The GNU Algol 68 Compiler

For ccc version 16.0.0 (pre-release)

(GCC)

Jose E. Marchesi

Copyright (©) 2025-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Short Contents

1 Invoking gab8 e 1
2 CompoSIiNng PrOGramS. « ¢« v vt te et eet e eee e aee e 4
3 Comments and pragmats, 14
4 Hardware representationc.ouiiiiunnnnnn.. 16
5 Standard prelude....... 25
6 Extended prelude........ 39
7 POSIX prelude 41
8 Language extensionsc..iiiiiiieeean.. 46
GNU General Public License 48
GNU Free Documentation License.cvuueen.... 59
Option Index. e 67

Table of Contents

1

Invoking ga68........ 1
1.1 Dialect optionscounuu 1
1.2 Options for Directory Search.......... i, 1
1.3 Module search optionst 1
1.4 Warnings optionsttt 2
1.5 Runtime options....... ... 3
1.6 Linking options.........coo i 3
1.7 Developer optionsc.oouiiiiiiii i 3

Composing programs............................ 4
2.1 Packets. ... 4
2.2 Modules. ..o 4

2.2.1 Writing modules........ ..o)
2.2.2 Accessing modules......o i 5
2.2.2.1 Accessing several modules...........l 6
2.2.2.2 The controlled clauseo, 7
2.2.2.3 The value yielded by an access clause.................. 7
2.2.2.4 Modules accessing other modules...................... 7

2.2.3 Module activationo 8
2.2.4 Modules and exXports ...t 10
2.2.5 Modules and libraries.......... ... 12
2.2.6 Modules and protection.................oii i, 12
2.3 Particular programso i i 12
2.3.1 Exit statusccooiiiiii 12
2.3.2 Thestoplabel i 12
2.4 The standard environment............. ..., 13

Comments and pragmats...................... 14
3.1 Comments.t 14
3.2 Pragmats. 14

3.2.1 pragmatinclude.......... i 15

Hardware representation...................... 16
4.1 Representation languages. ...t 16
4.2 Worthy characters.......... ..o 17
4.3 Base characters.......... ... 17
4.4 SEropping regimesoot i 18

4.4.1 POINT Stropping.oovutit i 19
4.4.2 RES Stropping..... ... 20
4.4.3 UPPER Stroppingccoouiiiiiiiiiiiiiiieaaann 21
4.4.4 SUPPER Stropping.........couiuiieiiieaiiiinennann... 22
4.5 Monads and Nomads ..., 23

4.6 String breaks. 24

ii

5 Standard prelude.................... 25
5.1 Environment enquiries.......... ..ol 25
5.2 Standard modes............ 26
5.3 Standard priorities 27
5.4 ROWS Operators. ...t 28
5.5 Boolean operators.......... ... 29
5.6 Integral operatorso 29

5.6.1 Arithmetic...... i 29
5.6.2 Arithmetic combined with assignation..................... 30
5.6.3 Relational i 30
5.6.4 CONVETSION . .ttt ettt ettt 31
5.7 Real operators.o 31
5.7.1 Arithmetic 31
5.7.2 Arithmetic combined with assignation..................... 32
5.7.3 Relational 32
5.7.4 CONVETSIONS « v vettt ettt et e et e 33
5.8 Character operatorseueiiiiiiiiii e, 33
5.8.1 Relational 33
5.8.2 CONVETSIONS .+ vttt ettt ettt et e e e 34
5.9 String operators 34
5.9.1 Relational 34
5.9.2 Composition.ovuuiiiii 35
5.9.3 Composition combined with assignation................... 35
5.10 Complex Operatorsouuueit e 35
5.11 Bits operators.o iiiiiii 35
5.11.1 Logical 35
5.11.2 Shiftingooo 36
5.11.3 Relationalo i 36
B5.11.4 CONVEISIONS .+« v vttt ettt et ettt e e e e 36
5.12 Bytes operators 37
5.13 Semaphore operators......... ..o 37
5.14 Math procedurest 37
5.14.1 Arithmetic ... 37
5.14.2 Logarithms...... ... o i i 37
5.14.3 Trigonometrico 37
Extended prelude 39
6.1 Extended priorities.......... ..o 39
6.2 Extended environment enquiries oo, 39
6.3 Extended rows operatorsciiiiiiiiiiii 39
6.4 Extended boolean operatorsooiiiiiiiiiia. 40
6.5 Extended bits operators.......... ... i i 40
6.6 Extended math procedures i 40

6.6.1 Logarithms......... .o 40

iii

7 POSIX prelude................................. 41
7.1 POSIX PrOCESS « o vttt ettt e e 41
7.2 POSIX command line ... 41
7.3 POSIX environmentouiuiiiiiii i, 41
Td POSIX @ITOTS . vttt ettt et et et e 41
7.5 POSIX fIles . o nveet et 42

7.5.1 Standard file descriptors......... ... 42
7.5.2 Opening and closing files............ i 42
7.5.3 Creating files..... ... 42
7.5.4 Flags for fopen.... ... 43
7.5.5 Getting file properties 43
7.6 POSIX S0CKEES . ..o vt e 44
7.7 POSIX string transput ... 44
7.7.1 Output of strings and chars............................... 44
7.7.2 Input of strings and chars................ oL 44

8 Language extensions........................... 46
8.1 bin and abs of negative integral values......................... 46
8.2 Bold taggles.o 46

GNU General Public License 48

GNU Free Documentation License 59
ADDENDUM: How to use this License for your documents.......... 66

Option Index 67

iv

1 Invoking ga68

The ga68 command is the GNU compiler for the Algol 68 language and supports many
of the same options as gcc. See Section “Option Summary” in Using the GNU Compiler
Collection (GCC). This manual only documents the options specific to ga68.

1.1 Dialect options

The following options control how the compiler handles certain dialect variations of the
language.

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘algo168’ or ‘gnu68’. The default value for std is ‘gnu68’, which speci-
fies a strict super language of Algol 68 allowing GNU extensions. The ‘algo168’
value specifies that the program strictly conform to the Revised Report.

—-fstropping=stropping_regime
Specify the stropping regime to expect in the input programs. The default
value for stropping_regime is ‘supper’, which specifies the modern SUPPER
stropping which is a GNU extension. The ‘upper’ value specifies the classic
UPPER stropping of Algol 68 programs. See Section 4.4 [Stropping regimes],
page 18.

-fbrackets
This option controls whether [..] and { .. } are considered equivalent to (
..). This syntactic variation is blessed by the Revised Report and is still strict
Algol 68.

This option is disabled by default.

1.2 Options for Directory Search

These options specify directories to search for files, libraries, and other parts of the compiler:

-Idir Add the directory dir to the list of directories to be searched for files when
processing the Section 3.2.1 [pragmat include|, page 15. Multiple -I options
can be used, and the directories specified are scanned in left-to-right order,
as with gcc. The directory will also be added to the list of directories to
be searched for module interface-definitions Section 2.2.3 [Module activation],
page 8.

-Ldir Add the directory dir to the list of directories to be searched for module
interface-definitions Section 2.2.3 [Module activation], page 8. Multiple -L op-
tions can be used, and the directories specified are scanned in left-to-right order,
as with gcc. The directory will also be added to the list of library search di-
rectories, as with gcc.

1.3 Module search options

The following options can be used to tell the compiler where to look for certain modules.

Chapter 1: Invoking ga68 2

-fmodules-map=string
Use the mapping between module indicants and module base filenames
specified in string, which must contain a sequence of entries with form
basename=moduleindicant[,moduleindicant] ... separated by colon (:)
characters.

When a module moduleindicant is accessed, the compiler will look for exports
information for it in files basename.m68, libbasename.so, libbasename.a,
basename.o, in that order.

This option is used to avoid the default behavior, in which the basename used
to search for an accessed module is implicitly derived from its indicant, by
transforming it to lower case.

The effect of this option is accumulative.

—-fmodules—map-file=<filename>
Like -fmodules-map, but read the mapping information from the file
<filename>.

1.4 Warnings options

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there is likely to be a bug in the program. Unless
-Werror is specified, they do not prevent compilation of the program.

-Wvoiding
Warn on non-void units being voided due to a strong context.

-Wscope Warn when a potential name scope violation is found.

-Whidden-declarations=level
Warn when a declaration hides another declaration in a larger reach. This
includes operators that hide firmly related operators defined in larger reach.

-Whidden-declarations=none
At this level no warning is issued for any hidden declaration on an
outer scope.

-Whidden-declarations=prelude
At this level, warnings are issued for hidden declarations defined
in the standard prelude. This is the default warning level of
-Whidden-declarations.

-Whidden-declarations=all
At this level, warnings are issued for any and all hidden declara-
tions.

-Wextensions
Warn when a non-portable Algol 68 construct is used, like GNU extensions to
Algol 68.

Chapter 1: Invoking ga68 3

1.5 Runtime options
These options affect the runtime behavior of programs compiled with ga68.

-fno-assert
Turn off code generation for ASSERT contracts.

-fcheck=<keyword>
Enable the generation of run-time checks; the argument shall be a comma-
delimited list of the following keywords. Prefixing a check with no- disables it
if it was activated by a previous specification.

‘all’ Enable all run-time test of -fcheck.
‘none’ Disable all run-time test of -fcheck.
‘nil’ Check for nil while dereferencing.

‘bounds’ Enable generation of run-time checks when indexing and trimming
multiple values.

1.6 Linking options

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

-shared-1ibga68
On systems that provide 1ibga68 as a shared and a static library, this option
forces the use of the shared version. If no shared version was built when the
compiler was configured, this option has no effect.

-static-1ibga68
On systems that provide 1ibga68 as a shared and a static library, this option
forces the use of the static version. If no static version was built when the
compiler was configured, this option has no effect. This is the default.

1.7 Developer options
This section describes command-line options that are primarily of interest to developers.

-fa68-dump-modes
Output a list of all the modes parsed by the front-end.

-fa68-dump-ast
Dump a textual representation of the parse tree.

-fa68-dump-module-interfaces
Dump the interfaces of module definitions in the compiled packet.

2 Composing programs

This chapter documents how to compose full Algol 68 programs using the modules and
separated compilation support provided by this compiler.

2.1 Packets

Each Algol 68 source file, which are files using the file extension .a68, contains the definition
of a so-called packet. Packets therefore play the role of compilation units, and each packet
can be compiled separately to an object file. A set of compiled object files can then be
linked in the usual fashion into an executable, archive or shared object by the system
linker, without the need of any language-specific link editor or build system.

This compiler supports two different kind of packets:

— Particular programs constitute the entry point of a program. They roughly speaking
correspond to the main function of other languages like C.

See Section 2.3 [Particular programs]|, page 12.

— Prelude packets contain the definition of modules, which publicize definitions of modes,
procedures, variables, operators and even the publicized definitions of other modules.
Each prelude packet defines a single packet, defined at the top-level, which can be
accessed by other packets (be them particular programs or other prelude packets) via an
access construct. Prelude packets are so-called because their contents get conceptually
stuffed in the user-prelude in the case of user-defined modules, or the library-prelude
in the case of module packets provided by the compiler. They are usually used to
compose libraries that can be used in a bottom-up fashion.

See Section 2.2 [Modules], page 4.

Future versions of this compiler will eventually support a third kind of packet, oriented
to top-down development:

— Stuffing packets contain the definition of an actual hole, an egg construct, that can
be stuffed in a matching formal hole in another package via a nest construct. Formal
holes are used in order to achieve separated compilation in a top-bottom fashion, and
also to invoke procedures written in other languages, such as C functions or Fortran
subroutines.

A collection of packets, all of which must be compatible with each other, constitutes
either a program or a library. Exactly one of the packets constituting a program shall be a
particular program. In libraries at least one packet must be a prelude packet.

2.2 Modules

Definition modules, often referred as just modules in the sequel, fulfill two different but
related purposes. On one side, they provide some degree of protection by preventing ac-
cessing indicators defined within the module but not explicitly publicized. On the other,
they allow to define interfaces, allow separated compilation based on these interfaces, and
conform libraries.

Modules are usually associated with bottom-up development strategies, where several
already written components are grouped and combined to conform bigger components.

Chapter 2: Composing programs 5

2.2.1 Writing modules

A definition module is a construct that provides access to a set of publicized definitions.
They appear in the outer reach of a prelude packet and constitute its only contents (see
Section 2.1 [Packets], page 4). They are composed of a prelude and a postlude. The
publicized definitions appear in the module’s prelude.

Consider for example the following definition module, which implements a very simple
logging facility:
module Logger =
def int fd = stderr;
pub string originator;
pub proc log = (string msg) void:
fputs (fd, (originator /= "" | ": ") + msg + "'n");

log ("beginning of log'n");
postlude
log ("end of log'n");
fed
The module text delimited by def and fed gets ascribed to the module indicator Logger.
Module indicators are bold tags.

The prelude of the module spans from def to either postlude, or to fed in case of modules
not featuring a postlude. It consists on a restricted serial clause in a void strong context,
which can contain units and declarations, but no labels or completers. The declarations
in the prelude may be either publicized or no publicized. As we shall see, publicized indi-
cators are accessible within the reach of the defining module publicizing them. Publicized
declarations are marked by preceding them with pub.

In our example the module prelude consists on three declarations and one unit. The tag
fd is not publicized and is to be used internally by the module. The indicators originator
and log, on the other hand, are publicized and conform the interface of the module. Note
how the range of the prelude also covers the postlude: the 1log procedure is reachable there,
as it would be £d as well.

The postlude of the module is optional and spans from postlude to fed. It consists on a
serial clause in a void strong context, where definitions, labels and module accesses are not
allowed, just units.

2.2.2 Accessing modules

Once a module is defined (see Section 2.2.1 [Writing modules], page 5) it can be accessed
from other packets using an access clause. The access clause identifies the modules to access
and then makes the publicized definitions of these modules visible within a control clause.

For example, this is how we could use the logger definition module defined in a previous
section to log the progress of some particular program that reads an input file and writes
some output file:

access Logger
begin # Identify ourselves with the program name #
originator := argv (1);

Chapter 2: Composing programs 6

Read input file.
if NOT parse_input (argv (2))
then log ("error parsing input file"); stop fi;

Write output file.
if NOT write_output (argv (3))
then log ("error writing output file"); stop fi;

log ("success")
end

In this case the controlled clause is the closed clause conforming the particular program,
and the definitions publicized by the logger module, in this case originator and log, can
be used within it.

2.2.2.1 Accessing several modules

An access clause is not restricted to just provide access to a single module: any number of
module indicators can be specified in an access clause. Suppose that our example processing
program has to read and write the data in JSON format, and that a suitable JSON library
is available in the form of a reachable module. We could then make both logger and json
modules accessible like this:

access Logger, JSON
begin { Identify ourselves with the program name }
originator := argv (1);

JSONVal data;

{ Read input file. 1}
if data := json_from_file (argv (2));
data = json_no_val
then log ("error parsing input file"); stop fi;

{ Write output file. }
if not json_to_file (argv (3), data)
then log ("error writing output file"); stop fi;

log ("success")
end

In this version of the program the access clause includes the module indicator JSON, and
that makes the mode indicator jsonval and the tags json_no_val, json_from_file and
json_to_file visible within the program’s closed clause.

Note that the following two access clauses are not equivalent:

access Logger, JSON C ... C;
access Logger access JSON C ... C;

In the first case, a compilation time error is emitted if there is a conflict among the publicized
definitions of both modules; for example, if both modules were to publicize a procedure

Chapter 2: Composing programs 7

called 1log. In the second case, the declaration of log publicized by Logger would hide the
declaration of log publicized by JSON. This also has implications related to activation,
that we will be discussing in a later section.

2.2.2.2 The controlled clause

The controlled clause in an access clause doesn’t have to be a serial clause, like in the
examples above. It can be any enclosed clause, like for example a loop clause:

proc frobnicate frobs = ([]Frob frobs) void:
access Logger to UPB frobs
do log ("frobnicating " + name of frob);
frobnicate (frob)
od

2.2.2.3 The value yielded by an access clause

The elaboration of an access clause yields a value, which is the value yielded by the elab-
oration of the controlled clause. Since the later is an enclosed clause, coercions get passed
into them whenever required, the usual fashion.

We can see an example of this in the following procedure, whose body is a controlled
closed clause that yields a real value:

proc incr factor = (ref[Jreal factors, int idx) real:
access logger (log ("factor increased"); factors[idx] +:= 1.0)

Note how the access clause above is in a strong context requiring a value of mode real. The
value yielded by the access clause is the value yielded by the controlled enclosed clause,
which in this case is a closed clause. The strong context and required mode gets passed to
the last unit of the closed clause (the assignation) which in this case yields a value of mode
ref real. The unit is coerced to real by dereferencing, and the resulting value becomes the
value yielded by the access clause.

2.2.2.4 Modules accessing other modules

Up to this point we have seen particular programs accessing modules, but a definition
module may itself access other modules. This is done by placing the module text as a
controlled clause of an access clause. Suppose we rewrite our logger module so it uses
JSON internally to log JSON objects rather than raw strings. We could do it this way:

module Logger =
access JSON
def int fd = stderr;
pub string originator;
pub proc log = (string msg) void:
fputs (fd, json_array (json_string (originator),
json_string (msg)));

log (json_string ("beginning of log'n"));
postlude

log (json_string ("end of log'n"));
fed

Chapter 2: Composing programs 8

Note how this version of Logger uses a few definitions publicized by the JSON module.

A program accessing Logger will not see the definitions publicized by the JSON module.
If that is what we intended, for example to allow the users of the logger to tweak their own
JSON, we would need to specify it this way:

module Logger =
access pub JSON
def ¢ ...as before... c fed

In this version the definitions publicized by JSON become visible to programs accessing
Logger.

2.2.3 Module activation

In all the examples seen so far the modules were accessed just once. In these cases, accessing
the module via an access-clause causes the activation of the module.

Activating a module involves elaborating all the declarations and units that conform its
prelude. Depending on the particular module definition that gets activated, this may involve
all sort of side effects, such as allocating space for values and initializing them, opening
files, etc. Once the modules specified in the access clause are successfully activated, the
controlled clause gets elaborated itself, within the reach of all the publicized definitions by
the activated modules as we saw in the last section. Finally, once the controlled clause has
been elaborated, the module gets revoked by elaborating the serial clause in its postlude.

However, nothing prevents some given definition module to be accessed more than once in
the same program. The following program, that makes use of the logger module, exemplifies
this:

access Logger

begin originator := argv (1);
log ("executing program");
c...c
access Logger (originator := argv (1) + ":subtask";
log ("doing subtask")
c...c
end

In this program the module Logger is accessed twice. The code is obviously written assuming
that the inner access clause triggers a new activation of the Logger module, allocating new
storage and executing its prelude. This would result in the following log contents:

a.out: beginning of log

a.out: executing program
a.out:subtask: beginning of log
a.out:subtask: doing subtask
a.out:subtask: end of log
a.out: end of log

However, this is not what happens. The module gets only activated once, as the result of
the outer access clause. The inner access clause just makes the publicized indicators visible
in its controlled clause. The actual resulting log output is:

a.out: beginning of log

Chapter 2: Composing programs 9

a.out: executing program
a.out:subtask: doing subtask
a.out:subtask: end of log

Which is not what we intended. Modules are not classes. If we wanted the logger to support
several originators that can be nested, we would need to add support for it in the definition
module. Something like:

module Logger =
def int fd = stderr, max_originators = 10;
int orig := 0;
[max_originators]string originators;

pub proc push_originator = (string str) void:
(assert (orig < max_originators);
orig +:= 1;
originators[orig] := str);

pub proc pop_originator = void:
(assert (max_originators > 0);

orig -:= 1);
pub proc log = (string msg) void:
fputs (fd, (originator([orig] /= "" | ": ") + msg + "'n");

log ("beginning of log'n");
postlude

log ("end of log'n");
fed

Note how in this version of Logger originators acts as a stack of originator strings, and it
is not publicized. The management of the stack is done via a pair of publicized procedures
push_originator and pop_originator. Our program will now look like

access Logger
begin push_originator (argv (1));
log ("executing program");
c... ¢
access logger (push_originator ("subtask");
log ("doing subtask")
cC ... cC;
pop_originator)
end

And the log output is:

a.out: beginning of log
a.out: executing program
a.out:subtask: doing subtask
a.out: end of log

Chapter 2: Composing programs 10

2.2.4 Modules and exports

As we have seen, each Algol 68 source file contains either a particular program or a prelude
packet. Prelude packets consist on the definition of a single top-level module, that is itself
identified by a module indicant.

Consider for example a source file called trilean.a68 that implements strong Kleene
three-valued (“trilean”) logic. It does so by the mean of a definition module called Trilean.
A sketch of such a file may look like this:

module Trilean =
def
pub mode Tril = int;

pub Tril dontknow = 0, yes = 1, no = 2;
pub prio AND3 = 3, OR3 = 3, XOR3 = 3;

pub op NOT3 = (Tril a) Tril:
(a + 1 | dontknow, no, yes);

C ... other definitions ... C
fed

The module indicant Trilean identifies the module. If we now compile this file to an
object file using GCC:

$ ga68 -c trilean.a68

The result of the compilation is an object file trilean.o, plus some exports information
which is placed in a section in the object file, named .a68_exports. The exports informa-
tion describes the interface provided by the Trilean module defined in the compilation unit.
This includes all the modes, identifiers, priorities, operators, etc, that are publicized by the
module. The particular encoding used to hold these exports is highly compact and not easy
readable by persons; instead, it is designed to be read back by GCC when it builds another
compilation unit that, in turn, needs to access the Trilean module.

Consider the following sketched particular program that resides in a source file main.a68,
and that uses trilean logic:

access Trilean
begin

cC ... C
end

When this program gets compiled by GCC using ga68 -c program.a68, the compiler
finds the access clause and needs to locate some exports for the module Trilean. To do so,
it searches in the modules search path, composed by the current working directory, some
system directories and all directories specified in -I and -L options, looking for files called
trilean.m68, trilean.so, trilean.a and trilean.o, in that order, where:

trilean.m68
Is a stand-alone file expected to contain export data for one or more modules.

Chapter 2: Composing programs 11

trilean.so
Is a DSO, or shared object, expected to contain a .a68_exports section with
exports data for one or more modules.

trilean.a
Is an archive, whose constituent object files may contain .a68_exports sections
with exports data for one or more modules.

trilean.o
Is an object file expected to contain export data for one or more modules in a
.a68_exports section.

The files are tried in order, and if export data for the requested module Trilean is found,
it is read in, decoded, and used to compile main.a68 into main.o.

The last step in obtaining an executable for our program would be to use GCC to do a
link like ga68 trilean.o main.o -o main.

Module indicants such as Trilean are bold words in the language. This means that,
independently of the stropping regime used, they are constituted by a bold letter followed
by a sequence of zero or more bold letters and digits. Using the modern stropping supported
by the GNU Algol 68 compiler, this means that all of Trilean, TRILEAN and Tri_lean denote
exactly the same module indicant, trilean.

The mapping from module indicant to the “base name” used to locate the module exports
is quite straightforward: the bold letters are transformed to lower-case letters, and the bold
digits are just normal digits. Therefore, the exports for the module GRAMP_Grammar
would looked in files grampgrammar .m68, libgrampgrammar . so, etc.

But often this default, straightforward mapping, is not what we need.

Suppose for example that a shared object installed in the system, 1iba68goodies. so,
provides many facilities in the form of several modules, including a Trilean module. We
want to use the trilean implementation of liba68goodies in our program main.a68. If
we just access Trilean GCC will look for trilean.m68 etc, but wont even consider look-
ing in liba68goodies.so. Accessing A68Goodies is obviously not a solution, as the
module we want is Trilean and there may not even be a module called A68Goodies in
liba68goodies.so.

The solution for this is to use the modules map of the compiler. This map is an asso-
ciation or map between module indicants and base-names. When it comes to access some
module, the compiler looks in the map. If there is an entry for the module’s indicant, then
it fetches the base-name to use for looking for the module’s export data. If there is not an
entry for the module’s indicant then the default, straightforward mapping described above
is attempted.

By default the map is empty, but we can add entries by using the ~-fmodules-map= and
-fmodules-map-file= command-line options. The first option expects entries to be added
to the map in a string in the command-line, whereas the second option expects the name
of a file containing the entries to add to the map. In both cases the format describing the
entries is exactly the same (see Section 1.3 [Module search options|, page 1).

In our case, we could compile our main program specifying an entry in the map telling
the compiler where to find the trilean and logging modules:

$ ga68 -fmodules-map="a68goodies=Trilean,Logger" -c main.a68

Chapter 2: Composing programs 12

2.2.5 Modules and libraries
XXX

As we have seen modules are accessed by referring to them in access-clauses, using the
same sort of bold-word indicants that identify user-defined modes and operators, such as
JSON, Transput or LEB128_Arithmetic.

2.2.6 Modules and protection
XXX

2.3 Particular programs

An Algol 68 particular program consists on an enclosed clause in a strong context with
target mode void, possibly preceded by a set of zero or more labels. For example:

hello:
begin puts ("Hello, world!'n")
end

Note that the enclosed clause conforming the particular program doesn’t have to be a
closed clause. Consider for example the following program, that prints out its command
line arguments:

for i to argc
do puts (argv (i) + "'n") od

2.3.1 Exit status

Some operating systems have the notion of exit status of a process. In such systems, by
default the execution of the particular program results in an exit status of success. It is
possible for the program to specify an explicit exit status by using the standard procedure
set exit status, like:

begin # ... program code ... #
if error found;
then set exit status (1) fi
end

In POSIX systems the status is an integer, and the system interprets a value other than
zero as a run-time error. In other systems the status may be of some other type. To
support this, the set error status procedure accepts as an argument an united value that
accommodates all the supported systems.

The following example shows a very simple program that prints “Hello world” on the
standard output and then returns to the operating system with a success status:

begin puts ("Hello world'n")
end

2.3.2 The stop label

A predefined label named stop is defined in the standard postlude. This label can be jumped
to at any time by a program and it will cause it to terminate and exit. For example:

begin if argc /= 2

Chapter 2: Composing programs 13

then puts ("Program requires exactly two arguments.");

goto stop
fi
c...C

end

2.4 The standard environment

The environment in which particular programs run is expressed here in the form of pseudo
code:

(¢ standard-prelude c;

¢ library-prelude c;

¢ system-prelude c;

par begin c system-task-1 c,
¢ system-task-2 c,
¢ system-task-n c,
c user-task-1 c,
c user-task-2 c,
c user-task-m ¢

end)
Where each user task consists on:

(c particular-prelude c;
¢ user-prelude c;
¢ particular-program c;
¢ particular-postlude c)
The only standard system task described in the report is expressed in pseudo-code as:
do down gremlins; undefined; up bfileprotect od

Which denotes that, once a book (file) is closed, anything may happen. Other system tasks
may exist, depending on the operating system. In general these tasks in the parallel clause
denote the fact that the operating system is running in parallel (intercalated) with the user’s
particular programs.

e The library-prelude contains, among other things, the prelude parts of the defining
modules provided by library.

e The particular-prelude and particular-postlude are common to all the particular pro-
grams.

e The user-prelude is where the prelude parts of the defining modules involved in the
compilation get stuffed. If no defining module is involved then the user-prelude is
empty.

Subsequent sections in this manual include a detailed description of the contents of these
preludes.

14

3 Comments and pragmats

Comments and pragmats, also known collectively as pragments, can appear almost anywhere
in an Algol 68 program. Comments are usually used for documentation purposes, and
pragmats contain annotations for the compiler. Both are handled at the lexical level.

3.1 Comments

In the default modern stropping regime supported by GCC comments are written between
{ and } delimiters, and can be nested to arbitrary depth. For example:

foo +:= 1; { Increment foo. 1}

If UPPER stropping is selected, this compiler additionally supports three classical Algol
68 comment styles, in which the symbols marking the beginning of comments are the same
than the symbols marking the end of comments and therefore can’t be nested: comment

. comment, co ... co and # .. #. For example:
comment
This is a comment.
comment
foo := 10; co this is also a comment co

foo +:= 1; # and so is this. #

Unless -std=algol68 is specified in the command line, two styles of nestable comments
can be also used with UPPER stropping: the already explained { ... } and a “bold” style
that uses code ... edoc. For example:

foo := 10; { this is a nestable comment in brief style. 1}
foo +:= 1; note this is a nestable comment in bold style. eton.

note
"Bold" nestable comments.
eton

{ "Brief" nestable comments. }

In UPPER stropping all comment styles are available, both classic and nestable. In
modern SUPPER stropping, which is based on reserved words, only { ... } is available.

3.2 Pragmats

Pragmats (also known as pragmas in other programming languages) are directives and
annotations for the compiler, and their usage impacts the compilation process in several
ways. A pragmat starts with either pragmat or pr and finished with either pragmat or pr
respectively. Pragmats cannot be nested. For example:

pr include "foo.a68" pr

The interpretation of pragmats is compiler-specific. This chapter documents the prag-
mats supported by GCC.

Chapter 3: Comments and pragmats 15

3.2.1 pragmat include

An include pragmat has the form:
pr include "PATH" pr

Where PATH is the path of the file whose contents are to be included at the location of the
pragmat. If the provided path is relative then it is interpreted as relative to the directory
containing the source file that contains the pragmat.

The -I command line option can be used in order to add additional search paths for
include.

16

4 Hardware representation

The reference language specified by the Revised Report describes Algol 68 particular pro-
grams as composed by symbols. However, the Report leaves the matter of the concrete
representation of these symbols, the representation language, open to the several imple-
mentations. This was motivated by the very heterogeneous computer systems in existence
at the time the Report was written, which made flexibility in terms of representation a
crucial matter.

This flexibility was indeed exploited by the early implementations, and there was a
price to pay for it. A few years after the publication of the Revised Report the different
implementations had already given rise to a plethora of many related languages that, albeit
being strict Algol 68, differed considerably in appearance. This, and the fact that people
were already engrossed in writing programs other than compilers that needed to process
Algol 68 programs, such as code formatters and macro processors, prompted the WG 2.1
to develop and publish a Report on the Standard Hardware Representation for ALGOL 68,
which came out in 1975.

This compiler generally follows the Standard Hardware Representation, but deviates
from it in a few aspects. This chapter provides an overview of the hardware representation
and documents any deviation.

4.1 Representation languages

A program in the strict Algol 68 language is composed by a series of symbols. These
symbols have names such as letter-a-symbol and assigns-to-symbol which are, well,
purely symbolic. In fact, these are notions in the two-level grammar that defines the strict
language.

A representation language provides a mapping between symbols in the strict language
and the representation of these symbols. Each representation is a sequence of syntactic
marks. For example, the completion symbol may be represented by exit, where the marks
are the bold letters. The tilde symbol may be represented by ~, which is a single mark.
The representation of assigns to symbol is :=, which is composed by the two marks : and
=. The representation of letter-a is, not surprising, the single mark a.

The section 9.4 of the Report describes the recommended representation for all the sym-
bols of the language. The set of all recommendations constitutes the so-called reference
language. Algol 68 implementations are strongly encouraged to use representation lan-
guages which are similar enough to the reference language, recognizable “without further
elucidation”, but this is not strictly required.

A representation language may specify more than one representation for a given symbol.
For example, in the reference language the is not symbol is represented by isnt, :/=: and
a variant of the later where the slash sign is superimposed on the equal sign. In this case,
an implementation can choose to implement any number of the representations.

Spaces, tabs and newlines are typographical display features that, when they appear
between symbols, are of no significance and do not alter the meaning of the program.
However, when a space or a tab appear in string or character denotations, they represent the
space symbol and the tab symbol respectively!. The different stropping regimes, however,

! The tab symbol is a GNU extension

Chapter 4: Hardware representation 17

may impose specific restrictions on where typographical display features may or may not
appear. See Section 4.4 [Stropping regimes|, page 18.

4.2 Worthy characters

The syntactic marks of a representation language, both symbols and typographical display
features, are realized as a set of worthy characters and the newline. Effectively, an Algol 68
program is a sequence of worthy characters and newlines. The worthy characters are:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789
space tab " # $ % & ' () x+ , - ./ ; <=> [\]
S _ v {3}
Some of the characters above were considered unworthy by the original Standard Hard-
ware Representation:

! It was considered unworthy because many installations didn’t have a vertical
bar base character, and ! was used as a base character for |. Today every
computer system features a vertical bar character, so ! can qualify as a worthy
character.

& The Revised Report specifies that & is a monad, used as a symbol for the dyadic
and operator. The Standard Hardware representation decided to turn it into an
unworthy character, motivated by the fact that no nomads existed for the other
logical operators not and or, and also with the goal of maintaining the set of
worthy characters as small as possible to improve portability. Recognizing that
the first motivation still holds, but not the second, this compiler re-instates & as
a monad but doesn’t use it as an alternative representation of the and operator.

The Standard Hardware Representation vaguely cites some “severe difficulties”
with the hardware representation of the tilde character. Whatever these difficul-
ties were at the time, they surely don’t exist anymore. This compiler therefore
recognizes ~ as a worthy character, and is used as a monad.

? The question mark character was omitted as a worthy character to limit the
size of the worthy set. This compiler recognizes 7 as a worthy character, and is
used as a monad.

\ Back-slash wasn’t included as a worthy character because back in 1975 it wasn’t
supported in EBCDIC (it is now). This compiler recognizes \ as a worthy
character.

tab This compiler recognizes the tabulator character as a worthy character, and it

is used as a typographical display feature.

4.3 Base characters

The worthy characters described in the previous section are to be interpreted symbolically
rather than visually. The worthy character |, for example, is the vertical line character and
generally looks the same in every system. The worthy character space is obviously referred
by a symbolic name.

Chapter 4: Hardware representation 18

The actual visually distinguishable characters available in an installation are known
as base characters. The Standard Hardware Representation allows implementations the
possibility of using two or more base characters to represent a single worthy character.
This was the case of the | character, which was represented in many implementations by
either | or !.

This compiler uses the set of base characters corresponding to the subset of the Unicode
character set that maps one to one to the set of worthy characters described in the previous
section:

A-Z 65-90
a-z 97-122
space 32
tab 9

! 33

n 34

35

$ 36

/A 37

& 38

' 39

(40
) 41
* 42
+ 43
, 44
- 45
. 46
/ a7
58
59
60
61
62
63
64
91
92
93
94
95
124
- 126

A v ee

Y= S k@ NV

4.4 Stropping regimes

The Algol 68 reference language establishes that certain source constructs, namely mode
indications and operator indications, consist in a sequence of bold letters and bold digits,

Chapter 4: Hardware representation 19

known as a bold word. In contrast, other constructs like identifiers, field selectors and
labels, collectively known as tags, are composed of regular, non-bold letters and digits.

What is precisely a bold letter or digit, and how they differ from non-bold letters and
digits, is not specified by the Report. This is no negligence, but a conscious effort at
abstracting the definition of the so-called strict language from its representation. This
allows different representations of the same language.

Some representations of Algol 68 are intended to be published in books, be it paper or
electronic devices, and be consumed by persons. These are called publication languages.
In publication languages bold letters and digits are typically represented by actual bold
alphanumeric typographic marks. An Algol 68 program hand written on a napkin or a
sheet of paper would typically represent bold letters and digits underlined, or stroked using
a different color ink.

Other representations of Algol 68 are intended to be automatically processed by a com-
puter. These representations are called hardware languages. Sometimes the hardware
languages are also intended to be written and read by programmers; these are called pro-
gramming languages.

Unfortunately, computer systems today usually do not yet provide readily usable and
ergonomic bold or underline alphanumeric marks, despite the existence of Unicode and
modern and sophisticated editing environments. The lack of appropriate input methods
surely plays a role to explain this. Thus, the programming representation languages of Algol
68 should resort to a technique known as stropping in order to differentiate bold letters and
digits from non-bold letters and digits. The set of rules specifying the representation of
these characters is called a stropping regime.

There are three classical stropping regimes for Algol 68, which are standardized and
specified in the Standard Hardware Representation normative document. These are POINT
stropping, RES stropping and UPPER stropping. The following sections do a cursory tour
over them; for more details the reader is referred to the Standard Hardware Representation.

This compiler implements UPPER stropping and SUPPER stropping.
4.4.1 POINT stropping

POINT stropping is in a way the most fundamental of the three standard regimes. It was
designed to work in installations with limited character sets that provide only one alphabet,
one set of digits, and a very restricted set of other symbols.

In POINT stropping a bold word is represented by its constituent letters and digits
preceded by a point character. For example, the symbol bold begin symbol in the strict
language, which is represented as begin in bold face in the reference language, would be
represented as .BEGIN in POINT stropping.

More examples are summarized in the following table.

Strict language Reference language POINT stropping
true symbol true .TRUE

false symbol false .FALSE

integral symbol int JINT

completion symbol exit .EXIT

bold-letter-c-... crc32 .CRC32

Chapter 4: Hardware representation 20

In POINT stropping a tag is represented by writing its constituent non-bold letters and
digits in order. But they are organized in several taggles.

Each taggle is a sequence of one or more letters and digits, optionally followed by an
underscore character. For example, the tag PRINT is composed of a single taggle, but the
tag PRINT_TABLE is composed of a first taggle PRINT_ followed by a second taggle TABLE.

To improve readability it is possible to insert zero or more white space characters between
the taggles in a tag. Therefore, the tag PRINT_TABLE could have been written PRINT TABLE,
or even PRINT_ TABLE. This is the reason why Algol 68 identifiers, labels and field selectors
can and do usually feature white spaces in them.

It is important to note that both the trailing underscore characters in taggles and the
white spaces in a tag do not contribute anything to the denoted tag: these are just stropping
artifacts aimed to improve readability. Therefore FOOBAR FOO BAR, FOO_BAR and FOO_BAR_
are all representations of the same tag, that represents the letter-f-letter-o-letter-
o-letter-b-letter-a-letter-r language construct.

Below is the text of an example Algol 68 procedure encoded in POINT stropping.

.PROC RECSEL OUTPUT RECORDS = .VOID:
.BEGIN .BITS FLAGS
:= (INCLUDE DESCRIPTORS | REC F DESCRIPTOR | REC F NONE);
.RECRSET RES = REC DB QUERY (DB, RECUTL TYPE,
RECUTL QUICK, FLAGS);
.RECWRITER WRITER := REC WRITER FILE NEW (STDOUT);

SKIP COMMENTS .OF WRITER := .TRUE;
.IF RECUTL PRINT SEXPS
.THEN MODE .OF WRITER := REC WRITER SEXP .FI;
REC WRITE (WRITER, RES)
.END

4.4.2 RES stropping

The early installations where Algol 68 ran not only featured a very restricted character
set, but also suffered from limited storage and complex to use and time consuming input
methods such as card punchers and readers. It was important for the representation of
programs to be as compact as possible.

It is likely that is what motivated the introduction of the RES stropping regime. As its
name implies, it removes the need of stropping many bold words by introducing reserved
words.

A reserved word is one of the bold words specified in the section 9.4.1 of the Report as
a representation of some symbol. Examples are at, begin, if, int and real.

RES stropping encodes bold words and tags like POINT stropping, but if a bold word is
a reserved word then it can then be written without a preceding point, achieving this way
a more compact, and easier to read, representation for programs.

Introducing reserved words has the obvious disadvantage that some tags cannot be writ-
ten the obvious way due to the possibility of conflicts. For example, to represent a tag if
it is not possible to just write IF, because it conflicts with a reserved word, but this can be
overcome easily (if not elegantly) by writing IF_ instead.

Chapter 4: Hardware representation 21

Below is the recsel output records procedure again, this time encoded in RES strop-
ping.

PROC RECSEL OUTPUT RECORDS = VOID:
BEGIN BITS FLAGS
:= (INCLUDE DESCRIPTORS | REC F DESCRIPTOR | REC F NONE);
.RECRSET RES = REC DB QUERY (DB, RECUTL TYPE,
RECUTL QUICK, FLAGS);
.RECWRITER WRITER := REC WRITER FILE NEW (STDOUT);

SKIP COMMENTS OF WRITER := TRUE;
IF RECUTL PRINT SEXPS
THEN MODE .0OF WRITER := REC WRITER SEXP FT;
REC WRITE (WRITER, RES)
END

Note how user-defined mode an operator indications still require explicit stropping.

4.4.3 UPPER stropping

In time computers added support for more than one alphabet by introducing character
sets with both upper and lower case letters, along with convenient ways to both input and
display these.

In UPPER stropping the bold letters in bold word are represented by upper-case letters,
whereas the letters in tags are represented by lower-case letters.

The notions of upper- and lower-case are not applicable to digits, but since the language
syntax assures that it is not possible to have a bold word that starts with a digit, digits are
considered to be bold if they follow a bold letter or another bold digit.

Below is the recsel output records procedure again, this time encoded in UPPER
stropping.

PROC recsel output records = VOID:
BEGIN BITS flags
:= (include descriptors | rec f descriptor | rec f none);
RECRSET res = rec db query (db, recutl type,
recutl quick, flags);
RECWRITER writer := rec writer file new (stdout);

skip comments of writer := TRUE;
IF recutl print sexps
THEN mode OF writer := rec writer sexp FI;

rec write (writer, res)
END

Note how in this regime it is almost never necessary to introduce bold tags with points.
All in all, it looks much more natural to contemporary readers. UPPER stropping is in
fact the stropping regime of choice today. It is difficult to think of any reason why anyone
would resort to use POINT or RES stropping.

Chapter 4: Hardware representation 22

4.4.4 SUPPER stropping

In the SUPPER stropping regime bold words are written by writing a sequence of one or
more taggles. Each taggle is written by writing a letter followed by zero or more other
letters and digits and is optionally followed by a trailing underscore character. The first
letter in a bold word shall be an upper-case letter. The rest of the letters in the bold word
may be either upper- or lower-case.

For example, RecRset, Rec_Rset and RECRset are all different ways to represent the same
mode indication. This allows to recreate popular naming conventions such as CamelCase.

As in the other stropping regimes, the casing of the letters and the underscore characters
are not really part of the mode or operator indication.

Operator indications are also bold words and are written in exactly the same way than
mode indications, but it is usually better to always use upper-case letters in operator indi-
cations. On one side, it looks better, especially in the case of dyadic operators where the
asymmetry of, for example Equal would look odd, consider m1 Equal m2 as opposed to m1
EQUAL m2. On the other side, tools like editors can make use of this convention in order to
highlight operator indications differently than mode indications.

In the SUPPER stropping regime tags are written by writing a sequence of one or more
taggles. Each taggle is written by writing a letter followed by zero or more other letters
and digits and is optionally followed by a trailing underscore character. All letters in a tag
shall be lower-case letters.

For example, the identifier 1ist is represented by a single taggle, and it is composed by
the letters 1, i, s and t, in order. In the jargon of the strict language we would spell the
tag as letter-l-letter-i-letter-s-letter-t.

The label found_zero is represented by two taggles, found_ and zero, and it is composed
by the letters f, o, u, n, 4, z, e, r and o, in order. In the jargon of the strict language
we would spell the tag as letter-f-letter-o-letter-u-letter-n -letter-d-letter-
z-letter-e-letter-r-letter-o.

The identifier crc_32 is likewise represented by two taggles, crc_ and 32. Note how the
second taggle contains only digits. In the jargon of the strict language we would spell the
tag as letter-c-letter-r-letter-c-digit-three-digit-two.

The underscore characters are not really part of the tag, but part of the stropping. For
example, both goto found_zero and goto foundzero jump to the same label.

In general, typographical display features are allowed between any symbol in the written
program. In SUPPER stropping, however, it is not allowed to place spaces or tab characters
between the constituent digits of bits denotations when the radix is 16. This is to avoid
confusing situations like the following invalid program:

while bitmask /= 16r0 do ~ od
Where the bits denotation would be interpreted as 16r0d rather than 16r0, leading to a
syntax error. Note however that typographical display features are still allowed between
the radix part and the digits, so 16r aabb is valid also in SUPPER stropping.

The recsel output records procedure, encoded in SUPPER stropping, looks like be-
low.

proc recsel_output_records = void:
begin bits flags

Chapter 4: Hardware representation 23

:= (include_descriptors | rec_f_descriptor | rec_f_none);
RecRset res = rec_db_query (db, recutl_type,
recutl_uick, flags);

RecWriter writer := rec_writer_file_new (stdout);
skip_comments of writer := true;

if recutl_print_sexps

then mode_ of writer := rec_writer_sexp fi;

rec_write (writer, res)
end

4.5 Monads and Nomads

Algol68 operators, be them predefined or defined by the programmer, can be referred via
either bold tags or sequences of certain non-alphabetic symbols. For example, the dyadic
operator + is defined for many modes to perform addition, the monadic operator entier gets
a real value and rounds it to an integral value, and the operator :=: is the identity relation.
Many operators provide both bold tag names and symbols names, like in the case of :/=:
that can also be written as isnt.

Bold tags are lexically well delimited, and if the same tag is used to refer to a monadic
operator and to a dyadic operator, no ambiguity can arise. For example, in the following
program it is clear that the second instance of plus refers to the monadic operator, and the
first instance refers to the dyadic operator?.

op PLUS = (int a, b) int: a + b,
PLUS = (int a): a;
int val = 2 PLUS PLUS 3;

On the other hand, symbols are not lexically delimited as words, and one symbol can
appear immediately following another symbol. This can lead to ambiguities. For example,
if we were to define a C-like monadic operator ++ like:

op ++ = (ref int a) int: (int t = a; a +:=1; t);
Then the expression ++a would be ambiguous: is it ++a or +(+a)?. In a similar way, if
we would use ++ as the name of a dyadic operator, an expression like a++b could be also
interpreted as both a++b and a+(+b).

To avoid these problems Algol 68 divides the symbols which are suitable to appear in the
name of an operator into two classes: monads and nomads. Monads are symbols that can
be used as monadic operators. Nomads are symbols which can be used as both monadic or
dyadic operators. Given these two sets, the rules to conform a valid operator are:

— A bold tag.
— Any monad.
— A monad followed by a nomad.

— A monad optionally followed by a nomad followed by either := or =:, but not by both.
In the GNU Algol 68 compiler:

— The set of monads is % " &+-"17.

2 If one would write plusplus, it would be a third different bold tag.

Chapter 4: Hardware representation 24

— The set of nomads is ></=x*.

4.6 String breaks

The intrinsic value of each worthy character that appears inside a string denotation is itself.
The string "/abc", therefore, contains a slash character followed by the three letters a, b
and c.

Sometimes, however, it becomes necessary to represent some non-worthy character in a
string denotation. In these cases, an escape convention has to be used to represent these
extra string-items. It is up to the implementation to decide this convention, and the only
requirement imposed by the Standard Hardware Representation on this regard is that the
character used to introduce escapes, the escape character, shall be the apostrophe. This
section documents the escape conventions implemented by the GNU compiler.

Two characters have special meaning inside string denotations: double quote (") and
apostrophe ('). The first finishes the string denotation, and the second starts a string break,
which is the Algol 68 term for what is known as an “escape sequence” in other programming
languages. Two consecutive double-quote characters specify a single double-quote character.

The following string breaks are recognized by this compiler:

" Apostrophe character '.

'n Newline character.

'f Form feed character.

'r Carriage return (no line feed).
't Tab.

'(list of character codes separated by commas)
The indicated characters, where each code has the form uhhhh or Uhhhhhhhh,
where hhhh and hhhhhhhh are integers expressing the character code in hex-
adecimal. The list must contain at least one entry.

A string break can appear as the single string-item in a character denotation, subject to
the following restrictions:

e List of characters string breaks ' (...) that contain more than one character code are
not allowed in character denotations. If the specified code point is not a valid Unicode
character then a compilation error shall be raised.

25

5 Standard prelude

The Algol 68 Revised Report defines an extensive set of standard modes, operators, proce-
dures and values, collectively known as the standard prelude.

The standard prelude is available to Algol 68 programs without needing to import any
module.

For brevity, in this section the pseudo-mode L represents a shortsety, i.e. a sequence of
either zero or more LONG or zero or more SHORT.

5.1 Environment enquiries

An environment enquiry is a constant or a procedure, whose elaboration yields a value
that may be useful to the programmer, that reflects some characteristic of the particular
implementation. The values of these enquiries are also determined by the architecture and
operating system targeted by the compiler.

int int lengths [Constant|
1 plus the number of extra lenghts of integers which are meaningful.

int int shorths [Constant|
1 plus the number of extra shorths of integers which are meaningful.

l int L max int [Constant|
The largest integral value.

int real lengths [Constant)|
1 plus the number of extra lenghts of real numbers which are meaningful.

int real shorths [Constant|
1 plus the number of extra shorths of real numbers which are meaningful.

l real L max real [Constant|
The largest real value.

l real L small real [Constant|
The smallest real value such that both 1 + small real > 1 and 1 - small real < 1.

int bits lengths [Constant|
1 plus the number of extra widths of bits which are meaningful.

int bits shorths [Constant|
1 plus the number of extra shorths of bits which are meaningful.

int bits width [Constant|
int long bits width [Constant|
int long long bits width [Constant]

The number of bits in a bits value.

int bytes lengths [Constant]
1 plus the number of extra widths of bytes which are meaningful.

Chapter 5: Standard prelude 26

int bytes shorths [Constant|
1 plus the number of extra shorths of bytes which are meaningful.

int bytes width [Constant]

int long bytes width [Constant]

int long long bytes width [Constant]

The number of chars in a bytes value.

int max abs char [Constant|
The largest value which abs of a char can yield.

char null character [Constant]
Some character.

char flip [Constant|
char flop [Constant]
Characters used to represent true and false boolean values in textual transput.

char error char [Constant|
Character used to represent the digit of a value resulting from a conversion error in
textual transput.

char blank [Constant|
The space character.

l real L pi [Constant|
The number pi.

5.2 Standard modes

void [Mode]
The only value of this mode is empty.

bool [Mode]
Mode for the boolean truth values true and false.

l int [Mode]
Modes for signed integral values. Each long or short may increase or decrease the
range of the domain, depending on the characteristics of the current target. Further
longs and shorts may be specified with no effect.

1 real [Mode]
Modes for signed real values. Each long may increase the upper range of the domain,
depending on the characteristics of the current target. Further longs may be specified
but with no effect.

char [Mode]
Mode for character values. The character values are mapped one-to-one to code points
in the 21-bit space of Unicode.

Chapter 5: Standard prelude 27

string = flex[1:0|char [Mode]
Mode for sequences of characters. This is implemented as a flexible row of char values.

1 compl = struct (real re,im) [Mode]
Modes for complex values. Each long may increase the precision of both the real
and imaginary parts of the numbers, depending on the characteristics of the current
target. Further longs may be specified with no effect.

1 bits [Mode]
Compact and efficient representation of a row of boolean values. Each long may
increase the number of booleans that can be packed in a bits, depending on the
characteristics of the current target.

1 bytes [Mode]
Compact and efficient representation of a row of character values. Each long may
increase the number of characters that can be packed in a bytes, depending on the
characteristics of the current target.

5.3 Standard priorities

1
e plusab, +:=
e minusab, -:=
e timesab, *:=
e divab, /:=
e overab, %:=
e modab, %*:=

e plusto, +=:

® XOor

o It <,
o le, <=
o gt >
e ge, >=

Chapter 5: Standard prelude 28

e over, %,
e mod, %*

e elem

o kx

e shl, up

e shr, down
e up, down
e lwb

e upb

5.4 Rows operators

The following operators work on any row mode, denoted below using the pseudo-mode rows.

Iwb = (rows a) int [Operator]
Monadic operator that yields the lower bound of the first bound pair of the descriptor
of the value of a.

upb = (rows a) int [Operator]
Monadic operator that yields the upper bound of the first bound pair of the descriptor
of the value of a.

Iwb = (int n, rows a) int [Operator]
Dyadic operator that yields the lower bound in the n-th bound pair of the descriptor
of the value of a, if that bound pair exists. Attempting to access a non-existing bound
pair results in a run-time error.

upb = (int n, rows a) int [Operator]
Dyadic operator that yields the upper bound in the n-th bound pair of the descriptor
of the value of a, if that bound pair exists. Attempting to access a non-existing bound
pair results in a run-time error.

Chapter 5: Standard prelude 29

5.5 Boolean operators

not = (bool a) bool [Operator]

~ = (bool a) bool [Operator]
Monadic operator that yields the logical negation of its operand.

or = (bool a, b) bool [Operator]
Dyadic operator that yields the logical “or” of its operands.

and = (bool a, b) bool [Operator]

& = (bool a, b) bool [Operator]
Dyadic operator that yields the logical “and” of its operands.

eq = (bool a, b) bool [Operator]

= = (bool a, b) bool [Operator]
Dyadic operator that yields true if its operands are the same truth value, false oth-
erwise.

ne = (bool a, b) bool [Operator]

= = (bool a, b) bool [Operator]
Dyadic operator that yields false if its operands are the same truth value, true oth-
erwise.

abs = (bool a) int [Operator]

Monadic operator that yields 1 if its operand is true, and 0 if its operand is false.

5.6 Integral operators

5.6.1 Arithmetic

+=(1int a) 1 int [Operator]
Monadic operator that yields the affirmation of its operand.

- =(lint a) I int [Operator]
Monadic operator that yields the negative of its operand.

abs = (1 int a) 1 int [Operator]
Monadic operator that yields the absolute value of its operand.

sign = (1 int a) int [Operator]
Monadic operator that yields -1 if a if negative, 0 if a is zero and 1 if a is positive.

odd = (I int a) bool [Operator]
Monadic operator that yields true if its operand is odd, false otherwise.

+=(1int a, b) 1 int [Operator]

Dyadic operator that yields the addition of its operands.

(1 int a, b) I int [Operator]
Dyadic operator that yields b subtracted from a.

Chapter 5: Standard prelude 30

* = (1 int a, b) I int [Operator]
Dyadic operator that yields the multiplication of its operands.

over = (1 int a, b) I int [Operator]

%»=(1int a, b) 1 int [Operator]

Dyadic operator that yields the integer division of a by b, rounding the quotient
toward zero.

mod = (1 int a, b) 1 int [Operator]

%* = (1 int a, b) 1 int [Operator]
Dyadic operator that yields the remainder of the division of a by b.

/ = (lint a, b) I real [Operator]
Dyadic operator that yields the integer division with real result of a by b.

*k = (I int a, b) 1l int [Operator]

= (lint a, b) 1 int [Operator]

Dyadic operator that yields a raised to the exponent b.
5.6.2 Arithmetic combined with assignation

plusab = (ref 1 int a, 1 int b) ref 1 int [Operator]

+:= = (ref 1 int a, 1 int b) ref 1 int [Operator]
Plus and become. Dyadic operator that calculates a + b, assigns the result of the
operation to the name a and then yields a.

minusab = (ref 1 int a, 1 int b) ref 1 int [Operator]

-:== (ref 1 int a, 1 int b) ref 1 int [Operator]
Dyadic operator that calculates a - b, assigns the result of the operation to the name
a and then yields a.

timesab = (ref 1 int a, 1 int b) ref 1 int [Operator]

x:= = (ref 1 int a, 1 int b) ref 1 int [Operator]
Dyadic operator that calculates a * b, assigns the result of the operation to the name
a and then yields a.

overab = (ref 1 int a, 1 int b) ref 1 int [Operator]

%:== (ref 1 int a, 1 int b) ref 1 int [Operator]
Dyadic operator that calculates a % b, assigns the result of the operation to the name
a and then yields a.

modab = (ref 1 int a, 1 int b) ref 1 int [Operator]

Jx:== (ref 1 int a, 1 int b) ref 1 int [Operator]
Dyadic operator that calculates a %* b, assigns the result of the operation to the name
a and then yields a.

5.6.3 Relational

eq = (I int a, b) bool [Operator]
== (Il int a, b) bool [Operator]
Dyadic operator that yields whether its operands are equal.

Chapter 5: Standard prelude 31

ne = (1 int a, b) bool [Operator]

/== (1 int a, b) bool [Operator]
Dyadic operator that yields whether its operands are not equal.

It = (1 int a, b) bool [Operator]

< =(l int a, b) bool [Operator]
Dyadic operator that yields whether a is less than b.

le = (1 int a, b) bool [Operator]

<= = (] int a, b) bool [Operator]
Dyadic operator that yields whether a is less than, or equal to b.

gt = (1 int a, b) bool [Operator]

> = (1 int a, b) bool [Operator]
Dyadic operator that yields whether a is greater than b.

ge = (1l int a, b) bool [Operator]

>= = (] int a, b) bool [Operator]

Dyadic operator that yields whether a is greater than, or equal to b.

5.6.4 Conversion

shorten = (short int a) short short int [Operator]
shorten = (int a) short int [Operator]
shorten = (long int a) int [Operator]
shorten = (long long int a) long int [Operator]

Monadic operator that yields, if it exists, the integral value that can be lengthened
to the value of a. If the value doesn’t exist then the operator yields either the most
positive integral value in the destination mode, if a is bigger than that value, or the
most negative integral value in the destination mode, if a is smaller than that value.

leng = (short short int a) short int [Operator]
leng = (short int a) int [Operator]
leng = (int a) long int [Operator]

[]

leng = (long int a) long long int Operator
Monadic operator that yields the integral value lengthened from the value of a.

5.7 Real operators

5.7.1 Arithmetic

+ = (I real a) 1 real [Operator]
Monadic operator that yields the affirmation of its operand.

- = (1 real a) I real [Operator]
Monadic operator that yields the negative of its operand.

abs = (1 real a) 1 real [Operator]

Monadic operator that yields the absolute value of its operand.

Chapter 5: Standard prelude 32

sign = (1 real a) int [Operator]
Monadic operator that yields -1 if a if negative, 0 if a is zero and 1 if a is positive.

+ = (1 real a, b) 1 real [Operator]
Dyadic operator that yields the addition of its operands.

- = (1 real a, b) I real [Operator]
Dyadic operator that yields b subtracted from a.

* = (] real a, b) I real [Operator]
Dyadic operator that yields the multiplication of its operands.

/ = (1 real a, b) I real [Operator]
Dyadic operator that yields the realeger division with real result of a by b.

*x = (] real a, b) 1 real [Operator]

~ = (I real a, b) 1 real [Operator]
Dyadic operator that yields a raised to the real exponent b.

xx = (] real a, int b) 1 real [Operator]

~ = (I real a, int b) 1 real [Operator]

Dyadic operator that yields a raised to the integral exponent b.
5.7.2 Arithmetic combined with assignation

plusab = (ref 1 real a, 1 real b) ref 1 real [Operator]

+:= = (ref 1 real a, 1 real b) ref 1 real [Operator]
Plus and become. Dyadic operator that calculates a + b, assigns the result of the
operation to the name a and then yields a.

minusab = (ref 1 real a, 1 real b) ref 1 real [Operator]

-:= = (ref 1 real a, 1 real b) ref 1 real [Operator]
Dyadic operator that calculates a - b, assigns the result of the operation to the name
a and then yields a.

timesab = (ref 1 real a, 1 real b) ref 1 real [Operator]

x:= = (ref 1 real a, 1 real b) ref 1 real [Operator]
Dyadic operator that calculates a * b, assigns the result of the operation to the name
a and then yields a.

divab = (ref 1 real a, 1 real b) ref 1 real [Operator]

/:= = (ref 1 real a, 1 real b) ref 1 real [Operator]
Dyadic operator that calculates a / b, assigns the result of the operation to the name
a and then yields a.

5.7.3 Relational

eq = (I real a, b) bool [Operator]
= = (1 real a, b) bool [Operator]
Dyadic operator that yields whether its operands are equal.

Chapter 5: Standard prelude 33

ne = (1 real a, b) bool [Operator]

= = (1 real a, b) bool [Operator]
Dyadic operator that yields whether its operands are not equal.

It = (1 real a, b) bool [Operator]

< = (I real a, b) bool [Operator]
Dyadic operator that yields whether a is less than b.

le = (1 real a, b) bool [Operator]

<= = (1l real a, b) bool [Operator]
Dyadic operator that yields whether a is less than, or equal to b.

gt = (1 real a, b) bool [Operator]

> = (1 real a, b) bool [Operator]
Dyadic operator that yields whether a is greater than b.

ge = (1 real a, b) bool [Operator]

>= = (I real a, b) bool [Operator]

Dyadic operator that yields whether a is greater than, or equal to b.
5.7.4 Conversions

round = (1 real a) int [Operator]
Monadic operator that yields the nearest integer to its operand.

entier = (1 real a) int [Operator]
Monadic operator that yields the integer equal to a, or the next integer below (more
negative than) a.

shorten = (long real a) real [Operator]

shorten = (long long real a) long real [Operator]
Monadic operator that yields, if it exists, the real value that can be lengthened to the
value of a. If the value doesn’t exist then the operator yields either the most positive
real value in the destination mode, if a is bigger than that value, or the most negative
real value in the destination mode, if a is smaller than that value.

leng = (real a) long real [Operator]
leng = (long real a) long long real [Operator]
Monadic operator that yields the real value lengthened from the value of a.

5.8 Character operators

5.8.1 Relational

eq = (char a, b) bool [Operator]

= = (char a, b) bool [Operator]
Dyadic operator that yields whether its operands are equal.

ne = (char a, b) bool [Operator]

/= = (char a, b) bool [Operator]

Dyadic operator that yields whether its operands are not equal.

Chapter 5: Standard prelude 34

It = (char a, b) bool [Operator]

< = (char a, b) bool [Operator]
Dyadic operator that yields whether a is less than b.

le = (char a, b) bool [Operator]

<= = (char a, b) bool [Operator]
Dyadic operator that yields whether a is less than, or equal to b.

gt = (char a, b) bool [Operator]

> = (char a, b) bool [Operator]
Dyadic operator that yields whether a is greater than b.

ge = (char a, b) bool [Operator]

>= = (char a, b) bool [Operator]

Dyadic operator that yields whether a is greater than, or equal to b.
5.8.2 Conversions

ABS = (char a) int [Operator]

Monadic operator that yields an unique integer for each permissable value of char.

REPR = (int a) char [Operator]

The opposite of abs of a character.

5.9 String operators

5.9.1 Relational

eq = (string a, b) bool [Operator]

= = (string a, b) bool [Operator]
Dyadic operator that yields whether its operands are equal. Two strings are equal if
they contain the same sequence of characters.

ne = (string a, b) bool [Operator]

= = (string a, b) bool [Operator]
Dyadic operator that yields whether its operands are not equal.

It = (string a, b) bool [Operator]

< = (string a, b) bool [Operator]
Dyadic operator that yields whether the string a is less than the string b.

le = (string a, b) bool [Operator]

<= = (string a, b) bool [Operator]
Dyadic operator that yields whether the string a is less than, or equal to string b.

gt = (string a, b) bool [Operator]

> = (string a, b) bool [Operator]

Dyadic operator that yields whether the string a is greater than the string b.

Chapter 5: Standard prelude 35

ge = (string a, b) bool [Operator]

>= = (string a, b) bool [Operator]
Dyadic operator that yields whether the string a is greater than, or equal to the string
b.

5.9.2 Composition

+ = (string a, b) string [Operator]
Dyadic operator that yields the concatenation of the two given strings as a new string.

+ = (string a, char b) string [Operator]
Dyadic operator that yields the concatenation of the given string a and a string whose
contents are the character b.

* (= (int a, string b) string) [Operator]

* (= (string b, int a) string) [Operator]

Dyadic operator that yields the string a concatenated a times to itself. If a is less
than zero then it is interpreted to be zero.

5.9.3 Composition combined with assignation

plusab = (ref string a, string b) ref string [Operator]

+:= = (ref string a, string b) ref string [Operator]
Plus and become. Dyadic operator that calculates a + b, assigns the result of the
operation to the name a and then yields a.

plusto = (string b, ref string a) ref string [Operator]

+=: = (string b, ref string b) ref string [Operator]
Dyadic operator that calculates a + b, assigns the result of the operation to the name
a and then yields a.

timesab = (ref string a, string b) ref string [Operator]

x:= = (ref string a, string b) ref stringl [Operator]
Plus and become. Dyadic operator that calculates a * b, assigns the result of the
operation to the name a and then yields a.

5.10 Complex operators

5.11 Bits operators

5.11.1 Logical

NOT = (1 bits a, b) 1 bits [Operator]

~ = (I bits a, b) 1 bits [Operator]
Monadic operator that yields the element-wise not logical operation in the elements
of the given bits operand.

AND = (1 bits a, b) 1 bits [Operator]

& = (1 bits a, b) 1 bits [Operator]
Dyadic operator that yields the element-wise and logical operation in the elements of
the given bits operands.

Chapter 5: Standard prelude 36

OR = (I bits a, b) 1 bits [Operator]
Dyadic operator that yields the element-wise “or” logical operation in the elements
of the given bits operands.

5.11.2 Shifting

SHL = (1 bits a, int n) 1 bits [Operator]

UP = (1 bits a, int n) 1 bits [Operator]
Dyadic operator that yields the given bits operand shifted n positions to the left.
Extra elements introduced on the right are initialized to false.

SHR = (1 bits a, int n) 1 bits [Operator]

DOWN = (1 bits a, int n) 1 bits [Operator]
Dyadic operator that yields the given bits operand shifted n positions to the right.
Extra elements introduced on the left are initialized to false.

5.11.3 Relational

eq = (1 bits a, b) bool [Operator]

= = (1 bits a, b) bool [Operator]
Dyadic operator that yields whether its operands are equal. Two bits are equal if
they contain the same sequence of booleans.

ne = (I bits a, b) bool [Operator]

= = (1 bits a, b) bool [Operator]
Dyadic operator that yields whether its operands are not equal.

It = (1 bits a, b) bool [Operator]

< = (1 bits a, b) bool [Operator]
Dyadic operator that yields whether the bits a is less than the bits b.

le = (1 bits a, b) bool [Operator]

<= = (1 bits a, b) bool [Operator]
Dyadic operator that yields whether the bits a is less than, or equal to bits b.

gt = (1 bits a, b) bool [Operator]

> = (1 bits a, b) bool [Operator]
Dyadic operator that yields whether the bits a is greater than the bits b.

ge = (1 bits a, b) bool [Operator]

>= = (1 bits a, b) bool [Operator]

Dyadic operator that yields whether the bits a is greater than, or equal to the bits b.
5.11.4 Conversions

abs = (1 bits a) 1 int [Operator]
Monadic operator that yields the integral value whose constituent bits correspond to
the booleans stored in a. See Section 8.1 [bin and abs of negative integral values],
page 46.

Chapter 5: Standard prelude 37

bin = (I int a) 1 bits [Operator]
Monadic operator that yields the bits value whose boolean elements map the bits in
the given integral operand. See Section 8.1 [bin and abs of negative integral values],

page 46.
shorten = (long bits a) bits [Operator]
shorten = (long long bits a) long bits [Operator]

Monadic operator that yields the bits value that can be lengthened to the value of a.
leng = (bits a) long bits [Operator]
leng = (long bits a) long long bits [Operator]

Monadic operator that yields the bits value lengthened from the value of a. The

lengthened value features false in the extra left positions added to match the length-
ened size.

5.12 Bytes operators
5.13 Semaphore operators

5.14 Math procedures

5.14.1 Arithmetic

sqrt = (1 real a) 1 real [Procedure]
Procedure that yields the square root of the given real argument.

5.14.2 Logarithms

In = (I real a) 1 real [Procedure]
Procedure that yields the base e logarithm of the given real argument.

exp = (1 real a) 1 real [Procedure]
Procedure that yields the exponential function of the given real argument. This is
the inverse of In.

5.14.3 Trigonometric

sin = (1 real a) 1 real [Procedure]
Procedure that yields the sin trigonometric function of the given real argument.

arcsin = (I real a) 1 real [Procedure]
Procedure that yields the arc-sin trigonometric function of the given real argument.

cos = (I real a) 1 real [Procedure]
Procedure that yields the cos trigonometric function of the given real argument.

arccos = (1l real a) I real [Procedure]
Procedure that yields the arc-cos trigonometric function of the given real argument.

Chapter 5: Standard prelude 38

tan = (1 real a) 1 real [Procedure]
Procedure that yields the tan trigonometric function of the given real argument.

arctan = (1 real a) 1 real [Procedure]
Procedure that yields the arc-tan trigonometric function of the given real argument.

39

6 Extended prelude

This chapter documents the GNU extensions to the standard prelude. The facilities doc-
umented below are available to Algol 68 programs only if the gnu68 language dialect is
selected, which is the default.

The extended prelude is available to Algol 68 programs without needing to import any
module, provided they are compiled as gnu68 code, which is the default.

6.1 Extended priorities

3

® XOor

e eclems

6.2 Extended environment enquiries

An environment enquiry is a constant, whose value may be useful to the programmer, that
reflects some characteristic of the particular implementation. The values of these enquiries
are also determined by the architecture and operating system targeted by the compiler.

] int L min int [Constant|
The most negative integral value.

l real L min real [Constant]
The most negative real value.

] real L infinity [Constant|
Positive infinity expressed in a real value.

l real L minus infinity [Constant|
Negative infinity expressed in a real value.

char replacement char [Constant]
A character that is unknown, unrecognizable or unrepresentable in Unicode.

char eof char [Constant|
char value that doesn’t denote an actual char, but an end-of-file situation.

6.3 Extended rows operators

The following operators work on any row mode, denoted below using the pseudo-mode rows.

elems = (rows a) int [Operator]
Monadic operator that yields the number of elements implied by the first bound pair
of the descriptor of the value of a.

elems = (int n, rows a) int [Operator]
Dyadic operator that yields the number of elements implied by the n-th bound pair
of the descriptor of the value of a.

Chapter 6: Extended prelude 40

6.4 Extended boolean operators

xor = (bool a, b) bool [Operator]
Dyadic operator that yields the exclusive-or operation of the given boolean arguments.

6.5 Extended bits operators

xor = (1 bits a, b) 1 bits [Operator]
Dyadic operator that yields the bit exclusive-or operation of the given bits arguments.

6.6 Extended math procedures

6.6.1 Logarithms

log = (1 real a, b) 1 real [Procedure]
Procedure that calculates the base ten logarithm of the given arguments.

41

7 POSIX prelude

The POSIX prelude provides facilities to perform simple transput (I/O) based on POSIX
file descriptors, accessing the file system, command-line arguments, environment variables,
etc.

This prelude is available to Algol 68 programs without needing to import any module,
provided they are compiled as gnu68 code, which is the default.

7.1 POSIX process

The Algol 68 program can report an exit status to the operating system once they stop
running. The exit status reported by default is zero, which corresponds to success.

set exit status = (int status) [Procedure]
Procedure that sets the exit status to report to the operating system once the program
stop executing. The default exit status is 0 which, by convention, is interpreted
by POSIX systems as success. A value different to zero is interpreted as an error
status. This procedure can be invoked more than one, the previous exit status being
overwritten.

7.2 POSIX command line

Algol 68 programs can access the command-line arguments passed to them by using the
following procedures.

argc = int [Procedure]
Procedure that yields the number of arguments passed in the command line, including
the name of the program.

argv = (int n) string [Procedure]
Procedure that yields the nth argument passed in the command line. The first argu-
ment is always the name used to invoke the program. If n is out of range then this
procedure returns the empty string.

7.3 POSIX environment

getenv = (string varname) string [Procedure]
Procedure that yields the value of the environment variable varname as a string. If the
specified environmental variable is not defined the this procedure returns an empty
string.

7.4 POSIX errors

When a call to a procedure in this prelude results in an error, the called procedure signals
the error in some particular way and also sets a global errno to a code describing the error.
For example, trying to opening a file that doesn’t exist will result in fopen returning -1,
which signals an error. The caller can then inspect the global errno to see what particular
error prevented the operation to be completed: in this case, errno will contain the error
code corresponding to “file doesn’t exist”.

Chapter 7: POSIX prelude 42

errno = int [Procedure]
This procedure yields the current value of the global errno. The yielded value reflects
the error status of the last executed POSIX prelude operation.

strerror = (int ecode) string [Procedure]
This procedure gets an error code and yields a string containing an explanatory short
description of the error. It is typical to pass the output of errno to this procedure.

perror = (string msg) void [Procedure]
This procedure prints the given string msg in the standard error output, followed by
a colon character, a space character and finally the string error of the current value
of errno.

7.5 POSIX files

File descriptors are int values that identify open files that can be accessed by the program.
The fopen procedure allocates file descriptors as it opens files, and the descriptor is used
in subsequent transput calls to perform operations on the files.

7.5.1 Standard file descriptors

There are three descriptors, however, which are automatically opened when the program
starts executing and automatically closed when the program finishes. These are:

int stdin [Constant|
File descriptor associated with the standard input. Its value is 0.

int stdout [Constant)]
File descriptor associated with the standard output. Its value is 1.

int stderr [Constant|
File descriptor associated with the standard error. Its value is 2.

7.5.2 Opening and closing files

fopen = (string pathname, bits flags) int [Procedure]
Open the file specified by pathname. The argument flags is a combination of file o
flags as defined below. If the specified file is successfully opened while satisfying the
constraints implied by flags then this procedure yields a file descriptor that is used
in subsequent I/O calls to refer to the open file. Otherwise, this procedure yields -1.
The particular error can be inspected by calling the errno procedure.

fclose = (int fd) int [Procedure]
Close the given file descriptor, which no longer refers to any file. This procedure
yields zero on success, and -1 on error. In the later case, the program can look at the
particular error by calling the errno procedure.

7.5.3 Creating files

fcreate = (string pathname, bits mode) int [Procedure]
Create a file with name pathname. The argument mode is a bits value containing a
bit pattern that determines the permissions on the created file. The bit pattern has

Chapter 7: POSIX prelude 43

the form 8rUGO, where U reflects the permissions of the user who owns the file, U
reflects the permissions of the users pertaining to the file’s group, and 0 reflects the
permissions of all other users. The permission bits are 1 for execute, 2 for write and 4
for read. If the file is successfully created then this procedure yields a file descriptor
that is used in subsequent I/O calls to refer to the newly created file. Otherwise,
this procedure yields -1. The particular error can be inspected by calling the errno
procedure.

7.5.4 Flags for fopen

The following flags can be combined using bit-wise operators. Note that in POSIX systems
the effective mode of the created file is the mode specified by the programmer masked with
the process’s umask.

bits file o default [Constant|
Flag for fopen indicating that the file shall be opened with whatever capabilities
allowed by its permissions.

bits file o rdwr [Constant|
Flag for fopen indicating that the file shall be opened for both reading and writing.

bits file o rdonly [Constant]
Flag for fopen indicating that the file shall be opened for reading only. This flag is
not compatible with file o rdwr nor with file o wronly.

bits file o wronly [Constant)]
Flag for fopen indicating that the file shall be opened for write only. This flag is not
compatible with file o rdwr nor with file o rdonly.

bits file o trunc [Constant]
Flag for fopen indicating that the opened file shall be truncated upon opening it.
The file must allow writing for this flag to take effect. The effect of combining file
o trunc and file o rdonly is undefined and varies among implementations.

7.5.5 Getting file properties

fsize = (int fd) long long int [Procedure]
Return the size in bytes of the file characterized by the file descriptor £d. If the
system entity characterized by the given file descriptor doesn’t have a size, if the size
of the file cannot be stored in a long long int, or if there is any other error condition,
this procedure yields -1 and errno is set appropriately.

lseek = (int fd, long int offset, int whence) long long int [Procedure]

Set the file offset of the file characterized by the file descriptor £d depending on the
values of offset and whence. On success, the resulting offset, as measured in bytes
from the beginning of the file, is returned. Otherwise, -1 is returned, errno is set to
indicate the error, and the file offset remains unchanged. The effects of offset and
whence are:

e If whence is seek set, the file offset is set to offset bytes.

e If whence is seek cur, the file offset is set to its current location plus offset.

e If whence is seek end, the file offset is set to the size of the file plus offset.

Chapter 7: POSIX prelude 44

7.6 POSIX sockets

A program can communicate with other computers, or with other processes running in the
same computer, via sockets. The sockets are identified by file descriptors.

fconnect = (string host, int port) int [Procedure]
This procedure creates a stream socket and connects it to the given host using port
port. The established communication is full-duplex, and allows sending and receiv-
ing data using transput until it gets closed. On success this procedure yields a file
descriptor. On error this procedure yields -1 and errno is set appropriately.

7.7 POSIX string transput

The following procedures read or write characters and strings from and to open files. The
external encoding of the files is assumed to be UTF-8. Since Algol 68 chars are UCS-4, this
means that reading or writing a character may involve reading or writing more than one
byte, depending on the particular Unicode code points involved.

7.7.1 Output of strings and chars

putchar = (char c) char [Procedure]
Write the given character to the standard output. This procedure yields c in case the
character got successfully written, or eof char otherwise.

puts = (string str) void [Procedure]
Write the given string to the standard output.

fputc = (int fd, char c) int [Procedure]
Write given character ¢ to the file with descriptor £d. This procedure yields ¢ on
success, or eof char on error.

fputs = (int fd, string str) int [Procedure]
Write the given string str to the file with descriptor £d. This procedure yields the
number of bytes written on success, or 0 on error.

7.7.2 Input of strings and chars

getchar = char [Procedure]
Read a character from the standard input. This procedure yields the read character
in case the character got successfully read, or eof char otherwise.

gets = (int n) ref string [Procedure]
Read a string composed of n characters from the standard input and yield a reference
to it. If n is bigger than zero then characters get read until either n characters have
been read or the end of line is reached. If n is zero or negative then characters get
read until either a new line character is read or the end of line is reached.

fgetc = (int fd) int [Procedure]
Read a character from the file with descriptor £d. This procedure yields the read
character in case a valid Unicode character got successfully read. If an unrecognizable
or unknown character is found then this procedure yields replacement char. In case
of end of file this procedure yields eof char.

Chapter 7: POSIX prelude 45

fgets = (int fd, int n) ref string [Procedure]
Read a string from the file with descriptor £d and yield a reference to it. If n is bigger
than zero then characters get read until either n characters have been read or the end
of line is reached. If n is zero or negative then characters get read until either a new
line character is read or the end of line is reached.

46

8 Language extensions

This chapter documents the GNU extensions implemented by this compiler on top of the
Algol 68 programming language. These extensions collectively conform a strict superlan-
guage of Algol 68, and are enabled by default. To disable them the user can select the strict
Algol 68 standard by passing the option -std=algol68 when invoking the compiler.

8.1 bin and abs of negative integral values

The bin operator gets an integral value and yields a bits value that reflects the internal bits
of the integral value. The semantics of this operator, as defined in the Algol 68 standard
prelude, are:

op bin = (L int a) L bits:
ifa>1LO0
then L int b := a; L bits;
for i from L bits width by -1 to 1
do (L Fofc)[i]l] :=0odd b; b :=b % L 2 od;
c
fi;
The abs operator performs the inverse operation of bits. Given a L bits value, it yields
the L int value whose bits representation is the bits value. The semantics of this operator,
as defined in the Algol 68 prelude, are:

op abs = (L bits a) L int:

begin L int ¢ := L 0;
for i to L bits width
doc :=L 2 *c+ Kabs (LF of a)[i] od;
c

end

Note how the bin of a negative integral value is not defined: the implicit else-part of the
conditional yields skip, which is defined as any bits value in that context. Note also how
abs doesn’t make any provision to check whether the resulting value is positive: it assumes
it is so.

The GNU Algol 68 compiler, when working in strict Algol 68 mode (-std=algol68),
makes bin to always yield L bits (skip) when given a negative value, as mandated by the
report. But the skip value is always the bits representation of zero, i.e. 2r0. Strict Algol
68 programs, however, must not rely on this.

When GNU extensions are enabled (-std=gnu68) the bin of a negative value yields the
two’s complement bit pattern of the value rather than zero. Therefore, bin - short short 2
yields 2r11111110. And abs short short 2r11111110 yields -2.

8.2 Bold taggles

This compiler supports the stropping regimes known as UPPER and SUPPER. In both
regimes bold words are written by writing their constituent bold letters and digits, in order.
In UPPER regime all the letters of a bold word are to be written using upper-case. In

Chapter 8: Language extensions 47

SUPPER regime, only the first bold letter is required to be written using upper-case, and
this only when the bold word is not a reserved word.

When a bold word comprises several natural words, it may be a little difficult to distin-
guish them at first sight. Consider for example the following code, written fist in UPPER
stropping:

MODE TREENODE = STRUCT (TREENODEPAYLOAD data, REF TREENODE next),
TREENODEPAYLOAD = STRUCT (INT code, REAL average, mean);

Then written in SUPPER stropping:

mode TreeNode = struct (TreeNodePayload data, REF TreeNode next),
TreeNodePayload = struct (int code, real average, mean);

Particularly in UPPER stropping, it may be difficult to distinguish the constituent
natural words at first sight.

In order to improve this, this compiler implements a GNU extension called bold taggles
that allows to use underscore characters (_) within mode and operator indications as a
visual aid to improve readability. When this extension is enabled, mode indications and
operator indications consist in a sequence of the so-called bold taggles, which are themselves
sequences of one or more bold letters or digits optionally terminated by an underscore
character.

With bold taggles enabled the program above could have been written using UPPER
stropping as:
MODE TREE_NODE = STRUCT (TREE_NODE_PAYLOAD data, REF TREE_NODE next),
TREE_NODE_PAYLOAD = STRUCT (INT code, REAL average, mean);
And using SUPPER stropping as:
mode Tree_Node = struct (Tree_Node_Payload data, ref Tree_Node next),
Tree_Node_Payload = struct (int code, real average, mean);
Which is perhaps more readable for most people. Note that the underscore characters are
not really part of the mode or operator indication. Both TREE_NODE and TREENODE denote
the same mode indication. Note also that, following the definition, constructs like Foo__bar
and _Baz are not valid indications.
Bold taggles are available when the gnu68 dialect of the language is selected. See Sec-
tion 1.1 [Dialect options], page 1.

48

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

https://www.fsf.org

GNU General Public License 49

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 50

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

GNU General Public License 51

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 52

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

GNU General Public License 53

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 54

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

GNU General Public License 55

10.

11.

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 56

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

GNU General Public License 57

15.

16.

17.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 58

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-1gpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

99

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://www.fsf.org

GNU Free Documentation License 60

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 61

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

GNU Free Documentation License 62

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 63

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

GNU Free Documentation License 64

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 65

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/

GNU Free Documentation License 66

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ~~GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

67

Option Index

ga68’s command line options are indexed here without any initial ‘=’ or ‘-=’. Where an
option has both positive and negative forms (such as -foption and -fno-option), relevant
entries in the manual are indexed under the most appropriate form; it may sometimes be
useful to look up both forms.

F L

£AB8=AUMP=aSto oottt 3 L 1

fab8-dump-modes ... 3

fa68-dump-module-interfaces 3 S

forachete LI ahared-ABgRGS s
static-libga68l 3

feheck. ..o 3 SEA=StA ..ot 1

fmodules—map.......oovunnnniiii 2

fmodules-map-file................ 2

fno-assert.......... ..o 3 W

fno-brackets.................o 1 WeXTENSIOMS ..ottt et 2

fstropping=stropping_regime 1 Whidden-declarations.......................... 2
Wno-extensionscoovviiiiiiiiiiiiiiaa... 2
Wno-hidden-declarations...................... 2
WHO=8SCOPeo 2

| Wno-voidingc.uuuuriiiiiia 2
WSCOPE. . 2

L 1 Wvolding ... 2

68

Index

%

/P 30 P 29, 35

K 30

/5 PP 30

= 30
A

& ADS 29, 31, 36
ABS .. 34

LR LT LR LR TR EPETERETERERTRRERTS 29,35 and ... 29
AND .. 35

* ATCCOS .« .ottt ettt et e s 37
ACSIN. .. oot 37

K 30, 32, 35 arctan 38

KK e 30, 32 ATEC ettt 41

P 30, 32, 35 BTV et ettt e 41

|

P 29, 31, 32, 35 B

P 30, 32, 35 base characterscooiiiiiii.L. 17

P P 37
bits lengths......... ... 25

o bits shorths............... 25
bitswidth..... o i 25

B R R 29,31,32 blank.........iiiiii 26

T T 30, 32 bool 26
bytes lengths................ 25
bytes shorths............... 26

/ byteswidth.......... 26

2SN 30, 32

LT 32

e 29, 31, 33, 34, 36 C

< char 26
compilation unit ol 4

e 31,33, 34,36 €OS .t 37

o e 31, 33, 34, 36

= D

B R 29, 30, 32, 33, 34, 36 debug dump options ... 3
developer options ..., 3

> directory options. ..., 1
divab oo 32

> 31,33,34,36 DOWNooiiiiiiiiiiiiii e 36

R R R R R RS 31, 33, 34, 35, 36 dump options ... 3

Index

E

elems....... 39
entier....... 33
eof char. ...t e 39
<Y [29, 30, 32, 33, 34, 36
[0 o « o 42
error charciiiii i 26
exit status...... ... 12
=54 o 37
EXPOIES ..o 10
F

FCLlOSE. ittt 42
feconmnect ... 44
fereate 42
FDL, GNU Free Documentation License........ 59
fgetc. . o 44
fgets. . 45
fileodefault........... ..., 43
fileordonlyooiiiiiiiiiii .. 43
fileoxrdwr...... ..ot 43
fileotrunccviiiiii i e 43
fileowronlyl 43
FLAD ettt 26
flop.. ..o 26
FOPOI. ettt 42
fputc... .o 44
B PULS .ttt 44
fsize. . o 43

B 31, 33, 34, 35, 36
getchar i i 44
BELeNV. ...t 41
BetLS . 44
gt 31, 33, 34, 36
|

include ... 15
int lengths 25
int shorths......... ... 25

69
L
Ibits ..ot 27
Lhytes. ... 27
Lecompl.......oo i 27
Lint ... 26
Irealo 26
Linfinity............l 39
Lmax dint. ...t 25
Lmaxreal.ottt 25
Lmindnt.........oo o i i i il 39
Lminreal..........oo ... 39
L minus infinity................... 39
Lpi.ooo 26
Lsmall realoiinniinniie e 25
le. oo 31, 33, 34, 36
leng............ 31, 33, 37
brary . ..o 12
linking, static............ il 3
In. .o 37
log. 40
long bitswidth......................, 25
long bytes width.................... 26
long long bits width............ 25
long long byteswidth 26
Iseek. .. 43
31, 33, 34, 36
Iwh . 28
M
max abs char ool 26
FOOTCISEFeCTSTRIC) 3 o) 2
MeSSages, WarliNg.ouuuueeeinnneeeannn 2
minusab......... 30, 32
MOd ...t 30
modab........ 30
module 4
modules ... 1
MONAAS . .« v ettt 23
N
DE. .ottt 29, 31, 33, 34, 36
NOMAAS . .« v ettt 23
T 29
NOT. .. 35

Index

odd . ..o 29
options, dialect.......... ... il 1
options, directory search 1
OPtIONS, EITOTS ..ottt 2
options, linking i 3
options, modules............ il 1
options, runtime il 3
options, Warningsc.ceeeiiiiiiiiinnan. 2
O o ottt e e e e 29
OR .. 36
(0= 30
overab 30

P

PACKEt . . 4
particular program............ oL 12
S o o 42
plusab........ 30, 32, 35
Plusto. 35
Pragmat 14
prelude packetol 12
prelude, extended oL 39
prelude, standardo il 25
93 K0 -1 ¢ PP 4
protection 12
publicized definition............................ 12
putchar 44
PUES . 44

real lengths.................................. 25
real shorths.............. 25
replacement charcoiiuiiinnn. 39
REPR ... 34

70
search path o i 1
separated compilation........................... 4
setexit status..........coooiiiiiiiiiiiian, 41
SHL ..o 36
shorten........ il 31, 33, 37
SHR. ... 36
SIgIL. ... 29, 32
SIM. . 37
SQT. .o 37
standard environment............ 13
STACTT . .ottt 42
stdin......o 42
Stdout. ... 42
SEOP - 12
SELETTOT .ottt 42
string. 27
SUPPresSing WarningS.eeeeeeeeeeeeeeenn. 2
T
tan ... 38
timesab.......... i 30, 32, 35
UPD . . 28
UP . 36
VOId . oo 26
Warnings, SUPPressingoveeeeeeeeenn.... 2
worthy characters............ 17
X
b0 40

	1 Invoking ga68
	Dialect options
	Options for Directory Search
	Module search options
	Warnings options
	Runtime options
	Linking options
	Developer options

	2 Composing programs
	Packets
	Modules
	Writing modules
	Accessing modules
	Accessing several modules
	The controlled clause
	The value yielded by an access clause
	Modules accessing other modules

	Module activation
	Modules and exports
	Modules and libraries
	Modules and protection

	Particular programs
	Exit status
	The stop label

	The standard environment

	3 Comments and pragmats
	Comments
	Pragmats
	pragmat include

	4 Hardware representation
	Representation languages
	Worthy characters
	Base characters
	Stropping regimes
	POINT stropping
	RES stropping
	UPPER stropping
	SUPPER stropping

	Monads and Nomads
	String breaks

	5 Standard prelude
	Environment enquiries
	Standard modes
	Standard priorities
	Rows operators
	Boolean operators
	Integral operators
	Arithmetic
	Arithmetic combined with assignation
	Relational
	Conversion

	Real operators
	Arithmetic
	Arithmetic combined with assignation
	Relational
	Conversions

	Character operators
	Relational
	Conversions

	String operators
	Relational
	Composition
	Composition combined with assignation

	Complex operators
	Bits operators
	Logical
	Shifting
	Relational
	Conversions

	Bytes operators
	Semaphore operators
	Math procedures
	Arithmetic
	Logarithms
	Trigonometric

	6 Extended prelude
	Extended priorities
	Extended environment enquiries
	Extended rows operators
	Extended boolean operators
	Extended bits operators
	Extended math procedures
	Logarithms

	7 POSIX prelude
	POSIX process
	POSIX command line
	POSIX environment
	POSIX errors
	POSIX files
	Standard file descriptors
	Opening and closing files
	Creating files
	Flags for fopen
	Getting file properties

	POSIX sockets
	POSIX string transput
	Output of strings and chars
	Input of strings and chars

	8 Language extensions
	bin and abs of negative integral values
	Bold taggles

	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Option Index
	Index

