GNU Offloading and Multi Processing
Runtime Library

The GNU OpenMP and OpenACC Implementation

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 2006-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Funding Free Software”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Enabling OpenMP 1
2 OpenMP Implementation Status 3
3 OpenMP Runtime Library Routines 15
4 OpenMP Environment Variables 59
5 Enabling OpenACC. e 71
6 OpenACC Runtime Library Routines 73
7 OpenACC Environment Variables 93
8 CUDA Streams Usage . .« v vttt 95
9 OpenACC Library Interoperability 97
10 OpenACC Profiling Interface 101
11 OpenMP-Implementation Specifics...................... 107
12 Offload-Target Specifics., 113
13 The libgomp ABIL. 119
14 Reporting Bugs ... 125
GNU General Public License o ... 127
GNU Free Documentation License.......................... 139
Funding Free Software i 147

Library Indexo 149

Table of Contents

1 Enabling OpenMP 1
2 OpenMP Implementation Status............... 3
2.1 OpenMP 4.5, . 3
2.2 0penMP 5.0 ... 3
New features listed in Appendix B of the OpenMP specification ... 3
Other new OpenMP 5.0 features..............ooooiiiiiiiiii... 5
2.3 OpenMP 5. 1. ... 5
New features listed in Appendix B of the OpenMP specification ... 5
Other new OpenMP 5.1 features....................oiiiiiiiii.. 6
2.4 OpenMP b2, . 7
New features listed in Appendix B of the OpenMP specification ... 7
Other new OpenMP 5.2 features.................., 8
2.5 0penMP 6.0. ... 9
New features listed in Appendix B of the OpenMP specification ... 9
Deprecated features, unless listed above.......................... 12
Other new OpenMP 6.0 features. ..., 12
2.6 OpenMP Technical Report 14 13
New features listed in Appendix B of the OpenMP specification .. 13
Deprecated features, unless listed above.......................... 13
OpenMP Runtime Library Routines 15
3.1 Thread Team Routineso, 15
3.1.1 omp_set_num_threads — Set upper team size limit 15
3.1.2 omp_get_num_threads — Size of the active team........... 15
3.1.3 omp_get_max_threads — Maximum
number of threads of parallel region 16
3.14 omp_get_thread_num — Current thread ID 16
3.1.5 omp_in_parallel — Whether a parallel region is active.... 16
3.1.6 omp_set_dynamic — Enable/disable dynamic teams........ 17
3.1.7 omp_get_dynamic — Dynamic teams setting............... 17
3.1.8 omp_get_cancellation — Whether
cancellation support isenabledl 17
3.1.9 omp_set_nested — Enable/disable nested parallel regions.. 18
3.1.10 omp_get_nested — Nested parallel regions 18

3.1.11 omp_set_schedule — Set the runtime scheduling method.. 19

3.1.12 omp_get_schedule — Obtain the runtime scheduling method. . 19

3.1.13 omp_get_teams_thread_limit — Maximum

number of threads imposed by teams 20
3.1.14 omp_get_supported_active_levels — Maximum
number of active regions supported 20

3.1.15 omp_set_max_active_levels — Limits the
number of active parallel regions.................. 20

iii

iv

3.1.16 omp_get_max_active_levels — Current
maximum number of active regions.............. L
3.1.17 omp_get_level — Obtain the current nesting level........
3.1.18 omp_get_ancestor_thread_num — Ancestor thread ID ...
3.1.19 omp_get_team_size — Number of threads in a team......
3.1.20 omp_get_active_level — Number of parallel regions.....
3.2 Thread Affinity Routines........... o i
3.2.1 omp_get_proc_bind — Whether threads
may be moved between CPUs it
3.3 Teams Region Routines........o ..
3.3.1 omp_get_num_teams — Number of teams
3.3.2 omp_get_team_num — Get team number...................
3.3.3 omp_set_num_teams — Set upper
teams limit for teams construct............ o oL
3.3.4 omp_get_max_teams — Maximum
number of teams of teams region oL
3.3.5 omp_set_teams_thread_limit — Set upper
thread limit for teams construct
3.3.6 omp_get_thread_limit — Maximum number of threads...
3.4 Tasking Routines............oooiiiiiiiiiiiiiiii i,
3.4.1 omp_get_max_task_priority — Maximum priority value..
3.4.2 omp_in_explicit_task — Whether a
given task is an explicit task............
3.4.3 omp_in_final — Whether in final or included task region. .
3.5 Resource Relinquishing Routines...............................
3.5.1 omp_pause_resource — Release
OpenMP resourceson adevicecovviiiiiiiiinnnnn....
3.5.2 omp_pause_resource_all — Release
OpenMP resources on all devices ...,
3.6 Device Information Routines...............,
3.6.1 omp_get_num_procs — Number of processors online.
3.6.2 omp_set_default_device — Set the
default device for target regionscccoiiiiiiia....
3.6.3 omp_get_default_device — Get the
default device for target regions
3.6.4 omp_get_num_devices — Number of target devices........
3.6.5 omp_get_device_num — Return
device number of current deviceo
3.6.6 omp_get_device_from_uid — Obtain the
device number to a unique id
3.6.7 omp_get_uid_from_device —
Obtain the unique id of a device...............,
3.6.8 omp_is_initial_device — Whether
executing on the host device............,
3.6.9 omp_get_initial_device — Return
device number of initial device............ oot
3.7 Device Memory Routinescoooiiiiiiiiiiiiiiii ..,

3.7.1 omp_target_alloc — Allocate device memory............. 30
3.7.2 omp_target_free — Free device memory 31
3.7.3 omp_target_is_present — Check whether storage is mapped. . 31
3.7.4 omp_target_is_accessible — Check

whether memory is device accessible................... 32
3.7.5 omp_target_memcpy — Copy data between devices......... 33
3.7.6 omp_target_memcpy_async — Copy data

between devices asynchronously 34
3.7.7 omp_target_memcpy_rect — Copy a

subvolume of data between devices 35
3.7.8 omp_target_memcpy_rect_async — Copy a subvolume of

data between devices asynchronously 36
3.7.9 omp_target_memset — Set bytes in device memory 37
3.7.10 omp_target_memset — Set bytes in

device memory asynchronouslyt 38
3.7.11 omp_target_associate_ptr — Associate a

device pointer with a host pointer 39
3.7.12 omp_target_disassociate_ptr — Remove

device-host pointer association oL 40
3.7.13 omp_get_mapped_ptr — Return

device pointer to a host pointer................. 40

3.8 Lock Routines........ ... 41
3.8.1 omp_init_lock — Initialize simple lock.................... 41
3.8.2 omp_init_nest_lock — Initialize nested lock.............. 41
3.8.3 omp_destroy_lock — Destroy simple lock 42
3.8.4 omp_destroy_nest_lock — Destroy nested lock 42
3.8.5 omp_set_lock — Wait for and set simple lock.............. 42
3.8.6 omp_set_nest_lock — Wait for and set nested lock........ 43
3.8.7 omp_unset_lock — Unset simple lock...................... 43
3.8.8 omp_unset_nest_lock — Unset nested lock................ 43
3.8.9 omp_test_lock — Test and set simple lock if available. 44
3.8.10 omp_test_nest_lock — Test and set nested lock if available. . 44

3.9 Timing Routineso 44
3.9.1 omp_get_wtick — Get timer precision..................... 45
3.9.2 omp_get_wtime — Elapsed wall clock time................. 45

3.10 Event Routine......... ..o 45
3.10.1 omp_fulfill_event — Fulfill and destroy an OpenMP event.. 45

3.11 Interoperability Routines............. L. 46
3.11.1 omp_get_num_interop_properties — Get the number

of implementation-specific properties 46
3.11.2 omp_get_interop_int — Obtain

integer-valued interoperability property........................ 46
3.11.3 omp_get_interop_ptr — Obtain

pointer-valued interoperability property........................ 47

3.11.4 omp_get_interop_str — Obtain
string-valued interoperability property......................... 48

3.11.5 omp_get_interop_name — Obtain the name of an

interop_property value as string................ 48
3.11.6 omp_get_interop_type_desc — Obtain type and
description to an interop_propertyciiiiiia... 49
3.11.7 omp_get_interop_rc_desc — Obtain error
string to an interop_rc errorcode............., 49
3.12 Memory Management Routines...................... 50
3.12.1 omp_init_allocator — Create an allocator.............. 50
3.12.2 omp_destroy_allocator — Destroy an allocator.......... o1

3.12.3 omp_set_default_allocator — Set the default allocator.. 51
3.12.4 omp_get_default_allocator — Get the default allocator.. 52

3.12.5 omp_alloc — Memory allocation with an allocator........ 52
3.12.6 omp_aligned_alloc — Memory allocation

with an allocator and alignment, 53
3.12.7 omp_free — Freeing memory

allocated with OpenMP routines............................... 54

3.12.8 omp_calloc — Allocate nullified memory with an allocator.. 54
3.12.9 omp_aligned_calloc — Allocate aligned

nullified memory with an allocator.............., 55
3.12.10 omp_realloc — Reallocate memory
allocated with OpenMP routines............................... 56
3.13 Environment Display Routine 57
3.13.1 omp_display_env — print the initial ICV values.......... o7
OpenMP Environment Variables 59
4.1 OMP_ALLOCATOR — Set the default allocator..................... 59
4.2 OMP_AFFINITY_FORMAT — Set the format
string used for affinity display i 60
4.3 OMP_CANCELLATION — Set whether cancellation is activated 61

4.4 0OMP_DISPLAY_AFFINITY — Display thread affinity information .. 61
4.5 O0OMP_DISPLAY_ENV — Show OpenMP version

and environment variables............... 61
4.6 OMP_DEFAULT_DEVICE — Set the device used in target regions ... 61
4.7 O0OMP_DYNAMIC — Dynamic adjustment of threads................ 62
4.8 OMP_MAX_ACTIVE_LEVELS — Set the maximum

number of nested parallel regionsl 62
4.9 OMP_MAX_TASK_PRIORITY — Set the maximum priority.......... 62
4.10 OMP_NESTED — Nested parallel regions......................... 63
4.11 OMP_NUM_TEAMS — Specifies the number of

teams to use by teams regionc i i 63

4.12 (OMP_NUM_THREADS — Specifies the number of threads to use.... 63
4.13 0OMP_PROC_BIND — Whether threads may be moved between CPUs. . 64
4.14 OMP_PLACES — Specifies on which CPUs the

threads should be placed i 64
4.15 O0MP_STACKSIZE — Set default thread stack size................ 65
4.16 OMP_SCHEDULE — How threads are scheduled................... 66

4.17 OMP_TARGET_OFFLOAD — Controls offloading behavior 66
4.18 OMP_TEAMS_THREAD_LIMIT — Set the maximum

number of threads imposed by teams 66
4.19 OMP_THREAD_LIMIT — Set the maximum number of threads.... 67
4.20 OMP_WAIT_POLICY — How waiting threads are handled......... 67
4.21 GOMP_CPU_AFFINITY — Bind threads to specific CPUs......... 67
4.22 GOMP_DEBUG — Enable debugging output 68
4.23 GOMP_STACKSIZE — Set default thread stack size............... 68
4.24 GOMP_SPINCOUNT — Set the busy-wait spin count 68
4.25 GOMP_RTEMS_THREAD_POOLS — Set the

RTEMS specific thread pools..........ccoiiiiii i 69

Enabling OpenACC............................ 71

OpenACC Runtime Library Routines........ 73
6.1 acc_get_num_devices — Get number of

devices for given device type. ... 73

6.2 acc_set_device_type — Set type of device accelerator to use... 73
6.3 acc_get_device_type — Get type of

device accelerator tobe used.......... ... 73
6.4 acc_set_device_num — Set device number to use............... 74
6.5 acc_get_device_num — Get device number to be used.......... 74
6.6 acc_get_property — Get device property. 74
6.7 acc_async_test — Test for completion of a

specific asynchronous operation.coeviiiieeninnen.. 75
6.8 acc_async_test_all — Tests for completion of

all asynchronous operations.o . 76
6.9 acc_wait — Wait for completion of a

specific asynchronous operation. 76
6.10 acc_wait_all — Waits for completion of all

asynchronous operations. ..., 76
6.11 acc_wait_all_async — Wait for completion of

all asynchronous operations.o 77
6.12 acc_wait_async — Wait for completion of

asynchronous operations.oooviiiiiiiiiiiiiiiiiiea... 77
6.13 acc_init — Initialize runtime for a specific device type........ 77
6.14 acc_shutdown — Shuts down the runtime

for a specific device type. ..o 78
6.15 acc_on_device — Whether executing on a particular device... 78
6.16 acc_malloc — Allocate device memory. 78
6.17 acc_free — Free device memory..........c.cooviiiiiiieea... 79
6.18 acc_copyin — Allocate device memory

and copy host memory toit........... ... i 79

6.19 acc_present_or_copyin — If the data is not present on the device, allocate

device memory and copy from host memory. 80

vii

viii

6.20 acc_create — Allocate device memory

and map it to host memory. 80
6.21 acc_present_or_create — If the data is not present on the device, allocate

device memory and map it to host memory........................ 81
6.22 acc_copyout — Copy device memory to host memory.......... 82
6.23 acc_delete — Free device memory. ..., 83
6.24 acc_update_device — Update device memory

from mapped host memory........... ... 84
6.25 acc_update_self — Update host memory

from mapped device MemOTry.t 84
6.26 acc_map_data — Map previously allocated

device memory to host memory. i 85

6.27 acc_unmap_data — Unmap device memory from host memory... 85
6.28 acc_deviceptr — Get device pointer

associated with specific host address. 86
6.29 acc_hostptr — Get host pointer associated

with specific device address. ... 86
6.30 acc_is_present — Indicate whether host variable

/ array is present on deviCe.t 86

6.31 acc_memcpy_to_device — Copy host memory to device memory. .. 87
6.32 acc_memcpy_from_device — Copy device

memory to host memory. 87
6.33 acc_memcpy_device — Copy memory within a device. 88
6.34 acc_attach — Let device pointer point to device-pointer target... 89
6.35 acc_detach — Let device pointer point to host-pointer target... 89
6.36 acc_get_current_cuda_device — Get CUDA device handle... 90
6.37 acc_get_current_cuda_context — Get CUDA context handle... 90

6.38 acc_get_cuda_stream — Get CUDA stream handle. 90
6.39 acc_set_cuda_stream — Set CUDA stream handle............ 90
6.40 acc_prof_register — Register callbacks...................... 91
6.41 acc_prof_unregister — Unregister callbacks. 91
6.42 acc_prof_lookup — Obtain inquiry functions.................. 91
6.43 acc_register_library — Library registration................. 91
7 OpenACC Environment Variables............ 93
7.1 ACC_DEVICE _TYPE ...ttt 93
7.2 ACC_DEVICE_NUMttt it 93
7.3 ACC _ PROFLIB ...ttt et 93
8 CUDA Streams Usage......................... 95
9 OpenACC Library Interoperability........... 97
9.1 Introduction............ ... 97
9.2 First invocation: NVIDIA CUBLAS library APT............... 97
9.3 First invocation: OpenACC library API....................... 98

9.4 OpenACC library and environment variables................... 99

10 OpenACC Profiling Interface............... 101

10.1 Implementation Status and Implementation-Defined Behavior.. 101

11 OpenMP-Implementation Specifics 107
11.1 Implementation-defined ICV Initialization 107
11.2 OpenMP Context Selectors.............ccoiiiiiin.. 107
11.3 Memory allocation ... 107

12 Offload-Target Specifics..................... 113
12.1 AMD Radeon (GCN)...ooiuiiii e 113

12.1.1 OpenMP interop —
Foreign-Runtime Support for AMD GPUs.................... 114
12.2 DVDEX « e e ee e e e e e 115
12.2.1 OpenMP interop —
Foreign-Runtime Support for Nvidia GPUs................... 117

13 The libgomp ABI............................ 119
13.1 Implementing MASKED and MASTER construct............ 119
13.2 Implementing CRITICAL construct 119
13.3 Implementing ATOMIC construct, 119
13.4 Implementing FLUSH construct................ 119
13.5 Implementing BARRIER construct 119
13.6 Implementing THREADPRIVATE construct................. 119
13.7 Implementing PRIVATE clause................c.oooiiiia.. 120
13.8 Implementing FIRSTPRIVATE LASTPRIVATE

COPYIN and COPYPRIVATE clauses ..., 120
13.9 Implementing REDUCTION clause..............., 120
13.10 Implementing PARALLEL construct 120
13.11 Implementing FOR construct............... ..., 121
13.12 Implementing ORDERED construct........................ 122
13.13 Implementing SECTIONS construct........................ 122
13.14 Implementing SINGLE construct........................... 122
13.15 Implementing OpenACC’s PARALLEL construct........... 123

14 Reporting Bugs.............................. 125

GNU General Public License.................... 127

GNU Free Documentation License.............. 139
ADDENDUM: How to use this License for your documents......... 146

Funding Free Software 147

Library Index 149

1 Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time flag —f openmp
must be specified. For C and C++, this enables the handling of the OpenMP directives
using #pragma omp and the [[omp::directive(...)]], [[omp::sequence(...)]] and
[[omp: :decl(...)]] attributes. For Fortran, it enables for free source form the !$omp
sentinel for directives and the !$ conditional compilation sentinel and for fixed source form
the c$omp, *$omp and !$omp sentinels for directives and the c$, *$ and !'$ conditional
compilation sentinels. The flag also arranges for automatic linking of the OpenMP runtime
library (Chapter 3 [Runtime Library Routines|, page 15).

The -fopenmp-simd flag can be used to enable a subset of OpenMP directives that do
not require the linking of either the OpenMP runtime library or the POSIX threads library.

A complete description of all OpenMP directives may be found in the OpenMP Applica-
tion Program Interface (https://www.openmp.org) manuals. See also Chapter 2 [OpenMP
Implementation Status|, page 3.

https://www.openmp.org
https://www.openmp.org

2 OpenMP Implementation Status

The _OPENMP preprocessor macro and Fortran’s openmp_version parameter, provided by
omp_lib.h and the omp_lib module, have the value 202111 (i.e. OpenMP 5.2).

2.1 OpenMP 4.5
The OpenMP 4.5 specification is fully supported.

2.2 OpenMP 5.0

New features listed in Appendix B of the OpenMP specification

Description Status Comments

Array shaping N

Array sections with non-unit strides in C and C++ N

Iterators Y

metadirective directive Y

declare variant directive Y

target-offload-var ICV and OMP_TARGET_OFFLOAD env Y

variable

Nested-parallel changes to max-active-levels-var ICV Y

requires directive Y See also Chapter 12
[Offload-Target
Specifics|, page 113,

teams construct outside an enclosing target region Y

Non-rectangular loop nests P Full support for
C/C++, partial for
Fortran (PR110735
(https://gcc.gnu.
org/PR110735))

I'= as relational-op in canonical loop form for C/C++ Y

nonmonotonic as default loop schedule modifier for Y

worksharing-loop constructs

Collapse of associated loops that are imperfectly nested Y

loops

Clauses if, nontemporal and order(concurrent) in Y

simd construct

atomic constructs in simd Y

loop construct Y

order (concurrent) clause Y

scan directive and in_scan modifier for the reduction Y

clause

in_reduction clause on task constructs Y

in_reduction clause on target constructs P nowait only stub

task_reduction clause with taskgroup Y

task modifier to reduction clause Y

https://gcc.gnu.org/PR110735
https://gcc.gnu.org/PR110735
https://gcc.gnu.org/PR110735

affinity clause to task construct

detach clause to task construct

omp_fulfill_event runtime routine

reduction and in_reduction clauses on taskloop
and taskloop simd constructs

taskloop construct cancelable by cancel construct
mutexinoutset dependence-type for depend clause
Predefined memory spaces, memory allocators, alloca-
tor traits

Memory management routines
allocate directive

allocate clause

use_device_addr clause on target data

ancestor modifier on device clause

Implicit declare target directive

Discontiguous array section with target update
construct

C/C++’s Ivalue expressions in to, from and map clauses
C/C++’s lvalue expressions in depend clauses

Nested declare target directive

Combined master constructs

depend clause on taskwait

Weak memory ordering clauses on atomic and flush
construct

hint clause on the atomic construct

depobj construct and depend objects

Lock hints were renamed to synchronization hints
conditional modifier to lastprivate clause
Map-order clarifications

close map-type-modifier

Mapping C/C++ pointer variables and to assign the
address of device memory mapped by an array section
Mapping of Fortran pointer and allocatable vari-
ables, including pointer and allocatable components of
variables

defaultmap extensions

KKK KKK

T =<

KKK 2K

T KK

=

GNU libgomp

Stub only

See also Sec-
tion 11.3 [Memory
allocation],

page 107,

C++ unsupported;
see also Sec-
tion 11.3 [Memory
allocation],

page 107,

Clause has no
effect on target
(PR113436
(https://gcc.gnu.
org/PR113436))

Stub only

https://gcc.gnu.org/PR113436
https://gcc.gnu.org/PR113436
https://gcc.gnu.org/PR113436

Chapter 2: OpenMP Implementation Status

declare mapper directive P Initial support and

for C/C++, only
omp_get_supported_active_levels routine
Runtime routines and environment variables to display
runtime thread affinity information

<

omp_pause_resource and omp_pause_resource_all Y
runtime routines

omp_get_device_num runtime routine Y

OMPT interface N

OMPD interface N

Other new OpenMP 5.0 features

Description Status Comments
Supporting C++’s range-based for loop Y

2.3 OpenMP 5.1

New features listed in Appendix B of the OpenMP specification

Description Status Comments
OpenMP directive as C++ attribute specifiers
omp_all_memory reserved locator

target_device trait in OpenMP Context
target_device selector set in context selectors
C/C++’s delimited declare variant directive: sup-
port elision of preprocessed code and interpret enclosed
function definitions as variant functions

R

=

declare variant: new clauses adjust_args and
append_args

dispatch construct

device-specific ICV settings with environment variables
assume and assumes directives

nothing directive

error directive

masked construct

scope directive

Loop transformation constructs

strict modifier in the grainsize and num_tasks
clauses of the taskloop construct

align clause in allocate directive

align modifier in allocate clause

thread_limit clause to target construct
has_device_addr clause to target construct
Iterators in target update motion clauses and map Limited support for
clauses C/C++

Indirect calls to the device version of a procedure or
function in target regions

e T L

Only C and Fortran

T T

=

interop directive

omp_interop_t object support in runtime routines
nowait clause in taskwait directive

Extensions to the atomic directive

seq_cst clause on a flush construct

inoutset argument to the depend clause

private and firstprivate argument to default
clause in C and C++

present argument to defaultmap clause
omp_set_num_teams, omp_set_teams_thread_limit,
omp_get_max_teams, omp_get_teams_thread_limit
runtime routines

omp_target_is_accessible runtime routine
omp_target_memcpy_async and omp_target_memcpy_
rect_async runtime routines

omp_get_mapped_ptr runtime routine

omp_calloc, omp_realloc, omp_aligned_alloc and
omp_aligned_calloc runtime routines
omp_alloctrait_key_t enum: omp_atv_serialized
added, omp_atv_default changed

omp_display_env runtime routine
ompt_scope_endpoint_t enum: ompt_scope_
beginend

ompt_sync_region_t enum additions

ompt_state_t enum: ompt_state_wait_barrier_
implementation and ompt_state_wait_barrier_
teams

ompt_callback_target_data_op_emi_t,
ompt_callback_target_emi_t, ompt_callback_
target_map_emi_t and ompt_callback_target_
submit_emi_t

ompt_callback_error_t type

OMP_PLACES syntax extensions

OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT envi-
ronment variables

Other new OpenMP 5.1 features

Description

Support of strictly structured blocks in Fortran
Support of structured block sequences in C/C++
unconstrained and reproducible modifiers on order
clause

Support begin/end declare target syntax in C/C++

GNU libgomp

o

Cf. Chapter 12
[Offload-Target
Specifics], page 113,

KoK KRR R

<

<

Z =<

<=2

Status Comments
Y
Y
Y

Chapter 2: OpenMP Implementation Status 7

Pointer predetermined firstprivate getting initialized to N
address of matching mapped list item per 5.1, Sect.
2.21.7.2

For Fortran, diagnose placing declarative be- N
fore/between USE, IMPORT, and IMPLICIT as
invalid

Optional comma between directive and clause in the Y
#pragma form

indirect clause in declare target Y

device_type(nohost) /device_type (host) for N

variables

present modifier to the map, to and from clauses Y

Changed interaction between declare target and Y

OpenMP context

Dynamic selector support in metadirective Y

Dynamic selector support in declare variant P Fortran rejects
non-constant
expressions in
dynamic selectors;
C/C++ reject

expressions using
argument variables.
(PR113904
(https://gcc.gnu.
org/PR113904))

2.4 OpenMP 5.2

New features listed in Appendix B of the OpenMP specification

Description Status Comments

omp_in_explicit_task routine and explicit-task-var Y

ICv

omp/ompx/omx sentinels and omp_/ompx_ namespaces N/A warning for
ompx/omx sentinels?

Clauses on end directive can be on directive Y

destroy clause with destroy-var argument on depobj Y

Deprecation of no-argument destroy clause on depobj N/A undeprecated in
OpenMP 6

linear clause syntax changes and step modifier Y

Deprecation of minus operator for reductions Y

Deprecation of separating map modifiers without Y

comma

! The ompx sentinel as C/C++ pragma and C++ attributes are warned for with -Wunknown-pragmas (implied
by -Wall) and -Wattributes (enabled by default), respectively; for Fortran free-source code, there is a
warning enabled by default and, for fixed-source code, the omx sentinel is warned for with -Wsurprising
(enabled by -Wall). Unknown clauses are always rejected with an error.

https://gcc.gnu.org/PR113904
https://gcc.gnu.org/PR113904
https://gcc.gnu.org/PR113904

declare mapper with iterator and present modifiers
If a matching mapped list item is not found in the data
environment, the pointer retains its original value
New enter clause as alias for to on declare target
directive

Deprecation of to clause on declare target directive
Extended list of directives permitted in Fortran pure
procedures

New allocators directive for Fortran

Deprecation of allocate directive for Fortran
allocatables/pointers

Optional paired end directive with dispatch

New memspace and traits modifiers for uses_
allocators

Deprecation of traits array following the alloca-
tor_handle expression in uses_allocators

New otherwise clause as alias for default on
metadirectives

Deprecation of default clause on metadirectives

Deprecation of delimited form of declare target
Reproducible semantics changed for
order (concurrent)

allocate and firstprivate clauses on scope
ompt_callback_work

Default map-type for the map clause in target
enter/exit data

New doacross clause as alias for depend with
source/sink modifier

Deprecation of depend with source/sink modifier
omp_cur_iteration keyword

Other new OpenMP 5.2 features

Description

For Fortran, optional comma between directive and
clause

Conforming device numbers and omp_initial_device
and omp_invalid_device enum/PARAMETER
Initial value of default-device-var ICV with 0OMP_
TARGET_OFFLOAD=mandatory

all as implicit-behavior for defaultmap

interop_types in any position of the modifier list for the
init clause of the interop construct

SRR

o

Z =

<z

<

Status
N

Y

<

GNU libgomp

Only predefined
allocators

Both otherwise
and default are
accepted without
diagnostics.

Comments

Chapter 2: OpenMP Implementation Status

Invoke virtual member functions of C++ objects created N
on the host device on other devices
mapper as map-type modifier in declare mapper N

2.5 OpenMP 6.0

New features listed in Appendix B of the OpenMP specification

Features deprecated in versions 5.0, 5.1 and 5.2 were N/A Backward
removed compatibility
Full support for C23 was added

Full support for C++23 was added

Full support for Fortran 2023 was added

_ALL suffix to the device-scope environment variables Host device number
wrongly accepted
num_threads clause now accepts a list

Abstract names added for OMP_NUM_THREADS, OMP_
THREAD_LIMIT and OMP_TEAMS_THREAD_LIMIT
Supporting increments with abstract names in 0OMP_ N
PLACES

Extension of OMP_DEFAULT_DEVICE and new OMP_ N
AVAILABLE_DEVICES environment vars

New uid trait for target devices and for OMP_ N
AVATILABLE_DEVICES and OMP_DEFAULT_DEVICE

New OMP_THREADS_RESERVE environment variable
The decl attribute was added to the C++ attribute
syntax

The OpenMP directive syntax was extended to include Y
C23 attribute specifiers

Support for pure directives in Fortran’s do concurrent N
All inarguable clauses take now an optional Boolean N
argument

Z z

<2

The adjust_args clause was extended to specify the N
argument by position and supports variadic arguments

For Fortran, locator list can be also function reference N
with data pointer result

Concept of assumed-size arrays in C and C++ N
directive-name-modifier accepted in all clauses N
Extension of interop operation of append_args, al- Y
lowing all modifiers of the init clause

New argument-free version of depobj with repeatable N
clauses and the init clause

Undeprecate omitting the argument to the depend Y
clause of the argument version of the depend construct

For Fortran, atomic with BLOCK construct and, for N
C/C++, with unlimited curly braces supported

10 GNU libgomp

For Fortran, atomic with pointer comparison N

For Fortran, atomic with enum and enumeration types N

For Fortran, atomic compare with storing the compar- N

ison result

Canonical loop sequences and new looprange clause N

For Fortran, handling polymorphic types in data- P private not

sharing-attribute clauses supported

For Fortran, rejecting polymorphic types in data- N not diagnosed

mapping clauses (and mostly
unsupported)

New taskgraph construct including saved modifier N
and replayable clause

default clause on the target directive and accepting N
variable categories

Semantic change regarding the reference count update N
with use_device_ptr and use_device_addr

Support for inductions N
Reduction over private variables with reduction clause N
Implicit reduction identifiers of C++ classes N
New init_complete clause to the scan directive N
ref modifier to the map clause N
New storage map-type modifier; context-dependent N
alloc and release are aliases

Change of the map-type property from ultimate to de- N
fault

self modifier to map and self as defaultmap N
argument

Mapping of assumed-size arrays in C, C++ and Fortran N
delete as delete-modifier not as map type N
For Fortran, the automap modifier to the enter clause N
of declare_target

groupprivate directive N
local clause to declare_target directive N
part_size allocator trait for interleaved allocator N
partitions

pin_device, preferred_device and target_access N
allocator traits

access allocator trait changes N
New partitioner value to partition allocator trait N
Semicolon-separated list to uses_allocators N
New need_device_addr modifier to adjust_args N
clause

interop clause to dispatch Y
Scope requirement changes for declare_target N
message and severity clauses to parallel directive N

Chapter 2: OpenMP Implementation Status

self_maps clause to requires directive
no_openmp_constructs assumptions clause
Restriction for ordered regarding loop-transforming
directives

apply clause to loop-transforming constructs
Non-constant values in the sizes clause

fuse loop-transformation construct

interchange loop-transformation construct

reverse loop-transformation construct

split loop-transformation construct

stripe loop-transformation construct

tile permitting association of grid and inter-tile loops
strict modifier keyword to num_threads

safesync clause to the parallel construct
omp_curr_progress_width identifier
omp_get_max_progress_width runtime routine
Lifted restrictions on order (concurrent) and, hence,
the loop construct

atomic permitted in a construct with
order (concurrent)

Lifted restrictions on not-strictly-nested regions with
order (concurrent)

workdistribute directive for Fortran

Fortran DO CONCURRENT as associated loop in a loop
construct

New task_iteration directive inside taskloop
threadset clause in task-generating constructs

New priority clause to target, target_enter_data,
target_data, target_exit_data and target_update
New device_type clause to the target directive
target_data as composite construct

nowait clause with reverse-offload target directives
Extended prefer-type modifier to init clause

Boolean argument to nowait and nogroup may be non
constant

memscope clause to atomic and flush

New transparent clause for multi-generational task-
dependence graphs

The cancel construct now completes tasks with unful-
filled events

omp_fulfill_event routine was restricted regarding
fulfillment of event variables

Added rule for compound-directive names, permitting
many more combinations

omp_is_free_agent and omp_ancestor_is_free_
agent routines

2222222222227

Z

Zk2zz2z 22727

Z z

N

11

12

omp_get_device_from_uid and omp_get_uid_from_
device routines

omp_get_device_num_teams, omp_set_device_num_
teams, omp_get_device_teams_thread_limit, and
omp_set_device_teams_thread_limit routines
omp_target_memset and omp_target_memset_async
routines

Fortran version of the interop runtime routines
Routines for obtaining memory spaces/allocators for
shared/device memory
omp_get_memspace_num_resources routine
omp_get_memspace_pagesize routine
omp_get_submemspace routine
omp_init_mempartitioner, omp_destroy_
mempartitioner, omp_init_mempartition,
omp_destroy_mempartition, omp_mempartition_
set_part, omp_mempartition_get_user_data
routines

Deprecation of the target_data_op, target, target_
map and target_submit callbacks and as values that
set_callback must return
ompt_target_data_transfer and ompt _
target_data_transfer_async values in
ompt_target_data_op_t enum

The values ompt_target_data_transfer_to_device,
ompt_target_data_transfer_from_device,
ompt_target_data_transfer_to_device_async and
ompt_target_data_transfer_from_device_async of
the target_data_op OMPT type were deprecated
ompt_get_buffer_limits OMPT routine

Deprecated features, unless listed above

Deprecation of omitting the optional white space to
separate adjacent keywords in the directive-name in
Fortran (fixed and free source form)

Deprecation of the combiner expression in the
declare_reduction argument

Deprecation of the Fortran include file omp_lib.h

Other new OpenMP 6.0 features

Multi-word directives now use underscore by default
Relaxed Fortran restrictions to the aligned clause
Mapping lambda captures

New omp_pause_stop_tool constant for
omp_pause_resource

Y

Z

Z 2z 22z

Z2z2z2Zz

GNU libgomp

Chapter 2: OpenMP Implementation Status

In Fortran (fixed and free source form), spaces between N
directive names are mandatory

Update of the map-type decay for mapping and N
declare_mapper

2.6 OpenMP Technical Report 14
Technical Report (TR) 14 is the first preview for OpenMP 6.1.

New features listed in Appendix B of the OpenMP specification

The depth clause to fuse directive N
The attach modifier to the map clause N
The dyn_groupprivate clause and the omp_get_dyn_ N
groupprivate_ptr, omp_get_dyn_groupprivate_
size, and omp_get_dyn_groupprivate_size
routines

begin declare_variant directive in Fortran

grid and tile modifier to the size clause

New flatten loop-transforming directive

scaled modifier to simdlen clause

New omp_default_device identifier as conforming de-
vice number

K Z2Z2272Z

Z

Clarify when omp_target_is_accessible routine re-
turns zero
Deprecated features, unless listed above

Deprecation of conditional-update-capture structured N
block without a capture statement

15

3 OpenMP Runtime Library Routines

The runtime routines described here are defined by Section 18 of the OpenMP specification
in version 5.2.

3.1 Thread Team Routines

Routines controlling threads in the current contention group. They have C linkage and do
not throw exceptions.

3.1.1 omp_set_num_threads — Set upper team size limit

Description:
Specifies the number of threads used by default in subsequent parallel sections,
if those do not specify a num_threads clause. The argument of omp_set_num_
threads shall be a positive integer.

C/C++:
Prototype: void omp_set_num_threads(int num_threads) ;
Fortran:
Interface: subroutine omp_set_num_threads(num_threads)
integer, intent(in) :: num_threads

See also: Section 4.12 [OMP_NUM_THREADS|, page 63, Section 3.1.2
[omp_get_num_threads], page 15, Section 3.1.3 [omp_get_max_threads],
page 16,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.1.

3.1.2 omp_get_num_threads — Size of the active team

Description:
Returns the number of threads in the current team. In a sequential section of
the program omp_get_num_threads returns 1.

The default team size may be initialized at startup by the OMP_NUM_THREADS
environment variable. At runtime, the size of the current team may be set
either by the NUM_THREADS clause or by omp_set_num_threads. If none of the
above were used to define a specific value and OMP_DYNAMIC is disabled, one
thread per CPU online is used.

C/C++:
Prototype: int omp_get_num_threads(void) ;

Fortran:

Interface: integer function omp_get_num_threads()

See also: Section 3.1.3 [omp_get_max_threads], page 16, Section 3.1.1
[omp_set_num_threads], page 15, Section 4.12 [OMP_NUM_THREADS],
page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.2.

https://www.openmp.org
https://www.openmp.org

16 GNU libgomp

3.1.3 omp_get_max_threads — Maximum number of threads of
parallel region

Description:
Return the maximum number of threads used for the current parallel region
that does not use the clause num_threads.

C/C++:
Prototype: int omp_get_max_threads(void) ;

Fortran:

Interface: integer function omp_get_max_threads()

See also: Section 3.1.1 [omp_set_num_threads|, page 15, Section 3.1.6 [omp_set_dynamic],
page 17, Section 3.3.6 [omp_get_thread_limit]|, page 24,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.3.

3.1.4 omp_get_thread_num — Current thread ID

Description:
Returns a unique thread identification number within the current team. In a
sequential parts of the program, omp_get_thread_num always returns 0. In
parallel regions the return value varies from 0 to omp_get_num_threads-1 in-
clusive. The return value of the primary thread of a team is always 0.

C/C++:
Prototype: int omp_get_thread_num(void);

Fortran:

Interface: integer function omp_get_thread_num()

See also: Section 3.1.2 [omp_get_num_threads|, page 15, Section 3.1.18
[omp_get_ancestor_thread_num]|, page 21,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.4.

3.1.5 omp_in_parallel — Whether a parallel region is active

Description:
This function returns true if currently running in parallel, false otherwise.
Here, true and false represent their language-specific counterparts.

C/C++:
Prototype: int omp_in_parallel(void);

Fortran:

Interface: logical function omp_in_parallel()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.6.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 17

3.1.6 omp_set_dynamic — Enable/disable dynamic teams

Description:
Enable or disable the dynamic adjustment of the number of threads within a
team. The function takes the language-specific equivalent of true and false,
where true enables dynamic adjustment of team sizes and false disables it.
C/C++:

Prototype: void omp_set_dynamic(int dynamic_threads);

Fortran:
Interface: subroutine omp_set_dynamic(dynamic_threads)
logical, intent(in) :: dynamic_threads
See also: Section 4.7 [OMP_DYNAMIC], page 62, Section 3.1.7 [omp_get_dynamic],
page 17,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.7.

3.1.7 omp_get_dynamic — Dynamic teams setting

Description:
This function returns true if enabled, false otherwise. Here, true and false
represent their language-specific counterparts.
The dynamic team setting may be initialized at startup by the OMP_DYNAMIC
environment variable or at runtime using omp_set_dynamic. If undefined, dy-
namic adjustment is disabled by default.

C/C++:
Prototype: int omp_get_dynamic(void) ;

Fortran:
Interface: logical function omp_get_dynamic()

See also: Section 3.1.6 [omp_set_dynamic], page 17, Section 4.7 [OMP_DYNAMIC],
page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.8.

3.1.8 omp_get_cancellation — Whether cancellation support is
enabled

Description:
This function returns true if cancellation is activated, false otherwise. Here,
true and false represent their language-specific counterparts. Unless OMP_
CANCELLATION is set true, cancellations are deactivated.

C/C++:
Prototype: int omp_get_cancellation(void);

Fortran:

Interface: logical function omp_get_cancellation()
See also: Section 4.3 [OMP_CANCELLATION], page 61,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.9.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

18

GNU libgomp

3.1.9 omp_set_nested — Enable/disable nested parallel regions

Description:

C/C++:

Fortran:

See also:

Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The function takes the language-specific equivalent
of true and false, where true enables dynamic adjustment of team sizes and
false disables it.

Enabling nested parallel regions also sets the maximum number of active nested
regions to the maximum supported. Disabling nested parallel regions sets the
maximum number of active nested regions to one.

Note that the omp_set_nested API routine was deprecated in the OpenMP
specification 5.0 in favor of omp_set_max_active_levels.

Prototype: void omp_set_nested(int nested);

Interface: subroutine omp_set_nested(nested)
logical, intent(in) :: nested

Section 3.1.10 [omp_get_nested], page 18, Section 3.1.15 [omp_set_max_active_levels],J]
page 20, Section 4.8 [OMP_MAX_ACTIVE_LEVELS], page 62, Section 4.10
[OMP_NESTED], page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.10.

3.1.10 omp_get_nested — Nested parallel regions

Description:

C/C++:

Fortran:

This function returns true if nested parallel regions are enabled, false other-
wise. Here, true and false represent their language-specific counterparts.

The state of nested parallel regions at startup depends on several environment
variables. If OMP_MAX_ACTIVE_LEVELS is defined and is set to greater than one,
then nested parallel regions will be enabled. If not defined, then the value of
the OMP_NESTED environment variable will be followed if defined. If neither are
defined, then if either OMP_NUM_THREADS or OMP_PROC_BIND are defined with a
list of more than one value, then nested parallel regions are enabled. If none of
these are defined, then nested parallel regions are disabled by default.

Nested parallel regions can be enabled or disabled at runtime using omp_set_
nested, or by setting the maximum number of nested regions with omp_set_
max_active_levels to one to disable, or above one to enable.

Note that the omp_get_nested API routine was deprecated in the OpenMP
specification 5.0 in favor of omp_get_max_active_levels.

Prototype: int omp_get_nested(void);

Interface: logical function omp_get_nested()

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 19

See also: Section 3.1.16 [omp_get_max_active_levels], page 21, Section 3.1.9
[omp_set_nested], page 18, Section 4.8 [OMP_MAX_ACTIVE_LEVELS],
page 62, Section 4.10 [OMP_NESTED], page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.11.

3.1.11 omp_set_schedule — Set the runtime scheduling method

Description:
Sets the runtime scheduling method. The kind argument can have the
value omp_sched_static, omp_sched_dynamic, omp_sched_guided or
omp_sched_auto. Except for omp_sched_auto, the chunk size is set to the
value of chunk_size if positive, or to the default value if zero or negative. For
omp_sched_auto the chunk_size argument is ignored.

C/C++

Prototype: void omp_set_schedule (omp_sched_t kind, int
chunk_size);

Fortran:

Interface: subroutine omp_set_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

See also: Section 3.1.12 [omp_get_schedule], page 19, Section 4.16 [OMP_SCHEDULE],
page 66,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.12.

3.1.12 omp_get_schedule — Obtain the runtime scheduling method

Description:
Obtain the runtime scheduling method. The kind argument is set to omp_
sched_static, omp_sched_dynamic, omp_sched_guided or omp_sched_auto.
The second argument, chunk_size, is set to the chunk size.

C/C++

Prototype: void omp_get_schedule(omp_sched_t *kind, int
*chunk_size) ;

Fortran:

Interface: subroutine omp_get_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

See also: Section 3.1.11 [omp_set_schedule], page 19, Section 4.16 [OMP_SCHEDULE],
page 66,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.13.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

20 GNU libgomp

3.1.13 omp_get_teams_thread_limit — Maximum number of threads
imposed by teams

Description:
Return the maximum number of threads that are able to participate in each
team created by a teams construct.

C/C++:
Prototype: int omp_get_teams_thread_limit(void);
Fortran:
Interface: integer function omp_get_teams_thread limit ()

See also: Section 3.3.5 [omp_set_teams_thread_limit], page 24, Section 4.18
[OMP_TEAMS_THREAD_LIMIT], page 66,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.6.

3.1.14 omp_get_supported_active_levels — Maximum number of
active regions supported

Description:
This function returns the maximum number of nested, active parallel regions
supported by this implementation.

C/C++
Prototype: int omp_get_supported_active_levels(void);
Fortran:
Interface: integer function omp_get_supported_active_levels()

See also: Section 3.1.16 [omp_get_max_active_levels], page 21, Section 3.1.15
[omp_set_max_active_levels], page 20,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.15.

3.1.15 omp_set_max_active_levels — Limits the number of active
parallel regions
Description:
This function limits the maximum allowed number of nested, active parallel

regions. max_levels must be less or equal to the value returned by omp_get_
supported_active_levels.

C/C++
Prototype: void omp_set_max_active_levels(int max_levels);

Fortran:

Interface: subroutine omp_set_max_active_levels(max_levels)
integer max_levels

See also: Section 3.1.16 [omp_get_max_active_levels], page 21, Section 3.1.20

[omp_get_active_level], page 22, Section 3.1.14 [omp_get_supported_active_levels| J]

page 20,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.15.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 21

3.1.16 omp_get_max_active_levels — Current maximum number of
active regions

Description:
This function obtains the maximum allowed number of nested, active parallel
regions.
C/C++
Prototype: int omp_get_max_active_levels(void);
Fortran:
Interface: integer function omp_get_max_active_levels()

See also: Section 3.1.15 [omp_set_max_active_levels], page 20, Section 3.1.20
[omp_get_active_level], page 22,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.16.

3.1.17 omp_get_level — Obtain the current nesting level

Description:
This function returns the nesting level for the parallel blocks, which enclose the
calling call.

C/C++

Prototype: int omp_get_level(void) ;
Fortran:

Interface: integer function omp_level()

See also: Section 3.1.20 [omp_get_active_level], page 22,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.17.

3.1.18 omp_get_ancestor_thread_num — Ancestor thread ID

Description:
This function returns the thread identification number for the given nesting
level of the current thread. For values of level outside zero to omp_get_level
-1 is returned; if level is omp_get_level the result is identical to omp_get_
thread_num.

C/C++
Prototype: int omp_get_ancestor_thread_num(int level);
Fortran:
Interface: integer function omp_get_ancestor_thread_
num(level)

integer level

See also: Section 3.1.17 [omp_get_level], page 21, Section 3.1.4 [omp_get_thread_num)],
page 16, Section 3.1.19 [omp_get_team_size], page 22,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.18.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

22 GNU libgomp

3.1.19 omp_get_team_size — Number of threads in a team

Description:
This function returns the number of threads in a thread team to which either
the current thread or its ancestor belongs. For values of level outside zero to
omp_get_level, -1 is returned; if level is zero, 1 is returned, and for omp_get_
level, the result is identical to omp_get_num_threads.

C/C++:
Prototype: int omp_get_team_size(int level);
Fortran:
Interface: integer function omp_get_team_size(level)

integer level

See also: Section 3.1.2 [omp_get_num_threads], page 15, Section 3.1.17 [omp_get_level],
page 21, Section 3.1.18 [omp_get_ancestor_thread _num], page 21,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.19.

3.1.20 omp_get_active_level — Number of parallel regions

Description:
This function returns the nesting level for the active parallel blocks, which
enclose the calling call.

C/C++
Prototype: int omp_get_active_level(void);
Fortran:
Interface: integer function omp_get_active_level()

See also: Section 3.1.17 [omp_get_level], page 21, Section 3.1.16 [omp_get_max_active_levels]]
page 21, Section 3.1.15 [omp_set_max_active_levels|, page 20,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.20.

3.2 Thread Affinity Routines

Routines controlling and accessing thread-affinity policies. They have C linkage and do not
throw exceptions.

3.2.1 omp_get_proc_bind — Whether threads may be moved
between CPUs

Description:
This functions returns the currently active thread affinity policy, which
is set via OMP_PROC_BIND. Possible values are omp_proc_bind_false,
omp_proc_bind_true, omp_proc_bind_primary, omp_proc_bind_master,
omp_proc_bind_close and omp_proc_bind_spread, where omp_proc_bind_
master is a deprecated alias for omp_proc_bind_primary.

C/C++:
Prototype: omp_proc_bind_t omp_get_proc_bind(void);

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 23

Fortran:

Interface: integer (kind=omp_proc_bind_kind) function
omp_get_proc_bind()

See also: Section 4.13 [OMP_PROC_BIND]|, page 64, Section 4.14 [OMP_PLACES],
page 64, Section 4.21 [GOMP_CPU_AFFINITY], page 67,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.22.

3.3 Teams Region Routines

Routines controlling the league of teams that are executed in a teams region. They have C
linkage and do not throw exceptions.

3.3.1 omp_get_num_teams — Number of teams

Description:

Returns the number of teams in the current team region.
C/C++:

Prototype: int omp_get_num_teams(void);
Fortran:

Interface: integer function omp_get_num_teams ()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.32.

3.3.2 omp_get_team_num — Get team number

Description:
Returns the team number of the calling thread.
C/C++:
Prototype: int omp_get_team_num(void) ;
Fortran:
Interface: integer function omp_get_team_num()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.33.

3.3.3 omp_set_num_teams — Set upper teams limit for teams
construct

Description:
Specifies the upper bound for number of teams created by the teams construct
which does not specify a num_teams clause. The argument of omp_set_num_
teams shall be a positive integer.

C/C++:

Prototype: void omp_set_num_teams (int num_teams) ;

Fortran:

Interface: subroutine omp_set_num_teams (num_teams)
integer, intent(in) :: num_teams

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

24 GNU libgomp

See also: Section 4.11 [OMP_NUM_TEAMS]|, page 63, Section 3.3.1
[omp_get_num_teams|, page 23, Section 3.3.4 [omp._get_max_teams],
page 24,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.3.

3.3.4 omp_get_max_teams — Maximum number of teams of teams
region

Description:
Return the maximum number of teams used for the teams region that does not
use the clause num_teams.

C/C++:
Prototype: int omp_get_max_teams(void);
Fortran:
Interface: integer function omp_get_max_teams()
See also: Section 3.3.3 [omp_set_num_teams], page 23, Section 3.3.1

[omp_get_num_teams|, page 23,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.4.

3.3.5 omp_set_teams_thread_limit — Set upper thread limit for
teams construct

Description:
Specifies the upper bound for number of threads that are available for each team
created by the teams construct which does not specify a thread_limit clause.
The argument of omp_set_teams_thread_limit shall be a positive integer.

C/C++:
Prototype: void omp_set_teams_thread_limit(int thread_limit);
Fortran:
Interface: subroutine omp_set_teams_thread_limit(thread_
limit)

integer, intent(in) :: thread_limit

See also: Section 4.18 [OMP_TEAMS_THREAD_LIMIT], page 66, Section 3.1.13
[omp_get_teams_thread_limit|, page 20, Section 3.3.6 [omp_get_thread_limit],
page 24,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.4.5.

3.3.6 omp_get_thread_limit — Maximum number of threads

Description:
Return the maximum number of threads of the program.

C/C++:
Prototype: int omp_get_thread_limit(void);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 25

Fortran:

Interface: integer function omp_get_thread_limit()

See also: Section 3.1.3 [omp_get_max_threads], page 16, Section 4.19
[OMP_THREAD_LIMIT], page 67,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.14.

3.4 Tasking Routines

Routines relating to explicit tasks. They have C linkage and do not throw exceptions.

3.4.1 omp_get_max_task_priority — Maximum priority value
that can be set for tasks.

Description:
This function obtains the maximum allowed priority number for tasks.

C/C++
Prototype: int omp_get_max_task_priority(void);

Fortran:

Interface: integer function omp_get_max_task_priority()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.29.

3.4.2 omp_in_explicit_task — Whether a given task is an explicit
task

Description:
The function returns the explicit-task-var ICV; it returns true when the en-
countering task was generated by a task-generating construct such as target,
task or taskloop. Otherwise, the encountering task is in an implicit task
region such as generated by the implicit or explicit parallel region and omp_
in_explicit_task returns false.

C/C++
Prototype: int omp_in_explicit_task(void);

Fortran:

Interface: logical function omp_in_explicit_task()

Reference: OpenMP specification v5.2 (https://www.openmp.org), Section 18.5.2.

3.4.3 omp_in_final — Whether in final or included task region

Description:
This function returns true if currently running in a final or included task re-
gion, false otherwise. Here, true and false represent their language-specific
counterparts.

C/C++:

Prototype: int omp_in_final(void);

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

26 GNU libgomp

Fortran:

Interface: logical function omp_in_final()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.21.

3.5 Resource Relinquishing Routines

Routines releasing resources used by the OpenMP runtime. They have C linkage and do
not throw exceptions.

3.5.1 omp_pause_resource — Release OpenMP resources on a device

Description:
Free resources used by the OpenMP program and the runtime library on and for
the device specified by device_num; on success, zero is returned and non-zero
otherwise.

The value of device_num must be a conforming device number. The routine
may not be called from within any explicit region and all explicit threads that
do not bind to the implicit parallel region have finalized execution.

C/C++:
Prototype: int omp_pause_resource (omp_pause_resource_t kind,
int device_num);
Fortran:

Interface: integer function omp_pause_resource(kind,
device_num)
integer (kind=omp_pause_resource_kind) kind
integer device_num

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.43.

3.5.2 omp_pause_resource_all — Release OpenMP resources on all
devices

Description:
Free resources used by the OpenMP program and the runtime library on all
devices, including the host. On success, zero is returned and non-zero otherwise.

The routine may not be called from within any explicit region and all explicit
threads that do not bind to the implicit parallel region have finalized execution.

C/C++:
Prototype: int omp_pause_resource (omp_pause_resource_t kind) ;

Fortran:

Interface: integer function omp_pause_resource(kind)
integer (kind=omp_pause_resource_kind) kind

See also: Section 3.5.1 [omp_pause_resource|, page 26,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.44.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 27

3.6 Device Information Routines

Routines related to devices available to an OpenMP program. They have C linkage and do
not throw exceptions.

3.6.1 omp_get_num_procs — Number of processors online

Description:
Returns the number of processors online on that device.

C/C++:

Prototype: int omp_get_num_procs(void);

Fortran:

Interface: integer function omp_get_num_procs()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.5.

3.6.2 omp_set_default_device — Set the default device for target
regions
Description:
Get the value of the default-device-var ICV, which is used for target regions

without a device clause. The argument shall be a nonnegative device number,
omp_initial_device, or omp_invalid_device.

The effect of running this routine in a target region is unspecified.
C/C++:

Prototype: void omp_set_default_device(int device_num);

Fortran:
Interface: subroutine omp_set_default_device(device_num)
integer device_num

See also: Section 4.6 [OMP_DEFAULT_DEVICE|, page 61, Section 3.6.3
[omp_get_default_device], page 27,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.29.

3.6.3 omp_get_default_device — Get the default device for target
regions

Description:
Get the value of the default-device-var ICV, which is used for target regions
without a device clause. The value is either a nonnegative device number, omp_
initial_device or omp_invalid_device. Note that for the host, the ICV can
have two values: either the value of the named constant omp_initial_device
or the value returned by the omp_get_num_devices routine.

The effect of running this routine in a target region is unspecified.

C/C++:
Prototype: int omp_get_default_device(void);

https://www.openmp.org
https://www.openmp.org

28 GNU libgomp

Fortran:
Interface: integer function omp_get_default_device()
See also: Section 4.6 [OMP_DEFAULT_DEVICE|, page 61, Section 3.6.2

[omp_set_default_device], page 27, Section 3.6.9 [omp_get_initial_device],
page 30,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.30.

3.6.4 omp_get_num_devices — Number of target devices

Description:
Returns the number of available non-host devices.
The effect of running this routine in a target region is unspecified.
Note that in GCC the function is marked pure, i.e. as returning always the same
number. When GCC was not configured to support offloading, it is replaced by
zero; compile with ~fno-builtin-omp_get_num_devices if a run-time function

is desired.
C/C+:
Prototype: int omp_get_num_devices(void) ;
Fortran:
Interface: integer function omp_get_num_devices()

See also: Section 3.6.9 [omp_get_initial_device|, page 30,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.31.

3.6.5 omp_get_device_num — Return device number of current
device

Description:
This function returns a device number that represents the device that the cur-
rent thread is executing on. When called on the host, it returns the same
value as returned by the omp_get_initial_device function as required since

OpenMP 5.0.
C/C++
Prototype: int omp_get_device_num(void);
Fortran:
Interface: integer function omp_get_device_num()

See also: Section 3.6.9 [omp_get_initial_device|, page 30,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.2.37.

3.6.6 omp_get_device_from_uid — Obtain the device number to a
unique id

Description:
This function returns the device number associated with the passed unique-
identifier (UID) string. If no device with this UID is available, the value omp_

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3:

C/C++:

Fortran:

See also:

Reference:

OpenMP Runtime Library Routines 29

invalid_device is returned. The effect of running this routine in a target
region is unspecified.

GCC treats the UID string case sensitive; for the initial device, GCC currently
only accepts the value OMP_INITIAL_DEVICE and returns for it the value of
omp_initial_device.

Prototype: int omp_get_device_from_uid(const char *uid);

Interface: integer function omp_get_device_from_uid(uid)
character(len=*), intent(in) :: uid

Section 3.6.7 [omp_get_uid_from_device|, page 29, Chapter 12 [Offload-Target
Specifics], page 113,

OpenMP specification v6.0 (https://www.openmp.org), Section 24.7

3.6.7 omp_get_uid_from_device — Obtain the unique id of a device

Description:

C/C++:

Fortran:

See also:

Reference:

This function returns a pointer to a string that represents a unique identifier
(UID) for the device specified by device_num. It returns a NULL (C/C++) or a
disassociated pointer (Fortran) for omp_invalid_device. The effect of running
this routine in a target region is unspecified.

GCC currently returns for initial device the value OMP_INITIAL_DEVICE.

Prototype: const char *omp_get_uid_from_device(int device_
num) ;

Interface: character(:) function omp_get_uid_from_
device(device_num)

Interface: pointer :: omp_get_uid_from_device
integer, intent(in) :: device_num

Section 3.6.7 [omp_get_uid_from_device|, page 29, Chapter 12 [Offload-Target
Specifics|, page 113,

OpenMP specification v6.0 (https://www.openmp.org), Section 24.8

3.6.8 omp_is_initial_device — Whether executing on the host
device

Description:

This function returns true if currently running on the host device, false oth-
erwise. Here, true and false represent their language-specific counterparts.
Note that in GCC this function call is already folded to a constant in the
compiler; compile with -fno-builtin-omp_is_initial_device if a run-time
function is desired.

https://www.openmp.org
https://www.openmp.org

30 GNU libgomp

C/C++:
Prototype: int omp_is_initial_device(void);

Fortran:

Interface: logical function omp_is_initial_device()

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.34.

3.6.9 omp_get_initial_device — Return device number of initial
device

Description:
This function returns a device number that represents the host device. Since
OpenMP 5.1, this is equal to the value returned by the omp_get_num_devices
function; since OpenMP 6.0 it may also return the value of omp_initial_
device.

The effect of running this routine in a target region is unspecified.

Note that GCC inlines this function unless you compile with -fno-builtin-
omp_get_initial_device. If GCC was not configured to support offloading, it
expands to constant zero; in non-host code it expands to omp_initial_device;
and otherwise it is replaced with a call to omp_get_num_devices.

C/C++

Prototype: int omp_get_initial_device(void);

Fortran:

Interface: integer function omp_get_initial_device()
See also: Section 3.6.4 [omp_get_num_devices], page 28,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.2.35.

3.7 Device Memory Routines

Routines related to memory allocation and managing corresponding pointers on devices.
They have C linkage and do not throw exceptions.

3.7.1 omp_target_alloc — Allocate device memory

Description:
This routine allocates size bytes of memory in the device environment associated
with the device number device_num. If successful, a device pointer is returned,
otherwise a null pointer.

In GCC, when the device is the host or the device shares memory with the
host, the memory is allocated on the host; in that case, when size is zero, either
NULL or a unique pointer value that can later be successfully passed to omp_
target_free is returned. When the allocation is not performed on the host, a
null pointer is returned when size is zero; in that case, additionally a diagnostic
might be printed to standard error (stderr).

Running this routine in a target region except on the initial device is not
supported.

https://www.openmp.org
https://www.openmp.org

Chapter 3:

C/C++

Fortran:

See also:

Reference:

OpenMP Runtime Library Routines 31

Prototype:

Interface:

void *omp_target_alloc(size_t size, int device_num)

type(c_ptr) function omp_target_alloc(size,
device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int,
c_size_t

integer(c_size_t), value :: size

integer(c_int), value :: device_num

Section 3.7.2 [omp_target_free|, page 31, Section 3.7.11 [omp_target_associate_ptr] |}

page 39,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.1

3.7.2 omp_target_free — Free device memory

Description:

C/C++

Fortran:

See also:

This routine frees memory allocated by the omp_target_alloc routine. The
device_ptr argument must be either a null pointer or a device pointer returned
by omp_target_alloc for the specified device_num. The device number de-
vice_num must be a conforming device number.

Running this routine in a target region except on the initial device is not

supported.

Prototype:

Interface:

void omp_target_free (void *device_ptr, int
device_num)

subroutine omp_target_free(device_ptr, device_num)
bind (C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int
type(c_ptr), value :: device_ptr

integer(c_int), value :: device_num

Section 3.7.1 [omp_target_alloc], page 30, Section 3.7.12 [omp_target_disassociate_ptr| |}

page 40,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.2

3.7.3 omp_target_is_present — Check whether storage is mapped

Description:

This routine tests whether storage, identified by the host pointer ptr is mapped
to the device specified by device_num. If so, it returns a nonzero value and

otherwise zero.

In GCC, this includes self mapping such that omp_target_is_present returns
true when device_num specifies the host or when the host and the device share

https://www.openmp.org
https://www.openmp.org

32

C/C++

Fortran:

See also:

GNU libgomp

memory. If ptr is a null pointer, true is returned and if device_num is an invalid
device number, false is returned.

If those conditions do not apply, true is returned if the association has been
established by an explicit or implicit map clause, the declare target directive
or a call to the omp_target_associate_ptr routine.

Running this routine in a target region except on the initial device is not
supported.

Prototype: int omp_target_is_present(const void *ptr,
int device_num)

Interface: integer(c_int) function omp_target_is_present (ptr,
&
device_num) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr, c_int

type(c_ptr), value :: ptr
integer(c_int), value :: device_num

Section 3.7.11 [omp_target_associate_ptr], page 39,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.3

3.7.4 omp_target_is_accessible — Check whether memory is device
accessible

Description:

C/C++

Fortran:

This routine tests whether memory, starting at the address given by ptr and
extending size bytes, is accessibly on the device specified by device_num. If so,
it returns a nonzero value and otherwise zero.

The address given by ptr is interpreted to be in the address space of the device
and size must be positive.

Note that GCC’s current implementation assumes that ptr is a valid host
pointer. Therefore, all addresses given by ptr are assumed to be accessible
on the initial device. And, to err on the safe side, this memory is only available
on a non-host device that can access all host memory ([uniform| shared memory
access).

Running this routine in a target region except on the initial device is not
supported.

Prototype: int omp_target_is_accessible(const void *ptr,
size_t size,
int device_num)

Interface: integer(c_int) function omp_target_is_
accessible(ptr, &

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines

See also:

size, device_num) bind(C)
use, intrinsic :: iso_c_bind
c_size_t, c_int
type(c_ptr), value :: ptr
integer(c_size_t), value ::
integer(c_int), value :: dev

Section 3.7.11 [omp_target_associate_ptr], page 39,

ing, only: c_ptr,

size
ice_num

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.4

3.7.5 omp_target_memcpy — Copy data between devices

Description:

C/C++

Fortran:

See

also:

33

This routine copies length of bytes of data from the device identified by device
number src_device_num to device dst_device_num. The data is copied from the
source device from the address provided by src, shifted by the offset of src_offset
bytes, to the destination device’s dst address shifted by dst_offset. The routine

returns zero on success and non-zero otherwise.

Running this routine in a target region except on the initial device is not

supported.

Prototype: int omp_target_memcpy(void *dst,

const void *src,
size_t length,
size_t dst_offset,
size_t src_offset,
int dst_device_num,
int src_device_num)

Interface: integer(c_int) function omp_target_memcpy(&
dst, src, length, dst_offset, src_offset, &
dst_device_num, src_device_num) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr,

c_size_t, c_int

type(c_ptr), value :: dst, src

integer(c_size_t), value :: length, dst_offset,

src_offset

integer(c_int), value :: dst_device_num, src_

device_num

Section 3.7.6 [omp_target_memcpy_async|,
[omp_target_memcpy_rect|, page 35,

page 34, Section

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.5

3.7.7

https://www.openmp.org
https://www.openmp.org

34

GNU libgomp

3.7.6 omp_target_memcpy_async — Copy data between devices
asynchronously

Description:

C/C++

Fortran:

See also:

This routine copies asynchronously length of bytes of data from the device
identified by device number src_device_num to device dst_device_num. The
data is copied from the source device from the address provided by src, shifted
by the offset of src_offset bytes, to the destination device’s dst address shifted by
dst_offset. Task dependence is expressed by passing an array of depend objects
to depobj_list, where the number of array elements is passed as depobj_count;
if the count is zero, the depobj_list argument is ignored. In C++ and Fortran,
the depobj_list argument can also be omitted in that case. The routine returns
zero if the copying process has successfully been started and non-zero otherwise.

Running this routine in a target region except on the initial device is not
supported.

Prototype: int omp_target_memcpy_async(void *dst,
const void *src,
size_t length,
size_t dst_offset,
size_t src_offset,
int dst_device_num,
int src_device_num,
int depobj_count,
omp_depend_t *depobj_list)

Interface: integer (c_int) function omp_target_memcpy_async(&
dst, src, length, dst_offset, src_offset, &
dst_device_num, src_device_num, &
depobj_count, depobj_list) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr,
c_size_t, c_int
type(c_ptr), value :: dst, src
integer(c_size_t), value :: length, dst_offset,
src_offset
integer(c_int), value :: dst_device_num, src_
device_num, depobj_count
integer (omp_depend_kind), optional :: depobj_
list (%)

Section 3.7.5 [omp_target_memcpy|, page 33, Section 3.7.8
[omp_target_memcpy_rect_async|, page 36,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.7

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 35

3.7.7 omp_target_memcpy_rect — Copy a subvolume of data between
devices

Description:

C/C++

Fortran:

This routine copies a subvolume of data from the device identified by device
number src_device_num to device dst_device_num. The array has num_dims
dimensions and each array element has a size of element_size bytes. The vol-
ume array specifies how many elements per dimension are copied. The full
sizes of the destination and source arrays are given by the dst_dimensions and
src_dimensions arguments, respectively. The offset per dimension to the first
element to be copied is given by the dst_offset and src_offset arguments. The
routine returns zero on success and non-zero otherwise.

The OpenMP specification only requires that num_dims up to three is sup-
ported. In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the dst and src arguments. As GCC supports arbitrary dimensions, it
returns INT_MAX.

The device-number arguments must be conforming device numbers, the src
and dst must be either both null pointers or all of the following must be ful-
filled: element_size and num_dims must be positive and the volume, offset and
dimension arrays must have at least num_dims dimensions.

Running this routine in a target region is not supported except on the initial
device.

Prototype: int omp_target_memcpy_rect(void *dst,
const void *src,
size_t element_size,
int num_dims,
const size_t *volume,
const size_t *dst_offset,
const size_t *src_offset,
const size_t *dst_dimensions,
const size_t *src_dimensions,
int dst_device_num,
int src_device_num)

Interface: integer(c_int) function omp_target_memcpy_rect(&
dst, src, element_size, num_dims, volume, &
dst_offset, src_offset, dst_dimensions, &
src_dimensions, dst_device_num, src_device_num)
bind (C)
use, intrinsic :: iso_c_binding, only: c_ptr,
c_size_t, c_int
type(c_ptr), value :: dst, src
integer(c_size_t), value :: element_size,
dst_offset, src_offset

36

See also:

Reference:

GNU libgomp

integer(c_size_t), value :: volume, dst_dimensions,
src_dimensions
integer(c_int), value :: num_dims, dst_device_num,
src_device_num

Section 3.7.8 [omp_target_memcpy_rect_async|, page 36, Section 3.7.5
[omp_target_memcpy|, page 33, Chapter 12 [Offload-Target Specifics],
page 113,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.6

3.7.8 omp_target_memcpy_rect_async — Copy a subvolume of data
between devices asynchronously

Description:

C/C++

This routine copies asynchronously a subvolume of data from the device identi-
fied by device number src_device_num to device dst_device_num. The array has
num_dims dimensions and each array element has a size of element_size bytes.
The volume array specifies how many elements per dimension are copied. The
full sizes of the destination and source arrays are given by the dst_dimensions
and src_dimensions arguments, respectively. The offset per dimension to the
first element to be copied is given by the dst_offset and src_offset arguments.
Task dependence is expressed by passing an array of depend objects to de-
pobj_list, where the number of array elements is passed as depobj_count; if the
count is zero, the depobj_list argument is ignored. In C++ and Fortran, the
depobj_list argument can also be omitted in that case. The routine returns
zero on success and non-zero otherwise.

The OpenMP specification only requires that num_dims up to three is sup-
ported. In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the dst and src arguments. As GCC supports arbitrary dimensions, it
returns INT_MAX.

The device-number arguments must be conforming device numbers, the src
and dst must be either both null pointers or all of the following must be ful-
filled: element_size and num_dims must be positive and the volume, offset and
dimension arrays must have at least num_dims dimensions.

Running this routine in a target region is not supported except on the initial
device.

Prototype: int omp_target_memcpy_rect_async(void *dst,
const void *src,
size_t element_size,
int num_dims,
const size_t *volume,
const size_t *dst_offset,
const size_t *src_offset,
const size_t *dst_dimensions,

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 37

const size_t *src_dimensions,
int dst_device_num,

int src_device_num,

int depobj_count,
omp_depend_t *depobj_list)

Fortran:

Interface: integer(c_int) function omp_target_memcpy_rect_
async(&
dst, src, element_size, num_dims, volume, &
dst_offset, src_offset, dst_dimensions, &
src_dimensions, dst_device_num, src_device_num, &
depobj_count, depobj_list) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr,
c_size_t, c_int
type(c_ptr), value :: dst, src
integer(c_size_t), value :: element_size,
dst_offset, src_offset
integer(c_size_t), value :: volume, dst_dimensions,
src_dimensions
integer(c_int), value :: num_dims, dst_device_num,
src_device_num
integer(c_int), value :: depobj_count
integer (omp_depend_kind), optional :: depobj_
list ()

See also: Section 3.7.7 [omp_target_memcpy_rect], page 35, Section 3.7.6
[omp_target_memcpy_async|, page 34, Chapter 12 [Offload-Target Specifics],
page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.8

3.7.9 omp_target_memset — Set bytes in device memory

Description:
This routine fills memory on the device identified by device number device_num.
Starting from the device address ptr, the first count bytes are set to the value
val, converted to unsigned char. If count is zero, the routine has no effect; if
ptr is NULL, the behavior is unspecified. The function returns ptr.

The device_num must be a conforming device number and ptr must be a valid
device pointer for that device. Running this routine in a target region except
on the initial device is not supported.

C/C++

Prototype: void *omp_target_memcpy(void *ptr,
int val,
size_t count,
int device_num)

https://www.openmp.org

38 GNU libgomp

Fortran:

Interface: type(c_ptr) function omp_target_memset(&
ptr, val, count, device_num) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr,
c_size_t, c_int
type(c_ptr), value :: ptr
integer(c_size_t), value :: count
integer(c_int), value :: val, device_num

See also: Section 3.7.10 [omp_target_memset_async], page 38,

Reference: OpenMP specification v6.0 (https://www.openmp.org), Section 25.8.1

3.7.10 omp_target_memset — Set bytes in device memory
asynchronously

Description:

This routine fills memory on the device identified by device number device_num.
Starting from the device address ptr, the first count bytes are set to the value
val, converted to unsigned char. If count is zero, the routine has no effect;
if ptr is NULL, the behavior is unspecified. Task dependence is expressed by
passing an array of depend objects to depobj_list, where the number of array
elements is passed as depobj_count; if the count is zero, the depobj_list argu-
ment is ignored. In C++ and Fortran, the depobj_list argument can also be
omitted in that case. The function returns ptr.

The device_num must be a conforming device number and ptr must be a valid
device pointer for that device. Running this routine in a target region except
on the initial device is not supported.
C/C++
Prototype: void *omp_target_memcpy_async(void *ptr,
int val,
size_t count,
int device_num,
int depobj_count,
omp_depend_t *depobj_list)

Fortran:

Interface: type(c_ptr) function omp_target_memset_async(&
ptr, val, count, device_num, &
depobj_count, depobj_list) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr,
c_size_t, c_int
type(c_ptr), value :: ptr
integer(c_size_t), value :: count
integer(c_int), value :: val, device_num, depobj_
count
integer (omp_depend_kind), optional :: depobj_
list(x)

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 39

See also:

Section 3.7.9 [omp_target_memset|, page 37,

Reference: OpenMP specification v6.0 (https://www.openmp.org), Section 25.8.2

3.7.11 omp_target_associate_ptr — Associate a device pointer with

a host pointer

Description:

C/C++

Fortran:

This routine associates storage on the host with storage on a device identified
by device_num. The device pointer is usually obtained by calling omp_target_
alloc or by other means (but not by using the map clauses or the declare
target directive). The host pointer should point to memory that has a storage
size of at least size.

The device_offset parameter specifies the offset into device_ptr that is used as
the base address for the device side of the mapping; the storage size should be
at least device_offset plus size.

After the association, the host pointer can be used in a map clause and in the to
and from clauses of the target update directive to transfer data between the as-
sociated pointers. The reference count of such associated storage is infinite. The
association can be removed by calling omp_target_disassociate_ptr which
should be done before the lifetime of either storage ends.

The routine returns nonzero (EINVAL) when the device_num invalid, for when
the initial device or the associated device shares memory with the host. omp_
target_associate_ptr returns zero if host_ptr points into already associated
storage that is fully inside of a previously associated memory. Otherwise, if the
association was successful zero is returned; if none of the cases above apply,
nonzero (EINVAL) is returned.

The omp_target_is_present routine can be used to test whether associated
storage for a device pointer exists.

Running this routine in a target region except on the initial device is not
supported.

Prototype: int omp_target_associate_ptr(const void *host_ptr,
const void *device_ptr,
size_t size,
size_t device_offset,
int device_num)

Interface: integer(c_int) function omp_target_associate_
ptr(host_ptr, &
device_ptr, size, device_offset, device_num)
bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr, c_int,
c_size_t
type(c_ptr), value :: host_ptr, device_ptr

https://www.openmp.org

40
See also:
Reference:

GNU libgomp

integer(c_size_t), value :: size, device_offset
integer(c_int), value :: device_num

Section 3.7.12 [omp_target_disassociate_ptr], page 40, Section 3.7.3
[omp_target_is_present|, page 31, Section 3.7.1 [omp_target_alloc], page 30,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.9

3.7.12 omp_target_disassociate_ptr — Remove device—host pointer
association

Description:

C/C++

Fortran:

See also:

Reference:

This routine removes the storage association established by calling omp_target_
associate_ptr and sets the reference count to zero, even if omp_target_
associate_ptr was invoked multiple times for for host pointer ptr. If ap-
plicable, the device memory needs to be freed by the user.

If an associated device storage location for the device_num was found and has
infinite reference count, the association is removed and zero is returned. In all
other cases, nonzero (EINVAL) is returned and no other action is taken.

Note that passing a host pointer where the association to the device pointer
was established with the declare target directive yields undefined behavior.

Running this routine in a target region except on the initial device is not
supported.

Prototype: int omp_target_disassociate_ptr(const void *ptr,
int device_num)

Interface: integer(c_int) function omp_target_disassociate_
ptr(ptr, &
device_num) bind(C)
use, intrinsic :: iso_c_binding, only: c_ptr, c_int

type(c_ptr), value :: ptr
integer(c_int), value :: device_num

Section 3.7.11 [omp_target_associate_ptr], page 39,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.10

3.7.13 omp_get_mapped_ptr — Return device pointer to a host
pointer

Description:

If the device number is refers to the initial device or to a device with memory
accessible from the host (shared memory), the omp_get_mapped_ptr routines
returns the value of the passed ptr. Otherwise, if associated storage to the
passed host pointer ptr exists on device associated with device_num, it returns
that pointer. In all other cases and in cases of an error, a null pointer is returned.

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 41

The association of storage location is established either via an explicit or implicit
map clause, the declare target directive or the omp_target_associate_ptr
routine.

Running this routine in a target region except on the initial device is not

supported.
C/C++
Prototype: void *omp_get_mapped_ptr(const void *ptr, int
device_num);
Fortran:
Interface: type(c_ptr) function omp_get_mapped_ptr(ptr,

device_num) bind(C)

use, intrinsic :: iso_c_binding, only: c_ptr, c_int
type(c_ptr), value :: ptr

integer(c_int), value :: device_num

See also: Section 3.7.11 [omp_target_associate_ptr|, page 39,
Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.8.11

3.8 Lock Routines

Initialize, set, test, unset and destroy simple and nested locks. The routines have C linkage
and do not throw exceptions.

3.8.1 omp_init_lock — Initialize simple lock

Description:
Initialize a simple lock. After initialization, the lock is in an unlocked state.
C/C++:
Prototype: void omp_init_lock(omp_lock_t *lock);
Fortran:
Interface: subroutine omp_init_lock(svar)
integer (omp_lock_kind), intent(out) :: svar

See also: Section 3.8.3 [omp_destroy_lock]|, page 42,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.1.

3.8.2 omp_init_nest_lock — Initialize nested lock

Description:
Initialize a nested lock. After initialization, the lock is in an unlocked state and
the nesting count is set to zero.

C/C++:
Prototype: void omp_init_nest_lock(omp_nest_lock_t *lock);
Fortran:

Interface: subroutine omp_init_nest_lock(nvar)
integer (omp_nest_lock_kind), intent(out) :: nvar

https://www.openmp.org
https://www.openmp.org

42 GNU libgomp

See also: Section 3.8.4 [omp_destroy_nest_lock], page 42,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.1.

3.8.3 omp_destroy_lock — Destroy simple lock

Description:
Destroy a simple lock. In order to be destroyed, a simple lock must be in the
unlocked state.
C/C++:
Prototype: void omp_destroy_lock(omp_lock_t *lock);
Fortran:
Interface: subroutine omp_destroy_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.1 [omp_init_lock|, page 41,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.3.

3.8.4 omp_destroy_nest_lock — Destroy nested lock

Description:

Destroy a nested lock. In order to be destroyed, a nested lock must be in the

unlocked state and its nesting count must equal zero.
C/C++:

Prototype: void omp_destroy_nest_lock(omp_nest_lock_t *);
Fortran:

Interface: subroutine omp_destroy_nest_lock(nvar)

integer (omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.1 [omp-init_lock], page 41,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.3.

3.8.5 omp_set_lock — Wait for and set simple lock

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_
lock. The calling thread is blocked until the lock is available. If the lock is
already held by the current thread, a deadlock occurs.
C/C++:
Prototype: void omp_set_lock(omp_lock_t *lock) ;
Fortran:
Interface: subroutine omp_set_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.1 [omp_init_lock], page 41, Section 3.8.9 [omp_test_lock], page 44,
Section 3.8.7 [omp_unset_lock], page 43,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.4.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 43

3.8.6 omp_set_nest_lock — Wait for and set nested lock

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_
nest_lock. The calling thread is blocked until the lock is available. If the
lock is already held by the current thread, the nesting count for the lock is

incremented.
C/C++:

Prototype: void omp_set_nest_lock(omp_nest_lock_t *lock);
Fortran:

Interface: subroutine omp_set_nest_lock(nvar)

integer (omp_nest_lock_kind), intent(inout) :: nvar
See also: Section 3.8.2 [omp_init_nest_lock], page 41, Section 3.8.8 [omp_unset_nest_lock],

page 43,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.4.

3.8.7 omp_unset_lock — Unset simple lock

Description:
A simple lock about to be unset must have been locked by omp_set_lock or
omp_test_lock before. In addition, the lock must be held by the thread calling
omp_unset_lock. Then, the lock becomes unlocked. If one or more threads
attempted to set the lock before, one of them is chosen to, again, set the lock

to itself.
C/C++:

Prototype: void omp_unset_lock(omp_lock_t *lock);
Fortran:

Interface: subroutine omp_unset_lock(svar)

integer (omp_lock_kind), intent(inout) :: svar
See also: Section 3.8.5 [omp_set_lock], page 42, Section 3.8.9 [omp_test_lock], page 44,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.5.

3.8.8 omp_unset_nest_lock — Unset nested lock

Description:
A nested lock about to be unset must have been locked by omp_set_nested_
lock or omp_test_nested_lock before. In addition, the lock must be held by
the thread calling omp_unset_nested_lock. If the nesting count drops to zero,
the lock becomes unlocked. If one ore more threads attempted to set the lock
before, one of them is chosen to, again, set the lock to itself.

C/C++:

Prototype: void omp_unset_nest_lock(omp_nest_lock_t *lock);

https://www.openmp.org
https://www.openmp.org

44 GNU libgomp

Fortran:
Interface: subroutine omp_unset_nest_lock(nvar)
integer (omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.6 [omp_set_nest_lock], page 43,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.5.

3.8.9 omp_test_lock — Test and set simple lock if available

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_
lock. Contrary to omp_set_lock, omp_test_lock does not block if the lock is
not available. This function returns true upon success, false otherwise. Here,
true and false represent their language-specific counterparts.

C/C++:
Prototype: int omp_test_lock(omp_lock_t *1lock);
Fortran:
Interface: logical function omp_test_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

See also: Section 3.8.1 [omp_init_lock], page 41, Section 3.8.5 [omp_set_lock|, page 42,
Section 3.8.5 [omp_set_lock], page 42,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.6.

3.8.10 omp_test_nest_lock — Test and set nested lock if available

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_
nest_lock. Contrary to omp_set_nest_lock, omp_test_nest_lock does not
block if the lock is not available. If the lock is already held by the current
thread, the new nesting count is returned. Otherwise, the return value equals

Z€ro.
C/C++:

Prototype: int omp_test_nest_lock(omp_nest_lock_t *lock);
Fortran:

Interface: logical function omp_test_nest_lock(nvar)

integer (omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 3.8.1 [omp_init_lock], page 41, Section 3.8.5 [omp_set_lock|, page 42,
Section 3.8.5 [omp_set_lock|, page 42,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.3.6.

3.9 Timing Routines

Portable, thread-based, wall clock timer. The routines have C linkage and do not throw
exceptions.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 45

3.9.1 omp_get_wtick — Get timer precision

Description:
Gets the timer precision, i.e., the number of seconds between two successive
clock ticks.

C/C++:
Prototype: double omp_get_wtick(void) ;
Fortran:
Interface: double precision function omp_get_wtick()
See also: Section 3.9.2 [omp_get_wtime], page 45,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.4.2.

3.9.2 omp_get_wtime — Elapsed wall clock time

Description:
Elapsed wall clock time in seconds. The time is measured per thread, no guar-
antee can be made that two distinct threads measure the same time. Time is
measured from some "time in the past", which is an arbitrary time guaranteed
not to change during the execution of the program.

C/C++:
Prototype: double omp_get_wtime(void) ;
Fortran:
Interface: double precision function omp_get_wtime()
See also: Section 3.9.1 [omp_get_wtick], page 45,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 3.4.1.

3.10 Event Routine

Support for event objects. The routine has C linkage and do not throw exceptions.

3.10.1 omp_fulfill_event — Fulfill and destroy an OpenMP event

Description:
Fulfill the event associated with the event handle argument. Currently, it is
only used to fulfill events generated by detach clauses on task constructs - the
effect of fulfilling the event is to allow the task to complete.
The result of calling omp_fulfill_event with an event handle other than that

generated by a detach clause is undefined. Calling it with an event handle that
has already been fulfilled is also undefined.

C/C+:
Prototype: void omp_fulfill_event (omp_event_handle_t event);
Fortran:
Interface: subroutine omp_fulfill_event (event)
integer (kind=omp_event_handle_kind) :: event

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.5.1.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

46

GNU libgomp

3.11 Interoperability Routines

Routines to obtain properties from an object of OpenMP interop type. They have C linkage
and do not throw exceptions.

3.11.1 omp_get_num_interop_properties — Get the number of
implementation-specific properties

Description:

C/C+:

Fortran:

See also:

Reference:

The omp_get_num_interop_properties function returns the number of
implementation-defined interoperability properties available for the passed
interop, extending the OpenMP-defined properties. The available OpenMP
interop_property-type values range from omp_ipr_first to the value returned
by omp_get_num_interop_properties minus one.

No implementation-defined properties are currently defined in GCC.

Prototype: int omp_get_num_interop_properties(const omp_
interop_t interop)

Interface: integer function omp_get_num_interop_
properties(interop)
integer (omp_interop_kind), intent(in) :: interop

Section 3.11.5 [omp_get_interop_name|, page 48, Section 3.11.6
[omp_get_interop_type_desc], page 49,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.1,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.1

3.11.2 omp_get_interop_int — Obtain integer-valued
interoperability property

Description:

C/C++:

The omp_get_interop_int function returns the integer value associated with
the property_id interoperability property of the passed interop object. The
ret_code argument is optional, i.e. it can be omitted in C++ and Fortran or
used with NULL as argument in C and C++. If successful, ret_code (if present)
is set to omp_irc_success.

In GCC, the effect of running this routine in a target region that is not the
initial device is unspecified.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int* was used for the ret_code argu-
ment in place of a pointer to the enumerated type omp_interop_rc_t.

Prototype: omp_intptr_t omp_get_interop_int(const omp_
interop_t interop, omp_interop_property_t
property_id, omp_interop_rc_t *ret_code)

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 47

Fortran:
Interface: integer(c_intptr_t) function omp_get_interop_
int(interop, property_id, ret_code)
use, intrinsic :: iso_c_binding, only : c_intptr_t
integer (omp_interop_kind), intent(in) :: interop

integer (omp_interop_property_kind) property_id
integer (omp_interop_rc_kind), optional,
intent (out) :: ret_code

See also: Section 3.11.3 [omp_get_interop_ptr], page 47, Section 3.11.4
[omp_get_interop_str], page 48, Section 3.11.7 [omp_get_interop_rc_desc],
page 49, Chapter 12 [Offload-Target Specifics], page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.2,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.2

3.11.3 omp_get_interop_ptr — Obtain pointer-valued
interoperability property

Description:
The omp_get_interop_int function returns the pointer value associated with
the property_id interoperability property of the passed interop object. The
ret_code argument is optional, i.e. it can be omitted in C++ and Fortran or
used with NULL as argument in C and C++. If successful, ret_code (if present)
is set to omp_irc_success.

In GCC, the effect of running this routine in a target region that is not the
initial device is unspecified.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int* was used for the ret_code argu-
ment in place of a pointer to the enumerated type omp_interop_rc_t.

C/C++:

Prototype: void *omp_get_interop_ptr(const omp_interop_t
interop, omp_interop_property_t property_id,
omp_interop_rc_t *ret_code)

Fortran:

Interface: type(c_ptr) function omp_get_interop_int(interop,
property_id, ret_code)
use, intrinsic :: iso_c_binding, only : c_ptr
integer (omp_interop_kind), intent(in) :: interop

integer (omp_interop_property_kind) property_id
integer (omp_interop_rc_kind), optional,
intent(out) :: ret_code

See also: Section 3.11.2 [omp_get_interop_int|, page 46, Section 3.11.4
[omp_get_interop_str], page 48, Section 3.11.7 [omp_get_interop_rc_desc],
page 49, Chapter 12 [Offload-Target Specifics], page 113,

https://www.openmp.org
https://www.openmp.org

48 GNU libgomp

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.3,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.3

3.11.4 omp_get_interop_str — Obtain string-valued interoperability
property

Description:

The omp_get_interop_str function returns the string value associated with
the property_id interoperability property of the passed interop object. The
ret_code argument is optional, i.e. it can be omitted in C++ and Fortran or
used with NULL as argument in C and C++. If successful, ret_code (if present)
is set to omp_irc_success.

In GCC, the effect of running this routine in a target region that is not the
initial device is unspecified.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int* was used for the ret_code argu-
ment in place of a pointer to the enumerated type omp_interop_rc_t.

C/C++:

Prototype: const char *omp_get_interop_str(const omp_interop_t
interop, omp_interop_property_t property_id,
omp_interop_rc_t *ret_code)

Fortran:

Interface: character(:) function omp_get_interop_str(interop,
property_id, ret_code)
pointer :: omp_get_interop_str
integer (omp_interop_kind), intent(in) :: interop
integer (omp_interop_property_kind) property_id
integer (omp_interop_rc_kind), optional,
intent (out) :: ret_code

See also: Section 3.11.2 [omp_get_interop_int], page 46, Section 3.11.3

[omp_get_interop_ptr|, page 47, Section 3.11.7 [omp_get_interop_rc_desc|,
page 49, Chapter 12 [Offload-Target Specifics], page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.4,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.4

3.11.5 omp_get_interop_name — Obtain the name of an interop_
property value as string

Description:
The omp_get_interop_name function returns the name of the property itself
as string; for the properties specified by the OpenMP specification, the name
matches the name of the named constant with the ‘omp_ipr_’ prefix removed.

C/C++:
Prototype: const char *omp_get_interop_name(const omp_interop_
t interop, omp_interop_property_t property_id)

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 49

Fortran:

Interface: character(:) function omp_get_interop_
name (interop, property_id)
pointer :: omp_get_interop_name
integer (omp_interop_kind), intent(in) :: interop
integer (omp_interop_property_kind) property_id

See also: Section 3.11.1 [omp_get_num_interop_properties], page 46, Section 3.11.6
[omp_get_interop_type_desc|, page 49,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.5,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.5

3.11.6 omp_get_interop_type_desc — Obtain type and description to
an interop_property

Description:
The omp_get_interop_type_desc function returns a string that describes in
human-readable form the data type associated with the property_id interoper-
ability property of the passed interop object.

In GCC, this function returns the name of the C/C++ data type for this property
or ‘N/A’ if this property is not available for the given foreign runtime. If interop
is omp_interop_none or for invalid property values, a null pointer is returned.
The effect of running this routine in a target region that is not the initial
device is unspecified.

C/C++:

Prototype: const char *omp_get_interop_type_desc(const
omp_interop_t interop, omp_interop_property_t
property_id)

Fortran:

Interface: character(:) function omp_get_interop_type_
desc(interop, property_id)
pointer :: omp_get_interop_type_desc
integer (omp_interop_kind), intent(in) :: interop
integer (omp_interop_property_kind) property_id

See also: Section 3.11.1 [omp_get_num_interop_properties], page 46, Section 3.11.5

[omp_get_interop_name], page 48, Chapter 12 [Offload-Target Specifics],
page 113,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.6,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.6

3.11.7 omp_get_interop_rc_desc — Obtain error string to an
interop_rc error code

Description:
The omp_get_interop_rc_desc function returns a string value describing the
ret_code in human-readable form.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

50

C/C’++:

Fortran:

Reference:

GNU libgomp

The behavior is unspecified if value of ret_code was not set by an interoperability
routine invoked for interop.

GCC implements the OpenMP 6.0 version of this function for C and C++, which
is not compatible with its type signature in previous versions of the OpenMP
specification. In older versions, the type int was used for the ret_code argument
in place of the enumerated type omp_interop_rc_t.

Prototype: const char *omp_get_interop_rc_desc(const
omp_interop_t interop, omp_interop_rc_t ret_code)

Interface: character(:) function omp_get_interop_rc_
desc(interop, property_id, ret_code)
pointer :: omp_get_interop_rc_desc
integer (omp_interop_kind), intent(in) :: interop
integer (omp_interop_rc_kind) ret_code

OpenMP specification v5.1 (https://www.openmp.org), Section 3.12.7,
OpenMP specification v6.0 (https://www.openmp.org), Section 26.7

3.12 Memory Management Routines

Routines to manage and allocate memory on the current device. They have C linkage and
do not throw exceptions.

3.12.1 omp_init_allocator — Create an allocator

Description:

C/C++:

Fortran:

Create an allocator that uses the specified memory space and has the specified
traits; if an allocator that fulfills the requirements cannot be created, omp_
null_allocator is returned.

The predefined memory spaces and available traits can be found at Section 11.3
[Memory allocation], page 107, where the trait names have to be prefixed by
omp_atk_ (e.g. omp_atk_pinned) and the named trait values by omp_atv_ (e.g.
omp_atv_true); additionally, omp_atv_default may be used as trait value to
specify that the default value should be used.

Prototype: omp_allocator_handle_t omp_init_allocator(
omp_memspace_handle_t memspace,
int ntraits,
const omp_alloctrait_t traits[]);

Interface: function omp_init_allocator(memspace, ntraits,
traits)
integer (omp_allocator_handle_kind) :: omp_init_

allocator

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 51

integer (omp_memspace_handle_kind), intent(in) ::
memspace

integer, intent(in) :: ntraits

type (omp_alloctrait), intent(in) :: traits(x)

See also: Section 11.3 [Memory allocation], page 107, Section 4.1 [OMP_ALLOCATOR],
page 59, Section 3.12.2 [omp_destroy_allocator], page 51,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.2

3.12.2 omp_destroy_allocator — Destroy an allocator

Description:
Releases all resources used by a memory allocator, which must not represent a
predefined memory allocator. Accessing memory after its allocator has been de-
stroyed has unspecified behavior. Passing omp_null_allocator to the routine
is permitted but has no effect.

C/C++:
Prototype: void omp_destroy_allocator (omp_allocator_handle_t
allocator);
Fortran:
Interface: subroutine omp_destroy_allocator(allocator)
integer (omp_allocator_handle_kind), intent(in) ::
allocator

See also: Section 3.12.1 [omp_init_allocator], page 50,
Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.3

3.12.3 omp_set_default_allocator — Set the default allocator

Description:
Sets the default allocator that is used when no allocator has been specified in
the allocate or allocator clause or if an OpenMP memory routine is invoked
with the omp_null_allocator allocator.

C/C++:
Prototype: void omp_set_default_allocator (omp_allocator_
handle_t allocator);
Fortran:
Interface: subroutine omp_set_default_allocator(allocator)
integer (omp_allocator_handle_kind), intent(in) ::
allocator

See also: Section 3.12.4 [omp_get_default_allocator], page 52, Section 3.12.1
[omp_init_allocator], page 50, Section 4.1 [OMP_ALLOCATOR], page 59,
Section 11.3 [Memory allocation], page 107,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.4

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

52 GNU libgomp

3.12.4 omp_get_default_allocator — Get the default allocator

Description:
The routine returns the default allocator that is used when no allocator has
been specified in the allocate or allocator clause or if an OpenMP memory
routine is invoked with the omp_null_allocator allocator.

C/C+:
Prototype: omp_allocator_handle_t omp_get_default_
allocator();
Fortran:
Interface: function omp_get_default_allocator()

integer (omp_allocator_handle_kind) :: omp_get_
default_allocator

See also: Section 3.12.3 [omp_set_default_allocator], page 51, Section 4.1
[OMP_ALLOCATOR]J, page 59,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.5

3.12.5 omp_alloc — Memory allocation with an allocator

Description:

Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or omp_null_allocator. If the allocators is
omp_null_allocator, the allocator specified by the def-allocator-var ICV is
used. size must be a nonnegative number denoting the number of bytes to be
allocated; if size is zero, omp_alloc will return a null pointer. If successful, a
pointer to the allocated memory is returned, otherwise the fallback trait of
the allocator determines the behavior. The content of the allocated memory is
unspecified.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit — or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_alloc must be freed using omp_free.

C:
Prototype: void* omp_alloc(size_t size,
omp_allocator_handle_t allocator)
C+:
Prototype: void* omp_alloc(size_t size,
omp_allocator_handle_t allocator=omp_null_
allocator)
Fortran:
Interface: type(c_ptr) function omp_alloc(size, allocator)

bind (C)

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 53

See also:

use, intrinsic :: iso_c_binding, only : c_ptr,
c_size_t

integer (c_size_t), value :: size

integer (omp_allocator_handle_kind), value ::
allocator

Section 4.1 [OMP_ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp_set_default_allocator|, page 51, Section 3.12.7
[omp_free|, page 54, Section 3.12.1 [omp_init_allocator], page 50,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.6

3.12.6 omp_aligned_alloc — Memory allocation with an allocator

and alignment

Description:

C+:

Fortran:

Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or omp_null_allocator. If the allocators is omp_
null_allocator, the allocator specified by the def-allocator-var ICV is used.
alignment must be a positive power of two and size must be a nonnegative
number that is a multiple of the alignment and denotes the number of bytes
to be allocated; if size is zero, omp_aligned_alloc will return a null pointer.
The alignment will be at least the maximal value required by alignment trait
of the allocator and the value of the passed alignment argument. If successful,
a pointer to the allocated memory is returned, otherwise the fallback trait of
the allocator determines the behavior. The content of the allocated memory is
unspecified.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit — or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_aligned_alloc must be freed using omp_free.

Prototype: void* omp_aligned_alloc(size_t alignment,
size_t size,
omp_allocator_handle_t allocator)

Prototype: void* omp_aligned_alloc(size_t alignment,
size_t size,
omp_allocator_handle_t allocator=omp_null_
allocator)

Interface: type(c_ptr) function omp_aligned_alloc(alignment,
size, allocator) bind(C)
use, intrinsic :: iso_c_binding, only : c_ptr,
c_size_t

https://www.openmp.org

54 GNU libgomp

integer (c_size_t), value :: alignment, size
integer (omp_allocator_handle_kind), value ::
allocator

See also: Section 4.1 [OMP_ALLOCATORJ, page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp_set_default_allocator|, page 51, Section 3.12.7
[omp_free], page 54, Section 3.12.1 [omp_init_allocator], page 50,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.13.6

3.12.7 omp_free — Freeing memory allocated with OpenMP
routines

Description:
The omp_free routine deallocates memory previously allocated by an OpenMP
memory-management routine. The ptr argument must point to such memory or
be a null pointer; if it is a null pointer, no operation is performed. If specified,
the allocator argument must be either the memory allocator that was used
for the allocation or omp_null_allocator; if it is omp_null_allocator, the
implementation will determine the value automatically.

Calling omp_free invokes undefined behavior if the memory was already deal-
located or when the used allocator has already been destroyed.

C:
Prototype: void omp_free(void *ptr,
omp_allocator_handle_t allocator)
C+:
Prototype: void omp_free(void *ptr,
omp_allocator_handle_t allocator=omp_null_
allocator)
Fortran:
Interface: subroutine omp_free(ptr, allocator) bind(C)
use, intrinsic :: iso_c_binding, only : c_ptr

type (c_ptr), value :: ptr
integer (omp_allocator_handle_kind), value ::
allocator

See also: Section 3.12.5 [omp_alloc], page 52, Section 3.12.6 [omp_aligned_alloc|, page 53,
Section 3.12.8 [omp-calloc], page 54, Section 3.12.9 [omp_aligned_calloc|,
page 55, Section 3.12.10 [omp_realloc], page 56,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.7

3.12.8 omp_calloc — Allocate nullified memory with an allocator

Description:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or omp_null_allocator. If the
allocators is omp_null_allocator, the allocator specified by the def-allocator-
var ICV is used. The to-be allocated memory is for an array with nmemb

https://www.openmp.org
https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 55

C++:

Fortran:

See also:

elements, each having a size of size bytes. Both nmemb and size must be
nonnegative numbers; if either of them is zero, omp_calloc will return a null
pointer. If successful, a pointer to the zero-initialized allocated memory is
returned, otherwise the fallback trait of the allocator determines the behavior.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit — or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_calloc must be freed using omp_free.

Prototype: void* omp_calloc(size_t nmemb, size_t size,
omp_allocator_handle_t allocator)

Prototype: void* omp_calloc(size_t nmemb, size_t size,
omp_allocator_handle_t allocator=omp_null_
allocator)

Interface: type(c_ptr) function omp_calloc(nmemb, size,

allocator) bind(C)

use, intrinsic :: iso_c_binding, only : c_ptr,
c_size_t

integer (c_size_t), value :: nmemb, size
integer (omp_allocator_handle_kind), value ::
allocator

Section 4.1 [OMP_ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp_set_default_allocator|, page 51, Section 3.12.7
[omp_free|, page 54, Section 3.12.1 [omp_init_allocator], page 50,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 3.13.8

3.12.9 omp_aligned_calloc — Allocate aligned nullified memory

with an allocator

Description:

Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or omp_null_allocator. If the
allocators is omp_null_allocator, the allocator specified by the def-allocator-
var ICV is used. The to-be allocated memory is for an array with nmemb
elements, each having a size of size bytes. Both nmemb and size must be non-
negative numbers; if either of them is zero, omp_aligned_calloc will return
a null pointer. alignment must be a positive power of two and size must be a
multiple of the alignment; the alignment will be at least the maximal value re-
quired by alignment trait of the allocator and the value of the passed alignment
argument. If successful, a pointer to the zero-initialized allocated memory is
returned, otherwise the fallback trait of the allocator determines the behavior.

https://www.openmp.org

56

C++:

Fortran:

See also:

Reference:

GNU libgomp

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit — or the allocator argument
may only be a constant expression with the value of one of the predefined
allocators and may not be omp_null_allocator.

Memory allocated by omp_aligned_calloc must be freed using omp_free.

Prototype: void* omp_aligned_calloc(size_t nmemb, size_t size,
omp_allocator_handle_t allocator)

Prototype: void* omp_aligned_calloc(size_t nmemb, size_t size,
omp_allocator_handle_t allocator=omp_null_
allocator)

Interface: type(c_ptr) function omp_aligned_calloc(nmemb,
size, allocator) bind(C)
use, intrinsic :: iso_c_binding, only : c_ptr,
c_size_t

integer (c_size_t), value :: nmemb, size
integer (omp_allocator_handle_kind), value ::
allocator

Section 4.1 [OMP_ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp_set_default_allocator|, page 51, Section 3.12.7
[omp_free|, page 54, Section 3.12.1 [omp_init_allocator], page 50,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.13.8

3.12.10 omp_realloc — Reallocate memory allocated with OpenMP

routines

Description:

The omp_realloc routine deallocates memory to which ptr points to and allo-
cates new memory with the specified allocator argument; the new memory will
have the content of the old memory up to the minimum of the old size and the
new size, otherwise the content of the returned memory is unspecified. If the
new allocator is the same as the old one, the routine tries to resize the existing
memory allocation, returning the same address as ptr if successful. ptr must
point to memory allocated by an OpenMP memory-management routine.

The allocator and free_allocator arguments must be a predefined allocator,
an allocator handle or omp_null_allocator. If free_allocator is omp_null_
allocator, the implementation automatically determines the allocator used
for the allocation of ptr. If allocator is omp_null_allocator and ptr is not a
null pointer, the same allocator as free_allocator is used and when ptr is a
null pointer the allocator specified by the def-allocator-var ICV is used.

The size must be a nonnegative number denoting the number of bytes to be
allocated; if size is zero, omp_realloc will return free the memory and return

https://www.openmp.org

Chapter 3: OpenMP Runtime Library Routines 57

C++:

Fortran:

See also:

a null pointer. When size is nonzero: if successful, a pointer to the allocated
memory is returned, otherwise the fallback trait of the allocator determines
the behavior.

In target regions, either the dynamic_allocators clause must appear on a
requires directive in the same compilation unit — or the free_allocator and
allocator arguments may only be a constant expression with the value of one
of the predefined allocators and may not be omp_null_allocator.

Memory allocated by omp_realloc must be freed using omp_free. Calling
omp_free invokes undefined behavior if the memory was already deallocated or
when the used allocator has already been destroyed.

Prototype: void* omp_realloc(void *ptr, size_t size,
omp_allocator_handle_t allocator,
omp_allocator_handle_t free_allocator)

Prototype: void* omp_realloc(void *ptr, size_t size,
omp_allocator_handle_t allocator=omp_null_
allocator,
omp_allocator_handle_t free_allocator=omp_null_
allocator)

Interface: type(c_ptr) function omp_realloc(ptr, size,
allocator, free_allocator) bind(C)
use, intrinsic :: iso_c_binding, only : c_ptr,
c_size_t

type(C_ptr), value :: ptr

integer (c_size_t), value :: size

integer (omp_allocator_handle_kind), value ::
allocator, free_allocator

Section 4.1 [OMP_ALLOCATOR], page 59, Section 11.3 [Memory allocation],
page 107, Section 3.12.3 [omp_set_default_allocator|, page 51, Section 3.12.7
[omp_free|, page 54, Section 3.12.1 [omp_init_allocator], page 50,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 3.7.9

3.13 Environment Display Routine

Routine to display the OpenMP version number and the initial value of ICVs. It has C
linkage and does not throw exceptions.

3.13.1 omp_display_env — print the initial ICV values

Description:

Each time this routine is invoked, the OpenMP version number and initial value
of internal control variables (ICVs) is printed on stderr. The displayed values

https://www.openmp.org

58

C/C+:

Fortran:

Ezample:

See also:

Reference:

GNU libgomp

are those at startup after evaluating the environment variables; later calls to
API routines or clauses used in enclosing constructs do not affect the output.

If the verbose argument is false, only the OpenMP version and standard
OpenMP ICVs are shown,; if it is true, additionally, the GCC-specific ICVs are
shown.

The output consists of multiple lines and starts with ‘OPENMP DISPLAY
ENVIRONMENT BEGIN’ followed by the name-value lines and ends with ‘OPENMP
DISPLAY ENVIRONMENT END’. The name is followed by an equal sign and the
value is enclosed in single quotes.

The first line has as name either ‘'_OPENMP’ or ‘openmp_version’ and shows as
value the supported OpenMP version number (4-digit year, 2-digit month) of
the implementation, matching the value of the _OPENMP macro and, in Fortran,
the named constant openmp_version.

In each of the succeeding lines, the name matches the environment-variable
name of an ICV and shows its value. Those line are might be prefixed by pair
of brackets and a space, where the brackets enclose a comma-separated list of
devices to which the ICV-value combination applies to; the value can either be
a numeric device number or an abstract name denoting all devices (all), the
initial host device (host) or all devices but the host (device). Note that the
same ICV might be printed multiple times for multiple devices, even if all have
the same value.

The effect when invoked from within a target region is unspecified.

Prototype: void omp_display_env(int verbose)
Interface: subroutine omp_display_env(verbose)
logical, intent(in) :: verbose

Note that the GCC-specific ICVs, such as the shown GOMP_SPINCOUNT, are only
printed when verbose set to true.

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP = '202111"'
[host] OMP_DYNAMIC = 'FALSE'
[host] OMP_NESTED = 'FALSE'
[all] OMP_CANCELLATION = 'FALSE'

[host] GOMP_SPINCOUNT = '300000'
OPENMP DISPLAY ENVIRONMENT END

Section 4.5 [OMP_DISPLAY_ENV], page 61, Chapter 4 [Environment
Variables], page 59, Section 11.1 [Implementation-defined ICV Initialization],
page 107,

OpenMP specification v5.1 (https://www.openmp.org), Section 3.15

https://www.openmp.org

99

4 OpenMP Environment Variables

The environment variables which beginning with OMP_ are defined by section 4 of the
OpenMP specification in version 4.5 or in a later version of the specification, while those
beginning with GOMP_ are GNU extensions. Most OMP_ environment variables have an as-
sociated internal control variable (ICV).

For any OpenMP environment variable that sets an ICV and is neither OMP_DEFAULT_
DEVICE nor has global ICV scope, associated device-specific environment variables exist. For
them, the environment variable without suffix affects the host. The suffix _DEV_ followed
by a non-negative device number less that the number of available devices sets the ICV
for the corresponding device. The suffix _DEV sets the ICV of all non-host devices for
which a device-specific corresponding environment variable has not been set while the _ALL
suffix sets the ICV of all host and non-host devices for which a more specific corresponding
environment variable is not set.

4.1 OMP_ALLOCATOR — Set the default allocator

ICV: def-allocator-var

Scope: data environment

Description:
Sets the default allocator that is used when no allocator has been specified in
the allocate or allocator clause or if an OpenMP memory routine is invoked
with the omp_null_allocator allocator. If unset, omp_default_mem_alloc is
used.

The value can either be a predefined allocator or a predefined memory space or
a predefined memory space followed by a colon and a comma-separated list of
memory trait and value pairs, separated by =.

See Section 11.3 [Memory allocation], page 107, for a list of supported prefedined
allocators, memory spaces, and traits.

Note: The corresponding device environment variables are currently not sup-
ported. Therefore, the non-host def-allocator-var ICVs are always initialized
to omp_default_mem_alloc. However, on all devices, the omp_set_default_
allocator API routine can be used to change value.

Examples:

OMP_ALLOCATOR=omp_high_bw_mem_alloc
OMP_ALLOCATOR=omp_large_cap_mem_space
OMP_ALLOCATOR=omp_low_lat_mem_space:pinned=true,partition=nearest

See also: Section 11.3 [Memory allocation|, page 107, Section 3.12.4
[omp_get_default_allocator], page 52, Section 3.12.3 [omp_set_default_allocator],J]
page 51, Chapter 12 [Offload-Target Specifics], page 113,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 6.21

https://www.openmp.org

60 GNU libgomp

4.2 OMP_AFFINITY_FORMAT — Set the format string used for
affinity display

ICV: aflinity-format-var

Scope: device

Description:
Sets the format string used when displaying OpenMP thread affinity informa-
tion. Special values are output using % followed by an optional size specification
and then either the single-character field type or its long name enclosed in curly
braces; using %% displays a literal percent. The size specification consists of an
optional 0. or . followed by a positive integer, specifying the minimal width of
the output. With 0. and numerical values, the output is padded with zeros on
the left; with ., the output is padded by spaces on the left; otherwise, the out-
put is padded by spaces on the right. If unset, the value is “level %L thread
%iaffinity %A”.

Supported field types are:

t team_num value returned by omp_get_team_num

T num_teams value returned by omp_get_num_teams

L nesting_level value returned by omp_get_level

n thread _num value returned by omp_get_thread_num

N num_threads value returned by omp_get_num_threads

a ancestor_tnum value returned by omp_get_ancestor_
thread_num(omp_get_level()-1)

H host name of the host that executes the thread

P process_id process identifier

i native_thread_id native thread identifier

A thread_affinity comma separated list of integer values or

ranges, representing the processors on which
a process might execute, subject to affinity
mechanisms

For instance, after setting
OMP_AFFINITY_FORMAT="%0.2a!%n!%.4L!%N;%.2t;%0.2T;%{team_num};%{num_teams};%A"N

with either OMP_DISPLAY_AFFINITY being set or when calling omp_display_
affinity with NULL or an empty string, the program might display the follow-

ing:
00!'0! 1'4; 0;01;0;1;0-11
00!3! 1'4; 0;01;0;1;0-11
00!2! 114; 0;01;0;1;0-11
0oo'1! 1'4; 0;01;0;1;0-11

See also: Section 4.4 [OMP_DISPLAY_AFFINITY], page 61,

Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 6.14

https://www.openmp.org

Chapter 4: OpenMP Environment Variables 61

4.3 OMP_CANCELLATION — Set whether cancellation is activated

ICV: cancel-var

Scope: global

Description:
If set to TRUE, the cancellation is activated. If set to FALSE or if unset, cancel-
lation is disabled and the cancel construct is ignored.

See also: Section 3.1.8 [omp_get_cancellation], page 17,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.11

4.4 OMP_DISPLAY_AFFINITY — Display thread affinity
information

ICV: display-aftinity-var

Scope: global

Description:
If set to FALSE or if unset, affinity displaying is disabled. If set to TRUE, the
runtime displays affinity information about OpenMP threads in a parallel region
upon entering the region and every time any change occurs.

See also: Section 4.2 [OMP_AFFINITY_FORMAT], page 60,
Reference: OpenMP specification v5.0 (https://www.openmp.org), Section 6.13

4.5 OMP_DISPLAY_ENV — Show OpenMP version and
environment variables

ICV: none

Scope: not applicable

Description:
If set to TRUE, the runtime displays the same information to stderr as shown
by the omp_display_env routine invoked with verbose argument set to false.
If set to VERBOSE, the same information is shown as invoking the routine with
verbose set to true. If unset or set to FALSE, this information is not shown.
The result for any other value is unspecified.

See also: Section 3.13.1 [omp_display_env], page 57,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.12

4.6 OMP_DEFAULT_DEVICE — Set the device used in target
regions

ICV: default-device-var

Scope: data environment

Description:
Set to choose the device which is used in a target region, unless the value is
overridden by omp_set_default_device or by a device clause. The value shall

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

62 GNU libgomp

be the nonnegative device number. If no device with the given device number
exists, the code is executed on the host. If unset, OMP_TARGET_OFFLOAD is
mandatory and no non-host devices are available, it is set to omp_invalid_
device. Otherwise, if unset, device number 0 is used.

See also: Section 3.6.3 [omp_get_default_device], page 27, Section 3.6.2
[omp_set_default_device], page 27, Section 4.17 [OMP_TARGET_OFFLOAD],
page 66,

Reference: OpenMP specification v5.2 (https://www.openmp.org), Section 21.2.7

4.7 OMP_DYNAMIC — Dynamic adjustment of threads

ICV: dyn-var

Scope: global

Description:
Enable or disable the dynamic adjustment of the number of threads within
a team. The value of this environment variable shall be TRUE or FALSE. If
undefined, dynamic adjustment is disabled by default.

See also: Section 3.1.6 [omp_set_dynamic|, page 17,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.3

4.8 OMP_MAX_ACTIVE_LEVELS — Set the maximum number of
nested parallel regions

ICV: max-active-levels-var

Scope: data environment

Description:
Specifies the initial value for the maximum number of nested parallel regions.
The value of this variable shall be a positive integer. If undefined, then if OMP_
NESTED is defined and set to true, or if OMP_NUM_THREADS or OMP_PROC_BIND
are defined and set to a list with more than one item, the maximum number of
nested parallel regions is initialized to the largest number supported, otherwise
it is set to one.

See also: Section 3.1.15 [omp_set_max_active_levels|, page 20, Section 4.10
[OMP_NESTED]|, page 63, Section 4.13 [OMP_PROC_BIND], page 64,
Section 4.12 [OMP_NUM_THREADS], page 63,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.9

4.9 OMP_MAX_TASK_PRIORITY — Set the maximum priority

number that can be set for a task.

ICV: max-task-priority-var

Scope: global

Description:
Specifies the initial value for the maximum priority value that can be set for
a task. The value of this variable shall be a non-negative integer, and zero is
allowed. If undefined, the default priority is O.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

Chapter 4: OpenMP Environment Variables 63

See also: Section 3.4.1 [omp_get_max_task_priority], page 25,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.14

4.10 OMP_NESTED — Nested parallel regions

ICV: max-active-levels-var

Scope: data environment

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The value of this environment variable shall be
TRUE or FALSE. If set to TRUE, the number of maximum active nested regions
supported is by default set to the maximum supported, otherwise it is set to
one. If OMP_MAX_ACTIVE_LEVELS is defined, its setting overrides this setting. If
both are undefined, nested parallel regions are enabled if OMP_NUM_THREADS or
OMP_PROC_BINDS are defined to a list with more than one item, otherwise they
are disabled by default.

Note that the OMP_NESTED environment variable was deprecated in the OpenMP
specification 5.0 in favor of OMP_MAX_ACTIVE_LEVELS.

See also: Section 3.1.15 [omp_set_max_active_levels], page 20, Section 3.1.9
[omp_set_nested], page 18, Section 4.8 [OMP_MAX_ACTIVE_LEVELS],
page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.6

4.11 OMP_NUM_TEAMS — Specifies the number of teams to use
by teams region

ICV: nteams-var

Scope: device

Description:
Specifies the upper bound for number of teams to use in teams regions without
explicit num_teams clause. The value of this variable shall be a positive integer.
If undefined it defaults to 0 which means implementation defined upper bound.

See also: Section 3.3.3 [omp_set_num_teams|, page 23,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 6.23

4.12 OMP_NUM_THREADS — Specifies the number of threads to
use

ICV: nthreads-var

Scope: data environment

Description:
Specifies the default number of threads to use in parallel regions. The value
of this variable shall be a comma-separated list of positive integers; the value
specifies the number of threads to use for the corresponding nested level. Spec-
ifying more than one item in the list automatically enables nesting by default.
If undefined one thread per CPU is used.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

64 GNU libgomp

When a list with more than value is specified, it also affects the max-active-
levels-var ICV as described in Section 4.8 [OMP_MAX_ACTIVE_LEVELS],
page 62.

See also: Section 3.1.1 [omp_set_num_threads], page 15, Section 4.8
[OMP_MAX_ACTIVE_LEVELS], page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.2

4.13 OMP_PROC_BIND — Whether threads may be moved
between CPUs

ICV: bind-var

Scope: data environment

Description:
Specifies whether threads may be moved between processors. If set to TRUE,
OpenMP threads should not be moved; if set to FALSE they may be moved.
Alternatively, a comma separated list with the values PRIMARY, MASTER (depre-
cated since OpenMP 5.1), CLOSE and SPREAD can be used to specify the thread
affinity policy for the corresponding nesting level. With PRIMARY and MASTER
the worker threads are in the same place partition as the primary thread. With
CLOSE those are kept close to the primary thread in contiguous place parti-
tions. And with SPREAD a sparse distribution across the place partitions is
used. Specifying more than one item in the list automatically enables nesting
by default.

When a list is specified, it also affects the max-active-levels-var ICV as described
in Section 4.8 [OMP_MAX_ACTIVE_LEVELS], page 62.

When undefined, OMP_PROC_BIND defaults to TRUE when OMP_PLACES or GOMP_
CPU_AFFINITY is set and FALSE otherwise.

See also: Section 3.2.1 [omp_get_proc_bind], page 22, Section 4.21 [GOMP_CPU_AFFINITY]]

page 67, Section 4.14 [OMP_PLACES], page 64, Section 4.8
[OMP_MAX_ACTIVE_LEVELS], page 62,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.4

4.14 OMP_PLACES — Specifies on which CPUs the threads
should be placed

ICV: place-partition-var

Scope: implicit tasks

Description:
The thread placement can be either specified using an abstract name or by
an explicit list of the places. The abstract names threads, cores, sockets,
11_caches and numa_domains can be optionally followed by a positive number
in parentheses, which denotes the how many places shall be created. With
threads each place corresponds to a single hardware thread; cores to a single
core with the corresponding number of hardware threads; with sockets the
place corresponds to a single socket; with 11_caches to a set of cores that

https://www.openmp.org
https://www.openmp.org

Chapter 4: OpenMP Environment Variables 65

shares the last level cache on the device; and numa_domains to a set of cores for
which their closest memory on the device is the same memory and at a similar
distance from the cores. The resulting placement can be shown by setting the
OMP_DISPLAY_ENV environment variable.

Alternatively, the placement can be specified explicitly as comma-separated
list of places. A place is specified by set of nonnegative numbers in curly
braces, denoting the hardware threads. The curly braces can be omitted when
only a single number has been specified. The hardware threads belonging to
a place can either be specified as comma-separated list of nonnegative thread
numbers or using an interval. Multiple places can also be either specified by
a comma-separated list of places or by an interval. To specify an interval, a
colon followed by the count is placed after the hardware thread number or the
place. Optionally, the length can be followed by a colon and the stride number
— otherwise a unit stride is assumed. Placing an exclamation mark (!) directly
before a curly brace or numbers inside the curly braces (excluding intervals)
excludes those hardware threads.

For instance, the following specifies the same places list: "{0,1,2}, {3,4,6},
{7,8,9}, {10,11,123}"; "{0:3}, {3:3}, {7:3}, {10:33}"; and "{0:2}:4:3".

If OMP_PLACES and GOMP_CPU_AFFINITY are unset and OMP_PROC_BIND is either
unset or false, threads may be moved between CPUs following no placement
policy.

See also: Section 4.13 [OMP_PROC_BIND], page 64, Section 4.21 [GOMP_CPU_AFFINITY] }
page 67, Section 3.2.1 [omp_get_proc_bind], page 22, Section 4.5
[OMP_DISPLAY_ENV], page 61,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.5

4.15 OMP_STACKSIZE — Set default thread stack size

ICV: stacksize-var

Scope: device

Description:
Set the default thread stack size in kilobytes, unless the number is suffixed by B,
K, M or G, in which case the size is, respectively, in bytes, kilobytes, megabytes or
gigabytes. This is different from pthread_attr_setstacksize which gets the
number of bytes as an argument. If the stack size cannot be set due to system
constraints, an error is reported and the initial stack size is left unchanged. If
undefined, the stack size is system dependent.

See also: Section 4.23 [GOMP_STACKSIZE], page 68,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.7

https://www.openmp.org
https://www.openmp.org

66 GNU libgomp

4.16 OMP_SCHEDULE — How threads are scheduled
ICV: run-sched-var

Scope: data environment

Description:
Allows to specify schedule type and chunk size. The value of the variable
shall have the form: typel,chunk] where type is one of static, dynamic,
guided or auto The optional chunk size shall be a positive integer. If undefined,
dynamic scheduling and a chunk size of 1 is used.

See also: Section 3.1.11 [omp_set_schedule], page 19,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Sections 2.7.1.1 and
4.1

4.17 OMP_TARGET_OFFLOAD — Controls ofloading behavior

ICV: target-offload-var

Scope: global

Description:
Specifies the behavior with regard to offloading code to a device. This variable
can be set to one of three values - MANDATORY, DISABLED or DEFAULT.

If set to MANDATORY, the program terminates with an error if any device con-
struct or device memory routine uses a device that is unavailable or not sup-
ported by the implementation, or uses a non-conforming device number. If set
to DISABLED, then offloading is disabled and all code runs on the host. If set
to DEFAULT, the program tries offloading to the device first, then falls back to
running code on the host if it cannot.

If undefined, then the program behaves as if DEFAULT was set.

Note: Even with MANDATORY, no run-time termination is performed when the
device number in a device clause or argument to a device memory routine
is for host, which includes using the device number in the default-device-var
ICV. However, the initial value of the default-device-var ICV is affected by
MANDATORY.

See also: Section 4.6 [OMP_DEFAULT_DEVICE], page 61,
Reference: OpenMP specification v5.2 (https://www.openmp.org), Section 21.2.8

4.18 OMP_TEAMS_THREAD_LIMIT — Set the maximum number of
threads imposed by teams

ICV: teams-thread-limit-var

Scope: device

Description:
Specifies an upper bound for the number of threads to use by each contention
group created by a teams construct without explicit thread_limit clause. The
value of this variable shall be a positive integer. If undefined, the value of 0 is
used which stands for an implementation defined upper limit.

https://www.openmp.org
https://www.openmp.org

Chapter 4: OpenMP Environment Variables 67

See also: Section 4.19 [OMP_THREAD_LIMIT], page 67, Section 3.3.5
[omp_set_teams_thread_limit], page 24,

Reference: OpenMP specification v5.1 (https://www.openmp.org), Section 6.24

4.19 OMP_THREAD_LIMIT — Set the maximum number of
threads

ICV: thread-limit-var

Scope: data environment

Description:
Specifies the number of threads to use for the whole program. The value of this
variable shall be a positive integer. If undefined, the number of threads is not
limited.

See also: Section 4.12 [OMP_NUM_THREADS|, page 63, Section 3.3.6
[omp_get_thread_limit|, page 24,

Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.10

4.20 OMP_WAIT_POLICY — How waiting threads are handled

Description:
Specifies whether waiting threads should be active or passive. If the value
is PASSIVE, waiting threads should not consume CPU power while waiting;
while the value is ACTIVE specifies that they should. If undefined, threads wait
actively for a short time before waiting passively.

See also: Section 4.24 [GOMP_SPINCOUNT], page 68,
Reference: OpenMP specification v4.5 (https://www.openmp.org), Section 4.8

4.21 GOMP_CPU_AFFINITY — Bind threads to specific CPUs

Description:

Binds threads to specific CPUs. The variable should contain a space-separated
or comma-separated list of CPUs. This list may contain different kinds of
entries: either single CPU numbers in any order, a range of CPUs (M-N) or a
range with some stride (M-N:S). CPU numbers are zero based. For example,
GOMP_CPU_AFFINITY="0 3 1-2 4-15:2" binds the initial thread to CPU 0, the
second to CPU 3, the third to CPU 1, the fourth to CPU 2, the fifth to CPU
4, the sixth through tenth to CPUs 6, 8, 10, 12, and 14 respectively and then
starts assigning back from the beginning of the list. GOMP_CPU_AFFINITY=0
binds all threads to CPU 0.

There is no libgomp library routine to determine whether a CPU affinity spec-
ification is in effect. As a workaround, language-specific library functions, e.g.,
getenv in C or GET_ENVIRONMENT_VARIABLE in Fortran, may be used to query
the setting of the GOMP_CPU_AFFINITY environment variable. A defined CPU
affinity on startup cannot be changed or disabled during the runtime of the
application.

https://www.openmp.org
https://www.openmp.org
https://www.openmp.org

68 GNU libgomp

If both GOMP_CPU_AFFINITY and OMP_PROC_BIND are set, OMP_PROC_BIND has
a higher precedence. If neither has been set and OMP_PROC_BIND is unset, or
when OMP_PROC_BIND is set to FALSE, the host system handles the assignment
of threads to CPUs.

See also: Section 4.14 [OMP_PLACES], page 64, Section 4.13 [OMP_PROC_BIND],
page 64,

4.22 GOMP_DEBUG — Enable debugging output

Description:
Enable debugging output. The variable should be set to 0 (disabled, also the
default if not set), or 1 (enabled).

If enabled, some debugging output is printed during execution. This is currently
not specified in more detail, and subject to change.

4.23 GOMP_STACKSIZE — Set default thread stack size

Description:
Set the default thread stack size in kilobytes. This is different from pthread_
attr_setstacksize which gets the number of bytes as an argument. If the
stack size cannot be set due to system constraints, an error is reported and
the initial stack size is left unchanged. If undefined, the stack size is system
dependent.

See also: Section 4.15 [OMP_STACKSIZE], page 65,

Reference: GCC Patches Mailinglist (https://gcc.gnu.org/ml/gcc-patches/2006-06/
msg00493.html), GCC Patches Mailinglist (https://gcc.gnu.org/ml/
gcc-patches/2006-06/msg00496 . html)

4.24 GOMP_SPINCOUNT — Set the busy-wait spin count

Description:

Determines how long a threads waits actively with consuming CPU power be-
fore waiting passively without consuming CPU power. The value may be either
INFINITE, INFINITY to always wait actively or an integer which gives the num-
ber of spins of the busy-wait loop. The integer may optionally be followed
by the following suffixes acting as multiplication factors: k (kilo, thousand), M
(mega, million), G (giga, billion), or T (tera, trillion). If undefined, 0 is used
when OMP_WAIT_POLICY is PASSIVE, 300,000 is used when OMP_WAIT_POLICY is
undefined and 30 billion is used when OMP_WAIT_POLICY is ACTIVE. If there are
more OpenMP threads than available CPUs, 1000 and 100 spins are used for
OMP_WAIT_POLICY being ACTIVE or undefined, respectively; unless the GOMP_
SPINCOUNT is lower or OMP_WAIT_POLICY is PASSIVE.

See also: Section 4.20 [OMP_WAIT_POLICY], page 67,

https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html
https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html

Chapter 4: OpenMP Environment Variables 69

4.25 GOMP_RTEMS_THREAD_POOLS — Set the RTEMS specific
thread pools

Description:

Ezample:

This environment variable is only used on the RTEMS real-time operating
system. It determines the scheduler instance specific thread pools. The
format for GOMP_RTEMS_THREAD_POOLS is a list of optional <thread-pool-
count> [$<priority>]@<scheduler-name> configurations separated by
where:

e <thread-pool-count> is the thread pool count for this scheduler instance.

e $<priority> is an optional priority for the worker threads of a thread pool
according to pthread_setschedparam. In case a priority value is omitted,
then a worker thread inherits the priority of the OpenMP primary thread
that created it. The priority of the worker thread is not changed after
creation, even if a new OpenMP primary thread using the worker has a
different priority.

e @<scheduler-name> is the scheduler instance name according to the
RTEMS application configuration.

In case no thread pool configuration is specified for a scheduler instance, then
each OpenMP primary thread of this scheduler instance uses its own dynam-
ically allocated thread pool. To limit the worker thread count of the thread
pools, each OpenMP primary thread must call omp_set_num_threads.

Lets suppose we have three scheduler instances I0, WRKO, and WRK1 with GOMP_
RTEMS_THREAD_POOLS set to "1@WRKO:3$4@WRK1". Then there are no thread
pool restrictions for scheduler instance I0. In the scheduler instance WRKO there
is one thread pool available. Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP primary thread
that created it. In the scheduler instance WRK1 there are three thread pools
available and their worker threads run at priority four.

71

5 Enabling OpenACC

To activate the OpenACC extensions for C/C++ and Fortran, the compile-time flag
-fopenacc must be specified. This enables the OpenACC directive ‘#pragma acc’ in
C/C++ and, in Fortran, the ‘!$acc’ sentinel in free source form and the ‘c$acc’, ‘*$acc’
and ‘!$acc’ sentinels in fixed source form. The flag also arranges for automatic linking
of the OpenACC runtime library (Chapter 6 [OpenACC Runtime Library Routines],
page 73).

See https://gcc.gnu.org/wiki/0penACC for more information.

A complete description of all OpenACC directives accepted may be found in the
OpenACC (https://www.openacc.org) Application Programming Interface manual,
version 2.6.

https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org

73

6 OpenACC Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenACC specifications
in version 2.6. They have C linkage, and do not throw exceptions. Generally, they are
available only for the host, with the exception of acc_on_device, which is available for
both the host and the acceleration device.

6.1 acc_get_num_devices — Get number of devices for given
device type

Description
This function returns a value indicating the number of devices available for the
device type specified in devicetype.

C/C++:

Prototype: int acc_get_num_devices(acc_device_t devicetype);

Fortran:
Interface: integer function acc_get_num_devices(devicetype)
integer (kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.1.

6.2 acc_set_device_type — Set type of device accelerator to
use.

Description
This function indicates to the runtime library which device type, specified in
devicetype, to use when executing a parallel or kernels region.

C/C++:

Prototype: acc_set_device_type(acc_device_t devicetype);

Fortran:
Interface: subroutine acc_set_device_type(devicetype)
integer (kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.2.

6.3 acc_get_device_type — Get type of device accelerator to
be used.

Description
This function returns what device type will be used when executing a parallel
or kernels region.
This function returns acc_device_none if acc_get_device_type is called from
acc_ev_device_init_start, acc_ev_device_init_end callbacks of the Ope-
nACC Profiling Interface (Chapter 10 [OpenACC Profiling Interface], page 101),
that is, if the device is currently being initialized.

https://www.openacc.org
https://www.openacc.org

74 GNU libgomp

C/C++:
Prototype: acc_device_t acc_get_device_type(void);

Fortran:

Interface: function acc_get_device_type(void)
integer (kind=acc_device_kind) acc_get_device_type

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.3.

6.4 acc_set_device_num — Set device number to use.

Description
This function will indicate to the runtime which device number, specified by
devicenum, associated with the specified device type devicetype.

C/C++:
Prototype: acc_set_device_num(int devicenum, acc_device_t
devicetype) ;
Fortran:
Interface: subroutine acc_set_device_num(devicenum,
devicetype)

integer devicenum
integer (kind=acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.4.

6.5 acc_get_device_num — Get device number to be used.

Description
This function returns which device number associated with the specified device
type devicetype, will be used when executing a parallel or kernels region.

C/C++:
Prototype: int acc_get_device_num(acc_device_t devicetype);

Fortran:

Interface: function acc_get_device_num(devicetype)
integer (kind=acc_device_kind) devicetype
integer acc_get_device_num

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.5.

6.6 acc_get_property — Get device property.

Description
These routines return the value of the specified property for the device being
queried according to devicenum and devicetype. Integer-valued and string-
valued properties are returned by acc_get_property and acc_get_property_
string respectively. The Fortran acc_get_property_string subroutine re-
turns the string retrieved in its fourth argument while the remaining entry
points are functions, which pass the return value as their result.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 75

C/C++:

Fortran:

Reference:

6.7 acc_

Note for Fortran, only: the OpenACC technical committee corrected and,
hence, modified the interface introduced in OpenACC 2.6. The kind-value pa-
rameter acc_device_property has been renamed to acc_device_property_
kind for consistency and the return type of the acc_get_property function
is now a c_size_t integer instead of a acc_device_property integer. The
parameter acc_device_property is still provided, but might be removed in a
future version of GCC.

Prototype: size_t acc_get_property(int devicenum, acc_device_t
devicetype, acc_device_property_t property);

Prototype: const char *acc_get_property_string(int devicenumn,
acc_device_t devicetype, acc_device_property_t
property) ;

Interface: function acc_get_property(devicenum, devicetype,
property)

Interface: subroutine acc_get_property_string(devicenum,

devicetype, property, string)

use ISO_C_Binding, only: c_size_t

integer devicenum

integer (kind=acc_device_kind) devicetype
integer (kind=acc_device_property_kind) property
integer (kind=c_size_t) acc_get_property
character(*) string

OpenACC specification v2.6 (https://www.openacc.org), section 3.2.6.

async_test — Test for completion of a specific

asynchronous operation.

Description

C/C++:

Fortran:

Reference:

This function tests for completion of the asynchronous operation specified in
arg. In C/C++, a non-zero value is returned to indicate the specified asyn-
chronous operation has completed while Fortran returns true. If the asyn-
chronous operation has not completed, C/C++ returns zero and Fortran returns
false.

Prototype: int acc_async_test(int arg);

Interface: function acc_async_test(arg)
integer (kind=acc_handle_kind) arg
logical acc_async_test

OpenACC specification v2.6 (https://www.openacc.org), section 3.2.9.

https://www.openacc.org
https://www.openacc.org

76 GNU libgomp

6.8 acc_async_test_all — Tests for completion of all
asynchronous operations.
Description
This function tests for completion of all asynchronous operations. In C/C++,
a non-zero value is returned to indicate all asynchronous operations have com-

pleted while Fortran returns true. If any asynchronous operation has not com-
pleted, C/C++ returns zero and Fortran returns false.

C/C++:
Prototype: int acc_async_test_all(void);
Fortran:

Interface: function acc_async_test()
logical acc_get_device_num

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.10.

6.9 acc_wait — Wait for completion of a specific
asynchronous operation.

Description
This function waits for completion of the asynchronous operation specified in
arg.
C/C++:
Prototype: acc_wait(arg);
Prototype (Ope- acc_async_wait(arg);
nACC 1.0 com-
patibility):
Fortran:
Interface: subroutine acc_wait(arg)

integer (acc_handle_kind) arg
Interface (Ope- subroutine acc_async_wait(arg)

nACC 1.0 com-
patibility):
integer (acc_handle_kind) arg

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.11.

6.10 acc_wait_all — Waits for completion of all
asynchronous operations.

Description

This function waits for the completion of all asynchronous operations.
C/C++:

Prototype: acc_wait_all(void);

Prototype (Ope- acc_async_wait_all(void);

nACC 1.0 com-

patibility):

https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 77

Fortran:
Interface: subroutine acc_wait_all()
Interface (Ope- subroutine acc_async_wait_all()
nACC 1.0 com-
patibility):

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.13.

6.11 acc_wait_all_async — Wait for completion of all
asynchronous operations.
Description

This function enqueues a wait operation on the queue async for any and all
asynchronous operations that have been previously enqueued on any queue.

C/C++:
Prototype: acc_wait_all_async(int async);
Fortran:

Interface: subroutine acc_wait_all_async(async)
integer (acc_handle_kind) async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.14.

6.12 acc_wait_async — Wait for completion of asynchronous
operations.
Description

This function enqueues a wait operation on queue async for any and all asyn-
chronous operations enqueued on queue arg.

C/C++:
Prototype: acc_wait_async(int arg, int async);
Fortran:

Interface: subroutine acc_wait_async(arg, async)
integer(acc_handle_kind) arg, async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.12.

6.13 acc_init — Initialize runtime for a specific device type.

Description

This function initializes the runtime for the device type specified in devicetype.
C/C++:

Prototype: acc_init(acc_device_t devicetype);
Fortran:

Interface: subroutine acc_init(devicetype)

integer (acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.7.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

78 GNU libgomp

6.14 acc_shutdown — Shuts down the runtime for a specific
device type.

Description

This function shuts down the runtime for the device type specified in devicetype.
C/C++:

Prototype: acc_shutdown(acc_device_t devicetype) ;
Fortran:

Interface: subroutine acc_shutdown(devicetype)

integer(acc_device_kind) devicetype

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.8.

6.15 acc_on_device — Whether executing on a particular
device

Description:
This function returns whether the program is executing on a particular device
specified in devicetype. In C/C++ a non-zero value is returned to indicate the
device is executing on the specified device type. In Fortran, true is returned. If
the program is not executing on the specified device type C/C++ returns zero,
while Fortran returns false.

Note that in GCC, depending on devicetype, the function call might be folded
to a constant in the compiler; compile with -fno-builtin-acc_on_device if a
run-time function is desired.

C/C++:
Prototype: acc_on_device(acc_device_t devicetype);
Fortran:

Interface: function acc_on_device(devicetype)
integer (acc_device_kind) devicetype
logical acc_on_device

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.17.

6.16 acc_malloc — Allocate device memory.

Description
This function allocates bytes bytes of device memory. It returns the device
address of the allocated memory.
C/C++:
Prototype: d_void* acc_malloc(size_t bytes);
Fortran:
Interface: type(c_ptr) function acc_malloc(bytes)

integer(c_size_t), value :: bytes

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.18.
openacc specification v3.3 (https://www.openacc.org), section 3.2.16.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 79

6.17 acc_free — Free device memory.

Description
Free previously allocated device memory at the device address data_dev.

C/C++:

Prototype: void acc_free(d_void *data_dev) ;

Fortran:

Interface: subroutine acc_free(data_dev)
type(c_ptr), value :: data_dev

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.19.
openacc specification v3.3 (https://www.openacc.org), section 3.2.17.

6.18 acc_copyin — Allocate device memory and copy host
memory to it.

Description
In C/C++, this function allocates len bytes of device memory and maps it to the
specified host address in a. The device address of the newly allocated device
memory is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/CH+:
Prototype: void *acc_copyin(h_void *a, size_t len);
Prototype: void *acc_copyin_async(h_void *a, size_t len, int
async) ;
Fortran:
Interface: subroutine acc_copyin(a)
type(*), dimension(..) :: a
Interface: subroutine acc_copyin(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_copyin_async(a, async)
type(*), dimension(..) :: a
integer (acc_handle_kind) :: async
Interface: subroutine acc_copyin_async(a, len, async)
type(*), dimension(..) :: a

integer len
integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.20.

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org

80

GNU libgomp

6.19 acc_present_or_copyin — If the data is not present on
the device, allocate device memory and copy from host
memory.

Description

C/C++:

Fortran:

Reference:

This function tests if the host data specified by a and of length len is present
or not. If it is not present, device memory is allocated and the host memory
copied. The device address of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Note that acc_present_or_copyin and acc_pcopyin exist for backward com-
patibility with OpenACC 2.0; use Section 6.18 [acc_copyin], page 79, instead.

Prototype: void *acc_present_or_copyin(h_void *a, size_t len);
Prototype: void *acc_pcopyin(h_void *a, size_t len);
Interface: subroutine acc_present_or_copyin(a)
type(*), dimension(..) :: a
Interface: subroutine acc_present_or_copyin(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_pcopyin(a)
type(*), dimension(..) :: a
Interface: subroutine acc_pcopyin(a, len)
type(*), dimension(..) :: a

integer len

OpenACC specification v2.6 (https://www.openacc.org), section 3.2.20.

6.20 acc_create — Allocate device memory and map it to
host memory.

Description

C/C++:

Fortran:

This function allocates device memory and maps it to host memory specified by
the host address a with a length of len bytes. In C/C++, the function returns
the device address of the allocated device memory.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Prototype: void *acc_create(h_void *a, size_t len);
Prototype: void *acc_create_async(h_void *a, size_t len, int
async) ;

Interface: subroutine acc_create(a)

https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 81

type(*), dimension(..) :: a
Interface: subroutine acc_create(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_create_async(a, async)
type(*), dimension(..) :: a
integer (acc_handle_kind) :: async
Interface: subroutine acc_create_async(a, len, async)
type(*), dimension(..) :: a

integer len
integer(acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.21.

6.21 acc_present_or_create — If the data is not present on
the device, allocate device memory and map it to host
memory.

Description
This function tests if the host data specified by a and of length len is present
or not. If it is not present, device memory is allocated and mapped to host
memory. In C/C++, the device address of the newly allocated device memory
is returned.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

Note that acc_present_or_create and acc_pcreate exist for backward com-
patibility with OpenACC 2.0; use Section 6.20 [acc_create], page 80, instead.

C/C++:
Prototype: void *acc_present_or_create(h_void *a, size_t len)
Prototype: void *acc_pcreate(h_void *a, size_t len)
Fortran:
Interface: subroutine acc_present_or_create(a)
type(*), dimension(..) :: a
Interface: subroutine acc_present_or_create(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_pcreate(a)
type(*), dimension(..) :: a
Interface: subroutine acc_pcreate(a, len)
type(*), dimension(..) :: a

integer len

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.21.

https://www.openacc.org
https://www.openacc.org

82 GNU libgomp

6.22 acc_copyout — Copy device memory to host memory.

Description
This function copies mapped device memory to host memory which is specified
by host address a for a length len bytes in C/C++.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:

Prototype: acc_copyout (h_void *a, size_t len);

Prototype: acc_copyout_async(h_void *a, size_t len, int async);

Prototype: acc_copyout_finalize(h_void *a, size_t len);

Prototype: acc_copyout_finalize_async(h_void *a, size_t len,
int async);

Fortran:

Interface: subroutine acc_copyout(a)
type(*), dimension(..) :: a

Interface: subroutine acc_copyout(a, len)
type(*), dimension(..) :: a
integer len

Interface: subroutine acc_copyout_async(a, async)
type(*), dimension(..) :: a
integer (acc_handle_kind) :: async

Interface: subroutine acc_copyout_async(a, len, async)
type(*), dimension(..) :: a
integer len
integer (acc_handle_kind) :: async

Interface: subroutine acc_copyout_finalize(a)
type(*), dimension(..) :: a

Interface: subroutine acc_copyout_finalize(a, len)
type(*), dimension(..) :: a
integer len

Interface: subroutine acc_copyout_finalize_async(a, async)
type(*), dimension(..) :: a
integer (acc_handle_kind) :: async

Interface: subroutine acc_copyout_finalize_async(a, len,
async)
type(*), dimension(..) :: a
integer len
integer (acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.22.

https://www.openacc.org

Chapter 6: OpenACC Runtime Library Routines 83

6.23 acc_delete — Free device memory.

Description
This function frees previously allocated device memory specified by the device
address a and the length of len bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:
Prototype: acc_delete(h_void *a, size_t len);
Prototype: acc_delete_async(h_void *a, size_t len, int async);
Prototype: acc_delete_finalize(h_void *a, size_t len);
Prototype: acc_delete_finalize_async(h_void *a, size_t len,
int async) ;
Fortran:
Interface: subroutine acc_delete(a)
type(*), dimension(..) :: a
Interface: subroutine acc_delete(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_delete_async(a, async)
type(*), dimension(..) :: a
integer(acc_handle_kind) :: async
Interface: subroutine acc_delete_async(a, len, async)
type(*), dimension(..) :: a

integer len
integer(acc_handle_kind) :: async
Interface: subroutine acc_delete_finalize(a)
type(*), dimension(..) :: a
Interface: subroutine acc_delete_finalize(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_delete_finalize_async(a, async)
type(*), dimension(..) :: a
integer (acc_handle_kind) :: async
Interface: subroutine acc_delete_finalize_async(a, len, async)
type(*), dimension(..) :: a
integer len
integer (acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.23.

https://www.openacc.org

84 GNU libgomp

6.24 acc_update_device — Update device memory from
mapped host memory.

Description
This function updates the device copy from the previously mapped host mem-
ory. The host memory is specified with the host address a and a length of Ien
bytes.

In Fortran, two (2) forms are supported. In the first form, a specifies a con-
tiguous array section. The second form a specifies a variable or array element
and len specifies the length in bytes.

C/C++:
Prototype: acc_update_device(h_void *a, size_t len);
Prototype: acc_update_device(h_void *a, size_t len, async);
Fortran:
Interface: subroutine acc_update_device(a)
type(*), dimension(..) :: a
Interface: subroutine acc_update_device(a, len)
type(*), dimension(..) :: a
integer len
Interface: subroutine acc_update_device_async(a, async)
type(*), dimension(..) :: a
integer (acc_handle_kind) :: async
Interface: subroutine acc_update_device_async(a, len, async)
type(*), dimension(..) :: a
integer len
integer (acc_handle_kind) :: async

Reference: OpenACC specification v2.6 (https://www.openacc.org), section 3.2.24.

6