int.

The default is to return false.

[Macro]SIZE_TYPE
A C expression for a string describing the name of the data type to use for size values.
The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces,
and write first any length keyword, then unsigned if appropriate, and finally int.
The string must exactly match one of the data type names defined in the function
c_common_nodes_and_builtins in the file c-family/c-common.cc. You may not
omit int or change the order—that would cause the compiler to crash on startup.

If you don’t define this macro, the default is "long unsigned int".

[Macro]SIZETYPE
GCC defines internal types (sizetype, ssizetype, bitsizetype and sbitsizetype)
for expressions dealing with size. This macro is a C expression for a string describing
the name of the data type from which the precision of sizetype is extracted.

The string has the same restrictions as SIZE_TYPE string.

If you don’t define this macro, the default is SIZE_TYPE.

[Macro]PTRDIFF_TYPE
A C expression for a string describing the name of the data type to use for the result of
subtracting two pointers. The typedef name ptrdiff_t is defined using the contents
of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

[Macro]WCHAR_TYPE
A C expression for a string describing the name of the data type to use for wide
characters. The typedef name wchar_t is defined using the contents of the string.
See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "int".

554 GNU Compiler Collection (GCC) Internals

[Macro]WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide characters. This is used
in cpp, which cannot make use of WCHAR_TYPE.

[Macro]WINT_TYPE
A C expression for a string describing the name of the data type to use for wide
characters passed to printf and returned from getwc. The typedef name wint_t is
defined using the contents of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "unsigned int".

[Macro]INTMAX_TYPE
A C expression for a string describing the name of the data type that can represent any
value of any standard or extended signed integer type. The typedef name intmax_t is
defined using the contents of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is the first of "int", "long int", or "long
long int" that has as much precision as long long int.

[Macro]UINTMAX_TYPE
A C expression for a string describing the name of the data type that can represent
any value of any standard or extended unsigned integer type. The typedef name
uintmax_t is defined using the contents of the string. See SIZE_TYPE above for more
information.

If you don’t define this macro, the default is the first of "unsigned int", "long

unsigned int", or "long long unsigned int" that has as much precision as long

long unsigned int.

[Macro]SIG_ATOMIC_TYPE
[Macro]INT8_TYPE
[Macro]INT16_TYPE
[Macro]INT32_TYPE
[Macro]INT64_TYPE
[Macro]UINT8_TYPE
[Macro]UINT16_TYPE
[Macro]UINT32_TYPE
[Macro]UINT64_TYPE
[Macro]INT_LEAST8_TYPE
[Macro]INT_LEAST16_TYPE
[Macro]INT_LEAST32_TYPE
[Macro]INT_LEAST64_TYPE
[Macro]UINT_LEAST8_TYPE
[Macro]UINT_LEAST16_TYPE
[Macro]UINT_LEAST32_TYPE
[Macro]UINT_LEAST64_TYPE
[Macro]INT_FAST8_TYPE
[Macro]INT_FAST16_TYPE
[Macro]INT_FAST32_TYPE
[Macro]INT_FAST64_TYPE
[Macro]UINT_FAST8_TYPE

Chapter 17: Target Description Macros and Functions 555

[Macro]UINT_FAST16_TYPE
[Macro]UINT_FAST32_TYPE
[Macro]UINT_FAST64_TYPE
[Macro]INTPTR_TYPE
[Macro]UINTPTR_TYPE
[Macro]PID_TYPE

C expressions for the standard types sig_atomic_t, int8_t, int16_t, int32_t,
int64_t, uint8_t, uint16_t, uint32_t, uint64_t, int_least8_t, int_least16_t,
int_least32_t, int_least64_t, uint_least8_t, uint_least16_t, uint_least32_
t, uint_least64_t, int_fast8_t, int_fast16_t, int_fast32_t, int_fast64_t,
uint_fast8_t, uint_fast16_t, uint_fast32_t, uint_fast64_t, intptr_t, and
uintptr_t and the built-in type pid_t. See SIZE_TYPE above for more information.

If any of these macros evaluates to a null pointer, the corresponding type is not
supported; if GCC is configured to provide <stdint.h> in such a case, the header
provided may not conform to C99, depending on the type in question. The defaults
for all of these macros are null pointers.

[Macro]TARGET_PTRMEMFUNC_VBIT_LOCATION
The C++ compiler represents a pointer-to-member-function with a struct that looks
like:

struct {

union {

void (*fn)();

ptrdiff_t vtable_index;

};

ptrdiff_t delta;

};

The C++ compiler must use one bit to indicate whether the function that will be
called through a pointer-to-member-function is virtual. Normally, we assume that
the low-order bit of a function pointer must always be zero. Then, by ensuring that
the vtable index is odd, we can distinguish which variant of the union is in use. But,
on some platforms function pointers can be odd, and so this doesn’t work. In that
case, we use the low-order bit of the delta field, and shift the remainder of the delta
field to the left.

GCC will automatically make the right selection about where to store this bit using
the FUNCTION_BOUNDARY setting for your platform. However, some platforms such as
ARM/Thumb have FUNCTION_BOUNDARY set such that functions always start at even
addresses, but the lowest bit of pointers to functions indicate whether the function at
that address is in ARM or Thumb mode. If this is the case of your architecture, you
should define this macro to ptrmemfunc_vbit_in_delta.

In general, you should not have to define this macro. On architectures in which
function addresses are always even, according to FUNCTION_BOUNDARY, GCC will au-
tomatically define this macro to ptrmemfunc_vbit_in_pfn.

[Macro]TARGET_VTABLE_USES_DESCRIPTORS
Normally, the C++ compiler uses function pointers in vtables. This macro allows the
target to change to use “function descriptors” instead. Function descriptors are found
on targets for whom a function pointer is actually a small data structure. Normally

556 GNU Compiler Collection (GCC) Internals

the data structure consists of the actual code address plus a data pointer to which
the function’s data is relative.

If vtables are used, the value of this macro should be the number of words that the
function descriptor occupies.

[Macro]TARGET_VTABLE_ENTRY_ALIGN
By default, the vtable entries are void pointers, the so the alignment is the same as
pointer alignment. The value of this macro specifies the alignment of the vtable entry
in bits. It should be defined only when special alignment is necessary. */

[Macro]TARGET_VTABLE_DATA_ENTRY_DISTANCE
There are a few non-descriptor entries in the vtable at offsets below zero. If these
entries must be padded (say, to preserve the alignment specified by TARGET_VTABLE_

ENTRY_ALIGN), set this to the number of words in each data entry.

17.7 Register Usage

This section explains how to describe what registers the target machine has, and how (in
general) they can be used.

The description of which registers a specific instruction can use is done with register
classes; see Section 17.8 [Register Classes], page 563. For information on using registers
to access a stack frame, see Section 17.9.4 [Frame Registers], page 583. For passing values
in registers, see Section 17.9.7 [Register Arguments], page 589. For returning values in
registers, see Section 17.9.8 [Scalar Return], page 598.

17.7.1 Basic Characteristics of Registers

Registers have various characteristics.

[Macro]FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive numbers 0 through
FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number really is assigned
the number FIRST_PSEUDO_REGISTER.

[Macro]FIXED_REGISTERS
An initializer that says which registers are used for fixed purposes all throughout the
compiled code and are therefore not available for general allocation. These would
include the stack pointer, the frame pointer (except on machines where that can be
used as a general register when no frame pointer is needed), the program counter
on machines where that is considered one of the addressable registers, and any other
numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas and
surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following one,
may be overridden at run time either automatically, by the actions of the macro
CONDITIONAL_REGISTER_USAGE, or by the user with the command options -ffixed-
reg, -fcall-used-reg and -fcall-saved-reg.

Chapter 17: Target Description Macros and Functions 557

[Macro]CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by
function calls as well as for fixed registers. This macro therefore identifies the registers
that are not available for general allocation of values that must live across function
calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on
function entry and restores it on function exit, if the register is used within the
function.

Exactly one of CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS must be
defined. Modern ports should define CALL_REALLY_USED_REGISTERS.

[Macro]CALL_REALLY_USED_REGISTERS
Like CALL_USED_REGISTERS except this macro doesn’t require that the entire set of
FIXED_REGISTERS be included. (CALL_USED_REGISTERS must be a superset of FIXED_
REGISTERS).

Exactly one of CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS must be
defined. Modern ports should define CALL_REALLY_USED_REGISTERS.

[Target Hook]const predefined_function_abi & TARGET_FNTYPE_ABI
(const_tree type)

Return the ABI used by a function with type type; see the definition of predefined_
function_abi for details of the ABI descriptor. Targets only need to define this hook
if they support interoperability between several ABIs in the same translation unit.

[Target Hook]const predefined_function_abi & TARGET_INSN_CALLEE_ABI
(const rtx_insn *insn)

This hook returns a description of the ABI used by the target of call instruction insn;
see the definition of predefined_function_abi for details of the ABI descriptor.
Only the global function insn_callee_abi should call this hook directly.

Targets only need to define this hook if they support interoperability between several
ABIs in the same translation unit.

[Target Hook]bool TARGET_HARD_REGNO_CALL_PART_CLOBBERED (unsigned
int abi_id, unsigned int regno, machine_mode mode)

ABIs usually specify that calls must preserve the full contents of a particular register,
or that calls can alter any part of a particular register. This information is captured
by the target macro CALL_REALLY_USED_REGISTERS. However, some ABIs specify
that calls must preserve certain bits of a particular register but can alter others. This
hook should return true if this applies to at least one of the registers in ‘(reg:mode
regno)’, and if as a result the call would alter part of the mode value. For example,
if a call preserves the low 32 bits of a 64-bit hard register regno but can clobber the
upper 32 bits, this hook should return true for a 64-bit mode but false for a 32-bit
mode.

The value of abi id comes from the predefined_function_abi structure that de-
scribes the ABI of the call; see the definition of the structure for more details. If (as
is usual) the target uses the same ABI for all functions in a translation unit, abi id
is always 0.

558 GNU Compiler Collection (GCC) Internals

The default implementation returns false, which is correct for targets that don’t have
partly call-clobbered registers.

[Target Hook]const char * TARGET_GET_MULTILIB_ABI_NAME (void)
This hook returns name of multilib ABI name.

[Target Hook]void TARGET_CONDITIONAL_REGISTER_USAGE (void)
This hook may conditionally modify five variables fixed_regs, call_used_regs,
global_regs, reg_names, and reg_class_contents, to take into account any depen-
dence of these register sets on target flags. The first three of these are of type char

[] (interpreted as boolean vectors). global_regs is a const char *[], and reg_

class_contents is a HARD_REG_SET. Before the macro is called, fixed_regs, call_
used_regs, reg_class_contents, and reg_names have been initialized from FIXED_

REGISTERS, CALL_USED_REGISTERS, REG_CLASS_CONTENTS, and REGISTER_NAMES, re-
spectively. global_regs has been cleared, and any -ffixed-reg, -fcall-used-reg
and -fcall-saved-reg command options have been applied.

If the usage of an entire class of registers depends on the target flags, you may indicate
this to GCC by using this macro to modify fixed_regs and call_used_regs to 1
for each of the registers in the classes which should not be used by GCC. Also
make define_register_constraints return NO_REGS for constraints that shouldn’t
be used.

(However, if this class is not included in GENERAL_REGS and all of the insn patterns
whose constraints permit this class are controlled by target switches, then GCC will
automatically avoid using these registers when the target switches are opposed to
them.)

[Macro]INCOMING_REGNO (out)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the called function corresponding to the register
number out as seen by the calling function. Return out if register number out is not
an outbound register.

[Macro]OUTGOING_REGNO (in)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the calling function corresponding to the
register number in as seen by the called function. Return in if register number in is
not an inbound register.

[Macro]LOCAL_REGNO (regno)
Define this macro if the target machine has register windows. This C expression
returns true if the register is call-saved but is in the register window. Unlike most
call-saved registers, such registers need not be explicitly restored on function exit or
during non-local gotos.

[Macro]PC_REGNUM
If the program counter has a register number, define this as that register number.
Otherwise, do not define it.

Chapter 17: Target Description Macros and Functions 559

17.7.2 Order of Allocation of Registers

Registers are allocated in order.

[Macro]REG_ALLOC_ORDER
If defined, an initializer for a vector of integers, containing the numbers of hard
registers in the order in which GCC should prefer to use them (from most preferred
to least).

If this macro is not defined, registers are used lowest numbered first (all else being
equal).

One use of this macro is on machines where the highest numbered registers must
always be saved and the save-multiple-registers instruction supports only sequences of
consecutive registers. On such machines, define REG_ALLOC_ORDER to be an initializer
that lists the highest numbered allocable register first.

[Macro]ADJUST_REG_ALLOC_ORDER
A C statement (sans semicolon) to choose the order in which to allocate hard registers
for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. Element 0 should be
the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_order
before execution of the macro.

On most machines, it is not necessary to define this macro.

[Macro]HONOR_REG_ALLOC_ORDER
Normally, IRA tries to estimate the costs for saving a register in the prologue and
restoring it in the epilogue. This discourages it from using call-saved registers.
If a machine wants to ensure that IRA allocates registers in the order given by
REG ALLOC ORDER even if some call-saved registers appear earlier than call-used
ones, then define this macro as a C expression to nonzero. Default is 0.

[Macro]IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno)
In some case register allocation order is not enough for the Integrated Register Al-
locator (IRA) to generate a good code. If this macro is defined, it should return a
floating point value based on regno. The cost of using regno for a pseudo will be
increased by approximately the pseudo’s usage frequency times the value returned by
this macro. Not defining this macro is equivalent to having it always return 0.0.

On most machines, it is not necessary to define this macro.

17.7.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which
machine modes) each register can hold, and how many consecutive registers are needed for
a given mode.

[Target Hook]unsigned int TARGET_HARD_REGNO_NREGS (unsigned int
regno, machine_mode mode)

This hook returns the number of consecutive hard registers, starting at register num-
ber regno, required to hold a value of mode mode. This hook must never return zero,

560 GNU Compiler Collection (GCC) Internals

even if a register cannot hold the requested mode - indicate that with TARGET_HARD_

REGNO_MODE_OK and/or TARGET_CAN_CHANGE_MODE_CLASS instead.

The default definition returns the number of words in mode.

[Macro]HARD_REGNO_NREGS_HAS_PADDING (regno, mode)
A C expression that is nonzero if a value of mode mode, stored in memory, ends with
padding that causes it to take up more space than in registers starting at register
number regno (as determined by multiplying GCC’s notion of the size of the register
when containing this mode by the number of registers returned by TARGET_HARD_

REGNO_NREGS). By default this is zero.

For example, if a floating-point value is stored in three 32-bit registers but takes up
128 bits in memory, then this would be nonzero.

This macros only needs to be defined if there are cases where subreg_get_info would
otherwise wrongly determine that a subreg can be represented by an offset to the
register number, when in fact such a subreg would contain some of the padding not
stored in registers and so not be representable.

[Macro]HARD_REGNO_NREGS_WITH_PADDING (regno, mode)
For values of regno and mode for which HARD_REGNO_NREGS_HAS_PADDING returns
nonzero, a C expression returning the greater number of registers required to hold
the value including any padding. In the example above, the value would be four.

[Macro]REGMODE_NATURAL_SIZE (mode)
Define this macro if the natural size of registers that hold values of mode mode is
not the word size. It is a C expression that should give the natural size in bytes for
the specified mode. It is used by the register allocator to try to optimize its results.
This happens for example on SPARC 64-bit where the natural size of floating-point
registers is still 32-bit.

[Target Hook]bool TARGET_HARD_REGNO_MODE_OK (unsigned int regno,
machine_mode mode)

This hook returns true if it is permissible to store a value of mode mode in hard
register number regno (or in several registers starting with that one). The default
definition returns true unconditionally.

You need not include code to check for the numbers of fixed registers, because the
allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs.
You can implement that by defining this hook to reject odd register numbers for such
modes.

The minimum requirement for a mode to be OK in a register is that the ‘movmode’
instruction pattern support moves between the register and other hard register in the
same class and that moving a value into the register and back out not alter it.

Since the same instruction used to move word_mode will work for all narrower integer
modes, it is not necessary on any machine for this hook to distinguish between these
modes, provided you define patterns ‘movhi’, etc., to take advantage of this. This is
useful because of the interaction between TARGET_HARD_REGNO_MODE_OK and TARGET_

MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Chapter 17: Target Description Macros and Functions 561

Many machines have special registers for floating point arithmetic. Often people
assume that floating point machine modes are allowed only in floating point registers.
This is not true. Any registers that can hold integers can safely hold a floating point
machine mode, whether or not floating arithmetic can be done on it in those registers.
Integer move instructions can be used to move the values.

On some machines, though, the converse is true: fixed-point machine modes may not
go in floating registers. This is true if the floating registers normalize any value stored
in them, because storing a non-floating value there would garble it. In this case,
TARGET_HARD_REGNO_MODE_OK should reject fixed-point machine modes in floating
registers. But if the floating registers do not automatically normalize, if you can store
any bit pattern in one and retrieve it unchanged without a trap, then any machine
mode may go in a floating register, so you can define this hook to say so.

The primary significance of special floating registers is rather that they are the regis-
ters acceptable in floating point arithmetic instructions. However, this is of no concern
to TARGET_HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for
those instructions.

On some machines, the floating registers are especially slow to access, so that it
is better to store a value in a stack frame than in such a register if floating point
arithmetic is not being done. As long as the floating registers are not in class GENERAL_
REGS, they will not be used unless some pattern’s constraint asks for one.

[Macro]HARD_REGNO_RENAME_OK (from, to)
A C expression that is nonzero if it is OK to rename a hard register from to another
hard register to.

One common use of this macro is to prevent renaming of a register to another register
that is not saved by a prologue in an interrupt handler.

The default is always nonzero.

[Target Hook]bool TARGET_MODES_TIEABLE_P (machine_mode mode1,
machine_mode mode2)

This hook returns true if a value of mode mode1 is accessible in mode mode2 without
copying.

If TARGET_HARD_REGNO_MODE_OK (r, mode1) and TARGET_HARD_REGNO_MODE_OK (r,

mode2) are always the same for any r, then TARGET_MODES_TIEABLE_P (mode1,

mode2) should be true. If they differ for any r, you should define this hook to
return false unless some other mechanism ensures the accessibility of the value in a
narrower mode.

You should define this hook to return true in as many cases as possible since doing so
will allow GCC to perform better register allocation. The default definition returns
true unconditionally.

[Target Hook]bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int regno)
This target hook should return true if it is OK to use a hard register regno as scratch
reg in peephole2.

One common use of this macro is to prevent using of a register that is not saved by
a prologue in an interrupt handler.

The default version of this hook always returns true.

562 GNU Compiler Collection (GCC) Internals

[Macro]AVOID_CCMODE_COPIES
Define this macro if the compiler should avoid copies to/from CCmode registers. You
should only define this macro if support for copying to/from CCmode is incomplete.

17.7.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently
if it does not make its own register window. Often this means it is required to receive its
arguments in the registers where they are passed by the caller, instead of the registers where
they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions
are met; for example, often they may use only those registers for its own variables and
temporaries. We use the term “leaf function” to mean a function that is suitable for this
special handling, so that functions with no calls are not necessarily “leaf functions”.

GCC assigns register numbers before it knows whether the function is suitable for leaf
function treatment. So it needs to renumber the registers in order to output a leaf function.
The following macros accomplish this.

[Macro]LEAF_REGISTERS
Name of a char vector, indexed by hard register number, which contains 1 for a
register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers marked
here should be the ones before renumbering—those that GCC would ordinarily allo-
cate. The registers which will actually be used in the assembler code, after renum-
bering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treatment
of leaf functions.

[Macro]LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno should be renum-
bered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before renum-
bering, then the expression should yield −1, which will cause the compiler to abort.

Define this macro only if the target machine offers a way to optimize the treatment
of leaf functions, and registers need to be renumbered to do this.

TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE must usually
treat leaf functions specially. They can test the C variable current_function_is_leaf

which is nonzero for leaf functions. current_function_is_leaf is set prior to local
register allocation and is valid for the remaining compiler passes. They can also test the
C variable current_function_uses_only_leaf_regs which is nonzero for leaf functions
which only use leaf registers. current_function_uses_only_leaf_regs is valid after all
passes that modify the instructions have been run and is only useful if LEAF_REGISTERS is
defined.

Chapter 17: Target Description Macros and Functions 563

17.7.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a stack.
Stack registers are normally written by pushing onto the stack, and are numbered relative
to the top of the stack.

Currently, GCC can only handle one group of stack-like registers, and they must be
consecutively numbered. Furthermore, the existing support for stack-like registers is specific
to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like
registers, you will need to do substantial work on reg-stack.cc and write your machine
description to cooperate with it, as well as defining these macros.

[Macro]STACK_REGS
Define this if the machine has any stack-like registers.

[Macro]STACK_REG_COVER_CLASS
This is a cover class containing the stack registers. Define this if the machine has any
stack-like registers.

[Macro]FIRST_STACK_REG
The number of the first stack-like register. This one is the top of the stack.

[Macro]LAST_STACK_REG
The number of the last stack-like register. This one is the bottom of the stack.

17.8 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain
registers may not be allowed for indexed addressing; certain registers may not be allowed in
some instructions. These machine restrictions are described to the compiler using register
classes.

You define a number of register classes, giving each one a name and saying which of the
registers belong to it. Then you can specify register classes that are allowed as operands to
particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named
ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain
no registers. Often the union of two classes will be another class; however, this is not
required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about
the name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS
is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number
than y.

The way classes other than GENERAL_REGS are specified in operand constraints is through
machine-dependent operand constraint letters. You can define such letters to correspond
to various classes, then use them in operand constraints.

You must define the narrowest register classes for allocatable registers, so that each class
either has no subclasses, or that for some mode, the move cost between registers within the

564 GNU Compiler Collection (GCC) Internals

class is cheaper than moving a register in the class to or from memory (see Section 17.18
[Costs], page 631).

You should define a class for the union of two classes whenever some instruction allows
both classes. For example, if an instruction allows either a floating point (coprocessor)
register or a general register for a certain operand, you should define a class FLOAT_OR_

GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code, or
even internal compiler errors when reload cannot find a register in the class computed via
reg_class_subunion.

You must also specify certain redundant information about the register classes: for each
class, which classes contain it and which ones are contained in it; for each pair of classes,
the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all
the registers used must belong to that class. Therefore, register classes cannot be used to
enforce a requirement for a register pair to start with an even-numbered register. The way
to specify this requirement is with TARGET_HARD_REGNO_MODE_OK, or with a filter expression
in a define_register_constraint.

Register classes used for input-operands of bitwise-and or shift instructions have a special
requirement: each such class must have, for each fixed-point machine mode, a subclass whose
registers can transfer that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain registers. When this is so,
each register class that is used in a bitwise-and or shift instruction must have a subclass
consisting of registers from which single-byte values can be loaded or stored. This is so that
PREFERRED_RELOAD_CLASS can always have a possible value to return.

[Data type]enum reg_class
An enumerated type that must be defined with all the register class names as enu-
merated values. NO_REGS must be first. ALL_REGS must be the last register class,
followed by one more enumerated value, LIM_REG_CLASSES, which is not a register
class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name to type
int. The number serves as an index in many of the tables described below.

[Macro]N_REG_CLASSES
The number of distinct register classes, defined as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

[Macro]REG_CLASS_NAMES
An initializer containing the names of the register classes as C string constants. These
names are used in writing some of the debugging dumps.

[Macro]REG_CLASS_CONTENTS
An initializer containing the contents of the register classes, as integers which are bit
masks. The nth integer specifies the contents of class n. The way the integer mask is
interpreted is that register r is in the class if mask & (1 << r) is 1.

When the machine has more than 32 registers, an integer does not suffice. Then the
integers are replaced by sub-initializers, braced groupings containing several integers.
Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET which

Chapter 17: Target Description Macros and Functions 565

is defined in hard-reg-set.h. In this situation, the first integer in each sub-initializer
corresponds to registers 0 through 31, the second integer to registers 32 through 63,
and so on.

[Macro]REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard register regno. In
general there is more than one such class; choose a class which is minimal, meaning
that no smaller class also contains the register.

[Macro]BASE_REG_CLASS
A macro whose definition is the name of the class to which a valid base register must
belong. A base register is one used in an address which is the register value plus a
displacement.

[Macro]MODE_BASE_REG_CLASS (mode)
This is a variation of the BASE_REG_CLASS macro which allows the selection of a base
register in a mode dependent manner. If mode is VOIDmode then it should return
the same value as BASE_REG_CLASS.

[Macro]MODE_BASE_REG_REG_CLASS (mode)
A C expression whose value is the register class to which a valid base register must
belong in order to be used in a base plus index register address. You should define
this macro if base plus index addresses have different requirements than other base
register uses.

[Macro]MODE_CODE_BASE_REG_CLASS (mode, address_space, outer_code,
index_code)

A C expression whose value is the register class to which a valid base register for
a memory reference in mode mode to address space address space must belong.
outer code and index code define the context in which the base register occurs.
outer code is the code of the immediately enclosing expression (MEM for the top level of
an address, ADDRESS for something that occurs in an address_operand). index code
is the code of the corresponding index expression if outer code is PLUS; SCRATCH

otherwise.

[Macro]INSN_BASE_REG_CLASS (insn)
A C expression whose value is the register class to which a valid base register for
a specified insn must belong. This macro is used when some backend insns may
have limited usage of base register compared with other insns. If you define this
macro, the compiler will use it instead of all other defined macros that relate to
BASE REG CLASS.

[Macro]INDEX_REG_CLASS
A macro whose definition is the name of the class to which a valid index register must
belong. An index register is one used in an address where its value is either multiplied
by a scale factor or added to another register (as well as added to a displacement).

[Macro]INSN_INDEX_REG_CLASS (insn)
A C expression whose value is the register class to which a valid index register for a
specified insn must belong. This macro is used when some backend insns may have

566 GNU Compiler Collection (GCC) Internals

limited usage of index register compared with other insns. If you defined this macro,
the compiler will use it instead of INDEX_REG_CLASS.

[Macro]REGNO_OK_FOR_BASE_P (num)
A C expression which is nonzero if register number num is suitable for use as a base
register in operand addresses.

[Macro]REGNO_MODE_OK_FOR_BASE_P (num, mode)
A C expression that is just like REGNO_OK_FOR_BASE_P, except that that expression
may examine the mode of the memory reference in mode. You should define this
macro if the mode of the memory reference affects whether a register may be used as
a base register. If you define this macro, the compiler will use it instead of REGNO_OK_
FOR_BASE_P. The mode may be VOIDmode for addresses that appear outside a MEM,
i.e., as an address_operand.

[Macro]REGNO_MODE_OK_FOR_REG_BASE_P (num, mode)
A C expression which is nonzero if register number num is suitable for use as a base
register in base plus index operand addresses, accessing memory in mode mode. It
may be either a suitable hard register or a pseudo register that has been allocated
such a hard register. You should define this macro if base plus index addresses have
different requirements than other base register uses.

Use of this macro is deprecated; please use the more general REGNO_MODE_CODE_OK_
FOR_BASE_P.

[Macro]REGNO_MODE_CODE_OK_FOR_BASE_P (num, mode, address_space,
outer_code, index_code)

A C expression which is nonzero if register number num is suitable for use as a base
register in operand addresses, accessing memory in mode mode in address space ad-
dress space. This is similar to REGNO_MODE_OK_FOR_BASE_P, except that that expres-
sion may examine the context in which the register appears in the memory reference.
outer code is the code of the immediately enclosing expression (MEM if at the top
level of the address, ADDRESS for something that occurs in an address_operand).
index code is the code of the corresponding index expression if outer code is PLUS;
SCRATCH otherwise. The mode may be VOIDmode for addresses that appear outside a
MEM, i.e., as an address_operand.

[Macro]REGNO_OK_FOR_INSN_BASE_P (num, insn)
A C expression which is nonzero if register number num is suitable for use as a base
register in operand addresses for a specified insn. This macro is used when some
backend insn may have limited usage of base register compared with other insns. If
you define this macro, the compiler will use it instead of all other defined macros that
relate to REGNO OK FOR BASE P.

[Macro]REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable for use as an index
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.

The difference between an index register and a base register is that the index register
may be scaled. If an address involves the sum of two registers, neither one of them

Chapter 17: Target Description Macros and Functions 567

scaled, then either one may be labeled the “base” and the other the “index”; but
whichever labeling is used must fit the machine’s constraints of which registers may
serve in each capacity. The compiler will try both labelings, looking for one that is
valid, and will reload one or both registers only if neither labeling works.

[Target Hook]reg_class_t TARGET_PREFERRED_RENAME_CLASS (reg_class_t
rclass)

A target hook that places additional preference on the register class to use when it is
necessary to rename a register in class rclass to another class, or perhaps NO REGS,
if no preferred register class is found or hook preferred_rename_class is not im-
plemented. Sometimes returning a more restrictive class makes better code. For
example, on ARM, thumb-2 instructions using LO_REGS may be smaller than instruc-
tions using GENERIC_REGS. By returning LO_REGS from preferred_rename_class,
code size can be reduced.

[Target Hook]reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx x,
reg_class_t rclass)

A target hook that places additional restrictions on the register class to use when it is
necessary to copy value x into a register in class rclass. The value is a register class;
perhaps rclass, or perhaps another, smaller class.

The default version of this hook always returns value of rclass argument.

Sometimes returning a more restrictive class makes better code. For example, on the
68000, when x is an integer constant that is in range for a ‘moveq’ instruction, the
value of this macro is always DATA_REGS as long as rclass includes the data registers.
Requiring a data register guarantees that a ‘moveq’ will be used.

One case where TARGET_PREFERRED_RELOAD_CLASS must not return rclass is if x is
a legitimate constant which cannot be loaded into some register class. By returning
NO_REGS you can force x into a memory location. For example, rs6000 can load
immediate values into general-purpose registers, but does not have an instruction
for loading an immediate value into a floating-point register, so TARGET_PREFERRED_

RELOAD_CLASS returns NO_REGS when x is a floating-point constant. If the constant
can’t be loaded into any kind of register, code generation will be better if TARGET_
LEGITIMATE_CONSTANT_P makes the constant illegitimate instead of using TARGET_

PREFERRED_RELOAD_CLASS.

If an insn has pseudos in it after register allocation, reload will go through the alter-
natives and call repeatedly TARGET_PREFERRED_RELOAD_CLASS to find the best one.
Returning NO_REGS, in this case, makes reload add a ! in front of the constraint: the
x86 back-end uses this feature to discourage usage of 387 registers when math is done
in the SSE registers (and vice versa).

[Macro]PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register class to use when it
is necessary to copy value x into a register in class class. The value is a register class;
perhaps class, or perhaps another, smaller class. On many machines, the following
definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

568 GNU Compiler Collection (GCC) Internals

Sometimes returning a more restrictive class makes better code. For example, on the
68000, when x is an integer constant that is in range for a ‘moveq’ instruction, the
value of this macro is always DATA_REGS as long as class includes the data registers.
Requiring a data register guarantees that a ‘moveq’ will be used.

One case where PREFERRED_RELOAD_CLASS must not return class is if x is a legitimate
constant which cannot be loaded into some register class. By returning NO_REGS

you can force x into a memory location. For example, rs6000 can load immediate
values into general-purpose registers, but does not have an instruction for loading an
immediate value into a floating-point register, so PREFERRED_RELOAD_CLASS returns
NO_REGS when x is a floating-point constant. If the constant cannot be loaded into any
kind of register, code generation will be better if TARGET_LEGITIMATE_CONSTANT_P
makes the constant illegitimate instead of using TARGET_PREFERRED_RELOAD_CLASS.

If an insn has pseudos in it after register allocation, reload will go through the alter-
natives and call repeatedly PREFERRED_RELOAD_CLASS to find the best one. Returning
NO_REGS, in this case, makes reload add a ! in front of the constraint: the x86 back-
end uses this feature to discourage usage of 387 registers when math is done in the
SSE registers (and vice versa).

[Target Hook]reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx
x, reg_class_t rclass)

Like TARGET_PREFERRED_RELOAD_CLASS, but for output reloads instead of input
reloads.

The default version of this hook always returns value of rclass argument.

You can also use TARGET_PREFERRED_OUTPUT_RELOAD_CLASS to discourage reload
from using some alternatives, like TARGET_PREFERRED_RELOAD_CLASS.

[Macro]LIMIT_RELOAD_CLASS (mode, class)
A C expression that places additional restrictions on the register class to use when it
is necessary to be able to hold a value of mode mode in a reload register for which
class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain
modes that simply cannot go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require the
macro to do something nontrivial.

[Target Hook]reg_class_t TARGET_SECONDARY_RELOAD (bool in_p, rtx x,
reg_class_t reload_class, machine_mode reload_mode,
secondary_reload_info *sri)

Many machines have some registers that cannot be copied directly to or from memory
or even from other types of registers. An example is the ‘MQ’ register, which on most
machines, can only be copied to or from general registers, but not memory. Below,
we shall be using the term ’intermediate register’ when a move operation cannot be
performed directly, but has to be done by copying the source into the intermediate
register first, and then copying the intermediate register to the destination. An in-
termediate register always has the same mode as source and destination. Since it

Chapter 17: Target Description Macros and Functions 569

holds the actual value being copied, reload might apply optimizations to re-use an
intermediate register and eliding the copy from the source when it can determine that
the intermediate register still holds the required value.

Another kind of secondary reload is required on some machines which allow copying
all registers to and from memory, but require a scratch register for stores to some
memory locations (e.g., those with symbolic address on the RT, and those with certain
symbolic address on the SPARC when compiling PIC). Scratch registers need not have
the same mode as the value being copied, and usually hold a different value than that
being copied. Special patterns in the md file are needed to describe how the copy
is performed with the help of the scratch register; these patterns also describe the
number, register class(es) and mode(s) of the scratch register(s).

In some cases, both an intermediate and a scratch register are required.

For input reloads, this target hook is called with nonzero in p, and x is an rtx that
needs to be copied to a register of class reload class in reload mode. For output
reloads, this target hook is called with zero in p, and a register of class reload class
needs to be copied to rtx x in reload mode.

If copying a register of reload class from/to x requires an intermediate register, the
hook secondary_reload should return the register class required for this intermediate
register. If no intermediate register is required, it should return NO REGS. If more
than one intermediate register is required, describe the one that is closest in the copy
chain to the reload register.

If scratch registers are needed, you also have to describe how to perform the copy
from/to the reload register to/from this closest intermediate register. Or if no inter-
mediate register is required, but still a scratch register is needed, describe the copy
from/to the reload register to/from the reload operand x.

You do this by setting sri->icode to the instruction code of a pattern in the md
file which performs the move. Operands 0 and 1 are the output and input of this
copy, respectively. Operands from operand 2 onward are for scratch operands. These
scratch operands must have a mode, and a single-register-class output constraint.

When an intermediate register is used, the secondary_reload hook will be called
again to determine how to copy the intermediate register to/from the reload operand
x, so your hook must also have code to handle the register class of the intermediate
operand.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to find out; it will return −1 if
the pseudo is in memory and the hard register number if it is in a register.

Scratch operands in memory (constraint "=m" / "=&m") are currently not supported.
For the time being, you will have to continue to use TARGET_SECONDARY_MEMORY_

NEEDED for that purpose.

copy_cost also uses this target hook to find out how values are copied. If you want
it to include some extra cost for the need to allocate (a) scratch register(s), set sri-
>extra_cost to the additional cost. Or if two dependent moves are supposed to have a
lower cost than the sum of the individual moves due to expected fortuitous scheduling
and/or special forwarding logic, you can set sri->extra_cost to a negative amount.

570 GNU Compiler Collection (GCC) Internals

[Macro]SECONDARY_RELOAD_CLASS (class, mode, x)
[Macro]SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
[Macro]SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

These macros are obsolete, new ports should use the target hook TARGET_SECONDARY_

RELOAD instead.

These are obsolete macros, replaced by the TARGET_SECONDARY_RELOAD target hook.
Older ports still define these macros to indicate to the reload phase that it may need
to allocate at least one register for a reload in addition to the register to contain the
data. Specifically, if copying x to a register class in mode requires an intermediate
register, you were supposed to define SECONDARY_INPUT_RELOAD_CLASS to return the
largest register class all of whose registers can be used as intermediate registers or
scratch registers.

If copying a register class in mode to x requires an intermediate or scratch register,
SECONDARY_OUTPUT_RELOAD_CLASS was supposed to be defined to return the largest
register class required. If the requirements for input and output reloads were the same,
the macro SECONDARY_RELOAD_CLASS should have been used instead of defining both
macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no
spare register is needed; i.e., if x can be directly copied to or from a register of class
in mode without requiring a scratch register. Do not define this macro if it would
always return NO_REGS.

If a scratch register is required (either with or without an intermediate register), you
were supposed to define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see
Section 16.10 [Standard Names], page 426. These patterns, which were normally
implemented with a define_expand, should be similar to the ‘movm’ patterns, except
that operand 2 is the scratch register.

These patterns need constraints for the reload register and scratch register that con-
tain a single register class. If the original reload register (whose class is class) can
meet the constraint given in the pattern, the value returned by these macros is used
for the class of the scratch register. Otherwise, two additional reload registers are
required. Their classes are obtained from the constraints in the insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to find out; it will return −1 if
the pseudo is in memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular class of registers
can only be copied to memory and not to another class of registers. In that case,
secondary reload registers are not needed and would not be helpful. Instead, a stack
location must be used to perform the copy and the movm pattern should use memory
as an intermediate storage. This case often occurs between floating-point and general
registers.

[Target Hook]bool TARGET_SECONDARY_MEMORY_NEEDED (machine_mode mode,
reg_class_t class1, reg_class_t class2)

Certain machines have the property that some registers cannot be copied to some
other registers without using memory. Define this hook on those machines to return
true if objects of mode m in registers of class1 can only be copied to registers of class

Chapter 17: Target Description Macros and Functions 571

class2 by storing a register of class1 into memory and loading that memory location
into a register of class2. The default definition returns false for all inputs.

[Macro]SECONDARY_MEMORY_NEEDED_RTX (mode)
Normally when TARGET_SECONDARY_MEMORY_NEEDED is defined, the compiler allocates
a stack slot for a memory location needed for register copies. If this macro is defined,
the compiler instead uses the memory location defined by this macro.

Do not define this macro if you do not define TARGET_SECONDARY_MEMORY_NEEDED.

[Target Hook]machine_mode TARGET_SECONDARY_MEMORY_NEEDED_MODE
(machine_mode mode)

If TARGET_SECONDARY_MEMORY_NEEDED tells the compiler to use memory when moving
between two particular registers of mode mode, this hook specifies the mode that the
memory should have.

The default depends on TARGET_LRA_P. Without LRA, the default is to use a word-
sized mode for integral modes that are smaller than a a word. This is right thing to
do on most machines because it ensures that all bits of the register are copied and
prevents accesses to the registers in a narrower mode, which some machines prohibit
for floating-point registers.

However, this default behavior is not correct on some machines, such as the DEC
Alpha, that store short integers in floating-point registers differently than in integer
registers. On those machines, the default widening will not work correctly and you
must define this hook to suppress that widening in some cases. See the file alpha.cc
for details.

With LRA, the default is to use mode unmodified.

[Target Hook]void TARGET_SELECT_EARLY_REMAT_MODES (sbitmap modes)
On some targets, certain modes cannot be held in registers around a standard ABI
call and are relatively expensive to spill to the stack. The early rematerialization
pass can help in such cases by aggressively recomputing values after calls, so that
they don’t need to be spilled.

This hook returns the set of such modes by setting the associated bits in modes. The
default implementation selects no modes, which has the effect of disabling the early
rematerialization pass.

[Target Hook]bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t rclass)
A target hook which returns true if pseudos that have been assigned to registers
of class rclass would likely be spilled because registers of rclass are needed for spill
registers.

The default version of this target hook returns true if rclass has exactly one register
and false otherwise. On most machines, this default should be used. For generally
register-starved machines, such as i386, or machines with right register constraints,
such as SH, this hook can be used to avoid excessive spilling.

This hook is also used by some of the global intra-procedural code transformations
to throtle code motion, to avoid increasing register pressure.

572 GNU Compiler Collection (GCC) Internals

[Target Hook]unsigned char TARGET_CLASS_MAX_NREGS (reg_class_t
rclass, machine_mode mode)

A target hook returns the maximum number of consecutive registers of class rclass
needed to hold a value of mode mode.

This is closely related to the macro TARGET_HARD_REGNO_NREGS. In fact, the value
returned by TARGET_CLASS_MAX_NREGS (rclass, mode) target hook should be the
maximum value of TARGET_HARD_REGNO_NREGS (regno, mode) for all regno values in
the class rclass.

This target hook helps control the handling of multiple-word values in the reload pass.

The default version of this target hook returns the size of mode in words.

[Macro]CLASS_MAX_NREGS (class, mode)
A C expression for the maximum number of consecutive registers of class class needed
to hold a value of mode mode.

This is closely related to the macro TARGET_HARD_REGNO_NREGS. In fact, the value
of the macro CLASS_MAX_NREGS (class, mode) should be the maximum value of
TARGET_HARD_REGNO_NREGS (regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload pass.

[Target Hook]bool TARGET_CAN_CHANGE_MODE_CLASS (machine_mode from,
machine_mode to, reg_class_t rclass)

This hook returns true if it is possible to bitcast values held in registers of class rclass
from mode from to mode to and if doing so preserves the low-order bits that are
common to both modes. The result is only meaningful if rclass has registers that can
hold both from and to. The default implementation returns true.

As an example of when such bitcasting is invalid, loading 32-bit integer or floating-
point objects into floating-point registers on Alpha extends them to 64 bits. Therefore
loading a 64-bit object and then storing it as a 32-bit object does not store the low-
order 32 bits, as would be the case for a normal register. Therefore, alpha.h defines
TARGET_CAN_CHANGE_MODE_CLASS to return:

(GET_MODE_SIZE (from) == GET_MODE_SIZE (to)

|| !reg_classes_intersect_p (FLOAT_REGS, rclass))

Even if storing from a register in mode to would be valid, if both from and raw_reg_

mode for rclass are wider than word_mode, then we must prevent to narrowing the
mode. This happens when the middle-end assumes that it can load or store pieces
of an N -word pseudo, and that the pseudo will eventually be allocated to N word_

mode hard registers. Failure to prevent this kind of mode change will result in the
entire raw_reg_mode being modified instead of the partial value that the middle-end
intended.

[Target Hook]reg_class_t TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
(int, reg_class_t, reg_class_t)

A target hook which can change allocno class for given pseudo from allocno and best
class calculated by IRA.

The default version of this target hook always returns given class.

Chapter 17: Target Description Macros and Functions 573

[Target Hook]bool TARGET_LRA_P (void)
A target hook which returns true if we use LRA instead of reload pass.

The default version of this target hook returns true. New ports should use LRA, and
existing ports are encouraged to convert.

[Target Hook]int TARGET_REGISTER_PRIORITY (int)
A target hook which returns the register priority number to which the register
hard regno belongs to. The bigger the number, the more preferable the hard register
usage (when all other conditions are the same). This hook can be used to prefer
some hard register over others in LRA. For example, some x86-64 register usage
needs additional prefix which makes instructions longer. The hook can return lower
priority number for such registers make them less favorable and as result making the
generated code smaller.

The default version of this target hook returns always zero.

[Target Hook]bool TARGET_REGISTER_USAGE_LEVELING_P (void)
A target hook which returns true if we need register usage leveling. That means if a
few hard registers are equally good for the assignment, we choose the least used hard
register. The register usage leveling may be profitable for some targets. Don’t use
the usage leveling for targets with conditional execution or targets with big register
files as it hurts if-conversion and cross-jumping optimizations.

The default version of this target hook returns always false.

[Target Hook]bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void)
A target hook which returns true if an address with the same structure can have
different maximal legitimate displacement. For example, the displacement can depend
on memory mode or on operand combinations in the insn.

The default version of this target hook returns always false.

[Target Hook]bool TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P (rtx subst)
A target hook which returns true if subst can’t substitute safely pseudos with equiv-
alent memory values during register allocation. The default version of this target
hook returns false. On most machines, this default should be used. For generally
machines with non orthogonal register usage for addressing, such as SH, this hook
can be used to avoid excessive spilling.

[Target Hook]bool TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT (rtx
*offset1, rtx *offset2, poly_int64 orig_offset, machine_mode
mode)

This hook tries to split address offset orig offset into two parts: one that should be
added to the base address to create a local anchor point, and an additional offset that
can be applied to the anchor to address a value of mode mode. The idea is that the
local anchor could be shared by other accesses to nearby locations.

The hook returns true if it succeeds, storing the offset of the anchor from the base
in offset1 and the offset of the final address from the anchor in offset2. The default
implementation returns false.

574 GNU Compiler Collection (GCC) Internals

[Target Hook]reg_class_t TARGET_SPILL_CLASS (reg_class_t,
machine_mode)

This hook defines a class of registers which could be used for spilling pseudos of the
given mode and class, or NO_REGS if only memory should be used. Not defining this
hook is equivalent to returning NO_REGS for all inputs.

[Target Hook]bool TARGET_ADDITIONAL_ALLOCNO_CLASS_P (reg_class_t)
This hook should return true if given class of registers should be an allocno class in
any way. Usually RA uses only one register class from all classes containing the same
register set. In some complicated cases, you need to have two or more such classes as
allocno ones for RA correct work. Not defining this hook is equivalent to returning
false for all inputs.

[Target Hook]scalar_int_mode TARGET_CSTORE_MODE (enum insn_code
icode)

This hook defines the machine mode to use for the boolean result of conditional
store patterns. The ICODE argument is the instruction code for the cstore being
performed. Not definiting this hook is the same as accepting the mode encoded into
operand 0 of the cstore expander patterns.

[Target Hook]int TARGET_COMPUTE_PRESSURE_CLASSES (enum reg_class
*pressure_classes)

A target hook which lets a backend compute the set of pressure classes to be used
by those optimization passes which take register pressure into account, as opposed
to letting IRA compute them. It returns the number of register classes stored in the
array pressure classes.

17.9 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

17.9.1 Basic Stack Layout

Here is the basic stack layout.

[Macro]STACK_GROWS_DOWNWARD
Define this macro to be true if pushing a word onto the stack moves the stack pointer
to a smaller address, and false otherwise.

[Macro]STACK_PUSH_CODE
This macro defines the operation used when something is pushed on the stack. In
RTL, a push operation will be (set (mem (STACK_PUSH_CODE (reg sp))) ...)

The choices are PRE_DEC, POST_DEC, PRE_INC, and POST_INC. Which of these is
correct depends on the stack direction and on whether the stack pointer points to the
last item on the stack or whether it points to the space for the next item on the stack.

The default is PRE_DEC when STACK_GROWS_DOWNWARD is true, which is almost always
right, and PRE_INC otherwise, which is often wrong.

[Macro]FRAME_GROWS_DOWNWARD
Define this macro to nonzero value if the addresses of local variable slots are at
negative offsets from the frame pointer.

Chapter 17: Target Description Macros and Functions 575

[Macro]ARGS_GROW_DOWNWARD
Define this macro if successive arguments to a function occupy decreasing addresses
on the stack.

[Target Hook]HOST_WIDE_INT TARGET_STARTING_FRAME_OFFSET (void)
This hook returns the offset from the frame pointer to the first local variable slot
to be allocated. If FRAME_GROWS_DOWNWARD, it is the offset to end of the first slot
allocated, otherwise it is the offset to beginning of the first slot allocated. The default
implementation returns 0.

[Macro]STACK_ALIGNMENT_NEEDED
Define to zero to disable final alignment of the stack during reload. The nonzero
default for this macro is suitable for most ports.

On ports where TARGET_STARTING_FRAME_OFFSET is nonzero or where there is a reg-
ister save block following the local block that doesn’t require alignment to STACK_

BOUNDARY, it may be beneficial to disable stack alignment and do it in the backend.

[Macro]STACK_POINTER_OFFSET
Offset from the stack pointer register to the first location at which outgoing arguments
are placed. If not specified, the default value of zero is used. This is the proper value
for most machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location at
which outgoing arguments are placed.

[Macro]FIRST_PARM_OFFSET (fundecl)
Offset from the argument pointer register to the first argument’s address. On some
machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argument’s
address.

[Macro]STACK_DYNAMIC_OFFSET (fundecl)
Offset from the stack pointer register to an item dynamically allocated on the stack,
e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length of the
outgoing arguments. The default is correct for most machines. See function.cc for
details.

[Macro]INITIAL_FRAME_ADDRESS_RTX
A C expression whose value is RTL representing the address of the initial stack frame.
This address is passed to RETURN_ADDR_RTX and DYNAMIC_CHAIN_ADDRESS. If you
don’t define this macro, a reasonable default value will be used. Define this macro in
order to make frame pointer elimination work in the presence of __builtin_frame_
address (count) and __builtin_return_address (count) for count not equal to
zero.

[Macro]DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a stack frame where the
pointer to the caller’s frame is stored. Assume that frameaddr is an RTL expression
for the address of the stack frame itself.

576 GNU Compiler Collection (GCC) Internals

If you don’t define this macro, the default is to return the value of frameaddr—that
is, the stack frame address is also the address of the stack word that points to the
previous frame.

[Macro]SETUP_FRAME_ADDRESSES
A C expression that produces the machine-specific code to setup the stack so that
arbitrary frames can be accessed. For example, on the SPARC, we must flush all of
the register windows to the stack before we can access arbitrary stack frames. You
will seldom need to define this macro. The default is to do nothing.

[Target Hook]rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void)
This target hook should return an rtx that is used to store the address of the current
frame into the built in setjmp buffer. The default value, virtual_stack_vars_rtx,
is correct for most machines. One reason you may need to define this target hook is
if hard_frame_pointer_rtx is the appropriate value on your machine.

[Macro]FRAME_ADDR_RTX (frameaddr)
A C expression whose value is RTL representing the value of the frame address for
the current frame. frameaddr is the frame pointer of the current frame. This is used
for builtin frame address. You need only define this macro if the frame address is
not the same as the frame pointer. Most machines do not need to define it.

[Macro]RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the return address for
the frame count steps up from the current frame, after the prologue. frameaddr is
the frame pointer of the count frame, or the frame pointer of the count − 1 frame if
RETURN_ADDR_IN_PREVIOUS_FRAME is nonzero.

The value of the expression must always be the correct address when count is zero,
but may be NULL_RTX if there is no way to determine the return address of other
frames.

[Macro]RETURN_ADDR_IN_PREVIOUS_FRAME
Define this macro to nonzero value if the return address of a particular stack frame
is accessed from the frame pointer of the previous stack frame. The zero default for
this macro is suitable for most ports.

[Macro]INCOMING_RETURN_ADDR_RTX
A C expression whose value is RTL representing the location of the incoming return
address at the beginning of any function, before the prologue. This RTL is either a
REG, indicating that the return value is saved in ‘REG’, or a MEM representing a location
in the stack.

You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.

If this RTL is a REG, you should also define DWARF_FRAME_RETURN_COLUMN to DWARF_

FRAME_REGNUM (REGNO).

[Macro]DWARF_ALT_FRAME_RETURN_COLUMN
A C expression whose value is an integer giving a DWARF 2 column number that
may be used as an alternative return column. The column must not correspond to
any gcc hard register (that is, it must not be in the range of DWARF_FRAME_REGNUM).

Chapter 17: Target Description Macros and Functions 577

This macro can be useful if DWARF_FRAME_RETURN_COLUMN is set to a general register,
but an alternative column needs to be used for signal frames. Some targets have also
used different frame return columns over time.

[Macro]DWARF_ZERO_REG
A C expression whose value is an integer giving a DWARF 2 register number that is
considered to always have the value zero. This should only be defined if the target
has an architected zero register, and someone decided it was a good idea to use that
register number to terminate the stack backtrace. New ports should avoid this.

[Macro]DWARF_VERSION_DEFAULT
A C expression whose value is the default dwarf standard version we’ll honor and ad-
vertise when generating dwarf debug information, in absence of an explicit -gdwarf-
version option on the command line.

[Target Hook]void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char
*label, rtx pattern, int index)

This target hook allows the backend to emit frame-related insns that contain UN-
SPECs or UNSPEC VOLATILEs. The DWARF 2 call frame debugging info engine
will invoke it on insns of the form

(set (reg) (unspec [...] UNSPEC_INDEX))

and
(set (reg) (unspec_volatile [...] UNSPECV_INDEX)).

to let the backend emit the call frame instructions. label is the CFI label attached to
the insn, pattern is the pattern of the insn and index is UNSPEC_INDEX or UNSPECV_
INDEX.

[Target Hook]unsigned int TARGET_DWARF_POLY_INDETERMINATE_VALUE
(unsigned int i, unsigned int *factor, int *offset)

Express the value of poly_int indeterminate i as a DWARF expression, with i count-
ing from 1. Return the number of a DWARF register R and set ‘*factor’ and
‘*offset’ such that the value of the indeterminate is:

value_of(R) / factor - offset

A target only needs to define this hook if it sets ‘NUM_POLY_INT_COEFFS’ to a value
greater than 1.

[Macro]INCOMING_FRAME_SP_OFFSET
A C expression whose value is an integer giving the offset, in bytes, from the value
of the stack pointer register to the top of the stack frame at the beginning of any
function, before the prologue. The top of the frame is defined to be the value of the
stack pointer in the previous frame, just before the call instruction.

You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.

[Macro]DEFAULT_INCOMING_FRAME_SP_OFFSET
Like INCOMING_FRAME_SP_OFFSET, but must be the same for all functions of the same
ABI, and when using GAS .cfi_* directives must also agree with the default CFI
GAS emits. Define this macro only if INCOMING_FRAME_SP_OFFSET can have different

578 GNU Compiler Collection (GCC) Internals

values between different functions of the same ABI or when INCOMING_FRAME_SP_

OFFSET does not agree with GAS default CFI.

[Macro]ARG_POINTER_CFA_OFFSET (fundecl)
A C expression whose value is an integer giving the offset, in bytes, from the argument
pointer to the canonical frame address (cfa). The final value should coincide with that
calculated by INCOMING_FRAME_SP_OFFSET. Which is unfortunately not usable during
virtual register instantiation.

The default value for this macro is FIRST_PARM_OFFSET (fundecl) + crtl-

>args.pretend_args_size, which is correct for most machines; in general, the
arguments are found immediately before the stack frame. Note that this is not the
case on some targets that save registers into the caller’s frame, such as SPARC and
rs6000, and so such targets need to define this macro.

You only need to define this macro if the default is incorrect, and you want to support
call frame debugging information like that provided by DWARF 2.

[Macro]FRAME_POINTER_CFA_OFFSET (fundecl)
If defined, a C expression whose value is an integer giving the offset in bytes from the
frame pointer to the canonical frame address (cfa). The final value should coincide
with that calculated by INCOMING_FRAME_SP_OFFSET.

Normally the CFA is calculated as an offset from the argument pointer, via ARG_

POINTER_CFA_OFFSET, but if the argument pointer is variable due to the ABI, this
may not be possible. If this macro is defined, it implies that the virtual register
instantiation should be based on the frame pointer instead of the argument pointer.
Only one of FRAME_POINTER_CFA_OFFSET and ARG_POINTER_CFA_OFFSET should be
defined.

[Macro]CFA_FRAME_BASE_OFFSET (fundecl)
If defined, a C expression whose value is an integer giving the offset in bytes from the
canonical frame address (cfa) to the frame base used in DWARF 2 debug information.
The default is zero. A different value may reduce the size of debug information on
some ports.

[Target Hook]bool TARGET_HAVE_STRUB_SUPPORT_FOR (tree)
Returns true if the target supports stack scrubbing for the given function or type,
otherwise return false. The default implementation always returns true.

[Macro]STACK_ADDRESS_OFFSET
Offset from the stack pointer register to the boundary address between the stack area
claimed by an active function, and stack ranges that could get clobbered if it called
another function. It should NOT encompass any stack red zone, that is used in leaf
functions.

This value is added to the stack pointer register to compute the address returned by
__builtin_stack_address, and this is its only use. If this macro is not defined, no
offset is added. Defining it like STACK_POINTER_OFFSET may be appropriate for many
machines, but not all.

On SPARC, for example, the register save area is *not* considered active or used by
the active function, but rather as akin to the area in which call-preserved registers are

Chapter 17: Target Description Macros and Functions 579

saved by callees, so the stack address is above that area, even though the (unbiased)
stack pointer points below it. This enables __strub_leave to clear what would
otherwise overlap with its own register save area.

On PowerPC, STACK_POINTER_OFFSET also reserves space for a save area, but that
area is used by the caller rather than the callee, so the boundary address is below it.

If the address is computed too high or too low, parts of a stack range that should be
scrubbed may be left unscrubbed, scrubbing may corrupt active portions of the stack
frame, and stack ranges may be doubly-scrubbed by caller and callee.

[Macro]TARGET_STRUB_USE_DYNAMIC_ARRAY
If defined to nonzero, __strub_leave will allocate a dynamic array covering the
stack range that needs scrubbing before clearing it. Allocating the array tends to
make scrubbing slower, but it enables the scrubbing to be safely implemented with a
memset call, which could make up for the difference.

[Macro]TARGET_STRUB_MAY_USE_MEMSET
If defined to nonzero, enable __strub_leave to be optimized so as to call memset
for stack scrubbing. This is only enabled by default if TARGET_STRUB_USE_DYNAMIC_
ARRAY is enabled; it’s not advisable to enable it otherwise, since memset would then
likely overwrite its own stack frame, but it might work if the target ABI enables
memset to not use the stack at all, not even for arguments or its return address, and
its implementation is trivial enough that it doesn’t use a stack frame.

17.9.2 Exception Handling Support

[Macro]EH_RETURN_DATA_REGNO (N)
A C expression whose value is the Nth register number used for data by exception
handlers, or INVALID_REGNUM if fewer than N registers are usable.

The exception handling library routines communicate with the exception handlers via
a set of agreed upon registers. Ideally these registers should be call-clobbered; it is
possible to use call-saved registers, but may negatively impact code size. The target
must support at least 2 data registers, but should define 4 if there are enough free
registers.

You must define this macro if you want to support call frame exception handling like
that provided by DWARF 2.

[Macro]EH_RETURN_STACKADJ_RTX
A C expression whose value is RTL representing a location in which to store a stack
adjustment to be applied before function return. This is used to unwind the stack to
an exception handler’s call frame. It will be assigned zero on code paths that return
normally.

Typically this is a call-clobbered hard register that is otherwise untouched by the
epilogue, but could also be a stack slot.

Do not define this macro if the stack pointer is saved and restored by the regular
prolog and epilog code in the call frame itself; in this case, the exception handling
library routines will update the stack location to be restored in place. Otherwise, you
must define this macro if you want to support call frame exception handling like that
provided by DWARF 2.

580 GNU Compiler Collection (GCC) Internals

[Macro]EH_RETURN_HANDLER_RTX
A C expression whose value is RTL representing a location in which to store the
address of an exception handler to which we should return. It will not be assigned on
code paths that return normally.

Typically this is the location in the call frame at which the normal return address is
stored. For targets that return by popping an address off the stack, this might be a
memory address just below the target call frame rather than inside the current call
frame. If defined, EH_RETURN_STACKADJ_RTX will have already been assigned, so it
may be used to calculate the location of the target call frame.

Some targets have more complex requirements than storing to an address calculable
during initial code generation. In that case the eh_return instruction pattern should
be used instead.

If you want to support call frame exception handling, you must define either this
macro or the eh_return instruction pattern.

[Macro]EH_RETURN_TAKEN_RTX
A C expression whose value is RTL representing a location in which to store if the EH
return path was taken instead of a normal return. This macro allows conditionally
executing different code in the epilogue for the EH and normal return cases.

When this macro is defined, the macros EH_RETURN_STACKADJ_RTX and EH_RETURN_

HANDLER_RTX are only meaningful in the epilogue when 1 is stored to the specified
location. The value 0 means normal return.

[Macro]RETURN_ADDR_OFFSET
If defined, an integer-valued C expression for which rtl will be generated to add it to
the exception handler address before it is searched in the exception handling tables,
and to subtract it again from the address before using it to return to the exception
handler.

[Macro]ASM_PREFERRED_EH_DATA_FORMAT (code, global)
This macro chooses the encoding of pointers embedded in the exception handling
sections. If at all possible, this should be defined such that the exception handling
section will not require dynamic relocations, and so may be read-only.

code is 0 for data, 1 for code labels, 2 for function pointers. global is true if the symbol
may be affected by dynamic relocations. The macro should return a combination of
the DW_EH_PE_* defines as found in dwarf2.h.

If this macro is not defined, pointers will not be encoded but represented directly.

[Macro]ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (file, encoding, size, addr,
done)

This macro allows the target to emit whatever special magic is required to represent
the encoding chosen by ASM_PREFERRED_EH_DATA_FORMAT. Generic code takes care of
pc-relative and indirect encodings; this must be defined if the target uses text-relative
or data-relative encodings.

This is a C statement that branches to done if the format was handled. encoding is
the format chosen, size is the number of bytes that the format occupies, addr is the
SYMBOL_REF to be emitted.

Chapter 17: Target Description Macros and Functions 581

[Macro]MD_FALLBACK_FRAME_STATE_FOR (context, fs)
This macro allows the target to add CPU and operating system specific code to
the call-frame unwinder for use when there is no unwind data available. The most
common reason to implement this macro is to unwind through signal frames.

This macro is called from uw_frame_state_for in unwind-dw2.c, unwind-

dw2-xtensa.c and unwind-ia64.c. context is an _Unwind_Context; fs is an
_Unwind_FrameState. Examine context->ra for the address of the code being
executed and context->cfa for the stack pointer value. If the frame can be decoded,
the register save addresses should be updated in fs and the macro should evaluate
to _URC_NO_REASON. If the frame cannot be decoded, the macro should evaluate to
_URC_END_OF_STACK.

For proper signal handling in Java this macro is accompanied by MAKE_THROW_FRAME,
defined in libjava/include/*-signal.h headers.

[Macro]MD_HANDLE_UNWABI (context, fs)
This macro allows the target to add operating system specific code to the call-frame
unwinder to handle the IA-64 .unwabi unwinding directive, usually used for signal
or interrupt frames.

This macro is called from uw_update_context in libgcc’s unwind-ia64.c. context is
an _Unwind_Context; fs is an _Unwind_FrameState. Examine fs->unwabi for the
abi and context in the .unwabi directive. If the .unwabi directive can be handled,
the register save addresses should be updated in fs.

[Macro]TARGET_USES_WEAK_UNWIND_INFO
A C expression that evaluates to true if the target requires unwind info to be given
comdat linkage. Define it to be 1 if comdat linkage is necessary. The default is 0.

17.9.3 Specifying How Stack Checking is Done

GCC will check that stack references are within the boundaries of the stack, if the option
-fstack-check is specified, in one of three ways:

1. If the value of the STACK_CHECK_BUILTIN macro is nonzero, GCC will assume that
you have arranged for full stack checking to be done at appropriate places in the
configuration files. GCC will not do other special processing.

2. If STACK_CHECK_BUILTIN is zero and the value of the STACK_CHECK_STATIC_BUILTIN

macro is nonzero, GCC will assume that you have arranged for static stack checking
(checking of the static stack frame of functions) to be done at appropriate places in the
configuration files. GCC will only emit code to do dynamic stack checking (checking
on dynamic stack allocations) using the third approach below.

3. If neither of the above are true, GCC will generate code to periodically “probe” the
stack pointer using the values of the macros defined below.

If neither STACK CHECK BUILTIN nor STACK CHECK STATIC BUILTIN is de-
fined, GCC will change its allocation strategy for large objects if the option -fstack-check

is specified: they will always be allocated dynamically if their size exceeds STACK_CHECK_
MAX_VAR_SIZE bytes.

582 GNU Compiler Collection (GCC) Internals

[Macro]STACK_CHECK_BUILTIN
A nonzero value if stack checking is done by the configuration files in a machine-
dependent manner. You should define this macro if stack checking is required by the
ABI of your machine or if you would like to do stack checking in some more efficient
way than the generic approach. The default value of this macro is zero.

[Macro]STACK_CHECK_STATIC_BUILTIN
A nonzero value if static stack checking is done by the configuration files in a machine-
dependent manner. You should define this macro if you would like to do static stack
checking in some more efficient way than the generic approach. The default value of
this macro is zero.

[Macro]STACK_CHECK_PROBE_INTERVAL_EXP
An integer specifying the interval at which GCC must generate stack probe instruc-
tions, defined as 2 raised to this integer. You will normally define this macro so that
the interval be no larger than the size of the “guard pages” at the end of a stack area.
The default value of 12 (4096-byte interval) is suitable for most systems.

[Macro]STACK_CHECK_MOVING_SP
An integer which is nonzero if GCC should move the stack pointer page by page when
doing probes. This can be necessary on systems where the stack pointer contains the
bottom address of the memory area accessible to the executing thread at any point
in time. In this situation an alternate signal stack is required in order to be able to
recover from a stack overflow. The default value of this macro is zero.

[Macro]STACK_CHECK_PROTECT
The number of bytes of stack needed to recover from a stack overflow, for lan-
guages where such a recovery is supported. The default value of 4KB/8KB with the
setjmp/longjmp-based exception handling mechanism and 8KB/12KB with other ex-
ception handling mechanisms should be adequate for most architectures and operating
systems.

The following macros are relevant only if neither STACK CHECK BUILTIN nor
STACK CHECK STATIC BUILTIN is defined; you can omit them altogether in the
opposite case.

[Macro]STACK_CHECK_MAX_FRAME_SIZE
The maximum size of a stack frame, in bytes. GCC will generate probe instructions
in non-leaf functions to ensure at least this many bytes of stack are available. If a
stack frame is larger than this size, stack checking will not be reliable and GCC will
issue a warning. The default is chosen so that GCC only generates one instruction
on most systems. You should normally not change the default value of this macro.

[Macro]STACK_CHECK_FIXED_FRAME_SIZE
GCC uses this value to generate the above warning message. It represents the amount
of fixed frame used by a function, not including space for any callee-saved registers,
temporaries and user variables. You need only specify an upper bound for this amount
and will normally use the default of four words.

Chapter 17: Target Description Macros and Functions 583

[Macro]STACK_CHECK_MAX_VAR_SIZE
The maximum size, in bytes, of an object that GCC will place in the fixed area of
the stack frame when the user specifies -fstack-check. GCC computed the default
from the values of the above macros and you will normally not need to override that
default.

[Target Hook]HOST_WIDE_INT
TARGET_STACK_CLASH_PROTECTION_ALLOCA_PROBE_RANGE (void)

Some targets have an ABI defined interval for which no probing needs to be done.
When a probe does need to be done this same interval is used as the probe distance
up when doing stack clash protection for alloca. On such targets this value can be set
to override the default probing up interval. Define this variable to return nonzero if
such a probe range is required or zero otherwise. Defining this hook also requires your
functions which make use of alloca to have at least 8 byes of outgoing arguments. If
this is not the case the stack will be corrupted. You need not define this macro if it
would always have the value zero.

17.9.4 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

[Macro]STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also be a fixed register
according to FIXED_REGISTERS. On most machines, the hardware determines which
register this is.

[Macro]FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to access automatic
variables in the stack frame. On some machines, the hardware determines which
register this is. On other machines, you can choose any register you wish for this
purpose.

[Macro]HARD_FRAME_POINTER_REGNUM
On some machines the offset between the frame pointer and starting offset of the
automatic variables is not known until after register allocation has been done (for
example, because the saved registers are between these two locations). On those
machines, define FRAME_POINTER_REGNUM the number of a special, fixed register to be
used internally until the offset is known, and define HARD_FRAME_POINTER_REGNUM to
be the actual hard register number used for the frame pointer.

You should define this macro only in the very rare circumstances when it is not possi-
ble to calculate the offset between the frame pointer and the automatic variables until
after register allocation has been completed. When this macro is defined, you must
also indicate in your definition of ELIMINABLE_REGS how to eliminate FRAME_POINTER_
REGNUM into either HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

[Macro]ARG_POINTER_REGNUM
The register number of the arg pointer register, which is used to access the function’s
argument list. On some machines, this is the same as the frame pointer register.

584 GNU Compiler Collection (GCC) Internals

On some machines, the hardware determines which register this is. On other ma-
chines, you can choose any register you wish for this purpose. If this is not the same
register as the frame pointer register, then you must mark it as a fixed register ac-
cording to FIXED_REGISTERS, or arrange to be able to eliminate it (see Section 17.9.5
[Elimination], page 586).

[Macro]HARD_FRAME_POINTER_IS_FRAME_POINTER
Define this to a preprocessor constant that is nonzero if hard_frame_pointer_

rtx and frame_pointer_rtx should be the same. The default definition is
‘(HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)’; you only need to
define this macro if that definition is not suitable for use in preprocessor conditionals.

[Macro]HARD_FRAME_POINTER_IS_ARG_POINTER
Define this to a preprocessor constant that is nonzero if hard_frame_pointer_

rtx and arg_pointer_rtx should be the same. The default definition is
‘(HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)’; you only need to define
this macro if that definition is not suitable for use in preprocessor conditionals.

[Macro]RETURN_ADDRESS_POINTER_REGNUM
The register number of the return address pointer register, which is used to access
the current function’s return address from the stack. On some machines, the return
address is not at a fixed offset from the frame pointer or stack pointer or argument
pointer. This register can be defined to point to the return address on the stack, and
then be converted by ELIMINABLE_REGS into either the frame pointer or stack pointer.

Do not define this macro unless there is no other way to get the return address from
the stack.

[Macro]STATIC_CHAIN_REGNUM
[Macro]STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function’s static chain pointer. If register
windows are used, the register number as seen by the called function is
STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the
calling function is STATIC_CHAIN_REGNUM. If these registers are the same,
STATIC_CHAIN_INCOMING_REGNUM need not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined; instead,
the TARGET_STATIC_CHAIN hook should be used.

[Target Hook]rtx TARGET_STATIC_CHAIN (const_tree fndecl_or_type,
bool incoming_p)

This hook replaces the use of STATIC_CHAIN_REGNUM et al for targets that may use
different static chain locations for different nested functions. This may be required if
the target has function attributes that affect the calling conventions of the function
and those calling conventions use different static chain locations.

The default version of this hook uses STATIC_CHAIN_REGNUM et al.

If the static chain is passed in memory, this hook should be used to provide rtx giving
mem expressions that denote where they are stored. Often the mem expression as seen

Chapter 17: Target Description Macros and Functions 585

by the caller will be at an offset from the stack pointer and the mem expression as
seen by the callee will be at an offset from the frame pointer. The variables stack_
pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will have been initialized
and should be used to refer to those items.

[Macro]DWARF_FRAME_REGISTERS
This macro specifies the maximum number of hard registers that can be saved in a
call frame. This is used to size data structures used in DWARF2 exception handling.

Prior to GCC 3.0, this macro was needed in order to establish a stable exception
handling ABI in the face of adding new hard registers for ISA extensions. In GCC
3.0 and later, the EH ABI is insulated from changes in the number of hard registers.
Nevertheless, this macro can still be used to reduce the runtime memory requirements
of the exception handling routines, which can be substantial if the ISA contains a lot
of registers that are not call-saved.

If this macro is not defined, it defaults to FIRST_PSEUDO_REGISTER.

[Macro]PRE_GCC3_DWARF_FRAME_REGISTERS
This macro is similar to DWARF_FRAME_REGISTERS, but is provided for backward com-
patibility in pre GCC 3.0 compiled code.

If this macro is not defined, it defaults to DWARF_FRAME_REGISTERS.

[Macro]DWARF_REG_TO_UNWIND_COLUMN (regno)
Define this macro if the target’s representation for dwarf registers is different than
the internal representation for unwind column. Given a dwarf register, this macro
should return the internal unwind column number to use instead.

[Macro]DWARF_FRAME_REGNUM (regno)
Define this macro if the target’s representation for dwarf registers used in .eh frame
or .debug frame is different from that used in other debug info sections. Given a GCC
hard register number, this macro should return the .eh frame register number. The
default is DEBUGGER_REGNO (regno).

[Macro]DWARF2_FRAME_REG_OUT (regno, for_eh)
Define this macro to map register numbers held in the call frame info that GCC has
collected using DWARF_FRAME_REGNUM to those that should be output in .debug frame
(for_eh is zero) and .eh frame (for_eh is nonzero). The default is to return regno.

[Macro]REG_VALUE_IN_UNWIND_CONTEXT
Define this macro if the target stores register values as _Unwind_Word type in unwind
context. It should be defined if target register size is larger than the size of void *.
The default is to store register values as void * type.

[Macro]ASSUME_EXTENDED_UNWIND_CONTEXT
Define this macro to be 1 if the target always uses extended unwind context with
version, args size and by value fields. If it is undefined, it will be defined to 1 when
REG_VALUE_IN_UNWIND_CONTEXT is defined and 0 otherwise.

586 GNU Compiler Collection (GCC) Internals

[Macro]DWARF_LAZY_REGISTER_VALUE (regno, value)
Define this macro if the target has pseudo DWARF registers whose values need to
be computed lazily on demand by the unwinder (such as when referenced in a CFA
expression). The macro returns true if regno is such a register and stores its value in
‘*value’ if so.

17.9.5 Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

[Target Hook]bool TARGET_FRAME_POINTER_REQUIRED (void)
This target hook should return true if a function must have and use a frame pointer.
This target hook is called in the reload pass. If its return value is true the function
will have a frame pointer.

This target hook can in principle examine the current function and decide according
to the facts, but on most machines the constant false or the constant true suffices.
Use false when the machine allows code to be generated with no frame pointer, and
doing so saves some time or space. Use true when there is no possible advantage to
avoiding a frame pointer.

In certain cases, the compiler does not know how to produce valid code without a
frame pointer. The compiler recognizes those cases and automatically gives the func-
tion a frame pointer regardless of what targetm.frame_pointer_required returns.
You don’t need to worry about them.

In a function that does not require a frame pointer, the frame pointer register can
be allocated for ordinary usage, unless you mark it as a fixed register. See FIXED_

REGISTERS for more information.

Default return value is false.

[Macro]ELIMINABLE_REGS
This macro specifies a table of register pairs used to eliminate unneeded registers that
point into the stack frame.

The definition of this macro is a list of structure initializations, each of which specifies
an original and replacement register.

On some machines, the position of the argument pointer is not known until the
compilation is completed. In such a case, a separate hard register must be used for
the argument pointer. This register can be eliminated by replacing it with either
the frame pointer or the argument pointer, depending on whether or not the frame
pointer has been eliminated.

In this case, you might specify:

#define ELIMINABLE_REGS \

{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \

{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \

{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is specified
first since that is the preferred elimination.

Chapter 17: Target Description Macros and Functions 587

[Macro]RELOAD_ELIMINABLE_REGS
Like ELIMINABLE_REGS, but only used in the old reload framework where it takes
precedence over ELIMINABLE_REGS. This macro can be useful during the transition
to LRA because there are cases where reload and LRA disagree on how eliminable
registers should be represented. For an example, see avr.h.

[Target Hook]bool TARGET_CAN_ELIMINATE (const int from_reg, const
int to_reg)

This target hook should return true if the compiler is allowed to try to replace register
number from reg with register number to reg. This target hook will usually be true,
since most of the cases preventing register elimination are things that the compiler
already knows about.

Default return value is true.

[Macro]INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro returns the initial difference between the specified pair of registers. The
value would be computed from information such as the result of get_frame_size ()

and the tables of registers df_regs_ever_live_p and call_used_regs.

[Target Hook]void TARGET_COMPUTE_FRAME_LAYOUT (void)
This target hook is called once each time the frame layout needs to be recalculated.
The calculations can be cached by the target and can then be used by INITIAL_

ELIMINATION_OFFSET instead of re-computing the layout on every invocation of that
hook. This is particularly useful for targets that have an expensive frame layout
function. Implementing this callback is optional.

17.9.6 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following
section for other macros that control passing certain arguments in registers.

[Target Hook]bool TARGET_PROMOTE_PROTOTYPES (const_tree fntype)
This target hook returns true if an argument declared in a prototype as an integral
type smaller than int should actually be passed as an int. In addition to avoiding
errors in certain cases of mismatch, it also makes for better code on certain machines.
The default is to not promote prototypes.

[Target Hook]bool TARGET_PUSH_ARGUMENT (unsigned int npush)
This target hook returns true if push instructions will be used to pass outgoing
arguments. When the push instruction usage is optional, npush is nonzero to indicate
the number of bytes to push. Otherwise, npush is zero. If the target machine does
not have a push instruction or push instruction should be avoided, false should
be returned. That directs GCC to use an alternate strategy: to allocate the entire
argument block and then store the arguments into it. If this target hook may return
true, PUSH_ROUNDING must be defined.

[Macro]PUSH_ARGS_REVERSED
A C expression. If nonzero, function arguments will be evaluated from last to first,
rather than from first to last. If this macro is not defined, it defaults to PUSH_ARGS

on targets where the stack and args grow in opposite directions, and 0 otherwise.

588 GNU Compiler Collection (GCC) Internals

[Macro]PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the stack when an
instruction attempts to push npushed bytes.

On some machines, the definition

#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte actually
push two bytes in an attempt to maintain alignment. Then the definition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

If the value of this macro has a type, it should be an unsigned type.

[Macro]ACCUMULATE_OUTGOING_ARGS
A C expression. If nonzero, the maximum amount of space required for outgoing
arguments will be computed and placed into crtl->outgoing_args_size. No space
will be pushed onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount.

Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.

[Macro]REG_PARM_STACK_SPACE (fndecl)
Define this macro if functions should assume that stack space has been allocated for
arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed
in registers for the function represented by fndecl, which can be zero if GCC is calling
a library function. The argument fndecl can be the FUNCTION DECL, or the type
itself of the function.

This space can be allocated by the caller, or be a part of the machine-dependent stack
frame: OUTGOING_REG_PARM_STACK_SPACE says which.

[Macro]INCOMING_REG_PARM_STACK_SPACE (fndecl)
Like REG_PARM_STACK_SPACE, but for incoming register arguments. Define this macro
if space guaranteed when compiling a function body is different to space required when
making a call, a situation that can arise with K&R style function definitions.

[Macro]OUTGOING_REG_PARM_STACK_SPACE (fntype)
Define this to a nonzero value if it is the responsibility of the caller to allocate the area
reserved for arguments passed in registers when calling a function of fntype. fntype
may be NULL if the function called is a library function.

If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space for
these arguments counts in the value of crtl->outgoing_args_size.

[Macro]STACK_PARMS_IN_REG_PARM_AREA
Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parameters
don’t skip the area specified by it.

Normally, when a parameter is not passed in registers, it is placed on the stack beyond
the REG_PARM_STACK_SPACE area. Defining this macro suppresses this behavior and
causes the parameter to be passed on the stack in its natural location.

Chapter 17: Target Description Macros and Functions 589

[Target Hook]poly_int64 TARGET_RETURN_POPS_ARGS (tree fundecl, tree
funtype, poly_int64 size)

This target hook returns the number of bytes of its own arguments that a function
pops on returning, or 0 if the function pops no arguments and the caller must therefore
pop them all after the function returns.

fundecl is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_DECL that describes the declaration
of the function. From this you can obtain the DECL_ATTRIBUTES of the function.

funtype is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_TYPE that describes the data type
of the function. From this it is possible to obtain the data types of the value and
arguments (if known).

When a call to a library function is being considered, fundecl will contain an identifier
node for the library function. Thus, if you need to distinguish among various library
functions, you can do so by their names. Note that “library function” in this context
means a function used to perform arithmetic, whose name is known specially in the
compiler and was not mentioned in the C code being compiled.

size is the number of bytes of arguments passed on the stack. If a variable number of
bytes is passed, it is zero, and argument popping will always be the responsibility of
the calling function.

On the VAX, all functions always pop their arguments, so the definition of this macro
is size. On the 68000, using the standard calling convention, no functions pop their
arguments, so the value of the macro is always 0 in this case. But an alternative calling
convention is available in which functions that take a fixed number of arguments pop
them but other functions (such as printf) pop nothing (the caller pops all). When
this convention is in use, funtype is examined to determine whether a function takes
a fixed number of arguments.

[Macro]CALL_POPS_ARGS (cum)
A C expression that should indicate the number of bytes a call sequence pops off the
stack. It is added to the value of RETURN_POPS_ARGS when compiling a function call.

cum is the variable in which all arguments to the called function have been accumu-
lated.

On certain architectures, such as the SH5, a call trampoline is used that pops certain
registers off the stack, depending on the arguments that have been passed to the
function. Since this is a property of the call site, not of the called function, RETURN_
POPS_ARGS is not appropriate.

17.9.7 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are
passed in registers or how they are arranged in the stack.

[Target Hook]rtx TARGET_FUNCTION_ARG (cumulative_args_t ca, const
function_arg_info &arg)

Return an RTX indicating whether function argument arg is passed in a register and
if so, which register. Argument ca summarizes all the previous arguments.

590 GNU Compiler Collection (GCC) Internals

The return value is usually either a reg RTX for the hard register in which to pass
the argument, or zero to pass the argument on the stack.

The value of the expression can also be a parallel RTX. This is used when an
argument is passed in multiple locations. The mode of the parallel should be the
mode of the entire argument. The parallel holds any number of expr_list pairs;
each one describes where part of the argument is passed. In each expr_list the
first operand must be a reg RTX for the hard register in which to pass this part
of the argument, and the mode of the register RTX indicates how large this part of
the argument is. The second operand of the expr_list is a const_int which gives
the offset in bytes into the entire argument of where this part starts. As a special
exception the first expr_list in the parallel RTX may have a first operand of zero.
This indicates that the entire argument is also stored on the stack.

The last time this hook is called, it is called with MODE == VOIDmode, and its result is
passed to the call or call_value pattern as operands 2 and 3 respectively.

The usual way to make the ISO library stdarg.h work on a machine where some argu-
ments are usually passed in registers, is to cause nameless arguments to be passed on
the stack instead. This is done by making TARGET_FUNCTION_ARG return 0 whenever
named is false.

You may use the hook targetm.calls.must_pass_in_stack in the definition of this
macro to determine if this argument is of a type that must be passed in the stack.
If REG_PARM_STACK_SPACE is not defined and TARGET_FUNCTION_ARG returns nonzero
for such an argument, the compiler will abort. If REG_PARM_STACK_SPACE is defined,
the argument will be computed in the stack and then loaded into a register.

[Target Hook]bool TARGET_MUST_PASS_IN_STACK (const function_arg_info
&arg)

This target hook should return true if we should not pass arg solely in registers.
The file expr.h defines a definition that is usually appropriate, refer to expr.h for
additional documentation.

[Target Hook]rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t ca,
const function_arg_info &arg)

Define this hook if the caller and callee on the target have different views of where
arguments are passed. Also define this hook if there are functions that are never
directly called, but are invoked by the hardware and which have nonstandard calling
conventions.

In this case TARGET_FUNCTION_ARG computes the register in which the caller passes
the value, and TARGET_FUNCTION_INCOMING_ARG should be defined in a similar fashion
to tell the function being called where the arguments will arrive.

TARGET_FUNCTION_INCOMING_ARG can also return arbitrary address computation us-
ing hard register, which can be forced into a register, so that it can be used to pass
special arguments.

If TARGET_FUNCTION_INCOMING_ARG is not defined, TARGET_FUNCTION_ARG serves
both purposes.

Chapter 17: Target Description Macros and Functions 591

[Target Hook]bool TARGET_USE_PSEUDO_PIC_REG (void)
This hook should return 1 in case pseudo register should be created for
pic offset table rtx during function expand.

[Target Hook]void TARGET_INIT_PIC_REG (void)
Perform a target dependent initialization of pic offset table rtx. This hook is called
at the start of register allocation.

[Target Hook]int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t cum,
const function_arg_info &arg)

This target hook returns the number of bytes at the beginning of an argument that
must be put in registers. The value must be zero for arguments that are passed
entirely in registers or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers and par-
tially in memory. On these machines, typically the first few words of arguments are
passed in registers, and the rest on the stack. If a multi-word argument (a double

or a structure) crosses that boundary, its first few words must be passed in registers
and the rest must be pushed. This macro tells the compiler when this occurs, and
how many bytes should go in registers.

TARGET_FUNCTION_ARG for these arguments should return the first register to be used
by the caller for this argument; likewise TARGET_FUNCTION_INCOMING_ARG, for the
called function.

[Target Hook]bool TARGET_PASS_BY_REFERENCE (cumulative_args_t cum,
const function_arg_info &arg)

This target hook should return true if argument arg at the position indicated by
cum should be passed by reference. This predicate is queried after target independent
reasons for being passed by reference, such as TREE_ADDRESSABLE (arg.type).

If the hook returns true, a copy of that argument is made in memory and a pointer
to the argument is passed instead of the argument itself. The pointer is passed in
whatever way is appropriate for passing a pointer to that type.

[Target Hook]bool TARGET_CALLEE_COPIES (cumulative_args_t cum, const
function_arg_info &arg)

The function argument described by the parameters to this hook is known to be
passed by reference. The hook should return true if the function argument should be
copied by the callee instead of copied by the caller.

For any argument for which the hook returns true, if it can be determined that the
argument is not modified, then a copy need not be generated.

The default version of this hook always returns false.

[Macro]CUMULATIVE_ARGS
A C type for declaring a variable that is used as the first argument of TARGET_

FUNCTION_ARG and other related values. For some target machines, the type int

suffices and can hold the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that
have been passed on the stack. The compiler has other variables to keep track of that.

592 GNU Compiler Collection (GCC) Internals

For target machines on which all arguments are passed on the stack, there is no need
to store anything in CUMULATIVE_ARGS; however, the data structure must exist and
should not be empty, so use int.

[Macro]OVERRIDE_ABI_FORMAT (fndecl)
If defined, this macro is called before generating any code for a function, but after the
cfun descriptor for the function has been created. The back end may use this macro
to update cfun to reflect an ABI other than that which would normally be used by
default. If the compiler is generating code for a compiler-generated function, fndecl
may be NULL.

[Macro]INIT_CUMULATIVE_ARGS (cum, fntype, libname, fndecl,
n_named_args)

A C statement (sans semicolon) for initializing the variable cum for the state at the
beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value
of fntype is the tree node for the data type of the function which will receive the args,
or 0 if the args are to a compiler support library function. For direct calls that are not
libcalls, fndecl contain the declaration node of the function. fndecl is also set when
INIT_CUMULATIVE_ARGS is used to find arguments for the function being compiled.
n named args is set to the number of named arguments, including a structure return
address if it is passed as a parameter, when making a call. When processing incoming
arguments, n named args is set to −1.
When processing a call to a compiler support library function, libname identifies
which one. It is a symbol_ref rtx which contains the name of the function, as a
string. libname is 0 when an ordinary C function call is being processed. Thus, each
time this macro is called, either libname or fntype is nonzero, but never both of them
at once.

[Macro]INIT_CUMULATIVE_LIBCALL_ARGS (cum, mode, libname)
Like INIT_CUMULATIVE_ARGS but only used for outgoing libcalls, it gets a MODE argu-
ment instead of fntype, that would be NULL. indirect would always be zero, too. If
this macro is not defined, INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0) is
used instead.

[Macro]INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the argu-
ments for the function being compiled. If this macro is undefined, INIT_CUMULATIVE_
ARGS is used instead.

The value passed for libname is always 0, since library routines with special calling
conventions are never compiled with GCC. The argument libname exists for symme-
try with INIT_CUMULATIVE_ARGS.

[Target Hook]void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t ca,
const function_arg_info &arg)

This hook updates the summarizer variable pointed to by ca to advance past argument
arg in the argument list. Once this is done, the variable cum is suitable for analyzing
the following argument with TARGET_FUNCTION_ARG, etc.

Chapter 17: Target Description Macros and Functions 593

This hook need not do anything if the argument in question was passed on the stack.
The compiler knows how to track the amount of stack space used for arguments
without any special help.

[Target Hook]HOST_WIDE_INT TARGET_FUNCTION_ARG_OFFSET (machine_mode
mode, const_tree type)

This hook returns the number of bytes to add to the offset of an argument of type
type and mode mode when passed in memory. This is needed for the SPU, which
passes char and short arguments in the preferred slot that is in the middle of the
quad word instead of starting at the top. The default implementation returns 0.

[Target Hook]pad_direction TARGET_FUNCTION_ARG_PADDING (machine_mode
mode, const_tree type)

This hook determines whether, and in which direction, to pad out an argument of
mode mode and type type. It returns PAD_UPWARD to insert padding above the argu-
ment, PAD_DOWNWARD to insert padding below the argument, or PAD_NONE to inhibit
padding.

The amount of padding is not controlled by this hook, but by TARGET_FUNCTION_

ARG_ROUND_BOUNDARY. It is always just enough to reach the next multiple of that
boundary.

This hook has a default definition that is right for most systems. For little-endian
machines, the default is to pad upward. For big-endian machines, the default is to
pad downward for an argument of constant size shorter than an int, and upward
otherwise.

[Macro]PAD_VARARGS_DOWN
If defined, a C expression which determines whether the default implementation of
va arg will attempt to pad down before reading the next argument, if that argument
is smaller than its aligned space as controlled by PARM_BOUNDARY. If this macro is not
defined, all such arguments are padded down if BYTES_BIG_ENDIAN is true.

[Macro]BLOCK_REG_PADDING (mode, type, first)
Specify padding for the last element of a block move between registers and memory.
first is nonzero if this is the only element. Defining this macro allows better control of
register function parameters on big-endian machines, without using PARALLEL rtl. In
particular, MUST_PASS_IN_STACK need not test padding and mode of types in registers,
as there is no longer a "wrong" part of a register; For example, a three byte aggregate
may be passed in the high part of a register if so required.

[Target Hook]unsigned int TARGET_FUNCTION_ARG_BOUNDARY (machine_mode
mode, const_tree type)

This hook returns the alignment boundary, in bits, of an argument with the specified
mode and type. The default hook returns PARM_BOUNDARY for all arguments.

[Target Hook]unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY
(machine_mode mode, const_tree type)

Normally, the size of an argument is rounded up to PARM_BOUNDARY, which is the
default value for this hook. You can define this hook to return a different value if an
argument size must be rounded to a larger value.

594 GNU Compiler Collection (GCC) Internals

[Macro]FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which
function arguments are sometimes passed. This does not include implicit arguments
such as the static chain and the structure-value address. On many machines, no
registers can be used for this purpose since all function arguments are pushed on the
stack.

[Target Hook]bool TARGET_SPLIT_COMPLEX_ARG (const_tree type)
This hook should return true if parameter of type type are passed as two scalar
parameters. By default, GCC will attempt to pack complex arguments into the
target’s word size. Some ABIs require complex arguments to be split and treated
as their individual components. For example, on AIX64, complex floats should be
passed in a pair of floating point registers, even though a complex float would fit in
one 64-bit floating point register.

The default value of this hook is NULL, which is treated as always false.

[Target Hook]tree TARGET_BUILD_BUILTIN_VA_LIST (void)
This hook returns a type node for va_list for the target. The default version of the
hook returns void*.

[Target Hook]int TARGET_ENUM_VA_LIST_P (int idx, const char **pname,
tree *ptree)

This target hook is used in function c_common_nodes_and_builtins to iterate
through the target specific builtin types for va list. The variable idx is used as
iterator. pname has to be a pointer to a const char * and ptree a pointer to a tree

typed variable. The arguments pname and ptree are used to store the result of this
macro and are set to the name of the va list builtin type and its internal type. If
the return value of this macro is zero, then there is no more element. Otherwise the
IDX should be increased for the next call of this macro to iterate through all types.

[Target Hook]tree TARGET_FN_ABI_VA_LIST (tree fndecl)
This hook returns the va list type of the calling convention specified by fndecl. The
default version of this hook returns va_list_type_node.

[Target Hook]tree TARGET_CANONICAL_VA_LIST_TYPE (tree type)
This hook returns the va list type of the calling convention specified by the type of
type. If type is not a valid va list type, it returns NULL_TREE.

[Target Hook]tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree valist, tree
type, gimple_seq *pre_p, gimple_seq *post_p)

This hook performs target-specific gimplification of VA_ARG_EXPR. The first two
parameters correspond to the arguments to va_arg; the latter two are as in
gimplify.cc:gimplify_expr.

[Target Hook]bool TARGET_VALID_POINTER_MODE (scalar_int_mode mode)
Define this to return nonzero if the port can handle pointers with machine mode
mode. The default version of this hook returns true for both ptr_mode and Pmode.

Chapter 17: Target Description Macros and Functions 595

[Target Hook]bool TARGET_REF_MAY_ALIAS_ERRNO (ao_ref *ref)
Define this to return nonzero if the memory reference ref may alias with the system C
library errno location. The default version of this hook assumes the system C library
errno location is either a declaration of type int or accessed by dereferencing a pointer
to int.

[Target Hook]bool TARGET_MODE_CAN_TRANSFER_BITS (machine_mode mode)
Define this to return false if the mode mode cannot be used for memory copying
of GET_MODE_SIZE (mode) units. This might be because a register class allowed for
mode has registers that do not transparently transfer every bit pattern or because
the load or store patterns available for mode have this issue.

The default is to assume modes with the same precision as size are fine to be used.

[Target Hook]rtx TARGET_REDZONE_CLOBBER ()
Define this to return some RTL for the redzone asm clobber if target has a red zone
and wants to support the redzone clobber or return NULL if the clobber should be
ignored.

The default is to ignore the redzone clobber.

[Target Hook]machine_mode TARGET_TRANSLATE_MODE_ATTRIBUTE
(machine_mode mode)

Define this hook if during mode attribute processing, the port should translate ma-
chine mode mode to another mode. For example, rs6000’s KFmode, when it is the
same as TFmode.

The default version of the hook returns that mode that was passed in.

[Target Hook]bool TARGET_SCALAR_MODE_SUPPORTED_P (scalar_mode mode)
Define this to return nonzero if the port is prepared to handle insns involving scalar
mode mode. For a scalar mode to be considered supported, all the basic arithmetic
and comparisons must work.

The default version of this hook returns true for any mode required to handle the
basic C types (as defined by the port). Included here are the double-word arithmetic
supported by the code in optabs.cc.

[Target Hook]bool TARGET_VECTOR_MODE_SUPPORTED_P (machine_mode mode)
Define this to return nonzero if the current target is prepared to handle insns involving
vector mode mode. At the very least, it must have move patterns for this mode.

[Target Hook]bool TARGET_VECTOR_MODE_SUPPORTED_ANY_TARGET_P
(machine_mode mode)

Define this to return nonzero if the port is prepared to handle insns involving vector
mode mode in any target configuration. Returning true means that the mode can be
used as the ‘TYPE_MODE’ for vector types.

The default version of this hook returns true. The final mode assigned to ‘TYPE_MODE’
will also be checked against TARGET_VECTOR_MODE_SUPPORTED_P to take target con-
figuration into account.

596 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_COMPATIBLE_VECTOR_TYPES_P (const_tree
type1, const_tree type2)

Return true if there is no target-specific reason for treating vector types type1 and
type2 as distinct types. The caller has already checked for target-independent reasons,
meaning that the types are known to have the same mode, to have the same number
of elements, and to have what the caller considers to be compatible element types.

The main reason for defining this hook is to reject pairs of types that are handled
differently by the target’s calling convention. For example, when a new N -bit vector
architecture is added to a target, the target may want to handle normal N -bit VECTOR_
TYPE arguments and return values in the same way as before, to maintain backwards
compatibility. However, it may also provide new, architecture-specific VECTOR_TYPEs
that are passed and returned in a more efficient way. It is then important to maintain
a distinction between the “normal” VECTOR_TYPEs and the new architecture-specific
ones.

The default implementation returns true, which is correct for most targets.

[Target Hook]opt_machine_mode TARGET_ARRAY_MODE (machine_mode mode,
unsigned HOST_WIDE_INT nelems)

Return the mode that GCC should use for an array that has nelems elements, with
each element having mode mode. Return no mode if the target has no special re-
quirements. In the latter case, GCC looks for an integer mode of the appropriate size
if available and uses BLKmode otherwise. Usually the search for the integer mode is
limited to MAX_FIXED_MODE_SIZE, but the TARGET_ARRAY_MODE_SUPPORTED_P hook
allows a larger mode to be used in specific cases.

The main use of this hook is to specify that an array of vectors should also have a
vector mode. The default implementation returns no mode.

[Target Hook]bool TARGET_ARRAY_MODE_SUPPORTED_P (machine_mode mode,
unsigned HOST_WIDE_INT nelems)

Return true if GCC should try to use a scalar mode to store an array of nelems
elements, given that each element has mode mode. Returning true here overrides the
usual MAX_FIXED_MODE limit and allows GCC to use any defined integer mode.

One use of this hook is to support vector load and store operations that operate on
several homogeneous vectors. For example, ARM NEON has operations like:

int8x8x3_t vld3_s8 (const int8_t *)

where the return type is defined as:
typedef struct int8x8x3_t

{

int8x8_t val[3];

} int8x8x3_t;

If this hook allows val to have a scalar mode, then int8x8x3_t can have the same
mode. GCC can then store int8x8x3_ts in registers rather than forcing them onto
the stack.

[Target Hook]bool TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
(scalar_float_mode mode)

Define this to return nonzero if libgcc provides support for the floating-point mode
mode, which is known to pass TARGET_SCALAR_MODE_SUPPORTED_P. The default ver-

Chapter 17: Target Description Macros and Functions 597

sion of this hook returns true for all of SFmode, DFmode, XFmode and TFmode, if such
modes exist.

[Target Hook]opt_scalar_float_mode TARGET_FLOATN_MODE (int n, bool
extended)

Define this to return the machine mode to use for the type _Floatn, if extended is
false, or the type _Floatnx, if extended is true. If such a type is not supported,
return opt_scalar_float_mode (). The default version of this hook returns SFmode
for _Float32, DFmode for _Float64 and _Float32x and TFmode for _Float128, if
those modes exist and satisfy the requirements for those types and pass TARGET_

SCALAR_MODE_SUPPORTED_P and TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P; for
_Float64x, it returns the first of XFmode and TFmode that exists and satisfies the
same requirements; for other types, it returns opt_scalar_float_mode (). The hook
is only called for values of n and extended that are valid according to ISO/IEC TS
18661-3:2015; that is, n is one of 32, 64, 128, or, if extended is false, 16 or greater
than 128 and a multiple of 32.

[Target Hook]bool TARGET_FLOATN_BUILTIN_P (int func)
Define this to return true if the _Floatn and _Floatnx built-in functions should
implicitly enable the built-in function without the __builtin_ prefix in addition to
the normal built-in function with the __builtin_ prefix. The default is to only enable
built-in functions without the __builtin_ prefix for the GNU C langauge. In strict
ANSI/ISO mode, the built-in function without the __builtin_ prefix is not enabled.
The argument FUNC is the enum built_in_function id of the function to be enabled.

[Target Hook]bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
(machine_mode mode)

Define this to return nonzero for machine modes for which the port has small register
classes. If this target hook returns nonzero for a given mode, the compiler will try to
minimize the lifetime of registers in mode. The hook may be called with VOIDmode as
argument. In this case, the hook is expected to return nonzero if it returns nonzero
for any mode.

On some machines, it is risky to let hard registers live across arbitrary insns. Typically,
these machines have instructions that require values to be in specific registers (like
an accumulator), and reload will fail if the required hard register is used for another
purpose across such an insn.

Passes before reload do not know which hard registers will be used in an instruction,
but the machine modes of the registers set or used in the instruction are already
known. And for some machines, register classes are small for, say, integer registers but
not for floating point registers. For example, the AMD x86-64 architecture requires
specific registers for the legacy x86 integer instructions, but there are many SSE
registers for floating point operations. On such targets, a good strategy may be to
return nonzero from this hook for INTEGRAL_MODE_P machine modes but zero for the
SSE register classes.

The default version of this hook returns false for any mode. It is always safe to
redefine this hook to return with a nonzero value. But if you unnecessarily define it,
you will reduce the amount of optimizations that can be performed in some cases. If

598 GNU Compiler Collection (GCC) Internals

you do not define this hook to return a nonzero value when it is required, the compiler
will run out of spill registers and print a fatal error message.

17.9.8 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that can
fit in registers.

[Target Hook]rtx TARGET_FUNCTION_VALUE (const_tree ret_type,
const_tree fn_decl_or_type, bool outgoing)

Define this to return an RTX representing the place where a function returns
or receives a value of data type ret type, a tree node representing a data type.
fn decl or type is a tree node representing FUNCTION_DECL or FUNCTION_TYPE of a
function being called. If outgoing is false, the hook should compute the register in
which the caller will see the return value. Otherwise, the hook should return an
RTX representing the place where a function returns a value.

On many machines, only TYPE_MODE (ret_type) is relevant. (Actually, on most
machines, scalar values are returned in the same place regardless of mode.) The
value of the expression is usually a reg RTX for the hard register where the return
value is stored. The value can also be a parallel RTX, if the return value is in
multiple places. See TARGET_FUNCTION_ARG for an explanation of the parallel form.
Note that the callee will populate every location specified in the parallel, but if the
first element of the parallel contains the whole return value, callers will use that
element as the canonical location and ignore the others. The m68k port uses this
type of parallel to return pointers in both ‘%a0’ (the canonical location) and ‘%d0’.

If the precise function being called is known, func is a tree node (FUNCTION_DECL)
for it; otherwise, func is a null pointer. This makes it possible to use a different
value-returning convention for specific functions when all their calls are known.

Some target machines have “register windows” so that the register in which a function
returns its value is not the same as the one in which the caller sees the value. For
such machines, you should return different RTX depending on outgoing.

TARGET_FUNCTION_VALUE is not used for return values with aggregate data types, be-
cause these are returned in another way. See TARGET_STRUCT_VALUE_RTX and related
macros, below.

[Macro]FUNCTION_VALUE (valtype, func)
This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target
instead.

[Macro]LIBCALL_VALUE (mode)
A C expression to create an RTX representing the place where a library function
returns a value of mode mode.

Note that “library function” in this context means a compiler support routine, used
to perform arithmetic, whose name is known specially by the compiler and was not
mentioned in the C code being compiled.

Chapter 17: Target Description Macros and Functions 599

[Target Hook]rtx TARGET_LIBCALL_VALUE (machine_mode mode, const_rtx
fun)

Define this hook if the back-end needs to know the name of the libcall function in
order to determine where the result should be returned.

The mode of the result is given by mode and the name of the called library function
is given by fun. The hook should return an RTX representing the place where the
library function result will be returned.

If this hook is not defined, then LIBCALL VALUE will be used.

[Macro]FUNCTION_VALUE_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which the
values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair
(for a value of type double, say) need not be recognized by this macro. So for most
machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use
different registers for the return value, this macro should recognize only the caller’s
register numbers.

This macro has been deprecated. Use TARGET_FUNCTION_VALUE_REGNO_P for a new
target instead.

[Target Hook]bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int
regno)

A target hook that return true if regno is the number of a hard register in which the
values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair
(for a value of type double, say) need not be recognized by this target hook.

If the machine has register windows, so that the caller and the called function use
different registers for the return value, this target hook should recognize only the
caller’s register numbers.

If this hook is not defined, then FUNCTION VALUE REGNO P will be used.

[Macro]APPLY_RESULT_SIZE
Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space than
is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbitrary return
value.

[Target Hook]bool TARGET_OMIT_STRUCT_RETURN_REG
Normally, when a function returns a structure by memory, the address is passed as
an invisible pointer argument, but the compiler also arranges to return the address
from the function like it would a normal pointer return value. Define this to true if
that behavior is undesirable on your target.

[Target Hook]bool TARGET_RETURN_IN_MSB (const_tree type)
This hook should return true if values of type type are returned at the most significant
end of a register (in other words, if they are padded at the least significant end). You
can assume that type is returned in a register; the caller is required to check this.

600 GNU Compiler Collection (GCC) Internals

Note that the register provided by TARGET_FUNCTION_VALUE must be able to hold the
complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the
most significant end of a 4-byte register, TARGET_FUNCTION_VALUE should provide an
SImode rtx.

17.9.9 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not re-
turned according to TARGET_FUNCTION_VALUE (see Section 17.9.8 [Scalar Return], page 598).
Instead, the caller passes the address of a block of memory in which the value should be
stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

[Target Hook]bool TARGET_RETURN_IN_MEMORY (const_tree type,
const_tree fntype)

This target hook should return a nonzero value to say to return the function value
in memory, just as large structures are always returned. Here type will be the data
type of the value, and fntype will be the type of the function doing the returning, or
NULL for libcalls.

Note that values of mode BLKmode must be explicitly handled by this function. Also,
the option -fpcc-struct-return takes effect regardless of this macro. On most
systems, it is possible to leave the hook undefined; this causes a default definition to
be used, whose value is the constant 1 for BLKmode values, and 0 otherwise.

Do not use this hook to indicate that structures and unions should always be returned
in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to indicate this.

[Macro]DEFAULT_PCC_STRUCT_RETURN
Define this macro to be 1 if all structure and union return values must be in memory.
Since this results in slower code, this should be defined only if needed for compatibility
with other compilers or with an ABI. If you define this macro to be 0, then the
conventions used for structure and union return values are decided by the TARGET_

RETURN_IN_MEMORY target hook.

If not defined, this defaults to the value 1.

[Target Hook]rtx TARGET_STRUCT_VALUE_RTX (tree fndecl, int incoming)
This target hook should return the location of the structure value address (normally
a mem or reg), or 0 if the address is passed as an “invisible” first argument. Note that
fndecl may be NULL, for libcalls. You do not need to define this target hook if the
address is always passed as an “invisible” first argument.

On some architectures the place where the structure value address is found by the
called function is not the same place that the caller put it. This can be due to register
windows, or it could be because the function prologue moves it to a different place.
incoming is 1 or 2 when the location is needed in the context of the called function,
and 0 in the context of the caller.

If incoming is nonzero and the address is to be found on the stack, return a mem which
refers to the frame pointer. If incoming is 2, the result is being used to fetch the
structure value address at the beginning of a function. If you need to emit adjusting
code, you should do it at this point.

Chapter 17: Target Description Macros and Functions 601

[Macro]PCC_STATIC_STRUCT_RETURN
Define this macro if the usual system convention on the target machine for returning
structures and unions is for the called function to return the address of a static variable
containing the value.

Do not define this if the usual system convention is for the caller to pass an address
to the subroutine.

This macro has effect in -fpcc-struct-return mode, but it does nothing when you
use -freg-struct-return mode.

[Target Hook]fixed_size_mode TARGET_GET_RAW_RESULT_MODE (int regno)
This target hook returns the mode to be used when accessing raw return registers in
__builtin_return. Define this macro if the value in reg raw mode is not correct.
Use VOIDmode if a register should be ignored for __builtin_return purposes.

[Target Hook]fixed_size_mode TARGET_GET_RAW_ARG_MODE (int regno)
This target hook returns the mode to be used when accessing raw argument registers
in __builtin_apply_args. Define this macro if the value in reg raw mode is not
correct. Use VOIDmode if a register should be ignored for __builtin_apply_args

purposes.

[Target Hook]bool TARGET_EMPTY_RECORD_P (const_tree type)
This target hook returns true if the type is an empty record. The default is to return
false.

[Target Hook]void TARGET_WARN_PARAMETER_PASSING_ABI
(cumulative_args_t ca, tree type)

This target hook warns about the change in empty class parameter passing ABI.

17.9.10 Caller-Saves Register Allocation

If you enable it, GCC can save registers around function calls. This makes it possible to
use call-clobbered registers to hold variables that must live across calls.

[Macro]HARD_REGNO_CALLER_SAVE_MODE (regno, nregs)
A C expression specifying which mode is required for saving nregs of a pseudo-register
in call-clobbered hard register regno. If regno is unsuitable for caller save, VOIDmode
should be returned. For most machines this macro need not be defined since GCC
will select the smallest suitable mode.

17.9.11 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue)
code.

[Target Hook]void TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY (FILE
*file, unsigned HOST_WIDE_INT patch_area_size, bool record_p)

Generate a patchable area at the function start, consisting of patch area size NOP
instructions. If the target supports named sections and if record p is true, insert
a pointer to the current location in the table of patchable functions. The default
implementation of the hook places the table of pointers in the special section named
__patchable_function_entries.

602 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_ASM_FUNCTION_PROLOGUE (FILE *file)
If defined, a function that outputs the assembler code for entry to a function. The
prologue is responsible for setting up the stack frame, initializing the frame pointer
register, saving registers that must be saved, and allocating size additional bytes of
storage for the local variables. file is a stdio stream to which the assembler code
should be output.

The label for the beginning of the function need not be output by this macro. That
has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_

live: element r is nonzero if hard register r is used anywhere within the function.
This implies the function prologue should save register r, provided it is not one of the
call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use regs_ever_
live.)

On machines that have “register windows”, the function entry code does not save
on the stack the registers that are in the windows, even if they are supposed to be
preserved by function calls; instead it takes appropriate steps to “push” the register
stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry
code must vary accordingly; it must set up the frame pointer if one is wanted, and not
otherwise. To determine whether a frame pointer is in wanted, the macro can refer
to the variable frame_pointer_needed. The variable’s value will be 1 at run time in
a function that needs a frame pointer. See Section 17.9.5 [Elimination], page 586.

The function entry code is responsible for allocating any stack space required for the
function. This stack space consists of the regions listed below. In most cases, these
regions are allocated in the order listed, with the last listed region closest to the top
of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest
address if it is not defined). You can use a different order for a machine if doing so is
more convenient or required for compatibility reasons. Except in cases where required
by standard or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.

[Target Hook]void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *file)
If defined, a function that outputs assembler code at the end of a prologue. This
should be used when the function prologue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [prologue instruction pattern],
page 472.

[Target Hook]void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *file)
If defined, a function that outputs assembler code at the start of an epilogue. This
should be used when the function epilogue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [epilogue instruction pattern],
page 472.

[Target Hook]void TARGET_ASM_FUNCTION_EPILOGUE (FILE *file)
If defined, a function that outputs the assembler code for exit from a function. The
epilogue is responsible for restoring the saved registers and stack pointer to their
values when the function was called, and returning control to the caller. This macro

Chapter 17: Target Description Macros and Functions 603

takes the same argument as the macro TARGET_ASM_FUNCTION_PROLOGUE, and the
registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS

in the same way.

On some machines, there is a single instruction that does all the work of returning
from the function. On these machines, give that instruction the name ‘return’ and
do not define the macro TARGET_ASM_FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the TARGET_ASM_FUNCTION_

EPILOGUE to be used. If you want the target switches to control whether return
instructions or epilogues are used, define a ‘return’ pattern with a validity condi-
tion that tests the target switches appropriately. If the ‘return’ pattern’s validity
condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function exit
code must vary accordingly. Sometimes the code for these two cases is completely
different. To determine whether a frame pointer is wanted, the macro can refer to
the variable frame_pointer_needed. The variable’s value will be 1 when compiling
a function that needs a frame pointer.

Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE

must treat leaf functions specially. The C variable current_function_is_leaf is
nonzero for such a function. See Section 17.7.4 [Leaf Functions], page 562.

On some machines, some functions pop their arguments on exit while others leave
that for the caller to do. For example, the 68020 when given -mrtd pops arguments
in functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their
own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was decided.
The number of bytes of the current function’s arguments that this function should pop
is available in crtl->args.pops_args. See Section 17.9.8 [Scalar Return], page 598.

• A region of crtl->args.pretend_args_size bytes of uninitialized space just under-
neath the first argument arriving on the stack. (This may not be at the very start of
the allocated stack region if the calling sequence has pushed anything else since push-
ing the stack arguments. But usually, on such machines, nothing else has been pushed
yet, because the function prologue itself does all the pushing.) This region is used on
machines where an argument may be passed partly in registers and partly in memory,
and, in some cases to support the features in <stdarg.h>.

• An area of memory used to save certain registers used by the function. The size of this
area, which may also include space for such things as the return address and pointers
to previous stack frames, is machine-specific and usually depends on which registers
have been used in the function. Machines with register windows often do not require a
save area.

• A region of at least size bytes, possibly rounded up to an allocation boundary, to
contain the local variables of the function. On some machines, this region and the save
area may occur in the opposite order, with the save area closer to the top of the stack.

• Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of crtl->outgoing_
args_size bytes to be used for outgoing argument lists of the function. See Sec-
tion 17.9.6 [Stack Arguments], page 587.

604 GNU Compiler Collection (GCC) Internals

[Macro]EXIT_IGNORE_STACK
Define this macro as a C expression that is nonzero if the return instruction or the
function epilogue ignores the value of the stack pointer; in other words, if it is safe
to delete an instruction to adjust the stack pointer before a return from the function.
The default is 0.

Note that this macro’s value is relevant only for functions for which frame pointers
are maintained. It is never safe to delete a final stack adjustment in a function that
has no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

[Macro]EPILOGUE_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used by the
epilogue or the ‘return’ pattern. The stack and frame pointer registers are already
assumed to be used as needed.

[Macro]EH_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used by
the exception handling mechanism, and so should be considered live on entry to an
exception edge.

[Target Hook]void TARGET_ASM_OUTPUT_MI_THUNK (FILE *file, tree
thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT
vcall_offset, tree function)

A function that outputs the assembler code for a thunk function, used to implement
C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper
around a virtual function, adjusting the implicit object parameter before handing
control off to the real function.

First, emit code to add the integer delta to the location that contains the incoming
first argument. Assume that this argument contains a pointer, and is the one used
to pass the this pointer in C++. This is the incoming argument before the function
prologue, e.g. ‘%o0’ on a sparc. The addition must preserve the values of all other
incoming arguments.

Then, if vcall offset is nonzero, an additional adjustment should be made after adding
delta. In particular, if p is the adjusted pointer, the following adjustment should be
made:

p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]

After the additions, emit code to jump to function, which is a FUNCTION_DECL. This is
a direct pure jump, not a call, and does not touch the return address. Hence returning
from FUNCTION will return to whoever called the current ‘thunk’.

The effect must be as if function had been called directly with the adjusted first ar-
gument. This macro is responsible for emitting all of the code for a thunk function;
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are not in-
voked.

The thunk fndecl is redundant. (delta and function have already been extracted from
it.) It might possibly be useful on some targets, but probably not.

If you do not define this macro, the target-independent code in the C++ front end will
generate a less efficient heavyweight thunk that calls function instead of jumping to
it. The generic approach does not support varargs.

Chapter 17: Target Description Macros and Functions 605

[Target Hook]bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree
thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT
vcall_offset, const_tree function)

A function that returns true if TARGET ASM OUTPUT MI THUNK would be able
to output the assembler code for the thunk function specified by the arguments it is
passed, and false otherwise. In the latter case, the generic approach will be used by
the C++ front end, with the limitations previously exposed.

17.9.12 Generating Code for Profiling

These macros will help you generate code for profiling.

[Macro]FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code to call
the profiling subroutine mcount.

The details of how mcount expects to be called are determined by your operating
system environment, not by GCC. To figure them out, compile a small program for
profiling using the system’s installed C compiler and look at the assembler code that
results.

Older implementations of mcount expect the address of a counter variable to be loaded
into some register. The name of this variable is ‘LP’ followed by the number labelno,
so you would generate the name using ‘LP%d’ in a fprintf.

[Macro]PROFILE_HOOK
A C statement or compound statement to output to file some assembly code to call
the profiling subroutine mcount even the target does not support profiling.

[Macro]NO_PROFILE_COUNTERS
Define this macro to be an expression with a nonzero value if the mcount subroutine
on your system does not need a counter variable allocated for each function. This is
true for almost all modern implementations. If you define this macro, you must not
use the labelno argument to FUNCTION_PROFILER.

[Macro]PROFILE_BEFORE_PROLOGUE
Define this macro if the code for function profiling should come before the function
prologue. Normally, the profiling code comes after.

[Target Hook]bool TARGET_KEEP_LEAF_WHEN_PROFILED (void)
This target hook returns true if the target wants the leaf flag for the current function
to stay true even if it calls mcount. This might make sense for targets using the leaf
flag only to determine whether a stack frame needs to be generated or not and for
which the call to mcount is generated before the function prologue.

17.9.13 Permitting tail calls

[Target Hook]bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree decl, tree
exp)

True if it is OK to do sibling call optimization for the specified call expression exp.
decl will be the called function, or NULL if this is an indirect call.

606 GNU Compiler Collection (GCC) Internals

It is not uncommon for limitations of calling conventions to prevent tail calls to
functions outside the current unit of translation, or during PIC compilation. The
hook is used to enforce these restrictions, as the sibcall md pattern cannot fail, or
fall over to a “normal” call. The criteria for successful sibling call optimization may
vary greatly between different architectures.

[Target Hook]void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap regs)
Add any hard registers to regs that are live on entry to the function. This
hook only needs to be defined to provide registers that cannot be found
by examination of FUNCTION ARG REGNO P, the callee saved registers,
STATIC CHAIN INCOMING REGNUM, STATIC CHAIN REGNUM, TAR-
GET STRUCT VALUE RTX, FRAME POINTER REGNUM, EH USES,
FRAME POINTER REGNUM, ARG POINTER REGNUM, and the
PIC OFFSET TABLE REGNUM.

[Target Hook]void TARGET_SET_UP_BY_PROLOGUE (struct
hard_reg_set_container *)

This hook should add additional registers that are computed by the prologue to the
hard regset for shrink-wrapping optimization purposes.

[Target Hook]bool TARGET_WARN_FUNC_RETURN (tree)
True if a function’s return statements should be checked for matching the function’s
return type. This includes checking for falling off the end of a non-void function.
Return false if no such check should be made.

17.9.14 Shrink-wrapping separate components

The prologue may perform a variety of target dependent tasks such as saving callee-saved
registers, saving the return address, aligning the stack, creating a stack frame, initializing
the PIC register, setting up the static chain, etc.

On some targets some of these tasks may be independent of others and thus may be
shrink-wrapped separately. These independent tasks are referred to as components and are
handled generically by the target independent parts of GCC.

Using the following hooks those prologue or epilogue components can be shrink-wrapped
separately, so that the initialization (and possibly teardown) those components do is not
done as frequently on execution paths where this would unnecessary.

What exactly those components are is up to the target code; the generic code treats them
abstractly, as a bit in an sbitmap. These sbitmaps are allocated by the shrink_wrap.get_
separate_components and shrink_wrap.components_for_bb hooks, and deallocated by
the generic code.

[Target Hook]sbitmap TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
(void)

This hook should return an sbitmap with the bits set for those components that can
be separately shrink-wrapped in the current function. Return NULL if the current
function should not get any separate shrink-wrapping. Don’t define this hook if it
would always return NULL. If it is defined, the other hooks in this group have to be
defined as well.

Chapter 17: Target Description Macros and Functions 607

[Target Hook]sbitmap TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
(basic_block)

This hook should return an sbitmap with the bits set for those components where
either the prologue component has to be executed before the basic_block, or the
epilogue component after it, or both.

[Target Hook]void TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS (sbitmap
components, edge e, sbitmap edge_components, bool
is_prologue)

This hook should clear the bits in the components bitmap for those components in
edge components that the target cannot handle on edge e, where is prologue says if
this is for a prologue or an epilogue instead.

[Target Hook]void TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
(sbitmap)

Emit prologue insns for the components indicated by the parameter.

[Target Hook]void TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
(sbitmap)

Emit epilogue insns for the components indicated by the parameter.

[Target Hook]void TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS (sbitmap)
Mark the components in the parameter as handled, so that the prologue and
epilogue named patterns know to ignore those components. The target code should
not hang on to the sbitmap, it will be deleted after this call.

17.9.15 Stack smashing protection

[Target Hook]tree TARGET_STACK_PROTECT_GUARD (void)
This hook returns a DECL node for the external variable to use for the stack protection
guard. This variable is initialized by the runtime to some random value and is used
to initialize the guard value that is placed at the top of the local stack frame. The
type of this variable must be ptr_type_node.

The default version of this hook creates a variable called ‘__stack_chk_guard’, which
is normally defined in libgcc2.c.

[Target Hook]tree TARGET_STACK_PROTECT_FAIL (void)
This hook returns a CALL_EXPR that alerts the runtime that the stack protect guard
variable has been modified. This expression should involve a call to a noreturn

function.

The default version of this hook invokes a function called ‘__stack_chk_fail’, taking
no arguments. This function is normally defined in libgcc2.c.

[Target Hook]bool TARGET_STACK_PROTECT_RUNTIME_ENABLED_P (void)
Returns true if the target wants GCC’s default stack protect runtime support, oth-
erwise return false. The default implementation always returns true.

608 GNU Compiler Collection (GCC) Internals

[Common Target Hook]bool TARGET_SUPPORTS_SPLIT_STACK (bool report,
struct gcc_options *opts)

Whether this target supports splitting the stack when the options described in opts
have been passed. This is called after options have been parsed, so the target may
reject splitting the stack in some configurations. The default version of this hook
returns false. If report is true, this function may issue a warning or error; if report is
false, it must simply return a value

[Common Target Hook]vec<const char *> TARGET_GET_VALID_OPTION_VALUES
(int option_code, const char *prefix)

The hook is used for options that have a non-trivial list of possible option values.
OPTION CODE is option code of opt code enum type. PREFIX is used for bash
completion and allows an implementation to return more specific completion based
on the prefix. All string values should be allocated from heap memory and consumers
should release them. The result will be pruned to cases with PREFIX if not NULL.

17.9.16 Miscellaneous register hooks

[Target Hook]bool TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
Set to true if each call that binds to a local definition explicitly clobbers or sets
all non-fixed registers modified by performing the call. That is, by the call pat-
tern itself, or by code that might be inserted by the linker (e.g. stubs, veneers,
branch islands), but not including those modifiable by the callee. The affected reg-
isters may be mentioned explicitly in the call pattern, or included as clobbers in
CALL INSN FUNCTION USAGE. The default version of this hook is set to false.
The purpose of this hook is to enable the fipa-ra optimization.

17.10 Implementing the Varargs Macros

GCC comes with an implementation of <varargs.h> and <stdarg.h> that work without
change on machines that pass arguments on the stack. Other machines require their own
implementations of varargs, and the two machine independent header files must have con-
ditionals to include it.

ISO <stdarg.h> differs from traditional <varargs.h>mainly in the calling convention for
va_start. The traditional implementation takes just one argument, which is the variable
in which to store the argument pointer. The ISO implementation of va_start takes an
additional second argument. The user is supposed to write the last named argument of the
function here.

However, va_start should not use this argument. The way to find the end of the named
arguments is with the built-in functions described below.

[Macro]__builtin_saveregs ()
Use this built-in function to save the argument registers in memory so that the varargs
mechanism can access them. Both ISO and traditional versions of va_start must use
__builtin_saveregs, unless you use TARGET_SETUP_INCOMING_VARARGS (see below)
instead.

Chapter 17: Target Description Macros and Functions 609

On some machines, __builtin_saveregs is open-coded under the control of the tar-
get hook TARGET_EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine
written in assembler language, found in libgcc2.c.

Code generated for the call to __builtin_saveregs appears at the beginning of the
function, as opposed to where the call to __builtin_saveregs is written, regardless
of what the code is. This is because the registers must be saved before the function
starts to use them for its own purposes.

[Macro]__builtin_next_arg (lastarg)
This builtin returns the address of the first anonymous stack argument, as type void
*. If ARGS_GROW_DOWNWARD, it returns the address of the location above the first
anonymous stack argument. Use it in va_start to initialize the pointer for fetching
arguments from the stack. Also use it in va_start to verify that the second parameter
lastarg is the last named argument of the current function.

[Macro]__builtin_classify_type (object)
Since each machine has its own conventions for which data types are passed in which
kind of register, your implementation of va_arg has to embody these conventions.
The easiest way to categorize the specified data type is to use __builtin_classify_
type together with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering only its data type.
It returns an integer describing what kind of type that is—integer, floating, pointer,
structure, and so on.

The file typeclass.h defines an enumeration that you can use to interpret the values
of __builtin_classify_type.

These machine description macros help implement varargs:

[Target Hook]rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void)
If defined, this hook produces the machine-specific code for a call to __builtin_

saveregs. This code will be moved to the very beginning of the function, before any
parameter access are made. The return value of this function should be an RTX that
contains the value to use as the return of __builtin_saveregs.

[Target Hook]void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t
args_so_far, const function_arg_info &arg, int
*pretend_args_size, int second_time)

This target hook offers an alternative to using __builtin_saveregs and defining the
hook TARGET_EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have been passed con-
secutively on the stack. Once this is done, you can use the standard implementation
of varargs that works for machines that pass all their arguments on the stack.

The argument args so far points to the CUMULATIVE_ARGS data structure, containing
the values that are obtained after processing the named arguments. The argument
arg describes the last of these named arguments. The argument arg should not be
used if the function type satisfies TYPE_NO_NAMED_ARGS_STDARG_P, since in that case
there are no named arguments and all arguments are accessed with va_arg.

610 GNU Compiler Collection (GCC) Internals

The target hook should do two things: first, push onto the stack all the argument
registers not used for the named arguments, and second, store the size of the data
thus pushed into the int-valued variable pointed to by pretend args size. The value
that you store here will serve as additional offset for setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile time
without knowing their data types, TARGET_SETUP_INCOMING_VARARGS is only useful
on machines that have just a single category of argument register and use it uniformly
for all data types.

If the argument second time is nonzero, it means that the arguments of the function
are being analyzed for the second time. This happens for an inline function, which
is not actually compiled until the end of the source file. The hook TARGET_SETUP_

INCOMING_VARARGS should not generate any instructions in this case.

[Target Hook]bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t
ca)

Define this hook to return true if the location where a function argument is passed
depends on whether or not it is a named argument.

This hook controls how the named argument to TARGET_FUNCTION_ARG is set for
varargs and stdarg functions. If this hook returns true, the named argument is always
true for named arguments, and false for unnamed arguments. If it returns false,
but TARGET_PRETEND_OUTGOING_VARARGS_NAMED returns true, then all arguments
are treated as named. Otherwise, all named arguments except the last are treated as
named.

You need not define this hook if it always returns false.

[Target Hook]int TARGET_CALL_OFFSET_RETURN_LABEL (rtx_insn
*call_insn)

While generating call-site debug info for a CALL insn, or a SEQUENCE insn starting
with a CALL, this target hook is invoked to compute the offset to be added to the
debug label emitted after the call to obtain the return address that should be recorded
as the return PC.

[Target Hook]void TARGET_START_CALL_ARGS (cumulative_args_t
complete_args)

This target hook is invoked while generating RTL for a function call, after the ar-
gument values have been computed, and after stack arguments have been initialized,
but before register arguments have been moved into their ABI-defined hard register
locations. It precedes calls to the related hooks TARGET_CALL_ARGS and TARGET_END_

CALL_ARGS. The significance of this position in the call expansion is that:

• No argument registers are live.

• Although a call sequence can in general involve subcalls (such as using memcpy to
copy large arguments), no such subcall will occur between the call to this hook
and the generation of the main call instruction.

The single argument complete args is the state of the target function’s cumulative
argument information after the final call to TARGET_FUNCTION_ARG.

Chapter 17: Target Description Macros and Functions 611

The hook can be used for things like switching processor mode, in cases where different
calls need different processor modes. Most ports do not need to implement anything
for this hook.

[Target Hook]void TARGET_CALL_ARGS (cumulative_args_t complete_args,
rtx loc, tree type)

While generating RTL for a function call, this target hook is invoked once for each
argument passed to the function, either a register returned by TARGET_FUNCTION_ARG

or a memory location. It is called just before the point where argument registers are
stored.

complete args is the state of the target function’s cumulative argument information
after the final call to TARGET_FUNCTION_ARG. loc is the location of the argument.
type is the type of the function being called, or NULL_TREE for libcalls.

For functions without arguments, the hook is called once with pc_rtx passed instead
of an argument register.

This functionality can be used to perform special setup of call argument registers, if
a target needs it. Most ports do not need to implement anything for this hook.

[Target Hook]void TARGET_END_CALL_ARGS (cumulative_args_t
complete_args)

This target hook is invoked while generating RTL for a function call, just after the
point where the return reg is copied into a pseudo. It signals that all the call argument
and return registers for the just emitted call are now no longer in use. complete args
is the state of the target function’s cumulative argument information after the final
call to TARGET_FUNCTION_ARG.

Most ports do not need to implement anything for this hook.

[Target Hook]bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED
(cumulative_args_t ca)

If you need to conditionally change ABIs so that one works with TARGET_SETUP_

INCOMING_VARARGS, but the other works like neither TARGET_SETUP_INCOMING_

VARARGS nor TARGET_STRICT_ARGUMENT_NAMING was defined, then define this hook
to return true if TARGET_SETUP_INCOMING_VARARGS is used, false otherwise.
Otherwise, you should not define this hook.

17.11 Support for Nested Functions

Taking the address of a nested function requires special compiler handling to ensure that
the static chain register is loaded when the function is invoked via an indirect call.

GCC has traditionally supported nested functions by creating an executable trampoline
at run time when the address of a nested function is taken. This is a small piece of code
which normally resides on the stack, in the stack frame of the containing function. The
trampoline loads the static chain register and then jumps to the real address of the nested
function.

The use of trampolines requires an executable stack, which is a security risk. To avoid
this problem, GCC also supports another strategy: using descriptors for nested functions.

612 GNU Compiler Collection (GCC) Internals

Under this model, taking the address of a nested function results in a pointer to a non-
executable function descriptor object. Initializing the static chain from the descriptor is
handled at indirect call sites.

On some targets, including HPPA and IA-64, function descriptors may be mandated
by the ABI or be otherwise handled in a target-specific way by the back end in its code
generation strategy for indirect calls. GCC also provides its own generic descriptor im-
plementation to support the -fno-trampolines option. In this case runtime detection of
function descriptors at indirect call sites relies on descriptor pointers being tagged with a
bit that is never set in bare function addresses. Since GCC’s generic function descriptors
are not ABI-compliant, this option is typically used only on a per-language basis (notably
by Ada) or when it can otherwise be applied to the whole program.

For languages other than Ada, the -ftrampolines and -fno-trampolines options cur-
rently have no effect, and trampolines are always generated on platforms that need them
for nested functions.

Define the following hook if your backend either implements ABI-specified descriptor
support, or can use GCC’s generic descriptor implementation for nested functions.

[Target Hook]int TARGET_CUSTOM_FUNCTION_DESCRIPTORS
If the target can use GCC’s generic descriptor mechanism for nested functions, define
this hook to a power of 2 representing an unused bit in function pointers which can be
used to differentiate descriptors at run time. This value gives the number of bytes by
which descriptor pointers are misaligned compared to function pointers. For example,
on targets that require functions to be aligned to a 4-byte boundary, a value of either 1
or 2 is appropriate unless the architecture already reserves the bit for another purpose,
such as on ARM.

Define this hook to 0 if the target implements ABI support for function descriptors
in its standard calling sequence, like for example HPPA or IA-64.

Using descriptors for nested functions eliminates the need for trampolines that reside
on the stack and require it to be made executable.

The following macros tell GCC how to generate code to allocate and initialize an exe-
cutable trampoline. You can also use this interface if your back end needs to create ABI-
specified non-executable descriptors; in this case the "trampoline" created is the descriptor
containing data only.

The instructions in an executable trampoline must do two things: load a constant address
into the static chain register, and jump to the real address of the nested function. On CISC
machines such as the m68k, this requires two instructions, a move immediate and a jump.
Then the two addresses exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in two parts. Then pieces
of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static
chain value and the function address—into the immediate operands of the instructions. On
a CISC machine, this is simply a matter of copying each address to a memory reference at
the proper offset from the start of the trampoline. On a RISC machine, it may be necessary
to take out pieces of the address and store them separately.

Chapter 17: Target Description Macros and Functions 613

[Target Hook]void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *f)
This hook is called by assemble_trampoline_template to output, on the stream f,
assembler code for a block of data that contains the constant parts of a trampoline.
This code should not include a label—the label is taken care of automatically.

If you do not define this hook, it means no template is needed for the target. Do not
define this hook on systems where the block move code to copy the trampoline into
place would be larger than the code to generate it on the spot.

[Macro]TRAMPOLINE_SECTION
Return the section into which the trampoline template is to be placed (see Sec-
tion 17.20 [Sections], page 647). The default value is readonly_data_section.

[Macro]TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an integer.

[Macro]TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.

If you don’t define this macro, the value of FUNCTION_ALIGNMENT is used for aligning
trampolines.

[Target Hook]void TARGET_TRAMPOLINE_INIT (rtx m_tramp, tree fndecl,
rtx static_chain)

This hook is called to initialize a trampoline. m tramp is an RTX for the mem-
ory block for the trampoline; fndecl is the FUNCTION_DECL for the nested function;
static chain is an RTX for the static chain value that should be passed to the function
when it is called.

If the target defines TARGET_ASM_TRAMPOLINE_TEMPLATE, then the first thing this
hook should do is emit a block move into m tramp from the memory block returned
by assemble_trampoline_template. Note that the block move need only cover the
constant parts of the trampoline. If the target isolates the variable parts of the
trampoline to the end, not all TRAMPOLINE_SIZE bytes need be copied.

If the target requires any other actions, such as flushing caches (possibly calling
function maybe emit call builtin clear cache) or enabling stack execution, these
actions should be performed after initializing the trampoline proper.

[Target Hook]void TARGET_EMIT_CALL_BUILTIN___CLEAR_CACHE (rtx begin,
rtx end)

On targets that do not define a clear_cache insn expander, but that define the
CLEAR_CACHE_INSNmacro, maybe emit call builtin clear cache relies on this target
hook to clear an address range in the instruction cache.

The default implementation calls the __clear_cache builtin, taking the assembler
name from the builtin declaration. Overriding definitions may call alternate functions,
with alternate calling conventions, or emit alternate RTX to perform the job.

[Target Hook]rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx addr)
This hook should perform any machine-specific adjustment in the address of the
trampoline. Its argument contains the address of the memory block that was passed
to TARGET_TRAMPOLINE_INIT. In case the address to be used for a function call should

614 GNU Compiler Collection (GCC) Internals

be different from the address at which the template was stored, the different address
should be returned; otherwise addr should be returned unchanged. If this hook is not
defined, addr will be used for function calls.

Implementing trampolines is difficult on many machines because they have separate in-
struction and data caches. Writing into a stack location fails to clear the memory in the
instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having
them jump to a standard subroutine. The former technique makes trampoline execution
faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following macro.

[Macro]CLEAR_INSN_CACHE (beg, end)
If defined, expands to a C expression clearing the instruction cache in the specified
interval. The definition of this macro would typically be a series of asm statements.
Both beg and end are pointer expressions.

To use a standard subroutine, define the following macro. In addition, you must make
sure that the instructions in a trampoline fill an entire cache line with identical instructions,
or else ensure that the beginning of the trampoline code is always aligned at the same point
in its cache line. Look in m68k.h as a guide.

[Macro]TRANSFER_FROM_TRAMPOLINE
Define this macro if trampolines need a special subroutine to do their work. The
macro should expand to a series of asm statements which will be compiled with GCC.
They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function
when you jump to the subroutine, you can do so by placing a special label of your
own in the assembler code. Use one asm statement to generate an assembler label,
and another to make the label global. Then trampolines can use that label to jump
directly to your special assembler code.

17.12 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

[Macro]DECLARE_LIBRARY_RENAMES
This macro, if defined, should expand to a piece of C code that will get expanded
when compiling functions for libgcc.a. It can be used to provide alternate names for
GCC’s internal library functions if there are ABI-mandated names that the compiler
should provide.

[Target Hook]void TARGET_INIT_LIBFUNCS (void)
This hook should declare additional library routines or rename existing ones, using the
functions set_optab_libfunc and init_one_libfunc defined in optabs.cc. init_
optabs calls this macro after initializing all the normal library routines.

The default is to do nothing. Most ports don’t need to define this hook.

Chapter 17: Target Description Macros and Functions 615

[Target Hook]bool TARGET_LIBFUNC_GNU_PREFIX
If false (the default), internal library routines start with two underscores. If set to
true, these routines start with __gnu_ instead. E.g., __muldi3 changes to __gnu_

muldi3. This currently only affects functions defined in libgcc2.c. If this is set to
true, the tm.h file must also #define LIBGCC2_GNU_PREFIX.

[Macro]FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
This macro should return true if the library routine that implements the floating
point comparison operator comparison in mode mode will return a boolean, and false
if it will return a tristate.

GCC’s own floating point libraries return tristates from the comparison operators, so
the default returns false always. Most ports don’t need to define this macro.

[Macro]TARGET_LIB_INT_CMP_BIASED
This macro should evaluate to true if the integer comparison functions (like __

cmpdi2) return 0 to indicate that the first operand is smaller than the second, 1
to indicate that they are equal, and 2 to indicate that the first operand is greater
than the second. If this macro evaluates to false the comparison functions return
−1, 0, and 1 instead of 0, 1, and 2. If the target uses the routines in libgcc.a, you
do not need to define this macro.

[Macro]TARGET_HAS_NO_HW_DIVIDE
This macro should be defined if the target has no hardware divide instructions. If
this macro is defined, GCC will use an algorithm which make use of simple logical
and arithmetic operations for 64-bit division. If the macro is not defined, GCC will
use an algorithm which make use of a 64-bit by 32-bit divide primitive.

[Macro]TARGET_EDOM
The value of EDOM on the target machine, as a C integer constant expression. If you
don’t define this macro, GCC does not attempt to deposit the value of EDOM into
errno directly. Look in /usr/include/errno.h to find the value of EDOM on your
system.

If you do not define TARGET_EDOM, then compiled code reports domain errors by
calling the library function and letting it report the error. If mathematical functions
on your system use matherr when there is an error, then you should leave TARGET_

EDOM undefined so that matherr is used normally.

[Macro]GEN_ERRNO_RTX
Define this macro as a C expression to create an rtl expression that refers to the
global “variable” errno. (On certain systems, errno may not actually be a variable.)
If you don’t define this macro, a reasonable default is used.

[Target Hook]bool TARGET_LIBC_HAS_FUNCTION (enum function_class
fn_class, tree type)

This hook determines whether a function from a class of functions fn class is present
in the target C library. If type is NULL, the caller asks for support for all standard
(float, double, long double) types. If type is non-NULL, the caller asks for support
for a specific type.

616 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_LIBC_HAS_FAST_FUNCTION (int fcode)
This hook determines whether a function from a class of functions (enum function_

class)fcode has a fast implementation.

[Target Hook]unsigned TARGET_FORTIFY_SOURCE_DEFAULT_LEVEL (void)
This hook determines what value FORTIFY SOURCE will be set to when using the
command-line option -fhardened.

[Target Hook]unsigned TARGET_LIBM_FUNCTION_MAX_ERROR (unsigned cfn,
machine_mode mode, bool boundary_p)

This hook determines expected maximum errors for math functions measured in ulps
(units of the last place). 0 means 0.5ulps precision (correctly rounded). ~0U means
unknown errors. The combined_fn cfn argument should identify just which math
built-in function it is rather than its variant, mode the variant in terms of floating-
point machine mode. The hook should also take into account flag_rounding_math
whether it is maximum error just in default rounding mode, or in all possible rounding
modes. boundary p is true for maximum errors on intrinsic math boundaries of
functions rather than errors inside of the usual result ranges of the functions. E.g.
the sin/cos function finite result is in between -1.0 and 1.0 inclusive, with boundary p
true the function returns how many ulps below or above those boundaries result could
be.

[Macro]NEXT_OBJC_RUNTIME
Set this macro to 1 to use the "NeXT" Objective-C message sending conventions
by default. This calling convention involves passing the object, the selector and
the method arguments all at once to the method-lookup library function. This is
the usual setting when targeting Darwin / macOS systems, which have the NeXT
runtime installed.

If the macro is set to 0, the "GNU" Objective-C message sending convention will
be used by default. This convention passes just the object and the selector to the
method-lookup function, which returns a pointer to the method.

In either case, it remains possible to select code-generation for the alternate scheme,
by means of compiler command line switches.

17.13 Addressing Modes

This is about addressing modes.

[Macro]HAVE_PRE_INCREMENT
[Macro]HAVE_PRE_DECREMENT
[Macro]HAVE_POST_INCREMENT
[Macro]HAVE_POST_DECREMENT

A C expression that is nonzero if the machine supports pre-increment, pre-decrement,
post-increment, or post-decrement addressing respectively.

[Macro]HAVE_PRE_MODIFY_DISP
[Macro]HAVE_POST_MODIFY_DISP

A C expression that is nonzero if the machine supports pre- or post-address side-effect
generation involving constants other than the size of the memory operand.

Chapter 17: Target Description Macros and Functions 617

[Macro]HAVE_PRE_MODIFY_REG
[Macro]HAVE_POST_MODIFY_REG

A C expression that is nonzero if the machine supports pre- or post-address side-effect
generation involving a register displacement.

[Macro]CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a valid address.
On most machines the default definition of (CONSTANT_P (x) && GET_CODE (x) !=

CONST_DOUBLE) is acceptable, but a few machines are more restrictive as to which
constant addresses are supported.

[Macro]CONSTANT_P (x)
CONSTANT_P, which is defined by target-independent code, accepts integer-values ex-
pressions whose values are not explicitly known, such as symbol_ref, label_ref,
and high expressions and const arithmetic expressions, in addition to const_int

and const_double expressions.

[Macro]MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum number
that TARGET_LEGITIMATE_ADDRESS_P would ever accept.

[Target Hook]bool TARGET_LEGITIMATE_ADDRESS_P (machine_mode mode,
rtx x, bool strict, code_helper ch)

A function that returns whether x (an RTX) is a legitimate memory address on the
target machine for a memory operand of mode mode. If ch is not ERROR_MARK, it can
be called from middle-end to determine if it is valid to use x as a memory operand
for RTX insn which is generated for the given code helper ch. For example, assuming
the given ch is IFN LEN LOAD, on some target its underlying hardware instructions
support fewer addressing modes than what are for the normal vector load and store,
then with this ch target can know the actual use context and return more exact result.

Legitimate addresses are defined in two variants: a strict variant and a non-strict one.
The strict parameter chooses which variant is desired by the caller.

The strict variant is used in the reload pass. It must be defined so that any pseudo-
register that has not been allocated a hard register is considered a memory reference.
This is because in contexts where some kind of register is required, a pseudo-register
with no hard register must be rejected. For non-hard registers, the strict variant
should look up the reg_renumber array; it should then proceed using the hard register
number in the array, or treat the pseudo as a memory reference if the array holds -1.

The non-strict variant is used in other passes. It must be defined to accept all pseudo-
registers in every context where some kind of register is required.

Normally, constant addresses which are the sum of a symbol_ref and an integer are
stored inside a const RTX to mark them as constant. Therefore, there is no need to
recognize such sums specifically as legitimate addresses. Normally you would simply
recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are
not marked with const. It assumes that a naked plus indicates indexing. If so, then

618 GNU Compiler Collection (GCC) Internals

you must reject such naked constant sums as illegitimate addresses, so that none of
them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the section
that the address refers to. On these machines, define the target hook TARGET_ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check for it
here. When you see a const, you will have to look inside it to find the symbol_ref

in order to determine the section. See Section 17.22 [Assembler Format], page 653.

Some ports are still using a deprecated legacy substitute for this hook, the GO_IF_

LEGITIMATE_ADDRESS macro. This macro has this syntax:

#define GO_IF_LEGITIMATE_ADDRESS (mode, x, label)

and should goto label if the address x is a valid address on the target machine for
a memory operand of mode mode.

Compiler source files that want to use the strict variant of this macro define the macro
REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to define the
strict variant in that case and the non-strict variant otherwise.

Using the hook is usually simpler because it limits the number of files that are re-
compiled when changes are made.

[Macro]TARGET_MEM_CONSTRAINT
A single character to be used instead of the default 'm' character for general memory
addresses. This defines the constraint letter which matches the memory addresses
accepted by TARGET_LEGITIMATE_ADDRESS_P. Define this macro if you want to sup-
port new address formats in your back end without changing the semantics of the
'm' constraint. This is necessary in order to preserve functionality of inline assembly
constructs using the 'm' constraint.

[Macro]FIND_BASE_TERM (x)
A C expression to determine the base term of address x, or to provide a simplified
version of x from which alias.cc can easily find the base term. This macro is used
in only two places: find_base_value and find_base_term in alias.cc.

It is always safe for this macro to not be defined. It exists so that alias analysis can
understand machine-dependent addresses.

The typical use of this macro is to handle addresses containing a label ref or sym-
bol ref within an UNSPEC.

[Target Hook]rtx TARGET_LEGITIMIZE_ADDRESS (rtx x, rtx oldx,
machine_mode mode)

This hook is given an invalid memory address x for an operand of mode mode and
should try to return a valid memory address.

x will always be the result of a call to break_out_memory_refs, and oldx will be the
operand that was given to that function to produce x.

The code of the hook should not alter the substructure of x. If it transforms x into
a more legitimate form, it should return the new x.

It is not necessary for this hook to come up with a legitimate address, with the
exception of native TLS addresses (see Section 17.27 [Emulated TLS], page 693). The

Chapter 17: Target Description Macros and Functions 619

compiler has standard ways of doing so in all cases. In fact, if the target supports
only emulated TLS, it is safe to omit this hook or make it return x if it cannot find
a valid way to legitimize the address. But often a machine-dependent strategy can
generate better code.

[Macro]LEGITIMIZE_RELOAD_ADDRESS (x, mode, opnum, type, ind_levels, win)
A C compound statement that attempts to replace x, which is an address that needs
reloading, with a valid memory address for an operand of mode mode. win will be a
C statement label elsewhere in the code. It is not necessary to define this macro, but
it might be useful for performance reasons.

For example, on the i386, it is sometimes possible to use a single reload register instead
of two by reloading a sum of two pseudo registers into a register. On the other hand,
for number of RISC processors offsets are limited so that often an intermediate address
needs to be generated in order to address a stack slot. By defining LEGITIMIZE_

RELOAD_ADDRESS appropriately, the intermediate addresses generated for adjacent
some stack slots can be made identical, and thus be shared.

Note: This macro should be used with caution. It is necessary to know something
of how reload works in order to effectively use this, and it is quite easy to produce
macros that build in too much knowledge of reload internals.

Note: This macro must be able to reload an address created by a previous invocation
of this macro. If it fails to handle such addresses then the compiler may generate
incorrect code or abort.

The macro definition should use push_reload to indicate parts that need reloading;
opnum, type and ind levels are usually suitable to be passed unaltered to push_

reload.

The code generated by this macro must not alter the substructure of x. If it transforms
x into a more legitimate form, it should assign x (which will always be a C variable)
a new value. This also applies to parts that you change indirectly by calling push_

reload.

The macro definition may use strict_memory_address_p to test if the address has
become legitimate.

If you want to change only a part of x, one standard way of doing this is to use
copy_rtx. Note, however, that it unshares only a single level of rtl. Thus, if the
part to be changed is not at the top level, you’ll need to replace first the top level.
It is not necessary for this macro to come up with a legitimate address; but often a
machine-dependent strategy can generate better code.

[Target Hook]bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx addr,
addr_space_t addrspace)

This hook returns true if memory address addr in address space addrspace can have
different meanings depending on the machine mode of the memory reference it is used
for or if the address is valid for some modes but not others.

Autoincrement and autodecrement addresses typically have mode-dependent effects
because the amount of the increment or decrement is the size of the operand be-
ing addressed. Some machines have other mode-dependent addresses. Many RISC
machines have no mode-dependent addresses.

620 GNU Compiler Collection (GCC) Internals

You may assume that addr is a valid address for the machine.

The default version of this hook returns false.

[Target Hook]bool TARGET_LEGITIMATE_CONSTANT_P (machine_mode mode,
rtx x)

This hook returns true if x is a legitimate constant for a mode-mode immediate
operand on the target machine. You can assume that x satisfies CONSTANT_P, so you
need not check this.

The default definition returns true.

[Target Hook]bool TARGET_PRECOMPUTE_TLS_P (machine_mode mode, rtx x)
This hook returns true if x is a TLS operand on the target machine that should be
pre-computed when used as the argument in a call. You can assume that x satisfies
CONSTANT_P, so you need not check this.

The default definition returns false.

[Target Hook]rtx TARGET_DELEGITIMIZE_ADDRESS (rtx x)
This hook is used to undo the possibly obfuscating effects of the LEGITIMIZE_ADDRESS
and LEGITIMIZE_RELOAD_ADDRESS target macros. Some backend implementations
of these macros wrap symbol references inside an UNSPEC rtx to represent PIC or
similar addressing modes. This target hook allows GCC’s optimizers to understand
the semantics of these opaque UNSPECs by converting them back into their original
form.

[Target Hook]bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx x)
This hook should return true if x should not be emitted into debug sections.

[Target Hook]bool TARGET_CANNOT_FORCE_CONST_MEM (machine_mode mode,
rtx x)

This hook should return true if x is of a form that cannot (or should not) be spilled
to the constant pool. mode is the mode of x.

The default version of this hook returns false.

The primary reason to define this hook is to prevent reload from deciding that a
non-legitimate constant would be better reloaded from the constant pool instead of
spilling and reloading a register holding the constant. This restriction is often true of
addresses of TLS symbols for various targets.

[Target Hook]bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (machine_mode
mode, const_rtx x)

This hook should return true if pool entries for constant x can be placed in an object_

block structure. mode is the mode of x.

The default version returns false for all constants.

[Target Hook]bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree decl)
This hook should return true if pool entries for decl should be placed in an object_

block structure.

The default version returns true for all decls.

Chapter 17: Target Description Macros and Functions 621

[Target Hook]tree TARGET_BUILTIN_RECIPROCAL (tree fndecl)
This hook should return the DECL of a function that implements the reciprocal of
the machine-specific builtin function fndecl, or NULL_TREE if such a function is not
available.

17.14 Vectorization

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void)
This hook should return the DECL of a function f that given an address addr as an
argument returns a mask m that can be used to extract from two vectors the relevant
data that resides in addr in case addr is not properly aligned.

The autovectorizer, when vectorizing a load operation from an address addr that may
be unaligned, will generate two vector loads from the two aligned addresses around
addr. It then generates a REALIGN_LOAD operation to extract the relevant data from
the two loaded vectors. The first two arguments to REALIGN_LOAD, v1 and v2, are
the two vectors, each of size VS, and the third argument, OFF, defines how the data
will be extracted from these two vectors: if OFF is 0, then the returned vector is
v2; otherwise, the returned vector is composed from the last VS-OFF elements of v1
concatenated to the first OFF elements of v2.

If this hook is defined, the autovectorizer will generate a call to f (using the DECL
tree that this hook returns) and will use the return value of f as the argument OFF
to REALIGN_LOAD. Therefore, the mask m returned by f should comply with the
semantics expected by REALIGN_LOAD described above. If this hook is not defined,
then addr will be used as the argument OFF to REALIGN_LOAD, in which case the low
log2(VS) − 1 bits of addr will be considered.

[Target Hook]int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum
vect_cost_for_stmt type_of_cost, tree vectype, int misalign)

Returns cost of different scalar or vector statements for vectorization cost model. For
vector memory operations the cost may depend on type (vectype) and misalignment
value (misalign).

[Target Hook]poly_uint64 TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT
(const_tree type)

This hook returns the preferred alignment in bits for accesses to vectors of type type
in vectorized code. This might be less than or greater than the ABI-defined value
returned by TARGET_VECTOR_ALIGNMENT. It can be equal to the alignment of a single
element, in which case the vectorizer will not try to optimize for alignment.

The default hook returns TYPE_ALIGN (type), which is correct for most targets.

[Target Hook]bool TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
(const_tree type, bool is_packed)

Return true if vector alignment is reachable (by peeling N iterations) for the given
scalar type type. is packed is false if the scalar access using type is known to be
naturally aligned.

622 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_VECTORIZE_VEC_PERM_CONST (machine_mode
mode, machine_mode op_mode, rtx output, rtx in0, rtx in1,
const vec_perm_indices &sel)

This hook is used to test whether the target can permute up to two vectors of mode
op mode using the permutation vector sel, producing a vector of mode mode. The
hook is also used to emit such a permutation.

When the hook is being used to test whether the target supports a permutation, in0,
in1, and out are all null. When the hook is being used to emit a permutation, in0
and in1 are the source vectors of mode op mode and out is the destination vector
of mode mode. in1 is the same as in0 if sel describes a permutation on one vector
instead of two.

Return true if the operation is possible, emitting instructions for it if rtxes are pro-
vided.

If the hook returns false for a mode with multibyte elements, GCC will try the
equivalent byte operation. If that also fails, it will try forcing the selector into a
register and using the vec permmode instruction pattern. There is no need for the
hook to handle these two implementation approaches itself.

[Target Hook]bool TARGET_VECTORIZE_PREFERRED_DIV_AS_SHIFTS_OVER_MULT
(const_tree type)

Sometimes it is possible to implement a vector division using a sequence of two
addition-shift pairs, giving four instructions in total. Return true if taking this ap-
proach for vectype is likely to be better than using a sequence involving highpart
multiplication. Default is false if can_mult_highpart_p, otherwise true.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
(unsigned code, tree vec_type_out, tree vec_type_in)

This hook should return the decl of a function that implements the vectorized variant
of the function with the combined_fn code code or NULL_TREE if such a function
is not available. The return type of the vectorized function shall be of vector type
vec type out and the argument types should be vec type in.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION
(tree fndecl, tree vec_type_out, tree vec_type_in)

This hook should return the decl of a function that implements the vectorized variant
of target built-in function fndecl. The return type of the vectorized function shall
be of vector type vec type out and the argument types should be vec type in.

[Target Hook]bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
(machine_mode mode, int misalignment, bool is_packed, bool
is_gather_scatter)

This hook should return true if the target supports misaligned vector store/load of a
specific factor denoted in the misalignment parameter. The vector store/load should
be of machine mode mode. The is packed parameter is true if the original memory
access is not naturally aligned. is gather scatter is true if the load/store is a gather
or scatter. In that case misalignment denotes the misalignment of mode’s element
mode.

Chapter 17: Target Description Macros and Functions 623

[Target Hook]machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE
(scalar_mode mode)

This hook should return the preferred mode for vectorizing scalar mode mode. The
default is equal to word_mode, because the vectorizer can do some transformations
even in absence of specialized SIMD hardware.

[Target Hook]machine_mode TARGET_VECTORIZE_SPLIT_REDUCTION
(machine_mode)

This hook should return the preferred mode to split the final reduction step on mode
to. The reduction is then carried out reducing upper against lower halves of vectors
recursively until the specified mode is reached. The default is mode which means no
splitting.

[Target Hook]unsigned int
TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES (vector_modes
*modes, bool all)

If using the mode returned by TARGET_VECTORIZE_PREFERRED_SIMD_MODE is not the
only approach worth considering, this hook should add one mode to modes for each
useful alternative approach. These modes are then passed to TARGET_VECTORIZE_

RELATED_MODE to obtain the vector mode for a given element mode.

The modes returned in modes should use the smallest element mode possible for the
vectorization approach that they represent, preferring integer modes over floating-
poing modes in the event of a tie. The first mode should be the TARGET_VECTORIZE_
PREFERRED_SIMD_MODE for its element mode.

If all is true, add suitable vector modes even when they are generally not expected to
be worthwhile.

The hook returns a bitmask of flags that control how the modes in modes are used.
The flags are:

VECT_COMPARE_COSTS

Tells the loop vectorizer to try all the provided modes and pick the one
with the lowest cost. By default the vectorizer will choose the first mode
that works.

The hook does not need to do anything if the vector returned by TARGET_VECTORIZE_

PREFERRED_SIMD_MODE is the only one relevant for autovectorization. The default
implementation adds no modes and returns 0.

[Target Hook]opt_machine_mode TARGET_VECTORIZE_RELATED_MODE
(machine_mode vector_mode, scalar_mode element_mode,
poly_uint64 nunits)

If a piece of code is using vector mode vector mode and also wants to operate on ele-
ments of mode element mode, return the vector mode it should use for those elements.
If nunits is nonzero, ensure that the mode has exactly nunits elements, otherwise pick
whichever vector size pairs the most naturally with vector mode. Return an empty
opt_machine_mode if there is no supported vector mode with the required properties.

There is no prescribed way of handling the case in which nunits is zero. One common
choice is to pick a vector mode with the same size as vector mode; this is the natural

624 GNU Compiler Collection (GCC) Internals

choice if the target has a fixed vector size. Another option is to choose a vector mode
with the same number of elements as vector mode; this is the natural choice if the
target has a fixed number of elements. Alternatively, the hook might choose a middle
ground, such as trying to keep the number of elements as similar as possible while
applying maximum and minimum vector sizes.

The default implementation uses mode_for_vector to find the requested mode, re-
turning a mode with the same size as vector mode when nunits is zero. This is the
correct behavior for most targets.

[Target Hook]opt_machine_mode TARGET_VECTORIZE_GET_MASK_MODE
(machine_mode mode)

Return the mode to use for a vector mask that holds one boolean result for each
element of vector mode mode. The returned mask mode can be a vector of integers
(class MODE_VECTOR_INT), a vector of booleans (class MODE_VECTOR_BOOL) or a scalar
integer (class MODE_INT). Return an empty opt_machine_mode if no such mask mode
exists.

The default implementation returns a MODE_VECTOR_INT with the same size and num-
ber of elements as mode, if such a mode exists.

[Target Hook]bool
TARGET_VECTORIZE_CONDITIONAL_OPERATION_IS_EXPENSIVE (unsigned
ifn)

This hook returns true if masked operation ifn (really of type internal_fn) should
be considered more expensive to use than implementing the same operation without
masking. GCC can then try to use unconditional operations instead with extra selects.

[Target Hook]bool TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE (unsigned
ifn)

This hook returns true if masked internal function ifn (really of type internal_fn)
should be considered expensive when the mask is all zeros. GCC can then try to
branch around the instruction instead.

[Target Hook]class vector_costs * TARGET_VECTORIZE_CREATE_COSTS
(vec_info *vinfo, bool costing_for_scalar)

This hook should initialize target-specific data structures in preparation for modeling
the costs of vectorizing a loop or basic block. The default allocates three unsigned
integers for accumulating costs for the prologue, body, and epilogue of the loop or
basic block. If loop info is non-NULL, it identifies the loop being vectorized; otherwise
a single block is being vectorized. If costing for scalar is true, it indicates the current
cost model is for the scalar version of a loop or block; otherwise it is for the vector
version.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree
mem_vectype, const_tree index_type, int scale)

Target builtin that implements vector gather operation. mem vectype is the vector
type of the load and index type is scalar type of the index, scaled by scale. The
default is NULL_TREE which means to not vectorize gather loads.

Chapter 17: Target Description Macros and Functions 625

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_SCATTER (const_tree
vectype, const_tree index_type, int scale)

Target builtin that implements vector scatter operation. vectype is the vector type
of the store and index type is scalar type of the index, scaled by scale. The default
is NULL_TREE which means to not vectorize scatter stores.

[Target Hook]bool TARGET_VECTORIZE_PREFER_GATHER_SCATTER
(machine_mode mode, int scale, unsigned int group_size)

This hook returns TRUE if gather loads or scatter stores are cheaper on this target
than a sequence of elementwise loads or stores. The mode and scale correspond to
the gather_load and scatter_store instruction patterns. The group size is the
number of scalar elements in each scalar loop iteration that are to be combined into
the vector.

17.15 OpenMP and OpenACC

[Target Hook]int TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN
(struct cgraph_node *, struct cgraph_simd_clone *, tree, int,
bool)

This hook should set vecsize mangle, vecsize int, vecsize float fields in simd clone
structure pointed by clone info argument and also simdlen field if it was previously 0.
vecsize mangle is a marker for the backend only. vecsize int and vecsize float should
be left zero on targets where the number of lanes is not determined by the bitsize
(in which case simdlen is always used). The hook should return 0 if SIMD clones
shouldn’t be emitted, or number of vecsize mangle variants that should be emitted.

[Target Hook]void TARGET_SIMD_CLONE_ADJUST (struct cgraph_node *)
This hook should add implicit attribute(target("...")) attribute to SIMD clone
node if needed.

[Target Hook]int TARGET_SIMD_CLONE_USABLE (struct cgraph_node *,
machine_mode)

This hook should return -1 if SIMD clone node shouldn’t be used in vectorized loops
in current function with vector mode, or non-negative number if it is usable. In that
case, the smaller the number is, the more desirable it is to use it.

[Target Hook]int TARGET_SIMT_VF (void)
Return number of threads in SIMT thread group on the target.

[Target Hook]int TARGET_OMP_DEVICE_KIND_ARCH_ISA (enum
omp_device_kind_arch_isa trait, const char *name)

Return 1 if trait name is present in the OpenMP context’s device trait set, return 0 if
not present in any OpenMP context in the whole translation unit, or -1 if not present
in the current OpenMP context but might be present in another OpenMP context in
the same TU.

[Target Hook]bool TARGET_GOACC_VALIDATE_DIMS (tree decl, int *dims,
int fn_level, unsigned used)

This hook should check the launch dimensions provided for an OpenACC compute
region, or routine. Defaulted values are represented as -1 and non-constant values as

626 GNU Compiler Collection (GCC) Internals

0. The fn level is negative for the function corresponding to the compute region. For
a routine it is the outermost level at which partitioned execution may be spawned.
The hook should verify non-default values. If DECL is NULL, global defaults are
being validated and unspecified defaults should be filled in. Diagnostics should be
issued as appropriate. Return true, if changes have been made. You must override
this hook to provide dimensions larger than 1.

[Target Hook]int TARGET_GOACC_DIM_LIMIT (int axis)
This hook should return the maximum size of a particular dimension, or zero if
unbounded.

[Target Hook]bool TARGET_GOACC_FORK_JOIN (gcall *call, const int
*dims, bool is_fork)

This hook can be used to convert IFN GOACC FORK and IFN GOACC JOIN func-
tion calls to target-specific gimple, or indicate whether they should be retained. It is
executed during the oacc device lower pass. It should return true, if the call should
be retained. It should return false, if it is to be deleted (either because target-specific
gimple has been inserted before it, or there is no need for it). The default hook returns
false, if there are no RTL expanders for them.

[Target Hook]void TARGET_GOACC_REDUCTION (gcall *call)
This hook is used by the oacc transform pass to expand calls to the
GOACC REDUCTION internal function, into a sequence of gimple instructions.
call is gimple statement containing the call to the function. This hook removes
statement call after the expanded sequence has been inserted. This hook is also
responsible for allocating any storage for reductions when necessary.

[Target Hook]tree TARGET_PREFERRED_ELSE_VALUE (unsigned ifn, tree
type, unsigned nops, tree *ops)

This hook returns the target’s preferred final argument for a call to conditional inter-
nal function ifn (really of type internal_fn). type specifies the return type of the
function and ops are the operands to the conditional operation, of which there are
nops.

For example, if ifn is IFN_COND_ADD, the hook returns a value of type type that should
be used when ‘ops[0]’ and ‘ops[1]’ are conditionally added together.

This hook is only relevant if the target supports conditional patterns like cond_addm.
The default implementation returns a zero constant of type type.

[Target Hook]bool TARGET_INSTRUCTION_SELECTION (function *fun,
gimple_stmt_iterator *gsi)

This hook allows a target to perform custom instruction selection for an instruction or
sequence of instructions before expand to allow expansion to generate more efficient
code.

fun is the current function being considered and gsi is the iterator pointing to the
current instruction being optimized. The default implementation does not do any
rewriting and returns false. The result of the function should be whether any changes
were made to the CFG or not. If a change was made then the gsi should be left at
the same position as at the function start. The caller is allowed to change the CFG
at any point before the current statement gsi is pointing to but not afterwards.

Chapter 17: Target Description Macros and Functions 627

[Target Hook]tree TARGET_GOACC_ADJUST_PRIVATE_DECL (location_t loc,
tree var, int level)

This hook, if defined, is used by accelerator target back-ends to adjust OpenACC
variable declarations that should be made private to the given parallelism level (i.e.
GOMP_DIM_GANG, GOMP_DIM_WORKER or GOMP_DIM_VECTOR). A typical use for this hook
is to force variable declarations at the gang level to reside in GPU shared memory.
loc may be used for diagnostic purposes.

You may also use the TARGET_GOACC_EXPAND_VAR_DECL hook if the adjusted variable
declaration needs to be expanded to RTL in a non-standard way.

[Target Hook]rtx TARGET_GOACC_EXPAND_VAR_DECL (tree var)
This hook, if defined, is used by accelerator target back-ends to expand specially han-
dled kinds of VAR_DECL expressions. A particular use is to place variables with specific
attributes inside special accelarator memories. A return value of NULL indicates that
the target does not handle this VAR_DECL, and normal RTL expanding is resumed.

Only define this hook if your accelerator target needs to expand certain VAR_DECL

nodes in a way that differs from the default. You can also adjust private variables
at OpenACC device-lowering time using the TARGET_GOACC_ADJUST_PRIVATE_DECL

target hook.

[Target Hook]tree TARGET_GOACC_CREATE_WORKER_BROADCAST_RECORD (tree
rec, bool sender, const char *name, unsigned HOST_WIDE_INT
offset)

Create a record used to propagate local-variable state from an active worker to other
workers. A possible implementation might adjust the type of REC to place the new
variable in shared GPU memory.

Presence of this target hook indicates that middle end neutering/broadcasting be
used.

[Target Hook]void TARGET_GOACC_SHARED_MEM_LAYOUT (unsigned
HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, int[], unsigned
HOST_WIDE_INT[], unsigned HOST_WIDE_INT[])

Lay out a fixed shared-memory region on the target. The LO and HI arguments
should be set to a range of addresses that can be used for worker broadcasting. The
dimensions, reduction size and gang-private size arguments are for the current offload
region.

17.16 Anchored Addresses

GCC usually addresses every static object as a separate entity. For example, if we have:
static int a, b, c;

int foo (void) { return a + b + c; }

the code for foo will usually calculate three separate symbolic addresses: those of a, b
and c. On some targets, it would be better to calculate just one symbolic address and access
the three variables relative to it. The equivalent pseudocode would be something like:

int foo (void)

{

register int *xr = &x;

628 GNU Compiler Collection (GCC) Internals

return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}

(which isn’t valid C). We refer to shared addresses like x as “section anchors”. Their use
is controlled by -fsection-anchors.

The hooks below describe the target properties that GCC needs to know in order to
make effective use of section anchors. It won’t use section anchors at all unless either
TARGET_MIN_ANCHOR_OFFSET or TARGET_MAX_ANCHOR_OFFSET is set to a nonzero value.

[Target Hook]HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET
The minimum offset that should be applied to a section anchor. On most targets, it
should be the smallest offset that can be applied to a base register while still giving
a legitimate address for every mode. The default value is 0.

[Target Hook]HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET
Like TARGET_MIN_ANCHOR_OFFSET, but the maximum (inclusive) offset that should be
applied to section anchors. The default value is 0.

[Target Hook]void TARGET_ASM_OUTPUT_ANCHOR (rtx x)
Write the assembly code to define section anchor x, which is a SYMBOL_REF for which
‘SYMBOL_REF_ANCHOR_P (x)’ is true. The hook is called with the assembly output
position set to the beginning of SYMBOL_REF_BLOCK (x).

If ASM_OUTPUT_DEF is available, the hook’s default definition uses it to define the sym-
bol as ‘. + SYMBOL_REF_BLOCK_OFFSET (x)’. If ASM_OUTPUT_DEF is not available, the
hook’s default definition is NULL, which disables the use of section anchors altogether.

[Target Hook]bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx x)
Return true if GCC should attempt to use anchors to access SYMBOL_REF x. You can
assume ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’ and ‘!SYMBOL_REF_ANCHOR_P (x)’.

The default version is correct for most targets, but you might need to intercept this
hook to handle things like target-specific attributes or target-specific sections.

17.17 Condition Code Status

Condition codes in GCC are represented as registers, which provides better schedulability
for architectures that do have a condition code register, but on which most instructions do
not affect it. The latter category includes most RISC machines.

Implicit clobbering would pose a strong restriction on the placement of the definition
and use of the condition code. In the past the definition and use were always adjacent.
However, recent changes to support trapping arithmetic may result in the definition and
user being in different blocks. Thus, there may be a NOTE_INSN_BASIC_BLOCK between
them. Additionally, the definition may be the source of exception handling edges.

These restrictions can prevent important optimizations on some machines. For example,
on the IBM RS/6000, there is a delay for taken branches unless the condition code register is
set three instructions earlier than the conditional branch. The instruction scheduler cannot
perform this optimization if it is not permitted to separate the definition and use of the
condition code register.

If there is a specific condition code register in the machine, use a hard register. If the
condition code or comparison result can be placed in any general register, or if there are

Chapter 17: Target Description Macros and Functions 629

multiple condition registers, use a pseudo register. Registers used to store the condition
code value will usually have a mode that is in class MODE_CC.

Alternatively, you can use BImode if the comparison operator is specified already in the
compare instruction. In this case, you are not interested in most macros in this section.

17.17.1 Representation of condition codes using registers

[Macro]SELECT_CC_MODE (op, x, y)
On many machines, the condition code may be produced by other instructions than
compares, for example the branch can use directly the condition code set by a subtract
instruction. However, on some machines when the condition code is set this way
some bits (such as the overflow bit) are not set in the same way as a test instruction,
so that a different branch instruction must be used for some conditional branches.
When this happens, use the machine mode of the condition code register to record
different formats of the condition code register. Modes can also be used to record
which compare instruction (e.g. a signed or an unsigned comparison) produced the
condition codes.

If other modes than CCmode are required, add them to machine-modes.def and define
SELECT_CC_MODE to choose a mode given an operand of a compare. This is needed
because the modes have to be chosen not only during RTL generation but also, for
example, by instruction combination. The result of SELECT_CC_MODE should be con-
sistent with the mode used in the patterns; for example to support the case of the
add on the SPARC discussed above, we have the pattern

(define_insn ""

[(set (reg:CCNZ 0)

(compare:CCNZ

(plus:SI (match_operand:SI 0 "register_operand" "%r")

(match_operand:SI 1 "arith_operand" "rI"))

(const_int 0)))]

""

"...")

together with a SELECT_CC_MODE that returns CCNZmode for comparisons whose argu-
ment is a plus:

#define SELECT_CC_MODE(OP,X,Y) \

(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \

? ((OP == LT || OP == LE || OP == GT || OP == GE) \

? CCFPEmode : CCFPmode) \

: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \

|| GET_CODE (X) == NEG || GET_CODE (x) == ASHIFT) \

? CCNZmode : CCmode))

Another reason to use modes is to retain information on which operands were used
by the comparison; see REVERSIBLE_CC_MODE later in this section.

You should define this macro if and only if you define extra CC modes in machine-

modes.def.

[Target Hook]void TARGET_CANONICALIZE_COMPARISON (int *code, rtx
*op0, rtx *op1, bool op0_preserve_value)

On some machines not all possible comparisons are defined, but you can convert an
invalid comparison into a valid one. For example, the Alpha does not have a GT

630 GNU Compiler Collection (GCC) Internals

comparison, but you can use an LT comparison instead and swap the order of the
operands.

On such machines, implement this hook to do any required conversions. code is
the initial comparison code and op0 and op1 are the left and right operands of the
comparison, respectively. If op0 preserve value is true the implementation is not
allowed to change the value of op0 since the value might be used in RTXs which
aren’t comparisons. E.g. the implementation is not allowed to swap operands in that
case.

GCC will not assume that the comparison resulting from this macro is valid but will
see if the resulting insn matches a pattern in the md file.

You need not to implement this hook if it would never change the comparison code
or operands.

[Macro]REVERSIBLE_CC_MODE (mode)
A C expression whose value is one if it is always safe to reverse a comparison whose
mode ismode. If SELECT_CC_MODE can ever returnmode for a floating-point inequality
comparison, then REVERSIBLE_CC_MODE (mode) must be zero.

You need not define this macro if it would always returns zero or if the floating-
point format is anything other than IEEE_FLOAT_FORMAT. For example, here is the
definition used on the SPARC, where floating-point inequality comparisons are given
either CCFPEmode or CCFPmode:

#define REVERSIBLE_CC_MODE(MODE) \

((MODE) != CCFPEmode && (MODE) != CCFPmode)

[Macro]REVERSE_CONDITION (code, mode)
A C expression whose value is reversed condition code of the code for comparison
done in CC MODE mode. The macro is used only in case REVERSIBLE_CC_MODE

(mode) is nonzero. Define this macro in case machine has some non-standard way
how to reverse certain conditionals. For instance in case all floating point conditions
are non-trapping, compiler may freely convert unordered compares to ordered ones.
Then definition may look like:

#define REVERSE_CONDITION(CODE, MODE) \

((MODE) != CCFPmode ? reverse_condition (CODE) \

: reverse_condition_maybe_unordered (CODE))

[Target Hook]bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int
*p1, unsigned int *p2)

On targets which use a hard register rather than a pseudo-register to hold condition
codes, the regular CSE passes are often not able to identify cases in which the hard
register is set to a common value. Use this hook to enable a small pass which optimizes
such cases. This hook should return true to enable this pass, and it should set the
integers to which its arguments point to the hard register numbers used for condition
codes. When there is only one such register, as is true on most systems, the integer
pointed to by p2 should be set to INVALID_REGNUM.

The default version of this hook returns false.

Chapter 17: Target Description Macros and Functions 631

[Target Hook]machine_mode TARGET_CC_MODES_COMPATIBLE (machine_mode
m1, machine_mode m2)

On targets which use multiple condition code modes in class MODE_CC, it is sometimes
the case that a comparison can be validly done in more than one mode. On such a
system, define this target hook to take two mode arguments and to return a mode
in which both comparisons may be validly done. If there is no such mode, return
VOIDmode.

The default version of this hook checks whether the modes are the same. If they are,
it returns that mode. If they are different, it returns VOIDmode.

[Target Hook]unsigned int TARGET_FLAGS_REGNUM
If the target has a dedicated flags register, and it needs to use the post-reload com-
parison elimination pass, or the delay slot filler pass, then this value should be set
appropriately.

17.18 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

[Macro]REGISTER_MOVE_COST (mode, from, to)
A C expression for the cost of moving data of mode mode from a register in class
from to one in class to. The classes are expressed using the enumeration values such
as GENERAL_REGS. A value of 2 is the default; other values are interpreted relative to
that.

It is not required that the cost always equal 2 when from is the same as to; on some
machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if
REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not
check to ensure that the constraints of the insn are met. Setting a cost of other than
2 will allow reload to verify that the constraints are met. You should do this if the
‘movm’ pattern’s constraints do not allow such copying.

These macros are obsolete, new ports should use the target hook TARGET_REGISTER_

MOVE_COST instead.

[Target Hook]int TARGET_REGISTER_MOVE_COST (machine_mode mode,
reg_class_t from, reg_class_t to)

This target hook should return the cost of moving data of mode mode from a register
in class from to one in class to. The classes are expressed using the enumeration
values such as GENERAL_REGS. A value of 2 is the default; other values are interpreted
relative to that.

It is not required that the cost always equal 2 when from is the same as to; on some
machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if
TARGET_REGISTER_MOVE_COST applied to their classes returns a value of 2, reload
does not check to ensure that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are met. You should do
this if the ‘movm’ pattern’s constraints do not allow such copying.

The default version of this function returns 2.

632 GNU Compiler Collection (GCC) Internals

[Macro]MEMORY_MOVE_COST (mode, class, in)
A C expression for the cost of moving data of mode mode between a register of class
class and memory; in is zero if the value is to be written to memory, nonzero if it is to
be read in. This cost is relative to those in REGISTER_MOVE_COST. If moving between
registers and memory is more expensive than between two registers, you should define
this macro to express the relative cost.

If you do not define this macro, GCC uses a default cost of 4 plus the cost of copying
via a secondary reload register, if one is needed. If your machine requires a secondary
reload register to copy between memory and a register of class but the reload mech-
anism is more complex than copying via an intermediate, define this macro to reflect
the actual cost of the move.

GCC defines the function memory_move_secondary_cost if secondary reloads are
needed. It computes the costs due to copying via a secondary register. If your
machine copies from memory using a secondary register in the conventional way but
the default base value of 4 is not correct for your machine, define this macro to add
some other value to the result of that function. The arguments to that function are
the same as to this macro.

These macros are obsolete, new ports should use the target hook TARGET_MEMORY_

MOVE_COST instead.

[Target Hook]int TARGET_MEMORY_MOVE_COST (machine_mode mode,
reg_class_t rclass, bool in)

This target hook should return the cost of moving data of mode mode between a
register of class rclass and memory; in is false if the value is to be written to memory,
true if it is to be read in. This cost is relative to those in TARGET_REGISTER_MOVE_

COST. If moving between registers and memory is more expensive than between two
registers, you should add this target hook to express the relative cost.

If you do not add this target hook, GCC uses a default cost of 4 plus the cost of
copying via a secondary reload register, if one is needed. If your machine requires a
secondary reload register to copy between memory and a register of rclass but the
reload mechanism is more complex than copying via an intermediate, use this target
hook to reflect the actual cost of the move.

GCC defines the function memory_move_secondary_cost if secondary reloads are
needed. It computes the costs due to copying via a secondary register. If your
machine copies from memory using a secondary register in the conventional way but
the default base value of 4 is not correct for your machine, use this target hook to
add some other value to the result of that function. The arguments to that function
are the same as to this target hook.

[Target Hook]int TARGET_CALLEE_SAVE_COST (spill_cost_type cost_type,
unsigned int hard_regno, machine_mode mode, unsigned int
nregs, int mem_cost, const HARD_REG_SET
&allocated_callee_regs, bool existing_spills_p)

Return the one-off cost of saving or restoring callee-saved registers (also known as
call-preserved registers or non-volatile registers). The parameters are as follows:

• cost type is ‘spill_cost_type::SAVE’ for saving a register and
‘spill_cost_type::RESTORE’ for restoring a register.

Chapter 17: Target Description Macros and Functions 633

• hard regno and mode represent the whole register that the register allocator is
considering using; of these, nregs registers are fully or partially callee-saved.

• mem cost is the normal cost for storing (for saves) or loading (for restores) the
nregs registers.

• allocated callee regs is the set of callee-saved registers that are already in use.

• existing spills p is true if the register allocator has already decided to spill reg-
isters to memory.

If existing spills p is false, the cost of a save should account for frame allocations in a
way that is consistent with TARGET_FRAME_ALLOCATION_COST’s handling of allocations
for spills. Similarly, the cost of a restore should then account for frame deallocations
in a way that is consistent with TARGET_FRAME_ALLOCATION_COST’s handling of deal-
locations.

Note that this hook should not attempt to apply a frequency scale to the cost: it is
the caller’s responsibility to do that where appropriate.

The default implementation returns mem cost, plus the allocation or deallocation
cost returned by TARGET_FRAME_ALLOCATION_COST, where appropriate.

[Target Hook]int TARGET_FRAME_ALLOCATION_COST (frame_cost_type
cost_type, const HARD_REG_SET &allocated_callee_regs)

Return the cost of allocating or deallocating a frame for the sake of a spill; cost type
chooses between allocation and deallocation. The term “spill” here includes both forc-
ing a pseudo register to memory and using caller-saved registers for pseudo registers
that are live across a call.

This hook is only called if the register allocator has not so far decided to spill. The
allocator may have decided to use callee-saved registers; if so, allocated callee regs
is the set of callee-saved registers that the allocator has used. There might also be
other reasons why a stack frame is already needed; for example, ‘get_frame_size
()’ might be nonzero, or the target might already require a frame for target-specific
reasons.

When the register allocator uses this hook to cost spills, it also uses TARGET_CALLEE_
SAVE_COST to cost new callee-saved registers, passing ‘false’ as the existing spills p
argument. The intention is to allow the target to apply an apples-for-apples compar-
ison between the cost of using callee-saved registers and using spills in cases where
the allocator has not yet committed to using both strategies.

The default implementation returns 0.

[Macro]BRANCH_COST (speed_p, predictable_p)
A C expression for the cost of a branch instruction. A value of 1 is the default; other
values are interpreted relative to that. Parameter speed p is true when the branch
in question should be optimized for speed. When it is false, BRANCH_COST should
return a value optimal for code size rather than performance. predictable p is true
for well-predicted branches. On many architectures the BRANCH_COST can be reduced
then.

Here are additional macros which do not specify precise relative costs, but only that
certain actions are more expensive than GCC would ordinarily expect.

634 GNU Compiler Collection (GCC) Internals

[Macro]SLOW_BYTE_ACCESS
Define this macro as a C expression which is nonzero if accessing less than a word of
memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e.,
if such access require more than one instruction or if there is no difference in cost
between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the smallest
containing object; when it is defined, a fullword load will be used if alignment permits.
Unless bytes accesses are faster than word accesses, using word accesses is preferable
since it may eliminate subsequent memory access if subsequent accesses occur to other
fields in the same word of the structure, but to different bytes.

[Target Hook]bool TARGET_SLOW_UNALIGNED_ACCESS (machine_mode mode,
unsigned int align)

This hook returns true if memory accesses described by the mode and alignment
parameters have a cost many times greater than aligned accesses, for example if they
are emulated in a trap handler. This hook is invoked only for unaligned accesses, i.e.
when alignment < GET_MODE_ALIGNMENT (mode).

When this hook returns true, the compiler will act as if STRICT_ALIGNMENT were true
when generating code for block moves. This can cause significantly more instructions
to be produced. Therefore, do not make this hook return true if unaligned accesses
only add a cycle or two to the time for a memory access.

The hook must return true whenever STRICT_ALIGNMENT is true. The default imple-
mentation returns STRICT_ALIGNMENT.

[Macro]MOVE_RATIO (speed)
The threshold of number of scalar memory-to-memory move insns, below which a
sequence of insns should be generated instead of a string move insn or a library call.
Increasing the value will always make code faster, but eventually incurs high cost in
increased code size.

Note that on machines where the corresponding move insn is a define_expand that
emits a sequence of insns, this macro counts the number of such sequences.

The parameter speed is true if the code is currently being optimized for speed rather
than size.

If you don’t define this, a reasonable default is used.

[Target Hook]bool TARGET_USE_BY_PIECES_INFRASTRUCTURE_P (unsigned
HOST_WIDE_INT size, unsigned int alignment, enum
by_pieces_operation op, bool speed_p)

GCC will attempt several strategies when asked to copy between two areas of memory,
or to set, clear or store to memory, for example when copying a struct. The by_

pieces infrastructure implements such memory operations as a sequence of load,
store or move insns. Alternate strategies are to expand the cpymem or setmem optabs,
to emit a library call, or to emit unit-by-unit, loop-based operations.

This target hook should return true if, for a memory operation with a given size and
alignment, using the by_pieces infrastructure is expected to result in better code
generation. Both size and alignment are measured in terms of storage units.

Chapter 17: Target Description Macros and Functions 635

The parameter op is one of: CLEAR_BY_PIECES, MOVE_BY_PIECES, SET_BY_PIECES,
STORE_BY_PIECES or COMPARE_BY_PIECES. These describe the type of memory oper-
ation under consideration.

The parameter speed p is true if the code is currently being optimized for speed
rather than size.

Returning true for higher values of size can improve code generation for speed if the
target does not provide an implementation of the cpymem or setmem standard names,
if the cpymem or setmem implementation would be more expensive than a sequence
of insns, or if the overhead of a library call would dominate that of the body of the
memory operation.

Returning true for higher values of size may also cause an increase in code size, for
example where the number of insns emitted to perform a move would be greater than
that of a library call.

[Target Hook]bool TARGET_OVERLAP_OP_BY_PIECES_P (void)
This target hook should return true if when the by_pieces infrastructure is used, an
offset adjusted unaligned memory operation in the smallest integer mode for the last
piece operation of a memory region can be generated to avoid doing more than one
smaller operations.

[Target Hook]int TARGET_COMPARE_BY_PIECES_BRANCH_RATIO (machine_mode
mode)

When expanding a block comparison in MODE, gcc can try to reduce the number
of branches at the expense of more memory operations. This hook allows the target
to override the default choice. It should return the factor by which branches should
be reduced over the plain expansion with one comparison per mode-sized piece. A
port can also prevent a particular mode from being used for block comparisons by
returning a negative number from this hook.

[Macro]MOVE_MAX_PIECES
A C expression used by move_by_pieces to determine the largest unit a load or store
used to copy memory is. Defaults to MOVE_MAX.

[Macro]STORE_MAX_PIECES
A C expression used by store_by_pieces to determine the largest unit a store used
to memory is. Defaults to MOVE_MAX_PIECES, or two times the size of HOST_WIDE_INT,
whichever is smaller.

[Macro]COMPARE_MAX_PIECES
A C expression used by compare_by_pieces to determine the largest unit a load or
store used to compare memory is. Defaults to MOVE_MAX_PIECES.

[Macro]CLEAR_RATIO (speed)
The threshold of number of scalar move insns, below which a sequence of insns should
be generated to clear memory instead of a string clear insn or a library call. Increasing
the value will always make code faster, but eventually incurs high cost in increased
code size.

636 GNU Compiler Collection (GCC) Internals

The parameter speed is true if the code is currently being optimized for speed rather
than size.

If you don’t define this, a reasonable default is used.

[Macro]SET_RATIO (speed)
The threshold of number of scalar move insns, below which a sequence of insns should
be generated to set memory to a constant value, instead of a block set insn or a library
call. Increasing the value will always make code faster, but eventually incurs high
cost in increased code size.

The parameter speed is true if the code is currently being optimized for speed rather
than size.

If you don’t define this, it defaults to the value of MOVE_RATIO.

[Macro]USE_LOAD_POST_INCREMENT (mode)
A C expression used to determine whether a load postincrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

[Macro]USE_LOAD_POST_DECREMENT (mode)
A C expression used to determine whether a load postdecrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

[Macro]USE_LOAD_PRE_INCREMENT (mode)
A C expression used to determine whether a load preincrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

[Macro]USE_LOAD_PRE_DECREMENT (mode)
A C expression used to determine whether a load predecrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

[Macro]USE_STORE_POST_INCREMENT (mode)
A C expression used to determine whether a store postincrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

[Macro]USE_STORE_POST_DECREMENT (mode)
A C expression used to determine whether a store postdecrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

[Macro]USE_STORE_PRE_INCREMENT (mode)
This macro is used to determine whether a store preincrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

[Macro]USE_STORE_PRE_DECREMENT (mode)
This macro is used to determine whether a store predecrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

[Macro]NO_FUNCTION_CSE
Define this macro to be true if it is as good or better to call a constant function
address than to call an address kept in a register.

Chapter 17: Target Description Macros and Functions 637

[Macro]LOGICAL_OP_NON_SHORT_CIRCUIT
Define this macro if a non-short-circuit operation produced by ‘fold_range_test ()’
is optimal. This macro defaults to true if BRANCH_COST is greater than or equal to
the value 2.

[Target Hook]bool TARGET_OPTAB_SUPPORTED_P (int op, machine_mode
mode1, machine_mode mode2, optimization_type opt_type)

Return true if the optimizers should use optab op with modes mode1 and mode2 for
optimization type opt type. The optab is known to have an associated .md instruction
whose C condition is true. mode2 is only meaningful for conversion optabs; for direct
optabs it is a copy of mode1.

For example, when called with op equal to rint_optab and mode1 equal to DFmode,
the hook should say whether the optimizers should use optab rintdf2.

The default hook returns true for all inputs.

[Target Hook]bool TARGET_RTX_COSTS (rtx x, machine_mode mode, int
outer_code, int opno, int *total, bool speed)

This target hook describes the relative costs of RTL expressions.

The cost may depend on the precise form of the expression, which is available for
examination in x, and the fact that x appears as operand opno of an expression with
rtx code outer code. That is, the hook can assume that there is some rtx y such that
‘GET_CODE (y) == outer_code’ and such that either (a) ‘XEXP (y, opno) == x’ or (b)
‘XVEC (y, opno)’ contains x.

mode is x’s machine mode, or for cases like const_int that do not have a mode, the
mode in which x is used.

In implementing this hook, you can use the construct COSTS_N_INSNS (n) to specify
a cost equal to n fast instructions.

On entry to the hook, *total contains a default estimate for the cost of the expression.
The hook should modify this value as necessary. Traditionally, the default costs are
COSTS_N_INSNS (5) for multiplications, COSTS_N_INSNS (7) for division and modulus
operations, and COSTS_N_INSNS (1) for all other operations.

When optimizing for code size, i.e. when speed is false, this target hook should be used
to estimate the relative size cost of an expression, again relative to COSTS_N_INSNS.

The hook returns true when all subexpressions of x have been processed, and false
when rtx_cost should recurse.

[Target Hook]int TARGET_ADDRESS_COST (rtx address, machine_mode
mode, addr_space_t as, bool speed)

This hook computes the cost of an addressing mode that contains address. If not
defined, the cost is computed from the address expression and the TARGET_RTX_COST
hook.

For most CISC machines, the default cost is a good approximation of the true cost
of the addressing mode. However, on RISC machines, all instructions normally have
the same length and execution time. Hence all addresses will have equal costs.

638 GNU Compiler Collection (GCC) Internals

In cases where more than one form of an address is known, the form with the lowest
cost will be used. If multiple forms have the same, lowest, cost, the one that is the
most complex will be used.

For example, suppose an address that is equal to the sum of a register and a constant
is used twice in the same basic block. When this macro is not defined, the address
will be computed in a register and memory references will be indirect through that
register. On machines where the cost of the addressing mode containing the sum is
no higher than that of a simple indirect reference, this will produce an additional
instruction and possibly require an additional register. Proper specification of this
macro eliminates this overhead for such machines.

This hook is never called with an invalid address.

On machines where an address involving more than one register is as cheap as an
address computation involving only one register, defining TARGET_ADDRESS_COST to
reflect this can cause two registers to be live over a region of code where only one
would have been if TARGET_ADDRESS_COST were not defined in that manner. This
effect should be considered in the definition of this macro. Equivalent costs should
probably only be given to addresses with different numbers of registers on machines
with lots of registers.

[Target Hook]int TARGET_INSN_COST (rtx_insn *insn, bool speed)
This target hook describes the relative costs of RTL instructions.

In implementing this hook, you can use the construct COSTS_N_INSNS (n) to specify
a cost equal to n fast instructions.

When optimizing for code size, i.e. when speed is false, this target hook should be used
to estimate the relative size cost of an expression, again relative to COSTS_N_INSNS.

[Target Hook]unsigned int TARGET_MAX_NOCE_IFCVT_SEQ_COST (edge e)
This hook returns a value in the same units as TARGET_RTX_COSTS, giving the max-
imum acceptable cost for a sequence generated by the RTL if-conversion pass when
conditional execution is not available. The RTL if-conversion pass attempts to con-
vert conditional operations that would require a branch to a series of unconditional
operations and movmodecc insns. This hook returns the maximum cost of the uncon-
ditional instructions and the movmodecc insns. RTL if-conversion is cancelled if the
cost of the converted sequence is greater than the value returned by this hook.

e is the edge between the basic block containing the conditional branch to the basic
block which would be executed if the condition were true.

The default implementation of this hook uses the max-rtl-if-conversion-

[un]predictable parameters if they are set, and uses a multiple of BRANCH_COST
otherwise.

[Target Hook]bool TARGET_NOCE_CONVERSION_PROFITABLE_P (rtx_insn
*seq, struct noce_if_info *if_info)

This hook returns true if the instruction sequence seq is a good candidate as a
replacement for the if-convertible sequence described in if_info.

Chapter 17: Target Description Macros and Functions 639

[Target Hook]bool TARGET_NEW_ADDRESS_PROFITABLE_P (rtx memref,
rtx_insn * insn, rtx new_addr)

Return true if it is profitable to replace the address in memref with new addr. This
allows targets to prevent the scheduler from undoing address optimizations. The
instruction containing the memref is insn. The default implementation returns true.

[Target Hook]bool TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P (void)
This predicate controls the use of the eager delay slot filler to disallow speculatively
executed instructions being placed in delay slots. Targets such as certain MIPS archi-
tectures possess both branches with and without delay slots. As the eager delay slot
filler can decrease performance, disabling it is beneficial when ordinary branches are
available. Use of delay slot branches filled using the basic filler is often still desirable
as the delay slot can hide a pipeline bubble.

[Target Hook]HOST_WIDE_INT TARGET_ESTIMATED_POLY_VALUE (poly_int64
val, poly_value_estimate_kind kind)

Return an estimate of the runtime value of val, for use in things like cost calculations
or profiling frequencies. kind is used to ask for the minimum, maximum, and likely
estimates of the value through the POLY_VALUE_MIN, POLY_VALUE_MAX and POLY_

VALUE_LIKELY values. The default implementation returns the lowest possible value
of val.

[Target Hook]bool TARGET_AVOID_STORE_FORWARDING_P
(vec<store_fwd_info>, rtx, int, bool)

Given a list of stores and a load instruction that reads from the location of the stores,
this hook decides if it’s profitable to emit additional code to avoid a potential store
forwarding stall. The additional instructions needed, the sequence cost and additional
relevant information is given in the arguments so that the target can make an informed
decision.

17.19 Adjusting the Instruction Scheduler

The instruction scheduler may need a fair amount of machine-specific adjustment in order
to produce good code. GCC provides several target hooks for this purpose. It is usually
enough to define just a few of them: try the first ones in this list first.

[Target Hook]int TARGET_SCHED_ISSUE_RATE (void)
This hook returns the maximum number of instructions that can ever issue at the
same time on the target machine. The default is one. Although the insn scheduler
can define itself the possibility of issue an insn on the same cycle, the value can serve
as an additional constraint to issue insns on the same simulated processor cycle (see
hooks ‘TARGET_SCHED_REORDER’ and ‘TARGET_SCHED_REORDER2’). This value must be
constant over the entire compilation. If you need it to vary depending on what the
instructions are, you must use ‘TARGET_SCHED_VARIABLE_ISSUE’.

[Target Hook]int TARGET_SCHED_VARIABLE_ISSUE (FILE *file, int
verbose, rtx_insn *insn, int more)

This hook is executed by the scheduler after it has scheduled an insn from the ready
list. It should return the number of insns which can still be issued in the current cycle.

640 GNU Compiler Collection (GCC) Internals

The default is ‘more - 1’ for insns other than CLOBBER and USE, which normally are
not counted against the issue rate. You should define this hook if some insns take
more machine resources than others, so that fewer insns can follow them in the same
cycle. file is either a null pointer, or a stdio stream to write any debug output to.
verbose is the verbose level provided by -fsched-verbose-n. insn is the instruction
that was scheduled.

[Target Hook]int TARGET_SCHED_ADJUST_COST (rtx_insn *insn, int
dep_type1, rtx_insn *dep_insn, int cost, unsigned int dw)

This function corrects the value of cost based on the relationship between insn and
dep insn through a dependence of type dep type, and strength dw. It should return
the new value. The default is to make no adjustment to cost. This can be used for
example to specify to the scheduler using the traditional pipeline description that an
output- or anti-dependence does not incur the same cost as a data-dependence. If the
scheduler using the automaton based pipeline description, the cost of anti-dependence
is zero and the cost of output-dependence is maximum of one and the difference of
latency times of the first and the second insns. If these values are not acceptable,
you could use the hook to modify them too. See also see Section 16.20.9 [Processor
pipeline description], page 508.

[Target Hook]int TARGET_SCHED_ADJUST_PRIORITY (rtx_insn *insn, int
priority)

This hook adjusts the integer scheduling priority priority of insn. It should return
the new priority. Increase the priority to execute insn earlier, reduce the priority to
execute insn later. Do not define this hook if you do not need to adjust the scheduling
priorities of insns.

[Target Hook]int TARGET_SCHED_REORDER (FILE *file, int verbose,
rtx_insn **ready, int *n_readyp, int clock)

This hook is executed by the scheduler after it has scheduled the ready list, to allow
the machine description to reorder it (for example to combine two small instructions
together on ‘VLIW’ machines). file is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by -fsched-verbose-n.
ready is a pointer to the ready list of instructions that are ready to be scheduled.
n readyp is a pointer to the number of elements in the ready list. The scheduler
reads the ready list in reverse order, starting with ready [*n readyp − 1] and going to
ready [0]. clock is the timer tick of the scheduler. You may modify the ready list and
the number of ready insns. The return value is the number of insns that can issue
this cycle; normally this is just issue_rate. See also ‘TARGET_SCHED_REORDER2’.

[Target Hook]int TARGET_SCHED_REORDER2 (FILE *file, int verbose,
rtx_insn **ready, int *n_readyp, int clock)

Like ‘TARGET_SCHED_REORDER’, but called at a different time. That function is called
whenever the scheduler starts a new cycle. This one is called once per iteration over
a cycle, immediately after ‘TARGET_SCHED_VARIABLE_ISSUE’; it can reorder the ready
list and return the number of insns to be scheduled in the same cycle. Defining this
hook can be useful if there are frequent situations where scheduling one insn causes
other insns to become ready in the same cycle. These other insns can then be taken
into account properly.

Chapter 17: Target Description Macros and Functions 641

[Target Hook]bool TARGET_SCHED_MACRO_FUSION_P (void)
This hook is used to check whether target platform supports macro fusion.

[Target Hook]bool TARGET_SCHED_MACRO_FUSION_PAIR_P (rtx_insn *prev,
rtx_insn *curr)

This hook is used to check whether two insns should be macro fused for a target
microarchitecture. If this hook returns true for the given insn pair (prev and curr),
the scheduler will put them into a sched group, and they will not be scheduled apart.
The two insns will be either two SET insns or a compare and a conditional jump and
this hook should validate any dependencies needed to fuse the two insns together.

[Target Hook]void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
(rtx_insn *head, rtx_insn *tail)

This hook is called after evaluation forward dependencies of insns in chain given by
two parameter values (head and tail correspondingly) but before insns scheduling of
the insn chain. For example, it can be used for better insn classification if it requires
analysis of dependencies. This hook can use backward and forward dependencies of
the insn scheduler because they are already calculated.

[Target Hook]void TARGET_SCHED_INIT (FILE *file, int verbose, int
max_ready)

This hook is executed by the scheduler at the beginning of each block of instructions
that are to be scheduled. file is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by -fsched-verbose-n.
max ready is the maximum number of insns in the current scheduling region that can
be live at the same time. This can be used to allocate scratch space if it is needed,
e.g. by ‘TARGET_SCHED_REORDER’.

[Target Hook]void TARGET_SCHED_FINISH (FILE *file, int verbose)
This hook is executed by the scheduler at the end of each block of instructions that
are to be scheduled. It can be used to perform cleanup of any actions done by the
other scheduling hooks. file is either a null pointer, or a stdio stream to write any
debug output to. verbose is the verbose level provided by -fsched-verbose-n.

[Target Hook]void TARGET_SCHED_INIT_GLOBAL (FILE *file, int verbose,
int old_max_uid)

This hook is executed by the scheduler after function level initializations. file is either
a null pointer, or a stdio stream to write any debug output to. verbose is the verbose
level provided by -fsched-verbose-n. old max uid is the maximum insn uid when
scheduling begins.

[Target Hook]void TARGET_SCHED_FINISH_GLOBAL (FILE *file, int
verbose)

This is the cleanup hook corresponding to TARGET_SCHED_INIT_GLOBAL. file is either
a null pointer, or a stdio stream to write any debug output to. verbose is the verbose
level provided by -fsched-verbose-n.

[Target Hook]rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void)
The hook returns an RTL insn. The automaton state used in the pipeline hazard
recognizer is changed as if the insn were scheduled when the new simulated processor

642 GNU Compiler Collection (GCC) Internals

cycle starts. Usage of the hook may simplify the automaton pipeline description for
some VLIW processors. If the hook is defined, it is used only for the automaton based
pipeline description. The default is not to change the state when the new simulated
processor cycle starts.

[Target Hook]void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void)
The hook can be used to initialize data used by the previous hook.

[Target Hook]rtx_insn * TARGET_SCHED_DFA_POST_CYCLE_INSN (void)
The hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to changed
the state as if the insn were scheduled when the new simulated processor cycle finishes.

[Target Hook]void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void)
The hook is analogous to ‘TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN’ but used to
initialize data used by the previous hook.

[Target Hook]void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void)
The hook to notify target that the current simulated cycle is about to finish. The
hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to change the
state in more complicated situations - e.g., when advancing state on a single insn is
not enough.

[Target Hook]void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void)
The hook to notify target that new simulated cycle has just started. The hook is
analogous to ‘TARGET_SCHED_DFA_POST_CYCLE_INSN’ but used to change the state
in more complicated situations - e.g., when advancing state on a single insn is not
enough.

[Target Hook]int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
(void)

This hook controls better choosing an insn from the ready insn queue for the DFA-
based insn scheduler. Usually the scheduler chooses the first insn from the queue.
If the hook returns a positive value, an additional scheduler code tries all permu-
tations of ‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()’ subsequent
ready insns to choose an insn whose issue will result in maximal number of issued
insns on the same cycle. For the VLIW processor, the code could actually solve the
problem of packing simple insns into the VLIW insn. Of course, if the rules of VLIW

packing are described in the automaton.

This code also could be used for superscalar RISC processors. Let us consider a
superscalar RISC processor with 3 pipelines. Some insns can be executed in pipelines
A or B, some insns can be executed only in pipelines B or C, and one insn can be
executed in pipeline B. The processor may issue the 1st insn into A and the 2nd one
into B. In this case, the 3rd insn will wait for freeing B until the next cycle. If the
scheduler issues the 3rd insn the first, the processor could issue all 3 insns per cycle.

Actually this code demonstrates advantages of the automaton based pipeline hazard
recognizer. We try quickly and easy many insn schedules to choose the best one.

The default is no multipass scheduling.

Chapter 17: Target Description Macros and Functions 643

[Target Hook]int
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
(rtx_insn *insn, int ready_index)

This hook controls what insns from the ready insn queue will be considered for the
multipass insn scheduling. If the hook returns zero for insn, the insn will be considered
in multipass scheduling. Positive return values will remove insn from consideration
on the current round of multipass scheduling. Negative return values will remove
insn from consideration for given number of cycles. Backends should be careful about
returning non-zero for highest priority instruction at position 0 in the ready list.
ready index is passed to allow backends make correct judgements.

The default is that any ready insns can be chosen to be issued.

[Target Hook]void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN (void
*data, signed char *ready_try, int n_ready, bool
first_cycle_insn_p)

This hook prepares the target backend for a new round of multipass scheduling.

[Target Hook]void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void
*data, signed char *ready_try, int n_ready, rtx_insn *insn,
const void *prev_data)

This hook is called when multipass scheduling evaluates instruction INSN.

[Target Hook]void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK
(const void *data, signed char *ready_try, int n_ready)

This is called when multipass scheduling backtracks from evaluation of an instruction.

[Target Hook]void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const void
*data)

This hook notifies the target about the result of the concluded current round of
multipass scheduling.

[Target Hook]void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT (void
*data)

This hook initializes target-specific data used in multipass scheduling.

[Target Hook]void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI (void
*data)

This hook finalizes target-specific data used in multipass scheduling.

[Target Hook]int TARGET_SCHED_DFA_NEW_CYCLE (FILE *dump, int
verbose, rtx_insn *insn, int last_clock, int clock, int
*sort_p)

This hook is called by the insn scheduler before issuing insn on cycle clock. If the
hook returns nonzero, insn is not issued on this processor cycle. Instead, the processor
cycle is advanced. If *sort p is zero, the insn ready queue is not sorted on the new
cycle start as usually. dump and verbose specify the file and verbosity level to use
for debugging output. last clock and clock are, respectively, the processor cycle on
which the previous insn has been issued, and the current processor cycle.

644 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep
*_dep, int cost, int distance)

This hook is used to define which dependences are considered costly by the target, so
costly that it is not advisable to schedule the insns that are involved in the dependence
too close to one another. The parameters to this hook are as follows: The first
parameter dep is the dependence being evaluated. The second parameter cost is
the cost of the dependence as estimated by the scheduler, and the third parameter
distance is the distance in cycles between the two insns. The hook returns true

if considering the distance between the two insns the dependence between them is
considered costly by the target, and false otherwise.

Defining this hook can be useful in multiple-issue out-of-order machines, where (a) it’s
practically hopeless to predict the actual data/resource delays, however: (b) there’s
a better chance to predict the actual grouping that will be formed, and (c) correctly
emulating the grouping can be very important. In such targets one may want to
allow issuing dependent insns closer to one another—i.e., closer than the dependence
distance; however, not in cases of “costly dependences”, which this hooks allows to
define.

[Target Hook]void TARGET_SCHED_H_I_D_EXTENDED (void)
This hook is called by the insn scheduler after emitting a new instruction to the
instruction stream. The hook notifies a target backend to extend its per instruction
data structures.

[Target Hook]void * TARGET_SCHED_ALLOC_SCHED_CONTEXT (void)
Return a pointer to a store large enough to hold target scheduling context.

[Target Hook]void TARGET_SCHED_INIT_SCHED_CONTEXT (void *tc, bool
clean_p)

Initialize store pointed to by tc to hold target scheduling context. It clean p is true
then initialize tc as if scheduler is at the beginning of the block. Otherwise, copy the
current context into tc.

[Target Hook]void TARGET_SCHED_SET_SCHED_CONTEXT (void *tc)
Copy target scheduling context pointed to by tc to the current context.

[Target Hook]void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *tc)
Deallocate internal data in target scheduling context pointed to by tc.

[Target Hook]void TARGET_SCHED_FREE_SCHED_CONTEXT (void *tc)
Deallocate a store for target scheduling context pointed to by tc.

[Target Hook]int TARGET_SCHED_SPECULATE_INSN (rtx_insn *insn,
unsigned int dep_status, rtx *new_pat)

This hook is called by the insn scheduler when insn has only speculative dependencies
and therefore can be scheduled speculatively. The hook is used to check if the pattern
of insn has a speculative version and, in case of successful check, to generate that
speculative pattern. The hook should return 1, if the instruction has a speculative
form, or −1, if it doesn’t. request describes the type of requested speculation. If the
return value equals 1 then new pat is assigned the generated speculative pattern.

Chapter 17: Target Description Macros and Functions 645

[Target Hook]bool TARGET_SCHED_NEEDS_BLOCK_P (unsigned int
dep_status)

This hook is called by the insn scheduler during generation of recovery code for insn. It
should return true, if the corresponding check instruction should branch to recovery
code, or false otherwise.

[Target Hook]rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx_insn *insn,
rtx_insn *label, unsigned int ds)

This hook is called by the insn scheduler to generate a pattern for recovery check
instruction. If mutate p is zero, then insn is a speculative instruction for which the
check should be generated. label is either a label of a basic block, where recovery
code should be emitted, or a null pointer, when requested check doesn’t branch to
recovery code (a simple check). If mutate p is nonzero, then a pattern for a branchy
check corresponding to a simple check denoted by insn should be generated. In this
case label can’t be null.

[Target Hook]void TARGET_SCHED_SET_SCHED_FLAGS (struct spec_info_def
*spec_info)

This hook is used by the insn scheduler to find out what features should be en-
abled/used. The structure *spec info should be filled in by the target. The structure
describes speculation types that can be used in the scheduler.

[Target Hook]bool TARGET_SCHED_CAN_SPECULATE_INSN (rtx_insn *insn)
Some instructions should never be speculated by the schedulers, usually because the
instruction is too expensive to get this wrong. Often such instructions have long
latency, and often they are not fully modeled in the pipeline descriptions. This hook
should return false if insn should not be speculated.

[Target Hook]int TARGET_SCHED_SMS_RES_MII (struct ddg *g)
This hook is called by the swing modulo scheduler to calculate a resource-based lower
bound which is based on the resources available in the machine and the resources
required by each instruction. The target backend can use g to calculate such bound.
A very simple lower bound will be used in case this hook is not implemented: the
total number of instructions divided by the issue rate.

[Target Hook]bool TARGET_SCHED_DISPATCH (rtx_insn *insn, int x)
This hook is called by Haifa Scheduler. It returns true if dispatch scheduling is
supported in hardware and the condition specified in the parameter is true.

[Target Hook]void TARGET_SCHED_DISPATCH_DO (rtx_insn *insn, int x)
This hook is called by Haifa Scheduler. It performs the operation specified in its
second parameter.

[Target Hook]bool TARGET_SCHED_EXPOSED_PIPELINE
True if the processor has an exposed pipeline, which means that not just the order
of instructions is important for correctness when scheduling, but also the latencies of
operations.

646 GNU Compiler Collection (GCC) Internals

[Target Hook]int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int opc,
machine_mode mode)

This hook is called by tree reassociator to determine a level of parallelism required in
output calculations chain.

[Target Hook]void TARGET_SCHED_FUSION_PRIORITY (rtx_insn *insn, int
max_pri, int *fusion_pri, int *pri)

This hook is called by scheduling fusion pass. It calculates fusion priorities for each
instruction passed in by parameter. The priorities are returned via pointer parame-
ters.

insn is the instruction whose priorities need to be calculated. max pri is the maximum
priority can be returned in any cases. fusion pri is the pointer parameter through
which insn’s fusion priority should be calculated and returned. pri is the pointer
parameter through which insn’s priority should be calculated and returned.

Same fusion pri should be returned for instructions which should be scheduled to-
gether. Different pri should be returned for instructions with same fusion pri. fu-
sion pri is the major sort key, pri is the minor sort key. All instructions will be
scheduled according to the two priorities. All priorities calculated should be between
0 (exclusive) and max pri (inclusive). To avoid false dependencies, fusion pri of in-
structions which need to be scheduled together should be smaller than fusion pri of
irrelevant instructions.

Given below example:
ldr r10, [r1, 4]

add r4, r4, r10

ldr r15, [r2, 8]

sub r5, r5, r15

ldr r11, [r1, 0]

add r4, r4, r11

ldr r16, [r2, 12]

sub r5, r5, r16

On targets like ARM/AArch64, the two pairs of consecutive loads should be merged.
Since peephole2 pass can’t help in this case unless consecutive loads are actually next
to each other in instruction flow. That’s where this scheduling fusion pass works.
This hook calculates priority for each instruction based on its fustion type, like:

ldr r10, [r1, 4] ; fusion_pri=99, pri=96

add r4, r4, r10 ; fusion_pri=100, pri=100

ldr r15, [r2, 8] ; fusion_pri=98, pri=92

sub r5, r5, r15 ; fusion_pri=100, pri=100

ldr r11, [r1, 0] ; fusion_pri=99, pri=100

add r4, r4, r11 ; fusion_pri=100, pri=100

ldr r16, [r2, 12] ; fusion_pri=98, pri=88

sub r5, r5, r16 ; fusion_pri=100, pri=100

Scheduling fusion pass then sorts all ready to issue instructions according to the
priorities. As a result, instructions of same fusion type will be pushed together in
instruction flow, like:

ldr r11, [r1, 0]

ldr r10, [r1, 4]

ldr r15, [r2, 8]

ldr r16, [r2, 12]

add r4, r4, r10

Chapter 17: Target Description Macros and Functions 647

sub r5, r5, r15

add r4, r4, r11

sub r5, r5, r16

Now peephole2 pass can simply merge the two pairs of loads.

Since scheduling fusion pass relies on peephole2 to do real fusion work, it is only
enabled by default when peephole2 is in effect.

This is firstly introduced on ARM/AArch64 targets, please refer to the hook imple-
mentation for how different fusion types are supported.

[Target Hook]void TARGET_EXPAND_DIVMOD_LIBFUNC (rtx libfunc,
machine_mode mode, rtx op0, rtx op1, rtx *quot, rtx *rem)

Define this hook for enabling divmod transform if the port does not have hardware
divmod insn but defines target-specific divmod libfuncs.

17.20 Dividing the Output into Sections (Texts, Data, . . .)

An object file is divided into sections containing different types of data. In the most common
case, there are three sections: the text section, which holds instructions and read-only data;
the data section, which holds initialized writable data; and the bss section, which holds
uninitialized data. Some systems have other kinds of sections.

varasm.cc provides several well-known sections, such as text_section, data_section
and bss_section. The normal way of controlling a foo_section variable is to define the
associated FOO_SECTION_ASM_OPmacro, as described below. The macros are only read once,
when varasm.cc initializes itself, so their values must be run-time constants. They may
however depend on command-line flags.

Note: Some run-time files, such crtstuff.c, also make use of the FOO_SECTION_ASM_OP
macros, and expect them to be string literals.

Some assemblers require a different string to be written every time a section is selected. If
your assembler falls into this category, you should define the TARGET_ASM_INIT_SECTIONS

hook and use get_unnamed_section to set up the sections.

You must always create a text_section, either by defining TEXT_SECTION_ASM_OP or
by initializing text_section in TARGET_ASM_INIT_SECTIONS. The same is true of data_
section and DATA_SECTION_ASM_OP. If you do not create a distinct readonly_data_

section, the default is to reuse text_section.

All the other varasm.cc sections are optional, and are null if the target does not provide
them.

[Macro]TEXT_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assembler
operation that should precede instructions and read-only data. Normally "\t.text"

is right.

[Macro]HOT_TEXT_SECTION_NAME
If defined, a C string constant for the name of the section containing most frequently
executed functions of the program. If not defined, GCC will provide a default defini-
tion if the target supports named sections.

648 GNU Compiler Collection (GCC) Internals

[Macro]UNLIKELY_EXECUTED_TEXT_SECTION_NAME
If defined, a C string constant for the name of the section containing unlikely executed
functions in the program.

[Macro]DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assem-
bler operation to identify the following data as writable initialized data. Normally
"\t.data" is right.

[Macro]SDATA_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as initialized, writable small data.

[Macro]READONLY_DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assembler
operation to identify the following data as read-only initialized data.

[Macro]BSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as uninitialized global data. If not
defined, and ASM_OUTPUT_ALIGNED_BSS not defined, uninitialized global data will be
output in the data section if -fno-common is passed, otherwise ASM_OUTPUT_COMMON

will be used.

[Macro]SBSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as uninitialized, writable small
data.

[Macro]TLS_COMMON_ASM_OP
If defined, a C expression whose value is a string containing the assembler operation
to identify the following data as thread-local common data. The default is ".tls_

common".

[Macro]TLS_SECTION_ASM_FLAG
If defined, a C expression whose value is a character constant containing the flag used
to mark a section as a TLS section. The default is 'T'.

[Macro]INIT_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as initialization code. If not defined,
GCC will assume such a section does not exist. This section has no corresponding
init_section variable; it is used entirely in runtime code.

[Macro]FINI_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as finalization code. If not defined,
GCC will assume such a section does not exist. This section has no corresponding
fini_section variable; it is used entirely in runtime code.

Chapter 17: Target Description Macros and Functions 649

[Macro]INIT_ARRAY_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as part of the .init_array (or
equivalent) section. If not defined, GCC will assume such a section does not exist.
Do not define both this macro and INIT_SECTION_ASM_OP.

[Macro]FINI_ARRAY_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as part of the .fini_array (or
equivalent) section. If not defined, GCC will assume such a section does not exist.
Do not define both this macro and FINI_SECTION_ASM_OP.

[Macro]MACH_DEP_SECTION_ASM_FLAG
If defined, a C expression whose value is a character constant containing the flag used
to mark a machine-dependent section. This corresponds to the SECTION_MACH_DEP

section flag.

[Macro]CRT_CALL_STATIC_FUNCTION (section_op, function)
If defined, an ASM statement that switches to a different section via section op, calls
function, and switches back to the text section. This is used in crtstuff.c if INIT_
SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls to initialization and finalization
functions from the init and fini sections. By default, this macro uses a simple function
call. Some ports need hand-crafted assembly code to avoid dependencies on registers
initialized in the function prologue or to ensure that constant pools don’t end up too
far way in the text section.

[Macro]TARGET_LIBGCC_SDATA_SECTION
If defined, a string which names the section into which small variables defined in
crtstuff and libgcc should go. This is useful when the target has options for optimizing
access to small data, and you want the crtstuff and libgcc routines to be conservative
in what they expect of your application yet liberal in what your application expects.
For example, for targets with a .sdata section (like MIPS), you could compile crtstuff
with -G 0 so that it doesn’t require small data support from your application, but use
this macro to put small data into .sdata so that your application can access these
variables whether it uses small data or not.

[Macro]FORCE_CODE_SECTION_ALIGN
If defined, an ASM statement that aligns a code section to some arbitrary boundary.
This is used to force all fragments of the .init and .fini sections to have to same
alignment and thus prevent the linker from having to add any padding.

[Macro]JUMP_TABLES_IN_TEXT_SECTION
Define this macro to be an expression with a nonzero value if jump tables (for
tablejump insns) should be output in the text section, along with the assembler
instructions. Otherwise, the readonly data section is used.

This macro is irrelevant if there is no separate readonly data section.

[Target Hook]void TARGET_ASM_INIT_SECTIONS (void)
Define this hook if you need to do something special to set up the varasm.cc sections,
or if your target has some special sections of its own that you need to create.

650 GNU Compiler Collection (GCC) Internals

GCC calls this hook after processing the command line, but before writing any as-
sembly code, and before calling any of the section-returning hooks described below.

[Target Hook]int TARGET_ASM_RELOC_RW_MASK (void)
Return a mask describing how relocations should be treated when selecting sections.
Bit 1 should be set if global relocations should be placed in a read-write section; bit
0 should be set if local relocations should be placed in a read-write section.

The default version of this function returns 3 when -fpic is in effect, and 0 other-
wise. The hook is typically redefined when the target cannot support (some kinds of)
dynamic relocations in read-only sections even in executables.

[Target Hook]bool TARGET_ASM_GENERATE_PIC_ADDR_DIFF_VEC (void)
Return true to generate ADDR DIF VEC table or false to generate ADDR VEC
table for jumps in case of -fPIC.

The default version of this function returns true if flag pic equals true and false
otherwise

[Target Hook]section * TARGET_ASM_SELECT_SECTION (tree exp, int
reloc, unsigned HOST_WIDE_INT align)

Return the section into which exp should be placed. You can assume that exp is
either a VAR_DECL node or a constant of some sort. reloc indicates whether the
initial value of exp requires link-time relocations. Bit 0 is set when variable contains
local relocations only, while bit 1 is set for global relocations. align is the constant
alignment in bits.

The default version of this function takes care of putting read-only variables in
readonly_data_section.

See also USE SELECT SECTION FOR FUNCTIONS.

[Macro]USE_SELECT_SECTION_FOR_FUNCTIONS
Define this macro if you wish TARGET ASM SELECT SECTION to be called for
FUNCTION_DECLs as well as for variables and constants.

In the case of a FUNCTION_DECL, reloc will be zero if the function has been determined
to be likely to be called, and nonzero if it is unlikely to be called.

[Target Hook]void TARGET_ASM_UNIQUE_SECTION (tree decl, int reloc)
Build up a unique section name, expressed as a STRING_CST node, and assign it
to ‘DECL_SECTION_NAME (decl)’. As with TARGET_ASM_SELECT_SECTION, reloc indi-
cates whether the initial value of exp requires link-time relocations.

The default version of this function appends the symbol name to the ELF section
name that would normally be used for the symbol. For example, the function foo

would be placed in .text.foo. Whatever the actual target object format, this is
often good enough.

[Target Hook]section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree
decl, bool relocatable)

Return the readonly data or reloc readonly data section associated with
‘DECL_SECTION_NAME (decl)’. relocatable selects the latter over the former. The

Chapter 17: Target Description Macros and Functions 651

default version of this function selects .gnu.linkonce.r.name if the function’s
section is .gnu.linkonce.t.name, .rodata.name or .data.rel.ro.name if function
is in .text.name, and the normal readonly-data or reloc readonly data section
otherwise.

[Target Hook]const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX
Usually, the compiler uses the prefix ".rodata" to construct section names for merge-
able constant data. Define this macro to override the string if a different section name
should be used.

[Target Hook]section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void)
Return the section that should be used for transactional memory clone tables.

[Target Hook]section * TARGET_ASM_SELECT_RTX_SECTION (machine_mode
mode, rtx x, unsigned HOST_WIDE_INT align)

Return the section into which a constant x, of mode mode, should be placed. You can
assume that x is some kind of constant in RTL. The argument mode is redundant
except in the case of a const_int rtx. align is the constant alignment in bits.

The default version of this function takes care of putting symbolic constants in flag_

pic mode in data_section and everything else in readonly_data_section.

[Target Hook]tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree decl, tree
id)

Define this hook if you need to postprocess the assembler name generated by target-
independent code. The id provided to this hook will be the computed name (e.g., the
macro DECL_NAME of the decl in C, or the mangled name of the decl in C++). The
return value of the hook is an IDENTIFIER_NODE for the appropriate mangled name
on your target system. The default implementation of this hook just returns the id
provided.

[Target Hook]void TARGET_ENCODE_SECTION_INFO (tree decl, rtx rtl,
int new_decl_p)

Define this hook if references to a symbol or a constant must be treated differently
depending on something about the variable or function named by the symbol (such
as what section it is in).

The hook is executed immediately after rtl has been created for decl, which may be
a variable or function declaration or an entry in the constant pool. In either case, rtl
is the rtl in question. Do not use DECL_RTL (decl) in this hook; that field may not
have been initialized yet.

In the case of a constant, it is safe to assume that the rtl is a mem whose address is a
symbol_ref. Most decls will also have this form, but that is not guaranteed. Global
register variables, for instance, will have a reg for their rtl. (Normally the right thing
to do with such unusual rtl is leave it alone.)

The new decl p argument will be true if this is the first time that TARGET_ENCODE_
SECTION_INFO has been invoked on this decl. It will be false for subsequent invoca-
tions, which will happen for duplicate declarations. Whether or not anything must
be done for the duplicate declaration depends on whether the hook examines DECL_
ATTRIBUTES. new decl p is always true when the hook is called for a constant.

652 GNU Compiler Collection (GCC) Internals

The usual thing for this hook to do is to record flags in the symbol_ref, using
SYMBOL_REF_FLAG or SYMBOL_REF_FLAGS. Historically, the name string was modified
if it was necessary to encode more than one bit of information, but this practice is
now discouraged; use SYMBOL_REF_FLAGS.

The default definition of this hook, default_encode_section_info in varasm.cc,
sets a number of commonly-useful bits in SYMBOL_REF_FLAGS. Check whether the
default does what you need before overriding it.

[Target Hook]const char * TARGET_STRIP_NAME_ENCODING (const char
*name)

Decode name and return the real name part, sans the characters that TARGET_ENCODE_
SECTION_INFO may have added.

[Target Hook]bool TARGET_IN_SMALL_DATA_P (const_tree exp)
Returns true if exp should be placed into a “small data” section. The default version
of this hook always returns false.

[Target Hook]bool TARGET_HAVE_SRODATA_SECTION
Contains the value true if the target places read-only “small data” into a separate
section. The default value is false.

[Target Hook]bool TARGET_PROFILE_BEFORE_PROLOGUE (void)
It returns true if target wants profile code emitted before prologue.

The default version of this hook use the target macro PROFILE_BEFORE_PROLOGUE.

[Target Hook]bool TARGET_BINDS_LOCAL_P (const_tree exp)
Returns true if exp names an object for which name resolution rules must resolve to
the current “module” (dynamic shared library or executable image).

The default version of this hook implements the name resolution rules for ELF, which
has a looser model of global name binding than other currently supported object file
formats.

[Target Hook]bool TARGET_HAVE_TLS
Contains the value true if the target supports thread-local storage. The default value
is false.

17.21 Position Independent Code

This section describes macros that help implement generation of position independent code.
Simply defining these macros is not enough to generate valid PIC; you must also add support
to the hook TARGET_LEGITIMATE_ADDRESS_P and to the macro PRINT_OPERAND_ADDRESS,
as well as LEGITIMIZE_ADDRESS. You must modify the definition of ‘movsi’ to do something
appropriate when the source operand contains a symbolic address. You may also need to
alter the handling of switch statements so that they use relative addresses.

[Macro]PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of static data addresses
in memory. In some cases this register is defined by a processor’s “application binary
interface” (ABI). When this macro is defined, RTL is generated for this register once,

Chapter 17: Target Description Macros and Functions 653

as with the stack pointer and frame pointer registers. If this macro is not defined, it
is up to the machine-dependent files to allocate such a register (if necessary). Note
that this register must be fixed when in use (e.g. when flag_pic is true).

[Macro]PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
A C expression that is nonzero if the register defined by PIC_OFFSET_TABLE_REGNUM

is clobbered by calls. If not defined, the default is zero. Do not define this macro if
PIC_OFFSET_TABLE_REGNUM is not defined.

[Macro]LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate operand on the target
machine when generating position independent code. You can assume that x satisfies
CONSTANT_P, so you need not check this. You can also assume flag pic is true, so you
need not check it either. You need not define this macro if all constants (including
SYMBOL_REF) can be immediate operands when generating position independent code.

17.22 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instruc-
tions in assembler language—rather than what the instructions do.

17.22.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembly file.

[Target Hook]void TARGET_ASM_FILE_START (void)
Output to asm_out_file any text which the assembler expects to find at the be-
ginning of a file. The default behavior is controlled by two flags, documented below.
Unless your target’s assembler is quite unusual, if you override the default, you should
call default_file_start at some point in your target hook. This lets other target
files rely on these variables.

[Target Hook]bool TARGET_ASM_FILE_START_APP_OFF
If this flag is true, the text of the macro ASM_APP_OFF will be printed as the very first
line in the assembly file, unless -fverbose-asm is in effect. (If that macro has been
defined to the empty string, this variable has no effect.) With the normal definition
of ASM_APP_OFF, the effect is to notify the GNU assembler that it need not bother
stripping comments or extra whitespace from its input. This allows it to work a bit
faster.

The default is false. You should not set it to true unless you have verified that your
port does not generate any extra whitespace or comments that will cause GAS to
issue errors in NO APP mode.

[Target Hook]bool TARGET_ASM_FILE_START_FILE_DIRECTIVE
If this flag is true, output_file_directive will be called for the primary source file,
immediately after printing ASM_APP_OFF (if that is enabled). Most ELF assemblers
expect this to be done. The default is false.

[Target Hook]void TARGET_ASM_FILE_END (void)
Output to asm_out_file any text which the assembler expects to find at the end of
a file. The default is to output nothing.

654 GNU Compiler Collection (GCC) Internals

[Function]void file_end_indicate_exec_stack ()
Some systems use a common convention, the ‘.note.GNU-stack’ special section, to
indicate whether or not an object file relies on the stack being executable. If your
system uses this convention, you should define TARGET_ASM_FILE_END to this function.
If you need to do other things in that hook, have your hook function call this function.

[Target Hook]void TARGET_ASM_LTO_START (void)
Output to asm_out_file any text which the assembler expects to find at the start of
an LTO section. The default is to output nothing.

[Target Hook]void TARGET_ASM_LTO_END (void)
Output to asm_out_file any text which the assembler expects to find at the end of
an LTO section. The default is to output nothing.

[Target Hook]void TARGET_ASM_CODE_END (void)
Output to asm_out_file any text which is needed before emitting unwind info and
debug info at the end of a file. Some targets emit here PIC setup thunks that cannot
be emitted at the end of file, because they couldn’t have unwind info then. The
default is to output nothing.

[Macro]ASM_COMMENT_START
A C string constant describing how to begin a comment in the target assembler
language. The compiler assumes that the comment will end at the end of the line.

[Macro]ASM_APP_ON
A C string constant for text to be output before each asm statement or group of
consecutive ones. Normally this is "#APP", which is a comment that has no effect on
most assemblers but tells the GNU assembler that it must check the lines that follow
for all valid assembler constructs.

[Macro]ASM_APP_OFF
A C string constant for text to be output after each asm statement or group of con-
secutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume
making the time-saving assumptions that are valid for ordinary compiler output.

[Macro]ASM_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging information which
indicates that filename name is the current source file to the stdio stream stream.

This macro need not be defined if the standard form of output for the file format in
use is appropriate.

[Target Hook]void TARGET_ASM_OUTPUT_SOURCE_FILENAME (FILE *file,
const char *name)

Output DWARF debugging information which indicates that filename name is the
current source file to the stdio stream file.

This target hook need not be defined if the standard form of output for the file format
in use is appropriate.

Chapter 17: Target Description Macros and Functions 655

[Target Hook]void TARGET_ASM_OUTPUT_IDENT (const char *name)
Output a string based on name, suitable for the ‘#ident’ directive, or the equivalent
directive or pragma in non-C-family languages. If this hook is not defined, nothing is
output for the ‘#ident’ directive.

[Macro]OUTPUT_QUOTED_STRING (stream, string)
A C statement to output the string string to the stdio stream stream. If you do not
call the function output_quoted_string in your config files, GCC will only call it
to output filenames to the assembler source. So you can use it to canonicalize the
format of the filename using this macro.

[Target Hook]void TARGET_ASM_NAMED_SECTION (const char *name,
unsigned int flags, tree decl)

Output assembly directives to switch to section name. The section should have at-
tributes as specified by flags, which is a bit mask of the SECTION_* flags defined in
output.h. If decl is non-NULL, it is the VAR_DECL or FUNCTION_DECL with which
this section is associated.

[Target Hook]bool TARGET_ASM_ELF_FLAGS_NUMERIC (unsigned int flags,
unsigned int *num)

This hook can be used to encode ELF section flags for which no letter code has been
defined in the assembler. It is called by default_asm_named_section whenever the
section flags need to be emitted in the assembler output. If the hook returns true,
then the numerical value for ELF section flags should be calculated from flags and
saved in *num; the value is printed out instead of the normal sequence of letter codes.
If the hook is not defined, or if it returns false, then num is ignored and the traditional
letter sequence is emitted.

[Target Hook]section * TARGET_ASM_FUNCTION_SECTION (tree decl, enum
node_frequency freq, bool startup, bool exit)

Return preferred text (sub)section for function decl. Main purpose of this function is
to separate cold, normal and hot functions. startup is true when function is known to
be used only at startup (from static constructors or it is main()). exit is true when
function is known to be used only at exit (from static destructors). Return NULL if
function should go to default text section.

[Target Hook]void TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS (FILE
*file, tree decl, bool new_is_cold)

Used by the target to emit any assembler directives or additional labels needed when
a function is partitioned between different sections. Output should be written to file.
The function decl is available as decl and the new section is ‘cold’ if new is cold is
true.

[Common Target Hook]bool TARGET_HAVE_NAMED_SECTIONS
This flag is true if the target supports TARGET_ASM_NAMED_SECTION. It must not be
modified by command-line option processing.

[Target Hook]bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
This flag is true if we can create zeroed data by switching to a BSS section and then
using ASM_OUTPUT_SKIP to allocate the space. This is true on most ELF targets.

656 GNU Compiler Collection (GCC) Internals

[Target Hook]unsigned int TARGET_SECTION_TYPE_FLAGS (tree decl,
const char *name, int reloc)

Choose a set of section attributes for use by TARGET_ASM_NAMED_SECTION based on
a variable or function decl, a section name, and whether or not the declaration’s
initializer may contain runtime relocations. decl may be null, in which case read-
write data should be assumed.

The default version of this function handles choosing code vs data, read-only vs read-
write data, and flag_pic. You should only need to override this if your target has
special flags that might be set via __attribute__.

[Target Hook]void TARGET_ASM_RECORD_GCC_SWITCHES (const char *)
Provides the target with the ability to record the gcc command line switches provided
as argument.

By default this hook is set to NULL, but an example implementation is provided for
ELF based targets. Called elf record gcc switches, it records the switches as ASCII
text inside a new, string mergeable section in the assembler output file. The name
of the new section is provided by the TARGET_ASM_RECORD_GCC_SWITCHES_SECTION

target hook.

[Target Hook]const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION
This is the name of the section that will be created by the example ELF implemen-
tation of the TARGET_ASM_RECORD_GCC_SWITCHES target hook.

17.22.2 Output of Data

[Target Hook]const char * TARGET_ASM_BYTE_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_HI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_PSI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_SI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_PDI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_DI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_PTI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_TI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_HI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_PSI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_SI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_PDI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_DI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_PTI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_TI_OP

These hooks specify assembly directives for creating certain kinds of integer object.
The TARGET_ASM_BYTE_OP directive creates a byte-sized object, the TARGET_ASM_

ALIGNED_HI_OP one creates an aligned two-byte object, and so on. Any of the hooks
may be NULL, indicating that no suitable directive is available.

The compiler will print these strings at the start of a new line, followed immediately by
the object’s initial value. In most cases, the string should contain a tab, a pseudo-op,
and then another tab.

Chapter 17: Target Description Macros and Functions 657

[Target Hook]bool TARGET_ASM_INTEGER (rtx x, unsigned int size, int
aligned_p)

The assemble_integer function uses this hook to output an integer object. x is the
object’s value, size is its size in bytes and aligned p indicates whether it is aligned.
The function should return true if it was able to output the object. If it returns false,
assemble_integer will try to split the object into smaller parts.

The default implementation of this hook will use the TARGET_ASM_BYTE_OP family of
strings, returning false when the relevant string is NULL.

[Target Hook]void TARGET_ASM_DECL_END (void)
Define this hook if the target assembler requires a special marker to terminate an
initialized variable declaration.

[Target Hook]bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *file,
rtx x)

A target hook to recognize rtx patterns that output_addr_const can’t deal with,
and output assembly code to file corresponding to the pattern x. This may be used
to allow machine-dependent UNSPECs to appear within constants.

If target hook fails to recognize a pattern, it must return false, so that a standard
error message is printed. If it prints an error message itself, by calling, for example,
output_operand_lossage, it may just return true.

[Macro]ASM_OUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler instruction to
assemble a string constant containing the len bytes at ptr. ptr will be a C expression
of type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do
not define the macro ASM_OUTPUT_ASCII.

[Macro]ASM_OUTPUT_FDESC (stream, decl, n)
A C statement to output word n of a function descriptor for decl. This must be
defined if TARGET_VTABLE_USES_DESCRIPTORS is defined, and is otherwise unused.

[Macro]CONSTANT_POOL_BEFORE_FUNCTION
You may define this macro as a C expression. You should define the expression to
have a nonzero value if GCC should output the constant pool for a function before
the code for the function, or a zero value if GCC should output the constant pool
after the function. If you do not define this macro, the usual case, GCC will output
the constant pool before the function.

[Macro]ASM_OUTPUT_POOL_PROLOGUE (file, funname, fundecl, size)
A C statement to output assembler commands to define the start of the constant pool
for a function. funname is a string giving the name of the function. Should the return
type of the function be required, it can be obtained via fundecl. size is the size, in
bytes, of the constant pool that will be written immediately after this call.

If no constant-pool prefix is required, the usual case, this macro need not be defined.

658 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno,
jumpto)

A C statement (with or without semicolon) to output a constant in the constant pool,
if it needs special treatment. (This macro need not do anything for RTL expressions
that can be output normally.)

The argument file is the standard I/O stream to output the assembler code on. x is
the RTL expression for the constant to output, and mode is the machine mode (in
case x is a ‘const_int’). align is the required alignment for the value x; you should
output an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of
this pool entry. The definition of this macro is responsible for outputting the label
definition at the proper place. Here is how to do this:

(*targetm.asm_out.internal_label) (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time in
the usual manner.

You need not define this macro if it would do nothing.

[Macro]ASM_OUTPUT_POOL_EPILOGUE (file funname fundecl size)
A C statement to output assembler commands to at the end of the constant pool for
a function. funname is a string giving the name of the function. Should the return
type of the function be required, you can obtain it via fundecl. size is the size, in
bytes, of the constant pool that GCC wrote immediately before this call.

If no constant-pool epilogue is required, the usual case, you need not define this macro.

[Macro]IS_ASM_LOGICAL_LINE_SEPARATOR (C, STR)
Define this macro as a C expression which is nonzero if C is used as a logical line
separator by the assembler. STR points to the position in the string where C was
found; this can be used if a line separator uses multiple characters.

If you do not define this macro, the default is that only the character ‘;’ is treated as
a logical line separator.

[Target Hook]const char * TARGET_ASM_OPEN_PAREN
[Target Hook]const char * TARGET_ASM_CLOSE_PAREN

These target hooks are C string constants, describing the syntax in the assembler for
grouping arithmetic expressions. If not overridden, they default to normal parenthe-
ses, which is correct for most assemblers.

These macros are provided by real.h for writing the definitions of ASM_OUTPUT_DOUBLE
and the like:

Chapter 17: Target Description Macros and Functions 659

[Macro]REAL_VALUE_TO_TARGET_SINGLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_DOUBLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL32 (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL64 (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL128 (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target’s floating point representa-
tion, and store its bit pattern in the variable l. For REAL_VALUE_TO_TARGET_SINGLE
and REAL_VALUE_TO_TARGET_DECIMAL32, this variable should be a simple long int.
For the others, it should be an array of long int. The number of elements in this
array is determined by the size of the desired target floating point data type: 32 bits
of it go in each long int array element. Each array element holds 32 bits of the
result, even if long int is wider than 32 bits on the host machine.

The array element values are designed so that you can print them out using fprintf

in the order they should appear in the target machine’s memory.

17.22.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single
uninitialized variable.

[Macro]ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants. It is possible
that size may be zero, for instance if a struct with no other member than a zero-
length array is defined. In this case, the backend must output a symbol definition
that allocates at least one byte, both so that the address of the resulting object does
not compare equal to any other, and because some object formats cannot even express
the concept of a zero-sized common symbol, as that is how they represent an ordinary
undefined external.

Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for defining the name, and a
newline.

This macro controls how the assembler definitions of uninitialized common global
variables are output.

[Macro]ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_COMMON, and
gives you more flexibility in handling the required alignment of the variable. The
alignment is specified as the number of bits.

[Macro]ASM_OUTPUT_ALIGNED_DECL_COMMON (stream, decl, name, size,
alignment)

Like ASM_OUTPUT_ALIGNED_COMMON except that decl of the variable to be output,
if there is one, or NULL_TREE if there is no corresponding variable. If you define

660 GNU Compiler Collection (GCC) Internals

this macro, GCC will use it in place of both ASM_OUTPUT_COMMON and ASM_OUTPUT_

ALIGNED_COMMON. Define this macro when you need to see the variable’s decl in order
to chose what to output.

[Macro]ASM_OUTPUT_ALIGNED_BSS (stream, decl, name, size, alignment)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of uninitialized global decl named name whose size is size bytes. The
variable alignment is the alignment specified as the number of bits.

Try to use function asm_output_aligned_bss defined in file varasm.cc when defining
this macro. If unable, use the expression assemble_name (stream, name) to output
the name itself; before and after that, output the additional assembler syntax for
defining the name, and a newline.

There are two ways of handling global BSS. One is to define this macro. The other
is to have TARGET_ASM_SELECT_SECTION return a switchable BSS section (see [TAR-
GET HAVE SWITCHABLE BSS SECTIONS], page 655). You do not need to do
both.

Some languages do not have common data, and require a non-common form of global
BSS in order to handle uninitialized globals efficiently. C++ is one example of this.
However, if the target does not support global BSS, the front end may choose to make
globals common in order to save space in the object file.

[Macro]ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a local-common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for defining the name, and a
newline.

This macro controls how the assembler definitions of uninitialized static variables are
output.

[Macro]ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_LOCAL, and
gives you more flexibility in handling the required alignment of the variable. The
alignment is specified as the number of bits.

[Macro]ASM_OUTPUT_ALIGNED_DECL_LOCAL (stream, decl, name, size,
alignment)

Like ASM_OUTPUT_ALIGNED_LOCAL except that decl of the variable to be output, if
there is one, or NULL_TREE if there is no corresponding variable. If you define
this macro, GCC will use it in place of both ASM_OUTPUT_LOCAL and ASM_OUTPUT_

ALIGNED_LOCAL. Define this macro when you need to see the variable’s decl in order
to chose what to output.

Chapter 17: Target Description Macros and Functions 661

17.22.4 Output and Generation of Labels

This is about outputting labels.

[Macro]ASM_OUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream the assem-
bler definition of a label named name. Use the expression assemble_name (stream,

name) to output the name itself; before and after that, output the additional assem-
bler syntax for defining the name, and a newline. A default definition of this macro
is provided which is correct for most systems.

[Macro]ASM_OUTPUT_FUNCTION_LABEL (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a label named name of a function. Use the expression assemble_name

(stream, name) to output the name itself; before and after that, output the additional
assembler syntax for defining the name, and a newline. A default definition of this
macro is provided which is correct for most systems.

If this macro is not defined, then the function name is defined in the usual manner
as a label (by means of ASM_OUTPUT_LABEL).

[Macro]ASM_OUTPUT_INTERNAL_LABEL (stream, name)
Identical to ASM_OUTPUT_LABEL, except that name is known to refer to a
compiler-generated label. The default definition uses assemble_name_raw, which is
like assemble_name except that it is more efficient.

[Macro]SIZE_ASM_OP
A C string containing the appropriate assembler directive to specify the size of
a symbol, without any arguments. On systems that use ELF, the default (in
config/elfos.h) is ‘"\t.size\t"’; on other systems, the default is not to define
this macro.

Define this macro only if it is correct to use the default definitions of ASM_OUTPUT_
SIZE_DIRECTIVE and ASM_OUTPUT_MEASURED_SIZE for your system. If you need your
own custom definitions of those macros, or if you do not need explicit symbol sizes at
all, do not define this macro.

[Macro]ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size)
A C statement (sans semicolon) to output to the stdio stream stream a directive telling
the assembler that the size of the symbol name is size. size is a HOST_WIDE_INT. If
you define SIZE_ASM_OP, a default definition of this macro is provided.

[Macro]ASM_OUTPUT_MEASURED_SIZE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler to calculate the size of the symbol name by subtracting its
address from the current address.

If you define SIZE_ASM_OP, a default definition of this macro is provided. The default
assumes that the assembler recognizes a special ‘.’ symbol as referring to the current
address, and can calculate the difference between this and another symbol. If your
assembler does not recognize ‘.’ or cannot do calculations with it, you will need to
redefine ASM_OUTPUT_MEASURED_SIZE to use some other technique.

662 GNU Compiler Collection (GCC) Internals

[Macro]NO_DOLLAR_IN_LABEL
Define this macro if the assembler does not accept the character ‘$’ in label names.
By default constructors and destructors in G++ have ‘$’ in the identifiers. If this
macro is defined, ‘.’ is used instead.

[Macro]NO_DOT_IN_LABEL
Define this macro if the assembler does not accept the character ‘.’ in label names.
By default constructors and destructors in G++ have names that use ‘.’. If this macro
is defined, these names are rewritten to avoid ‘.’.

[Macro]TYPE_ASM_OP
A C string containing the appropriate assembler directive to specify the type of
a symbol, without any arguments. On systems that use ELF, the default (in
config/elfos.h) is ‘"\t.type\t"’; on other systems, the default is not to define
this macro.

Define this macro only if it is correct to use the default definition of ASM_OUTPUT_
TYPE_DIRECTIVE for your system. If you need your own custom definition of this
macro, or if you do not need explicit symbol types at all, do not define this macro.

[Macro]TYPE_OPERAND_FMT
A C string which specifies (using printf syntax) the format of the second operand to
TYPE_ASM_OP. On systems that use ELF, the default (in config/elfos.h) is ‘"@%s"’;
on other systems, the default is not to define this macro.

Define this macro only if it is correct to use the default definition of ASM_OUTPUT_
TYPE_DIRECTIVE for your system. If you need your own custom definition of this
macro, or if you do not need explicit symbol types at all, do not define this macro.

[Macro]ASM_OUTPUT_TYPE_DIRECTIVE (stream, type)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler that the type of the symbol name is type. type is a C string;
currently, that string is always either ‘"function"’ or ‘"object"’, but you should not
count on this.

If you define TYPE_ASM_OP and TYPE_OPERAND_FMT, a default definition of this macro
is provided.

[Macro]ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the name name of a function which is being defined. This macro is
responsible for outputting the label definition (perhaps using ASM_OUTPUT_FUNCTION_
LABEL). The argument decl is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function name is defined in the usual manner
as a label (by means of ASM_OUTPUT_FUNCTION_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this macro.

[Macro]ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the size of a function which is being defined. The argument name

Chapter 17: Target Description Macros and Functions 663

is the name of the function. The argument decl is the FUNCTION_DECL tree node
representing the function.

If this macro is not defined, then the function size is not defined.

You may wish to use ASM_OUTPUT_MEASURED_SIZE in the definition of this macro.

[Macro]ASM_DECLARE_COLD_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of a cold function partition which is being de-
fined. This macro is responsible for outputting the label definition (perhaps using
ASM_OUTPUT_FUNCTION_LABEL). The argument decl is the FUNCTION_DECL tree node
representing the function.

If this macro is not defined, then the cold partition name is defined in the usual
manner as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this macro.

[Macro]ASM_DECLARE_COLD_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the size of a cold function partition which is being defined. The
argument name is the name of the cold partition of the function. The argument decl
is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the partition size is not defined.

You may wish to use ASM_OUTPUT_MEASURED_SIZE in the definition of this macro.

[Macro]ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of an initialized variable which is being defined.
This macro must output the label definition (perhaps using ASM_OUTPUT_LABEL). The
argument decl is the VAR_DECL tree node representing the variable.

If this macro is not defined, then the variable name is defined in the usual manner as
a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE and/or ASM_OUTPUT_SIZE_

DIRECTIVE in the definition of this macro.

[Target Hook]void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *file,
const char *name, const_tree expr, HOST_WIDE_INT size)

A target hook to output to the stdio stream file any text necessary for declaring the
name name of a constant which is being defined. This target hook is responsible for
outputting the label definition (perhaps using assemble_label). The argument exp
is the value of the constant, and size is the size of the constant in bytes. The name
will be an internal label.

The default version of this target hook, define the name in the usual manner as a
label (by means of assemble_label).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in this target hook.

[Macro]ASM_DECLARE_REGISTER_GLOBAL (stream, decl, regno, name)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for claiming a register regno for a global variable decl with name name.

If you don’t define this macro, that is equivalent to defining it to do nothing.

664 GNU Compiler Collection (GCC) Internals

[Macro]ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)
A C statement (sans semicolon) to finish up declaring a variable name once the
compiler has processed its initializer fully and thus has had a chance to determine the
size of an array when controlled by an initializer. This is used on systems where it’s
necessary to declare something about the size of the object.

If you don’t define this macro, that is equivalent to defining it to do nothing.

You may wish to use ASM_OUTPUT_SIZE_DIRECTIVE and/or ASM_OUTPUT_MEASURED_
SIZE in the definition of this macro.

[Target Hook]void TARGET_ASM_GLOBALIZE_LABEL (FILE *stream, const
char *name)

This target hook is a function to output to the stdio stream stream some commands
that will make the label name global; that is, available for reference from other files.

The default implementation relies on a proper definition of GLOBAL_ASM_OP.

[Target Hook]void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *stream, tree
decl)

This target hook is a function to output to the stdio stream stream some commands
that will make the name associated with decl global; that is, available for reference
from other files.

The default implementation uses the TARGET ASM GLOBALIZE LABEL target
hook.

[Target Hook]void TARGET_ASM_ASSEMBLE_UNDEFINED_DECL (FILE *stream,
const char *name, const_tree decl)

This target hook is a function to output to the stdio stream stream some commands
that will declare the name associated with decl which is not defined in the current
translation unit. Most assemblers do not require anything to be output in this case.

[Macro]ASM_WEAKEN_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream some commands
that will make the label name weak; that is, available for reference from other files
but only used if no other definition is available. Use the expression assemble_name

(stream, name) to output the name itself; before and after that, output the additional
assembler syntax for making that name weak, and a newline.

If you don’t define this macro or ASM_WEAKEN_DECL, GCC will not support weak
symbols and you should not define the SUPPORTS_WEAK macro.

[Macro]ASM_WEAKEN_DECL (stream, decl, name, value)
Combines (and replaces) the function of ASM_WEAKEN_LABEL and ASM_OUTPUT_WEAK_

ALIAS, allowing access to the associated function or variable decl. If value is not
NULL, this C statement should output to the stdio stream stream assembler code
which defines (equates) the weak symbol name to have the value value. If value is
NULL, it should output commands to make name weak.

[Macro]ASM_OUTPUT_WEAKREF (stream, decl, name, value)
Outputs a directive that enables name to be used to refer to symbol value with
weak-symbol semantics. decl is the declaration of name.

Chapter 17: Target Description Macros and Functions 665

[Macro]SUPPORTS_WEAK
A preprocessor constant expression which evaluates to true if the target supports
weak symbols.

If you don’t define this macro, defaults.h provides a default definition. If either ASM_
WEAKEN_LABEL or ASM_WEAKEN_DECL is defined, the default definition is ‘1’; otherwise,
it is ‘0’.

[Macro]TARGET_SUPPORTS_WEAK
A C expression which evaluates to true if the target supports weak symbols.

If you don’t define this macro, defaults.h provides a default definition. The default
definition is ‘(SUPPORTS_WEAK)’. Define this macro if you want to control weak symbol
support with a compiler flag such as -melf.

[Macro]MAKE_DECL_ONE_ONLY (decl)
A C statement (sans semicolon) to mark decl to be emitted as a public symbol such
that extra copies in multiple translation units will be discarded by the linker. Define
this macro if your object file format provides support for this concept, such as the
‘COMDAT’ section flags in the Microsoft Windows PE/COFF format, and this support
requires changes to decl, such as putting it in a separate section.

[Macro]SUPPORTS_ONE_ONLY
A C expression which evaluates to true if the target supports one-only semantics.

If you don’t define this macro, varasm.cc provides a default definition. If MAKE_
DECL_ONE_ONLY is defined, the default definition is ‘1’; otherwise, it is ‘0’. Define
this macro if you want to control one-only symbol support with a compiler flag, or
if setting the DECL_ONE_ONLY flag is enough to mark a declaration to be emitted as
one-only.

[Target Hook]void TARGET_ASM_ASSEMBLE_VISIBILITY (tree decl, int
visibility)

This target hook is a function to output to asm out file some commands that will
make the symbol(s) associated with decl have hidden, protected or internal visibility
as specified by visibility.

[Macro]TARGET_WEAK_NOT_IN_ARCHIVE_TOC
A C expression that evaluates to true if the target’s linker expects that weak symbols
do not appear in a static archive’s table of contents. The default is 0.

Leaving weak symbols out of an archive’s table of contents means that, if a symbol
will only have a definition in one translation unit and will have undefined references
from other translation units, that symbol should not be weak. Defining this macro to
be nonzero will thus have the effect that certain symbols that would normally be weak
(explicit template instantiations, and vtables for polymorphic classes with noninline
key methods) will instead be nonweak.

The C++ ABI requires this macro to be zero. Define this macro for targets where full
C++ ABI compliance is impossible and where linker restrictions require weak symbols
to be left out of a static archive’s table of contents.

666 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the name of an external symbol named name which is referenced in
this compilation but not defined. The value of decl is the tree node for the declaration.

This macro need not be defined if it does not need to output anything. The GNU
assembler and most Unix assemblers don’t require anything.

[Target Hook]void TARGET_ASM_EXTERNAL_LIBCALL (rtx symref)
This target hook is a function to output to asm out file an assembler pseudo-op to
declare a library function name external. The name of the library function is given
by symref, which is a symbol_ref.

[Target Hook]void TARGET_ASM_MARK_DECL_PRESERVED (const char *symbol)
This target hook is a function to output to asm out file an assembler directive to
annotate symbol as used. The Darwin target uses the .no dead code strip directive.

[Macro]ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a reference in
assembler syntax to a label named name. This should add ‘_’ to the front of the
name, if that is customary on your operating system, as it is in most Berkeley Unix
systems. This macro is used in assemble_name.

[Target Hook]tree TARGET_MANGLE_ASSEMBLER_NAME (const char *name)
Given a symbol name, perform same mangling as varasm.cc’s assemble_name, but
in memory rather than to a file stream, returning result as an IDENTIFIER_NODE.
Required for correct LTO symtabs. The default implementation calls the TARGET_

STRIP_NAME_ENCODING hook and then prepends the USER_LABEL_PREFIX, if any.

[Macro]ASM_OUTPUT_SYMBOL_REF (stream, sym)
A C statement (sans semicolon) to output a reference to SYMBOL_REF sym. If not
defined, assemble_name will be used to output the name of the symbol. This macro
may be used to modify the way a symbol is referenced depending on information
encoded by TARGET_ENCODE_SECTION_INFO.

[Macro]ASM_OUTPUT_LABEL_REF (stream, buf)
A C statement (sans semicolon) to output a reference to buf, the result of ASM_

GENERATE_INTERNAL_LABEL. If not defined, assemble_name will be used to output
the name of the symbol. This macro is not used by output_asm_label, or the %l

specifier that calls it; the intention is that this macro should be set when it is necessary
to output a label differently when its address is being taken.

[Target Hook]void TARGET_ASM_INTERNAL_LABEL (FILE *stream, const
char *prefix, unsigned long labelno)

A function to output to the stdio stream stream a label whose name is made from
the string prefix and the number labelno.

It is absolutely essential that these labels be distinct from the labels used for user-level
functions and variables. Otherwise, certain programs will have name conflicts with
internal labels.

Chapter 17: Target Description Macros and Functions 667

It is desirable to exclude internal labels from the symbol table of the object file. Most
assemblers have a naming convention for labels that should be excluded; on many
systems, the letter ‘L’ at the beginning of a label has this effect. You should find out
what convention your system uses, and follow it.

The default version of this function utilizes ASM_GENERATE_INTERNAL_LABEL.

[Macro]ASM_OUTPUT_DEBUG_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a debug info label whose name
is made from the string prefix and the number num. This is useful for VLIW tar-
gets, where debug info labels may need to be treated differently than branch target
labels. On some systems, branch target labels must be at the beginning of instruction
bundles, but debug info labels can occur in the middle of instruction bundles.

If this macro is not defined, then (*targetm.asm_out.internal_label) will be used.

[Macro]ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name is made from the
string prefix and the number num.

This string, when output subsequently by assemble_name, should produce the output
that (*targetm.asm_out.internal_label) would produce with the same prefix and
num.

If the string begins with ‘*’, then assemble_name will output the rest of the string
unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use ‘*’ in
this way. If the string doesn’t start with ‘*’, then ASM_OUTPUT_LABELREF gets to
output the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part
of your machine description, so you should know what it does on your machine.)

[Macro]ASM_FORMAT_PRIVATE_NAME (outvar, name, number)
A C expression to assign to outvar (which is a variable of type char *) a newly
allocated string made from the string name and the number number, with some
suitable punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an
assembler label for an internal static variable whose name is name. Therefore, the
string must be such as to result in valid assembler code. The argument number is
different each time this macro is executed; it prevents conflicts between similarly-
named internal static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent any conflict with
the user’s own symbols. Most assemblers allow periods or percent signs in assembler
symbols; putting at least one of these between the name and the number will suffice.

If this macro is not defined, a default definition will be provided which is correct for
most systems.

[Macro]ASM_OUTPUT_DEF (stream, name, value)
A C statement to output to the stdio stream stream assembler code which defines
(equates) the symbol name to have the value value.

If SET_ASM_OP is defined, a default definition is provided which is correct for most
systems.

668 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_DEF_FROM_DECLS (stream, decl_of_name,
decl_of_value)

A C statement to output to the stdio stream stream assembler code which defines
(equates) the symbol whose tree node is decl of name to have the value of the tree
node decl of value. This macro will be used in preference to ‘ASM_OUTPUT_DEF’ if it
is defined and if the tree nodes are available.

If SET_ASM_OP is defined, a default definition is provided which is correct for most
systems.

[Macro]TARGET_DEFERRED_OUTPUT_DEFS (decl_of_name, decl_of_value)
A C statement that evaluates to true if the assembler code which defines (equates)
the symbol whose tree node is decl of name to have the value of the tree node
decl of value should be emitted near the end of the current compilation unit. The
default is to not defer output of defines. This macro affects defines output by
‘ASM_OUTPUT_DEF’ and ‘ASM_OUTPUT_DEF_FROM_DECLS’.

[Macro]ASM_OUTPUT_WEAK_ALIAS (stream, name, value)
A C statement to output to the stdio stream stream assembler code which defines
(equates) the weak symbol name to have the value value. If value is NULL, it defines
name as an undefined weak symbol.

Define this macro if the target only supports weak aliases; define ASM_OUTPUT_DEF

instead if possible.

[Macro]OBJC_GEN_METHOD_LABEL (buf, is_inst, class_name, cat_name,
sel_name)

Define this macro to override the default assembler names used for Objective-C meth-
ods.

The default name is a unique method number followed by the name of the class (e.g.
‘_1_Foo’). For methods in categories, the name of the category is also included in the
assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the
method’s selector is not present in the name. Therefore, particular systems define
other ways of computing names.

buf is an expression of type char * which gives you a buffer in which to store the
name; its length is as long as class name, cat name and sel name put together, plus
50 characters extra.

The argument is inst specifies whether the method is an instance method or a class
method; class name is the name of the class; cat name is the name of the category
(or NULL if the method is not in a category); and sel name is the name of the selector.

On systems where the assembler can handle quoted names, you can use this macro
to provide more human-readable names.

17.22.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization
routines)—functions to initialize data in the program when the program is started. These

Chapter 17: Target Description Macros and Functions 669

functions need to be called before the program is “started”—that is to say, before main is
called.

Compiling some languages generates destructors (also called termination routines) that
should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output
something in the assembler code to cause those functions to be called at the appropriate
time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization
and termination functions. Each way has two variants. Much of the structure is common
to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called
__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, −1, or a
count of the function pointers after it, depending on the environment). This is followed
by a series of zero or more function pointers to constructors (or destructors), followed by a
function pointer containing zero.

Depending on the operating system and its executable file format, either crtstuff.c or
libgcc2.c traverses these lists at startup time and exit time. Constructors are called in
reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file formats which provide
arbitrarily-named sections. A section is set aside for a list of constructors, and another for
a list of destructors. Traditionally these are called ‘.ctors’ and ‘.dtors’. Each object file
that defines an initialization function also puts a word in the constructor section to point to
that function. The linker accumulates all these words into one contiguous ‘.ctors’ section.
Termination functions are handled similarly.

This method will be chosen as the default by target-def.h if TARGET_ASM_NAMED_

SECTION is defined. A target that does not support arbitrary sections, but does support
special designated constructor and destructor sections may define CTORS_SECTION_ASM_OP

and DTORS_SECTION_ASM_OP to achieve the same effect.

When arbitrary sections are available, there are two variants, depending upon how the
code in crtstuff.c is called. On systems that support a .init section which is executed
at program startup, parts of crtstuff.c are compiled into that section. The program is
linked by the gcc driver like this:

ld -o output_file crti.o crtbegin.o ... -lgcc crtend.o crtn.o

The prologue of a function (__init) appears in the .init section of crti.o; the epilogue
appears in crtn.o. Likewise for the function __fini in the .fini section. Normally these
files are provided by the operating system or by the GNU C library, but are provided by
GCC for a few targets.

The objects crtbegin.o and crtend.o are (for most targets) compiled from crtstuff.c.
They contain, among other things, code fragments within the .init and .fini sections that
branch to routines in the .text section. The linker will pull all parts of a section together,
which results in a complete __init function that invokes the routines we need at startup.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.

670 GNU Compiler Collection (GCC) Internals

If no init section is available, when GCC compiles any function called main (or more
accurately, any function designated as a program entry point by the language front end
calling expand_main_function), it inserts a procedure call to __main as the first executable
code after the function prologue. The __main function is defined in libgcc2.c and runs
the global constructors.

In file formats that don’t support arbitrary sections, there are again two variants. In
the simplest variant, the GNU linker (GNU ld) and an ‘a.out’ format must be used. In
this case, TARGET_ASM_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’,
referencing the name __CTOR_LIST__, and with the address of the void function containing
the initialization code as its value. The GNU linker recognizes this as a request to add the
value to a set; the values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count and a trailing zero
element. TARGET_ASM_DESTRUCTOR is handled similarly. Since no init section is available,
the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable
when you want to do dynamic linking and when using file formats which the GNU linker
does not support, such as ‘ECOFF’. In this case, TARGET_HAVE_CTORS_DTORS is false,
initialization and termination functions are recognized simply by their names. This requires
an extra program in the linkage step, called collect2. This program pretends to be the
linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to
include the vectors of initialization and termination functions. These functions are called
via __main as described above. In order to use this method, use_collect2 must be defined
in the target in config.gcc.

17.22.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination
functions:

[Macro]INIT_SECTION_ASM_OP
If defined, a C string constant, including spacing, for the assembler operation to
identify the following data as initialization code. If not defined, GCC will assume
such a section does not exist. When you are using special sections for initialization
and termination functions, this macro also controls how crtstuff.c and libgcc2.c

arrange to run the initialization functions.

[Macro]HAS_INIT_SECTION
If defined, main will not call __main as described above. This macro should be defined
for systems that control start-up code on a symbol-by-symbol basis, such as OSF/1,
and should not be defined explicitly for systems that support INIT_SECTION_ASM_OP.

[Macro]LD_INIT_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is an initialization routine.

[Macro]LD_FINI_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is a finalization routine.

Chapter 17: Target Description Macros and Functions 671

[Macro]COLLECT_SHARED_INIT_FUNC (stream, func)
If defined, a C statement that will write a function that can be automatically called
when a shared library is loaded. The function should call func, which takes no ar-
guments. If not defined, and the object format requires an explicit initialization
function, then a function called _GLOBAL__DI will be generated.

This function and the following one are used by collect2 when linking a shared library
that needs constructors or destructors, or has DWARF2 exception tables embedded
in the code.

[Macro]COLLECT_SHARED_FINI_FUNC (stream, func)
If defined, a C statement that will write a function that can be automatically called
when a shared library is unloaded. The function should call func, which takes no
arguments. If not defined, and the object format requires an explicit finalization
function, then a function called _GLOBAL__DD will be generated.

[Macro]INVOKE__main
If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP. This
macro should be defined for systems where the init section is not actually run auto-
matically, but is still useful for collecting the lists of constructors and destructors.

[Macro]SUPPORTS_INIT_PRIORITY
If nonzero, the C++ init_priority attribute is supported and the compiler should
emit instructions to control the order of initialization of objects. If zero, the compiler
will issue an error message upon encountering an init_priority attribute.

[Target Hook]bool TARGET_HAVE_CTORS_DTORS
This value is true if the target supports some “native” method of collecting con-
structors and destructors to be run at startup and exit. It is false if we must use
collect2.

[Target Hook]bool TARGET_DTORS_FROM_CXA_ATEXIT
This value is true if the target wants destructors to be queued to be run from __

cxa_atexit. If this is the case then, for each priority level, a new constructor will
be entered that registers the destructors for that level with __cxa_atexit (and there
will be no destructors emitted). It is false the method implied by have_ctors_dtors

is used.

[Target Hook]void TARGET_ASM_CONSTRUCTOR (rtx symbol, int priority)
If defined, a function that outputs assembler code to arrange to call the function
referenced by symbol at initialization time.

Assume that symbol is a SYMBOL_REF for a function taking no arguments and with
no return value. If the target supports initialization priorities, priority is a value
between 0 and MAX_INIT_PRIORITY; otherwise it must be DEFAULT_INIT_PRIORITY.

If this macro is not defined by the target, a suitable default will be chosen if (1) the
target supports arbitrary section names, (2) the target defines CTORS_SECTION_ASM_
OP, or (3) USE_COLLECT2 is not defined.

[Target Hook]void TARGET_ASM_DESTRUCTOR (rtx symbol, int priority)
This is like TARGET_ASM_CONSTRUCTOR but used for termination functions rather than
initialization functions.

672 GNU Compiler Collection (GCC) Internals

If TARGET_HAVE_CTORS_DTORS is true, the initialization routine generated for the gener-
ated object file will have static linkage.

If your system uses collect2 as the means of processing constructors, then that program
normally uses nm to scan an object file for constructor functions to be called.

On certain kinds of systems, you can define this macro to make collect2 work faster
(and, in some cases, make it work at all):

[Macro]OBJECT_FORMAT_COFF
Define this macro if the system uses COFF (Common Object File Format) object files,
so that collect2 can assume this format and scan object files directly for dynamic
constructor/destructor functions.

This macro is effective only in a native compiler; collect2 as part of a cross compiler
always uses nm for the target machine.

[Macro]REAL_NM_FILE_NAME
Define this macro as a C string constant containing the file name to use to execute
nm. The default is to search the path normally for nm.

[Macro]NM_FLAGS
collect2 calls nm to scan object files for static constructors and destructors and LTO
info. By default, -n is passed. Define NM_FLAGS to a C string constant if other options
are needed to get the same output format as GNU nm -n produces.

If your system supports shared libraries and has a program to list the dynamic depen-
dencies of a given library or executable, you can define these macros to enable support for
running initialization and termination functions in shared libraries:

[Macro]LDD_SUFFIX
Define this macro to a C string constant containing the name of the program which
lists dynamic dependencies, like ldd under SunOS 4.

[Macro]PARSE_LDD_OUTPUT (ptr)
Define this macro to be C code that extracts filenames from the output of the program
denoted by LDD_SUFFIX. ptr is a variable of type char * that points to the beginning
of a line of output from LDD_SUFFIX. If the line lists a dynamic dependency, the code
must advance ptr to the beginning of the filename on that line. Otherwise, it must
set ptr to NULL.

[Macro]SHLIB_SUFFIX
Define this macro to a C string constant containing the default shared library exten-
sion of the target (e.g., ‘".so"’). collect2 strips version information after this suffix
when generating global constructor and destructor names. This define is only needed
on targets that use collect2 to process constructors and destructors.

17.22.7 Output of Assembler Instructions

This describes assembler instruction output.

Chapter 17: Target Description Macros and Functions 673

[Macro]REGISTER_NAMES
A C initializer containing the assembler’s names for the machine registers, each one
as a C string constant. This is what translates register numbers in the compiler into
assembler language.

[Macro]ADDITIONAL_REGISTER_NAMES
If defined, a C initializer for an array of structures containing a name and a register
number. This macro defines additional names for hard registers, thus allowing the
asm option in declarations to refer to registers using alternate names.

[Macro]OVERLAPPING_REGISTER_NAMES
If defined, a C initializer for an array of structures containing a name, a register
number and a count of the number of consecutive machine registers the name over-
laps. This macro defines additional names for hard registers, thus allowing the asm

option in declarations to refer to registers using alternate names. Unlike ADDITIONAL_
REGISTER_NAMES, this macro should be used when the register name implies multiple
underlying registers.

This macro should be used when it is important that a clobber in an asm statement
clobbers all the underlying values implied by the register name. For example, on
ARM, clobbering the double-precision VFP register “d0” implies clobbering both
single-precision registers “s0” and “s1”.

[Macro]ASM_OUTPUT_OPCODE (stream, ptr)
Define this macro if you are using an unusual assembler that requires different names
for the machine instructions.

The definition is a C statement or statements which output an assembler instruction
opcode to the stdio stream stream. The macro-operand ptr is a variable of type char
* which points to the opcode name in its “internal” form—the form that is written in
the machine description. The definition should output the opcode name to stream,
performing any translation you desire, and increment the variable ptr to point at the
end of the opcode so that it will not be output twice.

In fact, your macro definition may process less than the entire opcode name, or more
than the opcode name; but if you want to process text that includes ‘%’-sequences to
substitute operands, you must take care of the substitution yourself. Just be sure to
increment ptr over whatever text should not be output normally.

If you need to look at the operand values, they can be found as the elements of
recog_data.operand.

If the macro definition does nothing, the instruction is output in the usual way.

[Macro]FINAL_PRESCAN_INSN (insn, opvec, noperands)
If defined, a C statement to be executed just prior to the output of assembler code
for insn, to modify the extracted operands so they will be output differently.

Here the argument opvec is the vector containing the operands extracted from insn,
and noperands is the number of elements of the vector which contain meaningful data
for this insn. The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output by changing
the contents of the vector.

674 GNU Compiler Collection (GCC) Internals

This macro is useful when various assembler syntaxes share a single file of instruction
patterns; by defining this macro differently, you can cause a large class of instructions
to be output differently (such as with rearranged operands). Naturally, variations in
assembler syntax affecting individual insn patterns ought to be handled by writing
conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

[Target Hook]void TARGET_ASM_FINAL_POSTSCAN_INSN (FILE *file,
rtx_insn *insn, rtx *opvec, int noperands)

If defined, this target hook is a function which is executed just after the output of
assembler code for insn, to change the mode of the assembler if necessary.

Here the argument opvec is the vector containing the operands extracted from insn,
and noperands is the number of elements of the vector which contain meaningful
data for this insn. The contents of this vector are what was used to convert the insn
template into assembler code, so you can change the assembler mode by checking the
contents of the vector.

[Macro]PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing the operand.
It is used when identical operands must be printed differently depending on the con-
text. code comes from the ‘%’ specification that was used to request printing of the
operand. If the specification was just ‘%digit’ then code is 0; if the specification was
‘%ltr digit’ then code is the ASCII code for ltr.

If x is a register, this macro should print the register’s name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized from
REGISTER_NAMES.

When the machine description has a specification ‘%punct’ (a ‘%’ followed by a punc-
tuation character), this macro is called with a null pointer for x and the punctuation
character for code.

[Macro]PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid punctuation character for
use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not defined,
it means that no punctuation characters (except for the standard one, ‘%’) are used
in this way.

[Macro]PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand that is a memory reference whose address is x. x is an RTL
expression.

On some machines, the syntax for a symbolic address depends on the section that
the address refers to. On these machines, define the hook TARGET_ENCODE_SECTION_

INFO to store the information into the symbol_ref, and then check for it here. See
Section 17.22 [Assembler Format], page 653.

Chapter 17: Target Description Macros and Functions 675

[Macro]DBR_OUTPUT_SEQEND (file)
A C statement, to be executed after all slot-filler instructions have been output. If
necessary, call dbr_sequence_length to determine the number of slots filled in a
sequence (zero if not currently outputting a sequence), to decide how many no-ops to
output, or whatever.

Don’t define this macro if it has nothing to do, but it is helpful in reading assembly
output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal with
not being output as part of a sequence (i.e. when the scheduling pass is not run, or when
no slot fillers could be found.) The variable final_sequence is null when not processing a
sequence, otherwise it contains the sequence rtx being output.

[Macro]REGISTER_PREFIX
[Macro]LOCAL_LABEL_PREFIX
[Macro]USER_LABEL_PREFIX
[Macro]IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘%L’, ‘%U’, and ‘%I’ options of
asm_fprintf (see final.cc). These are useful when a single md file must support
multiple assembler formats. In that case, the various tm.h files can define these
macros differently.

[Macro]ASM_FPRINTF_EXTENSIONS (file, argptr, format)
If defined this macro should expand to a series of case statements which will be
parsed inside the switch statement of the asm_fprintf function. This allows targets
to define extra printf formats which may useful when generating their assembler
statements. Note that uppercase letters are reserved for future generic extensions
to asm fprintf, and so are not available to target specific code. The output file is
given by the parameter file. The varargs input pointer is argptr and the rest of the
format string, starting the character after the one that is being switched upon, is
pointed to by format.

[Macro]ASSEMBLER_DIALECT
If your target supports multiple dialects of assembler language (such as different
opcodes), define this macro as a C expression that gives the numeric index of the
assembler language dialect to use, with zero as the first variant.

If this macro is defined, you may use constructs of the form

‘{option0|option1|option2...}’

in the output templates of patterns (see Section 16.5 [Output Template], page 375) or
in the first argument of asm_fprintf. This construct outputs ‘option0’, ‘option1’,
‘option2’, etc., if the value of ASSEMBLER_DIALECT is zero, one, two, etc. Any spe-
cial characters within these strings retain their usual meaning. If there are fewer
alternatives within the braces than the value of ASSEMBLER_DIALECT, the construct
outputs nothing. If it’s needed to print curly braces or ‘|’ character in assembler
output directly, ‘%{’, ‘%}’ and ‘%|’ can be used.

If you do not define this macro, the characters ‘{’, ‘|’ and ‘}’ do not have any special
meaning when used in templates or operands to asm_fprintf.

676 GNU Compiler Collection (GCC) Internals

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_PREFIX

and IMMEDIATE_PREFIX if you can express the variations in assembler language syntax
with that mechanism. Define ASSEMBLER_DIALECT and use the ‘{option0|option1}’
syntax if the syntax variant are larger and involve such things as different opcodes
or operand order.

[Macro]ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will push hard register
number regno onto the stack. The code need not be optimal, since this macro is used
only when profiling.

[Macro]ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will pop hard register
number regno off of the stack. The code need not be optimal, since this macro is used
only when profiling.

17.22.8 Output of Dispatch Tables

This concerns dispatch tables.

[Macro]ASM_OUTPUT_ADDR_DIFF_ELT (stream, body, value, rel)
A C statement to output to the stdio stream stream an assembler pseudo-instruction
to generate a difference between two labels. value and rel are the numbers of two
internal labels. The definitions of these labels are output using (*targetm.asm_

out.internal_label), and they must be printed in the same way here. For example,
fprintf (stream, "\t.word L%d-L%d\n",

value, rel)

You must provide this macro on machines where the addresses in a dispatch table
are relative to the table’s own address. If defined, GCC will also use this macro on
all machines when producing PIC. body is the body of the ADDR_DIFF_VEC; it is
provided so that the mode and flags can be read.

[Macro]ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a dispatch table
are absolute.

The definition should be a C statement to output to the stdio stream stream an
assembler pseudo-instruction to generate a reference to a label. value is the number
of an internal label whose definition is output using (*targetm.asm_out.internal_

label). For example,
fprintf (stream, "\t.word L%d\n", value)

[Macro]ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
Define this if the label before a jump-table needs to be output specially. The first three
arguments are the same as for (*targetm.asm_out.internal_label); the fourth
argument is the jump-table which follows (a jump_table_data containing an addr_

vec or addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with (*targetm.asm_

out.internal_label).

Chapter 17: Target Description Macros and Functions 677

[Macro]ASM_OUTPUT_CASE_END (stream, num, table)
Define this if something special must be output at the end of a jump-table. The
definition should be a C statement to be executed after the assembler code for the
table is written. It should write the appropriate code to stdio stream stream. The
argument table is the jump-table insn, and num is the label-number of the preceding
label.

If this macro is not defined, nothing special is output at the end of the jump-table.

[Target Hook]void TARGET_ASM_POST_CFI_STARTPROC (FILE *, tree)
This target hook is used to emit assembly strings required by the target after the
.cfi startproc directive. The first argument is the file stream to write the strings to
and the second argument is the function’s declaration. The expected use is to add
more .cfi * directives.

The default is to not output any assembly strings.

[Target Hook]void TARGET_ASM_EMIT_UNWIND_LABEL (FILE *stream, tree
decl, int for_eh, int empty)

This target hook emits a label at the beginning of each FDE. It should be defined on
targets where FDEs need special labels, and it should write the appropriate label, for
the FDE associated with the function declaration decl, to the stdio stream stream.
The third argument, for eh, is a boolean: true if this is for an exception table. The
fourth argument, empty, is a boolean: true if this is a placeholder label for an omitted
FDE.

The default is that FDEs are not given nonlocal labels.

[Target Hook]void TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL (FILE *stream)
This target hook emits a label at the beginning of the exception table. It should be
defined on targets where it is desirable for the table to be broken up according to
function.

The default is that no label is emitted.

[Target Hook]void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx
personality)

If the target implements TARGET_ASM_UNWIND_EMIT, this hook may be used to emit
a directive to install a personality hook into the unwind info. This hook should not
be used if dwarf2 unwind info is used.

[Target Hook]void TARGET_ASM_UNWIND_EMIT (FILE *stream, rtx_insn
*insn)

This target hook emits assembly directives required to unwind the given instruction.
This is only used when TARGET_EXCEPT_UNWIND_INFO returns UI_TARGET.

[Target Hook]rtx TARGET_ASM_MAKE_EH_SYMBOL_INDIRECT (rtx origsymbol,
bool pubvis)

If necessary, modify personality and LSDA references to handle indirection. The
original symbol is in origsymbol and if pubvis is true the symbol is visible outside
the TU.

678 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN
True if the TARGET_ASM_UNWIND_EMIT hook should be called before the assembly for
insn has been emitted, false if the hook should be called afterward.

[Target Hook]bool TARGET_ASM_SHOULD_RESTORE_CFA_STATE (void)
For DWARF-based unwind frames, two CFI instructions provide for save and restore
of register state. GCC maintains the current frame address (CFA) separately from the
register bank but the unwinder in libgcc preserves this state along with the registers
(and this is expected by the code that writes the unwind frames). This hook allows
the target to specify that the CFA data is not saved/restored along with the registers
by the target unwinder so that suitable additional instructions should be emitted to
restore it.

17.22.9 Assembler Commands for Exception Regions

This describes commands marking the start and the end of an exception region.

[Macro]EH_FRAME_SECTION_NAME
If defined, a C string constant for the name of the section containing exception han-
dling frame unwind information. If not defined, GCC will provide a default definition
if the target supports named sections. crtstuff.c uses this macro to switch to the
appropriate section.

You should define this symbol if your target supports DWARF 2 frame unwind infor-
mation and the default definition does not work.

[Macro]EH_FRAME_THROUGH_COLLECT2
If defined, DWARF 2 frame unwind information will identified by specially named
labels. The collect2 process will locate these labels and generate code to register the
frames.

This might be necessary, for instance, if the system linker will not place the eh frames
in-between the sentinals from crtstuff.c, or if the system linker does garbage col-
lection and sections cannot be marked as not to be collected.

[Macro]EH_TABLES_CAN_BE_READ_ONLY
Define this macro to 1 if your target is such that no frame unwind information en-
coding used with non-PIC code will ever require a runtime relocation, but the linker
may not support merging read-only and read-write sections into a single read-write
section.

[Macro]MASK_RETURN_ADDR
An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it does
not contain any extraneous set bits in it.

[Macro]DWARF2_UNWIND_INFO
Define this macro to 0 if your target supports DWARF 2 frame unwind information,
but it does not yet work with exception handling. Otherwise, if your target supports
this information (if it defines INCOMING_RETURN_ADDR_RTX and OBJECT_FORMAT_ELF),
GCC will provide a default definition of 1.

Chapter 17: Target Description Macros and Functions 679

[Common Target Hook]enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO
(struct gcc_options *opts)

This hook defines the mechanism that will be used for exception handling by the
target. If the target has ABI specified unwind tables, the hook should return UI_

TARGET. If the target is to use the setjmp/longjmp-based exception handling scheme,
the hook should return UI_SJLJ. If the target supports DWARF 2 frame unwind
information, the hook should return UI_DWARF2.

A target may, if exceptions are disabled, choose to return UI_NONE. This may end
up simplifying other parts of target-specific code. The default implementation of this
hook never returns UI_NONE.

Note that the value returned by this hook should be constant. It should not depend
on anything except the command-line switches described by opts. In particular, the
setting UI_SJLJ must be fixed at compiler start-up as C pre-processor macros and
builtin functions related to exception handling are set up depending on this setting.

The default implementation of the hook first honors the --enable-sjlj-exceptions
configure option, then DWARF2_UNWIND_INFO, and finally defaults to UI_SJLJ. If
DWARF2_UNWIND_INFO depends on command-line options, the target must define this
hook so that opts is used correctly.

[Common Target Hook]bool TARGET_UNWIND_TABLES_DEFAULT
This variable should be set to true if the target ABI requires unwinding tables even
when exceptions are not used. It must not be modified by command-line option
processing.

[Macro]DONT_USE_BUILTIN_SETJMP
Define this macro to 1 if the setjmp/longjmp-based scheme should use the
setjmp/longjmp functions from the C library instead of the __builtin_setjmp/__
builtin_longjmp machinery.

[Macro]JMP_BUF_SIZE
This macro has no effect unless DONT_USE_BUILTIN_SETJMP is also defined. Define this
macro if the default size of jmp_buf buffer for the setjmp/longjmp-based exception
handling mechanism is not large enough, or if it is much too large. The default size
is FIRST_PSEUDO_REGISTER * sizeof(void *).

[Macro]DWARF_CIE_DATA_ALIGNMENT
This macro need only be defined if the target might save registers in the function
prologue at an offset to the stack pointer that is not aligned to UNITS_PER_WORD. The
definition should be the negative minimum alignment if STACK_GROWS_DOWNWARD is
true, and the positive minimum alignment otherwise. See Section 17.23.2 [DWARF],
page 683. Only applicable if the target supports DWARF 2 frame unwind information.

[Target Hook]bool TARGET_TERMINATE_DW2_EH_FRAME_INFO
Contains the value true if the target should add a zero word onto the end of a Dwarf-2
frame info section when used for exception handling. Default value is false if EH_
FRAME_SECTION_NAME is defined, and true otherwise.

680 GNU Compiler Collection (GCC) Internals

[Target Hook]rtx TARGET_DWARF_REGISTER_SPAN (rtx reg)
Given a register, this hook should return a parallel of registers to represent where to
find the register pieces. Define this hook if the register and its mode are represented
in Dwarf in non-contiguous locations, or if the register should be represented in more
than one register in Dwarf. Otherwise, this hook should return NULL_RTX. If not
defined, the default is to return NULL_RTX.

[Target Hook]machine_mode TARGET_DWARF_FRAME_REG_MODE (int regno)
Given a register, this hook should return the mode which the corresponding Dwarf
frame register should have. This is normally used to return a smaller mode than the
raw mode to prevent call clobbered parts of a register altering the frame register size

[Target Hook]bool TARGET_OUTPUT_CFI_DIRECTIVE (FILE * f, dw_cfi_ref
cfi)

This hook handles architecture-specific CFI directives and prints them out to the
assembly file f. Return true if a architecture-specific directive was found, false other-
wise.

[Target Hook]bool TARGET_DW_CFI_OPRND1_DESC (dwarf_call_frame_info
cfi_opc, dw_cfi_oprnd_type & oprnd_type)

This hook informs the caller what the architecture-specific directives takes as a first
operand. Return true if a architecture-specific directive was found and oprnd type is
set, false otherwise and oprnd type is not modified.

[Target Hook]void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree address)
If some registers are represented in Dwarf-2 unwind information in multiple pieces,
define this hook to fill in information about the sizes of those pieces in the table used
by the unwinder at runtime. It will be called by expand_builtin_init_dwarf_reg_

sizes after filling in a single size corresponding to each hard register; address is the
address of the table.

[Target Hook]bool TARGET_ASM_TTYPE (rtx sym)
This hook is used to output a reference from a frame unwinding table to the type info
object identified by sym. It should return true if the reference was output. Returning
false will cause the reference to be output using the normal Dwarf2 routines.

[Target Hook]bool TARGET_ARM_EABI_UNWINDER
This flag should be set to true on targets that use an ARM EABI based unwinding
library, and false on other targets. This effects the format of unwinding tables, and
how the unwinder in entered after running a cleanup. The default is false.

17.22.10 Assembler Commands for Alignment

This describes commands for alignment.

[Macro]JUMP_ALIGN (label)
The alignment (log base 2) to put in front of label, which is a common destination of
jumps and has no fallthru incoming edge.

This macro need not be defined if you don’t want any special alignment to be done
at such a time. Most machine descriptions do not currently define the macro.

Chapter 17: Target Description Macros and Functions 681

Unless it’s necessary to inspect the label parameter, it is better to set the variable
align jumps in the target’s TARGET_OPTION_OVERRIDE. Otherwise, you should try to
honor the user’s selection in align jumps in a JUMP_ALIGN implementation.

[Macro]LABEL_ALIGN_AFTER_BARRIER (label)
The alignment (log base 2) to put in front of label, which follows a BARRIER.

This macro need not be defined if you don’t want any special alignment to be done
at such a time. Most machine descriptions do not currently define the macro.

[Macro]LOOP_ALIGN (label)
The alignment (log base 2) to put in front of label that heads a frequently executed
basic block (usually the header of a loop).

This macro need not be defined if you don’t want any special alignment to be done
at such a time. Most machine descriptions do not currently define the macro.

Unless it’s necessary to inspect the label parameter, it is better to set the variable
align_loops in the target’s TARGET_OPTION_OVERRIDE. Otherwise, you should try
to honor the user’s selection in align_loops in a LOOP_ALIGN implementation.

[Macro]LABEL_ALIGN (label)
The alignment (log base 2) to put in front of label. If LABEL_ALIGN_AFTER_BARRIER
/ LOOP_ALIGN specify a different alignment, the maximum of the specified values is
used.

Unless it’s necessary to inspect the label parameter, it is better to set the variable
align_labels in the target’s TARGET_OPTION_OVERRIDE. Otherwise, you should try
to honor the user’s selection in align_labels in a LABEL_ALIGN implementation.

[Macro]ASM_OUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler instruction to
advance the location counter by nbytes bytes. Those bytes should be zero when
loaded. nbytes will be a C expression of type unsigned HOST_WIDE_INT.

[Macro]ASM_NO_SKIP_IN_TEXT
Define this macro if ASM_OUTPUT_SKIP should not be used in the text section because
it fails to put zeros in the bytes that are skipped. This is true on many Unix systems,
where the pseudo–op to skip bytes produces no-op instructions rather than zeros when
used in the text section.

[Macro]ASM_OUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes. power will be a C expression
of type int.

[Macro]ASM_OUTPUT_ALIGN_WITH_NOP (stream, power)
Like ASM_OUTPUT_ALIGN, except that the “nop” instruction is used for padding, if
necessary.

[Macro]ASM_OUTPUT_MAX_SKIP_ALIGN (stream, power, max_skip)
A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes, but only if max skip or

682 GNU Compiler Collection (GCC) Internals

fewer bytes are needed to satisfy the alignment request. power and max skip will be
a C expression of type int.

17.23 Controlling Debugging Information Format

This describes how to specify debugging information.

17.23.1 Macros Affecting All Debugging Formats

These macros affect all debugging formats.

[Macro]DEBUGGER_REGNO (regno)
A C expression that returns the debugger register number for the compiler register
number regno. In the default macro provided, the value of this expression will be
regno itself. But sometimes there are some registers that the compiler knows about
and debugger does not, or vice versa. In such cases, some register may need to have
one number in the compiler and another for debugger.

If two registers have consecutive numbers inside GCC, and they can be used as a pair
to hold a multiword value, then they must have consecutive numbers after renumber-
ing with DEBUGGER_REGNO. Otherwise, debuggers will be unable to access such a pair,
because they expect register pairs to be consecutive in their own numbering scheme.

If you find yourself defining DEBUGGER_REGNO in way that does not preserve register
pairs, then what you must do instead is redefine the actual register numbering scheme.

[Macro]DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer offset value for an automatic variable having
address x (an RTL expression). The default computation assumes that x is based on
the frame-pointer and gives the offset from the frame-pointer. This is required for
targets that produce debugging output for debugger and allow the frame-pointer to
be eliminated when the -g option is used.

[Macro]DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer offset value for an argument having address
x (an RTL expression). The nominal offset is offset.

[Macro]PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GCC should produce when
the user specifies just -g. Define this if you have arranged for GCC to support more
than one format of debugging output. Currently, the allowable values are DWARF2_

DEBUG, VMS_DEBUG, and VMS_AND_DWARF2_DEBUG.

When the user specifies -ggdb, GCC normally also uses the value of this macro to
select the debugging output format, but with two exceptions. If DWARF2_DEBUGGING_
INFO is defined, GCC uses the value DWARF2_DEBUG.

The value of this macro only affects the default debugging output; the user can always
get a specific type of output by using -gdwarf-2, or -gvms.

[Macro]DEFAULT_GDB_EXTENSIONS
Define this macro to control whether GCC should by default generate GDB’s extended
version of debugging information. If you don’t define the macro, the default is 1:
always generate the extended information if there is any occasion to.

Chapter 17: Target Description Macros and Functions 683

17.23.2 Macros for DWARF Output

Here are macros for DWARF output.

[Macro]DWARF2_DEBUGGING_INFO
Define this macro if GCC should produce dwarf version 2 format debugging output
in response to the -g option.

To support optional call frame debugging information, you must also define
INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the
prologue insns if you use RTL for the prologue, or call dwarf2out_def_cfa and
dwarf2out_reg_save as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you
don’t.

[Target Hook]int TARGET_DWARF_CALLING_CONVENTION (const_tree
function)

Define this to enable the dwarf attribute DW_AT_calling_convention to be emitted
for each function. Instead of an integer return the enum value for the DW_CC_ tag.

[Macro]DWARF2_FRAME_INFO
Define this macro to a nonzero value if GCC should always output Dwarf 2 frame
information. If TARGET_EXCEPT_UNWIND_INFO (see Section 17.22.9 [Exception Region
Output], page 678) returns UI_DWARF2, and exceptions are enabled, GCC will output
this information not matter how you define DWARF2_FRAME_INFO.

[Target Hook]enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void)
This hook defines the mechanism that will be used for describing frame unwind in-
formation to the debugger. Normally the hook will return UI_DWARF2 if DWARF 2
debug information is enabled, and return UI_NONE otherwise.

A target may return UI_DWARF2 even when DWARF 2 debug information is disabled
in order to always output DWARF 2 frame information.

A target may return UI_TARGET if it has ABI specified unwind tables. This will
suppress generation of the normal debug frame unwind information.

[Macro]DWARF2_ASM_LINE_DEBUG_INFO
Define this macro to be a nonzero value if the assembler can generate Dwarf 2 line
debug info sections. This will result in much more compact line number tables, and
hence is desirable if it works.

[Macro]DWARF2_ASM_VIEW_DEBUG_INFO
Define this macro to be a nonzero value if the assembler supports view assignment and
verification in .loc. If it does not, but the user enables location views, the compiler
may have to fallback to internal line number tables.

[Target Hook]int TARGET_RESET_LOCATION_VIEW (rtx_insn *)
This hook, if defined, enables -ginternal-reset-location-views, and uses its result to
override cases in which the estimated min insn length might be nonzero even when a
PC advance (i.e., a view reset) cannot be taken for granted.

If the hook is defined, it must return a positive value to indicate the insn definitely
advances the PC, and so the view number can be safely assumed to be reset; a negative

684 GNU Compiler Collection (GCC) Internals

value to mean the insn definitely does not advance the PC, and os the view number
must not be reset; or zero to decide based on the estimated insn length.

If insn length is to be regarded as reliable, set the hook to hook_int_rtx_insn_0.

[Target Hook]bool TARGET_WANT_DEBUG_PUB_SECTIONS
True if the .debug_pubtypes and .debug_pubnames sections should be emitted.
These sections are not used on most platforms, and in particular GDB does not
use them.

[Target Hook]bool TARGET_DELAY_SCHED2
True if sched2 is not to be run at its normal place. This usually means it will be run
as part of machine-specific reorg.

[Target Hook]bool TARGET_DELAY_VARTRACK
True if vartrack is not to be run at its normal place. This usually means it will be
run as part of machine-specific reorg.

[Target Hook]bool TARGET_NO_REGISTER_ALLOCATION
True if register allocation and the passes following it should not be run. Usually true
only for virtual assembler targets.

[Macro]ASM_OUTPUT_DWARF_DELTA (stream, size, label1, label2)
A C statement to issue assembly directives that create a difference lab1 minus lab2,
using an integer of the given size.

[Macro]ASM_OUTPUT_DWARF_VMS_DELTA (stream, size, label1, label2)
A C statement to issue assembly directives that create a difference between the two
given labels in system defined units, e.g. instruction slots on IA64 VMS, using an
integer of the given size.

[Macro]ASM_OUTPUT_DWARF_OFFSET (stream, size, label, offset, section)
A C statement to issue assembly directives that create a section-relative reference to
the given label plus offset, using an integer of the given size. The label is known to
be defined in the given section.

[Macro]ASM_OUTPUT_DWARF_PCREL (stream, size, label)
A C statement to issue assembly directives that create a self-relative reference to the
given label, using an integer of the given size.

[Macro]ASM_OUTPUT_DWARF_DATAREL (stream, size, label)
A C statement to issue assembly directives that create a reference to the given label
relative to the dbase, using an integer of the given size.

[Macro]ASM_OUTPUT_DWARF_TABLE_REF (label)
A C statement to issue assembly directives that create a reference to the DWARF
table identifier label from the current section. This is used on some systems to avoid
garbage collecting a DWARF table which is referenced by a function.

[Target Hook]void TARGET_ASM_OUTPUT_DWARF_DTPREL (FILE *file, int
size, rtx x)

If defined, this target hook is a function which outputs a DTP-relative reference to
the given TLS symbol of the specified size.

Chapter 17: Target Description Macros and Functions 685

17.23.3 Macros for VMS Debug Format

Here are macros for VMS debug format.

[Macro]VMS_DEBUGGING_INFO
Define this macro if GCC should produce debugging output for VMS in response to
the -g option. The default behavior for VMS is to generate minimal debug info for a
traceback in the absence of -g unless explicitly overridden with -g0. This behavior
is controlled by TARGET_OPTION_OPTIMIZATION and TARGET_OPTION_OVERRIDE.

17.23.4 Macros for CTF Debug Format

Here are macros for CTF debug format.

[Macro]CTF_DEBUGGING_INFO
Define this macro if GCC should produce debugging output in CTF debug format in
response to the -gctf option.

17.23.5 Macros for BTF Debug Format

Here are macros for BTF debug format.

[Macro]BTF_DEBUGGING_INFO
Define this macro if GCC should produce debugging output in BTF debug format in
response to the -gbtf option.

17.24 Cross Compilation and Floating Point

While all modern machines use twos-complement representation for integers, there are a
variety of representations for floating point numbers. This means that in a cross-compiler
the representation of floating point numbers in the compiled program may be different from
that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and pre-
cision, all floating point constants must be represented in the target machine’s format.
Therefore, the cross compiler cannot safely use the host machine’s floating point arith-
metic; it must emulate the target’s arithmetic. To ensure consistency, GCC always uses
emulation to work with floating point values, even when the host and target floating point
formats are identical.

The following macros are provided by real.h for the compiler to use. All parts of the
compiler which generate or optimize floating-point calculations must use these macros. They
may evaluate their operands more than once, so operands must not have side effects.

[Macro]REAL_VALUE_TYPE
The C data type to be used to hold a floating point value in the target machine’s
format. Typically this is a struct containing an array of HOST_WIDE_INT, but all
code should treat it as an opaque quantity.

[Macro]HOST_WIDE_INT REAL_VALUE_FIX (REAL_VALUE_TYPE x)
Truncates x to a signed integer, rounding toward zero.

686 GNU Compiler Collection (GCC) Internals

[Macro]unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX
(REAL_VALUE_TYPE x)

Truncates x to an unsigned integer, rounding toward zero. If x is negative, returns
zero.

[Macro]REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *string,
machine_mode mode)

Converts string into a floating point number in the target machine’s representation
for mode mode. This routine can handle both decimal and hexadecimal floating point
constants, using the syntax defined by the C language for both.

[Macro]int REAL_VALUE_NEGATIVE (REAL_VALUE_TYPE x)
Returns 1 if x is negative (including negative zero), 0 otherwise.

[Macro]int REAL_VALUE_ISINF (REAL_VALUE_TYPE x)
Determines whether x represents infinity (positive or negative).

[Macro]int REAL_VALUE_ISNAN (REAL_VALUE_TYPE x)
Determines whether x represents a “NaN” (not-a-number).

[Macro]REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE x)
Returns the negative of the floating point value x.

[Macro]REAL_VALUE_TYPE REAL_VALUE_ABS (REAL_VALUE_TYPE x)
Returns the absolute value of x.

17.25 Mode Switching Instructions

The following macros control mode switching optimizations:

[Macro]OPTIMIZE_MODE_SWITCHING (entity)
Define this macro if the port needs extra instructions inserted for mode switching.

For an example, the SH4 can perform both single and double precision floating point
operations, but to perform a single precision operation, the FPSCR PR bit has to be
cleared, while for a double precision operation, this bit has to be set. Changing the
PR bit requires a general purpose register as a scratch register, hence these FPSCR
sets have to be inserted before reload, i.e. you cannot put this into instruction emitting
or TARGET_MACHINE_DEPENDENT_REORG.

You can have multiple entities that are mode-switched, some of which might only be
needed conditionally. The entities are identified by their index into the NUM_MODES_

FOR_MODE_SWITCHING initializer, with the length of the initializer determining the
number of entities.

OPTIMIZE_MODE_SWITCHING should return nonzero for any entity that needs mode-
switching.

If you define this macro, you also have to define NUM_MODES_FOR_MODE_SWITCHING,
TARGET_MODE_NEEDED, TARGET_MODE_PRIORITY and TARGET_MODE_EMIT. The other
macros in this section are optional.

Chapter 17: Target Description Macros and Functions 687

[Macro]NUM_MODES_FOR_MODE_SWITCHING
If you define OPTIMIZE_MODE_SWITCHING, you have to define this as initializer for
an array of integers. Each initializer element N refers to an entity that needs mode
switching, and specifies the number of different modes that are defined for that entity.
The position of the element in the initializer—starting counting at zero—determines
the integer that is used to refer to the mode-switched entity in question. Modes are
represented as numbers 0 . . . N − 1. In mode arguments and return values, N either
represents an unknown mode or “no mode”, depending on context.

[Target Hook]void TARGET_MODE_EMIT (int entity, int mode, int
prev_mode, HARD_REG_SET regs_live)

Generate one or more insns to set entity to mode. hard reg live is the set of hard
registers live at the point where the insn(s) are to be inserted. prev moxde indicates
the mode to switch from, or is the number of modes if the previous mode is not known.
Sets of a lower numbered entity will be emitted before sets of a higher numbered entity
to a mode of the same or lower priority.

[Target Hook]int TARGET_MODE_NEEDED (int entity, rtx_insn *insn,
HARD_REG_SET regs_live)

entity is an integer specifying a mode-switched entity. If OPTIMIZE_MODE_SWITCHING
is defined, you must define this hook to return the mode that entity must be switched
into prior to the execution of insn, or the number of modes if insn has no such
requirement. regs live contains the set of hard registers that are live before insn.

[Target Hook]int TARGET_MODE_AFTER (int entity, int mode, rtx_insn
*insn, HARD_REG_SET regs_live)

entity is an integer specifying a mode-switched entity. If this hook is defined, it is
evaluated for every insn during mode switching. It returns the mode that entity is in
after insn has been executed. mode is the mode that entity was in before insn was
executed, taking account of TARGET MODE NEEDED. regs live is the set of hard
registers that are live after insn has been executed.

mode is equal to the number of modes defined for entity if the mode before insn is
unknown. The hook should likewise return the number of modes if it does not know
what mode entity has after insn.

Not defining the hook is equivalent to returning mode.

[Target Hook]int TARGET_MODE_CONFLUENCE (int entity, int mode1, int
mode2)

By default, the mode-switching pass assumes that a given entity’s modes are mutually
exclusive. This means that the pass can only tell TARGET_MODE_EMIT about an entity’s
previous mode if all incoming paths of execution leave the entity in the same state.

However, some entities might have overlapping, non-exclusive modes, so that it is
sometimes possible to represent “mode mode1 or mode mode2” with something more
specific than “mode not known”. If this is true for at least one entity, you should define
this hook and make it return a mode that includes mode1 and mode2 as possibilities.
(The mode can include other possibilities too.) The hook should return the number
of modes if no suitable mode exists for the given arguments.

688 GNU Compiler Collection (GCC) Internals

[Target Hook]int TARGET_MODE_BACKPROP (int entity, int mode1, int
mode2)

If defined, the mode-switching pass uses this hook to back-propagate mode require-
ments through blocks that have no mode requirements of their own. Specifically,
mode1 is the mode that entity has on exit from a block B1 (say) and mode2 is
the mode that the next block requires entity to have. B1 does not have any mode
requirements of its own.

The hook should return the mode that it prefers or requires entity to have in B1, or
the number of modes if there is no such requirement. If the hook returns a required
mode for more than one of B1’s outgoing edges, those modes are combined as for
TARGET_MODE_CONFLUENCE.

For example, suppose there is a “one-shot” entity that, for a given execution of a
function, either stays off or makes exactly one transition from off to on. It is safe
to make the transition at any time, but it is better not to do so unnecessarily. This
hook allows the function to manage such an entity without having to track its state
at runtime. Specifically. the entity would have two modes, 0 for off and 1 for on, with
2 representing “don’t know”. The system is forbidden from transitioning from 2 to
1, since 2 represents the possibility that the entity is already on (and the aim is to
avoid having to emit code to check for that case). This hook would therefore return 1
when mode1 is 2 and mode2 is 1, which would force the entity to be on in the source
block. Applying this inductively would remove all transitions in which the previous
state is unknown.

[Target Hook]int TARGET_MODE_ENTRY (int entity)
If this hook is defined, it is evaluated for every entity that needs mode switching. It
should return the mode that entity is guaranteed to be in on entry to the function, or
the number of modes if there is no such guarantee. If TARGET_MODE_ENTRY is defined
then TARGET_MODE_EXIT must be defined.

[Target Hook]int TARGET_MODE_EXIT (int entity)
If this hook is defined, it is evaluated for every entity that needs mode switching. It
should return the mode that entity must be in on return from the function, or the
number of modes if there is no such requirement. If TARGET_MODE_EXIT is defined
then TARGET_MODE_ENTRY must be defined.

[Target Hook]int TARGET_MODE_EH_HANDLER (int entity)
If this hook is defined, it should return the mode that entity is guaranteed to be in on
entry to an exception handler, or the number of modes if there is no such guarantee.

[Target Hook]int TARGET_MODE_PRIORITY (int entity, int n)
This hook specifies the order in which modes for entity are processed. 0 is the highest
priority, NUM_MODES_FOR_MODE_SWITCHING[entity] - 1 the lowest. The hook returns
an integer designating a mode for entity. For any fixed entity, mode_priority (entity,
n) shall be a bijection in 0 . . . num_modes_for_mode_switching[entity] - 1.

17.26 Defining target-specific uses of __attribute__

Target-specific attributes may be defined for functions, data and types. These are described
using the following target hooks; they also need to be documented in extend.texi.

Chapter 17: Target Description Macros and Functions 689

[Target Hook]array_slice<const struct scoped_attribute_specs *const>
TARGET_ATTRIBUTE_TABLE

If defined, this target hook provides an array of ‘scoped_attribute_spec’s (defined
in attribs.h) that specify the machine-specific attributes for this target. The infor-
mation includes some of the restrictions on the entities to which these attributes are
applied and the arguments that the attributes take.

In C and C++, these attributes are associated with two syntaxes: the traditional GNU
__attribute__ syntax and the standard ‘[[]]’ syntax. Attributes that support the
GNU syntax must be placed in the gnu namespace. Such attributes can then also
be written ‘[[gnu::...]]’. Attributes that use only the standard syntax should
be placed in whichever namespace the attribute specification requires. For example,
a target might choose to support vendor-specific ‘[[]]’ attributes that the vendor
places in their own namespace.

Targets that only define attributes in the gnu namespace can uase the following short-
hand to define the table:

TARGET_GNU_ATTRIBUTES (cpu_attribute_table, {

{ "attribute1", ... },

{ "attribute2", ... },

...,

{ "attributen", ... },

});

[Target Hook]bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree
name)

If defined, this target hook is a function which returns true if the machine-specific
attribute named name expects an identifier given as its first argument to be passed on
as a plain identifier, not subjected to name lookup. If this is not defined, the default
is false for all machine-specific attributes.

[Target Hook]int TARGET_COMP_TYPE_ATTRIBUTES (const_tree type1,
const_tree type2)

If defined, this target hook is a function which returns zero if the attributes on type1
and type2 are incompatible, one if they are compatible, and two if they are nearly
compatible (which causes a warning to be generated). If this is not defined, machine-
specific attributes are supposed always to be compatible.

[Target Hook]void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree type)
If defined, this target hook is a function which assigns default attributes to the newly
defined type.

[Target Hook]tree TARGET_MERGE_TYPE_ATTRIBUTES (tree type1, tree
type2)

Define this target hook if the merging of type attributes needs special handling. If
defined, the result is a list of the combined TYPE_ATTRIBUTES of type1 and type2. It
is assumed that comptypes has already been called and returned 1. This function
may call merge_attributes to handle machine-independent merging.

690 GNU Compiler Collection (GCC) Internals

[Target Hook]tree TARGET_MERGE_DECL_ATTRIBUTES (tree olddecl, tree
newdecl)

Define this target hook if the merging of decl attributes needs special handling. If
defined, the result is a list of the combined DECL_ATTRIBUTES of olddecl and newdecl.
newdecl is a duplicate declaration of olddecl. Examples of when this is needed are
when one attribute overrides another, or when an attribute is nullified by a subsequent
definition. This function may call merge_attributes to handle machine-independent
merging.

If the only target-specific handling you require is ‘dllimport’ for Microsoft Win-
dows targets, you should define the macro TARGET_DLLIMPORT_DECL_ATTRIBUTES to 1.
The compiler will then define a function called merge_dllimport_decl_attributes

which can then be defined as the expansion of TARGET_MERGE_DECL_ATTRIBUTES. You
can also add handle_dll_attribute in the attribute table for your port to perform
initial processing of the ‘dllimport’ and ‘dllexport’ attributes. This is done in
i386/cygwin.h and i386/i386.cc, for example.

[Target Hook]bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree
decl)

decl is a variable or function with __attribute__((dllimport)) specified. Use this
hook if the target needs to add extra validation checks to handle_dll_attribute.

[Macro]TARGET_DECLSPEC
Define this macro to a nonzero value if you want to treat __declspec(X) as equivalent
to __attribute((X)). By default, this behavior is enabled only for targets that define
TARGET_DLLIMPORT_DECL_ATTRIBUTES. The current implementation of __declspec
is via a built-in macro, but you should not rely on this implementation detail.

[Target Hook]void TARGET_INSERT_ATTRIBUTES (tree node, tree
*attr_ptr)

Define this target hook if you want to be able to add attributes to a decl when it
is being created. This is normally useful for back ends which wish to implement a
pragma by using the attributes which correspond to the pragma’s effect. The node
argument is the decl which is being created. The attr ptr argument is a pointer to
the attribute list for this decl. The list itself should not be modified, since it may be
shared with other decls, but attributes may be chained on the head of the list and
*attr_ptr modified to point to the new attributes, or a copy of the list may be made
if further changes are needed.

[Target Hook]tree TARGET_HANDLE_GENERIC_ATTRIBUTE (tree *node, tree
name, tree args, int flags, bool *no_add_attrs)

Define this target hook if you want to be able to perform additional target-specific
processing of an attribute which is handled generically by a front end. The arguments
are the same as those which are passed to attribute handlers. So far this only affects
the noinit and section attribute.

Chapter 17: Target Description Macros and Functions 691

[Target Hook]bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree
fndecl)

This target hook returns false if the target-specific attributes on fndecl always block
it getting inlined, true otherwise. By default, if a function has a target specific
attribute attached to it, it will not be inlined.

[Target Hook]bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree fndecl, tree
name, tree args, int flags)

This hook is called to parse attribute(target("...")), which allows setting target-
specific options on individual functions. These function-specific options may differ
from the options specified on the command line. The hook should return true if the
options are valid.

The hook should set the DECL_FUNCTION_SPECIFIC_TARGET field in the function dec-
laration to hold a pointer to a target-specific struct cl_target_option structure.

[Target Hook]bool TARGET_OPTION_VALID_VERSION_ATTRIBUTE_P (tree
fndecl, tree name, tree args, int flags)

This hook is called to parse attribute(target_version("...")), which allows set-
ting target-specific options on individual function versions. These function-specific
options may differ from the options specified on the command line. The hook should
return true if the options are valid.

The hook should set the DECL_FUNCTION_SPECIFIC_TARGET field in the function dec-
laration to hold a pointer to a target-specific struct cl_target_option structure.

[Macro]TARGET_HAS_FMV_TARGET_ATTRIBUTE
Define this macro to zero to use target_version attributes for function multiver-
sioning (FMV) rather than target attributes.

Targets using target_version attributes will also have "target version" FMV se-
mantics, which allow for FMV sets defined across TU’s and using a combination of
target_version and target_clones attributed declarations in the definition of a
FMV function set.

[Macro]TARGET_CLONES_ATTR_SEPARATOR
Define this char-typed macro to select a character that separates each target spe-
cific attributes from the attribute(target_clones("...")) attribute string. This
macro should be carefully chosen to avoid conflicts with the target specific attributes.
The default value is ','.

[Target Hook]void TARGET_OPTION_SAVE (struct cl_target_option *ptr,
struct gcc_options *opts, struct gcc_options *opts_set)

This hook is called to save any additional target-specific information in the
struct cl_target_option structure for function-specific options from the struct

gcc_options structure. See Section 7.1 [Option file format], page 135.

[Target Hook]void TARGET_OPTION_RESTORE (struct gcc_options *opts,
struct gcc_options *opts_set, struct cl_target_option *ptr)

This hook is called to restore any additional target-specific information in the struct
cl_target_option structure for function-specific options to the struct gcc_options

structure.

692 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_OPTION_POST_STREAM_IN (struct
cl_target_option *ptr)

This hook is called to update target-specific information in the struct cl_target_

option structure after it is streamed in from LTO bytecode.

[Target Hook]void TARGET_OPTION_PRINT (FILE *file, int indent,
struct cl_target_option *ptr)

This hook is called to print any additional target-specific information in the struct

cl_target_option structure for function-specific options.

[Target Hook]bool TARGET_OPTION_PRAGMA_PARSE (tree args, tree
pop_target)

This target hook parses the options for #pragma GCC target, which sets the
target-specific options for functions that occur later in the input stream. The
options accepted should be the same as those handled by the TARGET_OPTION_

VALID_ATTRIBUTE_P hook.

[Target Hook]void TARGET_OPTION_OVERRIDE (void)
Sometimes certain combinations of command options do not make sense on a partic-
ular target machine. You can override the hook TARGET_OPTION_OVERRIDE to take
account of this. This hooks is called once just after all the command options have
been parsed.

Don’t use this hook to turn on various extra optimizations for -O. That is what
TARGET_OPTION_OPTIMIZATION is for.

If you need to do something whenever the optimization level is changed via the opti-
mize attribute or pragma, see TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE

[Target Hook]bool TARGET_OPTION_SAME_FUNCTION_VERSIONS (string_slice
fn1, string_slice fn2)

This target hook returns true if the target/target-version strings fn1 and fn2 imply
the same function version.

[Target Hook]bool TARGET_OPTION_FUNCTIONS_B_RESOLVABLE_FROM_A (tree
decl_a, tree decl_v, tree base)

decl b is a function declaration with a function multi-versioning (FMV) attribute;
this attribute is either target or target_version, depending on TARGET_HAS_FMV_

TARGET_ATTRIBUTE. decl a is a function declaration that may or may not have an
FMV attribute.

Return true if we have enough information to determine that the requirements of
decl b’s FMV attribute are met whenever decl a is executed, given that the target
supports all features required by function declaration base.

The default implementation just checks whether decl a has the same FMV attribute
as decl b. This is conservatively correct, but ports can do better by taking the
relationships between architecture features into account. For example, on AArch64,
sve is present whenever sve2 is present.

Chapter 17: Target Description Macros and Functions 693

[Target Hook]bool TARGET_CAN_INLINE_P (tree caller, tree callee)
This target hook returns false if the caller function cannot inline callee, based on
target specific information. By default, inlining is not allowed if the callee function
has function specific target options and the caller does not use the same options.

[Target Hook]bool TARGET_UPDATE_IPA_FN_TARGET_INFO (unsigned int&
info, const gimple* stmt)

Allow target to analyze all gimple statements for the given function to record and
update some target specific information for inlining. A typical example is that a
caller with one isa feature disabled is normally not allowed to inline a callee with
that same isa feature enabled even which is attributed by always inline, but with the
conservative analysis on all statements of the callee if we are able to guarantee the
callee does not exploit any instructions from the mismatch isa feature, it would be
safe to allow the caller to inline the callee. info is one unsigned int value to record
information in which one set bit indicates one corresponding feature is detected in
the analysis, stmt is the statement being analyzed. Return true if target still need to
analyze the subsequent statements, otherwise return false to stop subsequent analysis.
The default version of this hook returns false.

[Target Hook]bool TARGET_NEED_IPA_FN_TARGET_INFO (const_tree decl,
unsigned int& info)

Allow target to check early whether it is necessary to analyze all gimple statements in
the given function to update target specific information for inlining. See hook update_
ipa_fn_target_info for usage example of target specific information. This hook is
expected to be invoked ahead of the iterating with hook update_ipa_fn_target_

info. decl is the function being analyzed, info is the same as what in hook update_

ipa_fn_target_info, target can do one time update into info without iterating for
some case. Return true if target decides to analyze all gimple statements to collect
information, otherwise return false. The default version of this hook returns false.

[Target Hook]void TARGET_RELAYOUT_FUNCTION (tree fndecl)
This target hook fixes function fndecl after attributes are processed. Default does
nothing. On ARM, the default function’s alignment is updated with the attribute
target.

17.27 Emulating TLS

For targets whose psABI does not provide Thread Local Storage via specific relocations
and instruction sequences, an emulation layer is used. A set of target hooks allows this
emulation layer to be configured for the requirements of a particular target. For instance
the psABI may in fact specify TLS support in terms of an emulation layer.

The emulation layer works by creating a control object for every TLS object. To access
the TLS object, a lookup function is provided which, when given the address of the control
object, will return the address of the current thread’s instance of the TLS object.

[Target Hook]const char * TARGET_EMUTLS_GET_ADDRESS
Contains the name of the helper function that uses a TLS control object to locate a
TLS instance. The default causes libgcc’s emulated TLS helper function to be used.

694 GNU Compiler Collection (GCC) Internals

[Target Hook]const char * TARGET_EMUTLS_REGISTER_COMMON
Contains the name of the helper function that should be used at program startup
to register TLS objects that are implicitly initialized to zero. If this is NULL, all
TLS objects will have explicit initializers. The default causes libgcc’s emulated TLS
registration function to be used.

[Target Hook]const char * TARGET_EMUTLS_VAR_SECTION
Contains the name of the section in which TLS control variables should be placed.
The default of NULL allows these to be placed in any section.

[Target Hook]const char * TARGET_EMUTLS_TMPL_SECTION
Contains the name of the section in which TLS initializers should be placed. The
default of NULL allows these to be placed in any section.

[Target Hook]const char * TARGET_EMUTLS_VAR_PREFIX
Contains the prefix to be prepended to TLS control variable names. The default of
NULL uses a target-specific prefix.

[Target Hook]const char * TARGET_EMUTLS_TMPL_PREFIX
Contains the prefix to be prepended to TLS initializer objects. The default of NULL
uses a target-specific prefix.

[Target Hook]tree TARGET_EMUTLS_VAR_FIELDS (tree type, tree *name)
Specifies a function that generates the FIELD DECLs for a TLS control object type.
type is the RECORD TYPE the fields are for and name should be filled with the
structure tag, if the default of __emutls_object is unsuitable. The default creates a
type suitable for libgcc’s emulated TLS function.

[Target Hook]tree TARGET_EMUTLS_VAR_INIT (tree var, tree decl, tree
tmpl_addr)

Specifies a function that generates the CONSTRUCTOR to initialize a TLS control
object. var is the TLS control object, decl is the TLS object and tmpl addr is the
address of the initializer. The default initializes libgcc’s emulated TLS control object.

[Target Hook]bool TARGET_EMUTLS_VAR_ALIGN_FIXED
Specifies whether the alignment of TLS control variable objects is fixed and should
not be increased as some backends may do to optimize single objects. The default is
false.

[Target Hook]bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS
Specifies whether a DWARF DW_OP_form_tls_address location descriptor may be
used to describe emulated TLS control objects.

17.28 Defining coprocessor specifics for MIPS targets.

The MIPS specification allows MIPS implementations to have as many as 4 coprocessors,
each with as many as 32 private registers. GCC supports accessing these registers and
transferring values between the registers and memory using asm-ized variables. For example:

register unsigned int cp0count asm ("c0r1");

unsigned int d;

Chapter 17: Target Description Macros and Functions 695

d = cp0count + 3;

(“c0r1” is the default name of register 1 in coprocessor 0; alternate names may be
added as described below, or the default names may be overridden entirely in SUBTARGET_

CONDITIONAL_REGISTER_USAGE.)

Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved
even if it does not appear that the register is used again later in the function.

Another note: according to the MIPS spec, coprocessor 1 (if present) is the FPU. One
accesses COP1 registers through standard mips floating-point support; they are not included
in this mechanism.

17.29 Parameters for Precompiled Header Validity Checking

[Target Hook]void * TARGET_GET_PCH_VALIDITY (size_t *sz)
This hook returns a pointer to the data needed by TARGET_PCH_VALID_P and sets
‘*sz’ to the size of the data in bytes.

[Target Hook]const char * TARGET_PCH_VALID_P (const void *data,
size_t sz)

This hook checks whether the options used to create a PCH file are compatible with
the current settings. It returns NULL if so and a suitable error message if not. Error
messages will be presented to the user and must be localized using ‘_(msg)’.

data is the data that was returned by TARGET_GET_PCH_VALIDITY when the PCH file
was created and sz is the size of that data in bytes. It’s safe to assume that the data
was created by the same version of the compiler, so no format checking is needed.

The default definition of default_pch_valid_p should be suitable for most targets.

[Target Hook]const char * TARGET_CHECK_PCH_TARGET_FLAGS (int
pch_flags)

If this hook is nonnull, the default implementation of TARGET_PCH_VALID_P will use
it to check for compatible values of target_flags. pch flags specifies the value that
target_flags had when the PCH file was created. The return value is the same as
for TARGET_PCH_VALID_P.

[Target Hook]void TARGET_PREPARE_PCH_SAVE (void)
Called before writing out a PCH file. If the target has some garbage-collected data
that needs to be in a particular state on PCH loads, it can use this hook to enforce
that state. Very few targets need to do anything here.

17.30 C++ ABI parameters

[Target Hook]tree TARGET_CXX_GUARD_TYPE (void)
Define this hook to override the integer type used for guard variables. These
are used to implement one-time construction of static objects. The default is
long long integer type node.

696 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_CXX_GUARD_MASK_BIT (void)
This hook determines how guard variables are used. It should return false (the
default) if the first byte should be used. A return value of true indicates that only
the least significant bit should be used.

[Target Hook]tree TARGET_CXX_GET_COOKIE_SIZE (tree type)
This hook returns the size of the cookie to use when allocating an array whose elements
have the indicated type. Assumes that it is already known that a cookie is needed.
The default is max(sizeof (size_t), alignof(type)), as defined in section 2.7 of
the IA64/Generic C++ ABI.

[Target Hook]bool TARGET_CXX_COOKIE_HAS_SIZE (void)
This hook should return true if the element size should be stored in array cookies.
The default is to return false.

[Target Hook]int TARGET_CXX_IMPORT_EXPORT_CLASS (tree type, int
import_export)

If defined by a backend this hook allows the decision made to export class type to
be overruled. Upon entry import export will contain 1 if the class is going to be
exported, −1 if it is going to be imported and 0 otherwise. This function should
return the modified value and perform any other actions necessary to support the
backend’s targeted operating system.

[Target Hook]bool TARGET_CXX_CDTOR_RETURNS_THIS (void)
This hook should return true if constructors and destructors return the address of
the object created/destroyed. The default is to return false.

[Target Hook]bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void)
This hook returns true if the key method for a class (i.e., the method which, if defined
in the current translation unit, causes the virtual table to be emitted) may be an inline
function. Under the standard Itanium C++ ABI the key method may be an inline
function so long as the function is not declared inline in the class definition. Under
some variants of the ABI, an inline function can never be the key method. The default
is to return true.

[Target Hook]void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree
decl)

decl is a virtual table, virtual table table, typeinfo object, or other similar implicit
class data object that will be emitted with external linkage in this translation unit. No
ELF visibility has been explicitly specified. If the target needs to specify a visibility
other than that of the containing class, use this hook to set DECL_VISIBILITY and
DECL_VISIBILITY_SPECIFIED.

[Target Hook]bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void)
This hook returns true (the default) if virtual tables and other similar implicit class
data objects are always COMDAT if they have external linkage. If this hook returns
false, then class data for classes whose virtual table will be emitted in only one
translation unit will not be COMDAT.

Chapter 17: Target Description Macros and Functions 697

[Target Hook]bool TARGET_CXX_LIBRARY_RTTI_COMDAT (void)
This hook returns true (the default) if the RTTI information for the basic types which
is defined in the C++ runtime should always be COMDAT, false if it should not be
COMDAT.

[Target Hook]bool TARGET_CXX_USE_AEABI_ATEXIT (void)
This hook returns true if __aeabi_atexit (as defined by the ARM EABI) should be
used to register static destructors when -fuse-cxa-atexit is in effect. The default
is to return false to use __cxa_atexit.

[Target Hook]bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void)
This hook returns true if the target atexit function can be used in the same man-
ner as __cxa_atexit to register C++ static destructors. This requires that atexit-
registered functions in shared libraries are run in the correct order when the libraries
are unloaded. The default is to return false.

[Target Hook]tree TARGET_CXX_ADJUST_CDTOR_CALLABI_FNTYPE (tree
fntype)

This hook returns a possibly modified FUNCTION_TYPE for arguments to
__cxa_atexit, __cxa_thread_atexit or __cxa_throw function pointers. ABIs
like mingw32 require special attributes to be added to function types pointed to
by arguments of these functions. The default is to return the passed argument
unmodified.

[Target Hook]void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree type)
type is a C++ class (i.e., RECORD TYPE or UNION TYPE) that has just been
defined. Use this hook to make adjustments to the class (eg, tweak visibility or
perform any other required target modifications).

[Target Hook]tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree decl)
Return target-specific mangling context of decl or NULL_TREE.

17.31 D ABI parameters

[D Target Hook]void TARGET_D_CPU_VERSIONS (void)
Declare all environmental version identifiers relating to the target CPU using the
function builtin_version, which takes a string representing the name of the ver-
sion. Version identifiers predefined by this hook apply to all modules that are being
compiled and imported.

[D Target Hook]void TARGET_D_OS_VERSIONS (void)
Similarly to TARGET_D_CPU_VERSIONS, but is used for versions relating to the target
operating system.

[D Target Hook]void TARGET_D_REGISTER_CPU_TARGET_INFO (void)
Register all target information keys relating to the target CPU using the function d_

add_target_info_handlers, which takes a ‘struct d_target_info_spec’ (defined
in d/d-target.h). The keys added by this hook are made available at compile time
by the __traits(getTargetInfo) extension, the result is an expression describing
the requested target information.

698 GNU Compiler Collection (GCC) Internals

[D Target Hook]void TARGET_D_REGISTER_OS_TARGET_INFO (void)
Same as TARGET_D_CPU_TARGET_INFO, but is used for keys relating to the target
operating system.

[D Target Hook]const char * TARGET_D_MINFO_SECTION
Contains the name of the section in which module info references should be placed. By
default, the compiler puts all module info symbols in the "minfo" section. Define this
macro to override the string if a different section name should be used. This section
is expected to be bracketed by two symbols TARGET_D_MINFO_SECTION_START and
TARGET_D_MINFO_SECTION_END to indicate the start and end address of the section,
so that the runtime library can collect all modules for each loaded shared library and
executable. Setting the value to NULL disables the use of sections for storing module
info altogether.

[D Target Hook]const char * TARGET_D_MINFO_SECTION_START
If TARGET_D_MINFO_SECTION is defined, then this must also be defined as the name
of the symbol indicating the start address of the module info section

[D Target Hook]const char * TARGET_D_MINFO_SECTION_END
If TARGET_D_MINFO_SECTION is defined, then this must also be defined as the name
of the symbol indicating the end address of the module info section

[D Target Hook]bool TARGET_D_HAS_STDCALL_CONVENTION (unsigned int
*link_system, unsigned int *link_windows)

Returns true if the target supports the stdcall calling convention. The hook should
also set link system to 1 if the stdcall attribute should be applied to functions with
extern(System) linkage, and link windows to 1 to apply stdcall to functions with
extern(Windows) linkage.

[D Target Hook]bool TARGET_D_TEMPLATES_ALWAYS_COMDAT
This flag is true if instantiated functions and variables are always COMDAT if they
have external linkage. If this flag is false, then instantiated decls will be emitted as
weak symbols. The default is false.

17.32 Rust ABI parameters

[Rust Target Hook]void TARGET_RUST_CPU_INFO (void)
Declare all environmental CPU info and features relating to the target CPU using the
function rust_add_target_info, which takes a string representing the feature key
and a string representing the feature value. Configuration pairs predefined by this
hook apply to all files that are being compiled.

[Rust Target Hook]void TARGET_RUST_OS_INFO (void)
Similar to TARGET_RUST_CPU_INFO, but is used for configuration info relating to the
target operating system.

Chapter 17: Target Description Macros and Functions 699

17.33 JIT ABI parameters

[JIT Target Hook]void TARGET_JIT_REGISTER_CPU_TARGET_INFO (void)
Register all target information keys relating to the target CPU using the function
jit_add_target_info, which takes a key and a value. The keys added by this hook
are made available at compile time by calling get target info.

17.34 Adding support for named address spaces

The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards committee,
Programming Languages - C - Extensions to support embedded processors, specifies a syn-
tax for embedded processors to specify alternate address spaces. You can configure a GCC
port to support section 5.1 of the draft report to add support for address spaces other than
the default address space. These address spaces are new keywords that are similar to the
volatile and const type attributes.

Pointers to named address spaces can have a different size than pointers to the generic
address space.

For example, the SPU port uses the __ea address space to refer to memory in the host
processor, rather than memory local to the SPU processor. Access to memory in the __ea

address space involves issuing DMA operations to move data between the host processor
and the local processor memory address space. Pointers in the __ea address space are either
32 bits or 64 bits based on the -mea32 or -mea64 switches (native SPU pointers are always
32 bits).

Internally, address spaces are represented as a small integer in the range 0 to 15 with
address space 0 being reserved for the generic address space.

To register a named address space qualifier keyword with the C front end, the target may
call the c_register_addr_space routine. For example, the SPU port uses the following to
declare __ea as the keyword for named address space #1:

#define ADDR_SPACE_EA 1

c_register_addr_space ("__ea", ADDR_SPACE_EA);

[Target Hook]scalar_int_mode TARGET_ADDR_SPACE_POINTER_MODE
(addr_space_t address_space)

Define this to return the machine mode to use for pointers to address space if the
target supports named address spaces. The default version of this hook returns ptr_
mode.

[Target Hook]scalar_int_mode TARGET_ADDR_SPACE_ADDRESS_MODE
(addr_space_t address_space)

Define this to return the machine mode to use for addresses in address space if the
target supports named address spaces. The default version of this hook returns Pmode.

[Target Hook]bool TARGET_ADDR_SPACE_VALID_POINTER_MODE
(scalar_int_mode mode, addr_space_t as)

Define this to return nonzero if the port can handle pointers with machine mode mode
to address space as. This target hook is the same as the TARGET_VALID_POINTER_

MODE target hook, except that it includes explicit named address space support. The

700 GNU Compiler Collection (GCC) Internals

default version of this hook returns true for the modes returned by either the TARGET_
ADDR_SPACE_POINTER_MODE or TARGET_ADDR_SPACE_ADDRESS_MODE target hooks for
the given address space.

[Target Hook]bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
(machine_mode mode, rtx exp, bool strict, addr_space_t as,
code_helper ch)

Define this to return true if exp is a valid address for modemode in the named address
space as with the use context ch. The strict parameter says whether strict addressing
is in effect after reload has finished. The ch indicates what context exp will be used
for. This target hook is the same as the TARGET_LEGITIMATE_ADDRESS_P target hook,
except that it includes explicit named address space support.

[Target Hook]rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx x, rtx
oldx, machine_mode mode, addr_space_t as)

Define this to modify an invalid address x to be a valid address with modemode in the
named address space as. This target hook is the same as the TARGET_LEGITIMIZE_

ADDRESS target hook, except that it includes explicit named address space support.

[Target Hook]bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t subset,
addr_space_t superset)

Define this to return whether the subset named address space is contained within the
superset named address space. Pointers to a named address space that is a subset
of another named address space will be converted automatically without a cast if
used together in arithmetic operations. Pointers to a superset address space can be
converted to pointers to a subset address space via explicit casts.

[Target Hook]bool TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID (addr_space_t
as)

Define this to modify the default handling of address 0 for the address space. Return
true if 0 should be considered a valid address.

[Target Hook]rtx TARGET_ADDR_SPACE_CONVERT (rtx op, tree from_type,
tree to_type)

Define this to convert the pointer expression represented by the RTL op with type
from type that points to a named address space to a new pointer expression with type
to type that points to a different named address space. When this hook it called, it is
guaranteed that one of the two address spaces is a subset of the other, as determined
by the TARGET_ADDR_SPACE_SUBSET_P target hook.

[Target Hook]int TARGET_ADDR_SPACE_DEBUG (addr_space_t as)
Define this to define how the address space is encoded in dwarf. The result is the
value to be used with DW_AT_address_class.

[Target Hook]void TARGET_ADDR_SPACE_DIAGNOSE_USAGE (addr_space_t as,
location_t loc)

Define this hook if the availability of an address space depends on command line
options and some diagnostics should be printed when the address space is used. This
hook is called during parsing and allows to emit a better diagnostic compared to the

Chapter 17: Target Description Macros and Functions 701

case where the address space was not registered with c_register_addr_space. as is
the address space as registered with c_register_addr_space. loc is the location of
the address space qualifier token. The default implementation does nothing.

[Target Hook]addr_space_t TARGET_ADDR_SPACE_FOR_ARTIFICIAL_RODATA
(tree type, enum artificial_rodata purpose)

Define this hook to return a named address space to be used for type, usually the type
of an artificial lookup-table that would reside in .rodata and in the generic address
space.

The hook can be used to put compiler-generated, artificial lookup tables in static
storage into a non-generic address space when it is better suited than the generic
address space. The compiler will generate all accesses to the respective data so that
all associated accesses will also use the specified address space and pointer mode.

type is the type of the lookup table. purpose specifies the purpose of the lookup
table. It is one of:

ARTIFICIAL_RODATA_CSWITCH

tree-switch-conversion.cc lowered a GIMPLE SWITCH expressions
to something more efficient than a jump table.

ARTIFICIAL_RODATA_CRC

gimple-crc-optimization.cc optimized a CRC computation by using
a polynomial lookup table.

The default implementation of the hook returns ADDR_SPACE_GENERIC.

17.35 Miscellaneous Parameters

Here are several miscellaneous parameters.

[Macro]HAS_LONG_COND_BRANCH
Define this boolean macro to indicate whether or not your architecture has conditional
branches that can span all of memory. It is used in conjunction with an optimization
that partitions hot and cold basic blocks into separate sections of the executable. If
this macro is set to false, gcc will convert any conditional branches that attempt to
cross between sections into unconditional branches or indirect jumps.

[Macro]HAS_LONG_UNCOND_BRANCH
Define this boolean macro to indicate whether or not your architecture has uncon-
ditional branches that can span all of memory. It is used in conjunction with an
optimization that partitions hot and cold basic blocks into separate sections of the
executable. If this macro is set to false, gcc will convert any unconditional branches
that attempt to cross between sections into indirect jumps.

[Macro]CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that elements of a
jump-table should have.

702 GNU Compiler Collection (GCC) Internals

[Macro]CASE_VECTOR_SHORTEN_MODE (min_offset, max_offset, body)
Optional: return the preferred mode for an addr_diff_vec when the minimum and
maximum offset are known. If you define this, it enables extra code in branch short-
ening to deal with addr_diff_vec. To make this work, you also have to define INSN_
ALIGN and make the alignment for addr_diff_vec explicit. The body argument is
provided so that the offset unsigned and scale flags can be updated.

[Macro]CASE_VECTOR_PC_RELATIVE
Define this macro to be a C expression to indicate when jump-tables should contain
relative addresses. You need not define this macro if jump-tables never contain relative
addresses, or jump-tables should contain relative addresses only when -fPIC or -fPIC
is in effect.

[Target Hook]unsigned int TARGET_CASE_VALUES_THRESHOLD (void)
This function return the smallest number of different values for which it is best to use
a jump-table instead of a tree of conditional branches. The default is four for machines
with a casesi instruction and five otherwise. This is best for most machines.

[Macro]WORD_REGISTER_OPERATIONS
Define this macro to 1 if operations between registers with integral mode smaller
than a word are always performed on the entire register. To be more explicit, if you
start with a pair of word_mode registers with known values and you do a subword,
for example QImode, addition on the low part of the registers, then the compiler may
consider that the result has a known value in word_mode too if the macro is defined
to 1. Most RISC machines have this property and most CISC machines do not.

[Target Hook]unsigned int TARGET_MIN_ARITHMETIC_PRECISION (void)
On some RISC architectures with 64-bit registers, the processor also maintains 32-
bit condition codes that make it possible to do real 32-bit arithmetic, although the
operations are performed on the full registers.

On such architectures, defining this hook to 32 tells the compiler to try using 32-
bit arithmetical operations setting the condition codes instead of doing full 64-bit
arithmetic.

More generally, define this hook on RISC architectures if you want the compiler to
try using arithmetical operations setting the condition codes with a precision lower
than the word precision.

You need not define this hook if WORD_REGISTER_OPERATIONS is not defined to 1.

[Macro]LOAD_EXTEND_OP (mem_mode)
Define this macro to be a C expression indicating when insns that read memory in
mem mode, an integral mode narrower than a word, set the bits outside ofmem mode
to be either the sign-extension or the zero-extension of the data read. Return SIGN_

EXTEND for values of mem mode for which the insn sign-extends, ZERO_EXTEND for
which it zero-extends, and UNKNOWN for other modes.

This macro is not called with mem mode non-integral or with a width greater than or
equal to BITS_PER_WORD, so you may return any value in this case. Do not define this
macro if it would always return UNKNOWN. On machines where this macro is defined,
you will normally define it as the constant SIGN_EXTEND or ZERO_EXTEND.

Chapter 17: Target Description Macros and Functions 703

You may return a non-UNKNOWN value even if for some hard registers the sign extension
is not performed, if for the REGNO_REG_CLASS of these hard registers TARGET_CAN_

CHANGE_MODE_CLASS returns false when the from mode is mem mode and the to
mode is any integral mode larger than this but not larger than word_mode.

You must return UNKNOWN if for some hard registers that allow this mode, TARGET_
CAN_CHANGE_MODE_CLASS says that they cannot change to word_mode, but that they
can change to another integral mode that is larger then mem mode but still smaller
than word_mode.

[Macro]SHORT_IMMEDIATES_SIGN_EXTEND
Define this macro to 1 if loading short immediate values into registers sign extends.

[Target Hook]unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL
(machine_mode mode)

When -ffast-math is in effect, GCC tries to optimize divisions by the same divisor,
by turning them into multiplications by the reciprocal. This target hook specifies
the minimum number of divisions that should be there for GCC to perform the
optimization for a variable of mode mode. The default implementation returns 3 if
the machine has an instruction for the division, and 2 if it does not.

[Macro]MOVE_MAX
The maximum number of bytes that a single instruction can move quickly between
memory and registers or between two memory locations.

[Macro]MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move quickly between
memory and registers or between two memory locations. If this is undefined, the
default is MOVE_MAX. Otherwise, it is the constant value that is the largest value that
MOVE_MAX can have at run-time.

[Macro]SHIFT_COUNT_TRUNCATED
A C expression that is nonzero if on this machine the number of bits actually used
for the count of a shift operation is equal to the number of bits needed to represent
the size of the object being shifted. When this macro is nonzero, the compiler will
assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise ‘and’
instructions that truncates the count of a shift operation. On machines that have
instructions that act on bit-fields at variable positions, which may include ‘bit test’
instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations
of the values that serve as arguments to bit-field instructions.

If both types of instructions truncate the count (for shifts) and position (for bit-field
operations), or if no variable-position bit-field instructions exist, you should define
this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only applies
to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_
COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the md file
that include the implied truncation of the shift instructions.

You need not define this macro if it would always have the value of zero.

704 GNU Compiler Collection (GCC) Internals

[Target Hook]unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK
(machine_mode mode)

This function describes how the standard shift patterns for mode deal with shifts
by negative amounts or by more than the width of the mode. See [shift patterns],
page 446.

On many machines, the shift patterns will apply a mask m to the shift count, meaning
that a fixed-width shift of x by y is equivalent to an arbitrary-width shift of x by y
& m. If this is true for mode mode, the function should return m, otherwise it should
return 0. A return value of 0 indicates that no particular behavior is guaranteed.

Note that, unlike SHIFT_COUNT_TRUNCATED, this function does not apply to general
shift rtxes; it applies only to instructions that are generated by the named shift
patterns.

The default implementation of this function returns GET_MODE_BITSIZE (mode) - 1

if SHIFT_COUNT_TRUNCATED and 0 otherwise. This definition is always safe, but if
SHIFT_COUNT_TRUNCATED is false, and some shift patterns nevertheless truncate the
shift count, you may get better code by overriding it.

[Target Hook]bool TARGET_TRULY_NOOP_TRUNCATION (poly_uint64 outprec,
poly_uint64 inprec)

This hook returns true if it is safe to “convert” a value of inprec bits to one of out-
prec bits (where outprec is smaller than inprec) by merely operating on it as if it
had only outprec bits. The default returns true unconditionally, which is correct
for most machines. When TARGET_TRULY_NOOP_TRUNCATION returns false, the ma-
chine description should provide a trunc optab to specify the RTL that performs the
required truncation.

If TARGET_MODES_TIEABLE_P returns false for a pair of modes, suboptimal code can
result if this hook returns true for the corresponding mode sizes. Making this hook
return false in such cases may improve things.

[Target Hook]int TARGET_MODE_REP_EXTENDED (scalar_int_mode mode,
scalar_int_mode rep_mode)

The representation of an integral mode can be such that the values are always ex-
tended to a wider integral mode. Return SIGN_EXTEND if values of mode are rep-
resented in sign-extended form to rep mode. Return UNKNOWN otherwise. (Cur-
rently, none of the targets use zero-extended representation this way so unlike LOAD_
EXTEND_OP, TARGET_MODE_REP_EXTENDED is expected to return either SIGN_EXTEND

or UNKNOWN. Also no target extends mode to rep mode so that rep mode is not the
next widest integral mode and currently we take advantage of this fact.)

Similarly to LOAD_EXTEND_OP you may return a non-UNKNOWN value even if the exten-
sion is not performed on certain hard registers as long as for the REGNO_REG_CLASS

of these hard registers TARGET_CAN_CHANGE_MODE_CLASS returns false.

Note that TARGET_MODE_REP_EXTENDED and LOAD_EXTEND_OP describe two related
properties. If you define TARGET_MODE_REP_EXTENDED (mode, word_mode) you prob-
ably also want to define LOAD_EXTEND_OP (mode) to return the same type of extension.

In order to enforce the representation of mode, TARGET_TRULY_NOOP_TRUNCATION

should return false when truncating to mode.

Chapter 17: Target Description Macros and Functions 705

[Target Hook]bool TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P (void)
On some targets, it is assumed that the compiler will spill all pseudos that are live
across a call to setjmp, while other targets treat setjmp calls as normal function
calls.

This hook returns false if setjmp calls do not preserve all non-volatile registers so
that gcc that must spill all pseudos that are live across setjmp calls. Define this to
return true if the target does not need to spill all pseudos live across setjmp calls.
The default implementation conservatively assumes all pseudos must be spilled across
setjmp calls.

[Macro]STORE_FLAG_VALUE
A C expression describing the value returned by a comparison operator with an inte-
gral mode and stored by a store-flag instruction (‘cstoremode4’) when the condition
is true. This description must apply to all the ‘cstoremode4’ patterns and all the
comparison operators whose results have a MODE_INT mode.

A value of 1 or −1 means that the instruction implementing the comparison operator
returns exactly 1 or −1 when the comparison is true and 0 when the comparison is
false. Otherwise, the value indicates which bits of the result are guaranteed to be 1
when the comparison is true. This value is interpreted in the mode of the comparison
operation, which is given by the mode of the first operand in the ‘cstoremode4’
pattern. Either the low bit or the sign bit of STORE_FLAG_VALUE be on. Presently,
only those bits are used by the compiler.

If STORE_FLAG_VALUE is neither 1 or −1, the compiler will generate code that depends
only on the specified bits. It can also replace comparison operators with equivalent
operations if they cause the required bits to be set, even if the remaining bits are
undefined. For example, on a machine whose comparison operators return an SImode

value and where STORE_FLAG_VALUE is defined as ‘0x80000000’, saying that just the
sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign bit.

There is no way to describe a machine that always sets the low-order bit for a true
value, but does not guarantee the value of any other bits, but we do not know of
any machine that has such an instruction. If you are trying to port GCC to such a
machine, include an instruction to perform a logical-and of the result with 1 in the
pattern for the comparison operators and let us know at gcc@gcc.gnu.org.

Often, a machine will have multiple instructions that obtain a value from a comparison
(or the condition codes). Here are rules to guide the choice of value for STORE_FLAG_
VALUE, and hence the instructions to be used:

• Use the shortest sequence that yields a valid definition for STORE_FLAG_VALUE. It
is more efficient for the compiler to “normalize” the value (convert it to, e.g., 1 or
0) than for the comparison operators to do so because there may be opportunities
to combine the normalization with other operations.

• For equal-length sequences, use a value of 1 or −1, with −1 being slightly pre-
ferred on machines with expensive jumps and 1 preferred on other machines.

mailto:gcc@gcc.gnu.org

706 GNU Compiler Collection (GCC) Internals

• As a second choice, choose a value of ‘0x80000001’ if instructions exist that set
both the sign and low-order bits but do not define the others.

• Otherwise, use a value of ‘0x80000000’.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and its
negation in the same number of instructions. On those machines, you should also
define a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code values
with less instructions than the corresponding ‘cstoremode4’ insn followed by and or
plus. On those machines, define the appropriate patterns. Use the names incscc

and decscc, respectively, for the patterns which perform plus or minus operations on
condition code values. See rs6000.md for some examples. The GNU Superoptimizer
can be used to find such instruction sequences on other machines.

If this macro is not defined, the default value, 1, is used. You need not define STORE_
FLAG_VALUE if the machine has no store-flag instructions, or if the value generated by
these instructions is 1.

[Macro]FLOAT_STORE_FLAG_VALUE (mode)
A C expression that gives a nonzero REAL_VALUE_TYPE value that is returned when
comparison operators with floating-point results are true. Define this macro on ma-
chines that have comparison operations that return floating-point values. If there are
no such operations, do not define this macro.

[Macro]VECTOR_STORE_FLAG_VALUE (mode)
A C expression that gives an rtx representing the nonzero true element for vector
comparisons. The returned rtx should be valid for the inner mode of mode which
is guaranteed to be a vector mode. Define this macro on machines that have vector
comparison operations that return a vector result. If there are no such operations, do
not define this macro. Typically, this macro is defined as const1_rtx or constm1_
rtx. This macro may return NULL_RTX to prevent the compiler optimizing such vector
comparison operations for the given mode.

[Macro]CLZ_DEFINED_VALUE_AT_ZERO (mode, value)
[Macro]CTZ_DEFINED_VALUE_AT_ZERO (mode, value)

A C expression that indicates whether the architecture defines a value for clz or ctz
with a zero operand. A result of 0 indicates the value is undefined. If the value
is defined for only the RTL expression, the macro should evaluate to 1; if the value
applies also to the corresponding optab entry (which is normally the case if it expands
directly into the corresponding RTL), then the macro should evaluate to 2. In the
cases where the value is defined, value should be set to this value.

If this macro is not defined, the value of clz or ctz at zero is assumed to be undefined.

This macro must be defined if the target’s expansion for ffs relies on a particular
value to get correct results. Otherwise it is not necessary, though it may be used to
optimize some corner cases, and to provide a default expansion for the ffs optab.

Note that regardless of this macro the “definedness” of clz and ctz at zero do not
extend to the builtin functions visible to the user. Thus one may be free to adjust

Chapter 17: Target Description Macros and Functions 707

the value at will to match the target expansion of these operations without fear of
breaking the API.

[Macro]Pmode
An alias for the machine mode for pointers. On most machines, define this to be the
integer mode corresponding to the width of a hardware pointer; SImode on 32-bit
machine or DImode on 64-bit machines. On some machines you must define this to
be one of the partial integer modes, such as PSImode.

The width of Pmode must be at least as large as the value of POINTER_SIZE. If it
is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to specify how
pointers are extended to Pmode.

[Macro]FUNCTION_MODE
An alias for the machine mode used for memory references to functions being called,
in call RTL expressions. On most CISC machines, where an instruction can begin
at any byte address, this should be QImode. On most RISC machines, where all
instructions have fixed size and alignment, this should be a mode with the same size
and alignment as the machine instruction words - typically SImode or HImode.

[Macro]STDC_0_IN_SYSTEM_HEADERS
In normal operation, the preprocessor expands __STDC__ to the constant 1, to signify
that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system
compiler uses a different convention, where __STDC__ is normally 0, but is 1 if the
user specifies strict conformance to the C Standard.

Defining STDC_0_IN_SYSTEM_HEADERS makes GNU CPP follows the host convention
when processing system header files, but when processing user files __STDC__ will
always expand to 1.

[C Target Hook]const char * TARGET_C_PREINCLUDE (void)
Define this hook to return the name of a header file to be included at the start
of all compilations, as if it had been included with #include <file>. If this hook
returns NULL, or is not defined, or the header is not found, or if the user specifies
-ffreestanding or -nostdinc, no header is included.

This hook can be used together with a header provided by the system C library
to implement ISO C requirements for certain macros to be predefined that describe
properties of the whole implementation rather than just the compiler.

[C Target Hook]bool TARGET_CXX_IMPLICIT_EXTERN_C (const char*)
Define this hook to add target-specific C++ implicit extern C functions. If this function
returns true for the name of a file-scope function, that function implicitly gets extern
"C" linkage rather than whatever language linkage the declaration would normally
have. An example of such function is WinMain on Win32 targets.

[Macro]SYSTEM_IMPLICIT_EXTERN_C
Define this macro if the system header files do not support C++. This macro handles
system header files by pretending that system header files are enclosed in ‘extern
"C" {...}’.

708 GNU Compiler Collection (GCC) Internals

[Macro]REGISTER_TARGET_PRAGMAS ()
Define this macro if you want to implement any target-specific pragmas. If defined, it
is a C expression which makes a series of calls to c_register_pragma or c_register_
pragma_with_expansion for each pragma. The macro may also do any setup required
for the pragmas.

The primary reason to define this macro is to provide compatibility with other compil-
ers for the same target. In general, we discourage definition of target-specific pragmas
for GCC.

If the pragma can be implemented by attributes then you should consider defining
the target hook ‘TARGET_INSERT_ATTRIBUTES’ as well.

Preprocessor macros that appear on pragma lines are not expanded. All ‘#pragma’
directives that do not match any registered pragma are silently ignored, unless the
user specifies -Wunknown-pragmas.

[Function]void c_register_pragma (const char *space, const char
*name, void (*callback) (struct cpp_reader *))

[Function]void c_register_pragma_with_expansion (const char *space,
const char *name, void (*callback) (struct cpp_reader *))

Each call to c_register_pragma or c_register_pragma_with_expansion estab-
lishes one pragma. The callback routine will be called when the preprocessor en-
counters a pragma of the form

#pragma [space] name ...

space is the case-sensitive namespace of the pragma, or NULL to put the pragma in the
global namespace. The callback routine receives pfile as its first argument, which can
be passed on to cpplib’s functions if necessary. You can lex tokens after the name by
calling pragma_lex. Tokens that are not read by the callback will be silently ignored.
The end of the line is indicated by a token of type CPP_EOF. Macro expansion occurs
on the arguments of pragmas registered with c_register_pragma_with_expansion

but not on the arguments of pragmas registered with c_register_pragma.

Note that the use of pragma_lex is specific to the C and C++ compilers. It will not
work in the Java or Fortran compilers, or any other language compilers for that matter.
Thus if pragma_lex is going to be called from target-specific code, it must only be done
so when building the C and C++ compilers. This can be done by defining the variables
c_target_objs and cxx_target_objs in the target entry in the config.gcc file.
These variables should name the target-specific, language-specific object file which
contains the code that uses pragma_lex. Note it will also be necessary to add a rule
to the makefile fragment pointed to by tmake_file that shows how to build this
object file.

[Macro]HANDLE_PRAGMA_PACK_WITH_EXPANSION
Define this macro if macros should be expanded in the arguments of ‘#pragma pack’.

[Macro]TARGET_DEFAULT_PACK_STRUCT
If your target requires a structure packing default other than 0 (meaning the machine
default), define this macro to the necessary value (in bytes). This must be a value
that would also be valid to use with ‘#pragma pack()’ (that is, a small power of two).

Chapter 17: Target Description Macros and Functions 709

[Macro]DOLLARS_IN_IDENTIFIERS
Define this macro to control use of the character ‘$’ in identifier names for the C
family of languages. 0 means ‘$’ is not allowed by default; 1 means it is allowed. 1 is
the default; there is no need to define this macro in that case.

[Macro]INSN_SETS_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to use
a resource set or clobbered in insn. insn is always a jump_insn or an insn; GCC
knows that every call_insn has this behavior. On machines where some insn or
jump_insn is really a function call and hence has this behavior, you should define
this macro.

You need not define this macro if it would always return zero.

[Macro]INSN_REFERENCES_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to set or
clobber a resource referenced in insn. insn is always a jump_insn or an insn. On
machines where some insn or jump_insn is really a function call and its operands are
registers whose use is actually in the subroutine it calls, you should define this macro.
Doing so allows the delay slot scheduler to move instructions which copy arguments
into the argument registers into the delay slot of insn.

You need not define this macro if it would always return zero.

[Macro]MULTIPLE_SYMBOL_SPACES
Define this macro as a C expression that is nonzero if, in some cases, global symbols
from one translation unit may not be bound to undefined symbols in another transla-
tion unit without user intervention. For instance, under Microsoft Windows symbols
must be explicitly imported from shared libraries (DLLs).

You need not define this macro if it would always evaluate to zero.

[Target Hook]rtx_insn * TARGET_MD_ASM_ADJUST (vec<rtx>& outputs,
vec<rtx>& inputs, vec<machine_mode>& input_modes, vec<const
char *>& constraints, vec<rtx>& usess, vec<rtx>& clobbers,
HARD_REG_SET& clobbered_regs, location_t loc)

This target hook may add clobbers to clobbers and clobbered regs for any hard regs
the port wishes to automatically clobber for an asm. It can also add hard registers
that are used by the asm to uses. The outputs and inputs may be inspected to avoid
clobbering a register that is already used by the asm. loc is the source location of the
asm.

It may modify the outputs, inputs, input modes, and constraints as necessary for
other pre-processing. In this case the return value is a sequence of insns to emit after
the asm. Note that changes to inputs must be accompanied by the corresponding
changes to input modes.

[Macro]MATH_LIBRARY
Define this macro as a C string constant for the linker argument to link in the system
math library, minus the initial ‘"-l"’, or ‘""’ if the target does not have a separate
math library.

710 GNU Compiler Collection (GCC) Internals

You need only define this macro if the default of ‘"m"’ is wrong.

[Macro]LIBRARY_PATH_ENV
Define this macro as a C string constant for the environment variable that specifies
where the linker should look for libraries.

You need only define this macro if the default of ‘"LIBRARY_PATH"’ is wrong.

[Macro]TARGET_POSIX_IO
Define this macro if the target supports the following POSIX file functions, access,
mkdir and file locking with fcntl / F SETLKW. Defining TARGET_POSIX_IO will
enable the test coverage code to use file locking when exiting a program, which avoids
race conditions if the program has forked. It will also create directories at run-time
for cross-profiling.

[Macro]MAX_CONDITIONAL_EXECUTE
A C expression for the maximum number of instructions to execute via conditional
execution instructions instead of a branch. A value of BRANCH_COST+1 is the default.

[Macro]IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr)
Used if the target needs to perform machine-dependent modifications on the condi-
tionals used for turning basic blocks into conditionally executed code. ce info points
to a data structure, struct ce_if_block, which contains information about the cur-
rently processed blocks. true expr and false expr are the tests that are used for
converting the then-block and the else-block, respectively. Set either true expr or
false expr to a null pointer if the tests cannot be converted.

[Macro]IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, true_expr,
false_expr)

Like IFCVT_MODIFY_TESTS, but used when converting more complicated if-statements
into conditions combined by and and or operations. bb contains the basic block that
contains the test that is currently being processed and about to be turned into a
condition.

[Macro]IFCVT_MODIFY_INSN (ce_info, pattern, insn)
A C expression to modify the PATTERN of an INSN that is to be converted to
conditional execution format. ce info points to a data structure, struct ce_if_

block, which contains information about the currently processed blocks.

[Macro]IFCVT_MODIFY_FINAL (ce_info)
A C expression to perform any final machine dependent modifications in converting
code to conditional execution. The involved basic blocks can be found in the struct
ce_if_block structure that is pointed to by ce info.

[Macro]IFCVT_MODIFY_CANCEL (ce_info)
A C expression to cancel any machine dependent modifications in converting code to
conditional execution. The involved basic blocks can be found in the struct ce_if_

block structure that is pointed to by ce info.

[Macro]IFCVT_MACHDEP_INIT (ce_info)
A C expression to initialize any machine specific data for if-conversion of the if-block
in the struct ce_if_block structure that is pointed to by ce info.

Chapter 17: Target Description Macros and Functions 711

[Target Hook]bool TARGET_USE_LATE_PROLOGUE_EPILOGUE ()
Return true if the current function’s prologue and epilogue should be emitted late in
the pass pipeline, instead of at the usual point.

Normally, the prologue and epilogue sequences are introduced soon after register al-
location is complete. The advantage of this approach is that it allows the prologue
and epilogue instructions to be optimized and scheduled with other code in the func-
tion. However, some targets require the prologue and epilogue to be the first and
last sequences executed by the function, with no variation allowed. This hook should
return true on such targets.

The default implementation returns false, which is correct for most targets. The hook
should only return true if there is a specific target limitation that cannot be described
in RTL. For example, the hook might return true if the prologue and epilogue need
to switch between instruction sets.

[Target Hook]void TARGET_EMIT_EPILOGUE_FOR_SIBCALL (rtx_call_insn
*call)

If defined, this hook emits an epilogue sequence for sibling (tail) call instruction call.
Another way of providing epilogues for sibling calls is to define the sibcall_epilogue
instruction pattern; the main advantage of this hook over the pattern is that it has
access to the call instruction.

[Target Hook]void TARGET_MACHINE_DEPENDENT_REORG (void)
If non-null, this hook performs a target-specific pass over the instruction stream.
The compiler will run it at all optimization levels, just before the point at which it
normally does delayed-branch scheduling.

The exact purpose of the hook varies from target to target. Some use it to do trans-
formations that are necessary for correctness, such as laying out in-function constant
pools or avoiding hardware hazards. Others use it as an opportunity to do some
machine-dependent optimizations.

You need not implement the hook if it has nothing to do. The default definition is
null.

[Target Hook]void TARGET_INIT_BUILTINS (void)
Define this hook if you have any machine-specific built-in functions that need to be
defined. It should be a function that performs the necessary setup.

Machine specific built-in functions can be useful to expand special machine instruc-
tions that would otherwise not normally be generated because they have no equivalent
in the source language (for example, SIMD vector instructions or prefetch instruc-
tions).

To create a built-in function, call the function lang_hooks.builtin_function which
is defined by the language front end. You can use any type nodes set up by build_

common_tree_nodes; only language front ends that use those two functions will call
‘TARGET_INIT_BUILTINS’.

[Target Hook]tree TARGET_BUILTIN_DECL (unsigned code, bool
initialize_p)

Define this hook if you have any machine-specific built-in functions that need to be
defined. It should be a function that returns the builtin function declaration for the

712 GNU Compiler Collection (GCC) Internals

builtin function code code. If there is no such builtin and it cannot be initialized at
this time if initialize p is true the function should return NULL_TREE. If code is out
of range the function should return error_mark_node.

[Target Hook]rtx TARGET_EXPAND_BUILTIN (tree exp, rtx target, rtx
subtarget, machine_mode mode, int ignore)

Expand a call to a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. exp is the expression for the function call; the result
should go to target if that is convenient, and have mode mode if that is convenient.
subtarget may be used as the target for computing one of exp’s operands. ignore is
nonzero if the value is to be ignored. This function should return the result of the
call to the built-in function.

[Target Hook]tree TARGET_RESOLVE_OVERLOADED_BUILTIN (location_t loc,
tree fndecl, void *arglist, bool complain)

Select a replacement for a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. This is done before regular type checking, and so allows
the target to implement a crude form of function overloading. fndecl is the decla-
ration of the built-in function. arglist is the list of arguments passed to the built-in
function. The result is a complete expression that implements the operation, usually
another CALL_EXPR. arglist really has type ‘VEC(tree,gc)*’ complain is a boolean
indicating whether invalid operations should emit errors. This is set to false when
the C++ templating context expects that errors should not be emitted (i.e. SFINAE).

[Target Hook]bool TARGET_CHECK_BUILTIN_CALL (location_t loc,
vec<location_t> arg_loc, tree fndecl, tree orig_fndecl,
unsigned int nargs, tree *args, bool complain)

Perform semantic checking on a call to a machine-specific built-in function after its
arguments have been constrained to the function signature. Return true if the call is
valid, otherwise report an error and return false.

This hook is called after TARGET_RESOLVE_OVERLOADED_BUILTIN. The call was
originally to built-in function orig fndecl, but after the optional TARGET_RESOLVE_
OVERLOADED_BUILTIN step is now to built-in function fndecl. loc is the location
of the call and args is an array of function arguments, of which there are nargs.
arg loc specifies the location of each argument. complain is a boolean indicating
whether invalid arguments should emitm errors. This is set to false when the C++
templating context expects that errors should not be emitted (i.e. SFINAE).

[Target Hook]tree TARGET_FOLD_BUILTIN (tree fndecl, int n_args, tree
*argp, bool ignore)

Fold a call to a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. fndecl is the declaration of the built-in function. n args
is the number of arguments passed to the function; the arguments themselves
are pointed to by argp. The result is another tree, valid for both GIMPLE and
GENERIC, containing a simplified expression for the call’s result. If ignore is true
the value will be ignored.

Chapter 17: Target Description Macros and Functions 713

[Target Hook]bool TARGET_GIMPLE_FOLD_BUILTIN (gimple_stmt_iterator
*gsi)

Fold a call to a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. gsi points to the gimple statement holding the function
call. Returns true if any change was made to the GIMPLE stream.

[Target Hook]int TARGET_COMPARE_VERSION_PRIORITY (tree decl1, tree
decl2)

This hook is used to compare the target attributes in two functions to determine which
function’s features get higher priority. This is used during function multi-versioning
to figure out the order in which two versions must be dispatched. A function version
with a higher priority is checked for dispatching earlier. decl1 and decl2 are the two
function decls that will be compared.

[Target Hook]tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void
*decl)

This hook is used to get the dispatcher function for a set of function versions. The
dispatcher function is called to invoke the right function version at run-time. decl is
one version from a set of semantically identical versions.

[Target Hook]tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void *arg)
This hook is used to generate the dispatcher logic to invoke the right function version
at run-time for a given set of function versions. arg points to the callgraph node of
the dispatcher function whose body must be generated.

[Target Hook]bool TARGET_CHECK_TARGET_CLONE_VERSION (string_slice
str, location_t *loc)

This hook is used to check if a version specified in a target_clones annotation is
valid. str is the version to be considered. If loc is not NULL then emit warnings for
invalid versions at that location. Otherwise emit no diagnostics. Returns true if str
is a valid version string, and false otherwise

[Target Hook]bool TARGET_PREDICT_DOLOOP_P (class loop *loop)
Return true if we can predict it is possible to use a low-overhead loop for a particular
loop. The parameter loop is a pointer to the loop. This target hook is required
only when the target supports low-overhead loops, and will help ivopts to make some
decisions. The default version of this hook returns false.

[Target Hook]bool TARGET_HAVE_COUNT_REG_DECR_P
Return true if the target supports hardware count register for decrement and branch.
The default value is false.

[Target Hook]int64_t TARGET_DOLOOP_COST_FOR_GENERIC
One IV candidate dedicated for doloop is introduced in IVOPTs, we can
calculate the computation cost of adopting it to any generic IV use by function
get computation cost as before. But for targets which have hardware count register
support for decrement and branch, it may have to move IV value from hardware
count register to general purpose register while doloop IV candidate is used for
generic IV uses. It probably takes expensive penalty. This hook allows target owners
to define the cost for this especially for generic IV uses. The default value is zero.

714 GNU Compiler Collection (GCC) Internals

[Target Hook]int64_t TARGET_DOLOOP_COST_FOR_ADDRESS
One IV candidate dedicated for doloop is introduced in IVOPTs, we can
calculate the computation cost of adopting it to any address IV use by function
get computation cost as before. But for targets which have hardware count register
support for decrement and branch, it may have to move IV value from hardware
count register to general purpose register while doloop IV candidate is used for
address IV uses. It probably takes expensive penalty. This hook allows target owners
to define the cost for this escpecially for address IV uses. The default value is zero.

[Target Hook]bool TARGET_CAN_USE_DOLOOP_P (const widest_int
&iterations, const widest_int &iterations_max, unsigned int
loop_depth, bool entered_at_top)

Return true if it is possible to use low-overhead loops (doloop_end and doloop_

begin) for a particular loop. iterations gives the exact number of iterations, or 0
if not known. iterations max gives the maximum number of iterations, or 0 if not
known. loop depth is the nesting depth of the loop, with 1 for innermost loops, 2 for
loops that contain innermost loops, and so on. entered at top is true if the loop is
only entered from the top.

This hook is only used if doloop_end is available. The default implementation returns
true. You can use can_use_doloop_if_innermost if the loop must be the innermost,
and if there are no other restrictions.

[Target Hook]const char * TARGET_INVALID_WITHIN_DOLOOP (const
rtx_insn *insn)

Take an instruction in insn and return NULL if it is valid within a low-overhead loop,
otherwise return a string explaining why doloop could not be applied.

Many targets use special registers for low-overhead looping. For any instruction that
clobbers these this function should return a string indicating the reason why the
doloop could not be applied. By default, the RTL loop optimizer does not use a
present doloop pattern for loops containing function calls or branch on table instruc-
tions.

[Target Hook]machine_mode TARGET_PREFERRED_DOLOOP_MODE (machine_mode
mode)

This hook takes a mode for a doloop IV, where mode is the original mode for the oper-
ation. If the target prefers an alternate mode for the operation, then this hook should
return that mode; otherwise the original mode should be returned. For example, on
a 64-bit target, DImode might be preferred over SImode. Both the original and the
returned modes should be MODE_INT.

[Target Hook]bool TARGET_LEGITIMATE_COMBINED_INSN (rtx_insn *insn)
Take an instruction in insn and return false if the instruction is not appropriate as
a combination of two or more instructions. The default is to accept all instructions.

[Target Hook]bool TARGET_CAN_FOLLOW_JUMP (const rtx_insn *follower,
const rtx_insn *followee)

FOLLOWER and FOLLOWEE are JUMP INSN instructions; return true if FOL-
LOWER may be modified to follow FOLLOWEE; false, if it can’t. For example, on

Chapter 17: Target Description Macros and Functions 715

some targets, certain kinds of branches can’t be made to follow through a hot/cold
partitioning.

[Target Hook]bool TARGET_COMMUTATIVE_P (const_rtx x, int outer_code)
This target hook returns true if x is considered to be commutative. Usually, this
is just COMMUTATIVE P (x), but the HP PA doesn’t consider PLUS to be com-
mutative inside a MEM. outer code is the rtx code of the enclosing rtl, if known,
otherwise it is UNKNOWN.

[Target Hook]rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx hard_reg)
When the initial value of a hard register has been copied in a pseudo register, it
is often not necessary to actually allocate another register to this pseudo register,
because the original hard register or a stack slot it has been saved into can be used.
TARGET_ALLOCATE_INITIAL_VALUE is called at the start of register allocation once
for each hard register that had its initial value copied by using get_func_hard_reg_

initial_val or get_hard_reg_initial_val. Possible values are NULL_RTX, if you
don’t want to do any special allocation, a REG rtx—that would typically be the hard
register itself, if it is known not to be clobbered—or a MEM. If you are returning a MEM,
this is only a hint for the allocator; it might decide to use another register anyways.
You may use current_function_is_leaf or REG_N_SETS in the hook to determine
if the hard register in question will not be clobbered. The default value of this hook
is NULL, which disables any special allocation.

[Target Hook]int TARGET_UNSPEC_MAY_TRAP_P (const_rtx x, unsigned
flags)

This target hook returns nonzero if x, an unspec might cause a trap. Targets can
use this hook to enhance precision of analysis for unspec operations. You may call
may_trap_p_1 to analyze inner elements of x in which case flags should be passed
along.

[Target Hook]void TARGET_SET_CURRENT_FUNCTION (tree decl)
The compiler invokes this hook whenever it changes its current function context
(cfun). You can define this function if the back end needs to perform any initial-
ization or reset actions on a per-function basis. For example, it may be used to
implement function attributes that affect register usage or code generation patterns.
The argument decl is the declaration for the new function context, and may be null
to indicate that the compiler has left a function context and is returning to processing
at the top level. The default hook function does nothing.

GCC sets cfun to a dummy function context during initialization of some parts of
the back end. The hook function is not invoked in this situation; you need not worry
about the hook being invoked recursively, or when the back end is in a partially-
initialized state. cfun might be NULL to indicate processing at top level, outside of
any function scope.

[Macro]TARGET_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on your
target machine. If you do not define this macro, GCC will use ‘.o’ as the suffix for
object files.

716 GNU Compiler Collection (GCC) Internals

[Macro]TARGET_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix to be automatically added
to executable files on your target machine. If you do not define this macro, GCC will
use the null string as the suffix for executable files.

[Macro]COLLECT_EXPORT_LIST
If defined, collect2 will scan the individual object files specified on its command line
and create an export list for the linker. Define this macro for systems like AIX, where
the linker discards object files that are not referenced from main and uses export lists.

[Target Hook]bool TARGET_CANNOT_MODIFY_JUMPS_P (void)
This target hook returns true past the point in which new jump instructions could
be created. On machines that require a register for every jump such as the SHmedia
ISA of SH5, this point would typically be reload, so this target hook should be defined
to a function such as:

static bool

cannot_modify_jumps_past_reload_p ()

{

return (reload_completed || reload_in_progress);

}

[Target Hook]bool TARGET_HAVE_CONDITIONAL_EXECUTION (void)
This target hook returns true if the target supports conditional execution. This
target hook is required only when the target has several different modes and they
have different conditional execution capability, such as ARM.

[Target Hook]rtx TARGET_GEN_CCMP_FIRST (rtx_insn **prep_seq,
rtx_insn **gen_seq, rtx_code code, tree op0, tree op1)

This function prepares to emit a comparison insn for the first compare in a sequence
of conditional comparisions. It returns an appropriate comparison with CC for passing
to gen_ccmp_next or cbranch_optab. The insns to prepare the compare are saved
in prep seq and the compare insns are saved in gen seq. They will be emitted when
all the compares in the conditional comparision are generated without error. code is
the rtx_code of the compare for op0 and op1.

[Target Hook]rtx TARGET_GEN_CCMP_NEXT (rtx_insn **prep_seq, rtx_insn
**gen_seq, rtx prev, rtx_code cmp_code, tree op0, tree op1,
rtx_code bit_code)

This function prepares to emit a conditional comparison within a sequence of con-
ditional comparisons. It returns an appropriate comparison with CC for passing to
gen_ccmp_next or cbranch_optab. The insns to prepare the compare are saved in
prep seq and the compare insns are saved in gen seq. They will be emitted when all
the compares in the conditional comparision are generated without error. The prev
expression is the result of a prior call to gen_ccmp_first or gen_ccmp_next. It may
return NULL if the combination of prev and this comparison is not supported, other-
wise the result must be appropriate for passing to gen_ccmp_next or cbranch_optab.
code is the rtx_code of the compare for op0 and op1. bit code is AND or IOR, which
is the op on the compares.

Chapter 17: Target Description Macros and Functions 717

[Target Hook]bool TARGET_HAVE_CCMP (void)
This target hook returns true if the target supports conditional compare. This target
hook is required only when the ccmp support is conditionally enabled, such as in
response to command-line flags. The default implementation returns true iff TARGET_

GEN_CCMP_FIRST is defined.

[Target Hook]unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned nunroll,
class loop *loop)

This target hook returns a new value for the number of times loop should be unrolled.
The parameter nunroll is the number of times the loop is to be unrolled. The param-
eter loop is a pointer to the loop, which is going to be checked for unrolling. This
target hook is required only when the target has special constraints like maximum
number of memory accesses.

[Macro]POWI_MAX_MULTS
If defined, this macro is interpreted as a signed integer C expression that specifies
the maximum number of floating point multiplications that should be emitted when
expanding exponentiation by an integer constant inline. When this value is defined,
exponentiation requiring more than this number of multiplications is implemented by
calling the system library’s pow, powf or powl routines. The default value places no
upper bound on the multiplication count.

[Macro]void TARGET_EXTRA_INCLUDES (const char *sysroot, const char
*iprefix, int stdinc)

This target hook should register any extra include files for the target. The parameter
stdinc indicates if normal include files are present. The parameter sysroot is the
system root directory. The parameter iprefix is the prefix for the gcc directory.

[Macro]void TARGET_EXTRA_PRE_INCLUDES (const char *sysroot, const
char *iprefix, int stdinc)

This target hook should register any extra include files for the target before any
standard headers. The parameter stdinc indicates if normal include files are present.
The parameter sysroot is the system root directory. The parameter iprefix is the
prefix for the gcc directory.

[Macro]void TARGET_OPTF (char *path)
This target hook should register special include paths for the target. The parameter
path is the include to register. On Darwin systems, this is used for Framework
includes, which have semantics that are different from -I.

[Macro]bool TARGET USE LOCAL THUNK ALIAS P (tree fndecl)
This target macro returns true if it is safe to use a local alias for a virtual function
fndecl when constructing thunks, false otherwise. By default, the macro returns
true for all functions, if a target supports aliases (i.e. defines ASM_OUTPUT_DEF),
false otherwise,

[Macro]TARGET_FORMAT_TYPES
If defined, this macro is the name of a global variable containing target-specific format
checking information for the -Wformat option. The default is to have no target-specific
format checks.

718 GNU Compiler Collection (GCC) Internals

[Macro]TARGET_N_FORMAT_TYPES
If defined, this macro is the number of entries in TARGET_FORMAT_TYPES.

[Macro]TARGET_OVERRIDES_FORMAT_ATTRIBUTES
If defined, this macro is the name of a global variable containing target-specific for-
mat overrides for the -Wformat option. The default is to have no target-specific
format overrides. If defined, TARGET_FORMAT_TYPES and TARGET_OVERRIDES_FORMAT_

ATTRIBUTES_COUNT must be defined, too.

[Macro]TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT
If defined, this macro specifies the number of entries in TARGET_OVERRIDES_FORMAT_

ATTRIBUTES.

[Macro]TARGET_OVERRIDES_FORMAT_INIT
If defined, this macro specifies the optional initialization routine for target specific
customizations of the system printf and scanf formatter settings.

[Target Hook]const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
(const_tree typelist, const_tree funcdecl, const_tree val)

If defined, this macro returns the diagnostic message when it is illegal to pass argument
val to function funcdecl with prototype typelist.

[Target Hook]const char * TARGET_INVALID_CONVERSION (const_tree
fromtype, const_tree totype)

If defined, this macro returns the diagnostic message when it is invalid to convert
from fromtype to totype, or NULL if validity should be determined by the front end.

[Target Hook]const char * TARGET_INVALID_UNARY_OP (int op,
const_tree type)

If defined, this macro returns the diagnostic message when it is invalid to apply
operation op (where unary plus is denoted by CONVERT_EXPR) to an operand of type
type, or NULL if validity should be determined by the front end.

[Target Hook]const char * TARGET_INVALID_BINARY_OP (int op,
const_tree type1, const_tree type2)

If defined, this macro returns the diagnostic message when it is invalid to apply
operation op to operands of types type1 and type2, or NULL if validity should be
determined by the front end.

[Target Hook]tree TARGET_PROMOTED_TYPE (const_tree type)
If defined, this target hook returns the type to which values of type should be pro-
moted when they appear in expressions, analogous to the integer promotions, or
NULL_TREE to use the front end’s normal promotion rules. This hook is useful when
there are target-specific types with special promotion rules. This is currently used
only by the C and C++ front ends.

[Target Hook]tree TARGET_CONVERT_TO_TYPE (tree type, tree expr)
If defined, this hook returns the result of converting expr to type. It should return
the converted expression, or NULL_TREE to apply the front end’s normal conversion
rules. This hook is useful when there are target-specific types with special conversion
rules. This is currently used only by the C and C++ front ends.

Chapter 17: Target Description Macros and Functions 719

[Target Hook]bool TARGET_VERIFY_TYPE_CONTEXT (location_t loc,
type_context_kind context, const_tree type, bool silent_p)

If defined, this hook returns false if there is a target-specific reason why type type
cannot be used in the source language context described by context. When silent p
is false, the hook also reports an error against loc for invalid uses of type.

Calls to this hook should be made through the global function verify_type_context,
which makes the silent p parameter default to false and also handles error_mark_

node.

The default implementation always returns true.

[Macro]OBJC_JBLEN
This macro determines the size of the objective C jump buffer for the NeXT runtime.
By default, OBJC JBLEN is defined to an innocuous value.

[Macro]LIBGCC2_UNWIND_ATTRIBUTE
Define this macro if any target-specific attributes need to be attached to the functions
in libgcc that provide low-level support for call stack unwinding. It is used in
declarations in unwind-generic.h and the associated definitions of those functions.

[Target Hook]void TARGET_UPDATE_STACK_BOUNDARY (void)
Define this macro to update the current function stack boundary if necessary.

[Target Hook]rtx TARGET_GET_DRAP_RTX (void)
This hook should return an rtx for Dynamic Realign Argument Pointer (DRAP) if
a different argument pointer register is needed to access the function’s argument list
due to stack realignment. Return NULL if no DRAP is needed.

[Target Hook]HARD_REG_SET TARGET_ZERO_CALL_USED_REGS (HARD_REG_SET
selected_regs)

This target hook emits instructions to zero the subset of selected regs that could
conceivably contain values that are useful to an attacker. Return the set of registers
that were actually cleared.

For most targets, the returned set of registers is a subset of selected regs, however,
for some of the targets (for example MIPS), clearing some registers that are in the se-
lected regs requires clearing other call used registers that are not in the selected regs,
under such situation, the returned set of registers must be a subset of all call used
registers.

The default implementation uses normal move instructions to zero all the registers in
selected regs. Define this hook if the target has more efficient ways of zeroing certain
registers, or if you believe that certain registers would never contain values that are
useful to an attacker.

[Target Hook]bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void)
When optimization is disabled, this hook indicates whether or not arguments should
be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when
not optimizing in order to make debugging easier. However, when a function is
declared with __attribute__((naked)), there is no stack frame, and the compiler
cannot safely move arguments from the registers in which they are passed to the stack.

720 GNU Compiler Collection (GCC) Internals

Therefore, this hook should return true in general, but false for naked functions. The
default implementation always returns true.

[Target Hook]unsigned HOST_WIDE_INT TARGET_CONST_ANCHOR
On some architectures it can take multiple instructions to synthesize a constant. If
there is another constant already in a register that is close enough in value then
it is preferable that the new constant is computed from this register using imme-
diate addition or subtraction. We accomplish this through CSE. Besides the value
of the constant we also add a lower and an upper constant anchor to the available
expressions. These are then queried when encountering new constants. The anchors
are computed by rounding the constant up and down to a multiple of the value
of TARGET_CONST_ANCHOR. TARGET_CONST_ANCHOR should be the maximum positive
value accepted by immediate-add plus one. We currently assume that the value of
TARGET_CONST_ANCHOR is a power of 2. For example, on MIPS, where add-immediate
takes a 16-bit signed value, TARGET_CONST_ANCHOR is set to ‘0x8000’. The default
value is zero, which disables this optimization.

[Target Hook]unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void)
Return the offset bitwise ored into shifted address to get corresponding Address San-
itizer shadow memory address. NULL if Address Sanitizer is not supported by the
target. May return 0 if Address Sanitizer is not supported or using dynamic shadow
offset by a subtarget.

[Target Hook]bool TARGET_ASAN_DYNAMIC_SHADOW_OFFSET_P (void)
Return true if asan should use dynamic shadow offset.

[Target Hook]unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned
HOST_WIDE_INT val)

Validate target specific memory model mask bits. When NULL no target specific
memory model bits are allowed.

[Target Hook]unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
This value should be set if the result written by atomic_test_and_set is not exactly
1, i.e. the bool true.

[Target Hook]bool TARGET_HAS_IFUNC_P (void)
It returns true if the target supports GNU indirect functions. The support includes
the assembler, linker and dynamic linker. The default value of this hook is based on
target’s libc.

[Target Hook]bool TARGET_IFUNC_REF_LOCAL_OK (void)
Return true if it is OK to reference indirect function resolvers locally. The default is
to return false.

[Target Hook]unsigned int TARGET_ATOMIC_ALIGN_FOR_MODE (machine_mode
mode)

If defined, this function returns an appropriate alignment in bits for an atomic object
of machine mode mode. If 0 is returned then the default alignment for the specified
mode is used.

Chapter 17: Target Description Macros and Functions 721

[Target Hook]void TARGET_ATOMIC_ASSIGN_EXPAND_FENV (tree *hold, tree
*clear, tree *update)

ISO C11 requires atomic compound assignments that may raise floating-point excep-
tions to raise exceptions corresponding to the arithmetic operation whose result was
successfully stored in a compare-and-exchange sequence. This requires code equiv-
alent to calls to feholdexcept, feclearexcept and feupdateenv to be generated
at appropriate points in the compare-and-exchange sequence. This hook should set
*hold to an expression equivalent to the call to feholdexcept, *clear to an expres-
sion equivalent to the call to feclearexcept and *update to an expression equivalent
to the call to feupdateenv. The three expressions are NULL_TREE on entry to the
hook and may be left as NULL_TREE if no code is required in a particular place. The
default implementation leaves all three expressions as NULL_TREE. The __atomic_

feraiseexcept function from libatomic may be of use as part of the code generated
in *update.

[Target Hook]void TARGET_RECORD_OFFLOAD_SYMBOL (tree)
Used when offloaded functions are seen in the compilation unit and no named sections
are available. It is called once for each symbol that must be recorded in the offload
function and variable table.

[Target Hook]char * TARGET_OFFLOAD_OPTIONS (void)
Used when writing out the list of options into an LTO file. It should translate any
relevant target-specific options (such as the ABI in use) into one of the -foffload

options that exist as a common interface to express such options. It should return a
string containing these options, separated by spaces, which the caller will free.

[Macro]TARGET_SUPPORTS_WIDE_INT
On older ports, large integers are stored in CONST_DOUBLE rtl objects. Newer ports
define TARGET_SUPPORTS_WIDE_INT to be nonzero to indicate that large integers are
stored in CONST_WIDE_INT rtl objects. The CONST_WIDE_INT allows very large integer
constants to be represented. CONST_DOUBLE is limited to twice the size of the host’s
HOST_WIDE_INT representation.

Converting a port mostly requires looking for the places where CONST_DOUBLEs are
used with VOIDmode and replacing that code with code that accesses CONST_WIDE_

INTs. ‘"grep -i const_double"’ at the port level gets you to 95% of the changes
that need to be made. There are a few places that require a deeper look.

• There is no equivalent to hval and lval for CONST_WIDE_INTs. This would
be difficult to express in the md language since there are a variable number of
elements.

Most ports only check that hval is either 0 or -1 to see if the value is small. As
mentioned above, this will no longer be necessary since small constants are always
CONST_INT. Of course there are still a few exceptions, the alpha’s constraint used
by the zap instruction certainly requires careful examination by C code. However,
all the current code does is pass the hval and lval to C code, so evolving the c
code to look at the CONST_WIDE_INT is not really a large change.

• Because there is no standard template that ports use to materialize constants,
there is likely to be some futzing that is unique to each port in this code.

722 GNU Compiler Collection (GCC) Internals

• The rtx costs may have to be adjusted to properly account for larger constants
that are represented as CONST_WIDE_INT.

All and all it does not take long to convert ports that the maintainer is familiar with.

[Target Hook]bool TARGET_HAVE_SPECULATION_SAFE_VALUE (bool active)
This hook is used to determine the level of target support for __builtin_

speculation_safe_value. If called with an argument of false, it returns true if the
target has been modified to support this builtin. If called with an argument of true,
it returns true if the target requires active mitigation execution might be speculative.

The default implementation returns false if the target does not define a pattern named
speculation_barrier. Else it returns true for the first case and whether the pattern
is enabled for the current compilation for the second case.

For targets that have no processors that can execute instructions speculatively an
alternative implemenation of this hook is available: simply redefine this hook to
speculation_safe_value_not_needed along with your other target hooks.

[Target Hook]rtx TARGET_SPECULATION_SAFE_VALUE (machine_mode mode,
rtx result, rtx val, rtx failval)

This target hook can be used to generate a target-specific code sequence that im-
plements the __builtin_speculation_safe_value built-in function. The function
must always return val in result in mode mode when the cpu is not executing spec-
ulatively, but must never return that when speculating until it is known that the
speculation will not be unwound. The hook supports two primary mechanisms for
implementing the requirements. The first is to emit a speculation barrier which forces
the processor to wait until all prior speculative operations have been resolved; the sec-
ond is to use a target-specific mechanism that can track the speculation state and to
return failval if it can determine that speculation must be unwound at a later time.

The default implementation simply copies val to result and emits a speculation_

barrier instruction if that is defined.

[Target Hook]void TARGET_RUN_TARGET_SELFTESTS (void)
If selftests are enabled, run any selftests for this target.

[Target Hook]bool TARGET_MEMTAG_CAN_TAG_ADDRESSES ()
True if the backend architecture naturally supports ignoring some region of pointers.
This feature means that -fsanitize=hwaddress can work.

At preset, this feature does not support address spaces. It also requires Pmode to be
the same as ptr_mode.

[Target Hook]uint8_t TARGET_MEMTAG_TAG_BITSIZE ()
Return the size of a tag (in bits) for this platform.

The default returns 8.

[Target Hook]uint8_t TARGET_MEMTAG_GRANULE_SIZE ()
Return the size in real memory that each byte in shadow memory refers to. I.e. if a
variable is X bytes long in memory, then this hook should return the value Y such
that the tag in shadow memory spans X/Y bytes.

Chapter 17: Target Description Macros and Functions 723

Most variables will need to be aligned to this amount since two variables that are
neighbors in memory and share a tag granule would need to share the same tag.

The default returns 16.

[Target Hook]rtx TARGET_MEMTAG_INSERT_RANDOM_TAG (rtx untagged, rtx
target)

Return an RTX representing the value of untagged but with a (possibly) random tag
in it. Put that value into target if it is convenient to do so. This function is used to
generate a tagged base for the current stack frame. It is also used by memtag-stack
sanitizer to emit specific memory tagging instructions.

[Target Hook]rtx TARGET_MEMTAG_ADD_TAG (rtx base, poly_int64
addr_offset, uint8_t tag_offset)

Return an RTX that represents the result of adding addr offset to the address in
pointer base and tag offset to the tag in pointer base. The resulting RTX must either
be a valid memory address or be able to get put into an operand with force_operand.

Unlike other memtag hooks, this must return an expression and not emit any RTL.
In the case of memtag-stack sanitizer, this constraint is not enforced.

[Target Hook]rtx TARGET_MEMTAG_SET_TAG (rtx untagged_base, rtx tag,
rtx target)

Return an RTX representing untagged base but with the tag tag. Try and store this
in target if convenient. untagged base is required to have a zero tag when this hook
is called. The default of this hook is to set the top byte of untagged base to tag.

[Target Hook]rtx TARGET_MEMTAG_EXTRACT_TAG (rtx tagged_pointer, rtx
target)

Return an RTX representing the tag stored in tagged pointer. Store the result in
target if it is convenient. The default represents the top byte of the original pointer.
In the case of memtag-stack sanitizer for targets that can process tagged pointers (i.e.
AArch64), this hook can return a tagged pointer.

[Target Hook]rtx TARGET_MEMTAG_UNTAGGED_POINTER (rtx tagged_pointer,
rtx target)

Return an RTX representing tagged pointer with its tag set to zero. Store the result
in target if convenient. The default clears the top byte of the original pointer.

[Target Hook]bool TARGET_HAVE_SHADOW_CALL_STACK
This value is true if the target platform supports -fsanitize=shadow-call-stack.
The default value is false.

[Target Hook]bool TARGET_HAVE_LIBATOMIC
This value is true if the target platform supports libatomic. The default value is false.

[Target Hook]const char * TARGET_DOCUMENTATION_NAME
If non-NULL, this value is a string used for locating target-specific documentation for
this target. The default value is NULL.

725

18 Host Configuration

Most details about the machine and system on which the compiler is actually running are
detected by the configure script. Some things are impossible for configure to detect;
these are described in two ways, either by macros defined in a file named xm-machine.h or
by hook functions in the file specified by the out host hook obj variable in config.gcc.
(The intention is that very few hosts will need a header file but nearly every fully supported
host will need to override some hooks.)

If you need to define only a few macros, and they have simple definitions, consider using
the xm_defines variable in your config.gcc entry instead of creating a host configuration
header. See Section 5.3.2.2 [System Config], page 67.

18.1 Host Common

Some things are just not portable, even between similar operating systems, and are too
difficult for autoconf to detect. They get implemented using hook functions in the file
specified by the host hook obj variable in config.gcc.

[Host Hook]void HOST_HOOKS_EXTRA_SIGNALS (void)
This host hook is used to set up handling for extra signals. The most common thing
to do in this hook is to detect stack overflow.

[Host Hook]void * HOST_HOOKS_GT_PCH_GET_ADDRESS (size_t size, int
fd)

This host hook returns the address of some space that is likely to be free in some
subsequent invocation of the compiler. We intend to load the PCH data at this
address such that the data need not be relocated. The area should be able to hold
size bytes. If the host uses mmap, fd is an open file descriptor that can be used for
probing.

[Host Hook]int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * address, size_t
size, int fd, size_t offset)

This host hook is called when a PCH file is about to be loaded. We want to load
size bytes from fd at offset into memory at address. The given address will be the
result of a previous invocation of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return −1 if
we couldn’t allocate size bytes at address. Return 0 if the memory is allocated but
the data is not loaded. Return 1 if the hook has performed everything.

If the implementation uses reserved address space, free any reserved space beyond
size, regardless of the return value. If no PCH will be loaded, this hook may be called
with size zero, in which case all reserved address space should be freed.

Do not try to handle values of address that could not have been returned by this
executable; just return −1. Such values usually indicate an out-of-date PCH file
(built by some other GCC executable), and such a PCH file won’t work.

[Host Hook]size_t HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY (void);
This host hook returns the alignment required for allocating virtual memory. Usually
this is the same as getpagesize, but on some hosts the alignment for reserving memory
differs from the pagesize for committing memory.

726 GNU Compiler Collection (GCC) Internals

18.2 Host Filesystem

GCC needs to know a number of things about the semantics of the host machine’s filesys-
tem. Filesystems with Unix and MS-DOS semantics are automatically detected. For other
systems, you can define the following macros in xm-machine.h.

HAVE_DOS_BASED_FILE_SYSTEM

This macro is automatically defined by system.h if the host file system obeys
the semantics defined by MS-DOS instead of Unix. DOS file systems are case
insensitive, file specifications may begin with a drive letter, and both forward
slash and backslash (‘/’ and ‘\’) are directory separators.

DIR_SEPARATOR

DIR_SEPARATOR_2

If defined, these macros expand to character constants specifying separators for
directory names within a file specification. system.h will automatically give
them appropriate values on Unix and MS-DOS file systems. If your file system
is neither of these, define one or both appropriately in xm-machine.h.

However, operating systems like VMS, where constructing a pathname is more
complicated than just stringing together directory names separated by a special
character, should not define either of these macros.

PATH_SEPARATOR

If defined, this macro should expand to a character constant specifying the
separator for elements of search paths. The default value is a colon (‘:’). DOS-
based systems usually, but not always, use semicolon (‘;’).

VMS Define this macro if the host system is VMS.

HOST_OBJECT_SUFFIX

Define this macro to be a C string representing the suffix for object files on
your host machine. If you do not define this macro, GCC will use ‘.o’ as the
suffix for object files.

HOST_EXECUTABLE_SUFFIX

Define this macro to be a C string representing the suffix for executable files
on your host machine. If you do not define this macro, GCC will use the null
string as the suffix for executable files.

HOST_BIT_BUCKET

A pathname defined by the host operating system, which can be opened as a file
and written to, but all the information written is discarded. This is commonly
known as a bit bucket or null device. If you do not define this macro, GCC will
use ‘/dev/null’ as the bit bucket. If the host does not support a bit bucket,
define this macro to an invalid filename.

UPDATE_PATH_HOST_CANONICALIZE (path)

If defined, a C statement (sans semicolon) that performs host-dependent canon-
icalization when a path used in a compilation driver or preprocessor is canoni-
calized. path is a malloc-ed path to be canonicalized. If the C statement does
canonicalize path into a different buffer, the old path should be freed and the
new buffer should have been allocated with malloc.

Chapter 18: Host Configuration 727

DUMPFILE_FORMAT

Define this macro to be a C string representing the format to use for constructing
the index part of debugging dump file names. The resultant string must fit in
fifteen bytes. The full filename will be the concatenation of: the prefix of the
assembler file name, the string resulting from applying this format to an index
number, and a string unique to each dump file kind, e.g. ‘rtl’.

If you do not define this macro, GCC will use ‘.%02d.’. You should define this
macro if using the default will create an invalid file name.

DELETE_IF_ORDINARY

Define this macro to be a C statement (sans semicolon) that performs host-
dependent removal of ordinary temp files in the compilation driver.

If you do not define this macro, GCC will use the default version. You should
define this macro if the default version does not reliably remove the temp file
as, for example, on VMS which allows multiple versions of a file.

HOST_LACKS_INODE_NUMBERS

Define this macro if the host filesystem does not report meaningful inode num-
bers in struct stat.

18.3 Host Misc

FATAL_EXIT_CODE

A C expression for the status code to be returned when the compiler exits after
serious errors. The default is the system-provided macro ‘EXIT_FAILURE’, or ‘1’
if the system doesn’t define that macro. Define this macro only if these defaults
are incorrect.

SUCCESS_EXIT_CODE

A C expression for the status code to be returned when the compiler exits
without serious errors. (Warnings are not serious errors.) The default is the
system-provided macro ‘EXIT_SUCCESS’, or ‘0’ if the system doesn’t define that
macro. Define this macro only if these defaults are incorrect.

USE_C_ALLOCA

Define this macro if GCC should use the C implementation of alloca provided
by libiberty.a. This only affects how some parts of the compiler itself allocate
memory. It does not change code generation.

When GCC is built with a compiler other than itself, the C alloca is always
used. This is because most other implementations have serious bugs. You
should define this macro only on a system where no stack-based alloca can
possibly work. For instance, if a system has a small limit on the size of the
stack, GCC’s builtin alloca will not work reliably.

COLLECT2_HOST_INITIALIZATION

If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when collect2 is being initialized.

GCC_DRIVER_HOST_INITIALIZATION

If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when a compilation driver is being initialized.

728 GNU Compiler Collection (GCC) Internals

HOST_LONG_LONG_FORMAT

If defined, the string used to indicate an argument of type long long to func-
tions like printf. The default value is "ll".

HOST_LONG_FORMAT

If defined, the string used to indicate an argument of type long to functions
like printf. The default value is "l".

HOST_PTR_PRINTF

If defined, the string used to indicate an argument of type void * to functions
like printf. The default value is "%p".

In addition, if configure generates an incorrect definition of any of the macros in auto-

host.h, you can override that definition in a host configuration header. If you need to do
this, first see if it is possible to fix configure.

729

19 Makefile Fragments

When you configure GCC using the configure script, it will construct the file Makefile

from the template file Makefile.in. When it does this, it can incorporate makefile frag-
ments from the config directory. These are used to set Makefile parameters that are not
amenable to being calculated by autoconf. The list of fragments to incorporate is set by
config.gcc (and occasionally config.build and config.host); See Section 5.3.2.2 [Sys-
tem Config], page 67.

Fragments are named either t-target or x-host, depending on whether they are relevant
to configuring GCC to produce code for a particular target, or to configuring GCC to run on
a particular host. Here target and host are mnemonics which usually have some relationship
to the canonical system name, but no formal connection.

If these files do not exist, it means nothing needs to be added for a given target or host.
Most targets need a few t-target fragments, but needing x-host fragments is rare.

19.1 Target Makefile Fragments

Target makefile fragments can set these Makefile variables.

LIBGCC2_CFLAGS

Compiler flags to use when compiling libgcc2.c.

LIB2FUNCS_EXTRA

A list of source file names to be compiled or assembled and inserted into
libgcc.a.

CRTSTUFF_T_CFLAGS

Special flags used when compiling crtstuff.c. See Section 17.22.5 [Initializa-
tion], page 668.

CRTSTUFF_T_CFLAGS_S

Special flags used when compiling crtstuff.c for shared linking. Used if you
use crtbeginS.o and crtendS.o in EXTRA-PARTS. See Section 17.22.5 [Initial-
ization], page 668.

MULTILIB_OPTIONS

For some targets, invoking GCC in different ways produces objects that cannot
be linked together. For example, for some targets GCC produces both big and
little endian code. For these targets, you must arrange for multiple versions of
libgcc.a to be compiled, one for each set of incompatible options. When GCC
invokes the linker, it arranges to link in the right version of libgcc.a, based
on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions
of libgcc.a must be built. Write options that are mutually incompatible side
by side, separated by a slash. Write options that may be used together separated
by a space. The build procedure will build all combinations of compatible
options.

For example, if you set MULTILIB_OPTIONS to ‘m68000/m68020 msoft-float’,
Makefile will build special versions of libgcc.a using the following sets of

730 GNU Compiler Collection (GCC) Internals

options: -m68000, -m68020, -msoft-float, ‘-m68000 -msoft-float’, and
‘-m68020 -msoft-float’.

MULTILIB_DIRNAMES

If MULTILIB_OPTIONS is used, this variable specifies the directory names that
should be used to hold the various libraries. Write one element in MULTILIB_

DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is
not used, the default value will be MULTILIB_OPTIONS, with all slashes treated
as spaces.

MULTILIB_DIRNAMES describes the multilib directories using GCC conventions
and is applied to directories that are part of the GCC installation.
When multilib-enabled, the compiler will add a subdirectory of the form
prefix/multilib before each directory in the search path for libraries and crt
files.

For example, if MULTILIB_OPTIONS is set to ‘m68000/m68020 msoft-float’,
then the default value of MULTILIB_DIRNAMES is ‘m68000 m68020 msoft-float’.
You may specify a different value if you desire a different set of directory names.

MULTILIB_MATCHES

Sometimes the same option may be written in two different ways. If an option is
listed in MULTILIB_OPTIONS, GCC needs to know about any synonyms. In that
case, set MULTILIB_MATCHES to a list of items of the form ‘option=option’ to de-
scribe all relevant synonyms. For example, ‘m68000=mc68000 m68020=mc68020’.

MULTILIB_EXCEPTIONS

Sometimes when there are multiple sets of MULTILIB_OPTIONS being specified,
there are combinations that should not be built. In that case, set MULTILIB_
EXCEPTIONS to be all of the switch exceptions in shell case syntax that should
not be built.

For example the ARM processor cannot execute both hardware floating point
instructions and the reduced size THUMB instructions at the same time, so
there is no need to build libraries with both of these options enabled. Therefore
MULTILIB_EXCEPTIONS is set to:

*mthumb/*mhard-float*

MULTILIB_REQUIRED

Sometimes when there are only a few combinations are required, it would be a
big effort to come up with a MULTILIB_EXCEPTIONS list to cover all undesired
ones. In such a case, just listing all the required combinations in MULTILIB_

REQUIRED would be more straightforward.

The way to specify the entries in MULTILIB_REQUIRED is same with the way
used for MULTILIB_EXCEPTIONS, only this time what are required will be spec-
ified. Suppose there are multiple sets of MULTILIB_OPTIONS and only two com-
binations are required, one for ARMv7-M and one for ARMv7-R with hard
floating-point ABI and FPU, the MULTILIB_REQUIRED can be set to:

MULTILIB_REQUIRED = mthumb/march=armv7-m

MULTILIB_REQUIRED += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16

Chapter 19: Makefile Fragments 731

The MULTILIB_REQUIRED can be used together with MULTILIB_EXCEPTIONS.
The option combinations generated from MULTILIB_OPTIONS will be filtered by
MULTILIB_EXCEPTIONS and then by MULTILIB_REQUIRED.

MULTILIB_REUSE

Sometimes it is desirable to reuse one existing multilib for different sets of
options. Such kind of reuse can minimize the number of multilib variants. And
for some targets it is better to reuse an existing multilib than to fall back to
default multilib when there is no corresponding multilib. This can be done by
adding reuse rules to MULTILIB_REUSE.

A reuse rule is comprised of two parts connected by equality sign. The left
part is the option set used to build multilib and the right part is the option
set that will reuse this multilib. Both parts should only use options specified
in MULTILIB_OPTIONS and the equality signs found in options name should
be replaced with periods. An explicit period in the rule can be escaped by
preceding it with a backslash. The order of options in the left part matters and
should be same with those specified in MULTILIB_REQUIRED or aligned with the
order in MULTILIB_OPTIONS. There is no such limitation for options in the right
part as we don’t build multilib from them.

MULTILIB_REUSE is different from MULTILIB_MATCHES in that it sets up relations
between two option sets rather than two options. Here is an example to demo
how we reuse libraries built in Thumb mode for applications built in ARM
mode:

MULTILIB_REUSE = mthumb/march.armv7-r=marm/march.armv7-r

Before the advent of MULTILIB_REUSE, GCC select multilib by comparing com-
mand line options with options used to build multilib. The MULTILIB_REUSE

is complementary to that way. Only when the original comparison matches
nothing it will work to see if it is OK to reuse some existing multilib.

MULTILIB_EXTRA_OPTS

Sometimes it is desirable that when building multiple versions of libgcc.a
certain options should always be passed on to the compiler. In that case, set
MULTILIB_EXTRA_OPTS to be the list of options to be used for all builds. If you
set this, you should probably set CRTSTUFF_T_CFLAGS to a dash followed by it.

MULTILIB_OSDIRNAMES

If MULTILIB_OPTIONS is used, this variable specifies a list of subdirectory names,
that are used to modify the search path depending on the chosen multilib. Un-
like MULTILIB_DIRNAMES, MULTILIB_OSDIRNAMES describes the multilib direc-
tories using operating systems conventions, and is applied to the directories
such as lib or those in the LIBRARY_PATH environment variable. The format
is either the same as of MULTILIB_DIRNAMES, or a set of mappings. When it
is the same as MULTILIB_DIRNAMES, it describes the multilib directories using
operating system conventions, rather than GCC conventions. When it is a set
of mappings of the form gccdir=osdir, the left side gives the GCC convention
and the right gives the equivalent OS defined location. If the osdir part begins
with a ‘!’, GCC will not search in the non-multilib directory and use exclusively
the multilib directory. Otherwise, the compiler will examine the search path for

732 GNU Compiler Collection (GCC) Internals

libraries and crt files twice; the first time it will add multilib to each directory
in the search path, the second it will not.

For configurations that support both multilib and multiarch, MULTILIB_

OSDIRNAMES also encodes the multiarch name, thus subsuming
MULTIARCH_DIRNAME. The multiarch name is appended to each directory
name, separated by a colon (e.g. ‘../lib32:i386-linux-gnu’).

Each multiarch subdirectory will be searched before the corresponding OS mul-
tilib directory, for example ‘/lib/i386-linux-gnu’ before ‘/lib/../lib32’.
The multiarch name will also be used to modify the system header search path,
as explained for MULTIARCH_DIRNAME.

MULTIARCH_DIRNAME

This variable specifies the multiarch name for configurations that are multiarch-
enabled but not multilibbed configurations.

The multiarch name is used to augment the search path for libraries, crt
files and system header files with additional locations. The compiler will
add a multiarch subdirectory of the form prefix/multiarch before each
directory in the library and crt search path. It will also add two directories
LOCAL_INCLUDE_DIR/multiarch and NATIVE_SYSTEM_HEADER_DIR/multiarch)
to the system header search path, respectively before LOCAL_INCLUDE_DIR and
NATIVE_SYSTEM_HEADER_DIR.

MULTIARCH_DIRNAME is not used for configurations that support both multi-
lib and multiarch. In that case, multiarch names are encoded in MULTILIB_

OSDIRNAMES instead.

More documentation about multiarch can be found at https://wiki.debian.
org/Multiarch.

SPECS Unfortunately, setting MULTILIB_EXTRA_OPTS is not enough, since it does not
affect the build of target libraries, at least not the build of the default multilib.
One possible work-around is to use DRIVER_SELF_SPECS to bring options from
the specs file as if they had been passed in the compiler driver command
line. However, you don’t want to be adding these options after the toolchain is
installed, so you can instead tweak the specs file that will be used during the
toolchain build, while you still install the original, built-in specs. The trick is
to set SPECS to some other filename (say specs.install), that will then be
created out of the built-in specs, and introduce a Makefile rule to generate the
specs file that’s going to be used at build time out of your specs.install.

T_CFLAGS These are extra flags to pass to the C compiler. They are used both when build-
ing GCC, and when compiling things with the just-built GCC. This variable is
deprecated and should not be used.

19.2 Host Makefile Fragments

The use of x-host fragments is discouraged. You should only use it for makefile dependen-
cies.

https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch

733

20 collect2

GCC uses a utility called collect2 on nearly all systems to arrange to call various initial-
ization functions at start time.

The program collect2 works by linking the program once and looking through the linker
output file for symbols with particular names indicating they are constructor functions. If
it finds any, it creates a new temporary ‘.c’ file containing a table of them, compiles it, and
links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use -nostdlib, you get an unresolved reference to
__main, since it’s defined in the standard GCC library. Include -lgcc at the end of your
compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler
are installed. When collect2 needs to find the real ld, it tries the following file names:

• a hard coded linker file name, if GCC was configured with the --with-ld option.

• real-ld in the directories listed in the compiler’s search directories.

• real-ld in the directories listed in the environment variable PATH.

• The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.

• ld in the compiler’s search directories, except that collect2 will not execute itself
recursively.

• ld in PATH.

“The compiler’s search directories” means all the directories where gcc searches for passes
of the compiler. This includes directories that you specify with -B.

Cross-compilers search a little differently:

• real-ld in the compiler’s search directories.

• target-real-ld in PATH.

• The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.

• ld in the compiler’s search directories.

• target-ld in PATH.

collect2 explicitly avoids running ld using the file name under which collect2 itself
was invoked. In fact, it remembers up a list of such names—in case one copy of collect2
finds another copy (or version) of collect2 installed as ld in a second place in the search
path.

collect2 searches for the utilities nm and strip using the same algorithm as above for
ld.

735

21 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GCC stores its
private include files, and also where GCC stores the fixed include files. A cross compiled
GCC runs fixincludes on the header files in $(tooldir)/include. (If the cross compila-
tion header files need to be fixed, they must be installed before GCC is built. If the cross
compilation header files are already suitable for GCC, nothing special need be done).

GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++

looks first for header files. The C++ library installs only target independent header files in
that directory.

LOCAL_INCLUDE_DIR is used only by native compilers. GCC doesn’t install anything
there. It is normally /usr/local/include. This is where local additions to a packaged
system should place header files.

CROSS_INCLUDE_DIR is used only by cross compilers. GCC doesn’t install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other
packages to install header files that GCC will use. For a cross-compiler, this is the equivalent
of /usr/include. When you build a cross-compiler, fixincludes processes any header files
in this directory.

737

22 Memory Management and Type Information

GCC uses some fairly sophisticated memory management techniques, which involve deter-
mining information about GCC’s data structures from GCC’s source code and using this
information to perform garbage collection and implement precompiled headers.

A full C++ parser would be too complicated for this task, so a limited subset of C++ is
interpreted and special markers are used to determine what parts of the source to look at.
All struct, union and template structure declarations that define data structures that
are allocated under control of the garbage collector must be marked. All global variables
that hold pointers to garbage-collected memory must also be marked. Finally, all global
variables that need to be saved and restored by a precompiled header must be marked. (The
precompiled header mechanism can only save static variables if they’re scalar. Complex data
structures must be allocated in garbage-collected memory to be saved in a precompiled
header.)

The full format of a marker is
GTY (([option] [(param)], [option] [(param)] ...))

but in most cases no options are needed. The outer double parentheses are still necessary,
though: GTY(()). Markers can appear:

• In a structure definition, before the open brace;

• In a global variable declaration, after the keyword static or extern; and

• In a structure field definition, before the name of the field.

Here are some examples of marking simple data structures and globals.
struct GTY(()) tag

{

fields...

};

typedef struct GTY(()) tag

{

fields...

} *typename;

static GTY(()) struct tag *list; /* points to GC memory */

static GTY(()) int counter; /* save counter in a PCH */

The parser understands simple typedefs such as typedef struct tag *name; and
typedef int name;. These don’t need to be marked.

However, in combination with GTY, avoid using typedefs such as typedef int_

hash<...> name; for these generate infinite-recursion code. See PR103157 (https://
gcc.gnu.org/PR103157). Instead, you may use struct name : int_hash<...> {};, for
example.

Since gengtype’s understanding of C++ is limited, there are several constructs and dec-
larations that are not supported inside classes/structures marked for automatic GC code
generation. The following C++ constructs produce a gengtype error on structures/classes
marked for automatic GC code generation:

• Type definitions inside classes/structures are not supported.

• Enumerations inside classes/structures are not supported.

https://gcc.gnu.org/PR103157
https://gcc.gnu.org/PR103157

738 GNU Compiler Collection (GCC) Internals

If you have a class or structure using any of the above constructs, you need to mark that
class as GTY ((user)) and provide your own marking routines (see section Section 22.3
[User GC], page 743, for details).

It is always valid to include function definitions inside classes. Those are always ignored
by gengtype, as it only cares about data members.

22.1 The Inside of a GTY(())

Sometimes the C code is not enough to fully describe the type structure. Extra information
can be provided with GTY options and additional markers. Some options take a parameter,
which may be either a string or a type name, depending on the parameter. If an option
takes no parameter, it is acceptable either to omit the parameter entirely, or to provide
an empty string as a parameter. For example, GTY ((skip)) and GTY ((skip (""))) are
equivalent.

When the parameter is a string, often it is a fragment of C code. Four special escapes
may be used in these strings, to refer to pieces of the data structure being marked:

%h The current structure.

%1 The structure that immediately contains the current structure.

%0 The outermost structure that contains the current structure.

%a A partial expression of the form [i1][i2]... that indexes the array item cur-
rently being marked.

For instance, suppose that you have a structure of the form

struct A {

...

};

struct B {

struct A foo[12];

};

and b is a variable of type struct B. When marking ‘b.foo[11]’, %h would expand to
‘b.foo[11]’, %0 and %1 would both expand to ‘b’, and %a would expand to ‘[11]’.

As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a
complicated expression.

GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"

" ? TYPE_NEXT_VARIANT (&%h.generic)"

" : TREE_CHAIN (&%h.generic)")))

The available options are:

length ("expression")

There are two places the type machinery will need to be explicitly told the
length of an array of non-atomic objects. The first case is when a structure
ends in a variable-length array, like this:

struct GTY(()) rtvec_def {

int num_elem; /* number of elements */

rtx GTY ((length ("%h.num_elem"))) elem[1];

};

Chapter 22: Memory Management and Type Information 739

In this case, the length option is used to override the specified array length
(which should usually be 1). The parameter of the option is a fragment of C
code that calculates the length.

The second case is when a structure or a global variable contains a pointer to
an array, like this:

struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter;

In this case, iter has been allocated by writing something like

x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);

and the collapse provides the length of the field.

This second use of length also works on global variables, like:

static GTY((length("reg_known_value_size"))) rtx *reg_known_value;

Note that the length option is only meant for use with arrays of non-atomic
objects, that is, objects that contain pointers pointing to other GTY-managed
objects. For other GC-allocated arrays and strings you should use atomic or
string_length.

string_length ("expression")

In order to simplify production of PCH, a structure member that is a plain array
of bytes (an optionally const and/or unsigned char *) is treated specially
by the infrastructure. Even if such an array has not been allocated in GC-
controlled memory, it will still be written properly into a PCH. The machinery
responsible for this needs to know the length of the data; by default, the length
is determined by calling strlen on the pointer. The string_length option
specifies an alternate way to determine the length, such as by inspecting another
struct member:

struct GTY(()) non_terminated_string {

size_t sz;

const char * GTY((string_length ("%h.sz"))) data;

};

Similarly, this is useful for (regular NUL-terminated) strings with NUL charac-
ters embedded (that the default strlen use would run afoul of):

struct GTY(()) multi_string {

const char * GTY((string_length ("%h.len + 1"))) str;

size_t len;

};

The string_length option currently is not supported for (fields in) global
variables.

skip

If skip is applied to a field, the type machinery will ignore it. This is somewhat
dangerous; the only safe use is in a union when one field really isn’t ever used.

callback

callback should be applied to fields with pointer to function type and causes
the field to be ignored similarly to skip, except when writing PCH and the
field is non-NULL it will remember the field’s address for relocation purposes if
the process writing PCH has different load base from a process reading PCH.

740 GNU Compiler Collection (GCC) Internals

for_user

Use this to mark types that need to be marked by user gc routines, but are not
refered to in a template argument. So if you have some user gc type T1 and a
non user gc type T2 you can give T2 the for user option so that the marking
functions for T1 can call non mangled functions to mark T2.

desc ("expression")

tag ("constant")

default

The type machinery needs to be told which field of a union is currently active.
This is done by giving each field a constant tag value, and then specifying a
discriminator using desc. The value of the expression given by desc is compared
against each tag value, each of which should be different. If no tag is matched,
the field marked with default is used if there is one, otherwise no field in the
union will be marked.

In the desc option, the “current structure” is the union that it discriminates.
Use %1 to mean the structure containing it. There are no escapes available to
the tag option, since it is a constant.

For example,

struct GTY(()) tree_binding

{

struct tree_common common;

union tree_binding_u {

tree GTY ((tag ("0"))) scope;

struct cp_binding_level * GTY ((tag ("1"))) level;

} GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;

tree value;

};

In this example, the value of BINDING HAS LEVEL P when applied to a
struct tree_binding * is presumed to be 0 or 1. If 1, the type mechanism
will treat the field level as being present and if 0, will treat the field scope as
being present.

The desc and tag options can also be used for inheritance to denote which
subclass an instance is. See Section 22.2 [Inheritance and GTY], page 743, for
more information.

cache

When the cache option is applied to a global variable gt cleare cache is called
on that variable between the mark and sweep phases of garbage collection. The
gt clear cache function is free to mark blocks as used, or to clear pointers in
the variable.

In a hash table, the ‘gt_cleare_cache’ function discards entries if the key is
not marked, or marks the value if the key is marked.

Note that caches should generally use deletable instead; cache is only prefer-
able if the value is impractical to recompute from the key when needed.

The cache option can have an optional argument, name of the function which
should be called before ‘gt_cleare_cache’. This can be useful if the hash table

Chapter 22: Memory Management and Type Information 741

needs to be traversed and mark some pointers before ‘gt_cleare_cache’ could
clear slots in it.

deletable

deletable, when applied to a global variable, indicates that when garbage
collection runs, there’s no need to mark anything pointed to by this variable,
it can just be set to NULL instead. This is used to keep a list of free structures
around for re-use.

maybe_undef

When applied to a field, maybe_undef indicates that it’s OK if the structure
that this fields points to is never defined, so long as this field is always NULL.
This is used to avoid requiring backends to define certain optional structures.
It doesn’t work with language frontends.

nested_ptr (type, "to expression", "from expression")

The type machinery expects all pointers to point to the start of an object.
Sometimes for abstraction purposes it’s convenient to have a pointer which
points inside an object. So long as it’s possible to convert the original object
to and from the pointer, such pointers can still be used. type is the type of the
original object, the to expression returns the pointer given the original object,
and the from expression returns the original object given the pointer. The
pointer will be available using the %h escape.

chain_next ("expression")

chain_prev ("expression")

chain_circular ("expression")

It’s helpful for the type machinery to know if objects are often chained together
in long lists; this lets it generate code that uses less stack space by iterating
along the list instead of recursing down it. chain_next is an expression for the
next item in the list, chain_prev is an expression for the previous item. For
singly linked lists, use only chain_next; for doubly linked lists, use both. The
machinery requires that taking the next item of the previous item gives the
original item. chain_circular is similar to chain_next, but can be used for
circular single linked lists.

reorder ("function name")

Some data structures depend on the relative ordering of pointers. If
the precompiled header machinery needs to change that ordering, it
will call the function referenced by the reorder option, before changing
the pointers in the object that’s pointed to by the field the option
applies to. The function must take four arguments, with the signature
‘void *, void *, gt_pointer_operator, void *’. The first parameter is a
pointer to the structure that contains the object being updated, or the object
itself if there is no containing structure. The second parameter is a cookie that
should be ignored. The third parameter is a routine that, given a pointer, will
update it to its correct new value. The fourth parameter is a cookie that must
be passed to the second parameter.

742 GNU Compiler Collection (GCC) Internals

PCH cannot handle data structures that depend on the absolute values of point-
ers. reorder functions can be expensive. When possible, it is better to depend
on properties of the data, like an ID number or the hash of a string instead.

atomic

The atomic option can only be used with pointers. It informs the GC machinery
that the memory that the pointer points to does not contain any pointers, and
hence it should be treated by the GC and PCH machinery as an “atomic”
block of memory that does not need to be examined when scanning memory for
pointers. In particular, the machinery will not scan that memory for pointers
to mark them as reachable (when marking pointers for GC) or to relocate them
(when writing a PCH file).

The atomic option differs from the skip option. atomic keeps the memory
under Garbage Collection, but makes the GC ignore the contents of the mem-
ory. skip is more drastic in that it causes the pointer and the memory to be
completely ignored by the Garbage Collector. So, memory marked as atomic
is automatically freed when no longer reachable, while memory marked as skip
is not.

The atomic option must be used with great care, because all sorts of problem
can occur if used incorrectly, that is, if the memory the pointer points to does
actually contain a pointer.

Here is an example of how to use it:

struct GTY(()) my_struct {

int number_of_elements;

unsigned int * GTY ((atomic)) elements;

};

In this case, elements is a pointer under GC, and the memory it points to needs
to be allocated using the Garbage Collector, and will be freed automatically by
the Garbage Collector when it is no longer referenced. But the memory that
the pointer points to is an array of unsigned int elements, and the GC must
not try to scan it to find pointers to mark or relocate, which is why it is marked
with the atomic option.

Note that, currently, global variables cannot be marked with atomic; only fields
of a struct can. This is a known limitation. It would be useful to be able to
mark global pointers with atomic to make the PCH machinery aware of them
so that they are saved and restored correctly to PCH files.

special ("name")

The special option is used to mark types that have to be dealt with by
special case machinery. The parameter is the name of the special case. See
gengtype.cc for further details. Avoid adding new special cases unless there
is no other alternative.

user

The user option indicates that the code to mark structure fields is completely
handled by user-provided routines. See section Section 22.3 [User GC], page 743,
for details on what functions need to be provided.

Chapter 22: Memory Management and Type Information 743

22.2 Support for inheritance

gengtype has some support for simple class hierarchies. You can use this to have gengtype
autogenerate marking routines, provided:

• There must be a concrete base class, with a discriminator expression that can be used
to identify which subclass an instance is.

• Only single inheritance is used.

• None of the classes within the hierarchy are templates.

If your class hierarchy does not fit in this pattern, you must use Section 22.3 [User GC],
page 743, instead.

The base class and its discriminator must be identified using the “desc” option. Each
concrete subclass must use the “tag” option to identify which value of the discriminator it
corresponds to.

Every class in the hierarchy must have a GTY(()) marker, as gengtype will only attempt
to parse classes that have such a marker1.

class GTY((desc("%h.kind"), tag("0"))) example_base

{

public:

int kind;

tree a;

};

class GTY((tag("1"))) some_subclass : public example_base

{

public:

tree b;

};

class GTY((tag("2"))) some_other_subclass : public example_base

{

public:

tree c;

};

The generated marking routines for the above will contain a “switch” on “kind”, visiting
all appropriate fields. For example, if kind is 2, it will cast to “some other subclass” and
visit fields a, b, and c.

22.3 Support for user-provided GC marking routines

The garbage collector supports types for which no automatic marking code is generated.
For these types, the user is required to provide three functions: one to act as a marker for
garbage collection, and two functions to act as marker and pointer walker for pre-compiled
headers.

Given a structure struct GTY((user)) my_struct, the following functions should be
defined to mark my_struct:

void gt_ggc_mx (my_struct *p)

1 Classes lacking such a marker will not be identified as being part of the hierarchy, and so the marking
routines will not handle them, leading to a assertion failure within the marking routines due to an unknown
tag value (assuming that assertions are enabled).

744 GNU Compiler Collection (GCC) Internals

{

/* This marks field 'fld'. */

gt_ggc_mx (p->fld);

}

void gt_pch_nx (my_struct *p)

{

/* This marks field 'fld'. */

gt_pch_nx (tp->fld);

}

void gt_pch_nx (my_struct *p, gt_pointer_operator op, void *cookie)

{

/* For every field 'fld', call the given pointer operator. */

op (&(tp->fld), NULL, cookie);

}

In general, each marker M should call M for every pointer field in the structure. Fields
that are not allocated in GC or are not pointers must be ignored.

For embedded lists (e.g., structures with a next or prev pointer), the marker must follow
the chain and mark every element in it.

Note that the rules for the pointer walker gt_pch_nx (my_struct *, gt_pointer_

operator, void *) are slightly different. In this case, the operation op must be applied to
the address of every pointer field.

22.3.1 User-provided marking routines for template types

When a template type TP is marked with GTY, all instances of that type are considered user-
provided types. This means that the individual instances of TP do not need to be marked
with GTY. The user needs to provide template functions to mark all the fields of the type.

The following code snippets represent all the functions that need to be provided. Note
that type TP may reference to more than one type. In these snippets, there is only one type
T, but there could be more.

template<typename T>

void gt_ggc_mx (TP<T> *tp)

{

extern void gt_ggc_mx (T&);

/* This marks field 'fld' of type 'T'. */

gt_ggc_mx (tp->fld);

}

template<typename T>

void gt_pch_nx (TP<T> *tp)

{

extern void gt_pch_nx (T&);

/* This marks field 'fld' of type 'T'. */

gt_pch_nx (tp->fld);

}

template<typename T>

void gt_pch_nx (TP<T *> *tp, gt_pointer_operator op, void *cookie)

{

/* For every field 'fld' of 'tp' with type 'T *', call the given

Chapter 22: Memory Management and Type Information 745

pointer operator. */

op (&(tp->fld), NULL, cookie);

}

template<typename T>

void gt_pch_nx (TP<T> *tp, gt_pointer_operator, void *cookie)

{

extern void gt_pch_nx (T *, gt_pointer_operator, void *);

/* For every field 'fld' of 'tp' with type 'T', call the pointer

walker for all the fields of T. */

gt_pch_nx (&(tp->fld), op, cookie);

}

Support for user-defined types is currently limited. The following restrictions apply:

1. Type TP and all the argument types T must be marked with GTY.

2. Type TP can only have type names in its argument list.

3. The pointer walker functions are different for TP<T> and TP<T *>. In the case of TP<T>,
references to T must be handled by calling gt_pch_nx (which will, in turn, walk all the
pointers inside fields of T). In the case of TP<T *>, references to T * must be handled
by calling the op function on the address of the pointer (see the code snippets above).

22.4 Marking Roots for the Garbage Collector

In addition to keeping track of types, the type machinery also locates the global variables
(roots) that the garbage collector starts at. Roots must be declared using one of the
following syntaxes:

• extern GTY(([options])) type name;

• static GTY(([options])) type name;

The syntax

• GTY(([options])) type name;

is not accepted. There should be an extern declaration of such a variable in a header
somewhere—mark that, not the definition. Or, if the variable is only used in one file, make
it static.

22.5 Source Files Containing Type Information

Whenever you add GTY markers to a source file that previously had none, or create a new
source file containing GTY markers, there are three things you need to do:

1. You need to add the file to the list of source files the type machinery scans. There are
four cases:

a. For a back-end file, this is usually done automatically; if not, you should add it to
target_gtfiles in the appropriate port’s entries in config.gcc.

b. For files shared by all front ends, add the filename to the GTFILES variable in
Makefile.in.

c. For files that are part of one front end, add the filename to the gtfiles variable
defined in the appropriate config-lang.in. Headers should appear before non-
headers in this list.

746 GNU Compiler Collection (GCC) Internals

d. For files that are part of some but not all front ends, add the filename to the
gtfiles variable of all the front ends that use it.

2. If the file was a header file, you’ll need to check that it’s included in the right place to be
visible to the generated files. For a back-end header file, this should be done automati-
cally. For a front-end header file, it needs to be included by the same file that includes
gtype-lang.h. For other header files, it needs to be included in gtype-desc.cc, which
is a generated file, so add it to ifiles in open_base_file in gengtype.cc.

For source files that aren’t header files, the machinery will generate a header file that
should be included in the source file you just changed. The file will be called gt-path.h

where path is the pathname relative to the gcc directory with slashes replaced by -, so
for example the header file to be included in cp/parser.cc is called gt-cp-parser.h.
The generated header file should be included after everything else in the source file.

For language frontends, there is another file that needs to be included somewhere. It
will be called gtype-lang.h, where lang is the name of the subdirectory the language is
contained in.

Plugins can add additional root tables. Run the gengtype utility in plugin mode as
gengtype -P pluginout.h source-dir file-list plugin*.c with your plugin files plu-
gin*.c using GTY to generate the pluginout.h file. The GCC build tree is needed to be
present in that mode.

22.6 How to invoke the garbage collector

The GCC garbage collector GGC is only invoked explicitly. In contrast with many other
garbage collectors, it is not implicitly invoked by allocation routines when a lot of memory
has been consumed. So the only way to have GGC reclaim storage is to call the ggc_

collect function explicitly. With mode GGC_COLLECT_FORCE or otherwise (default GGC_

COLLECT_HEURISTIC) when the internal heuristic decides to collect, this call is potentially
an expensive operation, as it may have to scan the entire heap. Beware that local variables
(on the GCC call stack) are not followed by such an invocation (as many other garbage
collectors do): you should reference all your data from static or external GTY-ed variables,
and it is advised to call ggc_collect with a shallow call stack. The GGC is an exact mark
and sweep garbage collector (so it does not scan the call stack for pointers). In practice GCC
passes don’t often call ggc_collect themselves, because it is called by the pass manager
between passes.

At the time of the ggc_collect call all pointers in the GC-marked structures must be
valid or NULL. In practice this means that there should not be uninitialized pointer fields in
the structures even if your code never reads or writes those fields at a particular instance.
One way to ensure this is to use cleared versions of allocators unless all the fields are
initialized manually immediately after allocation.

22.7 Troubleshooting the garbage collector

With the current garbage collector implementation, most issues should show up as GCC
compilation errors. Some of the most commonly encountered issues are described below.

• Gengtype does not produce allocators for a GTY-marked type. Gengtype checks if there
is at least one possible path from GC roots to at least one instance of each type before

Chapter 22: Memory Management and Type Information 747

outputting allocators. If there is no such path, the GTY markers will be ignored and no
allocators will be output. Solve this by making sure that there exists at least one such
path. If creating it is unfeasible or raises a “code smell”, consider if you really must
use GC for allocating such type.

• Link-time errors about undefined gt_ggc_r_foo_bar and similarly-named symbols.
Check if your foo_bar source file has #include "gt-foo_bar.h" as its very last line.

749

23 Plugins

GCC plugins are loadable modules that provide extra features to the compiler. Like GCC
itself they can be distributed in source and binary forms.

GCC plugins provide developers with a rich subset of the GCC API to allow them to
extend GCC as they see fit. Whether it is writing an additional optimization pass, trans-
forming code, or analyzing information, plugins can be quite useful.

23.1 Loading Plugins

Plugins are supported on platforms that support -ldl -rdynamic as well as Win-
dows/MinGW. They are loaded by the compiler using dlopen or equivalent and invoked
at pre-determined locations in the compilation process.

Plugins are loaded with

-fplugin=/path/to/name.ext -fplugin-arg-name-key1[=value1]

Where name is the plugin name and ext is the platform-specific dynamic library ex-
tension. It should be dll on Windows/MinGW, dylib on Darwin/macOS, and so on all
other platforms. The plugin arguments are parsed by GCC and passed to respective plu-
gins as key-value pairs. Multiple plugins can be invoked by specifying multiple -fplugin

arguments.

A plugin can be simply given by its short name (no dots or slashes). When simply
passing -fplugin=name, the plugin is loaded from the plugin directory, so -fplugin=name

is the same as -fplugin=`gcc -print-file-name=plugin`/name.ext, using backquote
shell syntax to query the plugin directory.

23.2 Plugin API

Plugins are activated by the compiler at specific events as defined in gcc-plugin.h. For
each event of interest, the plugin should call register_callback specifying the name of
the event and address of the callback function that will handle that event.

The header gcc-plugin.h must be the first gcc header to be included.

23.2.1 Plugin license check

Every plugin should define the global symbol plugin_is_GPL_compatible to assert that
it has been licensed under a GPL-compatible license. If this symbol does not exist, the
compiler will emit a fatal error and exit with the error message:

fatal error: plugin name is not licensed under a GPL-compatible license

name: undefined symbol: plugin_is_GPL_compatible

compilation terminated

The declared type of the symbol should be int, to match a forward declaration in gcc-

plugin.h that suppresses C++ mangling. It does not need to be in any allocated section,
though. The compiler merely asserts that the symbol exists in the global scope. Something
like this is enough:

int plugin_is_GPL_compatible;

750 GNU Compiler Collection (GCC) Internals

23.2.2 Plugin initialization

Every plugin should export a function called plugin_init that is called right after the
plugin is loaded. This function is responsible for registering all the callbacks required by
the plugin and do any other required initialization.

This function is called from compile_file right before invoking the parser. The argu-
ments to plugin_init are:

• plugin_info: Plugin invocation information.

• version: GCC version.

The plugin_info struct is defined as follows:
struct plugin_name_args

{

char *base_name; /* Short name of the plugin

(filename without .so suffix). */

const char *full_name; /* Path to the plugin as specified with

-fplugin=. */

int argc; /* Number of arguments specified with

-fplugin-arg-.... */

struct plugin_argument *argv; /* Array of ARGC key-value pairs. */

const char *version; /* Version string provided by plugin. */

const char *help; /* Help string provided by plugin. */

}

If initialization fails, plugin_init must return a non-zero value. Otherwise, it should
return 0.

The version of the GCC compiler loading the plugin is described by the following struc-
ture:

struct plugin_gcc_version

{

const char *basever;

const char *datestamp;

const char *devphase;

const char *revision;

const char *configuration_arguments;

};

The function plugin_default_version_check takes two pointers to such structure and
compare them field by field. It can be used by the plugin’s plugin_init function.

The version of GCC used to compile the plugin can be found in the symbol gcc_version
defined in the header plugin-version.h. The recommended version check to perform looks
like

#include "plugin-version.h"

...

int

plugin_init (struct plugin_name_args *plugin_info,

struct plugin_gcc_version *version)

{

if (!plugin_default_version_check (version, &gcc_version))

return 1;

}

but you can also check the individual fields if you want a less strict check.

Chapter 23: Plugins 751

23.2.3 Plugin callbacks

Callback functions have the following prototype:
/* The prototype for a plugin callback function.

gcc_data - event-specific data provided by GCC

user_data - plugin-specific data provided by the plug-in. */

typedef void (*plugin_callback_func)(void *gcc_data, void *user_data);

Callbacks can be invoked at the following pre-determined events:
enum plugin_event

{

PLUGIN_START_PARSE_FUNCTION, /* Called before parsing the body of a function. */

PLUGIN_FINISH_PARSE_FUNCTION, /* After finishing parsing a function. */

PLUGIN_PASS_MANAGER_SETUP, /* To hook into pass manager. */

PLUGIN_FINISH_TYPE, /* After finishing parsing a type. */

PLUGIN_FINISH_DECL, /* After finishing parsing a declaration. */

PLUGIN_FINISH_UNIT, /* Useful for summary processing. */

PLUGIN_PRE_GENERICIZE, /* Allows to see low level AST in C and C++ frontends. */

PLUGIN_FINISH, /* Called before GCC exits. */

PLUGIN_INFO, /* Information about the plugin. */

PLUGIN_GGC_START, /* Called at start of GCC Garbage Collection. */

PLUGIN_GGC_MARKING, /* Extend the GGC marking. */

PLUGIN_GGC_END, /* Called at end of GGC. */

PLUGIN_REGISTER_GGC_ROOTS, /* Register an extra GGC root table. */

PLUGIN_ATTRIBUTES, /* Called during attribute registration */

PLUGIN_START_UNIT, /* Called before processing a translation unit. */

PLUGIN_PRAGMAS, /* Called during pragma registration. */

/* Called before first pass from all_passes. */

PLUGIN_ALL_PASSES_START,

/* Called after last pass from all_passes. */

PLUGIN_ALL_PASSES_END,

/* Called before first ipa pass. */

PLUGIN_ALL_IPA_PASSES_START,

/* Called after last ipa pass. */

PLUGIN_ALL_IPA_PASSES_END,

/* Allows to override pass gate decision for current_pass. */

PLUGIN_OVERRIDE_GATE,

/* Called before executing a pass. */

PLUGIN_PASS_EXECUTION,

/* Called before executing subpasses of a GIMPLE_PASS in

execute_ipa_pass_list. */

PLUGIN_EARLY_GIMPLE_PASSES_START,

/* Called after executing subpasses of a GIMPLE_PASS in

execute_ipa_pass_list. */

PLUGIN_EARLY_GIMPLE_PASSES_END,

/* Called when a pass is first instantiated. */

PLUGIN_NEW_PASS,

/* Called when a file is #include-d or given via the #line directive.

This could happen many times. The event data is the included file path,

as a const char* pointer. */

PLUGIN_INCLUDE_FILE,

/* Called when -fanalyzer starts. The event data is an

ana::plugin_analyzer_init_iface *. */

PLUGIN_ANALYZER_INIT,

PLUGIN_EVENT_FIRST_DYNAMIC /* Dummy event used for indexing callback

array. */

};

752 GNU Compiler Collection (GCC) Internals

In addition, plugins can also look up the enumerator of a named event, and / or generate
new events dynamically, by calling the function get_named_event_id.

To register a callback, the plugin calls register_callback with the arguments:

• char *name: Plugin name.

• int event: The event code.

• plugin_callback_func callback: The function that handles event.

• void *user_data: Pointer to plugin-specific data.

For the PLUGIN PASS MANAGER SETUP, PLUGIN INFO, and PLU-
GIN REGISTER GGC ROOTS pseudo-events the callback should be null, and the
user_data is specific.

When the PLUGIN PRAGMAS event is triggered (with a null pointer as data from
GCC), plugins may register their own pragmas. Notice that pragmas are not available from
lto1, so plugins used with -flto option to GCC during link-time optimization cannot use
pragmas and do not even see functions like c_register_pragma or pragma_lex.

The PLUGIN INCLUDE FILE event, with a const char* file path as GCC data, is
triggered for processing of #include or #line directives.

The PLUGIN FINISH event is the last time that plugins can call GCC functions, notably
emit diagnostics with warning, error etc.

23.3 Interacting with the pass manager

There needs to be a way to add/reorder/remove passes dynamically. This is useful for
both analysis plugins (plugging in after a certain pass such as CFG or an IPA pass) and
optimization plugins.

Basic support for inserting new passes or replacing existing passes is provided. A plugin
registers a new pass with GCC by calling register_callback with the PLUGIN_PASS_

MANAGER_SETUP event and a pointer to a struct register_pass_info object defined as
follows

enum pass_positioning_ops

{

PASS_POS_INSERT_AFTER, // Insert after the reference pass.

PASS_POS_INSERT_BEFORE, // Insert before the reference pass.

PASS_POS_REPLACE // Replace the reference pass.

};

struct register_pass_info

{

struct opt_pass *pass; /* New pass provided by the plugin. */

const char *reference_pass_name; /* Name of the reference pass for hooking

up the new pass. */

int ref_pass_instance_number; /* Insert the pass at the specified

instance number of the reference pass. */

/* Do it for every instance if it is 0. */

enum pass_positioning_ops pos_op; /* how to insert the new pass. */

};

/* Sample plugin code that registers a new pass. */

int

Chapter 23: Plugins 753

plugin_init (struct plugin_name_args *plugin_info,

struct plugin_gcc_version *version)

{

struct register_pass_info pass_info;

...

/* Code to fill in the pass_info object with new pass information. */

...

/* Register the new pass. */

register_callback (plugin_info->base_name, PLUGIN_PASS_MANAGER_SETUP, NULL, &pass_info);

...

}

23.4 Interacting with the GCC Garbage Collector

Some plugins may want to be informed when GGC (the GCC Garbage Collector) is running.
They can register callbacks for the PLUGIN_GGC_START and PLUGIN_GGC_END events (for
which the callback is called with a null gcc_data) to be notified of the start or end of the
GCC garbage collection.

Some plugins may need to have GGC mark additional data. This can be done by regis-
tering a callback (called with a null gcc_data) for the PLUGIN_GGC_MARKING event. Such
callbacks can call the ggc_set_mark routine, preferably through the ggc_mark macro (and
conversely, these routines should usually not be used in plugins outside of the PLUGIN_GGC_
MARKING event). Plugins that wish to hold weak references to gc data may also use this
event to drop weak references when the object is about to be collected. The ggc_marked_

p function can be used to tell if an object is marked, or is about to be collected. The
gt_clear_cache overloads which some types define may also be of use in managing weak
references.

Some plugins may need to add extra GGC root tables, e.g. to handle their own GTY-ed
data. This can be done with the PLUGIN_REGISTER_GGC_ROOTS pseudo-event with a null
callback and the extra root table (of type struct ggc_root_tab*) as user_data. Running
the gengtype -p source-dir file-list plugin*.c ... utility generates these extra root
tables.

You should understand the details of memory management inside GCC before using
PLUGIN_GGC_MARKING or PLUGIN_REGISTER_GGC_ROOTS.

23.5 Giving information about a plugin

A plugin should give some information to the user about itself. This uses the following
structure:

struct plugin_info

{

const char *version;

const char *help;

};

Such a structure is passed as the user_data by the plugin’s init routine using register_

callback with the PLUGIN_INFO pseudo-event and a null callback.

754 GNU Compiler Collection (GCC) Internals

23.6 Registering custom attributes or pragmas

For analysis (or other) purposes it is useful to be able to add custom attributes or pragmas.

The PLUGIN_ATTRIBUTES callback is called during attribute registration. Use the
register_attribute function to register custom attributes.

/* Attribute handler callback */

static tree

handle_user_attribute (tree *node, tree name, tree args,

int flags, bool *no_add_attrs)

{

return NULL_TREE;

}

/* Attribute definition */

static struct attribute_spec user_attr =

{ "user", 1, 1, false, false, false, false, handle_user_attribute, NULL };

/* Plugin callback called during attribute registration.

Registered with register_callback (plugin_name, PLUGIN_ATTRIBUTES, register_attributes, NULL)

*/

static void

register_attributes (void *event_data, void *data)

{

warning (0, G_("Callback to register attributes"));

register_attribute (&user_attr);

}

The PLUGIN PRAGMAS callback is called once during pragmas registration. Use
the c_register_pragma, c_register_pragma_with_data, c_register_pragma_with_

expansion, c_register_pragma_with_expansion_and_data functions to register
custom pragmas and their handlers (which often want to call pragma_lex) from
c-family/c-pragma.h.

/* Plugin callback called during pragmas registration. Registered with

register_callback (plugin_name, PLUGIN_PRAGMAS,

register_my_pragma, NULL);

*/

static void

register_my_pragma (void *event_data, void *data)

{

warning (0, G_("Callback to register pragmas"));

c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello);

}

It is suggested to pass "GCCPLUGIN" (or a short name identifying your plugin) as the
“space” argument of your pragma.

Pragmas registered with c_register_pragma_with_expansion or c_register_pragma_
with_expansion_and_data support preprocessor expansions. For example:

#define NUMBER 10

#pragma GCCPLUGIN foothreshold (NUMBER)

23.7 Recording information about pass execution

The event PLUGIN PASS EXECUTION passes the pointer to the executed pass (the
same as current pass) as gcc_data to the callback. You can also inspect cfun to find out

Chapter 23: Plugins 755

about which function this pass is executed for. Note that this event will only be invoked
if the gate check (if applicable, modified by PLUGIN OVERRIDE GATE) succeeds.
You can use other hooks, like PLUGIN_ALL_PASSES_START, PLUGIN_ALL_PASSES_END,
PLUGIN_ALL_IPA_PASSES_START, PLUGIN_ALL_IPA_PASSES_END, PLUGIN_EARLY_GIMPLE_

PASSES_START, and/or PLUGIN_EARLY_GIMPLE_PASSES_END to manipulate global state in
your plugin(s) in order to get context for the pass execution.

23.8 Controlling which passes are being run

After the original gate function for a pass is called, its result - the gate status - is stored as
an integer. Then the event PLUGIN_OVERRIDE_GATE is invoked, with a pointer to the gate
status in the gcc_data parameter to the callback function. A nonzero value of the gate
status means that the pass is to be executed. You can both read and write the gate status
via the passed pointer.

23.9 Keeping track of available passes

When your plugin is loaded, you can inspect the various pass lists to determine what passes
are available. However, other plugins might add new passes. Also, future changes to GCC
might cause generic passes to be added after plugin loading. When a pass is first added to
one of the pass lists, the event PLUGIN_NEW_PASS is invoked, with the callback parameter
gcc_data pointing to the new pass.

23.10 Building GCC plugins

If plugins are enabled, GCC installs the headers needed to build a plugin (somewhere in
the installation tree, e.g. under /usr/local). In particular a plugin/include directory is
installed, containing all the header files needed to build plugins.

On most systems, you can query this plugin directory by invoking gcc -print-file-

name=plugin (replace if needed gcc with the appropriate program path).

Inside plugins, this plugin directory name can be queried by calling default_plugin_

dir_name ().

Plugins may know, when they are compiled, the GCC version for which
plugin-version.h is provided. The constant macros GCCPLUGIN_VERSION_MAJOR,
GCCPLUGIN_VERSION_MINOR, GCCPLUGIN_VERSION_PATCHLEVEL, GCCPLUGIN_VERSION are
integer numbers, so a plugin could ensure it is built for GCC 4.7 with

#if GCCPLUGIN_VERSION != 4007

#error this GCC plugin is for GCC 4.7

#endif

The following GNU Makefile excerpt shows how to build a simple plugin:

HOST_GCC=g++

TARGET_GCC=gcc

PLUGIN_SOURCE_FILES= plugin1.c plugin2.cc

GCCPLUGINS_DIR:= $(shell $(TARGET_GCC) -print-file-name=plugin)

CXXFLAGS+= -I$(GCCPLUGINS_DIR)/include -fPIC -fno-rtti -O2

plugin.so: $(PLUGIN_SOURCE_FILES)

$(HOST_GCC) -shared $(CXXFLAGS) $^ -o $@

756 GNU Compiler Collection (GCC) Internals

A single source file plugin may be built with g++ -I`gcc -print-file-

name=plugin`/include -fPIC -shared -fno-rtti -O2 plugin.cc -o plugin.so, using
backquote shell syntax to query the plugin directory.

Plugin support on Windows/MinGW has a number of limitations and additional require-
ments. When building a plugin on Windows we have to link an import library for the
corresponding backend executable, for example, cc1.exe, cc1plus.exe, etc., in order to
gain access to the symbols provided by GCC. This means that on Windows a plugin is
language-specific, for example, for C, C++, etc. If you wish to use your plugin with mul-
tiple languages, then you will need to build multiple plugin libraries and either instruct
your users on how to load the correct version or provide a compiler wrapper that does this
automatically.

Additionally, on Windows the plugin library has to export the plugin_is_GPL_

compatible and plugin_init symbols. If you do not wish to modify the source code
of your plugin, then you can use the -Wl,--export-all-symbols option or provide a
suitable DEF file. Alternatively, you can export just these two symbols by decorating
them with __declspec(dllexport), for example:

#ifdef _WIN32

__declspec(dllexport)

#endif

int plugin_is_GPL_compatible;

#ifdef _WIN32

__declspec(dllexport)

#endif

int plugin_init (plugin_name_args *, plugin_gcc_version *)

The import libraries are installed into the plugin directory and their names are derived
by appending the .a extension to the backend executable names, for example, cc1.exe.a,
cc1plus.exe.a, etc. The following command line shows how to build the single source file
plugin on Windows to be used with the C++ compiler:

g++ -I`gcc -print-file-name=plugin`/include -shared -Wl,--export-all-symbols \

-o plugin.dll plugin.cc `gcc -print-file-name=plugin`/cc1plus.exe.a

When a plugin needs to use gengtype, be sure that both gengtype and gtype.state

have the same version as the GCC for which the plugin is built.

757

24 Link Time Optimization

Link Time Optimization (LTO) gives GCC the capability of dumping its internal represen-
tation (GIMPLE) to disk, so that all the different compilation units that make up a single
executable can be optimized as a single module. This expands the scope of inter-procedural
optimizations to encompass the whole program (or, rather, everything that is visible at link
time).

24.1 Design Overview

Link time optimization is implemented as a GCC front end for a bytecode representation of
GIMPLE that is emitted in special sections of .o files. Currently, LTO support is enabled
in most ELF-based systems, as well as darwin, cygwin and mingw systems.

By default, object files generated with LTO support contain only GIMPLE bytecode.
Such objects are called “slim”, and they require that tools like ar and nm understand
symbol tables of LTO sections. For most targets these tools have been extended to use the
plugin infrastructure, so GCC can support “slim” objects consisting of the intermediate
code alone.

GIMPLE bytecode could also be saved alongside final object code if the -ffat-lto-

objects option is passed, or if no plugin support is detected for ar and nm when GCC is
configured. It makes the object files generated with LTO support larger than regular object
files. This “fat” object format allows to ship one set of fat objects which could be used both
for development and the production of optimized builds. A, perhaps surprising, side effect
of this feature is that any mistake in the toolchain leads to LTO information not being
used (e.g. an older libtool calling ld directly). This is both an advantage, as the system
is more robust, and a disadvantage, as the user is not informed that the optimization has
been disabled.

At the highest level, LTO splits the compiler in two. The first half (the “writer”) produces
a streaming representation of all the internal data structures needed to optimize and gener-
ate code. This includes declarations, types, the callgraph and the GIMPLE representation
of function bodies.

When -flto is given during compilation of a source file, the pass manager executes all
the passes in all_lto_gen_passes. Currently, this phase is composed of two IPA passes:

• pass_ipa_lto_gimple_out This pass executes the function lto_output in
lto-streamer-out.cc, which traverses the call graph encoding every reachable
declaration, type and function. This generates a memory representation of all the file
sections described below.

• pass_ipa_lto_finish_out This pass executes the function produce_asm_for_decls

in lto-streamer-out.cc, which takes the memory image built in the previous pass
and encodes it in the corresponding ELF file sections.

The second half of LTO support is the “reader”. This is implemented as the GCC front
end lto1 in lto/lto.cc. When collect2 detects a link set of .o/.a files with LTO
information and the -flto is enabled, it invokes lto1 which reads the set of files and
aggregates them into a single translation unit for optimization. The main entry point for
the reader is lto/lto.cc:lto_main.

758 GNU Compiler Collection (GCC) Internals

24.1.1 LTO modes of operation

One of the main goals of the GCC link-time infrastructure was to allow effective compilation
of large programs. For this reason GCC implements two link-time compilation modes.

1. LTO mode, in which the whole program is read into the compiler at link-time and
optimized in a similar way as if it were a single source-level compilation unit.

2. WHOPR or partitioned mode, designed to utilize multiple CPUs and/or a distributed
compilation environment to quickly link large applications. WHOPR stands for WHOle
Program optimizeR (not to be confused with the semantics of -fwhole-program). It
partitions the aggregated callgraph from many different .o files and distributes the
compilation of the sub-graphs to different CPUs.

Note that distributed compilation is not implemented yet, but since the parallelism is
facilitated via generating a Makefile, it would be easy to implement.

WHOPR splits LTO into three main stages:

1. Local generation (LGEN) This stage executes in parallel. Every file in the program
is compiled into the intermediate language and packaged together with the local call-
graph and summary information. This stage is the same for both the LTO andWHOPR
compilation mode.

2. Whole Program Analysis (WPA) WPA is performed sequentially. The global call-graph
is generated, and a global analysis procedure makes transformation decisions. The
global call-graph is partitioned to facilitate parallel optimization during phase 3. The
results of the WPA stage are stored into new object files which contain the partitions
of program expressed in the intermediate language and the optimization decisions.

3. Local transformations (LTRANS) This stage executes in parallel. All the decisions
made during phase 2 are implemented locally in each partitioned object file, and the
final object code is generated. Optimizations which cannot be decided efficiently during
the phase 2 may be performed on the local call-graph partitions.

WHOPR can be seen as an extension of the usual LTO mode of compilation. In LTO,
WPA and LTRANS are executed within a single execution of the compiler, after the whole
program has been read into memory.

When compiling in WHOPR mode, the callgraph is partitioned during the WPA stage.
The whole program is split into a given number of partitions of roughly the same size. The
compiler tries to minimize the number of references which cross partition boundaries. The
main advantage of WHOPR is to allow the parallel execution of LTRANS stages, which are
the most time-consuming part of the compilation process. Additionally, it avoids the need
to load the whole program into memory.

24.2 LTO file sections

LTO information is stored in several ELF sections inside object files. Data structures and
enum codes for sections are defined in lto-streamer.h.

These sections are emitted from lto-streamer-out.cc and mapped in all at once from
lto/lto.cc:lto_file_read. The individual functions dealing with the reading/writing of
each section are described below.

Chapter 24: Link Time Optimization 759

• Command line options (.gnu.lto_.opts)

This section contains the command line options used to generate the object files. This
is used at link time to determine the optimization level and other settings when they
are not explicitly specified at the linker command line.

Most options are recorded at a per function level and their setting restored when pro-
cessing the functions at link time. Global options are composed from options specified
at compile time and link time. How exactly they are combined or mismatches diagnosed
is implemented in lto-wrapper.cc:find_and_merge_options.

• Symbol table (.gnu.lto_.symtab)

This table replaces the ELF symbol table for functions and variables represented in the
LTO IL. Symbols used and exported by the optimized assembly code of “fat” objects
might not match the ones used and exported by the intermediate code. This table is
necessary because the intermediate code is less optimized and thus requires a separate
symbol table.

Additionally, the binary code in the “fat” object will lack a call to a function, since
the call was optimized out at compilation time after the intermediate language was
streamed out. In some special cases, the same optimization may not happen during
link-time optimization. This would lead to an undefined symbol if only one symbol
table was used.

The symbol table is emitted in lto-streamer-out.cc:produce_symtab.

• Global declarations and types (.gnu.lto_.decls)

This section contains an intermediate language dump of all declarations and types
required to represent the callgraph, static variables and top-level debug info.

The contents of this section are emitted in lto-streamer-out.cc:produce_asm_for_
decls. Types and symbols are emitted in a topological order that preserves the sharing
of pointers when the file is read back in (lto.cc:read_cgraph_and_symbols).

• The callgraph (.gnu.lto_.cgraph)

This section contains the basic data structure used by the GCC inter-procedural opti-
mization infrastructure. This section stores an annotated multi-graph which represents
the functions and call sites as well as the variables, aliases and top-level asm statements.

This section is emitted in lto-streamer-out.cc:output_cgraph and read in lto-

cgraph.cc:input_cgraph.

• IPA references (.gnu.lto_.refs)

This section contains references between function and static variables. It is emitted by
lto-cgraph.cc:output_refs and read by lto-cgraph.cc:input_refs.

• Function bodies (.gnu.lto_.function_body.<name>)

This section contains function bodies in the intermediate language representation. Ev-
ery function body is in a separate section to allow copying of the section independently
to different object files or reading the function on demand.

Functions are emitted in lto-streamer-out.cc:output_function and read in lto-

streamer-in.cc:input_function.

• Static variable initializers (.gnu.lto_.vars)

This section contains all the symbols in the global variable pool. It is emitted by
lto-cgraph.cc:output_varpool and read in lto-cgraph.cc:input_cgraph.

760 GNU Compiler Collection (GCC) Internals

• Summaries and optimization summaries used by IPA passes (.gnu.lto_.<xxx>, where
<xxx> is one of jmpfuncs, pureconst or reference)

These sections are used by IPA passes that need to emit summary information during
LTO generation to be read and aggregated at link time. Each pass is responsible for
implementing two pass manager hooks: one for writing the summary and another for
reading it in. The format of these sections is entirely up to each individual pass. The
only requirement is that the writer and reader hooks agree on the format.

24.3 Using summary information in IPA passes

Programs are represented internally as a callgraph (a multi-graph where nodes are functions
and edges are call sites) and a varpool (a list of static and external variables in the program).

The inter-procedural optimization is organized as a sequence of individual passes, which
operate on the callgraph and the varpool. To make the implementation of WHOPR possible,
every inter-procedural optimization pass is split into several stages that are executed at
different times during WHOPR compilation:

• LGEN time

1. Generate summary (generate_summary in struct ipa_opt_pass_d). This stage
analyzes every function body and variable initializer is examined and stores rele-
vant information into a pass-specific data structure.

2. Write summary (write_summary in struct ipa_opt_pass_d). This stage
writes all the pass-specific information generated by generate_summary.
Summaries go into their own LTO_section_* sections that have to be declared in
lto-streamer.h:enum lto_section_type. A new section is created by calling
create_output_block and data can be written using the lto_output_* routines.

• WPA time

1. Read summary (read_summary in struct ipa_opt_pass_d). This stage reads all
the pass-specific information in exactly the same order that it was written by
write_summary.

2. Execute (execute in struct opt_pass). This performs inter-procedural propaga-
tion. This must be done without actual access to the individual function bodies
or variable initializers. Typically, this results in a transitive closure operation over
the summary information of all the nodes in the callgraph.

3. Write optimization summary (write_optimization_summary in struct

ipa_opt_pass_d). This writes the result of the inter-procedural propagation into
the object file. This can use the same data structures and helper routines used in
write_summary.

• LTRANS time

1. Read optimization summary (read_optimization_summary in struct ipa_opt_

pass_d). The counterpart to write_optimization_summary. This reads the in-
terprocedural optimization decisions in exactly the same format emitted by write_
optimization_summary.

2. Transform (function_transform and variable_transform in struct ipa_opt_

pass_d). The actual function bodies and variable initializers are updated based
on the information passed down from the Execute stage.

Chapter 24: Link Time Optimization 761

The implementation of the inter-procedural passes are shared between LTO, WHOPR
and classic non-LTO compilation.

• During the traditional file-by-file mode every pass executes its own Generate summary,
Execute, and Transform stages within the single execution context of the compiler.

• In LTO compilation mode, every pass uses Generate summary and Write summary
stages at compilation time, while the Read summary, Execute, and Transform stages
are executed at link time.

• In WHOPR mode all stages are used.

To simplify development, the GCC pass manager differentiates between normal inter-
procedural passes (see Section 8.4.2 [Regular IPA passes], page 148), small inter-procedural
passes (see Section 8.4.1 [Small IPA passes], page 147) and late inter-procedural passes
(see Section 8.4.3 [Late IPA passes], page 150). A small or late IPA pass (SIMPLE_IPA_
PASS) does everything at once and thus cannot be executed during WPA in WHOPR
mode. It defines only the Execute stage and during this stage it accesses and modifies the
function bodies. Such passes are useful for optimization at LGEN or LTRANS time and are
used, for example, to implement early optimization before writing object files. The simple
inter-procedural passes can also be used for easier prototyping and development of a new
inter-procedural pass.

24.3.1 Virtual clones

One of the main challenges of introducing the WHOPR compilation mode was addressing
the interactions between optimization passes. In LTO compilation mode, the passes are
executed in a sequence, each of which consists of analysis (or Generate summary), propa-
gation (or Execute) and Transform stages. Once the work of one pass is finished, the next
pass sees the updated program representation and can execute. This makes the individual
passes dependent on each other.

In WHOPR mode all passes first execute their Generate summary stage. Then summary
writing marks the end of the LGEN stage. At WPA time, the summaries are read back into
memory and all passes run the Execute stage. Optimization summaries are streamed and
sent to LTRANS, where all the passes execute the Transform stage.

Most optimization passes split naturally into analysis, propagation and transformation
stages. But some do not. The main problem arises when one pass performs changes and
the following pass gets confused by seeing different callgraphs between the Transform stage
and the Generate summary or Execute stage. This means that the passes are required to
communicate their decisions with each other.

To facilitate this communication, the GCC callgraph infrastructure implements virtual
clones, a method of representing the changes performed by the optimization passes in the
callgraph without needing to update function bodies.

A virtual clone in the callgraph is a function that has no associated body, just a description
of how to create its body based on a different function (which itself may be a virtual clone).

The description of function modifications includes adjustments to the function’s signa-
ture (which allows, for example, removing or adding function arguments), substitutions to
perform on the function body, and, for inlined functions, a pointer to the function that it
will be inlined into.

762 GNU Compiler Collection (GCC) Internals

It is also possible to redirect any edge of the callgraph from a function to its virtual clone.
This implies updating of the call site to adjust for the new function signature.

Most of the transformations performed by inter-procedural optimizations can be repre-
sented via virtual clones. For instance, a constant propagation pass can produce a virtual
clone of the function which replaces one of its arguments by a constant. The inliner can
represent its decisions by producing a clone of a function whose body will be later integrated
into a given function.

Using virtual clones, the program can be easily updated during the Execute stage, solving
most of pass interactions problems that would otherwise occur during Transform.

Virtual clones are later materialized in the LTRANS stage and turned into real functions.
Passes executed after the virtual clone were introduced also perform their Transform stage
on new functions, so for a pass there is no significant difference between operating on a real
function or a virtual clone introduced before its Execute stage.

Optimization passes then work on virtual clones introduced before their Execute stage
as if they were real functions. The only difference is that clones are not visible during the
Generate Summary stage.

To keep function summaries updated, the callgraph interface allows an optimizer to regis-
ter a callback that is called every time a new clone is introduced as well as when the actual
function or variable is generated or when a function or variable is removed. These hooks
are registered in the Generate summary stage and allow the pass to keep its information
intact until the Execute stage. The same hooks can also be registered during the Execute
stage to keep the optimization summaries updated for the Transform stage.

24.3.2 IPA references

GCC represents IPA references in the callgraph. For a function or variable A,
the IPA reference is a list of all locations where the address of A is taken and,
when A is a variable, a list of all direct stores and reads to/from A. References
represent an oriented multi-graph on the union of nodes of the callgraph and the
varpool. See ipa-reference.cc:ipa_reference_write_optimization_summary and
ipa-reference.cc:ipa_reference_read_optimization_summary for details.

24.3.3 Jump functions

Suppose that an optimization pass sees a function A and it knows the values of (some of)
its arguments. The jump function describes the value of a parameter of a given function
call in function A based on this knowledge.

Jump functions are used by several optimizations, such as the inter-procedural constant
propagation pass and the devirtualization pass. The inliner also uses jump functions to
perform inlining of callbacks.

24.4 Whole program assumptions, linker plugin and symbol
visibilities

Link-time optimization gives relatively minor benefits when used alone. The problem is
that propagation of inter-procedural information does not work well across functions and
variables that are called or referenced by other compilation units (such as from a dynamically
linked library). We say that such functions and variables are externally visible.

Chapter 24: Link Time Optimization 763

To make the situation even more difficult, many applications organize themselves as a set
of shared libraries, and the default ELF visibility rules allow one to overwrite any externally
visible symbol with a different symbol at runtime. This basically disables any optimizations
across such functions and variables, because the compiler cannot be sure that the function
body it is seeing is the same function body that will be used at runtime. Any function
or variable not declared static in the sources degrades the quality of inter-procedural
optimization.

To avoid this problem the compiler must assume that it sees the whole program when
doing link-time optimization. Strictly speaking, the whole program is rarely visible even at
link-time. Standard system libraries are usually linked dynamically or not provided with
the link-time information. In GCC, the whole program option (-fwhole-program) asserts
that every function and variable defined in the current compilation unit is static, except
for function main (note: at link time, the current unit is the union of all objects compiled
with LTO). Since some functions and variables need to be referenced externally, for example
by another DSO or from an assembler file, GCC also provides the function and variable
attribute externally_visible which can be used to disable the effect of -fwhole-program
on a specific symbol.

The whole program mode assumptions are slightly more complex in C++, where inline
functions in headers are put into COMDAT sections. COMDAT function and variables can
be defined by multiple object files and their bodies are unified at link-time and dynamic
link-time. COMDAT functions are changed to local only when their address is not taken
and thus un-sharing them with a library is not harmful. COMDAT variables always remain
externally visible, however for readonly variables it is assumed that their initializers cannot
be overwritten by a different value.

GCC provides the function and variable attribute visibility that can be used to specify
the visibility of externally visible symbols (or alternatively an -fdefault-visibility com-
mand line option). ELF defines the default, protected, hidden and internal visibilities.

The most commonly used is visibility is hidden. It specifies that the symbol cannot
be referenced from outside of the current shared library. Unfortunately, this information
cannot be used directly by the link-time optimization in the compiler since the whole shared
library also might contain non-LTO objects and those are not visible to the compiler.

GCC solves this problem using linker plugins. A linker plugin is an interface to the linker
that allows an external program to claim the ownership of a given object file. The linker
then performs the linking procedure by querying the plugin about the symbol table of the
claimed objects and once the linking decisions are complete, the plugin is allowed to provide
the final object file before the actual linking is made. The linker plugin obtains the symbol
resolution information which specifies which symbols provided by the claimed objects are
bound from the rest of a binary being linked.

GCC is designed to be independent of the rest of the toolchain and aims to support linkers
without plugin support. For this reason it does not use the linker plugin by default. Instead,
the object files are examined by collect2 before being passed to the linker and objects
found to have LTO sections are passed to lto1 first. This mode does not work for library
archives. The decision on what object files from the archive are needed depends on the actual
linking and thus GCC would have to implement the linker itself. The resolution information
is missing too and thus GCC needs to make an educated guess based on -fwhole-program.

764 GNU Compiler Collection (GCC) Internals

Without the linker plugin GCC also assumes that symbols are declared hidden and not
referred by non-LTO code by default.

24.5 Internal flags controlling lto1

The following flags are passed into lto1 and are not meant to be used directly from the
command line.

• -fwpa This option runs the serial part of the link-time optimizer performing the inter-
procedural propagation (WPA mode). The compiler reads in summary information
from all inputs and performs an analysis based on summary information only. It
generates object files for subsequent runs of the link-time optimizer where individual
object files are optimized using both summary information from the WPA mode and
the actual function bodies. It then drives the LTRANS phase.

• -fltrans This option runs the link-time optimizer in the local-transformation (LTRANS)
mode, which reads in output from a previous run of the LTO in WPA mode. In the
LTRANS mode, LTO optimizes an object and produces the final assembly.

• -fltrans-output-list=file This option specifies a file to which the names of LTRANS
output files are written. This option is only meaningful in conjunction with -fwpa.

• -fresolution=file This option specifies the linker resolution file. This option is only
meaningful in conjunction with -fwpa and as option to pass through to the LTO linker
plugin.

765

25 Match and Simplify

The GIMPLE and GENERIC pattern matching project match-and-simplify tries to address
several issues.

1. unify expression simplifications currently spread and duplicated over separate files like
fold-const.cc, gimple-fold.cc and builtins.cc

2. allow for a cheap way to implement building and simplifying non-trivial GIMPLE
expressions, avoiding the need to go through building and simplifying GENERIC via
fold buildN and then gimplifying via force gimple operand

To address these the project introduces a simple domain-specific language to write expres-
sion simplifications from which code targeting GIMPLE and GENERIC is auto-generated.
The GENERIC variant follows the fold buildN API while for the GIMPLE variant and to
address 2) new APIs are introduced.

25.1 GIMPLE API

[GIMPLE function]tree gimple_simplify (enum tree_code, tree, tree,
gimple_seq *, tree (*)(tree))

[GIMPLE function]tree gimple_simplify (enum tree_code, tree, tree,
tree, gimple_seq *, tree (*)(tree))

[GIMPLE function]tree gimple_simplify (enum tree_code, tree, tree,
tree, tree, gimple_seq *, tree (*)(tree))

[GIMPLE function]tree gimple_simplify (enum built_in_function, tree,
tree, gimple_seq *, tree (*)(tree))

[GIMPLE function]tree gimple_simplify (enum built_in_function, tree,
tree, tree, gimple_seq *, tree (*)(tree))

[GIMPLE function]tree gimple_simplify (enum built_in_function, tree,
tree, tree, tree, gimple_seq *, tree (*)(tree))

The main GIMPLE API entry to the expression simplifications mimicking that of the
GENERIC fold {unary,binary,ternary} functions.

thus providing n-ary overloads for operation or function. The additional arguments are a
gimple seq where built statements are inserted on (if NULL then simplifications requiring new
statements are not performed) and a valueization hook that can be used to tie simplifications
to a SSA lattice.

In addition to those APIs fold_stmt is overloaded with a valueization hook:

[bool]fold_stmt (gimple_stmt_iterator *, tree (*)(tree));
On top of these a fold_buildN-like API for GIMPLE is introduced:

[GIMPLE function]tree gimple_build (gimple_seq *, location_t, enum
tree_code, tree, tree, tree (*valueize) (tree) = NULL);

[GIMPLE function]tree gimple_build (gimple_seq *, location_t, enum
tree_code, tree, tree, tree, tree (*valueize) (tree) = NULL);

[GIMPLE function]tree gimple_build (gimple_seq *, location_t, enum
tree_code, tree, tree, tree, tree, tree (*valueize) (tree) =
NULL);

766 GNU Compiler Collection (GCC) Internals

[GIMPLE function]tree gimple_build (gimple_seq *, location_t, enum
built_in_function, tree, tree, tree (*valueize) (tree) =
NULL);

[GIMPLE function]tree gimple_build (gimple_seq *, location_t, enum
built_in_function, tree, tree, tree, tree (*valueize) (tree) =
NULL);

[GIMPLE function]tree gimple_build (gimple_seq *, location_t, enum
built_in_function, tree, tree, tree, tree, tree (*valueize)
(tree) = NULL);

[GIMPLE function]tree gimple_convert (gimple_seq *, location_t,
tree, tree);

which is supposed to replace force_gimple_operand (fold_buildN (...), ...) and
calls to fold_convert. Overloads without the location_t argument exist. Built state-
ments are inserted on the provided sequence and simplification is performed using the
optional valueization hook.

25.2 The Language

The language in which to write expression simplifications resembles other domain-specific
languages GCC uses. Thus it is lispy. Let’s start with an example from the match.pd file:

(simplify

(bit_and @0 integer_all_onesp)

@0)

This example contains all required parts of an expression simplification. A simplification
is wrapped inside a (simplify ...) expression. That contains at least two operands - an
expression that is matched with the GIMPLE or GENERIC IL and a replacement expression
that is returned if the match was successful.

Expressions have an operator ID, bit_and in this case. Expressions can be lower-case
tree codes with _expr stripped off or builtin function code names in all-caps, like BUILT_

IN_SQRT.

@n denotes a so-called capture. It captures the operand and lets you refer to it in other
places of the match-and-simplify. In the above example it is referred to in the replacement
expression. Captures are @ followed by a number or an identifier.

(simplify

(bit_xor @0 @0)

{ build_zero_cst (type); })

In this example @0 is mentioned twice which constrains the matched expression to have
two equal operands. Usually matches are constrained to equal types. If operands may be
constants and conversions are involved, matching by value might be preferred in which case
use @@0 to denote a by-value match and the specific operand you want to refer to in the
result part. This example also introduces operands written in C code. These can be used
in the expression replacements and are supposed to evaluate to a tree node which has to be
a valid GIMPLE operand (so you cannot generate expressions in C code).

(simplify

(trunc_mod integer_zerop@0 @1)

(if (!integer_zerop (@1))

@0))

Chapter 25: Match and Simplify 767

Here @0 captures the first operand of the trunc mod expression which is also predicated
with integer_zerop. Expression operands may be either expressions, predicates or cap-
tures. Captures can be unconstrained or capture expressions or predicates.

This example introduces an optional operand of simplify, the if-expression. This condition
is evaluated after the expression matched in the IL and is required to evaluate to true to
enable the replacement expression in the second operand position. The expression operand
of the if is a standard C expression which may contain references to captures. The if has
an optional third operand which may contain the replacement expression that is enabled
when the condition evaluates to false.

A if expression can be used to specify a common condition for multiple simplify patterns,
avoiding the need to repeat that multiple times:

(if (!TYPE_SATURATING (type)

&& !FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))

(simplify

(minus (plus @0 @1) @0)

@1)

(simplify

(minus (minus @0 @1) @0)

(negate @1)))

Note that ifs in outer position do not have the optional else clause but instead have
multiple then clauses.

Ifs can be nested.

There exists a switch expression which can be used to chain conditions avoiding nesting
ifs too much:

(simplify

(simple_comparison @0 REAL_CST@1)

(switch

/* a CMP (-0) -> a CMP 0 */

(if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))

(cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))

/* x != NaN is always true, other ops are always false. */

(if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))

&& ! HONOR_SNANS (@1))

{ constant_boolean_node (cmp == NE_EXPR, type); })))

Is equal to
(simplify

(simple_comparison @0 REAL_CST@1)

(switch

/* a CMP (-0) -> a CMP 0 */

(if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))

(cmp @0 { build_real (TREE_TYPE (@1), dconst0); })

/* x != NaN is always true, other ops are always false. */

(if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))

&& ! HONOR_SNANS (@1))

{ constant_boolean_node (cmp == NE_EXPR, type); }))))

which has the second if in the else operand of the first. The switch expression takes
if expressions as operands (which may not have else clauses) and as a last operand a
replacement expression which should be enabled by default if no other condition evaluated
to true.

Captures can also be used for capturing results of sub-expressions.
#if GIMPLE

768 GNU Compiler Collection (GCC) Internals

(simplify

(pointer_plus (addr@2 @0) INTEGER_CST_P@1)

(if (is_gimple_min_invariant (@2)))

{

poly_int64 off;

tree base = get_addr_base_and_unit_offset (@0, &off);

off += tree_to_uhwi (@1);

/* Now with that we should be able to simply write

(addr (mem_ref (addr @base) (plus @off @1))) */

build1 (ADDR_EXPR, type,

build2 (MEM_REF, TREE_TYPE (TREE_TYPE (@2)),

build_fold_addr_expr (base),

build_int_cst (ptr_type_node, off)));

})

#endif

In the above example, @2 captures the result of the expression (addr @0). For the out-
ermost expression only its type can be captured, and the keyword type is reserved for this
purpose. The above example also gives a way to conditionalize patterns to only apply to
GIMPLE or GENERIC by means of using the pre-defined preprocessor macros GIMPLE and
GENERIC and using preprocessor directives.

(simplify

(bit_and:c integral_op_p@0 (bit_ior:c (bit_not @0) @1))

(bit_and @1 @0))

Here we introduce flags on match expressions. The flag used above, c, denotes that the
expression should be also matched commutated. Thus the above match expression is really
the following four match expressions:

(bit_and integral_op_p@0 (bit_ior (bit_not @0) @1))

(bit_and (bit_ior (bit_not @0) @1) integral_op_p@0)

(bit_and integral_op_p@0 (bit_ior @1 (bit_not @0)))

(bit_and (bit_ior @1 (bit_not @0)) integral_op_p@0)

Usual canonicalizations you know from GENERIC expressions are applied before match-
ing, so for example constant operands always come second in commutative expressions.

The second supported flag is s which tells the code generator to fail the pattern if the
expression marked with s does have more than one use and the simplification results in an
expression with more than one operator. For example in

(simplify

(pointer_plus (pointer_plus:s @0 @1) @3)

(pointer_plus @0 (plus @1 @3)))

this avoids the association if (pointer_plus @0 @1) is used outside of the matched ex-
pression and thus it would stay live and not trivially removed by dead code elimination.
Now consider ((x + 3) + -3) with the temporary holding (x + 3) used elsewhere. This
simplifies down to x which is desirable and thus flagging with s does not prevent the trans-
form. Now consider ((x + 3) + 1) which simplifies to (x + 4). Despite being flagged with
s the simplification will be performed. The simplification of ((x + a) + 1) to (x + (a + 1))

will not performed in this case though.

More features exist to avoid too much repetition.

(for op (plus pointer_plus minus bit_ior bit_xor)

(simplify

(op @0 integer_zerop)

@0))

Chapter 25: Match and Simplify 769

A for expression can be used to repeat a pattern for each operator specified, substituting
op. for can be nested and a for can have multiple operators to iterate.

(for opa (plus minus)

opb (minus plus)

(for opc (plus minus)

(simplify...

In this example the pattern will be repeated four times with opa, opb, opc being plus,

minus, plus; plus, minus, minus; minus, plus, plus; minus, plus, minus.

To avoid repeating operator lists in for you can name them via
(define_operator_list pmm plus minus mult)

and use them in for operator lists where they get expanded.
(for opa (pmm trunc_div)

(simplify...

So this example iterates over plus, minus, mult and trunc_div.

Using operator lists can also remove the need to explicitly write a for. All operator list
uses that appear in a simplify or match pattern in operator positions will implicitly be
added to a new for. For example

(define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)

(define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)

(simplify

(SQRT (POW @0 @1))

(POW (abs @0) (mult @1 { built_real (TREE_TYPE (@1), dconsthalf); })))

is the same as
(for SQRT (BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)

POW (BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)

(simplify

(SQRT (POW @0 @1))

(POW (abs @0) (mult @1 { built_real (TREE_TYPE (@1), dconsthalf); }))))

fors and operator lists can include the special identifier null that matches nothing and
can never be generated. This can be used to pad an operator list so that it has a standard
form, even if there isn’t a suitable operator for every form.

Another building block are with expressions in the result expression which nest the
generated code in a new C block followed by its argument:

(simplify

(convert (mult @0 @1))

(with { tree utype = unsigned_type_for (type); }

(convert (mult (convert:utype @0) (convert:utype @1)))))

This allows code nested in the with to refer to the declared variables. In the above case
we use the feature to specify the type of a generated expression with the :type syntax
where type needs to be an identifier that refers to the desired type. Usually the types of
the generated result expressions are determined from the context, but sometimes like in the
above case it is required that you specify them explicitly.

Another modifier for generated expressions is ^ which tells the machinery to try more
matches for some special cases. For example, normally the cond only allows the gimple
assign when matching. It will also try to match the gimple PHI besides gimple assign if
appending the ^ to the cond. Aka cond^. Consider below example

(match (unsigned_sat_add @0 @1)

(cond^ (ge (plus:c@2 @0 @1) @0) @2 integer_minus_onep))

770 GNU Compiler Collection (GCC) Internals

The above matching will generate the predicate function named gimple_unsigned_sat_

add that accepts both the gimple assign and gimple PHI.

Another modifier for generated expressions is ! which tells the machinery to only consider
the simplification in case the marked expression simplified to a simple operand. Consider
for example

(simplify

(plus (vec_cond:s @0 @1 @2) @3)

(vec_cond @0 (plus! @1 @3) (plus! @2 @3)))

which moves the outer plus operation to the inner arms of the vec_cond expression but
only if the actual plus operations both simplify. Note that on GENERIC a simple operand
means that the result satisfies !EXPR_P which can be limiting if the operation itself simplifies
but the remaining operand is an (unrelated) expression.

As intermediate conversions are often optional there is a way to avoid the need to repeat
patterns both with and without such conversions. Namely you can mark a conversion as
being optional with a ?:

(simplify

(eq (convert@0 @1) (convert? @2))

(eq @1 (convert @2)))

which will match both (eq (convert @1) (convert @2)) and (eq (convert @1) @2).
The optional converts are supposed to be all either present or not, thus (eq (convert?

@1) (convert? @2)) will result in two patterns only. If you want to match all four combi-
nations you have access to two additional conditional converts as in (eq (convert1? @1)

(convert2? @2)).

The support for ? marking extends to all unary operations including predicates you
declare yourself with match.

Predicates available from the GCC middle-end need to be made available explicitly via
define_predicates:

(define_predicates

integer_onep integer_zerop integer_all_onesp)

You can also define predicates using the pattern matching language and the match form:
(match negate_expr_p

INTEGER_CST

(if (TYPE_OVERFLOW_WRAPS (type)

|| may_negate_without_overflow_p (t))))

(match negate_expr_p

(negate @0))

This shows that for match expressions there is t available which captures the outermost
expression (something not possible in the simplify context). As you can see match has
an identifier as first operand which is how you refer to the predicate in patterns. Multiple
match for the same identifier add additional cases where the predicate matches.

Predicates can also match an expression in which case you need to provide a template
specifying the identifier and where to get its operands from:

(match (logical_inverted_value @0)

(eq @0 integer_zerop))

(match (logical_inverted_value @0)

(bit_not truth_valued_p@0))

You can use the above predicate like
(simplify

Chapter 25: Match and Simplify 771

(bit_and @0 (logical_inverted_value @0))

{ build_zero_cst (type); })

Which will match a bitwise and of an operand with its logical inverted value.

773

26 Static Analyzer

26.1 Analyzer Internals

26.1.1 Overview

At a high-level, we’re doing coverage-guided symbolic execution of the user’s code.

The analyzer implementation works on the gimple-SSA representation. (I chose this in
the hopes of making it easy to work with LTO to do whole-program analysis).

The implementation is read-only: it doesn’t attempt to change anything, just emit warn-
ings.

The gimple representation can be seen using -fdump-ipa-analyzer.

Tip: If the analyzer ICEs before this is written out, one workaround is to use
--param=analyzer-bb-explosion-factor=0 to force the analyzer to bail out
after analyzing the first basic block.

First, we build a directed graph to represent the user’s code. For historical reasons we
call this the supergraph, although this is now a misnomer as we no longer add callgraph
edges to this graph. The nodes and edges in the supergraph are called “supernodes” and
“superedges”, and often referred to in code as snodes and sedges.

We make a node in the supergraph before every gimple statement, with edges representing
the transitions between statements within a basic block, along with additional nodes and
edges at CFG edges.

The nodes in the supergraph represent locations in the user’s code, and discrete points
between operations. The edges represent transitions between these locations. Each edge
in the supergraph can have an optional operation associated with it, representing a single
state transition that occurs along the edge, such as

• individual non-control-flow gimple statements (such as an assignment)

• control flow statements on a CFG edge that impose a condition for the transition to
be possible (e.g. a branch of a conditional or a switch case)

• the collection of phi nodes at the entry to a basic block, with an associated CFG edge
(so that these all take effect simultaneously)

• etc

There can be multiple nodes and edges in the supergraph corresponding to a single CFG
edge so that e.g. we can handle filtering states on a condition separately from handling the
effect of the phi nodes if the condition was satisfied.

The analyzer in GCC 10 - GCC 15 attempted to have a single supernode per basic
block for the sake of efficiency, but given that state transitions can happen mid-block, this
became unmaintainable, hence we now have fine-grained nodes with one node/edge per
gimple statement.

Having built the supergraph from the CFGs of all of the functions in the user’s code, we
manipulate it:

• We fixup locations to try to ensure that every supernode has a reasonable location_

t value referring to the location in the user’s source. This is necessary, since in the

774 GNU Compiler Collection (GCC) Internals

gimple IR seen by the analyzer, many gimple statements have no location associated
with them.

• We simplify the supergraph to remove redundant nodes and edges, such as those that
are simply no-ops that add no useful location information. This can eliminate about
5-10% of the nodes.

• We sort and renumber the nodes into an order that we hope will lead to efficient state
merging when exploring the graph (see below).

The supergraph can be seen at each stage using -fdump-analyzer-supergraph, which
creates a series of SRC.supergraph.N.KIND.dot GraphViz files files showing the state of
the supergraph after each of the above.

We then build an analysis_plan which walks the callgraph to determine which calls
might be suitable for being summarized (rather than fully explored) and thus in what order
to explore the functions.

Next is the heart of the analyzer: we use a worklist to explore state within the supergraph,
building an "exploded graph". Nodes in the exploded graph correspond to <point, state>
pairs, as in "Precise Interprocedural Dataflow Analysis via Graph Reachability" (Thomas
Reps, Susan Horwitz and Mooly Sagiv) - but note that we’re not using the algorithm
described in that paper, just the “exploded graph” terminology.

We reuse nodes for <point, state> pairs we’ve already seen, and avoid tracking state too
closely, so that (hopefully) we rapidly converge on a final exploded graph, and terminate
the analysis. We also bail out if the number of exploded <point, state> nodes gets larger
than a particular multiple of the total number of supernodes, (to ensure termination in the
face of pathological state-explosion cases, or bugs). We also stop exploring a point once we
hit a limit of states for that point.

We can identify problems directly when processing a <point, state> instance. For example,
if we’re finding the successors of

<point: before-stmt: "free (ptr);",

state: {"ptr": freed}>

then we can detect a double-free of "ptr". We can then emit a path to reach the problem
by finding the simplest route through the graph.

Program points in the analysis are a combination of a supernode together with a "call
string" identifying the stack of callsites below them, so that paths in the exploded graph
correspond to interprocedurally valid paths: we always return to the correct call site, prop-
agating state information accordingly. We avoid infinite recursion by stopping the analysis
if a callsite appears more than analyzer-max-recursion-depth in a callstring (defaulting
to 2).

26.1.2 Graphs

Nodes and edges in the exploded graph are called “exploded nodes” and “exploded edges”
and often referred to in the code as enodes and eedges (especially when distinguishing
them from the snodes and sedges in the supergraph).

Each graph numbers its nodes, giving unique identifiers - supernodes are referred to
throughout dumps in the form ‘SN': index’ and exploded nodes in the form ‘EN: index’
(e.g. ‘SN: 2’ and ‘EN:29’).

Chapter 26: Static Analyzer 775

The supergraph can be seen using -fdump-analyzer-supergraph.

The exploded graph can be seen using -fdump-analyzer-exploded-graph and other
dump options. Exploded nodes are color-coded in the .dot output based on state-machine
states to make it easier to see state changes at a glance.

26.1.3 State Tracking

There’s a tension between:

• precision of analysis in the straight-line case, vs

• exponential blow-up in the face of control flow.

For example, in general, given this CFG:
A

/ \

B C

\ /

D

/ \

E F

\ /

G

we want to avoid differences in state-tracking in B and C from leading to blow-up. If we
don’t prevent state blowup, we end up with exponential growth of the exploded graph like
this:

1:A

/ \

/ \

/ \

2:B 3:C

| |

4:D 5:D (2 exploded nodes for D)

/ \ / \

6:E 7:F 8:E 9:F

| | | |

10:G 11:G 12:G 13:G (4 exploded nodes for G)

Similar issues arise with loops.

To prevent this, we follow various approaches:

a. state pruning: which tries to discard state that won’t be relevant later on withing the
function. This can be disabled via -fno-analyzer-state-purge.

b. state merging. We can try to find the commonality between two program state in-
stances to make a third, simpler program state. We have two strategies here:

1. the worklist keeps new nodes for the same program point together, and tries to
merge them before processing, and thus before they have successors. Hence, in the
above, the two nodes for D (4 and 5) reach the front of the worklist together, and
we create a node for D with the merger of the incoming states.

2. try merging with the state of existing enodes for the program point (which may
have already been explored). There will be duplication, but only one set of du-
plication; subsequent duplicates are more likely to hit the cache. In particular,

776 GNU Compiler Collection (GCC) Internals

(hopefully) all merger chains are finite, and so we guarantee termination. This is
intended to help with loops: we ought to explore the first iteration, and then have
a "subsequent iterations" exploration, which uses a state merged from that of the
first, to be more abstract.

We avoid merging pairs of states that have state-machine differences, as these are the
kinds of differences that are likely to be most interesting. So, for example, given:

if (condition)

ptr = malloc (size);

else

ptr = local_buf;

.... do things with 'ptr'

if (condition)

free (ptr);

...etc

then we end up with an exploded graph that looks like this:

if (condition)

/ T \ F

--------- ----------

/ \

ptr = malloc (size) ptr = local_buf

| |

copy of copy of

"do things with 'ptr'" "do things with 'ptr'"

with ptr: heap-allocated with ptr: stack-allocated

| |

if (condition) if (condition)

| known to be T | known to be F

free (ptr); |

\ /

| ('ptr' is pruned, so states can be merged)

etc

where some duplication has occurred, but only for the places where the the different
paths are worth exploringly separately.

Merging can be disabled via -fno-analyzer-state-merge.

26.1.4 Region Model

Part of the state stored at a exploded_node is a region_model. This is an
implementation of the region-based ternary model described in "A Memory Model
for Static Analysis of C Programs" (https://www.researchgate.net/publication/
221430855_A_Memory_Model_for_Static_Analysis_of_C_Programs) (Zhongxing Xu,
Ted Kremenek, and Jian Zhang).

A region_model encapsulates a representation of the state of memory, with a store

recording a binding between region instances, to svalue instances. The bindings are
organized into clusters, where regions accessible via well-defined pointer arithmetic are in

https://www.researchgate.net/publication/221430855_A_Memory_Model_for_Static_Analysis_of_C_Programs
https://www.researchgate.net/publication/221430855_A_Memory_Model_for_Static_Analysis_of_C_Programs
https://www.researchgate.net/publication/221430855_A_Memory_Model_for_Static_Analysis_of_C_Programs

Chapter 26: Static Analyzer 777

the same cluster. The representation is graph-like because values can be pointers to regions.
It also stores a constraint_manager, capturing relationships between the values.

Because each node in the exploded_graph has a region_model, and each of the latter is
graph-like, the exploded_graph is in some ways a graph of graphs.

There are several “dump” functions for use when debugging the analyzer.

Consider this example C code:
void *

calls_malloc (size_t n)

{

void *result = malloc (1024);

return result; /* HERE */

}

void test (size_t n)

{

void *ptr = calls_malloc (n * 4);

/* etc. */

}

and the state at the point /* HERE */ for the interprocedural analysis case where calls_
malloc returns back to test.

Here’s an example of printing a program_state at /* HERE */, showing the region_

model within it, along with state for the malloc state machine.
(gdb) break region_model::on_return

[..snip...]

(gdb) run

[..snip...]

(gdb) up

[..snip...]

(gdb) call state->dump()

State

Region Model

Current Frame: frame: ‘calls_malloc’@2

Store

m_called_unknown_fn: false

frame: ‘test’@1

_1: (INIT_VAL(n_2(D))*(size_t)4)

frame: ‘calls_malloc’@2

result_4: &HEAP_ALLOCATED_REGION(27)

_5: &HEAP_ALLOCATED_REGION(27)

Dynamic Extents

HEAP_ALLOCATED_REGION(27): (INIT_VAL(n_2(D))*(size_t)4)

‘malloc’ state machine

0x468cb40: &HEAP_ALLOCATED_REGION(27): unchecked ({free}) (‘result_4’)

Within the store, there are bindings clusters for the SSA names for the various local
variables within frames for test and calls_malloc. For example,

• within test the whole cluster for _1 is bound to a binop_svalue representing n * 4,
and

• within test the whole cluster for result_4 is bound to a region_svalue pointing at
HEAP_ALLOCATED_REGION(12).

Additionally, this latter pointer has the unchecked state for the malloc state machine
indicating it hasn’t yet been checked against NULL since the allocation call.

778 GNU Compiler Collection (GCC) Internals

We also see that the state has captured the size of the heap-allocated region (“Dynamic
Extents”).

This visualization can also be seen within the output of -fdump-analyzer-exploded-
nodes-2 and -fdump-analyzer-exploded-nodes-3.

As well as the above visualizations of states, there are tree-like visualizations for instances
of svalue and region, showing their IDs and how they are constructed from simpler sym-
bols:

(gdb) break region_model::set_dynamic_extents

[..snip...]

(gdb) run

[..snip...]

(gdb) up

[..snip...]

(gdb) call size_in_bytes->dump()

(17): ‘long unsigned int’: binop_svalue(mult_expr: ‘*’)

(15): ‘size_t’: initial_svalue

m_reg: (12): ‘size_t’: decl_region(‘n_2(D)’)

parent: (9): frame_region(‘test’, index: 0, depth: 1)

parent: (1): stack region

parent: (0): root region

(16): ‘size_t’: constant_svalue (‘4’)

i.e. that size_in_bytes is a binop_svalue expressing the result of multiplying

• the initial value of the PARM_DECL n_2(D) for the parameter n within the frame for
test by

• the constant value 4.

The above visualizations rely on the text_art::widget framework, which performs sig-
nificant work to lay out the output, so there is also an earlier, simpler, form of dumping
available. For states there is:

(gdb) call state->dump(eg.m_ext_state, true)

rmodel:

stack depth: 2

frame (index 1): frame: ‘calls_malloc’@2

frame (index 0): frame: ‘test’@1

clusters within frame: ‘test’@1

cluster for: _1: (INIT_VAL(n_2(D))*(size_t)4)

clusters within frame: ‘calls_malloc’@2

cluster for: result_4: &HEAP_ALLOCATED_REGION(27)

cluster for: _5: &HEAP_ALLOCATED_REGION(27)

m_called_unknown_fn: FALSE

constraint_manager:

equiv classes:

constraints:

dynamic_extents:

HEAP_ALLOCATED_REGION(27): (INIT_VAL(n_2(D))*(size_t)4)

malloc:

0x468cb40: &HEAP_ALLOCATED_REGION(27): unchecked ({free}) (‘result_4’)

or for region_model just:
(gdb) call state->m_region_model->debug()

stack depth: 2

frame (index 1): frame: ‘calls_malloc’@2

frame (index 0): frame: ‘test’@1

clusters within frame: ‘test’@1

Chapter 26: Static Analyzer 779

cluster for: _1: (INIT_VAL(n_2(D))*(size_t)4)

clusters within frame: ‘calls_malloc’@2

cluster for: result_4: &HEAP_ALLOCATED_REGION(27)

cluster for: _5: &HEAP_ALLOCATED_REGION(27)

m_called_unknown_fn: FALSE

constraint_manager:

equiv classes:

constraints:

dynamic_extents:

HEAP_ALLOCATED_REGION(27): (INIT_VAL(n_2(D))*(size_t)4)

and for instances of svalue and region there is this older dump implementation, which
takes a bool simple flag controlling the verbosity of the dump:

(gdb) call size_in_bytes->dump(true)

(INIT_VAL(n_2(D))*(size_t)4)

(gdb) call size_in_bytes->dump(false)

binop_svalue (mult_expr, initial_svalue(‘size_t’, decl_region(frame_region(‘test’, index: 0, depth: 1), ‘size_t’, ‘n_2(D)’)), constant_svalue(‘size_t’, 4))

26.1.5 Analyzer Paths

We need to explain to the user what the problem is, and to persuade them that there really
is a problem. Hence having a diagnostics::paths::path isn’t just an incidental detail of
the analyzer; it’s required.

Paths ought to be:

• interprocedurally-valid

• feasible

Without state-merging, all paths in the exploded graph are feasible (in terms of con-
straints being satisfied). With state-merging, paths in the exploded graph can be infeasible.

We collate warnings and only emit them for the simplest path e.g. for a bug in a utility
function, with lots of routes to calling it, we only emit the simplest path (which could be
intraprocedural, if it can be reproduced without a caller).

We thus want to find the shortest feasible path through the exploded graph from the
origin to the exploded node at which the diagnostic was saved. Unfortunately, if we simply
find the shortest such path and check if it’s feasible we might falsely reject the diagnostic,
as there might be a longer path that is feasible. Examples include the cases where the
diagnostic requires us to go at least once around a loop for a later condition to be satisfied,
or where for a later condition to be satisfied we need to enter a suite of code that the simpler
path skips.

We attempt to find the shortest feasible path to each diagnostic by first constructing a
“trimmed graph” from the exploded graph, containing only those nodes and edges from
which there are paths to the target node, and using Dijkstra’s algorithm to order the
trimmed nodes by minimal distance to the target.

We then use a worklist to iteratively build a “feasible graph” (actually a tree), capturing
the pertinent state along each path, in which every path to a “feasible node” is feasible
by construction, restricting ourselves to the trimmed graph to ensure we stay on target,
and ordering the worklist so that the first feasible path we find to the target node is the
shortest possible path. Hence we start by trying the shortest possible path, but if that
fails, we explore progressively longer paths, eventually trying iterations through loops. The

780 GNU Compiler Collection (GCC) Internals

exploration is captured in the feasible graph, which can be dumped as a .dot file via -fdump-
analyzer-feasibility to visualize the exploration. The indices of the feasible nodes show
the order in which they were created. We effectively explore the tree of feasible paths in
order of shortest path until we either find a feasible path to the target node, or hit a limit
and give up.

This is something of a brute-force approach, but the trimmed graph hopefully keeps the
complexity manageable.

This algorithm can be disabled (for debugging purposes) via -fno-analyzer-

feasibility, which simply uses the shortest path, and notes if it is infeasible.

The above gives us a shortest feasible exploded_path through the exploded_graph (a list
of exploded_edge *). We use this exploded_path to build a diagnostics::paths::path

(a list of events for the diagnostic subsystem) - specifically a checker_path.

Having built the checker_path, we prune it to try to eliminate events that aren’t relevant,
to minimize how much the user has to read.

After pruning, we notify each event in the path of its ID and record the IDs of interesting
events, allowing for events to refer to other events in their descriptions. The pending_

diagnostic class has various vfuncs to support emitting more precise descriptions, so that
e.g.

• a deref-of-unchecked-malloc diagnostic might use:
returning possibly-NULL pointer to 'make_obj' from 'allocator'

for a return_event to make it clearer how the unchecked value moves from callee back
to caller

• a double-free diagnostic might use:
second 'free' here; first 'free' was at (3)

and a use-after-free might use
use after 'free' here; memory was freed at (2)

At this point we can emit the diagnostic.

26.1.6 Limitations

• Only for C so far

• The implementation of call summaries is currently very simplistic.

• Lack of function pointer analysis

• The constraint-handling code assumes reflexivity in some places (that values are equal
to themselves), which is not the case for NaN. As a simple workaround, constraints on
floating-point values are currently ignored.

• There are various other limitations in the region model (grep for TODO/xfail in the
testsuite).

• The constraint manager’s implementation of transitivity is currently too expensive to
enable by default and so must be manually enabled via -fanalyzer-transitivity).

• The checkers are currently hardcoded and don’t allow for user extensibility (e.g. adding
allocate/release pairs).

• Although the analyzer’s test suite has a proof-of-concept test case for LTO, LTO sup-
port hasn’t had extensive testing. There are various lang-specific things in the analyzer

Chapter 26: Static Analyzer 781

that assume C rather than LTO. For example, SSA names are printed to the user in
“raw” form, rather than printing the underlying variable name.

26.2 Debugging the Analyzer

When debugging the analyzer I normally use all of these options together:

./xgcc -B. \

-S \

-fanalyzer \

OTHER_GCC_ARGS \

-wrapper gdb,--args \

-fdump-analyzer-stderr \

-fdump-ipa-analyzer=stderr

where:

• ./xgcc -B. is the usual way to invoke a self-built GCC from within the BUILDDIR/gcc
subdirectory.

• -S so that the driver (./xgcc) invokes cc1, but doesn’t bother running the assembler
or linker (since the analyzer runs inside cc1).

• -fanalyzer enables the analyzer, obviously.

• -wrapper gdb,--args invokes cc1 under the debugger so that I can debug cc1 and
set breakpoints and step through things.

• -fdump-analyzer-stderr so that the logging interface is enabled and goes to stderr,
which often gives valuable context into what’s happening when stepping through the
analyzer

• -fdump-ipa-analyzer=stderr which dumps the GIMPLE IR seen by the analyzer
pass to stderr

Other useful options:

• -fdump-analyzer-supergraph which dumps SRC.supergraph.N.KIND.dot GraphViz
files that I can look at (with python-xdot)

• -fdump-analyzer-exploded-graph which dumps a SRC.eg.dot GraphViz file

• -fdump-analyzer-exploded-nodes-2 which dumps a SRC.eg.txt file containing the
full exploded_graph.

• -fdiagnostics-add-output=experimental-html:show-state-diagrams=yes which
writes out the diagnostics in HTML form, and generates SVG state diagrams visualizing
the state of memory at each event (inspired by the "ddd" debugger). These can be
seen by pressing ’j’ and ’k’ to single-step forward and backward through events. Note
that these SVG diagrams are created from an intermediate SARIF directed graph
representation generated from program_state objects. The SARIF representation can
be easier to read - for example, rather than storing the contents of memory via byte
offsets, it uses fields for structs and element indexes for arrays, recursively. However
it is a different representation, and thus bugs could be hidden by this transformation.
Generating the SVG diagrams requires an invocation of "dot" per event, so it noticeably
slows down diagnostic emission, hence the opt-in command-line flag. The SARIF and
“dot” representations can be seen by __analyzer_dump_xml and __analyzer_dump_

dot below (writing them to stderr), or by adding show-state-diagrams-sarif=yes

782 GNU Compiler Collection (GCC) Internals

and show-state-diagrams-dot-src=yes to the html sink, which shows them within
the generated HTML next to the generated SVG.

Assuming that you have the python support scripts for gdb installed (which you should
do, it makes debugging GCC much easier), you can use:

(gdb) break-on-saved-diagnostic

to put a breakpoint at the place where a diagnostic is saved during exploded_graph

exploration, to see where a particular diagnostic is being saved, and:
(gdb) break-on-diagnostic

to put a breakpoint at the place where diagnostics are actually emitted.

26.2.1 Special Functions for Debugging the Analyzer

The analyzer recognizes various special functions by name, for use in debugging the analyzer,
and for use in DejaGnu tests.

The declarations of these functions can be seen in the testsuite in analyzer-decls.h.
None of these functions are actually implemented in terms of code, merely as known_

function subclasses (in gcc/analyzer/kf-analyzer.cc).

__analyzer_break

Add:
__analyzer_break ();

to the source being analyzed to trigger a breakpoint in the analyzer when that
source is reached. By putting a series of these in the source, it’s much easier to
effectively step through the program state as it’s analyzed.

__analyzer_describe

The analyzer handles:
__analyzer_describe (0, expr);

by emitting a warning describing the 2nd argument (which can be of any type),
at a verbosity level given by the 1st argument. This is for use when debugging,
and may be of use in DejaGnu tests.

__analyzer_dump
__analyzer_dump ();

will dump the copious information about the analyzer’s state each time it
reaches the call in its traversal of the source.

__analyzer_dump_capacity
extern void __analyzer_dump_capacity (const void *ptr);

will emit a warning describing the capacity of the base region of the region
pointed to by the 1st argument.

__analyzer_dump_dot
__analyzer_dump_dot ();

will dump GraphViz .dot source to stderr reaches the call in its traversal of the
source. This .dot source implements a diagram describing the analyzer’s state.

__analyzer_dump_escaped
extern void __analyzer_dump_escaped (void);

will emit a warning giving the number of decls that have escaped on this analysis
path, followed by a comma-separated list of their names, in alphabetical order.

https://gcc-newbies-guide.readthedocs.io/en/latest/debugging.html

Chapter 26: Static Analyzer 783

__analyzer_dump_path
__analyzer_dump_path ();

will emit a placeholder “note” diagnostic with a path to that call site, if the
analyzer finds a feasible path to it. This can be useful for writing DejaGnu
tests for constraint-tracking and feasibility checking.

__analyzer_dump_exploded_nodes

For every callsite to __analyzer_dump_exploded_nodes the analyzer will emit
a warning after it finished the analysis containing information on all of the
exploded nodes at that program point.

__analyzer_dump_exploded_nodes (0);

will output the number of “processed” nodes, and the IDs of both “processed”
and “merger” nodes, such as:

warning: 2 processed enodes: [EN: 56, EN: 58] merger(s): [EN: 54-55, EN: 57, EN: 59]

With a non-zero argument
__analyzer_dump_exploded_nodes (1);

it will also dump all of the states within the “processed” nodes.

__analyzer_dump_named_constant

When the analyzer sees a call to __analyzer_dump_named_constant it will
emit a warning describing what is known about the value of a given named
constant, for parts of the analyzer that interact with target headers.

For example:
__analyzer_dump_named_constant ("O_RDONLY");

might lead to the analyzer emitting the warning:
warning: named constant 'O_RDONLY' has value '1'

__analyzer_dump_region_model
__analyzer_dump_region_model ();

will dump the region model’s state to stderr.

__analyzer_dump_state
__analyzer_dump_state ("malloc", ptr);

will emit a warning describing the state of the 2nd argument (which can be
of any type) with respect to the state machine with a name matching the 1st
argument (which must be a string literal). This is for use when debugging, and
may be of use in DejaGnu tests.

__analyzer_dump_sarif
__analyzer_dump_sarif ();

will dump the copious information about the analyzer’s state each time it
reaches the call in its traversal of the source.

__analyzer_eval
__analyzer_eval (expr);

will emit a warning with text "TRUE", FALSE" or "UNKNOWN" based on
the truthfulness of the argument. This is useful for writing DejaGnu tests.

__analyzer_get_unknown_ptr
__analyzer_get_unknown_ptr ();

will obtain an unknown void *.

784 GNU Compiler Collection (GCC) Internals

__analyzer_get_strlen
__analyzer_get_strlen (buf);

will emit a warning if PTR doesn’t point to a null-terminated string. TODO:
eventually get the strlen of the buffer (without the optimizer touching it).

26.2.2 Other Debugging Techniques

To compare two different exploded graphs, try -fdump-analyzer-exploded-nodes-2 -

fdump-noaddr. This will dump a SRC.eg.txt file containing the full exploded_graph.
I use diff -u50 -p to compare two different such files (e.g. before and after a patch) to
find the first place where the two graphs diverge. The option -fdump-noaddr will suppress
printing pointers withihn the dumps (which would otherwise hide the real differences with
irrelevent churn).

The option -fdump-analyzer-json will dump both the supergraph and the exploded
graph in compressed JSON form.

One approach when tracking down where a particular bogus state is introduced into the
exploded_graph is to add custom code to program_state::validate.

The debug function region::is_named_decl_p can be used when debugging, such as for
assertions and conditional breakpoints. For example, when tracking down a bug in handling
a decl called yy_buffer_stack, I temporarily added a:

gcc_assert (!m_base_region->is_named_decl_p ("yy_buffer_stack"));

to binding_cluster::mark_as_escaped to trap a point where yy_buffer_stack was
mistakenly being treated as having escaped.

785

27 User Experience Guidelines

To borrow a slogan from Elm (https://elm-lang.org/news/compilers-as-assistants),

Compilers should be assistants, not adversaries. A compiler should not just
detect bugs, it should then help you understand why there is a bug. It should
not berate you in a robot voice, it should give you specific hints that help you
write better code. Ultimately, a compiler should make programming faster and
more fun!

—Evan Czaplicki

This chapter provides guidelines on how to implement diagnostics and command-line
options in ways that we hope achieve the above ideal.

27.1 Guidelines for Diagnostics

27.1.1 Talk in terms of the user’s code

Diagnostics should be worded in terms of the user’s source code, and the source language,
rather than GCC’s own implementation details.

27.1.2 Diagnostics are actionable

A good diagnostic is actionable: it should assist the user in taking action.

Consider what an end user will want to do when encountering a diagnostic.

Given an error, an end user will think: “How do I fix this?”

Given a warning, an end user will think:

• “Is this a real problem?”

• “Do I care?”

• if they decide it’s genuine: “How do I fix this?”

A good diagnostic provides pertinent information to allow the user to easily answer the
above questions.

27.1.3 The user’s attention is important

A perfect compiler would issue a warning on every aspect of the user’s source code that
ought to be fixed, and issue no other warnings. Naturally, this ideal is impossible to achieve.

Warnings should have a good signal-to-noise ratio: we should have few false positives
(falsely issuing a warning when no warning is warranted) and few false negatives (failing to
issue a warning when one is justified).

Note that a false positive can mean, in practice, a warning that the user doesn’t agree
with. Ideally a diagnostic should contain enough information to allow the user to make an
informed choice about whether they should care (and how to fix it), but a balance must be
drawn against overloading the user with irrelevant data.

https://elm-lang.org/news/compilers-as-assistants

786 GNU Compiler Collection (GCC) Internals

27.1.4 Sometimes the user didn’t write the code

GCC is typically used in two different ways:

• Semi-interactive usage: GCC is used as a development tool when the user is writing
code, as the “compile” part of the “edit-compile-debug” cycle. The user is actively
hacking on the code themself (perhaps a project they wrote, or someone else’s), where
they just made a change to the code and want to see what happens, and to be warned
about mistakes.

• Batch rebuilds: where the user is recompiling one or more existing packages, and GCC
is a detail that’s being invoked by various build scripts. Examples include a user trying
to bring up an operating system consisting of hundreds of packages on a new CPU
architecture, where the packages were written by many different people, or simply
rebuilding packages after a dependency changed, where the user is hoping “nothing
breaks”, since they are unfamiliar with the code.

Keep both of these styles of usage in mind when implementing diagnostics.

27.1.5 Precision of Wording

Provide the user with details that allow them to identify what the problem is. For example,
the vaguely-worded message:

demo.c:1:1: warning: 'noinline' attribute ignored [-Wattributes]

1 | int foo __attribute__((noinline));

| ^~~

doesn’t tell the user why the attribute was ignored, or what kind of entity the compiler
thought the attribute was being applied to (the source location for the diagnostic is also
poor; see [discussion of input_location], page 788). A better message would be:

demo.c:1:24: warning: attribute 'noinline' on variable 'foo' was

ignored [-Wattributes]

1 | int foo __attribute__((noinline));

| ~~~ ~~~~~~~~~~~~~~~^~~~~~~~~

demo.c:1:24: note: attribute 'noinline' is only applicable to functions

which spells out the missing information (and fixes the location information, as discussed
below).

The above example uses a note to avoid a combinatorial explosion of possible messages.

27.1.6 Try the diagnostic on real-world code

It’s worth testing a new warning on many instances of real-world code, written by different
people, and seeing what it complains about, and what it doesn’t complain about.

This may suggest heuristics that silence common false positives.

It may also suggest ways to improve the precision of the message.

27.1.7 Make mismatches clear

Many diagnostics relate to a mismatch between two different places in the user’s source
code. Examples include:

• a type mismatch, where the type at a usage site does not match the type at a declaration

• the argument count at a call site does not match the parameter count at the declaration

Chapter 27: User Experience Guidelines 787

• something is erroneously duplicated (e.g. an error, due to breaking a uniqueness re-
quirement, or a warning, if it’s suggestive of a bug)

• an “opened” syntactic construct (such as an open-parenthesis) is not closed

In each case, the diagnostic should indicate both pertinent locations (so that the user can
easily see the problem and how to fix it).

The standard way to do this is with a note (via inform). For example:

auto_diagnostic_group d;

if (warning_at (loc, OPT_Wduplicated_cond,

"duplicated %<if%> condition"))

inform (EXPR_LOCATION (t), "previously used here");

which leads to:

demo.c: In function 'test':

demo.c:5:17: warning: duplicated 'if' condition [-Wduplicated-cond]

5 | else if (flag > 3)

| ~~~~~^~~

demo.c:3:12: note: previously used here

3 | if (flag > 3)

| ~~~~~^~~

The inform call should be guarded by the return value from the warning_at call so that
the note isn’t emitted when the warning is suppressed.

For cases involving punctuation where the locations might be near each other, they can
be conditionally consolidated via gcc_rich_location::add_location_if_nearby:

auto_diagnostic_group d;

gcc_rich_location richloc (primary_loc);

bool added secondary = richloc.add_location_if_nearby (secondary_loc);

error_at (&richloc, "main message");

if (!added secondary)

inform (secondary_loc, "message for secondary");

This will emit either one diagnostic with two locations:

demo.c:42:10: error: main message

(foo)

~ ^

or two diagnostics:

demo.c:42:4: error: main message

foo)

^

demo.c:40:2: note: message for secondary

(

^

27.1.8 Location Information

GCC’s location_t type can support both ordinary locations, and locations relating to a
macro expansion.

As of GCC 6, ordinary locations changed from supporting just a point in the user’s source
code to supporting three points: the caret location, plus a start and a finish:

a = foo && bar;

~~~~^~~~~~

| | |

| | finish



788 GNU Compiler Collection (GCC) Internals

| caret

start

Tokens coming out of libcpp have locations of the form caret == start, such as for foo
here:

a = foo && bar;

^~~

| |

| finish

caret == start

Compound expressions should be reported using the location of the expression as a whole,
rather than just of one token within it.

For example, in -Wformat, rather than underlining just the first token of a bad argument:

printf("hello %i %s", (long)0, "world");

~^ ~

%li

the whole of the expression should be underlined, so that the user can easily identify what
is being referred to:

printf("hello %i %s", (long)0, "world");

~^ ~~~~~~~

%li

Avoid using the input_location global, and the diagnostic functions that implicitly use
it—use error_at and warning_at rather than error and warning, and provide the most
appropriate location_t value available at that phase of the compilation. It’s possible to
supply secondary location_t values via rich_location.

For example, in the example of imprecise wording above, generating the diagnostic using
warning:

// BAD: implicitly uses input_location

warning (OPT_Wattributes, "%qE attribute ignored", name);

leads to:

// BAD: uses input_location

demo.c:1:1: warning: 'noinline' attribute ignored [-Wattributes]

1 | int foo __attribute__((noinline));

| ^~~

which thus happened to use the location of the int token, rather than that of the at-
tribute. Using warning_at with the location of the attribute, providing the location of the
declaration in question as a secondary location, and adding a note:

auto_diagnostic_group d;

gcc_rich_location richloc (attrib_loc);

richloc.add_range (decl_loc);

if (warning_at (OPT_Wattributes, &richloc,

"attribute %qE on variable %qE was ignored", name))

inform (attrib_loc, "attribute %qE is only applicable to functions");

would lead to:

// OK: use location of attribute, with a secondary location

demo.c:1:24: warning: attribute 'noinline' on variable 'foo' was

ignored [-Wattributes]

1 | int foo __attribute__((noinline));

| ~~~ ~~~~~~~~~~~~~~~^~~~~~~~~

demo.c:1:24: note: attribute 'noinline' is only applicable to functions



Chapter 27: User Experience Guidelines 789

27.1.9 Coding Conventions

See the diagnostics section (https://gcc.gnu.org/codingconventions.html#
Diagnostics) of the GCC coding conventions.

In the C++ front end, when comparing two types in a message, use ‘%H’ and ‘%I’ rather
than ‘%T’, as this allows the diagnostics subsystem to highlight differences between template-
based types. For example, rather than using ‘%qT’:

// BAD: a pair of %qT used in C++ front end for type comparison

error_at (loc, "could not convert %qE from %qT to %qT", expr,

TREE_TYPE (expr), type);

which could lead to:
error: could not convert 'map<int, double>()' from 'map<int,double>'

to 'map<int,int>'

using ‘%H’ and ‘%I’ (via ‘%qH’ and ‘%qI’):
// OK: compare types in C++ front end via %qH and %qI

error_at (loc, "could not convert %qE from %qH to %qI", expr,

TREE_TYPE (expr), type);

allows the above output to be simplified to:
error: could not convert 'map<int, double>()' from 'map<[...],double>'

to 'map<[...],int>'

where the double and int are colorized to highlight them.

27.1.10 Group logically-related diagnostics

Use auto_diagnostic_group when issuing multiple related diagnostics (seen in various
examples on this page). This informs the diagnostic subsystem that all diagnostics
issued within the lifetime of the auto_diagnostic_group are related. For example,
-fdiagnostics-add-output=sarif will treat the first diagnostic emitted within the group
as a top-level diagnostic, and all subsequent diagnostics within the group as its children.
Also, if a warning in the group is inhibited at nesting depth D, all subsequent notes at
that depth or deeper will be inhibited as well, until an error or another warning is emitted,
the depth decreases below D, or the group is popped.

27.1.11 Quoting

Text should be quoted by either using the ‘q’ modifier in a directive such as ‘%qE’, or by
enclosing the quoted text in a pair of ‘%<’ and ‘%>’ directives, and never by using explicit
quote characters. The directives handle the appropriate quote characters for each language
and apply the correct color or highlighting.

The following elements should be quoted in GCC diagnostics:

• Language keywords.

• Tokens.

• Boolean, numerical, character, and string constants that appear in the source code.

• Identifiers, including function, macro, type, and variable names.

Other elements such as numbers that do not refer to numeric constants that appear in
the source code should not be quoted. For example, in the message:

argument %d of %qE must be a pointer type

since the argument number does not refer to a numerical constant in the source code it
should not be quoted.

https://gcc.gnu.org/codingconventions.html#Diagnostics
https://gcc.gnu.org/codingconventions.html#Diagnostics


790 GNU Compiler Collection (GCC) Internals

27.1.12 Use color consistently when highlighting mismatches

As of GCC 15, the diagnostics subsystem has a concept of “highlight colors”. These should
be used to consistently colorize both the text within diagnostic messages and underlined
ranges of quoted source when highlighting mismatches, for all messages with a logically-
related group of diagnostics.

See diagnostic-highlight-colors.h for symbolic names for color codes, covering e.g.

• highlight_colors::expected versus highlight_colors::actual

• highlight_colors::lhs versus highlight_colors::rhs

For example, given:

error: invalid operands to binary + (have 'S' {aka 'struct s'} and 'T' {aka 'struct t'})

return callee_4a () + callee_4b ();

~~~~~~~~~~~~ ^ ~~~~~~~~~~~~

| |

| T {aka struct t}

S {aka struct s}

• the text “S {aka struct s}” in the message and the left-hand label in the quoted
source should be colorized as highlight_colors::lhs (which equates to the color
name highlight-a)

• the text “T {aka struct t}” in the message and the right-hand label in the quoted
source should be colorized as highlight_colors::rhs (which equates to the color
name highlight-b)

Doing so ought to make it easier for the user to understand what the diagnostic is telling
them.

When issuing followup note diagnostics, all diagnostics within the group should use
a consistent scheme to highlight the mismatching elements, so that color contrasts the
differences. For example, given:

warning: format ‘%i’ expects argument of type ‘int’, but argument 2 has type ‘const char *’ [-Wformat=]

279 | printf("hello " INT_FMT " world", msg);

| ^~~~~~~~ ~~~

| |

| const char *

note: format string is defined here

278 | #define INT_FMT "%i"

| ~^

| |

| int

| %s

• the text %i and int referring to the format string and the expected type due to it
should be colorized as highlight-a both in the diagnostics message and in the range
quoted in the range.

• the text const char * in the diagnostic message and in the quoted range should be
colorized as highlight-b.

This can be implemented by using e.g. highlight_colors::actual and highlight_

colors::expected when adding ranges to rich_location instances, and e.g. by using the
%e format code for pretty_printer to use a pp_element *, and using appropriate member
functions of pp element to add colorization.

Chapter 27: User Experience Guidelines 791

27.1.13 Spelling and Terminology

See the terminology and markup (https://gcc.gnu.org/codingconventions.html#
Spelling Spelling) section of the GCC coding conventions.

27.1.14 Fix-it hints

GCC’s diagnostic subsystem can emit fix-it hints: small suggested edits to the user’s source
code.

They are printed by default underneath the code in question. They can also be viewed
via -fdiagnostics-generate-patch and -fdiagnostics-parseable-fixits. With the
latter, an IDE ought to be able to offer to automatically apply the suggested fix.

Fix-it hints contain code fragments, and thus they should not be marked for translation.

Fix-it hints can be added to a diagnostic by using a rich_location rather than a
location_t - the fix-it hints are added to the rich_location using one of the various add_
fixit member functions of rich_location. They are documented with rich_location in
libcpp/line-map.h. It’s easiest to use the gcc_rich_location subclass of rich_location
found in gcc-rich-location.h, as this implicitly supplies the line_table variable.

For example:
if (const char *suggestion = hint.suggestion ())

{

gcc_rich_location richloc (location);

richloc.add_fixit_replace (suggestion);

error_at (&richloc,

"%qE does not name a type; did you mean %qs?",

id, suggestion);

}

which can lead to:
spellcheck-typenames.C:73:1: error: 'singed' does not name a type; did

you mean 'signed'?

73 | singed char ch;

| ^~~~~~

| signed

Non-trivial edits can be built up by adding multiple fix-it hints to one rich_location. It’s
best to express the edits in terms of the locations of individual tokens. Various handy func-
tions for adding fix-it hints for idiomatic C and C++ can be seen in gcc-rich-location.h.

27.1.14.1 Fix-it hints should work

When implementing a fix-it hint, please verify that the suggested edit leads to fixed, com-
pilable code. (Unfortunately, this currently must be done by hand using -fdiagnostics-

generate-patch. It would be good to have an automated way of verifying that fix-it hints
actually fix the code).

For example, a “gotcha” here is to forget to add a space when adding a missing reserved
word. Consider a C++ fix-it hint that adds typename in front of a template declaration. A
naive way to implement this might be:

gcc_rich_location richloc (loc);

// BAD: insertion is missing a trailing space

richloc.add_fixit_insert_before ("typename");

error_at (&richloc, "need %<typename%> before %<%T::%E%> because "

"%qT is a dependent scope",

https://gcc.gnu.org/codingconventions.html#Spelling Spelling
https://gcc.gnu.org/codingconventions.html#Spelling Spelling

792 GNU Compiler Collection (GCC) Internals

parser->scope, id, parser->scope);

When applied to the code, this might lead to:
T::type x;

being “corrected” to:
typenameT::type x;

In this case, the correct thing to do is to add a trailing space after typename:
gcc_rich_location richloc (loc);

// OK: note that here we have a trailing space

richloc.add_fixit_insert_before ("typename ");

error_at (&richloc, "need %<typename%> before %<%T::%E%> because "

"%qT is a dependent scope",

parser->scope, id, parser->scope);

leading to this corrected code:
typename T::type x;

27.1.14.2 Express deletion in terms of deletion, not replacement

It’s best to express deletion suggestions in terms of deletion fix-it hints, rather than replace-
ment fix-it hints. For example, consider this:

auto_diagnostic_group d;

gcc_rich_location richloc (location_of (retval));

tree name = DECL_NAME (arg);

richloc.add_fixit_replace (IDENTIFIER_POINTER (name));

warning_at (&richloc, OPT_Wredundant_move,

"redundant move in return statement");

which is intended to e.g. replace a std::move with the underlying value:
return std::move (retval);

~~~~~~~~~~^~~~~~~~

retval

where the change has been expressed as replacement, replacing with the name of the dec-
laration. This works for simple cases, but consider this case:

#ifdef SOME_CONFIG_FLAG

# define CONFIGURY_GLOBAL global_a

#else

# define CONFIGURY_GLOBAL global_b

#endif

int fn ()

{

return std::move (CONFIGURY_GLOBAL /* some comment */);

}

The above implementation erroneously strips out the macro and the comment in the fix-it
hint:

return std::move (CONFIGURY_GLOBAL /* some comment */);

~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

global_a

and thus this resulting code:
return global_a;

It’s better to do deletions in terms of deletions; deleting the std::move (and the trailing
close-paren, leading to this:

return std::move (CONFIGURY_GLOBAL /* some comment */);

Chapter 27: User Experience Guidelines 793

~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CONFIGURY_GLOBAL /* some comment */

and thus this result:
return CONFIGURY_GLOBAL /* some comment */;

Unfortunately, the pertinent location_t values are not always available.

27.1.14.3 Multiple suggestions

In the rare cases where you need to suggest more than one mutually exclusive solution to a
problem, this can be done by emitting multiple notes and calling rich_location::fixits_
cannot_be_auto_applied on each note’s rich_location. If this is called, then the fix-it
hints in the rich_location will be printed, but will not be added to generated patches.

27.2 Guidelines for Options





795

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than
a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.





797

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. (GNU is a recursive acronym for “GNU’s Not
Unix”; it is pronounced “guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often referred to as “Linux”,
they are more accurately called GNU/Linux systems.

For more information, see:
https://www.gnu.org/

https://www.gnu.org/gnu/linux-and-gnu.html

https://www.gnu.org/
https://www.gnu.org/gnu/linux-and-gnu.html




799

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://www.fsf.org


800 GNU Compiler Collection (GCC) Internals

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.



GNU General Public License 801

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.



802 GNU Compiler Collection (GCC) Internals

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:



GNU General Public License 803

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.



804 GNU Compiler Collection (GCC) Internals

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or



GNU General Public License 805

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.



806 GNU Compiler Collection (GCC) Internals

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so



GNU General Public License 807

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.



808 GNU Compiler Collection (GCC) Internals

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.



GNU General Public License 809

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html




811

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://www.fsf.org


812 GNU Compiler Collection (GCC) Internals

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING



GNU Free Documentation License 813

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,



814 GNU Compiler Collection (GCC) Internals

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their



GNU Free Documentation License 815

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.



816 GNU Compiler Collection (GCC) Internals

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.



GNU Free Documentation License 817

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/


818 GNU Compiler Collection (GCC) Internals

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



819

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact jlaw@ventanamicro.com or gerald@pfeifer.com if you
have been left out or some of your contributions are not listed. Please keep this list in
alphabetical order.

• Analog Devices helped implement the support for complex data types and iterators.

• John David Anglin for threading-related fixes and improvements to libstdc++-v3, and
the HP-UX port.

• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register
stack.

• Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series port.

• Alasdair Baird for various bug fixes.

• Giovanni Bajo for analyzing lots of complicated C++ problem reports.

• Peter Barada for his work to improve code generation for new ColdFire cores.

• Gerald Baumgartner added the signature extension to the C++ front end.

• Godmar Back for his Java improvements and encouragement.

• Scott Bambrough for help porting the Java compiler.

• Wolfgang Bangerth for processing tons of bug reports.

• Jon Beniston for his Microsoft Windows port of Java and port to Lattice Mico32.

• Daniel Berlin for better DWARF 2 support, faster/better optimizations, improved alias
analysis, plus migrating GCC to Bugzilla.

• Geoff Berry for his Java object serialization work and various patches.

• Richard Biener for his ongoing middle-end contributions and bug fixes and for release
management.

• David Binderman for testing GCC trunk against Fedora Rawhide and csmith.

• Laurynas Biveinis for memory management work and DJGPP port fixes.

• Uros Bizjak for the implementation of x87 math built-in functions and for various
middle end and i386 back end improvements and bug fixes.

• Eric Blake for helping to make GCJ and libgcj conform to the specifications.

• Janne Blomqvist for contributions to GNU Fortran.

• Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other Java work.

• Segher Boessenkool for helping maintain the PowerPC port and the instruction com-
biner plus various contributions to the middle end.

• Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-
ups.

• Steven Bosscher for integrating the GNU Fortran front end into GCC and for con-
tributing to the tree-ssa branch.

• Eric Botcazou for fixing middle- and backend bugs left and right.

mailto:jlaw@ventanamicro.com
mailto:gerald@pfeifer.com


820 GNU Compiler Collection (GCC) Internals

• Per Bothner for his direction via the steering committee and various improvements
to the infrastructure for supporting new languages. Chill front end implementation.
Initial implementations of cpplib, fix-header, config.guess, libio, and past C++ library
(libg++) maintainer. Dreaming up, designing and implementing much of GCJ.

• Devon Bowen helped port GCC to the Tahoe.

• Don Bowman for mips-vxworks contributions.

• James Bowman for the FT32 port.

• Dave Brolley for work on cpplib and Chill.

• Paul Brook for work on the ARM architecture and maintaining GNU Fortran.

• Robert Brown implemented the support for Encore 32000 systems.

• Christian Bruel for improvements to local store elimination.

• Herman A.J. ten Brugge for various fixes.

• Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.

• Joe Buck for his direction via the steering committee from its creation to 2013.

• Iain Buclaw for the D frontend.

• Craig Burley for leadership of the G77 Fortran effort.

• Tobias Burnus for contributions to GNU Fortran.

• Stephan Buys for contributing Doxygen notes for libstdc++.

• Paolo Carlini for libstdc++ work: lots of efficiency improvements to the C++ strings,
streambufs and formatted I/O, hard detective work on the frustrating localization
issues, and keeping up with the problem reports.

• John Carr for his alias work, SPARC hacking, infrastructure improvements, previous
contributions to the steering committee, loop optimizations, etc.

• Stephane Carrez for 68HC11 and 68HC12 ports.

• Steve Chamberlain for support for the Renesas SH and H8 processors and the PicoJava
processor, and for GCJ config fixes.

• Glenn Chambers for help with the GCJ FAQ.

• John-Marc Chandonia for various libgcj patches.

• Denis Chertykov for contributing and maintaining the AVR port, the first GCC port
for an 8-bit architecture.

• Kito Cheng for his work on the RISC-V port, including bringing up the test suite and
maintenance.

• Scott Christley for his Objective-C contributions.

• Eric Christopher for his Java porting help and clean-ups.

• Branko Cibej for more warning contributions.

• The GNU Classpath project for all of their merged runtime code.

• Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work, --help, and other
random hacking.

• Michael Cook for libstdc++ cleanup patches to reduce warnings.

• R. Kelley Cook for making GCC buildable from a read-only directory as well as other
miscellaneous build process and documentation clean-ups.

https://www.gnu.org/software/classpath/


Contributors to GCC 821

• Ralf Corsepius for SH testing and minor bug fixing.

• François-Xavier Coudert for contributions to GNU Fortran.

• Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.

• Alex Crain provided changes for the 3b1.

• Ian Dall for major improvements to the NS32k port.

• Paul Dale for his work to add uClinux platform support to the m68k backend.

• Palmer Dabbelt for his work maintaining the RISC-V port.

• Dario Dariol contributed the four varieties of sample programs that print a copy of
their source.

• Russell Davidson for fstream and stringstream fixes in libstdc++.

• Bud Davis for work on the G77 and GNU Fortran compilers.

• Mo DeJong for GCJ and libgcj bug fixes.

• Jerry DeLisle for contributions to GNU Fortran.

• DJ Delorie for the DJGPP port, build and libiberty maintenance, various bug fixes,
and the M32C, MeP, MSP430, and RL78 ports.

• Arnaud Desitter for helping to debug GNU Fortran.

• Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC
diagnostics infrastructure, libstdc++-v3, including valarray<>, complex<>, maintain-
ing the numerics library (including that pesky <limits> :-) and keeping up-to-date
anything to do with numbers.

• Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support,
CFG dumping support, etc., plus support of the C++ runtime libraries including for all
kinds of C interface issues, contributing and maintaining complex<>, sanity checking
and disbursement, configuration architecture, libio maintenance, and early math work.

• Robert J. Dubner for his work on the COBOL front end, mating the parser output to
the GENERIC tree.

• François Dumont for his work on libstdc++-v3, especially maintaining and improving
debug-mode and associative and unordered containers.

• Zdenek Dvorak for a new loop unroller and various fixes.

• Michael Eager for his work on the Xilinx MicroBlaze port.

• Richard Earnshaw for his ongoing work with the ARM.

• David Edelsohn for his direction via the steering committee, ongoing work with the
RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX
port of libstdc++ with his bare hands, and for ensuring GCC properly keeps working
on AIX.

• Kevin Ediger for the floating point formatting of num put::do put in libstdc++.

• Phil Edwards for libstdc++ work including configuration hackery, documentation main-
tainer, chief breaker of the web pages, the occasional iostream bug fix, and work on
shared library symbol versioning.

• Paul Eggert for random hacking all over GCC.

• Mark Elbrecht for various DJGPP improvements, and for libstdc++ configuration sup-
port for locales and fstream-related fixes.



822 GNU Compiler Collection (GCC) Internals

• Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.

• Christian Ehrhardt for dealing with bug reports.

• Ben Elliston for his work to move the Objective-C runtime into its own subdirectory
and for his work on autoconf.

• Oleg Endo for continued development and maintenance of the SuperH back-end.

• Revital Eres for work on the PowerPC 750CL port.

• Marc Espie for OpenBSD support.

• Doug Evans for much of the global optimization framework, arc, m32r, and SPARC
work.

• Christopher Faylor for his work on the Cygwin port and for caring and feeding the
gcc.gnu.org box and saving its users tons of spam.

• Fred Fish for BeOS support and Ada fixes.

• Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.

• Peter Gerwinski for various bug fixes and the Pascal front end.

• Kaveh R. Ghazi for his direction via the steering committee, amazing work to make
‘-W -Wall -W* -Werror’ useful, and testing GCC on a plethora of platforms. Kaveh
extends his gratitude to the CAIP Center at Rutgers University for providing him with
computing resources to work on Free Software from the late 1980s to 2010.

• John Gilmore for a donation to the FSF earmarked improving GNU Java.

• Judy Goldberg for c++ contributions.

• Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-
by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.

• Jonny Grant for improvements to collect2's --help documentation.

• Anthony Green for his -Os contributions, the moxie port, and Java front end work.

• Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.

• Michael K. Gschwind contributed the port to the PDP-11.

• Ron Guilmette implemented the protoize and unprotoize tools, the support for
DWARF 1 symbolic debugging information, and much of the support for System V
Release 4. He has also worked heavily on the Intel 386 and 860 support.

• Sumanth Gundapaneni for contributing the CR16 port.

• Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.

• Bruno Haible for improvements in the runtime overhead for EH, new warnings and
assorted bug fixes.

• Andrew Haley for his amazing Java compiler and library efforts.

• Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.

• Michael Hayes for various thankless work he’s done trying to get the c30/c40 ports
functional. Lots of loop and unroll improvements and fixes.

• Dara Hazeghi for wading through myriads of target-specific bug reports.

• Kate Hedstrom for staking the G77 folks with an initial testsuite.



Contributors to GCC 823

• Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and
generally fixing lots of old problems we’ve ignored for years, flow rewrite and lots of
further stuff, including reviewing tons of patches.

• Aldy Hernandez for working on the PowerPC port, SIMD support, and various fixes.

• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for
the Sony NEWS machine.

• Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.

• Katherine Holcomb for work on GNU Fortran.

• Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug
fixing, particularly of GCC configury code.

• Steve Holmgren for MachTen patches.

• Mat Hostetter for work on the TILE-Gx and TILEPro ports.

• Jan Hubicka for his x86 port improvements.

• Falk Hueffner for working on C and optimization bug reports.

• Bernardo Innocenti for his m68k work, including merging of ColdFire improvements
and uClinux support.

• Christian Iseli for various bug fixes.

• Kamil Iskra for general m68k hacking.

• Lee Iverson for random fixes and MIPS testing.

• Balaji V. Iyer for Cilk+ development and merging.

• Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.

• Martin Jambor for his work on inter-procedural optimizations, the switch conversion
pass, and scalar replacement of aggregates.

• Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug
fixes and test cases, and for improving the Java build system.

• Janis Johnson for ia64 testing and fixes, her quality improvement sidetracks, and web
page maintenance.

• Kean Johnston for SCO OpenServer support and various fixes.

• Tim Josling for the sample language treelang based originally on Richard Kenner’s
“toy” language.

• Nicolai Josuttis for additional libstdc++ documentation.

• Klaus Kaempf for his ongoing work to make alpha-vms a viable target.

• Steven G. Kargl for work on GNU Fortran.

• David Kashtan of SRI adapted GCC to VMS.

• Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of strings,
especially member functions, and for auto ptr fixes.

• Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux and his
automatic regression tester.

• Brendan Kehoe for his ongoing work with G++ and for a lot of early work in just about
every part of libstdc++.

• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.



824 GNU Compiler Collection (GCC) Internals

• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote
the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.

• Mumit Khan for various contributions to the Cygwin and Mingw32 ports and main-
taining binary releases for Microsoft Windows hosts, and for massive libstdc++ porting
work to Cygwin/Mingw32.

• Robin Kirkham for cpu32 support.

• Mark Klein for PA improvements.

• Thomas Koenig for various bug fixes.

• Kazumoto Kojima for continued development and maintenance of the SuperH back-
end.

• Bruce Korb for the new and improved fixincludes code.

• Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.

• Maxim Kuvyrkov for contributions to the instruction scheduler, the Android and
m68k/Coldfire ports, and optimizations.

• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

• Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU
Fortran, and for other GNU Fortran improvements.

• Jeff Law for his direction via the steering committee, coordinating the entire egcs
project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

• Walter Lee for work on the TILE-Gx and TILEPro ports.

• Marc Lehmann for his direction via the steering committee and helping with analysis
and improvements of x86 performance.

• Victor Leikehman for work on GNU Fortran.

• Ted Lemon wrote parts of the RTL reader and printer.

• Kriang Lerdsuwanakij for C++ improvements including template as template parameter
support, and many C++ fixes.

• Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work
on the Java front end.

• Alain Lichnewsky ported GCC to the MIPS CPU.

• Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.

• Robert Lipe for OpenServer support, new testsuites, testing, etc.

• Chen Liqin for various S+core related fixes/improvement, and for maintaining the
S+core port.

• Martin Liska for his work on identical code folding, the sanitizers, HSA, general bug
fixing and for running automated regression testing of GCC and reporting numerous
bugs.



Contributors to GCC 825

• Weiwen Liu for testing and various bug fixes.

• Manuel López-Ibá~nez for improving -Wconversion and many other diagnostics fixes
and improvements.

• Dave Love for his ongoing work with the Fortran front end and runtime libraries.

• James K. Lowden for his work on the COBOL front end, mainly the parser and CDF.

• Martin von Löwis for internal consistency checking infrastructure, various C++ improve-
ments including namespace support, and tons of assistance with libstdc++/compiler
merges.

• H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU/Linux ports working.

• Greg McGary for random fixes and (someday) bounded pointers.

• Andrew MacLeod for his ongoing work in building a real EH system, various code
generation improvements, work on the global optimizer, etc.

• Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-
ments to compile-time performance, overall knowledge and direction in the area of
instruction scheduling, design and implementation of the automaton based instruction
scheduler and design and implementation of the integrated and local register allocators.

• David Malcolm for his work on improving GCC diagnostics, JIT, self-tests and unit
testing.

• Bob Manson for his behind the scenes work on dejagnu.

• Jose E. Marchesi for contributing the eBPF backend and his ongoing work maintaining
it.

• John Marino for contributing the DragonFly BSD port.

• Philip Martin for lots of libstdc++ string and vector iterator fixes and improvements,
and string clean up and testsuites.

• Dhruv Matani for work on libstdc++ allocators.

• Michael Matz for his work on dominance tree discovery, the x86-64 port, link-time
optimization framework and general optimization improvements.

• All of the Mauve project contributors for Java test code.

• Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.

• Adam Megacz for his work on the Microsoft Windows port of GCJ.

• Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,
ECOFF debug support, and other assorted hacking.

• Jason Merrill for his direction via the steering committee and leading the G++ effort.

• Martin Michlmayr for testing GCC on several architectures using the entire Debian
archive.

• David Miller for his direction via the steering committee, lots of SPARC work, im-
provements in jump.cc and interfacing with the Linux kernel developers.

• Gary Miller ported GCC to Charles River Data Systems machines.

• Alfred Minarik for libstdc++ string and ios bug fixes, and turning the entire libstdc++
testsuite namespace-compatible.



826 GNU Compiler Collection (GCC) Internals

• Mark Mitchell for his direction via the steering committee, mountains of C++ work,
load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager from 2000 to 2011.

• Alan Modra for various GNU/Linux bits and testing.

• Toon Moene for his direction via the steering committee, Fortran maintenance, and his
ongoing work to make us make Fortran run fast.

• Jason Molenda for major help in the care and feeding of all the services on the
gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web services, ftp services, etc
etc. Doing all this work on scrap paper and the backs of envelopes would have been. . .
difficult.

• Catherine Moore for fixing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.

• Mike Moreton for his various Java patches.

• David Mosberger-Tang for various Alpha improvements, and for the initial IA-64 port.

• Stephen Moshier contributed the floating point emulator that assists in cross-
compilation and permits support for floating point numbers wider than 64 bits and
for ISO C99 support.

• Bill Moyer for his behind the scenes work on various issues.

• Philippe De Muyter for his work on the m68k port.

• Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99
support, and continuous emphasis on (and contributions to) documentation.

• Nathan Myers for his work on libstdc++-v3: architecture and authorship through the
first three snapshots, including implementation of locale infrastructure, string, shadow
C headers, and the initial project documentation (DESIGN, CHECKLIST, and so
forth). Later, more work on MT-safe string and shadow headers.

• Felix Natter for documentation on porting libstdc++.

• Nathanael Nerode for cleaning up the configuration/build process.

• NeXT, Inc. donated the front end that supports the Objective-C language.

• Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine
setup, various documentation fixes and other small fixes.

• Geoff Noer for his work on getting cygwin native builds working.

• Vegard Nossum for running automated regression testing of GCC and reporting nu-
merous bugs.

• Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance tracking web
pages, GIMPLE tuples, and assorted fixes.

• David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

• Alexandre Oliva for various build infrastructure improvements, scripts and amazing
testing work, including keeping libtool issues sane and happy.

• Stefan Olsson for work on mt alloc.

• Melissa O’Neill for various NeXT fixes.



Contributors to GCC 827

• Rainer Orth for random MIPS work, including improvements to GCC’s o32 ABI sup-
port, improvements to dejagnu’s MIPS support, Java configuration clean-ups and port-
ing work, and maintaining the IRIX, Solaris 2, and Tru64 UNIX ports.

• Patrick Palka for contributions to the C++ library and front end.

• Steven Pemberton for his contribution of enquire which allowed GCC to determine
various properties of the floating point unit and generate float.h in older versions of
GCC.

• Hartmut Penner for work on the s390 port.

• Paul Petersen wrote the machine description for the Alliant FX/8.

• Alexandre Petit-Bianco for implementing much of the Java compiler and continued
Java maintainership.

• Matthias Pfaller for major improvements to the NS32k port.

• Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems
we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

• Marek Polacek for his work on the C front end, the sanitizers and general bug fixing.

• Andrew Pinski for processing bug reports by the dozen, maintenance of the Objective-C
runtime libraries, and many scalar optimizations.

• Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.

• Jerry Quinn for major performance improvements in C++ formatted I/O.

• Ken Raeburn for various improvements to checker, MIPS ports and various cleanups
in the compiler.

• Rolf W. Rasmussen for hacking on AWT.

• David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.

• John Regehr for running automated regression testing of GCC and reporting numerous
bugs.

• Volker Reichelt for running automated regression testing of GCC and reporting numer-
ous bugs and for keeping up with the problem reports.

• Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking and de-
veloping and maintaining the Epiphany port.

• Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading
fixes, thread-related configury changes, critical threading documentation, and solutions
to really tricky I/O problems, as well as keeping GCC properly working on FreeBSD
and continuous testing.

• Craig Rodrigues for processing tons of bug reports.

• Ola Rönnerup for work on mt alloc.

• Gavin Romig-Koch for lots of behind the scenes MIPS work.

• David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo
format by contributing a first pass at a translation of the old g77-0.5.16/f/DOC file.

• Ken Rose for fixes to GCC’s delay slot filling code.

• Ira Rosen for her contributions to the auto-vectorizer.



828 GNU Compiler Collection (GCC) Internals

• Paul Rubin wrote most of the preprocessor.

• Pétur Runólfsson for major performance improvements in C++ formatted I/O and large
file support in C++ filebuf.

• Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Makefiles,
libio, libtool hackery, and “long long” support.

• Juha Sarlin for improvements to the H8 code generator.

• Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.

• Roger Sayle for improvements to constant folding and GCC’s RTL optimizers as well
as for fixing numerous bugs.

• Bradley Schatz for his work on the GCJ FAQ.

• Peter Schauer wrote the code to allow debugging to work on the Alpha.

• William Schelter did most of the work on the Intel 80386 support.

• Tobias Schlüter for work on GNU Fortran.

• Bernd Schmidt for various code generation improvements and major work in the reload
pass, serving as release manager for GCC 2.95.3, and work on the Blackfin and C6X
ports.

• Peter Schmid for constant testing of libstdc++—especially application testing, going
above and beyond what was requested for the release criteria—and libstdc++ header
file tweaks.

• Jason Schroeder for jcf-dump patches.

• Andreas Schwab for his work on the m68k port.

• Lars Segerlund for work on GNU Fortran.

• Dodji Seketeli for numerous C++ bug fixes and debug info improvements.

• Tim Shen for major work on <regex>.

• Joel Sherrill for his direction via the steering committee, RTEMS contributions and
RTEMS testing.

• Nathan Sidwell for many C++ fixes/improvements.

• Jeffrey Siegal for helping RMS with the original design of GCC, some code which
handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

• Kenny Simpson for prompting libstdc++ fixes due to defect reports from the LWG
(thereby keeping GCC in line with updates from the ISO).

• Franz Sirl for his ongoing work with making the PPC port stable for GNU/Linux.

• Andrey Slepuhin for assorted AIX hacking.

• Trevor Smigiel for contributing the SPU port.

• Christopher Smith did the port for Convex machines.

• Danny Smith for his major efforts on the Mingw (and Cygwin) ports. Retired from
GCC maintainership August 2010, having mentored two new maintainers into the role.

• Randy Smith finished the Sun FPA support.

• Ed Smith-Rowland for his continuous work on libstdc++-v3, special functions,
<random>, and various improvements to C++11 features.



Contributors to GCC 829

• Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite en-
tries. Also for providing the patch to G77 to add rudimentary support for INTEGER*1,
INTEGER*2, and LOGICAL*1.

• Zdenek Sojka for running automated regression testing of GCC and reporting numerous
bugs.

• Arseny Solokha for running automated regression testing of GCC and reporting nu-
merous bugs.

• Jayant Sonar for contributing the CR16 port.

• Brad Spencer for contributions to the GLIBCPP FORCE NEW technique.

• Richard Stallman, for writing the original GCC and launching the GNU project.

• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as
part of the 32000 machine description.

• Gerhard Steinmetz for running automated regression testing of GCC and reporting
numerous bugs.

• Nigel Stephens for various mips16 related fixes/improvements.

• Jonathan Stone wrote the machine description for the Pyramid computer.

• Graham Stott for various infrastructure improvements.

• John Stracke for his Java HTTP protocol fixes.

• Mike Stump for his Elxsi port, G++ contributions over the years and more recently his
vxworks contributions

• Jeff Sturm for Java porting help, bug fixes, and encouragement.

• Zhendong Su for running automated regression testing of GCC and reporting numerous
bugs.

• Chengnian Sun for running automated regression testing of GCC and reporting numer-
ous bugs.

• Shigeya Suzuki for this fixes for the bsdi platforms.

• Ian Lance Taylor for the Go frontend, the initial mips16 and mips64 support, general
configury hacking, fixincludes, etc.

• Holger Teutsch provided the support for the Clipper CPU.

• Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.

• Paul Thomas for contributions to GNU Fortran.

• Philipp Thomas for random bug fixes throughout the compiler

• Jason Thorpe for thread support in libstdc++ on NetBSD.

• Kresten Krab Thorup wrote the run time support for the Objective-C language and
the fantastic Java bytecode interpreter.

• Michael Tiemann for random bug fixes, the first instruction scheduler, initial C++
support, function integration, NS32k, SPARC and M88k machine description work,
delay slot scheduling.

• Andreas Tobler for his work porting libgcj to Darwin.

• Teemu Torma for thread safe exception handling support.

• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of
the VAX machine description.



830 GNU Compiler Collection (GCC) Internals

• Daniel Towner and Hariharan Sandanagobalane contributed and maintain the picoChip
port.

• Tom Tromey for internationalization support and for his many Java contributions and
libgcj maintainership.

• Lassi Tuura for improvements to config.guess to determine HP processor types.

• Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.

• Andy Vaught for the design and initial implementation of the GNU Fortran front end.

• Brent Verner for work with the libstdc++ cshadow files and their associated configure
steps.

• Todd Vierling for contributions for NetBSD ports.

• Andrew Waterman for contributing the RISC-V port, as well as maintaining it.

• Jonathan Wakely for contributing to and maintaining libstdc++.

• Dean Wakerley for converting the install documentation from HTML to texinfo in time
for GCC 3.0.

• Krister Walfridsson for random bug fixes.

• Feng Wang for contributions to GNU Fortran.

• Stephen M. Webb for time and effort on making libstdc++ shadow files work with the
tricky Solaris 8+ headers, and for pushing the build-time header tree. Also, for starting
and driving the <regex> effort.

• John Wehle for various improvements for the x86 code generator, related infrastructure
improvements to help x86 code generation, value range propagation and other work,
WE32k port.

• Ulrich Weigand for work on the s390 port.

• Janus Weil for contributions to GNU Fortran.

• Zack Weinberg for major work on cpplib and various other bug fixes.

• Matt Welsh for help with Linux Threads support in GCJ.

• Urban Widmark for help fixing java.io.

• Mark Wielaard for new Java library code and his work integrating with Classpath.

• Dale Wiles helped port GCC to the Tahoe.

• Bob Wilson from Tensilica, Inc. for the Xtensa port.

• Jim Wilson for his direction via the steering committee, tackling hard problems in
various places that nobody else wanted to work on, strength reduction and other loop
optimizations.

• Paul Woegerer and Tal Agmon for the CRX port.

• Carlo Wood for various fixes.

• Tom Wood for work on the m88k port.

• Chung-Ju Wu for his work on the Andes NDS32 port.

• Canqun Yang for work on GNU Fortran.

• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the
Tron architecture (specifically, the Gmicro).

• Kevin Zachmann helped port GCC to the Tahoe.



Contributors to GCC 831

• Ayal Zaks for Swing Modulo Scheduling (SMS).

• Qirun Zhang for running automated regression testing of GCC and reporting numerous
bugs.

• Xiaoqiang Zhang for work on GNU Fortran.

• Gilles Zunino for help porting Java to Irix.

The following people are recognized for their contributions to GNAT, the Ada front end
of GCC:

• Bernard Banner

• Romain Berrendonner

• Geert Bosch

• Emmanuel Briot

• Joel Brobecker

• Ben Brosgol

• Vincent Celier

• Arnaud Charlet

• Chien Chieng

• Cyrille Comar

• Cyrille Crozes

• Robert Dewar

• Gary Dismukes

• Robert Duff

• Ed Falis

• Ramon Fernandez

• Sam Figueroa

• Vasiliy Fofanov

• Michael Friess

• Franco Gasperoni

• Ted Giering

• Matthew Gingell

• Laurent Guerby

• Jerome Guitton

• Olivier Hainque

• Jerome Hugues

• Hristian Kirtchev

• Jerome Lambourg

• Bruno Leclerc

• Albert Lee

• Sean McNeil

• Javier Miranda



832 GNU Compiler Collection (GCC) Internals

• Laurent Nana

• Pascal Obry

• Dong-Ik Oh

• Laurent Pautet

• Brett Porter

• Thomas Quinot

• Nicolas Roche

• Pat Rogers

• Jose Ruiz

• Douglas Rupp

• Sergey Rybin

• Gail Schenker

• Ed Schonberg

• Nicolas Setton

• Samuel Tardieu

The following people are recognized for their contributions of new features, bug reports,
testing and integration of classpath/libgcj for GCC version 4.1:

• Lillian Angel for JTree implementation and lots Free Swing additions and bug fixes.

• Wolfgang Baer for GapContent bug fixes.

• Anthony Balkissoon for JList, Free Swing 1.5 updates and mouse event fixes, lots of
Free Swing work including JTable editing.

• Stuart Ballard for RMI constant fixes.

• Goffredo Baroncelli for HTTPURLConnection fixes.

• Gary Benson for MessageFormat fixes.

• Daniel Bonniot for Serialization fixes.

• Chris Burdess for lots of gnu.xml and http protocol fixes, StAX and DOM xml:id support.

• Ka-Hing Cheung for TreePath and TreeSelection fixes.

• Archie Cobbs for build fixes, VM interface updates, URLClassLoader updates.

• Kelley Cook for build fixes.

• Martin Cordova for Suggestions for better SocketTimeoutException.

• David Daney for BitSet bug fixes, HttpURLConnection rewrite and improvements.

• Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D support.
Lots of imageio framework additions, lots of AWT and Free Swing bug fixes.

• Jeroen Frijters for ClassLoader and nio cleanups, serialization fixes, better Proxy

support, bug fixes and IKVM integration.

• Santiago Gala for AccessControlContext fixes.

• Nicolas Geoffray for VMClassLoader and AccessController improvements.

• David Gilbert for basic and metal icon and plaf support and lots of documenting,
Lots of Free Swing and metal theme additions. MetalIconFactory implementation.



Contributors to GCC 833

• Anthony Green for MIDI framework, ALSA and DSSI providers.

• Andrew Haley for Serialization and URLClassLoader fixes, gcj build speedups.

• Kim Ho for JFileChooser implementation.

• Andrew John Hughes for Locale and net fixes, URI RFC2986 updates, Serialization
fixes, Properties XML support and generic branch work, VMIntegration guide update.

• Bastiaan Huisman for TimeZone bug fixing.

• Andreas Jaeger for mprec updates.

• Paul Jenner for better -Werror support.

• Ito Kazumitsu for NetworkInterface implementation and updates.

• Roman Kennke for BoxLayout, GrayFilter and SplitPane, plus bug fixes all over.
Lots of Free Swing work including styled text.

• Simon Kitching for String cleanups and optimization suggestions.

• Michael Koch for configuration fixes, Locale updates, bug and build fixes.

• Guilhem Lavaux for configuration, thread and channel fixes and Kaffe integration. JCL
native Pointer updates. Logger bug fixes.

• David Lichteblau for JCL support library global/local reference cleanups.

• Aaron Luchko for JDWP updates and documentation fixes.

• Ziga Mahkovec for Graphics2D upgraded to Cairo 0.5 and new regex features.

• Sven de Marothy for BMP imageio support, CSS and TextLayout fixes. GtkImage

rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers.

• Casey Marshall for crypto algorithm fixes, FileChannel lock, SystemLogger and
FileHandler rotate implementations, NIO FileChannel.map support, security and
policy updates.

• Bryce McKinlay for RMI work.

• Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus testing and
documenting.

• Kalle Olavi Niemitalo for build fixes.

• Rainer Orth for build fixes.

• Andrew Overholt for File locking fixes.

• Ingo Proetel for Image, Logger and URLClassLoader updates.

• Olga Rodimina for MenuSelectionManager implementation.

• Jan Roehrich for BasicTreeUI and JTree fixes.

• Julian Scheid for documentation updates and gjdoc support.

• Christian Schlichtherle for zip fixes and cleanups.

• Robert Schuster for documentation updates and beans fixes, TreeNode enumerations
and ActionCommand and various fixes, XML and URL, AWT and Free Swing bug fixes.

• Keith Seitz for lots of JDWP work.

• Christian Thalinger for 64-bit cleanups, Configuration and VM interface fixes and
CACAO integration, fdlibm updates.

• Gael Thomas for VMClassLoader boot packages support suggestions.



834 GNU Compiler Collection (GCC) Internals

• Andreas Tobler for Darwin and Solaris testing and fixing, Qt4 support for Darwin /
macOS, Graphics2D support, gtk+ updates.

• Dalibor Topic for better DEBUG support, build cleanups and Kaffe integration. Qt4

build infrastructure, SHA1PRNG and GdkPixbugDecoder updates.

• Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration
including coordinating The Big Merge.

• Mark Wielaard for bug fixes, packaging and release management, Clipboard imple-
mentation, system call interrupts and network timeouts and GdkPixpufDecoder fixes.

In addition to the above, all of which also contributed time and energy in testing GCC,
we would like to thank the following for their contributions to testing:

• Michael Abd-El-Malek

• Thomas Arend

• Bonzo Armstrong

• Steven Ashe

• Chris Baldwin

• David Billinghurst

• Jim Blandy

• Stephane Bortzmeyer

• Horst von Brand

• Frank Braun

• Rodney Brown

• Sidney Cadot

• Bradford Castalia

• Robert Clark

• Jonathan Corbet

• Ralph Doncaster

• Richard Emberson

• Levente Farkas

• Graham Fawcett

• Mark Fernyhough

• Robert A. French

• Jörgen Freyh

• Mark K. Gardner

• Charles-Antoine Gauthier

• Yung Shing Gene

• David Gilbert

• Simon Gornall

• Fred Gray

• John Griffin



Contributors to GCC 835

• Patrik Hagglund

• Phil Hargett

• Amancio Hasty

• Takafumi Hayashi

• Bryan W. Headley

• Kevin B. Hendricks

• Joep Jansen

• Christian Joensson

• Michel Kern

• David Kidd

• Tobias Kuipers

• Anand Krishnaswamy

• A. O. V. Le Blanc

• llewelly

• Damon Love

• Brad Lucier

• Matthias Klose

• Martin Knoblauch

• Rick Lutowski

• Jesse Macnish

• Stefan Morrell

• Anon A. Mous

• Matthias Mueller

• Pekka Nikander

• Rick Niles

• Jon Olson

• Magnus Persson

• Chris Pollard

• Richard Polton

• Derk Reefman

• David Rees

• Paul Reilly

• Tom Reilly

• Torsten Rueger

• Danny Sadinoff

• Marc Schifer

• Erik Schnetter

• Wayne K. Schroll

• David Schuler



836 GNU Compiler Collection (GCC) Internals

• Vin Shelton

• Tim Souder

• Adam Sulmicki

• Bill Thorson

• George Talbot

• Pedro A. M. Vazquez

• Gregory Warnes

• Ian Watson

• David E. Young

• And many others

And finally we’d like to thank everyone who uses the compiler, provides feedback and
generally reminds us why we’re doing this work in the first place.



837

Option Index

GCC’s command line options are indexed here without any initial ‘-’ or ‘--’. Where an
option has both positive and negative forms (such as -foption and -fno-option), relevant
entries in the manual are indexed under the most appropriate form; it may sometimes be
useful to look up both forms.

F

fltrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

fltrans-output-list . . . . . . . . . . . . . . . . . . . . . . . . 764

fresolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

fwpa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

M
msoft-float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9





839

Concept Index

!
‘!’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

#
‘#’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
# in template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
#pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

$
‘$’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

%
‘%’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
% in GTY option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
‘%’ in template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

&
‘&’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

(
(gimple_stmt_iterator . . . . . . . . . . . . . . . . . . . . . . 765
(nil) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

*
‘*’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
* in template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
*gimple_build_asm_vec . . . . . . . . . . . . . . . . . . . . . . 245
*gimple_build_assign . . . . . . . . . . . . . . . . . . . . . . . 246
*gimple_build_bind . . . . . . . . . . . . . . . . . . . . . . . . . . 247
*gimple_build_call . . . . . . . . . . . . . . . . . . . . . . . . . . 248
*gimple_build_call_from_tree . . . . . . . . . . . . . . 248
*gimple_build_call_vec . . . . . . . . . . . . . . . . . . . . . 248
*gimple_build_catch . . . . . . . . . . . . . . . . . . . . . . . . 250
*gimple_build_cond . . . . . . . . . . . . . . . . . . . . . . . . . . 250
*gimple_build_cond_from_tree . . . . . . . . . . . . . . 250
*gimple_build_debug_bind . . . . . . . . . . . . . . . . . . . 251
*gimple_build_eh_filter . . . . . . . . . . . . . . . . . . . . 253
*gimple_build_goto . . . . . . . . . . . . . . . . . . . . . . . . . . 254
*gimple_build_label . . . . . . . . . . . . . . . . . . . . . . . . 253
*gimple_build_omp_atomic_load . . . . . . . . . . . . . 254
*gimple_build_omp_atomic_store . . . . . . . . . . . . 254
*gimple_build_omp_continue . . . . . . . . . . . . . . . . 255
*gimple_build_omp_critical . . . . . . . . . . . . . . . . 255
*gimple_build_omp_for . . . . . . . . . . . . . . . . . . . . . . 256
*gimple_build_omp_parallel . . . . . . . . . . . . . . . . 257
*gimple_build_omp_sections . . . . . . . . . . . . . . . . 259
*gimple_build_omp_single . . . . . . . . . . . . . . . . . . . 260

*gimple_build_resx . . . . . . . . . . . . . . . . . . . . . . . . . . 261
*gimple_build_return . . . . . . . . . . . . . . . . . . . . . . . 261
*gimple_build_switch . . . . . . . . . . . . . . . . . . . . . . . 261
*gimple_build_try . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

+
‘+’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

–
‘-’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
-fsection-anchors . . . . . . . . . . . . . . . . . . . . . . 289, 627

/
‘/c’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
‘/f’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
‘/i’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
‘/j’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
‘/s’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
‘/u’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
‘/v’ in RTL dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

:
‘:’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

<
‘<’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

=
‘=’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

>
‘>’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

?
‘?’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

^
‘^’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390



840 GNU Compiler Collection (GCC) Internals

__absvdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__absvsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__addda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__adddf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__adddq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addsf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__addsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addtf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__adduda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__adduha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__adduhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__adduqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__adduta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__addvdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__addvsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__addxf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__ashlda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashldi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__ashldq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__ashlsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__ashluda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashludq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashluha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashluhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashluqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashlusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashluta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashrda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ashrdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__ashrdq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashrha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashrhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashrqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashrsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ashrsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__ashrsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ashrta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ashrti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__bid_adddd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__bid_addsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__bid_addtd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

__bid_divdd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_divsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_divtd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_eqdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_eqsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_eqtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_extendddtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendddtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_extendddxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extenddfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_extenddftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendsddd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_extendsddf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendsdtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_extendsdtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendsdxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendsfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendsfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_extendsftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_extendtftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_extendxftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_fixddbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_fixdddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixddsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixsdbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_fixsddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixsdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixtdbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_fixtddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixtdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixunsdddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixunsddsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixunssddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixunssdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_fixunstddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_fixunstdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_floatbitintdd . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_floatbitintsd . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_floatbitinttd . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_floatdidd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatdisd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatditd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatsidd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatsisd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatsitd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatunsdidd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatunsdisd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatunsditd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatunssidd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatunssisd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_floatunssitd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__bid_gedd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_gesd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_getd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_gtdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_gtsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_gttd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_ledd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



Concept Index 841

__bid_lesd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_letd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_ltdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_ltsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_lttd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__bid_muldd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_mulsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_multd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_nedd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_negdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_negsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_negtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_nesd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_netd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_subdd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__bid_subsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__bid_subtd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__bid_truncdddf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_truncddsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_truncddsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_truncdfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_truncsdsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_trunctddd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_trunctddf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_trunctdsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_trunctdsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_trunctdtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__bid_trunctdxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_trunctfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_trunctfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_truncxfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_truncxfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__bid_unorddd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_unordsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bid_unordtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__bswapdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__bswapsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__builtin_classify_type . . . . . . . . . . . . . . . . . . . . 609
__builtin_next_arg . . . . . . . . . . . . . . . . . . . . . . . . . . 609
__builtin_saveregs . . . . . . . . . . . . . . . . . . . . . . . . . . 608
__clear_cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
__clzdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__clzsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__clzti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__cmpda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__cmpdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__cmpdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmphq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpsa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__cmpsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmptf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__cmpti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__cmpuda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

__cmpudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpuha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpuhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpuqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpusa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmpusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__cmputa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__CTOR_LIST__ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
__ctzdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__ctzsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__ctzti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__divda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__divdc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__divdf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__divdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__divdq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__divha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__divhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__divmodbitint4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__divqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__divsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__divsc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__divsf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__divsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__divsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__divta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__divtc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__divtf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__divti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__divxc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__divxf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__dpd_adddd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__dpd_addsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__dpd_addtd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__dpd_divdd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_divsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_divtd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_eqdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_eqsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_eqtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_extendddtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_extendddtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendddxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extenddfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_extenddftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendsddd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_extendsddf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendsdtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_extendsdtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendsdxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendsfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendsfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_extendsftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_extendtftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_extendxftd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_fixdddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixddsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixsddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



842 GNU Compiler Collection (GCC) Internals

__dpd_fixsdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixtddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixtdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixunsdddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixunsddsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixunssddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixunssdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixunstddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_fixunstdsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_floatdidd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatdisd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatditd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatsidd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatsisd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatsitd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatunsdidd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatunsdisd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatunsditd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatunssidd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatunssisd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_floatunssitd . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
__dpd_gedd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_gesd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_getd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_gtdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_gtsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_gttd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_ledd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_lesd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_letd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_ltdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_ltsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_lttd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
__dpd_muldd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_mulsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_multd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_nedd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_negdd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_negsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_negtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
__dpd_nesd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_netd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_subdd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__dpd_subsd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__dpd_subtd3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__dpd_truncdddf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_truncddsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_truncddsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_truncdfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_truncsdsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_trunctddd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_trunctddf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_trunctdsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_trunctdsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_trunctdtf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
__dpd_trunctdxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_trunctfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_trunctfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

__dpd_truncxfdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_truncxfsd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
__dpd_unorddd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_unordsd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__dpd_unordtd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
__DTOR_LIST__ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
__eqdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__eqsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__eqtf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__extenddftf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__extenddfxf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__extendsfdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__extendsftf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__extendsfxf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__ffsdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__ffsti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__fixdfbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixdfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixdfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixdfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixsfbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixsfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixsfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixsfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixtfbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__fixtfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixtfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixtfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunsdfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunsdfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunsdfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixunssfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunssfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunssfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixunstfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunstfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunstfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixunsxfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunsxfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixunsxfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixxfbitint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fixxfdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixxfsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__fixxfti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__floatbitintbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__floatbitintdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__floatbitinthf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__floatbitintsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__floatbitinttf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__floatbitintxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__floatdidf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatdisf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatditf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatdixf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatsidf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatsisf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatsitf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatsixf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



Concept Index 843

__floattidf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floattisf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floattitf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floattixf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatundidf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatundisf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatunditf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatundixf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatunsidf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatunsisf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatunsitf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatunsixf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatuntidf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatuntisf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatuntitf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__floatuntixf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
__fractdadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractdaha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractdahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractdaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractdasa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractdasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractdata2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractdfda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdfuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractdida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

__fractdiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractdqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractdquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracthada2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracthahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracthaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracthasa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracthasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracthata2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fracthida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



844 GNU Compiler Collection (GCC) Internals

__fracthiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracthiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracthiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracthiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracthiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fracthiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracthqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fracthquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractqqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

__fractqqhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__fractqqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractqquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsada2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsaha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsata2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
__fractsfda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsfuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractsida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Concept Index 845

__fractsiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fractsqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fractsqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
__fractsquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
__fracttada2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttaha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttasa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fracttida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

__fracttiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fracttiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fracttiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fracttiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
__fracttiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fracttiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fracttiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__fractudada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractudaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractudasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractudata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudauha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudausa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudauta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractudqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractudqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractudqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractudqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudquhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudquqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudqusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractudquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



846 GNU Compiler Collection (GCC) Internals

__fractuhada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhauda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhausa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
__fractuhauta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractuhqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractuhqudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhquqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhqusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuhquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractunsdadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

__fractunsdiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunsdiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunsdqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsdqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunshadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunshahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunshaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunshasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunshati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunshida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunshiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunshiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunshiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunshiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunshqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunshqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunshqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunshqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunshqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunsqida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsqqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunsqqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunsqqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunsqqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Concept Index 847

__fractunsqqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunssadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
__fractunssqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunssqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__fractunssqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunssqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunstadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunstahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunstaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunstasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunstati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunstida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunstiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__fractunsudadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsudqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

__fractunsuhadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsuhahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsuhaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsuhasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsuhati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsuhqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuhqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuhqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuhqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuhqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuqqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuqqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuqqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuqqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsuqqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
__fractunsusadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsusqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
__fractunsutadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsutahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsutaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsutasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractunsutati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
__fractuqqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
__fractuqqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqquhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqqusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractuqquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
__fractusada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



848 GNU Compiler Collection (GCC) Internals

__fractusahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusauda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusauha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusauta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
__fractusqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqdi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusquhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusquqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractusquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
__fractutada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutadf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutahi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutasf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutauda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutauha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
__fractutauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

__fractutausa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__fractutausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
__gedf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__gesf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__getf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__gtdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__gtsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__gttf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__ledf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__lesf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__letf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__lshrdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__lshrsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__lshrti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
__lshruda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshrudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshruha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshruhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshruqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshrusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshrusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__lshruta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ltdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__ltsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__lttf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
__moddi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__modsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__modti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__morestack_current_segment . . . . . . . . . . . . . . . . 60
__morestack_initial_sp . . . . . . . . . . . . . . . . . . . . . . 60
__morestack_segments . . . . . . . . . . . . . . . . . . . . . . . . 60
__mulbitint3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__mulda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__muldc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__muldf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__muldi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__muldq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__mulha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__mulhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__mulqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__mulsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__mulsc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__mulsf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__mulsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__mulsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__multa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__multc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__multf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__multi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__muluda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__muludq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__muluha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__muluhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__muluqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__mulusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__mulusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__muluta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



Concept Index 849

__mulvdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__mulvsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__mulxc3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
__mulxf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__nedf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__negda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__negdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__negdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__neghq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negsa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__negsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negtf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__negti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__neguda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__neguha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__neguhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__neguqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negusa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__neguta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__negvdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__negvsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__negxf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__nesf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__netf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__paritydi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__paritysi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__parityti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__popcountdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__popcountsi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__popcountti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
__powidf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__powisf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__powitf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__powixf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
__satfractdadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdaha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdasa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdata2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractdfda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

__satfractdfha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdfuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractdida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractdqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractdqqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractdqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractdquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthada2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthasa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthata2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



850 GNU Compiler Collection (GCC) Internals

__satfracthausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfracthida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfracthqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracthquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractqqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__satfractqqdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__satfractqqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__satfractqqhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__satfractqqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__satfractqqsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
__satfractqqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

__satfractqquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractqquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsada2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsaha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsata2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractsaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractsauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractsauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
__satfractsausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractsausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractsauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractsfda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsfuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
__satfractsida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractsiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractsisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractsita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractsqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



Concept Index 851

__satfractsqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsquhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsquqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsqusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfractsquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
__satfracttada2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttaha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttasa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttauda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttauha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttausa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttauta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfracttida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfracttiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
__satfractudada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudauha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudausa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudauta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractudqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

__satfractudqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudquhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudquqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudqusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractudquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhauda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhausa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhauta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractuhqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhquqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhqusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuhquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractunsdida . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdita . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunsdiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



852 GNU Compiler Collection (GCC) Internals

__satfractunsdiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunshida . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshita . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunshiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunsqida . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqita . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunsqiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunsqiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunsqiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunsqiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
__satfractunsqiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssida . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssita . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunssiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunssiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunssiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
__satfractunssiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunssiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunssiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstida . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstidq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstiha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstihq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstiqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstisq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstita . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstiuda . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

__satfractunstiudq . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
__satfractunstiuha . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
__satfractunstiuhq . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
__satfractunstiuqq . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
__satfractunstiusa . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
__satfractunstiusq . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
__satfractunstiuta . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
__satfractuqqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractuqqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
__satfractuqqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqquhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqqusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractuqquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractusada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusauda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusauha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
__satfractusauta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractusqda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusqdq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusqha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusqhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractusqqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractusqsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusqsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
__satfractusqta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusquda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusqudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusquha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusquhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusquqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusqusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractusquta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
__satfractutada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutadq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutaha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutahq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutaqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Concept Index 853

__satfractutasq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutauda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractutaudq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractutauha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractutauhq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutauqq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__satfractutausa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
__satfractutausq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
__splitstack_find . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
__ssaddda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssadddq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssaddha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssaddhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssaddqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssaddsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssaddsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssaddta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
__ssashlda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssashldq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssashlha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssashlhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssashlsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssashlsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssashlta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__ssdivda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivdq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssdivta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__ssmulda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmuldq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmulha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmulhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmulqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmulsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmulsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssmulta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__ssnegda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssnegdq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssnegha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssneghq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssnegqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssnegsa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssnegsq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__ssnegta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__sssubda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubdq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__sssubta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__subda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

__subdf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__subdq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subsa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subsf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__subsq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subtf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__subuda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subuha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subuhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subuqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subuta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__subvdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__subvsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__subxf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
__truncdfsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__trunctfdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__trunctfsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__truncxfdf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__truncxfsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
__ucmpdi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__ucmpti2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
__udivdi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__udivmoddi4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__udivmodti4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__udivsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__udivti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__udivuda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivuha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivuhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivuqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__udivuta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__umoddi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__umodsi3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__umodti3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
__unorddf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__unordsf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__unordtf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
__usadduda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usaddudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usadduha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usadduhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usadduqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usaddusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usaddusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usadduta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
__usashluda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__usashludq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__usashluha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



854 GNU Compiler Collection (GCC) Internals

__usashluhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__usashluqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__usashlusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__usashlusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
__usashluta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
__usdivuda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__usdivudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__usdivuha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__usdivuhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__usdivuqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
__usdivusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__usdivusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__usdivuta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
__usmuluda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmuludq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmuluha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmuluhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmuluqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmulusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmulusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usmuluta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
__usneguda2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usnegudq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usneguha2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usneguhq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usneguqq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usnegusa2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usnegusq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__usneguta2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
__ussubuda3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubudq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubuha3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubuhq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubuqq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubusa3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubusq3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
__ussubuta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

‘
“real” instructions, RTL SSA . . . . . . . . . . . . . . . . . 339

@
‘@’ in instruction pattern names . . . . . . . . . . . . . . . 526

\
\ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

0
‘0’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

A
abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
abs and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
ABS_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
absence_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
absm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 447
absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ABSU_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
access to operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
access to special operands . . . . . . . . . . . . . . . . . . . . . 287
accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
ACCUM_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
ACCUMULATE_OUTGOING_ARGS . . . . . . . . . . . . . . . . . . . 588
ACCUMULATE_OUTGOING_ARGS

and stack frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
acosm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 448
ADA_LONG_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Adding a new GIMPLE statement code . . . . . . . 268
ADDITIONAL_REGISTER_NAMES . . . . . . . . . . . . . . . . . . 673
addm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
addmodecc instruction pattern . . . . . . . . . . . . . . . . . 460
addptrm3 instruction pattern . . . . . . . . . . . . . . . . . . 437
addr_diff_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
addr_diff_vec, length of . . . . . . . . . . . . . . . . . . . . . 506
addr_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
addr_vec, length of . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
ADDR_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
address constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
address_operand . . . . . . . . . . . . . . . . . . . . . . . . 382, 387
addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
addvm4 instruction pattern . . . . . . . . . . . . . . . . . . . . 437
ADJUST_FIELD_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . 545
ADJUST_INSN_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . 506
ADJUST_REG_ALLOC_ORDER . . . . . . . . . . . . . . . . . . . . . 559
aggregates as return values . . . . . . . . . . . . . . . . . . . . 600
alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
ALL_REGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
allocate_stack instruction pattern . . . . . . . . . . . 470
alternate entry points . . . . . . . . . . . . . . . . . . . . . . . . . 330
analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
analyzer, debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
analyzer, internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
anchored addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
and and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
and, canonicalization of . . . . . . . . . . . . . . . . . . . . . . . 485
andm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
andnm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 437
ANNOTATE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
APPLY_RESULT_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
arg_pointer_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
ARG_POINTER_CFA_OFFSET . . . . . . . . . . . . . . . . . . . . . 578
ARG_POINTER_REGNUM . . . . . . . . . . . . . . . . . . . . . . . . . . 583
ARG_POINTER_REGNUM and virtual registers . . . . . 307
ARGS_GROW_DOWNWARD . . . . . . . . . . . . . . . . . . . . . . . . . . 575
arguments in registers . . . . . . . . . . . . . . . . . . . . . . . . . 589



Concept Index 855

arguments on stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
arithmetic library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
arithmetic shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
arithmetic shift with signed saturation . . . . . . . . 315
arithmetic shift with unsigned saturation . . . . . . 315
arithmetic, in RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
ARITHMETIC_TYPE_P . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
ARRAY_RANGE_REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
ARRAY_REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
ARRAY_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
AS_NEEDS_DASH_FOR_PIPED_INPUT . . . . . . . . . . . . . 531
ashift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ashift and attributes . . . . . . . . . . . . . . . . . . . . . . . . . 502
ashiftrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ashiftrt and attributes . . . . . . . . . . . . . . . . . . . . . . 502
ashlm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
ashrm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
asinm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 448
asm_fprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
asm_input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
asm_input and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
asm_noperands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
asm_operands and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . 291
asm_operands, RTL sharing . . . . . . . . . . . . . . . . . . . 347
asm_operands, usage . . . . . . . . . . . . . . . . . . . . . . . . . . 327
ASM_APP_OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
ASM_APP_ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
ASM_COMMENT_START . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
ASM_DECLARE_COLD_FUNCTION_NAME . . . . . . . . . . . . 663
ASM_DECLARE_COLD_FUNCTION_SIZE . . . . . . . . . . . . 663
ASM_DECLARE_FUNCTION_NAME . . . . . . . . . . . . . . . . . . 662
ASM_DECLARE_FUNCTION_SIZE . . . . . . . . . . . . . . . . . . 662
ASM_DECLARE_OBJECT_NAME . . . . . . . . . . . . . . . . . . . . 663
ASM_DECLARE_REGISTER_GLOBAL . . . . . . . . . . . . . . . 663
ASM_FINAL_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
ASM_FINISH_DECLARE_OBJECT . . . . . . . . . . . . . . . . . . 664
ASM_FORMAT_PRIVATE_NAME . . . . . . . . . . . . . . . . . . . . 667
ASM_FPRINTF_EXTENSIONS . . . . . . . . . . . . . . . . . . . . . 675
ASM_GENERATE_INTERNAL_LABEL . . . . . . . . . . . . . . . 667
ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX . . . . . . . . 580
ASM_NO_SKIP_IN_TEXT . . . . . . . . . . . . . . . . . . . . . . . . 681
ASM_OUTPUT_ADDR_DIFF_ELT . . . . . . . . . . . . . . . . . . . 676
ASM_OUTPUT_ADDR_VEC_ELT . . . . . . . . . . . . . . . . . . . . 676
ASM_OUTPUT_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
ASM_OUTPUT_ALIGN_WITH_NOP . . . . . . . . . . . . . . . . . . 681
ASM_OUTPUT_ALIGNED_BSS . . . . . . . . . . . . . . . . . . . . . 660
ASM_OUTPUT_ALIGNED_COMMON . . . . . . . . . . . . . . . . . . 659
ASM_OUTPUT_ALIGNED_DECL_COMMON . . . . . . . . . . . . 659
ASM_OUTPUT_ALIGNED_DECL_LOCAL . . . . . . . . . . . . . 660
ASM_OUTPUT_ALIGNED_LOCAL . . . . . . . . . . . . . . . . . . . 660
ASM_OUTPUT_ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
ASM_OUTPUT_CASE_END . . . . . . . . . . . . . . . . . . . . . . . . 677
ASM_OUTPUT_CASE_LABEL . . . . . . . . . . . . . . . . . . . . . . 676
ASM_OUTPUT_COMMON . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
ASM_OUTPUT_DEBUG_LABEL . . . . . . . . . . . . . . . . . . . . . 667
ASM_OUTPUT_DEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
ASM_OUTPUT_DEF_FROM_DECLS . . . . . . . . . . . . . . . . . . 668

ASM_OUTPUT_DWARF_DATAREL . . . . . . . . . . . . . . . . . . . 684
ASM_OUTPUT_DWARF_DELTA . . . . . . . . . . . . . . . . . . . . . 684
ASM_OUTPUT_DWARF_OFFSET . . . . . . . . . . . . . . . . . . . . 684
ASM_OUTPUT_DWARF_PCREL . . . . . . . . . . . . . . . . . . . . . 684
ASM_OUTPUT_DWARF_TABLE_REF . . . . . . . . . . . . . . . . 684
ASM_OUTPUT_DWARF_VMS_DELTA . . . . . . . . . . . . . . . . 684
ASM_OUTPUT_EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . . 666
ASM_OUTPUT_FDESC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
ASM_OUTPUT_FUNCTION_LABEL . . . . . . . . . . . . . . . . . . 661
ASM_OUTPUT_INTERNAL_LABEL . . . . . . . . . . . . . . . . . . 661
ASM_OUTPUT_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
ASM_OUTPUT_LABEL_REF . . . . . . . . . . . . . . . . . . . . . . . 666
ASM_OUTPUT_LABELREF . . . . . . . . . . . . . . . . . . . . . . . . 666
ASM_OUTPUT_LOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
ASM_OUTPUT_MAX_SKIP_ALIGN . . . . . . . . . . . . . . . . . . 681
ASM_OUTPUT_MEASURED_SIZE . . . . . . . . . . . . . . . . . . . 661
ASM_OUTPUT_OPCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
ASM_OUTPUT_POOL_EPILOGUE . . . . . . . . . . . . . . . . . . . 658
ASM_OUTPUT_POOL_PROLOGUE . . . . . . . . . . . . . . . . . . . 657
ASM_OUTPUT_REG_POP . . . . . . . . . . . . . . . . . . . . . . . . . . 676
ASM_OUTPUT_REG_PUSH . . . . . . . . . . . . . . . . . . . . . . . . 676
ASM_OUTPUT_SIZE_DIRECTIVE . . . . . . . . . . . . . . . . . . 661
ASM_OUTPUT_SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
ASM_OUTPUT_SOURCE_FILENAME . . . . . . . . . . . . . . . . 654
ASM_OUTPUT_SPECIAL_POOL_ENTRY . . . . . . . . . . . . . 658
ASM_OUTPUT_SYMBOL_REF . . . . . . . . . . . . . . . . . . . . . . 666
ASM_OUTPUT_TYPE_DIRECTIVE . . . . . . . . . . . . . . . . . . 662
ASM_OUTPUT_WEAK_ALIAS . . . . . . . . . . . . . . . . . . . . . . 668
ASM_OUTPUT_WEAKREF . . . . . . . . . . . . . . . . . . . . . . . . . . 664
ASM_PREFERRED_EH_DATA_FORMAT . . . . . . . . . . . . . . 580
ASM_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
ASM_WEAKEN_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
ASM_WEAKEN_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
assemble_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
assemble_name_raw . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
assembler format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
assembler instructions in RTL . . . . . . . . . . . . . . . . . 327
ASSEMBLER_DIALECT . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
assigning attribute values to insns . . . . . . . . . . . . . 503
ASSUME_EXTENDED_UNWIND_CONTEXT . . . . . . . . . . . . 585
asterisk in template . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
atan2m3 instruction pattern . . . . . . . . . . . . . . . . . . . 449
atanm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 448
atomic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
atomic_add_fetch_cmp_0mode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_add_fetchmode instruction pattern . . . . 477
atomic_addmode instruction pattern . . . . . . . . . . . 477
atomic_and_fetch_cmp_0mode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_and_fetchmode instruction pattern . . . . 477
atomic_andmode instruction pattern . . . . . . . . . . . 477
atomic_bit_test_and_complementmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_bit_test_and_resetmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_bit_test_and_setmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478



856 GNU Compiler Collection (GCC) Internals

atomic_compare_and_swapmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 476
atomic_exchangemode instruction pattern . . . . . 477
atomic_fetch_addmode instruction pattern . . . . 477
atomic_fetch_andmode instruction pattern . . . . 477
atomic_fetch_nandmode instruction pattern . . . 477
atomic_fetch_ormode instruction pattern . . . . . 477
atomic_fetch_submode instruction pattern . . . . 477
atomic_fetch_xormode instruction pattern . . . . 477
atomic_loadmode instruction pattern . . . . . . . . . . 476
atomic_nand_fetchmode instruction pattern . . . 477
atomic_nandmode instruction pattern . . . . . . . . . . 477
atomic_or_fetch_cmp_0mode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_or_fetchmode instruction pattern . . . . . 477
atomic_ormode instruction pattern . . . . . . . . . . . . 477
atomic_storemode instruction pattern . . . . . . . . 476
atomic_sub_fetch_cmp_0mode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_sub_fetchmode instruction pattern . . . . 477
atomic_submode instruction pattern . . . . . . . . . . . 477
atomic_test_and_set instruction pattern . . . . . 477
atomic_xor_fetch_cmp_0mode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 478
atomic_xor_fetchmode instruction pattern . . . . 477
atomic_xormode instruction pattern . . . . . . . . . . . 477
attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503, 504
attr_flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
attribute expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 501
attribute specifications . . . . . . . . . . . . . . . . . . . . . . . . 505
attribute specifications example . . . . . . . . . . . . . . . 505
ATTRIBUTE_ALIGNED_VALUE . . . . . . . . . . . . . . . . . . . . 544
attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
attributes, defining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
attributes, target-specific . . . . . . . . . . . . . . . . . . . . . . 688
autoincrement addressing, availability . . . . . . . . . . . 3
autoincrement/decrement addressing . . . . . . . . . . 385
automata_option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
automaton based pipeline description . . . . . 508, 509
automaton based scheduler . . . . . . . . . . . . . . . . . . . . 508
avgm3_ceil instruction pattern . . . . . . . . . . . . . . . 446
avgm3_floor instruction pattern . . . . . . . . . . . . . . 446
AVOID_CCMODE_COPIES . . . . . . . . . . . . . . . . . . . . . . . . 562

B
backslash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
barrier and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
barrier and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
BASE_REG_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
basic block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
basic blocks, RTL SSA . . . . . . . . . . . . . . . . . . . . . . . . 339
Basic Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
basic-block.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
basic_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339, 349
BASIC_BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
bb_seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

BB_HEAD, BB_END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
BIGGEST_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
BIGGEST_FIELD_ALIGNMENT . . . . . . . . . . . . . . . . . . . . 545
BImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
BIND_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
BINFO_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
bit-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
BIT_AND_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
BIT_IOR_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
BIT_NOT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
BIT_XOR_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
BITFIELD_NBYTES_LIMITED . . . . . . . . . . . . . . . . . . . . 548
BITINT_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
bitreverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
BITS_BIG_ENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
BITS_BIG_ENDIAN, effect on sign_extract . . . . . 318
BITS_PER_UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
BITS_PER_WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
bitwise complement . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
bitwise exclusive-or . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
bitwise inclusive-or . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
bitwise logical-and . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
BLKmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
BLKmode, and function return values . . . . . . . . . . . 337
BLOCK_FOR_INSN, gimple_bb . . . . . . . . . . . . . . . . . . 355
BLOCK_REG_PADDING . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
blockage instruction pattern . . . . . . . . . . . . . . . . . . 473
Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
BND32mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
BND64mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
bool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
BOOL_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
BOOLEAN_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
branch prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
BRANCH_COST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
break_out_memory_refs . . . . . . . . . . . . . . . . . . . . . . 618
BREAK_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
BSS_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . . . 648
bswap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
bswapm2 instruction pattern . . . . . . . . . . . . . . . . . . . 447
BTF_DEBUGGING_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . 685
btruncm2 instruction pattern . . . . . . . . . . . . . . . . . . 450
build0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
build1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
build2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
build3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
build4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
build5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
build6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
builtin_longjmp instruction pattern . . . . . . . . . . 471
builtin_setjmp_receiver

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 471
builtin_setjmp_setup instruction pattern . . . . 471
byte_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
BYTES_BIG_ENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
BYTES_BIG_ENDIAN, effect on subreg . . . . . . . . . . . 310



Concept Index 857

C
c_register_pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
c_register_pragma_with_expansion . . . . . . . . . 708
C statements for assembler output . . . . . . . . . . . . 376
C_COMMON_OVERRIDE_OPTIONS . . . . . . . . . . . . . . . . . . 539
cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
cadd270m3 instruction pattern . . . . . . . . . . . . . . . . . 451
cadd90m3 instruction pattern . . . . . . . . . . . . . . . . . . 451
call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293, 322
call instruction pattern . . . . . . . . . . . . . . . . . . . . . . 466
call usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
call, in call_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
call, in mem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
call-clobbered register . . . . . . . . . . . . . . . . . . . . . . . . . 557
call-saved register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
call-used register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
call_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
call_insn and ‘/c’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
call_insn and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
call_insn and ‘/i’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
call_insn and ‘/j’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
call_insn and ‘/s’ . . . . . . . . . . . . . . . . . . . . . . . 290, 292
call_insn and ‘/u’ . . . . . . . . . . . . . . . . . . . . . . . 290, 291
call_insn and ‘/u’ or ‘/i’ . . . . . . . . . . . . . . . . . . . . 292
call_insn and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
call_pop instruction pattern . . . . . . . . . . . . . . . . . . 466
call_used_regs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
call_value instruction pattern . . . . . . . . . . . . . . . 466
call_value_pop instruction pattern . . . . . . . . . . . 466
CALL_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
CALL_INSN_FUNCTION_USAGE . . . . . . . . . . . . . . . . . . . 330
CALL_POPS_ARGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
CALL_REALLY_USED_REGISTERS . . . . . . . . . . . . . . . . 557
CALL_USED_REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . 557
callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
calling conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
calling functions in RTL . . . . . . . . . . . . . . . . . . . . . . 337
can_create_pseudo_p . . . . . . . . . . . . . . . . . . . . . . . . 427
can_fallthru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
canadian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
canonicalization of instructions . . . . . . . . . . . . . . . . 484
canonicalize_funcptr_for_compare

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 469
caret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390, 787
CASE_VECTOR_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
CASE_VECTOR_PC_RELATIVE . . . . . . . . . . . . . . . . . . . . 702
CASE_VECTOR_SHORTEN_MODE . . . . . . . . . . . . . . . . . . . 702
casesi instruction pattern . . . . . . . . . . . . . . . . . . . . 468
cbranchmode4 instruction pattern . . . . . . . . . . . . . 465
CC1_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
CC1PLUS_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
CCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297, 629
CDImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
CEIL_DIV_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
CEIL_MOD_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
ceilm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 450
CFA_FRAME_BASE_OFFSET . . . . . . . . . . . . . . . . . . . . . . 578
CFG verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

CFG, Control Flow Graph . . . . . . . . . . . . . . . . . . . . 349
cfghooks.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
cgraph_finalize_function . . . . . . . . . . . . . . . . . . . 145
chain_circular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
chain_next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
chain_prev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
change_address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
CHAR_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
check_raw_ptrsm instruction pattern . . . . . . . . . . 433
check_stack instruction pattern . . . . . . . . . . . . . . 470
check_war_ptrsm instruction pattern . . . . . . . . . . 433
CHImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
class definitions, register . . . . . . . . . . . . . . . . . . . . . . 563
class preference constraints . . . . . . . . . . . . . . . . . . . . 390
class, scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
CLASS_MAX_NREGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
CLASS_TYPE_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
classes of RTX codes . . . . . . . . . . . . . . . . . . . . . . . . . . 284
CLASSTYPE_DECLARED_CLASS . . . . . . . . . . . . . . . . . . . 222
CLASSTYPE_HAS_MUTABLE . . . . . . . . . . . . . . . . . . . . . . 223
CLASSTYPE_NON_POD_P . . . . . . . . . . . . . . . . . . . . . . . . 223
CLEANUP_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
CLEANUP_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
CLEANUP_POINT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 195
CLEANUP_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Cleanups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
clear_cache instruction pattern . . . . . . . . . . . . . . 480
CLEAR_INSN_CACHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
CLEAR_RATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
clobber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
clrsb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
clrsbm2 instruction pattern . . . . . . . . . . . . . . . . . . . 454
clz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
CLZ_DEFINED_VALUE_AT_ZERO . . . . . . . . . . . . . . . . . . 706
clzm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 454
cmla_conjm4 instruction pattern . . . . . . . . . . . . . . 452
cmlam4 instruction pattern . . . . . . . . . . . . . . . . . . . . 452
cmls_conjm4 instruction pattern . . . . . . . . . . . . . . 453
cmlsm4 instruction pattern . . . . . . . . . . . . . . . . . . . . 452
cmpmemm instruction pattern . . . . . . . . . . . . . . . . . . . 457
cmpstrm instruction pattern . . . . . . . . . . . . . . . . . . . 457
cmpstrnm instruction pattern . . . . . . . . . . . . . . . . . . 456
cmul_conjm4 instruction pattern . . . . . . . . . . . . . . 453
cmulm4 instruction pattern . . . . . . . . . . . . . . . . . . . . 453
code generation RTL sequences . . . . . . . . . . . . . . . 486
code iterators in .md files . . . . . . . . . . . . . . . . . . . . . 523
code_label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
code_label and ‘/i’ . . . . . . . . . . . . . . . . . . . . . . . . . . 290
code_label and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . 290
CODE_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
CODE_LABEL_NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
codes, RTL expression . . . . . . . . . . . . . . . . . . . . . . . . 283
COImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
COLLECT_EXPORT_LIST . . . . . . . . . . . . . . . . . . . . . . . . 716
COLLECT_SHARED_FINI_FUNC . . . . . . . . . . . . . . . . . . . 671
COLLECT_SHARED_INIT_FUNC . . . . . . . . . . . . . . . . . . . 671
COLLECT2_HOST_INITIALIZATION . . . . . . . . . . . . . . 727
command-line options, guidelines for . . . . . . . . . . 793



858 GNU Compiler Collection (GCC) Internals

commit_edge_insertions . . . . . . . . . . . . . . . . . . . . . 356
compact syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
compare, canonicalization of . . . . . . . . . . . . . . . . . . . 484
COMPARE_MAX_PIECES . . . . . . . . . . . . . . . . . . . . . . . . . . 635
comparison_operator . . . . . . . . . . . . . . . . . . . . . . . . 382
compiler passes and files . . . . . . . . . . . . . . . . . . . . . . 145
complement, bitwise . . . . . . . . . . . . . . . . . . . . . . . . . . 314
complex_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
COMPLEX_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
COMPLEX_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
COMPLEX_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
COMPONENT_REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
compose_tag instruction pattern . . . . . . . . . . . . . . 480
Compound Expressions . . . . . . . . . . . . . . . . . . . . . . . 239
Compound Lvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
COMPOUND_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
COMPOUND_LITERAL_EXPR . . . . . . . . . . . . . . . . . . . . . . 195
COMPOUND_LITERAL_EXPR_DECL . . . . . . . . . . . . . . . . 202
COMPOUND_LITERAL_EXPR_DECL_EXPR . . . . . . . . . . . 202
computed jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
computing the length of an insn . . . . . . . . . . . . . . . 505
concat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
concatn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
cond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
cond and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
cond_addmode instruction pattern . . . . . . . . . . . . . 461
cond_andmode instruction pattern . . . . . . . . . . . . . 461
cond_ashlmode instruction pattern . . . . . . . . . . . . 461
cond_ashrmode instruction pattern . . . . . . . . . . . . 461
cond_ceilmode instruction pattern . . . . . . . . . . . . 460
cond_copysignmode instruction pattern . . . . . . . 461
cond_divmode instruction pattern . . . . . . . . . . . . . 461
cond_exec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
cond_floormode instruction pattern . . . . . . . . . . . 460
cond_fmamode instruction pattern . . . . . . . . . . . . . 462
cond_fmaxmode instruction pattern . . . . . . . . . . . . 461
cond_fminmode instruction pattern . . . . . . . . . . . . 461
cond_fmsmode instruction pattern . . . . . . . . . . . . . 462
cond_fnmamode instruction pattern . . . . . . . . . . . . 462
cond_fnmsmode instruction pattern . . . . . . . . . . . . 462
cond_iormode instruction pattern . . . . . . . . . . . . . 461
cond_len_addmode instruction pattern . . . . . . . . 462
cond_len_andmode instruction pattern . . . . . . . . 462
cond_len_ashlmode instruction pattern . . . . . . . 462
cond_len_ashrmode instruction pattern . . . . . . . 462
cond_len_ceilmode instruction pattern . . . . . . . 462
cond_len_copysignmode instruction pattern . . . 462
cond_len_divmode instruction pattern . . . . . . . . 462
cond_len_floormode instruction pattern . . . . . . 462
cond_len_fmamode instruction pattern . . . . . . . . 463
cond_len_fmaxmode instruction pattern . . . . . . . 462
cond_len_fminmode instruction pattern . . . . . . . 462
cond_len_fmsmode instruction pattern . . . . . . . . 463
cond_len_fnmamode instruction pattern . . . . . . . 463
cond_len_fnmsmode instruction pattern . . . . . . . 463
cond_len_iormode instruction pattern . . . . . . . . 462
cond_len_lshrmode instruction pattern . . . . . . . 462

cond_len_modmode instruction pattern . . . . . . . . 462
cond_len_mulmode instruction pattern . . . . . . . . 462
cond_len_negmode instruction pattern . . . . . . . . 462
cond_len_one_cmplmode instruction pattern . . . 462
cond_len_rintmode instruction pattern . . . . . . . 462
cond_len_roundmode instruction pattern . . . . . . 462
cond_len_smaxmode instruction pattern . . . . . . . 462
cond_len_sminmode instruction pattern . . . . . . . 462
cond_len_sqrtmode instruction pattern . . . . . . . 462
cond_len_submode instruction pattern . . . . . . . . 462
cond_len_udivmode instruction pattern . . . . . . . 462
cond_len_umaxmode instruction pattern . . . . . . . 462
cond_len_uminmode instruction pattern . . . . . . . 462
cond_len_umodmode instruction pattern . . . . . . . 462
cond_len_vec_cbranch_allmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 466
cond_len_vec_cbranch_anymode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 465
cond_len_xormode instruction pattern . . . . . . . . 462
cond_lshrmode instruction pattern . . . . . . . . . . . . 461
cond_modmode instruction pattern . . . . . . . . . . . . . 461
cond_mulmode instruction pattern . . . . . . . . . . . . . 461
cond_negmode instruction pattern . . . . . . . . . . . . . 460
cond_one_cmplmode instruction pattern . . . . . . . 460
cond_rintmode instruction pattern . . . . . . . . . . . . 460
cond_roundmode instruction pattern . . . . . . . . . . . 460
cond_smaxmode instruction pattern . . . . . . . . . . . . 461
cond_sminmode instruction pattern . . . . . . . . . . . . 461
cond_sqrtmode instruction pattern . . . . . . . . . . . . 460
cond_submode instruction pattern . . . . . . . . . . . . . 461
cond_udivmode instruction pattern . . . . . . . . . . . . 461
cond_umaxmode instruction pattern . . . . . . . . . . . . 461
cond_uminmode instruction pattern . . . . . . . . . . . . 461
cond_umodmode instruction pattern . . . . . . . . . . . . 461
cond_vec_cbranch_allmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 465
cond_vec_cbranch_anymode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 465
cond_xormode instruction pattern . . . . . . . . . . . . . 461
COND_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
condition code status . . . . . . . . . . . . . . . . . . . . . . . . . 628
condition codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
conditional execution . . . . . . . . . . . . . . . . . . . . . . . . . 514
Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . 239
conditions, in patterns . . . . . . . . . . . . . . . . . . . . . . . . 370
configuration file . . . . . . . . . . . . . . . . . . . . . . . . . 726, 727
configure terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CONJ_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
const_double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
const_double, RTL sharing . . . . . . . . . . . . . . . . . . . 347
const_double_operand . . . . . . . . . . . . . . . . . . . . . . . 381
const_double_zero . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
const_fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
const_int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
const_int and attribute tests . . . . . . . . . . . . . . . . . 501
const_int and attributes . . . . . . . . . . . . . . . . . . . . . 501
const_int, RTL sharing . . . . . . . . . . . . . . . . . . . . . . 347



Concept Index 859

const_int_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
const_poly_int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
const_poly_int, RTL sharing . . . . . . . . . . . . . . . . 347
const_string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
const_string and attributes . . . . . . . . . . . . . . . . . . 501
const_true_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
const_vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
const_vector, RTL sharing . . . . . . . . . . . . . . . . . . . 347
const0_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
const1_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
const2_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
CONST_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
CONST_DOUBLE_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
CONST_WIDE_INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
CONST_WIDE_INT_ELT . . . . . . . . . . . . . . . . . . . . . . . . . . 304
CONST_WIDE_INT_NUNITS . . . . . . . . . . . . . . . . . . . . . . 304
CONST_WIDE_INT_VEC . . . . . . . . . . . . . . . . . . . . . . . . . . 303
CONST0_RTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
CONST1_RTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
CONST2_RTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
constant attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
constant definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
CONSTANT_ADDRESS_P . . . . . . . . . . . . . . . . . . . . . . . . . . 617
CONSTANT_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
CONSTANT_POOL_ADDRESS_P . . . . . . . . . . . . . . . . . . . . 290
CONSTANT_POOL_BEFORE_FUNCTION . . . . . . . . . . . . . 657
constants in constraints . . . . . . . . . . . . . . . . . . . . . . . 386
constm1_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
constraint modifier characters . . . . . . . . . . . . . . . . . 390
constraint, matching . . . . . . . . . . . . . . . . . . . . . . . . . . 387
constraint_num . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
constraint_satisfied_p . . . . . . . . . . . . . . . . . . . . . 425
constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
constraints, defining . . . . . . . . . . . . . . . . . . . . . . . . . . 421
constraints, machine specific . . . . . . . . . . . . . . . . . . 392
constraints, testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
constructors, automatic calls . . . . . . . . . . . . . . . . . . 733
constructors, output of . . . . . . . . . . . . . . . . . . . . . . . . 668
CONSTRUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
CONTINUE_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
controlling register usage . . . . . . . . . . . . . . . . . . . . . . 558
controlling the compilation driver . . . . . . . . . . . . . 530
conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
CONVERT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
copy_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
copy_rtx_if_shared . . . . . . . . . . . . . . . . . . . . . . . . . . 348
copysign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
copysignm3 instruction pattern . . . . . . . . . . . . . . . 451
cosm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 447
costs of instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
cp_namespace_decls . . . . . . . . . . . . . . . . . . . . . . . . . . 221
cp_type_quals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
CP_INTEGRAL_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
CP_TYPE_CONST_NON_VOLATILE_P . . . . . . . . . . . . . . 219
CP_TYPE_CONST_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
CP_TYPE_RESTRICT_P . . . . . . . . . . . . . . . . . . . . . . . . . . 219

CP_TYPE_VOLATILE_P . . . . . . . . . . . . . . . . . . . . . . . . . . 219
CPLUSPLUS_CPP_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . 531
CPP_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
CPSImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
cpymemm instruction pattern . . . . . . . . . . . . . . . . . . . 455
CQImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
crc_revmn4 instruction pattern . . . . . . . . . . . . . . . 481
crcmn4 instruction pattern . . . . . . . . . . . . . . . . . . . . 480
cross compilation and floating point . . . . . . . . . . . 685
CROSSING_JUMP_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
CRT_CALL_STATIC_FUNCTION . . . . . . . . . . . . . . . . . . . 649
crtl->args.pops_args . . . . . . . . . . . . . . . . . . . . . . . 603
crtl->args.pretend_args_size . . . . . . . . . . . . . . 603
crtl->outgoing_args_size . . . . . . . . . . . . . . . . . . . 588
CRTSTUFF_T_CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
CRTSTUFF_T_CFLAGS_S . . . . . . . . . . . . . . . . . . . . . . . . 729
CSImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
cstoremode4 instruction pattern . . . . . . . . . . . . . . 464
CTF_DEBUGGING_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . 685
CTImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
ctrapMM4 instruction pattern . . . . . . . . . . . . . . . . . . 473
ctz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
CTZ_DEFINED_VALUE_AT_ZERO . . . . . . . . . . . . . . . . . . 706
ctzm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 454
CUMULATIVE_ARGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
current_function_is_leaf . . . . . . . . . . . . . . . . . . . 562
current_function_uses_only_leaf_regs . . . . . 562
current_insn_predicate . . . . . . . . . . . . . . . . . . . . . 515

D
DAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
data bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510, 511
data dependence delays . . . . . . . . . . . . . . . . . . . . . . . 508
Data Dependency Analysis . . . . . . . . . . . . . . . . . . . . 366
data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
DATA_ABI_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 546
DATA_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
DATA_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . 648
dbr_sequence_length . . . . . . . . . . . . . . . . . . . . . . . . 675
DBR_OUTPUT_SEQEND . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
DCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
DDmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
De Morgan’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
dead_or_set_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
debug_expr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
debug_implicit_ptr . . . . . . . . . . . . . . . . . . . . . . . . . . 328
debug_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
debug_marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
debug_parameter_ref . . . . . . . . . . . . . . . . . . . . . . . . 328
DEBUG_EXPR_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DEBUGGER_ARG_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . 682
DEBUGGER_AUTO_OFFSET . . . . . . . . . . . . . . . . . . . . . . . 682
DEBUGGER_REGNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
decimal float library . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DECL_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DECL_ANTICIPATED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
DECL_ARGUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



860 GNU Compiler Collection (GCC) Internals

DECL_ARRAY_DELETE_OPERATOR_P . . . . . . . . . . . . . . 226
DECL_ARTIFICIAL . . . . . . . . . . . . . . . . . . . . 186, 215, 217
DECL_ASSEMBLER_NAME . . . . . . . . . . . . . . . . . . . . . . . . 215
DECL_ATTRIBUTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DECL_BASE_CONSTRUCTOR_P . . . . . . . . . . . . . . . . . . . . 225
DECL_COMPLETE_CONSTRUCTOR_P . . . . . . . . . . . . . . . 225
DECL_COMPLETE_DESTRUCTOR_P . . . . . . . . . . . . . . . . 225
DECL_CONST_MEMFUNC_P . . . . . . . . . . . . . . . . . . . . . . . 224
DECL_CONSTRUCTOR_P . . . . . . . . . . . . . . . . . . . . . . . . . . 224
DECL_CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
DECL_CONV_FN_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DECL_COPY_CONSTRUCTOR_P . . . . . . . . . . . . . . . . . . . . 225
DECL_DESTRUCTOR_P . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DECL_EXTERN_C_FUNCTION_P . . . . . . . . . . . . . . . . . . . 224
DECL_EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 186, 217
DECL_FUNCTION_MEMBER_P . . . . . . . . . . . . . . . . . . . . . 224
DECL_FUNCTION_SPECIFIC_OPTIMIZATION . . 215, 218
DECL_FUNCTION_SPECIFIC_TARGET . . . . . . . . 215, 217
DECL_GLOBAL_CTOR_P . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DECL_GLOBAL_DTOR_P . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DECL_INITIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186, 216
DECL_LINKONCE_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
DECL_LOCAL_FUNCTION_P . . . . . . . . . . . . . . . . . . . . . . 224
DECL_MAIN_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
DECL_NAME . . . . . . . . . . . . . . . . . . . . . . . . . . 186, 215, 221
DECL_NAMESPACE_ALIAS . . . . . . . . . . . . . . . . . . . . . . . 221
DECL_NAMESPACE_STD_P . . . . . . . . . . . . . . . . . . . . . . . 221
DECL_NON_THUNK_FUNCTION_P . . . . . . . . . . . . . . . . . . 225
DECL_NONCONVERTING_P . . . . . . . . . . . . . . . . . . . . . . . 225
DECL_NONSTATIC_MEMBER_FUNCTION_P . . . . . . . . . 224
DECL_OVERLOADED_OPERATOR_P . . . . . . . . . . . . . . . . 225
DECL_PURE_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
DECL_RESULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
DECL_SAVED_TREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
DECL_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DECL_STATIC_FUNCTION_P . . . . . . . . . . . . . . . . . . . . . 224
DECL_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
DECL_STMT_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
DECL_THUNK_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DECL_VIRTUAL_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
DECL_VOLATILE_MEMFUNC_P . . . . . . . . . . . . . . . . . . . . 224
declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
declarations, RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
DECLARE_LIBRARY_RENAMES . . . . . . . . . . . . . . . . . . . . 614
default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
default_file_start . . . . . . . . . . . . . . . . . . . . . . . . . . 653
DEFAULT_GDB_EXTENSIONS . . . . . . . . . . . . . . . . . . . . . 682
DEFAULT_INCOMING_FRAME_SP_OFFSET . . . . . . . . . 577
DEFAULT_PCC_STRUCT_RETURN . . . . . . . . . . . . . . . . . . 600
DEFAULT_SIGNED_CHAR . . . . . . . . . . . . . . . . . . . . . . . . 553
define_address_constraint . . . . . . . . . . . . . . . . . . 424
define_asm_attributes . . . . . . . . . . . . . . . . . . . . . . 504
define_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
define_automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
define_bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
define_c_enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
define_code_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
define_code_iterator . . . . . . . . . . . . . . . . . . . . . . . 523

define_cond_exec . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
define_constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
define_constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
define_cpu_unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
define_delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
define_enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
define_enum_attr . . . . . . . . . . . . . . . . . . . . . . . 500, 520
define_expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
define_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
define_insn example . . . . . . . . . . . . . . . . . . . . . . . . . 371
define_insn_and_rewrite . . . . . . . . . . . . . . . . . . . . 492
define_insn_and_split . . . . . . . . . . . . . . . . . . . . . . 491
define_insn_reservation . . . . . . . . . . . . . . . . . . . . 510
define_int_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
define_int_iterator . . . . . . . . . . . . . . . . . . . . . . . . 524
define_memory_constraint . . . . . . . . . . . . . . . . . . . 423
define_mode_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
define_mode_iterator . . . . . . . . . . . . . . . . . . . . . . . 521
define_peephole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
define_peephole2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
define_predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
define_query_cpu_unit . . . . . . . . . . . . . . . . . . . . . . 510
define_register_constraint . . . . . . . . . . . . . . . . 422
define_relaxed_memory_constraint . . . . . . . . . 424
define_reservation . . . . . . . . . . . . . . . . . . . . . . . . . . 511
define_special_memory_constraint . . . . . . . . . 423
define_special_predicate . . . . . . . . . . . . . . . . . . . 383
define_split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
define subst . . . . . . . . . . . . . . . . . . . . 516, 517, 518, 525
define_subst_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
defining attributes and their values . . . . . . . . . . . . 499
defining constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
defining jump instruction patterns . . . . . . . . . . . . 482
defining looping instruction patterns . . . . . . . . . . 482
defining peephole optimizers . . . . . . . . . . . . . . . . . . 495
defining predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
defining RTL sequences for code generation . . . 486
degenerate phi node, RTL SSA . . . . . . . . . . . . . . . . 342
delay slots, defining . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
deletable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
DELETE_IF_ORDINARY . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Dependent Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
desc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
descriptors for nested functions . . . . . . . . . . . . . . . 611
destructors, output of . . . . . . . . . . . . . . . . . . . . . . . . . 668
deterministic finite state automaton . . . . . . 508, 513
DFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
diagnostics guidelines, fix-it hints . . . . . . . . . . . . . 791
diagnostics, actionable . . . . . . . . . . . . . . . . . . . . . . . . 785
diagnostics, false positive . . . . . . . . . . . . . . . . . . . . . 785
diagnostics, guidelines for . . . . . . . . . . . . . . . . . . . . . 785
diagnostics, locations . . . . . . . . . . . . . . . . . . . . . . . . . 787
diagnostics, true positive . . . . . . . . . . . . . . . . . . . . . . 785
digits in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
DImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
DIR_SEPARATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
DIR_SEPARATOR_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
directory options .md . . . . . . . . . . . . . . . . . . . . . . . . . 494



Concept Index 861

disabling certain registers . . . . . . . . . . . . . . . . . . . . . 558
dispatch table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
div and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
divm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
divmodm4 instruction pattern . . . . . . . . . . . . . . . . . . 445
DO_BODY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
DO_COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
DO_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
dollar sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
DOLLARS_IN_IDENTIFIERS . . . . . . . . . . . . . . . . . . . . . 709
doloop_begin instruction pattern . . . . . . . . . . . . . 469
doloop_end instruction pattern . . . . . . . . . . . . . . . 468
DONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487, 489, 498
DONT_USE_BUILTIN_SETJMP . . . . . . . . . . . . . . . . . . . . 679
DQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
DRIVER_SELF_SPECS . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
dump examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
dump setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
dump types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
dump verbosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
dump_basic_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
dump_generic_expr . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
dump_gimple_stmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
dump_printf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
DUMPFILE_FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
DWARF_ALT_FRAME_RETURN_COLUMN . . . . . . . . . . . . . 576
DWARF_CIE_DATA_ALIGNMENT . . . . . . . . . . . . . . . . . . . 679
DWARF_FRAME_REGISTERS . . . . . . . . . . . . . . . . . . . . . . 585
DWARF_FRAME_REGNUM . . . . . . . . . . . . . . . . . . . . . . . . . . 585
DWARF_LAZY_REGISTER_VALUE . . . . . . . . . . . . . . . . . . 586
DWARF_REG_TO_UNWIND_COLUMN . . . . . . . . . . . . . . . . 585
DWARF_VERSION_DEFAULT . . . . . . . . . . . . . . . . . . . . . . 577
DWARF_ZERO_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
DWARF2_ASM_LINE_DEBUG_INFO . . . . . . . . . . . . . . . . 683
DWARF2_ASM_VIEW_DEBUG_INFO . . . . . . . . . . . . . . . . 683
DWARF2_DEBUGGING_INFO . . . . . . . . . . . . . . . . . . . . . . 683
DWARF2_FRAME_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
DWARF2_FRAME_REG_OUT . . . . . . . . . . . . . . . . . . . . . . . 585
DWARF2_UNWIND_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . 678
DYNAMIC_CHAIN_ADDRESS . . . . . . . . . . . . . . . . . . . . . . 575

E
‘E’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
earlyclobber operand . . . . . . . . . . . . . . . . . . . . . . . . . . 391
edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
edge in the flow graph . . . . . . . . . . . . . . . . . . . . . . . . 351
edge iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
edge splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
EDGE_ABNORMAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
EDGE_ABNORMAL, EDGE_ABNORMAL_CALL . . . . . . . . . 353
EDGE_ABNORMAL, EDGE_EH . . . . . . . . . . . . . . . . . . . . . 352
EDGE_ABNORMAL, EDGE_SIBCALL . . . . . . . . . . . . . . . . 352
EDGE_FALLTHRU, force_nonfallthru . . . . . . . . . . 352
EDOM, implicit usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

eh_return instruction pattern . . . . . . . . . . . . . . . . . 472
EH_FRAME_SECTION_NAME . . . . . . . . . . . . . . . . . . . . . . 678
EH_FRAME_THROUGH_COLLECT2 . . . . . . . . . . . . . . . . . . 678
EH_RETURN_DATA_REGNO . . . . . . . . . . . . . . . . . . . . . . . 579
EH_RETURN_HANDLER_RTX . . . . . . . . . . . . . . . . . . . . . . 580
EH_RETURN_STACKADJ_RTX . . . . . . . . . . . . . . . . . . . . . 579
EH_RETURN_TAKEN_RTX . . . . . . . . . . . . . . . . . . . . . . . . 580
EH_TABLES_CAN_BE_READ_ONLY . . . . . . . . . . . . . . . . 678
EH_USES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
ei_edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_end_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_last . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_one_before_end_p . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_prev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_safe_edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ei_start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
ELIMINABLE_REGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
ELSE_CLAUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Embedded C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Empty Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
EMPTY_CLASS_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
EMPTY_FIELD_BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . 547
Emulated TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
ENDFILE_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
entry_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR . . . . . . . . . . . 349
enum reg_class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
ENUMERAL_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
epilogue instruction pattern . . . . . . . . . . . . . . . . . . 472
EPILOGUE_USES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
eq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
eq and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
eq_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
EQ_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
errno, implicit usage . . . . . . . . . . . . . . . . . . . . . . . . . . 615
EXACT_DIV_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
examining SSA NAMEs . . . . . . . . . . . . . . . . . . . . . . 279
exception handling . . . . . . . . . . . . . . . . . . . . . . . 352, 579
exception_receiver instruction pattern . . . . . . 471
exclamation point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
exclusion_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
exclusive-or, bitwise . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
EXIT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
EXIT_IGNORE_STACK . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
exp10m2 instruction pattern . . . . . . . . . . . . . . . . . . . 449
exp2m2 instruction pattern . . . . . . . . . . . . . . . . . . . . 449
expander definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 486
expm1m2 instruction pattern . . . . . . . . . . . . . . . . . . . 448
expm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 448
expr_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
EXPR_FILENAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
EXPR_LINENO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



862 GNU Compiler Collection (GCC) Internals

EXPR_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
EXPR_STMT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
expression codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
extended basic blocks, RTL SSA . . . . . . . . . . . . . . 339
extendmn2 instruction pattern . . . . . . . . . . . . . . . . . 458
extensible constraints . . . . . . . . . . . . . . . . . . . . . . . . . 387
EXTRA_SPECS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
extract_last_m instruction pattern . . . . . . . . . . . 439
extv instruction pattern . . . . . . . . . . . . . . . . . . . . . . 459
extvm instruction pattern . . . . . . . . . . . . . . . . . . . . . 459
extvmisalignm instruction pattern . . . . . . . . . . . . 459
extzv instruction pattern . . . . . . . . . . . . . . . . . . . . . 460
extzvm instruction pattern . . . . . . . . . . . . . . . . . . . . 459
extzvmisalignm instruction pattern . . . . . . . . . . . 459

F
‘F’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
FAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487, 490, 498
fall-thru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
false positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
FATAL_EXIT_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
FDL, GNU Free Documentation License . . . . . . 811
features, optional, in system conventions . . . . . . 538
feclearexceptm instruction pattern . . . . . . . . . . . 448
fegetroundm instruction pattern . . . . . . . . . . . . . . 448
feraiseexceptm instruction pattern . . . . . . . . . . . 448
ffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ffsm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 453
FIELD_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
file_end_indicate_exec_stack . . . . . . . . . . . . . . 654
files and passes of the compiler . . . . . . . . . . . . . . . . 145
files, generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
final_absence_set . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
final_presence_set . . . . . . . . . . . . . . . . . . . . . . . . . . 512
final_sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
FINAL_PRESCAN_INSN . . . . . . . . . . . . . . . . . . . . . . . . . . 673
FIND_BASE_TERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
FINI_ARRAY_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . 649
FINI_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . 648
finite state automaton minimization . . . . . . . . . . . 513
FIRST_PARM_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
FIRST_PARM_OFFSET and virtual registers . . . . . . 307
FIRST_PSEUDO_REGISTER . . . . . . . . . . . . . . . . . . . . . . 556
FIRST_STACK_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
FIRST_VIRTUAL_REGISTER . . . . . . . . . . . . . . . . . . . . . 307
fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
fix-it hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
fix_truncmn2 instruction pattern . . . . . . . . . . . . . 458
FIX_TRUNC_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
fixed register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
fixed-point fractional library . . . . . . . . . . . . . . . . . . . 20
fixed_regs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
fixed_size_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
FIXED_CONVERT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 195
FIXED_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
FIXED_POINT_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

FIXED_REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
fixmn2 instruction pattern . . . . . . . . . . . . . . . . . . . . 457
fixuns_truncmn2 instruction pattern . . . . . . . . . . 458
fixunsmn2 instruction pattern . . . . . . . . . . . . . . . . . 458
flags in RTL expression . . . . . . . . . . . . . . . . . . . . . . . 290
float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
float_extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
float_truncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
FLOAT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
FLOAT_LIB_COMPARE_RETURNS_BOOL . . . . . . . . . . . . 615
FLOAT_STORE_FLAG_VALUE . . . . . . . . . . . . . . . . . . . . . 706
FLOAT_WORDS_BIG_ENDIAN . . . . . . . . . . . . . . . . . . . . . 541
FLOAT_WORDS_BIG_ENDIAN, (lack of)

effect on subreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
floating point and cross compilation . . . . . . . . . . . 685
floatmn2 instruction pattern . . . . . . . . . . . . . . . . . . 457
floatunsmn2 instruction pattern . . . . . . . . . . . . . . 457
FLOOR_DIV_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
FLOOR_MOD_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
floorm2 instruction pattern . . . . . . . . . . . . . . . . . . . 450
flow-insensitive alias analysis . . . . . . . . . . . . . . . . . . 280
flow-sensitive alias analysis . . . . . . . . . . . . . . . . . . . . 280
fma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
fmam4 instruction pattern . . . . . . . . . . . . . . . . . . . . . 438
fmaxm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 438
fminm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 438
fmodm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 447
fmsm4 instruction pattern . . . . . . . . . . . . . . . . . . . . . 438
fnmam4 instruction pattern . . . . . . . . . . . . . . . . . . . . 438
fnmsm4 instruction pattern . . . . . . . . . . . . . . . . . . . . 438
fold_extract_last_m instruction pattern . . . . . 439
fold_left_plus_m instruction pattern . . . . . . . . 439
for_user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
FOR_BODY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
FOR_COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
FOR_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
FOR_INIT_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
FOR_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
force_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
FORCE_CODE_SECTION_ALIGN . . . . . . . . . . . . . . . . . . . 649
fract_convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
FRACT_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
fractional types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
fractmn2 instruction pattern . . . . . . . . . . . . . . . . . . 458
fractunsmn2 instruction pattern . . . . . . . . . . . . . . 458
frame layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
frame_pointer_needed . . . . . . . . . . . . . . . . . . . . . . . 602
frame_pointer_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
frame_related . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
frame_related, in insn, call_insn,
jump_insn, barrier, and set . . . . . . . . . . . . . . . 292

frame_related, in mem . . . . . . . . . . . . . . . . . . . . . . . . 291
frame_related, in reg . . . . . . . . . . . . . . . . . . . . . . . . 291
frame_related, in symbol_ref . . . . . . . . . . . . . . . . 292
FRAME_ADDR_RTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
FRAME_GROWS_DOWNWARD . . . . . . . . . . . . . . . . . . . . . . . 574
FRAME_GROWS_DOWNWARD and virtual registers . . . 307
FRAME_POINTER_CFA_OFFSET . . . . . . . . . . . . . . . . . . . 578



Concept Index 863

FRAME_POINTER_REGNUM . . . . . . . . . . . . . . . . . . . . . . . 583
FRAME_POINTER_REGNUM and virtual registers . . . 307
frequency, count, BB_FREQ_BASE . . . . . . . . . . . . . 354
ftruncm2 instruction pattern . . . . . . . . . . . . . . . . . . 458
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 223
function entry and exit . . . . . . . . . . . . . . . . . . . . . . . . 601
function entry point, alternate

function entry point . . . . . . . . . . . . . . . . . . . . . . . . 353
function properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
function-call insns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
FUNCTION_ARG_REGNO_P . . . . . . . . . . . . . . . . . . . . . . . 594
FUNCTION_BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
FUNCTION_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 223
FUNCTION_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
FUNCTION_PROFILER . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
FUNCTION_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
FUNCTION_VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
FUNCTION_VALUE_REGNO_P . . . . . . . . . . . . . . . . . . . . . 599
functions, leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
fundamental type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
fused multiply-add . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

G
‘g’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
‘G’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
garbage collector, invocation . . . . . . . . . . . . . . . . . . 746
garbage collector, troubleshooting . . . . . . . . . . . . . 746
gather_loadmn instruction pattern . . . . . . . . . . . . 430
GCC and portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
GCC_DRIVER_HOST_INITIALIZATION . . . . . . . . . . . . 727
gcov_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
ge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
ge and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
GE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
GEN_ERRNO_RTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
gencodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
general_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
GENERAL_REGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
generated files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
generating assembler output . . . . . . . . . . . . . . . . . . 376
generating insns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
generic predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
GENERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 179
genflags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
get_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
get_attr_length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
get_insns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
get_last_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
get_thread_pointermode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 479
GET_CLASS_NARROWEST_MODE . . . . . . . . . . . . . . . . . . . 302
GET_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
GET_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_BITSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_FBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

GET_MODE_IBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_INNER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_NUNITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_UNIT_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_MODE_WIDER_MODE . . . . . . . . . . . . . . . . . . . . . . . . 301
GET_RTX_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
GET_RTX_FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
GET_RTX_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
geu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
geu and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
ggc_collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
GGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
gimple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
gimple_addresses_taken . . . . . . . . . . . . . . . . . . . . . 243
gimple_asm_basic_p . . . . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_clobber_op . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_input_op . . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_nclobbers . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_ninputs . . . . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_noutputs . . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_output_op . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_set_basic . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_set_clobber_op . . . . . . . . . . . . . . . . . . 245
gimple_asm_set_input_op . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_set_output_op . . . . . . . . . . . . . . . . . . . 245
gimple_asm_set_volatile . . . . . . . . . . . . . . . . . . . . 246
gimple_asm_string . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
gimple_asm_volatile_p . . . . . . . . . . . . . . . . . . . . . . 246
gimple_assign_cast_p . . . . . . . . . . . . . . . . . . . 241, 247
gimple_assign_lhs . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_lhs_ptr . . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs_class . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs_code . . . . . . . . . . . . . . . . . . . . . 246
gimple_assign_rhs1 . . . . . . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs1_ptr . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs2 . . . . . . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs2_ptr . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs3 . . . . . . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_rhs3_ptr . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_set_lhs . . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_set_rhs1 . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_set_rhs2 . . . . . . . . . . . . . . . . . . . . . 247
gimple_assign_set_rhs3 . . . . . . . . . . . . . . . . . . . . . 247
gimple_bb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_bind_add_seq . . . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_add_stmt . . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_append_vars . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_block . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_set_block . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_set_body . . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_set_vars . . . . . . . . . . . . . . . . . . . . . . . 248
gimple_bind_vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
gimple_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_build . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765, 766



864 GNU Compiler Collection (GCC) Internals

gimple_build_debug_begin_stmt . . . . . . . . . . . . . 252
gimple_build_debug_inline_entry . . . . . . . . . . . 253
gimple_build_nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
gimple_build_omp_master . . . . . . . . . . . . . . . . . . . . 257
gimple_build_omp_ordered . . . . . . . . . . . . . . . . . . . 257
gimple_build_omp_return . . . . . . . . . . . . . . . . . . . . 258
gimple_build_omp_section . . . . . . . . . . . . . . . . . . . 259
gimple_build_omp_sections_switch . . . . . . . . . 259
gimple_build_omp_structured_block . . . . . . . . 260
gimple_build_wce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
gimple_call_arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_arg_ptr . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_copy_skip_args . . . . . . . . . . . . . . . . 250
gimple_call_fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_fndecl . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_lhs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_lhs_ptr . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_noreturn_p . . . . . . . . . . . . . . . . . . . . . 250
gimple_call_num_args . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_return_type . . . . . . . . . . . . . . . . . . . . 249
gimple_call_set_arg . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_set_chain . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_set_fn . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_set_fndecl . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_set_lhs . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_set_tail . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_call_tail_p . . . . . . . . . . . . . . . . . . . . . . . . . . 249
gimple_catch_handler . . . . . . . . . . . . . . . . . . . . . . . 250
gimple_catch_set_handler . . . . . . . . . . . . . . . . . . . 250
gimple_catch_set_types . . . . . . . . . . . . . . . . . . . . . 250
gimple_catch_types . . . . . . . . . . . . . . . . . . . . . . . . . . 250
gimple_catch_types_ptr . . . . . . . . . . . . . . . . . . . . . 250
gimple_code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_cond_code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
gimple_cond_false_label . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_lhs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_make_false . . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_make_true . . . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_rhs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_set_code . . . . . . . . . . . . . . . . . . . . . . . 250
gimple_cond_set_false_label . . . . . . . . . . . . . . . 251
gimple_cond_set_lhs . . . . . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_set_rhs . . . . . . . . . . . . . . . . . . . . . . . . 251
gimple_cond_set_true_label . . . . . . . . . . . . . . . . 251
gimple_cond_true_label . . . . . . . . . . . . . . . . . . . . . 251
gimple_convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
gimple_copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_debug_begin_stmt_p . . . . . . . . . . . . . . . . . . 242
gimple_debug_bind_get_value . . . . . . . . . . . . . . . 252
gimple_debug_bind_get_value_ptr . . . . . . . . . . . 252
gimple_debug_bind_get_var . . . . . . . . . . . . . . . . . . 252
gimple_debug_bind_has_value_p . . . . . . . . . . . . . 252
gimple_debug_bind_p . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_debug_bind_reset_value . . . . . . . . . . . . . 252
gimple_debug_bind_set_value . . . . . . . . . . . . . . . 252
gimple_debug_bind_set_var . . . . . . . . . . . . . . . . . . 252
gimple_debug_inline_entry_p . . . . . . . . . . . . . . . 242

gimple_debug_nonbind_marker_p . . . . . . . . . . . . . 242
gimple_def_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_eh_filter_failure . . . . . . . . . . . . . . . . . . . 253
gimple_eh_filter_set_failure . . . . . . . . . . . . . . 253
gimple_eh_filter_set_types . . . . . . . . . . . . . . . . 253
gimple_eh_filter_types . . . . . . . . . . . . . . . . . . . . . 253
gimple_eh_filter_types_ptr . . . . . . . . . . . . . . . . 253
gimple_eh_must_not_throw_fndecl . . . . . . . . . . . 253
gimple_eh_must_not_throw_set_fndecl . . . . . . 253
gimple_expr_code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_goto_dest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
gimple_goto_set_dest . . . . . . . . . . . . . . . . . . . . . . . 254
gimple_has_mem_ops . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_has_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_has_volatile_ops . . . . . . . . . . . . . . . . . . . . 244
gimple_label_label . . . . . . . . . . . . . . . . . . . . . . . . . . 253
gimple_label_set_label . . . . . . . . . . . . . . . . . . . . . 253
gimple_loaded_syms . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_locus_empty_p . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_modified_p . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_no_warning_p . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_nop_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
gimple_num_ops . . . . . . . . . . . . . . . . . . . . . . . . . 240, 243
gimple_omp_atomic_load_lhs . . . . . . . . . . . . . . . . 254
gimple_omp_atomic_load_rhs . . . . . . . . . . . . . . . . 254
gimple_omp_atomic_load_set_lhs . . . . . . . . . . . . 254
gimple_omp_atomic_load_set_rhs . . . . . . . . . . . . 254
gimple_omp_atomic_store_set_val . . . . . . . . . . . 254
gimple_omp_atomic_store_val . . . . . . . . . . . . . . . 255
gimple_omp_body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
gimple_omp_continue_control_def . . . . . . . . . . . 255
gimple_omp_continue_control_def_ptr . . . . . . 255
gimple_omp_continue_control_use . . . . . . . . . . . 255
gimple_omp_continue_control_use_ptr . . . . . . 255
gimple_omp_continue_set_control_def . . . . . . 255
gimple_omp_continue_set_control_use . . . . . . 255
gimple_omp_critical_name . . . . . . . . . . . . . . . . . . . 255
gimple_omp_critical_name_ptr . . . . . . . . . . . . . . 255
gimple_omp_critical_set_name . . . . . . . . . . . . . . 256
gimple_omp_for_clauses . . . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_clauses_ptr . . . . . . . . . . . . . . . . 256
gimple_omp_for_cond . . . . . . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_final . . . . . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_final_ptr . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_incr . . . . . . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_incr_ptr . . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_index . . . . . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_index_ptr . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_initial . . . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_initial_ptr . . . . . . . . . . . . . . . . 256
gimple_omp_for_pre_body . . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_set_clauses . . . . . . . . . . . . . . . . 256
gimple_omp_for_set_cond . . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_set_final . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_set_incr . . . . . . . . . . . . . . . . . . . . 257
gimple_omp_for_set_index . . . . . . . . . . . . . . . . . . . 256
gimple_omp_for_set_initial . . . . . . . . . . . . . . . . 256



Concept Index 865

gimple_omp_for_set_pre_body . . . . . . . . . . . . . . . 257
gimple_omp_parallel_child_fn . . . . . . . . . . . . . . 258
gimple_omp_parallel_child_fn_ptr . . . . . . . . . 258
gimple_omp_parallel_clauses . . . . . . . . . . . . . . . 258
gimple_omp_parallel_clauses_ptr . . . . . . . . . . . 258
gimple_omp_parallel_combined_p . . . . . . . . . . . . 257
gimple_omp_parallel_data_arg . . . . . . . . . . . . . . 258
gimple_omp_parallel_data_arg_ptr . . . . . . . . . 258
gimple_omp_parallel_set_child_fn . . . . . . . . . 258
gimple_omp_parallel_set_clauses . . . . . . . . . . . 258
gimple_omp_parallel_set_combined_p . . . . . . . 258
gimple_omp_parallel_set_data_arg . . . . . . . . . 258
gimple_omp_return_nowait_p . . . . . . . . . . . . . . . . 259
gimple_omp_return_set_nowait . . . . . . . . . . . . . . 259
gimple_omp_section_last_p . . . . . . . . . . . . . . . . . . 259
gimple_omp_section_set_last . . . . . . . . . . . . . . . 259
gimple_omp_sections_clauses . . . . . . . . . . . . . . . 259
gimple_omp_sections_clauses_ptr . . . . . . . . . . . 259
gimple_omp_sections_control . . . . . . . . . . . . . . . 259
gimple_omp_sections_control_ptr . . . . . . . . . . . 259
gimple_omp_sections_set_clauses . . . . . . . . . . . 259
gimple_omp_sections_set_control . . . . . . . . . . . 259
gimple_omp_set_body . . . . . . . . . . . . . . . . . . . . . . . . 258
gimple_omp_single_clauses . . . . . . . . . . . . . . . . . . 260
gimple_omp_single_clauses_ptr . . . . . . . . . . . . . 260
gimple_omp_single_set_clauses . . . . . . . . . . . . . 260
gimple_op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240, 243
gimple_op_ptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240, 243
gimple_phi_arg . . . . . . . . . . . . . . . . . . . . . . . . . 260, 277
gimple_phi_arg_def . . . . . . . . . . . . . . . . . . . . . . . . . . 277
gimple_phi_arg_edge . . . . . . . . . . . . . . . . . . . . . . . . 277
gimple_phi_capacity . . . . . . . . . . . . . . . . . . . . . . . . 260
gimple_phi_num_args . . . . . . . . . . . . . . . . . . . . 260, 277
gimple_phi_result . . . . . . . . . . . . . . . . . . . . . . 260, 277
gimple_phi_result_ptr . . . . . . . . . . . . . . . . . . . . . . 260
gimple_phi_set_arg . . . . . . . . . . . . . . . . . . . . . . . . . . 261
gimple_phi_set_result . . . . . . . . . . . . . . . . . . . . . . 260
gimple_plf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_resx_region . . . . . . . . . . . . . . . . . . . . . . . . . . 261
gimple_resx_set_region . . . . . . . . . . . . . . . . . . . . . 261
gimple_return_retval . . . . . . . . . . . . . . . . . . . . . . . 261
gimple_return_set_retval . . . . . . . . . . . . . . . . . . . 261
gimple_seq_add_seq . . . . . . . . . . . . . . . . . . . . . . . . . . 263
gimple_seq_add_stmt . . . . . . . . . . . . . . . . . . . . . . . . 263
gimple_seq_alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_deep_copy . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_empty_p . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_first . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_last . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_reverse . . . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_set_first . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_set_last . . . . . . . . . . . . . . . . . . . . . . . . 264
gimple_seq_singleton_p . . . . . . . . . . . . . . . . . . . . . 264
gimple_set_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_set_def_ops . . . . . . . . . . . . . . . . . . . . . . . . . . 243

gimple_set_has_volatile_ops . . . . . . . . . . . . . . . 244
gimple_set_locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
gimple_set_op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_set_plf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_set_use_ops . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_set_vdef_ops . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_set_visited . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_set_vuse_ops . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
gimple statement with ops . . . . . . . . . . . . . . . . . . . 233
gimple_stored_syms . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_switch_default_label . . . . . . . . . . . . . . . 262
gimple_switch_index . . . . . . . . . . . . . . . . . . . . . . . . 261
gimple_switch_label . . . . . . . . . . . . . . . . . . . . . . . . 262
gimple_switch_num_labels . . . . . . . . . . . . . . . . . . . 261
gimple_switch_set_default_label . . . . . . . . . . . 262
gimple_switch_set_index . . . . . . . . . . . . . . . . . . . . 262
gimple_switch_set_label . . . . . . . . . . . . . . . . . . . . 262
gimple_switch_set_num_labels . . . . . . . . . . . . . . 261
gimple_try_catch_is_cleanup . . . . . . . . . . . . . . . 262
gimple_try_cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . 262
gimple_try_eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
gimple_try_kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
gimple_try_set_catch_is_cleanup . . . . . . . . . . . 262
gimple_try_set_cleanup . . . . . . . . . . . . . . . . . . . . . 263
gimple_try_set_eval . . . . . . . . . . . . . . . . . . . . . . . . 262
gimple_use_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_vdef_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_visited_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
gimple_vuse_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
gimple_wce_cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . 263
gimple_wce_cleanup_eh_only . . . . . . . . . . . . . . . . 263
gimple_wce_set_cleanup . . . . . . . . . . . . . . . . . . . . . 263
gimple_wce_set_cleanup_eh_only . . . . . . . . . . . . 263
GIMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 146, 231
GIMPLE API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
GIMPLE class hierarchy . . . . . . . . . . . . . . . . . . . . . . 234
GIMPLE Exception Handling . . . . . . . . . . . . . . . . . 237
GIMPLE instruction set . . . . . . . . . . . . . . . . . . . . . . 237
GIMPLE sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
GIMPLE statement iterators . . . . . . . . . . . . . 350, 355
GIMPLE_ASM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
GIMPLE_ASSIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
GIMPLE_BIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
GIMPLE_CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
GIMPLE_CATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
GIMPLE_COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
GIMPLE_DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
GIMPLE_DEBUG_BEGIN_STMT . . . . . . . . . . . . . . . . . . . . 251
GIMPLE_DEBUG_BIND . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
GIMPLE_DEBUG_INLINE_ENTRY . . . . . . . . . . . . . . . . . . 251
GIMPLE_EH_FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
GIMPLE_GOTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
GIMPLE_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
GIMPLE_NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
GIMPLE_OMP_ATOMIC_LOAD . . . . . . . . . . . . . . . . . . . . . 254
GIMPLE_OMP_ATOMIC_STORE . . . . . . . . . . . . . . . . . . . . 254
GIMPLE_OMP_CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . 255



866 GNU Compiler Collection (GCC) Internals

GIMPLE_OMP_CRITICAL . . . . . . . . . . . . . . . . . . . . . . . . 255
GIMPLE_OMP_FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
GIMPLE_OMP_MASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
GIMPLE_OMP_ORDERED . . . . . . . . . . . . . . . . . . . . . . . . . . 257
GIMPLE_OMP_PARALLEL . . . . . . . . . . . . . . . . . . . . . . . . 257
GIMPLE_OMP_RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
GIMPLE_OMP_SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 259
GIMPLE_OMP_SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . 259
GIMPLE_OMP_SINGLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
GIMPLE_OMP_STRUCTURED_BLOCK . . . . . . . . . . . . . . . 260
GIMPLE_PHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
GIMPLE_RESX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
GIMPLE_RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
GIMPLE_SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
GIMPLE_TRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
GIMPLE_WITH_CLEANUP_EXPR . . . . . . . . . . . . . . . . . . . 263
gimplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145, 146
gimplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
gimplify_assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
gimplify_expr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
gimplify_function_tree . . . . . . . . . . . . . . . . . . . . . 146
global_regs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
GLOBAL_INIT_PRIORITY . . . . . . . . . . . . . . . . . . . . . . . 226
GO_IF_LEGITIMATE_ADDRESS . . . . . . . . . . . . . . . . . . . 618
greater than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
gsi_after_labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
gsi_bb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_commit_edge_inserts . . . . . . . . . . . . . . . 268, 356
gsi_commit_one_edge_insert . . . . . . . . . . . . . . . . 268
gsi_end_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265, 356
gsi_for_stmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
gsi_insert_after . . . . . . . . . . . . . . . . . . . . . . . 267, 356
gsi_insert_before . . . . . . . . . . . . . . . . . . . . . . 267, 356
gsi_insert_on_edge . . . . . . . . . . . . . . . . . . . . . 267, 356
gsi_insert_on_edge_immediate . . . . . . . . . . . . . . 267
gsi_insert_seq_after . . . . . . . . . . . . . . . . . . . . . . . 267
gsi_insert_seq_before . . . . . . . . . . . . . . . . . . . . . . 267
gsi_insert_seq_on_edge . . . . . . . . . . . . . . . . . . . . . 267
gsi_last . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265, 356
gsi_last_bb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
gsi_link_after . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_link_before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_link_seq_after . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_link_seq_before . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_move_after . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
gsi_move_before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
gsi_move_to_bb_end . . . . . . . . . . . . . . . . . . . . . . . . . . 267
gsi_next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265, 356
gsi_one_before_end_p . . . . . . . . . . . . . . . . . . . . . . . 265
gsi_prev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265, 356
gsi_remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266, 356
gsi_replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_split_seq_after . . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_split_seq_before . . . . . . . . . . . . . . . . . . . . . . . 266
gsi_start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265, 356
gsi_start_bb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
gsi_stmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

gsi_stmt_ptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
gt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
gt and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
GT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
gtu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
gtu and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
GTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
guidelines for diagnostics . . . . . . . . . . . . . . . . . . . . . . 785
guidelines for options . . . . . . . . . . . . . . . . . . . . . . . . . 793
guidelines, user experience . . . . . . . . . . . . . . . . . . . . 785

H
‘H’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
HAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
HANDLE_PRAGMA_PACK_WITH_EXPANSION . . . . . . . . 708
HANDLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
HANDLER_BODY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
HANDLER_PARMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
hard registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
hard registers in constraint . . . . . . . . . . . . . . . . . . . . 386
HARD_FRAME_POINTER_IS_ARG_POINTER . . . . . . . . 584
HARD_FRAME_POINTER_IS_FRAME_POINTER . . . . . . 584
HARD_FRAME_POINTER_REGNUM . . . . . . . . . . . . . . . . . . 583
HARD_REGNO_CALLER_SAVE_MODE . . . . . . . . . . . . . . . 601
HARD_REGNO_NREGS_HAS_PADDING . . . . . . . . . . . . . . 560
HARD_REGNO_NREGS_WITH_PADDING . . . . . . . . . . . . . 560
HARD_REGNO_RENAME_OK . . . . . . . . . . . . . . . . . . . . . . . 561
HAS_INIT_SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
HAS_LONG_COND_BRANCH . . . . . . . . . . . . . . . . . . . . . . . 701
HAS_LONG_UNCOND_BRANCH . . . . . . . . . . . . . . . . . . . . . 701
HAVE_DOS_BASED_FILE_SYSTEM . . . . . . . . . . . . . . . . 726
HAVE_POST_DECREMENT . . . . . . . . . . . . . . . . . . . . . . . . 616
HAVE_POST_INCREMENT . . . . . . . . . . . . . . . . . . . . . . . . 616
HAVE_POST_MODIFY_DISP . . . . . . . . . . . . . . . . . . . . . . 616
HAVE_POST_MODIFY_REG . . . . . . . . . . . . . . . . . . . . . . . 617
HAVE_PRE_DECREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 616
HAVE_PRE_INCREMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 616
HAVE_PRE_MODIFY_DISP . . . . . . . . . . . . . . . . . . . . . . . 616
HAVE_PRE_MODIFY_REG . . . . . . . . . . . . . . . . . . . . . . . . 617
HCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
HFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
high-part multiplication . . . . . . . . . . . . . . . . . . . . . . . 314
HImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
HImode, in insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
HONOR_REG_ALLOC_ORDER . . . . . . . . . . . . . . . . . . . . . . 559
host configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
host functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
host hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
host makefile fragment . . . . . . . . . . . . . . . . . . . . . . . . 732
HOST_BIT_BUCKET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
HOST_EXECUTABLE_SUFFIX . . . . . . . . . . . . . . . . . . . . . 726
HOST_HOOKS_EXTRA_SIGNALS . . . . . . . . . . . . . . . . . . . 725
HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY . . . . . . 725
HOST_HOOKS_GT_PCH_GET_ADDRESS . . . . . . . . . . . . . 725
HOST_HOOKS_GT_PCH_USE_ADDRESS . . . . . . . . . . . . . 725
HOST_LACKS_INODE_NUMBERS . . . . . . . . . . . . . . . . . . . 727



Concept Index 867

HOST_LONG_FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
HOST_LONG_LONG_FORMAT . . . . . . . . . . . . . . . . . . . . . . 728
HOST_OBJECT_SUFFIX . . . . . . . . . . . . . . . . . . . . . . . . . . 726
HOST_PTR_PRINTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
HOT_TEXT_SECTION_NAME . . . . . . . . . . . . . . . . . . . . . . 647
HQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

I
‘i’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
‘I’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
IDENTIFIER_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
IDENTIFIER_NODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
IDENTIFIER_OPNAME_P . . . . . . . . . . . . . . . . . . . . . . . . 181
IDENTIFIER_POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . 181
IDENTIFIER_TYPENAME_P . . . . . . . . . . . . . . . . . . . . . . 181
IEEE 754-2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
if_then_else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
if_then_else and attributes . . . . . . . . . . . . . . . . . . 501
if_then_else usage . . . . . . . . . . . . . . . . . . . . . . . . . . 321
IF_COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
IF_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
IFCVT_MACHDEP_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . 710
IFCVT_MODIFY_CANCEL . . . . . . . . . . . . . . . . . . . . . . . . 710
IFCVT_MODIFY_FINAL . . . . . . . . . . . . . . . . . . . . . . . . . . 710
IFCVT_MODIFY_INSN . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
IFCVT_MODIFY_MULTIPLE_TESTS . . . . . . . . . . . . . . . 710
IFCVT_MODIFY_TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . 710
IFN_VEC_TRUNC_ADD_HIGH . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_MINUS . . . . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_MINUS_EVEN . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_MINUS_HI . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_MINUS_LO . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_MINUS_ODD . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_PLUS . . . . . . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_PLUS_EVEN . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_PLUS_HI . . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_PLUS_LO . . . . . . . . . . . . . . . . . . . . . . 203
IFN_VEC_WIDEN_PLUS_ODD . . . . . . . . . . . . . . . . . . . . . 203
IMAGPART_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Immediate Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
immediate_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
IMMEDIATE_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
in_struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
in_struct, in code_label and note . . . . . . . . . . . 290
in_struct, in insn and jump_insn

and call_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
in_struct, in insn, call_insn, jump_insn

and jump_table_data . . . . . . . . . . . . . . . . . . . . . . 292
in_struct, in subreg . . . . . . . . . . . . . . . . . . . . . . . . . 293
include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
INCLUDE_DEFAULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
inclusive-or, bitwise . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
INCOMING_FRAME_SP_OFFSET . . . . . . . . . . . . . . . . . . . 577
INCOMING_REG_PARM_STACK_SPACE . . . . . . . . . . . . . 588
INCOMING_REGNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
INCOMING_RETURN_ADDR_RTX . . . . . . . . . . . . . . . . . . . 576

INCOMING_STACK_BOUNDARY . . . . . . . . . . . . . . . . . . . . 544
INDEX_REG_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
indirect_jump instruction pattern . . . . . . . . . . . . 468
indirect_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
INDIRECT_REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
init_machine_status . . . . . . . . . . . . . . . . . . . . . . . . 541
init_one_libfunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
INIT_ARRAY_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . 649
INIT_CUMULATIVE_ARGS . . . . . . . . . . . . . . . . . . . . . . . 592
INIT_CUMULATIVE_INCOMING_ARGS . . . . . . . . . . . . . 592
INIT_CUMULATIVE_LIBCALL_ARGS . . . . . . . . . . . . . . 592
INIT_ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
INIT_EXPANDERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
INIT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
INIT_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . 648, 670
INITIAL_ELIMINATION_OFFSET . . . . . . . . . . . . . . . . 587
INITIAL_FRAME_ADDRESS_RTX . . . . . . . . . . . . . . . . . . 575
initialization routines . . . . . . . . . . . . . . . . . . . . . . . . . 668
inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
insert_insn_on_edge . . . . . . . . . . . . . . . . . . . . . . . . 356
insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
insn and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
insn and ‘/j’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
insn and ‘/s’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290, 292
insn and ‘/u’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
insn and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
insn attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
insn canonicalization . . . . . . . . . . . . . . . . . . . . . . . . . . 484
insn includes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
insn lengths, computing . . . . . . . . . . . . . . . . . . . . . . . 505
insn notes, notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
insn splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
insn-attr.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
insn_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
INSN_ANNULLED_BRANCH_P . . . . . . . . . . . . . . . . . . . . . 290
INSN_BASE_REG_CLASS . . . . . . . . . . . . . . . . . . . . . . . . 565
INSN_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
INSN_DELETED_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
INSN_FROM_TARGET_P . . . . . . . . . . . . . . . . . . . . . . . . . . 290
INSN_INDEX_REG_CLASS . . . . . . . . . . . . . . . . . . . . . . . 565
INSN_REFERENCES_ARE_DELAYED . . . . . . . . . . . . . . . 709
INSN_SETS_ARE_DELAYED . . . . . . . . . . . . . . . . . . . . . . 709
INSN_UID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
INSN_VAR_LOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
insns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
insns, generating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
insns, recognizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
instruction attributes . . . . . . . . . . . . . . . . . . . . . . . . . 499
instruction latency time . . . . . . . . . . . . . 508, 510, 511
instruction patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
instruction splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
instructions, RTL SSA . . . . . . . . . . . . . . . . . . . . . . . . 339
insv instruction pattern . . . . . . . . . . . . . . . . . . . . . . 460
insvm instruction pattern . . . . . . . . . . . . . . . . . . . . . 459
insvmisalignm instruction pattern . . . . . . . . . . . . 459
int iterators in .md files . . . . . . . . . . . . . . . . . . . . . . . 524
INT_FAST16_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_FAST32_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554



868 GNU Compiler Collection (GCC) Internals

INT_FAST64_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_FAST8_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_LEAST16_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_LEAST32_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_LEAST64_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_LEAST8_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
INT16_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT32_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT64_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INT8_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INTEGER_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
INTEGER_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
inter-procedural optimization passes . . . . . . . . . . . 147
Interdependence of Patterns . . . . . . . . . . . . . . . . . . . 481
interlock delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
intermediate representation lowering . . . . . . . . . . 145
INTMAX_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
INTPTR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
INVOKE__main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
ior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ior and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
ior, canonicalization of . . . . . . . . . . . . . . . . . . . . . . . 485
iorm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
iornm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 437
IPA passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
IRA_HARD_REGNO_ADD_COST_MULTIPLIER . . . . . . . 559
is_a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
is_gimple_addressable . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_asm_val . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_call_addr . . . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_constant . . . . . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_ip_invariant . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_ip_invariant_address . . . . . . . . . . . . 241
is_gimple_mem_ref_addr . . . . . . . . . . . . . . . . . . . . . 241
is_gimple_min_invariant . . . . . . . . . . . . . . . . . . . . 241
is_gimple_omp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
is_gimple_val . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
IS_ASM_LOGICAL_LINE_SEPARATOR . . . . . . . . . . . . . 658
isfinitem2 instruction pattern . . . . . . . . . . . . . . . 480
isnanm2 instruction pattern . . . . . . . . . . . . . . . . . . . 480
isnormalm2 instruction pattern . . . . . . . . . . . . . . . 480
issignalingm2 instruction pattern . . . . . . . . . . . . 451
iterators in .md files . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
IV analysis on GIMPLE . . . . . . . . . . . . . . . . . . . . . . 363
IV analysis on RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

J
JMP_BUF_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
jump instruction pattern . . . . . . . . . . . . . . . . . . . . . . 466
jump instruction patterns . . . . . . . . . . . . . . . . . . . . . 482
jump instructions and set . . . . . . . . . . . . . . . . . . . . 321
jump, in call_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
jump, in insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
jump, in mem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
jump_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
jump_insn and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
jump_insn and ‘/j’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
jump_insn and ‘/s’ . . . . . . . . . . . . . . . . . . . . . . . 290, 292
jump_insn and ‘/u’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
jump_insn and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
jump_table_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
jump_table_data and ‘/s’ . . . . . . . . . . . . . . . . . . . . 292
jump_table_data and ‘/v’ . . . . . . . . . . . . . . . . . . . . 290
JUMP_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
JUMP_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
JUMP_TABLES_IN_TEXT_SECTION . . . . . . . . . . . . . . . 649
Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

L
label_ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
label_ref and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
label_ref, RTL sharing . . . . . . . . . . . . . . . . . . . . . . 347
LABEL_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
LABEL_ALIGN_AFTER_BARRIER . . . . . . . . . . . . . . . . . . 681
LABEL_ALT_ENTRY_P . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
LABEL_ALTERNATE_NAME . . . . . . . . . . . . . . . . . . . . . . . 353
LABEL_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
LABEL_KIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
LABEL_NUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
LABEL_PRESERVE_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
LABEL_REF_NONLOCAL_P . . . . . . . . . . . . . . . . . . . . . . . 290
lang_hooks.gimplify_expr . . . . . . . . . . . . . . . . . . . 146
lang_hooks.parse_file . . . . . . . . . . . . . . . . . . . . . . 145
language-dependent trees . . . . . . . . . . . . . . . . . . . . . 218
language-independent intermediate

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
large return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
LAST_STACK_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
LAST_VIRTUAL_REGISTER . . . . . . . . . . . . . . . . . . . . . . 307
late IPA passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
lceilmn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
LCSSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
LD_FINI_SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
LD_INIT_SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
LDD_SUFFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
ldexpm3 instruction pattern . . . . . . . . . . . . . . . . . . . 447
le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
le and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
LE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
leaf functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
leaf_function_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
LEAF_REG_REMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562



Concept Index 869

LEAF_REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
left rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
left shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
LEGITIMATE_PIC_OPERAND_P . . . . . . . . . . . . . . . . . . . 653
LEGITIMIZE_RELOAD_ADDRESS . . . . . . . . . . . . . . . . . . 619
len_fold_extract_last_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 439
len_load_m instruction pattern . . . . . . . . . . . . . . . 434
len_store_m instruction pattern . . . . . . . . . . . . . . 435
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
less than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
less than or equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
leu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
leu and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
lfloormn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
LIB_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
LIB2FUNCS_EXTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
LIBC_CPP_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
LIBC_LINK_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
LIBCALL_VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
libgcc.a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
LIBGCC_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
LIBGCC2_CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
LIBGCC2_GNU_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . 552
LIBGCC2_UNWIND_ATTRIBUTE . . . . . . . . . . . . . . . . . . . 719
library subroutine names . . . . . . . . . . . . . . . . . . . . . . 614
LIBRARY_PATH_ENV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
LIMIT_RELOAD_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . 568
LINK_COMMAND_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
LINK_EH_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
LINK_GCC_C_SEQUENCE_SPEC . . . . . . . . . . . . . . . . . . . 534
LINK_LIBGCC_SPECIAL_1 . . . . . . . . . . . . . . . . . . . . . . 534
LINK_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Liveness representation . . . . . . . . . . . . . . . . . . . . . . . 357
lo_sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
load address instruction . . . . . . . . . . . . . . . . . . . . . . . 387
load_multiple instruction pattern . . . . . . . . . . . . 428
LOAD_EXTEND_OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
Local Register Allocator (LRA) . . . . . . . . . . . . . . . 159
LOCAL_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
LOCAL_CLASS_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
LOCAL_DECL_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . 547
LOCAL_INCLUDE_DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
LOCAL_LABEL_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . 675
LOCAL_REGNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
location information . . . . . . . . . . . . . . . . . . . . . . . . . . 787
log10m2 instruction pattern . . . . . . . . . . . . . . . . . . . 449
log1pm2 instruction pattern . . . . . . . . . . . . . . . . . . . 449
log2m2 instruction pattern . . . . . . . . . . . . . . . . . . . . 449
logbm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 449
Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
logical-and, bitwise . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
LOGICAL_OP_NON_SHORT_CIRCUIT . . . . . . . . . . . . . . 637
logm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 449
LONG_ACCUM_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . 552
LONG_FRACT_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . 552
LONG_LONG_ACCUM_TYPE_SIZE . . . . . . . . . . . . . . . . . . 552

LONG_LONG_FRACT_TYPE_SIZE . . . . . . . . . . . . . . . . . . 552
LONG_LONG_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . 552
LONG_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Loop analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Loop manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Loop querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Loop representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Loop-closed SSA form . . . . . . . . . . . . . . . . . . . . . . . . 362
LOOP_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
LOOP_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
looping instruction patterns . . . . . . . . . . . . . . . . . . . 482
lowering, language-dependent

intermediate representation . . . . . . . . . . . . . . . . . 145
lrintmn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
LROTATE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
lroundmn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
LSHIFT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
lshiftrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
lshiftrt and attributes . . . . . . . . . . . . . . . . . . . . . . 502
lshrm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
lt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
lt and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
LT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
LTGT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
lto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
ltrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
ltu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

M
‘m’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
MACH_DEP_SECTION_ASM_FLAG . . . . . . . . . . . . . . . . . . 649
machine attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
machine description macros . . . . . . . . . . . . . . . . . . . 529
machine descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 369
machine mode conversions . . . . . . . . . . . . . . . . . . . . 319
machine mode wrapper classes . . . . . . . . . . . . . . . . 299
machine modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
machine specific constraints . . . . . . . . . . . . . . . . . . . 392
machine-independent predicates . . . . . . . . . . . . . . . 381
machine_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
macros, target description . . . . . . . . . . . . . . . . . . . . . 529
maddmn4 instruction pattern . . . . . . . . . . . . . . . . . . . 445
make_safe_from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
MAKE_DECL_ONE_ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . 665
makefile fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
makefile targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MALLOC_ABI_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . 544
Manipulating GIMPLE statements . . . . . . . . . . . . 242
marking roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
mask_fold_left_plus_m instruction pattern . . . 439
mask_gather_loadmn instruction pattern . . . . . . 430
mask_len_fold_left_plus_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 439
mask_len_gather_loadmn

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 430
mask_len_loadmn instruction pattern . . . . . . . . . . 435



870 GNU Compiler Collection (GCC) Internals

mask_len_scatter_storemn

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 431
mask_len_storemn instruction pattern . . . . . . . . 436
mask_len_strided_loadm

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 431
mask_len_strided_storem

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 431
mask_scatter_storemn instruction pattern . . . . 431
MASK_RETURN_ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
maskloadmn instruction pattern . . . . . . . . . . . . . . . 434
maskstoremn instruction pattern . . . . . . . . . . . . . . 434
Match and Simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
match_dup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372, 498
match_dup and attributes . . . . . . . . . . . . . . . . . . . . . 506
match_op_dup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
match_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
match_operand and attributes . . . . . . . . . . . . . . . . . 501
match_operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
match_par_dup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
match_parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
match_scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . 372, 498
match_test and attributes . . . . . . . . . . . . . . . . . . . . 502
matching constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
matching operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
math library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
math, in RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
MATH_LIBRARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
matherr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
MAX_BITS_PER_WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
MAX_BITSIZE_MODE_ANY_INT . . . . . . . . . . . . . . . . . . . 302
MAX_BITSIZE_MODE_ANY_MODE . . . . . . . . . . . . . . . . . . 302
MAX_CONDITIONAL_EXECUTE . . . . . . . . . . . . . . . . . . . . 710
MAX_FIXED_MODE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . 549
MAX_MOVE_MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
MAX_OFILE_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . 545
MAX_REGS_PER_ADDRESS . . . . . . . . . . . . . . . . . . . . . . . 617
MAX_STACK_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . 545
maxm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 438
may_trap_p, tree_could_trap_p . . . . . . . . . . . . . 352
maybe_undef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
mcount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
MD_EXEC_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
MD_FALLBACK_FRAME_STATE_FOR . . . . . . . . . . . . . . . 581
MD_HANDLE_UNWABI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
MD_STARTFILE_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . 535
MD_STARTFILE_PREFIX_1 . . . . . . . . . . . . . . . . . . . . . . 535
mem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
mem and ‘/c’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
mem and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
mem and ‘/j’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
mem and ‘/u’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
mem and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
mem, RTL sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
mem_thread_fence instruction pattern . . . . . . . . 478
MEM_ADDR_SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEM_ALIAS_SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
MEM_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEM_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

MEM_KEEP_ALIAS_SET_P . . . . . . . . . . . . . . . . . . . . . . . 290
MEM_NOTRAP_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
MEM_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEM_OFFSET_KNOWN_P . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEM_POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
MEM_READONLY_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
MEM_REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
MEM_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEM_SIZE_KNOWN_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEM_VOLATILE_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
memory reference, nonoffsettable . . . . . . . . . . . . . . 389
memory references in constraints . . . . . . . . . . . . . . 385
memory_barrier instruction pattern . . . . . . . . . . . 473
memory_blockage instruction pattern . . . . . . . . . . 473
memory_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
MEMORY_MOVE_COST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
METHOD_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
MIN_UNITS_PER_WORD . . . . . . . . . . . . . . . . . . . . . . . . . . 542
MINIMUM_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
MINIMUM_ATOMIC_ALIGNMENT . . . . . . . . . . . . . . . . . . . 545
minm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 438
minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
minus and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 502
minus, canonicalization of . . . . . . . . . . . . . . . . . . . . . 484
MINUS_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
MIPS coprocessor-definition macros . . . . . . . . . . . 694
miscellaneous register hooks . . . . . . . . . . . . . . . . . . . 608
mnemonic attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
mod and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
mode classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
mode iterators in .md files . . . . . . . . . . . . . . . . . . . . . 520
mode switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
MODE_ACCUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_BASE_REG_CLASS . . . . . . . . . . . . . . . . . . . . . . . . 565
MODE_BASE_REG_REG_CLASS . . . . . . . . . . . . . . . . . . . . 565
MODE_CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299, 629
MODE_CODE_BASE_REG_CLASS . . . . . . . . . . . . . . . . . . . 565
MODE_COMPLEX_FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_COMPLEX_INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_DECIMAL_FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . 298
MODE_FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
MODE_FRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
MODE_INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
MODE_OPAQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_PARTIAL_INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
MODE_POINTER_BOUNDS . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_UACCUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MODE_UFRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
modifiers in constraints . . . . . . . . . . . . . . . . . . . . . . . 390
MODIFY_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
modm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
modulo scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
MOVE_MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
MOVE_MAX_PIECES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
MOVE_RATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634



Concept Index 871

movm instruction pattern . . . . . . . . . . . . . . . . . . . . . . 426
movmemm instruction pattern . . . . . . . . . . . . . . . . . . . 455
movmisalignm instruction pattern . . . . . . . . . . . . . 428
movmodecc instruction pattern . . . . . . . . . . . . . . . . . 460
movstr instruction pattern . . . . . . . . . . . . . . . . . . . . 456
movstrictm instruction pattern . . . . . . . . . . . . . . . 427
msubmn4 instruction pattern . . . . . . . . . . . . . . . . . . . 445
mulhisi3 instruction pattern . . . . . . . . . . . . . . . . . . 444
mulm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
mulqihi3 instruction pattern . . . . . . . . . . . . . . . . . . 444
mulsidi3 instruction pattern . . . . . . . . . . . . . . . . . . 444
mult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
mult and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
mult, canonicalization of . . . . . . . . . . . . . . . . . 484, 485
MULT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
MULT_HIGHPART_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 195
MULTIARCH_DIRNAME . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
MULTILIB_DEFAULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
MULTILIB_DIRNAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
MULTILIB_EXCEPTIONS . . . . . . . . . . . . . . . . . . . . . . . . 730
MULTILIB_EXTRA_OPTS . . . . . . . . . . . . . . . . . . . . . . . . 731
MULTILIB_MATCHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
MULTILIB_OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
MULTILIB_OSDIRNAMES . . . . . . . . . . . . . . . . . . . . . . . . 731
MULTILIB_REQUIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
MULTILIB_REUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
multiple alternative constraints . . . . . . . . . . . . . . . 389
MULTIPLE_SYMBOL_SPACES . . . . . . . . . . . . . . . . . . . . . 709
multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
multiplication high part . . . . . . . . . . . . . . . . . . . . . . . 314
multiplication with signed saturation . . . . . . . . . . 313
multiplication with unsigned saturation . . . . . . . 313
mulvm4 instruction pattern . . . . . . . . . . . . . . . . . . . . 437

N
‘n’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
N_REG_CLASSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
named address spaces . . . . . . . . . . . . . . . . . . . . . . . . . 699
named patterns and conditions . . . . . . . . . . . . . . . . 370
names, pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
namespace, scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
NAMESPACE_DECL . . . . . . . . . . . . . . . . . . . . . . . . . 186, 221
NATIVE_SYSTEM_HEADER_COMPONENT . . . . . . . . . . . . 535
ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
ne and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
NE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
nearbyintm2 instruction pattern . . . . . . . . . . . . . . 450
neg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
neg and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
neg, canonicalization of . . . . . . . . . . . . . . . . . . . . . . . 484
NEGATE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
negation with signed saturation . . . . . . . . . . . . . . . 313
negation with unsigned saturation . . . . . . . . . . . . . 313
negm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 447
negmodecc instruction pattern . . . . . . . . . . . . . . . . . 464

negvm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 447
nested functions, support for . . . . . . . . . . . . . . . . . . 611
nested_ptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
next_bb, prev_bb,

FOR_EACH_BB, FOR_ALL_BB . . . . . . . . . . . . . . . . . . 349
NEXT_INSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
NEXT_OBJC_RUNTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
nil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
NM_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
NO_DOLLAR_IN_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . 662
NO_DOT_IN_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
NO_FUNCTION_CSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
NO_PROFILE_COUNTERS . . . . . . . . . . . . . . . . . . . . . . . . 605
NO_REGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
NON_LVALUE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
nondeterministic finite state automaton . . . . . . . 513
nonimmediate_operand . . . . . . . . . . . . . . . . . . . . . . . 382
nonlocal goto handler . . . . . . . . . . . . . . . . . . . . . . . . . 353
nonlocal_goto instruction pattern . . . . . . . . . . . . 470
nonlocal_goto_receiver

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 471
nonmemory_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
nonoffsettable memory reference . . . . . . . . . . . . . . 389
nop instruction pattern . . . . . . . . . . . . . . . . . . . . . . . 468
NOP_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
normal predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
not and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
not equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
not, canonicalization of . . . . . . . . . . . . . . . . . . . . . . . 484
note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
note and ‘/i’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
note and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
NOTE_INSN_BASIC_BLOCK . . . . . . . . . . . . . . . . . . . . . . 350
NOTE_INSN_BEGIN_STMT . . . . . . . . . . . . . . . . . . . . . . . 332
NOTE_INSN_BLOCK_BEG . . . . . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_BLOCK_END . . . . . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_DELETED . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_DELETED_LABEL . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_EH_REGION_BEG . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_EH_REGION_END . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_FUNCTION_BEG . . . . . . . . . . . . . . . . . . . . . 331
NOTE_INSN_INLINE_ENTRY . . . . . . . . . . . . . . . . . . . . . 332
NOTE_INSN_VAR_LOCATION . . . . . . . . . . . . . . . . . . . . . 332
NOTE_LINE_NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
NOTE_SOURCE_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
NOTE_VAR_LOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
notmodecc instruction pattern . . . . . . . . . . . . . . . . . 464
NUM_MACHINE_MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
NUM_MODES_FOR_MODE_SWITCHING . . . . . . . . . . . . . . 687
NUM_POLY_INT_COEFFS . . . . . . . . . . . . . . . . . . . . . . . . 165
Number of iterations analysis . . . . . . . . . . . . . . . . . 364



872 GNU Compiler Collection (GCC) Internals

O
‘o’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
OACC_CACHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_DECLARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_ENTER_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_EXIT_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_HOST_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_KERNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_PARALLEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_SERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OACC_UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
OBJC_GEN_METHOD_LABEL . . . . . . . . . . . . . . . . . . . . . . 668
OBJC_JBLEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
OBJECT_FORMAT_COFF . . . . . . . . . . . . . . . . . . . . . . . . . . 672
OFFSET_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
offsettable address . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
OImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
OMP_ATOMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_CLAUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_CRITICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_DISTRIBUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_MASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_METADIRECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_NEXT_VARIANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_ORDERED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_PARALLEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_SINGLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
OMP_TARGET_DEVICE_MATCHES . . . . . . . . . . . . . . . . . . 210
OMP_TASKLOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
one_cmplm2 instruction pattern . . . . . . . . . . . . . . . 455
OPAQUE_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
OpenMP and OpenACC . . . . . . . . . . . . . . . . . . . . . . 625
operand access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Operand Access Routines . . . . . . . . . . . . . . . . . . . . . 273
operand constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Operand Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
operand predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
operand substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271, 370
operator predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
opt_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
‘optc-gen.awk’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
OPTGROUP_ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
OPTGROUP_INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
OPTGROUP_IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
OPTGROUP_LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
OPTGROUP_OMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
OPTGROUP_OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

OPTGROUP_VEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
optimization dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
optimization groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
optimization info file names . . . . . . . . . . . . . . . . . . . 161
Optimization infrastructure for GIMPLE . . . . . . 271
OPTIMIZE_MODE_SWITCHING . . . . . . . . . . . . . . . . . . . . 686
option specification files . . . . . . . . . . . . . . . . . . . . . . . 135
OPTION_DEFAULT_SPECS . . . . . . . . . . . . . . . . . . . . . . . 530
optional hardware or system features . . . . . . . . . . 538
options, directory search . . . . . . . . . . . . . . . . . . . . . . 494
options, guidelines for . . . . . . . . . . . . . . . . . . . . . . . . . 793
order of register allocation . . . . . . . . . . . . . . . . . . . . 559
ordered_comparison_operator . . . . . . . . . . . . . . . 382
ORDERED_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Ordering of Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 481
ORIGINAL_REGNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
other register constraints . . . . . . . . . . . . . . . . . . . . . . 387
outgoing_args_size . . . . . . . . . . . . . . . . . . . . . . . . . . 588
OUTGOING_REG_PARM_STACK_SPACE . . . . . . . . . . . . . 588
OUTGOING_REGNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
output of assembler code . . . . . . . . . . . . . . . . . . . . . . 653
output statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
output templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
output_asm_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
OUTPUT_QUOTED_STRING . . . . . . . . . . . . . . . . . . . . . . . 655
OVERLAPPING_REGISTER_NAMES . . . . . . . . . . . . . . . . 673
OVERLOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
OVERRIDE_ABI_FORMAT . . . . . . . . . . . . . . . . . . . . . . . . 592
OVL_CURRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
OVL_NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

P
‘p’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
PAD_VARARGS_DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
parameters, c++ abi . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
parameters, d abi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
parameters, jit abi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
parameters, miscellaneous . . . . . . . . . . . . . . . . . . . . . 701
parameters, precompiled headers . . . . . . . . . . . . . . 695
parameters, rust abi . . . . . . . . . . . . . . . . . . . . . . . . . . 698
parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
paritym2 instruction pattern . . . . . . . . . . . . . . . . . . 455
PARM_BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
PARM_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
PARSE_LDD_OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
pass dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
pass_duplicate_computed_gotos . . . . . . . . . . . . . 353
passes and files of the compiler . . . . . . . . . . . . . . . . 145
PATH_SEPARATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
pattern conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
pattern names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Pattern Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
pc and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506



Concept Index 873

pc, RTL sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
pc_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
PC_REGNUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
PCC_BITFIELD_TYPE_MATTERS . . . . . . . . . . . . . . . . . . 547
PCC_STATIC_STRUCT_RETURN . . . . . . . . . . . . . . . . . . . 601
PDImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
peephole optimization, RTL representation . . . . 324
peephole optimizer definitions . . . . . . . . . . . . . . . . . 495
per-function data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
percent sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
phi nodes, RTL SSA . . . . . . . . . . . . . . . . . . . . . . . . . . 341
PHI nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
PIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
PIC_OFFSET_TABLE_REG_CALL_CLOBBERED . . . . . . 653
PIC_OFFSET_TABLE_REGNUM . . . . . . . . . . . . . . . . . . . . 652
PID_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
pipeline hazard recognizer . . . . . . . . . . . . . . . . 508, 509
Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
plus and attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
plus, canonicalization of . . . . . . . . . . . . . . . . . . . . . . 484
PLUS_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Pmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
pmode_register_operand . . . . . . . . . . . . . . . . . . . . . 381
pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
POINTER_DIFF_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
POINTER_PLUS_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
POINTER_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
POINTER_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
POINTERS_EXTEND_UNSIGNED . . . . . . . . . . . . . . . . . . . 542
poly_int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
poly_int, invariant range . . . . . . . . . . . . . . . . . . . . . 165
poly_int, main typedefs . . . . . . . . . . . . . . . . . . . . . . 166
poly_int, runtime value . . . . . . . . . . . . . . . . . . . . . . 165
poly_int, template parameters . . . . . . . . . . . . . . . 165
poly_int, use in target-independent code . . . . . 166
poly_int, use in target-specific code . . . . . . . . . . 166
POLY_INT_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
polynomial integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
pop_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
popcount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
popcountm2 instruction pattern . . . . . . . . . . . . . . . 454
pops_args . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
position independent code . . . . . . . . . . . . . . . . . . . . . 652
post_dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
post_inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
post_modify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
post_order_compute, inverted_post_order_

compute, dom_walker::walk . . . . . . . . . . . . . . . . 349
POST_LINK_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
POSTDECREMENT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 195
POSTINCREMENT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 195
POWI_MAX_MULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
powm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 449
pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
pre_dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
pre_inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

pre_modify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
PRE_GCC3_DWARF_FRAME_REGISTERS . . . . . . . . . . . . 585
PREDECREMENT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
predefined macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
predicates and machine modes . . . . . . . . . . . . . . . . 380
predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
predict.def . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
PREFERRED_DEBUGGING_TYPE . . . . . . . . . . . . . . . . . . . 682
PREFERRED_RELOAD_CLASS . . . . . . . . . . . . . . . . . . . . . 567
PREFERRED_STACK_BOUNDARY . . . . . . . . . . . . . . . . . . . 544
prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
prefetch and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
prefetch instruction pattern . . . . . . . . . . . . . . . . . . 473
PREFETCH_SCHEDULE_BARRIER_P . . . . . . . . . . . . . . . 291
PREINCREMENT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
presence_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
preserving SSA form . . . . . . . . . . . . . . . . . . . . . . . . . . 278
pretend_args_size . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
prev_active_insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
PREV_INSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
PRINT_OPERAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
PRINT_OPERAND_ADDRESS . . . . . . . . . . . . . . . . . . . . . . 674
PRINT_OPERAND_PUNCT_VALID_P . . . . . . . . . . . . . . . 674
probe_stack instruction pattern . . . . . . . . . . . . . . 470
probe_stack_address instruction pattern . . . . . 470
processor functional units . . . . . . . . . . . . . . . . 508, 509
processor pipeline description . . . . . . . . . . . . . . . . . 508
product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
profile feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
profile representation . . . . . . . . . . . . . . . . . . . . . . . . . 354
PROFILE_BEFORE_PROLOGUE . . . . . . . . . . . . . . . . . . . . 605
PROFILE_HOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
profiling, code generation . . . . . . . . . . . . . . . . . . . . . 605
program counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
prologue instruction pattern . . . . . . . . . . . . . . . . . . 472
PROMOTE_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
pseudo registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
PSImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
PTRDIFF_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
purge_dead_edges . . . . . . . . . . . . . . . . . . . . . . . 352, 356
push address instruction . . . . . . . . . . . . . . . . . . . . . . 387
push_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
push_reload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
PUSH_ARGS_REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . 587
PUSH_ROUNDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
pushm1 instruction pattern . . . . . . . . . . . . . . . . . . . . 436
PUT_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
PUT_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
PUT_REG_NOTE_KIND . . . . . . . . . . . . . . . . . . . . . . . . . . . 334



874 GNU Compiler Collection (GCC) Internals

Q
QCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
QFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
QImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
QImode, in insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
QQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
qualified type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
querying function unit reservations . . . . . . . . . . . . 510
question mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

R
‘r’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
rawmemchrm instruction pattern . . . . . . . . . . . . . . . 457
RDIV_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
READONLY_DATA_SECTION_ASM_OP . . . . . . . . . . . . . . 648
real operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
REAL_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
REAL_LIBGCC_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
REAL_NM_FILE_NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
REAL_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
REAL_VALUE_ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
REAL_VALUE_ATOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
REAL_VALUE_FIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
REAL_VALUE_ISINF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
REAL_VALUE_ISNAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
REAL_VALUE_NEGATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
REAL_VALUE_NEGATIVE . . . . . . . . . . . . . . . . . . . . . . . . 686
REAL_VALUE_TO_TARGET_DECIMAL128 . . . . . . . . . . . 659
REAL_VALUE_TO_TARGET_DECIMAL32 . . . . . . . . . . . . 659
REAL_VALUE_TO_TARGET_DECIMAL64 . . . . . . . . . . . . 659
REAL_VALUE_TO_TARGET_DOUBLE . . . . . . . . . . . . . . . 659
REAL_VALUE_TO_TARGET_LONG_DOUBLE . . . . . . . . . 659
REAL_VALUE_TO_TARGET_SINGLE . . . . . . . . . . . . . . . 659
REAL_VALUE_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
REAL_VALUE_UNSIGNED_FIX . . . . . . . . . . . . . . . . . . . . 686
REALPART_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
recog_data.operand . . . . . . . . . . . . . . . . . . . . . . . . . . 673
recognizing insns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
RECORD_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 222
redirect_edge_and_branch . . . . . . . . . . . . . . . . . . . 355
redirect_edge_and_branch, redirect_jump . . 356
reduc_and_scal_m instruction pattern . . . . . . . . 439
reduc_fmax_scal_m instruction pattern . . . . . . . 438
reduc_fmin_scal_m instruction pattern . . . . . . . 438
reduc_ior_scal_m instruction pattern . . . . . . . . 439
reduc_plus_scal_m instruction pattern . . . . . . . 438
reduc_sbool_and_scal_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 439
reduc_sbool_ior_scal_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 439
reduc_sbool_xor_scal_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 439
reduc_smax_scal_m instruction pattern . . . . . . . 438
reduc_smin_scal_m instruction pattern . . . . . . . 438
reduc_umax_scal_m instruction pattern . . . . . . . 438
reduc_umin_scal_m instruction pattern . . . . . . . 438

reduc_xor_scal_m instruction pattern . . . . . . . . 439
reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
REFERENCE_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
reg and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
reg and ‘/i’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
reg and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
reg, RTL sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
reg_class_contents . . . . . . . . . . . . . . . . . . . . . . . . . . 558
reg_class_for_constraint . . . . . . . . . . . . . . . . . . . 425
reg_label and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
reg_names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558, 674
REG_ALLOC_ORDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
REG_BR_PRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
REG_BR_PROB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
REG_BR_PROB_BASE, BB_FREQ_BASE, count . . . . . 355
REG_BR_PROB_BASE, EDGE_FREQUENCY . . . . . . . . . . 354
REG_CALL_NOCF_CHECK . . . . . . . . . . . . . . . . . . . . . . . . 336
REG_CLASS_CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . 564
REG_CLASS_NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
REG_DEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_DEAD, REG_UNUSED . . . . . . . . . . . . . . . . . . . . . . . . 357
REG_DEP_ANTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
REG_DEP_OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
REG_DEP_TRUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
REG_EH_REGION, EDGE_ABNORMAL_CALL . . . . . . . . . 352
REG_EQUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
REG_EQUIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
REG_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
REG_FRAME_RELATED_EXPR . . . . . . . . . . . . . . . . . . . . . 336
REG_FUNCTION_VALUE_P . . . . . . . . . . . . . . . . . . . . . . . 291
REG_INC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_LABEL_OPERAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_LABEL_TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_NONNEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_NOTE_KIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
REG_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
REG_OK_STRICT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
REG_PARM_STACK_SPACE . . . . . . . . . . . . . . . . . . . . . . . 588
REG_PARM_STACK_SPACE, and
TARGET_FUNCTION_ARG . . . . . . . . . . . . . . . . . . . . . . 590

REG_POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
REG_SETJMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_UNUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
REG_USERVAR_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
REG_VALUE_IN_UNWIND_CONTEXT . . . . . . . . . . . . . . . 585
REG_WORDS_BIG_ENDIAN . . . . . . . . . . . . . . . . . . . . . . . 541
register allocation order . . . . . . . . . . . . . . . . . . . . . . . 559
register class definitions . . . . . . . . . . . . . . . . . . . . . . . 563
register class preference constraints . . . . . . . . . . . . 390
register pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
Register Transfer Language (RTL) . . . . . . . . . . . . 283
register usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
register_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
REGISTER_MOVE_COST . . . . . . . . . . . . . . . . . . . . . . . . . . 631
REGISTER_NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
REGISTER_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675



Concept Index 875

REGISTER_TARGET_PRAGMAS . . . . . . . . . . . . . . . . . . . . 708
registers arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
registers in constraints . . . . . . . . . . . . . . . . . . . . . . . . 386
REGMODE_NATURAL_SIZE . . . . . . . . . . . . . . 309, 310, 560
REGNO_MODE_CODE_OK_FOR_BASE_P . . . . . . . . . . . . . 566
REGNO_MODE_OK_FOR_BASE_P . . . . . . . . . . . . . . . . . . . 566
REGNO_MODE_OK_FOR_REG_BASE_P . . . . . . . . . . . . . . 566
REGNO_OK_FOR_BASE_P . . . . . . . . . . . . . . . . . . . . . . . . 566
REGNO_OK_FOR_INDEX_P . . . . . . . . . . . . . . . . . . . . . . . 566
REGNO_OK_FOR_INSN_BASE_P . . . . . . . . . . . . . . . . . . . 566
REGNO_REG_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
regs_ever_live . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
regular expressions . . . . . . . . . . . . . . . . . . . . . . . 508, 510
regular IPA passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
relative costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
RELATIVE_PREFIX_NOT_LINKDIR . . . . . . . . . . . . . . . 534
reload_completed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
reload_in instruction pattern . . . . . . . . . . . . . . . . . 427
reload_in_progress . . . . . . . . . . . . . . . . . . . . . . . . . . 426
reload_out instruction pattern . . . . . . . . . . . . . . . 427
RELOAD_ELIMINABLE_REGS . . . . . . . . . . . . . . . . . . . . . 587
reloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
remainderm3 instruction pattern . . . . . . . . . . . . . . 447
reorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
representation of RTL . . . . . . . . . . . . . . . . . . . . . . . . 283
reservation delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
rest_of_decl_compilation . . . . . . . . . . . . . . . . . . . 145
rest_of_type_compilation . . . . . . . . . . . . . . . . . . . 145
restore_stack_block instruction pattern . . . . . 469
restore_stack_function

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 469
restore_stack_nonlocal

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 469
RESULT_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
return instruction pattern . . . . . . . . . . . . . . . . . . . . 467
return values in registers . . . . . . . . . . . . . . . . . . . . . . 598
return_val . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
return_val, in call_insn . . . . . . . . . . . . . . . . . . . . 291
return_val, in reg . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
return_val, in symbol_ref . . . . . . . . . . . . . . . . . . . 293
RETURN_ADDR_IN_PREVIOUS_FRAME . . . . . . . . . . . . . 576
RETURN_ADDR_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . 580
RETURN_ADDR_RTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
RETURN_ADDRESS_POINTER_REGNUM . . . . . . . . . . . . . 584
RETURN_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
RETURN_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
returning aggregate values . . . . . . . . . . . . . . . . . . . . 600
reverse postorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
reverse probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
REVERSE_CONDITION . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
REVERSIBLE_CC_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . 630
right rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
right shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
rintm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 450
RISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508, 512
roots, marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
rotatert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
rotlm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
rotrm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
ROUND_DIV_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
ROUND_MOD_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
ROUND_TYPE_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
roundm2 instruction pattern . . . . . . . . . . . . . . . . . . . 450
RPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
RROTATE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
RSHIFT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
rsqrtm2 instruction pattern . . . . . . . . . . . . . . . . . . . 447
rtl_ssa::access_info . . . . . . . . . . . . . . . . . . . . . . . 340
rtl_ssa::bb_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
rtl_ssa::clobber_info . . . . . . . . . . . . . . . . . . . . . . 340
rtl_ssa::def_info . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
rtl_ssa::ebb_info . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
rtl_ssa::insn_change . . . . . . . . . . . . . . . . . . . . . . . 343
rtl_ssa::insn_info . . . . . . . . . . . . . . . . . . . . . . . . . . 339
rtl_ssa::phi_info . . . . . . . . . . . . . . . . . . . . . . 340, 341
rtl_ssa::set_info . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
rtl_ssa::use_info . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
RTL addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
RTL addition with signed saturation . . . . . . . . . . 312
RTL addition with unsigned saturation . . . . . . . . 312
RTL classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
RTL comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
RTL comparison operations . . . . . . . . . . . . . . . . . . . 316
RTL constant expression types . . . . . . . . . . . . . . . . 302
RTL constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
RTL declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
RTL difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
RTL expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTL expressions for arithmetic . . . . . . . . . . . . . . . . 312
RTL format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
RTL format characters . . . . . . . . . . . . . . . . . . . . . . . . 285
RTL function-call insns . . . . . . . . . . . . . . . . . . . . . . . 337
RTL insn template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
RTL integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTL memory expressions . . . . . . . . . . . . . . . . . . . . . 306
RTL object types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTL postdecrement . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
RTL postincrement . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
RTL predecrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
RTL preincrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
RTL register expressions . . . . . . . . . . . . . . . . . . . . . . 306
RTL representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTL side effect expressions . . . . . . . . . . . . . . . . . . . . 321
RTL SSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
RTL strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTL structure sharing assumptions . . . . . . . . . . . 347
RTL subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
RTL subtraction with signed saturation . . . . . . . 312
RTL subtraction with unsigned saturation . . . . . 312
RTL sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
RTL vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTL_CONST_CALL_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
RTL_CONST_OR_PURE_CALL_P . . . . . . . . . . . . . . . . . . . 292



876 GNU Compiler Collection (GCC) Internals

RTL_LOOPING_CONST_OR_PURE_CALL_P . . . . . . . . . 292
RTL_PURE_CALL_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
RTX (See RTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
RTX codes, classes of . . . . . . . . . . . . . . . . . . . . . . . . . 284
RTX_FRAME_RELATED_P . . . . . . . . . . . . . . . . . . . . . . . . 292
run-time target specification . . . . . . . . . . . . . . . . . . 537

S
‘s’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
sabdm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
SAD_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
same_type_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
SAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
sat_fract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
satfractmn2 instruction pattern . . . . . . . . . . . . . . 458
satfractunsmn2 instruction pattern . . . . . . . . . . . 459
satisfies_constraint_m . . . . . . . . . . . . . . . . . . . . . 425
save_stack_block instruction pattern . . . . . . . . 469
save_stack_function instruction pattern . . . . . 469
save_stack_nonlocal instruction pattern . . . . . 469
SAVE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
SBSS_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . 648
Scalar evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
scalar_float_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
scalar_int_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
scalar_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
scalars, returned as values . . . . . . . . . . . . . . . . . . . . . 598
scalbm3 instruction pattern . . . . . . . . . . . . . . . . . . . 447
scatter_storemn instruction pattern . . . . . . . . . . 431
SCHED_GROUP_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
SCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
scratch operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
scratch, RTL sharing . . . . . . . . . . . . . . . . . . . . . . . . 347
scratch_operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
SDATA_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . 648
sdiv_pow2m3 instruction pattern . . . . . . . . . . . . . . 441
SDmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
sdot_prodmn instruction pattern . . . . . . . . . . . . . . 440
search options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
SECONDARY_INPUT_RELOAD_CLASS . . . . . . . . . . . . . . 570
SECONDARY_MEMORY_NEEDED_RTX . . . . . . . . . . . . . . . 571
SECONDARY_OUTPUT_RELOAD_CLASS . . . . . . . . . . . . . 570
SECONDARY_RELOAD_CLASS . . . . . . . . . . . . . . . . . . . . . 570
select_vlmn instruction pattern . . . . . . . . . . . . . . 433
SELECT_CC_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Sequence iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
set and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
set_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
set_attr_alternative . . . . . . . . . . . . . . . . . . . . . . . 504
set_bb_seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
set_optab_libfunc . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
set_thread_pointermode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 479
SET_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667, 668

SET_DEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
SET_IS_RETURN_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
SET_LABEL_KIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
SET_RATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
SET_SRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
SET_TYPE_STRUCTURAL_EQUALITY . . . . . . . . . 182, 183
setmemm instruction pattern . . . . . . . . . . . . . . . . . . . 456
SETUP_FRAME_ADDRESSES . . . . . . . . . . . . . . . . . . . . . . 576
SFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
sharing of RTL components . . . . . . . . . . . . . . . . . . . 347
shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
SHIFT_COUNT_TRUNCATED . . . . . . . . . . . . . . . . . . . . . . 703
SHLIB_SUFFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
SHORT_ACCUM_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . 552
SHORT_FRACT_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . 552
SHORT_IMMEDIATES_SIGN_EXTEND . . . . . . . . . . . . . . 703
SHORT_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
shrink-wrapping separate components . . . . . . . . . 606
sibcall_epilogue instruction pattern . . . . . . . . 472
sibling call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
SIBLING_CALL_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
SIG_ATOMIC_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
sign_extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
sign_extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
sign_extract, canonicalization of . . . . . . . . . . . . . 485
signal-to-noise ratio (metaphorical

usage for diagnostics) . . . . . . . . . . . . . . . . . . . . . . . 785
signbitm2 instruction pattern . . . . . . . . . . . . . . . . . 449
signed division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
signed division with signed saturation . . . . . . . . . 314
signed maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
signed minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
significandm2 instruction pattern . . . . . . . . . . . . 449
SImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
simple constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
simple_return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
simple_return instruction pattern . . . . . . . . . . . . 467
sincosm3 instruction pattern . . . . . . . . . . . . . . . . . . 448
sinm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 447
SIZE_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
SIZE_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
SIZETYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
SLOW_BYTE_ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
small IPA passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
smax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
smin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
sms, swing, software pipelining . . . . . . . . . . . . . . . . 158
smul_highpart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
smulhrsm3 instruction pattern . . . . . . . . . . . . . . . . . 441
smulhsm3 instruction pattern . . . . . . . . . . . . . . . . . . 441
smulm3_highpart instruction pattern . . . . . . . . . . 445
soft float library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
source code, location information . . . . . . . . . . . . . . 787
spaceshipm4 instruction pattern . . . . . . . . . . . . . . 480
special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
special predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
SPECS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732



Concept Index 877

speculation_barrier instruction pattern . . . . . 473
speed of instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 631
split_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
splitting instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 489
SQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
sqrtm2 instruction pattern . . . . . . . . . . . . . . . . . . . . 447
square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ss_abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ss_ashift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
ss_div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
ss_minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
ss_mult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
ss_neg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
ss_plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
ss_truncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
ssaddm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
ssadm instruction pattern . . . . . . . . . . . . . . . . . . . . . 440
ssashlm3 instruction pattern . . . . . . . . . . . . . . . . . . 446
SSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
SSA, RTL form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
SSA_NAME_DEF_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
SSA_NAME_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
ssdivm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
ssmaddmn4 instruction pattern . . . . . . . . . . . . . . . . . 445
ssmsubmn4 instruction pattern . . . . . . . . . . . . . . . . . 445
ssmulm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
ssnegm2 instruction pattern . . . . . . . . . . . . . . . . . . . 447
sssubm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
sstruncmn2 instruction pattern . . . . . . . . . . . . . . . 437
stack arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
stack frame layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
stack smashing protection . . . . . . . . . . . . . . . . . . . . . 607
stack_pointer_rtx . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
stack_protect_combined_set

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 479
stack_protect_combined_test

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 479
stack_protect_set instruction pattern . . . . . . . 479
stack_protect_test instruction pattern . . . . . . 480
STACK_ADDRESS_OFFSET . . . . . . . . . . . . . . . . . . . . . . . 578
STACK_ALIGNMENT_NEEDED . . . . . . . . . . . . . . . . . . . . . 575
STACK_BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
STACK_CHECK_BUILTIN . . . . . . . . . . . . . . . . . . . . . . . . 582
STACK_CHECK_FIXED_FRAME_SIZE . . . . . . . . . . . . . . 582
STACK_CHECK_MAX_FRAME_SIZE . . . . . . . . . . . . . . . . 582
STACK_CHECK_MAX_VAR_SIZE . . . . . . . . . . . . . . . . . . . 583
STACK_CHECK_MOVING_SP . . . . . . . . . . . . . . . . . . . . . . 582
STACK_CHECK_PROBE_INTERVAL_EXP . . . . . . . . . . . . 582
STACK_CHECK_PROTECT . . . . . . . . . . . . . . . . . . . . . . . . 582
STACK_CHECK_STATIC_BUILTIN . . . . . . . . . . . . . . . . 582
STACK_DYNAMIC_OFFSET . . . . . . . . . . . . . . . . . . . . . . . 575
STACK_DYNAMIC_OFFSET and virtual registers . . . 307
STACK_GROWS_DOWNWARD . . . . . . . . . . . . . . . . . . . . . . . 574
STACK_PARMS_IN_REG_PARM_AREA . . . . . . . . . . . . . . 588
STACK_POINTER_OFFSET . . . . . . . . . . . . . . . . . . . . . . . 575
STACK_POINTER_OFFSET and virtual registers . . . 307
STACK_POINTER_REGNUM . . . . . . . . . . . . . . . . . . . . . . . 583

STACK_POINTER_REGNUM and virtual registers . . . 307
STACK_PUSH_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
STACK_REG_COVER_CLASS . . . . . . . . . . . . . . . . . . . . . . 563
STACK_REGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
STACK_SAVEAREA_MODE . . . . . . . . . . . . . . . . . . . . . . . . 549
STACK_SIZE_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
STACK_SLOT_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . 546
standard pattern names . . . . . . . . . . . . . . . . . . . . . . . 426
STANDARD_STARTFILE_PREFIX . . . . . . . . . . . . . . . . . . 535
STANDARD_STARTFILE_PREFIX_1 . . . . . . . . . . . . . . . 535
STANDARD_STARTFILE_PREFIX_2 . . . . . . . . . . . . . . . 535
STARTFILE_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Statement and operand traversals . . . . . . . . . . . . . 268
Statement Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217, 226
static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
static analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
static analyzer, debugging . . . . . . . . . . . . . . . . . . . . . 781
static analyzer, internals . . . . . . . . . . . . . . . . . . . . . . 773
Static profile estimation . . . . . . . . . . . . . . . . . . . . . . . 354
static single assignment . . . . . . . . . . . . . . . . . . . . . . . 276
STATIC_CHAIN_INCOMING_REGNUM . . . . . . . . . . . . . . 584
STATIC_CHAIN_REGNUM . . . . . . . . . . . . . . . . . . . . . . . . 584
stdarg.h and register arguments . . . . . . . . . . . . . . 590
STDC_0_IN_SYSTEM_HEADERS . . . . . . . . . . . . . . . . . . . 707
STMT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
STMT_IS_FULL_EXPR_P . . . . . . . . . . . . . . . . . . . . . . . . 226
storage layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
‘store_multiple’ instruction pattern . . . . . . . . . . 428
STORE_FLAG_VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
STORE_MAX_PIECES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
strcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
strict_low_part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
strict_memory_address_p . . . . . . . . . . . . . . . . . . . . 619
STRICT_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
string_length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
STRING_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
STRING_POOL_ADDRESS_P . . . . . . . . . . . . . . . . . . . . . . 292
strlenm instruction pattern . . . . . . . . . . . . . . . . . . . 457
structure value address . . . . . . . . . . . . . . . . . . . . . . . . 600
STRUCTURE_SIZE_BOUNDARY . . . . . . . . . . . . . . . . . . . . 547
subm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436
SUBOBJECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
SUBOBJECT_CLEANUP . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
subreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
subreg and ‘/s’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
subreg and ‘/u’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
subreg and ‘/u’ and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . 293
subreg, in strict_low_part . . . . . . . . . . . . . . . . . . 321
SUBREG_BYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
SUBREG_PROMOTED_UNSIGNED_P . . . . . . . . . . . . . . . . 293
SUBREG_PROMOTED_UNSIGNED_SET . . . . . . . . . . . . . . 293
SUBREG_PROMOTED_VAR_P . . . . . . . . . . . . . . . . . . . . . . 293
SUBREG_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
subst iterators in .md files . . . . . . . . . . . . . . . . . . . . . 525
subvm4 instruction pattern . . . . . . . . . . . . . . . . . . . . 437
SUCCESS_EXIT_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 727



878 GNU Compiler Collection (GCC) Internals

support for nested functions . . . . . . . . . . . . . . . . . . . 611
SUPPORTS_INIT_PRIORITY . . . . . . . . . . . . . . . . . . . . . 671
SUPPORTS_ONE_ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
SUPPORTS_WEAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
SWITCH_BODY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
SWITCH_COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
SWITCH_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
SWITCHABLE_TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
symbol_ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
symbol_ref and ‘/f’ . . . . . . . . . . . . . . . . . . . . . . . . . . 292
symbol_ref and ‘/i’ . . . . . . . . . . . . . . . . . . . . . . . . . . 293
symbol_ref and ‘/u’ . . . . . . . . . . . . . . . . . . . . . . . . . . 290
symbol_ref and ‘/v’ . . . . . . . . . . . . . . . . . . . . . . . . . . 293
symbol_ref, RTL sharing . . . . . . . . . . . . . . . . . . . . . 347
SYMBOL_FLAG_ANCHOR . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_FLAG_EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_FLAG_FUNCTION . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_FLAG_HAS_BLOCK_INFO . . . . . . . . . . . . . . . . 289
SYMBOL_FLAG_LOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_FLAG_SMALL . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_FLAG_TLS_SHIFT . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_ANCHOR_P . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_BLOCK_OFFSET . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . 288
SYMBOL_REF_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
SYMBOL_REF_EXTERNAL_P . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_FLAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
SYMBOL_REF_FLAG, in
TARGET_ENCODE_SECTION_INFO . . . . . . . . . . . . . . 651

SYMBOL_REF_FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_FUNCTION_P . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_HAS_BLOCK_INFO_P . . . . . . . . . . . . . . . 289
SYMBOL_REF_LOCAL_P . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_SMALL_P . . . . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_TLS_MODEL . . . . . . . . . . . . . . . . . . . . . . . 289
SYMBOL_REF_USED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
SYMBOL_REF_WEAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
symbolic label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
sync_addmode instruction pattern . . . . . . . . . . . . . 474
sync_andmode instruction pattern . . . . . . . . . . . . . 474
sync_compare_and_swapmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 474
sync_iormode instruction pattern . . . . . . . . . . . . . 474
sync_lock_releasemode instruction pattern . . . 475
sync_lock_test_and_setmode

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 475
sync_nandmode instruction pattern . . . . . . . . . . . . 474
sync_new_addmode instruction pattern . . . . . . . . 475
sync_new_andmode instruction pattern . . . . . . . . 475
sync_new_iormode instruction pattern . . . . . . . . 475
sync_new_nandmode instruction pattern . . . . . . . 475
sync_new_submode instruction pattern . . . . . . . . 475
sync_new_xormode instruction pattern . . . . . . . . 475
sync_old_addmode instruction pattern . . . . . . . . 475
sync_old_andmode instruction pattern . . . . . . . . 475
sync_old_iormode instruction pattern . . . . . . . . 475

sync_old_nandmode instruction pattern . . . . . . . 475
sync_old_submode instruction pattern . . . . . . . . 475
sync_old_xormode instruction pattern . . . . . . . . 475
sync_submode instruction pattern . . . . . . . . . . . . . 474
sync_xormode instruction pattern . . . . . . . . . . . . . 474
SYSROOT_HEADERS_SUFFIX_SPEC . . . . . . . . . . . . . . . 533
SYSROOT_SUFFIX_SPEC . . . . . . . . . . . . . . . . . . . . . . . . 533
SYSTEM_IMPLICIT_EXTERN_C . . . . . . . . . . . . . . . . . . . 707

T
t-target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
table jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
tablejump instruction pattern . . . . . . . . . . . . . . . . . 468
tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
tag_memory instruction pattern . . . . . . . . . . . . . . . 480
tagging insns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
tail calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
TAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
tanm2 instruction pattern . . . . . . . . . . . . . . . . . . . . . 448
target attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
target description macros . . . . . . . . . . . . . . . . . . . . . 529
target functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
target hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
target makefile fragment . . . . . . . . . . . . . . . . . . . . . . 729
target specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
target_flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
TARGET_ABSOLUTE_BIGGEST_ALIGNMENT . . . . . . . . 544
TARGET_ADDITIONAL_ALLOCNO_CLASS_P . . . . . . . . 574
TARGET_ADDR_SPACE_ADDRESS_MODE . . . . . . . . . . . . 699
TARGET_ADDR_SPACE_CONVERT . . . . . . . . . . . . . . . . . . 700
TARGET_ADDR_SPACE_DEBUG . . . . . . . . . . . . . . . . . . . . 700
TARGET_ADDR_SPACE_DIAGNOSE_USAGE . . . . . . . . . 700
TARGET_ADDR_SPACE_FOR_

ARTIFICIAL_RODATA . . . . . . . . . . . . . . . . . . . . . . . . 701
TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P . . . 700
TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS . . . . . 700
TARGET_ADDR_SPACE_POINTER_MODE . . . . . . . . . . . . 699
TARGET_ADDR_SPACE_SUBSET_P . . . . . . . . . . . . . . . . 700
TARGET_ADDR_SPACE_VALID_POINTER_MODE . . . . . 699
TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID . . . . . 700
TARGET_ADDRESS_COST . . . . . . . . . . . . . . . . . . . . . . . . 637
TARGET_ALIGN_ANON_BITFIELD . . . . . . . . . . . . . . . . 548
TARGET_ALLOCATE_INITIAL_VALUE . . . . . . . . . . . . . 715
TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS . . . . . 719
TARGET_ALWAYS_STRIP_DOTDOT . . . . . . . . . . . . . . . . 534
TARGET_ARG_PARTIAL_BYTES . . . . . . . . . . . . . . . . . . . 591
TARGET_ARM_EABI_UNWINDER . . . . . . . . . . . . . . . . . . . 680
TARGET_ARRAY_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
TARGET_ARRAY_MODE_SUPPORTED_P . . . . . . . . . . . . . 596
TARGET_ASAN_DYNAMIC_SHADOW_OFFSET_P . . . . . . 720
TARGET_ASAN_SHADOW_OFFSET . . . . . . . . . . . . . . . . . . 720
TARGET_ASM_ALIGNED_DI_OP . . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_ALIGNED_HI_OP . . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_ALIGNED_PDI_OP . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_ALIGNED_PSI_OP . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_ALIGNED_PTI_OP . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_ALIGNED_SI_OP . . . . . . . . . . . . . . . . . . . 656



Concept Index 879

TARGET_ASM_ALIGNED_TI_OP . . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_ASSEMBLE_UNDEFINED_DECL . . . . . . . 664
TARGET_ASM_ASSEMBLE_VISIBILITY . . . . . . . . . . . . 665
TARGET_ASM_BYTE_OP . . . . . . . . . . . . . . . . . . . . . . . . . . 656
TARGET_ASM_CAN_OUTPUT_MI_THUNK . . . . . . . . . . . . 605
TARGET_ASM_CLOSE_PAREN . . . . . . . . . . . . . . . . . . . . . 658
TARGET_ASM_CODE_END . . . . . . . . . . . . . . . . . . . . . . . . 654
TARGET_ASM_CONSTRUCTOR . . . . . . . . . . . . . . . . . . . . . 671
TARGET_ASM_DECL_END . . . . . . . . . . . . . . . . . . . . . . . . 657
TARGET_ASM_DECLARE_CONSTANT_NAME . . . . . . . . . 663
TARGET_ASM_DESTRUCTOR . . . . . . . . . . . . . . . . . . . . . . 671
TARGET_ASM_ELF_FLAGS_NUMERIC . . . . . . . . . . . . . . 655
TARGET_ASM_EMIT_EXCEPT_PERSONALITY . . . . . . . 677
TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL . . . . . . . 677
TARGET_ASM_EMIT_UNWIND_LABEL . . . . . . . . . . . . . . 677
TARGET_ASM_EXTERNAL_LIBCALL . . . . . . . . . . . . . . . 666
TARGET_ASM_FILE_END . . . . . . . . . . . . . . . . . . . . . . . . 653
TARGET_ASM_FILE_START . . . . . . . . . . . . . . . . . . . . . . 653
TARGET_ASM_FILE_START_APP_OFF . . . . . . . . . . . . . 653
TARGET_ASM_FILE_START_FILE_DIRECTIVE . . . . . 653
TARGET_ASM_FINAL_POSTSCAN_INSN . . . . . . . . . . . . 674
TARGET_ASM_FUNCTION_BEGIN_EPILOGUE . . . . . . . 602
TARGET_ASM_FUNCTION_END_PROLOGUE . . . . . . . . . 602
TARGET_ASM_FUNCTION_EPILOGUE . . . . . . . . . . . . . . 602
TARGET_ASM_FUNCTION_PROLOGUE . . . . . . . . . . . . . . 602
TARGET_ASM_FUNCTION_RODATA_SECTION . . . . . . . 650
TARGET_ASM_FUNCTION_SECTION . . . . . . . . . . . . . . . 655
TARGET_ASM_FUNCTION_SWITCHED_

TEXT_SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
TARGET_ASM_GENERATE_PIC_ADDR_DIFF_VEC . . . . 650
TARGET_ASM_GLOBALIZE_DECL_NAME . . . . . . . . . . . . 664
TARGET_ASM_GLOBALIZE_LABEL . . . . . . . . . . . . . . . . 664
TARGET_ASM_INIT_SECTIONS . . . . . . . . . . . . . . . . . . . 649
TARGET_ASM_INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . 657
TARGET_ASM_INTERNAL_LABEL . . . . . . . . . . . . . . . . . . 666
TARGET_ASM_LTO_END . . . . . . . . . . . . . . . . . . . . . . . . . . 654
TARGET_ASM_LTO_START . . . . . . . . . . . . . . . . . . . . . . . 654
TARGET_ASM_MAKE_EH_SYMBOL_INDIRECT . . . . . . . 677
TARGET_ASM_MARK_DECL_PRESERVED . . . . . . . . . . . . 666
TARGET_ASM_MERGEABLE_RODATA_PREFIX . . . . . . . 651
TARGET_ASM_NAMED_SECTION . . . . . . . . . . . . . . . . . . . 655
TARGET_ASM_OPEN_PAREN . . . . . . . . . . . . . . . . . . . . . . 658
TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA . . . . . . . 657
TARGET_ASM_OUTPUT_ANCHOR . . . . . . . . . . . . . . . . . . . 628
TARGET_ASM_OUTPUT_DWARF_DTPREL . . . . . . . . . . . . 684
TARGET_ASM_OUTPUT_IDENT . . . . . . . . . . . . . . . . . . . . 655
TARGET_ASM_OUTPUT_MI_THUNK . . . . . . . . . . . . . . . . 604
TARGET_ASM_OUTPUT_SOURCE_FILENAME . . . . . . . . 654
TARGET_ASM_POST_CFI_STARTPROC . . . . . . . . . . . . . 677
TARGET_ASM_PRINT_PATCHABLE_

FUNCTION_ENTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
TARGET_ASM_RECORD_GCC_SWITCHES . . . . . . . . . . . . 656
TARGET_ASM_RECORD_GCC_SWITCHES_SECTION . . . 656
TARGET_ASM_RELOC_RW_MASK . . . . . . . . . . . . . . . . . . . 650
TARGET_ASM_SELECT_RTX_SECTION . . . . . . . . . . . . . 651
TARGET_ASM_SELECT_SECTION . . . . . . . . . . . . . . . . . . 650
TARGET_ASM_SHOULD_RESTORE_CFA_STATE . . . . . . 678
TARGET_ASM_TM_CLONE_TABLE_SECTION . . . . . . . . 651

TARGET_ASM_TRAMPOLINE_TEMPLATE . . . . . . . . . . . . 613
TARGET_ASM_TTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
TARGET_ASM_UNALIGNED_DI_OP . . . . . . . . . . . . . . . . 656
TARGET_ASM_UNALIGNED_HI_OP . . . . . . . . . . . . . . . . 656
TARGET_ASM_UNALIGNED_PDI_OP . . . . . . . . . . . . . . . 656
TARGET_ASM_UNALIGNED_PSI_OP . . . . . . . . . . . . . . . 656
TARGET_ASM_UNALIGNED_PTI_OP . . . . . . . . . . . . . . . 656
TARGET_ASM_UNALIGNED_SI_OP . . . . . . . . . . . . . . . . 656
TARGET_ASM_UNALIGNED_TI_OP . . . . . . . . . . . . . . . . 656
TARGET_ASM_UNIQUE_SECTION . . . . . . . . . . . . . . . . . . 650
TARGET_ASM_UNWIND_EMIT . . . . . . . . . . . . . . . . . . . . . 677
TARGET_ASM_UNWIND_EMIT_BEFORE_INSN . . . . . . . 678
TARGET_ATOMIC_ALIGN_FOR_MODE . . . . . . . . . . . . . . 720
TARGET_ATOMIC_ASSIGN_EXPAND_FENV . . . . . . . . . 721
TARGET_ATOMIC_TEST_AND_SET_TRUEVAL . . . . . . . 720
TARGET_ATTRIBUTE_TABLE . . . . . . . . . . . . . . . . . . . . . 689
TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P . . . . . . 689
TARGET_AVOID_STORE_FORWARDING_P . . . . . . . . . . . 639
TARGET_BINDS_LOCAL_P . . . . . . . . . . . . . . . . . . . . . . . 652
TARGET_BUILD_BUILTIN_VA_LIST . . . . . . . . . . . . . . 594
TARGET_BUILTIN_DECL . . . . . . . . . . . . . . . . . . . . . . . . 711
TARGET_BUILTIN_RECIPROCAL . . . . . . . . . . . . . . . . . . 621
TARGET_BUILTIN_SETJMP_FRAME_VALUE . . . . . . . . 576
TARGET_C_BITINT_TYPE_INFO . . . . . . . . . . . . . . . . . . 543
TARGET_C_EXCESS_PRECISION . . . . . . . . . . . . . . . . . . 543
TARGET_C_MODE_FOR_FLOATING_TYPE . . . . . . . . . . . 543
TARGET_C_PREINCLUDE . . . . . . . . . . . . . . . . . . . . . . . . 707
TARGET_CALL_ARGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
TARGET_CALL_FUSAGE_CONTAINS_NON_

CALLEE_CLOBBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
TARGET_CALL_OFFSET_RETURN_LABEL . . . . . . . . . . . 610
TARGET_CALLEE_COPIES . . . . . . . . . . . . . . . . . . . . . . . 591
TARGET_CALLEE_SAVE_COST . . . . . . . . . . . . . . . . . . . . 632
TARGET_CAN_CHANGE_MODE_CLASS . . . . . . . . . . . . . . 572
TARGET_CAN_CHANGE_MODE_CLASS and

subreg semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
TARGET_CAN_ELIMINATE . . . . . . . . . . . . . . . . . . . . . . . 587
TARGET_CAN_FOLLOW_JUMP . . . . . . . . . . . . . . . . . . . . . 714
TARGET_CAN_INLINE_P . . . . . . . . . . . . . . . . . . . . . . . . 693
TARGET_CAN_USE_DOLOOP_P . . . . . . . . . . . . . . . . . . . . 714
TARGET_CANNOT_FORCE_CONST_MEM . . . . . . . . . . . . . 620
TARGET_CANNOT_MODIFY_JUMPS_P . . . . . . . . . . . . . . 716
TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P . . . . . 573
TARGET_CANONICAL_VA_LIST_TYPE . . . . . . . . . . . . . 594
TARGET_CANONICALIZE_COMPARISON . . . . . . . . . . . . 629
TARGET_CASE_VALUES_THRESHOLD . . . . . . . . . . . . . . 702
TARGET_CC_MODES_COMPATIBLE . . . . . . . . . . . . . . . . 631
TARGET_CHECK_BUILTIN_CALL . . . . . . . . . . . . . . . . . . 712
TARGET_CHECK_PCH_TARGET_FLAGS . . . . . . . . . . . . . 695
TARGET_CHECK_STRING_OBJECT_FORMAT_ARG . . . . 539
TARGET_CHECK_TARGET_CLONE_VERSION . . . . . . . . 713
TARGET_CLASS_LIKELY_SPILLED_P . . . . . . . . . . . . . 571
TARGET_CLASS_MAX_NREGS . . . . . . . . . . . . . . . . . . . . . 572
TARGET_CLONES_ATTR_SEPARATOR . . . . . . . . . . . . . . 691
TARGET_COMMUTATIVE_P . . . . . . . . . . . . . . . . . . . . . . . 715
TARGET_COMP_TYPE_ATTRIBUTES . . . . . . . . . . . . . . . 689
TARGET_COMPARE_BY_PIECES_BRANCH_RATIO . . . . 635
TARGET_COMPARE_VERSION_PRIORITY . . . . . . . . . . . 713



880 GNU Compiler Collection (GCC) Internals

TARGET_COMPATIBLE_VECTOR_TYPES_P . . . . . . . . . 596
TARGET_COMPUTE_FRAME_LAYOUT . . . . . . . . . . . . . . . 587
TARGET_COMPUTE_MULTILIB . . . . . . . . . . . . . . . . . . . . 539
TARGET_COMPUTE_PRESSURE_CLASSES . . . . . . . . . . . 574
TARGET_CONDITIONAL_REGISTER_USAGE . . . . . . . . 558
TARGET_CONST_ANCHOR . . . . . . . . . . . . . . . . . . . . . . . . 720
TARGET_CONST_NOT_OK_FOR_DEBUG_P . . . . . . . . . . . 620
TARGET_CONSTANT_ALIGNMENT . . . . . . . . . . . . . . . . . . 546
TARGET_CONVERT_TO_TYPE . . . . . . . . . . . . . . . . . . . . . 718
TARGET_CPU_CPP_BUILTINS . . . . . . . . . . . . . . . . . . . . 537
TARGET_CSTORE_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . 574
TARGET_CUSTOM_FUNCTION_DESCRIPTORS . . . . . . . 612
TARGET_CXX_ADJUST_CDTOR_CALLABI_FNTYPE . . . 697
TARGET_CXX_ADJUST_CLASS_AT_DEFINITION . . . . 697
TARGET_CXX_CDTOR_RETURNS_THIS . . . . . . . . . . . . . 696
TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT . . . . . . 696
TARGET_CXX_COOKIE_HAS_SIZE . . . . . . . . . . . . . . . . 696
TARGET_CXX_DECL_MANGLING_CONTEXT . . . . . . . . . 697
TARGET_CXX_DETERMINE_CLASS_

DATA_VISIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
TARGET_CXX_GET_COOKIE_SIZE . . . . . . . . . . . . . . . . 696
TARGET_CXX_GUARD_MASK_BIT . . . . . . . . . . . . . . . . . . 696
TARGET_CXX_GUARD_TYPE . . . . . . . . . . . . . . . . . . . . . . 695
TARGET_CXX_IMPLICIT_EXTERN_C . . . . . . . . . . . . . . 707
TARGET_CXX_IMPORT_EXPORT_CLASS . . . . . . . . . . . . 696
TARGET_CXX_KEY_METHOD_MAY_BE_INLINE . . . . . . 696
TARGET_CXX_LIBRARY_RTTI_COMDAT . . . . . . . . . . . . 697
TARGET_CXX_USE_AEABI_ATEXIT . . . . . . . . . . . . . . . 697
TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT . . . . . 697
TARGET_D_CPU_VERSIONS . . . . . . . . . . . . . . . . . . . . . . 697
TARGET_D_HAS_STDCALL_CONVENTION . . . . . . . . . . . 698
TARGET_D_MINFO_SECTION . . . . . . . . . . . . . . . . . . . . . 698
TARGET_D_MINFO_SECTION_END . . . . . . . . . . . . . . . . 698
TARGET_D_MINFO_SECTION_START . . . . . . . . . . . . . . 698
TARGET_D_OS_VERSIONS . . . . . . . . . . . . . . . . . . . . . . . 697
TARGET_D_REGISTER_CPU_TARGET_INFO . . . . . . . . 697
TARGET_D_REGISTER_OS_TARGET_INFO . . . . . . . . . 698
TARGET_D_TEMPLATES_ALWAYS_COMDAT . . . . . . . . . 698
TARGET_DEBUG_UNWIND_INFO . . . . . . . . . . . . . . . . . . . 683
TARGET_DECIMAL_FLOAT_SUPPORTED_P . . . . . . . . . 550
TARGET_DECLSPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
TARGET_DEFAULT_PACK_STRUCT . . . . . . . . . . . . . . . . 708
TARGET_DEFAULT_SHORT_ENUMS . . . . . . . . . . . . . . . . 553
TARGET_DEFAULT_TARGET_FLAGS . . . . . . . . . . . . . . . 538
TARGET_DEFERRED_OUTPUT_DEFS . . . . . . . . . . . . . . . 668
TARGET_DELAY_SCHED2 . . . . . . . . . . . . . . . . . . . . . . . . 684
TARGET_DELAY_VARTRACK . . . . . . . . . . . . . . . . . . . . . . 684
TARGET_DELEGITIMIZE_ADDRESS . . . . . . . . . . . . . . . 620
TARGET_DIFFERENT_ADDR_DISPLACEMENT_P . . . . . 573
TARGET_DLLIMPORT_DECL_ATTRIBUTES . . . . . . . . . 690
TARGET_DOCUMENTATION_NAME . . . . . . . . . . . . . . . . . . 723
TARGET_DOLOOP_COST_FOR_ADDRESS . . . . . . . . . . . . 714
TARGET_DOLOOP_COST_FOR_GENERIC . . . . . . . . . . . . 713
TARGET_DTORS_FROM_CXA_ATEXIT . . . . . . . . . . . . . . 671
TARGET_DW_CFI_OPRND1_DESC . . . . . . . . . . . . . . . . . . 680
TARGET_DWARF_CALLING_CONVENTION . . . . . . . . . . . 683
TARGET_DWARF_FRAME_REG_MODE . . . . . . . . . . . . . . . 680
TARGET_DWARF_HANDLE_FRAME_UNSPEC . . . . . . . . . 577

TARGET_DWARF_POLY_INDETERMINATE_VALUE . . . . 577
TARGET_DWARF_REGISTER_SPAN . . . . . . . . . . . . . . . . 680
TARGET_EDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
TARGET_EMIT_CALL_BUILTIN___CLEAR_CACHE . . . 613
TARGET_EMIT_EPILOGUE_FOR_SIBCALL . . . . . . . . . 711
TARGET_EMIT_SUPPORT_TINFOS . . . . . . . . . . . . . . . . 551
TARGET_EMPTY_RECORD_P . . . . . . . . . . . . . . . . . . . . . . 601
TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS . . . . . 694
TARGET_EMUTLS_GET_ADDRESS . . . . . . . . . . . . . . . . . . 693
TARGET_EMUTLS_REGISTER_COMMON . . . . . . . . . . . . . 694
TARGET_EMUTLS_TMPL_PREFIX . . . . . . . . . . . . . . . . . . 694
TARGET_EMUTLS_TMPL_SECTION . . . . . . . . . . . . . . . . 694
TARGET_EMUTLS_VAR_ALIGN_FIXED . . . . . . . . . . . . . 694
TARGET_EMUTLS_VAR_FIELDS . . . . . . . . . . . . . . . . . . . 694
TARGET_EMUTLS_VAR_INIT . . . . . . . . . . . . . . . . . . . . . 694
TARGET_EMUTLS_VAR_PREFIX . . . . . . . . . . . . . . . . . . . 694
TARGET_EMUTLS_VAR_SECTION . . . . . . . . . . . . . . . . . . 694
TARGET_ENCODE_SECTION_INFO . . . . . . . . . . . . . . . . 651
TARGET_ENCODE_SECTION_INFO and

address validation . . . . . . . . . . . . . . . . . . . . . . . . . . 618
TARGET_ENCODE_SECTION_INFO usage . . . . . . . . . . 674
TARGET_END_CALL_ARGS . . . . . . . . . . . . . . . . . . . . . . . 611
TARGET_ENUM_VA_LIST_P . . . . . . . . . . . . . . . . . . . . . . 594
TARGET_ESTIMATED_POLY_VALUE . . . . . . . . . . . . . . . 639
TARGET_EXCEPT_UNWIND_INFO . . . . . . . . . . . . . . . . . . 679
TARGET_EXECUTABLE_SUFFIX . . . . . . . . . . . . . . . . . . . 716
TARGET_EXPAND_BUILTIN . . . . . . . . . . . . . . . . . . . . . . 712
TARGET_EXPAND_BUILTIN_SAVEREGS . . . . . . . . . . . . 609
TARGET_EXPAND_DIVMOD_LIBFUNC . . . . . . . . . . . . . . 647
TARGET_EXPAND_TO_RTL_HOOK . . . . . . . . . . . . . . . . . . 550
TARGET_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TARGET_EXTRA_INCLUDES . . . . . . . . . . . . . . . . . . . . . . 717
TARGET_EXTRA_LIVE_ON_ENTRY . . . . . . . . . . . . . . . . 606
TARGET_EXTRA_PRE_INCLUDES . . . . . . . . . . . . . . . . . . 717
TARGET_FIXED_CONDITION_CODE_REGS . . . . . . . . . 630
TARGET_FIXED_POINT_SUPPORTED_P . . . . . . . . . . . . 550
TARGET_FLAGS_REGNUM . . . . . . . . . . . . . . . . . . . . . . . . 631
TARGET_FLOAT_EXCEPTIONS_

ROUNDING_SUPPORTED_P . . . . . . . . . . . . . . . . . . . . . 540
TARGET_FLOATN_BUILTIN_P . . . . . . . . . . . . . . . . . . . . 597
TARGET_FLOATN_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . 597
TARGET_FN_ABI_VA_LIST . . . . . . . . . . . . . . . . . . . . . . 594
TARGET_FNTYPE_ABI . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
TARGET_FOLD_BUILTIN . . . . . . . . . . . . . . . . . . . . . . . . 712
TARGET_FORMAT_TYPES . . . . . . . . . . . . . . . . . . . . . . . . 717
TARGET_FORTIFY_SOURCE_DEFAULT_LEVEL . . . . . . 616
TARGET_FRAME_ALLOCATION_COST . . . . . . . . . . . . . . 633
TARGET_FRAME_POINTER_REQUIRED . . . . . . . . . . . . . 586
TARGET_FUNCTION_ARG . . . . . . . . . . . . . . . . . . . . . . . . 589
TARGET_FUNCTION_ARG_ADVANCE . . . . . . . . . . . . . . . 592
TARGET_FUNCTION_ARG_BOUNDARY . . . . . . . . . . . . . . 593
TARGET_FUNCTION_ARG_OFFSET . . . . . . . . . . . . . . . . 593
TARGET_FUNCTION_ARG_PADDING . . . . . . . . . . . . . . . 593
TARGET_FUNCTION_ARG_ROUND_BOUNDARY . . . . . . . 593
TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P . . . . 691
TARGET_FUNCTION_INCOMING_ARG . . . . . . . . . . . . . . 590
TARGET_FUNCTION_OK_FOR_SIBCALL . . . . . . . . . . . . 605
TARGET_FUNCTION_VALUE . . . . . . . . . . . . . . . . . . . . . . 598



Concept Index 881

TARGET_FUNCTION_VALUE_REGNO_P . . . . . . . . . . . . . 599
TARGET_GEN_CCMP_FIRST . . . . . . . . . . . . . . . . . . . . . . 716
TARGET_GEN_CCMP_NEXT . . . . . . . . . . . . . . . . . . . . . . . 716
TARGET_GENERATE_VERSION_

DISPATCHER_BODY . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
TARGET_GET_DRAP_RTX . . . . . . . . . . . . . . . . . . . . . . . . 719
TARGET_GET_FUNCTION_

VERSIONS_DISPATCHER . . . . . . . . . . . . . . . . . . . . . . 713
TARGET_GET_MULTILIB_ABI_NAME . . . . . . . . . . . . . . 558
TARGET_GET_PCH_VALIDITY . . . . . . . . . . . . . . . . . . . . 695
TARGET_GET_RAW_ARG_MODE . . . . . . . . . . . . . . . . . . . . 601
TARGET_GET_RAW_RESULT_MODE . . . . . . . . . . . . . . . . 601
TARGET_GET_VALID_OPTION_VALUES . . . . . . . . . . . . 608
TARGET_GIMPLE_FOLD_BUILTIN . . . . . . . . . . . . . . . . 713
TARGET_GIMPLIFY_VA_ARG_EXPR . . . . . . . . . . . . . . . 594
TARGET_GOACC_ADJUST_PRIVATE_DECL . . . . . . . . . 627
TARGET_GOACC_CREATE_WORKER_

BROADCAST_RECORD . . . . . . . . . . . . . . . . . . . . . . . . . . 627
TARGET_GOACC_DIM_LIMIT . . . . . . . . . . . . . . . . . . . . . 626
TARGET_GOACC_EXPAND_VAR_DECL . . . . . . . . . . . . . . 627
TARGET_GOACC_FORK_JOIN . . . . . . . . . . . . . . . . . . . . . 626
TARGET_GOACC_REDUCTION . . . . . . . . . . . . . . . . . . . . . 626
TARGET_GOACC_SHARED_MEM_LAYOUT . . . . . . . . . . . . 627
TARGET_GOACC_VALIDATE_DIMS . . . . . . . . . . . . . . . . 625
TARGET_HANDLE_C_OPTION . . . . . . . . . . . . . . . . . . . . . 538
TARGET_HANDLE_GENERIC_ATTRIBUTE . . . . . . . . . . . 690
TARGET_HANDLE_OPTION . . . . . . . . . . . . . . . . . . . . . . . 538
TARGET_HARD_REGNO_CALL_PART_CLOBBERED . . . . 557
TARGET_HARD_REGNO_MODE_OK . . . . . . . . . . . . . . . . . . 560
TARGET_HARD_REGNO_MODE_OK

and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
TARGET_HARD_REGNO_NREGS . . . . . . . . . . . . . . . . . . . . 559
TARGET_HARD_REGNO_SCRATCH_OK . . . . . . . . . . . . . . 561
TARGET_HAS_FMV_TARGET_ATTRIBUTE . . . . . . . . . . . 691
TARGET_HAS_IFUNC_P . . . . . . . . . . . . . . . . . . . . . . . . . . 720
TARGET_HAS_NO_HW_DIVIDE . . . . . . . . . . . . . . . . . . . . 615
TARGET_HAVE_CCMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
TARGET_HAVE_CONDITIONAL_EXECUTION . . . . . . . . 716
TARGET_HAVE_COUNT_REG_DECR_P . . . . . . . . . . . . . . 713
TARGET_HAVE_CTORS_DTORS . . . . . . . . . . . . . . . . . . . . 671
TARGET_HAVE_LIBATOMIC . . . . . . . . . . . . . . . . . . . . . . 723
TARGET_HAVE_NAMED_SECTIONS . . . . . . . . . . . . . . . . 655
TARGET_HAVE_SHADOW_CALL_STACK . . . . . . . . . . . . . 723
TARGET_HAVE_SPECULATION_SAFE_VALUE . . . . . . . 722
TARGET_HAVE_SRODATA_SECTION . . . . . . . . . . . . . . . 652
TARGET_HAVE_STRUB_SUPPORT_FOR . . . . . . . . . . . . . 578
TARGET_HAVE_SWITCHABLE_BSS_SECTIONS . . . . . . 655
TARGET_HAVE_TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
TARGET_IFUNC_REF_LOCAL_OK . . . . . . . . . . . . . . . . . . 720
TARGET_IN_SMALL_DATA_P . . . . . . . . . . . . . . . . . . . . . 652
TARGET_INIT_BUILTINS . . . . . . . . . . . . . . . . . . . . . . . 711
TARGET_INIT_DWARF_REG_SIZES_EXTRA . . . . . . . . 680
TARGET_INIT_LIBFUNCS . . . . . . . . . . . . . . . . . . . . . . . 614
TARGET_INIT_PIC_REG . . . . . . . . . . . . . . . . . . . . . . . . 591
TARGET_INSERT_ATTRIBUTES . . . . . . . . . . . . . . . . . . . 690
TARGET_INSN_CALLEE_ABI . . . . . . . . . . . . . . . . . . . . . 557
TARGET_INSN_COST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
TARGET_INSTANTIATE_DECLS . . . . . . . . . . . . . . . . . . . 550

TARGET_INSTRUCTION_SELECTION . . . . . . . . . . . . . . 626
TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN . . . 718
TARGET_INVALID_BINARY_OP . . . . . . . . . . . . . . . . . . . 718
TARGET_INVALID_CONVERSION . . . . . . . . . . . . . . . . . . 718
TARGET_INVALID_UNARY_OP . . . . . . . . . . . . . . . . . . . . 718
TARGET_INVALID_WITHIN_DOLOOP . . . . . . . . . . . . . . 714
TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS . . . 572
TARGET_JIT_REGISTER_CPU_TARGET_INFO . . . . . . 699
TARGET_KEEP_LEAF_WHEN_PROFILED . . . . . . . . . . . . 605
TARGET_LEGITIMATE_ADDRESS_P . . . . . . . . . . . . . . . 617
TARGET_LEGITIMATE_COMBINED_INSN . . . . . . . . . . . 714
TARGET_LEGITIMATE_CONSTANT_P . . . . . . . . . . . . . . 620
TARGET_LEGITIMIZE_ADDRESS . . . . . . . . . . . . . . . . . . 618
TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT . . . 573
TARGET_LIB_INT_CMP_BIASED . . . . . . . . . . . . . . . . . . 615
TARGET_LIBC_HAS_FAST_FUNCTION . . . . . . . . . . . . . 616
TARGET_LIBC_HAS_FUNCTION . . . . . . . . . . . . . . . . . . . 615
TARGET_LIBCALL_VALUE . . . . . . . . . . . . . . . . . . . . . . . 599
TARGET_LIBFUNC_GNU_PREFIX . . . . . . . . . . . . . . . . . . 615
TARGET_LIBGCC_CMP_RETURN_MODE . . . . . . . . . . . . . 549
TARGET_LIBGCC_FLOATING_

MODE_SUPPORTED_P . . . . . . . . . . . . . . . . . . . . . . . . . . 596
TARGET_LIBGCC_SDATA_SECTION . . . . . . . . . . . . . . . 649
TARGET_LIBGCC_SHIFT_COUNT_MODE . . . . . . . . . . . . 549
TARGET_LIBM_FUNCTION_MAX_ERROR . . . . . . . . . . . . 616
TARGET_LOOP_UNROLL_ADJUST . . . . . . . . . . . . . . . . . . 717
TARGET_LOWER_LOCAL_DECL_ALIGNMENT . . . . . . . . 545
TARGET_LRA_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
TARGET_MACHINE_DEPENDENT_REORG . . . . . . . . . . . . 711
TARGET_MANGLE_ASSEMBLER_NAME . . . . . . . . . . . . . . 666
TARGET_MANGLE_DECL_ASSEMBLER_NAME . . . . . . . . 651
TARGET_MANGLE_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . 550
TARGET_MAX_ANCHOR_OFFSET . . . . . . . . . . . . . . . . . . . 628
TARGET_MAX_NOCE_IFCVT_SEQ_COST . . . . . . . . . . . . 638
TARGET_MD_ASM_ADJUST . . . . . . . . . . . . . . . . . . . . . . . 709
TARGET_MEM_CONSTRAINT . . . . . . . . . . . . . . . . . . . . . . 618
TARGET_MEM_REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
TARGET_MEMBER_TYPE_FORCES_BLK . . . . . . . . . . . . . 549
TARGET_MEMMODEL_CHECK . . . . . . . . . . . . . . . . . . . . . . 720
TARGET_MEMORY_MOVE_COST . . . . . . . . . . . . . . . . . . . . 632
TARGET_MEMTAG_ADD_TAG . . . . . . . . . . . . . . . . . . . . . . 723
TARGET_MEMTAG_CAN_TAG_ADDRESSES . . . . . . . . . . . 722
TARGET_MEMTAG_EXTRACT_TAG . . . . . . . . . . . . . . . . . . 723
TARGET_MEMTAG_GRANULE_SIZE . . . . . . . . . . . . . . . . 722
TARGET_MEMTAG_INSERT_RANDOM_TAG . . . . . . . . . . . 723
TARGET_MEMTAG_SET_TAG . . . . . . . . . . . . . . . . . . . . . . 723
TARGET_MEMTAG_TAG_BITSIZE . . . . . . . . . . . . . . . . . . 722
TARGET_MEMTAG_UNTAGGED_POINTER . . . . . . . . . . . . 723
TARGET_MERGE_DECL_ATTRIBUTES . . . . . . . . . . . . . . 690
TARGET_MERGE_TYPE_ATTRIBUTES . . . . . . . . . . . . . . 689
TARGET_MIN_ANCHOR_OFFSET . . . . . . . . . . . . . . . . . . . 628
TARGET_MIN_ARITHMETIC_PRECISION . . . . . . . . . . . 702
TARGET_MIN_DIVISIONS_FOR_RECIP_MUL . . . . . . . 703
TARGET_MODE_AFTER . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
TARGET_MODE_BACKPROP . . . . . . . . . . . . . . . . . . . . . . . 688
TARGET_MODE_CAN_TRANSFER_BITS . . . . . . . . . . . . . 595
TARGET_MODE_CONFLUENCE . . . . . . . . . . . . . . . . . . . . . 687
TARGET_MODE_DEPENDENT_ADDRESS_P . . . . . . . . . . . 619



882 GNU Compiler Collection (GCC) Internals

TARGET_MODE_EH_HANDLER . . . . . . . . . . . . . . . . . . . . . 688
TARGET_MODE_EMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
TARGET_MODE_ENTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
TARGET_MODE_EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
TARGET_MODE_NEEDED . . . . . . . . . . . . . . . . . . . . . . . . . . 687
TARGET_MODE_PRIORITY . . . . . . . . . . . . . . . . . . . . . . . 688
TARGET_MODE_REP_EXTENDED . . . . . . . . . . . . . . . . . . . 704
TARGET_MODES_TIEABLE_P . . . . . . . . . . . . . . . . . . . . . 561
TARGET_MS_BITFIELD_LAYOUT_P . . . . . . . . . . . . . . . 550
TARGET_MUST_PASS_IN_STACK . . . . . . . . . . . . . . . . . . 590
TARGET_MUST_PASS_IN_STACK, and
TARGET_FUNCTION_ARG . . . . . . . . . . . . . . . . . . . . . . 590

TARGET_N_FORMAT_TYPES . . . . . . . . . . . . . . . . . . . . . . 718
TARGET_NARROW_VOLATILE_BITFIELD . . . . . . . . . . . 548
TARGET_NEED_IPA_FN_TARGET_INFO . . . . . . . . . . . . 693
TARGET_NEW_ADDRESS_PROFITABLE_P . . . . . . . . . . . 639
TARGET_NO_REGISTER_ALLOCATION . . . . . . . . . . . . . 684
TARGET_NO_SPECULATION_IN_DELAY_SLOTS_P . . . 639
TARGET_NOCE_CONVERSION_PROFITABLE_P . . . . . . 638
TARGET_OBJC_CONSTRUCT_STRING_OBJECT . . . . . . 538
TARGET_OBJC_DECLARE_CLASS_DEFINITION . . . . . 538
TARGET_OBJC_DECLARE_UNRESOLVED_

CLASS_REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
TARGET_OBJECT_SUFFIX . . . . . . . . . . . . . . . . . . . . . . . 715
TARGET_OBJFMT_CPP_BUILTINS . . . . . . . . . . . . . . . . 537
TARGET_OFFLOAD_OPTIONS . . . . . . . . . . . . . . . . . . . . . 721
TARGET_OMIT_STRUCT_RETURN_REG . . . . . . . . . . . . . 599
TARGET_OMP_DEVICE_KIND_ARCH_ISA . . . . . . . . . . . 625
TARGET_OPTAB_SUPPORTED_P . . . . . . . . . . . . . . . . . . . 637
TARGET_OPTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
TARGET_OPTION_FUNCTIONS_B_

RESOLVABLE_FROM_A . . . . . . . . . . . . . . . . . . . . . . . . 692
TARGET_OPTION_INIT_STRUCT . . . . . . . . . . . . . . . . . . 539
TARGET_OPTION_OPTIMIZATION_TABLE . . . . . . . . . 539
TARGET_OPTION_OVERRIDE . . . . . . . . . . . . . . . . . . . . . 692
TARGET_OPTION_POST_STREAM_IN . . . . . . . . . . . . . . 692
TARGET_OPTION_PRAGMA_PARSE . . . . . . . . . . . . . . . . 692
TARGET_OPTION_PRINT . . . . . . . . . . . . . . . . . . . . . . . . 692
TARGET_OPTION_RESTORE . . . . . . . . . . . . . . . . . . . . . . 691
TARGET_OPTION_SAME_FUNCTION_VERSIONS . . . . . 692
TARGET_OPTION_SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . 691
TARGET_OPTION_VALID_ATTRIBUTE_P . . . . . . . . . . . 691
TARGET_OPTION_VALID_

VERSION_ATTRIBUTE_P . . . . . . . . . . . . . . . . . . . . . . 691
TARGET_OS_CPP_BUILTINS . . . . . . . . . . . . . . . . . . . . . 537
TARGET_OUTPUT_CFI_DIRECTIVE . . . . . . . . . . . . . . . 680
TARGET_OVERLAP_OP_BY_PIECES_P . . . . . . . . . . . . . 635
TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE . . . . . 539
TARGET_OVERRIDES_FORMAT_ATTRIBUTES . . . . . . . 718
TARGET_OVERRIDES_FORMAT_

ATTRIBUTES_COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . 718
TARGET_OVERRIDES_FORMAT_INIT . . . . . . . . . . . . . . 718
TARGET_PASS_BY_REFERENCE . . . . . . . . . . . . . . . . . . . 591
TARGET_PCH_VALID_P . . . . . . . . . . . . . . . . . . . . . . . . . . 695
TARGET_POSIX_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
TARGET_PRECOMPUTE_TLS_P . . . . . . . . . . . . . . . . . . . . 620
TARGET_PREDICT_DOLOOP_P . . . . . . . . . . . . . . . . . . . . 713
TARGET_PREFERRED_DOLOOP_MODE . . . . . . . . . . . . . . 714

TARGET_PREFERRED_ELSE_VALUE . . . . . . . . . . . . . . . 626
TARGET_PREFERRED_OUTPUT_RELOAD_CLASS . . . . . 568
TARGET_PREFERRED_RELOAD_CLASS . . . . . . . . . . . . . 567
TARGET_PREFERRED_RENAME_CLASS . . . . . . . . . . . . . 567
TARGET_PREPARE_PCH_SAVE . . . . . . . . . . . . . . . . . . . . 695
TARGET_PRETEND_OUTGOING_VARARGS_NAMED . . . . 611
TARGET_PROFILE_BEFORE_PROLOGUE . . . . . . . . . . . . 652
TARGET_PROMOTE_FUNCTION_MODE . . . . . . . . . . . . . . 543
TARGET_PROMOTE_PROTOTYPES . . . . . . . . . . . . . . . . . . 587
TARGET_PROMOTED_TYPE . . . . . . . . . . . . . . . . . . . . . . . 718
TARGET_PTRMEMFUNC_VBIT_LOCATION . . . . . . . . . . . 555
TARGET_PUSH_ARGUMENT . . . . . . . . . . . . . . . . . . . . . . . 587
TARGET_RECORD_OFFLOAD_SYMBOL . . . . . . . . . . . . . . 721
TARGET_REDZONE_CLOBBER . . . . . . . . . . . . . . . . . . . . . 595
TARGET_REF_MAY_ALIAS_ERRNO . . . . . . . . . . . . . . . . 595
TARGET_REGISTER_MOVE_COST . . . . . . . . . . . . . . . . . . 631
TARGET_REGISTER_PRIORITY . . . . . . . . . . . . . . . . . . . 573
TARGET_REGISTER_USAGE_LEVELING_P . . . . . . . . . 573
TARGET_RELAYOUT_FUNCTION . . . . . . . . . . . . . . . . . . . 693
TARGET_RESET_LOCATION_VIEW . . . . . . . . . . . . . . . . 683
TARGET_RESOLVE_OVERLOADED_BUILTIN . . . . . . . . 712
TARGET_RETURN_IN_MEMORY . . . . . . . . . . . . . . . . . . . . 600
TARGET_RETURN_IN_MSB . . . . . . . . . . . . . . . . . . . . . . . 599
TARGET_RETURN_POPS_ARGS . . . . . . . . . . . . . . . . . . . . 589
TARGET_RTX_COSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
TARGET_RUN_TARGET_SELFTESTS . . . . . . . . . . . . . . . 722
TARGET_RUST_CPU_INFO . . . . . . . . . . . . . . . . . . . . . . . 698
TARGET_RUST_OS_INFO . . . . . . . . . . . . . . . . . . . . . . . . 698
TARGET_SCALAR_MODE_SUPPORTED_P . . . . . . . . . . . . 595
TARGET_SCHED_ADJUST_COST . . . . . . . . . . . . . . . . . . . 640
TARGET_SCHED_ADJUST_PRIORITY . . . . . . . . . . . . . . 640
TARGET_SCHED_ALLOC_SCHED_CONTEXT . . . . . . . . . 644
TARGET_SCHED_CAN_SPECULATE_INSN . . . . . . . . . . . 645
TARGET_SCHED_CLEAR_SCHED_CONTEXT . . . . . . . . . 644
TARGET_SCHED_DEPENDENCIES_

EVALUATION_HOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
TARGET_SCHED_DFA_NEW_CYCLE . . . . . . . . . . . . . . . . 643
TARGET_SCHED_DFA_POST_ADVANCE_CYCLE . . . . . . 642
TARGET_SCHED_DFA_POST_CYCLE_INSN . . . . . . . . . 642
TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE . . . . . . . 642
TARGET_SCHED_DFA_PRE_CYCLE_INSN . . . . . . . . . . . 641
TARGET_SCHED_DISPATCH . . . . . . . . . . . . . . . . . . . . . . 645
TARGET_SCHED_DISPATCH_DO . . . . . . . . . . . . . . . . . . . 645
TARGET_SCHED_EXPOSED_PIPELINE . . . . . . . . . . . . . 645
TARGET_SCHED_FINISH . . . . . . . . . . . . . . . . . . . . . . . . 641
TARGET_SCHED_FINISH_GLOBAL . . . . . . . . . . . . . . . . 641
TARGET_SCHED_FIRST_CYCLE_

MULTIPASS_BACKTRACK . . . . . . . . . . . . . . . . . . . . . . 643
TARGET_SCHED_FIRST_CYCLE_

MULTIPASS_BEGIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
TARGET_SCHED_FIRST_CYCLE_

MULTIPASS_DFA_LOOKAHEAD . . . . . . . . . . . . . . . . . . 642
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_

DFA_LOOKAHEAD_GUARD . . . . . . . . . . . . . . . . . . . . . . 643
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END . . . 643
TARGET_SCHED_FIRST_CYCLE_

MULTIPASS_FINI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643



Concept Index 883

TARGET_SCHED_FIRST_CYCLE_

MULTIPASS_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
TARGET_SCHED_FIRST_CYCLE_

MULTIPASS_ISSUE . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
TARGET_SCHED_FREE_SCHED_CONTEXT . . . . . . . . . . . 644
TARGET_SCHED_FUSION_PRIORITY . . . . . . . . . . . . . . 646
TARGET_SCHED_GEN_SPEC_CHECK . . . . . . . . . . . . . . . 645
TARGET_SCHED_H_I_D_EXTENDED . . . . . . . . . . . . . . . 644
TARGET_SCHED_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN . . . . 642
TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN . . . . . 642
TARGET_SCHED_INIT_GLOBAL . . . . . . . . . . . . . . . . . . . 641
TARGET_SCHED_INIT_SCHED_CONTEXT . . . . . . . . . . . 644
TARGET_SCHED_IS_COSTLY_DEPENDENCE . . . . . . . . 644
TARGET_SCHED_ISSUE_RATE . . . . . . . . . . . . . . . . . . . . 639
TARGET_SCHED_MACRO_FUSION_P . . . . . . . . . . . . . . . 641
TARGET_SCHED_MACRO_FUSION_PAIR_P . . . . . . . . . 641
TARGET_SCHED_NEEDS_BLOCK_P . . . . . . . . . . . . . . . . 645
TARGET_SCHED_REASSOCIATION_WIDTH . . . . . . . . . 646
TARGET_SCHED_REORDER . . . . . . . . . . . . . . . . . . . . . . . 640
TARGET_SCHED_REORDER2 . . . . . . . . . . . . . . . . . . . . . . 640
TARGET_SCHED_SET_SCHED_CONTEXT . . . . . . . . . . . . 644
TARGET_SCHED_SET_SCHED_FLAGS . . . . . . . . . . . . . . 645
TARGET_SCHED_SMS_RES_MII . . . . . . . . . . . . . . . . . . . 645
TARGET_SCHED_SPECULATE_INSN . . . . . . . . . . . . . . . 644
TARGET_SCHED_VARIABLE_ISSUE . . . . . . . . . . . . . . . 639
TARGET_SECONDARY_MEMORY_NEEDED . . . . . . . . . . . . 570
TARGET_SECONDARY_MEMORY_NEEDED_MODE . . . . . . 571
TARGET_SECONDARY_RELOAD . . . . . . . . . . . . . . . . . . . . 568
TARGET_SECTION_TYPE_FLAGS . . . . . . . . . . . . . . . . . . 656
TARGET_SELECT_EARLY_REMAT_MODES . . . . . . . . . . . 571
TARGET_SET_CURRENT_FUNCTION . . . . . . . . . . . . . . . 715
TARGET_SET_DEFAULT_TYPE_ATTRIBUTES . . . . . . . 689
TARGET_SET_UP_BY_PROLOGUE . . . . . . . . . . . . . . . . . . 606
TARGET_SETJMP_PRESERVES_

NONVOLATILE_REGS_P . . . . . . . . . . . . . . . . . . . . . . . 705
TARGET_SETUP_INCOMING_VARARGS . . . . . . . . . . . . . 609
TARGET_SHIFT_TRUNCATION_MASK . . . . . . . . . . . . . . 704
TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB . . . . . 607
TARGET_SHRINK_WRAP_

DISQUALIFY_COMPONENTS . . . . . . . . . . . . . . . . . . . . 607
TARGET_SHRINK_WRAP_EMIT_

EPILOGUE_COMPONENTS . . . . . . . . . . . . . . . . . . . . . . 607
TARGET_SHRINK_WRAP_EMIT_

PROLOGUE_COMPONENTS . . . . . . . . . . . . . . . . . . . . . . 607
TARGET_SHRINK_WRAP_GET_

SEPARATE_COMPONENTS . . . . . . . . . . . . . . . . . . . . . . 606
TARGET_SHRINK_WRAP_SET_

HANDLED_COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . 607
TARGET_SIMD_CLONE_ADJUST . . . . . . . . . . . . . . . . . . . 625
TARGET_SIMD_CLONE_COMPUTE_

VECSIZE_AND_SIMDLEN . . . . . . . . . . . . . . . . . . . . . . 625
TARGET_SIMD_CLONE_USABLE . . . . . . . . . . . . . . . . . . . 625
TARGET_SIMT_VF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
TARGET_SLOW_UNALIGNED_ACCESS . . . . . . . . . . . . . . 634
TARGET_SMALL_REGISTER_

CLASSES_FOR_MODE_P . . . . . . . . . . . . . . . . . . . . . . . 597
TARGET_SPECULATION_SAFE_VALUE . . . . . . . . . . . . . 722

TARGET_SPILL_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . 574
TARGET_SPLIT_COMPLEX_ARG . . . . . . . . . . . . . . . . . . . 594
TARGET_STACK_CLASH_PROTECTION_

ALLOCA_PROBE_RANGE . . . . . . . . . . . . . . . . . . . . . . . 583
TARGET_STACK_PROTECT_FAIL . . . . . . . . . . . . . . . . . . 607
TARGET_STACK_PROTECT_GUARD . . . . . . . . . . . . . . . . 607
TARGET_STACK_PROTECT_RUNTIME_ENABLED_P . . . 607
TARGET_START_CALL_ARGS . . . . . . . . . . . . . . . . . . . . . 610
TARGET_STARTING_FRAME_OFFSET . . . . . . . . . . . . . . 575
TARGET_STARTING_FRAME_OFFSET and

virtual registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
TARGET_STATIC_CHAIN . . . . . . . . . . . . . . . . . . . . . . . . 584
TARGET_STATIC_RTX_ALIGNMENT . . . . . . . . . . . . . . . 545
TARGET_STRICT_ARGUMENT_NAMING . . . . . . . . . . . . . 610
TARGET_STRING_OBJECT_REF_TYPE_P . . . . . . . . . . . 538
TARGET_STRIP_NAME_ENCODING . . . . . . . . . . . . . . . . 652
TARGET_STRUB_MAY_USE_MEMSET . . . . . . . . . . . . . . . 579
TARGET_STRUB_USE_DYNAMIC_ARRAY . . . . . . . . . . . . 579
TARGET_STRUCT_VALUE_RTX . . . . . . . . . . . . . . . . . . . . 600
TARGET_SUPPORTS_SPLIT_STACK . . . . . . . . . . . . . . . 608
TARGET_SUPPORTS_WEAK . . . . . . . . . . . . . . . . . . . . . . . 665
TARGET_SUPPORTS_WIDE_INT . . . . . . . . . . . . . . . . . . . 721
TARGET_TERMINATE_DW2_EH_FRAME_INFO . . . . . . . 679
TARGET_TRAMPOLINE_ADJUST_ADDRESS . . . . . . . . . 613
TARGET_TRAMPOLINE_INIT . . . . . . . . . . . . . . . . . . . . . 613
TARGET_TRANSLATE_MODE_ATTRIBUTE . . . . . . . . . . . 595
TARGET_TRULY_NOOP_TRUNCATION . . . . . . . . . . . . . . 704
TARGET_UNSPEC_MAY_TRAP_P . . . . . . . . . . . . . . . . . . . 715
TARGET_UNWIND_TABLES_DEFAULT . . . . . . . . . . . . . . 679
TARGET_UNWIND_WORD_MODE . . . . . . . . . . . . . . . . . . . . 550
TARGET_UPDATE_IPA_FN_TARGET_INFO . . . . . . . . . 693
TARGET_UPDATE_STACK_BOUNDARY . . . . . . . . . . . . . . 719
TARGET_USE_ANCHORS_FOR_SYMBOL_P . . . . . . . . . . . 628
TARGET_USE_BLOCKS_FOR_CONSTANT_P . . . . . . . . . 620
TARGET_USE_BLOCKS_FOR_DECL_P . . . . . . . . . . . . . . 620
TARGET_USE_BY_PIECES_INFRASTRUCTURE_P . . . . 634
TARGET_USE_LATE_PROLOGUE_EPILOGUE . . . . . . . . 711
TARGET_USE_PSEUDO_PIC_REG . . . . . . . . . . . . . . . . . . 591
TARGET_USES_WEAK_UNWIND_INFO . . . . . . . . . . . . . . 581
TARGET_VALID_DLLIMPORT_ATTRIBUTE_P . . . . . . . 690
TARGET_VALID_POINTER_MODE . . . . . . . . . . . . . . . . . . 594
TARGET_VECTOR_ALIGNMENT . . . . . . . . . . . . . . . . . . . . 546
TARGET_VECTOR_MODE_

SUPPORTED_ANY_TARGET_P . . . . . . . . . . . . . . . . . . . 595
TARGET_VECTOR_MODE_SUPPORTED_P . . . . . . . . . . . . 595
TARGET_VECTORIZE_

AUTOVECTORIZE_VECTOR_MODES . . . . . . . . . . . . . . 623
TARGET_VECTORIZE_BUILTIN_GATHER . . . . . . . . . . . 624
TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD . . . 621
TARGET_VECTORIZE_BUILTIN_MD_

VECTORIZED_FUNCTION . . . . . . . . . . . . . . . . . . . . . . 622
TARGET_VECTORIZE_BUILTIN_SCATTER . . . . . . . . . 625
TARGET_VECTORIZE_BUILTIN_

VECTORIZATION_COST . . . . . . . . . . . . . . . . . . . . . . . 621
TARGET_VECTORIZE_BUILTIN_

VECTORIZED_FUNCTION . . . . . . . . . . . . . . . . . . . . . . 622
TARGET_VECTORIZE_CONDITIONAL_

OPERATION_IS_EXPENSIVE . . . . . . . . . . . . . . . . . . . 624



884 GNU Compiler Collection (GCC) Internals

TARGET_VECTORIZE_CREATE_COSTS . . . . . . . . . . . . . 624
TARGET_VECTORIZE_EMPTY_

MASK_IS_EXPENSIVE . . . . . . . . . . . . . . . . . . . . . . . . 624
TARGET_VECTORIZE_GET_MASK_MODE . . . . . . . . . . . . 624
TARGET_VECTORIZE_PREFER_GATHER_SCATTER . . . 625
TARGET_VECTORIZE_PREFERRED_DIV_AS_

SHIFTS_OVER_MULT . . . . . . . . . . . . . . . . . . . . . . . . . . 622
TARGET_VECTORIZE_PREFERRED_SIMD_MODE . . . . . 623
TARGET_VECTORIZE_PREFERRED_

VECTOR_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 621
TARGET_VECTORIZE_RELATED_MODE . . . . . . . . . . . . . 623
TARGET_VECTORIZE_SPLIT_REDUCTION . . . . . . . . . 623
TARGET_VECTORIZE_SUPPORT_

VECTOR_MISALIGNMENT . . . . . . . . . . . . . . . . . . . . . . 622
TARGET_VECTORIZE_VEC_PERM_CONST . . . . . . . . . . . 622
TARGET_VECTORIZE_VECTOR_

ALIGNMENT_REACHABLE . . . . . . . . . . . . . . . . . . . . . . 621
TARGET_VERIFY_TYPE_CONTEXT . . . . . . . . . . . . . . . . 719
TARGET_VTABLE_DATA_ENTRY_DISTANCE . . . . . . . . 556
TARGET_VTABLE_ENTRY_ALIGN . . . . . . . . . . . . . . . . . . 556
TARGET_VTABLE_USES_DESCRIPTORS . . . . . . . . . . . . 555
TARGET_WANT_DEBUG_PUB_SECTIONS . . . . . . . . . . . . 684
TARGET_WARN_FUNC_RETURN . . . . . . . . . . . . . . . . . . . . 606
TARGET_WARN_PARAMETER_PASSING_ABI . . . . . . . . 601
TARGET_WEAK_NOT_IN_ARCHIVE_TOC . . . . . . . . . . . . 665
TARGET_ZERO_CALL_USED_REGS . . . . . . . . . . . . . . . . 719
targetm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
targets, makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
tbranch_opmode3 instruction pattern . . . . . . . . . . 464
TCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
TDmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
TEMPLATE_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Temporaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
termination routines . . . . . . . . . . . . . . . . . . . . . . . . . . 668
testing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
TEXT_SECTION_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . 647
TFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
The Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
THEN_CLAUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
THREAD_MODEL_SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
THROW_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
THUNK_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
THUNK_DELTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
TImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
TImode, in insn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
TLS_COMMON_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
TLS_SECTION_ASM_FLAG . . . . . . . . . . . . . . . . . . . . . . . 648
tm.h macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
TQFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
TQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
TRAMPOLINE_ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . 613
TRAMPOLINE_SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 613
TRAMPOLINE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
trampolines for nested functions . . . . . . . . . . . . . . . 611
TRANSFER_FROM_TRAMPOLINE . . . . . . . . . . . . . . . . . . . 614
trap instruction pattern . . . . . . . . . . . . . . . . . . . . . . 472
tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179, 180
Tree SSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

tree_fits_shwi_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
tree_fits_uhwi_p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
tree_int_cst_equal . . . . . . . . . . . . . . . . . . . . . . . . . . 192
tree_int_cst_lt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
tree_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
tree_to_shwi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
tree_to_uhwi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
TREE_CHAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
TREE_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
TREE_INT_CST_ELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
TREE_INT_CST_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
TREE_INT_CST_NUNITS . . . . . . . . . . . . . . . . . . . . . . . . 192
TREE_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
TREE_OPERAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
TREE_PUBLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 217
TREE_PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
TREE_READONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
TREE_STATIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
TREE_STRING_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . 192
TREE_STRING_POINTER . . . . . . . . . . . . . . . . . . . . . . . . 192
TREE_THIS_VOLATILE . . . . . . . . . . . . . . . . . . . . . . . . . . 217
TREE_TYPE . . . . . . . . . . . . 180, 182, 186, 191, 216, 219
TREE_VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
TREE_VEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
TREE_VEC_ELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
TREE_VEC_LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
true positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
TRUNC_DIV_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRUNC_MOD_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
truncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
truncmn2 instruction pattern . . . . . . . . . . . . . . . . . . 458
TRUTH_AND_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRUTH_ANDIF_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRUTH_NOT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRUTH_OR_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRUTH_ORIF_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRUTH_XOR_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
TRY_BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
TRY_HANDLERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
TRY_STMTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Tuple specific accessors . . . . . . . . . . . . . . . . . . . . . . . 245
tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
type declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
TYPE_ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_ARG_TYPES . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_ASM_OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
TYPE_ATTRIBUTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
TYPE_BINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
TYPE_BUILT_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
TYPE_CANONICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
TYPE_CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
TYPE_FIELDS . . . . . . . . . . . . . . . . . . . . . . . . 182, 219, 222
TYPE_HAS_ARRAY_NEW_OPERATOR . . . . . . . . . . . . . . . 223
TYPE_HAS_DEFAULT_CONSTRUCTOR . . . . . . . . . . . . . . 223
TYPE_HAS_MUTABLE_P . . . . . . . . . . . . . . . . . . . . . . . . . . 223
TYPE_HAS_NEW_OPERATOR . . . . . . . . . . . . . . . . . . . . . . 223



Concept Index 885

TYPE_MAIN_VARIANT . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_MAX_VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
TYPE_METHOD_BASETYPE . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_MIN_VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
TYPE_NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_NOTHROW_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
TYPE_OFFSET_BASETYPE . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_OPERAND_FMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
TYPE_OVERLOADS_ARRAY_REF . . . . . . . . . . . . . . . . . . . 223
TYPE_OVERLOADS_ARROW . . . . . . . . . . . . . . . . . . . . . . . 223
TYPE_OVERLOADS_CALL_EXPR . . . . . . . . . . . . . . . . . . . 223
TYPE_POLYMORPHIC_P . . . . . . . . . . . . . . . . . . . . . . . . . . 223
TYPE_PRECISION . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_PTR_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
TYPE_PTRDATAMEM_P . . . . . . . . . . . . . . . . . . . . . . 219, 220
TYPE_PTRFN_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
TYPE_PTROB_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
TYPE_PTROBV_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
TYPE_QUAL_CONST . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_QUAL_RESTRICT . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_QUAL_VOLATILE . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_RAISES_EXCEPTIONS . . . . . . . . . . . . . . . . . . . . . 226
TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_STRUCTURAL_EQUALITY_P . . . . . . . . . . . . 182, 183
TYPE_UNQUALIFIED . . . . . . . . . . . . . . . . . . . . . . . 182, 219
TYPE_VFIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
TYPENAME_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
TYPENAME_TYPE_FULLNAME . . . . . . . . . . . . . . . . 182, 219
TYPEOF_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

U
uabdm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 446
uaddcm5 instruction pattern . . . . . . . . . . . . . . . . . . . 437
uaddvm4 instruction pattern . . . . . . . . . . . . . . . . . . . 437
uavgm3_ceil instruction pattern . . . . . . . . . . . . . . 446
uavgm3_floor instruction pattern . . . . . . . . . . . . . 446
UDAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
udiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
udivm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 436
udivmodm4 instruction pattern . . . . . . . . . . . . . . . . . 446
udot_prodmn instruction pattern . . . . . . . . . . . . . . 440
UDQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
UHAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
UHQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
UINT_FAST16_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
UINT_FAST32_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
UINT_FAST64_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
UINT_FAST8_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT_LEAST16_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT_LEAST32_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT_LEAST64_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT_LEAST8_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT16_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT32_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT64_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINT8_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
UINTMAX_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

UINTPTR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
umaddmn4 instruction pattern . . . . . . . . . . . . . . . . . . 445
umax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
umaxm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 436
umin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
uminm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 436
umod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
umodm3 instruction pattern . . . . . . . . . . . . . . . . . . . . 436
umsubmn4 instruction pattern . . . . . . . . . . . . . . . . . . 445
umul_highpart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
umulhisi3 instruction pattern . . . . . . . . . . . . . . . . . 444
umulhrsm3 instruction pattern . . . . . . . . . . . . . . . . . 441
umulhsm3 instruction pattern . . . . . . . . . . . . . . . . . . 441
umulm3_highpart instruction pattern . . . . . . . . . . 445
umulqihi3 instruction pattern . . . . . . . . . . . . . . . . . 444
umulsidi3 instruction pattern . . . . . . . . . . . . . . . . . 444
umulvm4 instruction pattern . . . . . . . . . . . . . . . . . . . 437
unchanging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
unchanging, in call_insn . . . . . . . . . . . . . . . . . . . . 291
unchanging, in jump_insn,
call_insn and insn . . . . . . . . . . . . . . . . . . . . . . . . 290

unchanging, in mem . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
unchanging, in subreg . . . . . . . . . . . . . . . . . . . . . . . . 293
unchanging, in symbol_ref . . . . . . . . . . . . . . . . . . . 290
UNEQ_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
UNGE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
UNGT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
UNION_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 222
UNITS_PER_WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
UNKNOWN_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 219
UNLE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
UNLIKELY_EXECUTED_TEXT_SECTION_NAME . . . . . . 648
UNLT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
UNORDERED_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
unshare_all_rtl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
unsigned division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
unsigned division with unsigned saturation . . . . 314
unsigned greater than . . . . . . . . . . . . . . . . . . . . . . . . . 317
unsigned less than . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
unsigned minimum and maximum . . . . . . . . . . . . . 314
unsigned_fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
unsigned_float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
unsigned_fract_convert . . . . . . . . . . . . . . . . . . . . . 320
unsigned_sat_fract . . . . . . . . . . . . . . . . . . . . . . . . . . 320
unspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325, 520
unspec_volatile . . . . . . . . . . . . . . . . . . . . . . . . 325, 520
untyped_call instruction pattern . . . . . . . . . . . . . 466
untyped_return instruction pattern . . . . . . . . . . . 467
update_ssa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
update_stmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244, 271
update_stmt_if_modified . . . . . . . . . . . . . . . . . . . . 244
UPDATE_PATH_HOST_CANONICALIZE (path) . . . . . 726
UQQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
us_ashift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
us_minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
us_mult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
us_neg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
us_plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312



886 GNU Compiler Collection (GCC) Internals

us_truncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
usaddm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
usadm instruction pattern . . . . . . . . . . . . . . . . . . . . . 440
USAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
usashlm3 instruction pattern . . . . . . . . . . . . . . . . . . 446
usdivm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
usdot_prodmn instruction pattern . . . . . . . . . . . . . 440
use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
USE_C_ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
USE_LD_AS_NEEDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
USE_LOAD_POST_DECREMENT . . . . . . . . . . . . . . . . . . . . 636
USE_LOAD_POST_INCREMENT . . . . . . . . . . . . . . . . . . . . 636
USE_LOAD_PRE_DECREMENT . . . . . . . . . . . . . . . . . . . . . 636
USE_LOAD_PRE_INCREMENT . . . . . . . . . . . . . . . . . . . . . 636
USE_SELECT_SECTION_FOR_FUNCTIONS . . . . . . . . . 650
USE_STORE_POST_DECREMENT . . . . . . . . . . . . . . . . . . . 636
USE_STORE_POST_INCREMENT . . . . . . . . . . . . . . . . . . . 636
USE_STORE_PRE_DECREMENT . . . . . . . . . . . . . . . . . . . . 636
USE_STORE_PRE_INCREMENT . . . . . . . . . . . . . . . . . . . . 636
used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
used, in symbol_ref . . . . . . . . . . . . . . . . . . . . . . . . . . 293
user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
user experience guidelines . . . . . . . . . . . . . . . . . . . . . 785
user gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
USER_LABEL_PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
USING_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
usmaddmn4 instruction pattern . . . . . . . . . . . . . . . . . 445
usmsubmn4 instruction pattern . . . . . . . . . . . . . . . . . 445
usmulhisi3 instruction pattern . . . . . . . . . . . . . . . 444
usmulm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
usmulqihi3 instruction pattern . . . . . . . . . . . . . . . 444
usmulsidi3 instruction pattern . . . . . . . . . . . . . . . 444
usnegm2 instruction pattern . . . . . . . . . . . . . . . . . . . 447
USQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
ussubm3 instruction pattern . . . . . . . . . . . . . . . . . . . 436
ustruncmn2 instruction pattern . . . . . . . . . . . . . . . 437
usubcm5 instruction pattern . . . . . . . . . . . . . . . . . . . 437
usubvm4 instruction pattern . . . . . . . . . . . . . . . . . . . 437
UTAmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
UTQmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

V
‘V’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
VA_ARG_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
values, returned by functions . . . . . . . . . . . . . . . . . . 598
var_location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
VAR_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
varargs implementation . . . . . . . . . . . . . . . . . . . . . . . 608
variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Variable Location Debug

Information in RTL . . . . . . . . . . . . . . . . . . . . . . . . . 328
vashlm3 instruction pattern . . . . . . . . . . . . . . . . . . . 446
vashrm3 instruction pattern . . . . . . . . . . . . . . . . . . . 446
vcond_mask_len_mn instruction pattern . . . . . . . 434
vcond_mask_mn instruction pattern . . . . . . . . . . . . 434
vec_addsubm3 instruction pattern . . . . . . . . . . . . . 444
vec_cbranch_allmode instruction pattern . . . . . 465

vec_cbranch_anymode instruction pattern . . . . . 465
vec_cmpeqmn instruction pattern . . . . . . . . . . . . . . 433
vec_cmpmn instruction pattern . . . . . . . . . . . . . . . . . 433
vec_cmpumn instruction pattern . . . . . . . . . . . . . . . 433
vec_concat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
vec_duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
vec_duplicatem instruction pattern . . . . . . . . . . . 432
vec_extractmn instruction pattern . . . . . . . . . . . . 432
vec_fmaddsubm4 instruction pattern . . . . . . . . . . . 444
vec_fmsubaddm4 instruction pattern . . . . . . . . . . . 444
vec_initmn instruction pattern . . . . . . . . . . . . . . . 432
vec_load_lanesmn instruction pattern . . . . . . . . 428
vec_mask_len_load_lanesmn

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 429
vec_mask_len_store_lanesmn

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 430
vec_mask_load_lanesmn instruction pattern . . . 429
vec_mask_store_lanesmn

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 429
vec_merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
vec_merge, canonicalization of . . . . . . . . . . . . . . . . 484
vec_pack_sbool_trunc_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 442
vec_pack_sfix_trunc_m instruction pattern . . . 442
vec_pack_ssat_m instruction pattern . . . . . . . . . . 442
vec_pack_trunc_m instruction pattern . . . . . . . . 441
vec_pack_ufix_trunc_m instruction pattern . . . 442
vec_pack_usat_m instruction pattern . . . . . . . . . . 442
vec_packs_float_m instruction pattern . . . . . . . 442
vec_packu_float_m instruction pattern . . . . . . . 442
vec_permm instruction pattern . . . . . . . . . . . . 436, 622
vec_select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
vec_series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
vec_seriesm instruction pattern . . . . . . . . . . . . . . 432
vec_setm instruction pattern . . . . . . . . . . . . . . . . . . 432
vec_shl_insert_m instruction pattern . . . . . . . . 441
vec_shl_m instruction pattern . . . . . . . . . . . . . . . . . 441
vec_shr_m instruction pattern . . . . . . . . . . . . . . . . . 441
vec_store_lanesmn instruction pattern . . . . . . . 429
vec_trunc_add_highm instruction pattern . . . . . 444
vec_unpack_sfix_trunc_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpack_sfix_trunc_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpack_ufix_trunc_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpack_ufix_trunc_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpacks_float_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpacks_float_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpacks_hi_m instruction pattern . . . . . . . . 442
vec_unpacks_lo_m instruction pattern . . . . . . . . 442
vec_unpacks_sbool_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 442
vec_unpacks_sbool_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 442



Concept Index 887

vec_unpacku_float_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpacku_float_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_unpacku_hi_m instruction pattern . . . . . . . . 442
vec_unpacku_lo_m instruction pattern . . . . . . . . 442
vec_widen_sabd_even_m instruction pattern . . . 443
vec_widen_sabd_hi_m instruction pattern . . . . . 443
vec_widen_sabd_lo_m instruction pattern . . . . . 443
vec_widen_sabd_odd_m instruction pattern . . . . 443
vec_widen_saddl_hi_m instruction pattern . . . . 443
vec_widen_saddl_lo_m instruction pattern . . . . 443
vec_widen_smult_even_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_widen_smult_hi_m instruction pattern . . . . 443
vec_widen_smult_lo_m instruction pattern . . . . 443
vec_widen_smult_odd_m instruction pattern . . . 443
vec_widen_sshiftl_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_widen_sshiftl_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_widen_ssubl_hi_m instruction pattern . . . . 443
vec_widen_ssubl_lo_m instruction pattern . . . . 443
vec_widen_uabd_even_m instruction pattern . . . 443
vec_widen_uabd_hi_m instruction pattern . . . . . 443
vec_widen_uabd_lo_m instruction pattern . . . . . 443
vec_widen_uabd_odd_m instruction pattern . . . . 443
vec_widen_uaddl_hi_m instruction pattern . . . . 443
vec_widen_uaddl_lo_m instruction pattern . . . . 443
vec_widen_umult_even_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_widen_umult_hi_m instruction pattern . . . . 443
vec_widen_umult_lo_m instruction pattern . . . . 443
vec_widen_umult_odd_m instruction pattern . . . 443
vec_widen_ushiftl_hi_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_widen_ushiftl_lo_m

instruction pattern . . . . . . . . . . . . . . . . . . . . . . . . . 443
vec_widen_usubl_hi_m instruction pattern . . . . 443
vec_widen_usubl_lo_m instruction pattern . . . . 443
VEC_COND_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_DUPLICATE_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_LSHIFT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_PACK_FIX_TRUNC_EXPR . . . . . . . . . . . . . . . . . . . . 203
VEC_PACK_FLOAT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_PACK_SAT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_PACK_TRUNC_EXPR . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_RSHIFT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_SERIES_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_UNPACK_FIX_TRUNC_HI_EXPR . . . . . . . . . . . . . . 203
VEC_UNPACK_FIX_TRUNC_LO_EXPR . . . . . . . . . . . . . . 203
VEC_UNPACK_FLOAT_HI_EXPR . . . . . . . . . . . . . . . . . . . 203
VEC_UNPACK_FLOAT_LO_EXPR . . . . . . . . . . . . . . . . . . . 203
VEC_UNPACK_HI_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_UNPACK_LO_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . 203
VEC_WIDEN_MULT_HI_EXPR . . . . . . . . . . . . . . . . . . . . . 203
VEC_WIDEN_MULT_LO_EXPR . . . . . . . . . . . . . . . . . . . . . 203
vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

vector operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
VECTOR_CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
VECTOR_STORE_FLAG_VALUE . . . . . . . . . . . . . . . . . . . . 706
Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
verify_flow_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
virtual operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
VIRTUAL_INCOMING_ARGS_REGNUM . . . . . . . . . . . . . . 307
VIRTUAL_OUTGOING_ARGS_REGNUM . . . . . . . . . . . . . . 307
VIRTUAL_STACK_DYNAMIC_REGNUM . . . . . . . . . . . . . . 307
VIRTUAL_STACK_VARS_REGNUM . . . . . . . . . . . . . . . . . . 307
VLIW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508, 512
vlshrm3 instruction pattern . . . . . . . . . . . . . . . . . . . 446
VMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
VMS_DEBUGGING_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . 685
VOID_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
VOIDmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
volatil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
volatil, in insn, call_insn, jump_insn,
code_label, jump_table_data, barrier, and
note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

volatil, in label_ref and reg_label . . . . . . . . 290
volatil, in mem, asm_operands,

and asm_input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
volatil, in reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
volatil, in subreg . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
volatil, in symbol_ref . . . . . . . . . . . . . . . . . . . . . . . 293
volatile memory references . . . . . . . . . . . . . . . . . . . . 295
volatile, in prefetch . . . . . . . . . . . . . . . . . . . . . . . . 291
voting between constraint alternatives . . . . . . . . . 390
vrotlm3 instruction pattern . . . . . . . . . . . . . . . . . . . 446
vrotrm3 instruction pattern . . . . . . . . . . . . . . . . . . . 446

W
walk_dominator_tree . . . . . . . . . . . . . . . . . . . . . . . . 279
walk_gimple_op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
walk_gimple_seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
walk_gimple_stmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
WCHAR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
WCHAR_TYPE_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
which_alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
while_ultmn instruction pattern . . . . . . . . . . . . . . 432
WHILE_BODY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
WHILE_COND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
WHILE_STMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
whopr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
widen_ssumnm3 instruction pattern . . . . . . . . . . . . 440
widen_usumnm3 instruction pattern . . . . . . . . . . . . 440
WIDEN_MULT_EXPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
WIDEST_HARDWARE_FP_SIZE . . . . . . . . . . . . . . . . . . . . 553
window_save instruction pattern . . . . . . . . . . . . . . 472
WINT_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
word_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
WORD_REGISTER_OPERATIONS . . . . . . . . . . . . . . . . . . . 702
WORDS_BIG_ENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
WORDS_BIG_ENDIAN, effect on subreg . . . . . . . . . . . 310
wpa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757



888 GNU Compiler Collection (GCC) Internals

X
x-host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
‘X’ in constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
XCmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
XEXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
XFmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
XImode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
XINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
xm-machine.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726, 727
xor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
xor, canonicalization of . . . . . . . . . . . . . . . . . . . . . . . 485
xorm3 instruction pattern . . . . . . . . . . . . . . . . . . . . . 436

xorsignm3 instruction pattern . . . . . . . . . . . . . . . . . 451
XSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
XVEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
XVECEXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
XVECLEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
XWINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Z
zero_extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
zero_extendmn2 instruction pattern . . . . . . . . . . . 458
zero_extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
zero_extract, canonicalization of . . . . . . . . . . . . . 485


	1 Contributing to GCC Development
	2 GCC and Portability
	3 The GCC low-level runtime library
	Routines for integer arithmetic
	Arithmetic functions
	Comparison functions
	Trapping arithmetic functions
	Bit operations
	Bit-precise integer arithmetic functions

	Routines for floating point emulation
	Arithmetic functions
	Conversion functions
	Comparison functions
	Other floating-point functions

	Routines for decimal floating point emulation
	Arithmetic functions
	Conversion functions
	Comparison functions

	Routines for fixed-point fractional emulation
	Arithmetic functions
	Comparison functions
	Conversion functions

	Language-independent routines for exception handling
	Miscellaneous runtime library routines
	Cache control functions
	Split stack functions and variables


	4 Language Front Ends in GCC
	5 Source Tree Structure and Build System
	Configure Terms and History
	Top Level Source Directory
	The gcc Subdirectory
	Subdirectories of gcc
	Configuration in the gcc Directory
	Scripts Used by configure
	The config.build; config.host; and config.gcc Files
	Files Created by configure

	Build System in the gcc Directory
	Makefile Targets
	Library Source Files and Headers under the gcc Directory
	Headers Installed by GCC
	Building Documentation
	Texinfo Manuals
	Man Page Generation
	Miscellaneous Documentation

	Anatomy of a Language Front End
	The Front End language Directory
	The Front End config-lang.in File
	The Front End Make-lang.in File

	Anatomy of a Target Back End


	6 Testsuites
	Idioms Used in Testsuite Code
	Directives used within DejaGnu tests
	Syntax and Descriptions of test directives
	Specify how to build the test
	Specify additional compiler options
	Modify the test timeout value
	Skip a test for some targets
	Expect a test to fail for some targets
	Expect the compiler to crash
	Expect the test executable to fail
	Verify compiler messages
	Verify output of the test executable
	Specify environment variables for a test
	Specify additional files for a test
	Add checks at the end of a test

	Selecting targets to which a test applies
	Keywords describing target attributes
	Endianness
	Data type sizes
	Fortran-specific attributes
	Vector-specific attributes
	Thread Local Storage attributes
	Decimal floating point attributes
	ARM-specific attributes
	AArch64-specific attributes
	LoongArch specific attributes
	MIPS-specific attributes
	MSP430-specific attributes
	nvptx-specific attributes
	PowerPC-specific attributes
	RISC-V specific attributes
	CORE-V specific attributes
	Other hardware attributes
	Environment attributes
	Other attributes
	Local to tests in gcc.target/i386
	Local to tests in gcc.test-framework

	Features for dg-add-options
	Features for dg-remove-options
	Variants of dg-require-support
	Commands for use in dg-final
	Scan a particular file
	Scan the assembly output
	Scan optimization dump files
	Check for output files
	Checks for gcov tests
	Clean up generated test files


	Ada Language Testsuites
	C Language Testsuites
	Support for testing link-time optimizations
	Support for testing gcov
	Support for testing profile-directed optimizations
	Support for testing binary compatibility
	Support for torture testing using multiple options
	Support for testing GIMPLE passes
	Support for testing RTL passes

	7 Option specification files
	Option file format
	Option properties

	8 Passes and Files of the Compiler
	Parsing pass
	Gimplification pass
	Pass manager
	Inter-procedural optimization passes
	Small IPA passes
	Regular IPA passes
	Late IPA passes

	Tree SSA passes
	RTL passes
	Optimization info
	Dump setup
	Optimization groups
	Dump files and streams
	Dump output verbosity
	Dump types
	Dump examples


	9 Sizes and offsets as runtime invariants
	Overview of poly_int
	Consequences of using poly_int
	Comparisons involving poly_int
	Comparison functions for poly_int
	Properties of the poly_int comparisons
	Comparing potentially-unordered poly_ints
	Comparing ordered poly_ints
	Checking for a poly_int marker value
	Range checks on poly_ints
	Sorting poly_ints

	Arithmetic on poly_ints
	Using poly_int with C++ arithmetic operators
	wi arithmetic on poly_ints
	Division of poly_ints
	Other poly_int arithmetic

	Alignment of poly_ints
	Computing bounds on poly_ints
	Converting poly_ints
	Miscellaneous poly_int routines
	Guidelines for using poly_int

	10 GENERIC
	Deficiencies
	Overview
	Trees
	Identifiers
	Containers

	Types
	Declarations
	Working with declarations
	Internal structure
	Current structure hierarchy
	Adding new DECL node types


	Attributes in trees
	Expressions
	Constant expressions
	References to storage
	Unary and Binary Expressions
	Vectors

	Statements
	Basic Statements
	Blocks
	Statement Sequences
	Empty Statements
	Jumps
	Cleanups
	OpenMP
	OpenACC

	Functions
	Function Basics
	Function Properties

	Language-dependent trees
	C and C++ Trees
	Types for C++
	Namespaces
	Classes
	Functions for C++
	Statements for C and C++
	C++ Expressions


	11 GIMPLE
	Tuple representation
	gimple (gsbase)
	gimple_statement_with_ops
	gimple_statement_with_memory_ops

	Class hierarchy of GIMPLE statements
	GIMPLE instruction set
	Exception Handling
	Temporaries
	Operands
	Compound Expressions
	Compound Lvalues
	Conditional Expressions
	Logical Operators
	Manipulating operands
	Operand vector allocation
	Operand validation
	Statement validation

	Manipulating GIMPLE statements
	Common accessors

	Tuple specific accessors
	GIMPLE_ASM
	GIMPLE_ASSIGN
	GIMPLE_BIND
	GIMPLE_CALL
	GIMPLE_CATCH
	GIMPLE_COND
	GIMPLE_DEBUG
	GIMPLE_EH_FILTER
	GIMPLE_LABEL
	GIMPLE_GOTO
	GIMPLE_NOP
	GIMPLE_OMP_ATOMIC_LOAD
	GIMPLE_OMP_ATOMIC_STORE
	GIMPLE_OMP_CONTINUE
	GIMPLE_OMP_CRITICAL
	GIMPLE_OMP_FOR
	GIMPLE_OMP_MASTER
	GIMPLE_OMP_ORDERED
	GIMPLE_OMP_PARALLEL
	GIMPLE_OMP_RETURN
	GIMPLE_OMP_SECTION
	GIMPLE_OMP_SECTIONS
	GIMPLE_OMP_SINGLE
	GIMPLE_OMP_STRUCTURED_BLOCK
	GIMPLE_PHI
	GIMPLE_RESX
	GIMPLE_RETURN
	GIMPLE_SWITCH
	GIMPLE_TRY
	GIMPLE_WITH_CLEANUP_EXPR

	GIMPLE sequences
	Sequence iterators
	Adding a new GIMPLE statement code
	Statement and operand traversals

	12 Analysis and Optimization of GIMPLE tuples
	Annotations
	SSA Operands
	Operand Iterators And Access Routines
	Immediate Uses

	Static Single Assignment
	Preserving the SSA form
	Examining SSA_NAME nodes
	Walking the dominator tree

	Alias analysis
	Memory model

	13 RTL Representation
	RTL Object Types
	RTL Classes and Formats
	Access to Operands
	Access to Special Operands
	Flags in an RTL Expression
	Machine Modes
	Constant Expression Types
	Registers and Memory
	RTL Expressions for Arithmetic
	Comparison Operations
	Bit-Fields
	Vector Operations
	Conversions
	Declarations
	Side Effect Expressions
	Embedded Side-Effects on Addresses
	Assembler Instructions as Expressions
	Variable Location Debug Information in RTL
	Insns
	RTL Representation of Function-Call Insns
	On-the-Side SSA Form for RTL
	Using RTL SSA in a pass
	RTL SSA Instructions
	RTL SSA Basic Blocks
	RTL SSA Resources
	RTL SSA Register and Memory Accesses
	RTL SSA Phi Nodes
	RTL SSA Access Lists
	Using the RTL SSA framework to change instructions
	Changing One RTL SSA Instruction
	Changing Multiple RTL SSA Instructions


	Structure Sharing Assumptions
	Reading RTL

	14 Control Flow Graph
	Basic Blocks
	Edges
	Profile information
	Maintaining the CFG
	Liveness information

	15 Analysis and Representation of Loops
	Loop representation
	Loop querying
	Loop manipulation
	Loop-closed SSA form
	Scalar evolutions
	IV analysis on RTL
	Number of iterations analysis
	Data Dependency Analysis

	16 Machine Descriptions
	Overview of How the Machine Description is Used
	Everything about Instruction Patterns
	Example of define_insn
	RTL Template
	Output Templates and Operand Substitution
	C Statements for Assembler Output
	Compact Syntax
	Predicates
	Machine-Independent Predicates
	Defining Machine-Specific Predicates

	Operand Constraints
	Simple Constraints
	Multiple Alternative Constraints
	Register Class Preferences
	Constraint Modifier Characters
	Constraints for Particular Machines
	Disable insn alternatives using the enabled attribute
	Defining Machine-Specific Constraints
	Testing constraints from C

	Standard Pattern Names For Generation
	When the Order of Patterns Matters
	Interdependence of Patterns
	Defining Jump Instruction Patterns
	Defining Looping Instruction Patterns
	Canonicalization of Instructions
	Defining RTL Sequences for Code Generation
	Defining How to Split Instructions
	Including Patterns in Machine Descriptions.
	RTL Generation Tool Options for Directory Search

	Machine-Specific Peephole Optimizers
	RTL to Text Peephole Optimizers
	RTL to RTL Peephole Optimizers

	Instruction Attributes
	Defining Attributes and their Values
	Attribute Expressions
	Assigning Attribute Values to Insns
	Example of Attribute Specifications
	Computing the Length of an Insn
	Constant Attributes
	Mnemonic Attribute
	Delay Slot Scheduling
	Specifying processor pipeline description

	Conditional Execution
	RTL Templates Transformations
	define_subst Example
	Pattern Matching in define_subst
	Generation of output template in define_subst

	Constant Definitions
	Iterators
	Mode Iterators
	Defining Mode Iterators
	Substitution in Mode Iterators
	Mode Iterator Examples

	Code Iterators
	Int Iterators
	Subst Iterators
	Parameterized Names


	17 Target Description Macros and Functions
	The Global targetm Variable
	Controlling the Compilation Driver, gcc
	Run-time Target Specification
	Defining data structures for per-function information.
	Storage Layout
	Layout of Source Language Data Types
	Register Usage
	Basic Characteristics of Registers
	Order of Allocation of Registers
	How Values Fit in Registers
	Handling Leaf Functions
	Registers That Form a Stack

	Register Classes
	Stack Layout and Calling Conventions
	Basic Stack Layout
	Exception Handling Support
	Specifying How Stack Checking is Done
	Registers That Address the Stack Frame
	Eliminating Frame Pointer and Arg Pointer
	Passing Function Arguments on the Stack
	Passing Arguments in Registers
	How Scalar Function Values Are Returned
	How Large Values Are Returned
	Caller-Saves Register Allocation
	Function Entry and Exit
	Generating Code for Profiling
	Permitting tail calls
	Shrink-wrapping separate components
	Stack smashing protection
	Miscellaneous register hooks

	Implementing the Varargs Macros
	Support for Nested Functions
	Implicit Calls to Library Routines
	Addressing Modes
	Vectorization
	OpenMP and OpenACC
	Anchored Addresses
	Condition Code Status
	Representation of condition codes using registers

	Describing Relative Costs of Operations
	Adjusting the Instruction Scheduler
	Dividing the Output into Sections (Texts, Data, ...)
	Position Independent Code
	Defining the Output Assembler Language
	The Overall Framework of an Assembler File
	Output of Data
	Output of Uninitialized Variables
	Output and Generation of Labels
	How Initialization Functions Are Handled
	Macros Controlling Initialization Routines
	Output of Assembler Instructions
	Output of Dispatch Tables
	Assembler Commands for Exception Regions
	Assembler Commands for Alignment

	Controlling Debugging Information Format
	Macros Affecting All Debugging Formats
	Macros for DWARF Output
	Macros for VMS Debug Format
	Macros for CTF Debug Format
	Macros for BTF Debug Format

	Cross Compilation and Floating Point
	Mode Switching Instructions
	Defining target-specific uses of __attribute__
	Emulating TLS
	Defining coprocessor specifics for MIPS targets.
	Parameters for Precompiled Header Validity Checking
	C++ ABI parameters
	D ABI parameters
	Rust ABI parameters
	JIT ABI parameters
	Adding support for named address spaces
	Miscellaneous Parameters

	18 Host Configuration
	Host Common
	Host Filesystem
	Host Misc

	19 Makefile Fragments
	Target Makefile Fragments
	Host Makefile Fragments

	20 collect2
	21 Standard Header File Directories
	22 Memory Management and Type Information
	The Inside of a GTY(())
	Support for inheritance
	Support for user-provided GC marking routines
	User-provided marking routines for template types

	Marking Roots for the Garbage Collector
	Source Files Containing Type Information
	How to invoke the garbage collector
	Troubleshooting the garbage collector

	23 Plugins
	Loading Plugins
	Plugin API
	Plugin license check
	Plugin initialization
	Plugin callbacks

	Interacting with the pass manager
	Interacting with the GCC Garbage Collector
	Giving information about a plugin
	Registering custom attributes or pragmas
	Recording information about pass execution
	Controlling which passes are being run
	Keeping track of available passes
	Building GCC plugins

	24 Link Time Optimization
	Design Overview
	LTO modes of operation

	LTO file sections
	Using summary information in IPA passes
	Virtual clones
	IPA references
	Jump functions

	Whole program assumptions, linker plugin and symbol visibilities
	Internal flags controlling lto1

	25 Match and Simplify
	GIMPLE API
	The Language

	26 Static Analyzer
	Analyzer Internals
	Overview
	Graphs
	State Tracking
	Region Model
	Analyzer Paths
	Limitations

	Debugging the Analyzer
	Special Functions for Debugging the Analyzer
	Other Debugging Techniques


	27 User Experience Guidelines
	Guidelines for Diagnostics
	Talk in terms of the user's code
	Diagnostics are actionable
	The user's attention is important
	Sometimes the user didn't write the code
	Precision of Wording
	Try the diagnostic on real-world code
	Make mismatches clear
	Location Information
	Coding Conventions
	Group logically-related diagnostics
	Quoting
	Use color consistently when highlighting mismatches
	Spelling and Terminology
	Fix-it hints
	Fix-it hints should work
	Express deletion in terms of deletion, not replacement
	Multiple suggestions


	Guidelines for Options

	Funding Free Software
	The GNU Project and GNU/Linux
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Contributors to GCC
	Option Index
	Concept Index

