Using GNU Fortran

For ccc version 16.0.0 (pre-release)

(GCC)

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (© 1999-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Introduction.o e 1

Invoking GNU Fortran
GNU Fortran Command Options. 7
Runtime: Influencing runtime behavior with

environment variables e 37

Language Reference

4 Compiler Characteristics., 43
5 EXtensionsii 49
6 Mixed-Language Programming............... 73
7 Coarray Programming. 89
8 Intrinsic Procedures. i 119
9 Intrinsic Modules. 311
Contributingo 321
GNU General Public License 323
GNU Free Documentation License.......................... 335
Funding Free Software 343
Option Indexot e 345

Keyword Indexo e 347

Table of Contents

1 Introduction.................. 1
1.1 About GNU Fortran............oiiiiiiii .. 1
1.2 GNU Fortran and GCC..... i 2
1.3 Standards ... 3

1.3.1 Fortran 95 status ... 3
1.3.2 Fortran 2003 status..... ..o 3
1.3.3 Fortran 2008 status. ... 4
1.3.4 Fortran 2018 status..... ..o 4

Part I: Invoking GNU Fortran..................... 5

2 GNU Fortran Command Options.............. 7
2.1 Option SUMIMATY ... ov vttt e e 7
2.2 Options controlling Fortran dialect.................., 9
2.3 Enable and customize preprocessingooiiiii... 14
2.4 Options to request or suppress errors and warnings............. 18
2.5 Options for debugging your program................cccoouue... 23
2.6 Options for directory search o i 24
2.7 Influencing the linking step 24
2.8 Influencing runtime behavior.......... oL 25
2.9 GNU Fortran Developer Options.c.ccoiiiiiiiiean... 25
2.10 Options for code generation conventions 26
2.11 Options for interoperability with other languages 34
2.12 Environment variables affecting gfortran..................... 35

3 Runtime: Influencing runtime behavior with

environment variables........................... 37
3.1 TMPDIR—Directory for scratch files................... 37
3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input....... 37
3.3 GFORTRAN_STDOUT_UNIT—Unit number for standard output 37
3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error...... 37

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units.... 37
3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not

buffer I/O on preconnected units 37
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors...... 37
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted .. 38
3.9 GFORTRAN_LIST_SEPARATOR—Separator for list output 38

3.10 GFORTRAN_CONVERT_UNIT—Set conversion for unformatted I/0.. 38
3.11 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time errors. . 39
3.12 GFORTRAN_FORMATTED_BUFFER_SIZE—Set

buffer size for formatted I/O.........o 39

iv

3.13 GFORTRAN_UNFORMATTED_BUFFER_SIZE—Set

buffer size for unformatted I/O.......... i 39
Part II: Language Reference...................... 41
4 Compiler Characteristics...................... 43

4.1 KIND Type Parameters............oooiiiiiiiiiiiiinn, 43
4.2 Internal representation of LOGICAL variables.................... 43
4.3 Evaluation of logical expressions................ol 44
4.4 MAX and MIN intrinsics with REAL NaN arguments 44
4.5 Thread-safety of the runtime library 44
4.6 Data consistency and durability............ ... oL 45
4.7 Files opened without an explicit ACTION= specifier 46
4.8 File operations on symbolic links................ 46
4.9 File format of unformatted sequential files 46
4.10 Asynchronous I/O.. i 47
4.11 Behavior on integer overflow.......... L 47
5 Extensions................. 49
5.1 Extensions implemented in GNU Fortran 49
5.1.1 Old-style kind specifications, 49
5.1.2 Old-style variable initialization............................ 49
5.1.3 Extensions to namelist................... ... 50
5.1.4 X format descriptor without count field.................... 51
5.1.5 Commas in FORMAT specifications 51
5.1.6 Missing period in FORMAT specifications 51
5.1.7 Default widths for ‘F’, ‘G’ and ‘I’ format descriptors....... 51
5.1.8° I/O item lSts.ovinii 51
5.1.9 ‘Q exponent-letter........... .o 51
5.1.10 BOZ literal constants.............ccoviiiiiiiiiienia... 52
5.1.11 Real array indices ..ot 52
5.1.12 Unary operators.............uuuiiiiieeen i, 52
5.1.13 TImplicitly convert LOGICAL and INTEGER values 52
5.1.14 Hollerith constants support......................oooii... 52
5.1.15 Character conversionc.ooeiiiiiieeniiea . 53
5.1.16 Cray pointers.ot 54
5.1.17 CONVERT specifier..........oouiiiiii e 55
5.1.18 OpenMP ... 56
5.1.19 OpenACC . ..o 57
5.1.20 Argument list functions %VAL, %REF and %LOC............ 57
5.1.21 Read/Write after EOF marker........................... 58
5.1.22 STRUCTURE and RECORDoovrniiiiie i 58
5.1.23 UNION and MAPttt 61
5.1.24 Type variants for integer intrinsics....................... 62

5.1.25 AUTOMATIC and STATIC attributes........................ 64

5.1.26 Form feed as whitespace..............ciiiiiiiiii.. 64

5.1.27 TYPE as an alias for PRINT, 64
5.1.28 %LOC as an rvalue.coouiiuiiriniiniananns 65
9.1.29 .XOR. OPeratorccoviiiiiiiiiiiiii i 65
5.1.30 Bitwise logical operators........... ...l 65
5.1.31 Extended I/O specifiers...................oooiiiL 65
5.1.32 Legacy PARAMETER statements 67
5.1.33 Default exponents ... 67
5.1.34 Unsigned integers.oouuiiiiiiiiiiiiiiii .. 67
5.2 Extensions not implemented in GNU Fortran 69
5.2.1 ENCODE and DECODE statements 70
5.2.2 Variable FORMAT eXPTresSionsouuiuuiiiiiieeeennnnn.. 70
5.2.3 Alternate complex function syntax........................ 71
5.2.4 Volatile COMMON blocks ...t 71
5.2.5 OPEN(C ... NAME=)ottt 71
5.2.6 Qedit descriptor...... ... 71
6 Mixed-Language Programming 73
6.1 Interoperability with C...... i 73
6.1.1 Intrinsic Typesccooiiiiiii e 73
6.1.2 Derived Types and struct.............oooiiiiiiiiii... 73
6.1.3 Interoperable Global Variables............................ 74
6.1.4 Interoperable Subroutines and Functions.................. 74
6.1.5 Working with C Pointers............... ... 76
6.1.6 Further Interoperability of Fortran with C 78
6.1.7 Generating C prototypes from Fortran.................... 78
6.2 GNU Fortran Compiler Directivesc.coiiii. . 78
6.2.1 ATTRIBUTES directivecovviiiiiiienn, 78
6.2.2 UNROLL directivecouunnnii e 80
6.2.3 BUILTIN dir€Ctive.ovintttteii i 80
6.2.4 TVDEP dir€ctiveuuieiiii e 80
6.2.5 VECTOR directive..........c.uiiiiiiiiiiiiiiiiiiininn., 80
6.2.6 NOVECTOR directive..........c.uuuuiiiiineeniiiiiiiiienn.. 81
6.3 Non-Fortran Main Program.................. 81
6.3.1 _gfortran_set_args — Save command-line arguments ... 81
6.3.2 _gfortran_set_options — Set library option flags....... 82
6.3.3 _gfortran_set_convert — Set endian conversion........ 83
6.3.4 _gfortran_set_record_marker —
Set length of record markers........... L 83

6.3.5 _gfortran_set_fpe — Enable floating point exception traps.. 84
6.3.6 _gfortran_set_max_subrecord_

length — Set subrecord length............ 84
6.4 Naming and argument-passing conventions..................... 85
6.4.1 Naming conventionscooiiiiiiiiiiiiine... 85

6.4.2 Argument passing conventionso..... 85

vi

7 Coarray Programming......................... 89
7.1 Type and enum ABI Documentation........................... 89
711 caf _toREN_t..uue 89

7.1.2 caf_register_t......cooiiiiiiiiiii 89

7.1.3 caf_deregister_t.......... 89

7.1.4 caf_reference_tcooiiiiiiiiiiiiiiiiiiiiiiaa.., 89

715 caf_team_tooiiiiiii e 91

7.2 Function ABI Documentation................ ..., 91
7.2.1 _gfortran_caf_init — Initialization function............ 91

7.2.2 _gfortran_caf_finish — Finalization function.......... 92

7.2.3 _gfortran_caf_this_image — Querying the image number.. 92
7.2.4 _gfortran_caf_num_images — Querying

the maximal number of images 92
7.2.5 _gfortran_caf_image_status —

Query the status of an image...........ol 93
7.2.6 _gfortran_caf_failed_images — Get an array

of the indexes of the failed images 93
7.2.7 _gfortran_caf_stopped_images — Get an array of

the indexes of the stopped imagesooiin... 94
7.2.8 _gfortran_caf_register — Registering coarrays 94
7.2.9 _gfortran_caf_deregister — Deregistering coarrays.... 95
7.2.10 _gfortran_caf_register_accessor —

Register an accessor for remote access 96
7.2.11 _gfortran_caf_register_accessors_finish —

Finish registering accessor functions 96
7.2.12 _gfortran_caf_get_remote_function_

index — Get the index of an accessor......................... 97
7.2.13 _gfortran_caf_get_from_remote — Getting data from a

remote image using a remote side accessor..................... 97
7.2.14 _gfortran_caf_is_present_on_remote — Check that a coarray or a

part of it is allocated on the remote image..................... 99
7.2.15 _gfortran_caf_send_to_remote — Send data to a remote

image using a remote side accessor to store it................. 100
7.2.16 _gfortran_caf_transfer_between_remotes — Initiate

data transfer between to remote images....................... 101
7.2.17 _gfortran_caf_sendget_by_ref — Sending data between remote

images using enhanced references on both sides............... 104
7.2.18 _gfortran_caf_lock — Locking a lock variable........ 105
7.2.19 _gfortran_caf_lock — Unlocking a lock variable...... 106
7.2.20 _gfortran_caf_event_post — Post anevent.......... 106
7.2.21 _gfortran_caf_event_wait —

Wait that an event occurred..........ol 107
7.2.22 _gfortran_caf_event_query — Query event count 107
7.2.23 _gfortran_caf_sync_all — All-image barrier......... 108

7.2.24 _gfortran_caf_sync_images —
Barrier for selected images o it 108

7.2.25 _gfortran_caf_sync_memory — Wait for

completion of segment-memory operations.................... 109
7.2.26 _gfortran_caf_error_stop —

Error termination with exit code L. 109
7.2.27 _gfortran_caf_error_stop_str —

Error termination with string.............. ... L 109
7.2.28 _gfortran_caf_fail_image — Mark the

image failed and end its execution.............. 109
7.2.29 _gfortran_caf_atomic_define —

Atomic variable assignment i 110
7.2.30 _gfortran_caf_atomic_ref — Atomic variable reference.. 110
7.2.31 _gfortran_caf_atomic_cas — Atomic compare and swap..110
7.2.32 _gfortran_caf_atomic_op — Atomic operation........ 111
7.2.33 _gfortran_caf_co_broadcast —

Sending data to all images ...l 112
7.2.34 _gfortran_caf_co_max — Collective maximum reduction.. 112
7.2.35 _gfortran_caf_co_min — Collective minimum reduction.. 113
7.2.36 _gfortran_caf_co_sum — Collective summing reduction.. 113
7.2.37 _gfortran_caf_co_reduce — Generic collective reduction.. 114
7.2.38 _gfortran_caf_form_team — Team creation function.. 115
7.2.39 _gfortran_caf_change_team — Team activation function.. 116
7.2.40 _gfortran_caf_end_team — Team termination function.. 116
7.2.41 _gfortran_caf_sync_team —

Synchronize all images of a given team 116
7.2.42 _gfortran_caf_get_team — Get the

opaque handle of the specified team 117
7.2.43 _gfortran_caf_team_number — Get

the unique id of the given team.............. 117

8 Intrinsic Procedures.......................... 119
8.1 Introduction to intrinsic procedures.................. 119
8.2 ABORT — Abort the program 119
8.3 ABS — Absolute value........... ... 120
8.4 ACCESS — Checks file access modes....................o.o.... 120
8.5 ACHAR — Character in ASCII collating sequence............... 121
8.6 ACOS — Arccosine function............... ..ol 122
8.7 ACOSD — Arccosine function, degreesc.oou... 122
8.8 ACOSH — Inverse hyperbolic cosine function................... 123
8.9 ACOSPI — Circular arc cosine function........................ 124
8.10 ADJUSTL — Left adjust a string................ oot 124
8.11 ADJUSTR — Right adjust a string 125
8.12 AIMAG — Imaginary part of complex number................. 125
8.13 AINT — Truncate to a whole number 126
8.14 ALARM — Execute a routine after a given delay............... 127
8.15 ALL — All values in MASK along DIM are true 127

8.16 ALLOCATED — Status of an allocatable entity................. 128

vii

viii

8.17 AND — Bitwise logical AND il 129
8.18 ANINT — Nearest whole number............................. 130
8.19 ANY — Any value in MASK along DIM is true............... 130
8.20 ASIN — Arcsine function 131
8.21 ASIND — Arcsine function, degrees 132
8.22 ASINH — Inverse hyperbolic sine function.................... 132
8.23 ASINPI — Circular arc sine function......................... 133
8.24 ASSOCIATED — Status of a pointer or pointer/target pair. 134
8.25 ATAN — Arctangent function, 135
8.26 ATAN2 — Arctangent function............... 136
8.27 ATAN2D — Arctangent function, degrees...................... 136
8.28 ATAN2PI — Circular arc tangent function.................... 137
8.29 ATAND — Arctangent function, degrees....................... 138
8.30 ATANH — Inverse hyperbolic tangent function................ 139
8.31 ATANPI — Circular arc tangent function..................... 139
8.32 ATOMIC_ADD — Atomic ADD operation...................... 140
8.33 ATOMIC_AND — Atomic bitwise AND operation............... 141
8.34 ATOMIC_CAS — Atomic compare and swap 141
8.35 ATOMIC_DEFINE — Setting a variable atomically 142

8.36 ATOMIC_FETCH_ADD — Atomic ADD operation with prior fetch.. 143
8.37 ATOMIC_FETCH_AND — Atomic bitwise AND

operation with prior fetch 144
8.38 ATOMIC_FETCH_OR — Atomic bitwise OR

operation with prior fetch L 144
8.39 ATOMIC_FETCH_XOR — Atomic bitwise XOR

operation with prior fetch 145
8.40 ATOMIC_OR — Atomic bitwise OR operation 146
8.41 ATOMIC_REF — Obtaining the value of a variable atomically .. 147
8.42 ATOMIC_XOR — Atomic bitwise OR operation................ 148
8.43 BACKTRACE — Show a backtrace............................. 148
8.44 BESSEL_JO — Bessel function of the first kind of order 0. 149
8.45 BESSEL_J1 — Bessel function of the first kind of order 1..... 149
8.46 BESSEL_JN — Bessel function of the first kind 150

8.47 BESSEL_YO — Bessel function of the second kind of order 0 .. 150
8.48 BESSEL_Y1 — Bessel function of the second kind of order 1 .. 151

8.49 BESSEL_YN — Bessel function of the second kind............. 152
8.50 BGE — Bitwise greater than or equal to...................... 152
8.51 BGT — Bitwise greater than 153
8.52 BIT_SIZE — Bit size inquiry function........................ 153
8.53 BLE — Bitwise less thanorequal to 154
8.54 BLT — Bitwise less than............. L. 154
8.55 BTEST — Bit test function............. i 155
8.56 C_ASSOCIATED — Status of a C pointer...................... 155
8.57 C_F_POINTER — Convert C into Fortran pointer 156
8.58 C_F_PROCPOINTER — Convert C into Fortran procedure pointer. . 157
8.59 C_FUNLOC — Obtain the C address of a procedure 158

8.60 C_LOC — Obtain the C address of an object 158

8.61 C_SIZEQOF — Size in bytes of an expression................... 159
8.62 CEILING — Integer ceiling function............... 160
8.63 CHAR — Character conversion function....................... 160
8.64 CHDIR — Change working directory.......................... 161
8.65 CHMOD — Change access permissions of files.................. 162
8.66 CMPLX — Complex conversion function....................... 162
8.67 CO_BROADCAST — Copy a value to all

images the current set of images...........l 163
8.68 CO_MAX — Maximal value on the current set of images....... 164
8.69 CO_MIN — Minimal value on the current set of images........ 165
8.70 CO_REDUCE — Reduction of values on the current set of images. . 166
8.71 CO_SUM — Sum of values on the current set of images........ 167
8.72 COMMAND_ARGUMENT_COUNT — Get number

of command line arguments i, 168
8.73 COMPILER_OPTIONS — Options passed to the compiler....... 168
8.74 COMPILER_VERSION — Compiler version string............... 169
8.75 COMPLEX — Complex conversion function 169
8.76 CONJG — Complex conjugate function 170
8.77 COS — Cosine function......... ..ot 171
8.78 COSD — Cosine function, degreescooviieian... 171
8.79 COSH — Hyperbolic cosine function.......................... 172
8.80 COSPI — Circular cosine function............................ 173
8.81 COTAN — Cotangent function............ ... oo, 173
8.82 COTAND — Cotangent function, degrees 174
8.83 COUNT — Count function 174
8.84 CPU_TIME — CPU elapsed time in seconds................... 175
8.85 CSHIFT — Circular shift elements of an array................ 176
8.86 CTIME — Convert a time into a string 177
8.87 DATE_AND_TIME — Date and time subroutine................ 178
8.88 DBLE — Double conversion function 179
8.89 DCMPLX — Double complex conversion function 179
8.90 DIGITS — Significant binary digits function.................. 180
8.91 DIM — Positive difference..........t 180
8.92 DOT_PRODUCT — Dot product function....................... 181
8.93 DPROD — Double product function........................... 182
8.94 DREAL — Double real part function.......................... 182
8.95 DSHIFTL — Combined left shift..........., 183
8.96 DSHIFTR — Combined right shift, 183
8.97 DTIME — Execution time subroutine (or function)............ 184
8.98 EOSHIFT — End-off shift elements of an array................ 185
8.99 EPSILON — Epsilon function............... ..., 186
8.100 ERF — FKrror function i 187
8.101 ERFC — Error function........... 187
8.102 ERFC_SCALED — Error function.............. 188
8.103 ETIME — Execution time subroutine (or function) 188
8.104 EVENT_QUERY — Query whether a coarray event has occurred.. 189

8.105

EXECUTE_COMMAND_LINE — Execute a shell command....... 190

ix

8.106 EXIT — Exit the program with status....................... 191

8.107 EXP — Exponential function..................., 191
8.108 EXPONENT — Exponent function............................ 192
8.109 EXTENDS_TYPE_OF — Query dynamic type for extension..... 192
8.110 FDATE — Get the current time as a string 193
8.111 FGET — Read a single character in stream mode from stdin.. 194
8.112 FGETC — Read a single character in stream mode........... 194
8.113 FINDLOC — Search an array for a value..................... 195
8.114 FLOOR — Integer floor function............ 196
8.115 FLUSH — Flush I/O unit(s)................oooiii... 197
8.116 FNUM — File number function 198
8.117 FPUT — Write a single character in stream mode to stdout.. 198
8.118 FPUTC — Write a single character in stream mode 199
8.119 FRACTION — Fractional part of the model representation. ... 200
8.120 FREE — Frees Memorycouiiiiniiiieeeennnn. 200
8.121 FSEEK — Low level file positioning subroutine 201
8.122 FSTAT — Get filestatus..........oooiiiiiii .., 202
8.123 FTELL — Current stream position 203
8.124 GAMMA — Gamma function il 203
8.125 GERROR — Get last system error message 204
8.126 GETARG — Get command line arguments.................... 204
8.127 GET_COMMAND — Get the entire command line............... 205
8.128 GET_COMMAND_ARGUMENT — Get command line arguments . .. 206
8.129 GETCWD — Get current working directory 207
8.130 GETENV — Get an environmental variable................... 207
8.131 GET_ENVIRONMENT_VARIABLE — Get an environmental variable. . 208
8.132 GETGID — Group ID function 209
8.133 GETLOG — Get login name. ..., 209
8.134 GETPID — Process ID function 210
8.135 GET_TEAM — Get the handle of a team...................... 210
8.136 GETUID — User ID functionooiiiiiii .. 211
8.137 GMTIME — Convert time to GMT info...................... 211
8.138 HOSTNM — Get system host name........................... 212
8.139 HUGE — Largest number of a kind 212
8.140 HYPOT — Euclidean distance function....................... 213
8.141 TIACHAR — Code in ASCII collating sequence 213
8.142 TIALL — Bitwise AND of array elements 214
8.143 TIAND — Bitwise logical and........... oL 215
8.144 TIANY — Bitwise OR of array elements...................... 216
8.145 TIARGC — Get the number of command line arguments...... 217
8.146 IBCLR — Clear bito 217
8.147 IBITS — Bit extraction............. ..o, 218
8.148 IBSET — Set bit ..o 218
8.149 ICHAR — Character-to-integer conversion function.......... 219
8.150 IDATE — Get current local time subroutine (day/month/year) .. 220
8.151 TIEOR — Bitwise logical exclusiveor......................... 221

8.152 IERRNO — Get the last system error number................ 222

8.153 IMAGE_INDEX — Function that converts a

cosubscript to an image index o i, 222
8.154 INDEX — Position of a substring within a string 222
8.155 INT — Convert to integer typeoooiiiiiiiinia... 223
8.156 INT2 — Convert to 16-bit integer type...................... 224
8.157 INT8 — Convert to 64-bit integer type...................... 224
8.158 IOR — Bitwise logical oro il 225
8.159 TIPARITY — Bitwise XOR of array elements................. 225
8.160 IRAND — Integer pseudo-random number................... 226
8.161 IS_CONTIGUOUS — Test whether an array is contiguous..... 227
8.162 IS_IOSTAT_END — Test for end-of-file value................. 227
8.163 IS_IOSTAT_EOR — Test for end-of-record value 228
8.164 TISATTY — Whether a unit is a terminal device.............. 229
8.165 ISHFT — Shift bits...... ..o 229
8.166 ISHFTC — Shift bits circularly............... 230
8.167 ISNAN — Test fora NaN 230
8.168 ITIME — Get current local time

subroutine (hour/minutes/seconds) 231
8.169 KILL — Send a signal to a process...............ocovvuuo... 231
8.170 KIND — Kind of an entitycovviiieiiiinenn... 232
8.171 LBOUND — Lower dimension bounds of an array............. 232
8.172 LCOBOUND — Lower codimension bounds of an array 233
8.173 LEADZ — Number of leading zero bits of an integer 234
8.174 LEN — Length of a character entity...................... ... 234
8.175 LEN_TRIM — Length of a character entity

without trailing blank characters 235
8.176 LGE — Lexical greater than orequal........................ 235
8.177 LGT — Lexical greater than 236
8.178 LINK — Create a hard link.............o .. 237
8.179 LLE — Lexical lessthanorequal 237
8.180 LLT — Lexical lessthan.............. ... oot 238
8.181 LNBLNK — Index of the last non-blank character in a string.. 238
8.182 LOC — Returns the address of a variable.................... 239
8.183 LOG — Natural logarithm function................... 239
8.184 L0OG10 — Base 10 logarithm function 240
8.185 LOG_GAMMA — Logarithm of the Gamma function........... 241
8.186 LOGICAL — Convert to logical type.............. ..., 241
8.187 LSHIFT — Left shift bits...............c i 242
8.188 LSTAT — Get filestatus.............coiiiiiiiiiiiii., 242
8.189 LTIME — Convert time to local time info 243
8.190 MALLOC — Allocate dynamic memory....................... 244
8.191 MASKL — Left justified mask.......... 244
8.192 MASKR — Right justified mask, 245
8.193 MATMUL — matrix multiplication............................ 245
8.194 MAX — Maximum value of an argument list................. 246
8.195 MAXEXPONENT — Maximum exponent of a real kind 247
8.196 MAXLOC — Location of the maximum value within an array.. 247

xii

8.197 MAXVAL — Maximum value of an array 248
8.198 MCLOCK — Time function............ ..o .. 249
8.199 MCLOCK8 — Time function (64-bit) 249
8.200 MERGE — Merge variables......... ..., 250
8.201 MERGE_BITS — Merge of bits under mask................... 250
8.202 MIN — Minimum value of an argument list 251
8.203 MINEXPONENT — Minimum exponent of a real kind.......... 251
8.204 MINLOC — Location of the minimum value within an array .. 252
8.205 MINVAL — Minimum value of an array...................... 253
8.206 MOD — Remainder function............... i 253
8.207 MODULO — Modulo functioncooiiiii... 254
8.208 MOVE_ALLOC — Move allocation from one object to another.. 255
8.209 MVBITS — Move bits from one integer to another........... 256
8.210 NEAREST — Nearest representable number 257
8.211 NEW_LINE — New line character............................ 257
8.212 NINT — Nearest whole number............................. 258
8.213 NORM2 — Euclidean vector norms.ooouuee... 258
8.214 NOT — Logical negationcooiiiiiiiiiiiia... 259
8.215 NULL — Function that returns an disassociated pointer 259
8.216 NUM_IMAGES — Function that returns the number of images. . 260
8.217 OR — Bitwise logical ORo i 261
8.218 OUT_OF_RANGE — Range check for numerical conversion. 262
8.219 PACK — Pack an array into an array of rank one............ 262
8.220 PARITY — Reduction with exclusive OR.................... 263
8.221 PERROR — Print system error message 264
8.222 POPCNT — Number of bits setiiiii.. 264
8.223 POPPAR — Parity of the number of bits set.................. 265
8.224 PRECISION — Decimal precision of a real kind.............. 265
8.225 PRESENT — Determine whether an optional

dummy argument is specified i 266
8.226 PRODUCT — Product of array elements...................... 266
8.227 RADIX — Base of a model number.......................... 267
8.228 RAN — Real pseudo-random number........................ 268
8.229 RAND — Real pseudo-random number....................... 268
8.230 RANDOM_INIT — Initialize a pseudo-random number generator. . 268
8.231 RANDOM_NUMBER — Pseudo-random number................. 269
8.232 RANDOM_SEED — Initialize a pseudo-random number sequence. . 270
8.233 RANGE — Decimal exponent rangeccoouue... 271
8.234 RANK — Rank of a data object................. 271
8.235 REAL — Convert toreal type ..., 272
8.236 RENAME — Rename afile........... oia... 273
8.237 REPEAT — Repeated string concatenation................... 273
8.238 RESHAPE — Function to reshape an array 274
8.239 RRSPACING — Reciprocal of the relative spacing 274
8.240 RSHIFT — Right shift bits.......... il 275
8.241 SAME_TYPE_AS — Query dynamic types for equality......... 275

8.242 SCALE — Scalearealvalue........ 276

xiii

8.243 SCAN — Scan a string for the presence of a set of characters.. 276

8.244 SECNDS — Time function............ ... 277
8.245 SECOND — CPU time function............, 277
8.246 SELECTED_CHAR_KIND — Choose character kind............. 278
8.247 SELECTED_INT_KIND — Choose integer kind 279
8.248 SELECTED_LOGICAL_KIND — Choose logical kind............ 279
8.249 SELECTED_REAL_KIND — Choose real kind 280
8.250 SELECTED_UNSIGNED_KIND — Choose unsigned kind 281
8.251 SET_EXPONENT — Set the exponent of the model............ 281
8.252 SHAPE — Determine the shape of an array 282
8.253 SHIFTA — Right shift with fill.............................. 282
8.254 SHIFTL — Left shift................. i i, 283
8.255 SHIFTR — Right shift o 283
8.256 SIGN — Sign copying function............... 284
8.257 SIGNAL — Signal handling subroutine (or function)......... 284
8.258 SIN — Sine function, 285
8.259 SIND — Sine function, degrees........... ... 286
8.260 SINH — Hyperbolic sine function........................... 286
8.261 SINPI — Circular sine function................. 287
8.262 SIZE — Determine the size of an array 288
8.263 SIZEOF — Size in bytes of an expression.................... 288
8.264 SLEEP — Sleep for the specified number of seconds 289
8.265 SPACING — Smallest distance between

two numbers of a given type........ i 289
8.266 SPLIT — Parse a string into tokens, one at a time 290
8.267 SPREAD — Add a dimension to an array 291
8.268 SQRT — Square-root function............................... 291
8.269 SRAND — Reinitialize the random number generator......... 292
8.270 STAT — Get filestatus....... ..o 292
8.271 STORAGE_SIZE — Storage size in bits....................... 294
8.272 SUM — Sum of array elementsooii.... 294
8.273 SYMLNK — Create a symbolic link........................... 295
8.274 SYSTEM — Execute a shell command........................ 295
8.275 SYSTEM_CLOCK — Time function............ ... 296
8.276 TAN — Tangent function 297
8.277 TAND — Tangent function, degrees.......................... 298
8.278 TANH — Hyperbolic tangent function 298
8.279 TANPI — Circular tangent function......................... 299
8.280 TEAM_NUMBER — Retrieve team id of given team 299
8.281 THIS_IMAGE — Function that returns the

cosubscript index of this imageo oL 300
8.282 TIME — Time function..........o ... 301
8.283 TIME8 — Time function (64-bit)....................ooi... 301
8.284 TINY — Smallest positive number of a real kind 302
8.285 TRAILZ — Number of trailing zero bits of an integer........ 302
8.286 TRANSFER — Transfer bit patterns.......................... 303

8.287 TRANSPOSE — Transpose an array of rank two 304

Xiv

8.288 TRIM — Remove trailing blank characters of a string........ 304
8.289 TTYNAM — Get the name of a terminal device............... 305
8.290 UBOUND — Upper dimension bounds of an array............. 305
8.291 UCOBOUND — Upper codimension bounds of an array 306
8.292 UINT — Convert to UNSIGNED type ...oovviineneeennnnnnnn 306
8.293 UMASK — Set the file creation mask......................... 306
8.294 UMASKL — Unsigned left justified mask 307
8.295 UMASKR — Unsigned right justified mask.................... 307
8.296 UNLINK — Remove a file from the file system 308
8.297 UNPACK — Unpack an array of rank one into an array....... 308
8.298 VERIFY — Scan a string for characters not a given set 309
8.299 XOR — Bitwise logical exclusive OR......................... 310
9 Intrinsic Modules............................. 311
9.1 ISO_FORTRAN _ENV ...ttt e e i 311
9.2 ISO_C_BINDING ...ttt ittt ettt 313
9.3 IEEE modules: IEEE_EXCEPTIONS,
IEEE_ARITHMETIC, and IEEE_FEATURES............ccoviiinnnn.... 315
9.4 OpenMP Modules OMP_LIB and OMP_LIB_KINDS 315
9.5 OpenACC Module OPENACCoiiiiiiiiiie e 318
Contributing 321
Contributors to GNU Fortran........... oo, 321
Projects. ..o 322
GNU General Public License.................... 323
GNU Free Documentation License.............. 335
ADDENDUM: How to use this License for your documents. 342
Funding Free Software 343
Option Index............... i, 345

Keyword Index 347

1 Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

Warning: This document, and the compiler it describes, are still under development.
While efforts are made to keep it up-to-date, it might not accurately reflect the status of
the most recent GNU Fortran compiler.

1.1 About GNU Fortran

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in
GCC prior to version 4 (released in 2005). While it is backward-compatible with most
g77 extensions and command-line options, gfortran is a completely new implementation
designed to support more modern dialects of Fortran. GNU Fortran implements the Fortran
77, 90 and 95 standards completely, most of the Fortran 2003 and 2008 standards, and some
features from the 2018 standard. It also implements several extensions including OpenMP
and OpenACC support for parallel programming.

The GNU Fortran compiler passes the NIST Fortran 77 Test Suite (http://www.
fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and produces acceptable results
on the LAPACK Test Suite (https://www.netlib.org/lapack/faq.html). It also
provides respectable performance on the Polyhedron Fortran compiler benchmarks
(https://polyhedron.com/?page_id=175) and the Livermore Fortran Kernels test
(https://www.netlib.org/benchmark/livermore). It has been used to compile a
number of large real-world programs, including the HARMONIE and HIRLAM weather
forecasting code (http://hirlam.org/) and the Tonto quantum chemistry package
(https://github.com/dylan-jayatilaka/tonto); see https://gcc.gnu.org/wiki/
GfortranApps for an extended list.

GNU Fortran provides the following functionality:

e Read a program, stored in a file and containing source code instructions written in
Fortran 77.

e Translate the program into instructions a computer can carry out more quickly than
it takes to translate the original Fortran instructions. The result after compilation of
a program is machine code, which is efficiently translated and processed by a machine
such as your computer. Humans usually are not as good writing machine code as they
are at writing Fortran (or C++, Ada, or Java), because it is easy to make tiny mistakes
writing machine code.

e Provide information about the reasons why the compiler may be unable to create a
binary from the source code, for example if the source code is flawed. The Fortran
language standards require that the compiler can point out mistakes in your code. An
incorrect usage of the language causes an error message.

The compiler also attempts to diagnose cases where your program contains a correct
usage of the language, but instructs the computer to do something questionable. This
kind of diagnostic message is called a warning message.

e Provide optional information about the translation passes from the source code to
machine code. This can help you to find the cause of certain bugs which may not be

http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
https://www.netlib.org/lapack/faq.html
https://polyhedron.com/?page_id=175
https://polyhedron.com/?page_id=175
https://www.netlib.org/benchmark/livermore
https://www.netlib.org/benchmark/livermore
http://hirlam.org/
http://hirlam.org/
https://github.com/dylan-jayatilaka/tonto
https://github.com/dylan-jayatilaka/tonto
https://gcc.gnu.org/wiki/GfortranApps
https://gcc.gnu.org/wiki/GfortranApps

2 The GNU Fortran Compiler

obvious in the source code, but may be more easily found at a lower level compiler
output. It also helps developers to find bugs in the compiler itself.

e Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

e Locate and gather machine code already generated to perform actions requested by
statements in the program. This machine code is organized into modules and is located
and linked to the user program.

The GNU Fortran compiler consists of several components:

e A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available

in GCC.

e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The primary difference between the gcc and gfortran commands is that
the latter automatically links the correct libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcec or gfortran driver programs call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC that has been
compiled with Fortran language support enabled, gcc recognizes files with .£f, .for, .ftn,
.£90, .£95, .£03 and .£f08 extensions as Fortran source code, and compiles it accordingly.
A gfortran driver program is also provided, which is identical to gcc except that it
automatically links the Fortran runtime libraries into the compiled program.

Source files with .f, .for, .fpp, .ftn, .F, .FOR, .FPP, and .FTN extensions are treated
as fixed form. Source files with .£90, .f95, .£f03, .f08, .F90, .F95, .F03 and .F08 ex-
tensions are treated as free form. The capitalized versions of either form are run through

Chapter 1: Introduction 3

preprocessing. Source files with the lower case .fpp extension are also run through prepro-
cessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC that relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Standards

Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical
Committee 1 of the International Organization for Standardization and the International
Electrotechnical Commission (IEC). This group is known as WG5 (http://www.nag.co.
uk/sc22wgh/). Official Fortran standard documents are available for purchase from ISO; a
collection of free documents (typically final drafts) are also available on the wiki (https://
gcc.gnu.org/wiki/GFortranStandards).

The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As such, it
can also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It
also supports the ISO/IEC TR-~15581 enhancements to allocatable arrays.

GNU Fortran also supports almost all of ISO/IEC 1539-1:2004 (Fortran 2003) and
ISO/IEC 1539-1:2010 (Fortran 2008). It has partial support for features introduced in
ISO/IEC 1539:2018 (Fortran 2018), the most recent version of the Fortran language stan-
dard, including full support for the Technical Specification Further Interoperability of
Fortran with C (ISO/IEC TS 29113:2012). More details on support for these standards
can be found in the following sections of the documentation.

1.3.1 Fortran 95 status

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. One can be found
at http://user.astro.wisc.edu/ "townsend/static.php?ref=iso-varying-string.

Deferred-length character strings of Fortran 2003 supports part of the features of IS0_
VARYING_STRING and should be considered as replacement. (Namely, allocatable or pointers
of the type character(len=:).)

Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines Conditional Compila-
tion, which is not widely used and not directly supported by the GNU Fortran compiler.
You can use the program coco to preprocess such files (http://www.daniellnagle.com/
coco.html).

1.3.2 Fortran 2003 status

GNU Fortran implements the Fortran 2003 (ISO/IEC 1539-1:2004) standard except for fi-
nalization support, which is incomplete. See the wiki page (https://gcc.gnu.org/wiki/
Fortran2003) for a full list of new features introduced by Fortran 2003 and their imple-
mentation status.

http://www.nag.co.uk/sc22wg5/
http://www.nag.co.uk/sc22wg5/
https://gcc.gnu.org/wiki/GFortranStandards
https://gcc.gnu.org/wiki/GFortranStandards
http://user.astro.wisc.edu/~townsend/static.php?ref=iso-varying-string
http://www.daniellnagle.com/coco.html
http://www.daniellnagle.com/coco.html
https://gcc.gnu.org/wiki/Fortran2003
https://gcc.gnu.org/wiki/Fortran2003

4 The GNU Fortran Compiler

1.3.3 Fortran 2008 status

The GNU Fortran compiler supports almost all features of Fortran 2008; the wiki (https://
gcc.gnu.org/wiki/Fortran2008Status) has some information about the current imple-
mentation status. In particular, the following are not yet supported:

e DO CONCURRENT and FORALL do not recognize a type-spec in the loop header.

e The change to permit any constant expression in subscripts and nested implied-do
limits in a DATA statement has not been implemented.

1.3.4 Fortran 2018 status

Fortran 2018 (ISO/IEC 1539:2018) is the most recent version of the Fortran language stan-
dard. GNU Fortran implements some of the new features of this standard:

e All Fortran 2018 features derived from ISO/IEC TS 29113:2012, “Further Interoper-
ability of Fortran with C”, are supported by GNU Fortran. This includes assumed-type
and assumed-rank objects and the SELECT RANK construct as well as the parts relating
to BIND(C) functions. See also Section 6.1.6 [Further Interoperability of Fortran with
C], page 78.

e GNU Fortran supports a subset of features derived from ISO/IEC TS 18508:2015,
“Additional Parallel Features in Fortran”:

e The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR intrin-

sics.

e The CO_MIN and CO_MAX and SUM reduction intrinsics, and the CO_BROADCAST and
CO_REDUCE intrinsic, except that those do not support polymorphic types or types
with allocatable, pointer or polymorphic components.

° Eh@nts(EVENT‘POST,EVENT'WAIT,EVENT_QUERY}
e Failed images (FAIL IMAGE, IMAGE_STATUS, FAILED_IMAGES, STOPPED_IMAGES).
e An ERROR STOP statement is permitted in a PURE procedure.

e GNU Fortran supports the IMPLICIT NONE statement with an implicit-none-spec-
list.

e The behavior of the INQUIRE statement with the RECL= specifier now conforms to
Fortran 2018.

https://gcc.gnu.org/wiki/Fortran2008Status
https://gcc.gnu.org/wiki/Fortran2008Status

Chapter 1: Introduction

Part I: Invoking GNU Fortran

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of -ffoo
would be -fno-foo. This manual documents only one of these two forms, whichever one is
not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 9.

-fall-intrinsics -fallow-argument-mismatch -fallow-invalid-boz
-fbackslash -fcray-pointer -fd-lines-as-code -fd-lines-as-comments
-fdec -fdec-char-conversions -fdec-structure -fdec-intrinsic-ints
-fdec-static -fdec-math -fdec-include -fdec-format-defaults
-fdec-blank-format-item -fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdefault-real-10 -fdefault-real-16 -fdollar-ok
-ffixed-line-length-n -ffixed-line-length-none -fpad-source
-ffree-form -ffree-line-length-n -ffree-line-length-none
-fimplicit-none -finteger-4-integer-8 -fmax-identifier-length
-fmodule-private -ffixed-form -fno-range-check -fopenacc -fopenmp
-fopenmp-allocators -fopenmp-simd -freal-4-real-10 -freal-4-real-16
-freal-4-real-8 -freal-8-real-10 -freal-8-real-16 -freal-8-real-4
-std=std -ftest-forall-temp -funsigned

Preprocessing Options
See Section 2.3 [Enable and customize preprocessing|, page 14.
-A-question[=answer]
-Aquestion=answer -C -CC -Dmacro|=defn]
-H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory
-imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp
-nostdinc
-undef

Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 18.

-Waliasing -Wall -Wampersand -Warray-bounds
-Wc-binding-type -Wcharacter-truncation -Wconversion
-Wno-deprecated-openmp -Wdo-subscript -Wfunction-elimination

The GNU Fortran Compiler

-Wimplicit-interface -Wimplicit-procedure -Wintrinsic-shadow
-Wuse-without-only -Wintrinsics-std -Wline-truncation -Wno-align-commons
-Wno-overwrite-recursive -Wno-tabs -Wreal-q-constant -Wsurprising

-Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all
-Wfrontend-loop-interchange -Wtarget-lifetime -fmax-errors=n
-fsyntax-only -pedantic

-pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program|, page 23.

-fbacktrace -fdebug-aux-vars -ffpe-trap=list
-ffpe-summary=1ist

Directory Options
See Section 2.6 [Options for directory search|, page 24.
-Idir -Jdir -fintrinsic-modules-path dir
Link Options

See Section 2.7 [Options for influencing the linking step], page 24.
-static-libgfortran -static-libquadmath

Runtime Options
See Section 2.8 [Options for influencing runtime behavior], page 25.

-fconvert=conversion -fmax-subrecord-length=length
-frecord-marker=length -fsign-zero

Interoperability Options
See Section 2.11 [Options for interoperability], page 34.
-fc-prototypes -fc-prototypes-external

Code Generation Options
See Section 2.10 [Options for code generation conventions], page 26.
-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -ftail-call-workaround -ftail-call-workaround=n
-fcheck-array-temporaries
-fcheck=<all|array-temps|bits|bounds|do|mem|pointer|recursion>

-fcoarray=<none|single|1lib> -fexternal-blas -fexternal-blas64 -ff2c

-ffrontend-loop-interchange -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-derived -finit-logical=<true|false>
-finit-real=<zero|inf|-inf |nan|snan>
-finline-intrinsics[=<minloc,maxloc>]
-finline-matmul-limit=n

-finline-arg-packing -fmax-array-constructor=n
-fmax-stack-var-size=n -fno-align-commons -fno-automatic
-fno-protect-parens -fno-underscoring -fsecond-underscore
-fpack-derived -frealloc-lhs -frecursive -frepack-arrays
-fshort-enums -fstack-arrays

Developer Options
See Section 2.9 [GNU Fortran Developer Options], page 25.

-fdump-fortran-global -fdump-fortran-optimized
-fdump-fortran-original -fdump-parse-tree -save-temps

Chapter 2: GNU Fortran Command Options 9

2.2 Options controlling Fortran dialect

The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form
—-ffixed-form

Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

—-fall-intrinsics

This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with -std= to force standard compli-
ance but get access to the full range of intrinsics available with gfortran. As a
consequence, -Wintrinsics-std is ignored and no user-defined procedure with
the same name as any intrinsic is called except when it is explicitly declared
EXTERNAL.

-fallow-argument-mismatch

Some code contains calls to external procedures with mismatches between the
calls and the procedure definition, or with mismatches between different calls.
Such code is nonconforming, and is usually flagged with an error. This options
degrades the error to a warning that can only be disabled by disabling all
warnings via -w. Only a single occurrence per argument is flagged by this
warning. -fallow-argument-mismatch is implied by -std=legacy.

Using this option is strongly discouraged. It is possible to provide standard-
conforming code that allows different types of arguments by using an explicit
interface and TYPE (x).

—-fallow-invalid-boz

A BOZ literal constant can occur in a limited number of contexts in standard
conforming Fortran. This option degrades an error condition to a warning,
and allows a BOZ literal constant to appear where the Fortran standard would
otherwise prohibit its use.

-fd-lines—as-code
-fd-lines-as-comments

-fdec

Enable special treatment for lines beginning with d or D in fixed form sources. If
the -fd-lines-as-code option is given they are treated as if the first column
contained a blank. If the -fd-lines-as-comments option is given, they are
treated as comment lines.

DEC compatibility mode. Enables extensions and other features that mimic
the default behavior of older compilers (such as DEC). These features are non-
standard and should be avoided at all costs. For details on GNU Fortran’s
implementation of these extensions see the full documentation.

Other flags enabled by this switch are: -fdollar-ok -fcray-pointer
-fdec-char-conversions -fdec-structure —-fdec-intrinsic-ints
—-fdec-static -fdec-math -fdec-include -fdec-blank-format-item
-fdec-format-defaults

10 The GNU Fortran Compiler

If -fd-lines-as-code/-fd-lines-as-comments are unset, then -fdec also
sets -fd-lines-as-comments.

-fdec-char-conversions
Enable the use of character literals in assignments and DATA statements for
non-character variables.

—-fdec-structure
Enable DEC STRUCTURE and RECORD as well as UNION, MAP, and dot (’.)) as a
member separator (in addition to '%’). This is provided for compatibility only;
Fortran 90 derived types should be used instead where possible.

-fdec-intrinsic-ints
Enable B/I/J/K kind variants of existing integer functions (e.g. BIAND, ITAND,
JIAND, etc...). For a complete list of intrinsics see Chapter 8 [Intrinsic Proce-
dures], page 119.

-fdec-math
Obsolete flag. The purpose of this option was to enable legacy math intrinsics
such as COTAN and degree-valued trigonometric functions (e.g. TAND, ATAND,
etc...) for compatibility with older code. This option is no longer operable. The
trigonometric functions are now either part of Fortran 2023 or GNU extensions.

-fdec-static
Enable DEC-style STATIC and AUTOMATIC attributes to explicitly specify the
storage of variables and other objects.

-fdec-include
Enable parsing of INCLUDE as a statement in addition to parsing it as INCLUDE
line. When parsed as INCLUDE statement, INCLUDE does not have to be on a
single line and can use line continuations.

-fdec-format-defaults
Enable format specifiers ‘F’, ‘G’ and ‘I’ to be used without width specifiers;
default widths are used instead.

-fdec-blank-format-item
Enable a blank format item at the end of a format specification i.e. nothing
following the final comma.

-fdollar-ok
Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘¢’ are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

-fbackslash
Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded: ‘\a’, ‘\b’, \f’, ‘\n’, \r’, ‘\t’, \v’, ‘\\’, and ‘\0’ to the ASCII
characters alert, backspace, form feed, newline, carriage return, horizontal tab,
vertical tab, backslash, and NUL, respectively. Additionally, ‘\xnn’, ‘\unnnn’

Chapter 2: GNU Fortran Command Options 11

and ‘\Unnnnnnnn’ (where each n is a hexadecimal digit) are translated into
the Unicode characters corresponding to the specified code points. All other
combinations of a character preceded by ‘\’ are unexpanded.

-fmodule-private

Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities are not accessible unless they are explicitly declared as PUBLIC.

-ffixed-line-length-n

Set column after which characters are ignored in typical fixed-form lines in the
source file, and, unless ~fno-pad-source, through which spaces are assumed
(as if padded to that length) after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. -ffixed-line-length-0 means the same thing as
-ffixed-line-length-none.

-fno-pad-source

By default fixed-form lines have spaces assumed (as if padded to that length)
after the ends of short fixed-form lines. This is not done either if ~-ffixed-line-
length-0, -ffixed-line-length-none or if ~-fno-pad-source option is used.
With any of those options continued character constants never have implicit
spaces appended to them to fill out the line.

-ffree-line-length-n

Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the entire
line is meaningful. -ffree-line-length-0 means the same thing as -ffree-
line-length-none.

-fmax-identifier-length=n

Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and later).

-fimplicit-none

Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

-fcray-pointer

—-fopenacc

Enable the Cray pointer extension, which provides C-like pointer functionality.

Enable handling of OpenACC directives ‘!$acc’ in free-form Fortran and
‘1$acc’, ‘cPacc’ and ‘*$acc’ in fixed-form Fortran. When -fopenacc is
specified, the compiler generates accelerated code according to the OpenACC
Application Programming Interface v2.6 https://www.openacc.org. This
option implies -pthread, and thus is only supported on targets that have
support for -pthread. The option -fopenacc implies -frecursive.

https://www.openacc.org

12

—-fopenmp

The GNU Fortran Compiler

Enable handling of OpenMP directives ‘!$omp’ in Fortran. It additionally
enables the conditional compilation sentinel ‘!'$’ in Fortran. In fixed source
form Fortran, the sentinels can also start with ‘¢’ or ‘*’. When -fopenmp is
specified, the compiler generates parallel code according to the OpenMP Ap-
plication Program Interface v4.5 https://www.openmp.org. This option im-
plies -pthread, and thus is only supported on targets that have support for
-pthread. -fopenmp implies ~-fopenmp-simd and -frecursive.

-fopenmp-allocators

Enables handling of allocation, reallocation and deallocation of Fortran allocat-
able and pointer variables that are allocated using the ‘!$omp allocators’ and
‘I$omp allocate’ constructs. Files containing either directive have to be com-
piled with this option in addition to ~fopenmp. Additionally, all files that might
deallocate or reallocate a variable that has been allocated with an OpenMP al-
locator have to be compiled with this option. This includes intrinsic assignment
to allocatable variables when reallocation may occur and deallocation due to
either of the following: end of scope, explicit deallocation, ‘intent (out)’, deal-
location of allocatable components etc. Files not changing the allocation status
or only for components of a derived type that have not been allocated using
those two directives do not need to be compiled with this option. Nor do files
that handle such variables after they have been deallocated or allocated by the
normal Fortran allocator.

-fopenmp-simd

Enable handling of OpenMP’s simd, declare simd, declare reduction,
assume, ordered, scan and loop directive, and of combined or composite
directives with simd as constituent with !$omp in Fortran. It additionally
enables the conditional compilation sentinel ‘!$’ in Fortran. In fixed source
form Fortran, the sentinels can also start with ‘c’ or ‘*’. Other OpenMP
directives are ignored. Unless -fopenmp is additionally specified, the loop
region binds to the current task region, independent of the specified bind
clause.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran gives an error at compile time when
simplifying a = 1. / 0. With this option, no error is given and a is assigned the
value +Infinity. If an expression evaluates to a value outside of the relevant
range of [-HUGE ():HUGE ()], then the expression is replaced by -Inf or +Inf as
appropriate. Similarly, DATA i/Z'FFFFFFFF'/ results in an integer overflow on
most systems, but with -fno-range-check the value “wraps around” and 1i is
initialized to —1 instead.

-fdefault-integer-8

Set the default integer and logical types to an 8 byte wide type. This option also
affects the kind of integer constants like 42. Unlike -finteger-4-integer-8,
it does not promote variables with explicit kind declaration.

https://www.openmp.org

Chapter 2: GNU Fortran Command Options 13

-fdefault-real-8

Set the default real type to an 8 byte wide type. This option also affects the kind
of non-double real constants like 1.0. This option promotes the default width
of DOUBLE PRECISION and double real constants like 1.d40 to 16 bytes if pos-
sible. If ~-fdefault-double-8 is given along with fdefault-real-8, DOUBLE
PRECISION and double real constants are not promoted. Unlike -freal-4-
real-8, fdefault-real-8 does not promote variables with explicit kind dec-
larations.

-fdefault-real-10

Set the default real type to an 10 byte wide type. This option also affects the
kind of non-double real constants like 1.0. This option promotes the default
width of DOUBLE PRECISION and double real constants like 1.d0 to 16 bytes
if possible. If -fdefault-double-8 is given along with fdefault-real-10,
DOUBLE PRECISION and double real constants are not promoted. Unlike -freal-
4-real-10, fdefault-real-10 does not promote variables with explicit kind
declarations.

-fdefault-real-16

Set the default real type to an 16 byte wide type. This option also affects the
kind of non-double real constants like 1.0. This option promotes the default
width of DOUBLE PRECISION and double real constants like 1.d40 to 16 bytes
if possible. If -fdefault-double-8 is given along with fdefault-real-16,
DOUBLE PRECISION and double real constants are not promoted. Unlike -freal-
4-real-16, fdefault-real-16 does not promote variables with explicit kind
declarations.

-fdefault-double-8
Set the DOUBLE PRECISION type and double real constants like 1.d0 to an 8
byte wide type. Do nothing if this is already the default. This option prevents
-fdefault-real-8, -fdefault-real-10, and -fdefault-real-16, from pro-
moting DOUBLE PRECISION and double real constants like 1.d0 to 16 bytes.

-finteger-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error is issued. This option should be used
with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and 1/0. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by -fdump-tree-original, is suggested.

-freal-4-real-8

-freal-4-real-10

-freal-4-real-16

-freal-8-real-4

-freal-8-real-10

-freal-8-real-16
Promote all REAL (KIND=M) entities to REAL (KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error is issued. The -freal-4- flags also affect the de-

14 The GNU Fortran Compiler

fault real kind and the -freal-8- flags also the double-precision real kind. All
other real-kind types are unaffected by this option. The promotion is also ap-
plied to real literal constants of default and double-precision kind and a specified
kind number of 4 or 8, respectively. However, ~-fdefault-real-8, -fdefault-
real-10, -fdefault-real-10, and -fdefault-double-8 take precedence for
the default and double-precision real kinds, both for real literal constants and
for declarations without a kind number. Note that for REAL (KIND=KIND(1.0))
the literal may get promoted and then the result may get promoted again.
These options should be used with care and may not be suitable for your codes.
Areas of possible concern include calls to external procedures, alignment in
EQUIVALENCE and/or COMMON, generic interfaces, BOZ literal constant conver-
sion, and I/O and calls to intrinsic procedures when passing a value to the
kind= dummy argument. Inspection of the intermediate representation of the
translated Fortran code, produced by -fdump-fortran-original or -fdump-
tree-original, is suggested.

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘£95°, ‘£2003’, ‘£2008’, ‘£2018’, ‘£2023’, ‘gnu’, or ‘legacy’. The de-
fault value for std is ‘gnu’, which specifies a superset of the latest Fortran stan-
dard that includes all of the extensions supported by GNU Fortran, although
warnings are given for obsolete extensions not recommended for use in new code.
The ‘legacy’ value is equivalent but without the warnings for obsolete exten-
sions, and may be useful for old nonstandard programs. The ‘£95’, ‘£2003’,
‘£2008’, ‘£2018’, and ‘£2023’ values specify strict conformance to the Fortran
95, Fortran 2003, Fortran 2008, Fortran 2018 and Fortran 2023 standards, re-
spectively; errors are given for all extensions beyond the relevant language stan-
dard, and warnings are given for the Fortran 77 features that are permitted but
obsolescent in later standards. The deprecated option ‘-std=£2008ts’ acts as
an alias for ‘-std=£2018". It is only present for backwards compatibility with
earlier gfortran versions and should not be used any more. ‘-std=£202y’ acts
as an alias for ‘-std=£2023’ and enables proposed features for testing Fortran
202y. As the Fortran 202y standard develops, implementation might change or
the experimental new features might be removed.

-ftest-forall-temp
Enhance test coverage by forcing most forall assignments to use temporary.

-funsigned
Allow the experimental unsigned extension.

2.3 Enable and customize preprocessing

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor
is automatically invoked if the filename extension is .F, .FOR, .FTN, .fpp, .FPP, .F90,
.F95, .F03 or .F08. To manually invoke the preprocessor on any file, use —cpp, to disable
preprocessing on files where the preprocessor is run automatically, use -nocpp.

Chapter 2: GNU Fortran Command Options 15

When compiling a preprocessed file, use -fpreprocessed (see Section “Options Con-
trolling the Preprocessor” in Using the GNU Compiler Collection (GCC)). This skips the
C preprocessor.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

, __GFORTRAN__ is defined. The macros __GNUC_
, __GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the
compiler. See Section “Overview” in The C Preprocessor for details.

GNU Fortran supports a number of INTEGER and REAL kind types in additional to the
kind types required by the Fortran standard. The availability of any given kind type
is architecture dependent. The following predefined preprocessor macros can be used to
conditionally include code for these additional kind types: __GFC_INT_1__, __GFC_INT_2_

_, ._GFC_INT_8__, __GFC_INT_16 __GFC_REAL_10 and __GFC_REAL_16__.

While CPP is the de facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler.

If GNU Fortran invokes the preprocessor

- -

The following options control preprocessing of Fortran code:

—Cpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is .fpp, .FPP, .F, .FOR, .FTN, .F90, .F95, .FO3 or .F08. Use this
option to manually enable preprocessing of any kind of Fortran file.

To disable preprocessing of files with any of the above listed extensions, use the
negative form: -nocpp.

The preprocessor is run in traditional mode. Any restrictions of the file format,
especially the limits on line length, apply for preprocessed output as well, so it
might be advisable to use the -ffree-line-length-none or -ffixed-line-
length-none options.

-dM Instead of the normal output, generate a list of '#define' directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file foo.£f90, the command

touch foo.f90; gfortran -cpp -E -dM foo.£90

shows all the predefined macros.
-dD Like -dM except in two respects: it does not include the predefined macros, and

it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like -dD, but emit only the macro names, not their expansions.

-dUu Like dD except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use
or test of the macro; and '#undef' directives are also output for macros tested
but undefined at the time.

-dI Output '#include' directives in addition to the result of preprocessing.

16

-fworking-

The GNU Fortran Compiler

directory

Enable generation of linemarkers in the preprocessor output that let the com-
piler know the current working directory at the time of preprocessing. When
this option is enabled, the preprocessor emits, after the initial linemarker, a
second linemarker with the current working directory followed by two slashes.
GCC uses this directory, when it is present in the preprocessed input, as the di-
rectory emitted as the current working directory in some debugging information
formats. This option is implicitly enabled if debugging information is enabled,
but this can be inhibited with the negated form -fno-working-directory. If
the -P flag is present in the command line, this option has no effect, since no
#line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with -I and
the standard system directories have been exhausted. dir is treated as a system
include directory. If dir begins with =, then the = is replaced by the sysroot
prefix; see ——sysroot and -isysroot.

—-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

-iprefix prefix

Specify prefix as the prefix for subsequent -iwithprefix options. If the prefix
represents a directory, you should include the final '/"'.

-isysroot dir

This option is like the ——sysroot option, but applies only to header files. See
the --sysroot option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by -I and before
the standard system directories. If dir begins with =, then the = is replaced by
the sysroot prefix; see -—sysroot and -isysroot.

-isystem dir

-nostdinc

—-undef

Search dir for header files, after all directories specified by -I but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = is replaced by the sysroot prefix; see -—sysroot and
-isysroot.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with -I options (and the directory of the current file,
if appropriate) are searched.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Chapter 2: GNU Fortran Command Options 17

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

—-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using -C; it causes the preproces-
sor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a '#'.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like -C,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the -C option, the -CC option causes all C++-
style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The -CC option is generally used to support lint
comments.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a '#define' directive. In particular, the
definition is truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you need to quote the option.
With sh and csh, -D'name(args...)=definition' works.

-D and -U options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.

Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the '#include' stack it is.

18 The GNU Fortran Compiler

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C
code, and is sent to a program that might be confused by the linemarkers.

-Uname Cancel any previous definition of name, either built in or provided with a -D
option.

2.4 Options to request or suppress errors and warnings

FErrors are diagnostic messages that report that the GNU Fortran compiler cannot compile
the relevant piece of source code. The compiler continues to process the program in an
attempt to report further errors to aid in debugging, but does not produce any compiled
output.

Warnings are diagnostic messages that report constructions that are not inherently er-
roneous but that are risky or suggest there is likely to be a bug in the program. Unless
-Werror is specified, they do not prevent compilation of the program.

You can request many specific warnings with options beginning -W, for example
-Wimplicit to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning -Wno- to turn off warnings; for example,
-Wno-implicit. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of errors and warnings produced by GNU
Fortran:

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GNU
Fortran bails out rather than attempting to continue processing the source
code. If n is 0, there is no limit on the number of error messages produced.

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This generates
module files for each module present in the code, but no other output file.

-Wpedantic

-pedantic
Issue warnings for uses of extensions to Fortran. -pedantic also applies to
C-language constructs where they occur in GNU Fortran source files, such as
use of ‘\e’ in a character constant within a directive like #include.

Valid Fortran programs should compile properly with or without this option.
However, without this option, certain GNU extensions and traditional Fortran
features are supported as well. With this option, many of them are rejected.

Some users try to use -pedantic to check programs for conformance. They
soon find that it does not do quite what they want—it finds some nonstandard
practices, but not all. However, improvements to GNU Fortran in this area are
welcome.

This should be used in conjunction with -std=£95, -std=£2003, -std=£2008,
-std=£f2018 or -std=£2023.

-pedantic-errors
Like -pedantic, except that errors are produced rather than warnings.

Chapter 2:

GNU Fortran Command Options 19

-Wall Enables commonly used warning options pertaining to usage that we
recommend avoiding and that we believe are easy to avoid. This currently
includes -Waliasing, -Wampersand, -Wconversion, -Wsurprising,
-Wc-binding-type, -Wintrinsics-std, -Wtabs, -Wintrinsic-shadow,
-Wline-truncation, -Wtarget-lifetime, -Winteger-division,
-Wreal-qg-constant, -Wunused and -Wundefined-do-loop.

-Waliasing
Warn about possible aliasing of dummy arguments. Specifically, it warns if the
same actual argument is associated with a dummy argument with INTENT (IN)
and a dummy argument with INTENT(OUT) in a call with an explicit interface.
The following example triggers the warning.

interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b
end subroutine
end interface
integer :: a
call bar(a,a)
-Wampersand

Warn about missing ampersand in continued character constants. The warning
is given with -Wampersand, -pedantic, -std=£95, -std=£2003, -std=£2008,
-std=£2018 and -std=£2023. Note: With no ampersand given in a contin-
ued character constant, GNU Fortran assumes continuation at the first non-
comment, non-whitespace character after the ampersand that initiated the con-
tinuation.

-Warray-temporaries

Warn about array temporaries generated by the compiler. The information
generated by this warning is sometimes useful in optimization, in order to avoid
such temporaries.

-Wc-binding-type

Warn if the a variable might not be C interoperable. In particular, warn if the
variable has been declared using an intrinsic type with default kind instead of
using a kind parameter defined for C interoperability in the intrinsic IS0_C_
Binding module. This option is implied by -Wall.

-Wcharacter-truncation

Warn when a character assignment truncates the assigned string.

-Wline-truncation

Warn when a source code line is truncated. This option is implied by -Wall.
For free-form source code, the default is ~-Werror=1ine-truncation such that
truncations are reported as error.

-Wconversion

Warn about implicit conversions that are likely to change the value of the
expression after conversion. Implied by -Wall.

20 The GNU Fortran Compiler

-Wconversion-extra
Warn about implicit conversions between different types and kinds. This option
does not imply -Wconversion.

-Wdeprecated-openmp
Warn for usage of deprecated OpenMP code.

-Wexternal-argument-mismatch
Warn about argument mismatches for dummy external procedures. This is im-
plied by -fc-prototypes-external because generation of a valid C23 interface
is not possible in such a case. Also implied by -Wall.

-Wextra Enables some warning options for usages of language features that may be
problematic. This currently includes -Wcompare-reals, -Wunused-parameter
and -Wdo-subscript.

-Wfrontend-loop-interchange
Warn when using -ffrontend-loop-interchange for performing loop inter-
changes.

-Wimplicit-interface
Warn if a procedure is called without an explicit interface. Note this only
checks that an explicit interface is present. It does not check that the declared
interfaces are consistent across program units.

-Wimplicit-procedure
Warn if a procedure is called that has neither an explicit interface nor has been
declared as EXTERNAL.

-Winteger-division
Warn if a constant integer division truncates its result. As an example, 3/5
evaluates to 0.

-Wintrinsics-std
Warn if gfortran finds a procedure named like an intrinsic not available in the
currently selected standard (with -std) and treats it as EXTERNAL procedure
because of this. -fall-intrinsics can be used to never trigger this behavior
and always link to the intrinsic regardless of the selected standard.

-Wno-overwrite-recursive
Do not warn when -fno-automatic is used with -frecursive. Recursion
is broken if the relevant local variables do not have the attribute AUTOMATIC
explicitly declared. This option can be used to suppress the warning when it
is known that recursion is not broken. Useful for build environments that use
-Werror.

-Wreal-q-constant
Produce a warning if a real-literal-constant contains a q exponent-letter.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While
technically legal these usually indicate that an error has been made.

Chapter 2: GNU Fortran Command Options 21

This currently produces a warning under the following circumstances:

e An INTEGER-typed SELECT CASE construct has a CASE that can never be
matched as its lower value is greater than its upper value.

e A LOGICAL-typed SELECT CASE construct has three CASE statements.
e A TRANSFER specifies a source that is shorter than the destination.

e The type of a function result is declared more than once with the same
type. If -pedantic or standard-conforming mode is enabled, this is an
error.

e A CHARACTER variable is declared with negative length.

e With -fopenmp, for fixed-form source code, when an omx vendor-extension
sentinel is encountered. (The equivalent ompx, used in free-form source
code, is diagnosed by default.)

e With -fopenacc, when using named constances with clauses that take a
variable as doing so has no effect.

-Wtabs By default, tabs are accepted as whitespace, but tabs are not members of the
Fortran Character Set. For continuation lines, a tab followed by a digit be-
tween 1 and 9 is supported. -Wtabs causes a warning to be issued if a tab is
encountered. Note, -Wtabs is active for -pedantic, -std=£f95, -std=£2003,
-std=f2008, -std=f2018, -std=f2023 and -Wall.

-Wundefined-do-loop
Warn if a DO loop with step either 1 or -1 yields an underflow or an overflow
during iteration of an induction variable of the loop. This option is implied by
-Wall.

-Wunderflow
Produce a warning when numerical constant expressions that yield an underflow
are encountered during compilation. Enabled by default.

-Wintrinsic-shadow
Warn if a user-defined procedure or module procedure has the same name
as an intrinsic; in this case, an explicit interface or EXTERNAL or INTRINSIC
declaration might be needed to get calls later resolved to the desired intrin-
sic/procedure. This option is implied by -Wall.

-Wuse-without-only
Warn if a USE statement has no ONLY qualifier and thus implicitly imports all
public entities of the used module.

-Wunused-dummy-argument
Warn about unused dummy arguments. This option is implied by -Wall.

-Wunused-parameter
Contrary to gcc’s meaning of -Wunused-parameter, gfortran’s implemen-
tation of this option does not warn about unused dummy arguments (see
-Wunused-dummy-argument), but about unused PARAMETER values. -Wunused-
parameter is implied by -Wextra if also ~-Wunused or -Wall is used.

22 The GNU Fortran Compiler

-Walign-commons
By default, gfortran warns about any occasion of variables being padded for
proper alignment inside a COMMON block. This warning can be turned off via
-Wno-align-commons. See also -falign-commons.

-Wfunction-elimination
Warn if any calls to impure functions are eliminated by the optimizations en-
abled by the —-ffrontend-optimize option. This option is implied by -Wextra.

-Wrealloc-1hs
Warn when the compiler might insert code to for allocation or reallocation of
an allocatable array variable of intrinsic type in intrinsic assignments. In hot
loops, the Fortran 2003 reallocation feature may reduce the performance. If the
array is already allocated with the correct shape, consider using a whole-array
array-spec (e.g. (:,:,:)) for the variable on the left-hand side to prevent the
reallocation check. Note that in some cases the warning is shown, even if the
compiler optimizes reallocation checks away. For instance, when the right-hand
side contains the same variable multiplied by a scalar. See also -frealloc-1hs.

-Wrealloc-lhs-all
Warn when the compiler inserts code to for allocation or reallocation of an
allocatable variable; this includes scalars and derived types.

-Wcompare-reals
Warn when comparing real or complex types for equality or inequality. This
option is implied by -Wextra.

-Wtarget-lifetime
Warn if the pointer in a pointer assignment might be longer than the its target.
This option is implied by -Wall.

-Wzerotrip
Warn if a DO loop is known to execute zero times at compile time. This option
is implied by -Wall.

-Wdo-subscript
Warn if an array subscript inside a DO loop could lead to an out-of-bounds access
even if the compiler cannot prove that the statement is actually executed, in

cases like
real a(3)
do i=1,4
if (condition(i)) then
a(i) = 1.2
end if
end do

This option is implied by -Wextra.
-Werror Turns all warnings into errors.

See Section “Options to Request or Suppress Errors and Warnings” in Using the GNU
Compiler Collection (GCC), for information on more options offered by the back end shared
by gfortran, gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

Chapter 2: GNU Fortran Command Options 23

2.5 Options for debugging your program
GNU Fortran has various special options that are used for debugging your program.

-fdebug-aux-vars
Renames internal variables created by the gfortran front end and makes them
accessible to a debugger. The name of the internal variables then start with
uppercase letters followed by an underscore. This option is useful for debug-
ging the compiler’s code generation together with -fdump-tree-original and
enabling debugging of the executable program by using -g or -ggdb3.

-ffpe-trap=1list

Specify a list of floating point exception traps to enable. On most systems, if
a floating point exception occurs and the trap for that exception is enabled, a
SIGFPE signal is sent and the program being aborted, producing a core file useful
for debugging. list is a (possibly empty) comma-separated list of either ‘none’
(to clear the set of exceptions to be trapped), or of the following exceptions:
‘invalid’ (invalid floating point operation, such as SQRT(-1.0)), ‘zero’ (divi-
sion by zero), ‘overflow’ (overflow in a floating point operation), ‘underflow’
(underflow in a floating point operation), ‘inexact’ (loss of precision during
operation), and ‘denormal’ (operation performed on a denormal value). The
first five exceptions correspond to the five IEEE 754 exceptions, whereas the
last one (‘denormal’) is not part of the IEEE 754 standard but is available on
some common architectures such as x86.

The first three exceptions (‘invalid’, ‘zero’, and ‘overflow’) often indicate
serious errors, and unless the program has provisions for dealing with these
exceptions, enabling traps for these three exceptions is probably a good idea.

If the option is used more than once in the command line, the lists are joined:
'ffpe-trap=list] ffpe-trap=list2’ is equivalent to ffpe-trap=listl,list2.
Note that once enabled an exception cannot be disabled (no negative form),
except by clearing all traps by specifying ‘none’.

Many, if not most, floating point operations incur loss of precision due to round-
ing, and hence the ffpe-trap=inexact is likely to be uninteresting in practice.

By default no exception traps are enabled.

-ffpe-summary=1ist
Specify a list of floating-point exceptions, whose flag status is printed to ERROR_
UNIT when invoking STOP and ERROR STOP. list can be either ‘none’; ‘all’ or a
comma-separated list of the following exceptions: ‘invalid’, ‘zero’, ‘overflow’,
‘underflow’, ‘inexact’ and ‘denormal’. (See -ffpe-trap for a description of
the exceptions.)

If the option is used more than once in the command line, only the last one is
used.

By default, a summary for all exceptions but ‘inexact’ is shown.
-fno-backtrace

When a serious runtime error is encountered or a deadly signal is emitted (seg-
mentation fault, illegal instruction, bus error, floating-point exception, and the

24 The GNU Fortran Compiler

other POSIX signals that have the action ‘core’), the Fortran runtime library
tries to output a backtrace of the error. -fno-backtrace disables the backtrace
generation. This option only has influence for compilation of the Fortran main
program.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

2.6 Options for directory search

These options affect how GNU Fortran searches for files specified by the INCLUDE directive
and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Also note that the general behavior of -1 and INCLUDE is pretty much the same
as of -I with #include in the cpp preprocessor, with regard to looking for
header.gcc files and other such things.

This path is also used to search for .mod files when previously compiled modules
are required by a USE statement.

See Section “Options for Directory Search” in Using the GNU Compiler Col-
lection (GCC), for information on the -I option.

-Jdir This option specifies where to put .mod files for compiled modules. It is also
added to the list of directories to searched by an USE statement.

The default is the current directory.

-fintrinsic-modules-path dir
This option specifies the location of pre-compiled intrinsic modules, if they are
not in the default location expected by the compiler.

2.7 Influencing the linking step

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

-static-libgfortran
On systems that provide libgfortran as a shared and a static library, this
option forces the use of the static version. If no shared version of 1ibgfortran
was built when the compiler was configured, this option has no effect.

-static-libquadmath
On systems that provide libquadmath as a shared and a static library, this
option forces the use of the static version. If no shared version of 1ibquadmath
was built when the compiler was configured, this option has no effect.

Please note that the libquadmath runtime library is licensed under the GNU
Lesser General Public License (LGPL), and linking it statically introduces re-
quirements when redistributing the resulting binaries.

Chapter 2: GNU Fortran Command Options 25

2.8 Influencing runtime behavior
These options affect the runtime behavior of programs compiled with GNU Fortran.

-fconvert=conversion
Specify the representation of data for unformatted files. Valid values for con-
version on most systems are: ‘native’; the default; ‘swap’, swap between big-
and little-endian; ‘big-endian’, use big-endian representation for unformatted
files; ‘little-endian’, use little-endian representation for unformatted files.

On POWER systems that suppport -mabi=ieeelongdouble, there are addi-
tional options, which can be combined with others with commas. Those are

-fconvert=r16_ieee Use IEEE 128-bit format for REAL (KIND=16).
-fconvert=r16_ibm Use IBM long double format for REAL(KXIND=16).

This option has an effect only when used in the main program. The CONVERT
specifier and the GFORTRAN_CONVERT_UNIT environment variable override the
default specified by -fconvert.

—-frecord-marker=length
Specify the length of record markers for unformatted files. Valid values for
length are 4 and 8. Default is 4. This is different from previous versions of
gfortran, which specified a default record marker length of 8 on most systems.
If you want to read or write files compatible with earlier versions of gfortran,
use —-frecord-marker=8.

-fmax-subrecord-length=Iength
Specify the maximum length for a subrecord. The maximum permitted value
for length is 2147483639, which is also the default. Only really useful for use
by the gfortran testsuite.

-fsign-zero
When enabled, floating point numbers of value zero with the sign bit set are
written as negative number in formatted output and treated as negative in the
SIGN intrinsic. ~-fno-sign-zero does not print the negative sign of zero values
(or values rounded to zero for I/O) and regards zero as positive number in the
SIGN intrinsic for compatibility with Fortran 77. The default is -fsign-zero.

2.9 GNU Fortran Developer Options

GNU Fortran has various special options that are used for debugging the GNU Fortran
compiler.

—fdump-fortran-global
Output a list of the global identifiers after translating into middle-end repre-
sentation. Mostly useful for debugging the GNU Fortran compiler itself. The
output generated by this option might change between releases. This option
may also generate internal compiler errors for features that have only recently
been added.

—fdump-fortran-optimized
Output the parse tree after front-end optimization. Mostly useful for debugging
the GNU Fortran compiler itself. The output generated by this option might

26 The GNU Fortran Compiler

change between releases. This option may also generate internal compiler errors
for features that have only recently been added.

—fdump-fortran-original
Output the internal parse tree after translating the source program into internal
representation. This option is mostly useful for debugging the GNU Fortran
compiler itself. The output generated by this option might change between
releases. This option may also generate internal compiler errors for features
that have only recently been added.

—-fdump-parse-tree
Output the internal parse tree after translating the source program into internal
representation. Mostly useful for debugging the GNU Fortran compiler itself.
The output generated by this option might change between releases. This option
may also generate internal compiler errors for features that have only recently
been added. This option is deprecated; use ~fdump-fortran-original instead.

-save-temps
Store the usual “temporary” intermediate files permanently; name them as aux-
iliary output files, as specified described under GCC -dumpbase and -dumpdir.

gfortran -save-temps -c foo.F90

preprocesses input file foo.F90 to foo.fii, compiles to an intermediate foo.s,
and then assembles to the (implied) output file foo.o, whereas:

gfortran -save-temps -S foo.F

saves the preprocessor output in foo.fi, and then compiles to the (implied)
output file foo.s.

2.10 Options for code generation conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of -ffoo would
be -fno-foo. In the table below, only one of the forms is listed—the one that is not the
default. You can figure out the other form by either removing no- or adding it.

-fno-automatic
Treat each program unit (except those marked as RECURSIVE) as if the SAVE
statement were specified for every local variable and array referenced in it. Does
not affect common blocks. (Some Fortran compilers provide this option under
the name -static or -save.) The default, which is ~-fautomatic, uses the stack
for local variables smaller than the value given by ~fmax-stack-var-size. Use
the option -frecursive to use no static memory.

Local variables or arrays having an explicit SAVE attribute are silently ignored
unless the -pedantic option is added.
-ff2c Generate code designed to be compatible with code generated by g77 and f2c.

The calling conventions used by g77 (originally implemented in £2¢) require
functions that return type default REAL to actually return the C type double,

Chapter 2: GNU Fortran Command Options 27

and functions that return type COMPLEX to return the values via an extra ar-
gument in the calling sequence that points to where to store the return value.
Under the default GNU calling conventions, such functions simply return their
results as they would in GNU C—default REAL functions return the C type
float, and COMPLEX functions return the GNU C type complex. Additionally,
this option implies the -fsecond-underscore option, unless -fno-second-
underscore is explicitly requested.

This does not affect the generation of code that interfaces with the 1ibgfortran
library.

Caution: It is not a good idea to mix Fortran code compiled with -ff2c with
code compiled with the default ~-fno-f2c calling conventions as, calling COMPLEX
or default REAL functions between program parts that were compiled with dif-
ferent calling conventions will break at execution time.

Caution: This breaks code that passes intrinsic functions of type default REAL or
COMPLEX as actual arguments, as the library implementations use the —~fno-f2c
calling conventions.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With -funderscoring in effect, GNU Fortran appends one underscore to ex-
ternal names. This is done to ensure compatibility with code produced by many
UNIX Fortran compilers. Note this does not apply to names declared with C
binding, or within a module.
Caution: The default behavior of GNU Fortran is incompatible with £2¢ and
g77, please use the -f£2c option if you want object files compiled with GNU
Fortran to be compatible with object code created with these tools.
Use of ~-fno-underscoring is not recommended unless you are experimenting
with issues such as integration of GNU Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).
For example, with -funderscoring, and assuming that j() and max_count ()
are external functions while my_var and lvar are local variables, a Fortran
statement like

I = J(O) + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to the C code:

i = j_(0O + max_count_(&my_var, &lvar);
With -fno-underscoring, the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);
Use of -fno-underscoring allows direct specification of user-defined names
while debugging and when interfacing GNU Fortran code with other languages.

Note that just because the names match does not mean that the interface
implemented by GNU Fortran for an external name matches the interface im-
plemented by some other language for that same name. That is, getting code
produced by GNU Fortran to link to code produced by some other compiler

28

The GNU Fortran Compiler

using this or any other method can be only a small part of the overall solution—
getting the code generated by both compilers to agree on issues other than
naming can require significant effort, and, unlike naming disagreements, linkers
normally cannot detect disagreements in these other areas.

Also, note that with -fno-underscoring, the lack of appended underscores
introduces the very real possibility that a user-defined external name conflicts
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

See Section 6.4 [Naming and argument-passing conventions|, page 85, for more
information. Also note that declaring symbols as bind (C) is a more robust way
to interface with code written in other languages or compiled with different
Fortran compilers than the command-line options documented in this section.

—-fsecond-underscore

By default, GNU Fortran appends an underscore to external names. If this op-
tion is used, GNU Fortran appends two underscores to names with underscores
and one underscore to names with no underscores.

For example, an external name such as MAX_COUNT is implemented as a reference
to the link-time external symbol max_count__, instead of max_count_. This is
required for compatibility with g77 and £2c, and is implied by use of the -ff2c¢
option.

This option has no effect if ~fno-underscoring is in effect. It is implied by
the -ff2c option.

-fcoarray=<keyword>

‘none’ Disable coarray support; using coarray declarations and image-
control statements produces a compile-time error. (Default)

‘single’ Single-image mode, i.e. num_images() is always one.

‘1ib’ Library-based coarray parallelization; a suitable GNU Fortran coar-
ray library such as http://opencoarrays.org needs to be linked.
Alternatively, GCC’s 1ibcaf_single library can be linked, albeit
it only supports a single image.

-fcheck=<keyword>

Enable the generation of run-time checks; the argument shall be a comma-
delimited list of the following keywords. Prefixing a check with no- disables it
if it was activated by a previous specification.

‘all’ Enable all run-time test of -fcheck.

‘array-temps’
Warns at run time when for passing an actual argument a tempo-
rary array had to be generated. The information generated by this
warning is sometimes useful in optimization, in order to avoid such
temporaries.

Note: The warning is only printed once per location.

http://opencoarrays.org

Chapter 2: GNU Fortran Command Options 29

‘bits’ Enable generation of run-time checks for invalid arguments to the
bit manipulation intrinsics.

‘bounds’ Enable generation of run-time checks for array subscripts and
against the declared minimum and maximum values. It also
checks array indices for assumed and deferred shape arrays against
the actual allocated bounds and ensures that all string lengths
are equal for character array constructors without an explicit
typespec.

Some checks require that -fcheck=bounds is set for the compilation
of the main program.

Note: In the future this may also include other forms of checking,
e.g., checking substring references.

‘do’ Enable generation of run-time checks for invalid modification of
loop iteration variables.

mem Enable generation of run-time checks for memory allocation. Note:
This option does not affect explicit allocations using the ALLOCATE
statement, which are always checked.

‘pointer’ Enable generation of run-time checks for pointers and allocatables.

‘recursion’
Enable generation of run-time checks for recursively called
subroutines and functions that are not marked as recursive. See
also -frecursive. Note: This check does not work for OpenMP
programs and is disabled if used together with -frecursive and
-fopenmp.

Example: Assuming you have a file foo.f90, the command

gfortran -fcheck=all,no-array-temps foo.f90

compiles the file with all checks enabled as specified above except warnings for
generated array temporaries.

-fbounds-check
Deprecated alias for —-fcheck=bounds.

-ftail-call-workaround

-ftail-call-workaround=n
Some C interfaces to Fortran codes violate the gfortran ABI by omitting the
hidden character length arguments as described in See Section 6.4.2 [Argument
passing conventions|, page 85. This can lead to crashes because pushing argu-
ments for tail calls can overflow the stack.

To provide a workaround for existing binary packages, this option disables
tail call optimization for gfortran procedures with character arguments. With
-ftail-call-workaround=2 tail call optimization is disabled in all gfortran
procedures with character arguments, with -ftail-call-workaround=1
or equivalent -ftail-call-workaround only in gfortran procedures with
character arguments that call implicitly prototyped procedures.

30

The GNU Fortran Compiler

Using this option can lead to problems including crashes due to insufficient
stack space.

It is wery strongly recommended to fix the code in question. The
-fc-prototypes-external option can be used to generate prototypes that
conform to gfortran’s ABI, for inclusion in the source code.

Support for this option will likely be withdrawn in a future release of gfortran.

The negative form, -fno-tail-call-workaround or equivalent ~ftail-call-
workaround=0, can be used to disable this option.

Default is currently -ftail-call-workaround, this will change in future re-
leases.

-fcheck-array-temporaries

Deprecated alias for -fcheck=array-temps.

-fmax-array-constructor=n

This option can be used to increase the upper limit permitted in array con-
structors. The code below requires this option to expand the array at compile
time.

program test

implicit none

integer j

integer, parameter :: n = 100000

integer, parameter :: i(n) = (/ (2%j, j =1, n) /)

print '(10(I0,1X))', i

end program test

Caution: This option can lead to long compile times and excessively large object
files.
The default value for n is 65535.

-fmax-stack-var-size=n

This option specifies the size in bytes of the largest array that is put on the
stack; if the size is exceeded static memory is used (except in procedures marked
as RECURSIVE). Use the option -frecursive to allow for recursive procedures
that do not have a RECURSIVE attribute or for parallel programs. Use -fno-
automatic to never use the stack.

This option currently only affects local arrays declared with constant bounds,
and may not apply to all character variables. Future versions of GNU Fortran
may improve this behavior.

The default value for n is 65536.

-fstack-arrays

Adding this option makes the Fortran compiler put all arrays of unknown size
and array temporaries onto stack memory. If your program uses very large local
arrays it is possible that you have to extend your runtime limits for stack mem-
ory on some operating systems. This flag is enabled by default at optimization
level -0Ofast unless ~-fmax-stack-var-size is specified.

Chapter 2: GNU Fortran Command Options 31

-fpack-derived
This option tells GNU Fortran to pack derived type members as closely as
possible. Code compiled with this option is likely to be incompatible with code
compiled without this option, and may execute slower.

-frepack-arrays
In some circumstances GNU Fortran may pass assumed shape array sections
via a descriptor describing a noncontiguous area of memory. This option adds
code to the function prologue to repack the data into a contiguous block at
runtime.

This should result in faster accesses to the array. However it can introduce
significant overhead to the function call, especially when the passed data is
noncontiguous.

-fshort-enums
This option is provided for interoperability with C code that was compiled with
the -fshort-enums option. It makes GNU Fortran choose the smallest INTEGER
kind a given enumerator set fits in, and give all its enumerators this kind.

-finline-arg-packing
When passing an assumed-shape argument of a procedure as actual argument
to an assumed-size or explicit size or as argument to a procedure that does not
have an explicit interface, the argument may have to be packed; that is, put
into contiguous memory. An example is the call to foo in
subroutine foo(a)
real, dimension(*) :: a
end subroutine foo
subroutine bar(b)
real, dimension(:) :: b
call foo(b)
end subroutine bar
When -finline-arg-packing is in effect, this packing is performed by inline
code. This allows for more optimization while increasing code size.
-finline-arg-packing is implied by any of the -0 options except when opti-
mizing for size via -0s. If the code contains a very large number of argument
that have to be packed, code size and also compilation time may become ex-
cessive. If that is the case, it may be better to disable this option. Instances of
packing can be found by using -Warray-temporaries.

-fexternal-blas

This option makes gfortran generate calls to BLAS functions for some matrix
operations like MATMUL, instead of using our own algorithms, if the size of the
matrices involved is larger than a given limit (see ~fblas-matmul-1limit). This
may be profitable if an optimized vendor BLAS library is available. The BLAS
library has to be specified at link time. This option specifies a BLAS library
with integer arguments of default kind (32 bits). It cannot be used together
with -fexternal-blas64.

-fexternal-blas64
makes gfortran generate calls to BLAS functions for some matrix operations
like MATMUL, instead of using our own algorithms, if the size of the matrices

32

The GNU Fortran Compiler

involved is larger than a given limit (see -fblas-matmul-limit). This may
be profitable if an optimized vendor BLAS library is available. The BLAS
library has to be specified at link time. This option specifies a BLAS library
with integer arguments of KIND=8 (64 bits). It cannot be used together with
-fexternal-blas, and requires a 64-bit system. This option also requires
-ffrontend-optimize.

—-fblas—-matmul-limit=n

Only significant when -fexternal-blas or -fexternal-blas64 are in effect.
Matrix multiplication of matrices with size larger than or equal to n is performed
by calls to BLAS functions, while others are handled by gfortran internal
algorithms. If the matrices involved are not square, the size comparison is
performed using the geometric mean of the dimensions of the argument and
result matrices.

The default value for n is 30.

—finline-intrinsics
—finline-intrinsics=intrl,intr2,...

Prefer generating inline code over calls to libgfortran functions to implement
intrinsics.

Usage of intrinsics can be implemented either by generating a call to the libgfor-
tran library function or by directly generating inline code. For most intrinsics,
only a single variant is available, and there is no choice of implementation.
However, some intrinsics can use a library function or inline code, where inline
code typically offers opportunities for additional optimization over a library
function. With -finline-intrinsics=... or -fno-inline-intrinsics=.. .,
the choice applies only to the intrinsics present in the comma-separated list
provided as argument.

For each intrinsic, if no choice of implementation was made through either of the
flag variants, a default behavior is chosen depending on optimization: library
calls are generated when not optimizing or when optimizing for size; otherwise
inline code is preferred.

The set of intrinsics allowed as argument to -finline-intrinsics= is cur-
rently limited to MAXLOC and MINLOC. The effect of the flag is moreover limited
to calls of those intrinsics without DIM argument and with ARRAY of a non-
CHARACTER type. The case of rank-1 argument and DIM argument present, i.e.
MAXLOC(A(:),DIM=1) or MINLOC(A(:),DIM=1) is inlined unconditionally for
numeric rank-1 array argument A.

—finline-matmul-limit=n

When front-end optimization is active, some calls to the MATMUL intrinsic func-
tion are inlined. This may result in code size increase if the size of the matrix
cannot be determined at compile time, as code for both cases is generated.
Setting -finline-matmul-1imit=0 disables inlining in all cases. Setting this
option with a value of n produces inline code for matrices with size up to n.
If the matrices involved are not square, the size comparison is performed using
the geometric mean of the dimensions of the argument and result matrices.

Chapter 2: GNU Fortran Command Options 33

The default value for nis 30. The -fblas-matmul-limit can be used to change
this value.

-frecursive
Allow indirect recursion by forcing all local arrays to be allocated on the
stack. This flag cannot be used together with -fmax-stack-var-size= or
-fno-automatic.

-finit-local-zero

-finit-derived

-finit-integer=n

-finit-real=<zero|inf |-inf |nan|snan>

-finit-logical=<truel|false>

-finit-character=n
The -finit-local-zero option instructs the compiler to initialize local
INTEGER, REAL, and COMPLEX variables to zero, LOGICAL variables to
false, and CHARACTER variables to a string of null bytes. Finer-grained
initialization options are provided by the -finit-integer=n, -finit-
real=<zero|inf|-inf |nan|snan> (which also initializes the real and
imaginary parts of local COMPLEX variables), -finit-logical=<true|false>,
and -finit-character=n (where n is an ASCII character value) options.

With -finit-derived, components of derived type variables are initialized
according to these flags. Components whose type is not covered by an explicit
-finit-* flag are treated as described above with -finit-local-zero.

These options do not initialize
e objects with the POINTER attribute
e allocatable arrays

e variables that appear in an EQUIVALENCE statement.

(These limitations may be removed in future releases).

Note that the -finit-real=nan option initializes REAL and COMPLEX variables
with a quiet NaN. For a signalling NaN use -finit-real=snan; note, however,
that compile-time optimizations may convert them into quiet NaN and that
trapping needs to be enabled (e.g. via -ffpe-trap).

The -finit-integer option parses the value into an integer of type
INTEGER (kind=C_LONG) on the host. Said value is then assigned to the integer
variables in the Fortran code, which might result in wraparound if the value is
too large for the kind.

Finally, note that enabling any of the —~finit-* options silences warnings that
would have been emitted by -Wuninitialized for the affected local variables.

-falign-commons
By default, gfortran enforces proper alignment of all variables in a COMMON
block by padding them as needed. On certain platforms this is mandatory,
on others it increases performance. If a COMMON block is not declared with
consistent data types everywhere, this padding can cause trouble, and -fno-
align-commons can be used to disable automatic alignment. The same form

34 The GNU Fortran Compiler

of this option should be used for all files that share a COMMON block. To avoid
potential alignment issues in COMMON blocks, it is recommended to order objects
from largest to smallest.

-fno-protect-parens
By default the parentheses in expression are honored for all optimization levels
such that the compiler does not do any reassociation. Using -fno-protect-
parens allows the compiler to reorder REAL and COMPLEX expressions to produce
faster code. Note that for the reassociation optimization -fno-signed-zeros
and -fno-trapping-math need to be in effect. The parentheses protection is
enabled by default, unless -Ofast is given.

-frealloc-1lhs
An allocatable left-hand side of an intrinsic assignment is automatically
(re)allocated if it is either unallocated or has a different shape. The option is
enabled by default except when -std=£95 is given. See also -Wrealloc-1hs.

-faggressive-function-elimination
Functions with identical argument lists are eliminated within statements, re-
gardless of whether these functions are marked PURE or not. For example, in
a = f(b,c) + f£(b,c)
there is only a single call to £. This option only works if ~-ffrontend-optimize
is in effect.

-ffrontend-optimize

This option performs front-end optimization, based on manipulating parts of
the Fortran parse tree. Enabled by default by any -0 option except -00 and
-0g. Optimizations enabled by this option include:

e inlining calls to MATMUL,

e climination of identical function calls within expressions,

e removing unnecessary calls to TRIM in comparisons and assignments,

e replacing TRIM(a) with a(1:LEN_TRIM(a)) and

e short-circuiting of logical operators (.AND. and .0OR.).

It can be deselected by specifying -fno-frontend-optimize.

-ffrontend-loop-interchange
Attempt to interchange loops in the Fortran front end where profitable. Enabled
by default by any -0 option. At the moment, this option only affects FORALL
and DO CONCURRENT statements with several forall triplets.

See Section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the back end shared by
gfortran, gcc, and other GNU compilers.

2.11 Options for interoperability with other languages

-fc-prototypes
This option generates C prototypes from BIND(C) variable declarations, types
and procedure interfaces and writes them to standard output. ENUM is not yet
supported.

Chapter 2: GNU Fortran Command Options 35

The generated prototypes may need inclusion of an appropriate header, such as
<stdint.h> or <stdlib.h>. For types that are not specified using the appro-
priate kind from the iso_c_binding module, a warning is added as a comment
to the code.

For function pointers, a pointer to a function returning int without an explicit
argument list is generated.

Example of use:
$ gfortran -fc-prototypes -fsyntax-only foo.f90 > foo.h

where the C code intended for interoperating with the Fortran code then uses
#include "foo.h".

-fc-prototypes-external
This option generates C prototypes from external functions and subroutines and
writes them to standard output. This may be useful for making sure that C
bindings to Fortran code are correct. This option does not generate prototypes
for BIND(C) procedures; use —fc-prototypes for that.

The generated prototypes may need inclusion of an appropriate header, such
as <stdint.h> or <stdlib.h>.
This is primarily meant for legacy code to ensure that existing C bindings match
what gfortran emits. The generated C prototypes should be correct for the
current version of the compiler, but may not match what other compilers or
earlier versions of gfortran need. For new development, use of the BIND(C)
features is recommended.
Example of use:

$ gfortran -fc-prototypes-external -fsyntax-only foo.f > foo.h
where the C code intended for interoperating with the Fortran code then uses
#include "foo.h".

2.12 Environment variables affecting gfortran
The gfortran compiler currently does not make use of any environment variables to control

its operation above and beyond those that affect the operation of gcc.

See Section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

See Chapter 3 [Runtime], page 37, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.

37

3 Runtime: Influencing runtime behavior with
environment variables

The behavior of the gfortran can be influenced by environment variables.
Malformed environment variables are silently ignored.

3.1 TMPDIR—Directory for scratch files
When opening a file with STATUS='SCRATCH', GNU Fortran tries to create the file in one
of the potential directories by testing each directory in the order below.

1. The environment variable TMPDIR, if it exists.

2. On the MinGW target, the directory returned by the GetTempPath function. Alterna-
tively, on the Cygwin target, the TMP and TEMP environment variables, if they exist, in
that order.

3. The P_tmpdir macro if it is defined, otherwise the directory /tmp.

3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input

This environment variable can be used to select the unit number preconnected to standard
input. This must be a positive integer. The default value is 5.

3.3 GFORTRAN_STDOUT_UNIT—Unit number for standard output

This environment variable can be used to select the unit number preconnected to standard
output. This must be a positive integer. The default value is 6.

3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error

This environment variable can be used to select the unit number preconnected to standard
error. This must be a positive integer. The default value is 0.

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units

This environment variable controls whether all 1/O is unbuffered. If the first letter is ‘y’,
‘Y’ or ‘1’ all I/O is unbuffered. This slows down small sequential reads and writes. If the
first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer 1 / O on
preconnected units

The environment variable named GFORTRAN_UNBUFFERED_PRECONNECTED controls whether

I/O on a preconnected unit (i.e. STDOUT or STDERR) is unbuffered. If the first letter is
‘v, Y or ‘17, I/0O is unbuffered. This slows down small sequential reads and writes. If the
first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.7 GFORTRAN_SHQOW_LOCUS—Show location for runtime errors

If the first letter is ‘y’, ‘Y’ or ‘1’ filename and line numbers for runtime errors are printed.
If the first letter is ‘n’, ‘N’ or ‘0’, do not print filename and line numbers for runtime errors.
The default is to print the location.

38 The GNU Fortran Compiler

3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where
permitted

If the first letter is ‘y’, ‘Y’ or ‘1’; a plus sign is printed where permitted by the Fortran
standard. If the first letter is ‘n’, ‘N’ or ‘0’, a plus sign is not printed in most cases. Default
is not to print plus signs.

3.9 GFORTRAN_LIST_SEPARATOR—Separator for list output

This environment variable specifies the separator when writing list-directed output. It may
contain any number of spaces and at most one comma. If you specify this on the command
line, be sure to quote spaces, as in

$ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
when a.out is the compiled Fortran program that you want to run. Default is a single
space.

3.10 GFORTRAN_CONVERT_UNIT—Set conversion for unformatted
1/0

By setting the GFORTRAN_CONVERT_UNIT variable, it is possible to change the representation

of data for unformatted files. The syntax for the GFORTRAN_CONVERT_UNIT variable for most

systems is:

GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
exception: mode ':' unit_list | unit_list ;

unit_list: unit_spec | unit_list unit_spec ;

unit_spec: INTEGER | INTEGER '-' INTEGER ;

The variable consists of an optional default mode, followed by a list of optional excep-
tions, which are separated by semicolons from the preceding default and each other. Each
exception consists of a format and a comma-separated list of units. Valid values for the
modes are the same as for the CONVERT specifier:

NATIVE Use the native format. This is the default.
SWAP Swap between little- and big-endian.
LITTLE_ENDIAN Use the little-endian format for unformatted files.
BIG_ENDIAN Use the big-endian format for unformatted files.
For POWER systems that support -mabi=ieeelongdouble, there are additional options,
which can be combined with the others with commas. Those are
R16_IEEE Use IEEE 128-bit format for REAL (KIND=16).
R16_IBM Use IBM long double format for REAL (KIND=16).
A missing mode for an exception is taken to mean BIG_ENDIAN. Examples of values for
GFORTRAN_CONVERT_UNIT are:
'big_endian' Do all unformatted I/O in big_endian mode.
'little_endian;native:10-20,25"' Do all unformatted I/O in little_endian mode,
except for units 10 to 20 and 25, which are in native format.
'10-20"' Units 10 to 20 are big-endian, the rest is native.

'big_endian,r16_ibm' Do all unformatted I/O in big-endian mode and use IBM long
double for output of REAL(KIND=16) values.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 39

Setting the environment variables should be done on the command line or via the export
command for sh-compatible shells and via setenv for csh-compatible shells.

Example for sh:

$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out

Example code for csh:

% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
% ./a.out

Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

See Section 5.1.17 [CONVERT specifier], page 55, for an alternative way to specify the
data representation for unformatted files. See Section 2.8 [Runtime Options], page 25, for
setting a default data representation for the whole program. The CONVERT specifier overrides
the -fconvert compile options.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable
override the CONVERT specifier in the OPEN statement. This is to give control over data
formats to users who do not have the source code of their program available.

3.11 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time
errors

If the GFORTRAN_ERROR_BACKTRACE variable is set to ‘y’, ‘Y’ or ‘1’ (only the first letter
is relevant) then a backtrace is printed when a serious run-time error occurs. To disable
the backtracing, set the variable to ‘n’, ‘N’, ‘0’. Default is to print a backtrace unless the
-fno-backtrace compile option was used.

3.12 GFORTRAN_FORMATTED_BUFFER_SIZE—Set buffer size for
formatted 1/0

The GFORTRAN_FORMATTED_BUFFER_SIZE environment variable specifies buffer size in bytes

to be used for formatted output. The default value is 8192.

3.13 GFORTRAN_UNFORMATTED_BUFFER_SIZE—Set buffer size for
unformatted 1/0

The GFORTRAN_UNFORMATTED_BUFFER_SIZE environment variable specifies buffer size in
bytes to be used for unformatted output. The default value is 131072.

Chapter 3: Runtime: Influencing runtime behavior with environment variables

Part 1I: Language Reference

41

43

4 Compiler Characteristics

This chapter describes certain characteristics of the GNU Fortran compiler that are not
specified by the Fortran standard, but which might in some way or another become visible
to the programmer.

4.1 KIND Type Parameters
The KIND type parameters supported by GNU Fortran for the primitive data types are:

INTEGER 1, 2, 4, 8%, 16*, default: 4**
LOGICAL 1,2, 4, 8%, 16*, default: 4**
REAL 4, 8, 10*, 16*, default: 4***
COMPLEX 4, 8, 10*, 16*, default: 4***

DOUBLE PRECISION
4, 8, 10*, 16*, default: 8***

CHARACTER
1, 4, default: 1

* not available on all systems
** unless ~-fdefault-integer-8 is used
K unless ~-fdefault-real-8 is used (see Section 2.2 [Fortran Dialect Options|, page 9)

The KIND value matches the storage size in bytes, except for COMPLEX where the storage size
is twice as much (or both real and imaginary part are a real value of the given size). It is
recommended to use the Section 8.246 [SELECTED_CHAR_KIND], page 278, Section 8.247
[SELECTED_INT_KIND]|, page 279, Section 8.248 [SELECTED_LOGICAL_KIND],
page 279, and Section 8.249 [SELECTED_REAL_KIND], page 280, intrinsics or the INT8,
INT16, INT32, INT64, REAL32, REAL64, and REAL128 parameters of the ISO_FORTRAN_ENV
module instead of the concrete values. The available kind parameters can be found in the
constant arrays CHARACTER_KINDS, INTEGER_KINDS, LOGICAL_KINDS and REAL_KINDS in
the Section 9.1 [[SO_.FORTRAN_ENV], page 311, module. For C interoperability, the kind
parameters of the Section 9.2 [ISO_C_BINDING], page 313, module should be used.

4.2 Internal representation of LOGICAL variables

The Fortran standard does not specify how variables of LOGICAL type are represented,
beyond requiring that LOGICAL variables of default kind have the same storage size as default
INTEGER and REAL variables. The GNU Fortran internal representation is as follows.

A LOGICAL(KIND=N) variable is represented as an INTEGER(KIND=N) variable, however,
with only two permissible values: 1 for .TRUE. and O for .FALSE.. Any other integer value
results in undefined behavior.

See also Section 6.4.2 [Argument passing conventions|, page 85, and Section 6.1 [Inter-
operability with C], page 73.

44 The GNU Fortran Compiler

4.3 Evaluation of logical expressions

The Fortran standard does not require the compiler to evaluate all parts of an expres-
sion, if they do not contribute to the final result. For logical expressions with .AND. or
.OR. operators, in particular, GNU Fortran optimizes out function calls (even to impure
functions) if the result of the expression can be established without them. However, since
not all compilers do that, and such an optimization can potentially modify the program
flow and subsequent results, GNU Fortran throws warnings for such situations with the
-Wfunction-elimination flag.

4.4 MAX and MIN intrinsics with REAL NalN arguments

The Fortran standard does not specify what the result of the MAX and MIN intrinsics are if
one of the arguments is a NaN. Accordingly, the GNU Fortran compiler does not specify that
either, as this allows for faster and more compact code to be generated. If the programmer
wishes to take some specific action in case one of the arguments is a NaN, it is necessary to
explicitly test the arguments before calling MAX or MIN, e.g. with the IEEE_IS_NAN function
from the intrinsic module IEEE_ARITHMETIC.

4.5 Thread-safety of the runtime library

GNU Fortran can be used in programs with multiple threads, e.g. by using OpenMP, by
calling OS thread handling functions via the ISO_C_BINDING facility, or by GNU Fortran
compiled library code being called from a multi-threaded program.

The GNU Fortran runtime library, (1ibgfortran), supports being called concurrently
from multiple threads with the following exceptions.

During library initialization, the C getenv function is used, which need not be thread-
safe. Similarly, the getenv function is used to implement the GET_ENVIRONMENT_VARIABLE
and GETENV intrinsics. It is the responsibility of the user to ensure that the environment is
not being updated concurrently when any of these actions are taking place.

The EXECUTE_COMMAND_LINE and SYSTEM intrinsics are implemented with the system
function, which need not be thread-safe. It is the responsibility of the user to ensure that
systemn is not called concurrently.

For platforms not supporting thread-safe POSIX functions, further functionality might
not be thread-safe. For details, please consult the documentation for your operating system.

The GNU Fortran runtime library uses various C library functions that depend on the
locale, such as strtod and snprintf. In order to work correctly in locale-aware programs
that set the locale using setlocale, the locale is reset to the default “C” locale while
executing a formatted READ or WRITE statement. On targets supporting the POSIX 2008
per-thread locale functions (e.g. newlocale, uselocale, freelocale), these are used and
thus the global locale set using setlocale or the per-thread locales in other threads are not
affected. However, on targets lacking this functionality, the global LC_NUMERIC locale is
set to “C” during the formatted I/O. Thus, on such targets it’s not safe to call setlocale
concurrently from another thread while a Fortran formatted I/O operation is in progress.
Also, other threads doing something dependent on the LC_NUMERIC locale might not
work correctly if a formatted I/O operation is in progress in another thread.

Chapter 4: Compiler Characteristics 45

4.6 Data consistency and durability

This section contains a brief overview of data and metadata consistency and durability
issues when doing 1/0.

With respect to durability, GNU Fortran makes no effort to ensure that data is commit-
ted to stable storage. If this is required, the GNU Fortran programmer can use the intrinsic
FNUM to retrieve the low level file descriptor corresponding to an open Fortran unit. Then,
using e.g. the ISO_C_BINDING feature, one can call the underlying system call to flush
dirty data to stable storage, such as £sync on POSIX, _commit on MinGW, or fcntl(£fd,
F_FULLSYNC, 0) on macOS. The following example shows how to call fsync:

! Declare the interface for POSIX fsync function
interface
function fsync (£fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration
integer :: ret

! Opening unit 10
open (10,file="foo")

! Perform I/0 on unit 10
|

! Flush and sync
flush(10)
ret = fsync(fnum(10))

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

With respect to consistency, for regular files GNU Fortran uses buffered I/O in order
to improve performance. This buffer is flushed automatically when full and in some other
situations, e.g. when closing a unit. It can also be explicitly flushed with the FLUSH
statement. Also, the buffering can be turned off with the GFORTRAN_UNBUFFERED_ALL and
GFORTRAN_UNBUFFERED_PRECONNECTED environment variables. Special files, such as termi-
nals and pipes, are always unbuffered. Sometimes, however, further things may need to be
done in order to allow other processes to see data that GNU Fortran has written, as follows.

The Windows platform supports a relaxed metadata consistency model, where file meta-
data is written to the directory lazily. This means that, for instance, the dir command can
show a stale size for a file. One can force a directory metadata update by closing the unit,
or by calling _commit on the file descriptor. Note, though, that _commit forces all dirty
data to stable storage, which is often a very slow operation.

The Network File System (NFS) implements a relaxed consistency model called open-
to-close consistency. Closing a file forces dirty data and metadata to be flushed to the
server, and opening a file forces the client to contact the server in order to revalidate cached
data. fsync also forces a flush of dirty data and metadata to the server. Similar to open

46 The GNU Fortran Compiler

and close, acquiring and releasing fcntl file locks, if the server supports them, also forces
cache validation and flushing dirty data and metadata.

4.7 Files opened without an explicit ACTION= specifier

The Fortran standard says that if an OPEN statement is executed without an explicit ACTION=
specifier, the default value is processor dependent. GNU Fortran behaves as follows:

1. Attempt to open the file with ACTION='READWRITE'
2. If that fails, try to open with ACTION='READ'

3. If that fails, try to open with ACTION='WRITE'

4. If that fails, generate an error

4.8 File operations on symbolic links

This section documents the behavior of GNU Fortran for file operations on symbolic links,
on systems that support them.

e Results of INQUIRE statements of the “inquire by file” form relate to the target of the
symbolic link. For example, INQUIRE(FILE="foo" ,EXIST=ex) sets ex to .true. if foo is
a symbolic link pointing to an existing file, and .false. if foo points to an non-existing
file (“dangling” symbolic link).

e Using the OPEN statement with a STATUS="NEW" specifier on a symbolic link results in
an error condition, whether the symbolic link points to an existing target or is dangling.

e If a symbolic link was connected, using the CLOSE statement with a STATUS="DELETE"
specifier causes the symbolic link itself to be deleted, not its target.

4.9 File format of unformatted sequential files

Unformatted sequential files are stored as logical records using record markers. Each logical
record consists of one of more subrecords.

Each subrecord consists of a leading record marker, the data written by the user program,
and a trailing record marker. The record markers are four-byte integers by default, and
eight-byte integers if the -fmax-subrecord-length=8 option (which exists for backwards
compatibility only) is in effect.

The representation of the record markers is that of unformatted files given with the
-fconvert option, the Section 5.1.17 [CONVERT specifier|, page 55, in an OPEN statement
or the Section 3.10 [GFORTRAN_CONVERT_UNIT], page 38, environment variable.

The maximum number of bytes of user data in a subrecord is 2147483639 (2 GiB - 9) for
a four-byte record marker. This limit can be lowered with the -fmax-subrecord-length
option, although this is rarely useful. If the length of a logical record exceeds this limit, the
data is distributed among several subrecords.

The absolute of the number stored in the record markers is the number of bytes of user
data in the corresponding subrecord. If the leading record marker of a subrecord contains
a negative number, another subrecord follows the current one. If the trailing record marker
contains a negative number, then there is a preceding subrecord.

In the most simple case, with only one subrecord per logical record, both record markers
contain the number of bytes of user data in the record.

Chapter 4: Compiler Characteristics 47

The format for unformatted sequential data can be duplicated using unformatted stream,
as shown in the example program for an unformatted record containing a single subrecord:

program main
use iso_fortran_env, only: int32
implicit none
integer(int32) :: i
real, dimension(10) :: a, b
call random_number(a)
open (10,file='test.dat',form='unformatted',access='stream')
inquire (iolength=i) a
write (10) i, a, i

close (10)

open (10,file='test.dat',form='unformatted')
read (10) b

if (all (a == b)) print *,'success!'

end program main

4.10 Asynchronous I/0

Asynchronous 1/0 is supported if the program is linked against the POSIX thread library.
If that is not the case, all I/O is performed as synchronous. On systems that do not support
pthread condition variables, such as AIX, I/O is also performed as synchronous.

On some systems, such as Darwin or Solaris, the POSIX thread library is always linked
in, so asynchronous I/O is always performed. On other sytems, such as Linux, it is necessary
to specify -pthread, -1pthread or ~fopenmp during the linking step.

4.11 Behavior on integer overflow

Integer overflow is prohibited by the Fortran standard. The behavior of gfortran on integer
overflow is undefined by default. Traditional code, like linear congruential pseudo-random
number generators in old programs that rely on specific, nonstandard behavior may generate
unexpected results. The -~fsanitize=undefined option can be used to detect such code at
runtime.

It is recommended to use the intrinsic subroutine RANDOM_NUMBER for random number
generators or, if the old behavior is desired, to use the -fwrapv option. Note that this
option can impact performance.

49

5 Extensions

The two sections below detail the extensions to standard Fortran that are implemented in
GNU Fortran, as well as some of the popular or historically important extensions that are
not (or not yet) implemented. For the latter case, we explain the alternatives available to
GNU Fortran users, including replacement by standard-conforming code or GNU extensions.

5.1 Extensions implemented in GNU Fortran

GNU Fortran implements a number of extensions over standard Fortran. This chapter
contains information on their syntax and meaning. There are currently two categories of
GNU Fortran extensions, those that provide functionality beyond that provided by any
standard, and those that are supported by GNU Fortran purely for backward compatibility
with legacy compilers. By default, —~std=gnu allows the compiler to accept both types of
extensions, but to warn about the use of the latter. Specifying either —std=£95, -std=£2003,
-std=£2008, or -std=f2018 disables both types of extensions, and -std=legacy allows
both without warning. The special compile flag -fdec enables additional compatibility
extensions along with those enabled by -std=1legacy.

5.1.1 Old-style kind specifications

GNU Fortran allows old-style kind specifications in declarations. These look like:
TYPESPEC*size x,y,z

where TYPESPEC is a basic type (INTEGER, REAL, etc.), and where size is a byte count
corresponding to the storage size of a valid kind for that type. (For COMPLEX variables, size
is the total size of the real and imaginary parts.) The statement then declares x, y and
z to be of type TYPESPEC with the appropriate kind. This is equivalent to the standard-
conforming declaration

TYPESPEC(k) x,y,z

where k is the kind parameter suitable for the intended precision. As kind parameters are
implementation-dependent, use the KIND, SELECTED_INT_KIND, SELECTED_LOGICAL_KIND
and SELECTED_REAL_KIND intrinsics to retrieve the correct value, for instance REAL*8 x can
be replaced by:

INTEGER, PARAMETER :: dbl = KIND(1.0d0)
REAL(KIND=dbl) :: x

5.1.2 Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,3j/2/
REAL x(2,2) /3%0.,1./

The syntax for the initializers is as for the DATA statement, but unlike in a DATA state-
ment, an initializer only applies to the variable immediately preceding the initialization.
In other words, something like INTEGER I,J/2,3/ is not valid. This style of initialization
is only allowed in declarations without double colons (‘: :’); the double colons were intro-
duced in Fortran 90, which also introduced a standard syntax for initializing variables in
type declarations.

Examples of standard-conforming code equivalent to the above example are:
! Fortran 90

50 The GNU Fortran Compiler

INTEGER :: i =1, j =2

REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
! Fortran 77

INTEGER i, j

REAL x(2,2)
DATA i/1/, j/2/, x/3%0.,1./
Note that variables that are explicitly initialized in declarations or in DATA statements
automatically acquire the SAVE attribute.

5.1.3 Extensions to namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O including array
qualifiers, substrings and fully qualified derived types. The output from a namelist write is
compatible with namelist read. The output has all names in upper case and indentation to
column 1 after the namelist name. The following extensions are permitted:

e Old-style use of ‘$’ instead of ‘&’

$MYNML

X(C:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"

$END

It should be noted that the default terminator is ‘/’ rather than ‘€END’.

e Querying of the namelist when inputting from stdin. After at least one space, entering

*?’ sends to stdout the namelist name and the names of the variables in the namelist:
?

&mynml
X
xhy
ch

&end

Entering ‘=7’ outputs the namelist to stdout, as if WRITE(*,NML = mynml) had been
called:

=7

&MYNML

X(1)%Y=0.000000 , 1.000000 , 0.000000 s
X(2)%Y= 0.000000 ., 2.000000 , 0.000000 ,
X(3)%Y= 0.000000 , 3.000000 , 0.000000 s
CH=abcd, /

To aid this dialog, when input is from stdin, errors send their messages to stderr and
execution continues, even if IOSTAT is set.

e PRINT namelist is permitted. This causes an error if -std=£95 is used.
PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml
END PROGRAM test_print
e Expanded namelist reads are permitted. This causes an error if —std=£95 is used. In
the following example, the first element of the array is given the value 0.00 and the two
succeeding elements are given the values 1.00 and 2.00.
&MYNML

Chapter 5: Extensions 51

X(1,1) = 0.00 , 1.00 , 2.00
/

When writing a namelist, if no DELIM= is specified, by default a double quote is used
to delimit character strings. With -std=£95 or later, the delim status is set to 'none'’.
Defaulting to quotes ensures that namelists with character strings can be subsequently read
back in accurately.

5.1.4 X format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the X edit descriptor in
FORMAT statements to be omitted. When omitted, the count is implicitly assumed to be
one.

PRINT 10, 2, 3
10 FORMAT (I1, X, I1)

5.1.5 Commas in FORMAT specifications

To support legacy codes, GNU Fortran allows the comma separator to be omitted imme-
diately before and after character string edit descriptors in FORMAT statements. A comma
with no following format descriptor is permitted if the ~-fdec-blank-format-item is given
on the command line. This is considered non-conforming code and is discouraged.

PRINT 10, 2, 3

10 FORMAT ('FOO='I1' BAR='I2)
print 20, 5, 6
20 FORMAT (I3, I3,)

5.1.6 Missing period in FORMAT specifications

To support legacy codes, GNU Fortran allows missing periods in format specifications if
and only if -std=legacy is given on the command line. This is considered non-conforming
code and is discouraged.

REAL :: value
READ(*,10) value
10 FORMAT ('F4')

5.1.7 Default widths for ‘F’, ‘G’ and ‘I’ format descriptors

To support legacy codes, GNU Fortran allows width to be omitted from format specifications
if and only if ~-fdec-format-defaults is given on the command line. Default widths are
used. This is considered non-conforming code and is discouraged.

REAL :: valuel

INTEGER :: value2

WRITE(*,10) valuel, valuel, value2
10 FORMAT ('F, G, I')

5.1.8 I/0 item lists

To support legacy codes, GNU Fortran allows the input item list of the READ statement,
and the output item lists of the WRITE and PRINT statements, to start with a comma.
5.1.9 ‘Q’ exponent-letter

GNU Fortran accepts real literal constants with an exponent-letter of ‘Q’, for example,
1.23Q45. The constant is interpreted as a REAL(16) entity on targets that support this

52 The GNU Fortran Compiler

type. If the target does not support REAL(16) but has a REAL(10) type, then the real-literal-
constant is interpreted as a REAL(10) entity. In the absence of REAL(16) and REAL(10), an
€rTor OCCUrs.

5.1.10 BOZ literal constants

Besides decimal constants, Fortran also supports binary (‘b’), octal (‘o’) and hexadecimal
(‘2’) integer constants. The syntax is: ‘prefix quote digits quote’, where the prefix is
either ‘b’, ‘o’ or ‘z’, quote is either ‘'’ or ‘"’ and the digits are 0 or 1 for binary, between 0
and 7 for octal, and between 0 and F for hexadecimal. (Example: b'01011101'.)

Up to Fortran 95, BOZ literal constants were only allowed to initialize integer variables
in DATA statements. Since Fortran 2003 BOZ literal constants are also allowed as actual
arguments to the REAL, DBLE, INT and CMPLX intrinsic functions. The BOZ literal constant
is simply a string of bits, which is padded or truncated as needed, during conversion to a
numeric type. The Fortran standard states that the treatment of the sign bit is processor
dependent. Gfortran interprets the sign bit as a user would expect.

As a deprecated extension, GNU Fortran allows hexadecimal BOZ literal constants to
be specified using the ‘X’ prefix. That the BOZ literal constant can also be specified by
adding a suffix to the string, for example, Z'ABC' and 'ABC'X are equivalent. Additionally,
as extension, BOZ literals are permitted in some contexts outside of DATA and the intrinsic
functions listed in the Fortran standard. Use -fallow-invalid-boz to enable the extension.

5.1.11 Real array indices

As an extension, GNU Fortran allows the use of REAL expressions or variables as array
indices.

5.1.12 Unary operators

As an extension, GNU Fortran allows unary plus and unary minus operators to appear as
the second operand of binary arithmetic operators without the need for parenthesis.
X=Y* -Z

5.1.13 Implicitly convert LOGICAL and INTEGER values

As an extension for backwards compatibility with other compilers, GNU Fortran allows the
implicit conversion of LOGICAL values to INTEGER values and vice versa. When converting
from a LOGICAL to an INTEGER, .FALSE. is interpreted as zero, and .TRUE. is interpreted as
one. When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE.
and any nonzero value is interpreted as .TRUE..

LOGICAL :: 1
1 =1
INTEGER :: i
i = .TRUE.

However, there is no implicit conversion of INTEGER values in if-statements, nor of
LOGICAL or INTEGER values in I/O operations.
5.1.14 Hollerith constants support

GNU Fortran supports Hollerith constants in assignments, DATA statements, function and
subroutine arguments. A Hollerith constant is written as a string of characters preceded

Chapter 5: Extensions 53

by an integer constant indicating the character count, and the letter H or h, and stored in
bytewise fashion in a numeric (INTEGER, REAL, or COMPLEX), LOGICAL or CHARACTER variable.
The constant is padded with spaces or truncated to fit the size of the variable in which it
is stored.

Examples of valid uses of Hollerith constants:

complex*16 x(2)

data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLMNOP

call foo (4h abc)

Examples of Hollerith constants:

integer*4 a

a = OH ! Invalid, at least one character is needed.

a = 4HAB12 ! Valid

a = 8H12345678 ! Valid, but the Hollerith constant is truncated.
a = 3Hxyz ! Valid, but the Hollerith constant is padded.

In general, Hollerith constants were used to provide a rudimentary facility for handling
character strings in early Fortran compilers, prior to the introduction of CHARACTER variables
in Fortran 77; in those cases, the standard-compliant equivalent is to convert the program
to use proper character strings. On occasion, there may be a case where the intent is
specifically to initialize a numeric variable with a given byte sequence. In these cases, the
same result can be obtained by using the TRANSFER statement, as in this example.

integer(kind=4) :: a
a = transfer ("abcd", a) ! equivalent to: a = 4Habcd

The use of the -fdec option extends support of Hollerith constants to comparisons:

integer*4 a

a = 4hABCD

if (a .ne. 4habcd) then
write(*,*) "no match"

end if

Supported types are numeric (INTEGER, REAL, or COMPLEX), and CHARACTER.

5.1.15 Character conversion

Allowing character literals to be used in a similar way to Hollerith constants is a nonstandard
extension. This feature is enabled using -fdec-char-conversions and only applies to character
literals of kind=1.

Character literals can be used in DATA statements and assignments with numeric
(INTEGER, REAL, or COMPLEX) or LOGICAL variables. Like Hollerith constants they are
copied bytewise fashion. The constant is padded with spaces or truncated to fit the size of
the variable in which it is stored.

Examples:

integer*4 x
data x / 'abcd' /

X
X

‘A ! Is padded.
'ab1234' ! Is truncated.

54 The GNU Fortran Compiler

5.1.16 Cray pointers

Cray pointers are part of a nonstandard extension that provides a C-like pointer in Fortran.
This is accomplished through a pair of variables: an integer “pointer” that holds a memory
address, and a “pointee” that is used to dereference the pointer.

Pointer /pointee pairs are declared in statements of the form:

pointer (<pointer> , <pointee>)

or,

pointer (<pointerl> , <pointeel>), (<pointer2> , <pointee2>), ...

The pointer is an integer that is intended to hold a memory address. The pointee may be
an array or scalar. If an assumed-size array is permitted within the scoping unit, a pointee
can be an assumed-size array. That is, the last dimension may be left unspecified by using
a * in place of a value. A pointee cannot be an assumed shape array. No space is allocated
for the pointee.

The pointee may have its type declared before or after the pointer statement, and its
array specification (if any) may be declared before, during, or after the pointer statement.
The pointer may be declared as an integer prior to the pointer statement. However, some
machines have default integer sizes that are different than the size of a pointer, and so the
following code is not portable:

integer ipt
pointer (ipt, iarr)

If a pointer is declared with a kind that is too small, the compiler issues a warning;
the resulting binary will probably not work correctly, because the memory addresses stored
in the pointers may be truncated. It is safer to omit the first line of the above example;
if explicit declaration of ipt’s type is omitted, then the compiler ensures that ipt is an
integer variable large enough to hold a pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same as C pointer arith-
metic. Cray pointers are just ordinary integers, so the user is responsible for determining
how many bytes to add to a pointer in order to increment it. Consider the following example:

real target(10)

real pointee(10)
pointer (ipt, pointee)
ipt = loc (target)

ipt = ipt + 1

The last statement does not set ipt to the address of target (1), as it would in C pointer
arithmetic. Adding 1 to ipt just adds one byte to the address stored in ipt.

Any expression involving the pointee is translated to use the value stored in the pointer
as the base address.

To get the address of elements, this extension provides an intrinsic function LOC(). The
LOCQ) function is equivalent to the & operator in C, except the address is cast to an integer
type:

real ar(10)
pointer(ipt, arpte(10))
real arpte

ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0

Chapter 5: Extensions 55

The pointer can also be set by a call to the MALLOC intrinsic (see Section 8.190 [MALLOC],
page 244).

Cray pointees often are used to alias an existing variable. For example:

integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)

As long as ipt remains unchanged, iarr is now an alias for target. The optimizer,
however, does not detect this aliasing, so it is unsafe to use iarr and target simultaneously.
Using a pointee in any way that violates the Fortran aliasing rules or assumptions is invalid.
It is the user’s responsibility to avoid doing this; the compiler works under the assumption
that no such aliasing occurs.

Cray pointers work correctly when there is no aliasing (i.e., when they are used to access
a dynamically allocated block of memory), and also in any routine where a pointee is used,
but any variable with which it shares storage is not used. Code that violates these rules
may not run as the user intends. This is not a bug in the optimizer; any code that violates
the aliasing rules is invalid. (Note that this is not unique to GNU Fortran; any Fortran
compiler that supports Cray pointers “incorrectly” optimizes code with invalid aliasing.)

There are a number of restrictions on the attributes that can be applied to Cray point-
ers and pointees. Pointees may not have the ALLOCATABLE, INTENT, OPTIONAL, DUMMY,
TARGET, INTRINSIC, or POINTER attributes. Pointers may not have the DIMENSION, POINTER,
TARGET, ALLOCATABLE, EXTERNAL, or INTRINSIC attributes, nor may they be function re-
sults. Pointees may not occur in more than one pointer statement. A pointee cannot be a
pointer. Pointees cannot occur in equivalence, common, or data statements.

A Cray pointer may also point to a function or a subroutine. For example, the following
excerpt is valid:

implicit none

external sub

pointer (subptr,subpte)
external subpte

subptr = loc(sub)

call subpte()

[...]
subroutine sub
[...]

end subroutine sub

A pointer may be modified during the course of a program, and this changes the location
to which the pointee refers. However, when pointees are passed as arguments, they are
treated as ordinary variables in the invoked function. Subsequent changes to the pointer do
not change the base address of the array that was passed.

5.1.17 CONVERT specifier

GNU Fortran allows the conversion of unformatted data between little- and big-endian
representation to facilitate moving of data between different systems. The conversion can
be indicated with the CONVERT specifier on the OPEN statement. See Section 3.10 [GFOR-
TRAN_CONVERT_UNIT], page 38, for an alternative way of specifying the data format
via an environment variable.

56 The GNU Fortran Compiler

Valid values for CONVERT on most systems are:
CONVERT="'NATIVE' Use the native format. This is the default.
CONVERT="'SWAP' Swap between little- and big-endian.
CONVERT="'LITTLE_ENDIAN' Use the little-endian representation for unformatted files.
CONVERT="'BIG_ENDIAN' Use the big-endian representation for unformatted files.

On POWER systems that support -mabi=ieeelongdouble, there are additional options,
which can be combined with the others with commas. Those are

CONVERT='R16_IEEE' Use IEEE 128-bit format for REAL (KIND=16).
CONVERT='R16_IBM' Use IBM long double format for REAL (KIND=16).

Using the option could look like this:
open(file='big.dat',form='unformatted',access='sequential', &
convert='big_endian')
The value of the conversion can be queried by using INQUIRE (CONVERT=ch). The values
returned are 'BIG_ENDIAN' and 'LITTLE_ENDIAN'.

CONVERT works between big- and little-endian for INTEGER values of all supported kinds
and for REAL on IEEE systems of kinds 4 and 8. Conversion between different “extended
double” types on different architectures such as m68k and x86_64, which GNU Fortran
supports as REAL (KIND=10) and REAL(KIND=16), probably does not work.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable
overrides the CONVERT specifier in the OPEN statement. This is to give control over data
formats to users who do not have the source code of their program available.

Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

5.1.18 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C/C++ and Fortran
on many architectures, including Unix and Microsoft Windows platforms. It consists of a set
of compiler directives, library routines, and environment variables that influence run-time
behavior.

GNU Fortran implements most of the OpenMP Application Program Interface v5.2
(https://openmp.org/specifications/), with some omissions and additional features
from later versions. See Section “OpenMP Implementation Status” in GNU Offloading and
Multi Processing Runtime Library, for more details about currently supported OpenMP
features.

To enable the processing of the OpenMP directive !$omp in free-form source code; the
c$omp, *$omp and !$omp directives in fixed form; the !'$ conditional compilation sentinels
in free form; and the c$, *$ and !$ sentinels in fixed form, gfortran needs to be invoked
with the —fopenmp option. This option also arranges for automatic linking of the OpenMP
runtime library. See GNU Offloading and Multi Processing Runtime Library.

The OpenMP Fortran runtime library routines are provided both in a form of a Fortran
90 module named omp_1ib and in a form of a Fortran include file named omp_1lib.h.

https://openmp.org/specifications/
https://openmp.org/specifications/

Chapter 5: Extensions 57

An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application
Program Interface v2.5:
SUBROUTINE A1(N, A, B)
INTEGER I, N
REAL B(N), A(N)
'$OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
'$0MP END PARALLEL DO
END SUBROUTINE A1l

See Section “OpenMP and OpenACC Options” in Using the GNU Compiler Collection
(GCC), for additional options useful with -fopenmp.

Please note:

e —fopenmp implies ~-frecursive, i.e., all local arrays are allocated on the stack. When
porting existing code to OpenMP, this may lead to surprising results, especially seg-
mentation faults if the stack size is limited.

e On glibc-based systems, OpenMP-enabled applications cannot be statically linked due
to limitations of the underlying pthreads implementation. It might be possible to get
a working solution if -W1,--whole-archive -1lpthread -Wl,--no-whole-archive is
added to the command line. However, this is not supported by GCC and thus not
recommended.

5.1.19 OpenACC

OpenACC is an application programming interface (API) that supports offloading of code
to accelerator devices. It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior.

GNU Fortran strives to be compatible with the OpenACC Application Programming
Interface v2.6 (https://www.openacc.org/).

To enable the processing of the OpenACC directive !$acc in free-form source code; the
c$acc, *$acc and !$acc directives in fixed form; the !'$ conditional compilation sentinels in
free form; and the c$, *$ and !$ sentinels in fixed form, gfortran needs to be invoked with
the -fopenacc option. This option also arranges for automatic linking of the OpenACC
runtime library. See GNU Offloading and Multi Processing Runtime Library.

The OpenACC Fortran runtime library routines are provided both in a form of a Fortran
90 module named openacc and in a form of a Fortran include file named openacc_1ib.h.

See Section “OpenMP and OpenACC Options” in Using the GNU Compiler Collection
(GCC), for additional options useful with -fopenacc.

5.1.20 Argument list functions VAL, %REF and %L0C

GNU Fortran supports argument list functions %VAL, %REF and %L0OC statements, for back-
ward compatibility with g77. It is recommended that these should be used only for code
that is accessing facilities outside of GNU Fortran, such as operating system or windowing
facilities. It is best to constrain such uses to isolated portions of a program—portions that
deal specifically and exclusively with low-level, system-dependent facilities. Such portions

https://www.openacc.org/
https://www.openacc.org/

58 The GNU Fortran Compiler

might well provide a portable interface for use by the program as a whole, but are them-
selves not portable, and should be thoroughly tested each time they are rebuilt using a new
compiler or version of a compiler.

%VAL passes a scalar argument by value, %REF passes it by reference and %LOC passes its
memory location. Since gfortran already passes scalar arguments by reference, %REF is in
effect a do-nothing. %L0OC has the same effect as a Fortran pointer.

An example of passing an argument by value to a C subroutine foo.:

C
C prototype void foo_ (float x);
C

external foo

real*4 x

x = 3.14159

call foo (%VAL (x))

end

For details refer to the g77 manual https://gcc.gnu.org/onlinedocs/gcc-3.4.6/
g77/index.html#Top.

Also, c_by_val.f and its partner c_by_val.c of the GNU Fortran testsuite are worth
a look.

5.1.21 Read/Write after EOF marker

Some legacy codes rely on allowing READ or WRITE after the EOF file marker in order to find
the end of a file. GNU Fortran normally rejects these codes with a run-time error message
and suggests the user consider BACKSPACE or REWIND to properly position the file before the
EOF marker. As an extension, the run-time error may be disabled using -std=legacy.

5.1.22 STRUCTURE and RECORD

Record structures are a pre-Fortran-90 vendor extension to create user-defined aggregate
data types. Support for record structures in GNU Fortran can be enabled with the -fdec-
structure compile flag. If you have a choice, you should instead use Fortran 90’s “derived
types”, which have a different syntax.

In many cases, record structures can easily be converted to derived types. To convert,
replace STRUCTURE /structure-name/ by TYPE type-name. Additionally, replace RECORD
/structure-name/ by TYPE (type-name). Finally, in the component access, replace the pe-
riod (.) by the percent sign (%).

Here is an example of code using the non portable record structure syntax:

I Declaring a structure named ~“item'' and containing three fields:
| an integer ID, an description string and a floating-point price.
STRUCTURE /item/

INTEGER id

CHARACTER (LEN=200) description

REAL price
END STRUCTURE

I Define two variables, an single record of type "~“item''
! named "~“pear'', and an array of items named "~ store_catalog''

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top

Chapter 5: Extensions 59

RECORD /item/ pear, store_catalog(100)

I We can directly access the fields of both variables
pear.id = 92316

pear.description = "juicy D'Anjou pear"

pear.price = 0.15

store_catalog(7).id = 7831

store_catalog(7) .description = "milk bottle"
store_catalog(7) .price = 1.2

I We can also manipulate the whole structure
store_catalog(12) = pear
print *, store_catalog(12)

This code can easily be rewritten in the Fortran 90 syntax as following:

I “"STRUCTURE /name/ ... END STRUCTURE'' becomes
I °"TYPE name ... END TYPE''
TYPE item
INTEGER id
CHARACTER (LEN=200) description
REAL price
END TYPE

| “"RECORD /name/ variable'' becomes "~ “TYPE(name) variable''
TYPE(item) pear, store_catalog(100)

| Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)

pear’%id = 92316

pearidescription = "juicy D'Anjou pear"

pear’price = 0.15

store_catalog(7)%id = 7831

store_catalog(7)%description = "milk bottle"
store_catalog(7)%price = 1.2

| Assignments of a whole variable do not change
store_catalog(12) = pear
print *, store_catalog(12)

GNU Fortran implements structures like derived types with the following rules and excep-
tions:

e Structures act like derived types with the SEQUENCE attribute. Otherwise they may
contain no specifiers.

e Structures may contain a special field with the name %FILL. This creates an anonymous
component that cannot be accessed but occupies space just as if a component of the
same type was declared in its place, useful for alignment purposes. As an example, the
following structure consists of at least sixteen bytes:

structure /padded/

60

The GNU Fortran Compiler

character(4) start

character(8) %FILL

character(4) end
end structure

e Structures may share names with other symbols. For example, the following is invalid

for derived types, but valid for structures:

structure /header/
1

end structure

record /header/ header
Structure types may be declared nested within another parent structure. The syntax
is:

structure /type-name/

structure [/<type-name>/] <field-list>

The type name may be omitted, in which case the structure type itself is anonymous,
and other structures of the same type cannot be instantiated. The following shows
some examples:

structure /appointment/
! nested structure definition: app_time is an array of two 'time'
structure /time/ app_time (2)
integer (1) hour, minute
end structure
character(10) memo
end structure

! The 'time' structure is still usable
record /time/ now
now = time(5, 30)

structure /appointment/
! anonymous nested structure definition
structure start, end
integer (1) hour, minute
end structure
character(10) memo
end structure

e Structures may contain UNION blocks. For more detail see the section on Section 5.1.23

[UNION and MAP], page 61.

Structures support old-style initialization of components, like those described in Sec-
tion 5.1.2 [Old-style variable initialization], page 49. For array initializers, an initial-
izer may contain a repeat specification of the form <literal-integer> * <constant-
initializer>. The value of the integer indicates the number of times to repeat the
constant initializer when expanding the initializer list.

Chapter 5: Extensions 61

5.1.23 UNION and MAP

Unions are an old vendor extension which were commonly used with the nonstandard Sec-
tion 5.1.22 [STRUCTURE and RECORD], page 58, extensions. Use of UNION and MAP is
automatically enabled with —~fdec-structure.

A UNION declaration occurs within a structure; within the definition of each union is a
number of MAP blocks. Each MAP shares storage with its sibling maps (in the same union),
and the size of the union is the size of the largest map within it, just as with unions in C.
The major difference is that component references do not indicate which union or map the
component is in (the compiler gets to figure that out).

Here is a small example:

structure /myunion/
union
map
character(2) w0, wl, w2
end map
map
character(6) long
end map
end union
end structure

record /myunion/ rec
! After this assignment...

rec.long = 'hello!’

The following is true:

!

! rec.wO0 === 'he'
! rec.wl === '11'
! rec.w2 === 'o!'

The two maps share memory, and the size of the union is ultimately six bytes:

0 1 2 3 4 5 6 Byte offset
I | | I | I |
- wo -~ wi - w2 -
\-----—- / \===m-- / \====-—- /
- LONG -
\mm oo /

Following is an example mirroring the layout of an Intel x86_64 register:

structure /reg/
union ! UO I rax

map
character(16) rx

end map

map
character(8) rh ! rah
union ! Ul

62

map
character(8) rl
end map
map
character(8) ex
end map
map
character(4) eh
union ! U2
map
character(4) el
end map
map
character(4)
end map
map
character(2)
character(2)
end map
end union
end map
end union
end map
end union
end structure
record /reg/ a

e}

= B

! After this assignment...

I ral

¢ eax

! eah

I eal

v ax

I ah
I al

a.rx = "AAAAAAAA .BBB.C.D'

! The following is true:

a.rx === 'AAAAAAAA.BBB.C.D'
a.rh === 'AAAAAAAA'

a.rl === ' .BBB.C.D'
a.ex === ' .BBB.C.D'
a.eh === ' .BBB'
a.el === '.C.D'
a.x === '.C.D'
a.h === '.C'
a.l === '.D'

5.1.24 Type variants for integer intrinsics

The GNU Fortran Compiler

Similar to the D/C prefixes to real functions to specify the input/output types, GNU
Fortran offers B/I/J/K prefixes to integer functions for compatibility with DEC programs.

The types implied by each are:
B - INTEGER(kind=1)

Chapter 5: Extensions 63

I - INTEGER(kind=2)
J - INTEGER(kind=4)
K - INTEGER(kind=8)

GNU Fortran supports these with the flag ~-fdec-intrinsic-ints. Intrinsics for which
prefixed versions are available and in what form are noted in Chapter 8 [Intrinsic Proce-
dures], page 119. The complete list of supported intrinsics is here:

Intrinsic B I J K

Section 8.3 BABS IIABS JIABS KIABS
[ABS], page 120

Section 8.55 BBTEST BITEST BJTEST BKTEST
[BTEST],

page 155

Section 8.143 BIAND ITAND JIAND KIAND
[IAND],

page 215

Section 8.146 BBCLR IIBCLR JIBCLR KIBCLR
[IBCLR],

page 217

Section 8.147 BBITS IIBITS JIBITS KIBITS
[IBITS],

page 218

Section 8.148 BBSET IIBSET JIBSET KIBSET
[IBSET],

page 218

Section 8.151 BIEOR ITIEOR JIEOR KIEOR
[IEOR],

page 221

Section 8.158 BIOR II0R JIOR KIOR
[IOR], page 225

Section 8.165 BSHFT IISHFT JISHFT KISHFT
[ISHFT],

page 229

Section 8.166 BSHFTC IISHFTC JISHFTC KISHFTC
[ISHFTC],

page 230

Section 8.206 BMOD IMOD JMOD KMOD
[MOD], page 253

Section 8.214 BNOT INOT JNOT KNOT
[NOT], page 259

Section 8.235 -- FLOATI FLOATJ FLOATK
[REAL],

page 272

64 The GNU Fortran Compiler

5.1.25 AUTOMATIC and STATIC attributes

With -fdec-static GNU Fortran supports the DEC extended attributes STATIC and
AUTOMATIC to provide explicit specification of entity storage. These follow the syntax of
the Fortran standard SAVE attribute.

STATIC is exactly equivalent to SAVE, and specifies that an entity should be allocated in
static memory. As an example, STATIC local variables retain their values across multiple
calls to a function.

Entities marked AUTOMATIC are stack automatic whenever possible. AUTOMATIC is the
default for local variables smaller than -fmax-stack-var-size, unless —fno-automatic
is given. This attribute overrides ~-fno-automatic, -fmax-stack-var-size, and blanket
SAVE statements.

Examples:

subroutine f

integer, automatic :: i | automatic variable
integer x, y | static variables
save

endsubroutine

subroutine f
integer a, b, ¢, x, y, z
static :: x
save y
automatic z, ¢
' a, b, ¢, and z are automatic
! x and y are static
endsubroutine

! Compiled with -fno-automatic
subroutine f
integer a, b, c, d

automatic :: a
! a is automatic; b, c, and d are static
endsubroutine

5.1.26 Form feed as whitespace

Historically, legacy compilers allowed insertion of form feed characters ("\f’, ASCII 0xC) at
the beginning of lines for formatted output to line printers, though the Fortran standard
does not mention this. GNU Fortran supports the interpretation of form feed characters in
source as whitespace for compatibility.

5.1.27 TYPE as an alias for PRINT

For compatibility, GNU Fortran interprets TYPE statements as PRINT statements with the
flag -fdec. With this flag asserted, the following two examples are equivalent:

TYPE *, 'hello world'

PRINT *, 'hello world'

Chapter 5: Extensions 65

5.1.28 %LOC as an rvalue

Normally %LOC is allowed only in parameter lists. However the intrinsic function LOC does
the same thing, and is usable as the right-hand-side of assignments. For compatibility, GNU
Fortran supports the use of 4L0OC as an alias for the builtin LOC with -std=legacy. With
this feature enabled the following two examples are equivalent:

integer :: i, 1

1 = %loc(i)

call sub(l)

integer :: i

call sub(%loc(i))

5.1.29 .XOR. operator

GNU Fortran supports .X0R. as a logical operator with —~std=1egacy for compatibility with
legacy code. .XOR. is equivalent to .NEQV.. That is, the output is true if and only if the
inputs differ.

5.1.30 Bitwise logical operators

With -fdec, GNU Fortran relaxes the type constraints on logical operators to allow inte-
ger operands, and performs the corresponding bitwise operation instead. This flag is for
compatibility only, and should be avoided in new code. Consider:
INTEGER :: i, j
i=z'33"
j =z'cc'
print *, i .AND. j
In this example, compiled with -fdec, GNU Fortran replaces the .AND. operation with
a call to the intrinsic Section 8.143 [IAND], page 215 function, yielding the bitwise-and
of i and j.
Note that this conversion occurs if at least one operand is of integral type. As a result, a
logical operand is converted to an integer when the other operand is an integer in a logical
operation. In this case, .TRUE. is converted to 1 and .FALSE. to 0.

Here is the mapping of logical operator to bitwise intrinsic used with -fdec:

Operator Intrinsic Bitwise operation

.NOT. NOT complement (see Section 8.214 [NOT], page 259)
.AND. IAND intersection (see Section 8.143 [IAND], page 215)
.OR. I0R union (see Section 8.158 [IOR], page 225)

.NEQV. IEOR exclusive or (see Section 8.151 [IEOR], page 221)
.EQV. NOT IEOR complement of exclusive or (see Section 8.151

[IEOR], page 221)

5.1.31 Extended I/0O specifiers

GNU Fortran supports the additional legacy I/O specifiers CARRIAGECONTROL, READONLY,
and SHARE with the compile flag -fdec, for compatibility.

CARRIAGECONTROL
The CARRIAGECONTROL specifier allows a user to control line termination set-
tings between output records for an I/O unit. The specifier has no meaning for

66

READONLY

SHARE

The GNU Fortran Compiler

readonly files. When CARRIAGECONTROL is specified upon opening a unit for for-
matted writing, the exact CARRIAGECONTROL setting determines what characters
to write between output records. The syntax is:

OPEN(..., CARRIAGECONTROL=cc)
where cc is a character expression that evaluates to one of the following values:
'LIST' One line feed between records (default)
'"FORTRAN' Legacy interpretation of the first character (see below)
'NONE' No separator between records

With CARRIAGECONTROL="'FORTRAN', when a record is written, the first charac-
ter of the input record is not written, and instead determines the output record
separator as follows:

Leading character Meaning Output separating
character(s)

'+ Overprinting Carriage return only

-t New line Line feed and carriage return

'0! Skip line Two line feeds and carriage
return

"1 New page Form feed and carriage
return

'$! Prompting Line feed (no carriage return)

CHAR(0) Overprinting (no None

advance)

The READONLY specifier may be given upon opening a unit, and is equivalent
to specifying ACTION='READ', except that the file may not be deleted on close
(i.e. CLOSE with STATUS="DELETE"). The syntax is:

OPEN(..., READONLY)

The SHARE specifier allows system-level locking on a unit upon opening it for
controlled access from multiple processes/threads. The SHARE specifier has
several forms:

OPEN(..., SHARE=sh)
OPEN(..., SHARED)
OPEN(..., NOSHARED)

Where sh in the first form is a character expression that evaluates to a value as
seen in the table below. The latter two forms are aliases for particular values
of sh:

Explicit form Short form Meaning
SHARE="'DENYRW' NOSHARED Exclusive (write) lock
SHARE="'DENYNONE' SHARED Shared (read) lock

In general only one process may hold an exclusive (write) lock for a given file
at a time, whereas many processes may hold shared (read) locks for the same
file.

The behavior of locking may vary with your operating system. On POSIX
systems, locking is implemented with fcntl. Consult your corresponding op-
erating system’s manual pages for further details. Locking via SHARE= is not
supported on other systems.

Chapter 5: Extensions 67

5.1.32 Legacy PARAMETER statements

For compatibility, GNU Fortran supports legacy PARAMETER statements without parentheses
with -std=1legacy. A warning is emitted if used with -std=gnu, and an error is acknowl-
edged with a real Fortran standard flag (-std=£95, etc...). These statements take the
following form:

implicit real (E)
parameter e = 2.718282
real c

parameter c = 3.0e8

5.1.33 Default exponents

For compatibility, GNU Fortran supports a default exponent of zero in real constants with
-fdec. For example, 9e would be interpreted as 9e0, rather than an error.

5.1.34 Unsigned integers

If the -funsigned option is given, GNU Fortran supports unsigned integers according to
J3/24-116 (https://j3-fortran.org/doc/year/24/24-116.txt). The data type is called
UNSIGNED. For an unsigned type with n bits, it implements integer arithmetic modulo 2**n,
comparable to the unsigned data type in C.

The data type has KIND numbers comparable to other Fortran data types, which can be
selected via the SELECTED_UNSIGNED_KIND function.

Mixed arithmetic, comparisons and assignment between UNSIGNED and other types are
only possible via explicit conversion. Conversion from UNSIGNED to other types is done via
type conversion functions like INT or REAL. Conversion from other types to UNSIGNED is
done via UINT. Unsigned variables cannot be used as index variables in DO loops or as array
indices.

Unsigned numbers have a trailing u as suffix, optionally followed by a KIND number
separated by an underscore.

Input and output can be done using the ‘I’, ‘B’, ‘0’ and ‘Z’ descriptors, plus unformatted
I/0.
Unsigned integers as implemented in gfortran are compatible with flang.

Here is a small, somewhat contrived example of their use:

program main
use iso_fortran_env, only : uint64
unsigned(kind=uint64) :: v
v = huge(v) - 32u_uint64
print *,v
end program main

which outputs the number 18446744073709551583.

Arithmetic operations work on unsigned integers, also for exponentiation. As an exten-
sion to J3/24-116.txt, unary minus and exponentiation of unsigned integers are permitted
unless -pedantic is in force.

In intrinsic procedures, unsigned arguments are typically permitted for arguments for
the data to be processed, analogous to the use of REAL arguments. Unsigned values are
prohibited as index variables in DO loops and as array indices.

https://j3-fortran.org/doc/year/24/24-116.txt

68 The GNU Fortran Compiler

Unsigned numbers can be read and written using list-directed, formatted and unformat-
ted I/O. For formatted I/O, the ‘B’, ‘I’, ‘0’ and ‘Z’ descriptors are valid. Negative values
and values that would overflow are rejected with -pedantic.

SELECT CASE is supported for unsigned integers.
The following intrinsics take unsigned arguments:
e BGE, see Section 8.50 [BGE], page 152,
e BGT, see Section 8.51 [BGT], page 153,
e BIT_SIZE, see Section 8.52 [BIT_SIZE], page 153,
e BLE, see Section 8.53 [BLE]|, page 154,
e BLT, see Section 8.54 [BLT], page 154,
e CMPLX, see Section 8.66 [CMPLX], page 162,
e CSHIFT, see Section 8.85 [CSHIFT], page 176,
e DIGITS, see Section 8.90 [DIGITS], page 180,
e DOT_PRODUCT, see Section 8.92 [DOT_PRODUCT], page 181,
e DSHIFTL, see Section 8.95 [DSHIFTL], page 183,
e DSHIFTR, see Section 8.96 [DSHIFTR], page 183,
e EOSHIFT, see Section 8.98 [EOSHIFT], page 185,
e FINDLOC, see Section 8.113 [FINDLOC], page 195,
e HUGE, see Section 8.139 [HUGE], page 212,
e TALL, see Section 8.142 [TALL], page 214,
e TIAND, see Section 8.143 [TAND], page 215,
e IANY, see Section 8.144 [TANY], page 216,
e IBCLR, see Section 8.146 [IBCLR], page 217,
e IBITS, see Section 8.147 [IBITS], page 218,
e IBSET, see Section 8.148 [IBSET], page 218,
e IEOR, see Section 8.151 [IEOR], page 221,
e INT, see Section 8.155 [INT], page 223,
e IOR, see Section 8.158 [IOR], page 225,
e IPARITY, see Section 8.159 [IPARITY], page 225,
e ISHFT, see Section 8.165 [ISHEFT], page 229,
e ISHFTC, see Section 8.166 [ISHFTC], page 230,
e MATMUL, see Section 8.193 [MATMULJ, page 245,
e MAX, see Section 8.194 [MAX], page 246,
e MAXLOC, see Section 8.196 [MAXLOC], page 247,
e MAXVAL, see Section 8.197 [MAXVAL], page 248,
e MERGE, see Section 8.200 [MERGE], page 250,
e MERGE_BITS, see Section 8.201 [MERGE_BITS], page 250,
e MIN, see Section 8.202 [MIN], page 251,
e MINLOC, see Section 8.204 [MINLOC], page 252,

Chapter 5: Extensions 69

e MINVAL, see Section 8.205 [MINVAL], page 253,

e MOD, see Section 8.206 [MOD], page 253,

e MODULQ, see Section 8.207 [MODULO)], page 254,

e MVBITS, see Section 8.209 [MVBITS], page 256,

e NOT, see Section 8.214 [NOT], page 259,

e OUT_OF_RANGE, see Section 8.218 [OUT_OF_RANGE], page 262,
e PRODUCT, see Section 8.226 [PRODUCT], page 266,

e RANDOM_NUMBER, see Section 8.231 [RANDOM_NUMBER], page 269,
e RANGE, see Section 8.233 [RANGE], page 271,

e REAL, see Section 8.235 [REALJ, page 272,

e SHIFTA, see Section 8.253 [SHIFTA], page 282,

e SHIFTL, see Section 8.254 [SHIFTL], page 283,

e SHIFTR, see Section 8.255 [SHIFTR], page 283,

e SUM, see Section 8.272 [SUM], page 294,

e TRANSPOSE, see Section 8.287 [TRANSPOSE], page 304,

e TRANSFER, see Section 8.286 [TRANSFER], page 303,

The following intrinsics are enabled with -funsigned:
e UINT, see Section 8.292 [UINT], page 306,
e UMASKL, see Section 8.294 [UMASKL], page 307,
e UMASKR, see Section 8.295 [UMASKR], page 307,

e SELECTED_UNSIGNED_KIND, see Section 8.250 [SELECTED_UNSIGNED_KIND],
page 281,

The following constants have been added to the intrinsic ISO_C_BINDING module:
c_unsigned, c_unsigned_short, c_unsigned_char, c_unsigned_long, c_unsigned_
long_long, c_uintmax_t, c_uint8_t, c_uintl6_t, c_uint32_t, c_uint64_t,
c_uint128_t, c_uint_fast8_t, c_uint_fast16_t, c_uint_fast32_t, c_uint_fast64_t,
c_uint_fast128_t, c_uint_least8_t, c_uint_leastl6_t, c_uint_least32_t,
c_uint_least64_t and c_uint_least128_t.

The following constants have been added to the intrinsic ISO_FORTRAN_ENV module:
uint8, uint16, uint32 and uint64.

5.2 Extensions not implemented in GNU Fortran

The long history of the Fortran language, its wide use and broad userbase, the large num-
ber of different compiler vendors and the lack of some features crucial to users in the first
standards have lead to the existence of a number of important extensions to the language.
While some of the most useful or popular extensions are supported by the GNU Fortran
compiler, not all existing extensions are supported. This section aims at listing these ex-
tensions and offering advice on how best make code that uses them running with the GNU
Fortran compiler.

70 The GNU Fortran Compiler

5.2.1 ENCODE and DECODE statements

GNU Fortran does not support the ENCODE and DECODE statements. These statements are
best replaced by READ and WRITE statements involving internal files (CHARACTER variables
and arrays), which have been part of the Fortran standard since Fortran 77. For example,
replace a code fragment like

INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets LINE
DECODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 3(F10.5))
with the following:

CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets LINE
READ (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 3(F10.5))
Similarly, replace a code fragment like

INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets A, B and C
ENCODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
with the following:

CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets A, B and C
WRITE (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))

5.2.2 Variable FORMAT expressions

A variable FORMAT expression is format statement that includes angle brackets enclosing a
Fortran expression: FORMAT(I<N>). GNU Fortran does not support this legacy extension.
The effect of variable format expressions can be reproduced by using the more powerful
(and standard) combination of internal output and string formats. For example, replace a
code fragment like this:
WRITE(6,20) INT1
20 FORMAT(I<N+1>)
with the following:

c Variable declaration
CHARACTER (LEN=20) FMT

c Other code here...

WRITE(FMT, ' ("(I", I0, ")")') N+1
WRITE(6,FMT) INT1

or with:

c Variable declaration
CHARACTER (LEN=20) FMT

c Other code here...

Chapter 5: Extensions 71

WRITE(FMT,*) N+1
WRITE(6," (I" // ADJUSTL(FMT) // ")") INT1

5.2.3 Alternate complex function syntax

Some Fortran compilers, including g77, let the user declare complex functions with the
syntax COMPLEX FUNCTION namex*16(), as well as COMPLEX*16 FUNCTION name (). Both are
nonstandard legacy extensions. gfortran accepts the latter form, which is more common,
but not the former.

5.2.4 Volatile COMMON blocks

Some Fortran compilers, including g77, let the user declare COMMON with the VOLATILE
attribute. This is invalid standard Fortran syntax and is not supported by gfortran. Note
that gfortran accepts VOLATILE variables in COMMON blocks since revision 4.3.

5.2.5 OPEN(... NAME=)

Some Fortran compilers, including g77, let the user declare OPEN(... NAME=). This is
invalid standard Fortran syntax and is not supported by gfortran. OPEN(... NAME=)
should be replaced with OPEN(... FILE=).

5.2.6 Q edit descriptor

Some Fortran compilers provide the Q edit descriptor, which transfers the number of char-
acters left within an input record into an integer variable.

A direct replacement of the Q edit descriptor is not available in gfortran. How to
replicate its functionality using standard-conforming code depends on what the intent of
the original code is.

Options to replace Q may be to read the whole line into a character variable and then
counting the number of non-blank characters left using LEN_TRIM. Another method may be
to use formatted stream, read the data up to the position where the Q descriptor occurred,
use INQUIRE to get the file position, count the characters up to the next NEW_LINE and then
start reading from the position marked previously.

73

6 Mixed-Language Programming

This chapter is about mixed-language interoperability, but also applies if you link Fortran
code compiled by different compilers. In most cases, use of the C Binding features of the
Fortran 2003 and later standards is sufficient.

For example, it is possible to mix Fortran code with C++ code as well as C, if you declare
the interface functions as extern "C" on the C++ side and BIND(C) on the Fortran side,
and follow the rules for interoperability with C. Note that you cannot manipulate C++ class
objects in Fortran or vice versa except as opaque pointers.

You can use the gfortran command to link both Fortran and non-Fortran code into the
same program, or you can use gcc or g++ if you also add an explicit -1gfortran option to
link with the Fortran library. If your main program is written in C or some other language
instead of Fortran, see Section 6.3 [Non-Fortran Main Program|, page 81, below.

6.1 Interoperability with C

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way to generate
procedure and derived-type declarations and global variables that are interoperable with C
(ISO/IEC 9899:1999). The BIND(C) attribute has been added to inform the compiler that
a symbol shall be interoperable with C; also, some constraints are added. Note, however,
that not all C features have a Fortran equivalent or vice versa. For instance, neither C’s
unsigned integers nor C’s functions with variable number of arguments have an equivalent
in Fortran.

Note that array dimensions are reversely ordered in C and that arrays in C always start
with index 0 while in Fortran they start by default with 1. Thus, an array declaration
A(n,m) in Fortran matches A[m] [n] in C and accessing the element A(i,j) matches A[j-
11 [i-1]. The element following A(i,j) (C: A[j-1] [i-1]; assuming i < n) in memory is
A(i+1,3) (C: A[j-11[i]).

6.1.1 Intrinsic Types

In order to ensure that exactly the same variable type and kind is used in C and Fortran, you
should use the named constants for kind parameters that are defined in the ISO_C_BINDING
intrinsic module. That module contains named constants of character type representing the
escaped special characters in C, such as newline. For a list of the constants, see Section 9.2
[ISO_C_BINDING], page 313.

For logical types, please note that the Fortran standard only guarantees interoperability
between C99’s _Bool and Fortran’s C_Bool-kind logicals and C99 defines that true has the
value 1 and false the value 0. Using any other integer value with GNU Fortran’s LOGICAL
(with any kind parameter) gives an undefined result. (Passing other integer values than 0
and 1 to GCC’s _Bool is also undefined, unless the integer is explicitly or implicitly casted
to _Bool.)

6.1.2 Derived Types and struct

For compatibility of derived types with struct, use the BIND(C) attribute in the type
declaration. For instance, the following type declaration
USE ISO_C_BINDING

74 The GNU Fortran Compiler

TYPE, BIND(C) :: myType
INTEGER(C_INT) :: i1, i2
INTEGER (C_SIGNED_CHAR) :: i3
REAL(C_DOUBLE) :: di
COMPLEX (C_FLOAT_COMPLEX) :: ci
CHARACTER (KIND=C_CHAR) :: str(5)
END TYPE

matches the following struct declaration in C

struct {
int i1, i2;
/* Note: "char" might be signed or unsigned. */
signed char i3;
double di;
float _Complex ci;
char str[5];

} myType;

Derived types with the C binding attribute shall not have the sequence attribute, type
parameters, the extends attribute, nor type-bound procedures. Every component must be
of interoperable type and kind and may not have the pointer or allocatable attribute.
The names of the components are irrelevant for interoperability.

As there exist no direct Fortran equivalents, neither unions nor structs with bit field or
variable-length array members are interoperable.

6.1.3 Interoperable Global Variables

Variables can be made accessible from C using the C binding attribute, optionally together
with specifying a binding name. Those variables have to be declared in the declaration part
of a MODULE, be of interoperable type, and have neither the pointer nor the allocatable
attribute.

MODULE m
USE myType_module
USE ISO_C_BINDING
integer (C_INT), bind(C, name="_MyProject_flags") :: global_flag
type (myType), bind(C) :: tp
END MODULE
Here, _MyProject_flags is the case-sensitive name of the variable as seen from C pro-
grams while global_flag is the case-insensitive name as seen from Fortran. If no binding
name is specified, as for tp, the C binding name is the (lowercase) Fortran binding name.
If a binding name is specified, only a single variable may be after the double colon. Note of
warning: You cannot use a global variable to access errno of the C library as the C standard
allows it to be a macro. Use the IERRNO intrinsic (GNU extension) instead.

6.1.4 Interoperable Subroutines and Functions

Subroutines and functions have to have the BIND(C) attribute to be compatible with C.
The dummy argument declaration is relatively straightforward. However, one needs to be
careful because C uses call-by-value by default while Fortran behaves usually similar to
call-by-reference. Furthermore, strings and pointers are handled differently.

To pass a variable by value, use the VALUE attribute. Thus, the following C prototype

int func(int i, int *j)

Chapter 6: Mixed-Language Programming 75

matches the Fortran declaration

integer(c_int) function func(i,j)
use iso_c_binding, only: c_int
integer(c_int), VALUE :: i
integer(c_int) :: j
Note that pointer arguments also frequently need the VALUE attribute, see Section 6.1.5
[Working with C Pointers|, page 76.

Strings are handled quite differently in C and Fortran. In C a string is a NUL-terminated
array of characters while in Fortran each string has a length associated with it and is thus
not terminated (by e.g. NUL). For example, if you want to use the following C function,

#include <stdio.h>
void print_C(char *string) /* equivalent: char string[] =*/
{
printf("%s\n", string);
}

to print “Hello World” from Fortran, you can call it using

use iso_c_binding, only: C_CHAR, C_NULL_CHAR
interface
subroutine print_c(string) bind(C, name="print_C")
use iso_c_binding, only: c_char
character(kind=c_char) :: string(x)
end subroutine print_c
end interface
call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)

As the example shows, you need to ensure that the string is NUL terminated. Addi-
tionally, the dummy argument string of print_C is a length-one assumed-size array; using
character (len=%) is not allowed. The example above uses c_char_"Hello World" to en-
sure the string literal has the right type; typically the default character kind and c_char are
the same and thus "Hello World" is equivalent. However, the standard does not guarantee
this.

The use of strings is now further illustrated using the C library function strncpy, whose
prototype is

char *strncpy(char *restrict sl1, const char *restrict s2, size_t n);

The function strncpy copies at most n characters from string s2 to sI and returns sI. In
the following example, we ignore the return value:

use iso_c_binding

implicit none

character (len=30) :: str,str2

interface
! Ignore the return value of strncpy -> subroutine
! "restrict" is always assumed if we do not pass a pointer
subroutine strncpy(dest, src, n) bind(C)

import

character(kind=c_char), intent(out) :: dest(x)
character(kind=c_char), intent(in) :: src(x)
integer(c_size_t), value, intent(in) :: n

end subroutine strncpy
end interface
str = repeat('X',30) ! Initialize whole string with 'X'
call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
len(c_char_"Hello World",kind=c_size_t))

76 The GNU Fortran Compiler

print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
end

The intrinsic procedures are described in Chapter 8 [Intrinsic Procedures], page 119.

6.1.5 Working with C Pointers

C pointers are represented in Fortran via the special opaque derived type type(c_ptr)
(with private components). C pointers are distinct from Fortran objects with the POINTER
attribute. Thus one needs to use intrinsic conversion procedures to convert from or to C
pointers. For some applications, using an assumed type (TYPE(*)) can be an alternative to
a C pointer, and you can also use library routines to access Fortran pointers from C. See
Section 6.1.6 [Further Interoperability of Fortran with C], page 78.

Here is an example of using C pointers in Fortran:

use iso_c_binding

type(c_ptr) :: cptrl, cptr2

integer, target :: array(7), scalar

integer, pointer :: pa(:), ps

cptrl = c_loc(array(l)) ! The programmer needs to ensure that the
! array is contiguous if required by the C
! procedure

cptr2 = c_loc(scalar)

call c_f_pointer(cptr2, ps)

call c_f_pointer(cptr2, pa, shape=[7])

When converting C to Fortran arrays, the one-dimensional SHAPE argument has to be
passed.

If a pointer is a dummy argument of an interoperable procedure, it usually has to be
declared using the VALUE attribute. void* matches TYPE(C_PTR), VALUE, while TYPE(C_
PTR) alone matches void*x.

Procedure pointers are handled analogously to pointers; the C type is TYPE (C_FUNPTR)
and the intrinsic conversion procedures are C_F_PROCPOINTER and C_FUNLOC.

Let us consider two examples of actually passing a procedure pointer from C to Fortran
and vice versa. Note that these examples are also very similar to passing ordinary pointers
between both languages. First, consider this code in C:

/* Procedure implemented in Fortran. */
void get_values (void (x*)(double));

/* Call-back routine we want called from Fortran. */
void
print_it (double x)
{
printf ("Number is %f.\n", x);
}

/* Call Fortran routine and pass call-back to it. =*/
void
foobar ()
{
get_values (&print_it);
}

A matching implementation for get_values in Fortran that correctly receives the pro-
cedure pointer from C and is able to call it, is given in the following MODULE:
MODULE m

Chapter 6: Mixed-Language Programming

IMPLICIT NONE

! Define interface of call-back routine.
ABSTRACT INTERFACE
SUBROUTINE callback (x)
USE, INTRINSIC :: ISO_C_BINDING
REAL (KIND=C_DOUBLE), INTENT(IN), VALUE :: x
END SUBROUTINE callback
END INTERFACE

CONTAINS

! Define C-bound procedure.

SUBROUTINE get_values (cproc) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc

PROCEDURE (callback), POINTER :: proc

! Convert C to Fortran procedure pointer.
CALL C_F_PROCPOINTER (cproc, proc)

! Call it.

CALL proc (1.0_C_DOUBLE)

CALL proc (-42.0_C_DOUBLE)

CALL proc (18.12_C_DOUBLE)
END SUBROUTINE get_values

END MODULE m

77

Next, we want to call a C routine that expects a procedure pointer argument and pass
it a Fortran procedure (that clearly must be interoperable!). Again, the C function may be:

int
call_it (int (*func) (int), int arg)
{
return func (arg);
}
It can be used as in the following Fortran code:
MODULE m

USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE

! Define interface of C function.
INTERFACE
INTEGER (KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
END FUNCTION call_it
END INTERFACE

CONTAINS

! Define procedure passed to C function.

! It must be interoperable!

INTEGER (KIND=C_INT) FUNCTION double_it (arg) BIND(C)
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
double_it = arg + arg

78 The GNU Fortran Compiler

END FUNCTION double_it

! Call C function.

SUBROUTINE foobar ()
TYPE(C_FUNPTR) :: cproc
INTEGER(KIND=C_INT) :: i

! Get C procedure pointer.
cproc = C_FUNLOC (double_it)

! Use it.
DO i = 1_C_INT, 10_C_INT
PRINT *, call_it (cproc, i)
END DO
END SUBROUTINE foobar

END MODULE m

6.1.6 Further Interoperability of Fortran with C

GNU Fortran implements the Technical Specification ISO/IEC TS 29113:2012, which ex-
tends the interoperability support of Fortran 2003 and Fortran 2008 and is now part of the
2018 Fortran standard. Besides removing some restrictions and constraints, the Technical
Specification adds assumed-type (TYPE(x)) and assumed-rank (DIMENSION(..)) variables
and allows for interoperability of assumed-shape, assumed-rank, and deferred-shape arrays,
as well as allocatables and pointers. Objects of these types are passed to BIND(C) func-
tions as descriptors with a standard interface, declared in the header file <ISO_Fortran_
binding.h>.

Note: Currently, GNU Fortran does not use internally the array descriptor (dope vec-
tor) as specified in the Technical Specification, but uses an array descriptor with different
fields in functions without the BIND(C) attribute. Arguments to functions marked BIND(C)
are converted to the specified form. If you need to access GNU Fortran’s internal array de-
scriptor, you can use the Chasm Language Interoperability Tools, http://chasm-interop.
sourceforge.net/.

6.1.7 Generating C prototypes from Fortran

The options -fc-prototypes can be used to write out C declatations and function proto-
types for BIND(C) entities. The same can be done for writing out prototypes for external
procedures using -fc-prototypes-external, see Section 2.11 [Interoperability Options],
page 34.

Standard Fortran does not specify an interoperable type for C’s unsigned integer types.
For interoperability with unsigned types, GNU Fortran provides unsigned integers, see
Section 5.1.34 [Unsigned integers|, page 67.

6.2 GNU Fortran Compiler Directives

6.2.1 ATTRIBUTES directive

The Fortran standard describes how a conforming program shall behave; however, the
exact implementation is not standardized. In order to allow the user to choose specific
implementation details, compiler directives can be used to set attributes of variables and

http://chasm-interop.sourceforge.net/
http://chasm-interop.sourceforge.net/

Chapter 6: Mixed-Language Programming 79

procedures that are not part of the standard. Whether a given attribute is supported and
its exact effects depend on both the operating system and on the processor; see Section “C
Extensions” in Using the GNU Compiler Collection (GCC) for details.

For procedures and procedure pointers, the following attributes can be used to change
the calling convention:

e CDECL - standard C calling convention
e STDCALL — convention where the called procedure pops the stack

e FASTCALL — part of the arguments are passed via registers instead using the stack

Besides changing the calling convention, the attributes also influence the decoration of
the symbol name, e.g., by a leading underscore or by a trailing at-sign followed by the
number of bytes on the stack. When assigning a procedure to a procedure pointer, both
should use the same calling convention.

On some systems, procedures and global variables (module variables and COMMON blocks)
need special handling to be accessible when they are in a shared library. The following
attributes are available:

e DLLEXPORT — provide a global pointer to a pointer in the DLL

e DLLIMPORT — reference the function or variable using a global pointer

For dummy arguments, the NO_ARG_CHECK attribute can be used; in other compilers, it
is also known as IGNORE_TKR. For dummy arguments with this attribute actual arguments
of any type and kind (similar to TYPE(*)), scalars and arrays of any rank (no equivalent in
Fortran standard) are accepted. As with TYPE(*), the argument is unlimited polymorphic
and no type information is available. Additionally, the argument may only be passed
to dummy arguments with the NO_ARG_CHECK attribute and as argument to the PRESENT
intrinsic function and to C_LOC of the ISO_C_BINDING module.

Variables with NO_ARG_CHECK attribute shall be of assumed-type (TYPE(*);
recommended) or of type INTEGER, LOGICAL, REAL or COMPLEX. They shall not have the
ALLOCATE, CODIMENSION, INTENT(OUT), POINTER or VALUE attribute; furthermore, they
shall be either scalar or of assumed-size (dimension(*)). As TYPE(*), the NO_ARG_CHECK
attribute requires an explicit interface.

e NO_ARG_CHECK — disable the type, kind and rank checking

e DEPRECATED — print a warning when using a such-tagged deprecated procedure, variable
or parameter; the warning can be suppressed with -Wno-deprecated-declarations.

e NOINLINE — prevent inlining given function.
e NORETURN — add a hint that a given function cannot return.

e WEAK — emit the declaration of an external symbol as a weak symbol rather than a
global. This is primarily useful in defining library functions that can be overridden in
user code, though it can also be used with non-function declarations. The overriding
symbol must have the same type as the weak symbol.

The attributes are specified using the syntax

1GCC$ ATTRIBUTES attribute-list :: variable-list

where in free-form source code only whitespace is allowed before !GCC$ and in fixed-form
source code !GCC$, cGCC$ or *GCC$ shall start in the first column.

80 The GNU Fortran Compiler

For procedures, the compiler directives shall be placed into the body of the procedure; for
variables and procedure pointers, they shall be in the same declaration part as the variable
or procedure pointer.

6.2.2 UNROLL directive

The syntax of the directive is
IGCC$ unroll N

You can use this directive to control how many times a loop should be unrolled. It must
be placed immediately before a DO loop and applies only to the loop that follows. N is an
integer constant specifying the unrolling factor. The values of 0 and 1 block any unrolling
of the loop.

For DO CONCURRENT constructs the unrolling specification applies only to the first loop
control variable.

6.2.3 BUILTIN directive

The syntax of the directive is
IGCC$ BUILTIN (B) attributes simd FLAGS IF('target')

You can use this directive to define which middle-end built-ins provide vector implemen-
tations. B is name of the middle-end built-in. FLAGS are optional and must be either
(inbranch) or (notinbranch). IF statement is optional and is used to filter multilib ABIs
for the built-in that should be vectorized. Example usage:

IGCC$ builtin (sinf) attributes simd (notinbranch) if('x86_64')

The purpose of the directive is to provide an API among the GCC compiler and the
GNU C Library which would define vector implementations of math routines.

6.2.4 IVDEP directive

The syntax of the directive is
IGCC$ ivdep

This directive tells the compiler to ignore vector dependencies in the following loop. It
must be placed immediately before a DO loop and applies only to the loop that follows.

Sometimes the compiler may not have sufficient information to decide whether a partic-
ular loop is vectorizable due to potential dependencies between iterations. The purpose of
the directive is to tell the compiler that vectorization is safe.

For DO CONCURRENT constructs this annotation is implicit to all loop control variables.

This directive is intended for annotation of existing code. For new code it is recom-
mended to consider OpenMP SIMD directives as potential alternative.

6.2.5 VECTOR directive

The syntax of the directive is

IGCC$ vector

This directive tells the compiler to vectorize the following loop. It must be placed
immediately before a DO loop and applies only to the loop that follows.

For DO CONCURRENT constructs this annotation applies to all loops specified in the con-
current header.

Chapter 6: Mixed-Language Programming 81

6.2.6 NOVECTOR directive

The syntax of the directive is
IGCC$ novector

This directive tells the compiler to not vectorize the following loop. It must be placed
immediately before a DO loop and applies only to the loop that follows.

For DO CONCURRENT constructs this annotation applies to all loops specified in the con-
current header.

6.3 Non-Fortran Main Program

Even if you are doing mixed-language programming, it is very likely that you do not need
to know or use the information in this section. Since it is about the internal structure of
GNU Fortran, it may also change in GCC minor releases.

When you compile a PROGRAM with GNU Fortran, a function with the name main (in
the symbol table of the object file) is generated, which initializes the libgfortran library
and then calls the actual program that uses the name MAIN__, for historic reasons. If
you link GNU Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
program compiled by a different compiler, the libgfortran library is not initialized and thus
a few intrinsic procedures do not work properly, e.g. those for obtaining the command-line
arguments.

Therefore, if your PROGRAM is not compiled with GNU Fortran and the GNU Fortran
compiled procedures require intrinsics relying on the library initialization, you need to
initialize the library yourself. Using the default options, gfortran calls _gfortran_set_
args and _gfortran_set_options. The initialization of the former is needed if the called
procedures access the command line (and for backtracing); the latter sets some flags based
on the standard chosen or to enable backtracing. In typical programs, it is not necessary
to call any initialization function.

If your PROGRAM is compiled with GNU Fortran, you shall not call any of the follow-
ing functions. The libgfortran initialization functions are shown in C syntax but using C
bindings they are also accessible from Fortran.

6.3.1 _gfortran_set_args — Save command-line arguments
Synopsis: void _gfortran_set_args (int argc, char *argv[])

Description:
_gfortran_set_args saves the command-line arguments; this initialization is
required if any of the command-line intrinsics is called. Additionally, it shall
be called if backtracing is enabled (see _gfortran_set_options).

Arguments:
argc number of command line argument strings
argv the command-line argument strings; argv[0] is the
pathname of the executable itself.
Example:

int main (int argc, char *argv[])

{

82 The GNU Fortran Compiler

/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
return O;

}

6.3.2 _gfortran_set_options — Set library option flags
Synopsis: void _gfortran_set_options (int num, int options[])

Description:
_gfortran_set_options sets several flags related to the Fortran standard to be
used, whether backtracing should be enabled and whether range checks should
be performed. The syntax allows for upward compatibility since the number of
passed flags is specified; for non-passed flags, the default value is used. See also
see Section 2.10 [Code Gen Options|, page 26. Please note that not all flags are
actually used.

Arguments:
num number of options passed
argv The list of flag values

option flag list:

option[0] Allowed standard; can give run-time errors if
e.g. an input-output edit descriptor is invalid
in a given standard. Possible values are (bitwise
or-ed) GFC_STD_F77 (1), GFC_STD_F95_0BS (2),
GFC_STD_F95_DEL (4), GFC_STD_F95 (8), GFC_STD_
F2003 (16), GFC_STD_GNU (32), GFC_STD_LEGACY
(64), GFC_STD_F2008 (128), GFC_STD_F2008_0BS
(256), GFC_STD_F2018 (512), GFC_STD_F2018_0BS
(1024), GFC_STD_F2018_DEL (2048), GFC_STD_
F2023 (4096), and GFC_STD_F2023_DEL (8192).
Default: ~ GFC_STD_F95_0BS | GFC_STD_F95_DEL |
GFC_STD_F95 | GFC_STD_F2003 | GFC_STD_F2008
| GFC_STD_F2008_0BS | GFC_STD_F77 | GFC_STD_
F2018 | GFC_STD_F2018_0BS | GFC_STD_F2018_DEL
| GFC_STD_F2023 | GFC_STD_F2023_DEL |
GFC_STD_GNU | GFC_STD_LEGACY.

option[l1] Standard-warning flag; prints a warning to stan-
dard error. Default: GFC_STD_F95_DEL | GFC_STD_
LEGACY.

option|2] If non zero, enable pedantic checking. Default: off.

option|3] Unused.

option[4] If non zero, enable backtracing on run-time errors.

Default: off. (Default in the compiler: on.) Note:
Installs a signal handler and requires command-line
initialization using _gfortran_set_args.

option[5] If non zero, supports signed zeros. Default: enabled.

Chapter 6: Mixed-Language Programming 83

option|[6] Enables run-time checking. Possible values are
(bitwise or-ed): GFC_RTCHECK_BOUNDS
(1), GFC_RTCHECK_ARRAY_TEMPS
(2), GFC_RTCHECK_RECURSION
(4), GFC_RTCHECK_DO (8),
GFC_RTCHECK_POINTER (16),
GFC_RTCHECK_MEM (32),
GFC_RTCHECK_BITS (64). Default:
disabled.

option|7] Unused.

option[8] Show a warning when invoking STOP and ERROR

STOP if a floating-point exception occurred. Possible
values are (bitwise or-ed) GFC_FPE_INVALID
(1), GFC_FPE_DENORMAL (2), GFC_FPE_ZERO (4),
GFC_FPE_OVERFLOW (8), GFC_FPE_UNDERFLOW (16),
GFC_FPE_INEXACT (32). Default: None (0). (Default
in the compiler: GFC_FPE_INVALID | GFC_FPE_
DENORMAL | GFC_FPE_ZERO | GFC_FPE_OVERFLOW
GFC_FPE_UNDERFLOW)

Example:
/* Use gfortran 4.9 default options. */
static int options[] = {68, 511, 0, 0, 1, 1, 0, 0, 31};
_gfortran_set_options (9, &optiomns);

6.3.3 _gfortran_set_convert — Set endian conversion

Synopsis: void _gfortran_set_convert (int conv)

Description:
_gfortran_set_convert set the representation of data for unformatted files.
Arguments:
conv Endian conversion, possible values:
GFC_CONVERT_NATIVE (0, default),
GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG
(2), GFC_.CONVERT_LITTLE (3).
Example:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_convert (1);
return O;

}

6.3.4 _gfortran_set_record_marker — Set length of record markers

Synopsis: void _gfortran_set_record_marker (int val)

84 The GNU Fortran Compiler

Description:
_gfortran_set_record_marker sets the length of record markers for unfor-
matted files.

Arguments:
val Length of the record marker; valid values are 4 and
8. Default is 4.

Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_record_marker (8);
return O;

}

6.3.5 _gfortran_set_fpe — Enable floating point exception traps

Synopsis: void _gfortran_set_fpe (int val)

Description:
_gfortran_set_fpe enables floating point exception traps for the specified ex-
ceptions. On most systems, this results in a SIGFPE signal being sent and the
program being aborted.

Arguments:
option[0] IEEE exceptions. Possible values are (bitwise or-
ed) zero (0, default) no trapping, GFC_FPE_INVALID
(1), GFC_FPE_DENORMAL (2), GFC_FPE_ZERO (4), GFC_
FPE_OVERFLOW (8), GFC_FPE_UNDERFLOW (16), and
GFC_FPE_INEXACT (32).
Example:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
/* FPE for invalid operations such as SQRT(-1.0). x/
_gfortran_set_fpe (1);
return O;

}

6.3.6 _gfortran_set_max_subrecord_length — Set subrecord length

Synopsis: void _gfortran_set_max_subrecord_length (int val)

Description:
_gfortran_set_max_subrecord_length set the maximum length for a sub-
record. This option only makes sense for testing and debugging of unformatted

1/0.

Arguments:
val the maximum length for a subrecord; the maximum
permitted value is 2147483639, which is also the
default.

Chapter 6: Mixed-Language Programming 85

Example:

int main (int argc, char *argv[])

{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_max_subrecord_length (8);
return O;

6.4 Naming and argument-passing conventions

This section gives an overview about the naming convention of procedures and global vari-
ables and about the argument passing conventions used by GNU Fortran. If a C binding
has been specified, the naming convention and some of the argument-passing conventions
change. If possible, mixed-language and mixed-compiler projects should use the better de-
fined C binding for interoperability. See see Section 6.1 [Interoperability with C], page 73.

6.4.1 Naming conventions

According the Fortran standard, valid Fortran names consist of a letter between A to Z, a
to z, digits 0, 1 to 9 and underscores (_) with the restriction that names may only start
with a letter. As vendor extension, the dollar sign ($) is additionally permitted with the
option -fdollar-ok, but not as first character and only if the target system supports it.

By default, the procedure name is the lowercased Fortran name with an appended
underscore (_); using -fno-underscoring no underscore is appended while -fsecond-
underscore appends two underscores. Depending on the target system and the calling
convention, the procedure might be additionally dressed; for instance, on 32bit Windows
with stdcall, an at-sign @ followed by an integer number is appended. For the changing
the calling convention, see see Section 6.2 [GNU Fortran Compiler Directives|, page 78.

For common blocks, the same convention is used, i.e. by default an underscore is ap-
pended to the lowercased Fortran name. Blank commons have the name __BLNK_

For procedures and variables declared in the specification space of a module, the name is
formed by __, followed by the lowercased module name, _MOD_, and the lowercased Fortran
name. Note that no underscore is appended.

6.4.2 Argument passing conventions

Subroutines do not return a value (matching C99’s void) while functions either return a
value as specified in the platform ABI or the result variable is passed as hidden argument
to the function and no result is returned. A hidden result variable is used when the result
variable is an array or of type CHARACTER.

Arguments are passed according to the platform ABI. In particular, complex arguments
might not be compatible to a struct with two real components for the real and imaginary
part. The argument passing matches the one of C99’s _Complex. Functions with scalar
complex result variables return their value and do not use a by-reference argument. Note
that with the -ff2c option, the argument passing is modified and no longer completely
matches the platform ABI. Some other Fortran compilers use £2c semantic by default; this
might cause problems with interoperability.

86 The GNU Fortran Compiler

GNU Fortran passes most arguments by reference, i.e. by passing a pointer to the data.
Note that the compiler might use a temporary variable into which the actual argument has
been copied, if required semantically (copy-in/copy-out).

For arguments with ALLOCATABLE and POINTER attribute (including procedure pointers),
a pointer to the pointer is passed such that the pointer address can be modified in the
procedure.

For dummy arguments with the VALUE attribute: Scalar arguments of the type INTEGER,
LOGICAL, REAL and COMPLEX are passed by value according to the platform ABI. (As vendor
extension and not recommended, using %VAL() in the call to a procedure has the same
effect.) For TYPE(C_PTR) and procedure pointers, the pointer itself is passed such that it
can be modified without affecting the caller.

For Boolean (LOGICAL) arguments, please note that GCC expects only the integer value
0 and 1. If a GNU Fortran LOGICAL variable contains another integer value, the result is
undefined. As some other Fortran compilers use —1 for .TRUE., extra care has to be taken —
such as passing the value as INTEGER. (The same value restriction also applies to other front
ends of GCC, e.g. to GCC’s C99 compiler for _Bool or GCC’s Ada compiler for Boolean.)

For arguments of CHARACTER type, the character length is passed as a hidden argument at
the end of the argument list, except when the corresponding dummy argument is declared as
TYPE(*). For deferred-length strings, the value is passed by reference, otherwise by value.
The character length has the C type size_t (or INTEGER(kind=C_SIZE_T) in Fortran).
Note that this is different to older versions of the GNU Fortran compiler, where the type of
the hidden character length argument was a C int. In order to retain compatibility with
older versions, one can e.g. for the following Fortran procedure

subroutine fstrlen (s, a)
character(len=%) :: s
integer :: a
print*, len(s)

end subroutine fstrlen

define the corresponding C prototype as follows:

#if __GNUC__ > 7

typedef size_t fortran_charlen_t;
#else

typedef int fortran_charlen_t;
#endif

void fstrlen_ (char*, int*, fortran_charlen_t);

In order to avoid such compiler-specific details, for new code it is instead recommended
to use the ISO_C_BINDING feature.

Note with C binding, CHARACTER (len=1) result variables are returned according to the
platform ABI and no hidden length argument is used for dummy arguments; with VALUE,
those variables are passed by value.

For OPTIONAL dummy arguments, an absent argument is denoted by a NULL pointer,
except for scalar dummy arguments of intrinsic type or derived type (but not CLASS) and
that have the VALUE attribute. For those, a hidden Boolean argument (logical (kind=C_
bool) ,value) is used to indicate whether the argument is present.

Arguments that are assumed-shape, assumed-rank or deferred-rank arrays or, with
-fcoarray=1ib, allocatable scalar coarrays use an array descriptor. All other arrays pass

Chapter 6: Mixed-Language Programming 87

the address of the first element of the array. With -fcoarray=1ib, the token and the off-
set belonging to nonallocatable coarrays dummy arguments are passed as hidden argument
along the character length hidden arguments. The token is an opaque pointer identifying
the coarray and the offset is a passed-by-value integer of kind C_PTRDIFF_T, denoting the
byte offset between the base address of the coarray and the passed scalar or first element
of the passed array.

The arguments are passed in the following order
e Result variable, when the function result is passed by reference

e Character length of the function result, if it is a of type CHARACTER and no C binding
is used

e The arguments in the order in which they appear in the Fortran declaration

e The present status for optional arguments with value attribute, which are internally
passed by value

e The character length and/or coarray token and offset for the first argument which is
a CHARACTER or a nonallocatable coarray dummy argument, followed by the hidden
arguments of the next dummy argument of such a type

89

7 Coarray Programming

7.1 Type and enum ABI Documentation

7.1.1 caf_token_t
Typedef of type void * on the compiler side. Can be any data type on the library side.

7.1.2 caf_register_t

Indicates which kind of coarray variable should be registered.

typedef enum caf_register_t {
CAF_REGTYPE_COARRAY_STATIC,
CAF_REGTYPE_COARRAY_ALLOC,
CAF_REGTYPE_LOCK_STATIC,
CAF_REGTYPE_LOCK_ALLOC,
CAF_REGTYPE_CRITICAL,
CAF_REGTYPE_EVENT_STATIC,
CAF_REGTYPE_EVENT_ALLOC,
CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,
CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY

}

caf_register_t;

The values CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY and CAF_REGTYPE_COARRAY_
ALLOC_ALLOCATE_ONLY are for allocatable components in derived type coarrays only. The
first one sets up the token without allocating memory for allocatable component. The latter
one only allocates the memory for an allocatable component in a derived type coarray.
The token needs to be set up previously by the REGISTER_ONLY. This allows having
allocatable components unallocated on some images. The status of whether an allocatable
component is allocated on a remote image can be queried by _caf_is_present which used

internally by the ALLOCATED intrinsic.

7.1.3 caf_deregister_t

typedef enum caf_deregister_t {
CAF_DEREGTYPE_COARRAY_DEREGISTER,
CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
}
caf_deregister_t;
Allows to specify the type of deregistration of a coarray object. The CAF_DEREGTYPE_
COARRAY_DEALLOCATE_ONLY flag is only allowed for allocatable components in derived type

coarrays.

7.1.4 caf_reference_t

The structure used for implementing arbitrary reference chains. A CAF_REFERENCE_T allows
to specify a component reference or any kind of array reference of any rank supported by
gfortran. For array references all kinds as known by the compiler/Fortran standard are
supported indicated by a MODE.

typedef enum caf_ref_type_t {
/* Reference a component of a derived type, either regular one or an
allocatable or pointer type. For regular ones idx in caf_reference_t is

The GNU Fortran Compiler

set to -1. x/

CAF_REF_COMPONENT,

/* Reference an allocatable array. */

CAF_REF_ARRAY,

/* Reference a non-allocatable/non-pointer array. I.e., the coarray object
has no array descriptor associated and the addressing is done
completely using the ref. x*/

CAF_REF_STATIC_ARRAY

} caf_ref_type_t;

typedef enum caf_array_ref_t {
/* No array ref. This terminates the array ref. x*/
CAF_ARR_REF_NONE = O,
/* Reference array elements given by a vector. Only for this mode
caf_reference_t.u.a.dim[i].v is valid. x*/
CAF_ARR_REF_VECTOR,
/* A full array ref (:). x/
CAF_ARR_REF_FULL,
/* Reference a range on elements given by start, end and stride. */
CAF_ARR_REF_RANGE,
/* Only a single item is referenced given in the start member. */
CAF_ARR_REF_SINGLE,
/* An array ref of the kind (i:), where i is an arbitrary valid index in the
array. The index i is given in the start member. */
CAF_ARR_REF_OPEN_END,
/* An array ref of the kind (:i), where the lower bound of the array ref
is given by the remote side. The index i is given in the end member. */
CAF_ARR_REF_OPEN_START
} caf_array_ref_t;

/* References to remote components of a derived type. */
typedef struct caf_reference_t {

/* A pointer to the next ref or NULL. x*/

struct caf_reference_t *next;

/* The type of the reference. */

/* caf_ref_type_t, replaced by int to allow specification in fortran FE. */

int type;

/* The size of an item referenced in bytes. I.e. in an array ref this is
the factor to advance the array pointer with to get to the next item.
For component refs this gives just the size of the element referenced. */

size_t item_size;

union {

struct {
/* The offset (in bytes) of the component in the derived type.
Unused for allocatable or pointer components. */
ptrdiff_t offset;
/* The offset (in bytes) to the caf_token associated with this
component. NULL, when not allocatable/pointer ref. */
ptrdiff_t caf_token_offset;
}oc
struct {
/* The mode of the array ref. See CAF_ARR_REF_x*. x/
/* caf_array_ref_t, replaced by unsigend char to allow specification in
fortran FE. */
unsigned char mode[GFC_MAX_DIMENSIONS];
/* The type of a static array. Unset for array's with descriptors. x/
int static_array_type;
/* Subscript refs (s) or vector refs (v). x/
union {
struct {

Chapter 7: Coarray Programming 91

/* The start and end boundary of the ref and the stride. */
index_type start, end, stride;
}s;
struct {
/* nvec entries of kind giving the elements to reference. */
void *vector;
/* The number of entries in vector. */
size_t nvec;
/* The integer kind used for the elements in vector. */
int kind;
} v
} dim[GFC_MAX_DIMENSIONS];
T
}ou;
} caf_reference_t;
The references make up a single linked list of reference operations. The NEXT member
links to the next reference or NULL to indicate the end of the chain. Component and array

refs can be arbitrarily mixed as long as they comply to the Fortran standard.

Notes: The member STATIC_ARRAY_TYPE is used only when the TYPE is CAF_REF_
STATIC_ARRAY. The member gives the type of the data referenced. Because no array
descriptor is available for a descriptorless array and type conversion still needs to take place
the type is transported here.

At the moment CAF_ARR_REF_VECTOR is not implemented in the front end for descrip-
torless arrays. The library caf_single has untested support for it.

7.1.5 caf_team_t

Opaque pointer to represent a team-handle. This type is a stand-in for the future imple-
mentation of teams. It is about to change without further notice.

7.2 Function ABI Documentation

7.2.1 _gfortran_caf_init — Initialization function
Synopsis: void _gfortran_caf_init (int *argc, char ***argv)

Description:
This function is called at startup of the program before the Fortran main pro-
gram, if the latter has been compiled with -fcoarray=1ib. It takes as argu-
ments the command-line arguments of the program. It is permitted to pass two
NULL pointers as argument; if non-NULL, the library is permitted to modify the

arguments.
Arguments:
argc intent(inout) An integer pointer with the number of
arguments passed to the program or NULL.
argv intent(inout) A pointer to an array of strings with
the command-line arguments or NULL.
Notes: The function is modelled after the initialization function of the Message Passing

Interface (MPI) specification. Due to the way coarray registration works, it
might not be the first call to the library. If the main program is not written

92 The GNU Fortran Compiler

in Fortran and only a library uses coarrays, it can happen that this function
is never called. Therefore, it is recommended that the library does not rely on
the passed arguments and whether the call has been done.

7.2.2 _gfortran_caf_finish — Finalization function
Synopsis: void _gfortran_caf_finish (void)

Description:
This function is called at the end of the Fortran main program, if it has been
compiled with the -fcoarray=1ib option.

Notes: For non-Fortran programs, it is recommended to call the function at the end of
the main program. To ensure that the shutdown is also performed for programs
where this function is not explicitly invoked, for instance non-Fortran programs
or calls to the system’s exit() function, the library can use a destructor function.
Note that programs can also be terminated using the STOP and ERROR STOP
statements; those use different library calls.

7.2.3 _gfortran_caf_this_image — Querying the image number
Synopsis: int _gfortran_caf_this_image (caf_team_t team)

Description:
Return the current image number in the team, or in the current team, if no
team is given.

Arguments:
team intent(in), optional; The team this image’s number
is requested for. If null, the image number in the
current team is returned.

Notes: Available since Fortran 2008 without argument; Since Fortran 2018 with op-
tional team argument. Fortran 2008 uses 0 as argument for team, which is
permissible, because a team handle is always an opaque pointer, which as a
special case can be null here.

7.2.4 _gfortran_caf_num_images — Querying the maximal number
of images

Synopsis: int _gfortran_caf_num_images (caf_team_t team, int32_t *team_
number)

Description:
This function returns the number of images in the team given by team or
team_number, if either one is present. If both are null, then the number of
images in the current team is returned.

Arguments:
team intent(in), optional; The team the number of images
is requested for. If null, the number of images in the
current team is returned.

Chapter 7: Coarray Programming 93

team_number intent(in), optional; The team id for which the num-
ber of teams is requested; if unset, then number of
images in the current team is returned.

Notes: When both argument are given, then it is caf-library dependent which argu-
ment is examined first. Current implementations prioritize the team argument,
because it is easier to retrive the number of images from it.

Fortran 2008 or later, with no arguments; Fortran 2018 or later with two argu-
ments.

7.2.5 _gfortran_caf_image_status — Query the status of an image
Synopsis: int _gfortran_caf_image_status (int image, caf_team_t * team)

Description:
Get the status of the image given by the id image of the team given by
team. Valid results are zero, for image is ok, STAT_STOPPED_IMAGE from the
ISO_FORTRAN_ENV module to indicate that the image has been stopped
and STAT_FAILED_IMAGE also from ISO_FORTRAN_ENYV to indicate that the
image has executed a FAIL IMAGE statement.

Arguments:
image the positive scalar id of the image in the current
TEAM.
team optional; team on the which the inquiry is to be
performed.
Notes: This function follows TS18508. Because team-functionality is not yet imple-
mented a null pointer is passed for the team argument at the moment.
7.2.6 _gfortran_caf_failed_images — Get an array of the indexes

of the failed images
Synopsis: int _gfortran_caf_failed_images (caf_team_t * team, int * kind)

Description:
Get an array of image indexes in the current team that have failed. The array is
sorted ascendingly. When team is not provided the current team is to be used.
When kind is provided then the resulting array is of that integer kind else it
is of default integer kind. The returns an unallocated size zero array when no
images have failed.

Arguments:
team optional; team on the which the inquiry is to be
performed.
image optional; the kind of the resulting integer array.
Notes: This function follows TS18508. Because team-functionality is not yet imple-

mented a null pointer is passed for the team argument at the moment.

94 The GNU Fortran Compiler

7.2.7 _gfortran_caf_stopped_images — Get an array of the indexes
of the stopped images

Synopsis: int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)

Description:
Get an array of image indexes in the current team that have stopped. The
array is sorted ascendingly. When team is not provided the current team is to
be used. When kind is provided then the resulting array is of that integer kind
else it is of default integer kind. The returns an unallocated size zero array
when no images have failed.

Arguments:
team optional; team on the which the inquiry is to be
performed.
image optional; the kind of the resulting integer array.
Notes: This function follows T'S18508. Because team-functionality is not yet imple-
mented a null pointer is passed for the team argument at the moment.
7.2.8 _gfortran_caf_register — Registering coarrays

Synopsis: void _gfortran_caf_register (size_t size, caf_register_t type, caf_
token_t *token, gfc_descriptor_t *desc, int *stat, char *errmsg,
size_t errmsg_len)

Description:

Registers memory for a coarray and creates a token to identify the coarray.
The routine is called for both coarrays with SAVE attribute and using an ex-
plicit ALLOCATE statement. If an error occurs and STAT is a NULL pointer,
the function shall abort with printing an error message and starting the error
termination. If no error occurs and STAT is present, it shall be set to zero.
Otherwise, it shall be set to a positive value and, if not-NULL, ERRMSG shall
be set to a string describing the failure. The routine shall register the mem-
ory provided in the DATA-component of the array descriptor DESC, when that
component is non-NULL, else it shall allocate sufficient memory and provide a
pointer to it in the DATA-component of DESC. The array descriptor has rank
zero, when a scalar object is to be registered and the array descriptor may be
invalid after the call to _gfortran_caf_register. When an array is to be
allocated the descriptor persists.

For CAF_REGTYPE_COARRAY_STATIC and CAF_REGTYPE_COARRAY_ALLOC, the
passed size is the byte size requested. For CAF_REGTYPE_LOCK_STATIC,
CAF_REGTYPE_LOCK_ALLOC and CAF_REGTYPE_CRITICAL it is the array size or
one for a scalar.

When CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY is used, then only a token
for an allocatable or pointer component is created. The SIZE parameter is not
used then. On the contrary when CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_
ONLY is specified, then the token needs to be registered by a previous call with
regtype CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY and either the memory
specified in the DESC’s data-ptr is registered or allocate when the data-ptr is
NULL.

Chapter 7: Coarray Programming

Arguments:
size For normal coarrays, the byte size of the coarray to be
allocated; for lock types and event types, the number
of elements.
type one of the caf_register_t types.
token intent(out) An opaque pointer identifying the
coarray.
desc intent(inout) The (pseudo) array descriptor.
stat intent(out) For allocatable coarrays, stores the
STAT=; may be NULL
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL
errmsg_len the buffer size of errmsg.
Notes: Nonallocatable coarrays have to be registered prior use from remote images. In
order to guarantee this, they have to be registered before the main program.
This can be achieved by creating constructor functions. That is what GCC does
such that also for nonallocatable coarrays the memory is allocated and no static
memory is used. The token permits to identify the coarray; to the processor,
the token is a nonaliasing pointer. The library can, for instance, store the base
address of the coarray in the token, some handle or a more complicated struct.
The library may also store the array descriptor DESC when its rank is nonzero.
For lock types, the value shall only be used for checking the allocation status.
Note that for critical blocks, the locking is only required on one image; in
the locking statement, the processor shall always pass an image index of one
for critical-block lock variables (CAF_REGTYPE_CRITICAL). For lock types and
critical-block variables, the initial value shall be unlocked (or, respectively, not
in critical section) such as the value false; for event types, the initial state should
be no event, e.g. zero.
7.2.9 _gfortran_caf_deregister — Deregistering coarrays

Synopsis: void _gfortran_caf_deregister (caf_token_t *token, caf_deregister_

t type, int *stat, char *errmsg, size_t errmsg_len)

Description:

Called to free or deregister the memory of a coarray; the processor calls this
function for automatic and explicit deallocation. In case of an error, this func-
tion shall fail with an error message, unless the STAT variable is not null.
The library is only expected to free memory it allocated itself during a call to

_gfortran_caf_register.

Arguments:
token the token to free.
type the type of action to take for the coarray. A CAF_
DEREGTYPE_COARRAY_DEALLOCATE_ONLY is allowed
only for allocatable or pointer components of derived
type coarrays. The action only deallocates the local
memory without deleting the token.

96 The GNU Fortran Compiler
stat intent(out) Stores the STAT=; may be NULL
errmsg intent(out) When an error occurs, this is set to an

error message; may be NULL
errmsg_len the buffer size of errmsg.

Notes: For nonallocatable coarrays this function is never called. If a cleanup is required,
it has to be handled via the finish, stop and error stop functions, and via
destructors.

7.2.10 _gfortran_caf_register_accessor — Register an accessor for

remote access
Synopsis: void _gfortran_caf_register_accessor (const int hash, void
(*accessor) (void **, int32_t *, void *, void *, size_t *, size_t *))
Description:
Identification of access funtions across images is done using a unique hash. For
each given hash an accessor has to be registered. This routine is expected to
register an accessor function pointer for the given hash in nearly constant time.
Le. it is expected to add the hash and accessor to a buffer and return. Sorting
shall be done in _gfortran_caf_register_accessors_finish.
Arguments:
hash intent(in) The unique hash value this accessor is to
be identified by.

accessor intent(in) A pointer to the function on this
image. The function has the signature void
accessor (void **dst_ptr, int32_t *free_dst,
void *src_ptr, void *get_data, size_t
xopt_src_charlen, size_t *opt_dst_charlen).
GFortran ensures that functions provided to
_gfortran_caf_register_accessor adhere to this
interface.

Notes: This function is required to have a nearly constant runtime complexity, because
it will be called to register multiple accessor in a sequence. GFortran ensures
that before the first remote accesses commences _gfortran_caf_register_
accessors_finish is called at least once. It is valid to register further accessors
after a call to _gfortran_caf_register_accessors_finish. It is invalid to
call _gfortran_caf_register_accessor after the first remote access has been
done. See also Section 7.2.11 [_gfortran_caf_register_accessors_finish]|, page 96,
and Section 7.2.12 [_gfortran_caf_get_remote_function_index], page 97,

7.2.11 _gfortran_caf_register_accessors_finish — Finish

registering accessor functions

Synopsis: void _gfortran_caf_register_accessors_finish ()

Description:

Called to finalize registering of accessor functions. This function is expected
to prepare a lookup table that has fast lookup time for the hash supplied to

Chapter 7: Coarray Programming 97

_gfortran_caf_get_remote_function_index and constant access time for in-
dexing operations.

Arguments:

No arguments.

Notes: This function may be called multiple times with and without new
hash-accessors- pairs being added. The post-condition after each call has to
be that hashes can be looked up quickly and indexing on the lookup table of
hash-accessor-pairs is a constant time operation.

7.2.12 _gfortran_caf_get_remote_function_index — Get the index

of an accessor

Synopsis: int _gfortran_caf_get_remote_function_index (const int hash)

Description:

Return the index of the accessor in the lookup table build by Sec-
tion 7.2.10 [_gfortran_caf register_accessor|, page 96, and Section 7.2.11
[gfortran_caf_register_accessors_finish|, page 96. This function is expected to
be fast, because it may be called often. A log(N) lookup time for a given hash
is preferred. The reference implementation uses bsearch (), for example.
The index returned shall be an array index to be used by Section 7.2.13
[gfortran_caf_get_from_remote], page 97, i.e. a constant time operation is
mandatory for quick access.

The GFortran compiler ensures that _gfortran_caf_get_remote_function_
index is called once only for each hash and the result be stored in a static
variable to prevent future redundant lookups.

Arguments:
hash intent(in) The hash of the accessor desired.

Result: The zero based index to access the accessor funtion in a lookup table. On error,
-1 can be returned.

Notes: The function’s complexity is expected to be significantly smaller than N, where

N is the number of all accessors registered. Although returning -1 is valid, will
this most likely crash the Fortran program when accessing the -1-th accessor
function. It is therefore advised to terminate with an error message, when the
hash could not be found.

7.2.13 _gfortran_caf_get_from_remote — Getting data from a
remote image using a remote side accessor

Synopsis: void _gfortran_caf_get_from_remote (caf_token_t token, const
gfc_descriptor_t *opt_src_desc, const size_t *opt_src_charlen,
const int image_index, const size_t dst_size, void **dst_data,
size_t *opt_dst_charlen, gfc_descriptor_t *opt_dst_desc, const
bool may_realloc_dst, const int getter_index, void *get_data,
const size_t get_data_size, int *stat, caf_team_t *team, int
*team_number)

98

The GNU Fortran Compiler

Description:

Arguments:

Called to get a scalar, an array section or a whole array from a remote image
identified by the image_index.

token intent(in) An opaque pointer identifying the coarray.

opt_src_desc intent(in) A pointer to the descriptor when the ob-
ject identified by token is an array with a descriptor.
The parameter needs to be set to NULL, when token
identifies a scalar.

opt_src_charleintent(in) When the object to get is a char array with
deferred length, then this parameter needs to be set
to point to its length. Else the parameter needs to
be set to NULL.

image_index intent(in) The ID of the remote image; must be a
positive number. this_image () is valid.

dst_size intent(in) The size of data expected to be transferred
from the remote image. If the data type to get is a
string or string array, then this needs to be set to the
byte size of each character, i.e. 4 for a CHARACTER
(KIND=4) string. The length of the string is then
returned in opt_dst_charlen (also for string arrays).

dst_data intent(inout) A pointer to the adress the data is
stored. To prevent copying of data into an output
buffer the adress to the live data is returned here.
When a descriptor is provided also its data-member is
set to that adress. When may_realloc_dst is set, then
the memory may be reallocated by the remote func-
tion, which needs to be replicated by this function.

opt_dst_charlemtent(inout) When a char array is returned, this pa-
rameter is set to the length where applicable. The
value can also be read to prevent reallocation in the
accessor.

opt_dst_desc intent(inout) When a descriptor array is returned, it
is stored in the memory pointed to by this optional
parameter. When may_realloc_dst is set, then the
descriptor may be changed, i.e. its bounds, but upto
now not its rank.

may_realloc_dsntent(in) Set when the returned data may require
reallocation of the output buffer in dst_data or
opt_dst_desc.

getter_index intent(in) The index of the accessor to execute as re-
turned by _gfortran_caf_get_remote_function_
index ().

Chapter 7: Coarray Programming 99

get_data intent(inout) Additional data needed in the accessor.
Le., when an array reference uses a local variable v,
it is transported in this structure and all references in
the accessor are rewritten to access the member. The
data in the structure of get_data may be changed by
the accessor, but these changes are lost to the calling
Fortran program.

get_data_size intent(in) The size of the get_data structure.

stat intent(out) When non-NULL give the result of the op-
eration, i.e., zero on success and non-zero on error.
When NULL and an error occurs, then an error mes-
sage is printed and the program is terminated.

team intent(in) The opaque team handle as returned by
FORM TEAM.

team_number intent(in) The number of the team this access is to
be part of.

Notes: It is permitted to have image_index equal the current image; the memory to get
and the memory to store the data may (partially) overlap. The implementation
has to take care that it handles this case, e.g. using memmove which handles
(partially) overlapping memory.

7.2.14 _gfortran_caf_is_present_on_remote — Check that a
coarray or a part of it is allocated on the remote image

Synopsis: int32_t _gfortran_caf_is_present_on_remote (caf_token_t token,
const int image_index, const int is_present_index, void *add_data,
const size_t add_data_size)

Description:
Check if an allocatable coarray or a component of a derived type coarray is
allocated on the remote image identified by the image_index. The check is done
by calling routine on the remote side.

Arguments:

token intent(in) An opaque pointer identifying the coarray.

image_index intent(in) The ID of the remote image; must be a
positive number. this_image () is valid.

is_present_indéntent(in) The index of the accessor to execute as re-
turned by _gfortran_caf_get_remote_function_
index ().

add_data intent(inout) Additional data needed in the accessor.
I.e., when an array reference uses a local variable v,
it is transported in this structure and all references in
the accessor are rewritten to access the member. The
data in the structure of add_data may be changed by
the accessor, but these changes are lost to the calling
Fortran program.

add_data_size intent(in) The size of the add_data structure.

100 The GNU Fortran Compiler
7.2.15 _gfortran_caf_send_to_remote — Send data to a remote
image using a remote side accessor to store it

Synopsis: void _gfortran_caf_send_to_remote (caf_token_t token, gfc_
descriptor_t *opt_dst_desc, const size_t *opt_dst_charlen, const
int image_index, const size_t src_size, const void *src_data, size_t
*opt_src_charlen, const gfc_descriptor_t *opt_src_desc, const
int setter_index, void *add_data, const size_t add_data_size, int
*stat, caf_team_t *team, int *team_number)

Description:
Called to send a scalar, an array section or a whole array to a remote image
identified by the image_index. The call modifies the memory of the remote
image.

Arguments:

token intent(in) An opaque pointer identifying the coarray.

opt_dst_desc intent(inout) A pointer to the descriptor when the
object identified by token is an array with a descrip-
tor. The parameter needs to be set to NULL, when
token identifies a scalar or is an array without a
descriptor.

opt_dst_charlemtent(in) When the object to send is a char array
with deferred length, then this parameter needs to be
set to point to its length. Else the parameter needs
to be set to NULL.

image_index intent(in) The ID of the remote image; must be a
positive number. this_image () is valid.

src_size intent(in) The size of data expected to be transferred
to the remote image. If the data type to get is a
string or string array, then this needs to be set to the
byte size of each character, i.e. 4 for a CHARACTER
(KIND=4) string. The length of the string is then
given in opt_src_charlen (also for string arrays).

src_data intent(in) A pointer the data to be send to the re-
mote image. When a descriptor is provided in opt_
src_desc then this parameter can be ignored by the
library implementing the coarray functionality.

opt_src_charleintent(in) When a char array is send, this parameter
is set to its length.

opt_src_desc intent(in) When a descriptor array is send, then this
parameter gives the handle.

setter_index intent(in) The index of the accessor to execute as re-
turned by _gfortran_caf_get_remote_function_
index ().

Chapter 7:

Notes:

Coarray Programming 101

add_data intent(inout) Additional data needed in the accessor.
Le., when an array reference uses a local variable v,
it is transported in this structure and all references in
the accessor are rewritten to access the member. The
data in the structure of add_data may be changed by
the accessor, but these changes are lost to the calling
Fortran program.

add_data_size intent(in) The size of the add_data structure.

stat intent(out) When non-NULL give the result of the op-
eration, i.e., zero on success and non-zero on error.
When NULL and an error occurs, then an error mes-
sage is printed and the program is terminated.

team intent(in) The opaque team handle as returned by
FORM TEAM.

team_number intent(in) The number of the team this access is to
be part of.

It is permitted to have image_index equal the current image; the memory to
send the data to and the memory to read for the data may (partially) over-
lap. The implementation has to take care that it handles this case, e.g. using
memmove which handles (partially) overlapping memory.

7.2.16 _gfortran_caf_transfer_between_remotes — Initiate data
transfer between to remote images

Synopsis:

void _gfortran_caf_transfer_between_remotes (caf_token_t dst_
token, gfc_descriptor_t *opt_dst_desc, size_t *opt_dst_charlen,
const int dst_image_index, const int dst_access_index, void *dst_
add_data, const size_t dst_add_data_size, caf_token_t src_token,
const gfc_descriptor_t *opt_src_desc, const size_t *opt_src_
charlen, const int src_image_index, const int src_access_index,
void *src_add_data, const size_t src_add_data_size, const size_t
src_size, const bool scalar_transfer, int *dst_stat, int *src_stat,
caf_team_t *dst_team, int *dst_team_number, caf_team_t *src_team,
int *src_team_number)

Description:

Arguments:

Initiates a transfer of data from one remote image to another remote image. The
call modifies the memory of the receiving remote image given by dst_image_
index. The src_image_index’s memory is not modified. The call returns when
the transfer has commenced.

dst_token intent(in) An opaque pointer identifying the coarray
on the receiving image.

102 The GNU Fortran Compiler

opt_dst_desc intent(inout) A pointer to the descriptor when the
object identified by dst_token is an array with a de-
scriptor. The parameter needs to be set to NULL,
when dst_token identifies a scalar or is an array with-
out a descriptor.

opt_dst_charlemtent(in) When the object to modify on the receiving
image is a char array with deferred length, then this
parameter needs to be set to point to its length. Else
the parameter needs to be set to NULL.

dst-image_indixtent(in) The ID of the receiving/destination remote
image; must be a positive number. this_image () is
valid.

dst_access_indintent(in) The index of the accessor to execute on the
receiving image as returned by _gfortran_caf_get_
remote_function_index ().

dst_add_data intent(inout) Additional data needed in the accessor
on the receiving side. L.e., when an array reference
uses a local variable v, it is transported in this struc-
ture and all references in the accessor are rewritten
to access the member. The data in the structure of
dst_add_data may be changed by the accessor, but
these changes are lost to the calling Fortran program.

dst-add_data_sitent(in) The size of the dst_add_data structure.

src_token intent(in) An opaque pointer identifying the coarray
on the sending image.

opt_src_desc intent(inout) A pointer to the descriptor when the
object identified by src_token is an array with a de-
scriptor. The parameter needs to be set to NULL,
when src_token identifies a scalar or is an array with-
out a descriptor.

opt_src_charleintent(in) When the object to get from the source
image is a char array with deferred length, then this
parameter needs to be set to point to its length. Else
the parameter needs to be set to NULL.

src_image_indértent(in) The ID of the sending/source remote im-
age; must be a positive number. this_image () is
valid.

src_access_indéntent(in) The index of the accessor to execute on the
sending image as returned by _gfortran_caf_get_
remote_function_index ().

Chapter 7: Coarray Programming

Notes:

src_add_data intent(inout) Additional data needed in the accessor

on the sending side. l.e., when an array reference
uses a local variable v, it is transported in this struc-
ture and all references in the accessor are rewritten
to access the member. The data in the structure
of src_add_data may be changed by the accessor, but
these changes are lost to the calling Fortran program.

src_add_data_sigent(in) The size of the src_add_data structure.

src_size

intent(in) The size of data expected to be trans-
ferred between the images. If the data type to get
is a string or string array, then this needs to be
set to the byte size of each character, i.e. 4 for
a CHARACTER (KIND=4) string. The length of the
string is then given in opt_src_charlen and opt_
dst_charlen (also for string arrays).

scalar_transferintent(in) Is set to true when the data to be trans-

dst_stat

src_stat

dst_team

ferred between the two images is not an array with a
descriptor.

intent(out) When non-NULL give the result of the op-
eration on the receiving side, i.e., zero on success and
non-zero on error. When NULL and an error occurs,
then an error message is printed and the program is
terminated.

intent(out) When non-NULL give the result of the op-
eration on the sending side, i.e., zero on success and
non-zero on error. When NULL and an error occurs,
then an error message is printed and the program is
terminated.

intent(in) The opaque team handle as returned by
FORM TEAM.

dst_team_numbxent(in) The number of the team this access is to

src_team

be part of.
intent(in) The opaque team handle as returned by
FORM TEAM.

src-team_numbetent (in) The number of the team this access is to

be part of.

103

It is permitted to have both dst_image_index and src_image_index equal
the current image; the memory to send the data to and the memory to read
for the data may (partially) overlap. The implementation has to take care that
it handles this case, e.g. using memmove which handles (partially) overlapping

memory.

104

7.2.17 _gfortran_caf_sendget_by_ref — Sending data between
remote images using enhanced references on both sides

Synopsis:

void _gfortran_caf_sendget_by_ref (caf_token_t dst_token, int
dst_image_index, caf_reference_t *dst_refs, caf_token_t src_token,
int src_image_index, caf_reference_t *src_refs, int dst_kind, int
src_kind, bool may_require_tmp, int *dst_stat, int *src_stat, int

The GNU Fortran Compiler

dst_type, int src_type)

Description:

Arguments:

Called to send a scalar, an array section or a whole array from a remote
image identified by the src_image_index to a remote image identified by the

dst_image_index.

dst_token

intent(in) An opaque pointer identifying the destina-
tion coarray.

dst_image_indemtent(in) The ID of the destination remote image;

dst_refs

src_token

must be a positive number.

intent(in) The references on the remote array to store
the data given by the source. Guaranteed to have at
least one entry.

intent(in) An opaque pointer identifying the source
coarray.

src_image_indéxtent(in) The ID of the source remote image; must

src_refs

dst_kind
src_kind

be a positive number.

intent(in) The references to apply to the remote
structure to get the data.

intent(in) Kind of the destination argument
intent(in) Kind of the source argument

may_require_tinpent(in) The variable is false when it is known at

dst_stat

src_stat

dst_type

compile time that the dest and src either cannot over-
lap or overlap (fully or partially) such that walking
src and dest in elementwise order (honoring the stride
value) does not lead to wrong results. Otherwise, the
value is true.

intent(out) when non-NULL give the result of the send-
operation, i.e., zero on success and nonzero on error.
When NULL and an error occurs, then an error mes-
sage is printed and the program is terminated.
intent(out) When non-NULL give the result of the get-
operation, i.e., zero on success and nonzero on error.
When NULL and an error occurs, then an error mes-
sage is printed and the program is terminated.
intent(in) Give the type of the destination. When
the destination is not an array, than the precise type,
e.g. of a component in a derived type, is not known,
but provided here.

Chapter 7: Coarray Programming 105

Notes:

src_type intent(in) Give the type of the source. When the
source is not an array, than the precise type, e.g. of
a component in a derived type, is not known, but
provided here.

It is permitted to have the same image index for both src_image_index and
dst-image_index; the memory of the send-to and the send-from might (par-
tially) overlap in that case. The implementation has to take care that it handles
this case, e.g. using memmove which handles (partially) overlapping memory. If
may_require_tmp is true, the library might additionally create a temporary
variable, unless additional checks show that this is not required (e.g. because
walking backward is possible or because both arrays are contiguous and memmove
takes care of overlap issues).

Note that the assignment of a scalar to an array is permitted. In addition,
the library has to handle numeric-type conversion and for strings, padding and
different character kinds.

Because of the more complicated references possible some operations may be
unsupported by certain libraries. The library is expected to issue a precise error
message why the operation is not permitted.

7.2.18 _gfortran_caf_lock — Locking a lock variable

Synopsis:

void _gfortran_caf_lock (caf_token_t token, size_t index, int
image_index, int *acquired_lock, int *stat, char *errmsg, size_t
errmsg_len)

Description:

Arguments:

Notes:

Acquire a lock on the given image on a scalar locking variable or for the given
array element for an array-valued variable. If the acquired_lock is NULL, the
function returns after having obtained the lock. If it is non-NULL, then ac-
quired_lock is assigned the value true (one) when the lock could be obtained
and false (zero) otherwise. Locking a lock variable that has already been locked
by the same image is an error.

token intent(in) An opaque pointer identifying the coarray.

index intent(in) Array index; first array index is 0. For
scalars, it is always 0.

image_index intent(in) The ID of the remote image; must be a
positive number.

acquired_lock intent(out) If not NULL, it returns whether lock
could be obtained.

stat intent(out) Stores the STAT=; may be NULL.

errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.

errmsg_len intent(in) the buffer size of errmsg

This function is also called for critical blocks; for those, the array index is always

zero and the image index is one. Libraries are permitted to use other images
for critical-block locking variables.

106 The GNU Fortran Compiler

7.2.19 _gfortran_caf_lock — Unlocking a lock variable

Synopsis: void _gfortran_caf_unlock (caf_token_t token, size_t index, int
image_index, int *stat, char *errmsg, size_t errmsg_len)

Description:
Release a lock on the given image on a scalar locking variable or for the given
array element for an array-valued variable. Unlocking a lock variable that is
unlocked or has been locked by a different image is an error.

Arguments:
token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For
scalars, it is always 0.
image_index intent(in) The ID of the remote image; must be a
positive number.
stat intent(out) For allocatable coarrays, stores the
STAT=; may be NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg-len intent(in) the buffer size of errmsg
Notes: This function is also called for critical block; for those, the array index is always
zero and the image index is one. Libraries are permitted to use other images
for critical-block locking variables.
7.2.20 _gfortran_caf_event_post — Post an event

Synopsis: void _gfortran_caf_event_post (caf_token_t token, size_t index, int
image_index, int *stat, char *errmsg, size_t errmsg_len)

Description:
Increment the event count of the specified event variable.

Arguments:
token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For
scalars, it is always 0.
image_index intent(in) The ID of the remote image; must be a
positive number; zero indicates the current image,
when accessed noncoindexed.
stat intent(out) Stores the STAT=; may be NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
Notes: This acts like an atomic add of one to the remote image’s event variable. The

statement is an image-control statement but does not imply sync memory. Still,
all preceding push communications of this image to the specified remote image
have to be completed before event_wait on the remote image returns.

Chapter 7: Coarray Programming 107

7.2.21 _gfortran_caf_event_wait — Wait that an event occurred

Synopsis: void _gfortran_caf_event_wait (caf_token_t token, size_t index, int
until_count, int *stat, char *errmsg, size_t errmsg_len)

Description:
Wait until the event count has reached at least the specified until_count; if so,
atomically decrement the event variable by this amount and return.

Arguments:
token intent(in) An opaque pointer identifying the coarray.
index intent(in) Array index; first array index is 0. For
scalars, it is always 0.
until_count intent(in) The number of events that have to be avail-
able before the function returns.
stat intent(out) Stores the STAT=; may be NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
Notes: This function only operates on a local coarray. It acts like a loop checking
atomically the value of the event variable, breaking if the value is greater or
equal the requested number of counts. Before the function returns, the event
variable has to be decremented by the requested until_count value. A possible
implementation would be a busy loop for a certain number of spins (possibly
depending on the number of threads relative to the number of available cores)
followed by another waiting strategy such as a sleeping wait (possibly with an
increasing number of sleep time) or, if possible, a futex wait.
The statement is an image-control statement but does not imply sync memory.
Still, all preceding push communications of this image to the specified remote
image have to be completed before event_wait on the remote image returns.
7.2.22 _gfortran_caf_event_query — Query event count

Synopsis: void _gfortran_caf_event_query (caf_token_t token, size_t index,
int image_index, int *count, int *stat)

Description:
Return the event count of the specified event variable.

Arguments:

token intent(in) An opaque pointer identifying the coarray.

index intent(in) Array index; first array index is 0. For
scalars, it is always 0.

image_index intent(in) The ID of the remote image; must be a pos-
itive number; zero indicates the current image when
accessed noncoindexed.

count intent(out) The number of events currently posted to
the event variable.

stat intent(out) Stores the STAT=; may be NULL.

108 The GNU Fortran Compiler

Notes: The typical use is to check the local event variable to only call event_wait
when the data is available. However, a coindexed variable is permitted; there
is no ordering or synchronization implied. It acts like an atomic fetch of the
value of the event variable.

7.2.23 _gfortran_caf_sync_all — All-image barrier

Synopsis: void _gfortran_caf_sync_all (int *stat, char *errmsg, size_t
errmsg_len)

Description:
Synchronization of all images in the current team; the program only continues
on a given image after this function has been called on all images of the cur-
rent team. Additionally, it ensures that all pending data transfers of previous
segment have completed.

Arguments:
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
7.2.24 _gfortran_caf_sync_images — Barrier for selected images

Synopsis: void _gfortran_caf_sync_images (int count, int images[], int *stat,
char *errmsg, size_t errmsg_len)

Description:
Synchronization between the specified images; the program only continues on
a given image after this function has been called on all images specified for
that image. Note that one image can wait for all other images in the current
team (e.g. via sync images(*)) while those only wait for that specific image.
Additionally, sync images ensures that all pending data transfers of previous
segments have completed.

Arguments:
count intent(in) The number of images that are provided in
the next argument. For a zero-sized array, the value
is zero. For sync images (%), the value is —1.

images intent(in) An array with the images provided by the
user. If count is zero, a NULL pointer is passed.

stat intent(out) Stores the status STAT= and may be
NULL.

errmsg intent(out) When an error occurs, this is set to an

error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg

Chapter 7: Coarray Programming 109

7.2.25 _gfortran_caf_sync_memory — Wait for completion of
segment-memory operations

Synopsis: void _gfortran_caf_sync_memory (int *stat, char *errmsg, size_t
errmsg_len)

Description:
Acts as optimization barrier between different segments. It also ensures that
all pending memory operations of this image have been completed.

Arguments:
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
Notes: A simple implementation could be __asm__ __volatile__ ("":::"memory")
to prevent code movements.
7.2.26 _gfortran_caf_error_stop — Error termination with exit
code

Synopsis: void _gfortran_caf_error_stop (int error)

Description:
Invoked for an ERROR STOP statement that has an integer argument. The func-
tion should terminate the program with the specified exit code.

Arguments:
error intent(in) The exit status to be used.
7.2.27 _gfortran_caf_error_stop_str — Error termination with
string

Synopsis: void _gfortran_caf_error_stop (const char *string, size_t len)

Description:
Invoked for an ERROR STOP statement that has a string as argument. The func-
tion should terminate the program with a nonzero-exit code.

Arguments:
string intent(in) the error message (not zero terminated)
len intent(in) the length of the string

7.2.28 _gfortran_caf_fail_image — Mark the image failed and end
its execution
Synopsis: void _gfortran_caf_fail_image ()

Description:
Invoked for an FAIL IMAGE statement. The function should terminate the cur-
rent image.

Notes: This function follows TS18508.

110 The GNU Fortran Compiler

7.2.29 _gfortran_caf_atomic_define — Atomic variable assignment

Synopsis: void _gfortran_caf_atomic_define (caf_token_t token, size_t offset,
int image_index, void *value, int *stat, int type, int kind)

Description:
Assign atomically a value to an integer or logical variable.
Arguments:
token intent(in) An opaque pointer identifying the coarray.
offset intent(in) The number of bytes the actual data is
shifted compared to the base address of the coarray.
image_index intent(in) The ID of the remote image; must be a pos-
itive number; zero indicates the current image when
used noncoindexed.
value intent(in) the value to be assigned, passed by
reference
stat intent(out) Stores the status STAT= and may be
NULL.
type intent(in) The data type, i.e. BT_INTEGER (1) or BT_
LOGICAL (2).
kind intent(in) The kind value (only 4; always int)
7.2.30 _gfortran_caf_atomic_ref — Atomic variable reference

Synopsis: void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
int image_index, void *value, int *stat, int type, int kind)

Description:
Reference atomically a value of a kind-4 integer or logical variable.
Arguments:
token intent(in) An opaque pointer identifying the coarray.
offset intent(in) The number of bytes the actual data is
shifted compared to the base address of the coarray.
image_index intent(in) The ID of the remote image; must be a pos-
itive number; zero indicates the current image when
used noncoindexed.
value intent(out) The variable assigned the atomically ref-
erenced variable.
stat intent(out) Stores the status STAT= and may be
NULL.
type the data type, i.e. BT_INTEGER (1) or BT_LOGICAL
(2).
kind The kind value (only 4; always int)
7.2.31 _gfortran_caf_atomic_cas — Atomic compare and swap

Synopsis: void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
int image_index, void *old, void *compare, void *new_val, int *stat,
int type, int kind)

Chapter 7: Coarray Programming 111

Description:
Atomic compare and swap of a kind-4 integer or logical variable. Assigns atom-
ically the specified value to the atomic variable, if the latter has the value
specified by the passed condition value.

Arguments:
token intent(in) An opaque pointer identifying the coarray.
offset intent(in) The number of bytes the actual data is
shifted compared to the base address of the coarray.
image_index intent(in) The ID of the remote image; must be a pos-
itive number; zero indicates the current image when
used noncoindexed.
old intent(out) The value the atomic variable had just
before the cas operation.
compare intent(in) The value used for comparison.
new_val intent(in) The new value for the atomic variable, as-
signed to the atomic variable, if compare equals the
value of the atomic variable.
stat intent(out) Stores the status STAT= and may be
NULL.
type intent(in) the data type, i.e. BT_INTEGER (1) or BT_
LOGICAL (2).
kind intent(in) The kind value (only 4; always int)
7.2.32 _gfortran_caf_atomic_op — Atomic operation

Synopsis: void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t
offset, int image_index, void *value, void *old, int *stat, int type,
int kind)

Description:
Apply an operation atomically to an atomic integer or logical variable. After the
operation, old contains the value just before the operation, which, respectively,
adds (GFC_CAF_ATOMIC_ADD) atomically the value to the atomic integer
variable or does a bitwise AND, OR or exclusive OR between the atomic variable
and value; the result is then stored in the atomic variable.

Arguments:
op intent(in) the operation to be performed; possible
values GFC_CAF_ATOMIC_ADD (1), GFC_CAF_ATOMIC_
AND (2), GFC_CAF_ATOMIC_OR (3), GFC_CAF_ATOMIC_

XOR (4).
token intent(in) An opaque pointer identifying the coarray.
offset intent(in) The number of bytes the actual data is

shifted compared to the base address of the coarray.

image_index intent(in) The ID of the remote image; must be a pos-
itive number; zero indicates the current image when
used noncoindexed.

112 The GNU Fortran Compiler

old intent(out) The value the atomic variable had just
before the atomic operation.

val intent(in) The new value for the atomic variable, as-
signed to the atomic variable, if compare equals the
value of the atomic variable.

stat intent(out) Stores the status STAT= and may be
NULL.
type intent(in) the data type, i.e. BT_INTEGER (1) or BT_
LOGICAL (2)
kind intent(in) the kind value (only 4; always int)
7.2.33 _gfortran_caf_co_broadcast — Sending data to all images

Synopsis: void _gfortran_caf_co_broadcast (gfc_descriptor_t *a, int
source_image, int *stat, char *errmsg, size_t errmsg_len)

Description:
Distribute a value from a given image to all other images in the team. Has to
be called collectively.

Arguments:
a intent(inout) An array descriptor with the data to
be broadcasted (on source_image) or to be received
(other images).
source_image intent(in) The ID of the image from which the data
should be broadcasted.
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg.
7.2.34 _gfortran_caf_co_max — Collective maximum reduction

Synopsis: void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
int *stat, char *errmsg, int a_len, size_t errmsg_len)

Description:
Calculates for each array element of the variable a the maximum value for that
element in the current team; if result_image has the value 0, the result shall
be stored on all images, otherwise, only on the specified image. This function
operates on numeric values and character strings.

Arguments:

a intent(inout) An array descriptor for the data to be
processed. On the destination image(s) the result
overwrites the old content.

result_image intent(in) The ID of the image to which the reduced
value should be copied to; if zero, it has to be copied
to all images.

Chapter 7: Coarray Programming 113

stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an

error message; may be NULL.
a_len intent(in) the string length of argument a
errmsg_len intent(in) the buffer size of errmsg

Notes: If result_image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.

7.2.35 _gfortran_caf_co_min — Collective minimum reduction

Synopsis: void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
int *stat, char *errmsg, int a_len, size_t errmsg_len)

Description:
Calculates for each array element of the variable a the minimum value for that
element in the current team; if result_image has the value 0, the result shall
be stored on all images, otherwise, only on the specified image. This function
operates on numeric values and character strings.

Arguments:
a intent(inout) An array descriptor for the data to be
processed. On the destination image(s) the result
overwrites the old content.
result_image intent(in) The ID of the image to which the reduced
value should be copied to; if zero, it has to be copied
to all images.
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
a_len intent(in) the string length of argument a
errmsg_len intent(in) the buffer size of errmsg
Notes: If result_image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.
7.2.36 _gfortran_caf_co_sum — Collective summing reduction

Synopsis: void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
int *stat, char *errmsg, size_t errmsg_len)

Description:
Calculates for each array element of the variable a the sum of all values for that
element in the current team; if result_image has the value 0, the result shall
be stored on all images, otherwise, only on the specified image. This function
operates on numeric values only.

114 The GNU Fortran Compiler

Arguments:
a intent(inout) An array descriptor with the data to
be processed. On the destination image(s) the result
overwrites the old content.
result_image intent(in) The ID of the image to which the reduced
value should be copied to; if zero, it has to be copied
to all images.
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
Notes: If result_image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.
7.2.37 _gfortran_caf_co_reduce — Generic collective reduction

Synopsis: void _gfortran_caf_co_reduce (gfc_descriptor_t *a, void * (*opr)
(void *, void *), int opr_flags, int result_image, int *stat, char
xerrmsg, int a_len, size_t errmsg_len)

Description:
Calculates for each array element of the variable a the reduction value for that
element in the current team; if result_image has the value 0, the result shall be
stored on all images, otherwise, only on the specified image. The opr is a pure
function doing a mathematically commutative and associative operation.

The opr_flags denote the following; the values are bitwise ored. GFC_CAF_
BYREF (1) if the result should be returned by reference; GFC_CAF_HIDDENLEN
(2) whether the result and argument string lengths shall be specified as hidden
arguments; GFC_CAF_ARG_VALUE (4) whether the arguments shall be passed
by value, GFC_CAF_ARG_DESC (8) whether the arguments shall be passed by

descriptor.
Arguments:

a intent(inout) An array descriptor with the data to
be processed. On the destination image(s) the result
overwrites the old content.

opr intent(in) Function pointer to the reduction function

opr_flags intent(in) Flags regarding the reduction function

result_image intent(in) The ID of the image to which the reduced
value should be copied to; if zero, it has to be copied
to all images.

stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an

error message; may be NULL.

Chapter 7: Coarray Programming 115

Notes:

a_len intent(in) the string length of argument a
errmsg_len intent(in) the buffer size of errmsg

If result_image is nonzero, the data in the array descriptor a on all images
except of the specified one become undefined; hence, the library may make use
of this.

For character arguments, the result is passed as first argument, followed by
the result string length, next come the two string arguments, followed by the
two hidden string length arguments. With C binding, there are no hidden
arguments and by-reference passing and either only a single character is passed
or an array descriptor.

7.2.38 _gfortran_caf_form_team — Team creation function

Synopsis:

void _gfortran_caf_form_team (int team_id, caf_team_t *team, int
*new_index, int *stat, char *errmsg, size_t errmsg_len)

Description:

Arguments:

Notes:

Create a team. All images giving the same team_id in a call to FORM TEAM will
form a new team addressable by the opaque handle team which is of type team_
type from the intrinsic module Section 9.1 [[SO_.FORTRAN_ENV], page 311.
In the team the image gets the image index given by new_index if present. If
new_index is absent, then an implementation specific index is assigned.

team_id intent(in) A unique id for each team to form. Images
giving the same team_id in a call to FORM TEAM belong
to the same team.

team intent(out) The opaque pointer to the newly formed
team

new_index intent(in) If non-null gives the unique index of
this image in the newly formed team. When no
new_index is given, the caf-library is free to choose a
unique index.

stat intent(out) Stores the status STAT= and may be
NULL.

errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.

errmsg_len intent(in) the buffer size of errmsg

The id given in team_id has to be unique in all subsequent calls to FORM TEAM on
the same image. That id is the same used in TEAM_NUMBER= of coarray indexes,
which motivates the uniqueness.

The index given in new_index needs to be unique among all members of team
to create. Failing uniqueness may lead to misbehaviour, which depends on the
caf-library’s implementation. The library is free to implement checks for this,
which imposes overhead and therefore may be avoided.

116 The GNU Fortran Compiler

7.2.39 _gfortran_caf_change_team — Team activation function

Synopsis: void _gfortran_caf_change_team (caf_team_t team, int *stat, char
*errmsg, size_t errmsg_len)

Description:
Actives the team given by team, which must be formed but not active yet. This
routine starts a new epoch on the coarray memory pool. All coarrays registered
from now on, will be freeed once the team is terminated.

Arguments:
team intent(inout) The opaque pointer to an already
formed team
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
Notes: When an error occurs and stat is non-null, it will be set. Nevertheless will the
Fortran program continue with the first statement in the change team block.
7.2.40 _gfortran_caf_end_team — Team termination function

Synopsis: void _gfortran_caf_end_team (int *stat, char *errmsg, size_t
errmsg_len)

Description:
Terminates the last team changed to. The coarray memory epoch is terminated
and all coarrays allocated since the execution of CHANGE TEAM are freeed.

Arguments:
stat intent(out) Stores the status STAT= and may be
NULL.
errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg
7.2.41 _gfortran_caf_sync_team — Synchronize all images of a

given team

Synopsis: void _gfortran_caf_sync_team (caf_team_t team, int *stat, char
*xerrmsg, size_t errmsg_len)

Description:
Blocks execution of the image calling SYNC TEAM until all images of the team
given by team have joined the synchronisation call.

Arguments:
team intent(in) The opaque pointer to an active team
stat intent(out) Stores the status STAT= and may be
NULL.

Chapter 7: Coarray Programming 117

errmsg intent(out) When an error occurs, this is set to an
error message; may be NULL.
errmsg_len intent(in) the buffer size of errmsg

7.2.42 _gfortran_caf_get_team — Get the opaque handle of the
specified team

Synopsis: caf_team_t _gfortran_caf_get_team (int32_t *level)

Description:
Get the current team, when level is null, or the team specified by level set
to INITIAL_TEAM, PARENT_TEAM or CURRENT_TEAM from the ISO_FORTRAN_ENV
intrinsic module. When being on the INITIAL_TEAM and requesting its PARENT _
TEAM, then the initial team is returned.

Arguments:
level intent(in) If set to one of the levels specified in the
ISO_FORTRAN_ENV module, the function returns the
handle of the given team. Values different from the
allowed ones lead to a runtime error.

7.2.43 _gfortran_caf_team_number — Get the unique id of the
given team

Synopsis: int _gfortran_caf_team_number (caf_team_t team)

Description:
The team id given when forming the team Section 7.2.38 [_gfortran_caf_form_team)],J]
page 115, of the team specified by team, if given, or of the current team, if
team is absent. It is a runtime error to specify a non-existing team. The team
has to be formed, i.e., it is not necessary that it is changed into to get the
team number. The initial team has the team number -1.

Arguments:
team intent(in) The team for which the team id is desired.

119

8 Intrinsic Procedures

8.1 Introduction to intrinsic procedures

The intrinsic procedures provided by GNU Fortran include procedures required by the
Fortran 95 and later supported standards, and a set of intrinsic procedures for backwards
compatibility with G77. Any conflict between a description here and a description in the
Fortran standards is unintentional, and the standard(s) should be considered authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran
95 standard. GNU Fortran defines the default integer type and default real type by
INTEGER (KIND=4) and REAL(KIND=4), respectively. The standard mandates that both
data types shall have another kind that has more precision. On typical target architectures
supported by gfortran, this kind type parameter is KIND=8. Hence, REAL(KIND=8) and
DOUBLE PRECISION are equivalent. In the description of generic intrinsic procedures, the
kind type parameter is specified by KIND=+*, and in the description of specific names for
an intrinsic procedure the kind type parameter is explicitly given (e.g., REAL(KIND=4) or
REAL (KIND=8)). Finally, for brevity the optional KIND= syntax is omitted.

Many of the intrinsic procedures take one or more optional arguments. This document
follows the convention used in the Fortran 95 standard, and denotes such arguments by
square brackets.

GNU Fortran offers the —std= command-line option, which can be used to restrict the
set of intrinsic procedures to a given standard. By default, gfortran sets the -std=gnu
option, and so all intrinsic procedures described here are accepted. There is one caveat. For
a select group of intrinsic procedures, g77 implemented both a function and a subroutine.
Both classes have been implemented in gfortran for backwards compatibility with g77. It is
noted here that these functions and subroutines cannot be intermixed in a given subprogram.
In the descriptions that follow, the applicable standard for each intrinsic procedure is noted.

8.2 ABORT — Abort the program

Synopsis: CALL ABORT

Description:
ABORT causes immediate termination of the program. On operating systems that
support a core dump, ABORT produces a core dump. It also prints a backtrace,
unless -fno-backtrace is given.

Class: Subroutine

Return value:
Does not return.

Ezxample:
program test_abort
integer :: i =1, j =2
if (1 /= j) call abort
end program test_abort

Standard: GNU extension

120

See also:

Section 8.106 [EXIT], page 191,

Section 8.169 [KILL], page 231,
Section 8.43 [BACKTRACE], page 148,

8.3 ABS — Absolute

Synopsis: RESULT = ABS(A)

Description:

value

ABS(A) computes the absolute value of A.

Class:

Arguments:

Elemental function

The GNU Fortran Compiler

A The type of the argument shall be an INTEGER, REAL,
or COMPLEX.

Return value:

The return value is of the same type and kind as the argument except the return
value is REAL for a COMPLEX argument.

Example:

program test_abs

integer ::
real :: x
complex ::
i = abs(i)
abs(x)
abs(z)

Specific names:
Name
ABS(A)
CABS(A)
DABS(A)
TIABS(A)
BABS(A)
IIABS(A)
JIABS(A)
KIABS(A)
ZABS(A)
CDABS(A)

Standard:

-1
.e0

i

o=

z

x =
X =
end program test_abs

Argument

REAL(4) A

COMPLEX(4) A
REAL(8) A

INTEGER(4) A
INTEGER(1) A
INTEGER(2) A
INTEGER(4) A
INTEGER(8) A
COMPLEX(8) A
COMPLEX(8) A

(-1.e0,0.€0)

Return type
REAL (4)
REAL (4)
REAL(8)
INTEGER (4)
INTEGER (1)
INTEGER(2)
INTEGER (4)
INTEGER(8)
REAL(8)
REAL(8)

8.4 ACCESS — Checks file access modes

Synopsis:

Description:

RESULT = ACCESS (NAME, MODE)

Standard

Fortran 77 and later
Fortran 77 and later
Fortran 77 and later
Fortran 77 and later
GNU extension
GNU extension
GNU extension
GNU extension
GNU extension
GNU extension

Fortran 77 and later, has overloads that are GNU extensions

ACCESS (NAME, MODE) checks whether the file NAME exists, is readable, writable
or executable. Except for the executable check, ACCESS can be replaced by
Fortran 95’s INQUIRE.

Chapter 8: Intrinsic Procedures

Class:

Arguments:

Inquiry function

NAME Scalar CHARACTER

121

of default kind with the file

name. Trailing blank are ignored unless the char-
acter achar(0) is present, then all characters up to
and excluding achar (0) are used as file name.

MODE Scalar CHARACTER of default kind with the file access
mode, may be any concatenation of "r" (readable),
"w" (writable) and "x" (executable), or " " to check

for existence.

Return value:
Returns a scalar INTEGER, which is 0 if the file is accessible in the given mode;
otherwise or if an invalid argument has been given for MODE the value 1 is

Ezample:

Standard:

returned.

program access_test
implicit none

character(len=+*), parameter ::
character(len=+*), parameter ::

if (access(file,' ') ==
if (access(file,'r') ==
if (access(file,'w') ==
if (access(file, 'x') ==
if (access(file2, 'rwx"')

print *, trim(file2),' is readable, writable and

end program access_test

GNU extension

0) print
0) print
0) print
0) print
== 0) &

*

*
*
*

file
file2 =

)
)
]
3

trim(file), "'
trim(file),"'
trim(file),'
trim(file),"'

= 'test.dat'
= 'test.dat

is
is
is
is

'//achar (0)

exists'
readable'
writable'
executable'

executable'

8.5 ACHAR — Character in ASCII collating sequence

Synopsis:

RESULT = ACHAR(I [, KIND])

Description:
ACHAR(I) returns the character located at position I in the ASCII collating

Class:

Arguments:

sequence.

Elemental function

1 The type shall be INTEGER.

KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

Return value:
The return value is of type CHARACTER with a length of one. If the KIND
argument is present, the return value is of the specified kind and of the default

Ezample:

kind otherwise.

program test_achar

122 The GNU Fortran Compiler

character c
¢ = achar(32)
end program test_achar

Notes: See Section 8.149 [ICHAR], page 219, for a discussion of converting between
numerical values and formatted string representations.

Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later

See also: Section 8.63 [CHARJ, page 160,
Section 8.141 TACHAR], page 213,
Section 8.149 [ICHAR], page 219,

8.6 ACOS — Arccosine function

Synopsis: RESULT = ACOS(X)

Description:
ACOS(X) computes the arccosine of X (inverse of COS(X)).

Class: Elemental function

Arguments:
X The type shall either be REAL with a magnitude that
is less than or equal to one - or the type shall be
COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range 0 < Racos(z) < 7.

Ezample:

program test_acos
real(8) :: x = 0.866_8
x = acos(x)

end program test_acos

Specific names:

Name Argument Return type Standard
ACOS(X) REAL(4) X REAL(4) Fortran 77 and later
DACOS (X) REAL(8) X REAL(8) Fortran 77 and later

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later

See also: Inverse function:
Section 8.77 [COS], page 171,
Degrees function:
Section 8.7 [ACOSD], page 122,

8.7 ACOSD — Arccosine function, degrees

Synopsis: RESULT = ACOSD(X)

Description:
ACOSD(X) computes the arccosine of X in degrees (inverse of COSD(X)).

Chapter 8: Intrinsic Procedures 123

Class: Elemental function

Arguments:
X The type shall either be REAL with a magnitude that
is less than or equal to one.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in degrees and lies in the range 0 < Racos(z) < 180.

Example:

program test_acosd
real(8) :: x = 0.866_8
x = acosd(x)

end program test_acosd

Specific names:

Name Argument Return type Standard
ACOSD (X) REAL(4) X REAL(4) Fortran 2023
DACOSD (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2023

See also: Inverse function:
Section 8.78 [COSD], page 171,
Radians function:
Section 8.6 [ACOS], page 122,

8.8 ACOSH — Inverse hyperbolic cosine function

Synopsis: RESULT = ACOSH(X)

Description:
ACOSH(X) computes the inverse hyperbolic cosine of X.

Class: Elemental function

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has the same type and kind as X. If X is complex, the
imaginary part of the result is in radians and lies between 0 < Jacosh(z) < 7.

Example:

PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DACOSH (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

124 The GNU Fortran Compiler

See also: Inverse function:
Section 8.79 [COSH], page 172,

8.9 ACOSPI — Circular arc cosine function

Description:
ACOSPI(X) computes acos(x)/m, which is a measure of an angle in
half-revolutions.

Standard: Fortran 2023
Class: Elemental function
Syntaz: RESULT = ACOSPI (X)

Arguments:
X The type shall be REAL with —1 < x < 1.

Return value:
The return value has the same type and kind as X. It is expressed in half-
revolutions and satisfies 0 < acospi(x) < 1.

Ezample:

program test_acospi
implicit none

real, parameter :: x = 0.123, y(3) = [0.123, 0.45, 0.8]
real, parameter :: a = acospi(x), b(3) = acospi(y)
call foo(x, y)
contains
subroutine foo(u, v)
real, intent(in) :: u, v(:)
real :: f, g(size(v))
f = acospi(u)

g = acospi(v)
if (abs(a - f) > 8 * epsilon(f)) stop 1
if (any(abs(g - b) > 8 * epsilon(f))) stop 2
end subroutine foo
end program test_acospi

See also: Section 8.23 [ASINPI], page 133,
Section 8.28 [ATAN2PI], page 137,
Section 8.31 [ATANPI], page 139,

8.10 ADJUSTL — Left adjust a string

Synopsis: RESULT = ADJUSTL (STRING)

Description:
ADJUSTL (STRING) left adjusts a string by removing leading spaces. Spaces are
inserted at the end of the string as needed.

Class: Elemental function

Arguments:
STRING The type shall be CHARACTER.

Chapter 8: Intrinsic Procedures 125

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
leading spaces are removed and the same number of spaces are inserted on the
end of STRING.

Ezample:

program test_adjustl
character(len=20) :: str = ' gfortran'
str = adjustl(str)
print *, str

end program test_adjustl

Standard: Fortran 90 and later

See also: Section 8.11 [ADJUSTR], page 125,
Section 8.288 [TRIM], page 304,

8.11 ADJUSTR — Right adjust a string

Synopsis: RESULT = ADJUSTR (STRING)

Description:
ADJUSTR (STRING) right adjusts a string by removing trailing spaces. Spaces
are inserted at the start of the string as needed.

Class: Elemental function

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
trailing spaces are removed and the same number of spaces are inserted at the

start of STRING.
Ezample:

program test_adjustr
character(len=20) :: str = 'gfortran'
str = adjustr(str)
print *, str

end program test_adjustr

Standard: Fortran 90 and later

See also: Section 8.10 [ADJUSTL], page 124,
Section 8.288 [TRIM], page 304,

8.12 AIMAG — Imaginary part of complex number

Synopsis: RESULT = AIMAG(Z)

Description:
ATMAG(Z) yields the imaginary part of complex argument Z. The IMAG(Z) and
IMAGPART(Z) intrinsic functions are provided for compatibility with g77, and
their use in new code is strongly discouraged.

126 The GNU Fortran Compiler

Class: Elemental function

Arguments:
Z The type of the argument shall be COMPLEX.

Return value:
The return value is of type REAL with the kind type parameter of the argument.

Ezample:

program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag

Specific names:

Name Argument Return type Standard

AIMAG(Z) COMPLEX Z REAL Fortran 77 and later
DIMAG(Z) COMPLEX(8) Z REAL(8) GNU extension
IMAG(Z) COMPLEX Z REAL GNU extension
IMAGPART(Z) COMPLEX Z REAL GNU extension

Standard: Fortran 77 and later, has overloads that are GNU extensions

8.13 AINT — Truncate to a whole number

Synopsis: RESULT = AINT(A [, KIND])

Description:
AINT(A [, KIND]) truncates its argument to a whole number.

Class: Elemental function
Arguments:
A The type of the argument shall be REAL.
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:
The return value is of type REAL with the kind type parameter of the argument
if the optional KIND is absent; otherwise, the kind type parameter is given
by KIND. If the magnitude of X is less than one, AINT(X) returns zero. If
the magnitude is equal to or greater than one then it returns the largest whole

number that does not exceed its magnitude. The sign is the same as the sign
of X.

Example:

program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)

Chapter 8: Intrinsic Procedures 127

x8 = aint(x4,8)
end program test_aint

Specific names:

Name Argument Return type Standard
AINT(A) REAL(4) A REAL (4) Fortran 77 and later
DINT(A) REAL(8) A REAL(8) Fortran 77 and later

Standard: Fortran 77 and later

8.14 ALARM — Execute a routine after a given delay

Synopsis: CALL ALARM(SECONDS, HANDLER [, STATUS])

Description:
ALARM(SECONDS, HANDLER [, STATUS]) causes external subroutine HANDLER
to be executed after a delay of SECONDS by using alarm(2) to set up a signal
and signal(2) to catch it. If STATUS is supplied, it is returned with the
number of seconds remaining until any previously scheduled alarm was due to
be delivered, or zero if there was no previously scheduled alarm.

Class: Subroutine

Arguments:

SECONDS The type of the argument shall be a scalar INTEGER.
It is INTENT (IN).

HANDLER Signal handler (INTEGER FUNCTION or SUBROUTINE)
or dummy/global INTEGER scalar. The scalar values
may be either SIG_IGN=1 to ignore the alarm gen-
erated or SIG_DFL=0 to set the default action. It is
INTENT(IN).

STATUS (Optional) STATUS shall be a scalar variable of the
default INTEGER kind. It is INTENT (OUT).

Example:

program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm

This causes the external routine handler_print to be called after 3 seconds.

Standard: GNU extension

8.15 ALL — All values in MASK along DIM are true

Synopsis: RESULT = ALL(MASK [, DIM])

Description:

ALL(MASK [, DIM]) determines if all the values are true in MASK in the array
along dimension DIM.

128 The GNU Fortran Compiler

Class: Transformational function
Arguments:
MASK The type of the argument shall be LOGICAL and it
shall not be scalar.
DIM (Optional) DIM shall be a scalar integer with a value

that lies between one and the rank of MASK.

Return value:
ALL (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ALL(MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true
if MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM)
is determined by applying ALL to the array sections.

Example:

program test_all
logical 1
1 = all((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) =2

print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all

Standard: Fortran 90 and later

8.16 ALLOCATED — Status of an allocatable entity

Synopsis:

RESULT = ALLOCATED (ARRAY)
RESULT = ALLOCATED (SCALAR)

Description:
ALLOCATED (ARRAY) and ALLOCATED (SCALAR) check the allocation status of AR-
RAY and SCALAR, respectively.

Class: Inquiry function

Arguments:
ARRAY The argument shall be an ALLOCATABLE array.
SCALAR The argument shall be an ALLOCATABLE scalar.

Chapter 8: Intrinsic Procedures 129

Return value:
The return value is a scalar LOGICAL with the default logical kind type parame-
ter. If the argument is allocated, then the result is . TRUE.; otherwise, it returns
.FALSE.

Example:

program test_allocated

integer :: i =4

real(4), allocatable :: x(:)

if (.not. allocated(x)) allocate(x(i))
end program test_allocated

Standard: Fortran 90 and later; for the SCALAR= keyword and allocatable scalar entities,
Fortran 2003 and later.

8.17 AND — Bitwise logical AND

Synopsis: RESULT = AND(I, J)

Description:
Bitwise logical AND.

This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. For integer arguments, programmers should consider the use of the
Section 8.143 [TAND], page 215, intrinsic defined by the Fortran standard.

Class: Function
Arguments:
1 The type shall be either a scalar INTEGER type or a
scalar LOGICAL type or a boz-literal-constant.
J The type shall be the same as the type of I or a boz-

literal-constant. I and J shall not both be boz-literal-
constants. If either I or J is a boz-literal-constant,
then the other argument must be a scalar INTEGER.

Return value:
The return type is either a scalar INTEGER or a scalar LOGICAL. If the kind type
parameters differ, then the smaller kind type is implicitly converted to larger
kind, and the return has the larger kind. A boz-literal-constant is converted to
an INTEGER with the kind type parameter of the other argument as-if a call to
Section 8.155 [INT], page 223, occurred.

Example:

PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /

WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,*) AND(a, b)
END PROGRAM

Standard: GNU extension

130 The GNU Fortran Compiler

See also: Fortran 95 elemental function:
Section 8.143 [IAND], page 215,

8.18 ANINT — Nearest whole number

Synopsis: RESULT = ANINT(A [, KIND])

Description:
ANINT(A [, KIND]) rounds its argument to the nearest whole number.

Class: Elemental function
Arguments:
A The type of the argument shall be REAL.
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:
The return value is of type real with the kind type parameter of the argument
if the optional KIND is absent; otherwise, the kind type parameter is given by
KIND. If A is greater than zero, ANINT (A) returns AINT(X+0.5). If A is less
than or equal to zero then it returns AINT (X-0.5).

Ezample:

program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint

Specific names:

Name Argument Return type Standard
ANINT(A) REAL(4) A REAL(4) Fortran 77 and later
DNINT(A) REAL(8) A REAL(8) Fortran 77 and later

Standard: Fortran 77 and later

8.19 ANY — Any value in MASK along DIM is true

Synopsis: RESULT = ANY(MASK [, DIM])

Description:
ANY(MASK [, DIM]) determines if any of the values in the logical array MASK
along dimension DIM are .TRUE..

Class: Transformational function
Arguments:
MASK The type of the argument shall be LOGICAL and it
shall not be scalar.
DIM (Optional) DIM shall be a scalar integer with a value

that lies between one and the rank of MASK.

Chapter 8: Intrinsic Procedures 131

Return value:
ANY (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ANY (MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ANY (MASK) is true if any element of MASK is true; otherwise, it is
false. It also is false if MASK has zero size.

(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to
ANY (MASK). If the rank is greater than one, then ANY(MASK,DIM)
is determined by applying ANY to the array sections.

Ezample:

program test_any
logical 1
1 = any((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) =2

print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any

Standard: Fortran 90 and later

8.20 ASIN — Arcsine function

Synopsis: RESULT = ASIN(X)

Description:
ASIN(X) computes the arcsine of its X (inverse of SIN(X)).

Class: Elemental function

Arguments:
X The type shall be either REAL and a magnitude that
is less than or equal to one - or be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range —7/2 < Rasin(z) < 7/2.

Ezample:

program test_asin
real(8) :: x = 0.866_8
x = asin(x)

end program test_asin

132 The GNU Fortran Compiler

Specific names:

Name Argument Return type Standard
ASIN(X) REAL(4) X REAL (4) Fortran 77 and later
DASIN(X) REAL(8) X REAL(8) Fortran 77 and later

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later

See also: Inverse function:
Section 8.258 [SIN], page 285,
Degrees function:
Section 8.21 [ASIND], page 132,

8.21 ASIND — Arcsine function, degrees

Synopsis: RESULT = ASIND(X)

Description:
ASIND(X) computes the arcsine of its X in degrees (inverse of SIND(X)).

Class: Elemental function

Arguments:
X The type shall be either REAL and a magnitude that
is less than or equal to one.

Return value:
The return value is of the same type and kind as X. The result is in degrees
and lies in the range —90 < Rasin(z) < 90.

Ezample:

program test_asind
real(8) :: x = 0.866_8
x = asind(x)

end program test_asind

Specific names:

Name Argument Return type Standard
ASIND(X) REAL(4) X REAL(4) Fortran 2023
DASIND (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2023

See also: Inverse function:
Section 8.259 [SIND], page 286,
Radians function:
Section 8.20 [ASIN], page 131,

8.22 ASINH — Inverse hyperbolic sine function

Synopsis: RESULT = ASINH(X)

Description:
ASINH(X) computes the inverse hyperbolic sine of X.

Class: Elemental function

Chapter 8: Intrinsic Procedures 133

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. If X is complex, the

imaginary part of the result is in radians and lies between —7/2 < Sasinh(z) <
/2.

Example:
PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,%) ASINH(x)
END PROGRAM
Specific names:
Name Argument Return type Standard
DASINH(X) REAL(8) X REAL(8) GNU extension.

Standard: Fortran 2008 and later

See also: Inverse function:
Section 8.260 [SINH], page 286,

8.23 ASINPI — Circular arc sine function

Description:
ASINPI(X) computes asin(z)/m, which is a measure of an angle in
half-revolutions.

Standard: Fortran 2023

Class: FElemental function

Syntax: RESULT = ASINPI (X)

Arguments:
X The type shall be REAL with —1 < x < 1.

Return value:
The return value has the same type and kind as X. It is expressed in half-
revolutions and satisfies —0.5 < asinpi(z) < 0.5.

Ezample:

program test_asinpi
implicit none

real, parameter :: x = 0.123, y(3) = [0.123, 0.45, 0.8]
real, parameter :: a = asinpi(x), b(3) = asinpi(y)
call foo(x, y)
contains
subroutine foo(u, v)
real, intent(in) :: u, v(:)

real :: f, g(size(v))
f = asinpi(u)
g = asinpi(v)
if (abs(a - £f) > 8 * epsilon(f)) stop 1
if (any(abs(g - b) > 8 * epsilon(f))) stop 2
end subroutine foo
end program test_asinpi

134

See also:

The GNU Fortran Compiler

Section 8.9 [ACOSPI], page 124,
Section 8.28 [ATAN2PI], page 137,
Section 8.31 [ATANPI], page 139,

8.24 ASSOCIATED — Status of a pointer or pointer/target pair

Synopsis:

RESULT = ASSOCIATED (POINTER [, TARGET])

Description:

Class:

Arguments:

ASSOCIATED (POINTER [, TARGET]) determines the status of the pointer
POINTER or if POINTER is associated with the target TARGET.

Inquiry function

POINTER POINTER shall have the POINTER attribute and it
can be of any type.

TARGET (Optional) TARGET shall be a pointer or a target.
It must have the same type, kind type parameter,
and array rank as POINTER.

The association status of neither POINTER nor TARGET shall be undefined.

Return value:

ASSOCIATED (POINTER) returns a scalar value of type LOGICAL(4). There are
several cases:

(A) When the optional TARGET is not present then
ASSOCIATED (POINTER) is true if POINTER is associated with a
target; otherwise, it returns false.

(B) If TARGET is present and a scalar target, the result is true if
TARGET is not a zero-sized storage sequence and the target associ-
ated with POINTER occupies the same storage units. If POINTER
is disassociated, the result is false.

(C) If TARGET is present and an array target, the result is true if
TARGET and POINTER have the same shape, are not zero-sized
arrays, are arrays whose elements are not zero-sized storage se-
quences, and TARGET and POINTER occupy the same storage
units in array element order. As in case(B), the result is false, if
POINTER is disassociated.

(D) If TARGET is present and an scalar pointer, the result is true
if TARGET is associated with POINTER, the target associated
with TARGET are not zero-sized storage sequences and occupy
the same storage units. The result is false, if either TARGET or
POINTER is disassociated.

(E) If TARGET is present and an array pointer, the result is true if
target associated with POINTER and the target associated with
TARGET have the same shape, are not zero-sized arrays, are ar-

Chapter 8: Intrinsic Procedures 135

rays whose elements are not zero-sized storage sequences, and TAR-
GET and POINTER occupy the same storage units in array ele-
ment order. The result is false, if either TARGET or POINTER is
disassociated.

Ezample:

program test_associated
implicit none

real, target :: tgt(2) = (/1., 2./)

real, pointer :: ptr(:)

ptr => tgt

if (associated(ptr) .eqv. .false.) call abort

if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated

Standard: Fortran 90 and later
See also: Section 8.215 [NULL], page 259,

8.25 ATAN — Arctangent function

Synopsis:
RESULT = ATAN(X)
RESULT = ATAN(Y, X)
Description:
ATAN (X) computes the arctangent of X.
Class: FElemental function
Arguments:
X The type shall be REAL or COMPLEX; if Y is present,
X shall be REAL.
Y The type and kind type parameter shall be the same
as X.

Return value:
The return value is of the same type and kind as X. If Y is present, the result
is identical to ATAN2(Y,X). Otherwise, it is the arctangent of X, where the real
part of the result is in radians and lies in the range —7/2 < Ratan(z) < 7/2.

Example:

program test_atan
real(8) :: x = 2.866_8
x = atan(x)

end program test_atan

Specific names:

Name Argument Return type Standard
ATAN (X) REAL(4) X REAL (4) Fortran 77 and later
DATAN (X) REAL(8) X REAL(8) Fortran 77 and later

Standard: Fortran 77 and later, for a complex argument and for two arguments Fortran
2008 or later

136 The GNU Fortran Compiler

See also: Inverse function:
Section 8.276 [TAN], page 297,
Degrees function:
Section 8.29 [ATAND], page 138,

8.26 ATAN2 — Arctangent function
Synopsis: RESULT = ATAN2(Y, X)

Description:
ATAN2(Y, X) computes the principal value of the argument function of the com-
plex number X +:¢Y . This function can be used to transform from Cartesian into
polar coordinates and allows to determine the angle in the correct quadrant.

Class: Elemental function

Arguments:
Y The type shall be REAL.
X The type and kind type parameter shall be the same
as Y. If Y is zero, then X must be nonzero.

Return value:

The return value has the same type and kind type parameter as Y. It is the
principal value of the complex number X +¢Y. If X is nonzero, then it lies in
the range —7m < atan(z) < w. The sign is positive if Y is positive. If Y is zero,
then the return value is zero if X is strictly positive, 7 if X is negative and Y
is positive zero (or the processor does not handle signed zeros), and — if X is
negative and Y is negative zero. Finally, if X is zero, then the magnitude of
the result is 7/2.

Ezample:

program test_atan2
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2(y,x)

end program test_atan2

Specific names:

Name Argument Return type Standard
ATAN2(X, Y) REAL(4) X, Y REAL(4) Fortran 77 and later
DATAN2(X, Y) REAL(8) X, Y REAL(8) Fortran 77 and later

Standard: Fortran 77 and later

See also: Alias:
Section 8.25 [ATAN], page 135,
Degrees function:
Section 8.27 [ATAN2D], page 136,

8.27 ATAN2D — Arctangent function, degrees

Synopsis: RESULT = ATAN2D(Y, X)

Chapter 8: Intrinsic Procedures 137

Description:
ATAN2D (Y, X) computes the principal value of the argument function of the
complex number X + ¢Y in degrees. This function can be used to transform
from Cartesian into polar coordinates and allows to determine the angle in the
correct quadrant.

Class: Elemental function

Arguments:
Y The type shall be REAL.
X The type and kind type parameter shall be the same
as Y. If Y is zero, then X must be nonzero.

Return value:

The return value has the same type and kind type parameter as Y. It is the
principal value of the complex number X + ¢Y. If X is nonzero, then it lies
in the range —180 < atan(x) < 180. The sign is positive if Y is positive. If
Y is zero, then the return value is zero if X is strictly positive, 180 if X is
negative and Y is positive zero (or the processor does not handle signed zeros),
and —180 if X is negative and Y is negative zero. Finally, if X is zero, then
the magnitude of the result is 90.

Ezample:
program test_atan2d
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2d(y,x)
end program test_atan2d

Specific names:

Name Argument Return type Standard
ATAN2D (X, Y) REAL(4) X, Y REAL(4) Fortran 2023
DATAN2D (X, Y) REAL(8) X, Y REAL(8) GNU extension

Standard: Fortran 2023

See also: Alias:
Section 8.29 [ATAND], page 138,
Radians function:
Section 8.26 [ATAN2], page 136,

8.28 ATAN2PI — Circular arc tangent function

Description:
ATAN2PI(Y, X) computes atan2(y, z)/m, and provides a measure of an angle in
half-revolutions within the proper quadrant.

Standard: Fortran 2023
Class: Elemental function
Syntax: RESULT = ATAN2PI(Y, X)

Arguments:
Y The type shall be REAL.

138 The GNU Fortran Compiler

X The type and kind type parameter shall be the same
as Y. If Y is zero, then X shall be nonzero.

Return value:
The return value has the same type and kind type parameter as Y and satisfies
—1 < atan2(y,x)/m < 1.

Ezample:

program test_atan2pi
real(kind=4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2pi(y, x)

end program test_atan2pi

See also: Section 8.9 [ACOSPI], page 124,
Section 8.23 [ASINPI], page 133,
Section 8.31 [ATANPI], page 139,

8.29 ATAND — Arctangent function, degrees

Synopsis:
RESULT = ATAND(X)
RESULT = ATAND(Y, X)
Description:
ATAND(X) computes the arctangent of X in degrees (inverse of Section 8.277
[TAND], page 298).
Class: Elemental function
Arguments:
X The type shall be REAL.
Y The type and kind type parameter shall be the same
as X.

Return value:
The return value is of the same type and kind as X. If Y is present, the result
is identical to ATAN2D(Y, X). Otherwise, the result is in degrees and lies in the
range —90 < atand(x) < 90.

Ezample:

program test_atand
real(8) :: x = 2.866_8
real(4) :: x1 = 1.e0_4, y1 = 0.5e0_4
x = atand(x)
x1 = atand(yl, x1)
end program test_atand

Specific names:

Name Argument Return type Standard
ATAND (X) REAL(4) X REAL (4) Fortran 2023
DATAND (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2023

Chapter 8: Intrinsic Procedures 139

See also: Inverse function:
Section 8.277 [TAND], page 298,
Radians function:
Section 8.25 [ATAN], page 135,

8.30 ATANH — Inverse hyperbolic tangent function

Synopsis: RESULT = ATANH(X)

Description:
ATANH(X) computes the inverse hyperbolic tangent of X.

Class: Elemental function

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians and lies between —7/2 < Satanh(z) < /2.

Example:
PROGRAM test_atanh
REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ATANH(x)
END PROGRAM
Specific names:
Name Argument Return type Standard
DATANH (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

See also: Inverse function:
Section 8.278 [TANH], page 298,

8.31 ATANPI — Circular arc tangent function

Description:
ATANPI(X) computes atan(x)/m. ATANPI(Y, X) computes atan2(y, z)/m. These
provide a measure of an angle in half-revolutions.

Standard: Fortran 2023
Class: Elemental function

Syntaz:

RESULT = ATANPI (X)
RESULT = ATANPI(Y, X)

Arguments:
Y The type shall be REAL.
X If Y appears, X shall have the same type and kind
as Y. If Y is zero, then X shall not be zero. If Y
does not appear in a function reference, then X shall
be REAL.

140 The GNU Fortran Compiler

Return value:
The return value has the same type and kind as X. It is expressed in half-
revolutions and satisfies —0.5 < atanpi(x) < 0.5.

Example:

program test_atanpi
implicit none

real, parameter :: x = 0.123, y(3) = [0.123, 0.45, 0.8]
real, parameter :: a = atanpi(x), b(3) = atanpi(y)
call foo(x, y)
contains
subroutine foo(u, v)
real, intent(in) :: u, v(:)

real :: f, g(size(v))
f = atanpi(u)
g = atanpi(v)
if (abs(a - f) > 8 * epsilon(f)) stop 1
if (any(abs(g - b) > 8 * epsilon(f))) stop 2
end subroutine foo
end program test_atanpi

See also: Section 8.9 [ACOSPI], page 124,
Section 8.23 [ASINPI], page 133,
Section 8.28 [ATAN2PI], page 137,

8.32 ATOMIC_ADD — Atomic ADD operation

Synopsis: CALL ATOMIC_ADD (ATOM, VALUE [, STATI])

Description:
ATOMIC_ADD(ATOM, VALUE) atomically adds the value of VALUE to the variable
ATOM. When STAT is present and the invocation was successful, it is assigned
the value 0. If it is present and the invocation has failed, it is assigned a positive
value; in particular, for a coindexed ATOM, if the remote image has stopped,
it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the
remote image has failed, the value STAT_FAILED_IMAGE.

Class: Atomic subroutine

Arguments:
ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.

Example:
program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*]
call atomic_add (atom[1], this_image())
end program atomic

Standard: TS 18508 or later

Chapter 8: Intrinsic Procedures 141

See also: Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.36 [ATOMIC_FETCH_ADD], page 143,
Section 9.1 ISO_FORTRAN_ENV], page 311,
Section 8.33 [ATOMIC_AND)], page 141,
Section 8.40 [ATOMIC_ORJ, page 146,
Section 8.42 [ATOMIC_XOR], page 148,

8.33 ATOMIC_AND — Atomic bitwise AND operation

Synopsis: CALL ATOMIC_AND (ATOM, VALUE [, STAT])

Description:

ATOMIC_AND(ATOM, VALUE) atomically defines ATOM with the bitwise AND
between the values of ATOM and VALUE. When STAT is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a coin-
dexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

Class: Atomic subroutine
Arguments:
ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.
Ezample:

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*]

call atomic_and (atom[1], int(b'10100011101'))
end program atomic

Standard: TS 18508 or later

See also: Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.37 [ATOMIC_FETCH_AND], page 144,
Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.32 [ATOMIC_ADD)], page 140,
Section 8.40 [ATOMIC_ORJ, page 146,
Section 8.42 [ATOMIC_XOR], page 148,

8.34 ATOMIC_CAS — Atomic compare and swap

Synopsis: CALL ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])

Description:
ATOMIC_CAS compares the variable ATOM with the value of COMPARE; if the
value is the same, ATOM is set to the value of NEW. Additionally, OLD is set

142

Class:

Arguments:

Ezample:

Standard:

See also:

The GNU Fortran Compiler

to the value of ATOM that was used for the comparison. When STAT is present
and the invocation was successful, it is assigned the value 0. If it is present and
the invocation has failed, it is assigned a positive value; in particular, for a
coindexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

Atomic subroutine

ATOM Scalar coarray or coindexed variable of either integer
type with ATOMIC_INT_KIND kind or logical type with
ATOMIC_LOGICAL_KIND kind.

OLD Scalar of the same type and kind as ATOM.
COMPARE Scalar variable of the same type and kind as ATOM.
NEW Scalar variable of the same type as ATOM. If kind is
different, the value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
logical(atomic_logical_kind) :: atom[*], prev
call atomic_cas (atom[1], prev, .false., .true.)
end program atomic

TS 18508 or later

Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.41 [ATOMIC_REF], page 147,
Section 9.1 ISO_.FORTRAN_ENV], page 311,

8.35 ATOMIC_DEFINE — Setting a variable atomically

Synopsis:

CALL ATOMIC_DEFINE (ATOM, VALUE [, STAT])

Description:

Class:

Arguments:

ATOMIC_DEFINE(ATOM, VALUE) defines the variable ATOM with the value
VALUE atomically. When STAT is present and the invocation was successful,
it is assigned the value 0. If it is present and the invocation has failed, it
is assigned a positive value; in particular, for a coindexed ATOM, if the
remote image has stopped, it is assigned the value of ISO_FORTRAN_ENV’s
STAT_STOPPED_IMAGE and if the remote image has failed, the value
STAT_FAILED_IMAGE.

Atomic subroutine

ATOM Scalar coarray or coindexed variable of either integer
type with ATOMIC_INT_KIND kind or logical type with
ATOMIC_LOGICAL_KIND Kkind.

Chapter 8: Intrinsic Procedures 143

Ezample:

Standard:

See also:

VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*]
call atomic_define (atom[1], this_image())
end program atomic

Fortran 2008 and later; with STAT, TS 18508 or later

Section 8.41 [ATOMIC_REF], page 147,
Section 8.34 [ATOMIC_CAS], page 141,
Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.32 [ATOMIC_ADD)], page 140,
Section 8.33 [ATOMIC_AND)], page 141,
Section 8.40 [ATOMIC_OR], page 146,
Section 8.42 [ATOMIC_XOR], page 148,

8.36 ATOMIC_FETCH_ADD — Atomic ADD operation with prior
fetch

Synopsis:

CALL ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT])

Description:

Class:

Arguments:

Ezample:

ATOMIC_FETCH_ADD(ATOM, VALUE, OLD) atomically stores the value of ATOM
in OLD and adds the value of VALUE to the variable ATOM. When STAT
is present and the invocation was successful, it is assigned the value 0. If it is
present and the invocation has failed, it is assigned a positive value; in particu-
lar, for a coindexed ATOM, if the remote image has stopped, it is assigned the
value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has
failed, the value STAT_FAILED_IMAGE.

Atomic subroutine

ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind. ATOMIC_LOGICAL_KIND
kind.

VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*], old
call atomic_add (atom[1], this_image(), old)
end program atomic

144

Standard:

See also:

The GNU Fortran Compiler

TS 18508 or later

Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.32 [ATOMIC_ADD)], page 140,

Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.37 [ATOMIC_FETCH_AND)], page 144,
Section 8.38 [ATOMIC_FETCH_ORJ, page 144,
Section 8.39 [ATOMIC_FETCH_XOR], page 145,

8.37 ATOMIC_FETCH_AND — Atomic bitwise AND operation
with prior fetch

Synopsis:

CALL ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])

Description:

Class:

Arguments:

Example:

Standard:

See also:

ATOMIC_AND(ATOM, VALUE) atomically stores the value of ATOM in OLD
and defines ATOM with the bitwise AND between the values of ATOM and
VALUE. When STAT is present and the invocation was successful, it is
assigned the value 0. If it is present and the invocation has failed, it is assigned
a positive value; in particular, for a coindexed ATOM, if the remote image has
stopped, it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE
and if the remote image has failed, the value STAT_FAILED_IMAGE.

Atomic subroutine

ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*], old

call atomic_fetch_and (atom[1], int(b'10100011101'), old)
end program atomic

TS 18508 or later

Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.33 [ATOMIC_AND)], page 141,

Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.36 [ATOMIC_FETCH_ADD], page 143,
Section 8.38 [ATOMIC_FETCH_ORJ, page 144,
Section 8.39 [ATOMIC_FETCH_XOR], page 145,

8.38 ATOMIC_FETCH_OR — Atomic bitwise OR operation with
prior fetch

Synopsis:

CALL ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STATI])

Chapter 8: Intrinsic Procedures 145

Description:

Class:

Arguments:

Ezample:

Standard:

See also:

ATOMIC_OR(ATOM, VALUE) atomically stores the value of ATOM in OLD and
defines ATOM with the bitwise OR between the values of ATOM and VALUE.
When STAT is present and the invocation was successful, it is assigned the
value 0. If it is present and the invocation has failed, it is assigned a positive
value; in particular, for a coindexed ATOM, if the remote image has stopped,
it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the
remote image has failed, the value STAT_FAILED_IMAGE.

Atomic subroutine

ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.

OLD Scalar of the same type and kind as ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*], old

call atomic_fetch_or (atom[1], int(b'10100011101'), old)
end program atomic

TS 18508 or later

Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.40 [ATOMIC_OR], page 146,

Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.36 [ATOMIC_FETCH_ADD], page 143,
Section 8.37 [ATOMIC_FETCH_AND], page 144,
Section 8.39 [ATOMIC_FETCH_XOR], page 145,

8.39 ATOMIC_FETCH_XOR — Atomic bitwise XOR operation
with prior fetch

Synopsis:

CALL ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])

Description:

Class:

ATOMIC_XOR(ATOM, VALUE) atomically stores the value of ATOM in OLD and
defines ATOM with the bitwise XOR between the values of ATOM and VALUE.
When STAT is present and the invocation was successful, it is assigned the
value 0. If it is present and the invocation has failed, it is assigned a positive
value; in particular, for a coindexed ATOM, if the remote image has stopped,
it is assigned the value of ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the
remote image has failed, the value STAT_FAILED_IMAGE.

Atomic subroutine

146

Arguments:

Example:

Standard:

See also:

The GNU Fortran Compiler

ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.
OLD Scalar of the same type and kind as ATOM.
STAT (optional) Scalar default-kind integer variable.
program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*], old
call atomic_fetch_xor (atom[1], int(b'10100011101'), old)
end program atomic
TS 18508 or later

Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.42 [ATOMIC_XOR], page 148,

Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.36 [ATOMIC_FETCH_ADD], page 143,
Section 8.37 [ATOMIC_FETCH_AND], page 144,
Section 8.38 [ATOMIC_FETCH_ORJ, page 144,

8.40 ATOMIC_OR — Atomic bitwise OR operation

Synopsis:

CALL ATOMIC_OR (ATOM, VALUE [, STAT])

Description:

Class:

Arguments:

Ezample:

ATOMIC_OR(ATOM, VALUE) atomically defines ATOM with the bitwise AND be-
tween the values of ATOM and VALUE. When STAT is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a coin-
dexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

Atomic subroutine

ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.

VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.

STAT (optional) Scalar default-kind integer variable.

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*]

call atomic_or (atom[1], int(b'10100011101'))
end program atomic

Chapter 8: Intrinsic Procedures

Standard: TS 18508 or later

See also: Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.38 [ATOMIC_FETCH_OR], page 144,
Section 9.1 ISO_FORTRAN_ENV], page 311,
Section 8.32 [ATOMIC_ADD], page 140,
Section 8.40 [ATOMIC_ORJ, page 146,
Section 8.42 [ATOMIC_XOR], page 148,

8.41 ATOMIC_REF — Obtaining the value of a variable

atomically

Synopsis: CALL ATOMIC_REF(VALUE, ATOM [, STAT])

Description:

147

ATOMIC_DEFINE(ATOM, VALUE) atomically assigns the value of the variable
ATOM to VALUE. When STAT is present and the invocation was successful,
it is assigned the value 0. If it is present and the invocation has failed, it
is assigned a positive value; in particular, for a coindexed ATOM, if the
remote image has stopped, it is assigned the value of ISO_FORTRAN_ENV’s

STAT_STOPPED_IMAGE and if the remote image has failed,

STAT_FAILED_IMAGE.
Class: Atomic subroutine

Arguments:

VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.
ATOM Scalar coarray or coindexed variable of either integer
type with ATOMIC_INT_KIND kind or logical type with

ATOMIC_LOGICAL_KIND kind.

STAT (optional) Scalar default-kind integer variable.

Ezample:

program atomic
use iso_fortran_env
logical(atomic_logical_kind) :: atom[*]
logical :: val
call atomic_ref (atom, .false.)
1
call atomic_ref (atom, val)
if (val) then
print *, "Obtained"
end if
end program atomic

Standard: Fortran 2008 and later; with STAT, T'S 18508 or later

See also: Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.34 [ATOMIC_CAS], page 141,
Section 9.1 ISO_.FORTRAN_ENV], page 311,

Section 8.36 [ATOMIC_FETCH_ADD], page 143,
Section 8.37 [ATOMIC_FETCH_AND], page 144,

the value

148 The GNU Fortran Compiler

Section 8.38 [ATOMIC_FETCH_ORJ, page 144,
Section 8.39 [ATOMIC_FETCH_XOR], page 145,

8.42 ATOMIC_XOR — Atomic bitwise OR operation

Synopsis: CALL ATOMIC_XOR (ATOM, VALUE [, STAT])

Description:

ATOMIC_AND(ATOM, VALUE) atomically defines ATOM with the bitwise XOR
between the values of ATOM and VALUE. When STAT is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a coin-
dexed ATOM, if the remote image has stopped, it is assigned the value of
ISO_FORTRAN_ENV’s STAT_STOPPED_IMAGE and if the remote image has failed,
the value STAT_FAILED_IMAGE.

Class: Atomic subroutine
Arguments:
ATOM Scalar coarray or coindexed variable of integer type
with ATOMIC_INT_KIND kind.
VALUE Scalar of the same type as ATOM. If the kind is
different, the value is converted to the kind of ATOM.
STAT (optional) Scalar default-kind integer variable.
Ezample:

program atomic

use iso_fortran_env

integer(atomic_int_kind) :: atom[*]

call atomic_xor (atom[1], int(b'10100011101'))
end program atomic

Standard: TS 18508 or later

See also: Section 8.35 [ATOMIC_DEFINE], page 142,
Section 8.39 [ATOMIC_FETCH_XOR], page 145,
Section 9.1 ISO_.FORTRAN_ENV], page 311,
Section 8.32 [ATOMIC_ADD)], page 140,
Section 8.40 [ATOMIC_ORJ, page 146,
Section 8.42 [ATOMIC_XOR], page 148,

8.43 BACKTRACE — Show a backtrace

Synopsis: CALL BACKTRACE

Description:
BACKTRACE shows a backtrace at an arbitrary place in user code. Program
execution continues normally afterwards. The backtrace information is printed
to the unit corresponding to ERROR_UNIT in ISO_FORTRAN_ENV.

Class: Subroutine

Arguments:
None

Chapter 8: Intrinsic Procedures 149

Standard: GNU extension
See also: Section 8.2 [ABORT], page 119,

8.44 BESSEL_JO0 — Bessel function of the first kind of order 0

Synopsis: RESULT = BESSEL_JO(X)

Description:
BESSEL_JO(X) computes the Bessel function of the first kind of order 0 of X.
This function is available under the name BESJO as a GNU extension.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and lies in the range —0.4027.. <
Bessel(0,z) < 1. It has the same kind as X.

Ezample:

program test_besjo0
real(8) :: x = 0.0_8
x = bessel_joO(x)

end program test_besjO

Specific names:
Name Argument Return type Standard
DBESJO (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

8.45 BESSEL_J1 — Bessel function of the first kind of order 1

Synopsis: RESULT = BESSEL_J1(X)

Description:
BESSEL_J1(X) computes the Bessel function of the first kind of order 1 of X.
This function is available under the name BESJ1 as a GNU extension.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and lies in the range —0.5818... <
Bessel(0,z) < 0.5818. It has the same kind as X.

Example:

program test_besjl
real(8) :: x =1.0_8
x = bessel_j1(x)

end program test_besjl

150 The GNU Fortran Compiler

Specific names:
Name Argument Return type Standard
DBESJ1(X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008

8.46 BESSEL_JN — Bessel function of the first kind

Synopsis:

RESULT = BESSEL_JN(N, X)
RESULT = BESSEL_JN(N1, N2, X)

Description:
BESSEL_JN(N, X) computes the Bessel function of the first kind of order N of
X. This function is available under the name BESJIN as a GNU extension. If N
and X are arrays, their ranks and shapes shall conform.

BESSEL_JN(N1, N2, X) returns an array with the Bessel functions of the first
kind of the orders N1 to N2.

Class: Elemental function, except for the transformational function BESSEL_JN (N1,
N2, X)

Arguments:
N Shall be a scalar or an array of type INTEGER.
N1 Shall be a non-negative scalar of type INTEGER.
N2 Shall be a non-negative scalar of type INTEGER.
X Shall be a scalar or an array of type REAL; for BESSEL _
JN(N1, N2, X) it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Notes: The transformational function uses a recurrence algorithm which might, for
some values of X, lead to different results than calls to the elemental function.

Example:

program test_besjn
real(8) :: x = 1.0_8
x = bessel_jn(5,x)

end program test_besjn

Specific names:

Name Argument Return type Standard
DBESJN(N, X) INTEGER N REAL(8) GNU extension
REAL(8) X

Standard: Fortran 2008 and later, negative N is allowed as GNU extension

8.47 BESSEL_Y0O — Bessel function of the second kind of
order 0

Synopsis: RESULT = BESSEL_YO (X)

Chapter 8: Intrinsic Procedures 151

Description:
BESSEL_YO0 (X) computes the Bessel function of the second kind of order 0 of X.
This function is available under the name BESY0 as a GNU extension.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL. It has the same kind as X.

Ezample:

program test_besy0
real(8) :: x = 0.0_8
x = bessel_y0(x)

end program test_besyO

Specific names:
Name Argument Return type Standard
DBESYO (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

8.48 BESSEL_Y1 — Bessel function of the second kind of
order 1

Synopsis: RESULT = BESSEL_Y1(X)

Description:
BESSEL_Y1 (X) computes the Bessel function of the second kind of order 1 of X.
This function is available under the name BESY1 as a GNU extension.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL. It has the same kind as X.

Ezxample:

program test_besyl
real(8) :: x = 1.0_8
x = bessel_y1(x)

end program test_besyl

Specific names:
Name Argument Return type Standard
DBESY1 (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

152 The GNU Fortran Compiler

8.49 BESSEL_YN — Bessel function of the second kind

Synopsis:
RESULT = BESSEL_YN(N, X)
RESULT = BESSEL_YN(N1, N2, X)

Description:
BESSEL_YN(N, X) computes the Bessel function of the second kind of order N
of X. This function is available under the name BESYN as a GNU extension. If
N and X are arrays, their ranks and shapes shall conform.

BESSEL_YN (N1, N2, X) returns an array with the Bessel functions of the first
kind of the orders N1 to N2.

Class: Elemental function, except for the transformational function BESSEL_YN (N1,
N2, X)

Arguments:
N Shall be a scalar or an array of type INTEGER .
N1 Shall be a non-negative scalar of type INTEGER.
N2 Shall be a non-negative scalar of type INTEGER.
X Shall be a scalar or an array of type REAL; for BESSEL _
YN(N1, N2, X) it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Notes: The transformational function uses a recurrence algorithm which might, for
some values of X, lead to different results than calls to the elemental function.

Example:

program test_besyn
real(8) :: x = 1.0_8
x = bessel_yn(5,x)

end program test_besyn

Specific names:

Name Argument Return type Standard
DBESYN (N, X) INTEGER N REAL(8) GNU extension
REAL(8) X

Standard: Fortran 2008 and later, negative N is allowed as GNU extension

8.50 BGE — Bitwise greater than or equal to

Synopsis: RESULT = BGE(I, J)

Description:
Determines whether an integral is a bitwise greater than or equal to another.

Class: Elemental function

Arguments:
1 Shall be of INTEGER or UNSIGNED type.
J Shall be of the same type and kind as I.

Chapter 8: Intrinsic Procedures 153

Return value:
The return value is of type LOGICAL and of the default kind.

Notes: For UNSIGNED arguments, this function is identical to the .GE. and >= operators.

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.51 [BGT], page 153,
Section 8.53 [BLE], page 154,
Section 8.54 [BLT], page 154,

8.51 BGT — Bitwise greater than

Synopsis: RESULT = BGT(I, J)

Description:
Determines whether an integral is a bitwise greater than another.

Class: Elemental function

Arguments:
1 Shall be of INTEGER or UNSIGNED type.
J Shall be of the same type and kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

Notes: For UNSIGNED arguments, this function is identical to the .GT. and > operators.

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.50 [BGE], page 152,
Section 8.53 [BLE], page 154,
Section 8.54 [BLT], page 154,

8.52 BIT_SIZE — Bit size inquiry function

Synopsis: RESULT = BIT_SIZE(I)

Description:
BIT_SIZE(I) returns the number of bits (for integers, the precision plus the sign
bit) represented by the type of I. The result of BIT_SIZE(I) is independent of
the actual value of I.

Class: Inquiry function

Arguments:
1 The type shall be INTEGER or UNSIGNED.

Return value:
The return value is of type INTEGER

154 The GNU Fortran Compiler

Example:

program test_bit_size
integer :: i = 123
integer :: size
size = bit_size(i)
print *, size

end program test_bit_size

Standard: Fortran 90 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)
8.53 BLE — Bitwise less than or equal to

Synopsis: RESULT = BLE(I, J)

Description:
Determines whether an integral is a bitwise less than or equal to another.

Class: Elemental function

Arguments:
1 Shall be of INTEGER or UNSIGNED type.
J Shall be of the same type and kind as L.

Return value:
The return value is of type LOGICAL and of the default kind.

Notes: For UNSIGNED arguments, this function is identical to the .LE. and <= operators.

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.51 [BGT], page 153,
Section 8.50 [BGE], page 152,
Section 8.54 [BLT], page 154,

8.54 BLT — Bitwise less than

Synopsis: RESULT = BLT(I, J)

Description:
Determines whether an integral is a bitwise less than another.

Class: Elemental function

Arguments:
I Shall be of INTEGER or UNSIGNED type.
J Shall be of the same type and kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

Notes: For UNSIGNED arguments, this function is identical to the .LT. and < operators.

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

Chapter 8: Intrinsic Procedures 155

See also: Section 8.50 [BGE], page 152,
Section 8.51 [BGT], page 153,
Section 8.53 [BLE], page 154,

8.55 BTEST — Bit test function

Synopsis: RESULT = BTEST(I, P0S)

Description:
BTEST(I,POS) returns logical . TRUE. if the bit at POS in [is set. The counting
of the bits starts at 0.

Class: Elemental function

Arguments:
1 The type shall be INTEGER or UNSIGNED.
POS The type shall be INTEGER.

Return value:
The return value is of type LOGICAL

Example:

program test_btest
integer :: i = 32768 + 1024 + 64

integer :: pos
logical :: bool
do pos=0,16

bool = btest(i, pos)
print *, pos, bool
end do
end program test_btest

Specific names:

Name Argument Return Standard
type
BTEST(I,P0S) INTEGER I,P0S LOGICAL Fortran 95 and later

BBTEST(I,P0S) INTEGER(1) I,P0S LOGICAL(1) GNU extension
BITEST(I,P0S) INTEGER(2) I,P0OS LOGICAL(2) GNU extension
BJTEST(I,P0S) INTEGER(4) I,POS LOGICAL(4) GNU extension
BKTEST(I,P0S) INTEGER(8) I,POS LOGICAL(8) GNU extension

Standard: Fortran 90 and later, has overloads that are GNU extensions; extension for
UNSIGNED (see Section 5.1.34 [Unsigned integers], page 67)

8.56 C_ASSOCIATED — Status of a C pointer

Synopsis: RESULT = C_ASSOCIATED(CPTR1[, CPTR2])

Description:
C_ASSOCIATED(CPTR1[, CPTR2]) determines the status of the C pointer
CPTRI or if CPTRI1 is associated with the target CPTR2.

Class: Inquiry function

156 The GNU Fortran Compiler

Arguments:
CPTRI1 Scalar of the type C_PTR or C_FUNPTR.
CPTR2 (Optional) Scalar of the same type as CPTRI.

Return value:
The return value is of type LOGICAL; it is .false. if either CPTRI1 is a C NULL
pointer or if CPTR1 and CPTR2 point to different addresses.

Example:

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if (c_associated(b, c_loc(a))) &
stop 'b and a do not point to same target'
end subroutine association_test

Standard: Fortran 2003 and later

See also: Section 8.60 [C_LOC], page 158,
Section 8.59 [C_FUNLOC], page 158,

8.57 C_F_POINTER — Convert C into Fortran pointer

Synopsis: CALL C_F_POINTER(CPTR, FPTR[, SHAPE, LOWER])

Description:
C_F_POINTER(CPTR, FPTR[, SHAPE, LOWER]) assigns the target of the C
pointer CPTR to the Fortran pointer FPTR and specifies its shape. For
an array FPTR, the lower bounds are specified by LOWER if present and
otherwise equal to 1.

Class: Subroutine

Arguments:
CPTR scalar of the type C_PTR. It is INTENT (IN).
FPTR pointer interoperable with cptr. It is INTENT (QUT).
SHAPE (Optional) Rank-one array of type INTEGER with

INTENT(IN). It shall be present if and only if FPTR
is an array. The size must be equal to the rank of
FPTR.

LOWER (Optional) Rank-one array of type INTEGER with
INTENT(IN). It shall not be present if SHAPE is

not present. The size must be equal to the rank of
FPTR.

Example:

program main
use iso_c_binding
implicit none
interface
subroutine my_routine(p) bind(c,name='myC_func')
import :: c_ptr

Chapter 8: Intrinsic Procedures 157

type(c_ptr), intent(out) :: p
end subroutine
end interface
type(c_ptr) :: cptr
real,pointer :: a(:)
call my_routine(cptr)
call c_f_pointer(cptr, a, [12])
end program main

Standard: Fortran 2003 and later, with LOWER argument Fortran 2023 and later
See also: Section 8.60 [C_LOC], page 158,
Section 8.58 [C_F_PROCPOINTER], page 157,

8.58 C_F_PROCPOINTER — Convert C into Fortran procedure
pointer
Synopsis: CALL C_F_PROCPOINTER(CPTR, FPTR)

Description:
C_F_PROCPOINTER(CPTR, FPTR) Assign the target of the C function pointer
CPTR to the Fortran procedure pointer FPTR.

Class: Subroutine
Arguments:
CPTR scalar of the type C_FUNPTR. It is INTENT (IN).
FPTR procedure pointer interoperable with cptr. It is
INTENT (OUT).
Ezample:

program main
use iso_c_binding
implicit none
abstract interface
function func(a)
import :: c_float
real(c_float), intent(in) :: a
real(c_float) :: func
end function
end interface

interface
function getIterFunc() bind(c,name="getIterFunc")
import :: c_funptr

type(c_funptr) :: getIterFunc
end function
end interface
type(c_funptr) :: cfunptr
procedure(func), pointer :: myFunc
cfunptr = getIterFunc()
call c_f_procpointer(cfunptr, myFunc)
end program main

Standard: Fortran 2003 and later

See also: Section 8.60 [C_LOC], page 158,
Section 8.57 [C_F_POINTER], page 156,

158 The GNU Fortran Compiler

8.59 C_FUNLOC — Obtain the C address of a procedure
Synopsis: RESULT = C_FUNLOC(X)

Description:
C_FUNLOC(X) determines the C address of the argument.

Class: Inquiry function

Arguments:
X Interoperable function or pointer to such function.

Return value:

The return value is of type C_FUNPTR and contains the C address of the argu-
ment.

Ezample:

module x
use iso_c_binding
implicit none

contains
subroutine sub(a) bind(c)
real(c_float) :: a

a = sqrt(a)+5.0
end subroutine sub
end module x
program main
use iso_c_binding
use x
implicit none
interface
subroutine my_routine(p) bind(c,name='myC_func')
import :: c_funptr
type(c_funptr), intent(in) :: p
end subroutine
end interface
call my_routine(c_funloc(sub))
end program main

Standard: Fortran 2003 and later

See also: Section 8.56 [C_ASSOCIATED], page 155,
Section 8.60 [C_LOC], page 158,
Section 8.57 [C_F_POINTER], page 156,
Section 8.58 [C_F_PROCPOINTER], page 157,

8.60 C_LOC — Obtain the C address of an object

Synopsis: RESULT = C_LOC(X)

Description:
C_LOC(X) determines the C address of the argument.

Class: Inquiry function

Chapter 8: Intrinsic Procedures 159

Arguments:
X Shall have either the POINTER or TARGET attribute.
It shall not be a coindexed object. It shall either be a
variable with interoperable type and kind type param-
eters, or be a scalar, nonpolymorphic variable with no
length type parameters.

Return value:
The return value is of type C_PTR and contains the C address of the argument.

Example:

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if (c_associated(b, c_loc(a))) &
stop 'b and a do not point to same target'
end subroutine association_test

Standard: Fortran 2003 and later

See also: Section 8.56 [C_ASSOCIATED], page 155,
Section 8.59 [C_FUNLOC], page 158,
Section 8.57 [C_F_POINTER], page 156,
Section 8.58 [C_F_PROCPOINTER], page 157,

8.61 C_SIZEOF — Size in bytes of an expression

Synopsis: N = C_SIZEOF (X)

Description:
C_SIZEOF (X) calculates the number of bytes of storage the expression X occu-
pies.

Class: Inquiry function of the module ISO_C_BINDING

Arguments:
X The argument shall be an interoperable data entity.

Return value:
The return value is of type integer and of the system-dependent kind C_SIZE_T
(from the ISO_C_BINDING module). Its value is the number of bytes occupied by
the argument. If the argument has the POINTER attribute, the number of bytes
of the storage area pointed to is returned. If the argument is of a derived type
with POINTER or ALLOCATABLE components, the return value does not account
for the sizes of the data pointed to by these components.

Ezample:
use iso_c_binding
integer(c_int) :: i
real(c_float) :: r, s(5)
print *, (c_sizeof(s)/c_sizeof(r) == 5)

160 The GNU Fortran Compiler

end

The example prints T unless you are using a platform where default REAL vari-
ables are unusually padded.

Standard: Fortran 2008

See also: Section 8.263 [SIZEOF], page 288,
Section 8.271 [STORAGE_SIZE], page 294,

8.62 CEILING — Integer ceiling function

Synopsis: RESULT = CEILING(A [, KIND])

Description:
CEILING(A) returns the least integer greater than or equal to A.

Class: Elemental function

Arguments:
A The type shall be REAL.
KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

Return value:
The return value is of type INTEGER(KIND) if KIND is present and a default-
kind INTEGER otherwise.

Ezample:

program test_ceiling
real :: x = 63.29
real :: y = -63.59
print *, ceiling(x) ! returns 64
print *, ceiling(y) ! returns -63
end program test_ceiling

Standard: Fortran 95 and later

See also: Section 8.114 [FLOOR], page 196,
Section 8.212 [NINT], page 258,

8.63 CHAR — Character conversion function

Synopsis: RESULT = CHAR(I [, KIND])

Description:
CHAR(I [, KIND]) returns the character represented by the integer I

Class: Elemental function

Arguments:
1 The type shall be INTEGER.
KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

Return value:
The return value is of type CHARACTER (1)

Chapter 8: Intrinsic Procedures 161

Example:
program test_char
integer :: i =74
character(1) :: c

¢ = char(i)
print *, i, ¢ ! returns 'J'
end program test_char

Specific names:

Name Argument Return type Standard
CHAR(I) INTEGER I CHARACTER (LEN=1) Fortran 77 and later
Notes: See Section 8.149 [ICHAR], page 219, for a discussion of converting between

numerical values and formatted string representations.
Standard: Fortran 77 and later

See also: Section 8.5 [ACHAR], page 121,
Section 8.141 TACHARJ, page 213,
Section 8.149 [ICHAR], page 219,

8.64 CHDIR — Change working directory

Synopsis:
CALL CHDIR(NAME [, STATUS])
STATUS = CHDIR (NAME)
Description:
Change current working directory to a specified path.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Class: Subroutine, function
Arguments:
NAME The type shall be CHARACTER of default kind and shall
specify a valid path within the file system.
STATUS (Optional) INTEGER status flag of the default kind.
Returns 0 on success, and a system specific and
nonzero error code otherwise.
Example:

PROGRAM test_chdir

CHARACTER(len=255) :: path
CALL getcwd(path)
WRITE(*,*) TRIM(path)
CALL chdir("/tmp")
CALL getcwd(path)
WRITE(*,*) TRIM(path)

END PROGRAM

Standard: GNU extension
See also: Section 8.129 [GETCWD], page 207,

162 The GNU Fortran Compiler

8.65 CHMOD — Change access permissions of files

Synopsis:
CALL CHMOD (NAME, MODE[, STATUS])
STATUS = CHMOD (NAME, MODE)
Description:
CHMOD changes the permissions of a file.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Class: Subroutine, function
Arguments:

NAME Scalar CHARACTER of default kind with the file name.
Trailing blanks are ignored unless the character
achar (0) is present, then all characters up to and
excluding achar (0) are used as the file name.

MODE Scalar CHARACTER of default kind giving the file per-
mission. MODE uses the same syntax as the chmod
utility as defined by the POSIX standard. The argu-
ment shall either be a string of a nonnegative octal
number or a symbolic mode.

STATUS (optional) scalar INTEGER, which is O on success and
nonzero otherwise.

Return value:
In either syntax, STATUS is set to 0 on success and nonzero otherwise.

Example: CHMOD as subroutine

program chmod_test
implicit none

integer :: status
call chmod('test.dat', 'u+x',status)
print *, 'Status: ', status

end program chmod_test

CHMOD as function:

program chmod_test
implicit none

integer :: status
status = chmod('test.dat', 'u+x')
print *, 'Status: ', status

end program chmod_test

Standard: GNU extension

8.66 CMPLX — Complex conversion function

Synopsis: RESULT = CMPLX(X [, Y [, KIND]])

Chapter 8: Intrinsic Procedures 163

Description:
CMPLX(X [, Y [, KIND]]) returns a complex number where X is converted to
the real component. If Y is present it is converted to the imaginary component.
If Y is not present then the imaginary component is set to 0.0. If X is complex
then Y must not be present.

Class: Elemental function
Arguments:
X The type may be INTEGER, REAL, COMPLEX or
UNSIGNED.
Y (Optional; only allowed if X is not COMPLEX.) May
be INTEGER, REAL or UNSIGNED.
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:
The return value is of COMPLEX type, with a kind equal to KIND if it is specified.
If KIND is not specified, the result is of the default COMPLEX kind, regardless
of the kinds of X and Y.

Ezample:
program test_cmplx
integer :: i = 42
real :: x = 3.14
complex :: z

z = cmplx(i, x)
print *, z, cmplx(x)
end program test_cmplx

Standard: Fortran 77 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.75 [COMPLEX], page 169,

8.67 CO_BROADCAST — Copy a value to all images the current
set of images

Synopsis: CALL CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])

Description:
CO_BROADCAST copies the value of argument A on the image with image index
SOURCE_IMAGE to all images in the current team. A becomes defined as if by
intrinsic assignment. If the execution was successful and STAT is present, it is
assigned the value zero. If the execution failed, STAT gets assigned a nonzero
value and, if present, ERRMSG gets assigned a value describing the occurred
erTor.

Class: Collective subroutine

164

Arguments:

Ezample:

Standard:

See also:

The GNU Fortran Compiler

A INTENT(INOUT) argument; shall have the
same dynamic type and type parameters on all
images of the current team. If it is an array, it
shall have the same shape on all images.

SOURCE_IMAGEA scalar integer expression. It shall have the same
value on all images and refer to an image of the
current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

program test
integer :: val(3)
if (this_image() == 1) then
val = [1, 5, 3]

end if
call co_broadcast (val, source_image=1)
print *, this_image, ":", val

end program test

Technical Specification (TS) 18508 or later

Section 8.68 [CO_MAX], page 164,
Section 8.69 [CO_MIN], page 165,
Section 8.71 [CO_SUM], page 167,
Section 8.70 [CO_REDUCE], page 166,

8.68 CO_MAX — Maximal value on the current set of images

Synopsis:

CALL CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])

Description:

Class:

Arguments:

CO_MAX determines element-wise the maximal value of A on all images of the
current team. If RESULT_IMAGE is present, the maximum values are returned
in A on the specified image only and the value of A on the other images become
undefined. If RESULT_IMAGE is not present, the value is returned on all
images. If the execution was successful and STAT is present, it is assigned the
value zero. If the execution failed, STAT gets assigned a nonzero value and, if
present, ERRMSG gets assigned a value describing the occurred error.

Collective subroutine

A shall be an integer, real or character variable,
which has the same type and type parameters
on all images of the team.

RESULT_IMAGE(optional) a scalar integer expression; if present,
it shall have the same value on all images and
refer to an image of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

Chapter 8: Intrinsic Procedures 165

Example:

program test
integer :: val
val = this_image ()
call co_max (val, result_image=1)
if (this_image() == 1) then

write(*,*) "Maximal value", val ! prints num_images()

end if

end program test

Standard: Technical Specification (T'S) 18508 or later

CO_MIN], page 165,
CO_SUM], page 167,
CO_REDUCE], page 166,
CO_BROADCAST], page 163,

See also: Section 8.69
Section 8.71
Section 8.70
Section 8.67

—— ——

8.69 CO_MIN — Minimal value on the current set of images

Synopsis: CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])

Description:

CO_MIN determines element-wise the minimal value of A on all images of the
current team. If RESULT_IMAGE is present, the minimal values are returned
in A on the specified image only and the value of A on the other images become
undefined. If RESULT_IMAGE is not present, the value is returned on all
images. If the execution was successful and STAT is present, it is assigned the
value zero. If the execution failed, STAT gets assigned a nonzero value and, if
present, ERRMSG gets assigned a value describing the occurred error.

Class: Collective subroutine

Arguments:

A shall be an integer, real or character variable,
which has the same type and type parameters
on all images of the team.

RESULT_IMAGE(optional) a scalar integer expression; if present,
it shall have the same value on all images and
refer to an image of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

Example:

program test
integer :: val
val = this_image ()
call co_min (val, result_image=1)
if (this_image() == 1) then
write(*,*) "Minimal value", val ! prints 1
end if
end program test

Standard: Technical Specification (T'S) 18508 or later

166 The GNU Fortran Compiler

See also: Section 8.68 [CO_-MAX], page 164,
Section 8.71 [CO_SUM], page 167,
Section 8.70 [CO_REDUCE], page 166,
Section 8.67 [CO_BROADCAST], page 163,

8.70 CO_REDUCE — Reduction of values on the current set of
images

Synopsis: CALL CO_REDUCE(A, OPERATION, [, RESULT_IMAGE, STAT, ERRMSG])

Description:

CO_REDUCE determines element-wise the reduction of the value of A on all images
of the current team. The pure function passed as OPERATION is used to
pairwise reduce the values of A by passing either the value of A of different
images or the result values of such a reduction as argument. If A is an array,
the deduction is done element wise. If RESULT_IMAGE is present, the result
values are returned in A on the specified image only and the value of A on the
other images become undefined. If RESULT_IMAGE is not present, the value
is returned on all images. If the execution was successful and STAT is present,
it is assigned the value zero. If the execution failed, STAT gets assigned a
nonzero value and, if present, ERRMSG gets assigned a value describing the
occurred error.

Class: Collective subroutine

Arguments:

A is an INTENT (INOUT) argument and shall be non-
polymorphic. If it is allocatable, it shall be allo-
cated; if it is a pointer, it shall be associated. A
shall have the same type and type parameters on
all images of the team; if it is an array, it shall
have the same shape on all images.

OPERATION pure function with two scalar nonallocatable ar-
guments, which shall be nonpolymorphic and
have the same type and type parameters as A.
The function shall return a nonallocatable scalar
of the same type and type parameters as A. The
function shall be the same on all images and with
regards to the arguments mathematically com-
mutative and associative. Note that OPERA-
TION may not be an elemental function, unless
it is an intrisic function.

RESULT_IMAGE(optional) a scalar integer expression; if present,
it shall have the same value on all images and
refer to an image of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

Ezample:

Chapter 8:

Notes:

Standard:

See also:

8.71 CO_SUM — Sum of values on the current set of images

Synopsis:

Intrinsic Procedures

program test
integer :: val
val = this_image ()
call co_reduce (val, result_image=1, operation=myprod)
if (this_image() == 1) then

write(*,*) "Product value", val ! prints num_images() factorial
end if
contains
pure function myprod(a, b)
integer, value :: a, b
integer :: myprod

myprod = a * b
end function myprod
end program test

167

While the rules permit in principle an intrinsic function, none of the intrinsics
in the standard fulfill the criteria of having a specific function, which takes two

arguments of the same type and returning that type as result.
Technical Specification (TS) 18508 or later

Section 8.69 [CO_MIN], page 165,
Section 8.68 [CO_-MAX], page 164,
Section 8.71 [CO_SUM], page 167,
Section 8.67 [CO_BROADCAST], page 163,

CALL CO_SUM(A [, RESULT_IMAGE, STAT, ERRMSG])

Description:

Class:

Arguments:

Example:

CO_SUM sums up the values of each element of A on all images of the current
team. If RESULT_IMAGE is present, the summed-up values are returned in
A on the specified image only and the value of A on the other images become
undefined. If RESULT_IMAGE is not present, the value is returned on all
images. If the execution was successful and STAT is present, it is assigned the
value zero. If the execution failed, STAT gets assigned a nonzero value and, if

present, ERRMSG gets assigned a value describing the occurred error.

Collective subroutine

A shall be an integer, real or complex variable,
which has the same type and type parameters
on all images of the team.

RESULT_IMAGE(optional) a scalar integer expression; if present,
it shall have the same value on all images and
refer to an image of the current team.

STAT (optional) a scalar integer variable

ERRMSG (optional) a scalar character variable

program test
integer :: val

168 The GNU Fortran Compiler

val = this_image ()
call co_sum (val, result_image=1)
if (this_image() == 1) then
write(*,*) "The sum is ", val ! prints (n**2 + n)/2,
! with n = num_images()
end if
end program test

Standard: Technical Specification (T'S) 18508 or later

CO_MAX], page 164,
CO_MIN], page 165,
CO_REDUCE], page 166,
CO_BROADCAST], page 163,

See also: Section 8.68
Section 8.69
Section 8.70
Section 8.67

—— ——

8.72 COMMAND_ARGUMENT_COUNT — Get number of command
line arguments
Synopsis: RESULT = COMMAND_ARGUMENT_COUNT ()

Description:
COMMAND_ARGUMENT_COUNT returns the number of arguments passed on the com-
mand line when the containing program was invoked.

Class: Inquiry function

Arguments:
None

Return value:
The return value is an INTEGER of default kind.

Ezample:

program test_command_argument_count
integer :: count
count = command_argument_count ()
print *, count

end program test_command_argument_count

Standard: Fortran 2003 and later

See also: Section 8.127 [GET_-COMMAND], page 205,
Section 8.128 [GET_-COMMAND_ARGUMENT], page 206,

8.73 COMPILER_OPTIONS — Options passed to the compiler

Synopsis: STR = COMPILER_OPTIONS ()

Description:
COMPILER_OPTIONS returns a string with the options used for compiling.

Class: Inquiry function of the module ISO_FORTRAN_ENV

Arguments:
None

Chapter 8: Intrinsic Procedures 169

Return value:
The return value is a default-kind string with system-dependent length. It
contains the compiler flags used to compile the file that called the COMPILER_
OPTIONS intrinsic.

Ezample:

use iso_fortran_env

print '(4a)', 'This file was compiled by ', &
compiler_version(), ' using the options ', &
compiler_options()

end

Standard: Fortran 2008

See also: Section 8.74 [COMPILER_VERSION], page 169,
Section 9.1 ISO_.FORTRAN_ENV], page 311,

8.74 COMPILER_VERSION — Compiler version string

Synopsis: STR = COMPILER_VERSION()

Description:
COMPILER_VERSION returns a string with the name and the version of the com-
piler.

Class: Inquiry function of the module ISO_FORTRAN_ENV

Arguments:
None

Return value:
The return value is a default-kind string with system-dependent length. It
contains the name of the compiler and its version number.

Ezample:

use iso_fortran_env

print '(4a)', 'This file was compiled by ', &
compiler_version(), ' using the options ', &
compiler_options()

end

Standard: Fortran 2008

See also: Section 8.73 [COMPILER_-OPTIONS], page 168,
Section 9.1 ISO_.FORTRAN_ENV], page 311,

8.75 COMPLEX — Complex conversion function

Synopsis: RESULT = COMPLEX (X, Y)

Description:
COMPLEX (X, Y) returns a complex number where X is converted to the real
component and Y is converted to the imaginary component.

Class: Elemental function

170 The GNU Fortran Compiler

Arguments:
X The type may be INTEGER or REAL.
Y The type may be INTEGER or REAL.

Return value:
If X and Y are both of INTEGER type, then the return value is of default COMPLEX
type.
If X and Y are of REAL type, or one is of REAL type and one is of INTEGER type,
then the return value is of COMPLEX type with a kind equal to that of the REAL
argument with the highest precision.

Example:

program test_complex
integer :: i = 42
real :: x = 3.14
print *, complex(i, x)

end program test_complex

Standard: GNU extension
See also: Section 8.66 [CMPLX], page 162,

8.76 CONJG — Complex conjugate function
Synopsis: Z = CONJG(Z)

Description:
CONJG(Z) returns the conjugate of Z. If Z is (x, y) then the result is (x, -y)

Class: Elemental function

Arguments:
Z The type shall be COMPLEX.

Return value:
The return value is of type COMPLEX.

Example:

program test_conjg
complex :: z = (2.0, 3.0)
complex(8) :: dz = (2.71_8, -3.14_.8)
z= conjg(z)
print *, z
dz = dconjg(dz)
print *, dz
end program test_conjg

Specific names:
Name Argument Return type Standard
DCONJG(Z) COMPLEX(8) Z COMPLEX(8) GNU extension

Standard: Fortran 77 and later, has an overload that is a GNU extension

Chapter 8: Intrinsic Procedures 171

8.77 COS — Cosine function

Synopsis: RESULT = COS(X)

Description:
COS(X) computes the cosine of X.

Class: Elemental function

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the
result is in radians. If X is of the type REAL, the return value lies in the range
—1 < cos(z) < 1.

Ezample:
program test_cos
real :: x = 0.0
x = cos(x)
end program test_cos

Specific names:

Name Argument Return type Standard

COS(X) REAL(4) X REAL(4) Fortran 77 and later
DCOS (X) REAL(8) X REAL(8) Fortran 77 and later
CCOS(X) COMPLEX (4) X COMPLEX (4) Fortran 77 and later
ZC0S (X) COMPLEX(8) X COMPLEX (8) GNU extension
CDCOS (X) COMPLEX (8) X COMPLEX (8) GNU extension

Standard: Fortran 77 and later, has overloads that are GNU extensions

See also: Inverse function:
Section 8.6 [ACOS], page 122,
Degrees function:
Section 8.78 [COSD], page 171,

8.78 COSD — Cosine function, degrees

Synopsis: RESULT = COSD(X)

Description:
COSD(X) computes the cosine of X in degrees.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of the same type and kind as X and lies in the range
—1 < cosd(z) < 1.

172

Example:

program test_cosd
real :: x = 0.0
x = cosd(x)

end program test_cosd

Specific names:

Standard:

See also:

Name Argument
COSD(X) REAL(4) X
DCOSD (X) REAL(8) X
CCOSD(X) COMPLEX (4) X
ZCOSD(X) COMPLEX(8) X
CDCOSD(X) COMPLEX(8) X

Fortran 2023

Inverse function:

Section 8.7 [ACOSD], page 122,
Radians function:

Section 8.77 [COS], page 171,

Return type
REAL (4)
REAL(8)
COMPLEX (4)
COMPLEX (8)
COMPLEX (8)

8.79 COSH — Hyperbolic cosine function

Synopsis:

X = COSH(X)

Description:

Class:

Arguments:

COSH(X) computes the hyperbolic cosine of X.

Elemental function

X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians. If X is REAL, the return value has a lower bound

Example:

of one, cosh(x) > 1.

program test_cosh
real(8) :: x = 1.0_8
x = cosh(x)

end program test_cosh

Specific names:

Standard:

See also:

Name Argument
COSH(X) REAL(4) X
DCOSH(X) REAL(8) X

Return type
REAL(4)
REAL(8)

The GNU Fortran Compiler

Standard
Fortran 2023
GNU extension
GNU extension
GNU extension
GNU extension

Standard
Fortran 77 and later
Fortran 77 and later

Fortran 77 and later, for a complex argument Fortran 2008 or later

Inverse function:

Section 8.8 [ACOSH], page 123,

Chapter 8: Intrinsic Procedures 173

8.80 COSPI — Circular cosine function

Description:
COSPI(X) computes cos(mz) without performing an explicit multiplication by
. This is achieved through argument reduction where x = n 4+ r with n an
integer and 0 < r < 1. Due to the properties of floating-point arithmetic, the
useful range for X is defined by ABS(X) <= REAL(2,KIND(X))**DIGITS(X).

Standard: Fortran 2023
Class: Elemental function
Syntax: RESULT = COSPI(X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of the same type and kind as X. The result is in half-
revolutions and satisfies —1 < cospi(z) < 1.

Example:

program test_cospi
real :: x = 0.0
x = cospi(x)

end program test_cospi

See also: Section 8.9 [ACOSPI], page 124,
Section 8.77 [COS], page 171,

8.81 COTAN — Cotangent function

Synopsis: RESULT = COTAN(X)

Description:
COTAN(X) computes the cotangent of X. Equivalent to C0S(x) divided by
SIN(x), or 1 / TAN(x).

This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

Class: Elemental function

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X, and its value is in radians.

Example:

program test_cotan
real(8) :: x = 0.165_8
x = cotan(x)

end program test_cotan

174 The GNU Fortran Compiler

Specific names:

Name Argument Return type Standard
COTAN (X) REAL(4) X REAL (4) GNU extension
DCOTAN (X) REAL(8) X REAL(8) GNU extension

Standard: GNU extension, enabled with -fdec-math.

See also: Converse function:
Section 8.276 [TAN], page 297,
Degrees function:
Section 8.82 [COTAND], page 174,

8.82 COTAND — Cotangent function, degrees

Synopsis: RESULT = COTAND (X)

Description:
COTAND(X) computes the cotangent of X in degrees. Equivalent to COSD(x)
divided by SIND(x), or 1 / TAND(x).

Class: FElemental function

Arguments:

X The type shall be REAL.

Return value:
The return value has same type and kind as X, and its value is in degrees.

Example:

program test_cotand
real(8) :: x = 0.165_8
x = cotand(x)

end program test_cotand

Specific names:

Name Argument Return type Standard
COTAND(X) REAL(4) X REAL(4) GNU extension
DCOTAND (X) REAL(8) X REAL(8) GNU extension

Standard: GNU extension.
This function is for compatibility only and should be avoided in favor of stan-
dard constructs wherever possible.

See also: Converse function:
Section 8.277 [TAND], page 298,
Radians function:
Section 8.81 [COTAN], page 173,

8.83 COUNT — Count function

Synopsis: RESULT = COUNT(MASK [, DIM, KIND])

Description:
Counts the number of .TRUE. elements in a logical MASK, or, if the DIM
argument is supplied, counts the number of elements along each row of the

Chapter 8: Intrinsic Procedures 175

array in the DIM direction. If the array has zero size, or all of the elements of
MASK are .FALSE., then the result is 0.

Class: Transformational function
Arguments:
MASK The type shall be LOGICAL.
DIM (Optional) The type shall be INTEGER.
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind. If DIM is present, the result is an array
with a rank one less than the rank of ARRAY, and a size corresponding to the
shape of ARRAY with the DIM dimension removed.

Ezample:
program test_count
integer, dimension(2,3) :: a, b
logical, dimension(2,3) :: mask
a = reshape((/ 1, 2, 3, 4, 5,6 /), (/ 2, 3/)
b = reshape((/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3/))
print '(31i3)', a(1,:)
print '(3i3)', a(2,:)
print *
print '(3i3)', b(1,:)
print '(3i3)', b(2,:)
print *
mask = a.ne.b
print '(313)', mask(1,:)
print '(313)', mask(2,:)
print *
print '(3i3)', count(mask)
print *
print '(3i3)', count(mask, 1)
print *

print '(3i3)', count(mask, 2)
end program test_count

Standard: Fortran 90 and later, with KIND argument Fortran 2003 and later

8.84 CPU_TIME — CPU elapsed time in seconds

Synopsis: CALL CPU_TIME(TIME)

Description:
Returns a REAL value representing the elapsed CPU time in seconds. This is
useful for testing segments of code to determine execution time.

If a time source is available, time is reported with microsecond resolution. If
no time source is available, TIME is set to -1.0.

Note that TIME may contain a system-dependent arbitrary offset and may not
start with 0.0. For CPU_TIME, the absolute value is meaningless; only differences

between subsequent calls to this subroutine, as shown in the example below,
should be used.

176 The GNU Fortran Compiler

Class: Subroutine

Arguments:
TIME The type shall be REAL with INTENT (OUT).

Return value:
None

Ezample:

program test_cpu_time
real :: start, finish
call cpu_time(start)
! put code to test here
call cpu_time(finish)
print '("Time = ",f6.3," seconds.")',finish-start
end program test_cpu_time

Standard: Fortran 95 and later

See also: Section 8.275 [SYSTEM_CLOCK], page 296,
Section 8.87 [DATE_AND_TIME], page 178,

8.85 CSHIFT — Circular shift elements of an array

Synopsis: RESULT = CSHIFT(ARRAY, SHIFT [, DIM])

Description:

CSHIFT(ARRAY, SHIFT [, DIM]) performs a circular shift on elements of AR-
RAY along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM
is a scalar of type INTEGER in the range of 1 < DIM < n) where n is the rank
of ARRAY. If the rank of ARRAY is one, then all elements of ARRAY are
shifted by SHIFT places. If rank is greater than one, then all complete rank
one sections of ARRAY along the given dimension are shifted. Elements shifted
out one end of each rank one section are shifted back in the other end.

Class: Transformational function

Arguments:
ARRAY Shall be an array of any type.
SHIFT The type shall be INTEGER.
DIM The type shall be INTEGER.

Notes: ARRAY can also be UNSIGNED.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Example:

program test_cshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5,6, 7,8, 9/), (/3,3/))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
print *

Chapter 8: Intrinsic Procedures 177

print '(3i3)', a(1,:)

print '(3i3)', a(2,:)

print '(3i3)', a(3,:)
end program test_cshift

Standard: Fortran 90 and later

8.86 CTIME — Convert a time into a string

Synopsis:
CALL CTIME(TIME, RESULT).
RESULT = CTIME(TIME).

Description:
CTIME converts a system time value, such as returned by Section 8.283 [TIMES],
page 301, to a string. The output is of the form ‘Sat Aug 19 18:13:14 1995,
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Class: Subroutine, function

Arguments:

TIME The type shall be of type INTEGER.

RESULT The type shall be of type CHARACTER and of default
kind. It is an INTENT (OUT) argument. If the length of
this variable is too short for the time and date string
to fit completely, it is blank on procedure return.

Return value:
The converted date and time as a string.

Example:
program test_ctime
integer(8) :: i
character(len=30) :: date
i = time8()

! Do something, main part of the program

call ctime(i,date)
print *, 'Program was started on ', date
end program test_ctime

Standard: GNU extension

See also: Section 8.87 [DATE_AND_TIME], page 178,
Section 8.137 [GMTIME], page 211,
Section 8.189 [LTIME], page 243,
Section 8.282 [TIME], page 301,
Section 8.283 [TIMES], page 301,

178 The GNU Fortran Compiler

8.87 DATE_AND_TIME — Date and time subroutine

Synopsis: CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])

Description:
DATE_AND_TIME(DATE, TIME, ZONE, VALUES) gets the corresponding date and
time information from the real-time system clock. DATE is INTENT(OUT) and
of the form ccyymmdd. TIME is INTENT(OUT) and of the form hhmmss.sss.
ZONE is INTENT(OUT) and of the form (+-)hhmm, representing the difference
with respect to Coordinated Universal Time (UTC). Unavailable time and date
parameters return blanks.

VALUES is INTENT(OUT) and provides the following:

VALUES(1): The year, including the century
VALUES(2): The month of the year

VALUES(3): The day of the month

VALUES(4): The time difference from UTC in minutes
VALUES(5): The hour of the day

VALUES(6): The minutes of the hour

VALUES(7): The seconds of the minute

VALUES(8): The milliseconds of the second

Class: Subroutine
Arguments:
DATE (Optional) Scalar of type default CHARACTER. Rec-
ommended length is 8 or larger.
TIME (Optional) Scalar of type default CHARACTER. Rec-
ommended length is 10 or larger.
ZONE (Optional) Scalar of type default CHARACTER. Rec-

ommended length is 5 or larger.
VALUES (Optional) Rank-1 array of type INTEGER with a dec-
imal exponent range of at least four and array size at

least 8.
Return value:
None
Ezample:
program test_time_and_date
character(8) :: date
character (10) :: time
character(5) :: zone
integer,dimension(8) :: values

! using keyword arguments
call date_and_time(date,time,zone,values)
call date_and_time(DATE=date,Z0NE=zone)
call date_and_time(TIME=time)
call date_and_time(VALUES=values)
print '(a,2x,a,2x,a)', date, time, zone
print '(8i5)', values

end program test_time_and_date

Standard: Fortran 90 and later

Chapter 8: Intrinsic Procedures 179

See also: Section 8.84 [CPU_TIME], page 175,
Section 8.275 [SYSTEM_CLOCK], page 296,

8.88 DBLE — Double conversion function

Synopsis: RESULT = DBLE(A)

Description:
DBLE(A) Converts A to double precision real type.

Class: Elemental function

Arguments:
A The type shall be INTEGER, REAL, or COMPLEX.

Return value:
The return value is of type double precision real.

Ezxample:
program test_dble
real 1 x = 2.18
integer :: i =5
complex :: z = (2.3,1.14)

print *, dble(x), dble(i), dble(z)
end program test_dble

Standard: Fortran 77 and later
See also: Section 8.235 [REALJ, page 272,

8.89 DCMPLX — Double complex conversion function

Synopsis: RESULT = DCMPLX(X [, Y1)

Description:
DCMPLX (X [,Y]) returns a double complex number where X is converted to the
real component. If Y is present it is converted to the imaginary component. If
Y is not present then the imaginary component is set to 0.0. If X is complex
then Y must not be present.

Class: Elemental function
Arguments:
X The type may be INTEGER, REAL, or COMPLEX.
Y (Optional if X is not COMPLEX.) May be INTEGER or
REAL.

Return value:
The return value is of type COMPLEX (8)

Example:
program test_dcmplx
integer :: i = 42
real :: x = 3.14
complex :: z

z = cmplx(i, x)

180 The GNU Fortran Compiler

print *, dcmplx(i)
print *, dcmplx(x)
print *, dcmplx(z)

print *, dcmplx(x,i)
end program test_dcmplx

Standard: GNU extension

8.90 DIGITS — Significant binary digits function

Synopsis: RESULT = DIGITS (X)

Description:
DIGITS(X) returns the number of significant binary digits of the internal model
representation of X. For example, on a system using a 32-bit floating point
representation, a default real number would likely return 24.

Class: Inquiry function

Arguments:
X The type may be INTEGER, REAL or UNSIGNED.

Return value:
The return value is of type INTEGER.

Example:

program test_digits
integer :: i = 12345
real :: x = 3.143
real(8) :: y = 2.33
print *, digits(i)
print *, digits(x)
print *, digits(y)

end program test_digits

Standard: Fortran 90 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

8.91 DIM — Positive difference

Synopsis: RESULT = DIM(X, Y)

Description:
DIM(X,Y) returns the difference X-Y if the result is positive; otherwise returns
Zero.

Class: Elemental function

Arguments:
X The type shall be INTEGER or REAL
Y The type shall be the same type and kind as X. (As
a GNU extension, arguments of different kinds are
permitted.)

Return value:
The return value is of type INTEGER or REAL. (As a GNU extension, kind is the
largest kind of the actual arguments.)

Chapter 8: Intrinsic Procedures

Example:

program test_dim
integer :: 1
real(8) :: x
i = dim(4, 15)
x = dim(4.345_8, 2.111_8)
print *, i
print *, x
end program test_dim

Specific names:

Name Argument Return type
DIM(X,Y) REAL(4) X, Y REAL (4)
IDIM(X,Y) INTEGER(4) X, Y INTEGER(4)
DDIM(X,Y) REAL(8) X, Y REAL(8)

Standard: Fortran 77 and later

8.92 DOT_PRODUCT — Dot product function

Synopsis: RESULT = DOT_PRODUCT (VECTOR_A, VECTOR_B)

Description:

Standard

Fortran 77 and later
Fortran 77 and later
Fortran 77 and later

181

DOT_PRODUCT (VECTOR_A, VECTOR_B) computes the dot product multiplication
of two vectors VECTOR_A and VECTOR_B. The two vectors may be either
numeric or logical and must be arrays of rank one and of equal size. If the
vectors are INTEGER, REAL or UNSIGNED, the result is SUM(VECTOR_A*VECTOR_
B). If the vectors are COMPLEX, the result is SUM(CONJG(VECTOR_A) *VECTOR_B).
If the vectors are LOGICAL, the result is ANY(VECTOR_A .AND. VECTOR_B). If
one of VECTOR_A or VECTOR_B is UNSIGNED, the other one shall also be

UNSIGNED.
Class: Transformational function

Arguments:

VECTOR-A The type shall be numeric or LOGICAL, rank 1. If
VECTOR_B is UNSIGNED, VECTOR_A shall also be

unsigned.

VECTOR_B The type shall if VECTOR_A is of numeric type or
LOGICAL if VECTOR_A is of type LOGICAL. VEC-
TOR_B shall be a rank-one array. If VECTOR_A is
UNSIGNED, VECTOR_B shall also be unsigned.

Return value:

If the arguments are numeric, the return value is a scalar of numeric type,
INTEGER, REAL, COMPLEX or UNSIGNED. If the arguments are LOGICAL, the return

value is .TRUE. or .FALSE..

Example:
program test_dot_prod

182

integer, dimension(3) :: a, b
a=((/1,2,3/)

b=1(4,5,6)/)

print '(3i3)', a

print *

print '(3i3)', b

print *

print *, dot_product(a,b)

end program test_dot_prod

The GNU Fortran Compiler

Standard: Fortran 90 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned

integers|, page 67)

8.93 DPROD — Double product function

Synopsis: RESULT = DPROD(X, Y)

Description:
DPROD(X,Y) returns the product X*Y.

Class: Elemental function

Arguments:
X The type shall be REAL.
Y The type shall be REAL.

Return value:
The return value is of type REAL(8).

Example:

program test_dprod
real :: x 5.2
real :: y = 2.3
real(8) :: d
d = dprod(x,y)
print *, d

end program test_dprod

Specific names:
Name
DPROD (X,Y)

Return type
REAL(8)

Argument
REAL(4) X, Y

Standard: Fortran 77 and later

8.94 DREAL — Double real part function

Synopsis: RESULT = DREAL(A)

Description:

Standard
Fortran 77 and later

DREAL (Z) returns the real part of complex variable Z.

Class: Elemental function

Arguments:
A The type shall be COMPLEX (8).

Chapter 8: Intrinsic Procedures 183

Return value:
The return value is of type REAL(8).

Example:

program test_dreal
complex(8) :: z = (1.3.8,7.2_.8)
print *, dreal(z)

end program test_dreal

Standard: GNU extension
See also: Section 8.12 [AIMAG], page 125,

8.95 DSHIFTL — Combined left shift

Synopsis: RESULT = DSHIFTL(I, J, SHIFT)

Description:
DSHIFTL(I, J, SHIFT) combines bits of I and J. The rightmost SHIFT bits
of the result are the leftmost SHIF'T bits of J, and the remaining bits are the
rightmost bits of I.

Class: Elemental function
Arguments:
1 Shall be of type INTEGER, UNSIGNED or a BOZ
constant.
J Shall be of type INTEGER, UNSIGNED or a BOZ con-

stant. If both I and J have INTEGER or UNSIGNED
type, then they shall have the same type and kind
type parameter. I and J shall not both be BOZ
constants.

SHIFT Shall be of type INTEGER. It shall be nonnegative. If I
is not a BOZ constant, then SHIF'T shall be less than
or equal to BIT_SIZE(I); otherwise, SHIF'T shall be
less than or equal to BIT_SIZE(J).

Return value:
The return value is the same type and type kind parameter as I or, if I is a
BOZ constant, J.

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.96 [DSHIFTR], page 183,

8.96 DSHIFTR — Combined right shift

Synopsis: RESULT = DSHIFTR(I, J, SHIFT)

Description:
DSHIFTR(I, J, SHIFT) combines bits of I and J. The leftmost SHIFT bits of
the result are the rightmost SHIFT bits of I, and the remaining bits are the
leftmost bits of J.

184

Class:

Arguments:

The GNU Fortran Compiler

Elemental function

I Shall be of type INTEGER, UNSIGNED or a BOZ
constant.
J Shall be of type INTEGER, UNSIGNED or a BOZ con-

stant. If both I and J have INTEGER or UNSIGNED
type, then they shall have the same type and kind
type parameter. I and J shall not both be BOZ
constants.

SHIFT Shall be of type INTEGER. It shall be nonnegative. If I
is not a BOZ constant, then SHIF'T shall be less than
or equal to BIT_SIZE(I); otherwise, SHIF'T shall be
less than or equal to BIT_SIZE(J).

Return value:

The return value is the same type and type kind parameter as I or, if I is a
BOZ constant, J.

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)
See also: Section 8.95 [DSHIFTL]|, page 183,
8.97 DTIME — Execution time subroutine (or function)
Synopsis:
CALL DTIME(VALUES, TIME).
TIME = DTIME(VALUES), (not recommended).
Description:

DTIME (VALUES, TIME) initially returns the number of seconds of runtime since
the start of the process’s execution in TIME. VALUES returns the user and sys-
tem components of this time in VALUES (1) and VALUES(2) respectively. TIME
is equal to VALUES (1) + VALUES(2).

Subsequent invocations of DTIME return values accumulated since the previous
invocation.

On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as 32-
bit types. Therefore, the values returned by this intrinsic might be, or become,
negative, or numerically less than previous values, during a single run of the
compiled program.

Please note that this implementation is thread safe if used within OpenMP di-
rectives, i.e., its state is consistent while called from multiple threads. However,
if DTIME is called from multiple threads, the result is still the time since the last
invocation. This may not give the intended results. If possible, use CPU_TIME
instead.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Chapter 8: Intrinsic Procedures 185

VALUES and TIME are INTENT(OUT) and provide the following:

VALUES(1): User time in seconds.
VALUES(2): System time in seconds.

TIME: Run time since start in seconds.

Class: Subroutine, function

Arguments:
VALUES The type shall be REAL(4) , DIMENSION(2).
TIME The type shall be REAL(4).

Return value:
Elapsed time in seconds since the last invocation or since the start of program
execution if not called before.

Ezample:

program test_dtime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j=i*i-i
end do
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
end program test_dtime

Standard: GNU extension
See also: Section 8.84 [CPU_TIME], page 175,

8.98 EOSHIFT — End-off shift elements of an array

Synopsis: RESULT = EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM])

Description:

EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM]) performs an end-off shift on ele-
ments of ARRAY along the dimension of DIM. If DIM is omitted it is taken
to be 1. DIM is a scalar of type INTEGER in the range of 1 < DIM < n) where
n is the rank of ARRAY. If the rank of ARRAY is one, then all elements of
ARRAY are shifted by SHIFT places. If rank is greater than one, then all
complete rank one sections of ARRAY along the given dimension are shifted.
Elements shifted out one end of each rank one section are dropped. If BOUND-
ARY is present then the corresponding value of from BOUNDARY is copied
back in the other end. If BOUNDARY is not present then the following are
copied in depending on the type of ARRAY.

Array Type Boundary Value
Numeric 0 of the type and kind of ARRAY.

186 The GNU Fortran Compiler

Logical .FALSE..
Character(len)len blanks.

Class: Transformational function

Arguments:
ARRAY May be any type, not scalar.
SHIFT The type shall be INTEGER.
BOUNDARY Same type as ARRAY.
DIM The type shall be INTEGER.

Notes: ARRAY can also be UNSIGNED.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Example:

program test_eoshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5,6, 7,8,9/), (/3,3/))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)"', a(3,:)
a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
print *
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)

end program test_eoshift

Standard: Fortran 90 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

8.99 EPSILON — Epsilon function

Synopsis: RESULT = EPSILON (X)

Description:
EPSILON(X) returns the smallest number E of the same kind as X such that
1+F>1.

Class: Inquiry function

Arguments:
X The type shall be REAL.

Return value:
The return value is of same type as the argument.

Example:

program test_epsilon
real :: x = 3.143
real(8) :: y = 2.33
print *, EPSILON(x)
print *, EPSILON(y)

end program test_epsilon

Standard: Fortran 90 and later

Chapter 8: Intrinsic Procedures 187

8.100 ERF — Error function

Synopsis: RESULT = ERF (X)

Description:
ERF (X) computes the error function of X.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL, of the same kind as X and lies in the range
—1<erf(z) <1l

Ezample:

program test_erf
real(8) :: x = 0.17_8
x = erf(x)

end program test_erf

Specific names:
Name Argument Return type Standard
DERF (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

8.101 ERFC — Error function

Synopsis: RESULT = ERFC(X)

Description:
ERFC(X) computes the complementary error function of X.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and of the same kind as X. It lies in the range
0 <erfe(x) <2.

Example:

program test_erfc
real(8) :: x = 0.17_8
x = erfc(x)

end program test_erfc

Specific names:
Name Argument Return type Standard
DERFC (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

188 The GNU Fortran Compiler

8.102 ERFC_SCALED — FError function

Synopsis: RESULT = ERFC_SCALED (X)

Description:
ERFC_SCALED (X) computes the exponentially-scaled complementary error func-
tion of X.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and of the same kind as X.

Ezample:

program test_erfc_scaled
real(8) :: x = 0.17_8
x = erfc_scaled(x)

end program test_erfc_scaled

Standard: Fortran 2008 and later

8.103 ETIME — Execution time subroutine (or function)

Synopsis:
CALL ETIME(VALUES, TIME).
TIME = ETIME(VALUES), (not recommended).

Description:
ETIME(VALUES, TIME) returns the number of seconds of runtime since the start
of the process’s execution in TIME. VALUES returns the user and system
components of this time in VALUES(1) and VALUES(2) respectively. TIME is
equal to VALUES (1) + VALUES(2).

On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as 32-
bit types. Therefore, the values returned by this intrinsic might be, or become,
negative, or numerically less than previous values, during a single run of the
compiled program.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

VALUES and TIME are INTENT(OUT) and provide the following:

VALUES(1): User time in seconds.
VALUES(2): System time in seconds.
TIME: Run time since start in seconds.

Class: Subroutine, function

Arguments:
VALUES The type shall be REAL(4), DIMENSION(2).
TIME The type shall be REAL(4).

Chapter 8: Intrinsic Procedures

Return value:
Elapsed time in seconds since the start of program execution.

Ezample:

Standard:

See also:

program test_etime

integer(8) :: i, j

real, dimension(2) ::

real :: result
call ETIME(tarray,
print *, result
print *, tarray(1l)
print *, tarray(2)
do i=1,100000000
j=i*i-i
end do
call ETIME(tarray,
print *, result
print *, tarray(1)
print *, tarray(2)

end program test_etime

GNU extension
Section 8.84 [CPU_TIME], page 175,

189

tarray

result)

! Just a delay

result)

8.104 EVENT_QUERY — Query whether a coarray event has
occurred

Synopsis:

CALL EVENT_QUERY (EVENT, COUNT [, STATI])

Description:
EVENT_QUERY assigns the number of events to COUNT that have been posted to
the EVENT variable and not yet been removed by calling EVENT WAIT. When
STAT is present and the invocation is successful, it is assigned the value 0. If it
is present and the invocation fails, it is assigned a positive value and COUNT
is assigned the value —1.

Class:

Arguments:

Example:

(intent(IN)) Scalar of type EVENT_TYPE, defined in

ENV; shall not be coindexed.

(intent(out))Scalar integer with at least the precision

subroutine
EVENT

ISO_FORTRAN_
COUNT

of default integer.
STAT

(optional) Scalar default-kind integer variable.

program atomic
use iso_fortran_env
implicit none
type(event_type) ::
integer :: cnt
if (this_image() == 1) then
call event_query (event_value_has_been_set, cnt)
if (cnt > 0) write(*,*) "Value has been set"

event_value_has_been_set [*]

190

Standard:

The GNU Fortran Compiler

elseif (this_image() == 2) then
event post (event_value_has_been_set[1])
end if
end program atomic

TS 18508 or later

8.105 EXECUTE_COMMAND_LINE — Execute a shell command

Synopsis:

CALL EXECUTE_COMMAND_LINE (COMMAND [, WAIT, EXITSTAT, CMDSTAT,
CMDMSG 1)

Description:

Class:

Arguments:

Example:

EXECUTE_COMMAND_LINE runs a shell command, synchronously or
asynchronously.

The COMMAND argument is passed to the shell and executed (The shell is sh on
Unix systems, and cmd.exe on Windows.). If WAIT is present and has the value
false, the execution of the command is asynchronous if the system supports it;
otherwise, the command is executed synchronously using the C library’s system
call.

The three last arguments allow the user to get status information. After syn-
chronous execution, EXITSTAT contains the integer exit code of the command,
as returned by system. CMDSTAT is set to zero if the command line was executed
(whatever its exit status was). CMDMSG is assigned an error message if an error
has occurred.

Note that the system function need not be thread-safe. It is the responsibility
of the user to ensure that system is not called concurrently.

For asynchronous execution on supported targets, the POSIX posix_spawn
or fork functions are used. Also, a signal handler for the SIGCHLD signal is
installed.

Subroutine

COMMAND Shall be a default CHARACTER scalar.

WAIT (Optional) Shall be a default LOGICAL scalar.

EXITSTAT (Optional) Shall be an INTEGER of the default kind.

CMDSTAT (Optional) Shall be an INTEGER of the default kind.

CMDMSG (Optional) Shall be an CHARACTER scalar of the de-
fault kind.

program test_exec
integer :: i

call execute_command_line ("external_prog.exe", exitstat=i)
print *, "Exit status of extermal_prog.exe was ", i

call execute_command_line ("reindex_files.exe", wait=.false.)
print *, "Now reindexing files in the background"

end program test_exec

Chapter 8: Intrinsic Procedures 191

Notes:

Because this intrinsic is implemented in terms of the system function call, its
behavior with respect to signaling is processor dependent. In particular, on
POSIX-compliant systems, the SIGINT and SIGQUIT signals are ignored, and
SIGCHLD is blocked. As such, if the parent process is terminated, the child
process might not be terminated alongside.

Standard: Fortran 2008 and later
See also: Section 8.274 [SYSTEM], page 295,

8.106 EXIT — Exit the program with status.

Synopsis: CALL EXIT([STATUS])

Description:
EXIT causes immediate termination of the program with status. If status is
omitted it returns the canonical success for the system. All Fortran I/O units
are closed.

Class: Subroutine

Arguments:

STATUS Shall be an INTEGER of the default kind.

Return value:
STATUS is passed to the parent process on exit.

Example:

program test_exit
integer :: STATUS = 0
print *, 'This program is going to exit.'
call EXIT(STATUS)

end program test_exit

Standard: GNU extension

See also: Section 8.2 [ABORT], page 119,
Section 8.169 [KILL], page 231,

8.107 EXP — Exponential function

Synopsis: RESULT = EXP(X)

Description:
EXP(X) computes the base e exponential of X.

Class: Elemental function

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X.

192 The GNU Fortran Compiler

Example:
program test_exp
real :: x = 1.0
x = exp(x)
end program test_exp

Specific names:

Name Argument Return type Standard

EXP(X) REAL(4) X REAL(4) Fortran 77 and later
DEXP (X) REAL(8) X REAL(8) Fortran 77 and later
CEXP(X) COMPLEX (4) X COMPLEX (4) Fortran 77 and later
ZEXP (X) COMPLEX (8) X COMPLEX (8) GNU extension
CDEXP (X) COMPLEX(8) X COMPLEX (8) GNU extension

Standard: Fortran 77 and later, has overloads that are GNU extensions

8.108 EXPONENT — Exponent function

Synopsis: RESULT = EXPONENT (X)

Description:
EXPONENT (X) returns the value of the exponent part of X. If X is zero the value
returned is zero.

Class: Elemental function

Arguments:
X The type shall be REAL.

Return value:
The return value is of type default INTEGER.

Example:

program test_exponent
real :: x = 1.0
integer :: i
i = exponent(x)
print *, i
print *, exponent(0.0)
end program test_exponent

Standard: Fortran 90 and later

8.109 EXTENDS_TYPE_OF — Query dynamic type for extension

Synopsis: RESULT = EXTENDS_TYPE_OF (A, MOLD)

Description:
Query dynamic type for extension.

Class: Inquiry function

Arguments:
A Shall be an object of extensible declared type or un-
limited polymorphic.

Chapter 8: Intrinsic Procedures 193

MOLD Shall be an object of extensible declared type or un-
limited polymorphic.

Return value:
The return value is a scalar of type default logical. It is true if and only if the
dynamic type of A is an extension type of the dynamic type of MOLD.

Standard: Fortran 2003 and later
See also: Section 8.241 [SAME_TYPE_AS], page 275,

8.110 FDATE — Get the current time as a string

Synopsis:
CALL FDATE(DATE).
DATE = FDATE().

Description:
FDATE(DATE) returns the current date (using the same format as Section 8.86
[CTIME], page 177) in DATE. It is equivalent to CALL CTIME(DATE, TIMEQ)).
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Class: Subroutine, function

Arguments:

DATE The type shall be of type CHARACTER of the default
kind. It is an INTENT (OUT) argument. If the length of
this variable is too short for the date and time string
to fit completely, it is blank on procedure return.

Return value:
The current date and time as a string.

Ezample:

program test_fdate
integer(8) :: i, j

character (len=30) :: date
call fdate(date)
print *, 'Program started on ', date

do i = 1, 100000000 ! Just a delay
j=ixi-i

end do
call fdate(date)
print *, 'Program ended on ', date

end program test_fdate
Standard: GNU extension

See also: Section 8.87 [DATE_AND_TIME]|, page 178,
Section 8.86 [CTIME], page 177,

194 The GNU Fortran Compiler
8.111 FGET — Read a single character in stream mode from
stdin
Synopsis:
CALL FGET(C [, STATUS])
STATUS = FGET(C)
Description:
Read a single character in stream mode from stdin by bypassing normal for-
matted output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should
consider the use of new stream IO feature in new code for future portability.
See also Section 1.3.2 [Fortran 2003 status]|, page 3.
Class: Subroutine, function
Arguments:
C The type shall be CHARACTER and of default kind.
STATUS (Optional) status flag of type INTEGER. Returns 0
on success, -1 on end-of-file, and a system specific
positive error code otherwise.
Example:
PROGRAM test_fget
INTEGER, PARAMETER :: strlen =
INTEGER :: status, i = 1
CHARACTER (len=strlen) :: str =
WRITE (*,*) 'Enter text:'
DO
CALL fget(str(i:i), status)
if (status /= 0 .OR. i > strlen) exit
i=d+1
END DO
WRITE (*,*) TRIM(str)
END PROGRAM
Standard: GNU extension
See also: Section 8.112 [FGETC], page 194,

Section 8.117 [FPUT], page 198,
Section 8.118 [FPUTC], page 199,

8.112 FGETC — Read a single character in stream mode

Synopsis:

CALL FGETC(UNIT, C [, STATUS])
STATUS = FGETC(UNIT, C)

Chapter 8:

Intrinsic Procedures

Description:

Class:

Arguments:

Ezample:

Standard:

See also:

195

Read a single character in stream mode by bypassing normal formatted output.
Stream I/O should not be mixed with normal record-oriented (formatted or

unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only

one form can be used in any given program unit.

Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should
consider the use of new stream IO feature in new code for future portability.

See also Section 1.3.2 [Fortran 2003 status|, page 3.

Subroutine, function

UNIT The type shall be INTEGER.

C The type shall be CHARACTER and of default kind.

STATUS (Optional) status flag of type INTEGER. Returns 0 on
success, -1 on end-of-file and a system specific posi-
tive error code otherwise.

PROGRAM test_fgetc
INTEGER :: fd = 42, status
CHARACTER :: c

OPEN (UNIT=£d, FILE="/etC/passwd", ACTION="READ", STATUS = "OLD")
DO
CALL fgetc(fd, c, status)
IF (status /= 0) EXIT
call fput(c)
END DO
CLOSE (UNIT=£fd)
END PROGRAM

GNU extension

Section 8.111 [FGET], page 194,
Section 8.117 [FPUT], page 198,
Section 8.118 [FPUTC], page 199,

8.113 FINDLOC — Search an array for a value

Synopsis:

Description

RESULT = FINDLOC (ARRAY, VALUE, DIM [, MASK] [,KIND]
[,BACK])

RESULT = FINDLOC(ARRAY, VALUE, [, MASK] [,KIND]
[,BACK])

Determines the location of the element in the array with the value given in
the VALUE argument, or, if the DIM argument is supplied, determines the
locations of the elements equal to the VALUE argument element along each

196

Class:

Arguments:

Notes:

The GNU Fortran Compiler

row of the array in the DIM direction. If MASK is present, only the elements
for which MASK is .TRUE. are considered. If more than one element in the
array has the value VALUE, the location returned is that of the first such
element in array element order if the BACK is not present or if it is .FALSE..
If BACK is true, the location returned is that of the last such element. If the
array has zero size, or all of the elements of MASK are .FALSE., then the result
is an array of zeroes. Similarly, if DIM is supplied and all of the elements of
MASK along a given row are zero, the result value for that row is zero.

Transformational function

ARRAY Shall be an array of intrinsic type.

VALUE A scalar of intrinsic type that is in type conformance
with ARRAY.

DIM (Optional) Shall be a scalar of type INTEGER, with a

value between one and the rank of ARRAY, inclusive.
It may not be an optional dummy argument.

MASK (Optional) Shall be of type LOGICAL, and con-
formable with ARRAY.

KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

BACK (Optional) A scalar of type LOGICAL.

ARRAY can also be UNSIGNED.

Return value:

Standard:

See also:

If DIM is absent, the result is a rank-one array with a length equal to the rank
of ARRAY. If DIM is present, the result is an array with a rank one less than
the rank of ARRAY, and a size corresponding to the size of ARRAY with the
DIM dimension removed. If DIM is present and ARRAY has a rank of one,
the result is a scalar. If the optional argument KIND is present, the result is
an integer of kind KIND, otherwise it is of default kind.

Fortran 2008 and later

Section 8.196 [MAXLOC], page 247,
Section 8.204 [MINLOC], page 252,

8.114 FLOOR — Integer floor function

Synopsis:

RESULT = FLOOR(A [, KIND])

Description:

Class:

Arguments:

FLOOR(A) returns the greatest integer less than or equal to A.

Elemental function

A The type shall be REAL.
KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

Chapter 8: Intrinsic Procedures 197

Return value:
The return value is of type INTEGER(KIND) if KIND is present and of default-
kind INTEGER otherwise.

Example:

program test_floor
real :: x = 63.29
real :: y = -63.59
print *, floor(x) ! returns 63
print *, floor(y) ! returns -64
end program test_floor

Standard: Fortran 95 and later

See also: Section 8.62 [CEILING], page 160,
Section 8.212 [NINT], page 258,

8.115 FLUSH — Flush I/O unit(s)

Synopsis: CALL FLUSH(UNIT)

Description:
Flushes Fortran unit(s) currently open for output. Without the optional argu-
ment, all units are flushed, otherwise just the unit specified.

Class: Subroutine
Arguments:
UNIT (Optional) The type shall be INTEGER.
Notes: Beginning with the Fortran 2003 standard, there is a FLUSH statement that

should be preferred over the FLUSH intrinsic.

The FLUSH intrinsic and the Fortran 2003 FLUSH statement have identical effect:
they flush the runtime library’s I/O buffer so that the data becomes visible to
other processes. This does not guarantee that the data is committed to disk.

On POSIX systems, you can request that all data is transferred to the storage
device by calling the fsync function, with the POSIX file descriptor of the I/O
unit as argument (retrieved with GNU intrinsic FNUM). The following example
shows how:

! Declare the interface for POSIX fsync function
interface
function fsync (£d) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration
integer :: ret

! Opening unit 10
open (10,file="foo")

198 The GNU Fortran Compiler

! Perform I/0 on unit 10
|

! Flush and sync
flush(10)
ret = fsync(fnum(10))

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

Standard: GNU extension

8.116 FNUM — File number function

Synopsis: RESULT = FNUM(UNIT)

Description:
FNUM(UNIT) returns the POSIX file descriptor number corresponding to the
open Fortran I/O unit UNIT.

Class: Function

Arguments:
UNIT The type shall be INTEGER.

Return value:
The return value is of type INTEGER

Example:

program test_fnum
integer :: i
open (unit=10, status = "scratch")
i = fnum(10)
print *, i
close (10)
end program test_fnum

Standard: GNU extension

8.117 FPUT — Write a single character in stream mode to
stdout

Synopsis:
CALL FPUT(C [, STATUS])
STATUS = FPUT(C)

Description:
Write a single character in stream mode to stdout by bypassing normal for-
matted output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should

Chapter 8: Intrinsic Procedures

Class:

Arguments:

Ezxample:

Standard:

See also:

8.118 FPUTC — Write a single character in stream mode

Synopsis:

199

consider the use of new stream IO feature in new code for future portability.

See also Section 1.3.2 [Fortran 2003 status|, page 3.

Subroutine, function

C The type shall be CHARACTER and of default kind.

STATUS (Optional) status flag of type INTEGER. Returns 0 on
success, -1 on end-of-file and a system specific posi-
tive error code otherwise.

PROGRAM test_fput
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: i
DO i = 1, len_trim(str)
CALL fput(str(i:i))
END DO
END PROGRAM

GNU extension

Section 8.118 [FPUTC], page 199,
Section 8.111 [FGET], page 194,
Section 8.112 [FGETC], page 194,

CALL FPUTC(UNIT, C [, STATUS])
STATUS = FPUTC(UNIT, C)

Description:
Write a single character in stream mode by bypassing normal formatted output.
Stream I/O should not be mixed with normal record-oriented (formatted or

Class:

Arguments:

unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only

one form can be used in any given program unit.

Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should
consider the use of new stream IO feature in new code for future portability.

See also Section 1.3.2 [Fortran 2003 status]|, page 3.

Subroutine, function

UNIT The type shall be INTEGER.

C The type shall be CHARACTER and of default kind.

STATUS (Optional) status flag of type INTEGER. Returns 0 on
success, -1 on end-of-file and a system specific posi-
tive error code otherwise.

200 The GNU Fortran Compiler

Example:

PROGRAM test_fputc
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: fd = 42, i

OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
DO i =1, len_trim(str)
CALL fputc(fd, str(i:i))
END DO
CLOSE(£d)
END PROGRAM

Standard: GNU extension

See also: Section 8.117 [FPUT], page 198,
Section 8.111 [FGET], page 194,
Section 8.112 [FGETC], page 194,

8.119 FRACTION — Fractional part of the model
representation

Synopsis: Y = FRACTION (X)

Description:
FRACTION(X) returns the fractional part of the model representation of X.

Class: Elemental function

Arguments:
X The type of the argument shall be a REAL.

Return value:
The return value is of the same type and kind as the argument. The fractional
part of the model representation of X is returned; it is X * REAL (RADIX (X)) *x* (-
EXPONENT(X)).

Example:

program test_fraction

implicit none

real :: x

x = 178.1387e-4

print *, fraction(x), x * real(radix(x))x**(-exponent(x))
end program test_fraction

Standard: Fortran 90 and later

8.120 FREE — Frees memory

Synopsis: CALL FREE(PTR)

Description:
Frees memory previously allocated by MALLOC. The FREE intrinsic is an exten-
sion intended to be used with Cray pointers, and is provided in GNU Fortran
to allow user to compile legacy code. For new code using Fortran 95 pointers,
the memory de-allocation intrinsic is DEALLOCATE.

Chapter 8: Intrinsic Procedures 201

Class: Subroutine

Arguments:
PTR The type shall be INTEGER. It represents the location
of the memory that should be de-allocated.

Return value:
None

Example: See MALLOC for an example.
Standard: GNU extension
See also: Section 8.190 [MALLOC], page 244,

8.121 FSEEK — Low level file positioning subroutine

Synopsis: CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])

Description:
Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the OFFSET
is taken as an absolute value SEEK_SET, if set to 1, OFFSET is taken to be
relative to the current position SEEK_CUR, and if set to 2 relative to the end of
the file SEEK_END. On error, STATUS is set to a nonzero value. If STATUS
the seek fails silently.

This intrinsic routine is not fully backwards compatible with g77. In g77, the
FSEEK takes a statement label instead of a STATUS variable. If FSEEK is used
in old code, change

CALL FSEEK(UNIT, OFFSET, WHENCE, *label)

to

INTEGER :: status

CALL FSEEK(UNIT, OFFSET, WHENCE, status)

IF (status /= 0) GOTO label
Please note that GNU Fortran provides the Fortran 2003 Stream facility. Pro-
grammers should consider the use of new stream IO feature in new code for
future portability. See also Section 1.3.2 [Fortran 2003 status|, page 3.

Class: Subroutine

Arguments:
UNIT Shall be a scalar of type INTEGER.
OFFSET Shall be a scalar of type INTEGER.
WHENCE Shall be a scalar of type INTEGER. Its value shall be
either 0, 1 or 2.
STATUS (Optional) shall be a scalar of type INTEGER(4).

Ezample:
PROGRAM test_fseek
INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
INTEGER :: fd, offset, ierr

ierr
offset

202

Standard:

See also:

fd = 10

OPEN(UNIT=fd, FILE="fseek.test")

CALL FSEEK(fd, offset, SEEK_SET, ierr)
print *, FTELL(fd), ierr

CALL FSEEK(fd, O, SEEK_END, ierr)
print *, FTELL(fd), ierr

CALL FSEEK(fd, O, SEEK_SET, ierr)
print *, FTELL(fd), ierr

CLOSE(UNIT=£fd)

END PROGRAM

GNU extension

Section 8.123 [FTELL], page 203,

8.122 FSTAT — Get file status

Synopsis:

CALL FSTAT(UNIT, VALUES [, STATUS])
STATUS = FSTAT(UNIT, VALUES)

Description:
FSTAT is identical to Section 8.270 [STAT], page 292, except that information
about an already opened file is obtained.

The elements in VALUES are the same as described by Section 8.270 [STAT],
page 292.

Class:

Arguments:

Example:
Standard:

See also:

The GNU Fortran Compiler

! move to OFFSET

! move to end

! move to beginning

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Subroutine, function

UNIT An open I/O unit number of type INTEGER.

VALUES The type shall be INTEGER, DIMENSION(13) of either
kind 4 or kind 8.

STATUS (Optional) status flag of type INTEGER of kind 2 or

larger. Returns 0 on success and a system specific

error code otherwise.

See Section 8.270 [STAT], page 292, for an example.

GNU extension

To stat a link:

Section 8.188 [LSTAT], page 242,
To stat a file:

Section 8.270 [STAT], page 292,

Chapter 8: Intrinsic Procedures 203

8.123 FTELL — Current stream position

Synopsis:
CALL FTELL(UNIT, OFFSET)
OFFSET = FTELL (UNIT)
Description:
Retrieves the current position within an open file.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Class: Subroutine, function
Arguments:
OFFSET Shall of type INTEGER.
UNIT Shall of type INTEGER.

Return value:
In either syntax, OFFSET is set to the current offset of unit number UNIT, or
to —1 if the unit is not currently open.

Ezample:

PROGRAM test_ftell
INTEGER :: i
OPEN(10, FILE="temp.dat")
CALL ftell(10,i)
WRITE(*,*) i

END PROGRAM

Standard: GNU extension
See also: Section 8.121 [FSEEK], page 201,

8.124 GAMMA — Gamma function
Synopsis: X = GAMMA (X)

Description:
GAMMA (X) computes Gamma (I') of X. For positive, integer values of X the
Gamma function simplifies to the factorial function I'(z) = (z — 1)\

I'(z) :/ t* et dt
0

Class: Elemental function
Arguments:
X Shall be of type REAL and neither zero nor a negative
integer.

Return value:
The return value is of type REAL of the same kind as X.

204

Example:

The GNU Fortran Compiler

program test_gamma

real :: x = 1.0

x = gamma(x) ! returns 1.0
end program test_gamma

Specific names:

Name Argument Return type Standard
DGAMMA (X) REAL(8) X REAL(8) GNU extension

Standard: Fortran 2008 and later

See also: Logarithm of the Gamma function:

Section 8.185 [LOG_GAMMA], page 241,

8.125 GERROR — Get last system error message

Synopsis:

Description:

Class:

Arguments:

Ezample:

Standard:

See also:

CALL GERROR (RESULT)

Returns the system error message corresponding to the last system error. This
resembles the functionality of strerror(3) in C.

Subroutine

RESULT Shall be of type CHARACTER and of default kind.

PROGRAM test_gerror
CHARACTER(1en=100) :: msg
CALL gerror (msg)
WRITE(*,*) msg

END PROGRAM

GNU extension

Section 8.152 [IERRNO], page 222,
Section 8.221 [PERROR], page 264,

8.126 GETARG — Get command line arguments

Synopsis:

Description:

Class:

CALL GETARG(POS, VALUE)

Retrieve the POS-th argument that was passed on the command line when the
containing program was invoked.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. In new code, programmers should consider the use of the Section 8.128
[GET_-COMMAND_ARGUMENT], page 206, intrinsic defined by the Fortran
2003 standard.

Subroutine

Chapter 8: Intrinsic Procedures 205

Arguments:
POS Shall be of type INTEGER and not wider than the
default integer kind; POS > 0
VALUE Shall be of type CHARACTER and of default kind.

Return value:
After GETARG returns, the VALUE argument holds the POSth command line
argument. If VALUE cannot hold the argument, it is truncated to fit the length
of VALUE. If there are less than POS arguments specified at the command
line, VALUE is filled with blanks. If POS = 0, VALUE is set to the name of
the program (on systems that support this feature).

Ezample:

PROGRAM test_getarg
INTEGER :: i
CHARACTER(len=32) :: arg

DO i = 1, iargc()
CALL getarg(i, arg)
WRITE (*,*) arg

END DO

END PROGRAM

Standard: GNU extension

See also: GNU Fortran 77 compatibility function:
Section 8.145 [IARGC], page 217,
Fortran 2003 functions and subroutines:
Section 8.127 [GET_COMMAND], page 205,
Section 8.128 [GET_-COMMAND_ARGUMENT], page 206,
Section 8.72 [COMMAND_ARGUMENT_COUNT], page 168,

8.127 GET_COMMAND — Get the entire command line

Synopsis: CALL GET_COMMAND ([COMMAND, LENGTH, STATUS])

Description:
Retrieve the entire command line that was used to invoke the program.

Class: Subroutine
Arguments:
COMMAND (Optional) shall be of type CHARACTER and of default
kind.
LENGTH (Optional) Shall be of type INTEGER and of default
kind.
STATUS (Optional) Shall be of type INTEGER and of default
kind.

Return value:
If COMMAND is present, stores the entire command line that was used to
invoke the program in COMMAND. If LENGTH is present, it is assigned the

length of the command line. If STATUS is present, it is assigned 0 upon success

206 The GNU Fortran Compiler

of the command, -1 if COMMAND is too short to store the command line, or
a positive value in case of an error.

Example:

PROGRAM test_get_command
CHARACTER (1len=255) :: cmd
CALL get_command (cmd)
WRITE (*,*) TRIM(cmd)

END PROGRAM

Standard: Fortran 2003 and later

See also: Section 8.128 [GET_COMMAND_ARGUMENT], page 206,
Section 8.72 [COMMAND_ARGUMENT_COUNT], page 168,

8.128 GET_COMMAND_ARGUMENT — Get command line arguments

Synopsis: CALL GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH, STATUS])

Description:
Retrieve the NUMBER-th argument that was passed on the command line when
the containing program was invoked.

Class: Subroutine
Arguments:
NUMBER Shall be a scalar of type INTEGER and of default kind,
NUMBER > 0
VALUE (Optional) Shall be a scalar of type CHARACTER and

of default kind.

LENGTH (Optional) Shall be a scalar of type INTEGER and of
default kind.

STATUS (Optional) Shall be a scalar of type INTEGER and of
default kind.

Return value:
After GET_COMMAND_ARGUMENT returns, the VALUE argument holds the NUM-
BER-th command line argument. If VALUE cannot hold the argument, it
is truncated to fit the length of VALUE. If there are less than NUMBER
arguments specified at the command line, VALUE is filled with blanks. If
NUMBER = 0, VALUE is set to the name of the program (on systems that
support this feature). The LENGTH argument contains the length of the NUM-
BER-th command line argument. If the argument retrieval fails, STATUS is
a positive number; if VALUE contains a truncated command line argument,

STATUS is -1; and otherwise the STATUS is zero.

Ezample:

PROGRAM test_get_command_argument
INTEGER :: i
CHARACTER(1len=32) :: arg

i=0
DO

Chapter 8: Intrinsic Procedures 207

CALL get_command_argument(i, arg)
IF (LEN_TRIM(arg) == 0) EXIT

WRITE (*,*) TRIM(arg)
i= i+l
END DO
END PROGRAM
Standard: Fortran 2003 and later

See also: Section 8.127 [GET_-COMMAND], page 205,
Section 8.72 [COMMAND_ARGUMENT_COUNT], page 168,

8.129 GETCWD — Get current working directory

Synopsis:
CALL GETCWD(C [, STATUS])
STATUS = GETCWD(C)
Description:
Get current working directory.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Class: Subroutine, function
Arguments:
C The type shall be CHARACTER and of default kind.
STATUS (Optional) status flag. Returns 0 on success, a system
specific and nonzero error code otherwise.
Ezample:

PROGRAM test_getcwd
CHARACTER (1en=255) :: cwd
CALL getcwd(cwd)
WRITE(*,*) TRIM(cwd)

END PROGRAM

Standard: GNU extension
See also: Section 8.64 [CHDIR], page 161,

8.130 GETENV — Get an environmental variable

Synopsis: CALL GETENV(NAME, VALUE)

Description:
Get the VALUE of the environmental variable NAME.
This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. In new code, programmers should consider the use of the Section 8.131
[GET_ENVIRONMENT_VARIABLE], page 208, intrinsic defined by the For-
tran 2003 standard.

Note that GETENV need not be thread-safe. It is the responsibility of the user
to ensure that the environment is not being updated concurrently with a call
to the GETENV intrinsic.

208 The GNU Fortran Compiler

Class: Subroutine

Arguments:
NAME Shall be of type CHARACTER and of default kind.
VALUE Shall be of type CHARACTER and of default kind.

Return value:
Stores the value of NAME in VALUE. If VALUE is not large enough to hold
the data, it is truncated. If NAME is not set, VALUE is filled with blanks.

Ezample:

PROGRAM test_getenv
CHARACTER (1en=255) :: homedir
CALL getenv("HOME", homedir)
WRITE (*,*) TRIM(homedir)

END PROGRAM

Standard: GNU extension
See also: Section 8.131 [GET_-ENVIRONMENT_VARIABLE], page 208,

8.131 GET_ENVIRONMENT_VARIABLE — Get an environmental
variable

Synopsis: CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
TRIM_NAME)

Description:
Get the VALUE of the environmental variable NAME.

Note that GET_ENVIRONMENT_VARIABLE need not be thread-safe. It is the re-
sponsibility of the user to ensure that the environment is not being updated
concurrently with a call to the GET_ENVIRONMENT _VARIABLE intrinsic.

Class: Subroutine
Arguments:
NAME Shall be a scalar of type CHARACTER and of default
kind.
VALUE (Optional) Shall be a scalar of type CHARACTER and

of default kind.

LENGTH (Optional) Shall be a scalar of type INTEGER and of
default kind.

STATUS (Optional) Shall be a scalar of type INTEGER and of
default kind.

TRIM_NAME(Optional) Shall be a scalar of type LOGICAL and of
default kind.

Return value:
Stores the value of NAME in VALUE. If VALUE is not large enough to hold
the data, it is truncated. If NAME is not set, VALUE is filled with blanks.
Argument LENGTH contains the length needed for storing the environment
variable NAME or zero if it is not present. STATUS is -1 if VALUE is present

Chapter 8: Intrinsic Procedures 209

but too short for the environment variable; it is 1 if the environment variable
does not exist and 2 if the processor does not support environment variables;
in all other cases STATUS is zero. If TRIM_NAME is present with the value
.FALSE., the trailing blanks in NAME are significant; otherwise they are not
part of the environment variable name.

Ezample:

PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL get_environment_variable("HOME", homedir)
WRITE (*,*) TRIM(homedir)

END PROGRAM

Standard: Fortran 2003 and later

8.132 GETGID — Group ID function

Synopsis: RESULT = GETGID()

Description:
Returns the numerical group ID of the current process.

Class: Function

Return value:
The return value of GETGID is an INTEGER of the default kind.

Ezample: See GETPID for an example.
Standard: GNU extension

See also: Section 8.134 [GETPID], page 210,
Section 8.136 [GETUID]|, page 211,

8.133 GETLOG — Get login name

Synopsis: CALL GETLOG(C)

Description:
Gets the username under which the program is running.

Class: Subroutine

Arguments:
C Shall be of type CHARACTER and of default kind.

Return value:
Stores the current user name in C. (On systems where POSIX functions
geteuid and getpwuid are not available, and the getlogin function is not
implemented either, this returns a blank string.)

Example:

PROGRAM TEST_GETLOG
CHARACTER(32) :: login
CALL GETLOG(login)
WRITE(*,*) login

END PROGRAM

210 The GNU Fortran Compiler

Standard: GNU extension
See also: Section 8.136 [GETUID], page 211,

8.134 GETPID — Process ID function

Synopsis: RESULT = GETPID()

Description:
Returns the numerical process identifier of the current process.

Class: Function

Return value:
The return value of GETPID is an INTEGER of the default kind.

Ezample:
program info
print *, "The current process ID is ", getpid()
print *, "Your numerical user ID is ", getuid()
print *, "Your numerical group ID is ", getgid()

end program info
Standard: GNU extension

See also: Section 8.132 [GETGID], page 209,
Section 8.136 [GETUID]|, page 211,

8.135 GET_TEAM — Get the handle of a team

Synopsis: RESULT = GET_TEAM([LEVEL])

Description:

Returns the handle of the current team, if LEVEL is not given. Or the team
specified by LEVEL, where LEVEL is one of the constants INITIAL_TEAM,
PARENT_TEAM or CURRENT_TEAM from the intrinsic module ISO_FORTRAN_ENV.
Calling the function with PARENT_TEAM while being on the initial team, returns
a handle to the initial team. This ensures that always a valid team is returned,
given that team handles can neither be checked for validity nor compared with

each other or null.
Class: Transformational function

Return value:

An opaque handle of TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.

Ezample:
program info
use, intrinsic :: iso_fortran_env
type(team_type) :: init, curr, par, nt

init = get_team()
curr = get_team(current_team) ! init equals curr here
form team(1l, nt)
change team(nt)
curr = get_team() ! or get_team(current_team)

Chapter 8: Intrinsic Procedures 211

par = get_team(parent_team) ! par equals init here
end team
end program info

Standard: Fortran 2018 or later

See also: Section 8.281 [THIS_.IMAGE], page 300,
Section 9.1 ISO_.FORTRAN_ENV], page 311,

8.136 GETUID — User ID function

Synopsis: RESULT = GETUID()

Description:
Returns the numerical user ID of the current process.

Class: Function

Return value:
The return value of GETUID is an INTEGER of the default kind.

Ezxample: See GETPID for an example.
Standard: GNU extension

See also: Section 8.134 [GETPID], page 210,
Section 8.133 [GETLOG], page 2009,

8.137 GMTIME — Convert time to GMT info

Synopsis: CALL GMTIME(TIME, VALUES)

Description:
Given a system time value TIME (as provided by the Section 8.282 [TIME],
page 301, intrinsic), fills VALUES with values extracted from it appropriate to
the UTC time zone (Universal Coordinated Time, also known in some countries
as GMT, Greenwich Mean Time), using gmtime(3).

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. In new code, programmers should consider the use of the Section 8.87
[DATE_AND_TIME], page 178, intrinsic defined by the Fortran 95 standard.

Class: Subroutine

Arguments:
TIME An INTEGER scalar expression corresponding to a sys-
tem time, with INTENT(IN).
VALUES A default INTEGER array with 9 elements, with
INTENT (OUT).

Return value:
The elements of VALUES are assigned as follows:
1. Seconds after the minute, range 0-59 or 061 to allow for leap seconds

2. Minutes after the hour, range 0-59

212 The GNU Fortran Compiler

Hours past midnight, range 0—23

Day of month, range 1-31

Number of months since January, range 0-11
Years since 1900

Number of days since Sunday, range 0-6

Days since January 1, range 0-365

© 00 NS oW

Daylight savings indicator: positive if daylight savings is in effect, zero if
not, and negative if the information is not available.

Standard: GNU extension

See also: Section 8.87 [DATE_AND_TIME], page 178,
Section 8.86 [CTIME], page 177,
Section 8.189 [LTIME], page 243,
Section 8.282 [TIME], page 301,
Section 8.283 [TIMES], page 301,

8.138 HOSTNM — Get system host name

Synopsis:
CALL HOSTNM(C [, STATUS])
STATUS = HOSTNM(NAME)
Description:
Retrieves the host name of the system on which the program is running.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Class: Subroutine, function
Arguments:

C Shall of type CHARACTER and of default kind.
STATUS (Optional) status flag of type INTEGER. Returns 0 on
success, or a system specific error code otherwise.

Return value:
In either syntax, NAME is set to the current hostname if it can be obtained,
or to a blank string otherwise.

Standard: GNU extension

8.139 HUGE — Largest number of a kind

Synopsis: RESULT = HUGE (X)

Description:
HUGE (X) returns the largest number that is not an infinity in the model of the
type of X.

Class: Inquiry function

Chapter 8: Intrinsic Procedures 213

Arguments:
X Shall be of type REAL, INTEGER or UNSIGNED.

Return value:
The return value is of the same type and kind as X

Example:

program test_huge_tiny
print *, huge(0), huge(0.0), huge(0.0d0)
print *, tiny(0.0), tiny(0.0d0)

end program test_huge_tiny

Standard: Fortran 90 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

8.140 HYPOT — Euclidean distance function

Synopsis: RESULT = HYPOT(X, Y)

Description:
HYPOT (X,Y) is the Euclidean distance function. It is equal to v/ X? + Y2, with-
out undue underflow or overflow.

Class: FElemental function
Arguments:
X The type shall be REAL.
Y The type and kind type parameter shall be the same
as X.

Return value:
The return value has the same type and kind type parameter as X.

Ezample:

program test_hypot
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = hypot(x,y)

end program test_hypot

Standard: Fortran 2008 and later

8.141 IACHAR — Code in ASCII collating sequence

Synopsis: RESULT = IACHAR(C [, KIND])

Description:
TACHAR(C) returns the code for the ASCII character in the first character posi-
tion of C.

Class: Elemental function

Arguments:
C Shall be a scalar CHARACTER, with INTENT (IN)
KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

214 The GNU Fortran Compiler

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Example:
program test_iachar
integer i
i = iachar(' ')
end program test_iachar
Notes: See Section 8.149 [ICHAR], page 219, for a discussion of converting between

numerical values and formatted string representations.
Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later

See also: Section 8.5 [ACHAR], page 121,
Section 8.63 [CHARJ, page 160,
Section 8.149 [ICHAR], page 219,

8.142 TALL — Bitwise AND of array elements

Synopsis:
RESULT = TALL(ARRAY[, MASK])
RESULT = TALL (ARRAY, DIM[, MASK])
Description:
Reduces with bitwise AND the elements of ARRAY along dimension DIM if
the corresponding element in MASK is TRUE.
Class: Transformational function
Arguments:
ARRAY Shall be an array of type INTEGER or UNSIGNED
DIM (Optional) shall be a scalar of type INTEGER with a

value in the range from 1 to n, where n equals the
rank of ARRAY.

MASK (Optional) shall be of type LOGICAL and either be a
scalar or an array of the same shape as ARRAY.

Return value:
The result is of the same type as ARRAY.

If DIM is absent, a scalar with the bitwise ALL of all elements in ARRAY is
returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY,
and a shape similar to that of ARRAY with dimension DIM dropped is re-
turned.

Ezample:

PROGRAM test_iall
INTEGER(1) :: a(2)

a(1l

) = b'00100100"
a(2)

b'01101010"

Chapter 8: Intrinsic Procedures 215

! prints 00100000
PRINT '(b8.8)', IALL(a)
END PROGRAM

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.144 [TANY], page 216,
Section 8.159 [IPARITY], page 225,
Section 8.143 [IAND], page 215,

8.143 IAND — Bitwise logical and

Synopsis: RESULT = IAND(I, J)

Description:
Bitwise logical AND.

Class: Elemental function
Arguments:
1 The type shall be INTEGER, UNSIGNED or a boz-literal-
constant.
J The type shall be the same type as I with the same

kind type parameter or a boz-literal-constant. I and
J shall not both be boz-literal-constants.

Return value:
The return type is with the kind type parameter of the arguments. A boz-
literal-constant is converted to an INTEGER or UNSIGNED with the kind type
parameter of the other argument as-if a call to Section 8.155 [INT], page 223,
or Section 8.292 [UINT], page 306, respectively, occurred.

Example:

PROGRAM test_iand
INTEGER :: a, b
DATA a / Z'F' /, b/ Z2'3' /
WRITE (*,*) IAND(a, b)

END PROGRAM

Specific names:

Name Argument Return type Standard

IAND(A) INTEGER A INTEGER Fortran 90 and later
BIAND(A) INTEGER(1) A INTEGER(1) GNU extension
IIAND(A) INTEGER(2) A INTEGER (2) GNU extension
JIAND(A) INTEGER(4) A INTEGER(4) GNU extension
KIAND(A) INTEGER(8) A INTEGER(8) GNU extension

Standard: Fortran 90 and later, with boz-literal-constant Fortran 2008 and later, has over-
loads that are GNU extensions. Extension for UNSIGNED (see Section 5.1.34
[Unsigned integers|, page 67)

See also: Section 8.158 [IOR], page 225,
Section 8.151 [IEOR], page 221,

216 The GNU Fortran Compiler

Section 8.147 [IBITS], page 218,

Section 8.148 [IBSET], page 218,
Section 8.146 [IBCLR], page 217,
Section 8.214 [NOT], page 259,

8.144 IANY — Bitwise OR of array elements

Synopsis:
RESULT = IANY(ARRAY[, MASK])
RESULT = IANY (ARRAY, DIM[, MASK])
Description:
Reduces with bitwise OR (inclusive or) the elements of ARRAY along dimen-
sion DIM if the corresponding element in MASK is TRUE.
Class: Transformational function
Arguments:
ARRAY Shall be an array of type INTEGER or UNSIGNED
DIM (Optional) shall be a scalar of type INTEGER with a

value in the range from 1 to n, where n equals the
rank of ARRAY.

MASK (Optional) shall be of type LOGICAL and either be a
scalar or an array of the same shape as ARRAY.

Return value:
The result is of the same type as ARRAY.

If DIM is absent, a scalar with the bitwise OR of all elements in ARRAY is
returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY,
and a shape similar to that of ARRAY with dimension DIM dropped is re-
turned.

Ezample:
PROGRAM test_iany
INTEGER(1) :: a(2)

a(1)
a(2)

b'00100100"
b'01101010"

! prints 01101110
PRINT '(b8.8)', IANY(a)
END PROGRAM

Standard: Fortran 2008 and later, extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

See also: Section 8.159 [IPARITY], page 225,
Section 8.142 [TALL], page 214,
Section 8.158 [IOR], page 225,

Chapter 8: Intrinsic Procedures 217

8.145 IARGC — Get the number of command line arguments

Synopsis:

RESULT = TIARGC()

Description:

Class:

Arguments:

IARGC returns the number of arguments passed on the command line when the
containing program was invoked.

This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. In new code, programmers should consider the use of the Section 8.72

[COMMAND_ARGUMENT_COUNT], page 168, intrinsic defined by the For-
tran 2003 standard.

Function

None

Return value:

Example:
Standard:

See also:

The number of command line arguments, type INTEGER (4).
See Section 8.126 [GETARG], page 204,
GNU extension

GNU Fortran 77 compatibility subroutine:

Section 8.126 [GETARG], page 204,

Fortran 2003 functions and subroutines:

Section 8.127 [GET_-COMMAND], page 205,

Section 8.128 [GET_-COMMAND_ARGUMENT], page 206,
Section 8.72 [COMMAND_ARGUMENT_COUNT], page 168,

8.146 IBCLR — Clear bit

Synopsis:

RESULT = IBCLR(I, P0OS)

Description:

Class:

Arguments:

IBCLR returns the value of I with the bit at position POS set to zero.

Elemental function

I The type shall be INTEGER or UNSIGNED.
POS The type shall be INTEGER.

Return value:

The return value is of the same type as I.

Specific names:

Name Argument Return type Standard

IBCLR(A) INTEGER A INTEGER Fortran 90 and later
BBCLR(A) INTEGER(1) A INTEGER(1) GNU extension
IIBCLR(A) INTEGER(2) A INTEGER(2) GNU extension
JIBCLR(A) INTEGER(4) A INTEGER(4) GNU extension

KIBCLR(A) INTEGER(8) A INTEGER(8) GNU extension

218 The GNU Fortran Compiler

Standard: Fortran 90 and later, has overloads that are GNU extensions. Extension for
UNSIGNED (see Section 5.1.34 [Unsigned integers], page 67)

See also: Section 8.147 [IBITS], page 218,
Section 8.148 [IBSET], page 218,
Section 8.143 [IAND], page 215,
Section 8.158 [IOR], page 225,
Section 8.151 [IEOR], page 221,
Section 8.209 [MVBITS], page 256,

8.147 IBITS — Bit extraction

Synopsis: RESULT = IBITS(I, POS, LEN)

Description:
IBITS extracts a field of length LEN from I, starting from bit position POS
and extending left for LEN bits. The result is right-justified and the remaining
bits are zeroed. The value of POS+LEN must be less than or equal to the value
BIT_SIZE(I).

Class: Elemental function

Arguments:
1 The type shall be INTEGER or UNSIGNED.
POS The type shall be INTEGER.
LEN The type shall be INTEGER.

Return value:
The return value is of type as L

Specific names:

Name Argument Return type Standard

IBITS(A) INTEGER A INTEGER Fortran 90 and later
BBITS(A) INTEGER(1) A INTEGER(1) GNU extension
IIBITS(A) INTEGER(2) A INTEGER(2) GNU extension
JIBITS(A) INTEGER (4) A INTEGER(4) GNU extension
KIBITS(A) INTEGER(8) A INTEGER(8) GNU extension

Standard: Fortran 90 and later, has overloads that are GNU extensions. Extension for
UNSIGNED (see Section 5.1.34 [Unsigned integers], page 67)

See also: Section 8.52 [BIT_SIZE], page 153,
Section 8.146 [IBCLR], page 217,
Section 8.148 [IBSET], page 218,
Section 8.143 [IAND], page 215,
Section 8.158 [IOR], page 225,
Section 8.151 [IEOR], page 221,

8.148 IBSET — Set bit

Synopsis: RESULT = IBSET(I, P0OS)

Chapter 8: Intrinsic Procedures 219

Description:
IBSET returns the value of I with the bit at position POS set to one.

Class: Elemental function

Arguments:
I The type shall be INTEGER or UNSIGNED.
POS The type shall be INTEGER.

Return value:
The return value is of the same type as I.

Specific names:

Name Argument Return type Standard

IBSET(A) INTEGER A INTEGER Fortran 90 and later
BBSET (A) INTEGER(1) A INTEGER(1) GNU extension
IIBSET(A) INTEGER(2) A INTEGER (2) GNU extension
JIBSET(A) INTEGER(4) A INTEGER (4) GNU extension
KIBSET(A) INTEGER(8) A INTEGER(8) GNU extension

Standard: Fortran 90 and later, has overloads that are GNU extensions. Extension for
UNSIGNED (see Section 5.1.34 [Unsigned integers], page 67)

See also: Section 8.146 [IBCLR], page 217,
Section 8.147 [IBITS], page 218,
Section 8.143 [TAND], page 215,
Section 8.158 [IOR], page 225,
Section 8.151 [IEOR], page 221,
Section 8.209 [MVBITS], page 256,

8.149 ICHAR — Character-to-integer conversion function

Synopsis: RESULT = ICHAR(C [, KIND])

Description:
ICHAR(C) returns the code for the character in the first character position of
C in the system’s native character set. The correspondence between charac-
ters and their codes is not necessarily the same across different GNU Fortran
implementations.

Class: Elemental function

Arguments:
C Shall be a scalar CHARACTER, with INTENT (IN)
KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Ezample:

program test_ichar

220

The GNU Fortran Compiler

integer i
i = ichar(' ')
end program test_ichar

Specific names:

Notes:

Standard:

See also:

Name Argument Return type Standard
ICHAR(C) CHARACTER C INTEGER(4) Fortran 77 and later

No intrinsic exists to convert between a numeric value and a formatted character
string representation — for instance, given the CHARACTER value '154', obtaining
an INTEGER or REAL value with the value 154, or vice versa. Instead, this
functionality is provided by internal-file I/O, as in the following example:

program read_val
integer value
character(len=10) string, string?2
string = '154'

! Convert a string to a numeric value
read (string,'(I10)') value
print *, value

! Convert a value to a formatted string
write (string2,'(I10)') value
print *, string2

end program read_val

Fortran 77 and later, with KIND argument Fortran 2003 and later

Section 8.5 [ACHARJ, page 121,
Section 8.63 [CHARJ, page 160,
Section 8.141 TACHARJ, page 213,

8.150 IDATE — Get current local time subroutine
(day/month/year)

Synopsis:

CALL IDATE(VALUES)

Description:

Class:

Arguments:

IDATE(VALUES) Fills VALUES with the numerical values at the current local
time. The day (in the range 1-31), month (in the range 1-12), and year appear
in elements 1, 2, and 3 of VALUES, respectively. The year has four significant
digits.

This intrinsic routine is provided for backwards compatibility with GNU Fortran

77. In new code, programmers should consider the use of the Section 8.87
[DATE_AND_TIME], page 178, intrinsic defined by the Fortran 95 standard.

Subroutine

VALUES The type shall be INTEGER, DIMENSION(3) and the
kind shall be the default integer kind.

Return value:

Does not return anything.

Chapter 8: Intrinsic Procedures 221

Example:

program test_idate
integer, dimension(3) :: tarray
call idate(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_idate

Standard: GNU extension
See also: Section 8.87 [DATE_AND_TIME], page 178,

8.151 IEOR — Bitwise logical exclusive or

Synopsis: RESULT = IEOR(I, J)

Description:
IEOR returns the bitwise Boolean exclusive-OR of I and J.

Class: Elemental function

Arguments:
1 The type shall be INTEGER, UNSIGNED or a boz-literal-
constant.
J The type shall be the same type as I with the same
kind type parameter or a boz-literal-constant. I and
J shall not both be boz-literal-constants.

Return value:
The return type is with the kind type parameter of the arguments. A boz-
literal-constant is converted to an INTEGER or UNSIGNED with the kind type
parameter of the other argument as-if a call to Section 8.155 [INT], page 223,
or Section 8.292 [UINT], page 306, respectively, occurred.

Specific names:

Name Argument Return type Standard

IEOR(A) INTEGER A INTEGER Fortran 90 and later
BIEOR(A) INTEGER(1) A INTEGER(1) GNU extension
IIEOR(A) INTEGER(2) A INTEGER(2) GNU extension
JIEOR(A) INTEGER(4) A INTEGER (4) GNU extension
KIEOR(A) INTEGER(8) A INTEGER(8) GNU extension

Standard: Fortran 90 and later, with boz-literal-constant Fortran 2008 and later, has over-
loads that are GNU extensions. Extension for UNSIGNED (see Section 5.1.34
[Unsigned integers|, page 67)

See also: Section 8.158 [IOR], page 225,
Section 8.143 [TAND], page 215,
Section 8.147 [IBITS], page 218,
Section 8.148 [IBSET], page 218,
Section 8.146 [IBCLR], page 217,
Section 8.214 [NOT], page 259,

222 The GNU Fortran Compiler

8.152 IERRNO — Get the last system error number

Synopsis: RESULT = IERRNO()

Description:
Returns the last system error number, as given by the C errno variable.

Class: Function

Arguments:
None

Return value:
The return value is of type INTEGER and of the default integer kind.

Standard: GNU extension
See also: Section 8.221 [PERROR], page 264,

8.153 IMAGE_INDEX — Function that converts a cosubscript to
an image index

Synopsis: RESULT = IMAGE_INDEX (COARRAY, SUB)

Description:
Returns the image index belonging to a cosubscript.

Class: Inquiry function.

Arguments:
COARRAY Coarray of any type.
SUB default integer rank-1 array of a size equal to the
corank of COARRAY.

Return value:
Scalar default integer with the value of the image index that corresponds to the
cosubscripts. For invalid cosubscripts the result is zero.

Example:

INTEGER :: array[2,-1:4,8,%]
! Writes 28 (or O if there are fewer than 28 images)
WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])

Standard: Fortran 2008 and later

See also: Section 8.281 [THIS_.IMAGE], page 300,
Section 8.216 [NUM_IMAGES], page 260,

8.154 INDEX — Position of a substring within a string

Synopsis: RESULT = INDEX (STRING, SUBSTRING [, BACK [, KIND]])

Description:
Returns the position of the start of the first occurrence of string SUBSTRING
as a substring in STRING, counting from one. If SUBSTRING is not present
in STRING, zero is returned. If the BACK argument is present and true, the
return value is the start of the last occurrence rather than the first.

Chapter 8: Intrinsic Procedures 223

Class: Elemental function

Arguments:
STRING Shall be a scalar CHARACTER, with INTENT (IN)
SUBSTRING Shall be a scalar CHARACTER, with INTENT (IN)

BACK (Optional) Shall be a scalar LOGICAL, with
INTENT (IN)
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Specific names:
Name Argument Return Standard

type
INDEX (STRING,SUBSTRING) CHARACTER INTEGER(4) Fortran 77 and later
Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later

See also: Section 8.243 [SCAN], page 276,
Section 8.298 [VERIFY], page 309,

8.155 INT — Convert to integer type

Synopsis: RESULT = INT(A [, KIND))

Description:
Convert to integer type

Class: Elemental function, extension for UNSIGNED (see Section 5.1.34 [Unsigned inte-
gers], page 67).

Arguments:
A Shall be of type INTEGER, REAL, COMPLEX or UNSIGNED
or a boz-literal-constant.

KIND (Optional) A scalar INTEGER constant expression in-
dicating the kind parameter of the result.

Return value:
These functions return a INTEGER variable or array under the following rules:

(A) If A is of type INTEGER, INT(A) = A

(B) If A is of type REAL and |A| < 1, INT(A) equals 0. If |A| > 1, then
INT(A) is the integer whose magnitude is the largest integer that
does not exceed the magnitude of A and whose sign is the same as
the sign of A.

(C) If A is of type COMPLEX, rule B is applied to the real part of A.

(D) If A is of type UNSIGNED and 0 < A < HUGE(A), INT(A) = A. Out-
side that range, the result is interpreted using two’s complement.

224 The GNU Fortran Compiler

Example:

program test_int
integer :: i = 42
complex :: z = (-3.7, 1.0)
print *, int(i)
print *, int(z), int(z,8)
end program

Specific names:

Name Argument Return type Standard

INT(A) REAL(4) A INTEGER Fortran 77 and later
IFIX(A) REAL(4) A INTEGER Fortran 77 and later
IDINT(A) REAL(8) A INTEGER Fortran 77 and later

Standard: Fortran 77 and later, with boz-literal-constant Fortran 2008 and later.

8.156 INT2 — Convert to 16-bit integer type

Synopsis: RESULT = INT2(A)

Description:
Convert to a KIND=2 integer type. This is equivalent to the standard INT intrin-
sic with an optional argument of KIND=2, and is only included for backwards

compatibility.
Class: FElemental function
Arguments:
A Shall be of type INTEGER, REAL, or COMPLEX.

Return value:
The return value is a INTEGER(2) variable.

Standard: GNU extension

See also: Section 8.155 [INT], page 223,
Section 8.157 [INTS8], page 224,

8.157 INT8 — Convert to 64-bit integer type

Synopsis: RESULT = INT8(A)

Description:
Convert to a KIND=8 integer type. This is equivalent to the standard INT intrin-
sic with an optional argument of KIND=8, and is only included for backwards

compatibility.
Class: Elemental function
Arguments:
A Shaﬂlxzoftype INTEGER, REAL, or COMPLEX.

Return value:
The return value is a INTEGER(8) variable.

Standard: GNU extension

Chapter 8: Intrinsic Procedures 225

See also: Section 8.155 [INT], page 223,
Section 8.156 [INT2], page 224,

8.158 IOR — Bitwise logical or

Synopsis: RESULT = IOR(I, J)

Description:
IOR returns the bitwise Boolean inclusive-OR of I and J.

Class: Elemental function

Arguments:
I The type shall be INTEGER, UNSIGNED or a boz-literal-
constant.
J The type shall be the same type as I with the same
kind type parameter or a boz-literal-constant. I and
J shall not both be boz-literal-constants.

Return value:
The return type is INTEGER with the kind type parameter of the arguments. A
boz-literal-constant is converted to an INTEGER or UNSIGNED with the kind type
parameter of the other argument as-if a call to Section 8.155 [INT], page 223,
or Section 8.292 [UINT], page 306, respectively, occurred.

Specific names:

Name Argument Return type Standard

IOR(A) INTEGER A INTEGER Fortran 90 and later
BIOR(A) INTEGER(1) A INTEGER(1) GNU extension
IIOR(A) INTEGER(2) A INTEGER(2) GNU extension
JIOR(A) INTEGER(4) A INTEGER(4) GNU extension
KIOR(A) INTEGER(8) A INTEGER(8) GNU extension

Standard: Fortran 90 and later, with boz-literal-constant Fortran 2008 and later, has over-
loads that are GNU extensions. Extension for UNSIGNED (see Section 5.1.34
[Unsigned integers|, page 67)

See also: Section 8.151 [IEOR], page 221,
Section 8.143 [TAND], page 215,
Section 8.147 [IBITS], page 218,
Section 8.148 [IBSET], page 218,
Section 8.146 [IBCLR], page 217,
Section 8.214 [NOT], page 259,

8.159 IPARITY — Bitwise XOR of array elements

Synopsis:
RESULT = IPARITY (ARRAY[, MASK])
RESULT = IPARITY(ARRAY, DIM[, MASK])

Description:
Reduces with bitwise XOR (exclusive or) the elements of ARRAY along dimen-
sion DIM if the corresponding element in MASK is TRUE.

226

Class:

Arguments:

The GNU Fortran Compiler

Transformational function

ARRAY Shall be an array of type INTEGER or UNSIGNED.

DIM (Optional) shall be a scalar of type INTEGER with a
value in the range from 1 to n, where n equals the
rank of ARRAY.

MASK (Optional) shall be of type LOGICAL and either be a
scalar or an array of the same shape as ARRAY.

Return value:

Ezample:

Standard:

See also:

The result is of the same type as ARRAY.

If DIM is absent, a scalar with the bitwise XOR of all elements in ARRAY is
returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY,
and a shape similar to that of ARRAY with dimension DIM dropped is re-
turned.

PROGRAM test_iparity
INTEGER(1) :: a(2)

a(1)
a(2)

int(b'00100100', 1)
int(b'01101010', 1)

! prints 01001110
PRINT '(b8.8)', IPARITY(a)
END PROGRAM

Fortran 2008 and later. Extension for UNSIGNED (see Section 5.1.34 [Unsigned
integers|, page 67)

Section 8.144 [IANY], page 216,

Section 8.142 [TALL], page 214,
[
[

Section 8.151 [IEOR], page 221,
Section 8.220 [PARITY], page 263,

8.160 IRAND — Integer pseudo-random number

Synopsis:

RESULT = IRAND(I)

Description:

Class:

IRAND(FLAG) returns a pseudo-random number from a uniform distribution
between 0 and a system-dependent limit (which is in most cases 2147483647).
If FLAG is 0, the next number in the current sequence is returned; if FLAG is
1, the generator is restarted by CALL SRAND(O0); if FLAG has any other value,
it is used as a new seed with SRAND.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. It implements a simple modulo generator as provided by g77. For new code,
one should consider the use of Section 8.231 [RANDOM_NUMBER], page 269,

as it implements a superior algorithm.

Function

Chapter 8: Intrinsic Procedures 227

Arguments:
1 Shall be a scalar INTEGER of kind 4.

Return value:
The return value is of INTEGER (kind=4) type.

Ezample:

program test_irand
integer,parameter :: seed = 86456

call srand(seed)

print *, irand(), irand(), irand(), irand()

print *, irand(seed), irand(), irand(), irand()
end program test_irand

Standard: GNU extension

8.161 IS_CONTIGUOUS — Test whether an array is contiguous

Synopsis: RESULT = IS_CONTIGUOUS (ARRAY)

Description:
IS_CONTIGUOUS tests whether an array is contiguous.

Class: Inquiry function

Arguments:
ARRAY Shall be an array of any type.

Return value:
Returns a LOGICAL of the default kind, which is . TRUE. if ARRAY is contiguous
and false otherwise.

Example:
program test
integer :: a(10)
a=[1,2,3,4,5,6,7,8,9,10]

call sub (a) ! every element, is contiguous
call sub (a(::2)) ! every other element, is noncontiguous
contains
subroutine sub (x)
integer :: x(:)

if (is_contiguous (x)) then
write (*,*) 'X is contiguous'
else
write (*,*) 'X is not contiguous'
end if
end subroutine sub
end program test

Standard: Fortran 2008 and later

8.162 IS_IOSTAT_END — Test for end-of-file value

Synopsis: RESULT = IS_IOSTAT_END(I)

228 The GNU Fortran Compiler

Description:
IS_IOSTAT_END tests whether an variable has the value of the I/O status “end of
file”. The function is equivalent to comparing the variable with the IOSTAT _END
parameter of the intrinsic module ISO_FORTRAN_ENV.

Class: Elemental function

Arguments:
1 Shall be of the type INTEGER.

Return value:
Returns a LOGICAL of the default kind, which is .TRUE. if I has the value
that indicates an end of file condition for I0STAT= specifiers, and is .FALSE.
otherwise.

Example:

PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i
OPEN(88, FILE='test.dat')
READ(88, *, IOSTAT=stat) i
IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
END PROGRAM

Standard: Fortran 2003 and later

8.163 IS_IOSTAT_EOR — Test for end-of-record value

Synopsis: RESULT = IS_IOSTAT_EOR(I)

Description:
IS_IOSTAT_EOR tests whether an variable has the value of the I/O status “end of
record”. The function is equivalent to comparing the variable with the IOSTAT_
EOR parameter of the intrinsic module ISO_FORTRAN_ENV.

Class: Elemental function

Arguments:
I Shall be of the type INTEGER.

Return value:
Returns a LOGICAL of the default kind, which is .TRUE. if I has the value
that indicates an end of file condition for IOSTAT= specifiers, and is .FALSE.
otherwise.

Example:

PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i(50)
OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
READ(88, IOSTAT=stat) i
IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
END PROGRAM

Standard: Fortran 2003 and later

Chapter 8: Intrinsic Procedures 229

8.164 ISATTY — Whether a unit is a terminal device

Synopsis:

RESULT = ISATTY(UNIT)

Description:

Class:

Arguments:

Determine whether a unit is connected to a terminal device.

Function

UNIT Shall be a scalar INTEGER.

Return value:

Example:

Standard:

See also:

Returns .TRUE. if the UNIT is connected to a terminal device, .FALSE. other-
wise.

PROGRAM test_isatty
INTEGER (kind=1) :: unit
DO unit = 1, 10
write(*,*) isatty(unit=unit)
END DO
END PROGRAM

GNU extension
Section 8.289 [TTYNAM], page 305,

8.165 ISHFT — Shift bits

Synopsis:

RESULT = ISHFT(I, SHIFT)

Description:

Class:

Arguments:

ISHFT returns a value corresponding to I with all of the bits shifted SHIFT
places. A value of SHIF'T greater than zero corresponds to a left shift, a value
of zero corresponds to no shift, and a value less than zero corresponds to a right
shift. If the absolute value of SHIF'T is greater than BIT_SIZE(I), the value
is undefined. Bits shifted out from the left end or right end are lost; zeros are
shifted in from the opposite end.

Elemental function

1 The type shall be INTEGER or UNSIGNED.
SHIFT The type shall be INTEGER.

Return value:

The return value is of type of I.

Specific names:

Name Argument Return type Standard

ISHFT(A) INTEGER A INTEGER Fortran 90 and later
BSHFT(A) INTEGER(1) A INTEGER(1) GNU extension
IISHFT(A) INTEGER(2) A INTEGER(2) GNU extension
JISHFT(A) INTEGER(4) A INTEGER(4) GNU extension

KISHFT(A) INTEGER(8) A INTEGER(8) GNU extension

230 The GNU Fortran Compiler

Standard: Fortran 90 and later, has overloads that are GNU extensions. Extension for
UNSIGNED (see Section 5.1.34 [Unsigned integers], page 67)

See also: Section 8.166 [ISHFTC], page 230,

8.166 ISHFTC — Shift bits circularly

Synopsis: RESULT = ISHFTC(I, SHIFT [, SIZE])

Description:
ISHFTC returns a value corresponding to I with the rightmost SIZE bits shifted
circularly SHIFT places; that is, bits shifted out one end are shifted into the
opposite end. A value of SHIF'T greater than zero corresponds to a left shift,
a value of zero corresponds to no shift, and a value less than zero corresponds
to a right shift. The absolute value of SHIFT must be less than SIZE. If the
SIZE argument is omitted, it is taken to be equivalent to BIT_SIZE(I).

Class: Elemental function

Arguments:
1 The type shall be INTEGER or UNSIGNED.
SHIFT The type shall be INTEGER.
SIZE (Optional) The type shall be INTEGER; the value must
be greater than zero and less than or equal to BIT_
SIZE(I).

Return value:
The return value is of the same type as I.

Specific names:

Name Argument Return type Standard

ISHFTC(A) INTEGER A INTEGER Fortran 90 and later
BSHFTC(A) INTEGER(1) A INTEGER (1) GNU extension
IISHFTC(A) INTEGER(2) A INTEGER(2) GNU extension
JISHFTC(A) INTEGER(4) A INTEGER (4) GNU extension
KISHFTC(A) INTEGER(8) A INTEGER(8) GNU extension

Standard: Fortran 90 and later, has overloads that are GNU extensions. Extension for
UNSIGNED (see Section 5.1.34 [Unsigned integers|, page 67)

See also: Section 8.165 [ISHFT], page 229,

8.167 ISNAN — Test for a NalN

Synopsis: ISNAN(X)

Description:
ISNAN tests whether a floating-point value is an IEEE Not-a-Number (NaN).

Class: Elemental function

Arguments:
X Variable of the type REAL.

Chapter 8: Intrinsic Procedures 231

Return value:
Returns a default-kind LOGICAL. The returned value is TRUE if X is a NaN and
FALSE otherwise.

Ezample:

program test_nan
implicit none

real :: x
x = -1.0
x = sqrt(x)

if (isnan(x)) stop '"x" is a NaN'
end program test_nan

Standard: GNU extension

8.168 ITIME — Get current local time subroutine
(hour /minutes/seconds)

Synopsis: CALL ITIME(VALUES)

Description:
ITIME(VALUES) Fills VALUES with the numerical values at the current local
time. The hour (in the range 1-24), minute (in the range 1-60), and seconds (in
the range 1-60) appear in elements 1, 2, and 3 of VALUES, respectively.
This intrinsic routine is provided for backwards compatibility with GNU Fortran

77. In new code, programmers should consider the use of the Section 8.87
[DATE_AND_TIME], page 178, intrinsic defined by the Fortran 95 standard.

Class: Subroutine

Arguments:
VALUES The type shall be INTEGER, DIMENSION(3) and the
kind shall be the default integer kind.

Return value:
Does not return anything.

Ezample:

program test_itime
integer, dimension(3) :: tarray
call itime(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_itime

Standard: GNU extension
See also: Section 8.87 [DATE_AND_TIME], page 178,

8.169 KILL — Send a signal to a process

Synopsis:
CALL KILL(PID, SIG [, STATUS])
STATUS = KILL(PID, SIG)

232

The GNU Fortran Compiler

Description:

Class:

Arguments:

Standard:

See also:

Sends the signal specified by SIG to the process PID. See kil1(2).

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Subroutine, function

PID Shall be a scalar INTEGER with INTENT (IN).
SIG Shall be a scalar INTEGER with INTENT (IN).
STATUS [Subroutine](Optional) Shall be a scalar INTEGER.

Returns 0 on success; otherwise a system-specific er-
ror code is returned.

STATUS [Function] The kind type parameter is that of pid.
Returns 0 on success; otherwise a system-specific er-
ror code is returned.

GNU extension

Section 8.2 [ABORT], page 119,
Section 8.106 [EXIT], page 191,

8.170 KIND — Kind of an entity

Synopsis:

K = KIND(X)

Description:

Class:

Arguments:

KIND(X) returns the kind value of the entity X.

Inquiry function

X Shall be of type LOGICAL, INTEGER, REAL, COMPLEX
or CHARACTER. It may be scalar or array valued.

Return value:

The return value is a scalar of type INTEGER and of the default integer kind.

Example:
program test_kind
integer,parameter :: kc = kind(' ')
integer,parameter :: k1l = kind(.true.)
print *, "The default character kind is ", kc
print *, "The default logical kind is ", kl
end program test_kind
Standard: Fortran 95 and later
8.171 LBOUND — Lower dimension bounds of an array

Synopsis:

RESULT = LBOUND (ARRAY [, DIM [, KIND]])

Chapter 8: Intrinsic Procedures 233

Description:
Returns the lower bounds of an array, or a single lower bound along the DIM
dimension.
Class: Inquiry function
Arguments:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar INTEGER.
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:

The return value is of type INTEGER and of kind KIND. If KIND is absent,
the return value is of default integer kind. If DIM is absent, the result is an
array of the lower bounds of ARRAY. If DIM is present, the result is a scalar
corresponding to the lower bound of the array along that dimension. If ARRAY
is an expression rather than a whole array or array structure component, or if
it has a zero extent along the relevant dimension, the lower bound is taken to
be 1.

Standard: Fortran 90 and later, with KIND argument Fortran 2003 and later

See also: Section 8.290 [UBOUND], page 305,
Section 8.172 [LCOBOUND], page 233,

8.172 LCOBOUND — Lower codimension bounds of an array

Synopsis: RESULT = LCOBOUND (COARRAY [, DIM [, KIND]])

Description:
Returns the lower bounds of a coarray, or a single lower cobound along the
DIM codimension.

Class: Inquiry function
Arguments:
ARRAY Shall be an coarray, of any type.
DIM (Optional) Shall be a scalar INTEGER.
KIND (Optional) A scalar INTEGER constant expression in-

dicating the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind. If DIM is absent, the result is an array

of the lower cobounds of COARRAY. If DIM is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.

Standard: Fortran 2008 and later

See also: Section 8.291 [UCOBOUND], page 306,
Section 8.171 [LBOUND], page 232,

234 The GNU Fortran Compiler

8.173 LEADZ — Number of leading zero bits of an integer

Synopsis: RESULT = LEADZ(I)

Description:
LEADZ returns the number of leading zero bits of an integer.

Class: Elemental function

Arguments:
I Shall be of type INTEGER.

Return value:
The type of the return value is the default INTEGER. If all the bits of I are zero,
the result value is BIT_SIZE(I).

Example:

PROGRAM test_leadz
WRITE (*,*) BIT_SIZE(1) ! prints 32
WRITE (*,*) LEADZ(1) ! prints 31
END PROGRAM

Standard: Fortran 2008 and later

See also: Section 8.52 [BIT_SIZE], page 153,
Section 8.285 [TRAILZ], page 302,
Section 8.222 [POPCNT], page 264,
Section 8.223 [POPPAR], page 265,

8.174 LEN — Length of a character entity

Synopsis: L = LEN(STRING [, KIND])

Description:
Returns the length of a character string. If STRING is an array, the