Using the GNU Compiler Collection

For ccc version 16.0.1 (pre-release)

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

This file documents the use of the GNU compilers.

Copyright (©) 1988-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software.
Copies published by the Free Software Foundation raise funds for GNU devel-
opment.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

1 Programming Languages Supported by GCC 1
2 Language Standards Supported by GCC................... 3
3 GCC Command Options.ot et 9
4 C Implementation-Defined Behavior..................... 599
5 C++ Implementation-Defined Behavior.................. 609
6 Extensions to the C Language Family 611
7 Built-in Functions Provided by GCC.................... 837
8 Extensions to the C++ Language 1069
9 GNU Objective-C Features 1083
10 Binary Compatibility........ L. 1099
11 gcov—a Test Coverage Program....................... 1103
12 gcov-tool—an Offline Geda Profile Processing Tool 1129
13 gcov-dump—an Offline Geda and Geno Profile Dump Tool . 1133
14 1to-dump—Tool for dumping LTO object files............ 1135
15 Known Causes of Trouble with GCC................... 1137
16 Reporting Bugs i 1153
17 How To Get Help with GCC...... 1155
18 Contributing to GCC Development 1157
Funding Free Software 1159
The GNU Project and GNU/Linux 1161
GNU General Public License 1163
GNU Free Documentation License......................... 1175
Contributors to GCC 1183

A Indices ..o e 1201

Table of Contents

1 Programming Languages Supported by GCC .. 1

2 Language Standards Supported by GCC...... 3
21 CLANGUAZE . ..ttt 3
2.2 CH+4 Language . ..o oottt e 5
2.3 Objective-C and Objective-C++ Languages..................... 6
2.4 COBOL Languageuuiimi e 7
25 GO Language 7
26 Dlanguage.t 7
2.7 Modula-2 languaget 7
2.8 References for Other Languages...............c.ooiiiiiiiian. 7

3 GCC Command Options........................ 9
3.1 Option SUMMATYttt 9
3.2 Options Controlling the Kind of Output 33
3.3 Compiling C+4 Programs.........ccooiiiiiiiiiiiininnn.. 44
3.4 Options Controlling C Dialect 45
3.5 Options Controlling C++ Dialect................. ..o L. 52
3.6 Options Controlling Objective-C and Objective-C++ Dialects. . 82
3.7 Options Controlling OpenMP and OpenACC 86
3.8 Options to Control Diagnostic Messages Formatting............ 87
3.9 Options to Request or Suppress Warnings..................... 100
3.10 Options That Control Static Analysis........................ 169
3.11 Options for Debugging Your Program 187
3.12 Options That Control Optimization 194
3.13 Program Instrumentation Options........................... 276
3.14 Options Controlling the Preprocessor........................ 297
3.15 Passing Options to the Assembler 306
3.16 Options for Linking, 306
3.17 Options for Directory Search 312
3.18 Options for use with Picolibc................................ 316
3.19 Options for Code Generation Conventions 317
3.20 GCC Developer Options........covouiiiiiiiiiiiiiiiinnn... 328
3.21 Machine-Dependent Options............c.coovuiiiiiiieennnn... 347

3.21.1 AArch64 Options.oouuiiiii e 347

3.21.1.1 -march and -mcpu Feature Modifiers............... 354
3.21.2 Adapteva Epiphany Options............................ 358
3.21.3 AMD GCN Optionscouvueiiiiiiiiiiiiinienn.. 361
3.21.4 ARC Options . ..ouvvieiii i 363
3.21.5 ARM Options . ..ottt 371
3.21.6 AVR Options.c.oiii e 388

3.21.6.1 AVR Optimization Options........................ 394

iv

3.21.6.2 EIND and Devices with

More Than 128 Ki Bytesof Flash 395
3.21.6.3 Handling of the RAMPD, RAMPX, RAMPY
and RAMPZ Special Function Registers 397
3.21.6.4 AVR Built-in Macros................ooiiiii.. 397
3.21.6.5 AVR Internal Optionscccoiiiii.... 401
3.21.7 Blackfin Optionsco i 401
3.21.8 COX OptionS . .. v ottt e 404
3.21.9 CRIS Optionsottt e 405
3.21.10 C-SKY Optionsoovveiniii i 406
3.21.11 Cygwin and MinGW Options.......................... 409
3.21.12 Darwin Optionsc.oiiiiiiiiii .. 411
3.21.13 DEC Alpha Options.coviuiiiiiiiiiiiian.. 415
3.21.14 eBPF Options........oooiiiiiii it 420
3.21.15 FR30 Options........oviueiii i 422
3.21.16 FRV Options. ..o 422
3.21.17 FT32 Options . ..ot 425
3.21.18 GNU/Linux Optionscovviiiiiiiiiininienan.. 425
3.21.19 HS8/300 Optionsvuvniirinii i, 426
3.21.20 HPPA Options.......covvriiiiii i, 427
3.21.21 TA-64 Options......oouiiirtii i 430
3.21.22 LM32 Options. . .o ovvet et 434
3.21.23 LoongArch Optionsccoiiiiiiiiiiine .. 434
3.21.24 M32C OPtIONS . .. v vttt 440
3.21.25 M32R/D Optionsouiuiuiriiiiiiiiinaen. 440
3.21.26 M680X0 OPtions . ..ovureteiii i 442
3.21.27 MCore Options.viit e 447
3.21.28 MicroBlaze Options 448
3.21.29 MIPS Options. . .oovtii e 449
3.21.30 MMIX Options.ovvvrrie e 465
3.21.31 MNI10300 Optionsvevureee e 466
3.21.32 Moxie Optionsvuiiii e 467
3.21.33 MSP430 Optionsovuuutiiii e 467
3.21.34 NDS32 Options . ..ouvvvntit i 470
3.21.35 Nvidia PTX Optionsovveiiiiniiiiennnn... 473
3.21.36 OpenRISC Options.c.covviiiiiiiii e, 474
3.21.37 PDP-11 Optionsouueiiii i 475
3.21.38 PowerPC Options.........cooiiiiiiiiiiiiiii.., 476
3.21.39 PRU Options ... oouueiii e 476
3.21.40 RISC-V Optionsovvurireiiii i 478
3.21.41 RL78 Options . ..ottt 495
3.21.42 IBM RS/6000 and PowerPC Options 496
3.21.43 RX OptionsS ..ottt 512
3.21.44 S/390 and zSeries Options...............c.cooininn... 515
3.21.45 SH Optionsvvet i i 521
3.21.46 Solaris 2 Options.ooviii i 527

3.21.47 SPARC Options.ouuiiiiii i 528

3.21.48 Options for System V i 534

3.21.49 V850 Optionsvvuet it 535
3.21.50 VAX Options .. .eveeii e 537
3.21.51 Visium Options ..ot 538
3.21.52 VMS Optionscoouueiini e 539
3.21.53 VxWorks Optionscoviiiiiiiiiiii ... 539
3.21.54 x86 OptiONS.vii e 540
3.21.55 x86 Windows Options............cooiiiiiiiiiian.. 576
3.21.56 Xstormyl6 Options..........ccovieiiiiiiiiiii .. 576
3.21.57 Xtensa Optionsooiiiiiiiiiiiiiiii 576
3.21.58 zSeries OptionS.ovvuiii i 578
3.22 Specifying Subprocesses and the Switches to Pass to Them... 578
3.23 Environment Variables Affecting GCC....................... 587
3.24 Using Precompiled Headers.............. ..., 591
3.25 CA+ Modules. 593
3.25.1 Module Mapper...... .o 594
3.25.2 Module Preprocessing ... 596
3.25.3 Compiled Module Interface.................. 596

C Implementation-Defined Behavior........ 599
4.1 Translation........ ..o 599
4.2 Environment e 599
4.3 Identifiersot 599
4.4 Characterso e 600
4.5 Inbegers . ..ot e 601
4.6 Floating Point. i 602
4.7 Constant exXpresSiONSvvvr ettt et 603
4.8 Arrays and Pointers........... ... i 603
4.9 HInts. ... 604
4.10 Structures, Unions, Enumerations, and Bit-Fields............ 604
411 Qualifiers 605
B I o Y 606
4.13 Declarators 606
4.14 Statements.t e 606
4.15 Preprocessing Directives. ..., 606
4.16 Library Functions......... ... o i 607
4.17 Architecture ... 607
4.18 Locale-Specific Behavior............ il 608

C++ Implementation-Defined Behavior.... 609

5.1 Conditionally-Supported Behavior............................ 609
5.2 Exception Handling i i 609

vi

6 Extensions to the C Language Family....... 611
6.1 Additional Numeric Types.c.ovuiuiiiiiiiiiiiiiae. 611
6.1.1 128-bit Integers.o 611
6.1.2 Double-Word Integers ... 611
6.1.3 Complex Numbers.oiiiiiiiiii i, 611
6.1.4 Additional Floating Types..........ccoiiiiiiiiiiin.. 613
6.1.5 Half-Precision Floating Point 614
6.1.6 Decimal Floating Types ..., 615
6.1.7 Fixed-Point Types........cooiiii ., 616
6.2 Array, Union, and Struct Extensions.......................... 617
6.2.1 Arrays of Variable Length 617
6.2.2 Arrays of Length Zero.......... o L. 618
6.2.3 Structures with No Members 620
6.2.4 Unions with Flexible Array Members 620
6.2.5 Structures with only Flexible Array Members............ 620
6.2.6 Unnamed Structure and Union Fields.................... 620
6.2.7 Cast toa Union Typecooviiiiiiiiiiiiiiii . 621
6.2.8 Non-Lvalue Arrays May Have Subscripts................. 622
6.2.9 Non-Constant Initializers................... 622
6.2.10 Compound Literals........... i i, 622
6.2.11 Designated Initializers............. L. 624
6.3 Named Address Spacesoueiiiiiiiiii i 625
6.3.1 AVR Named Address Spaces...........ccovvviineneann... 625
6.3.2 M32C Named Address Spaces...........oveveviienenn.. 628
6.3.3 PRU Named Address Spaces.........coouueeeeiiineaan.. 628
6.3.4 RL78 Named Address Spaces..........ccoveeiieenienan... 628
6.3.5 x86 Named Address Spaces..........coovvuivieennnan.. 628
6.4 Attributes Specificto GCC............. i 628
6.4.1 Declaring Attributes of Functions........................ 629
6.4.1.1 Common Function Attributes....................... 630
6.4.1.2 AArch64 Function Attributes....................... 660
6.4.1.3 AMD GCN Function Attributes..................... 663
6.4.1.4 ARC Function Attributes........................ ... 664
6.4.1.5 ARM Function Attributes 665
6.4.1.6 AVR Function Attributes........................... 667
6.4.1.7 Blackfin Function Attributes........................ 670
6.4.1.8 BPF Function Attributes........................... 671
6.4.1.9 C-SKY Function Attributes......................... 671
6.4.1.10 Epiphany Function Attributes 671
6.4.1.11 H8/300 Function Attributes 672
6.4.1.12 IA-64 Function Attributes......................... 673
6.4.1.13 LoongArch Function Attributes.................... 673
6.4.1.14 M32C Function Attributes......................... 677
6.4.1.15 M32R/D Function Attributes...................... 678
6.4.1.16 m68k Function Attributes 678

6.4.1.17 MCORE Function Attributes...................... 679

vii

6.4.1.18 MicroBlaze Function Attributes.................... 679
6.4.1.19 Microsoft Windows Function Attributes............ 680
6.4.1.20 MIPS Function Attributes...............oovvvo.. .. 681
6.4.1.21 MSP430 Function Attributes....................... 683
6.4.1.22 NDS32 Function Attributes........................ 684
6.4.1.23 Nvidia PTX Function Attributes................... 685
6.4.1.24 PowerPC Function Attributes...................... 685
6.4.1.25 RISC-V Function Attributes....................... 688
6.4.1.26 RL78 Function Attributes 690
6.4.1.27 RX Function Attributes 690
6.4.1.28 S/390 Function Attributes......................... 691
6.4.1.29 SH Function Attributes................... 692
6.4.1.30 Symbian OS Function Attributes 693
6.4.1.31 V850 Function Attributes.......................... 693
6.4.1.32 Visium Function Attributes........................ 694
6.4.1.33 x86 Function Attributes 694
6.4.1.34 Xstormyl6 Function Attributes.................... 707
6.4.2 Specifying Attributes of Variables........................ 707
6.4.2.1 Common Variable Attributes........................ 708
6.4.2.2 ARC Variable Attributes 718
6.4.2.3 AVR Variable Attributes............................ 718
6.4.2.4 Blackfin Variable Attributes 720
6.4.2.5 H8/300 Variable Attributes......................... 720
6.4.2.6 TA-64 Variable Attributes........................... 720
6.4.2.7 LoongArch Variable Attributes...................... 721
6.4.2.8 M32R/D Variable Attributes........................ 721
6.4.2.9 Microsoft Windows Variable Attributes 721
6.4.2.10 MSP430 Variable Attributes....................... 722
6.4.2.11 Nvidia PTX Variable Attributes................... 722
6.4.2.12 PowerPC Variable Attributes...................... 722
6.4.2.13 RL78 Variable Attributes.......................... 723
6.4.2.14 V850 Variable Attributes.......................... 723
6.4.2.15 x86 Variable Attributes............................ 723
6.4.2.16 Xstormyl6 Variable Attributes..................... 723
6.4.3 Specifying Attributes of Types.............. ...l 723
6.4.3.1 Common Type Attributes........................... 724
6.4.3.2 ARC Type Attributes.............coiiiiiii ... 737
6.4.3.3 ARM Type Attributes............... ..., 738
6.4.3.4 BPF Type Attributes...............ccoiiiiiiint. 738
6.4.3.5 PowerPC Type Attributes 738
6.4.3.6 x86 Type Attributes...............cooiiiiiiiL. 738
6.4.4 Label Attributes.. ... 739
6.4.5 Enumerator Attributes L. 739
6.4.6 Statement Attributes............ 740
6.4.7 Attribute Syntax 742
6.5 Pragmas Accepted by GCC........ ... i, 746

6.5.1 AArch64 Pragmas...........oooiiiiiiiiiiiii .. 746

viii

6.5.2 ARM Pragmaso, 747
6.5.3 LoongArch Pragmas.......... i 747
6.5.4 M32C Pragmas.oouueiiii e 747
6.5.5 PRU Pragmas..........cccoiiiiiiiiiiiiiiiiiiiinnnnn 747
6.5.6 RS/6000 and PowerPC Pragmas......................... 748
6.5.7 S/390 Pragmas...... ...t 748
6.5.8 Darwin Pragmaso 748
6.5.9 Solaris Pragmaso 748
6.5.10 Symbol-Renaming Pragmas............................. 749
6.5.11 Structure-Layout Pragmas..................... 749
6.5.12 Weak Pragmas ..., 750
6.5.13 Diagnostic Pragmas i 751
6.5.14 Visibility Pragmas............ oo i 753
6.5.15 Push/Pop Macro Pragmas....................coooiue.. 753
6.5.16 Function Specific Option Pragmas...................... 753
6.5.17 Loop-Specific Pragmas 754
6.6 Thread-Local Storage, 755
6.6.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 756
6.6.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage..... 756
6.7 OpenMPo 758
6.8 OpenACC. ... 758
6.9 An Inline Function is As Fast As a Macro..................... 758
6.10 When is a Volatile Object Accessed?..... ..., 760
6.11 How to Use Inline Assembly Language in C Code............ 761

6.11.1 Basic Asm — Assembler Instructions Without Operands.. 761
6.11.2 Extended Asm - Assembler Instructions

with C Expression Operands, 763
6.11.2.1 Volatile..... ... 765
6.11.2.2 Assembler Template............... 767
6.11.2.3 Output Operands...........covviiiiiiiiinennnn... 768
6.11.2.4 Flag Output Operandscoviiieina... 771
6.11.2.5 Input Operands ..., 773
6.11.2.6 Clobbers and Scratch Registers.................... 774
6.11.2.7 Goto Labels............ oo i 778
6.11.2.8 Generic Operand Modifiers 779
6.11.2.9 AArch64 Operand Modifiers....................... 780
6.11.2.10 x86 Operand Modifiers 780
6.11.2.11 x86 Floating-Point asm Operands................. 782
6.11.2.12 MSP430 Operand Modifiers 783
6.11.2.13 LoongArch Operand Modifiers.................... 783
6.11.2.14 RISC-V Operand Modifiers....................... 784
6.11.2.15 SH Operand Modifiers............................ 784

6.11.3 Constraints for asm Operands........................... 785
6.11.3.1 Simple Constraints ..., 785
6.11.3.2 Multiple Alternative Constraints................... 788
6.11.3.3 Constraint Modifier Characters.................... 788

6.11.3.4 Constraints for Particular Machines................ 789

6.11.4 C++11 Constant Expressions instead of String Literals.. 815

6.11.5 Controlling Names Used in Assembler Code............. 815
6.11.6 Variables in Specified Registers......................... 816
6.11.6.1 Defining Global Register Variables................. 816
6.11.6.2 Specifying Registers for Local Variables............ 817
6.11.6.3 Hard Register Constraints 818
6.11.7 Sizeof an asm...........oiiiiiiiiii 820
6.12 Other Extensions to C Syntax............c.cooiiiiiiiian... 821
6.12.1 Statements and Declarations in Expressions............. 821
6.12.2 Locally Declared Labelsoooiiiia. 823
6.12.3 Labelsas Values.............. i 824
6.12.4 Nested Functions.......... ..o, 825
6.12.5 Referring to a Type with typeof 826
6.12.6 Determining the Number of Elements of Arrays......... 828
6.12.7 The maximum and minimum representable values of a type. . 828
6.12.8 Support for offsetof i 828
6.12.9 Determining the Alignment of
Functions, Types or Variables 829
6.12.10 Extensions to enum Type Declarations................. 829
6.12.11 Support for the _Bool Type........ccoviiiiiiiiin... 830
6.12.12 Macros with a Variable Number of Arguments. 830
6.12.13 Conditionals with Omitted Operands.................. 831
6.12.14 Case Rangesccoiiiiiiiiii i 831
6.12.15 Mixed Declarations, Labels and Code.................. 831
6.12.16 C++ Style Comments.............ccoviiiiiiiniannan... 832
6.12.17 Slightly Looser Rules for Escaped Newlines............ 832
6.12.18 Hex Floats. ..o 832
6.12.19 Binary Constants using the ‘0b’” Prefix................. 832
6.12.20 Dollar Signs in Identifier Names 832
6.12.21 The Character ESC in Constants....................... 833
6.12.22 Raw String Literals it 833
6.12.23 Alternate Keywords i, 833
6.12.24 Function Names as Stringsoooiiiian. 833
6.13 Extensions to C Semantics ..., 834
6.13.1 Prototypes and Old-Style Function Definitions.......... 834
6.13.2 Arithmetic on void- and Function-Pointers............. 835
6.13.3 Pointer Arguments in Variadic Functions 835
6.13.4 Pointers to Arrays with Qualifiers Work as Expected. ... 835
6.13.5 Const and Volatile Functions 836
7 Built-in Functions Provided by GCC 837
7.1 Builtins for C Library Functions.............................. 837
7.2 Additional Builtins for Numeric Operations................... 839
7.2.1 Floating-Point Format Builtins 839
7.2.2 Bit Operation Builtins.............o i 842

7.2.3 Byte-Swapping Builtins........... ...l 846

724 CRCBuiltins.........oiiiiiii i
7.2.5 Built-in Functions to Perform
Arithmetic with Overflow Checking.............
7.3 Builtins for Stack Allocation...............,
7.4 Nonlocal GOtos. e
7.5 Constructing Function Calls..............
7.6 Getting the Return or Frame Address of a Function...........
7.7 Stack scrubbing internal interfaces............................
7.8 Using Vector Instructions through Built-in Functions..........
7.9 Builtins for Atomic Memory Access. ...,
7.9.1 Built-in Functions for Memory
Model Aware Atomic Operations.................oooiiia...
7.9.2 Legacy __sync Built-in Functions
for Atomic Memory ACCESS .. .vvurrte et
7.10 Object Size Checking........ ... oo,
7.10.1 Object Size Checking Built-in Functions................
7.10.2 Object Size Checking and Source Fortification
7.10.2.1 Formatted Output Function Checking..............
7.11 Built-in functions for C++ allocations and deallocations... ..
7.12 Other Built-in Functions Provided by GCC..................
7.13 Built-in Functions Specific to Particular Target Machines
7.13.1 AArch64 Built-in Functions.............................
7.13.2 Alpha Built-in Functions
7.13.3 ARC Built-in Functions il
7.13.4 ARC SIMD Built-in Functions..........................
7.13.5 Arm C Language Extensions (ACLE)...................
7.13.6 ARM Floating Point Status and Control Intrinsics......
7.13.7 ARM ARMv8-M Security Extensions...................
7.13.8 AVR Built-in Functionsoooiiiin...
7.13.9 Blackfin Built-in Functions
7.13.10 BPF Built-in Functions................
7.13.11 FR-V Built-in Functions...................
7.13.11.1 Argument Typesooeiiiiiii i
7.13.11.2 Directly-Mapped Integer Functions
7.13.11.3 Directly-Mapped Media Functions
7.13.11.4 Raw Read/Write Functions.......................
7.13.11.5 Other Built-in Functions..........................
7.13.12 LoongArch Base Built-in Functions....................
7.13.12.1 Data Types ..o
7.13.12.2 Directly-mapped Builtin Functions................
7.13.12.3 Directly-mapped Division Builtin Functions.......
7.13.12.4 Other Builtin Functions
7.13.13 LoongArch SX Vector Intrinsics
7.13.13.1 SX Data Types.....ccovuuiiiiiiiiiiiiiiiiiiin.
7.13.13.2 Directly-mapped SX Builtin Functions............
7.13.13.3 Directly-mapped SX Division Builtin Functions. ..
7.13.14 LoongArch ASX Vector Intrinsics......................

7.13.14.1 ASX Data Types.....oouviiiiiiiiiiiniina... 917
7.13.14.2 Directly-mapped ASX Builtin Functions.......... 917
7.13.14.3 Directly-mapped ASX Division Builtin Functions.. 931
7.13.14.4 Directly-mapped SX and

ASX Conversion Builtin Functions 931
7.13.15 MIPS DSP Built-in Functions 935
7.13.16 MIPS Paired-Single Support............. ..., 939
7.13.17 MIPS Loongson Built-in Functions 939

7.13.17.1 Paired-Single Arithmetic 941
7.13.17.2 Paired-Single Built-in Functions 942
7.13.17.3 MIPS-3D Built-in Functions...................... 943
7.13.18 MIPS SIMD Architecture (MSA) Support 945
7.13.18.1 MIPS SIMD Architecture Built-in Functions...... 947
7.13.19 Other MIPS Built-in Functions........................ 959
7.13.20 MSP430 Built-in Functions............................ 959
7.13.21 NDS32 Built-in Functions 960
7.13.22 Nvidia PTX Built-in Functions........................ 960
7.13.23 Basic PowerPC Built-in Functions..................... 960
7.13.23.1 Basic PowerPC Built-in

Functions Available on all Configurations.................. 960

7.13.23.2 Basic PowerPC Built-in

Functions Available on ISA 2.05........................... 964

7.13.23.3 Basic PowerPC Built-in

Functions Available on ISA 2.06........................... 966

7.13.23.4 Basic PowerPC Built-in

Functions Available on ISA 2.07............ 967

7.13.23.5 Basic PowerPC Built-in

Functions Available on ISA 3.0........ ..., 967

7.13.23.6 Basic PowerPC Built-in

Functions Available on ISA 3.1 969
7.13.24 PowerPC AltiVec/VSX Built-in Functions............. 971

7.13.24.1 PowerPC AltiVec Built-in Functions on ISA 2.05.. 974
7.13.24.2 PowerPC AltiVec Built-in

Functions Available on ISA 2.06............. 982
7.13.24.3 PowerPC AltiVec Built-in
Functions Available on ISA 2.07............ 984
7.13.24.4 PowerPC AltiVec Built-in
Functions Available on ISA 3.0........ ... i, 987
7.13.24.5 PowerPC AltiVec Built-in
Functions Available on ISA 3.1........ 993
7.13.25 PowerPC Hardware Transactional
Memory Built-in Functions............. oL 1004
7.13.25.1 PowerPC HTM Low Level Built-in Functions 1004
7.13.25.2 PowerPC HTM High Level Inline Functions...... 1006
7.13.26 PowerPC Atomic Memory Operation Functions....... 1007

7.13.27 PowerPC Matrix-Multiply Assist Built-in Functions .. 1008
7.13.28 PRU Built-in Functions, 1010

xi

xii

7.13.29 RISC-V Built-in Functions 1010
7.13.30 RISC-V Vector Intrinsics..........cooviiiiiii.n 1010
7.13.31 CORE-V Built-in Functions.......................... 1010
7.13.32 RX Built-in Functions............... oL 1031
7.13.33 S/390 System z Built-in Functions.................... 1033
7.13.34 SH Built-in Functions............... 1034
7.13.35 SPARC VIS Built-in Functions....................... 1035
7.13.36 TI C6X Built-in Functions 1039
7.13.37 x86 Built-in Functions............. L 1039
7.13.38 x86 Transactional Memory Intrinsics 1065
7.13.39 x86 Control-Flow Protection Intrinsics................ 1066
Extensions to the C++4 Language.......... 1069
8.1 When is a Volatile C++ Object Accessed?................... 1069
8.2 Restricting Pointer Aliasing 1069
8.3 Vague Linkageo i 1070
8.4 CH+ Interface and Implementation Pragmas 1071
8.5 Where’s the Template? 1072
8.6 Extracting the Function Pointer from a Bound
Pointer to Member Function, 1074
8.7 CH+-Specific Variable, Function, and Type Attributes....... 1075
8.8 Function Multiversioning............. 1077
8.9 Type Traits....coouueiiii i e 1079
8.10 Deprecated Features ..., 1082
8.11 Backwards Compatibility............ ..o i 1082
GNU Objective-C Features................. 1083
9.1 GNU Objective-C Runtime APT............. 1083
9.1.1 Modern GNU Objective-C Runtime API................ 1083
9.1.2 Traditional GNU Objective-C Runtime API 1084
9.2 +load: Executing Code beforemain 1084
9.2.1 What You Can and Cannot Do in +load................ 1085
9.3 Type Encoding..........ooiiiiiiiiii i 1086
9.3.1 Legacy Type Encodingot 1088
9.3.2 0encCode.ottt 1088
9.3.3 Method Signatures 1089
9.4 Garbage Collection........ ..., 1089
9.5 Constant String Objects...........cco i, 1090
9.6 compatibility_alias.............ccoiiiiiiiiiiiiiiiii.., 1091
9.7 EXCEPIONS . .. vt 1091
9.8 Synchronization..............coiiiiiiiiiii 1093
9.9 Fast Enumeration............. ..o i i 1093
9.9.1 Using Fast Enumeration................., 1093
9.9.2 (C99-Like Fast Enumeration Syntax..................... 1093
9.9.3 Fast Enumeration Details............. 1094

9.9.4 Fast Enumeration Protocol 1095

9.10 Messaging with the GNU Objective-C Runtime............. 1096
9.10.1 Dynamically Registering Methods 1096
9.10.2 Forwarding Hook.........o i, 1096

10 Binary Compatibility 1099
11 gcov—a Test Coverage Program 1103

11.1 Introduction to gcov.......... ..o 1103

11.2 Invoking gCov..........oiiiiiiiiiiii i 1103

11.3 Using gcov with GCC Optimization........................ 1120

11.4 Brief Description of gcov Data Files........................ 1121

11.5 Data File Relocation to Support Cross-Profiling 1121

11.6 Profiling and Test Coverage in Freestanding Environments.. 1122
11.6. 1 OVEIVIEW . vttt 1122
11.6.2 Tutorial.......cooeiiiii 1123
11.6.3 System Initialization Caveats.......................... 1127

12 gcov-tool—an Offline Gcda

Profile Processing Tool....................... 1129
12.1 Introduction to gcov-tooll 1129
12.2 Invoking gcov—to0l........cuuuiiuiiiitiii i 1129

13 gcov-dump—an Offline Gcda and Gceno

Profile Dump Tool............................ 1133
13.1 Introduction to gcov—dumpol 1133
13.2 Invoking gcov—dump............coouiiiiiiiiiiiiiiii 1133

14 1lto-dump—Tool for dumping

LTO object files............................... 1135
14.1 Introduction to 1to-dumpccoiiiiiiiiiia.. 1135
14.2 Invoking 1to—dump..........c.ovueiiiiiiiiiiiiininennennn.. 1135
15 Known Causes of Trouble with GCC..... 1137
15.1 Actual Bugs We Haven’t Fixed Yet......................... 1137
15.2 Interoperation...............cooiiiiiiiiinneeiiiinnn. 1137
15.3 Incompatibilities of GCC............ it ... 1139
15.4 Fixed Header Files...........ooo i, 1142
15.5 Standard Libraries............ .o, 1142
15.6 Disappointments and Misunderstandings 1143
15.7 Common Misunderstandings with GNU C++............... 1144
15.7.1 Declare and Define Static Members.................... 1144

15.7.2 Name Lookup, Templates, and

Accessing Members of Base Classes..................o.o..... 1145

xiii

Xiv

15.7.3 Temporaries May Vanish Before You Expect........... 1146
15.7.4 TImplicit Copy-Assignment for Virtual Bases............ 1147

15.8 Certain Changes We Don’t Want to Make.................. 1148
15.9 Warning Messages and Error Messages 1151
16 Reporting Bugs............................. 1153
16.1 Have You Found a Bug?......... 1153
16.2 How and Where to Report Bugs................ 1153
17 How To Get Help with GCC.............. 1155
18 Contributing to GCC Development....... 1157
Funding Free Software.......................... 1159
The GNU Project and GNU/Linux............ 1161
GNU General Public License................... 1163
GNU Free Documentation License............. 1175
ADDENDUM: How to use this License for your documents 1182
Contributors to GCC 1183
Appendix A Indices............................ 1201
Al OptionIndex. ... 1201

A.2 Concept and Symbol Indexo il 1235

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Fortran, Ada, D, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Mercury.
To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the COBOL compiler is gcobol, the Ada compiler is GNAT, and so on. When we
talk about compiling one of those languages, we might refer to that compiler by its own
name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C Language

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. The ANSI standard,
but not the ISO standard, also came with a Rationale document. This standard, in both its
forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. To
select this standard in GCC, use one of the options —ansi, -—std=c90 or —std=1509899: 1990;
to obtain all the diagnostics required by the standard, you should also specify -pedantic
(or -pedantic-errors if you want them to be errors rather than warnings). See Section 3.4
[Options Controlling C Dialect], page 45.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option -std=is09899:199409 (with,
as for other standard versions, -pedantic to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. (While in development, drafts of this standard version were
referred to as C9X.) GCC has substantially complete support for this standard version; see
https://gcc.gnu.org/projects/c-status.html for details. To select this standard, use
-std=c99 or -std=1s09899:1999.

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. (While in development, drafts of this standard version were referred to as
C1X.) GCC has substantially complete support for this standard, enabled with -std=c11 or
-std=1809899:2011. A version with corrections integrated was prepared in 2017 and pub-
lished in 2018 as ISO/TEC 9899:2018; it is known as C17 and is supported with -std=c17 or
-std=1809899:2017; the corrections are also applied with —std=c11, and the only difference
between the options is the value of __STDC_VERSION__.

A fifth version of the C standard, known as (23, was published in 2024 as ISO/IEC
9899:2024. (While in development, drafts of this standard version were referred to as C2X.)
Support for this is enabled with -std=c23 or -std=1s09899:2024.

A further version of the C standard, known as C2Y, is under development; experimental
and incomplete support for this is enabled with -std=c2y.

By default, GCC provides some extensions to the C language that, on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 611.

https://gcc.gnu.org/projects/c-status.html

4 Using the GNU Compiler Collection (GCC)

Some features that are part of the C99 standard are accepted as extensions in C90 mode,
and some features that are part of the Cl1 standard are accepted as extensions in C90
and C99 modes. Use of the -std options listed above disables these extensions where they
conflict with the C standard version selected. You may also select an extended version of
the C language explicitly with -std=gnu90 (for C90 with GNU extensions), -std=gnu99
(for C99 with GNU extensions), -std=gnull (for C11 with GNU extensions), -std=gnul7
(for C17 with GNU extensions) or -std=gnu23 (for C23 with GNU extensions).

The default, if no C language dialect options are given, is ~std=gnu23.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and
since C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types,
added in C99, are not required for freestanding implementations. Since C23, freestanding
implementations are required to support a larger range of library facilities, including some
functions from other headers.

The standard also defines two environments for programs, a freestanding environment,
required of all implementations and which may not have library facilities beyond those
required of freestanding implementations, where the handling of program startup and ter-
mination are implementation-defined; and a hosted environment, which is not required,
in which all the library facilities are provided and startup is through a function int main
(void) or int main (int, char *[]1). An OS kernel is an example of a program running
in a freestanding environment; a program using the facilities of an operating system is an
example of a program running in a hosted environment.

GCC aims towards being usable as the compiler for a conforming freestanding or hosted
implementation. By default, it acts as the compiler for a hosted implementation, defining _
_STDC_HOSTED__ as 1 and presuming that when the names of ISO C functions are used, they
have the semantics defined in the standard. To make it act as the compiler for a freestanding
environment, use the option -ffreestanding; it then defines __STDC_HOSTED__ to O and
does not make assumptions about the meanings of function names from the standard library,
with exceptions noted below. To build an OS kernel, you may well still need to make your
own arrangements for linking and startup. See Section 3.4 [Options Controlling C Dialect],
page 45.

GCC generally provides library facilities in headers that do not declare functions with
external linkage (which includes the headers required by C11 and before to be provided
by freestanding implementations), but not those included in other headers. Additionally,
GCC provides <stdatomic.h>, even though it declares some functions with external linkage
(which are provided in libatomic). On a few platforms, some of the headers not declaring
functions with external linkage are instead obtained from the OS’s C library, which may
mean that they lack support for features from more recent versions of the C standard that
are supported in GCC’s own versions of those headers. On some platforms, GCC provides
<tgmath.h> (but this implementation does not support interfaces added in C23).

To use the facilities of a hosted environment, and some of the facilities required in a

freestanding environment by C23, you need to find them elsewhere (for example, in the
GNU C library). See Section 15.5 [Standard Libraries|, page 1142.

Chapter 2: Language Standards Supported by GCC 5

Most of the compiler support routines used by GCC are present in libgcc, but there are
a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Contrary to the standards covering memcpy GCC expects the case
of an exact overlap of source and destination to work and not invoke undefined behavior.
Finally, if __builtin_trap is used, and the target does not implement the trap pattern,
then GCC emits a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see https://gcc.gnu.org/readings.html

2.2 C++ Language

GCC supports the original ISO C++ standard published in 1998, and the 2011, 2014, 2017
and mostly 2020 and 2024 revisions.

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select this
standard in GCC, use one of the options -ansi, -std=c++98, or -std=c++03; to obtain all
the diagnostics required by the standard, you should also specify -pedantic (or -pedantic-
errors if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, all of which have been implemented in GCC.
For details see https://gcc.gnu.org/projects/cxx-status.html#cxx1l. To select this
standard in GCC, use the option -std=c++11.

Another revised ISO C++ standard was published in 2014 as ISO/IEC 14882:2014, and is
referred to as C++14; before its publication it was sometimes referred to as C++1y. C++14
contains several further changes to the C++ language, all of which have been implemented
in GCC. For details see https://gcc.gnu.org/projects/cxx-status.html#cxx14. To
select this standard in GCC, use the option -std=c++14.

The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was published.
This is referred to as C++17, and before publication was often referred to as C++1z. GCC
supports all the changes in that specification. For further details see https://gcc.gnu.

org/projects/cxx-status.html#cxx17. Use the option -std=c++17 to select this variant
of C++.

Another revised ISO C++ standard was published in 2020 as ISO/IEC 14882:2020, and
is referred to as C++20; before its publication it was sometimes referred to as C++2a. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx20. To select this standard in GCC, use
the option -std=c++20.

Yet another revised ISO C++ standard was published in 2024 as ISO/IEC 14882:2024, and
is referred to as C++23; before its publication it was sometimes referred to as C++2b. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx23. To select this standard in GCC, use
the option -std=c++23.

https://gcc.gnu.org/readings.html
https://gcc.gnu.org/projects/cxx-status.html#cxx11
https://gcc.gnu.org/projects/cxx-status.html#cxx14
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx23
https://gcc.gnu.org/projects/cxx-status.html#cxx23

6 Using the GNU Compiler Collection (GCC)

More information about the C++ standards is available on the ISO C++ committee’s web
site at https://www.open-std.org/jtcl/sc22/wg21/.

To obtain all the diagnostics required by any of the standard versions described above you
should specify -pedantic or -pedantic-errors, otherwise GCC will allow some non-ISO
C++ features as extensions. See Section 3.9 [Warning Options|, page 100.

By default, GCC also provides some additional extensions to the C++ language that
on rare occasions conflict with the C++ standard. See Section 3.5 [C++ Dialect Options],
page 52. Use of the -std options listed above disables these extensions where they they
conflict with the C++ standard version selected. You may also select an extended version
of the C++ language explicitly with -std=gnu++98 (for C++98 with GNU extensions), or
-std=gnu++11 (for C++11 with GNU extensions), or -std=gnu++14 (for C++14 with GNU
extensions), or -std=gnu++17 (for C++17 with GNU extensions), or -std=gnu++20 (for
C++20 with GNU extensions), or ~std=gnu++23 (for C++23 with GNU extensions).

The default, if no C++ language dialect options are given, is —std=gnu++20.

2.3 Objective-C and Objective-C++ Languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @optional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options -fgnu-runtime
and -fnext-runtime allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The author-
itative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and
the Objective-C Language” (https://www.gnustep.org/resources/documentation/
ObjectivCBook.pdf).

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with
the option -fobjc-exceptions. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enu-
meration (not available in Objective-C++), attributes for methods (such as deprecated,
noreturn, sentinel, format), the unused attribute for method arguments, the @package
keyword for instance variables and the @optional and @required keywords in protocols.
You can disable all these Objective-C 2.0 language extensions with the option -fobjc-
std=objcl, which causes the compiler to recognize the same Objective-C language syntax
recognized by GCC 4.0, and to produce an error if one of the new features is used.

https://www.open-std.org/jtc1/sc22/wg21/
https://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
https://www.gnustep.org/resources/documentation/ObjectivCBook.pdf

Chapter 2: Language Standards Supported by GCC 7

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e https://developer.apple.com/library/archive/documentation/Cocoa/
Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

For more information concerning the history of Objective-C that is available online, see
https://gcc.gnu.org/readings.html

2.4 COBOL Language

As of the GCC 15 release, GCC supports the ISO COBOL language standard (ISO/IEC
1989:2023). It includes some support for compatibility with other COBOL compilers via
the -dialect option.

2.5 Go Language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
https://go.dev/doc/gol.

2.6 D language

GCC supports the D 2.0 programming language. The D language itself is currently de-
fined by its reference implementation and supporting language specification, described at
https://dlang.org/spec/spec.html.

2.7 Modula-2 language

GCC supports the Modula-2 language and is compliant with the PIM2, PIM3, PIM4 and
ISO dialects. Also implemented are a complete set of free ISO libraries. It also contains a
collection of PIM libraries and some Logitech compatible libraries.

For more information on Modula-2 see https://gcc.gnu.org/readings.html. The on-
line manual is available at https://gcc.gnu.org/onlinedocs/gm2/index.html.

2.8 References for Other Languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://gcc.gnu.org/readings.html
https://go.dev/doc/go1
https://dlang.org/spec/spec.html
https://gcc.gnu.org/readings.html
https://gcc.gnu.org/onlinedocs/gm2/index.html

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the -c option says not to run the linker. Then the output consists of object files output by
the assembler. See Section 3.2 [Options Controlling the Kind of Output], page 33.

Other options are passed on to one or more stages of processing. Some options control
the preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

The usual way to run GCC is to run the executable called gcc, or machine-gcc when
cross-compiling, or machine-gcc-version to run a specific version of GCC. When you
compile C++ programs, you should invoke GCC as g++ instead. See Section 3.3 [Compiling
C++ Programs], page 44, for information about the differences in behavior between gcc and
g++ when compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: -dv is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify -L more than once, the directories are searched in the order specified. Also, the
placement of the -1 option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example, -fmove-
loop-invariants, -Wformat and so on. Most of these have both positive and negative
forms; the negative form of -ffoo is ~fno-foo. This manual documents only one of these
two forms, whichever one is not the default.

Some options take one or more arguments typically separated either by a space or by
the equals sign (‘=) from the option name. Unless documented otherwise, an argument
can be either numeric or a string. Numeric arguments must typically be small unsigned
decimal or hexadecimal integers. Hexadecimal arguments must begin with the ‘Ox’ prefix.
Arguments to options that specify a size threshold of some sort may be arbitrarily large
decimal or hexadecimal integers followed by a byte size suffix designating a multiple of bytes
such as kB and KiB for kilobyte and kibibyte, respectively, MB and MiB for megabyte and
mebibyte, GB and GiB for gigabyte and gigibyte, and so on. Such arguments are designated
by byte-size in the following text. Refer to the NIST, IEC, and other relevant national and
international standards for the full listing and explanation of the binary and decimal byte
size prefixes.

See Section A.1 [Option Index], page 1201, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

10 Using the GNU Compiler Collection (GCC)

Owerall Options
See Section 3.2 [Options Controlling the Kind of Output], page 33.

-¢c -S -E -o file
-dumpbase dumpbase -dumpbase-ext auxdropsuf
-dumpdir dumppfx -x language
-v -### --help[=class[,...]] --target-help --version
-pass-exit-codes -pipe -specs=file -wrapper
@file -ffile-prefix-map=old=new -fcanon-prefix-map
-fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fada-spec-parent=unit
-fdump-go-spec=file

--assemble --compile --dumpbase dumpbase
--dumpbase-ext auxdropsuf --dumpdir dumppfx
--language=language --output=file --pass-exit-codes
--pipe --preprocess --specs=file --verbose

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 45.

-ansi -std=standard -aux-info filename

-fno-asm

-fno-builtin -fno-builtin-function -fcond-mismatch
-ffreestanding -fgimple -fgnu-tm -fgnu89-inline -fhosted
-flax-vector-conversions -fms-extensions
-fpermitted-flt-eval-methods=standard

-fplan9-extensions -fsigned-bitfields -funsigned-bitfields
-fsigned-char -funsigned-char -fstrict-flex-arrays[=n]
-fsso-struct=endianness --ansi

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 52.

--compile-std-module

-fabi-compat-version=n -fabi-version=n
-fno-access-control -faligned-new=[n]
-fno-assume-sane-operators-new-delete
-fchar8_t -fcheck-new

-fconcepts -fconcepts-diagnostics-depth=n
-fconstexpr-depth=n -fconstexpr-cache-depth=n
-fconstexpr-loop-limit=n -fconstexpr-ops-limit=n
-fcontracts -fcontract-assumption-mode=[on|off
-fcontract-build-level=[off |default|audit]
-fcontract-continuation-mode=[on|off
-fcontract-mode=[on|off]
—-fcontract-role=name:default,audit,axiom
-fcontract-semantic=[default|audit|axiom|:semantic
-fcontract-strict-declarations=[on|off]
-fcoroutines -fdiagnostics-all-candidates
-fno-elide-constructors

-fno-enforce-eh-specs

-fext-numeric-literals

-fno-gnu-keywords

-fno-immediate-escalation
-fno-implement-inlines

-fimplicit-constexpr
-fno-implicit-inline-templates
-fno-implicit-templates

-fmodule-header|=kind]

-fmodule-implicit-inline

-fno-module-lazy

Chapter 3: GCC Command Options 11

-fmodule-mapper=specification

-fmodule-only

-fmodules

-fms-extensions

-fnew-inheriting-ctors

-fnew-ttp-matching

-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags

-fno-pretty-templates -frange-for-ext-temps -freflection

-fno-rtti -fsized-deallocation

-fstrict-enums -fstrong-eval-order[=kind
-ftemplate-backtrace-limit=n

-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-use-cxa-get-exception-ptr
-fno-weak -nostdinc++

-fvisibility-inlines-hidden

-fvisibility-ms-compat

-flang-info-include-translate[=header]
-flang-info-include-translate-not

-flang-info-module-cmi[=module]

-stdlib=1ibstdc++,libc++

-Wabbreviated-auto-in-template-arg

-Wabi-tag -Waligned-new[=kind]

-Wcatch-value -Wcatch-value=n

-Wno-class-conversion -Wclass-memaccess

-Wcomma-subscript -Wconditionally-supported

-Wno-conversion-null -Wctad-maybe-unsupported

-Wctor-dtor-privacy -Wdangling-reference
-Wno-defaulted-function-deleted

-Wno-delete-incomplete

-Wdelete-non-virtual-dtor -Wno-deprecated-array-compare
-Wdeprecated-copy -Wdeprecated-copy-dtor
-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion
-Wno-deprecated-literal-operator -Wdeprecated-variadic-comma-omission
-Weffc++ -Wno-elaborated-enum-base

-Wno-exceptions -Wno-expose-global-module-tu-local -Wno-external-tu-local
-Wextra-semi -Wno-global-module -Wno-inaccessible-base
-Wno-inherited-variadic-ctor -Wno-init-list-lifetime
-Winvalid-constexpr -Winvalid-imported-macros

-Wno-invalid-offsetof -Wno-literal-suffix

-Wmismatched-new-delete -Wmismatched-tags

-Wmultiple-inheritance -Wnamespaces -Wnarrowing

-Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor

-Wpessimizing-move -Wno-placement-new -Wplacement-new=n
-Wrange-loop-construct -Wredundant-move -Wredundant-tags

-Wreorder -Wregister -Wno-sfinae-incomplete

-Wstrict-null-sentinel -Wno-subobject-linkage -Wtemplates
-Wno-non-c-typedef-for-linkage -Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions -Wself-move -Wsign-promo
-Wsized-deallocation -Wsuggest-final-methods

-Wsuggest-final-types -Wsuggest-override -Wno-template-body
-Wno-template-id-cdtor -Wtemplate-names-tu-local

-Wno-terminate -Wno-vexing-parse -Wvirtual-inheritance
-Wno-virtual-move-assign -Wvolatile

Objective-C' and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 82.

12 Using the GNU Compiler Collection (GCC)

-fconstant-string-class=class-name

-fgnu-runtime -fnext-runtime

-fno-nil-receivers

-fobjc-abi-version=n

-fobjc-call-cxx-cdtors

-fobjc-direct-dispatch

-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck

-fobjc-std=objcl

-fno-local-ivars
-fivar-visibility=[public|protected|private|package]
-freplace-objc-classes

-fzero-link

-gen-decls

-Wassign-intercept -Wno-property-assign-default
-Wno-protocol -Wobjc-root-class -Wselector
-Wstrict-selector-match

-Wundeclared-selector

OpenMP and OpenACC Options
See Section 3.7 [Options Controlling OpenMP and OpenACC], page 86.

-foffload=arg -foffload-options=arg
-fopenacc -fopenacc-dim=geom
-fopenmp -fopenmp-simd -fopenmp-target-simd-clone[=device-type]

Diagnostic Message Formatting Options
See Section 3.8 [Options to Control Diagnostic Messages Formatting], page 87.

-fmessage-length=n

-fdiagnostics-plain-output
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics-color=[auto|never|always]
-fdiagnostics-urls=[auto|never|always
-fdiagnostics-format=[text|sarif-stderr|sarif-file
-fdiagnostics-add-output=DIAGNOSTICS-OUTPUT-SPEC
-fdiagnostics-set-output=DIAGNOSTICS-OUTPUT-SPEC
-fno-diagnostics-json-formatting
-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fno-diagnostics-show-event-links
-fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers
-fno-diagnostics-show-cwe

-fno-diagnostics-show-rules
-fno-diagnostics-show-highlight-colors
-fno-diagnostics-show-nesting
-fno-diagnostics-show-nesting-locations
-fdiagnostics-show-nesting-levels
-fdiagnostics-minimum-margin-width=width
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics-show-template-tree -fno-elide-type
-fdiagnostics-path-format=[none|separate-events|inline-events]
-fdiagnostics-show-path-depths

-fno-show-column

-fdiagnostics-column-unit=[display|byte]
-fdiagnostics-column-origin=origin
-fdiagnostics-escape-format=|[unicode |bytes]
-fdiagnostics-text-art-charset=|nonelascii|unicode|emoji]
-fdiagnostics-show-context|[=depth]

Chapter 3: GCC Command Options

Warning Options
See Section 3.9 [Options to Request or Suppress Warnings|, page 100.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors -fpermissive

-w -Wextra -Wall -Wabi=n

-Waddress -Wno-address-of-packed-member -Waggregate-return
-Walloc-size -Walloc-size-larger-than=byte-size -Walloc-zero
-Walloca -Walloca-larger-than=byte-size -Wauto-profile
-Wno-aggressive-loop-optimizations

-Warith-conversion

-Warray-bounds -Warray-bounds=n -Warray-compare
-Warray-parameter -Warray-parameter=n

-Wno-attributes -Wattribute-alias=n -Wno-attribute-alias
-Wno-attribute-warning

-Wbidi-chars=[none|unpaired|any|ucn]

-Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch

-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-cll-compat
-Wcll-c23-compat -Wc23-c2y-compat

-Wc++-compat -Wc++ll-compat -Wc++14-compat -Wc++17-compat
-Wc++20-compat -Wc++26-compat

-Wno-c++11-extensions -Wno-c++14-extensions -Wno-c++17-extensions
-Wno-c++20-extensions -Wno-c++23-extensions
-Wcalloc-transposed-args -Wcannot-profile

-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts

-Wclobbered -Wcomment

-Wcompare-distinct-pointer-types

-Wno-complain-wrong-lang

-Wconversion -Wno-coverage-mismatch -Wno-cpp

-Wdangling-else -Wdangling-pointer -Wdangling-pointer=n
-Wdate-time

-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wno-deprecated-openmp

-Wdisabled-optimization

-Wno-discarded-array-qualifiers -Wno-discarded-qualifiers
-Wno-div-by-zero -Wdouble-promotion

-Wduplicated-branches -Wduplicated-cond

-Wempty-body -Wno-endif-labels -Wenum-compare -Wenum-conversion
-Wenum-int-mismatch

-Werror -Werror=x -Wexpansion-to-defined -Wfatal-errors
-Wflex-array-member-not-at-end

-Wfloat-conversion -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-diag -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=n

-Wformat-security -Wformat-signedness -Wformat-truncation=n
-Wformat-y2k -Wframe-address

-Wframe-larger-than=byte-size -Wno-free-nonheap-object
-Wheader-guard -Wno-if-not-aligned -Wno-ignored-attributes
-Wignored-qualifiers -Wno-incompatible-pointer-types -Whardened
-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=n
-Wno-implicit-function-declaration -Wno-implicit-int
-Winfinite-recursion

-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Wno-invalid-memory-model

-Winvalid-pch -Winvalid-utf8 -Wno-unicode -Wjump-misses-init
-Wkeyword-macro

-Wlarger-than=byte-size -Wleading-whitespace=kind

13

14

-Wlogical-not-parentheses
-Wlong-long -Wno-lto-type
-Wmemset-elt-size -Wmemse
-Wmisleading-indentation

-Wmissing-field-initialize

Using the GNU Compiler Collection (GCC)

-Wlogical-op

-mismatch -Wmain -Wmaybe-uninitialized
t-transposed-args

-Wmissing-attributes -Wmissing-braces
rs -Wmissing-format-attribute

-Wmissing-include-dirs -Wmissing-noreturn -Wmusttail-local-addr

-Wmaybe-musttail-local-add
-Wno-multichar -Wmultista

r -Wno-missing-profile
tement-macros -Wnonnull -Wnonnull-compare

-Wnormalized=[none|id|nfc|nfkc]

-Wnull-dereference -Wno-o
-Wopenacc-parallelism
-Wopenmp -Wopenmp-simd

dr

-Wno-overflow -Woverlength-strings -Wno-override-init-side-effects

-Wpacked -Wno-packed-bitf
-Wparentheses -Wno-pedant
-Wpointer-arith -Wno-poin
-Wno-pragmas -Wno-pragma-
-Wno-psabi
-Wredundant-decls -Wrestr
-Wno-return-local-addr -W
-Wno-scalar-storage-order
-Wshadow -Wshadow=global
-Wno-shadow-ivar
-Wno-shift-count-negative
-Wno-shift-overflow -Wshi
-Wsign-compare -Wsign-con
-Wno-sizeof-array-argument
-Wsizeof-array-div
-Wsizeof-pointer-div -Wsi
-Wstack-protector -Wstack
-Wstrict-aliasing=n -Wstr
-Wstring-compare
-Wno-stringop-overflow -Wn
-Wno-stringop-truncation
-Wsuggest-attribute=attrib
-Wswitch -Wno-switch-bool
-Wno-switch-outside-range
-Wsystem-headers -Wtautol
-Wtrailing-whitespace=kind

ield-compat -Wpacked-not-aligned -Wpadded
ic-ms-format

ter-compare -Wno-pointer-to-int-cast
once-outside-header -Wno-prio-ctor-dtor

ict

return-type

-Wsequence-point

-Wshadow=local -Wshadow=compatible-local

-Wno-shift-count-overflow -Wshift-negative-valuel
ft-overflow=n
version

zeof-pointer-memaccess
-usage=byte-size -Wstrict-aliasing
ict-overflow -Wstrict-overflow=n

o-stringop-overread
-Wstrict-flex-arrays
ute-name
-Wswitch-default -Wswitch-enum
-Wno-switch-unreachable -Wsync-nand
ogical-compare -Wtrailing-whitespace
-Wtrampolines -Wtrigraphs

-Wtrivial-auto-var-init -Wno-tsan -Wtype-limits -Wundef

-Wuninitialized -Wunknown
-Wunsuffixed-float-constan
-Wunterminated-string-init
-Wunused
-Wunused-but-set-parameter
-Wunused-but-set-variable

-pragmas
ts
ialization

-Wunused-but-set-parameter=n
-Wunused-but-set-variable=n

-Wunused-const-variable -Wunused-const-variable=n

-Wunused-function -Wunuse
-Wunused-macros

d-label -Wunused-local-typedefs

-Wunused-parameter -Wno-unused-result

-Wunused-value -Wunused-v
-Wuse-after-free -Wuse-af
-Wno-varargs -Wvariadic-m
-Wvector-operation-perform
-Wvla -Wvla-larger-than=b

ariable

ter-free=n -Wuseless-cast
acros

ance

yte-size -Wno-vla-larger-than

-Wvolatile-register-var -Wwrite-strings

-Wno-xor-used-as-pow
-Wzero-as—-null-pointer-con

stant

Chapter 3: GCC Command Options

-Wzero-length-bounds
--all-warnings --extra-warnings --no-warnings
--pedantic --pedantic-errors

Static Analyzer Options

-fanalyzer

-fanalyzer-call-summaries
-fanalyzer-checker=name
-fno-analyzer-feasibility
-fanalyzer-show-events-in-system-headers
-fno-analyzer-state-merge
-fno-analyzer-state-purge
-fno-analyzer-suppress-followups
-fanalyzer-transitivity
-fno-analyzer-undo-inlining
-fanalyzer-verbose-edges
-fanalyzer-verbose-state-changes
-fanalyzer-verbosity=level
-fdump-analyzer
-fdump-analyzer-callgraph
-fdump-analyzer-exploded-graph
-fdump-analyzer-exploded-nodes
-fdump-analyzer-exploded-nodes-2
-fdump-analyzer-exploded-nodes-3
-fdump-analyzer-exploded-paths
-fdump-analyzer-feasibility
-fdump-analyzer-infinite-loop
-fdump-analyzer-json
-fdump-analyzer-state-purge
-fdump-analyzer-stderr
-fdump-analyzer-supergraph
-fdump-analyzer-untracked
-Wno-analyzer-double-fclose
-Wno-analyzer-double-free
-Wno-analyzer-exposure-through-output-file
-Wno-analyzer-exposure-through-uninit-copy
-Wno-analyzer-fd-access-mode-mismatch
-Wno-analyzer-fd-double-close
-Wno-analyzer-fd-leak
-Wno-analyzer-fd-phase-mismatch
-Wno-analyzer-fd-type-mismatch
-Wno-analyzer-fd-use-after-close
-Wno-analyzer-fd-use-without-check
-Wno-analyzer-file-leak
-Wno-analyzer-free-of-non-heap
-Wno-analyzer-imprecise-fp-arithmetic
-Wno-analyzer-infinite-loop
-Wno-analyzer-infinite-recursion
-Wno-analyzer-jump-through-null
-Wno-analyzer-malloc-leak
-Wno-analyzer-mismatching-deallocation
-Wno-analyzer-null-argument
-Wno-analyzer-null-dereference
-Wno-analyzer-out-of-bounds
-Wno-analyzer-overlapping-buffers
-Wno-analyzer-possible-null-argument
-Wno-analyzer-possible-null-dereference
-Wno-analyzer-putenv-of-auto-var

15

16 Using the GNU Compiler Collection (GCC)

-Wno-analyzer-shift-count-negative
-Wno-analyzer-shift-count-overflow
-Wno-analyzer-stale-setjmp-buffer
-Wno-analyzer-tainted-allocation-size
-Wno-analyzer-tainted-assertion
-Wno-analyzer-tainted-array-index
-Wno-analyzer-tainted-divisor
-Wno-analyzer-tainted-offset
-Wno-analyzer-tainted-size
-Wno-analyzer-throw-of-unexpected-type
-Wanalyzer-symbol-too-complex
-Wanalyzer-too-complex
-Wno-analyzer-undefined-behavior-ptrdiff
-Wno-analyzer-undefined-behavior-strtok
-Wno-analyzer-unsafe-call-within-signal-handler
-Wno-analyzer-use-after-free
-Wno-analyzer-use-of-pointer-in-stale-stack-frame
-Wno-analyzer-use-of-uninitialized-value
-Wno-analyzer-va-arg-type-mismatch
-Wno-analyzer-va-list-exhausted
-Wno-analyzer-va-list-leak
-Wno-analyzer-va-list-use-after-va-end
-Wno-analyzer-write-to-const
-Wno-analyzer-write-to-string-literal

C and Objective-C-only Warning Options
-Wbad-function-cast -Wdeprecated-non-prototype -Wfree-labels
-Wmissing-declarations -Wmissing-parameter-name -Wmissing-parameter-type
-Wdeclaration-missing-parameter-type -Wmissing-prototypes
-Wmissing-variable-declarations
-Wmultiple-parameter-fwd-decl-lists
-Wnested-externs -Wold-style-declaration
-Wold-style-definition -Wstrict-prototypes -Wtraditional
-Wtraditional-conversion -Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.11 [Options for Debugging Your Program|, page 187.

-g -glevel -gdwarf -gdwarf-version

-gbtf -gctf -gctflevel

-gprune-btf -gno-prune-btf

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstrict-dwarf -gno-strict-dwarf

-gas—-loc-support -gno-as-loc-support
-gas—-locview-support -gno-as-locview-support

-gcodeview

-gcolumn-info -gno-column-info -gdwarf32 -gdwarf64
-gstatement-frontiers -gno-statement-frontiers
-gvariable-location-views -gno-variable-location-views
-ginternal-reset-location-views -gno-internal-reset-location-views
-ginline-points -gno-inline-points

-gvms -gz[=type]

-gsplit-dwarf -gdescribe-dies -gno-describe-dies
-fdebug-prefix-map=old=new -fdebug-types-section
-fno-eliminate-unused-debug-types
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]
-fno-eliminate-unused-debug-symbols -femit-class-debug-always
-fno-merge-debug-strings -fno-dwarf2-cfi-asm

Chapter 3: GCC Command Options 17

-fvar-tracking -fvar-tracking-assignments -fvar-tracking-uninit
--debug

Optimization Options
See Section 3.12 [Options that Control Optimization|, page 194.

-faggressive-loop-optimizations

-falign-functions[=n[:m: [n2[:m2]]1]]

-falign-jumps[=n[:m: [n2[:m2]]1]]

-falign-labels[=n[:m: [n2[:m2]]1]]

-falign-loops[=n[:m: [n2[:m2]111]

-fmin-function-alignment=[n]

-fno-allocation-dce -fallow-store-data-races

-fassociative-math -fauto-profile -fauto-profile[=path]
-fauto-profile-inlining -fauto-inc-dec -fbranch-probabilities
-fcaller-saves

-fcombine-stack-adjustments -fconserve-stack

-ffold-mem-offsets

-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range -fcx-method

-fdata-sections -fdce -fdelayed-branch
-fdelete-null-pointer-checks -fdep-fusion -fdevirtualize
-fdevirtualize-speculatively -fdevirtualize-at-ltrans -fdse
-fearly-inlining -fexcess-precision=style

-fexpensive-optimizations -fext-dce

-ffast-math -ffat-lto-objects -ffinite-loops

-ffinite-math-only -ffloat-store

-fforward-propagate -ffp-contract=style -ffp-int-builtin-inexact
-ffunction-sections -ffuse-ops-with-volatile-access

-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-atomics -finline-functions -finline-functions-called-once
-finline-limit=n -finline-small-functions

-finline-stringops|=£n]

-fipa-modref -fipa-cp -fipa-cp-clone

-fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const
-fipa-reference -fipa-reference-addressable -fipa-reorder-for-locality
-fipa-sra -fipa-stack-alignment

-fipa-icf -fipa-icf-functions -fipa-icf-variables
-fira-algorithm=algorithm

-flate-combine-instructions -flifetime-dse -flive-patching=Ilevel
-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots

-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
-fivopts -fkeep-inline-functions -fkeep-static-functions
-fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage
-floop-block -floop-interchange -floop-strip-mine
-floop—unroll-and-jam -floop-nest-optimize

-floop-parallelize-all -flra-remat -flto -flto-compression-level
-flto-partition=alg -flto-incremental=path
-flto-incremental-cache-size=n -fmalloc-dce -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fmove-loop-stores -fno-branch-count-reg
-fno-defer-pop -fno-function-cse

-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
-fno-peephole2 -fno-printf-return-value -fno-sched-interblock

18 Using the GNU Compiler Collection (GCC)

-fno-sched-spec -fno-signed-zeros

-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-crc -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays

-fprofile-correction

-fprofile-use -fprofile-use=path -fprofile-partial-training
-fprofile-values -fprofile-reorder-functions

-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-algorithm=algorithm

-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsave-optimization-record

-fsched2-use-superblocks -fsched-pressure

-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-fusion

-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling?

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
-fsignaling-nans

-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
-fspeculatively-call-stored-functions -fsplit-paths

-fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt
-fstdarg-opt -fstore-merging -fstrict-aliasing -fipa-strict-aliasing
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-coalesce-vars
-ftree-copy-prop -ftree-cselim -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
-ftree-loop-if-convert -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize

-ftree-parallelize-loops[=n] -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge

-ftree-ter -ftree-vectorize -ftree-vrp -ftrivial-auto-var-init
-funconstrained-commons -funit-at-a-time -funroll-all-loops
-funroll-loops -funsafe-math-optimizations -funswitch-loops

-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
-fweb -fwhole-program -fwpa -fuse-linker-plugin -fzero-call-used-regs
--param name=value

-0 -00 -01 -02 -03 -0s -0Ofast -0g -0z --optimize

Program Instrumentation Options
See Section 3.13 [Program Instrumentation Options], page 276.

-p -pg -fprofile-arcs -coverage -ftest-coverage
-fcondition-coverage

-fpath-coverage

-fprofile -fprofile-abs-path

-fprofile-dir=path -fprofile-generate -fprofile-generate=path
-fprofile-info-section -fprofile-info-section=name
-fprofile-note=path -fprofile-prefix-path=path
-fprofile-update=method -fprofile-filter-files=regex

Chapter 3: GCC Command Options

-fprofile-exclude-files=regex
-fprofile-reproducible=[multithreaded|parallel-runs|serial]
-fsanitize=style -fsanitize-recover -fsanitize-recover=style
-fsanitize-trap -fsanitize-trap=style
-fasan-shadow-offset=number -fsanitize-sections=s1,s2,...
-fsanitize-undefined-trap-on-error -fbounds-check -fcf-protection
-fcf-protection=[full|branch|return|none|check
-fharden-compares -fharden-conditional-branches -fhardened
-fharden-control-flow-redundancy -fhardcfr-skip-leaf
-fhardcfr-check-exceptions -fhardcfr-check-returning-calls
-fhardcfr-check-noreturn-calls=[always |no-xthrow|nothrow|never
-fstack-protector -fstack-protector-all -fstack-protector-strong
-fstack-protector-explicit -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fstrub=disable -fstrub=strict -fstrub=relaxed

-fstrub=all -fstrub=at-calls -fstrub=internal
-fvtable-verify=[std|preinit|none]

-fvtv-counts -fvtv-debug

-finstrument-functions -finstrument-functions-once
-finstrument-functions-exclude-function-list=sym,sym,...
—finstrument-functions-exclude-file-list=file,file,...
-fprofile-prefix-map=old=new

-fpatchable-function-entry=N[, ¥

--coverage —-profile

Preprocessor Options
See Section 3.14 [Options Controlling the Preprocessor|, page 297.

-C -CC -Dmacro[=defn]

-dD -dI -dM -dN -dU

-fdebug-cpp -fdirectives-only -fdollars-in-identifiers
-fexec-charset=charset -fextended-identifiers
-finput-charset=charset

-fmacro-prefix-map=old=new -fmax-include-depth=depth
-fno-canonical-system-headers -fpch-deps -fpch-preprocess
-fpreprocessed -ftabstop=width -ftrack-macro-expansion
-fwide-exec-charset=charset -fworking-directory

-H -imacros file -include file

-M -MD -MF -MG -MM -MMD -MP -MQ -MT -Mno-modules
-no-integrated-cpp -P -pthread -remap

-traditional -traditional-cpp -trigraphs

-Umacro -undef

-Wp,option -Xpreprocessor option

--comments --comments-in-macros

--define-macro=macro[=defn

--dependencies --dump=letters

--imacros=file --include=file

--no-integrated-cpp --no-line-commands
--print-missing-file-dependencies

--traditional --traditional-cpp --trigraphs --trace-includes
--undefine-macro=macro

--user-dependencies --write-dependencies --write-user-dependencies

Assembler Options
See Section 3.15 [Passing Options to the Assembler|, page 306.

-Wa,option -Xassembler option
--for-assembler=option

19

20 Using the GNU Compiler Collection (GCC)

Linker Options
See Section 3.16 [Options for Linking], page 306.
object-file-name -flink-libatomic -fuse-ld=linker -llibrary
-nostartfiles -nodefaultlibs -nolibc -nostdlib -nostdlib++
-e entry
-pie -pthread -r -rdynamic
-s -static -static-pie -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan
-shared -shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol
-Tbss=addr -Tdata=addr -Ttext=addr
-N -n -t -Z -z keyword

--entry=entry --for-linker=option
--force-link=symbol --no-standard-library
--pie --static --static-pie --symbolic

Directory Options
See Section 3.17 [Options for Directory Search], page 312.
-Bprefix -Idir -I-
-idirafter dir
-imacros file -imultilib dir
-iplugindir=dir -iprefix file
-iquote dir -isysroot dir -isystem dir
-iwithprefix dir -iwithprefixbefore dir

-Ldir -no-canonical-prefixes --no-sysroot-suffix

-nostdinc -nostdinc++

--embed-dir=dir --embed-directory=dir

--include-barrier --include-directory=dir
--include-directory-after=dir --include-prefix=prefix
--include-with-prefix=prefix --include-with-prefix-after=prefix
--include-with-prefix-before=prefix

--no-canonical-prefixes --no-standard-includes

--prefix=prefix --sysroot=dir

Picolibec Options
See Section 3.18 [Options for use with Picolibc], page 316.

--oslib=1library --crtO=[none|minimal |hosted|semihost]
—-printf=[d|f]1|ilm] --scanf=[d|£f]1]i|m]

Code Generation Options
See Section 3.19 [Options for Code Generation Conventions|, page 317.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables

-fno-gnu-unique

-finhibit-size-directive -fcommon -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt
-fno-jump-tables -fno-bit-tests

-frecord-gcc-switches

-freg-struct-return -fshort-enums -fshort-wchar
-fverbose-asm -fpack-struct[=n]

-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrampolines -ftrampoline-impl=[stack|heap]

-ftrapv -fwrapv

Chapter 3: GCC Command Options 21

-fvisibility=|[default|internal |lhidden|protected
-fstrict-volatile-bitfields -fsync-libcalls
-fzero-init-padding-bits=value

-Qy -Qn

Developer Options
See Section 3.20 [GCC Developer Options], page 328.

-dletters -dumpspecs -dumpmachine -dumpversion
-dumpfullversion -fcallgraph-info[=su,da

-fchecking -fchecking=n

-fdbg-cnt-list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-list
-fdisable-tree-pass_name
-fdisable-tree-pass—-name=range-1list

-fdump-debug -fdump-earlydebug

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-final-insns[=file

-fdump-internal-locations

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-lang-all

-fdump-lang-switch

-fdump-lang-switch-options
-fdump-lang-switch-options=filename

-fdump-passes

-fdump-rtl-pass -fdump-rtl-pass=filename
-fdump-statistics

-fdump-tree-all

-fdump-tree-switch

-fdump-tree-switch-options
-fdump-tree-switch-options=filename

-fcompare-debug[=opts] -fcompare-debug-second
-fenable-kind-pass

-fenable-kind-pass=range-list

-fira-verbose=n

-flto-report -flto-report-wpa -fmem-report-wpa
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
-fopt-info -fopt-info-options[=file]

-fmultiflags -fprofile-report

-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstats -fstack-usage -ftime-report -ftime-report-details
-fvar-tracking-assignments-toggle -gtoggle
-print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-multiarch

-print-prog-name=program -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]
--dump=Iletters

--print-file-name=Ilibrary --print-libgcc-file-file-name
--print-multi-directory --print-multi-lib --print-multi-os-directory
--print-multiarch --print-prog-name=program

--print-search-dirs --print-sysroot --print-sysroot-headers-suffix

--save-temps

22 Using the GNU Compiler Collection (GCC)

Machine-Dependent Options
See Section 3.21 [Machine-Dependent Options], page 347.

AArch6 Options (Section 3.21.1 [AArch64 Options]|, page 347)
-mabi=name -mbig-endian -mlittle-endian
-menable-sysreg-checking
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align -momit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-mtls-size=size -mtp=name
-mfix-cortex-ab3-835769 -mfix-cortex-ab3-843419
-mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
-mmax-vectorization -mautovec-preference=name
-mpc-relative-literal-loads
-msign-return-address=scope
-mbranch-protection=features
-mharden-sls=opts
-march=name -mcpu=name -mtune=name
-moverride=string
-mstack-protector-guard=guard -mstack-protector-guard-reg=sysreg
-mstack-protector-guard-offset=offset -mtrack-speculation
-moutline-atomics -mearly-ra -mearly-ldp-fusion -mlate-ldp-fusion
-msve-vector-bits=bits

Adapteva Epiphany Options (Section 3.21.2 [Adapteva Epiphany Options],
page 358)

-mhalf-reg-file -mprefer-short-insn-regs

-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf

-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num

-mround-nearest -mlong-calls -mshort-calls -msmalll6

-mfp-mode=mode -mmay-round-for-trunc -mfp-iarith

-mvect-double -max-vect-align=num

-msplit-vecmove-early -mlreg-reg

AMD GCN Options (Section 3.21.3 [AMD GCN Options|, page 361)

-march=gpu -mtune=gpu
-mgang-private-size=bytes
-msram-ecc=|on|off | any]|
-mxnack=[on|off | any]
-Wopenacc-dims

ARC Options (Section 3.21.4 [ARC Options|, page 363)

-mbarrel-shifter -mjli-always

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr

-mea -mmul32x16 -mmul64 -matomic

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mlock -mswape

-mxy -misize -marclinux -marclinux_prof

-mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved
-mrgf-banked-regs -mlpc-width=width -G num

-mvolatile-cache -mtp-regno=regno

-mauto-modify-reg -mno-brcc

-mcase-vector-pcrel -mno-cond-exec -mearly-cbranchsi
-mindexed-loads -mlra-priority-none

-mlra-priority-compact -mlra-priority-noncompact -mmillicode
-msize-level=level

-mtune=cpu -mmultcost=num -mcode-density-frame

Chapter 3: GCC Command Options

-mmpy-option=multo
-mdiv-rem -mcode-density -mll64 -mfpu=fpu -mrfl6 -mbranch-index

ARM Options (Section 3.21.5 [ARM Options|, page 371)

-mapcs-frame -mapcs

-mabi=name

-mgeneral-regs-only -mno-sched-prolog
-mlittle-endian -mbig-endian

-mbe8 -mbe32

-mfloat-abi=name

-mfpl6-format=name

-mthumb-interwork

-mcpu=name -march=name -mfpu=name -mtune=name
-mstructure-size-boundary=n
-mabort-on-noreturn -mlong-calls
-msingle-pic-base -mpic-register=reg
-mpic-data-is-text-relative
-mnop-fun-dllimport
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations
-mfix-cortex-m3-1ldrd
-mfix-cortex-ab7-aes-1742098
-mfix-cortex-a72-aes-1655431
-munaligned-access

-mslow-flash-data
-masm-syntax-unified

-mrestrict-it

-mpure-code

-mcmse

-mfix-cmse-cve-2021-35465
-mstack-protector-guard=guard
-mstack-protector-guard-offset=offset
-mfdpic

-mbranch-protection=features

AVR Options (Section 3.21.6 [AVR Options|, page 388)

-mmcu=mcu -mabsdata -maccumulate-args -mcvt

-mbranch-cost=cost -mfuse-add=level -mfuse-move=level

-mfuse-move2 -mcall-prologues -mgas-isr-prologues -mint8 -mflmap
-mdouble=bits -mlong-double=bits -mno-call-main

-mn_flash=size -mfract-convert-truncate -mno-interrupts
-mmain-is-0S_task -mrelax -mrmw -mstrict-X -mtiny-stack
-mrodata-in-ram -msplit-bit-shift -msplit-ldst -mshort-calls
-mskip-bug -muse-nonzero-bits -nodevicelib -nodevicespecs
-Waddr-space-convert -Wmisspelled-isr

Blackfin Options (Section 3.21.7 [Blackfin Options], page 401)

-mcpu=cpu[-sirevision]

-msim -momit-leaf-frame-pointer

-mspecld-anomaly -mcsync-anomaly

-mlow-64k -mstack-check-11 -mid-shared-library
-mleaf-id-shared-library

-mshared-library-id=n

-msep-data -mlong-calls

-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram

Using the GNU Compiler Collection (GCC)

-micplb
C6X Options (Section 3.21.8 [C6X Options], page 404)

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type -mdsbt -mlong-calls

CRIS Options (Section 3.21.9 [CRIS Options|, page 405)

-mcpu=cpu -march=cpu

-mtune=cpu -mmax-stack-frame=n

-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue
-mbest-lib-options -moverride-best-lib-options
-mtrap-using-break8 -mtrap-unaligned-atomic
-munaligned-atomic-may-use-library

-sim -sim2

-mmul-bug-workaround

C-SKY Options (Section 3.21.10 [C-SKY Options], page 406)

-march=arch -mcpu=cpu

-mbig-endian -mlittle-endian

-mfpu=fpu -mdouble-float -mfdivdu

-mfloat-abi=name

-melrw -mistack -mmp -mcp -mcache -msecurity -mtrust
-mdsp -medsp -mvdsp

-mdiv -msmart -mhigh-registers -manchor

-mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt
-mbranch-cost=n -msched-prolog -msim

Cygwin and MinGW Options (Section 3.21.11 [Cygwin and MinGW Options],
page 409)

-mconsole -mcrtdll=library -mdll

-mnop-fun-dllimport -mthreads

-municode -mwin32 -mwindows -fno-set-stack-executable
-fwritable-relocated-rdata -mpe-aligned-commons

Darwin Options (Section 3.21.12 [Darwin Options|, page 411)

-all_load -allowable_client -arch name

—arch_errors_fatal -asm_macosx_version_min=version
-bind_at_load -bundle -bundle_loader

-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-fapple-kext -fconstant-cfstrings -ffix-and-continue

-filelist -findirect-data -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -framework name -gfull -gused
-headerpad_max_install_names -iframework

-image_base -init symbol-name -install_name -keep_private_externs
-matt-stubs -mconstant-cfstrings -mdynamic-no-pic
-mfix-and-continue -mkernel -mmacosx-version-min=version
-mone-byte-bool -msymbol-stubs -mtarget-linker[=|version
-nodefaultexport -nodefaultrpaths

-pagezero_size -preload -read_only_relocs

-sectalign -sectcreate

-seg_addr_table

-segladdr -segaddr

-segprot -segs_read_only_addr -segs_read_write_addr
-sub_library -sub_umbrella

Chapter 3: GCC Command Options

-twolevel_namespace -twolevel_namespace_hints

-umbrella -undefined -unexported_symbols_list

-weak_framework name -weak_reference_mismatches

-whatsloaded -whyload

-F -0bjC -0bjC++ -Wnonportable-cfstrings
DEC Alpha Options (Section 3.21.13 [DEC Alpha Options], page 415)

-mno-fp-regs -msoft-float

-mieee -mieee-with-inexact -mieee-conformant

-mfp-trap-mode=mode -mfp-rounding-mode=mode

-mtrap-precision=mode -mbuild-constants

-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-msafe-bwa -msafe-partial

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data

-msmall-text -mlarge-text

-mmemory-latency=time

-mtls-kernel -mtls-size=bitsize

-mlong-double-128 -mlong-double-64

eBPF Options (Section 3.21.14 [eBPF Options|, page 420)
-mbig-endian -mlittle-endian
-mframe-limit=bytes -mxbpf -mco-re -mjmpext -mjmp32
-malu32 -mv3-atomics -mbswap -msdiv -msmov -mcpu=version
-masm=dialect -minline-memops-threshold=bytes

FR30 Options (Section 3.21.15 [FR30 Options|, page 422)

-msmall-model -mno-lsim

FRV Options (Section 3.21.16 [FRV Options|, page 422)
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mdouble -mmedia -mmuladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-eflags -mno-cond-move
-mno-optimize-membar -mno-scc -mno-cond-exec
-mno-vliw-branch -mno-multi-cond-exec -mno-nested-cond-exec
-mtomcat-stats
-mTLS -mtls
-mcpu=cpu

FT32 Options (Section 3.21.17 [FT32 Options|, page 425)

-msim -mnodiv -mft32b -mcompress -mnopm

GNU/Linuz Options (Section 3.21.18 [GNU/Linux Options|, page 425)
-mglibc -muclibc -mmusl -mbionic -mandroid
-tno-android-cc -tno-android-1d

HS8/300 Options (Section 3.21.19 [H8/300 Options|, page 426)

-mrelax -mh -ms -mn -msx -ms2600
-mquickcall -mslowbyte -mexr -mint32 -malign-300

HPPA Options (Section 3.21.20 [HPPA Options|, page 427)

-march=architecture-type

-mno-atomic-libcalls

-mcaller-copies -mdisable-fpregs -mdisable-indexing
-mordered -mfast-indirect-calls -mgas -mgnu-ld -mhp-1d

25

Using the GNU Compiler Collection (GCC)

-mfixed-range=register-range

-mcoherent-ldcw -mlinker-opt -mlong-calls
-mlong-load-store

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -msoft-mult -msio -mwsio
-munix=unix-std -nolibdld -static -threads

IA-64 Options (Section 3.21.21 [IA-64 Options|, page 430)
-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata
-mconstant-gp -mauto-pic
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-mno-inline-int-divide
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt
-mdwarf2-asm -mearly-stop-bits
-mfixed-range=register-range -mtls-size=tls-size
-mtune=cpu-type -milp32 -mlp64
-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1dc -msched-spec-control-ldc
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

LM32 Options (Section 3.21.22 [LM32 Options], page 434)

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

LoongArch Options (Section 3.21.23 [LoongArch Options], page 434)

-march=arch-type -mtune=tune-type -mabi=base-abi-type
-mfpu=fpu-type -msimd=simd-type

-msoft-float -msingle-float -mdouble-float -mlsx -mlasx
-mbranch-cost=n -maddr-reg-reg-cost=n -mcheck-zero-division
-mbreak-code=code

-mcond-move-int -mcond-move-float

-memcpy -mstrict-align -G num

-mmax-inline-memcpy-size=n

-mexplicit-relocs=style -mexplicit-relocs -mno-explicit-relocs
-mdirect-extern-access

-mcmodel=code-model -mrelax -mpass-mrelax-to-as

-mrecip -mrecip=opt -mfrecipe -mdiv32

-mlam-bh -mlamcas -mld-seq-sa

-mscq -mtls-dialect=opt

-mannotate-tablejump

M32C Options (Section 3.21.24 [M32C Options|, page 440)

-mcpu=cpu -msim -memregs=number

MS32R /D Options (Section 3.21.25 [M32R/D Options], page 440)

-m32r2 -m32rx -m32r
-mdebug

-malign-loops
-missue-rate=number
-mbranch-cost=number

Chapter 3: GCC Command Options

-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M680x0 Options (Section 3.21.26 [M680x0 Options], page 442)

-march=arch -mcpu=cpu -mtune=tune

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu32 -mb200 -m5206e -mb28x -mb307 -mb407
-mcfvde -mbitfield -mc68000 -mc68020

-mrtd -mdiv -mshort

-mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data
-mshared-library-id=n -mid-shared-library

-mxgot -mlong-jump-table-offsets

MCore Options (Section 3.21.27 [MCore Options|, page 447)

-mhardlit -mdiv -mrelax-immediates

-mwide-bitfields

-m4byte-functions -mcallgraph-data

-mslow-bytes -mno-lsim

-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MicroBlaze Options (Section 3.21.28 [MicroBlaze Options|, page 448)

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-gp-opt

-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model
-mxl-prefetch -mpic-data-is-text-relative

MIPS Options (Section 3.21.29 [MIPS Options|, page 449)

-EL -EB -mel -meb -march=arch -mtune=arch

27

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32rb

-mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6
-mips1l6 -mmipsi6e2 -mflip-mipsi6

-minterlink-compressed -minterlink-mipsi16

-mabi=abi -mabicalls -mshared -mplt -mxgot

-mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float -modd-spreg
-mabs=mode -mnan=encoding

-mdsp -mdspr2 -mmcu -meva -mvirt -mxpa -mcrc -mginv
-mmicromips -mmsa

-mloongson-mmi -mloongson-ext -mloongson-ext2

-mfpu=fpu-type

-msmartmips -mpaired-single -mdmx -mips3d -mmt -mllsc
-mlong64 -mlong32 -msym32

-Gnum -mno-local-sdata -mno-extern-sdata -mno-gopt
-membedded-data -muninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mexplicit-relocs -mexplicit-relocs=release
-mno-check-zero-division -mdivide-traps -mdivide-breaks
-mno-load-store-pairs

-mstrict-align -mno-unaligned-access

-mmemcpy -mlong-calls

-mmad -mimadd -mno-fused-madd -nocpp

-mfix-24k -mfix-r4000 -mfix-r4400 -mfix-r5900

-mfix-r10000 -mfix-rm7000 -mfix-vr4120 -mfix-vr4130 -mfix-sbl
-mfix4300 -mrilOk-cache-barrier=setting

28

Using the GNU Compiler Collection (GCC)

-mflush-func=func -mno-flush-func
-mbranch-cost=num -mbranch-likely
-mcompact-branches=policy

-mno-fp-exceptions -mvr4130-align -msynci -mno-lxcl-sxcl -mno-madd4

-mno-relax-pic-calls -mmcount-ra-address
-mframe-header-opt

MMIX Options (Section 3.21.30 [MMIX Options|, page 465)

-mlibfuncs -mepsilon -mabi=gnu -mabi=mmixware
-mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mbase-addresses
-msingle-exit
MN10300 Options (Section 3.21.31 [MN10300 Options], page 466)
-mmult-bug -mno-mult-bug
-mam33 -mam33-2 -mam34
-mtune=cpu-type
-mno-return-pointer-on-do
-mno-crt0 -mrelax -mno-liw -mno-setlb

Mouzie Options (Section 3.21.32 [Moxie Options|, page 467)

-meb -mel -mmul.x -mno-crtO

MSP/30 Options (Section 3.21.33 [MSP430 Options|, page 467)

-msim -masm-hex -mmcu=name -mlarge -msmall -mrelax

-mwarn-mcu -mwarn-devices-csv

-mcode-region=where -mdata-region=where

-muse-lower-region-prefix

-msilicon-errata=name[,name. . .]

-msilicon-errata-warn=name[,name. . .]

-mhwmult=type -minrt -mtiny-printf -mmax-inline-shift=n
NDS32 Options (Section 3.21.34 [NDS32 Options|, page 470)

-mbig-endian -mlittle-endian -EB -EL

-mabi=name -mfloat-abi=name

-mreduced-regs -mfull-regs

-malways-align -malign-functions

-mfp-as-gp -mcmov -mhw-abs

-mext-perf -mext-perf2 -mext-string -mext-dsp

-mext-fpu-fma -mext-fpu-sp -mext-fpu-dp

-mv3push -mil6-bit -mvh

-misr-vector-size=num -misr-secure=num

-mcache-block-size=num

-march=arch -mcpu=cpu

-mconfig-fpu=num -mconfig-mul=type

-mconfig-register-ports=kind

-mcmodel=code-model

-mctor-dtor -mrelax -mrelax-hint

-msched-prolog-epilog -mno-ret-in-naked-func

-malways-save-lp -munaligned-access -minline-asm-rl15

Nvidia PTX Options (Section 3.21.35 [Nvidia PTX Options], page 473)

-m64 -march=arch -misa=arch -march-map=arch
-mptx=version
-mmainkernel -moptimize -msoft-stack -muniform-simt -mgomp

OpenRISC Options (Section 3.21.36 [OpenRISC Options|, page 474)

-mboard=name -mhard-mul -mhard-div
-msoft-mul -msoft-div
-msoft-float -mhard-float -mdouble-float -munordered-float

Chapter 3: GCC Command Options 29

-mcmov -mror -mrori -msext -msfimm -mshftimm
-mcmodel=code-model

PDP-11 Options (Section 3.21.37 [PDP-11 Options|, page 475)

-mfpu -msoft-float -macO -m40 -m45 -mi0
-mint32 -mintl6
-msplit -munix-asm -mdec-asm -mgnu-asm -mlra

PowerPC Options See RS/6000 and PowerPC Options.
PRU Options (Section 3.21.39 [PRU Options|, page 476)

-mmcu=mcu -minrt -mno-relax -mloop
-mmul -mfillzero -mabi=variant

RISC-V Options (Section 3.21.40 [RISC-V Options|, page 478)

-mbranch-cost=N-instruction

-mabi=ABI-string

-mfdiv -mdiv

-mno-fence-tso

-misa-spec=ISA-spec-string
-march=[ISA|Profile|Profile_ISA|processor-string]
-mcpu=processor-string -mtune=processor-string
-mpreferred-stack-boundary=num

-msmall-data-limit=N-bytes

-msave-restore -mno-shorten-memrefs

-mstrict-align -mscalar-strict-align -mno-vector-strict-align
-mcmodel=medlow -mcmodel=medany -mcmodel=large
-mexplicit-relocs -mrelax -mriscv-attribute
-malign-data=type

-mbig-endian -mlittle-endian

-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset

-mcsr-check -momit-leaf-frame-pointer -mmovcc
-mno-inline-atomics -mno-inline-strlen

-mno-inline-strcmp -mno-inline-strncmp
-mstringop-strategy=strategy

-mtls-dialect=desc -mtls-dialect=trad
-mrvv-vector-bits=value -mrvv-max-lmul=value
-madjust-lmul-cost -mmax-vectorization -mno-autovec-segment

RL78 Options (Section 3.21.41 [RL78 Options|, page 495)

-msim -mallregs -mrelax -mesO

-mmul=none -mmul=gl3 -mmul=gl4 -mmul=rl78
-mcpu=gl0 -mcpu=gl3 -mcpu=gl4 -mcpu=rl78
-mgl0 -mgl3 -mgld -mrl78
-msave-mduc-in-interrupts

RS/6000 and PowerPC Options (Section 3.21.42 [RS/6000 and PowerPC Op-
tions], page 496)

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpowerpc64

-maltivec

-mpowerpc-gpopt -mpowerpc-gfxopt -mmfcrf -mpopcntb -mpopcntd

-mfprnd -mcmpb -mhard-dfp

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc

-maix64 -maix32 -m64 -m32 -mxl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mupdate

30

-mavoid-indexed-address
-mfused-madd -mbit-ali
-mstrict-align -mreloc
-mlittle -mlittle-endi
-mdynamic-no-pic -msin
-mprioritize-restricted
-msched-costly-dep=depe
-minsert-sched-nops=sch
-mcall-aixdesc -mcall-
-mcall-linux -mcall-ne
-mcall-sysv -mcall-sys
-mtraceback=traceback_t
-maix-struct-return -m
-mabi=abi-type -msecur
-msplit-patch-nops
-mregnames -mlongcall
-mblock-move-inline-lim
-mblock-compare-inline-
-mblock-compare-inline-
-mblock-ops-unaligned-v
-mstring-compare-inline
-misel -mvsx -mvrsave

Using the GNU Compiler Collection (GCC)

es
gn

atable -mrelocatable-lib
an -mbig -mbig-endian
gle-pic-base
-insns=priority
ndence_type

eme

eabi -mcall-freebsd

tbsd -mcall-openbsd
v-eabi -mcall-sysv-noeabi
ype

svr4-struct-return

e-plt -mbss-plt

-mpltseq -mtls-markers
it=num
limit=num
loop-limit=num
sX
-limit=num
-mmulhw -mdlmzb -mprototype

-msim -mmvme -mads -myellowknife -memb -meabi -msdata

-msdata=opt -mreadonly

—in-sdata -mvxworks -G num

-mrecip -mrecip=opt -mno-recip -mrecip-precision

-mveclibabi=type -mfri

z

-mpointers-to-nested-functions -msave-toc-indirect -mpower8-fusion

-mcrypto -mhtm -mquad
-mcompat-align-parm

-memory -mquad-memory-atomic

-mfloat128 -mfloatl28-hardware

-mgnu-attribute

-mstack-protector-guard
-mstack-protector-guard
-mpcrel -mmma -mrop-p

RX Options (Section 3.21.43

-m64bit-doubles -m32bi
-mcpu=name
-mbig-endian-data -mli
-msmall-data-limit=N
-msim -masl00-syntax
-mmax-constant-size=N
-mpid -mno-allow-strin
-mno-warn-multiple-fast
-mlra

S/390 and zSeries Options

page 515)
-mtune=cpu-type -march:
-mhard-float -msoft-f1l
-mlong-double-64 -mlon
-mbackchain -mpacked-s
-msmall-exec -mmvcle
-m64 -m31 -mdebug -m
-mhtm -mvx -mzvector
-mtpf-trace -mtpf-trac
-mfused-madd -mno-fuse
-mwarn-framesize=frames
-mstack-size=stack-size

=guard -mstack-protector-guard-reg=reg
-offset=offset -mprefixed
rotect -mprivileged

[RX Options|, page 512)
t-doubles -fpu -nofpu

ttle-endian-data

-mrelax

-mint-register=N

g-insns -mjsr

-interrupts -msave-acc-in-interrupts

(Section 3.21.44 [S/390 and zSeries Options],

=cpu-type

oat -mhard-dfp
g-double-128
tack

esa -mzarch

e-skip -mmain

d-madd

ize -mwarn-dynamicstack
-mno-stack-size

Chapter 3: GCC Command Options

-mstack-guard=stack-guard -mno-stack-guard
-mstack-protector-guard=guard
-mstack-protector-guard-record
-mhotpatch=pre-halfwords,post-halfwords
-mno-pic-data-is-text-relative

-mindirect-branch=choice

-mindirect-branch-jump=choice -mindirect-branch-call=choice
-mfunction-return=choice

-mfunction-return-mem=choice -mfunction-return-reg=choice
-mindirect-branch-table

-mfentry -mrecord-mcount -mnop-mcount

-mpreserve-args -munaliged-symbols

SH Options (Section 3.21.45 [SH Options|, page 521)
-ml -m2 -m2e
-m2a -m2a-nofpu -m2a-single -m2a-single-only
-m3 -m3e
-m4 -m4-nofpu -m4-single -mé-single-only
-m4-100 -m4-100-nofpu -m4-100-single -m4-100-single-only
-m4-200 -m4-200-nofpu -m4-200-single -m4-200-single-only
-m4-300 -m4-300-nofpu -m4-300-single -m4-300-single-only
-m4-340 -m4-400 -m4-500
-m4a -m4al -mé4a-nofpu -méa-single -méa-single-only
-mb -ml -mdalign -mrelax
-mbigtable -mbitops -mfmovd -mrenesas -mnomacsave
-mieee -misize -minline-ic_invalidate
-mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-maccumulate-outgoing-args
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch
-mcbranch-force-delay-slot
-mfsca -mfsrra
-mpretend-cmove -mfdpic -mtas -mlra

Solaris 2 Options (Section 3.21.46 [Solaris 2 Options], page 527)

-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-gsctf

SPARC Options (Section 3.21.47 [SPARC Options], page 528)
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mptr32 -mptr64 -mapp-regs
-mfaster-structs -mflat
-mfpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mstd-struct-return
-munaligned-doubles -muser-mode
-mv8plus -mvis
-mvis2 -mvis3 -mvis3b -mvis4 -mvis4db
-mcbcond -mfmaf -mfsmuld -mpopc -msubxc
-mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc

System V Options (Section 3.21.48 [System V Options]|, page 534)
-YP,paths -Ym,dir
V850 Options (Section 3.21.49 [V850 Options|, page 535)

-mlong-calls -mep

31

32

Using the GNU Compiler Collection (GCC)

-mprolog-function -mspace

-mtda=n -msda=n -mzda=n

-mv850 -mv850e3vb -m850e2v4 -mv850e2v3

-mv850e2 -mv850el -mv850es -mv850e
-mdisable-callt -mrelax -mlong-jumps

-msoft-float -mhard-float -mloop

-mrh850-abi -mghs -mgcc-abi

-m8byte-align -mbig-switch -mapp-regs -msmall-sld
-mno-strict-align -mjump-tables-in-data-section

VAX Options (Section 3.21.50 [VAX Options], page 537)

-munix -mgnu -md -md-float -mg -mg-float -mlra
-mvaxc-alignment -mgmath

Visium Options (Section 3.21.51 [Visium Options], page 538)

-mdebug -msim -mfpu -mhard-float -msoft-float
-mcpu=cpu-type -mtune=cpu-type -msv-mode -muser-mode

VMS Options (Section 3.21.52 [VMS Options], page 539)

-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size

VazWorks Options (Section 3.21.53 [VxWorks Options|, page 539)

-mrtp -msmp -mvthreads -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

86 Options (Section 3.21.54 [x86 Options|, page 540)
-mtune=cpu-type -march=cpu-type
-mtune-ctrl=feature-list -mdump-tune-features -mno-default
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float -mieee-fp
-mrtd -malign-double
-mpreferred-stack-boundary=num
-mincoming-stack-boundary=num
-mcld -mcx16 -msahf -mmovbe -mcrc32 -mmwait
-mrecip -mrecip=opt
-mvzeroupper -mstv -mprefer-avxl128 -mprefer-vector-width=opt
-mpartial-vector-fp-math
-mmove-max=bits -mstore-max=bits
-mnoreturn-no-callee-saved-registers
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx
-mavx2 -mavxb512f -mavx512cd -mavx512vl
-mavx512bw -mavx512dq -mavxb512ifma -mavx512vbmi -msha -maes
-mpclmul -mfsgsbase -mrdrnd -mfl6c -mfma -mpconfig -mwbnoinvd
-mptwrite -mclflushopt -mclwb -mxsavec -mxsaves
-msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
-madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp
-mmwaitx -mclzero -mpku -mgfni -mvaes -mwaitpkg
-mshstk -mmanual-endbr -mcet-switch -mforce-indirect-call
-mavx512vbmi2 -mavx512bf16 -menqcmd
-mvpclmulgdqg -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq
-mavx512vnni -mprfchw -mrdpid
-mrdseed -msgx -mavxbl2vp2intersect -mserialize -mtsxldtrk
-mamx-tile -mamx-int8 -mamx-bf16 -muintr -mhreset
-mavxvnni -mamx-fp8 -mavx512fpl6 -mavxifma -mavxvnniint8
-mavxneconvert -mcmpccxadd -mamx-fpl6 -mprefetchi -mraoint
-mamx-complex -mavxvnniintl6 -msm3 -mshab12 -msm4 -mapxf
-musermsr -mavxl0.1 -mavx10.2 -mamx-avx512 -mamx-tf32 -mmovrs
-mamx-movrs -mavx512bmm -mcldemote -mms-bitfields

Chapter 3: GCC Command Options 33

-mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg

-mkl -mwidekl

-mmemcpy-strategy=strategy -mmemset-strategy=strategy
-mpush-args -maccumulate-outgoing-args -ml28bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=num -msseregparm

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mdaz-ftz -mstackrealign -mstack-arg-probe
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -ml6 -miamcu -mlarge-data-threshold=num
-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
-minstrument-return=type -mrecord-return

-mfentry-name=name -mfentry-section=name

-mskip-rax-setup

-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-malign-data=type -mstack-protector-guard=guard
-mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset
-mstack-protector-guard-symbol=symbol

-mgeneral-regs-only -mcall-ms2sysv-xlogues -mtls-dialect=type
-mrelax-cmpxchg-loop

-mindirect-branch=choice -mfunction-return=choice
-mindirect-branch-register -mharden-sls=choice
-mindirect-branch-cs-prefix -mapx-inline-asm-use-gpr32

-mgather -mscatter

-mneeded -mno-direct-extern-access

-munroll-only-small-loops -mdispatch-scheduler -mlam=choice

286 Windows Options See Cygwin and MinGW Options.

Xstormy16 Options (Section 3.21.56 [Xstormy16 Options], page 576)
-msim

Xtensa Options (Section 3.21.57 [Xtensa Options], page 576)

-mconst1l6 -mforce-no-pic -mno-serialize-volatile
-mtext-section-literals -mauto-litpools -mno-target-align
-mlongcalls -mabi=abi-type

-mextra-132r-costs=cycles -mstrict-align

zSeries Options See S/390 and zSeries Options.

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code that must be preprocessed.
file.i C source code that should not be preprocessed.

file.ii C++ source code that should not be preprocessed.

34

file.

file.

file.
file.

file.

file.

file.
.cp
file.
file.
file.
file.
file.

file

file.
file.

file.

file.
file.
file.
file.
-hpp
file.
file.
file.

file

file.
file.
file.
file.

file.
file.
file.
file.
file.

mi

mii

CccC

CXX

Ccpp
CPP
c++

mii
hh

hp
hxx

HPP
h++
tcc

for
ftn
fi

FOR
frp
FPP
FTN

Using the GNU Compiler Collection (GCC)

Objective-C source code. Note that you must link with the 1ibobjc library to
make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the 1ibobjc library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the -~fdump-ada-spec switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Chapter 3:

file.
file.
file.
file.
file.

file.
file.
file.
file.

file.
file.
file.
file.
file.
file.
file.
file.
file.

file.

file.

file.
file.

£90
£95
03
£08
fii
F90
F95
FO3
FO8

cob
COB
cbl
CBL

go

di
dd

ads

adb

S

S
sX

other

GCC Command Options 35

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

COBOL source code.

Go source code.

D source code.

D interface file.

D documentation code (Ddoc).

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code that must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the -x option:

-x language
--language=language
--language language

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next -x option. Possible values for language
are:

¢ c-header cpp-output
c++ c++-header c++-system-header c++-user-header c++-cpp-output
c++-system-module

36

—X none

Using the GNU Compiler Collection (GCC)

objective-c objective-c-header objective-c-cpp-output objc-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
objc++-cpp-output

assembler assembler-with-cpp

ada adascil adawhy

cobol

d

£77 £77-cpp-input £95 f95-cpp-input

go

modula-2 modula-2-cpp-output

rust

algol68

1to

Note that -x does not imply a particular language standard. For example -x

£77 may also require -std=legacy for some older source codes.

Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as if -x has not been used at all).

If you only want some of the stages of compilation, you can use -x (or filename suffixes)
to tell gcc where to start, and one of the options -c, =S, or -E to say where gcc is to stop.
Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do nothing

at all.

-C
—--compile

-3

——assemble

-E

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

t.c’, ‘.17 fL8’, ete., with ‘.o’

Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the

suffix ‘.c’, ‘.i’, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

——preprocess

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Chapter 3: GCC Command Options 37

-o file

—--output=~file

--output file
Place the primary output in file file. This applies to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If -0 is not specified, the default is to put an executable file in a.out, the
object file for source.suffix in source.o, its assembler file in source.s, a
precompiled header file in source.suffix.gch, and all preprocessed C source
on standard output.

Though -o names only the primary output, it also affects the naming of aux-
iliary and dump outputs. See the examples below. Unless overridden, both
auxiliary outputs and dump outputs are placed in the same directory as the
primary output. In auxiliary outputs, the suffix of the input file is replaced
with that of the auxiliary output file type; in dump outputs, the suffix of the
dump file is appended to the input file suffix. In compilation commands, the
base name of both auxiliary and dump outputs is that of the primary output;
in compile and link commands, the primary output name, minus the executable
suffix, is combined with the input file name. If both share the same base name,
disregarding the suffix, the result of the combination is that base name, other-
wise, they are concatenated, separated by a dash.

gcc -c foo.c ...

will use foo.o0 as the primary output, and place aux outputs and dumps next to
it, e.g., aux file foo.dwo for ~gsplit-dwarf, and dump file foo.c.???r.final
for -fdump-rtl-final.

If a non-linker output file is explicitly specified, aux and dump files by default
take the same base name:

gcc -c foo.c -o dir/foobar.o ...
will name aux outputs dir/foobar.* and dump outputs dir/foobar.c. *.
A linker output will instead prefix aux and dump outputs:

gcc foo.c bar.c -o dir/foobar ...

will generally name aux outputs dir/foobar-foo.* and dir/foobar-bar.*,
and dump outputs dir/foobar-foo.c.* and dir/foobar-bar.c.*.

The one exception to the above is when the executable shares the base name
with the single input:

gcc foo.c -o dir/foo ...

in which case aux outputs are named dir/foo.* and dump outputs named
dir/foo.c.*.

The location and the names of auxiliary and dump outputs can be adjusted
by the options ~dumpbase, —~dumpbase-ext, —~dumpdir, -save-temps=cwd, and
-save-temps=obj.

38 Using the GNU Compiler Collection (GCC)

—dumpbase dumpbase

--dumpbase dumpbase
This option sets the base name for auxiliary and dump output files. It does
not affect the name of the primary output file. Intermediate outputs, when
preserved, are not regarded as primary outputs, but as auxiliary outputs:

gcc -save-temps -S foo.c

saves the (no longer) temporary preprocessed file in foo.1i, and then compiles
to the (implied) output file foo.s, whereas:

gcc —save-temps -dumpbase save-foo -c¢ foo.c

preprocesses to in save-foo.1i, compiles to save-foo.s (now an intermediate,
thus auxiliary output), and then assembles to the (implied) output file foo.o.

Absent this option, dump and aux files take their names from the input file,
or from the (non-linker) output file, if one is explicitly specified: dump output
files (e.g. those requested by -fdump-* options) with the input name suffix,
and aux output files (those requested by other non-dump options, e.g. -save-
temps, -gsplit-dwarf, -fcallgraph-info) without it.
Similar suffix differentiation of dump and aux outputs can be attained for
explicitly-given -dumpbase basename.suf by also specifying -dumpbase-ext
.suf.
If dumpbase is explicitly specified with any directory component, any dumppfx
specification (e.g. —dumpdir or -save-temps=+) is ignored, and instead of ap-
pending to it, dumpbase fully overrides it:

gcc foo.c -¢ -o dir/foo.o -dumpbase alt/foo \

-dumpdir pfx- -save-temps=cwd ...

creates auxiliary and dump outputs named alt/foo.*, disregarding dir/ in
-o, the ./ prefix implied by -save-temps=cwd, and pfx- in ~dumpdir.
When -dumpbase is specified in a command that compiles multiple inputs, or
that compiles and then links, it may be combined with dumppfx, as specified
under ~dumpdir. Then, each input file is compiled using the combined dumppfx,
and default values for dumpbase and auxdropsuf are computed for each input
file:

gcc foo.c bar.c -c -dumpbase main ...

creates foo.o and bar.o as primary outputs, and avoids overwriting the aux-
iliary and dump outputs by using the dumpbase as a prefix, creating auxiliary
and dump outputs named main-foo.* and main-bar. *.

An empty string specified as dumpbase avoids the influence of the output base-
name in the naming of auxiliary and dump outputs during compilation, com-
puting default values :
gcc —c foo.c -o dir/foobar.o -dumpbase '' ...

will name aux outputs dir/foo.* and dump outputs dir/foo.c.*. Note how
their basenames are taken from the input name, but the directory still defaults
to that of the output.

The empty-string dumpbase does not prevent the use of the output basename
for outputs during linking:

gcc foo.c bar.c -o dir/foobar -dumpbase '' -flto ...

Chapter 3: GCC Command Options 39

The compilation of the source files will name auxiliary outputs dir/foo.* and
dir/bar.*, and dump outputs dir/foo.c.* and dir/bar.c.*. LTO recompi-
lation during linking will use dir/foobar. as the prefix for dumps and auxiliary
files.

—dumpbase-ext auxdropsuf

--dumpbase-ext auxdropsuf
When forming the name of an auxiliary (but not a dump) output file, drop trail-
ing auxdropsuf from dumpbase before appending any suffixes. If not specified,
this option defaults to the suffix of a default dumpbase, i.e., the suffix of the
input file when -dumpbase is not present in the command line, or dumpbase is
combined with dumppfx.

gcc foo.c -c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...

creates dir/foo.o as the main output, and generates auxiliary outputs in
dir/x-foo.*, taking the location of the primary output, and dropping the
.c suffix from the dumpbase. Dump outputs retain the suffix: dir/x-foo.c.*.

This option is disregarded if it does not match the suffix of a specified dumpbase,
except as an alternative to the executable suffix when appending the linker
output base name to dumppfx, as specified below:

gcc foo.c bar.c -o main.out -dumpbase-ext .out ...

creates main.out as the primary output, and avoids overwriting the auxiliary
and dump outputs by using the executable name minus auxdropsuf as a pre-
fix, creating auxiliary outputs named main-foo.* and main-bar.* and dump
outputs named main-foo.c.* and main-bar.c.*.

—dumpdir dumppfx

—-—dumpdir dumppfx
When forming the name of an auxiliary or dump output file, use dumppfx as a
prefix:

gcc —dumpdir pfx- -c foo.c ...

creates foo.o as the primary output, and auxiliary outputs named pfx-foo.*,
combining the given dumppfx with the default dumpbase derived from the
default primary output, derived in turn from the input name. Dump outputs
also take the input name suffix: pfx-foo.c.x*.

If dumppfx is to be used as a directory name, it must end with a directory
separator:

gcc —dumpdir dir/ -c foo.c -o obj/bar.o ...

creates obj/bar.o as the primary output, and auxiliary outputs named
dir/bar.*, combining the given dumppfx with the default dumpbase derived
from the primary output name. Dump outputs also take the input name
suffix: dir/bar.c.x*.

It defaults to the location of the output file, unless the output file is a special
file like /dev/null. Options -save-temps=cwd and -save-temps=obj override
this default, just like an explicit ~dumpdir option. In case multiple such options
are given, the last one prevails:

gcc —dumpdir pfx- -c foo.c -save-temps=obj ...

40

Using the GNU Compiler Collection (GCC)

outputs foo.o, with auxiliary outputs named foo.* because -save-temps=*
overrides the dumppfx given by the earlier ~dumpdir option. It does not matter
that =obj is the default for -save-temps, nor that the output directory is
implicitly the current directory. Dump outputs are named foo.c.*.

When compiling from multiple input files, if ~dumpbase is specified, dumpbase,
minus a auxdropsuf suffix, and a dash are appended to (or override, if contain-
ing any directory components) an explicit or defaulted dumppfx, so that each
of the multiple compilations gets differently-named aux and dump outputs.

gcc foo.c bar.c -c -dumpdir dir/pfx- -dumpbase main ...

outputs auxiliary dumps to dir/pfx-main-foo.* and dir/pfx-main-bar.*,
appending dumpbase- to dumppfx. Dump outputs retain the input file suffix:
dir/pfx-main-foo.c.* and dir/pfx-main-bar.c.*, respectively. Contrast
with the single-input compilation:
gcc foo.c -¢ —dumpdir dir/pfx- -dumpbase main ...

that, applying -dumpbase to a single source, does not compute and append
a separate dumpbase per input file. Its auxiliary and dump outputs go in
dir/pfx-main. *.

When compiling and then linking from multiple input files, a defaulted or ex-
plicitly specified dumppfx also undergoes the dumpbase- transformation above
(e.g. the compilation of foo.c and bar.c above, but without -c). If nei-
ther ~dumpdir nor -dumpbase are given, the linker output base name, minus
auxdropsuf, if specified, or the executable suffix otherwise, plus a dash is ap-
pended to the default dumppfx instead. Note, however, that unlike earlier cases
of linking;:
gcc foo.c bar.c -dumpdir dir/pfx- -o main ...

does not append the output name main to dumppfx, because ~dumpdir is explic-
itly specified. The goal is that the explicitly-specified dumppfx may contain the
specified output name as part of the prefix, if desired; only an explicitly-specified
-dumpbase would be combined with it, in order to avoid simply discarding a
meaningful option.

When compiling and then linking from a single input file, the linker output
base name will only be appended to the default dumppfx as above if it does not
share the base name with the single input file name. This has been covered in
single-input linking cases above, but not with an explicit ~dumpdir that inhibits
the combination, even if overridden by -save-temps=x:

gcc foo.c —dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...

Auxiliary outputs are named foo.*, and dump outputs foo.c.*, in the current
working directory as ultimately requested by -save-temps=cwd.

Summing it all up for an intuitive though slightly imprecise data flow: the
primary output name is broken into a directory part and a basename part;
dumppfx is set to the former, unless overridden by -dumpdir or ~save-temps=*,
and dumpbase is set to the latter, unless overriden by —dumpbase. If there are
multiple inputs or linking, this dumpbase may be combined with dumppfx and
taken from each input file. Auxiliary output names for each input are formed by
combining dumppfx, dumpbase minus suffix, and the auxiliary output suffix;

Chapter 3: GCC Command Options 41

-v
—--verbose

—#i##

--help

dump output names are only different in that the suffix from dumpbase is
retained.

When it comes to auxiliary and dump outputs created during LTO recompila-
tion, a combination of dumppfx and dumpbase, as given or as derived from the
linker output name but not from inputs, even in cases in which this combination
would not otherwise be used as such, is passed down with a trailing period re-
placing the compiler-added dash, if any, as a ~dumpdir option to 1to-wrapper;
being involved in linking, this program does not normally get any -dumpbase
and -dumpbase-ext, and it ignores them.

When running sub-compilers, 1to-wrapper appends LTO stage names to the
received dumppfx, ensures it contains a directory component so that it overrides
any —dumpdir, and passes that as —~dumpbase to sub-compilers.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like -v except the commands are not executed and arguments are quoted unless
they contain only alphanumeric characters or ./-_. This is useful for shell
scripts to capture the driver-generated command lines.

Print (on the standard output) a description of the command-line options un-
derstood by gcc. If the -v option is also specified then --help is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the -Wextra option has also been specified (prior
to the —-help option), then command-line options that have no documentation
associated with them are also displayed.

--target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={classl|["|qualifier}[,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.

‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

‘target’ Display target-specific options. Unlike the --target-help option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended --help= syntax.

42

Using the GNU Compiler Collection (GCC)

‘params’ Display the values recognized by the --param option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC. If
an option is supported by all languages, one needs to select ‘common’
class.

‘common’ Display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:

--help=target,undocumented

9

The sense of a qualifier can be inverted by prefixing it with the ‘*’ character,
so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings, "~ joined, "undocumented
The argument to —-help= should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:

--help=target,optimizers

The --help= option can be repeated on the command line. Each successive use
displays its requested class of options, skipping those that have already been
displayed. If --help is also specified anywhere on the command line then this
takes precedence over any —-help= option.

If the -Q option appears on the command line before the --help= option, then
the descriptive text displayed by —-help= is changed. Instead of describing the
displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the —-help= option is used).

Here is a truncated example from the ARM port of gee:
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

Chapter 3: GCC Command Options 43

—--version

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at -02 by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by -03
by using:

gcc -c -Q -03 --help=optimizers > /tmp/03-opts

gcc -¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

Display the version number and copyrights of the invoked GCC.

-pass-exit-codes
--pass-exit-codes

~pipe
-—pipe

Normally the gcc program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify -pass-exit-codes, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

-specs=file
--specs=file
--specs file

-wrapper

Process file after the compiler reads in the standard specs file, in order to
override the defaults which the gcec driver program uses when determining what
switches to pass to ccl, cclplus, as, 1d, etc. More than one -specs=file can
be specified on the command line, and they are processed in order, from left to
right. See Section 3.22 [Spec Files|, page 578, for information about the format
of the file.

Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc -c t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb --args’, thus the invocation of
cclis ‘gdb —-args ccl ...".

-ffile-prefix-map=old=new

When compiling files residing in directory old, record any references to them in
the result of the compilation as if the files resided in directory new instead. Spec-
ifying this option is equivalent to specifying all the individual -f*-prefix-map
options. This can be used to make reproducible builds that are location inde-
pendent. Directories referenced by directives are not affected by these options.
See also ~fmacro-prefix-map, ~fdebug-prefix-map, ~-fprofile-prefix-map
and -fcanon-prefix-map.

44 Using the GNU Compiler Collection (GCC)

-fcanon-prefix-map
For the -f*-prefix-map options normally comparison of o1d prefix against the
filename that would be normally referenced in the result of the compilation is
done using textual comparison of the prefixes, or ignoring character case for
case insensitive filesystems and considering slashes and backslashes as equal on
DOS based filesystems. The -fcanon-prefix-map causes such comparisons to
be done on canonicalized paths of o1d and the referenced filename.

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to be
dlopen’d by the compiler. The base name of the shared object file is used
to identify the plugin for the purposes of argument parsing (See -fplugin-
arg-name-key=value below). Each plugin should define the callback functions
specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with -fdump-ada-spec[-slim| above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

)

C++ source files conventionally use one of the suffixes *.C’, ‘. cc’, ‘. cpp’, *.CPP’, ‘. c++’ ‘. cp’,
or ‘.cxx’; C++ header files often use ‘.hh’, ‘. hpp’, ‘.H’, or (for shared template code) ‘.tcc’;
preprocessed C++ files use the suffix ‘.ii’; and C++20 module interface units sometimes use

‘oixx’, ‘Lcppm’, ‘.cxxm’, ‘.c++m’, or ‘.ccm’.

GCC recognizes files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually with the name gcc).

Chapter 3: GCC Command Options 45

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless -x is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 45, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect|, page 52, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

—ansi

--ansi In C mode, this is equivalent to —std=c90. In C++ mode, it is equivalent to
-std=c++98.

-std= Determine the language standard. See Chapter 2 [Language Standards Sup-

ported by GCC], page 3, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
-std=c90 turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?:
expression. On the other hand, when a GNU dialect of a standard is specified,
all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by -Wpedantic to
identify which features are GNU extensions given that version of the standard.
For example -std=gnu90 -Wpedantic warns about C++ style ‘//’ comments,
while -std=gnu99 -Wpedantic does not.

A value for this option must be provided; possible values are

‘c90’

‘c89’

‘1509899:1990’
Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as -ansi for C code.

‘1809899:199409’
ISO C90 as modified in amendment 1.

46

‘c99’
‘c9x

9y

‘1509899:
‘1509899:

‘cl1t’
‘clx’

‘1809899:

‘cl17’
‘c18’

‘1509899:
‘1509899

‘c23’
‘c2x’

‘1509899:

)

‘c2y

‘gnu90’
‘gnu89’
‘gnu99’
‘gnu9x’
‘gnull’
‘gnulx’
‘gnul’?’
‘gnuls’
‘gnu23’
‘gnu2x’

Using the GNU Compiler Collection (GCC)

1999’

199x’
ISO C99. This standard is substantially completely supported,
modulo bugs and floating-point issues (mainly but not entirely
relating to optional C99 features from Annexes F and G). See
https://gcc.gnu.org/projects/c-status.html for more infor-
mation. The names ‘c9x’ and ‘is09899:199x’ are deprecated.

2011’
ISO C11, the 2011 revision of the ISO C standard. This standard is
substantially completely supported, modulo bugs, floating-point is-
sues (mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name ‘c1x’ is deprecated.

2017’

2018’
ISO C17, the 2017 revision of the ISO C standard (published in
2018). This standard is same as C11 except for corrections of de-
fects (all of which are also applied with -std=c11) and a new value
of __STDC_VERSION and so is supported to the same extent as
C11.

-

2024’
ISO C23, the 2023 revision of the ISO C standard (published in
2024). The name ‘c2x’ is deprecated.

The next version of the ISO C standard, still under development.
The support for this version is experimental and incomplete.
GNU dialect of ISO C90 (including some C99 features).

GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.

GNU dialect of ISO C11. The name ‘gnulx’ is deprecated.

GNU dialect of ISO C17.

GNU dialect of ISO C23. This is the default for C code. The name
‘gnu2x’ is deprecated.

https://gcc.gnu.org/projects/c-status.html

Chapter 3: GCC Command Options 47

‘gnu2y’

‘c++98’
‘c++03’

‘gnu++98’
‘gnu++03’
‘ct+11’
‘c++0x’

‘gnu++11’
‘gnu++0x’
‘c++14’
4C++1y7

‘gnu++14’
‘gnu++1y’
‘cH+1T’
‘cH+1z’

‘gnu++17’
‘gnu++1z’

‘c++20’
‘c++2a’

‘gnu++20’
‘gnut++2a’

‘c++23’
‘c++2b’

‘gnu++23’
‘gnu++2b’

‘c++2¢’
‘c++26’

The next version of the ISO C standard, still under development,
plus GNU extensions. The support for this version is experimental
and incomplete. The name ‘gnu2x’ is deprecated.

The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as —ansi for C++ code.

GNU dialect of -std=c++98.

The 2011 ISO C++ standard plus amendments. The name ‘c++0x’
is deprecated.

GNU dialect of -std=c++11. The name ‘gnu++0x’ is deprecated.

The 2014 ISO C++ standard plus amendments. The name ‘c++1y’
is deprecated.

GNU dialect of -std=c++14. The name ‘gnu++1y’ is deprecated.

The 2017 ISO C++ standard plus amendments. The name ‘c++12’
is deprecated.

GNU dialect of -~std=c++17. The name ‘gnu++1z’ is deprecated.

The 2020 ISO C++ standard plus amendments. C++20 modules sup-
port is still experimental and needs to be enabled with -fmodules
option. The name ‘c++2a’ is deprecated.

GNU dialect of -std=c++20. This is the default for C++ code.
C++20 modules support is still experimental and needs to be en-
abled with -fmodules option. The name ‘gnu++2a’ is deprecated.

The 2023 ISO C++ standard plus amendments (published in 2024).
Support is experimental, and could change in incompatible ways in
future releases. The name ‘c++2b’ is deprecated.

GNU dialect of -std=c++23. Support is experimental, and could
change in incompatible ways in future releases. The name ‘gnu++2b’
is deprecated.

The next revision of the ISO C++ standard, planned for 2026. Sup-
port is highly experimental, and will almost certainly change in
incompatible ways in future releases.

48

Using the GNU Compiler Collection (GCC)

‘gnu++2c’
‘gnu++26’ GNU dialect of -std=c++2c. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

—aux-info filename

-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm inline__ and
typeof__ instead. In C, —ansi implies -fno-asm.

_) ——

In C++, inline is a standard keyword and is not affected by this switch. You
may want to use the -fno-gnu-keywords flag instead, which disables typeof
but not asm and inline. In C99 mode (-std=c99 or -std=gnu99), this switch
only affects the asm and typeof keywords, since inline is a standard keyword
in ISO C99. In C23 mode (-std=c23 or -std=gnu23), this switch only affects
the asm keyword, since typeof is a standard keyword in ISO C23.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 7.1 [Library Builtins|, page 837, for details of the functions affected,
including those which are not built-in functions when -ansi or -std options for
strict ISO C conformance are used because they do not have an ISO standard
meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a different library.
In addition, when a function is recognized as a built-in function, GCC may
use information about that function to warn about problems with calls to that
function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with -Wformat
for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the -fno-builtin-function option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is

Chapter 3: GCC Command Options 49

no corresponding -fbuiltin-function option; if you wish to enable built-in
functions selectively when using -fno-builtin or -ffreestanding, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-ffreestanding

-fgimple

-fgnu-tm

Assert that compilation targets a freestanding environment. This implies ~fno-
builtin. A freestanding environment is one in which the standard library may
not exist, and program startup may not necessarily be at main. The most
obvious example is an OS kernel. This is equivalent to ~-fno-hosted.

See Chapter 2 [Language Standards Supported by GCC], page 3, for details of
freestanding and hosted environments.

Enable parsing of function definitions marked with __GIMPLE. This is an ex-
perimental feature that allows unit testing of GIMPLE passes.

When the option -fgnu-tm is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.
For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (-fnon-call-exceptions).

-fgnu89-inline

—-fhosted

The option -fgnu89-inline tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.9 [An Inline Function is
As Fast As a Macro|, page 758. Using this option is roughly equivalent to adding
the gnu_inline function attribute to all inline functions (see Section 6.4.1
[Function Attributes], page 629).

The option -fno-gnu89-inline explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option is not supported in -std=c90 or -std=gnu90 mode.

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

Assert that compilation targets a hosted environment. This implies ~fbuiltin.
A hosted environment is one in which the entire standard library is available,

50 Using the GNU Compiler Collection (GCC)

and in which main has a return type of int. Examples are nearly everything
except a kernel. This is equivalent to ~-fno-freestanding.

-flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;

struct ABC {

Uow UOW;

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.2.6 [Unnamed struct/union fields within

structs/unions|, page 620, for details.

Note that this option is off for all targets except for x86 targets using ms-abi.

-fpermitted-flt-eval-methods=style

ISO/IEC TS 18661-3 defines new permissible values for FLT_EVAL_METHOD that
indicate that operations and constants with a semantic type that is an inter-
change or extended format should be evaluated to the precision and range of
that type. These new values are a superset of those permitted under C99/C11,
which does not specify the meaning of other positive values of FLT_EVAL_
METHOD. As such, code conforming to C11 may not have been written expecting
the possibility of the new values.

-fpermitted-flt-eval-methods specifies whether the compiler should allow
only the values of FLT_EVAL_METHOD specified in C99/C11, or the extended set
of values specified in ISO/IEC TS 18661-3.

style is either c11 or ts-18661-3 as appropriate.

The default when in a standards compliant mode (-std=c11 or similar) is
-fpermitted-flt-eval-methods=c1l. The default when in a GNU dialect
(-std=gnull or similar) is ~-fpermitted-flt-eval-methods=ts-18661-3.

The ‘~fdeps-*’ options are used to extract structured dependency information
for a source. This involves determining what resources provided by other source
files will be required to compile the source as well as what resources are provided
by the source. This information can be used to add required dependencies
between compilation rules of dependent sources based on their contents rather
than requiring such information be reflected within the build tools as well.

—-fdeps-file=file
Where to write structured dependency information.
-fdeps-format=format

The format to use for structured dependency information. ‘p1689r5’ is the
only supported format right now. Note that when this argument is specified,

Chapter 3: GCC Command Options 51

the output of ‘-MF’ is stripped of some information (namely C++ modules) so
that it does not use extended makefile syntax not understood by most tools.

-fdeps-target=~file
Analogous to -MT but for structured dependency information. This indicates
the target which will ultimately need any required resources and provide any
resources extracted from the source that may be required by other sources.

-fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.

This enables -fms-extensions, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.2.6 [Unnamed struct/union fields within structs/unions], page 620,
for details. This is only supported for C, not C++.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ~-fno-unsigned-char, which is the negative form
of -funsigned-char. Likewise, the option -fno-signed-char is equivalent to
-funsigned-char.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fstrict-flex-arrays (C and C++ only)

-fstrict-flex-arrays=level (C and C++ only)
Control when to treat the trailing array of a structure as a flexible array member
for the purpose of accessing the elements of such an array. The value of level
controls the level of strictness.

52 Using the GNU Compiler Collection (GCC)

-fstrict-flex-arrays is equivalent to -fstrict-flex-arrays=3, which is
the strictest; a trailing array is treated as a flexible array member only when it
is declared as a flexible array member per C99 standard onwards.

The negative form -fno-strict-flex-arrays is equivalent to -fstrict-
flex-arrays=0, which is the least strict. In this case all trailing arrays of
structures are treated as flexible array members.

There are two more levels in between 0 and 3, which are provided to support
older code that uses the GCC zero-length array extension (‘[0]’) or one-element
array as flexible array members (‘[1]’). When level is 1, the trailing array is
treated as a flexible array member when it is declared as either ‘[]’, ‘[0]’, or
‘[1]’. When level is 2, the trailing array is treated as a flexible array member
when it is declared as either ‘[1’, or ‘[0]’.

You can control this behavior for a specific trailing array field of a structure
by using the variable attribute strict_flex_array attribute (see Section 6.4.2
[Variable Attributes], page 707).

The -fstrict_flex_arrays option interacts with the -Wstrict-flex-arrays
option. See Section 3.9 [Warning Options|, page 100, for more information.

-fsso-struct=endianness
Set the default scalar storage order of structures and unions to the specified en-
dianness. The accepted values are ‘big-endian’, ‘little-endian’ and ‘native’
for the native endianness of the target (the default). This option is not sup-
ported for C++.

Warning: the -fsso-struct switch causes GCC to generate code that is not
binary compatible with code generated without it if the specified endianness is
not the native endianness of the target.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ —-g —fstrict-enums -0 -c firstClass.C
In this example, only -fstrict-enums is an option meant only for C++ programs; you can
use the other options with any language supported by GCC.

Some options for compiling C programs, such as -std, are also relevant for C++ programs.
See Section 3.4 [Options Controlling C Dialect], page 45.

Here is a list of options that are only for compiling C++ programs:

—--compile-std-module
Build the compiled module interfaces (see Section 3.25 [C++ Modules|, page 593)
for the ‘<bits/stdc++.h>" header unit and the ‘std’ and ‘std.compat’ modules
before compiling any source files explicitly specified on the command line. This
is intended to be useful for building simple programs that use ‘import std;’
with a single command.

—-fabi-version=n
Use version n of the C++ ABI. The default is version O.

Chapter 3: GCC Command Options 53

Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was
the default through G++ 4.9.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const /static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin
type and corrects the mangling of lambdas in default argument scope.

Version 8, which first appeared in G++ 4.9, corrects the substitution behavior
of function types with function-cv-qualifiers.

Version 9, which first appeared in G++ 5.2, corrects the alignment of nullptr_t.

Version 10, which first appeared in G++ 6.1, adds mangling of attributes that
affect type identity, such as ia32 calling convention attributes (e.g. ‘stdcall’).

Version 11, which first appeared in G++ 7, corrects the mangling of sizeof... ex-
pressions and operator names. For multiple entities with the same name within
a function, that are declared in different scopes, the mangling now changes
starting with the twelfth occurrence. It also implies ~-fnew-inheriting-ctors.
Version 12, which first appeared in G++ 8, corrects the calling conventions for
empty classes on the x86_64 target and for classes with only deleted copy/move
constructors. It accidentally changes the calling convention for classes with a
deleted copy constructor and a trivial move constructor.

Version 13, which first appeared in G++ 8.2, fixes the accidental change in
version 12.

Version 14, which first appeared in G++ 10, corrects the mangling of the nullptr
expression.

Version 15, which first appeared in G++ 10.3, corrects G++ 10 ABI tag regres-
sion.

Version 16, which first appeared in G++ 11, changes the mangling of __alignof _
_ to be distinct from that of alignof, and dependent operator names.
Version 17, which first appeared in G++ 12, fixes layout of classes that inherit
from aggregate classes with default member initializers in C++14 and up.
Version 18, which first appeared in G++ 13, fixes manglings of lambdas that
have additional context.

54

Using the GNU Compiler Collection (GCC)

Version 19, which first appeared in G++ 14, fixes manglings of structured bind-
ings to include ABI tags, handling of cv-qualified [[no_unique_address]] mem-
bers, and adds mangling of C++20 constraints on function templates.

Version 20, which first appeared in G++ 15, fixes manglings of lambdas in static
data member initializers.

Version 21, which first appeared in G++ 16, fixes unnecessary captures in noex-
cept lambdas (c++/119764), layout of a base class with all explicitly defaulted
constructors (c++/120012), and mangling of class and array objects with im-
plicitly zero-initialized non-trailing subobjects (c++/121231).

See also -Wabi.

-fabi-compat-version=n

On targets that support strong aliases, G++ works around mangling changes by
creating an alias with the correct mangled name when defining a symbol with
an incorrect mangled name. This switch specifies which ABI version to use for
the alias.

With -fabi-version=0 (the default), this defaults to 13 (GCC 8.2 compatibil-
ity). If another ABI version is explicitly selected, this defaults to 0. For com-
patibility with GCC versions 3.2 through 4.9, use ~-fabi-compat-version=2.

If this option is not provided but -Wabi=n is, that version is used for compati-
bility aliases. If this option is provided along with -Wabi (without the version),
the version from this option is used for the warning.

—-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-faligned-new
-faligned-new=alignment

Enable support for C++17 new of types that require more alignment than
void* ::operator new(std::size_t) provides. A numeric argument such as
-faligned-new=32 can be used to specify how much alignment (in bytes) is
provided by that function, but few users will need to override the default of
alignof (std::max_align_t).

This flag is enabled by default for -std=c++17.

-fno-as sume-sane-operators—-new

The C++ standard allows replacing the global new, new[], delete and delete[]
operators, though a lot of C++ programs don’t replace them and just use the im-
plementation provided version. Furthermore, the C++ standard allows omitting
those calls if they are made from new or delete expressions (and by extension the
same is assumed if __builtin_operator_new or __builtin_operator_delete
functions are used). This option allows control over some optimizations around
calls to those operators. With ~-fassume-sane-operators-new-delete option
GCC may assume that calls to the replaceable global operators from new or
delete expressions or from __builtin_operator_new or __builtin_operator_
delete calls don’t read or modify any global variables or variables whose ad-
dress could escape to the operators (global state; except for errno for the new

Chapter 3: GCC Command Options 55

and new[] operators). This allows most optimizations across those calls and
is something that the implementation provided operators satisfy unless malloc
implementation details are observable in the code or unless malloc hooks are
used, but might not be satisfied if a program replaces those operators. This be-
havior is enabled by default. With -fno-assume-sane-operators-new-delete
option GCC must assume all these calls (whether from new or delete expressions
or called directly) may read and write global state unless proven otherwise (e.g.
when GCC compiles their implementation). Use this option if those operators
are or may be replaced and code needs to expect such behavior.

-fchar8_t

-fno-char8_t
Enable support for char8_t as adopted for C++20. This includes the addition
of a new char8_t fundamental type, changes to the types of UTF-8 string and
character literals, new signatures for user-defined literals, associated standard
library updates, and new __cpp_char8_t and __cpp_lib_char8_t feature test
macros.

This option enables functions to be overloaded for ordinary and UTF-8 strings:

int f(const char *); // #1
int f(const char8_t *); // #2
int vl = £("text"); // Calls #1
int v2 = f(u8"text"); // Calls #2

and introduces new signatures for user-defined literals:
int operator""_udlil(char8_t);
int v3 = u8'x'_udlil;
int operator""_udl2(const char8_t*, std::size_t);
int v4 = u8"text"_udl2;
template<typename T, T...> int operator""_udl3();
int vb = u8"text"_udl3;

The change to the types of UTF-8 string and character literals introduces in-
compatibilities with ISO C++11 and later standards. For example, the following
code is well-formed under ISO C++11, but is ill-formed when -fchar8_t is spec-

ified.
const char *cp = u8"xx";// error: invalid conversion from
// “const char8_t*' to “const charx'
int f(const charx);
auto v = f(u8"xx"); // error: invalid conversion from
// “const char8_t*' to ~const charx'
std::string s{u8"xx"}; // error: no matching function for call to
// “std::basic_string<char>::basic_string()'
using namespace std::literals;
s = u8"xx"s; // error: conversion from
// “basic_string<char8_t>' to non-scalar
// type “basic_string<char>' requested

—-fcheck-new
Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
throw (), in which case the compiler always checks the return value even without
this option. In all other cases, when operator new has a non-empty exception

56 Using the GNU Compiler Collection (GCC)

specification, memory exhaustion is signalled by throwing std::bad_alloc.
See also ‘new (nothrow)’.

-fconcepts
Enable support for the C++ Concepts feature for constraining template ar-
guments. With -std=c++20 and above, Concepts are part of the language
standard, so -fconcepts defaults to on.

Some constructs that were allowed by the earlier C++ Extensions for Concepts
Technical Specification, ISO 19217 (2015), but didn’t make it into the standard,
could additionally be enabled by -fconcepts-ts. The option -fconcepts-ts
was deprecated in GCC 14 and removed in GCC 15; users are expected to
convert their code to C++20 concepts.

-fconcepts-diagnostics-depth=n
Specify maximum error replay depth during recursive diagnosis of a constraint
satisfaction failure. The default is 1.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fconstexpr-cache-depth=n

Set the maximum level of nested evaluation depth for C++11 constexpr func-
tions that will be cached to n. This is a heuristic that trades off compilation
speed (when the cache avoids repeated calculations) against memory consump-
tion (when the cache grows very large from highly recursive evaluations). The
default is 8. Very few users are likely to want to adjust it, but if your code does
heavy constexpr calculations you might want to experiment to find which value
works best for you.

-fconstexpr-fp-except
Annex F of the C standard specifies that IEC559 floating point exceptions
encountered at compile time should not stop compilation. C++ compilers have
historically not followed this guidance, instead treating floating point division
by zero as non-constant even though it has a well defined value. This flag tells
the compiler to give Annex F priority over other rules saying that a particular
operation is undefined.
constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except

-fconstexpr-loop-limit=n
Set the maximum number of iterations for a loop in C++14 constexpr functions
to n. A limit is needed to detect infinite loops during constant expression
evaluation. The default is 262144 (1<<18).

-fconstexpr-ops-limit=n
Set the maximum number of operations during a single constexpr evaluation.
Even when number of iterations of a single loop is limited with the above limit,
if there are several nested loops and each of them has many iterations but
still smaller than the above limit, or if in a body of some loop or even outside

Chapter 3: GCC Command Options 57

of a loop too many expressions need to be evaluated, the resulting constexpr
evaluation might take too long. The default is 33554432 (1<<25).

-fcontracts
Enable experimental support for the C++ Contracts feature, as briefly added to
and then removed from the C++20 working paper (N4820). The implementation
also includes proposed enhancements from papers P1290, P1332, and P1429.
This functionality is intended mostly for those interested in experimentation
towards refining the feature to get it into shape for a future C++ standard.

On violation of a checked contract, the violation handler is called. Users can
replace the violation handler by defining

void

handle_contract_violation (const std::experimental::contract_violation&);
There are different sets of additional flags that can be used together to specify
which contracts will be checked and how, for N4820 contracts, P1332 contracts,
or P1429 contracts; these sets cannot be used together.

-fcontract-mode=[on|off]
Control whether any contracts have any semantics at all. Defaults
to on.

-fcontract-assumption-mode=[on|off]
[N4820] Control whether contracts with level ‘axiom’ should have
the assume semantic. Defaults to on.

-fcontract-build-level=[off|default|audit]
[N4820] Specify which level of contracts to generate checks for. De-
faults to ‘default’.

-fcontract-continuation-mode=[on|off]
[N4820] Control whether to allow the program to continue executing
after a contract violation. That is, do checked contracts have the
‘maybe’ semantic described below rather than the ‘never’ semantic.
Defaults to off.

—-fcontract-role=name:default,audit,axiom
[P1332] Specify the concrete semantics for each contract level of a
particular contract role.

-fcontract-semantic=[default|audit|axiom|: semantic
[P1429] Specify the concrete semantic for a particular contract level.

-fcontract-strict-declarations=[on|off]
Control whether to reject adding contracts to a function after its
first declaration. Defaults to off.

The possible concrete semantics for that can be specified with
‘~fcontract-role’ or ‘~fcontract-semantic’ are:

ignore This contract has no effect.

assume This contract is treated like C++23 [[assume]].

Using the GNU Compiler Collection (GCC)

check_never_continue

This contract is checked. If it fails, the violation handler is called.
If the handler returns, std: :terminate is called.

check_maybe_continue

58
never
abort
maybe
—-fcoroutines

This contract is checked. If it fails, the violation handler is called.
If the handler returns, execution continues normally.

Enable support for the C++ coroutines extension. With -std=c++20 and above,
coroutines are part of the language standard, so —~fcoroutines defaults to on.

-fdiagnostics-all-candidates
Permit the C++ front end to note all candidates during overload resolution
failure, including when a deleted function is selected.

-fdump-lang-

-fdump-lang-switch

-fdump-lang-switch-options

-fdump-lang-switch-options=filename
Control the dumping of C++-specific information. The options and filename
portions behave as described in the —fdump-tree option. The following switch
values are accepted:

‘all’

‘class’

‘module’

raw

‘tinst’

Enable all of the below.

Dump class hierarchy information. Virtual table information is
emitted unless ’slim’ is specified.

Dump module information. Options lineno (locations), graph
(reachability), blocks (clusters), uid (serialization), alias (merge-
able), asmname (Elrond), eh (mapper) & vops (macros) may pro-
vide additional information.

Dump the raw internal tree data.

Dump the sequence of template instantiations, indented to show
the depth of recursion. The lineno option adds the source loca-
tion where the instantiation was triggered, and the details option
also dumps pre-instantiation substitutions such as those performed
during template argument deduction.

Lines in the .tinst dump start with ‘I’ for an instantiation, ‘S’ for
another substitution, and ‘R[IS]’ for the reopened context of a
deferred instantiation.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases. This option also causes G++ to call trivial member functions which
otherwise would be expanded inline.

Chapter 3: GCC Command Options 59

In C++17, the compiler is required to omit these temporaries, but this option
still affects trivial member functions.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining NDEBUG. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

—-fextern-tls-init

-fno-extern-tls-init

The C++11 and OpenMP standards allow thread_local and threadprivate
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the -fno-extern-tls-init option.

On targets that support symbol aliases, the default is ~-fextern-tls-init. On
targets that do not support symbol aliases, the default is ~-fno-extern-tls-

init.

-ffold-simple-inlines

-fno-fold-simple-

Permit

inlines
the C++ frontend to fold calls to std::move, std::forward,

std::addressof, std::to_underlying and std::as_const. In contrast to
inlining, this means no debug information will be generated for such calls.
Since these functions are rarely interesting to debug, this flag is enabled by
default unless -fno-inline is active.

-fno-gnu-keywords

Do not recognize typeof as a keyword, so that code can use this word as an
identifier. You can use the keyword __typeof__ instead. This option is implied
by the strict ISO C++ dialects: —ansi, —std=c++98, -std=c++11, etc.

-fno-immediate-escalation
Do not enable immediate function escalation whereby certain functions can be
promoted to consteval, as specified in P2564R3. For example:

consteval int id(int i) { returm i; }

constexpr int f(auto t)

{

return t + id(t); // id causes f<int> to be promoted to constevall]

60 Using the GNU Compiler Collection (GCC)

}
void g(int i)
{
f (3);
}

compiles in C++20: f is an immediate-escalating function (due to the auto it
is a function template and is declared constexpr) and id(t) is an immediate-
escalating expression, so f is promoted to consteval. Consequently, the call to
id(t) is in an immediate context, so doesn’t have to produce a constant (that is
the mechanism allowing consteval function composition). However, with ~fno-
immediate-escalation, f is not promoted to consteval, and since the call to
consteval function id(t) is not a constant expression, the compiler rejects the
code.

This option is turned on by default; it is only effective in C++20 mode or later.

-fimplicit-constexpr
Make inline functions implicitly constexpr, if they satisfy the requirements for a
constexpr function. This option can be used in C++14 mode or later. This can
result in initialization changing from dynamic to static and other optimizations.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. If you use this option, you
must take care to structure your code to include all the necessary explicit in-
stantiations to avoid getting undefined symbols at link time. See Section 8.5
[Template Instantiation], page 1072, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
#pragma implementation. This causes linker errors if these functions are not
inlined everywhere they are called.

-fmodules

-fno-modules
Enable support for C++20 modules (see Section 3.25 [C++ Modules], page 593).
The -fno-modules is usually not needed, as that is the default. Even though
this is a C++20 feature, it is not currently implicitly enabled by selecting that
standard version.

-fmodule-header
-fmodule-header=user
-fmodule-header=system
Compile a header file to create an importable header unit.

Chapter 3: GCC Command Options 61

-fmodule-implicit-inline
Member functions defined in their class definitions are not implicitly inline for
modular code. This is different to traditional C++ behavior, for good reasons.
However, it may result in a difficulty during code porting. This option makes
such function definitions implicitly inline. It does however generate an ABI
incompatibility, so you must use it everywhere or nowhere. (Such definitions
outside of a named module remain implicitly inline, regardless.)

—fno-module-lazy
Disable lazy module importing and module mapper creation.

-fmodule-mapper=|hostname|: port[?ident]

-fmodule-mapper=| program[?ident| args. . .

-fmodule-mapper==socket|[?ident|

-fmodule-mapper=<>[inout|[?ident]

-fmodule-mapper=<in>out|?ident|

-fmodule-mapper=file[?ident]
An oracle to query for module name to filename mappings. If unspecified the
CXX_MODULE_MAPPER environment variable is used, and if that is unset, an in-
process default is provided.

-fmodule-only
Only emit the Compiled Module Interface, inhibiting any object file.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fnew-inheriting-ctors
Enable the P0136 adjustment to the semantics of C++11 constructor inheri-
tance. This is part of C++17 but also considered to be a Defect Report against
C++11 and C++14. This flag is enabled by default unless -fabi-version=10 or
lower is specified.

-fnew-ttp-matching
Enable the P0522 resolution to Core issue 150, template template parameters
and default arguments: this allows a template with default template arguments
as an argument for a template template parameter with fewer template param-
eters. This flag is enabled by default for —std=c++17.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt
Treat a throw() exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic

62 Using the GNU Compiler Collection (GCC)

effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fno-pretty-templates

When an error message refers to a specialization of a function template, the
compiler normally prints the signature of the template followed by the template
arguments and any typedefs or typenames in the signature (e.g. void £ (T)
[with T = int] rather than void f(int)) so that it’s clear which template is
involved. When an error message refers to a specialization of a class template,
the compiler omits any template arguments that match the default template
arguments for that template. If either of these behaviors make it harder to
understand the error message rather than easier, you can use -fno-pretty-
templates to disable them.

-frange-for-ext-temps
Enable lifetime extension of C++ range based for temporaries. With -std=c++23
and above this is part of the language standard, so lifetime of the temporaries
is extended until the end of the loop by default. This option allows enabling
that behavior also in earlier versions of the standard.

-freflection
Enable experimental C++26 Reflection.

-fno-rtti

Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (dynamic_cast and
typeid). If you don’t use those parts of the language, you can save some space
by using this flag. Note that exception handling uses the same information,
but G++ generates it as needed. The dynamic_cast operator can still be used
for casts that do not require run-time type information, i.e. casts to void * or
to unambiguous base classes.

Mixing code compiled with -frtti with that compiled with -fno-rtti may
not work. For example, programs may fail to link if a class compiled with
-fno-rtti is used as a base for a class compiled with -frtti.

-fsized-deallocation
Enable the built-in global declarations
void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;
as introduced in C++14. This is useful for user-defined replacement deallocation
functions that, for example, use the size of the object to make deallocation

Chapter 3: GCC Command Options 63

faster. Enabled by default under -std=c++14 and above. The flag -Wsized-
deallocation warns about places that might want to add a definition.

-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type. This option has no effect for an enumeration type with a
fixed underlying type.

-fstrong-eval-order

-fstrong-eval-order=kind
Evaluate member access, array subscripting, and shift expressions in left-to-
right order, and evaluate assignment in right-to-left order, as adopted for C++17.
-fstrong-eval-order is equivalent to -fstrong-eval-order=all, and is en-
abled by default with —std=c++17 or later.

-fstrong-eval-order=some enables just the ordering of member access and
shift expressions, and is the default for C++ dialects prior to C++17.

-fstrong-eval-order=none is equivalent to ~-fno-strong-eval-order.

-ftemplate-backtrace-limit=n
Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes
std: :uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

64

Using the GNU Compiler Collection (GCC)

-fvisibility-inlines-hidden

This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken
in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-

age might otherwise cross a shared library boundary. See Section 8.5 [Template
Instantiation], page 1072.

-fvisibility-ms-compat

-fno-weak

This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like ~-fvisibility=hidden.
2. Types, but not their members, are not hidden by default.

3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use -fvisibility=hidden and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are
different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only
for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

Chapter 3: GCC Command Options 65

-fext-numeric-literals (C++ and Objective-C++ only)
Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes. This is on by default for
all pre-C++11 dialects and all GNU dialects: -std=c++98, -std=gnu++98,
-std=gnu++11, -std=gnu++14. This option is off by default for ISO C++11
onwards (-std=c++11, ...).

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

-flang-info-include-translate

-flang-info-include-translate-not

-flang-info-include-translate=header
Inform of include translation events. The first will note accepted include trans-
lations, the second will note declined include translations. The header form
will inform of include translations relating to that specific header. If header is
of the form "user" or <system> it will be resolved to a specific user or system
header using the include path.

-flang-info-module-cmi

-flang-info-module-cmi=module
Inform of Compiled Module Interface pathnames. The first will note all read
CMI pathnames. The module form will note reading a specific module’s CMI.
module may be a named module or a header-unit (the latter indicated by either
being a pathname containing directory separators or enclosed in <> or "").

-stdlib=1ibstdc++,1libc++
When G++ is configured to support this option, it allows specification of alter-
nate C++ runtime libraries. Two options are available: libstdc++ (the default,
native C++ runtime for G++) and libc++ which is the C++ runtime installed on
some operating systems (e.g. Darwin versions from Darwinll onwards). The
option switches G++ to use the headers from the specified library and to emit
-1stdc++ or —1lc++ respectively, when a C++ runtime is required for linking.

In addition, these warning options have meanings only for C++ programs:

-Wabi-tag (C++ and Objective-C++ only)
Warn when a type with an ABI tag is used in a context that does not have that
ABI tag. See Section 8.7 [C++ Attributes], page 1075, for more information
about ABI tags.

-Wno-abbreviated-auto-in-template-arg
Disable the error for an auto placeholder type used within a template argument
list to declare a C++20 abbreviated function template, e.g.
void f(S<auto>);

This feature was proposed in the Concepts TS, but was not adopted into C++20;
in the standard, a placeholder in a parameter declaration must appear as a

66 Using the GNU Compiler Collection (GCC)

decl-specifier. The error can also be reduced to a warning by -fpermissive or
-Wno-error=abbreviated-auto-in-template-arg.

-Wcomma-subscript (C++ and Objective-C++ only)
Warn about uses of a comma expression within a subscripting expression. This
usage was deprecated in C++20 and is going to be removed in C++23. However,
a comma expression wrapped in () is not deprecated. Example:
void f(int *a, int b, int c) {
alb,cl; // deprecated in C++20, invalid in C++23
al(b,c)]; // OK
}
In C++23 it is valid to have comma separated expressions in a subscript when
an overloaded subscript operator is found and supports the right number and
types of arguments. G++ will accept the formerly valid syntax for code that
is not valid in C++23 but used to be valid but deprecated in C++20 with a
pedantic warning that can be disabled with -Wno-comma-subscript.

Enabled by default with -std=c++20 unless -Wno-deprecated, and after
-std=c++23 regardless of -Wno-deprecated. Before -std=c++20, enabled
with explicit -Wdeprecated.

This warning is upgraded to an error by -pedantic-errors in C++23 mode or
later.

-Wctad-maybe-unsupported (C++ and Objective-C++ only)

Warn when performing class template argument deduction (CTAD) on a type
with no explicitly written deduction guides. This warning will point out cases
where CTAD succeeded only because the compiler synthesized the implicit de-
duction guides, which might not be what the programmer intended. Certain
style guides allow CTAD only on types that specifically "opt-in"; i.e., on types
that are designed to support CTAD. This warning can be suppressed with the
following pattern:

struct allow_ctad_t; // any name works
template <typename T> struct S {

s(m {1}

};
// Guide with incomplete parameter type will never be considered.
S(allow_ctad_t) -> S<void>;

-Wector-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

-Wdangling-reference (C++ and Objective-C++ only)
Warn when a reference is bound to a temporary whose lifetime has ended. For
example:
int n = 1;
const int& r = std::max(n - 1, n + 1); // r is dangling
In the example above, two temporaries are created, one for each argument, and
a reference to one of the temporaries is returned. However, both temporaries

Chapter 3: GCC Command Options 67

are destroyed at the end of the full expression, so the reference r is dangling.
This warning also detects dangling references in member initializer lists:
const int& f(const int& i) { return i; }
struct S {
const int &r; // r is dangling

SO : r(f(10)) { }

};
Member functions are checked as well, but only their object argument:
struct S {
const S& self () { return *this; }
};

const S& s = S().self(); // s is dangling
Certain functions are safe in this respect, for example std: :use_facet: they
take and return a reference, but they don’t return one of its arguments, which
can fool the warning. Such functions can be excluded from the warning by
wrapping them in a #pragma:

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "-Wdangling-reference"

const T& foo (const T&) { ... }

#pragma GCC diagnostic pop
The #pragma can also surround the class; in that case, the warning will be
disabled for all the member functions.
-Wdangling-reference also warns about code like

auto p = std::minmax(1, 2);
where std::minmax returns std::pair<const int&, const int&>, and both
references dangle after the end of the full expression that contains the call to
std: :minmax.
The warning does not warn for std: :span-like classes. We consider classes of
the form:

template<typename T>

struct Span {

T*x data_;
std::size len_;

}
as std: :span-like; that is, the class is a non-union class that has a pointer data
member and a trivial destructor.

The warning can be disabled by using the gnu::no_dangling attribute (see
Section 8.7 [C++ Attributes|, page 1075).

This warning is enabled by -Wextra.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when delete is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by -Wall.

-Wdeprecated-copy (C++ and Objective-C++ only)
Warn that the implicit declaration of a copy constructor or copy assignment
operator is deprecated if the class has a user-provided copy constructor or copy
assignment operator, in C++11 and up. This warning is enabled by -Wextra.

68 Using the GNU Compiler Collection (GCC)

-Wdeprecated-copy-dtor (C++ and Objective-C++ only)
Similar to -Wdeprecated-copy, but also deprecate if the class has a user-
provided destructor.

-Wno-deprecated-enum-enum-conversion (C++ and Objective-C++ only)

Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
different enumeration type. This conversion was deprecated in C++20. For
example:

enum E1 { e };

enum E2 { f };

int k = £ - e;
-Wdeprecated-enum-enum-conversion is enabled by default with —~std=c++20.
In pre-C++20 dialects, this warning can be enabled by -Wenum-conversion or
-Wdeprecated.

-Wno-deprecated-enum-float-conversion (C++ and Objective-C++ only)
Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
floating-point type. This conversion was deprecated in C++20. For example:
enum E1 { e };
enum E2 { f };
bool b = e <= 3.7;
-Wdeprecated-enum-float-conversion is enabled by default with
-std=c++20. In pre-C++20 dialects, this warning can be enabled by
-Wenum-conversion or -Wdeprecated.

-Wdeprecated-literal-operator (C++ and Objective-C++ only)
Warn that the declaration of a user-defined literal operator with a space before
the suffix is deprecated. This warning is enabled by default in C++23, or with
explicit ~-Wdeprecated.

string operator "" _il8n(const char*, std::size_t); // deprecated
string operator ""_il8n(const charx, std::size_t); // preferred

-Wdeprecated-variadic-comma-omission (C++ and Objective-C++ only)
Warn that omitting a comma before the varargs ... at the end of a function
parameter list is deprecated. This warning is enabled by default in C++26, or
with explicit -Wdeprecated.

void f1(int...); // deprecated
void fi1(int, ...); // preferred
template <typename ...T>

void £2(T...); // ok

template <typename ...T>

void £3(T......); // deprecated

-Wno-elaborated-enum-base
For C++11 and above, warn if an (invalid) additional enum-base is used in
an elaborated-type-specifier. That is, if an enum with given underlying type
and no enumerator list is used in a declaration other than just a standalone
declaration of the enum. Enabled by default. This warning is upgraded to an
error with -pedantic-errors.

Chapter 3: GCC Command Options 69

-Wno-init-list-lifetime (C++ and Objective-C++ only)
Do not warn about uses of std::initializer_list that are likely to result
in dangling pointers. Since the underlying array for an initializer_list is
handled like a normal C++ temporary object, it is easy to inadvertently keep a
pointer to the array past the end of the array’s lifetime. For example:

e If a function returns a temporary initializer_list, or a local
initializer_list variable, the array’s lifetime ends at the end of the
return statement, so the value returned has a dangling pointer.

e If a new-expression creates an initializer_list, the array only lives until
the end of the enclosing full-expression, so the initializer_list in the
heap has a dangling pointer.

e When an initializer_list variable is assigned from a brace-enclosed ini-
tializer list, the temporary array created for the right side of the assignment
only lives until the end of the full-expression, so at the next statement the
initializer_list variable has a dangling pointer.

// 1li's initial underlying array lives as long as 1li

std::initializer_list<int> 1i = { 1,2,3 };

// assignment changes 1li to point to a temporary array

1i ={4, 513

// now the temporary is gone and 1li has a dangling pointer

int i = 1i.begin() [0] // undefined behavior

e When a list constructor stores the begin pointer from the initializer_

list argument, this doesn’t extend the lifetime of the array, so if a class
variable is constructed from a temporary initializer_list, the pointer
is left dangling by the end of the variable declaration statement.

-Winvalid-constexpr

Warn when a function never produces a constant expression. In C++20 and
earlier, for every constexpr function and function template, there must be at
least one set of function arguments in at least one instantiation such that an
invocation of the function or constructor could be an evaluated subexpression
of a core constant expression. C++23 removed this restriction, so it’s possible
to have a function or a function template marked constexpr for which no
invocation satisfies the requirements of a core constant expression.

This warning is enabled as a pedantic warning by default in C++20 and earlier.
In C++23, -Winvalid-constexpr can be turned on, in which case it will be an
ordinary warning. For example:

void f (int& i);

constexpr void

g (int& i)

{
// Warns by default in C++20, in C++23 only with -Winvalid-constexpr.
£(1);

}

-Winvalid-imported-macros
Verify all imported macro definitions are valid at the end of compilation. This

is not enabled by default, as it requires additional processing to determine. It
may be useful when preparing sets of header-units to ensure consistent macros.

70 Using the GNU Compiler Collection (GCC)

-Wno-literal-suffix (C++ and Objective-C++ only)
Do not warn when a string or character literal is followed by a ud-suffix which
does not begin with an underscore. As a conforming extension, GCC treats
such suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from <inttypes.h>. For
example:

#define __STDC_FORMAT_MACROS

#include <inttypes.h>
#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %" PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

This option also controls warnings when a user-defined literal operator is de-
clared with a literal suffix identifier that doesn’t begin with an underscore.
Literal suffix identifiers that don’t begin with an underscore are reserved for
future standardization.

These warnings are enabled by default.

-Wno-narrowing (C++ and Objective-C++ only)
For C++11 and later standards, narrowing conversions are diagnosed by default,
as required by the standard. A narrowing conversion from a constant produces
an error, and a narrowing conversion from a non-constant produces a warning,
but -Wno-narrowing suppresses the diagnostic. Note that this does not affect
the meaning of well-formed code; narrowing conversions are still considered
ill-formed in SFINAE contexts.

With -Wnarrowing in C++98, warn when a narrowing conversion prohibited by
C++11 occurs within ‘{ }’, e.g.

int i = { 2.2 }; // error: narrowing from double to int

This flag is included in -Wall and -Wc++11-compat.

-Wnoexcept (C++ and Objective-C++ only)
Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. throw() or
noexcept) but is known by the compiler to never throw an exception.

-Wnoexcept-type (C++ and Objective-C++ only)
Warn if the C++17 feature making noexcept part of a function type changes the
mangled name of a symbol relative to C++14. Enabled by -Wabi and -Wc++17-
compat.

As an example:

template <class T> void £(T t) { t(); };
void g() noexcept;
void h() { £(g); }

In C++14, £ calls £<void (*) (0>, but in C++17 it calls £<void (*) (D)noexcept>.

Chapter 3: GCC Command Options 71

-Wclass-memaccess (C++ and Objective-C++ only)
Warn when the destination of a call to a raw memory function such as memset
or memcpy is an object of class type, and when writing into such an object might
bypass the class non-trivial or deleted constructor or copy assignment, violate
const-correctness or encapsulation, or corrupt virtual table pointers. Modifying
the representation of such objects may violate invariants maintained by member
functions of the class. For example, the call to memset below is undefined
because it modifies a non-trivial class object and is, therefore, diagnosed. The
safe way to either initialize or clear the storage of objects of such types is by
using the appropriate constructor or assignment operator, if one is available.
std::string str = "abc";
memset (&str, 0, sizeof str);
The -Wclass-memaccess option is enabled by -Wall. Explicitly casting the
pointer to the class object to void * or to a type that can be safely accessed
by the raw memory function suppresses the warning.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible
but unsafe to delete an instance of a derived class through a pointer to the
class itself or base class. This warning is automatically enabled if -Weffc++ is
specified. The -Wdelete-non-virtual-dtor option (enabled by -Wall) should
be preferred because it warns about the unsafe cases without false positives.

-Wregister (C++ and Objective-C++ only)
Warn on uses of the register storage class specifier, except when it is part of
the GNU Section 6.11.6 [Explicit Register Variables|, page 816, extension. The
use of the register keyword as storage class specifier has been deprecated in
C++11 and removed in C++17. Enabled by default with -std=c++17.

-Wreorder (C++ and Objective-C++ only)

Warn when the order of member initializers given in the code does not match

the order in which they must be executed. For instance:

struct A {

int i;
int j;
AO: § (@, i (1) {3}
};
The compiler rearranges the member initializers for i and j to match the dec-
laration order of the members, emitting a warning to that effect. This warning
is enabled by -Wall.

-Wno-pessimizing-move (C++ and Objective-C++ only)
This warning warns when a call to std: :move prevents copy elision. A typical
scenario when copy elision can occur is when returning in a function with a class
return type, when the expression being returned is the name of a non-volatile
automatic object, and is not a function parameter, and has the same type as
the function return type.
struct T {

72 Using the GNU Compiler Collection (GCC)

return std::move (t);

}
But in this example, the std: :move call prevents copy elision.

This warning is enabled by -Wall.

-Wno-redundant-move (C++ and Objective-C++ only)

This warning warns about redundant calls to std: :move; that is, when a move
operation would have been performed even without the std: :move call. This
happens because the compiler is forced to treat the object as if it were an rvalue
in certain situations such as returning a local variable, where copy elision isn’t
applicable. Consider:

struct T {

}

T fo(T t)

{

return std::move (t);

}
Here, the std: :move call is redundant. Because G++ implements Core Issue
1579, another example is:

struct T { // convertible to U

};

struct U {

};

U fn()

{
T t;

;ééurn std::move (t);
}
In this example, copy elision isn’t applicable because the type of the expression
being returned and the function return type differ, yet G++ treats the return
value as if it were designated by an rvalue.

This warning is enabled by -Wextra.

-Wrange-loop-construct (C++ and Objective-C++ only)
This warning warns when a C++ range-based for-loop is creating an unnecessary
copy. This can happen when the range declaration is not a reference, but
probably should be. For example:

struct S { char arr[128]; };
void fn () {
S arr[5];
for (const auto x : arr) { ... }

}

Chapter 3: GCC Command Options 73

It does not warn when the type being copied is a trivially-copyable type whose
size is less than 64 bytes.

This warning also warns when a loop variable in a range-based for-loop is ini-
tialized with a value of a different type resulting in a copy. For example:

void fn() {
int arr[10];
for (const double &x : arr) { ... }
}
In the example above, in every iteration of the loop a temporary value of type
double is created and destroyed, to which the reference const double & is
bound.

This warning is enabled by -Wall.

-Wredundant-tags (C++ and Objective-C++ only)
Warn about redundant class-key and enum-key in references to class types and
enumerated types in contexts where the key can be eliminated without causing
an ambiguity. For example:
struct foo;
struct foo *p; // warn that keyword struct can be eliminated
On the other hand, in this example there is no warning:

struct foo;
void foo (); // "hides" struct foo
void bar (struct fook); // no warning, keyword struct is necessary

-Wno-subobject-linkage (C++ and Objective-C++ only)

Do not warn if a class type has a base or a field whose type uses the anonymous
namespace or depends on a type with no linkage. If a type A depends on a type
B with no or internal linkage, defining it in multiple translation units would
be an ODR violation because the meaning of B is different in each translation
unit. If A only appears in a single translation unit, the best way to silence the
warning is to give it internal linkage by putting it in an anonymous namespace
as well. The compiler doesn’t give this warning for types defined in the main .C
file, as those are unlikely to have multiple definitions. -Wsubobject-linkage
is enabled by default.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:

e Define a copy constructor and an assignment operator for classes with
dynamically-allocated memory.

e Prefer initialization to assignment in constructors.
e Have operator= return a reference to *this.
e Don’t try to return a reference when you must return an object.

e Distinguish between prefix and postfix forms of increment and decrement
operators.

e Never overload &&, | |, or ,.

74

Using the GNU Compiler Collection (GCC)

This option also enables ~-Wnon-virtual-dtor, which is also one of the effective
C++ recommendations. However, the check is extended to warn about the lack
of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-exceptions (C++ and Objective-C++ only)

Disable the warning about the case when an exception handler is shadowed by
another handler, which can point out a wrong ordering of exception handlers.

Warn about a class that is found to be incomplete, or a function with auto return
type that has not yet been deduced, in a context where that causes substitution
failure rather than an error, and then the class or function is defined later in
the translation unit. This is problematic because template instantiations or
concept checks could have different results if they first occur either before or
after the definition.

This warning is enabled by default. -Wsfinae-incomplete=2 adds a warning
at the point of substitution failure, to make it easier to track down problems
flagged by the default mode.

-Wstrict-null-sentinel (C++ and Objective-C++ only)

Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-c-typedef-for-linkage (C++ and Objective-C++ only)

Disable pedwarn for unnamed classes with a typedef name for linkage purposes
containing C++ specific members, base classes, default member initializers or
lambda expressions, including those on nested member classes.

typedef struct {
int a; // non-static data members are ok
struct T { int b; }; // member classes too
enum E { E1, E2, E3 }; // member enumerations as well
int ¢ = 42; // default member initializers are not ok
struct U : A { int c; }; // classes with base classes are not ok
typedef int V; // typedef is not ok
using W = int; // using declaration is not ok
decltype([1(){}) x; // lambda expressions not ok
} s;

In all these cases, the tag name S should be added after the struct keyword.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-template friend functions are declared within a
template. In very old versions of GCC that predate implementation of the ISO
standard, declarations such as ‘friend int foo(int)’, where the name of the
friend is an unqualified-id, could be interpreted as a particular specialization
of a template function; the warning exists to diagnose compatibility problems,
and is enabled by default.

Chapter 3: GCC Command Options 75

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++
program. The new-style casts (dynamic_cast, static_cast, reinterpret_
cast, and const_cast) are less vulnerable to unintended effects and much
easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)
-Woverloaded-virtual=n
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void £(Q);

};

struct B: public A {
void f(int); // does not override
};
the A class version of f is hidden in B, and code like:
B*x b;
b—>£();
fails to compile.

In cases where the different signatures are not an accident, the simplest solution
is to add a using-declaration to the derived class to un-hide the base function,
e.g. add using A::f; to B.

The optional level suffix controls the behavior when all the declarations in the
derived class override virtual functions in the base class, even if not all of the
base functions are overridden:

struct C {
virtual void f£();
virtual void f(int);

};

struct D: public C {
void f(int); // does override

}
This pattern is less likely to be a mistake; if D is only used virtually, the user
might have decided that the base class semantics for some of the overloads are
fine.

At level 1, this case does not warn; at level 2, it does. -Woverloaded-virtual
by itself selects level 2. Level 1 is included in -Wall.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

76 Using the GNU Compiler Collection (GCC)

-Wtemplates (C++ and Objective-C++ only)
Warn when a primary template declaration is encountered. Some coding rules
disallow templates, and this may be used to enforce that rule. The warning is
inactive inside a system header file, such as the STL, so one can still use the
STL. One may also instantiate or specialize templates.

-Wmismatched-new-delete (C++ and Objective-C++ only)

Warn for mismatches between calls to operator new or operator delete and
the corresponding call to the allocation or deallocation function. This includes
invocations of C++ operator delete with pointers returned from either mis-
matched forms of operator new, or from other functions that allocate objects
for which the operator delete isn’t a suitable deallocator, as well as calls
to other deallocation functions with pointers returned from operator new for
which the deallocation function isn’t suitable.

For example, the delete expression in the function below is diagnosed because
it doesn’t match the array form of the new expression the pointer argument was
returned from. Similarly, the call to free is also diagnosed.

void £ ()
{
int *a = new int[n];
delete a; // warning: mismatch in array forms of expressions

char *p = new char[n];
free (p); // warning: mismatch between new and free
}
The related option -Wmismatched-dealloc diagnoses mismatches involving al-
location and deallocation functions other than operator new and operator
delete.

-Wmismatched-new-delete is included in -Wall.

-Wmismatched-tags (C++ and Objective-C++ only)
Warn for declarations of structs, classes, and class templates and their special-
izations with a class-key that does not match either the definition or the first
declaration if no definition is provided.

For example, the declaration of struct Object in the argument list of draw
triggers the warning. To avoid it, either remove the redundant class-key struct
or replace it with class to match its definition.

class Object {

public:

virtual ~“Object () = 0;

i;id draw (struct Objectx);
It is not wrong to declare a class with the class-key struct as the example
above shows. The -Wmismatched-tags option is intended to help achieve a
consistent style of class declarations. In code that is intended to be portable to
Windows-based compilers the warning helps prevent unresolved references due
to the difference in the mangling of symbols declared with different class-keys.
The option can be used either on its own or in conjunction with -Wredundant-
tags.

Chapter 3: GCC Command Options 77

-Wmultiple-inheritance (C++ and Objective-C++ only)
Warn when a class is defined with multiple direct base classes. Some coding
rules disallow multiple inheritance, and this may be used to enforce that rule.
The warning is inactive inside a system header file, such as the STL, so one
can still use the STL. One may also define classes that indirectly use multiple
inheritance.

-Wvirtual-inheritance
Warn when a class is defined with a virtual direct base class. Some coding rules
disallow multiple inheritance, and this may be used to enforce that rule. The
warning is inactive inside a system header file, such as the STL, so one can still
use the STL. One may also define classes that indirectly use virtual inheritance.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it is moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment
operator is written to avoid moving from a moved-from object, this warning
can be disabled.

-Wnamespaces
Warn when a namespace definition is opened. Some coding rules disallow
namespaces, and this may be used to enforce that rule. The warning is in-
active inside a system header file, such as the STL, so one can still use the STL.
One may also use using directives and qualified names.

-Wno-template-body (C++ and Objective-C++ only)
Disable diagnosing errors when parsing a template, and instead issue an error
only upon instantiation of the template. This flag can also be used to downgrade
such errors into warnings with Wno-error= or -fpermissive.

-Wno-template-id-cdtor (C++ and Objective-C++ only)
Disable the warning about the use of simple-template-id as the declarator-id of
a constructor or destructor, which became invalid in C++20 via DR 2237. For
example:
template<typename T> struct S {
S<T>(); // should be SQ);
~“S<T>(); // should be ~S();
};
-Wtemplate-id-cdtor is enabled by default with -std=c++20; it is also enabled
by -Wc++20-compat.

-Wtemplate-names-tu-local
Warn when a template body hides an exposure of a translation-unit-local entity.
In most cases, referring to a translation-unit-local entity (such as an internal
linkage declaration) within an entity that is emitted into a module’s CMI is an
error. However, within the initializer of a variable, or in the body of a non-inline
function, this is not an exposure and no error is emitted.

This can cause variable or function templates to accidentally become unusable
if they reference such an entity, because other translation units that import the

78 Using the GNU Compiler Collection (GCC)

template will never be able to instantiate it. This warning attempts to detect
cases where this might occur. The presence of an explicit instantiation silences
the warning.

This flag is enabled by -Wextra.

-Wno-expose-global-module-tu-local
An exposure of a translation-unit-local entity from a module interface is invalid,
as this may cause ODR violations and manifest in link errors or other unex-
pected behaviour. However, many existing libraries declare TU-local entities in
their interface, and avoiding exposures of these entities may be difficult in some
cases.

As an extension, GCC allows exposures of internal variables and functions that
were declared in the global module fragment. This warning indicates when such
an invalid exposure has occurred, and can be silenced using diagnostic pragmas
either at the site of the exposure, or at the point of declaration of the internal
declaration.

When combined with -Wtemplate-names-tu-local, GCC will also warn about
non-exposure references to TU-local entities in template bodies. Such templates
can still be instantiated in other TUs but the above risks regarding exposures
of translation-unit-local entities apply.

This warning is enabled by default, and is upgraded to an error by -pedantic-
errors.

-Wno-external-tu-local
Warn when naming a TU-local entity outside of the translation unit it was
declared in. Such declarations will be ignored during name lookup. This can
occur when performing ADL from a template declared in the same TU as the
internal function:

export module M;

template <typename T> void foo(T t) {
bar(t);

}

struct S {} s;

static void bar(S) {} // internal linkage

// instantiating foo(s) from outside this TU can see ::bar,

// but naming it there is ill-formed.
This can be worked around by making bar attached to the global module, using
extern "C++".

This warning is enabled by default, and is upgraded to an error by -pedantic-
errors.

-Wno-terminate (C++ and Objective-C++ only)
Disable the warning about a throw-expression that will immediately result in a
call to terminate.

-Wno-vexing-parse (C++ and Objective-C++ only)
Warn about the most vexing parse syntactic ambiguity. This warns about the
cases when a declaration looks like a variable definition, but the C++ language
requires it to be interpreted as a function declaration. For instance:

Chapter 3: GCC Command Options 79

void f(double a) {
int 1iQ); // extern int i (void);
int n(int(a)); // extern int n (int);

}

Another example:

struct S { S(int); };
void f(double a) {

S x(int(a)); // extern struct S x (int);
S ylnt(); // extern struct S y (int (x) (void));
S z0; // extern struct S z (void);

}

The warning will suggest options how to deal with such an ambiguity; e.g., it
can suggest removing the parentheses or using braces instead.

This warning is enabled by default.

-Wno-class-conversion (C++ and Objective-C++ only)
Do not warn when a conversion function converts an object to the same type,
to a base class of that type, or to void; such a conversion function will never be
called.

-Wvolatile (C++ and Objective-C++ only)

Warn about deprecated uses of the volatile qualifier. This includes postfix
and prefix ++ and -- expressions of volatile-qualified types, using simple as-
signments where the left operand is a volatile-qualified non-class type for their
value, compound assignments where the left operand is a volatile-qualified
non-class type, volatile-qualified function return type, volatile-qualified pa-
rameter type, and structured bindings of a volatile-qualified type. This usage
was deprecated in C++20.

Enabled by default with —std=c++20. Before -std=c++20, enabled with explicit
-Wdeprecated.

-Waligned-new

-Waligned-new=[none|global|all]
Warn about a new-expression of a type that requires greater alignment than
the alignof (std: :max_align_t) but uses an allocation function without an
explicit alignment parameter. This option is enabled by -Wall.

Normally this only warns about global allocation functions, but -Waligned-
new=all also warns about class member allocation functions.

-Wno-placement-new

-Wplacement-new=n
Warn about placement new expressions with undefined behavior, such as con-
structing an object in a buffer that is smaller than the type of the object. For
example, the placement new expression below is diagnosed because it attempts
to construct an array of 64 integers in a buffer only 64 bytes large.

char buf [64];
new (buf) int[64];

This warning is enabled by default.

80 Using the GNU Compiler Collection (GCC)

-Wplacement-new=1
This is the default warning level of ~-Wplacement-new. At this level
the warning is not issued for some strictly undefined constructs
that GCC allows as extensions for compatibility with legacy code.
For example, the following new expression is not diagnosed at this
level even though it has undefined behavior according to the C++
standard because it writes past the end of the one-element array.

struct S { int n, al1]; };
S *s = (S *)malloc (sizeof *s + 31 * sizeof s->al0]);
new (s->a)int [32]();

-Wplacement-new=2

At this level, in addition to diagnosing all the same constructs as
at level 1, a diagnostic is also issued for placement new expressions
that construct an object in the last member of structure whose type
is an array of a single element and whose size is less than the size of
the object being constructed. While the previous example would be
diagnosed, the following construct makes use of the flexible member
array extension to avoid the warning at level 2.

struct S { int n, all; };
S *s = (S *)malloc (sizeof *s + 32 * sizeof s->al[0]);
new (s->a)int [32]10);

-Wcatch-value

-Wcatch-value=n (C++ and Objective-C++ only)
Warn about catch handlers that do not catch via reference. With -Wcatch-
value=1 (or -Wcatch-value for short) warn about polymorphic class types
that are caught by value. With -Wcatch-value=2 warn about all class types
that are caught by value. With -Wcatch-value=3 warn about all types that
are not caught by reference. -Wcatch-value is enabled by -Wall.

-Wconditionally-supported (C++ and Objective-C++ only)
Warn for conditionally-supported (C++11 [intro.defs]) constructs.

-Wno-defaulted-function-deleted (C++ and Objective-C++ only)
Warn when an explicitly defaulted function is deleted by the compiler. That
can occur when the function’s declared type does not match the type of the
function that would have been implicitly declared. This warning is enabled by
default.

-Wno-delete-incomplete (C++ and Objective-C++ only)
Do not warn when deleting a pointer to incomplete type, which may cause
undefined behavior at runtime. This warning is enabled by default.

-Wextra-semi (C++, Objective-C++ only)
Warn about redundant semicolons. There are various contexts in which an
extra semicolon can occur. One is a semicolon after in-class function definitions,
which is valid in all C++ dialects (and is never a pedwarn):

struct S {
void foo () {};
};

Chapter 3: GCC Command Options 81

Another is an extra semicolon at namespace scope, which has been allowed
since C++11 (therefore is a pedwarn in C++98):

struct S {

};
And yet another is an extra semicolon in class definitions, which has been
allowed since C++11 (therefore is a pedwarn in C++98):

struct S {

int a;
};
-Wno-global-module (C++ and Objective-C++ only)

Disable the diagnostic for when the global module fragment of a module unit
does not consist only of preprocessor directives.

-Wno-inaccessible-base (C++, Objective-C++ only)
This option controls warnings when a base class is inaccessible in a class derived
from it due to ambiguity. The warning is enabled by default. Note that the
warning for ambiguous virtual bases is enabled by the -Wextra option.
struct A { int a; };

struct B : A { };

struct C : B, A { };

-Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

-Wno-invalid-offsetof (C++ and Objective-C++ only)
Suppress warnings from applying the offsetof macro to a non-POD type.
According to the 2014 ISO C++ standard, applying offsetof to a non-standard-
layout type is undefined. In existing C++ implementations, however, offsetof
typically gives meaningful results. This flag is for users who are aware that
they are writing nonportable code and who have deliberately chosen to ignore
the warning about it.

The restrictions on offsetof may be relaxed in a future version of the C++
standard.

-Wsized-deallocation (C++ and Objective-C++ only)
Warn about a definition of an unsized deallocation function
void operator delete (void *) noexcept;
void operator delete[] (void *) noexcept;
without a definition of the corresponding sized deallocation function

void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;

or vice versa. Enabled by -Wextra along with ~-fsized-deallocation.
-Wsuggest-final-types

Warn about types with virtual methods where code quality would be improved

if the type were declared with the C++11 final specifier, or, if possible, de-

82 Using the GNU Compiler Collection (GCC)

clared in an anonymous namespace. This allows GCC to more aggressively
devirtualize the polymorphic calls. This warning is more effective with link-
time optimization, where the information about the class hierarchy graph is
more complete.

-Wsuggest-final-methods

Warn about virtual methods where code quality would be improved if the
method were declared with the C++11 final specifier, or, if possible, its type
were declared in an anonymous namespace or with the final specifier. This
warning is more effective with link-time optimization, where the information
about the class hierarchy graph is more complete. It is recommended to first
consider suggestions of -Wsuggest-final-types and then rebuild with new
annotations.

-Wsuggest-override
Warn about overriding virtual functions that are not marked with the override
keyword.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
-Wconversion-null is enabled by default.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 3, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m

In this example, ~fgnu-runtime is an option meant only for Objective-C and Objective-C++
programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compilations
may also use options specific to the C front-end (e.g., -Wtraditional). Similarly, Objective-
C++ compilations may use C++-specific options (e.g., -Wabi).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name

Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). On Darwin / macOS platforms, the -fconstant-
cfstrings option, if also present, overrides the -fconstant-string-class
setting and cause @"..." literals to be laid out as constant CoreFoundation
strings. Note that -fconstant-cfstrings is an alias for the target-specific
-mconstant-cfstrings equivalent.

Chapter 3: GCC Command Options 83

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin / macOS. The macro __NEXT_RUNTIME_
_ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n

Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
S0, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

84

Using the GNU Compiler Collection (GCC)

-fobjc-exceptions

-fobjc-gc

Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++. This option is required to use the Objective-C
keywords @try, @throw, @catch, @finally and @synchronized. This option is
available with both the GNU runtime and the NeXT runtime (but not available
in conjunction with the NeXT runtime on Mac OS X 10.2 and earlier).

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default and
can be disabled using -~fno-objc-nilcheck. Class methods and super calls are
never checked for nil in this way no matter what this flag is set to. Currently
this flag does nothing when the GNU runtime, or an older version of the NeXT
runtime ABI, is used.

-fobjc-std=objcl

-freplace-

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

objc-classes

Emit a special marker instructing 1d (1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

—-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the -fzero-link flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

Chapter 3: GCC Command Options 85

-fno-local-ivars
By default instance variables in Objective-C can be accessed as if they were local
variables from within the methods of the class they’re declared in. This can
lead to shadowing between instance variables and other variables declared either
locally inside a class method or globally with the same name. Specifying the
-fno-local-ivars flag disables this behavior thus avoiding variable shadowing
issues.

-fivar-visibility=[public|protected|private|package]
Set the default instance variable visibility to the specified option so that instance
variables declared outside the scope of any access modifier directives default to
the specified visibility.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
sourcename.decl.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-property-assign-default (Objective-C and Objective-C++ only)
Do not warn if a property for an Objective-C object has no assign semantics
specified.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in
the class, even if a method implementation is inherited from the superclass. If
you use the -Wno-protocol option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wobjc-root-class (Objective-C and Objective-C++ only)
Warn if a class interface lacks a superclass. Most classes will inherit from
NSObject (or Object) for example. When declaring classes intended to be
root classes, the warning can be suppressed by marking their interfaces with
__attribute__((objc_root_class)).

-Wselector (Objective-C and Objective-C++ only)
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error is
found during compilation, or because the -fsyntax-only option is being used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and /or return types are found
for a given selector when attempting to send a message using this selector to

86 Using the GNU Compiler Collection (GCC)

a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while -Wselector only performs its checks in the final stage
of compilation. This also enforces the coding style convention that methods and
selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options Controlling OpenMP and OpenACC

GCC supports OpenMP extensions to the C, C++, and Fortran languages with the
-fopenmp option. Similarly, OpenACC extensions are supported in all three languages
with -fopenacc. See Section 6.7 [OpenMP], page 758, and Section 6.8 [OpenACC],
page 758, for an overview of these extensions.

-foffload=disable

-foffload=default

-foffload=target-list
Specify for which OpenMP and OpenACC offload targets code should be gen-
erated. The default behavior, equivalent to ~-foffload=default, is to generate
code for all supported offload targets. The -foffload=disable form generates
code only for the host fallback, while ~-foffload=target-1ist generates code
only for the specified comma-separated list of offload targets.

Offload targets are specified in GCC'’s internal target-triplet format. You can
run the compiler with -v to show the list of configured offload targets under
OFFLOAD_TARGET_NAMES.

-foffload-options=options

-foffload-options=target-triplet-list=options
With -foffload-options=options, GCC passes the specified options to the
compilers for all enabled offloading targets. You can specify options that apply
only to a specific target or targets by using the ~-foffload-options=target-
list=options form. The target-list is a comma-separated list in the same
format as for the -foffload= option.

Typical command lines are

-foffload-options='-fno-math-errno -ffinite-math-only' \
-foffload-options=nvptx-none=-latomic
-foffload-options=amdgcn-amdhsa=-march=gfx906

Chapter 3: GCC Command Options 87

-fopenacc
Enable handling of OpenACC directives ‘#pragma acc’ in C/C++ and ‘!$acc’
in free-form Fortran and ‘!$acc’, ‘c$acc’ and ‘*$acc’ in fixed-form Fortran.
This option implies -pthread, and thus is only supported on targets that have
support for -pthread.

-fopenacc-dim=geom
Specify default compute dimensions for parallel offload regions that do not
explicitly specify them. The geom value is a triple of ‘:’-separated sizes, in
order gang, worker, and vector. A size can be omitted, to use a target-specific
default value.

~fopenmp Enable handling of OpenMP directives ‘#pragma omp’, ‘[[omp: :directive(...)]1]1 "}
‘[[omp::decl(...)]1]’, and ‘[[omp::sequence(...)]]” in C/C++. In
Fortran, it enables ‘!'$omp’ and the conditional compilation sentinel ‘!$’. In
fixed source form Fortran, the sentinels can also start with ‘c’ or ‘*’.

This option implies -pthread, and thus is only supported on targets that have
support for -pthread. -fopenmp implies ~fopenmp-simd.

-fopenmp-simd

Enable handling of OpenMP’s simd, declare simd, declare reduction,
assume, ordered, scan and loop directive, and of combined or composite direc-
tives with simd as constituent with #pragma omp, [[omp: :directive(...)]],
[[omp: :sequence(...)]] and [[omp::decl(...)]] in C/C++ and !$omp in
Fortran. It additionally enables the conditional compilation sentinel ‘!$’ in
Fortran. In fixed source form Fortran, the sentinels can also start with ‘c’ or
‘*’. Other OpenMP directives are ignored. Unless -fopenmp is additionally
specified, the 1loop region binds to the current task region, independent of the
specified bind clause.

-fopenmp-target-simd-clone

-fopenmp-target-simd-clone=device-type
In addition to generating SIMD clones for functions marked with the declare
simd directive, GCC also generates clones for functions marked with the
OpenMP declare target directive that are suitable for vectorization when
this option is in effect. The device-type may be one of none, host, nohost,
and any, which correspond to keywords for the device_type clause of
the declare target directive; clones are generated for the intersection
of devices specified. -fopenmp-target-simd-clone is equivalent to
-fopenmp-target-simd-clone=any and -fno-openmp-target-simd-clone is
equivalent to -fopenmp-target-simd-clone=none.
At -02 and higher (but not -0s or -0g) this optimization defaults to ~fopenmp-
target-simd-clone=nohost; otherwise it is disabled by default.

3.8 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often

88 Using the GNU Compiler Collection (GCC)

source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. If
n is zero, then no line-wrapping is done; each error message appears on a single
line. This is the default for all front ends.

Note - this option also affects the display of the ‘#error’ and ‘#warning’ pre-
processor directives, and the ‘deprecated’ function/type/variable attribute.
It does not however affect the ‘pragma GCC warning’ and ‘pragma GCC error’
pragmas.

-fdiagnostics-plain-output
This option requests that diagnostic output look as plain as possible, which may
be useful when running dejagnu or other utilities that need to parse diagnostics
output and prefer that it remain more stable over time. ~-fdiagnostics-plain-
output is currently equivalent to the following options:

-fno-diagnostics-show-caret

-fno-diagnostics-show-line-numbers

-fdiagnostics-color=never

-fdiagnostics-urls=never

-fdiagnostics-path-format=separate-events

-fdiagnostics-text-art-charset=none

-fno-diagnostics-show-event-links

-fno-diagnostics-show-nesting
In the future, if GCC changes the default appearance of its diagnostics, the
corresponding option to disable the new behavior will be added to this list.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-color [=WHEN]

-fno-diagnostics-color
Use color in diagnostics. WHEN is ‘never’, ‘always’, or ‘auto’. The default
depends on how the compiler has been configured, it can be any of the above
WHEN options or also ‘never’ if GCC_COLORS environment variable isn’t present
in the environment, and ‘auto’ otherwise. ‘auto’ makes GCC use color only
when the standard error is a terminal, and when not executing in an emacs
shell. The forms -fdiagnostics-color and -fno-diagnostics-color are
aliases for -fdiagnostics-color=always and -fdiagnostics-color=never,
respectively.

Chapter 3: GCC Command Options 89

The colors are defined by the environment variable GCC_COLORS. Its value is

a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-

strings. SGR commands are interpreted by the terminal or terminal emulator.

(See the section in the documentation of your text terminal for permitted values

and their meanings as character attributes.) These substring values are integers

in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for

inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’

to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color

and 256-color modes foreground colors, ‘49’ for default background color, ‘40’

to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-

ors, and ‘48;5;0’ to ‘48;5;255" for 88-color and 256-color modes background
colors.

The default GCC_COLORS is
error=01;31:warning=01;35:note=01;36:rangel=32:range2=34:1locus=01:\
quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
type-diff=01;32:fnname=01;32:targs=35:valid=01;31:invalid=01;32\
highlight-a=01;32:highlight-b=01;34

where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan, ‘32’

is green, ‘34’ is blue, ‘01’ is bold, and ‘31’ is red. Setting GCC_COLORS to the

empty string disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.
warning= SGR substring for warning: markers.
note= SGR substring for note: markers.

path= SGR substring for colorizing paths of control-flow events as printed
via ~-fdiagnostics-path-format=, such as the identifiers of indi-
vidual events and lines indicating interprocedural calls and returns.

rangel= SGR substring for first additional range.
range2= SGR substring for second additional range.

locus= SGR substring for location information, ‘file:line’ or
‘file:line:column’ etc.

quote= SGR substring for information printed within quotes.
fnname= SGR substring for names of C++ functions.
targs= SGR substring for C++ function template parameter bindings.

fixit-insert=
SGR substring for fix-it hints suggesting text to be inserted or
replaced.

fixit-delete=

SGR substring for fix-it hints suggesting text to be deleted.
diff-filename=

SGR substring for filename headers within generated patches.

90

Using the GNU Compiler Collection (GCC)

diff-hunk=
SGR substring for the starts of hunks within generated patches.

diff-delete=
SGR substring for deleted lines within generated patches.

diff-insert=
SGR substring for inserted lines within generated patches.

type-diff=
SGR substring for highlighting mismatching types within template
arguments in the C++ frontend.

valid= SGR substring for highlighting valid elements within text art dia-
grams.

invalid= SGR substring for highlighting invalid elements within text art di-
agrams.

highlight-a=

highlight-b=
SGR substrings for contrasting two different things within diagnos-
tics, such as a pair of mismatching types. See -fdiagnostics-
show-highlight-colors.

-fdiagnostics-urls [=WHEN]

Use escape sequences to embed URLs in diagnostics. For example, when
-fdiagnostics-show-option emits text showing the command-line option
controlling a diagnostic, embed a URL for documentation of that option.

WHEN is ‘never’, ‘always’, or ‘auto’. ‘auto’ makes GCC use URL escape
sequences only when the standard error is a terminal, and when not executing
in an emacs shell or any graphical terminal which is known to be incompatible
with this feature, see below.

The default depends on how the compiler has been configured. It can be any
of the above WHEN options.

GCC can also be configured (via the --with-diagnostics-urls=auto-if-env
configure-time option) so that the default is affected by environment variables.
Under such a configuration, GCC defaults to using ‘auto’ if either GCC_URLS
or TERM_URLS environment variables are present and non-empty in the environ-
ment of the compiler, or ‘never’ if neither are.

However, even with -fdiagnostics-urls=always the behavior is dependent
on those environment variables: If GCC_URLS is set to empty or ‘no’, do not
embed URLs in diagnostics. If set to ‘st’, URLs use ST escape sequences. If
set to ‘bel’; the default, URLs use BEL escape sequences. Any other non-empty
value enables the feature. If GCC_URLS is not set, use TERM_URLS as a fallback.
Note: ST is an ANSI escape sequence, string terminator ‘ESC \’, BEL is an
ASCII character, CTRL-G that usually sounds like a beep.

At this time GCC tries to detect also a few terminals that are known to not
implement the URL feature, and have bugs or at least had bugs in some versions
that are still in use, where the URL escapes are likely to misbehave, i.e. print

Chapter 3: GCC Command Options 91

garbage on the screen. That list is currently xfce4-terminal, certain known to
be buggy gnome-terminal versions, the linux console, and mingw. This check
can be skipped with the -fdiagnostics-urls=always.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the -fno-diagnostics-show-option flag
suppresses that behavior.

-fno-diagnostics—-show-caret
By default, each diagnostic emitted includes the original source line and a caret
‘7 indicating the column. This option suppresses this information. The source
line is truncated to n characters, if the -fmessage-length=n option is given.
When the output is done to the terminal, the width is limited to the width
given by the COLUMNS environment variable or, if not set, to the terminal width.

-fno-diagnostics-show-labels
By default, when printing source code (via -fdiagnostics-show-caret), di-
agnostics can label ranges of source code with pertinent information, such as
the types of expressions:
printf ("foo %s bar", long_i + long_j);

| |

char * long int
This option suppresses the printing of these labels (in the example above, the
vertical bars and the “char *” and “long int” text).

-fno-diagnostics-show-event-links
By default, when printing execution paths (via -fdiagnostics-path-
format=inline-events), GCC will print lines connecting related events, such
as the line connecting events 1 and 2 in:

+
| return O;
|
|
|

o >(2) ...to here
(3) dereference of NULL “p'

31 if (p)
| p
| |
| (1) following “false' branch (when “p' is NULL)... ->-+
| |
| |
| +- -— -— -— -—+
4 |
5 || return *p;
| ~
|
|
[

This option suppresses the printing of such connector lines.

-fno-diagnostics-show-cwe
Diagnostic messages can optionally have an associated CWE (https://cwe.
mitre.org/index.html) identifier. GCC itself only provides such metadata
for some of the -fanalyzer diagnostics. GCC plugins may also provide di-
agnostics with such metadata. By default, if this information is present, it

https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html

92 Using the GNU Compiler Collection (GCC)

will be printed with the diagnostic. This option suppresses the printing of this
metadata.

-fno-diagnostics—-show-rules
Diagnostic messages can optionally have rules associated with them, such as
from a coding standard, or a specification. GCC itself does not do this for
any of its diagnostics, but plugins may do so. By default, if this information
is present, it will be printed with the diagnostic. This option suppresses the
printing of this metadata.

-fno-diagnostics-show-highlight-colors
GCC can use color for emphasis and contrast when printing diagnostic messages
and quoting the user’s source.

For example, in

demo.c: In function “test_bad_format_string_args':
../../src/demo.c:25:18: warning: format “%i' expects argument of type “int', but argument 2 1l
25 | printf("hello %i", msg);

I | I
I int const char *
I hs
e the %1 and int in the message and the int in the quoted source are colored
using highlight-a (bold green by default), and

e the const char * in the message and in the quoted source are both colored
using highlight-b (bold blue by default).

The intent is to draw the reader’s eyes to the relationships between the various
aspects of the diagnostic message and the source, using color to group related
elements and distinguish between mismatching ones.

This additional colorization is enabled by default if color printing is enabled
(as per -fdiagnostics-color=), but it can be separately disabled via -fno-
diagnostics-show-highlight-colors.

-fno-diagnostics—-show-line-numbers
By default, when printing source code (via -fdiagnostics-show-caret), a
left margin is printed, showing line numbers. This option suppresses this left
margin.

-fdiagnostics-minimum-margin-width=width
This option controls the minimum width of the left margin printed by
-fdiagnostics-show-line-numbers. It defaults to 6.

-fdiagnostics-show-context [=depth]

-fno-diagnostics-show-context
With this option, the compiler might print the interesting control flow
chain that guards the basic block of the statement which has the warning.
depth is the maximum depth of the control flow -chain. Currently,
The list of the impacted warning options includes: -Warray-bounds,
-Wstringop-overflow, -Wstringop-overread, -Wstringop-truncation.
and -Wrestrict. More warning options might be added to this list in

Chapter 3: GCC Command Options 93

future releases. The forms -fdiagnostics-show-context and -fno-
diagnostics-show-context are aliases for -fdiagnostics-show-context=1
and -fdiagnostics-show-context=0, respectively.

-fdiagnostics-parseable-fixits
Emit fix-it hints in a machine-parseable format, suitable for consumption by
IDEs. For each fix-it, a line will be printed after the relevant diagnostic, starting
with the string “fix-it:”. For example:
fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"

The location is expressed as a half-open range, expressed as a count of bytes,
starting at byte 1 for the initial column. In the above example, bytes 3 through
20 of line 45 of “test.c” are to be replaced with the given string:

00000000011111111112222222222
12345678901234567890123456789
gtk_widget_showall (dlg);

gtk_widget_show_all

The filename and replacement string escape backslash as “\\", tab as “\t”,
newline as “\n”, double quotes as “\"”, non-printable characters as octal (e.g.
vertical tab as “\013”).

An empty replacement string indicates that the given range is to be removed.
An empty range (e.g. “45:3-45:3”) indicates that the string is to be inserted at
the given position.

-fdiagnostics-generate-patch
Print fix-it hints to stderr in unified diff format, after any diagnostics are
printed. For example:

--- test.c
+++ test.c
@ -42,5 +42,5 @

void show_cb(GtkDialog *dlg)
{
- gtk_widget_showall(dlg);
+ gtk_widget_show_all(dlg);
}

The diff may or may not be colorized, following the same rules as for diagnostics
(see -fdiagnostics-color).

-fdiagnostics—-show-template-tree
In the C++ frontend, when printing diagnostics showing mismatching template
types, such as:
could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
the -fdiagnostics-show-template-tree flag enables printing a tree-like
structure showing the common and differing parts of the types, such as:
map<
[...]1,

vector<
[double != float]>>

94 Using the GNU Compiler Collection (GCC)

The parts that differ are highlighted with color (“double” and “float” in this
case).

-fno-elide-type
By default when the C++ frontend prints diagnostics showing mismatching tem-
plate types, common parts of the types are printed as “[...]” to simplify the
error message. For example:
could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>

Specifying the -fno-elide-type flag suppresses that behavior. This flag also
affects the output of the ~-fdiagnostics-show-template-tree flag.

-fdiagnostics-path-format=KIND
Specify how to print paths of control-flow events for diagnostics that have such
a path associated with them.

KIND is ‘none’, ‘separate-events’, or ‘inline-events’, the default.
‘none’ means to not print diagnostic paths.

‘separate-events’ means to print a separate “note” diagnostic for each event
within the diagnostic. For example:

test.c:29:5: error: passing NULL as argument 1 to 'PyList_Append' which requires a non-NULL g
test.c:25:10: note: (1) when 'PyList_New' fails, returning NULL

test.c:27:3: note: (2) when 'i < count'

test.c:29:5: note: (3) when calling 'PyList_Append', passing NULL from (1) as argument 1Jj

‘inline-events’ means to print the events “inline” within the source code.
This view attempts to consolidate the events into runs of sufficiently-close
events, printing them as labelled ranges within the source.

For example, the same events as above might be printed as:

'test': events 1-3
25 | list = PyList_New(0);
| ameeeeiemeenl

(1) when 'PyList_New' fails, returning NULL

26
27 for (i = 0; i < count; i++) {
(2) when 'i < count'
28 item = PyLong_FromLong(random()) ;
29 PyList_Append(list, item);

Interprocedural control flow is shown by grouping the events by stack frame, and
using indentation to show how stack frames are nested, pushed, and popped.

For example:

'test': events 1-2

| 133 |
| |
I I
| I

|
(1) entering 'test'

(3) when calling 'PyList_Append', passing NULL from (1) as argument 1Jj

Chapter 3: GCC Command Options 95

| 134 | boxed_int *obj = make_boxed_int (i);
| rF TTTmmmmmmmmmmemees
| | |
| | (2) calling 'make_boxed_int'
|
+--> 'make_boxed_int': events 3-4
|

120 {
|
(3) entering 'make_boxed_int'
boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));l|}

I

I

I

I

[121
|

I

I (4) calling 'wrapped_malloc'll
I

+--> 'wrapped_malloc': events 5-6

| 71 {
| (.
| I
| | (5) entering 'wrapped_malloc'
| 8 | return malloc (size);
| lf T
| | |
| | (6) calling 'malloc’
|

D +

|

'test': event 7
|
138 | free_boxed_int (obj);

-fdiagnostics-show-path-depths
This option provides additional information when printing control-flow paths
associated with a diagnostic.

If this is option is provided then the stack depth will be printed for each run
of events within -fdiagnostics-path-format=inline-events. If provided
with -fdiagnostics-path-format=separate-events, then the stack depth
and function declaration will be appended when printing each event.

This is intended for use by GCC developers and plugin developers when debug-
ging diagnostics that report interprocedural control flow.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-fdiagnostics-column-unit=UNIT
Select the units for the column number. This affects traditional diagnostics (in
the absence of -fno-show-column).

96

Using the GNU Compiler Collection (GCC)

The default UNIT, ‘display’, considers the number of display columns occupied
by each character. This may be larger than the number of bytes required to
encode the character, in the case of tab characters, or it may be smaller, in
the case of multibyte characters. For example, the character “GREEK SMALL
LETTER PI (U+03C0)” occupies one display column, and its UTF-8 encoding
requires two bytes; the character “SLIGHTLY SMILING FACE (U+1F642)”
occupies two display columns, and its UTF-8 encoding requires four bytes.

Setting UNIT to ‘byte’ changes the column number to the raw byte count in
all cases, as was traditionally output by GCC prior to version 11.1.0.

-fdiagnostics-column-origin=0RIGIN

Select the origin for column numbers, i.e. the column number assigned to the
first column. The default value of 1 corresponds to traditional GCC behavior
and to the GNU style guide. Some utilities may perform better with an origin
of 0; any non-negative value may be specified.

-fdiagnostics-escape-format=FORMAT

When GCC prints pertinent source lines for a diagnostic it normally attempts
to print the source bytes directly. However, some diagnostics relate to encoding
issues in the source file, such as malformed UTF-8, or issues with Unicode
normalization. These diagnostics are flagged so that GCC will escape bytes
that are not printable ASCII when printing their pertinent source lines.

This option controls how such bytes should be escaped.

The default FORMAT, ‘unicode’ displays Unicode characters that are not
printable ASCII in the form ‘<U+XXXX>’, and bytes that do not correspond
to a Unicode character validly-encoded in UTF-8-encoded will be displayed as
hexadecimal in the form ‘<XX>’.

For example, a source line containing the string ‘before’ followed by the Uni-
code character U+03C0 (“GREEK SMALL LETTER PI”, with UTF-8 encoding
0xCF 0x80) followed by the byte 0xBF (a stray UTF-8 trailing byte), followed
by the string ‘after’ will be printed for such a diagnostic as:
before<U+03C0><BF>after
Setting FORMAT to ‘bytes’ will display all non-printable-ASCII bytes in the
form ‘<XX>’, thus showing the underlying encoding of non-ASCII Unicode char-
acters. For the example above, the following will be printed:
before<CF><80><BF>after

-fdiagnostics-text-art-charset=CHARSET

Some diagnostics can contain “text art” diagrams: visualizations created from
text, intended to be viewed in a monospaced font.

This option selects which characters should be used for printing such diagrams,
if any. CHARSET is ‘none’, ‘ascii’, ‘unicode’, or ‘emoji’.

The ‘none’ value suppresses the printing of such diagrams. The ‘ascii’ value
will ensure that such diagrams are pure ASCII (“ASCII art”). The ‘unicode’
value will allow for conservative use of unicode drawing characters (such as box-
drawing characters). The ‘emoji’ value further adds the possibility of emoji in
the output (such as emitting U+26A0 WARNING SIGN followed by U+FEOF
VARIATION SELECTOR-16 to select the emoji variant of the character).

Chapter 3: GCC Command Options 97

The default is ‘emoji’, except when the environment variable LANG is set to ‘C’,
in which case the default is ‘ascii’.

-fno-diagnostics-show-nesting
Some GCC diagnostics have an internal tree-like structure of nested
sub-diagnostics, such as for problems when instantiating C++ templates.

By default GCC uses indentation and bullet points in its text output to show
the nesting structure of these diagnostics, moves location information to sep-
arate lines to make the structure clearer, and eliminates redundant repeated
information.

Selecting -fno-diagnostics-show-nesting suppresses this indentation, refor-
matting, and elision, restoring an older ‘look” for the diagnostics.

-fno-diagnostics-show-nesting-locations
When fdiagnostics-show-nesting is enabled, file names and line- and
column- numbers are displayed on separate lines from the messages. This
location information can be disabled altogether with -fno-diagnostics-
show-nesting-locations. This option exists for use by GCC developers, for
writing DejaGnu test cases.

-fdiagnostics-show-nesting-levels
When fdiagnostics-show-nesting is enabled, use fdiagnostics-show-
nesting-levels to also display numbers showing the depth of the nesting.
This option exists for use by GCC developers for debugging nested diagnostics,
but may be of use to plugin authors.

-fdiagnostics-format=FORMAT
Select a different format for printing diagnostics. =~ FORMAT is ‘text’,
‘sarif-stderr’ or ‘sarif-file’.
Using this option replaces any additional “output sinks” added by
-fdiagnostics-add-output=, or that set by -fdiagnostics-set-output=.
The default is ‘text’.

The ‘sarif-stderr’ and ‘sarif-file’ formats both emit diagnostics in SARIF
Version 2.1.0 format, either to stderr, or to a file named source.sarif, respec-
tively.

-fdiagnostics—-add-output=DIAGNOSTICS-OUTPUT-SPEC
Add an additional “output sink” for emitting diagnostics.
DIAGNOSTICS-OUTPUT-SPEC should specify a scheme, optionally followed

by : and one or more KEY=VALUEFE pairs, in this form:

SCHEME
SCHEME: KEY=VALUE
SCHEME: KEY=VALUE,KEY2=VALUE2

etc.

Schemes, keys, or values with a name prefixed “experimental” may change or
be removed without notice. Keys can be per-scheme, or related to GCC as a
whole.

SCHEME can be

text Emit diagnostics to stderr using GCC'’s classic text output format.

98

sarif

Using the GNU Compiler Collection (GCC)

Supported keys for the text scheme are:

color=[yes|no]
Override colorization settings from -fdiagnostics-
color for this text output.

show-nesting=[yes|no]
Enable a mode that emphasizes hierarchical
relationships within diagnostics messages, as per
-fdiagnostics-show-nesting. Defaults to yes.

show-nesting-locations=[yes|no]
If show-nesting=yes, then by default locations are
shown; set this key to no to disable printing such lo-
cations. This exists for use by GCC developers, for
writing DejaGnu test cases.

show-nesting-levels=[yes|no]
This is a debugging option for use with show-
nesting=yes. Set this key to yes to print explicit
nesting levels in the output. This exists for use by
GCC developers.

Emit diagnostics to a file in SARIF format.

Supported keys for the sarif scheme are:

file=FILENAME
Specify the filename to write the SARIF output to,
potentially with a leading absolute or relative path. If
not specified, it defaults to source.sarif.

serialization=[json)]
Specify the serialization format to use when writing
out the SARIF. Currently this can only be json, but
is present as an extension point for experimenting with
other serializations.

version=[2.1|2.2-prerelease]
Specify the version of SARIF to use for the output. If
not specified, defaults to 2.1. 2.2-prerelease uses an
unofficial draft of the future SARIF 2.2 specification
and should only be used for experimentation in this
release.

There is also this key intended for use by GCC developers, rather
than end-users, and subject to change or removal without notice:

state-graphs=[yes|no]
This is a debugging feature and defaults to no. If
state-graphs=yes, then attempt to capture detailed
state information from -fanalyzer in the generated
SARIF.

Chapter 3: GCC Command Options 99

experimental-html
Emit diagnostics to a file in HTML format. This scheme is exper-
imental, and may go away in future GCC releases. The keys and
details of the output are also subject to change.

Supported keys for the experimental-html scheme are:

css=[yes|no]
Add an embedded <style> to the generated HTML. De-
faults to yes.

file=FILENAME
Specify the filename to write the HTML output to,
potentially with a leading absolute or relative path. If
not specified, it defaults to source.html.

javascript=[yes|no]
Add an embedded <script> to the generated HTML
providing a barebones Ul for viewing results. Defaults
to yes.

There are also these keys intended for use by GCC developers,
rather than end-users, and subject to change or removal without
notice:

show-state-diagrams=[yes|no]

This is a debugging feature and defaults to no. If
show-state-diagrams=yes, then attempt to use dot
to generate SVG diagrams in the generated HTML, vi-
sualizing the state at each event in a diagnostic path.
These are visible by pressing “j” and “k” to single-step
forward and backward through events. Enabling this
option will slow down HTML generation.

show-graph-dot-src=[yes|no]
This is a debugging feature and defaults to no. If
show-graph-dot-src=yes then if show-state-
diagrams=yes, the generated state diagrams will also
show the .dot source input to GraphViz used for the
diagram.

show-graph-sarif=|yes|no]
This is a debugging feature and defaults to no. If show-
graph-sarif=yes then if show-state-diagrams=yes,
the generated state diagrams will also show a SARIF
representation of the state.

As well as scheme-specific keys, the following GCC-related key is usable on
sinks of any scheme:

cfgs=[yes|no]
If cfgs=yes for a sink, then GCC will attempt to send information
to that sink about the control flow graphs for the functions it is

100 Using the GNU Compiler Collection (GCC)

compiling. Text sinks ignore the information. SARIF sinks will
add the graphs within theRun.graphs. HTML sinks will generate
SVG displaying the graphs. The precise form of the information is
subject to change without notice.

For example,
-fdiagnostics-add-output=sarif:version=2.1,file=foo.2.1.sarif
-fdiagnostics-add-output=sarif:version=2.2-prerelease,file=fo0.2.2.sarif

would add a pair of outputs, each writing to a different file, using versions 2.1
and 2.2 of the SARIF standard respectively.

In EBNF:
diagnostics-output-specifier = diagnostics—output-name
| diagnostics-output-name, ":", key-value-pairs;
& P Y P
diagnostics-output-name = "text" | "sarif" | "experimental-html";
key-value-pairs = key-value-pair
| key-value-pair "," key-value-pairs;
key-value-pair = key "=" value;
key = 7 string without a '=' 7?7 ;
value = ? string without a ',' 7 ;

-fdiagnostics-set-output=DIAGNOSTICS-OUTPUT-SPEC
This works in a similar way to -fdiagnostics-add-output= except that in-
stead of adding an additional “output sink” for diagnostics, it replaces all exist-
ing output sinks, such as from -fdiagnostics-format=, ~-fdiagnostics-add-
output=, or a prior call to ~-fdiagnostics-set-output=.

-fno-diagnostics-json-formatting
By default, when JSON is emitted for diagnostics (via -fdiagnostics-
format=sarif-stderr or -fdiagnostics-format=sarif-file), GCC will
add newlines and indentation to visually emphasize the hierarchical structure

of the JSON.

Use -fno-diagnostics-json-formatting to suppress this whitespace. It must
be passed before the option it is to affect.

This is intended for compatibility with tools that do not expect the output to
contain newlines, such as that emitted by older GCC releases.

3.9 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

Chapter 3: GCC Command Options 101

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If nis 0
(the default), there is no limit on the number of error messages produced. If
-Wfatal-errors is also specified, then -Wfatal-errors takes precedence over
this option.

-w
--no-warnings
Inhibit all warning messages.

-Werror Turn all warnings into errors.

-Werror= Turn the specified warning into an error. The specifier for a warning is
appended; for example -Werror=switch turns the warnings controlled by
-Wswitch into errors. This switch takes a negative form, to be used to
negate -Werror for specific warnings; for example -Wno-error=switch makes
-Wswitch warnings not be errors, even when -Werror is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ~-Werror= and -Wno-
error= as described above. (Printing of the option in the warning message can
be disabled using the -fno-diagnostics-show-option flag.)

Note that specifying ~Werror=foo automatically implies -Wfoo. However, -Wno-
error=foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
-Wunused-variable to request warnings on declarations of variables that are never used.
Fach of these specific warning options also has a negative form beginning with ‘-Wno-’ to
turn off warnings; for example, ~-Wno-unused-variable. This manual lists only one of the
two forms, whichever is not the default. For further language-specific options also refer to
Section 3.5 [C++ Dialect Options|, page 52, and Section 3.6 [Objective-C and Objective-
C++ Dialect Options], page 82. Additional warnings can be produced by enabling the static
analyzer; See Section 3.10 [Static Analyzer Options|, page 169.

Some options, such as -Wall and -Wextra, turn on other options, such as -Wunused,
which may turn on further options, such as -Wunused-variable. The combined effect of
positive and negative forms is that more specific options have priority over less specific ones,
independently of their position in the command line. For options of the same specificity, the
last one takes effect. Options enabled or disabled via pragmas (see Section 6.5.13 [Diagnostic
Pragmas|, page 751) take effect as if they appeared at the end of the command line.

When an unrecognized warning option is requested (e.g., ~Wunknown-warning), GCC
gives an error stating that the option is not recognized. However, if the -Wno- form is used,
the behavior is slightly different: no diagnostic is produced for -Wno-unknown-warning
unless other diagnostics are being produced. This allows the use of new -Wno- options with
old compilers, but if something goes wrong, the compiler warns that an unrecognized option
is present.

102 Using the GNU Compiler Collection (GCC)

The effectiveness of some warnings depends on optimizations also being enabled. For
example, -Wsuggest-final-types is more effective with link-time optimization. Some
other warnings may not be issued at all unless optimization is enabled. While optimization
in general improves the efficacy of warnings about control and data-flow problems, in some
cases it may also cause false positives.

-Wpedantic

-pedantic

—--pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; diagnose all
programs that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. This follows the version of the ISO C or C++
standard specified by any -std option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require -ansi or a -std option specifying the
version of the standard). However, without this option, certain GNU extensions
and traditional C and C++ features are supported as well. With this option,
they are diagnosed (or rejected with -pedantic-errors).

-Wpedantic does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. This alternate format can also be used to
disable warnings for non-ISO ‘__intN’ types, i.e. ‘__intN__’. Pedantic warn-

ings are also disabled in the expression that follows __extension__. However,

only system header files should use these escape routes; application programs
should avoid them. See Section 6.12.23 [Alternate Keywords|, page 833.

Some warnings about non-conforming programs are controlled by options other
than -Wpedantic; in many cases they are implied by -Wpedantic but can be
disabled separately by their specific option, e.g. -Wpedantic -Wno-pointer-—
sign.

Where the standard specified with -std represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’, there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
-Wpedantic are given where they are required by the base standard. (It does not
make sense for such warnings to be given only for features not in the specified
GNU C dialect, since by definition the GNU dialects of C include all features
the compiler supports with the given option, and there would be nothing to
warn about.)

-pedantic-errors

—--pedantic-errors
Give an error whenever the base standard (see -Wpedantic) requires a diagnos-
tic, in some cases where there is undefined behavior at compile-time and in some
other cases that do not prevent compilation of programs that are valid accord-
ing to the standard. This is not equivalent to -Werror=pedantic: the latter
option is unlikely to be useful, as it only makes errors of the diagnostics that are
controlled by -Wpedantic, whereas this option also affects required diagnostics
that are always enabled or controlled by options other than -Wpedantic.

Chapter 3: GCC Command Options 103

If you want the required diagnostics that are warnings by default to be er-
rors instead, but don’t also want to enable the -Wpedantic diagnostics, you
can specify -pedantic-errors -Wno-pedantic (or -pedantic-errors -Wno-
error=pedantic to enable them but only as warnings).

Some required diagnostics are errors by default, but can be reduced
to warnings using -fpermissive or their specific warning option, e.g.
-Wno-error=narrowing.

Some diagnostics for non-ISO practices are controlled by specific warning op-
tions other than -Wpedantic, but are also made errors by -pedantic-errors.
For instance:

-Wattributes (for standard attributes)
-Wchanges-meaning (C++)

-Wcomma-subscript (C++23 or later)
-Wdeclaration-after-statement (C90 or earlier)
-Welaborated-enum-base (C++11 or later)
-Wimplicit-int (C99 or later)
-Wimplicit-function-declaration (C99 or later)
-Wincompatible-pointer-types
-Wint-conversion

-Wlong-long (C90 or earlier)

-Wmain

-Wnarrowing (C++11 or later)

-Wpointer-arith

-Wpointer-sign

-Wincompatible-pointer-types

-Wregister (C++17 or later)

-Wvla (C90 or earlier)

-Wwrite-strings (C++11 or later)

-fpermissive
Downgrade some required diagnostics about nonconformant code from errors
to warnings. Thus, using -fpermissive allows some nonconforming code to
compile. Some C++ diagnostics are controlled only by this flag, but it also
downgrades some C and C++ diagnostics that have their own flag:

-Wabbreviated-auto-in-template-arg (C++ and Objective-C++ only)
-Wdeclaration-missing-parameter-type (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wimplicit-int (C and Objective-C only)
-Wincompatible-pointer-types (C and Objective-C only)
-Wint-conversion (C and Objective-C only)

-Wnarrowing (C++ and Objective-C++ only)

-Wreturn-mismatch (C and Objective-C only)

-Wtemplate-body (C++ and Objective-C++ only)

The -fpermissive option is the default for historic C language modes
(-std=c89, -std=gnu89, -std=c90, -std=gnu90).

104 Using the GNU Compiler Collection (GCC)

-Wall

-—all-warnings
This enables all the warnings about constructions that some users consider ques-
tionable, and that are easy to avoid (or modify to prevent the warning), even
in conjunction with macros. This also enables some language-specific warn-
ings described in Section 3.5 [C++ Dialect Options], page 52, and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 82.

-Wall turns on the following warning flags:

-Waddress

-Waligned-new (C++ and Objective-C++ only)
-Warray-bounds=1 (only with -02)

-Warray-compare

-Warray-parameter=2

-Wbool-compare

-Wbool-operation

-Wc++1l-compat -Wc++1l4-compat -Wc++17compat -Wc++20compat
-Wcatch-value (C++ and Objective-C++ only)
-Wchar-subscripts

-Wclass-memaccess (C++ and Objective-C++ only)
-Wcomment

-Wdangling-else

-Wdangling-pointer=2

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
-Wduplicate-decl-specifier (C and Objective-C only)
-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wenum-int-mismatch (C and Objective-C only)
-Wformat=1

-Wformat-contains-nul

-Wformat-diag

-Wformat-extra-args

-Wformat-overflow=1

-Wformat-truncation=1

-Wformat-zero-length

-Wframe-address

-Wimplicit (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wimplicit-int (C and Objective-C only)
-Winfinite-recursion

-Winit-self (C++ and Objective-C++ only)
-Wint-in-bool-context

-Wlogical-not-parentheses

-Wmain (only for C/ObjC and unless -ffreestanding)
-Wmaybe-uninitialized

-Wmemset-elt-size

-Wmemset-transposed-args

-Wmisleading-indentation (only for C/C++)
-Wmismatched-dealloc

-Wmismatched-new-delete (C++ and Objective-C++ only)
-Wmissing-attributes

-Wmissing-braces (only for C/ObjC)
-Wmultistatement-macros

-Wnarrowing (C++ and Objective-C++ only)

-Wnonnull

-Wnonnull-compare

-Wopenmp-simd (C and C++ only)
-Woverloaded-virtual=1 (C++ and Objective-C++ only)

Chapter 3: GCC Command Options 105

-Wpacked-not-aligned

-Wparentheses

-Wpessimizing-move (C++ and Objective-C++ only)
-Wpointer-sign (only for C/ObjC)
-Wrange-loop-construct (C++ and Objective-C++ only)
-Wreorder (C++ and Objective-C++ only)
-Wrestrict

-Wreturn-type

-Wself-move (C++ and Objective-C++ only)
-Wsequence-point

-Wsign-compare (C++ and Objective-C++ only)
-Wsizeof-array-div

-Wsizeof-pointer-div
-Wsizeof-pointer-memaccess
-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtautological-compare

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused

-Wunused-but-set-variable
-Wunused-const-variable=1 (only for C/ObjC)
-Wunused-function

-Wunused-label

-Wunused-local-typedefs

-Wunused-value

-Wunused-variable

-Wuse-after-free=2

-Wvla-parameter

-Wvolatile-register-var
-Wzero-length-bounds

Note that some warning flags are not implied by -Wall. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to
modify the code to suppress the warning. Some of them are enabled by -Wextra
but many of them must be enabled individually.

-Wextra

-—extra-warnings
This enables some extra warning flags that are not enabled by -Wall. (This
option used to be called -W. The older name is still supported, but the newer
name is more descriptive.)

-Wabsolute-value (only for C/ObjC)
-Walloc-size
-Wcalloc-transposed-args
-Wcast-function-type

-Wclobbered

-Wdangling-reference (C++ only)
-Wdeprecated-copy (C++ and Objective-C++ only)
-Wempty-body

-Wenum-conversion (only for C/ObjC)
-Wexpansion-to-defined
-Wignored-qualifiers (only for C/C++)

106 Using the GNU Compiler Collection (GCC)

-Wimplicit-fallthrough=3
-Wmaybe-uninitialized
-Wmissing-field-initializers
-Wmissing-parameter-name (C/ObjC only)
-Wmissing-parameter-type (C/ObjC only)
-Wold-style-declaration (C/ObjC only)
-Wmultiple-parameter-fwd-decl-lists (C/ObjC only)
-Woverride-init (C/ObjC only)
-Wredundant-move (C++ and Objective-C++ only)
-Wshift-negative-value (in C++11 to C++17 and in C99 and newer)
-Wsign-compare (C++ and Objective-C++ only)
-Wsized-deallocation (C++ and Objective-C++ only)
-Wstring-compare
-Wtype-limits
-Wuninitialized
-Wunterminated-string-initialization (C/ObjC only)
-Wunused-parameter (only with -Wunused or -Wall)
-Wunused-but-set-parameter (only with -Wunused or -Wall)

The option -Wextra also prints warning messages for the following cases:

e A pointer is compared against integer zero with <, <=, > or >=.

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) Ambiguous virtual bases.
e (C++ only) Subscripting an array that has been declared register.

e (C++ only) Taking the address of a variable that has been declared
register.

e (C++only) A base class is not initialized in the copy constructor of a derived
class.

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn about code affected by ABI changes. This includes code that may not
be compatible with the vendor-neutral C++ ABI as well as the psABI for the
particular target. The latter warnings are also controlled separately by -Wpsabi,
which is implied by -Wabi.
Since G++ now defaults to updating the ABI with each major release, normally
-Wabi warns only about C++ ABI compatibility problems if there is a check
added later in a release series for an ABI issue discovered since the initial
release. -Wabi warns about more things if an older ABI version is selected
(with -fabi-version=n).
-Wabi can also be used with an explicit version number to warn about C++
ABI compatibility with a particular ~-fabi-version level, e.g. -Wabi=2 to warn
about changes relative to -fabi-version=2.

If an explicit version number is provided and -fabi-compat-version is not
specified, the version number from this option is used for compatibility aliases.
If no explicit version number is provided with this option, but -fabi-compat-
version is specified, that version number is used for C++ ABI warnings.

Although an effort has been made to warn about all such cases, there are
probably some cases that are not warned about, even though G++ is generating

Chapter 3: GCC Command Options 107

incompatible code. There may also be cases where warnings are emitted even
though the code that is generated is compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

Known incompatibilities in ~fabi-version=2 (which was the default from GCC
3.4 to 4.9) include:

e A template with a non-type template parameter of reference type was
mangled incorrectly:

extern int N;
template <int &> struct S {};
void n (8<N>) {2}

This was fixed in -fabi-version=3.
e SIMD vector types declared using __attribute ((vector_size)) were

mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling was changed in -fabi-version=4.

e __attribute ((const)) and noreturn were mangled as type qualifiers,
and decltype of a plain declaration was folded away.

These mangling issues were fixed in -fabi-version=>5.

e Scoped enumerators passed as arguments to a variadic function are pro-
moted like unscoped enumerators, causing va_arg to complain. On most
targets this does not actually affect the parameter passing ABI, as there is
no way to pass an argument smaller than int.

Also, the ABI changed the mangling of template argument packs, const_
cast, static_cast, prefix increment/decrement, and a class scope func-
tion used as a template argument.

These issues were corrected in -fabi-version=6.

e Lambdas in default argument scope were mangled incorrectly, and the ABI
changed the mangling of nullptr_t.
These issues were corrected in -fabi-version=7.

e When mangling a function type with function-cv-qualifiers, the un-qualified
function type was incorrectly treated as a substitution candidate.
This was fixed in -fabi-version=8, the default for GCC 5.1.

e decltype(nullptr) incorrectly had an alignment of 1, leading to un-
aligned accesses. Note that this did not affect the ABI of a function with
a nullptr_t parameter, as parameters have a minimum alignment.
This was fixed in -fabi-version=9, the default for GCC 5.2.

e Target-specific attributes that affect the identity of a type, such as ia32
calling conventions on a function type (stdcall, regparm, etc.), did not

affect the mangled name, leading to name collisions when function pointers
were used as template arguments.

This was fixed in -fabi-version=10, the default for GCC 6.1.

108 Using the GNU Compiler Collection (GCC)

-Wpsabi (C, Objective-C, C++ and Objective-C++ only)

-Wpsabi enables warnings about processor-specific ABI changes, such as
changes in alignment requirements or how function arguments are passed.
On several targets, including AArch64, ARM, x86, MIPS, RS6000/PowerPC,
and S/390, these details have changed between different versions of GCC
and/or different versions of the C or C++ language standards in ways that
affect binary compatibility of compiled code. With -Wpsabi, GCC can detect
potentially incompatible usages and warn you about them.

-Wpsabi is enabled by default, and is also implied by -Wabi.

-Wno-changes-meaning (C++ and Objective-C++ only)

C++ requires that unqualified uses of a name within a class have the same
meaning in the complete scope of the class, so declaring the name after using
it is ill-formed:

struct A;

struct Bl { A a; typedef A A; }; // warning, 'A' changes meaning

struct B2 { A a; struct A { }; }; // error, 'A' changes meaning
By default, the B1 case is only a warning because the two declarations have
the same type, while the B2 case is an error. Both diagnostics can be disabled
with -Wno-changes-meaning. Alternately, the error case can be reduced to a
warning with -Wno-error=changes-meaning or -fpermissive.
Both diagnostics are also suppressed by -fms-extensions.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by -Wall.

-Wno-coverage-mismatch
Warn if feedback profiles do not match when using the -fprofile-use option.
If a source file is changed between compiling with -fprofile-generate and
with -fprofile-use, the files with the profile feedback can fail to match the
source file and GCC cannot use the profile feedback information. By default,
this warning is enabled and is treated as an error. -Wno-coverage-mismatch
can be used to disable the warning or -Wno-error=coverage-mismatch can be
used to disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is not
recommended.

-Wno-coverage-too-many-conditions
Warn if -fcondition-coverage is used and an expression have too many terms
and GCC gives up coverage. Coverage is given up when there are more terms
in the conditional than there are bits in a gcov_type_unsigned. This warning
is enabled by default.

-Wno-coverage-too-many-paths
Warn if -fpath-coverage is used and a function has too many paths and GCC
gives up coverage. Giving up is controlled by -fpath-coverage-limit. This
warning is enabled by default.

Chapter 3: GCC Command Options 109

-Wno-coverage-invalid-line—-number
Warn in case a function ends earlier than it begins due to an invalid linenum
macros. The warning is emitted only with --coverage enabled.

By default, this warning is enabled and is treated as an error. -Wno-
coverage-invalid-line-number can be used to disable the warning or
-Wno-error=coverage-invalid-line-number can be used to disable the
error.

-Wno-cpp (C, Objective-C, C++, Objective-C++ and Fortran only)
Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)
Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:

float area(float radius)
{
return 3.14159 * radius * radius;
}
the compiler performs the entire computation with double because the floating-
point literal is a double.

-Wduplicate-decl-specifier (C and Objective-C only)
Warn if a declaration has duplicate const, volatile, restrict or _Atomic
specifier. This warning is enabled by -Wall.

-Wformat

-Wformat=n
Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.4.1 [Function Attributes],
page 629), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by -ffreestanding or -fno-builtin.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not
support warning about features that go beyond a particular library’s limitations.
However, if ~-Wpedantic is used with ~-Wformat, warnings are given about format
features not in the selected standard version (but not for strfmon formats,

110 Using the GNU Compiler Collection (GCC)

since those are not in any version of the C standard). See Section 3.4 [Options
Controlling C Dialect], page 45.

-Wformat=1

-Wformat Option -Wformat is equivalent to -Wformat=1, and -Wno-format
is equivalent to -Wformat=0. Since -Wformat also checks for
null format arguments for several functions, -Wformat also
implies -Wnonnull. Some aspects of this level of format checking
can be disabled by the options: -Wno-format-contains-
nul, -Wno-format-diag, -Wno-format-extra-args, and
-Wno-format-zero-length. -Wformat is enabled by -Wall.

-Wformat=2
FEnable -Wformat plus additional format checks. Currently equiv-
alent to -Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k.

-Wno-format-contains—-nul
If -Wformat is specified, do not warn about format strings that contain NUL
bytes.

-Wno-format-diag
If -Wformat is specified, do not warn about format strings that are unsuitable
for GCC diagnostics.

-Wno-format-extra-args
If -Wformat is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option sup-
presses the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

-Wformat-overflow

-Wformat-overflow=level
Warn about calls to formatted input/output functions such as sprintf and
vsprintf that might overflow the destination buffer. When the exact number
of bytes written by a format directive cannot be determined at compile-time
it is estimated based on heuristics that depend on the level argument and
on optimization. While enabling optimization will in most cases improve the
accuracy of the warning, it may also result in false positives.

-Wformat-overflow

-Wformat-overflow=1
Level 1 of -Wformat-overflow enabled by -Wformat employs a
conservative approach that warns only about calls that most likely
overflow the buffer. At this level, numeric arguments to format di-
rectives with unknown values are assumed to have the value of one,

Chapter 3: GCC Command Options 111

and strings of unknown length to be empty. Numeric arguments
that are known to be bounded to a subrange of their type, or string
arguments whose output is bounded either by their directive’s pre-
cision or by a finite set of string literals, are assumed to take on the
value within the range that results in the most bytes on output. For
example, the call to sprintf below is diagnosed because even with
both a and b equal to zero, the terminating NUL character ('\0")
appended by the function to the destination buffer will be written
past its end. Increasing the size of the buffer by a single byte is
sufficient to avoid the warning, though it may not be sufficient to
avoid the overflow.

void f (int a, int b)

¢ char buf [13];

sprintf (buf, "a = %i, b = %i\n", a, b);
}

-Wformat-overflow=2

Level 2 warns also about calls that might overflow the destination
buffer given an argument of sufficient length or magnitude. At level
2, unknown numeric arguments are assumed to have the minimum
representable value for signed types with a precision greater than 1,
and the maximum representable value otherwise. Unknown string
arguments whose length cannot be assumed to be bounded either
by the directive’s precision, or by a finite set of string literals they
may evaluate to, or the character array they may point to, are
assumed to be 1 character long.

At level 2, the call in the example above is again diagnosed, but this
time because with a equal to a 32-bit INT_MIN the first %i direc-
tive will write some of its digits beyond the end of the destination
buffer. To make the call safe regardless of the values of the two
variables, the size of the destination buffer must be increased to at
least 34 bytes. GCC includes the minimum size of the buffer in an
informational note following the warning.

An alternative to increasing the size of the destination buffer is to
constrain the range of formatted values. The maximum length of
string arguments can be bounded by specifying the precision in the
format directive. When numeric arguments of format directives can
be assumed to be bounded by less than the precision of their type,
choosing an appropriate length modifier to the format specifier will
reduce the required buffer size. For example, if a and b in the
example above can be assumed to be within the precision of the
short int type then using either the %hi format directive or casting
the argument to short reduces the maximum required size of the
buffer to 24 bytes.
void f (int a, int b)

{
char buf [23];

112 Using the GNU Compiler Collection (GCC)

sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
}

-Wno-format-zero-length
If -Wformat is specified, do not warn about zero-length formats. The C standard
specifies that zero-length formats are allowed.

-Wformat-nonliteral
If -Wformat is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
ava_list.

-Wformat-security

If -Wformat is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo) ;. This may be a security hole if
the format string came from untrusted input and contains ‘%n’. (This is cur-
rently a subset of what -Wformat-nonliteral warns about, but in future warn-
ings may be added to -Wformat-security that are not included in -Wformat-
nonliteral.)

-Wformat-signedness
If -Wformat is specified, also warn if the format string requires an unsigned
argument and the argument is signed and vice versa.

-Wformat-truncation

-Wformat-truncation=level
Warn about calls to formatted input/output functions such as snprintf and
vsnprintf that might result in output truncation. When the exact number
of bytes written by a format directive cannot be determined at compile-time
it is estimated based on heuristics that depend on the level argument and
on optimization. While enabling optimization will in most cases improve the
accuracy of the warning, it may also result in false positives. Except as noted
otherwise, the option uses the same logic -Wformat-overflow.

-Wformat-truncation

-Wformat-truncation=1
Level 1 of -Wformat-truncation enabled by -Wformat employs
a conservative approach that warns only about calls to bounded
functions whose return value is unused and that will most likely
result in output truncation.

-Wformat-truncation=2
Level 2 warns also about calls to bounded functions whose return
value is used and that might result in truncation given an argument
of sufficient length or magnitude.

-Wformat-y2k
If -Wformat is specified, also warn about strftime formats that may yield only
a two-digit year.

Chapter 3: GCC Command Options 113

-Wnonnull

-Wnonnull-

Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

-Wnonnull is included in -Wall and -Wformat. It can be disabled with the
-Wno-nonnull option.

compare
Warn when comparing an argument marked with the nonnull function at-
tribute against null inside the function.

-Wnonnull-compare is included in -Wall. It can be disabled with the -Wno-
nonnull-compare option.

-Wnull-dereference

Warn if the compiler detects paths that trigger erroneous or undefined behavior
due to dereferencing a null pointer. This option is only active when -fdelete-
null-pointer-checks is active, which is enabled by optimizations in most
targets. The precision of the warnings depends on the optimization options
used.

-Wno-musttail-local-addr

Do not warn about passing a pointer (or in C++, a reference) to a local variable
or label to argument of a musttail call. Those variables go out of scope before
the tail call instruction.

-Wmaybe-musttail-local-addr

Warn when address of a local variable can escape to a musttail call, unless it
goes out of scope already before the musttail call.

int foo (int *);

int
bar (int *x)
{
if (x[0] == 1)
{
int a = 42;
foo (&a);
/* Without the musttail attribute this call would not
be tail called, because address of the a variable escapes
and the second foo call could dereference it. With the attribute
the local variables are assumed to go out of scope immediately
before the tail call instruction and the compiler warns about
this. */
[[gnu: :musttail]] return foo (nullptr);
}
else
{
{
int a = 42;
foo (&a);
}

/* The a variable isn't already in scope, so even when it
escaped, even without musttail attribute it would be
undefined behavior to dereference it and the compiler could
turn this into a tail call. No warning is diagnosed here. */

114 Using the GNU Compiler Collection (GCC)

[[gnu: :musttail]] return foo (nullptr);
}
}

This warning is enabled by -Wextra.

-Wnrvo (C++ and Objective-C++ only)
Warn if the compiler does not elide the copy from a local variable to the return
value of a function in a context where it is allowed by [class.copy.elision]. This
elision is commonly known as the Named Return Value Optimization. For
instance, in the example below the compiler cannot elide copies from both v1
and v2, so it elides neither.

std: :vector<int> f()
{
std: :vector<int> vl, v2;
/] ...
if (cond) return vi;
else return v2; // warning: not eliding copy

}
-Winfinite-recursion
Warn about infinitely recursive calls. The warning is effective at all optimization

levels but requires optimization in order to detect infinite recursion in calls
between two or more functions. -Winfinite-recursion is included in -Wall.

Compare with -Wanalyzer-infinite-recursion which provides a similar di-
agnostic, but is implemented in a different way (as part of ~fanalyzer).

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the -Wuninitialized option.

For example, GCC warns about i being uninitialized in the following snippet
only when -Winit-self has been specified:

int £()

{
int i = i;
return i;

}
This warning is enabled by -Wall in C++.

-Wno-implicit-int (C and Objective-C only)
This option controls warnings when a declaration does not specify a type.
This warning is enabled by default, as an error, in C99 and later dialects
of C, and also by -Wall. The error can be downgraded to a warning using
-fpermissive (along with certain other errors), or for this error alone, with
-Wno-error=implicit-int.
This warning is upgraded to an error by -pedantic-errors.

-Wno-implicit-function-declaration (C and Objective-C only)
This option controls warnings when a function is used before being declared.
This warning is enabled by default, as an error, in C99 and later dialects
of C, and also by -Wall. The error can be downgraded to a warning using
-fpermissive (along with certain other errors), or for this error alone, with
-Wno-error=implicit-function-declaration.

Chapter 3: GCC Command Options 115

This warning is upgraded to an error by -pedantic-errors.

-Wimplicit (C and Objective-C only)
Same as -Wimplicit-int and -Wimplicit-function-declaration. This
warning is enabled by -Wall.

-Whardened
Warn when -fhardened did not enable an option from its set (for which see
-fhardened). For instance, using -fhardened and -fstack-protector at the
same time on the command line causes -Whardened to warn because -fstack-
protector-strong will not be enabled by -fhardened.

This warning is enabled by default and has effect only when -fhardened is
enabled.

-Wimplicit-fallthrough
-Wimplicit-fallthrough is the same as -Wimplicit-fallthrough=3 and
-Wno-implicit-fallthrough is the same as -Wimplicit-fallthrough=0.

-Wimplicit-fallthrough=n
Warn when a switch case falls through. For example:

switch (cond)
{
case 1:
a=1;
break;
case 2:
a = 2;
case 3:
a = 3;
break;

}

This warning does not warn when the last statement of a case cannot fall
through, e.g. when there is a return statement or a call to function declared
with the noreturn attribute. -Wimplicit-fallthrough= also takes into account
control flow statements, such as ifs, and only warns when appropriate. E.g.

switch (cond)
{
case 1:
if (i > 3) {
bar (5);
break;
} else if (i < 1) {
bar (0);
} else
return;
default:

N ..

Since there are occasions where a switch case fall through is desirable, GCC
provides an attribute, __attribute__ ((fallthrough)), that is to be used
along with a null statement to suppress this warning that would normally occur:

116

Using the GNU Compiler Collection (GCC)

switch (cond)
{

case 1:

bar (0);

__attribute__ ((fallthrough));
default:
}

C++17 and C23 provide a standard way to suppress the -Wimplicit-
fallthrough warning using [[fallthroughll]; instead of the GNU attribute.
In C++11 or C++14 users can use [[gnu::fallthroughl];, which is a GNU
extension. Instead of these attributes, it is also possible to add a fallthrough
comment to silence the warning. The whole body of the C or C++ style
comment should match the given regular expressions listed below. The option
argument n specifies what kind of comments are accepted:

e -Wimplicit-fallthrough=0 disables the warning altogether.

e -Wimplicit-fallthrough=1 matches .* regular expression, any comment
is used as fallthrough comment.

e -Wimplicit-fallthrough=2 case insensitively matches .*falls?[
\t-1*thr (ough|u) . * regular expression.

e -Wimplicit-fallthrough=3 case sensitively matches one of the following
regular expressions:

e -fallthrough
e Q@fallthrough@
e lint -fallthrough[\t]*

e [\t.!]*(ELSE,? |INTENTIONAL(LY)?)7
FALL(S | |-)?THR(OUGHIU) [\t.!I*(-=["\n\rl*)?

e [\t.!]*(Else,? |Intentional(ly)?)7
Fall((s | |-)[Tt] It)hr(oughlu) [\t.!I*(-["\n\r]*)?

o [\t.!1*([Eellse,? |[Iilntentional(ly)?)?
fall(s | |-)7thr(oughlw) [\t.!1*(-["\n\rl*)?

e -Wimplicit-fallthrough=4 case sensitively matches one of the following
regular expressions:

e -fallthrough
e @fallthrough@
e lint -fallthrough[\t]x*
e [\t]*FALLTHR(OUGH|U) [\t]*
e -Wimplicit-fallthrough=5 doesn’t recognize any comments as

fallthrough comments, only attributes disable the warning.

The comment needs to be followed after optional whitespace and other com-
ments by case or default keywords or by a user label that precedes some case
or default label.

Chapter 3: GCC Command Options 117

switch (cond)
{
case 1:
bar (0);
/* FALLTHRU */
default:

}
The -Wimplicit-fallthrough=3 warning is enabled by -Wextra.

-Wno-if-not-aligned (C, C++, Objective-C and Objective-C++ only)

Control if warnings triggered by the warn_if_not_aligned attribute should be
issued. These warnings are enabled by default.

-Wignored-qualifiers (C and C++ only)

Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by -Wextra.

-Wno-ignored-attributes (C and C++ only)

-Wmain

This option controls warnings when an attribute is ignored. This is different
from the -Wattributes option in that it warns whenever the compiler decides
to drop an attribute, not that the attribute is either unknown, used in a wrong
place, etc. This warning is enabled by default.

Warn if the type of main is suspicious. main should be a function with external
linkage, returning int, taking either zero arguments, two, or three arguments of
appropriate types. This warning is enabled by default in C++ and is enabled
by either -Wall or -Wpedantic.

This warning is upgraded to an error by -pedantic-errors.

-Wmisleading-indentation (C and C++ only)

Warn when the indentation of the code does not reflect the block structure.
Specifically, a warning is issued for if, else, while, and for clauses with a
guarded statement that does not use braces, followed by an unguarded state-
ment with the same indentation.

In the following example, the call to “bar” is misleadingly indented as if it were
guarded by the “if” conditional.
if (some_condition ())
foo ();
bar (); /* Gotcha: this is not guarded by the "if". =x/
In the case of mixed tabs and spaces, the warning uses the -ftabstop= option
to determine if the statements line up (defaulting to 8).

The warning is not issued for code involving multiline preprocessor logic such
as the following example.

if (flagh)
foo (0);

118

Using the GNU Compiler Collection (GCC)

#if SOME_CONDITION_THAT_DOES_NOT_HOLD
if (flagB)
#endif
foo (1);
The warning is not issued after a #line directive, since this typically indicates
autogenerated code, and no assumptions can be made about the layout of the
file that the directive references.

This warning is enabled by -Wall in C and C++.

-Wmissing-attributes

Warn when a declaration of a function is missing one or more attributes that
a related function is declared with and whose absence may adversely affect the
correctness or efficiency of generated code. For example, the warning is issued
for declarations of aliases that use attributes to specify less restrictive require-
ments than those of their targets. This typically represents a potential opti-
mization opportunity. By contrast, the -Wattribute-alias=2 option controls
warnings issued when the alias is more restrictive than the target, which could
lead to incorrect code generation. Attributes considered include alloc_align,
alloc_size, cold, const, hot, leaf, malloc, nonnull, noreturn, nothrow,
pure, returns_nonnull, and returns_twice.

In C++, the warning is issued when an explicit specialization of a primary
template declared with attribute alloc_align, alloc_size, assume_aligned,
format, format_arg, malloc, or nonnull is declared without it. Attributes
deprecated, error, and warning suppress the warning. (see Section 6.4.1
[Function Attributes], page 629).

You can use the copy attribute to apply the same set of attributes to a
declaration as that on another declaration without explicitly enumerating
the attributes. This attribute can be applied to declarations of functions
(see Section 6.4.1.1 [Common Function Attributes], page 630), variables
(see Section 6.4.2.1 [Common Variable Attributes|, page 708), or types (see
Section 6.4.3.1 [Common Type Attributes|, page 724).

-Wmissing-attributes is enabled by -Wall.

For example, since the declaration of the primary function template below
makes use of both attribute malloc and alloc_size the declaration of the
explicit specialization of the template is diagnosed because it is missing one of
the attributes.

template <class T>
Tx __attribute__ ((malloc, alloc_size (1)))
allocate (size_t);

template <>
void* __attribute__ ((malloc)) // missing alloc_size
allocate<void> (size_t);

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for a is not fully bracketed, but that for b is fully
bracketed.

int af2][2] = {0, 1, 2, 3 };

Chapter 3: GCC Command Options 119

int b[2][21 ={ {0, 1}, {2,3%} 1}
This warning is enabled by -Wall.

-Wmissing-include-dirs (C, C++, Objective-C, Objective-C++ and Fortran only)
Warn if a user-supplied include directory does not exist. This option is dis-
abled by default for C, C++, Objective-C and Objective-C++. For Fortran, it is
partially enabled by default by warning for -I and -J, only.

-Wno-missing-profile

This option controls warnings if feedback profiles are missing when using the
-fprofile-use option. This option diagnoses those cases where a new function
or a new file is added between compiling with -fprofile-generate and with
-fprofile-use, without regenerating the profiles. In these cases, the profile
feedback data files do not contain any profile feedback information for the newly
added function or file respectively. Also, in the case when profile count data
(.gcda) files are removed, GCC cannot use any profile feedback information. In
all these cases, warnings are issued to inform you that a profile generation step is
due. Ignoring the warning can result in poorly optimized code. -Wno-missing-
profile can be used to disable the warning, but this is not recommended and
should be done only when non-existent profile data is justified.

-Wmismatched-dealloc

Warn for calls to deallocation functions with pointer arguments returned from
allocation functions for which the former isn’t a suitable deallocator. A pair of
functions can be associated as matching allocators and deallocators by use of
attribute malloc. Unless disabled by the -fno-builtin option the standard
functions calloc, malloc, realloc, and free, as well as the corresponding
forms of C++ operator new and operator delete are implicitly associated as
matching allocators and deallocators. In the following example mydealloc is
the deallocator for pointers returned from myalloc.

void mydealloc (voidx);

attribute__ ((malloc (mydealloc, 1))) voidx*

myalloc (size_t);

void f (void)

{
void *p = myalloc (32);
// ...use p...
free (p); // warning: not a matching deallocator for myalloc
mydealloc (p); // ok

}

In C++, the related option -Wmismatched-new-delete diagnoses mismatches

involving either operator new or operator delete.

Option -Wmismatched-dealloc is included in -Wall.

-Wmultistatement-macros
Warn about unsafe multiple statement macros that appear to be guarded by a
clause such as if, else, for, switch, or while, in which only the first statement
is actually guarded after the macro is expanded.

120 Using the GNU Compiler Collection (GCC)

For example:
#define DOIT x++; y++
if (c)
DOIT;
will increment y unconditionally, not just when ¢ holds. The can usually be
fixed by wrapping the macro in a do-while loop:

#define DOIT do { x++; y++; } while (0)
if (c¢)
DOIT;

This warning is enabled by -Wall in C and C++.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn if a comparison like x<=y<=z appears; this is equivalent to (x<=y 7 1
: 0) <= z, which is a different interpretation from that of ordinary mathemat-
ical notation.

Also warn for dangerous uses of the GNU extension to 7: with omitted middle
operand. When the condition in the ?: operator is a boolean expression, the
omitted value is always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.

For C++ this also warns for some cases of unnecessary parentheses in declara-
tions, which can indicate an attempt at a function call instead of a declaration:
{

// Declares a local variable called mymutex.
std: :unique_lock<std::mutex> (mymutex) ;
// User meant std::unique_lock<std::mutex> lock (mymutex);

}
This warning is enabled by -Wall.

-Wno-self-move (C++ and Objective-C++ only)
This warning warns when a value is moved to itself with std: :move. Such a
std: :move typically has no effect.
struct T {
};
void fn()

{
T t;

t = std::move (t);
}
This warning is enabled by -Wall.
-Wsequence-point
Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial

Chapter 3: GCC Command Options 121

ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The C++17 standard will define the order of evaluation of operands in more
cases: in particular it requires that the right-hand side of an assignment be
evaluated before the left-hand side, so the above examples are no longer unde-
fined. But this option will still warn about them, to help people avoid writing
code that is undefined in C and earlier revisions of C++.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discus-
sions of the problem, including proposed formal definitions, may be found on
the GCC readings page, at https://gcc.gnu.org/readings.html.

This warning is enabled by -Wall for C and C++.

-Wno-return-local-addr
Do not warn about returning a pointer (or in C++, a reference) to a variable
that goes out of scope after the function returns.

-Wreturn-mismatch
Warn about return statements without an expressions in functions which do
not return void. Also warn about a return statement with an expression in
a function whose return type is void, unless the expression type is also void.
As a GNU extension, the latter case is accepted without a warning unless
-Wpedantic is used.

Attempting to use the return value of a non-void function other than main
that flows off the end by reaching the closing curly brace that terminates the
function is undefined.

https://gcc.gnu.org/readings.html

122 Using the GNU Compiler Collection (GCC)

This warning is specific to C and enabled by default. In C99 and later language
dialects, it is treated as an error. It can be downgraded to a warning using
-fpermissive (along with other warnings), or for just this warning, with -Wno-
error=return-mismatch.

-Wreturn-type
Warn whenever a function is defined with a return type that defaults to int
(unless -Wimplicit-int is active, which takes precedence). Also warn if execu-
tion may reach the end of the function body, or if the function does not contain
any return statement at all.

Attempting to use the return value of a non-void function other than main
that flows off the end by reaching the closing curly brace that terminates the
function is undefined.

Unlike in C, in C++, flowing off the end of a non-void function other than main
results in undefined behavior even when the value of the function is not used.

This warning is enabled by default in C++ and by -Wall otherwise.

-Wno-shift-count-negative
Controls warnings if a shift count is negative. This warning is enabled by
default.

-Wno-shift-count-overflow
Controls warnings if a shift count is greater than or equal to the bit width of
the type. This warning is enabled by default.

-Wshift-negative-value
Warn if left shifting a negative value. This warning is enabled by -Wextra in
C99 (and newer) and C++11 to C++17 modes.

-Wno-shift-overflow
-Wshift-overflow=n
These options control warnings about left shift overflows.

-Wshift-overflow=1
This is the warning level of ~-Wshift-overflow and is enabled by
default in C99 and C++11 modes (and newer). This warning level
does not warn about left-shifting 1 into the sign bit. (However, in
C, such an overflow is still rejected in contexts where an integer
constant expression is required.) No warning is emitted in C++20
mode (and newer), as signed left shifts always wrap.

-Wshift-overflow=2
This warning level also warns about left-shifting 1 into the sign bit,
unless C++14 mode (or newer) is active.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels that do not correspond
to enumerators also provoke warnings when this option is used, unless the enu-
meration is marked with the flag_enum attribute. This warning is enabled by
-Wall.

Chapter 3: GCC Command Options 123

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
that do not correspond to enumerators also provoke warnings when this option
is used, unless the enumeration is marked with the flag_enum attribute. The
only difference between -Wswitch and this option is that this option gives a
warning about an omitted enumeration code even if there is a default label.

-Wno-switch-bool
Do not warn when a switch statement has an index of boolean type and the
case values are outside the range of a boolean type. It is possible to suppress
this warning by casting the controlling expression to a type other than bool.
For example:

switch ((int) (a == 4))
{

This warning is enabled by default for C and C++ programs.

-Wno-switch-outside-range
This option controls warnings when a switch case has a value that is outside
of its respective type range. This warning is enabled by default for C and C++
programs.

-Wno-switch—unreachable
Do not warn when a switch statement contains statements between the con-
trolling expression and the first case label, which will never be executed. For
example:

switch (cond)

{
i = 15;
.éése 5:
}
-Wswitch-unreachable does not warn if the statement between the controlling

expression and the first case label is just a declaration:

switch (cond)

{
int i;
.éése 5:
i = b;
This warning is enabled by default for C and C++ programs.
-Wsync-nand (C and C++ only)

Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in
functions are used. These functions changed semantics in GCC 4.4.

124 Using the GNU Compiler Collection (GCC)

-Wtrivial-auto-var-init
Warn when -ftrivial-auto-var-init cannot initialize the automatic vari-
able. A common situation is an automatic variable that is declared between
the controlling expression and the first case label of a switch statement.

-Wunused-but-set-parameter
-Wunused-but-set-parameter is the same as -Wunused-but-set-
parameter=3 and -Wno-unused-but-set-parameter is the same as
-Wunused-but-set-parameter=0.

-Wunused-but-set-parameter=n
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).

To suppress this warning use the unused attribute (see Section 6.4.2 [Variable
Attributes], page 707).

-Wunused-but-set-parameter=0 disables the warning. With -Wunused-but-
set-parameter=1 all uses except initialization and left hand side of assign-
ment which is not further used disable the warning. With ~-Wunused-but-set-
parameter=2 additionally uses of parameter in ++ and —- operators don’t count
as uses. And finally with -Wunused-but-set-parameter=3 additionally uses
in parm @= rhs outside of rhs don’t count as uses. See -Wunused-but-set-
variable=n option for examples.

This -Wunused-but-set-parameter=3 warning is also enabled by -Wunused
together with -Wextra.

-Wunused-but-set-variable
-Wunused-but-set-variable is the same as -Wunused-but-set-variable=3
and -Wno-unused-but-set-variable is the same as -Wunused-but-set-
variable=0.

-Wunused-but-set-variable=n
Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This -Wunused-but-set-variable=3 warning is enabled by
-Wall.

To suppress this warning use the unused attribute (see Section 6.4.2 [Variable
Attributes], page 707).

-Wunused-but-set-variable=0 disables the warning. With -Wunused-but-
set-variable=1 all uses except initialization and left hand side of assign-
ment which is not further used disable the warning. With -Wunused-but-set-
variable=2 additionally uses of variable in ++ and -- operators don’t count
as uses. And finally with -Wunused-but-set-variable=3 additionally uses in
parm @= rhs outside of rhs don’t count as uses.

This -Wunused-but-set-variable=3 warning is also enabled by -Wunused,
which is enabled by -Wall.

void foo (void)

{
int a = 1; // -Wunused-variable warning
int b = 0; // Warning for n >= 1
b=1; b = 2;

Chapter 3: GCC Command Options 125

int ¢ = 0; // Warning for n >= 2

+HC; Cm=; —=C; CHHj

int d = 0; // Warning for n >= 3

d += 4;

int e = 0; // No warning, cast to void
(void) e;

int £ = 0; // No warning, f used

int g = £ = 5;

(void) g;

int h = 0; // No warning, preincrement used
int i = ++h;

(void) 1i;

int j = 0; // No warning, postdecrement used
int k = j-——;

(void) k;

int 1 = 0; // No warning, 1 used

intm=1 |= 2;

(void) m;

}

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by -Wall.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
-Wall.

To suppress this warning use the unused attribute (see Section 6.4.2 [Variable
Attributes], page 707).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used. This warning is
enabled by -Wall.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration. This
option is not enabled by -Wunused unless -Wextra is also specified.

To suppress this warning use the unused attribute (see Section 6.4.2 [Variable
Attributes], page 707).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.4.1 [Function Attributes|, page 629) does not use its
return value. The default is ~-Wunused-result.

-Wunused-variable
Warn whenever a local or static variable is unused aside from its declaration.
This option implies ~-Wunused-const-variable=1 for C, but not for C++. This
warning is enabled by -Wall.
To suppress this warning use the unused attribute (see Section 6.4.2 [Variable
Attributes], page 707).

-Wunused-const-variable
-Wunused-const-variable=n
Warn whenever a constant static variable is unused aside from its declaration.

126

Using the GNU Compiler Collection (GCC)

To suppress this warning use the unused attribute (see Section 6.4.2 [Variable
Attributes], page 707).

-Wunused-const-variable=1
Warn about unused static const variables defined in the main com-
pilation unit, but not about static const variables declared in any
header included.

-Wunused-const-variable=1 is enabled by either -Wunused-
variable or -Wunused for C, but not for C++. In C this declares
variable storage, but in C++ this is not an error since const
variables take the place of #defines.

-Wunused-const-variable=2
This warning level also warns for unused constant static variables
in headers (excluding system headers). It is equivalent to the short
form -Wunused-const-variable. This level must be explicitly re-
quested in both C and C++ because it might be hard to clean up
all headers included.

-Wunused-value

-Wunused

Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to void. This includes an
expression-statement or the left-hand side of a comma expression that contains
no side effects. For example, an expression such as x[i,j] causes a warning,
while x[(void) i, j] does not.

This warning is enabled by -Wall.
All the above -Wunused options combined, except those documented as needing
to be specified explicitly.

In order to get a warning about an unused function parameter, you must either
specify -Wextra -Wunused (note that -Wall implies -Wunused), or separately
specify -Wunused-parameter and/or -Wunused-but-set-parameter.

-Wunused enables only -Wunused-const-variable=1 rather than -Wunused-
const-variable, and only for C, not C++.

-Wuse-after-free (C, Objective-C, C++ and Objective-C++ only)
-Wuse-after-free=n

Warn about uses of pointers to dynamically allocated objects that have been
rendered indeterminate by a call to a deallocation function. The warning is en-
abled at all optimization levels but may yield different results with optimization
than without.

-Wuse-after-free=1

At level 1 the warning attempts to diagnose only unconditional uses
of pointers made indeterminate by a deallocation call or a successful
call to realloc, regardless of whether or not the call resulted in
an actual reallocation of memory. This includes double-free calls
as well as uses in arithmetic and relational expressions. Although
undefined, uses of indeterminate pointers in equality (or inequality)
expressions are not diagnosed at this level.

Chapter 3: GCC Command Options 127

-Wuse-after-free=2
At level 2, in addition to unconditional uses, the warning also diag-
noses conditional uses of pointers made indeterminate by a deallo-
cation call. As at level 2, uses in equality (or inequality) expressions
are not diagnosed. For example, the second call to free in the fol-
lowing function is diagnosed at this level:

struct A { int refcount; void *data; };

void release (struct A *p)

{
int refcount = --p->refcount;
free (p);
if (refcount == 0)
free (p->data); // warning: p may be used after free
}

-Wuse-after-free=3

At level 3, the warning also diagnoses uses of indeterminate pointers
in equality expressions. All uses of indeterminate pointers are un-
defined but equality tests sometimes appear after calls to realloc
as an attempt to determine whether the call resulted in relocating
the object to a different address. They are diagnosed at a separate
level to aid gradually transitioning legacy code to safe alternatives.
For example, the equality test in the function below is diagnosed
at this level:

void adjust_pointers (int#**, int);

void grow (int **p, int n)
{
int #**q = (int**)realloc (p, n *= 2);
if (q == p)
return;
adjust_pointers ((int**)q, n);

}

To avoid the warning at this level, store offsets into allocated mem-
ory instead of pointers. This approach obviates needing to adjust
the stored pointers after reallocation.

-Wuse-after—-free=2 is included in -Wall.

-Wuseless-cast (C, Objective-C, C++ and Objective-C++ only)
Warn when an expression is cast to its own type. This warning does not occur
when a class object is converted to a non-reference type as that is a way to
create a temporary:

struct S { };
void g (S&&);
void f (S&& arg)
{
g (S(arg)); // make arg prvalue so that it can bind to S&&
}

128 Using the GNU Compiler Collection (GCC)

-Wuninitialized
Warn if an object with automatic or allocated storage duration is used without
having been initialized. In C++, also warn if a non-static reference or non-static
const member appears in a class without constructors.

In addition, passing a pointer (or in C++, a reference) to an uninitialized object
to a const-qualified argument of a built-in function known to read the object is
also diagnosed by this warning. (-Wmaybe-uninitialized is issued for ordinary
functions.)

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the -Winit-self option.

These warnings occur for individual uninitialized elements of structure, union
or array variables as well as for variables that are uninitialized as a whole.
They do not occur for variables or elements declared volatile. Because these
warnings depend on optimization, the exact variables or elements for which
there are warnings depend on the precise optimization options and version of
GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

In C++, this warning also warns about using uninitialized objects in member-
initializer-lists. For example, GCC warns about b being uninitialized in the
following snippet:

struct A {

int a;

int b;

AO : a(®) {1}
};

-Wno-invalid-memory-model

This option controls warnings for invocations of Section 7.9.1 [__atomic
Builtins|, page 862, Section 7.9.2 [-_sync Builtins], page 867, and the C11
atomic generic functions with a memory consistency argument that is either
invalid for the operation or outside the range of values of the memory_order
enumeration. For example, since the __atomic_store and __atomic_store_n
built-ins are only defined for the relaxed, release, and sequentially consistent
memory orders the following code is diagnosed:

void store (int *i)
__atomic_store_n (i, O, memory_order_consume);

}

-Winvalid-memory-model is enabled by default.

-Wmaybe-uninitialized
For an object with automatic or allocated storage duration, if there exists a
path from the function entry to a use of the object that is initialized, but there
exist some other paths for which the object is not initialized, the compiler emits
a warning if it cannot prove the uninitialized paths are not executed at run time.

Chapter 3: GCC Command Options 129

In addition, passing a pointer (or in C++, a reference) to an uninitialized ob-
ject to a const-qualified function argument is also diagnosed by this warning.
(-Wuninitialized is issued for built-in functions known to read the object.)
Annotating the function with attribute access (none) indicates that the argu-
ment isn’t used to access the object and avoids the warning (see Section 6.4.1.1
[Common Function Attributes], page 630).

These warnings are only possible in optimizing compilation, because otherwise
GCC does not keep track of the state of variables. On the other hand, ~-Wmaybe-
uninitialized is known not to warn in many situations (false negatives) due
to optimizations taking advantage of undefinedness of uninitialized uses like
constant propagation.

These warnings are made optional because GCC may not be able to determine
when the code is correct in spite of appearing to have an error. Here is one
example of how this can happen:

{

int x;
switch (y)
{
case 1: x
break;
case 2: x
break;
case 3: x
}
foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, you need to provide a default case with
assert(0) or similar code.

]
-

]
S

]
[¢;]

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. The compiler sees only the calls to setjmp. It cannot
know where longjmp will be called; in fact, a signal handler could call it at any
point in the code. As a result, you may get a warning even when there is in fact
no problem because longjmp cannot in fact be called at the place that would
cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.4.1 [Function Attributes],
page 629.

This warning is enabled by -Wall or -Wextra.

-Wunknown-pragmas
Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings are even issued for unknown
pragmas in system header files. This is not the case if the warnings are only
enabled by the -Wall command-line option.

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ~Wunknown-pragmas.

130 Using the GNU Compiler Collection (GCC)

-Wno-pragma-once-outside-header
Do not warn when #pragma once is used in a file that is not a header file, such
as a main file.

-Wno-prio-ctor-dtor
Do not warn if a priority from 0 to 100 is used for constructor or destructor.
The use of constructor and destructor attributes allow you to assign a priority
to the constructor/destructor to control its order of execution before main is
called or after it returns. The priority values must be greater than 100 as the
compiler reserves priority values between 0-100 for the implementation.

-Wstrict-aliasing
This option is only active when -fstrict-aliasing is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to catch
the more common pitfalls. It is included in -Wall. It is equivalent to -Wstrict-
aliasing=3.

-Wstrict-aliasing=n
This option is only active when -fstrict-aliasing is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. Higher levels correspond to higher accuracy (fewer false pos-
itives). Higher levels also correspond to more effort, similar to the way -0
works. -Wstrict-aliasing is equivalent to -Wstrict-aliasing=3.

Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but -fstrict-aliasing still breaks the code, as it has very
few false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for -Wstrict-aliasing): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow

-Wstrict-overflow=n
This option is only active when signed overflow is undefined. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

Chapter 3:

GCC Command Options 131

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop requires, in
particular when determining whether a loop will be executed at all.

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid.
For example the compiler simplifies x + 1 > x to 1. This level of
-Wstrict-overflow is enabled by -Wall; higher levels are not,
and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to a
constant. For example: abs (x) >= 0. This can only be simplified
when signed integer overflow is undefined, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. -Wstrict-overflow
(with no level) is the same as -Wstrict-overflow=2.

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 is simplified to x > 0.

-Wstrict-overflow=4
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 is simplified to x * 2.

-Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude
of a constant involved in a comparison. For example: x + 2 > y is
simplified to x + 1 >= y. This is reported only at the highest warn-
ing level because this simplification applies to many comparisons,
so this warning level gives a very large number of false positives.

-Wstring-compare

Warn for calls to strcmp and strncmp whose result is determined to be either
zero or non-zero in tests for such equality owing to the length of one argument
being greater than the size of the array the other argument is stored in (or the
bound in the case of strncmp). Such calls could be mistakes. For example,
the call to strcmp below is diagnosed because its result is necessarily non-zero
irrespective of the contents of the array a.

extern char al4];
void f (char *d)
{
strcpy (d, "string");

if (0 == strcmp (a, d)) // cannot be true
puts ("a and d are the same");

}

-Wstring-compare is enabled by -Wextra.

132 Using the GNU Compiler Collection (GCC)

-Wno-stringop-overflow

-Wstringop-overflow

-Wstringop-overflow=type
Warn for code that can be statically determined to cause buffer overflows or
memory overruns, such as calls to memcpy and strcpy that overflow the destina-
tion buffer. The optional argument is one greater than the type of Object Size
Checking to perform to determine the size of the destination. See Section 7.10
[Object Size Checking], page 869. The argument is meaningful only for string
functions that operate on character arrays; raw memory functions like memcpy
always use type-zero Object Size Checking.

The option also warns for calls that specify a size in excess of the largest possible
object or at most SIZE_MAX / 2 bytes.

The option produces the best results with optimization enabled but can detect
a small subset of simple buffer overflows even without optimization in calls
to the GCC built-in functions like __builtin_memcpy that correspond to the
standard functions. In any case, the option warns about just a subset of buffer
overflows detected by the corresponding overflow checking built-ins, such as
__builtin___memcpy_chk, which can perform run-time checking if the access

cannot be identified as safe at compile time.

For example, the option issues a warning for the strcpy call below because it
copies at least 5 characters (the string "blue" including the terminating NUL)
into the buffer of size 4.

enum Color { blue, purple, yellow };
const charx f (enum Color clr)
{
static char buf [4];
const char *str;
switch (clr)
{
case blue: str = "blue"; break;
case purple: str = "purple"; break;
case yellow: str = "yellow"; break;

}

return strcpy (buf, str); // warning here

}

The effect of this option is not limited to string or memory manipulation func-
tions. In this example, a warning is diagnosed because a l-element array is
passed to a function requiring at least a 4-element array argument:

void f (int[static 4]);

void g (void)

{
int *p = (int *) malloc (1 * sizeof(int));
f (p); // warning here

}

Option -Wstringop-overflow=2 is enabled by default.

Chapter 3: GCC Command Options 133

-Wstringop-overflow

-Wstringop-overflow=1
The -Wstringop-overflow=1 option uses type-zero Object Size
Checking to determine the sizes of destination objects. At this
setting the option does not warn for writes past the end of subob-
jects of larger objects accessed by pointers unless the size of the
largest surrounding object is known. When the destination may be
one of several objects it is assumed to be the largest one of them.
On Linux systems, when optimization is enabled at this setting
the option warns for the same code as when the _FORTIFY_SOURCE
macro is defined to a non-zero value.

-Wstringop-overflow=2

The -Wstringop-overflow=2 option uses type-one Object Size
Checking to determine the sizes of destination objects. At
this setting the option warns about overflows when writing to
members of the largest complete objects whose exact size is
known. However, it does not warn for excessive writes to the same
members of unknown objects referenced by pointers since they
may point to arrays containing unknown numbers of elements.
This is the default setting of the option.

-Wstringop-overflow=3
The -Wstringop-overflow=3 option uses type-two Object Size
Checking to determine the sizes of destination objects. At this
setting the option warns about overflowing the smallest object or
data member. This is the most restrictive setting of the option that
may result in warnings for safe code.

-Wstringop-overflow=4

The -Wstringop-overflow=4 option uses type-three Object Size
Checking to determine the sizes of destination objects. At this
setting the option warns about overflowing any data members, and
when the destination is one of several objects it uses the size of the
largest of them to decide whether to issue a warning. Similarly to
-Wstringop-overflow=3 this setting of the option may result in
warnings for benign code.

-Wno-stringop-overread
Warn for calls to string manipulation functions such as memchr, or strcpy that
are determined to read past the end of the source sequence.

Option -Wstringop-overread is enabled by default.

-Wno-stringop-truncation
Do not warn for calls to bounded string manipulation functions such as strncat,
strncpy, and stpncpy that may either truncate the copied string or leave the
destination unchanged.

In the following example, the call to strncat specifies a bound that is less
than the length of the source string. As a result, the copy of the source will

134 Using the GNU Compiler Collection (GCC)

be truncated and so the call is diagnosed. To avoid the warning use bufsize -
strlen (buf) - 1) as the bound.

void append (char *buf, size_t bufsize)

{
strncat (buf, ".txt", 3);
}

As another example, the following call to strncpy results in copying to d just
the characters preceding the terminating NUL, without appending the NUL
to the end. Assuming the result of strncpy is necessarily a NUL-terminated
string is a common mistake, and so the call is diagnosed. To avoid the warning
when the result is not expected to be NUL-terminated, call memcpy instead.
void copy (char *d, const char *s)
{

strncpy (d, s, strlen (s));
}

In the following example, the call to strncpy specifies the size of the destination
buffer as the bound. If the length of the source string is equal to or greater
than this size the result of the copy will not be NUL-terminated. Therefore,
the call is also diagnosed. To avoid the warning, specify sizeof buf - 1 as the
bound and set the last element of the buffer to NUL.

void copy (const char *s)

{
char buf[80];
strncpy (buf, s, sizeof buf);

.

In situations where a character array is intended to store a sequence of bytes
with no terminating NUL such an array may be annotated with attribute
nonstring to avoid this warning. Such arrays, however, are not suitable
arguments to functions that expect NUL-terminated strings. To help detect
accidental misuses of such arrays GCC issues warnings unless it can prove that
the use is safe. See Section 6.4.2.1 [Common Variable Attributes], page 708.

-Wstrict-flex-arrays (C and C++ only)

Warn about improper usages of flexible array members according to the level
of the strict_flex_array (level) attribute attached to the trailing array
field of a structure if it’s available, otherwise according to the level of the
option ~fstrict-flex-arrays=Ilevel. See Section 6.4.2.1 [Common Variable
Attributes], page 708, for more information about the attribute, and Section 3.4
[C Dialect Options], page 45, for more information about the option. -Wstrict-
flex-arrays is effective only when level is greater than 0.

When level=1, warnings are issued for a trailing array reference of a structure
that have 2 or more elements if the trailing array is referenced as a flexible array
member.

When level=2, in addition to level=1, additional warnings are issued for a
trailing one-element array reference of a structure if the array is referenced as
a flexible array member.

Chapter 3: GCC Command Options 135

When level=3, in addition to level=2, additional warnings are issued for a
trailing zero-length array reference of a structure if the array is referenced as a
flexible array member.

This option is more effective when -ftree-vrp is active (the default for -02
and above) but some warnings may be diagnosed even without optimization.

-Wsuggest-attribute=attribute-name
Warn for cases where adding an attribute may be beneficial. The attribute-
names currently supported are listed below.

-Wsuggest-attribute=pure

-Wsuggest-attribute=const

-Wsuggest-attribute=noreturn

-Wmissing-noreturn

-Wsuggest-attribute=malloc

-Wsuggest-attribute=returns_nonnull
Warn about functions that might be candidates for attributes pure,
const, noreturn, malloc or returns_nonnull. The compiler only
warns for functions visible in other compilation units or (in the case
of pure and const) if it cannot prove that the function returns nor-
mally. A function returns normally if it doesn’t contain an infinite
loop or return abnormally by throwing, calling abort or trapping.
This analysis requires option -fipa-pure-const, which is enabled
by default at -0 and higher. Higher optimization levels improve
the accuracy of the analysis.

-Wsuggest-attribute=format

-Wmissing-format-attribute
Warn about function pointers that might be candidates for format
attributes. Note these are only possible candidates, not absolute
ones. GCC guesses that function pointers with format attributes
that are used in assignment, initialization, parameter passing or
return statements should have a corresponding format attribute
in the resulting type. lLe. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a format
attribute to avoid the warning.

GCC also warns about function definitions that might be candi-
dates for format attributes. Again, these are only possible candi-
dates. GCC guesses that format attributes might be appropriate
for any function that calls a function like vprintf or vscanf, but
this might not always be the case, and some functions for which
format attributes are appropriate may not be detected.

-Wsuggest-attribute=cold
Warn about functions that might be candidates for cold attribute.
This is based on static detection and generally only warns about
functions which always leads to a call to another cold function such

136 Using the GNU Compiler Collection (GCC)

as wrappers of C++ throw or fatal error reporting functions leading
to abort.

-Walloc-size
Warn about calls to allocation functions decorated with attribute alloc_size
that specify insufficient size for the target type of the pointer the result is
assigned to, including those to the built-in forms of the functions aligned_
alloc, alloca, calloc, malloc, and realloc.

-Walloc-zero
Warn about calls to allocation functions decorated with attribute alloc_size
that specify zero bytes, including those to the built-in forms of the functions
aligned_alloc, alloca, calloc, malloc, and realloc. Because the behavior
of these functions when called with a zero size differs among implementations
(and in the case of realloc has been deprecated) relying on it may result in
subtle portability bugs and should be avoided.

-Wcalloc-transposed-args

Warn about calls to allocation functions decorated with attribute alloc_size
with two arguments, which use sizeof operator as the earlier size argument and
don’t use it as the later size argument. This is a coding style warning. The first
argument to calloc is documented to be number of elements in array, while
the second argument is size of each element, so calloc (n, sizeof (int)) is
preferred over calloc (sizeof (int), n). If sizeof in the earlier argument
and not the latter is intentional, the warning can be suppressed by using calloc
(sizeof (struct S) + 0, n) or calloc (1 * sizeof (struct S), 4) or using
sizeof in the later argument as well.

-Walloc-size-larger-than=byte-size

Warn about calls to functions decorated with attribute alloc_size that at-
tempt to allocate objects larger than the specified number of bytes, or where
the result of the size computation in an integer type with infinite precision
would exceed the value of ‘PTRDIFF_MAX’ on the target. -Walloc-size-larger-
than="PTRDIFF_MAX’ is enabled by default. Warnings controlled by the option
can be disabled either by specifying byte-size of ‘SIZE_MAX’ or more or by -Wno-
alloc-size-larger-than. See Section 6.4.1 [Function Attributes], page 629.

-Wno-alloc-size-larger-than
Disable -Walloc-size-larger-than= warnings. The option is equivalent to
-Walloc-size-larger—than=‘SIZE_MAX’ or larger.

-Walloca This option warns on all uses of alloca in the source.

-Wauto-profile
Output warnings about auto-profile inconsistencies.

-Wcannot-profile
Warn when profiling instrumentation was requested, but could not be applied
to a certain function.

-Walloca-larger-than=byte-size
This option warns on calls to alloca with an integer argument whose value
is either zero, or that is not bounded by a controlling predicate that limits its

Chapter 3: GCC Command Options 137

value to at most byte-size. It also warns for calls to alloca where the bound
value is unknown. Arguments of non-integer types are considered unbounded
even if they appear to be constrained to the expected range.

For example, a bounded case of alloca could be:

void func (size_t n)
{
void *p;
if (n <= 1000)
p = alloca (n);
else
p = malloc (n);
f (p);
}
In the above example, passing -Walloca-larger-than=1000 would not issue a
warning because the call to alloca is known to be at most 1000 bytes. However,

if -Walloca-larger-than=500 were passed, the compiler would emit a warning.

Unbounded uses, on the other hand, are uses of alloca with no controlling
predicate constraining its integer argument. For example:

void func ()
{
void *p = alloca (n);
f (p);
}
If -Walloca-larger-than=500 were passed, the above would trigger a warning,

but this time because of the lack of bounds checking.

Note, that even seemingly correct code involving signed integers could cause a
warning:

void func (signed int n)
{
if (n < 500)
{
p = alloca (n);
f (p);
}

}

In the above example, n could be negative, causing a larger than expected

argument to be implicitly cast into the alloca call.
This option also warns when alloca is used in a loop.

-Walloca-larger-than="PTRDIFF_MAX’ is enabled by default but is usually
only effective when -ftree-vrp is active (default for -02 and above).

See also -Wvla-larger-than='byte-size’.

-Wno-alloca-larger-than
Disable -Walloca-larger-than= warnings. The option is equivalent to
-Walloca-larger-than=‘SIZE_MAX’ or larger.

-Warith-conversion
Do warn about implicit conversions from arithmetic operations even when con-
version of the operands to the same type cannot change their values. This affects
warnings from -Wconversion, -Wfloat-conversion, and -Wsign-conversion.

138

Using the GNU Compiler Collection (GCC)

void f (char ¢, int i)

{
c
c

}

c + i; // warns with -Wconversion
c + 1; // only warns with -Warith-conversion

-Warray-bounds
-Warray-bounds=n

Warn about out of bounds subscripts or offsets into arrays. This warning is
enabled by -Wall. It is more effective when -ftree-vrp is active (the default for
-02 and above) but a subset of instances are issued even without optimization.

By default, the trailing array of a structure will be treated as a flexible array
member by -Warray-bounds or -Warray-bounds=n if it is declared as either
a flexible array member per C99 standard onwards (‘[1’), a GCC zero-length
array extension (‘[0]’), or an one-element array (‘[1]’). As a result, out of
bounds subscripts or offsets into zero-length arrays or one-element arrays are
not warned by default.

You can add the option -fstrict-flex-arrays or -fstrict-flex-
arrays=level to control how this option treat trailing array of a structure as
a flexible array member:

when level<=1, no change to the default behavior.

when level=2, additional warnings will be issued for out of bounds subscripts
or offsets into one-element arrays;

when level=3, in addition to level=2, additional warnings will be issued for out
of bounds subscripts or offsets into zero-length arrays.

-Warray-bounds=1
This is the default warning level of ~-Warray-bounds and is enabled
by -Wall; higher levels are not, and must be explicitly requested.

-Warray-bounds=2
This warning level also warns about the intermediate results of
pointer arithmetic that may yield out of bounds values. This warn-
ing level may give a larger number of false positives and is deacti-
vated by default.

-Wunterminated-string-initialization (C and Objective-C only)

Warn about character arrays initialized as unterminated character sequences
with a string literal, unless the declaration being initialized has the nonstring
attribute. For example:

char arr[3] = "foo"; /* Warning. x*/
char arr2[3] attribute__((nonstring)) = "bar"; /* No warning. */

This warning is enabled by -Wextra. If ~-Wc++-compat is enabled, the warning
has slightly different wording and warns even if the declaration being initialized
has the nonstring warning, as in C++ such initializations are an error.

-Warray-compare

Warn about equality and relational comparisons between two operands of array
type. This comparison was deprecated in C++20. For example:
int arri[5];

Chapter 3: GCC Command Options 139

int arr2[5];
bool same = arrl == arr2;

-Warray-compare is enabled by -Wall.

-Warray-parameter

-Warray-parameter=n
Warn about redeclarations of functions involving parameters of array or pointer
types of inconsistent kinds or forms, and enable the detection of out-of-bounds
accesses to such parameters by warnings such as -Warray-bounds.

If the first function declaration uses the array form for a parameter declaration,
the bound specified in the array is assumed to be the minimum number of
elements expected to be provided in calls to the function and the maximum
number of elements accessed by it. Failing to provide arguments of sufficient
size or accessing more than the maximum number of elements may be diagnosed
by warnings such as -Warray-bounds or -Wstringop-overflow. At level 1, the
warning diagnoses inconsistencies involving array parameters declared using the
T[static N] form.

For example, the warning triggers for the second declaration of £ because the
first one with the keyword static specifies that the array argument must have
at least four elements, while the second allows an array of any size to be passed
to £.

void f (int[static 4]);
void £ (int[1); // warning (inconsistent array form)

void g (void)
{
int *p = (int *)malloc (1 * sizeof (int));
f (p); // warning (array too small)

L
At level 2 the warning also triggers for redeclarations involving any other in-

consistency in array or pointer argument forms denoting array sizes. Pointers
and arrays of unspecified bound are considered equivalent and do not trigger a

warning.
void g (intx);
void g (int[1); // no warning
void g (int[8]); // warning (inconsistent array bound)

-Warray-parameter=2 is included in -Wall. The -Wvla-parameter option
triggers warnings for similar inconsistencies involving Variable Length Array
arguments.

The short form of the option -Warray-parameter is equivalent to -Warray-
parameter=2. The negative form -Wno-array-parameter is equivalent to
-Warray-parameter=0.

-Wattribute-alias=n

-Wno-attribute-alias
Warn about declarations using the alias and similar attributes whose target is
incompatible with the type of the alias. See Section 6.4.1 [Declaring Attributes
of Functions], page 629.

140 Using the GNU Compiler Collection (GCC)

-Wattribute-alias=1
The default warning level of the -Wattribute-alias option diag-
noses incompatibilities between the type of the alias declaration and
that of its target. Such incompatibilities are typically indicative of
bugs.

-Wattribute-alias=2

At this level -Wattribute-alias also diagnoses cases where the
attributes of the alias declaration are more restrictive than the at-
tributes applied to its target. These mismatches can potentially
result in incorrect code generation. In other cases they may be be-
nign and could be resolved simply by adding the missing attribute
to the target. For comparison, see the -Wmissing-attributes op-
tion, which controls diagnostics when the alias declaration is less
restrictive than the target, rather than more restrictive.

Attributes considered include alloc_align, alloc_size, cold,
const, hot, leaf, malloc, nonnull, noreturn, nothrow, pure,
returns_nonnull, and returns_twice.

-Wattribute-alias is equivalent to -Wattribute-alias=1. This is the de-
fault. You can disable these warnings with either -Wno-attribute-alias or
-Wattribute-alias=0.

-Wbidi-chars=[none |unpaired|any|ucn]
Warn about possibly misleading UTF-8 bidirectional control characters in com-
ments, string literals, character constants, and identifiers. Such characters can
change left-to-right writing direction into right-to-left (and vice versa), which
can cause confusion between the logical order and visual order. This may be
dangerous; for instance, it may seem that a piece of code is not commented out,
whereas it in fact is.

There are three levels of warning supported by GCC. The default is
-Wbidi-chars=unpaired, which warns about improperly terminated bidi
contexts. -Wbidi-chars=none turns the warning off. -Wbidi-chars=any
warns about any use of bidirectional control characters.

By default, this warning does not warn about UCNs. It is, however,
possible to turn on such checking by using -Wbidi-chars=unpaired,ucn or
-Wbidi-chars=any,ucn. Using -Wbidi-chars=ucn is valid, and is equivalent
to -Wbidi-chars=unpaired,ucn, if no previous -Wbidi-chars=any was
specified.

-Wbool-compare
Warn about boolean expression compared with an integer value different from
true/false. For instance, the following comparison is always false:

int n = 5;
£ (@> 1) =2 {...}

This warning is enabled by -Wall.

Chapter 3: GCC Command Options 141

-Wbool-operation
Warn about suspicious operations on expressions of a boolean type. For in-
stance, bitwise negation of a boolean is very likely a bug in the program. For
C, this warning also warns about incrementing or decrementing a boolean,
which rarely makes sense. (In C++, decrementing a boolean is always invalid.
Incrementing a boolean is invalid in C++17, and deprecated otherwise.)

This warning is enabled by -Wall.

-Wduplicated-branches
Warn when an if-else has identical branches. This warning detects cases like
if (p !'= NULL)
return O;
else
return O;
It doesn’t warn when both branches contain just a null statement. This warning
also warn for conditional operators:

int i = x 7 *p : *p;

-Wduplicated-cond
Warn about duplicated conditions in an if-else-if chain. For instance, warn for
the following code:

if (p->q !'= NULL) { ... }
else if (p->q != NULL) { ... }

-Wframe-address
Warn when the ‘__builtin_frame_address’ or ‘__builtin_return_address’
is called with an argument greater than 0. Such calls may return indeterminate
values or crash the program. The warning is included in -Wall.

-Wno-discarded-qualifiers (C and Objective-C only)
Do not warn if type qualifiers on pointers are being discarded. Typically, the
compiler warns if a const char * variable is passed to a function that takes a
char * parameter. This option can be used to suppress such a warning.

-Wno-discarded-array-qualifiers (C and Objective-C only)
Do not warn if type qualifiers on arrays which are pointer targets are being
discarded. Typically, the compiler warns if a const int (*) [] variable is passed
to a function that takes a int (%) [] parameter. This option can be used to
suppress such a warning.

-Wno-incompatible-pointer-types (C and Objective-C only)
Do not warn when there is a conversion between pointers that have incompatible
types. This warning is for cases not covered by -Wno-pointer-sign, which
warns for pointer argument passing or assignment with different signedness.

By default, in C99 and later dialects of C, GCC treats this issue as an error.
The error can be downgraded to a warning using -fpermissive (along with
certain other errors), or for this error alone, with ~-Wno-error=incompatible-
pointer-types.

This warning is upgraded to an error by -pedantic-errors.

142 Using the GNU Compiler Collection (GCC)

-Wno-int-conversion (C and Objective-C only)

Do not warn about incompatible integer to pointer and pointer to integer con-
versions. This warning is about implicit conversions; for explicit conversions the
warnings -Wno-int-to-pointer-cast and -Wno-pointer-to-int-cast may
be used.

By default, in C99 and later dialects of C, GCC treats this issue as an error. The
error can be downgraded to a warning using -fpermissive (along with certain
other errors), or for this error alone, with ~-Wno-error=int-conversion.

This warning is upgraded to an error by -pedantic-errors.

-Wzero-as-null-pointer-constant
Warn when a literal ‘0’ is used as null pointer constant.

-Wzero-length-bounds
Warn about accesses to elements of zero-length array members that might over-
lap other members of the same object. Declaring interior zero-length arrays is
discouraged because accesses to them are undefined. See Section 6.2.2 [Zero
Length], page 618.

For example, the first two stores in function bad are diagnosed because the
array elements overlap the subsequent members b and c. The third store is
diagnosed by -Warray-bounds because it is beyond the bounds of the enclosing
object.

struct X { int a[0]; int b, c; };
struct X x;

void bad (void)

{
x.al0] = 0; // -Wzero-length-bounds
x.a[1] = 1; // -Wzero-length-bounds
x.a[2] = 2; // -Warray-bounds

}

Option -Wzero-length-bounds is enabled by -Warray-bounds.

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
-Wall in conjunction with this option does not warn about unknown pragmas
in system headers—for that, ~-Wunknown-pragmas must also be used.

-Wtautological-compare
Warn if a self-comparison always evaluates to true or false. This warning detects
various mistakes such as:

int i = 1;

Chapter 3: GCC Command Options 143

£ E>D ..)
This warning also warns about bitwise comparisons that always evaluate to true
or false, for instance:

if ((a & 16) == 10) { ... }

will always be false.

This warning is enabled by -Wall.

-Wtrailing-whitespace

-Wtrailing-whitespace=kind
Warn about trailing whitespace at the end of lines, including inside
of comments, but excluding trailing whitespace in raw string literals.
-Wtrailing-whitespace is equivalent to -Wtrailing-whitespace=blanks
and warns just about trailing space and horizontal tab characters.
-Wtrailing-whitespace=any warns about those or trailing form feed
or vertical tab characters. -Wno-trailing-whitespace or -Wtrailing-
whitespace=none disables the warning, which is the default. This is a coding
style warning.

-Wleading-whitespace=kind

Warn about style issues in leading whitespace, but not about the amount of
indentation. Some projects use coding styles where only spaces are used for
indentation, others use only tabs, others use zero or more tabs (for multi-
ples of -ftabstop=n) followed by zero or fewer than n spaces. No warning
is emitted on lines which contain solely whitespace (although -Wtrailing-
whitespace= warning might be emitted), no warnings are emitted inside of
raw string literals. Warnings are also emitted for leading whitespace inside
of multi-line comments. -Wleading-whitespace=spaces warns about lead-
ing whitespace other than spaces for projects which want to indent just by
spaces. -Wleading-whitespace=tabs warns about leading whitespace other
than horizontal tabs for projects which want to indent just by horizontal tabs.
-Wleading-whitespace=blanks warns about leading whitespace other than
spaces and horizontal tabs, or about horizontal tab after a space in the leading
whitespace, or about n or more consecutive spaces in leading whitespace (where
n is argument of -ftabstop=n, 8 by default). -Wleading-whitespace=none
disables the warning, which is the default. This is a coding style warning.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions. A tram-
poline is a small piece of data or code that is created at run time on the stack
when the address of a nested function is taken, and is used to call the nested
function indirectly. For some targets, it is made up of data only and thus re-
quires no special treatment. But, for most targets, it is made up of code and
thus requires the stack to be made executable in order for the program to work

properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.

144

Using the GNU Compiler Collection (GCC)

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you should check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.

Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but in
ISO C it does not.

In traditional C, some preprocessor directives did not exist. Traditional
preprocessors only considered a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore -Wtraditional warns about directives
that traditional C understands but ignores because the ‘#” does not appear
as the first character on the line. It also suggests you hide directives like
#pragma not understood by traditional C by indenting them. Some tra-
ditional implementations do not recognize #elif, so this option suggests
avoiding it altogether.

A function-like macro that appears without arguments.
The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC'’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

Usage of ISO string concatenation is detected.

Initialization of automatic aggregates.

Chapter 3: GCC Command Options 145

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible conversion
warnings; for the full set use -Wtraditional-conversion.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features appear in your code when using libiberty’s traditional C com-
patibility macros, PARAMS and VPARAMS. This warning is also bypassed for
nested functions because that feature is already a GCC extension and thus
not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)

Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

-Wdeclaration-after-statement (C and Objective-C only)

-Wshadow

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90. See Section 6.12.15 [Mixed Labels and
Declarations], page 831.

This warning is upgraded to an error by -pedantic-errors.

Warn whenever a local variable or type declaration shadows another
variable, parameter, type, class member (in C++), or instance variable (in
Objective-C) or whenever a built-in function is shadowed. Note that in C++,
the compiler warns if a local variable shadows an explicit typedef, but not if
it shadows a struct/class/enum. If this warning is enabled, it includes also
all instances of local shadowing. This means that -Wno-shadow=local and
-Wno-shadow=compatible-local are ignored when -Wshadow is used. Same
as —~Wshadow=global.

-Wno-shadow-ivar (Objective-C only)

Do not warn whenever a local variable shadows an instance variable in an
Objective-C method.

-Wshadow=global

Warn for any shadowing. Same as -Wshadow.

-Wshadow=local

Warn when a local variable shadows another local variable or parameter.

146 Using the GNU Compiler Collection (GCC)

-Wshadow=compatible-local
Warn when a local variable shadows another local variable or parameter whose
type is compatible with that of the shadowing variable. In C++, type compatibil-
ity here means the type of the shadowing variable can be converted to that of the
shadowed variable. The creation of this flag (in addition to -Wshadow=local)
is based on the idea that when a local variable shadows another one of incom-
patible type, it is most likely intentional, not a bug or typo, as shown in the
following example:

for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
{

for (int i = 0; i < N; ++i)

{
.
.

Since the two variable i in the example above have incompatible types, enabling
only -Wshadow=compatible-local does not emit a warning. Because their
types are incompatible, if a programmer accidentally uses one in place of the
other, type checking is expected to catch that and emit an error or warning.
Use of this flag instead of ~-Wshadow=1local can possibly reduce the number of
warnings triggered by intentional shadowing. Note that this also means that
shadowing const char *i by char *i does not emit a warning.

This warning is also enabled by -Wshadow=1local.

-Wlarger-than=byte-size
Warn whenever an object is defined whose size exceeds byte-size. -Wlarger-
than="PTRDIFF_MAX’ is enabled by default. Warnings controlled by the option
can be disabled either by specifying byte-size of ‘SIZE_MAX’ or more or by —Wno-
larger-than.

Also warn for calls to bounded functions such as memchr or strnlen that specify
a bound greater than the largest possible object, which is ‘PTRDIFF_MAX’ bytes
by default. These warnings can only be disabled by -Wno-larger-than.

-Wno-larger-than
Disable -Wlarger-than= warnings. The option is equivalent to -Wlarger-
than=‘SIZE_MAX’ or larger.

-Wframe-larger-than=byte-size

Warn if the size of a function frame exceeds byte-size. The computation done to
determine the stack frame size is approximate and not conservative. The actual
requirements may be somewhat greater than byte-size even if you do not get a
warning. In addition, any space allocated via alloca, variable-length arrays,
or related constructs is not included by the compiler when determining whether
or not to issue a warning. -Wframe-larger-than=‘PTRDIFF_MAX’ is enabled by
default. Warnings controlled by the option can be disabled either by specifying
byte-size of ‘SIZE_MAX’ or more or by -Wno-frame-larger-than.

Chapter 3: GCC Command Options 147

-Wno-frame-larger—-than
Disable -Wframe-larger-than= warnings. The option is equivalent to
-Wframe-larger-than=‘SIZE_MAX’ or larger.

-Wfree-nonheap-object
Warn when attempting to deallocate an object that was either not allocated
on the heap, or by using a pointer that was not returned from a prior call to
the corresponding allocation function. For example, because the call to stpcpy
returns a pointer to the terminating nul character and not to the beginning of
the object, the call to free below is diagnosed.
void f (char *p)

{
p = stpcpy (p, "abc");
/...
free (p); // warning
}

-Wfree-nonheap-object is included in -Wall.

-Wstack-usage=byte-size
Warn if the stack usage of a function might exceed byte-size. The computation
done to determine the stack usage is conservative. Any space allocated via
alloca, variable-length arrays, or related constructs is included by the compiler
when determining whether or not to issue a warning.

The message is in keeping with the output of ~-fstack-usage.

o If the stack usage is fully static but exceeds the specified amount, it’s:

warning: stack usage is 1120 bytes

e If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes

e If the stack usage is (partly) dynamic and not bounded, it’s:

warning: stack usage might be unbounded

-Wstack-usage=‘PTRDIFF_MAX’ is enabled by default. Warnings controlled by
the option can be disabled either by specifying byte-size of ‘SIZE_MAX’ or more
or by -Wno-stack-usage.

-Wno-stack-usage
Disable -Wstack-usage= warnings. The option is equivalent to
-Wstack-usage='SIZE_MAX’ or larger.

-Wunsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler cannot assume any-
thing on the bounds of the loop indices. With —~funsafe-loop-optimizations
warn if the compiler makes such assumptions.

-Wno-pedantic-ms-format (MinGW targets only)
When used in combination with -Wformat and -pedantic without GNU exten-
sions, this option disables the warnings about non-ISO printf / scanf format
width specifiers 132, 164, and I used on Windows targets, which depend on
the MS runtime.

148

Using the GNU Compiler Collection (GCC)

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by -Wpedantic.

This warning is upgraded to an error by -pedantic-errors.

-Wno-pointer—-compare

-Wno-tsan

Do not warn if a pointer is compared with a zero character constant. This
usually means that the pointer was meant to be dereferenced. For example:

const char *p = foo ();
if (p == '\0")
return 42;

Note that the code above is invalid in C++11.
This warning is enabled by default.

Disable warnings about unsupported features in ThreadSanitizer.

ThreadSanitizer does not support std: :atomic_thread_fence and can report
false positives.

-Wtype-limits

Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with < or >=. This warning is
also enabled by -Wextra.

-Wabsolute-value (C and Objective-C only)

-Wcomment

-Wcomments

Warn for calls to standard functions that compute the absolute value of an
argument when a more appropriate standard function is available. For example,
calling abs (3.14) triggers the warning because the appropriate function to call
to compute the absolute value of a double argument is fabs. The option also
triggers warnings when the argument in a call to such a function has an unsigned
type. This warning can be suppressed with an explicit type cast and it is also
enabled by -Wextra.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. This warning is
enabled by -Wall.

-Wtrigraphs

Warn if any trigraphs are encountered that might change the meaning of the
program. Trigraphs within comments are not warned about, except those that
would form escaped newlines.

This option is implied by -Wall. If -Wall is not given, this option is still enabled
unless trigraphs are enabled. To get trigraph conversion without warnings, but
get the other -Wall warnings, use ‘~trigraphs -Wall -Wno-trigraphs’.

Chapter 3: GCC Command Options 149

-Wundef Warn if an undefined identifier is evaluated in an #if directive. Such identifiers
are replaced with zero.

-Wexpansion-to-defined
Warn whenever ‘defined’ is encountered in the expansion of a macro (including
the case where the macro is expanded by an ‘#if’ directive). Such usage is not
portable. This warning is also enabled by -Wpedantic and -Wextra.

-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used
if it is expanded or tested for existence at least once. The preprocessor also
warns if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then the preprocessor reports it as unused. To avoid the warning in such a case,
you might improve the scope of the macro’s definition by, for example, moving
it into the first skipped block. Alternatively, you could provide a dummy use
with something like:

#if defined the_macro_causing_the_warning
#endif

-Wno-endif-labels
Do not warn whenever an #else or an #endif are followed by text. This
sometimes happens in older programs with code of the form
#if FOO

#éise FOO0
#endif FOO
The second and third FOO should be in comments. This warning is on by default.

-Wbad-function-cast (C and Objective-C only)
Warn when a function call is cast to a non-matching type. For example, warn
if a call to a function returning an integer type is cast to a pointer type.

-Wc90-c99-compat (C and Objective-C only)
Warn about features not present in ISO C90, but present in ISO C99. For
instance, warn about use of variable length arrays, long long type, bool type,
compound literals, designated initializers, and so on. This option is independent
of the standards mode. Warnings are disabled in the expression that follows
__extension__.

-Wc99-c11-compat (C and Objective-C only)
Warn about features not present in ISO C99, but present in ISO C11. For in-
stance, warn about use of anonymous structures and unions, _Atomic type qual-
ifier, _Thread_local storage-class specifier, _Alignas specifier, Alignof opera-
tor, _Generic keyword, and so on. This option is independent of the standards
mode. Warnings are disabled in the expression that follows __extension__.

150 Using the GNU Compiler Collection (GCC)

-Wc11-c23-compat (C and Objective-C only)

-Wcll-c2x-compat (C and Objective-C only)
Warn about features not present in ISO C11, but present in ISO C23. For
instance, warn about omitting the string in _Static_assert, use of ‘[[]]’
syntax for attributes, use of decimal floating-point types, and so on. This option
is independent of the standards mode. Warnings are disabled in the expression
that follows __extension__. The name -Wcll-c2x-compat is deprecated.

When not compiling in C23 mode, these warnings are upgraded to errors by
-pedantic-errors.

-Wc23-c2y-compat (C and Objective-C only)

-Wc23-c2y-compat (C and Objective-C only)
Warn about features not present in ISO C23, but present in ISO C2Y. For
instance, warn about _Generic selecting with a type name instead of an ex-
pression. This option is independent of the standards mode. Warnings are
disabled in the expression that follows __extension__.

When not compiling in C2Y mode, these warnings are upgraded to errors by
-pedantic-errors.

-We++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-Wc++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on -Wnarrowing and is enabled by -Wall.

-Wc++14-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2011 and
ISO C++ 2014. This warning is enabled by -Wall.

-We++17-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2014 and
ISO C++ 2017. This warning is enabled by -Wall.

-Wc++20-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2017 and
ISO C++ 2020. This warning is enabled by -Wall.

-Wc++26-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 2023 and
upcoming ISO C++ 2026. This warning is enabled by -Wall.

-Wno-c++11-extensions (C++ and Objective-C++ only)
Do not warn about C++11 constructs in code being compiled using an older
C++ standard. Even without this option, some C++11 constructs will only be
diagnosed if -Wpedantic is used.

Chapter 3: GCC Command Options 151

-Wno-c++14-extensions (C++ and Objective-C++ only)
Do not warn about C++14 constructs in code being compiled using an older
C++ standard. Even without this option, some C++14 constructs will only be
diagnosed if -Wpedantic is used.

-Wno-c++17-extensions (C++ and Objective-C++ only)
Do not warn about C++17 constructs in code being compiled using an older
C++ standard. Even without this option, some C++17 constructs will only be
diagnosed if -Wpedantic is used.

-Wno-c++20-extensions (C++ and Objective-C++ only)
Do not warn about C++20 constructs in code being compiled using an older
C++ standard. Even without this option, some C++20 constructs will only be
diagnosed if -Wpedantic is used.

-Wno-c++23-extensions (C++ and Objective-C++ only)
Do not warn about C++23 constructs in code being compiled using an older
C++ standard. Even without this option, some C++23 constructs will only be
diagnosed if -Wpedantic is used.

-Wno-c++26-extensions (C++ and Objective-C++ only)
Do not warn about C++26 constructs in code being compiled using an older
C++ standard. Even without this option, some C++26 constructs will only be
diagnosed if ~-Wpedantic is used.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char *x is unsafe, as in this example:

/* p is char **x value. x/
const char **q = (const char *x) p;
/* Assignment of readonly string to const char * is O0K. x*/

*q = "string";
/* Now char** pointer points to read-only memory. */
**p = 'b';

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wcast-align=strict
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * regardless of the
target machine.

-Wcast-function-type
Warn when a function pointer is cast to an incompatible function pointer. In
a cast involving function types with a variable argument list only the types of
initial arguments that are provided are considered. Any parameter of pointer-
type matches any other pointer-type. Any benign differences in integral types

152

Using the GNU Compiler Collection (GCC)

are ignored, like int vs. long on ILP32 targets. Likewise type qualifiers are
ignored. The function type void (*) (void) is special and matches everything,
which can be used to suppress this warning. In a cast involving pointer to
member types this warning warns whenever the type cast is changing the pointer
to member type. This warning is enabled by -Wextra.

-Wcast—-user—-defined

Warn when a cast to reference type does not involve a user-defined conversion
that the programmer might expect to be called.

struct A { operator const int&(); } a;
auto r = (int&)a; // warning

This warning is enabled by default.

-Wwrite-strings

When compiling C, give string constants the type const char [length] so that
copying the address of one into a non-const char * pointer produces a warning.
These warnings help you find at compile time code that can try to write into
a string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it is just a nuisance. This is why we
did not make -Wall request these warnings.

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

This warning is upgraded to an error by -pedantic-errors in C++11 mode or
later.

-Wclobbered

Warn for variables that might be changed by longjmp or vfork. This warning
is also enabled by -Wextra.

-Wno-complain-wrong-lang

By default, language front ends complain when a command-line option is
valid, but not applicable to that front end. This may be disabled with
-Wno-complain-wrong-lang, which is mostly useful when invoking a single
compiler driver for multiple source files written in different languages, for
example:

$ g++ -fno-rtti a.cc b.£f90

The driver g++ invokes the C++ front end to compile a.cc and the Fortran
front end to compile b.£90. The latter front end diagnoses ‘£951: Warning:
command-line option '-fno-rtti' is valid for C++/D/0bjC++ but not
for Fortran’, which may be disabled with -Wno-complain-wrong-lang.

This option can also be used to disable warnings like ‘cciplus: note: CTF
debug info requested, but not supported for 'GNU C++20' frontend’ pro-
duced by -gctf or —gsctf for unsupported languages.

-Wcompare-distinct-pointer-types (C and Objective-C only)

Warn if pointers of distinct types are compared without a cast. This warning
is enabled by default.

Chapter 3: GCC Command Options 153

-Wconversion

Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,
like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using -Wno-sign-conversion.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that never use a type conversion operator: conversions
to void, the same type, a base class or a reference to them. Warnings about
conversions between signed and unsigned integers are disabled by default in
C++ unless -Wsign-conversion is explicitly enabled.

Warnings about conversion from arithmetic on a small type back to that type
are only given with -Warith-conversion.

-Wdangling-else
Warn about constructions where there may be confusion to which if statement
an else branch belongs. Here is an example of such a case:

{
if (a)
if ()
foo O;
else
bar O;
}
In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC issues a warn-
ing when this flag is specified. To eliminate the warning, add explicit braces
around the innermost if statement so there is no way the else can belong to
the enclosing if. The resulting code looks like this:

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

This warning is enabled by -Wparentheses.

-Wdangling-pointer

-Wdangling-pointer=n
Warn about uses of pointers (or C++ references) to objects with automatic
storage duration after their lifetime has ended. This includes local variables
declared in nested blocks, compound literals and other unnamed temporary
objects. In addition, warn about storing the address of such objects in es-

154 Using the GNU Compiler Collection (GCC)
caped pointers. The warning is enabled at all optimization levels but may yield
different results with optimization than without.

-Wdangling-pointer=1
At level 1, the warning diagnoses only unconditional uses of dan-
gling pointers.
-Wdangling-pointer=2
At level 2, in addition to unconditional uses the warning also diag-
noses conditional uses of dangling pointers.
The short form -Wdangling-pointer is equivalent to -Wdangling-pointer=2,
while -Wno-dangling-pointer and -Wdangling-pointer=0 have the same ef-
fect of disabling the warnings. -Wdangling-pointer=2 is included in -Wall.
This example triggers the warning at level 1; the address of the unnamed tem-
porary is unconditionally referenced outside of its scope.
char f (char c1, char c2, char c3)
{
char *p;
{
p = (char[]) { c1, c2, c3 };
}
// warning: using dangling pointer 'p' to an unnamed temporary
return *p;
}
In the following function the store of the address of the local variable x in the
escaped pointer *p triggers the warning at level 1.
void g (int **p)
{
int x = 7;
// warning: storing the address of local variable 'x' in 'x*p'
*p = &x;
}
In this example, the array a is out of scope when the pointer s is used. Since
the code that sets s is conditional, the warning triggers at level 2.
extern void frob (const char *);
void h (char *s)
{
if ('s)
{
char a[12] = "tmpname";
s = a;
}
// warning: dangling pointer 's' to 'a' may be used
frob (s);
}
-Wdate-time

Warn when macros __TIME__, __DATE__ or __TIMESTAMP__ are encountered as
they might prevent bitwise-identical reproducible compilations.

-Wempty-body

Warn if an empty body occurs in an if, else or do while statement. This
warning is also enabled by -Wextra.

Chapter 3: GCC Command Options 155

-Wno-endif-labels
Do not warn about stray tokens after #else and #endif.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumerated type mismatches in conditional expressions are also diagnosed
and the warning is enabled by default. In C this warning is enabled by -Wall.

-Wenum-conversion
Warn when a value of enumerated type is implicitly converted to a different
enumerated type. This warning is enabled by -Wextra in C.

-Wenum-int-mismatch (C and Objective-C only)
Warn about mismatches between an enumerated type and an integer type in
declarations. For example:
enum E {1=-1,2z=0, g=11;

int foo(void);
enum E foo(void);

In C, an enumerated type is compatible with char, a signed integer type, or
an unsigned integer type. However, since the choice of the underlying type
of an enumerated type is implementation-defined, such mismatches may cause
portability issues. In C++, such mismatches are an error. In C, this warning is
enabled by -Wall and -Wc++-compat.

-Wjump-misses-init (C, Objective-C only)
Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.

-Wjump-misses-init is included in -Wc++-compat. It can be disabled with the
-Wno-jump-misses-init option.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned. In C++, this
warning is also enabled by -Wall. In C, it is also enabled by -Wextra.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by -Wconversion.

-Wflex-array-member-not-at-end (C and C++ only)
Warn when a structure containing a C99 flexible array member as the last field
is not at the end of another structure. This warning warns e.g. about

struct flex { int length; char datall; };
struct mid_flex { int m; struct flex flex_data; int n; };

156 Using the GNU Compiler Collection (GCC)

-Wfloat-conversion
Warn for implicit conversions that reduce the precision of a real value. This
includes conversions from real to integer, and from higher precision real to lower
precision real values. This option is also enabled by -Wconversion.

-Wno-scalar-storage-order
Do not warn on suspicious constructs involving reverse scalar storage order.

-Wsizeof-array-div
Warn about divisions of two sizeof operators when the first one is applied to an
array and the divisor does not equal the size of the array element. In such a
case, the computation will not yield the number of elements in the array, which
is likely what the user intended. This warning warns e.g. about
int fn ()
{
int arr[10];
return sizeof (arr) / sizeof (short);

}
This warning is enabled by -Wall.

-Wsizeof-pointer-div
Warn for suspicious divisions of two sizeof expressions that divide the pointer
size by the element size, which is the usual way to compute the array size but
won’t work out correctly with pointers. This warning warns e.g. about sizeof
(ptr) / sizeof (ptr[0]) if ptr is not an array, but a pointer. This warning
is enabled by -Wall.

-Wsizeof-pointer-memaccess

Warn for suspicious length parameters to certain string and memory built-
in functions if the argument uses sizeof. This warning triggers for example
for memset (ptr, 0, sizeof (ptr)); if ptr is not an array, but a pointer,
and suggests a possible fix, or about memcpy (&foo, ptr, sizeof (&foo0)) ;.
-Wsizeof-pointer-memaccess also warns about calls to bounded string copy
functions like strncat or strncpy that specify as the bound a sizeof expres-
sion of the source array. For example, in the following function the call to
strncat specifies the size of the source string as the bound. That is almost
certainly a mistake and so the call is diagnosed.

void make_file (const char *name)

{
char path[PATH_MAX];
strncpy (path, name, sizeof path - 1);
strncat (path, ".text", sizeof ".text");

}

The -Wsizeof-pointer-memaccess option is enabled by -Wall.

-Wno-sizeof-array-argument
Do not warn when the sizeof operator is applied to a parameter that is declared
as an array in a function definition. This warning is enabled by default for C
and C++ programs.

Chapter 3: GCC Command Options 157

-Wmemset-elt-size

Warn for suspicious calls to the memset built-in function, if the first argument
references an array, and the third argument is a number equal to the number
of elements, but not equal to the size of the array in memory. This indicates
that the user has omitted a multiplication by the element size. This warning is
enabled by -Wall.

-Wmemset-transposed-args

-Waddress

Warn for suspicious calls to the memset built-in function where the second
argument is not zero and the third argument is zero. For example, the call
memset (buf, sizeof buf, 0) is diagnosed because memset (buf, 0, sizeof
buf) was meant instead. The diagnostic is only emitted if the third argument is
a literal zero. Otherwise, if it is an expression that is folded to zero, or a cast of
zero to some type, it is far less likely that the arguments have been mistakenly
transposed and no warning is emitted. This warning is enabled by -Wall.

Warn about suspicious uses of address expressions. These include comparing
the address of a function or a declared object to the null pointer constant such
as in

void f (void);

void g (void)

{

if (!f) // warning: expression evaluates to false
abort ();
}
comparisons of a pointer to a string literal, such as in

void f (const char *x)

¢ if (x == "abc") // warning: expression evaluates to false
puts ("equal");

}
and tests of the results of pointer addition or subtraction for equality to null,
such as in

void f (const int *p, int i)

¢ return p + i == NULL;

}
Such uses typically indicate a programmer error: the address of most functions
and objects necessarily evaluates to true (the exception are weak symbols), so
their use in a conditional might indicate missing parentheses in a function call
or a missing dereference in an array expression. The subset of the warning for
object pointers can be suppressed by casting the pointer operand to an integer
type such as intptr_t or uintptr_t. Comparisons against string literals result
in unspecified behavior and are not portable, and suggest the intent was to call
strcmp. The warning is suppressed if the suspicious expression is the result of
macro expansion. -Waddress warning is enabled by -Wall.

-Wno-address-of-packed-member

Do not warn when the address of packed member of struct or union is taken,
which usually results in an unaligned pointer value. This is enabled by default.

158 Using the GNU Compiler Collection (GCC)

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bitwise operator is likely to be ex-
pected. Also warns when the operands of a logical operator are the same:

extern int a;
if (2a<0&& a<0){...7%}

-Wlogical-not-parentheses
Warn about logical not used on the left hand side operand of a comparison.
This option does not warn if the right operand is considered to be a boolean
expression. Its purpose is to detect suspicious code like the following:

int a;

i (ta> 1 { ...}

It is possible to suppress the warning by wrapping the LHS into parentheses:
if ((ta) > 1) { ...}
This warning is enabled by -Wall.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-aggressive-loop-optimizations
Do not warn if the compiler detects undefined behavior in a loop with a con-
stant number of iterations. ~-Waggressive-loop-optimizations is enabled by
default.

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This does not stop
errors for incorrect use of supported attributes.

Warnings about ill-formed uses of standard attributes are upgraded to errors
by -pedantic-errors.

Additionally, using -Wno-attributes=, it is possible to suppress warnings

about unknown scoped attributes (in C++11 and C23). For example,
-Wno-attributes=vendor::attr disables warning about the following
declaration:

[[vendor::attr]] void f();

It is also possible to disable warning about all attributes in a namespace us-
ing -Wno-attributes=vendor:: which prevents warning about both of these
declarations:

[[vendor: :safel]] void £();

[[vendor: :unsafe]] void £f2();

Note that -Wno-attributes= does not imply -Wno-attributes.

-Wno-builtin-declaration-mismatch
Warn if a built-in function is declared with an incompatible signature or as a
non-function, or when a built-in function declared with a type that does not
include a prototype is called with arguments whose promoted types do not

Chapter 3: GCC Command Options 159

match those expected by the function. When -Wextra is specified, also warn
when a built-in function that takes arguments is declared without a prototype.
The -Wbuiltin-declaration-mismatch warning is enabled by default. To
avoid the warning include the appropriate header to bring the prototypes of
built-in functions into scope.

For example, the call to memset below is diagnosed by the warning because the
function expects a value of type size_t as its argument but the type of 32 is
int. With -Wextra, the declaration of the function is diagnosed as well.

extern void* memset ();
void f (void *d)
{

memset (d, '\0', 32);
}

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-

ings for redefinition of __TIMESTAMP TIME DATE FILE__, and
__BASE_FILE__.

—_) == —_—) == —_) == -

-Wkeyword-macro
Warn if a keyword is defined as a macro or undefined. For C++ identifiers with
special meaning or standard attribute identifiers are diagnosed as well. This
warning is enabled by default for C++26 if ~-Wpedantic and emits a pedwarn in
that case.

-Wfree-labels (C and Objective-C only)
Warn if a label is applied to a non-statement, or occurs at the end of a compound
statement. Such labels are allowed by C23 and later dialects of C, and are
available as a GCC extension in all other dialects.

This warning is also enabled by -Wc11-c23-compat. It is turned into an error
if building for a C version before C23 by -pedantic-errors.

-Wheader-guard

Warn if a valid preprocessor header multiple inclusion guard has a #define di-
rective right after #ifndef or #if !'defined directive for the multiple inclusion
guard, which defines a different macro from the guard macro with a similar
name, the actual multiple inclusion guard macro isn’t defined at the corre-
sponding #ifndef directive at the end of the header, and the #define directive
defines an object-like macro with empty definition. In such case, it often is just
a misspelled guard name, either in the #ifndef or #if !'defined directive or
in the subsequent #define directive. This warning is enabled by -Wall.

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by -Wextra.

160 Using the GNU Compiler Collection (GCC)

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype. A definition using ‘()’ is not considered an old-style
definition in C23 mode, because it is equivalent to ‘(void)’ in that case, but is
considered an old-style definition for older standards.

-Wmultiple-parameter-fwd-decl-lists (C and Objective-C only)
Warn if more than one list of forward declarations of parameters appears in a
function prototype. This warning is also enabled by -Wextra.

-Wdeprecated-non-prototype (C and Objective-C only)
Warn if a function declared with an empty parameter list ‘()’ is called with
one or more arguments, or if a function definition with one or more parameters
is encountered after such a declaration. Both cases are errors in C23 and later
dialects of C.

This warning is also enabled by -Wc11-c23-compat.

-Wmissing-parameter-name (C and Objective-C only)
Warn if a function definition omits a parameter name, specifying only its type.
This can be used to document that a parameter is unused in the definition. It
is part of C23 and later dialects of C, and available as a GCC extension in all
other dialects.

This warning is also enabled by -Wc11-c23-compat. It is turned into an error
if building for a C version before C23 by -pedantic-errors.

-Wmissing-parameter-type (C and Objective-C only)
A function parameter is declared without a type specifier in K&R-style func-
tions:
void foo(bar) { }

This warning is also enabled by -Wextra.

-Wno-declaration-missing-parameter-type (C and Objective-C only)
Do not warn if a function declaration contains a parameter name without a type.
Such function declarations do not provide a function prototype and prevent
most type checking in function calls.

This warning is enabled by default. In C99 and later dialects of C, it is
treated as an error. The error can be downgraded to a warning using
-fpermissive (along with certain other errors), or for this error alone, with
-Wno-error=declaration-missing-parameter-type.

This warning is upgraded to an error by -pedantic-errors.

-Wmissing-prototypes (C and Objective-C only)

Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. Use
this option to detect global functions that do not have a matching prototype
declaration in a header file. This option is not valid for C++ because all func-
tion declarations provide prototypes and a non-matching declaration declares
an overload rather than conflict with an earlier declaration. Use -Wmissing-
declarations to detect missing declarations in C++.

Chapter 3: GCC Command Options 161

-Wmissing-variable-declarations (C and Objective-C only)
Warn if a global variable is defined without a previous declaration. Use this
option to detect global variables that do not have a matching extern declaration
in a header file.

-Wmissing-declarations

Warn if a global function is defined without a previous declaration. Do so
even if the definition itself provides a prototype. Use this option to detect
global functions that are not declared in header files. In C, no warnings are
issued for functions with previous non-prototype declarations; use ~-Wmissing-
prototypes to detect missing prototypes. In C++, no warnings are issued for
function templates, or for inline functions, or for functions in anonymous names-
paces.

-Wmissing-field-initializers
Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code causes such a warning, because x.h is implicitly zero:
struct s { int £, g, h; };
struct s x = { 3, 4 };
In C this option does not warn about designated initializers, so the following
modification does not trigger a warning;:
struct s { int £, g, h; };
struct s x = { .f =3, .g=41};
In C this option does not warn about the universal zero initializer ‘{ 0 }”:
struct s { int £, g, h; };
struct s x = { 0 };
Likewise, in C++ this option does not warn about the empty { } initializer, for
example:
struct s { int £, g, h; };
sx=1{1%;
This warning is included in -Wextra. To get other -Wextra warnings without
this one, use -Wextra -Wno-missing-field-initializers.
-Wno-missing-requires
By default, the compiler warns about a concept-id appearing as a C++20 simple-
requirement:

bool satisfied = requires { C<T> };

Here ‘satisfied’ will be true if ‘C<T>’ is a valid expression, which it is for all
T. Presumably the user meant to write

bool satisfied = requires { requires C<T> };
so ‘satisfied’ is only true if concept ‘C’ is satisfied for type ‘T .

This warning can be disabled with -Wno-missing-requires.

-Wno-missing-template-keyword

The member access tokens ., -> and :: must be followed by the template
keyword if the parent object is dependent and the member being named is a
template.

template <class X>

162

Using the GNU Compiler Collection (GCC)

void DoStuff (X x)
{
x.template DoSomeOtherStuff<X>(); // Good.
x.DoMoreStuff<X>(); // Warning, x is dependent.
}

In rare cases it is possible to get false positives. To silence this, wrap the
expression in parentheses. For example, the following is treated as a template,
even where m and N are integers:

void NotATemplate (my_class t)

{
int N = 5;

bool test = t.m < N > (0); // Treated as a template.
test = (t.m < N) > (0); // Same meaning, but not treated as a template.
}

This warning can be disabled with -Wno-missing-template-keyword.

-Wno-multichar

Do not warn if a multicharacter constant (‘'FOOF'’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=[none|id|nfc|nfkc]

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.

There are four levels of warning supported by GCC. The default is
-Wnormalized=nfc, which warns about any identifier that is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses. It is equivalent to -Wnormalized.

Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That
is, there’s no way to use these symbols in portable ISO C or C++ and have
all your identifiers in NFC. -Wnormalized=id suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing ~-Wnormalized=none
or -Wno-normalized. You should only do this if you are using some other
normalization scheme (like “D”), because otherwise you can easily create bugs
that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, displays just
like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,

Chapter 3: GCC Command Options 163

and GCC warns if your code is not in NFKC if you use -Wnormalized=nfkc.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,
but may be useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.

-Wno-attribute-warning
Do not warn about usage of functions (see Section 6.4.1 [Function Attributes],
page 629) declared with warning attribute. By default, this warning is en-
abled. -Wno-attribute-warning can be used to disable the warning or -Wno-
error=attribute-warning can be used to disable the error when compiled
with -Werror flag.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 8.10 [Deprecated
Features|, page 1082.

In C++, explicitly specifying -Wdeprecated also enables warnings about
some features that are deprecated in later language standards, specifically
-Wcomma-subscript, -Wvolatile, -Wdeprecated-enum-float-conversion,
-Wdeprecated-enum-enum-conversion, -Wdeprecated-literal-operator,
and -Wdeprecated-variadic-comma-omission.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.4.1 [Function Attributes],
page 629), variables (see Section 6.4.2 [Variable Attributes|, page 707), and
types (see Section 6.4.3 [Type Attributes|, page 723) marked as deprecated by
using the deprecated attribute.

-Wno-deprecated-openmp
Do not warn about deprecated OpenMP code.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Wno-odr Warn about One Definition Rule violations during link-time optimization. En-
abled by default.

-Wopenacc-parallelism
Warn about potentially suboptimal choices related to OpenACC parallelism.

-Wno-openmp
Warn about suspicious OpenMP code.

-Wopenmp-simd
Warn if the vectorizer cost model overrides the OpenMP simd directive set by
user. The -fsimd-cost-model=unlimited option can be used to relax the cost
model.

-Woverride-init (C and Objective-C only)
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.2.11 [Designated Initializers|, page 624).

This warning is included in -Wextra. To get other -Wextra warnings without
this one, use -Wextra -Wno-override-init.

164 Using the GNU Compiler Collection (GCC)

-Wno-override-init-side-effects (C and Objective-C only)
Do not warn if an initialized field with side effects is overridden when using
designated initializers (see Section 6.2.11 [Designated Initializers|, page 624).
This warning is enabled by default.

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar is
misaligned even though struct bar does not itself have the packed attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wnopacked-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields of
type char. This was fixed in GCC 4.4 but the change can lead to differences
in the structure layout. GCC informs you when the offset of such a field has
changed in GCC 4.4. For example there is no longer a 4-bit padding between
field a and b in this structure:

struct foo

{

char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use -Wno-packed-bitfield-compat to
disable this warning.

-Wpacked-not-aligned (C, C++, Objective-C and Objective-C++ only)
Warn if a structure field with explicitly specified alignment in a packed struct
or union is misaligned. For example, a warning will be issued on struct S, like,
warning: alignment 1 of 'struct S' is less than 8, in this code:
struct __attribute ((aligned (8))) S8 { char a[8]; };
struct __attribute__ ((packed)) S {

struct S8 s8;
};

This warning is enabled by -Wall.

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

Chapter 3: GCC Command Options 165

-Wrestrict

Warn when an object referenced by a restrict-qualified parameter (or, in
C++, a __restrict-qualified parameter) is aliased by another argument, or
when copies between such objects overlap. For example, the call to the strcpy
function below attempts to truncate the string by replacing its initial characters
with the last four. However, because the call writes the terminating NUL into
a[4], the copies overlap and the call is diagnosed.

void foo (void)

{
char a[] = "abcd1234";
strcpy (a, a + 4);

}

The -Wrestrict option detects some instances of simple overlap even without
optimization but works best at -02 and above. It is included in -Wall.

-Wnested-externs (C and Objective-C only)

-Winline

Warn if an extern declaration is encountered within a function.

Warn if a function that is declared as inline cannot be inlined. Even with this
option, the compiler does not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by -Winline to appear or disappear.

-Winterference-size

Warn about use of C++17 std: :hardware_destructive_interference_size
without specifying its value with —--param destructive-interference-size.
Also warn about questionable values for that option.

This variable is intended to be used for controlling class layout, to avoid false
sharing in concurrent code:
struct independent_fields {
alignas(std::hardware_destructive_interference_size)
std::atomic<int> one;
alignas(std::hardware_destructive_interference_size)
std: :atomic<int> two;
};
Here ‘one’ and ‘two’ are intended to be far enough apart that stores to one
won’t require accesses to the other to reload the cache line.

By default, --param destructive-interference-size and --param
constructive-interference-size are set based on the current -mtune
option, typically to the L1 cache line size for the particular target CPU,
sometimes to a range if tuning for a generic target. So all translation units
that depend on ABI compatibility for the use of these variables must be
compiled with the same -mtune (or -mcpu).

166 Using the GNU Compiler Collection (GCC)

If ABI stability is important, such as if the use is in a header for a library,
you should probably not use the hardware interference size variables at all.
Alternatively, you can force a particular value with —-param.

If you are confident that your use of the variable does not affect ABI out-
side a single build of your project, you can turn off the warning with -Wno-
interference-size.

-Wint-in-bool-context
Warn for suspicious use of integer values where boolean values are expected,
such as conditional expressions (7:) using non-boolean integer constants in
boolean context, like if (a<=b 7 2 : 3). Or left shifting of signed integers
in boolean context, like for (a = 0; 1 << a; a++);. Likewise for all kinds of
multiplications regardless of the data type. This warning is enabled by -Wall.

-Wno-int-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a different size.
In C++, casting to a pointer type of smaller size is an error. Wint-to-pointer-
cast is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.24 [Precompiled Headers],
page 591) is found in the search path but cannot be used.

-Winvalid-utf8
Warn if an invalid UTF-8 character is found. This warning is on by de-
fault for C++23 if -finput-charset=UTF-8 is used and turned into error with
-pedantic-errors.

-Wno-unicode
Don’t diagnose invalid forms of delimited or named escape sequences which are
treated as separate tokens. Wunicode is enabled by default.

-Wlong-long
Warn if long long type is used. This is enabled by either -Wpedantic or
-Wtraditional in ISO C90 and C++98 modes. To inhibit the warning messages,
use -Wno-long-long.
This warning is upgraded to an error by -pedantic-errors.

-Wvariadic-macros
Warn if variadic macros are used in ISO C90 mode, or if the GNU alternate
syntax is used in ISO C99 mode. This is enabled by either -Wpedantic or
-Wtraditional. To inhibit the warning messages, use ~-Wno-variadic-macros.

-Wno-varargs
Do not warn upon questionable usage of the macros used to handle variable
arguments like va_start. These warnings are enabled by default.

Chapter 3: GCC Command Options 167

-Wvector-operation-performance

-Wvla

Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and as a single scalar, which means that vector fits into a scalar
type.

Warn if a variable-length array is used in the code. -Wno-vla prevents the
-Wpedantic warning of the variable-length array.

This warning is upgraded to an error by -pedantic-errors.

-Wvla-larger-than=byte-size

If this option is used, the compiler warns for declarations of variable-length
arrays whose size is either unbounded, or bounded by an argument that allows
the array size to exceed byte-size bytes. This is similar to how -Walloca-
larger-than=byte-size works, but with variable-length arrays.

Note that GCC may optimize small variable-length arrays of a known value
into plain arrays, so this warning may not get triggered for such arrays.
-Wvla-larger-than='"PTRDIFF_MAX’ is enabled by default but is typically only
effective when -ftree-vrp is active (default for -02 and above).

See also -Walloca-larger-than=byte-size.

-Wno-vla-larger-than

Disable -Wvla-larger-than= warnings. The option is equivalent to -Wvla-
larger-than="SIZE_MAX’ or larger.

-Wvla-parameter

Warn about redeclarations of functions involving arguments of Variable Length
Array types of inconsistent kinds or forms, and enable the detection of out-of-
bounds accesses to such parameters by warnings such as -Warray-bounds.

If the first function declaration uses the VLA form the bound specified in the
array is assumed to be the minimum number of elements expected to be pro-
vided in calls to the function and the maximum number of elements accessed
by it. Failing to provide arguments of sufficient size or accessing more than the
maximum number of elements may be diagnosed.

For example, the warning triggers for the following redeclarations because the
first one allows an array of any size to be passed to £ while the second one
specifies that the array argument must have at least n elements. In addition,
calling £ with the associated VLA bound parameter in excess of the actual VLA
bound triggers a warning as well.

void £ (int n, int([n]);
// warning: argument 2 previously declared as a VLA
void f (int, int[1);

void g (int n)

{
if (n > 4)

168 Using the GNU Compiler Collection (GCC)

return;
int aln];
// warning: access to a by f may be out of bounds
f (sizeof a, a);

-Wvla-parameter is included in -Wall. The -Warray-parameter option trig-
gers warnings for similar problems involving ordinary array arguments.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables. This warning is enabled by -Wall.

-Wno-xor-used-as-pow (C, C++, Objective-C and Objective-C++ only)
Disable warnings about uses of ~, the exclusive or operator, where it appears the
code meant exponentiation. Specifically, the warning occurs when the left-hand
side is the decimal constant 2 or 10 and the right-hand side is also a decimal
constant.

In C and C++, ~ means exclusive or, whereas in some other languages (e.g. TeX
and some versions of BASIC) it means exponentiation.

This warning can be silenced by converting one of the operands to hexadecimal
as well as by compiling with -Wno-xor-used-as-pow.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers are unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC refuses to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign (C and Objective-C only)
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by -Wall
and by -Wpedantic, which can be disabled with -Wno-pointer-sign.

This warning is upgraded to an error by -pedantic-errors.

-Wstack-protector
This option is only active when -fstack-protector is active. It warns about
functions that are not protected against stack smashing.

-Woverlength-strings
Warn about string constants that are longer than the “minimum maximum”
length specified in the C standard. Modern compilers generally allow string
constants that are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to

Chapter 3: GCC Command Options 169

4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by -Wpedantic, and can be disabled with
-Wno-overlength-strings.

-Wunsuffixed-float-constants (C and Objective-C only)
Issue a warning for any floating constant that does not have a suffix. When
used together with -Wsystem-headers it warns about such constants in system
header files. This can be useful when preparing code to use with the FLOAT_
CONST_DECIMAL64 pragma from the decimal floating-point extension to C99.

-Wno-lto-type-mismatch
During the link-time optimization, do not warn about type mismatches in global
declarations from different compilation units. Requires -f1to to be enabled.
Enabled by default.

-Wno-designated-init (C and Objective-C only)
Suppress warnings when a positional initializer is used to initialize a structure
that has been marked with the designated_init attribute.

3.10 Options That Control Static Analysis

-fanalyzer
This option enables an static analysis of program flow which looks for “interest-
ing” interprocedural paths through the code, and issues warnings for problems
found on them.

This analysis is much more expensive than other GCC warnings.

In technical terms, it performs coverage-guided symbolic execution of the code
being compiled. It is neither sound nor complete: it can have false positives and
false negatives. It is a bug-finding tool, rather than a tool for proving program
correctness.

The analyzer is only suitable for use on C code in this release.

Enabling this option effectively enables the following warnings:

-Wanalyzer-allocation-size
-Wanalyzer-deref-before-check
-Wanalyzer-double-fclose
-Wanalyzer-double-free
-Wanalyzer-exposure-through-output-file
-Wanalyzer-exposure-through-uninit-copy
-Wanalyzer-fd-access-mode-mismatch
-Wanalyzer-fd-double-close
-Wanalyzer-fd-leak
-Wanalyzer-fd-phase-mismatch
-Wanalyzer-fd-type-mismatch
-Wanalyzer-fd-use-after-close
-Wanalyzer-fd-use-without-check
-Wanalyzer-file-leak
-Wanalyzer-free-of-non-heap
-Wanalyzer-imprecise-fp-arithmetic
-Wanalyzer-infinite-loop

170

Using the GNU Compiler Collection (GCC)

-Wanalyzer-infinite-recursion
-Wanalyzer-jump-through-null
-Wanalyzer-malloc-leak
-Wanalyzer-mismatching-deallocation
-Wanalyzer-null-argument
-Wanalyzer-null-dereference
-Wanalyzer-out-of-bounds
-Wanalyzer-overlapping-buffers
-Wanalyzer-possible-null-argument
-Wanalyzer-possible-null-dereference
-Wanalyzer-putenv-of-auto-var
-Wanalyzer-shift-count-negative
-Wanalyzer-shift-count-overflow
-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-tainted-allocation-size
-Wanalyzer-tainted-array-index
-Wanalyzer-tainted-assertion
-Wanalyzer-tainted-divisor
-Wanalyzer-tainted-offset
-Wanalyzer-tainted-size
-Wanalyzer-throw-of-unexpected-type
-Wanalyzer-undefined-behavior-ptrdiff
-Wanalyzer-undefined-behavior-strtok
-Wanalyzer-unsafe-call-within-signal-handler
-Wanalyzer-use-after-free
-Wanalyzer-use-of-pointer-in-stale-stack-frame
-Wanalyzer-use-of-uninitialized-value
-Wanalyzer-va-arg-type-mismatch
-Wanalyzer-va-list-exhausted
-Wanalyzer-va-list-leak
-Wanalyzer-va-list-use-after-va-end
-Wanalyzer-write-to-const
-Wanalyzer-write-to-string-literal

This option is only available if GCC was configured with analyzer support
enabled.

-Wanalyzer-symbol-too-complex

If ~fanalyzer is enabled, the analyzer uses various heuristics to attempt to
track the state of memory, but these can be defeated by sufficiently complicated
code.

By default, the analysis silently stops tracking values of expressions if they
exceed the threshold defined by —-param analyzer-max-svalue-depth=value,
and falls back to an imprecise representation for such expressions. The
-Wanalyzer-symbol-too-complex option warns if this occurs.

-Wanalyzer-too-complex

If ~fanalyzer is enabled, the analyzer uses various heuristics to attempt to
explore the control flow and data flow in the program, but these can be defeated
by sufficiently complicated code.

By default, the analysis silently stops if the code is too complicated for the
analyzer to fully explore and it reaches an internal limit. The -Wanalyzer-
too-complex option warns if this occurs.

Chapter 3: GCC Command Options 171

-Wno-analyzer-allocation-size
This warning requires -fanalyzer, which enables it; to disable it, use -Wno-
analyzer-allocation-size.

This diagnostic warns for paths through the code in which a pointer to a buffer
is assigned to point at a buffer with a size that is not a multiple of sizeof
(xpointer).

See CWE-131: Incorrect Calculation of Buffer Size (https://cwe.mitre.org/
data/definitions/131.html).

-Wno-analyzer-deref-before-check
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
deref-before-check to disable it.

This diagnostic warns for paths through the code in which a pointer is checked
for NULL *after® it has already been dereferenced, suggesting that the pointer
could have been NULL. Such cases suggest that the check for NULL is either
redundant, or that it needs to be moved to before the pointer is dereferenced.

This diagnostic also considers values passed to a function argument marked
with __attribute__((nonnull)) as requiring a non-NULL value, and thus
will complain if such values are checked for NULL after returning from such a
function call.

This diagnostic is unlikely to be reported when any level of optimization is
enabled, as GCC’s optimization logic will typically consider such checks for
NULL as being redundant, and optimize them away before the analyzer "sees"
them. Hence optimization should be disabled when attempting to trigger this
diagnostic.

-Wno-analyzer-double-fclose
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
double-fclose to disable it.

This diagnostic warns for paths through the code in which a FILE * can have
fclose called on it more than once.

See CWE-1341: Multiple Releases of Same Resource or Handle (https://cwe.
mitre.org/data/definitions/1341.html).

-Wno-analyzer-double-free
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
double-free to disable it.

This diagnostic warns for paths through the code in which a pointer can have a
deallocator called on it more than once, either free, or a deallocator referenced
by attribute malloc.

See CWE-415: Double Free (https://cwe.mitre.org/data/definitions/
415.html).

-Wno-analyzer-exposure-through-output-file
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
exposure-through-output-file to disable it.
This diagnostic warns for paths through the code in which a security-sensitive
value is written to an output file (such as writing a password to a log file).

https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/1341.html
https://cwe.mitre.org/data/definitions/1341.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/415.html

172 Using the GNU Compiler Collection (GCC)

See CWE-532: Information Exposure Through Log Files (https://cwe.mitre.
org/data/definitions/532.html).

-Wanalyzer-exposure-through-uninit-copy
This warning requires both —~fanalyzer and the use of a plugin to specify a func-
tion that copies across a “trust boundary”. Use -Wno-analyzer-exposure-
through-uninit-copy to disable it.

This diagnostic warns for “infoleaks” - paths through the code in which unini-
tialized values are copied across a security boundary (such as code within an
OS kernel that copies a partially-initialized struct on the stack to user space).

See CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
(https://cwe.mitre.org/data/definitions/200.html).

-Wno-analyzer-fd-access-mode-mismatch
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-fd-
access-mode-mismatch to disable it.

This diagnostic warns for paths through code in which a read on a write-only
file descriptor is attempted, or vice versa.

This diagnostic also warns for code paths in a which a function with attribute
fd_arg_read (N) is called with a file descriptor opened with 0_WRONLY at ref-
erenced argument N or a function with attribute fd_arg_write (N) is called
with a file descriptor opened with 0_RDONLY at referenced argument N.

-Wno-analyzer-fd-double-close
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-fd-
double-close to disable it.

This diagnostic warns for paths through code in which a file descriptor can be
closed more than once.

See CWE-1341: Multiple Releases of Same Resource or Handle (https://cwe.
mitre.org/data/definitions/1341.html).

-Wno-analyzer-fd-leak
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-fd-
leak to disable it.

This diagnostic warns for paths through code in which an open file descriptor
is leaked.

See CWE-775: Missing Release of File Descriptor or Handle after Effective
Lifetime (https://cwe.mitre.org/data/definitions/775.html).

-Wno-analyzer-fd-phase-mismatch
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-fd-
phase-mismatch to disable it.
This diagnostic warns for paths through code in which an operation is attempted
in the wrong phase of a file descriptor’s lifetime. For example, it will warn
on attempts to call accept on a stream socket that has not yet had listen
successfully called on it.

See CWE-666: Operation on Resource in Wrong Phase of Lifetime (https://
cwe.mitre.org/data/definitions/666.html).

https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/1341.html
https://cwe.mitre.org/data/definitions/1341.html
https://cwe.mitre.org/data/definitions/775.html
https://cwe.mitre.org/data/definitions/775.html
https://cwe.mitre.org/data/definitions/666.html
https://cwe.mitre.org/data/definitions/666.html

Chapter 3: GCC Command Options 173

-Wno-analyzer-fd-type-mismatch
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-fd-
type-mismatch to disable it.

This diagnostic warns for paths through code in which an operation is attempted
on the wrong type of file descriptor. For example, it will warn on attempts to
use socket operations on a file descriptor obtained via open, or when attempting
to use a stream socket operation on a datagram socket.

-Wno-analyzer-fd-use-after-close
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-fd-
use-after-close to disable it.

This diagnostic warns for paths through code in which a read or write is called
on a closed file descriptor.

This diagnostic also warns for paths through code in which a function with
attribute fd_arg (N) or fd_arg_read (N) or fd_arg_write (N) is called with
a closed file descriptor at referenced argument N.

-Wno-analyzer-fd-use-without-check
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-fd-
use-without-check to disable it.

This diagnostic warns for paths through code in which a file descriptor is used
without being checked for validity.

This diagnostic also warns for paths through code in which a function with
attribute fd_arg (N) or fd_arg_read (N) or fd_arg_write (N) is called with
a file descriptor, at referenced argument N, without being checked for validity.

-Wno-analyzer-file-leak
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-file-
leak to disable it.

This diagnostic warns for paths through the code in which a <stdio.h> FILE
* stream object is leaked.

See CWE-775: Missing Release of File Descriptor or Handle after Effective
Lifetime (https://cwe.mitre.org/data/definitions/775.html).

-Wno-analyzer-free-of-non-heap
This warning requires ~-fanalyzer, which enables it; use -Wno-analyzer-free-
of-non-heap to disable it.

This diagnostic warns for paths through the code in which free is called on a
non-heap pointer (e.g. an on-stack buffer, or a global).

See CWE-590: Free of Memory not on the Heap (https://cwe.mitre.org/
data/definitions/590.html).

-Wno-analyzer-imprecise-fp-arithmetic
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
imprecise-fp-arithmetic to disable it.

This diagnostic warns for paths through the code in which floating-point arith-
metic is used in locations where precise computation is needed. This diagnostic

https://cwe.mitre.org/data/definitions/775.html
https://cwe.mitre.org/data/definitions/775.html
https://cwe.mitre.org/data/definitions/590.html
https://cwe.mitre.org/data/definitions/590.html

174 Using the GNU Compiler Collection (GCC)

only warns on use of floating-point operands inside the calculation of an allo-
cation size at the moment.

-Wno-analyzer-infinite-loop
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
infinite-loop to disable it.

This diagnostics warns for paths through the code which appear to lead to an
infinite loop.

Specifically, the analyzer will issue this warning when it "sees" a loop in which:
e 1o externally-visible work could be being done within the loop
e there is no way to escape from the loop

e the analyzer is sufficiently confident about the program state throughout
the loop to know that the above are true

One way for this warning to be emitted is when there is an execution path
through a loop for which taking the path on one iteration implies that the same
path will be taken on all subsequent iterations.

For example, consider:

while (1)
{
char opcode = *cpu_state.pc;
switch (opcode)
{
case OPCODE_F0O:
handle_opcode_foo (&cpu_state);
break;
case OPCODE_BAR:
handle_opcode_bar (&cpu_state);
break;
}
}
The analyzer will complain for the above case because if opcode ever matches
none of the cases, the switch will follow the implicit default case, making the
body of the loop be a “no-op” with cpu_state.pc unchanged, and thus using

the same value of opcode on all subseqgent iterations, leading to an infinite loop.

See CWE-835: Loop with Unreachable Exit Condition (’Infinite Loop’)
(https://cwe.mitre.org/data/definitions/835.html).

-Wno-analyzer-infinite-recursion
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
infinite-recursion to disable it.

This diagnostics warns for paths through the code which appear to lead to
infinite recursion.

Specifically, when the analyzer "sees" a recursive call, it will compare the state
of memory at the entry to the new frame with that at the entry to the previous
frame of that function on the stack. The warning is issued if nothing in memory
appears to be changing; any changes observed to parameters or globals are
assumed to lead to termination of the recursion and thus suppress the warning.

https://cwe.mitre.org/data/definitions/835.html
https://cwe.mitre.org/data/definitions/835.html

Chapter 3: GCC Command Options 175

This diagnostic is likely to miss cases of infinite recursion that are convered to
iteration by the optimizer before the analyzer "sees" them. Hence optimization
should be disabled when attempting to trigger this diagnostic.

Compare with -Winfinite-recursion, which provides a similar diagnostic,
but is implemented in a different way.

See CWE-674: Uncontrolled Recursion (https://cwe.mitre.org/data/
definitions/674.html).

-Wno-analyzer-jump-through-null
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-jump-
through-null to disable it.

This diagnostic warns for paths through the code in which a NULL function
pointer is called.

-Wno-analyzer-malloc-leak
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
malloc-leak to disable it.

This diagnostic warns for paths through the code in which a pointer allocated
via an allocator is leaked: either malloc, or a function marked with attribute
malloc.

See CWE-401: Missing Release of Memory after Effective Lifetime (https://
cwe.mitre.org/data/definitions/401.html).

-Wno-analyzer-mismatching-deallocation
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
mismatching-deallocation to disable it.

This diagnostic warns for paths through the code in which the wrong deal-
location function is called on a pointer value, based on which function was
used to allocate the pointer value. The diagnostic will warn about mismatches
between free, scalar delete and vector delete[], and those marked as allo-
cator/deallocator pairs using attribute malloc.

See CWE-762: Mismatched Memory Management Routines (https://cwe.
mitre.org/data/definitions/762.html).

-Wno-analyzer-out-of-bounds
This warning requires -fanalyzer, which enables it; use ~-Wno-analyzer-out-
of-bounds to disable it.

This diagnostic warns for paths through the code in which a buffer is definitely
read or written out-of-bounds. The diagnostic applies for cases where the an-
alyzer is able to determine a constant offset and for accesses past the end of a
buffer, also a constant capacity. Further, the diagnostic does limited checking
for accesses past the end when the offset as well as the capacity is symbolic.

See CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer (https://cwe.mitre.org/data/definitions/119.html).

For cases where the analyzer is able, it will emit a text art diagram visualizing
the spatial relationship between the memory region that the analyzer predicts
would be accessed, versus the range of memory that is valid to access: whether

https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html

176 Using the GNU Compiler Collection (GCC)

they overlap, are touching, are close or far apart; which one is before or after in
memory, the relative sizes involved, the direction of the access (read vs write),
and, in some cases, the values of data involved. This diagram can be suppressed
using -fdiagnostics-text-art-charset=none.

-Wno-analyzer-overlapping-buffers
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
overlapping-buffers to disable it.

This diagnostic warns for paths through the code in which overlapping buffers
are passed to an API for which the behavior on such buffers is undefined.

Specifically, the diagnostic occurs on calls to the following functions
e memcpy
e strcat

e strcpy
for cases where the buffers are known to overlap.

-Wno-analyzer-possible-null-argument
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
possible-null-argument to disable it.

This diagnostic warns for paths through the code in which a possibly-NULL
value is passed to a function argument marked with __attribute_
((nonnull)) as requiring a non-NULL value.

See CWE-690: Unchecked Return Value to NULL Pointer Dereference
(https://cwe.mitre.org/data/definitions/690.html).

-Wno-analyzer-possible-null-dereference
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
possible-null-dereference to disable it.

This diagnostic warns for paths through the code in which a possibly-NULL
value is dereferenced.

See CWE-690: Unchecked Return Value to NULL Pointer Dereference
(https://cwe.mitre.org/data/definitions/690.html).

-Wno-analyzer-null-argument
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-null-
argument to disable it.

This diagnostic warns for paths through the code in which a value known
to be NULL is passed to a function argument marked with __attribute__
((nonnull)) as requiring a non-NULL value.

See CWE-476: NULL Pointer Dereference (https://cwe.mitre.org/data/
definitions/476.html).

-Wno-analyzer-null-dereference
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-null-
dereference to disable it.

This diagnostic warns for paths through the code in which a value known to be
NULL is dereferenced.

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html

Chapter 3: GCC Command Options 177

See CWE-476: NULL Pointer Dereference (https://cwe.mitre.org/data/
definitions/476.html).

-Wno-analyzer-putenv-of-auto-var
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
putenv-of-auto-var to disable it.

This diagnostic warns for paths through the code in which a call to putenv is
passed a pointer to an automatic variable or an on-stack buffer.

See POS34-C. Do not call putenv() with a pointer to an automatic variable as
the argument (https://wiki.sei.cmu.edu/confluence/x/6NYxBQ).

-Wno-analyzer-shift-count-negative
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
shift-count-negative to disable it.

This diagnostic warns for paths through the code in which a shift is attempted
with a negative count. It is analogous to the -Wshift-count-negative di-
agnostic implemented in the C/C++ front ends, but is implemented based on
analyzing interprocedural paths, rather than merely parsing the syntax tree.
However, the analyzer does not prioritize detection of such paths, so false neg-
atives are more likely relative to other warnings.

-Wno-analyzer-shift-count-overflow
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
shift-count-overflow to disable it.

This diagnostic warns for paths through the code in which a shift is attempted
with a count greater than or equal to the precision of the operand’s type.
It is analogous to the -Wshift-count-overflow diagnostic implemented in
the C/C++ front ends, but is implemented based on analyzing interprocedural
paths, rather than merely parsing the syntax tree. However, the analyzer does
not prioritize detection of such paths, so false negatives are more likely relative
to other warnings.

-Wno-analyzer-stale-setjmp-buffer
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
stale-setjmp-buffer to disable it.

This diagnostic warns for paths through the code in which longjmp is called to
rewind to a jmp_buf relating to a setjmp call in a function that has returned.

When setjmp is called on a jmp_buf to record a rewind location, it records the
stack frame. The stack frame becomes invalid when the function containing the
setjmp call returns. Attempting to rewind to it via longjmp would reference a
stack frame that no longer exists, and likely lead to a crash (or worse).

-Wno-analyzer-tainted-allocation-size
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
tainted-allocation-size to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the size of an allocation without being
sanitized, so that an attacker could inject an excessively large allocation and
potentially cause a denial of service attack.

https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://wiki.sei.cmu.edu/confluence/x/6NYxBQ
https://wiki.sei.cmu.edu/confluence/x/6NYxBQ

178 Using the GNU Compiler Collection (GCC)

See CWE-789: Memory Allocation with Excessive Size Value (https://cwe.
mitre.org/data/definitions/789.html).

-Wno-analyzer-tainted-assertion
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
tainted-assertion to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as part of a condition without being first
sanitized, and that condition guards a call to a function marked with attribute
noreturn (such as the function __builtin_unreachable). Such functions typi-
cally indicate abnormal termination of the program, such as for assertion failure
handlers. For example:

assert (some_tainted_value < SOME_LIMIT);

In such cases:

e when assertion-checking is enabled: an attacker could trigger a denial of
service by injecting an assertion failure

e when assertion-checking is disabled, such as by defining NDEBUG, an attacker
could inject data that subverts the process, since it presumably violates a
precondition that is being assumed by the code.

Note that when assertion-checking is disabled, the assertions are typically re-
moved by the preprocessor before the analyzer has a chance to "see" them, so
this diagnostic can only generate warnings on builds in which assertion-checking
is enabled.

For the purpose of this warning, any function marked with attribute noreturn
is considered as a possible assertion failure handler, including __builtin_
unreachable. Note that these functions are sometimes removed by the opti-
mizer before the analyzer "sees" them. Hence optimization should be disabled
when attempting to trigger this diagnostic.

See CWE-61T: Reachable Assertion (https://cwe.mitre.org/data/
definitions/617.html).

The warning can also report problematic constructions such as

switch (some_tainted_value) {

case O:
/* [...etc; various valid cases omitted...] */
break;

default:

__builtin_unreachable (); /* BUG: attacker can trigger this */
}

despite the above not being an assertion failure, strictly speaking.

-Wno-analyzer-tainted-array-index
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
tainted-array-index to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the index of an array access without
being sanitized, so that an attacker could inject an out-of-bounds access.

https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/617.html
https://cwe.mitre.org/data/definitions/617.html

Chapter 3: GCC Command Options 179

See CWE-129: Improper Validation of Array Index (https://cwe.mitre.org/
data/definitions/129.html).

-Wno-analyzer-tainted-divisor
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
tainted-divisor to disable it.
This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the divisor in a division or modulus
operation without being sanitized, so that an attacker could inject a division-
by-zero.
See CWE-369: Divide By Zero (https://cwe.mitre.org/data/definitions/
369.html).

-Wno-analyzer-tainted-offset
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
tainted-offset to disable it.

This diagnostic warns for paths through the code in which a value that could be
under an attacker’s control is used as a pointer offset without being sanitized,
so that an attacker could inject an out-of-bounds access.

See CWE-823: Use of Out-of-range Pointer Offset (https://cwe.mitre.org/
data/definitions/823.html).

-Wno-analyzer-tainted-size
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
tainted-size to disable it.

This diagnostic warns for paths through the code in which a value that could
be under an attacker’s control is used as the size of an operation such as memset
without being sanitized, so that an attacker could inject an out-of-bounds ac-
cess.

See CWE-129: Improper Validation of Array Index (https://cwe.mitre.org/
data/definitions/129.html).

-Wno-analyzer-throw-of-unexpected-type
This warning requires -fanalyzer which enables it; use -Wno-analyzer-
throw-of-unexpected-type to disable it. Dynamic exception specifications
are only available in C++14 and earlier.

This diagnostic warns for paths through the code in which a an exception
is thrown from a function with a dynamic exception specification where the
exception does not comply with the specification.

-Wno-analyzer-undefined-behavior-ptrdiff
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
undefined-behavior-ptrdiff to disable it.
This diagnostic warns for paths through the code in which a pointer subtraction
occurs where the pointers refer to different chunks of memory. Such code relies
on undefined behavior, as pointer subtraction is only defined for cases where
both pointers point to within (or just after) the same array.

See CWE-469: Use of Pointer Subtraction to Determine Size (https://cwe.
mitre.org/data/definitions/469.html).

https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/469.html
https://cwe.mitre.org/data/definitions/469.html

180 Using the GNU Compiler Collection (GCC)

-Wno-analyzer-undefined-behavior-strtok
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
undefined-behavior-strtok to disable it.

This diagnostic warns for paths through the code in which a call is made to
strtok with undefined behavior.

Specifically, passing NULL as the first parameter for the initial call to strtok
within a process has undefined behavior.

-Wno-analyzer-unsafe-call-within-signal-handler
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
unsafe-call-within-signal-handler to disable it.

This diagnostic warns for paths through the code in which a function known to
be async-signal-unsafe (such as fprintf) is called from a signal handler.

See CWE-479: Signal Handler Use of a Non-reentrant Function (https://cwe.
mitre.org/data/definitions/479.html).

-Wno-analyzer-use-after-free
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-use-
after-free to disable it.

This diagnostic warns for paths through the code in which a pointer is used
after a deallocator is called on it: either free, or a deallocator referenced by
attribute malloc.

See CWE-416: Use After Free (https://cwe.mitre.org/data/definitions/
416.html).

-Wno-analyzer-use-of-pointer-in-stale-stack-frame
This warning requires —~fanalyzer, which enables it; use -Wno-analyzer-use-
of-pointer-in-stale-stack-frame to disable it.

This diagnostic warns for paths through the code in which a pointer is derefer-
enced that points to a variable in a stale stack frame.

-Wno-analyzer-va-arg-type-mismatch
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-va-
arg-type-mismatch to disable it.

This diagnostic warns for interprocedural paths through the code for which
the analyzer detects an attempt to use va_arg to extract a value passed to a
variadic call, but uses a type that does not match that of the expression passed
to the call.

See CWE-686: Function Call With Incorrect Argument Type (https://cwe.
mitre.org/data/definitions/686.html).

-Wno-analyzer-va-list-exhausted
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-va-
list-exhausted to disable it.

This diagnostic warns for interprocedural paths through the code for which the
analyzer detects an attempt to use va_arg to access the next value passed to a
variadic call, but all of the values in the va_list have already been consumed.

https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/686.html

Chapter 3: GCC Command Options 181

See CWE-685: Function Call With Incorrect Number of Arguments (https://
cwe.mitre.org/data/definitions/685.html).

-Wno-analyzer-va-list-leak
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-va-
list-leak to disable it.

This diagnostic warns for interprocedural paths through the code for which
the analyzer detects that va_start or va_copy has been called on a va_list
without a corresponding call to va_end.

-Wno-analyzer-va-list-use-after-va-end
This warning requires —fanalyzer, which enables it; use -Wno-analyzer-va-
list-use-after-va-end to disable it.

This diagnostic warns for interprocedural paths through the code for which the
analyzer detects an attempt to use a va_list after va_end has been called on
it. va_list.

-Wno-analyzer-write-to-const
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
write-to-const to disable it.

This diagnostic warns for paths through the code in which the analyzer detects
an attempt to write through a pointer to a const object. However, the analyzer
does not prioritize detection of such paths, so false negatives are more likely
relative to other warnings.

-Wno-analyzer-write-to-string-literal
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-
write-to-string-literal to disable it.
This diagnostic warns for paths through the code in which the analyzer detects
an attempt to write through a pointer to a string literal. However, the analyzer
does not prioritize detection of such paths, so false negatives are more likely
relative to other warnings.

-Wno-analyzer-use-of-uninitialized-value
This warning requires -fanalyzer, which enables it; use -Wno-analyzer-use-
of-uninitialized-value to disable it.
This diagnostic warns for paths through the code in which an uninitialized value
is used.

See CWE-457: Use of Uninitialized Variable (https://cwe.mitre.org/data/
definitions/457 .html).

The analyzer has hardcoded knowledge about the behavior of the following memory-
management functions:
e alloca

e The built-in functions __builtin_alloc, __builtin_alloc_with_align,

[p——

e __builtin_calloc, __builtin_free, __builtin_malloc, __builtin_memcpy,
__builtin_memcpy_chk, __builtin_memset, __builtin_memset_chk, __builtin_
realloc builtin_stack_restore, and __builtin_stack_save

PR——

https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html

182

Using the GNU Compiler Collection (GCC)

calloc

free

malloc

memset
operator delete
operator delete []
operator new
operator new []
realloc

strdup

strndup

of the following functions for working with file descriptors:

open
close

creat

dup, dup2 and dup3
isatty
pipe, and pipe2
read

write

socket, bind, listen, accept, and connect

of the following functions for working with <stdio.h> streams:

The built-in functions __builtin_fprintf, __builtin_fprintf_unlocked,
__builtin_fputc, __builtin_fputc_unlocked, __builtin_fputs, __builtin_
fputs_unlocked, __builtin_fwrite, __builtin_fwrite_unlocked, __builtin_
printf, __builtin_printf_unlocked, __builtin_putc, __builtin_putchar,
__builtin_putchar_unlocked, __builtin_putc_unlocked, __builtin_puts,
__builtin_puts_unlocked, __builtin_vfprintf, and __builtin_vprintf
fopen

fclose

ferror

fgets

fgets_unlocked

fileno

fread

getc

getchar

fprintf

printf

Chapter 3: GCC Command Options 183

fwrite

and of the following functions:

In addition, various functions with an

The built-in functions __builtin_expect
_builtin_strchr

builtin_expect_with_probability, _
builtin_strlen,

P——

builtin_strcpy, __builtin_strcpy_chk

) ——) ——

__builtin_va_copy, and __builtin_va_start

The GNU extensions error and error_at_line

getpass

longjmp

putenv

setjmp

siglongjmp

signal

sigset jmp

strcat
strchr

strlen

analyzer prefix have special meaning to the

analyzer, described in the GCC Internals manual.

Pertinent parameters for controlling the exploration are:

e --param analyzer-bb-explosion-factor=value

e —-param analyzer-max-enodes-per-program-point=value

e --param analyzer-max-recursion-depth=value

e --param analyzer-min-snodes-for-call-summary=value

The following options control the analyzer.

-fanalyzer-call-summaries

Simplify interprocedural analysis by computing the effect of certain calls, rather
than exploring all paths through the function from callsite to each possible
return.

If enabled, call summaries are only used for functions with more than one
call site, and that are sufficiently complicated (as per --param analyzer-min-
snodes-for-call-summary=value).

-fanalyzer-checker=name

Restrict the analyzer to run just the named checker, and enable it.

-fanalyzer-debug-text-art-headings

This option is intended for analyzer developers. If enabled, the analyzer will
add extra annotations to any diagrams it generates.

-fno-analyzer-feasibility

This option is intended for analyzer developers.

By default the analyzer verifies that there is a feasible control flow path for each
diagnostic it emits: that the conditions that hold are not mutually exclusive.

184 Using the GNU Compiler Collection (GCC)

Diagnostics for which no feasible path can be found are rejected. This filtering
can be suppressed with ~-fno-analyzer-feasibility, for debugging issues in
this code.

-fanalyzer-fine-grained
Does nothing. Preserved for backward compatibility.

-fanalyzer-show-duplicate-count
This option is intended for analyzer developers: if multiple diagnostics have
been detected as being duplicates of each other, it emits a note when report-
ing the best diagnostic, giving the number of additional diagnostics that were
suppressed by the deduplication logic.

-fanalyzer-show-events-in-system-headers
By default the analyzer emits simplified diagnostics paths by hiding events fully
located within a system header. With -fanalyzer-show-events-in-system-
headers such events are no longer suppressed.

-fno-analyzer-simplify-supergraph
This option is intended for analyzer developers.
By default, the analyzer performs various simplifications to the program super-
graph before analyzing it. With -fno-analyzer-simplify-supergraph this
simplification can be suppressed, for debugging issues with it.

-fno-analyzer-state-merge
This option is intended for analyzer developers.

By default the analyzer attempts to simplify analysis by merging sufficiently
similar states at each program point as it builds its “exploded graph”. With
-fno-analyzer-state-merge this merging can be suppressed, for debugging
state-handling issues.

-fno-analyzer-state-purge
This option is intended for analyzer developers.

By default the analyzer attempts to simplify analysis by purging aspects of
state at a program point that appear to no longer be relevant e.g. the values
of locals that aren’t accessed later in the function and which aren’t relevant to
leak analysis.

With -fno-analyzer-state-purge this purging of state can be suppressed, for
debugging state-handling issues.

-fno-analyzer-suppress-followups
This option is intended for analyzer developers.

By default the analyzer will stop exploring an execution path after encountering
certain diagnostics, in order to avoid potentially issuing a cascade of follow-up
diagnostics.

The diagnostics that terminate analysis along a path are:
e -Wanalyzer-null-argument
e -Wanalyzer-null-dereference

e -Wanalyzer-use-after-free

Chapter 3: GCC Command Options 185

e -Wanalyzer-use-of-pointer-in-stale-stack-frame

e -Wanalyzer-use-of-uninitialized-value

With -fno-analyzer-suppress-followups the analyzer will continue to ex-
plore such paths even after such diagnostics, which may be helpful for debugging
issues in the analyzer, or for microbenchmarks for detecting undefined behavior.

-fanalyzer-transitivity
This option enables transitivity of constraints within the analyzer.

-fno-analyzer-undo-inlining
This option is intended for analyzer developers.
-fanalyzer runs relatively late compared to other code analysis tools, and
some optimizations have already been applied to the code. In particular func-
tion inlining may have occurred, leading to the interprocedural execution paths
emitted by the analyzer containing function frames that don’t correspond to
those in the original source code.

By default the analyzer attempts to reconstruct the original function frames,
and to emit events showing the inlined calls.

With -fno-analyzer-undo-inlining this attempt to reconstruct the original
frame information can be disabled, which may be of help when debugging issues
in the analyzer.

-fanalyzer-verbose-edges
This option is intended for analyzer developers. It enables more verbose, lower-
level detail in the descriptions of control flow within diagnostic paths.

-fanalyzer-verbose-state-changes
This option is intended for analyzer developers. It enables more verbose, lower-
level detail in the descriptions of events relating to state machines within diag-
nostic paths.

-fanalyzer-verbosity=level
This option controls the complexity of the control flow paths that are emitted
for analyzer diagnostics.

The level can be one of:

‘0’ At this level, interprocedural call and return events are displayed,
along with the most pertinent state-change events relating to a
diagnostic. For example, for a double-free diagnostic, both calls
to free will be shown.

‘v As per the previous level, but also show events for the entry to each
function.
‘2’ As per the previous level, but also show events relating to control

flow that are significant to triggering the issue (e.g. “true path
taken” at a conditional).

This level is the default.

‘3’ As per the previous level, but show all control flow events, not just
significant ones.

186 Using the GNU Compiler Collection (GCC)

4’ This level is intended for analyzer developers; it adds various other
events intended for debugging the analyzer.

-fdump-analyzer
Dump internal details about what the analyzer is doing to file.analyzer.txt.
-fdump-analyzer-stderr overrides this option.

-fdump-analyzer-stderr
Dump internal details about what the analyzer is doing to stderr. This option
overrides -fdump-analyzer.

—-fdump-analyzer-callgraph
Dump a representation of the call graph suitable for viewing with GraphViz to
file.callgraph.dot.

-fdump-analyzer-exploded-graph
Dump a representation of the “exploded graph” suitable for viewing with
GraphViz to file.eg.dot. Nodes are color-coded based on state-machine
states to emphasize state changes.

-fdump-analyzer-exploded-nodes
Emit diagnostics showing where nodes in the “exploded graph” are in relation
to the program source.

-fdump-analyzer-exploded-nodes-2
Dump a textual representation of the “exploded graph” to file.eg.txt.

-fdump-analyzer-exploded-nodes-3
Dump a textual representation of the “exploded graph” to one dump file per
node, to file.eg-id.txt. This is typically a large number of dump files.

—fdump-analyzer-exploded-paths
Dump a textual representation of the “exploded path” for each diagnostic to
file.idx.kind.epath.txt.

-fdump-analyzer-feasibility
Dump internal details about the analyzer’s search for feasible paths. The details
are written in a form suitable for viewing with GraphViz to filenames of the
form file.x.fg.dot, file.*.tg.dot, and file.*.fpath.txt.

—-fdump-analyzer-infinite-loop
Dump internal details about the analyzer’s search for infinite loops. The details
are written in a form suitable for viewing with GraphViz to filenames of the
form file.*.infinite-loop.dot.

-fdump-analyzer-json
Dump a compressed JSON representation of analyzer internals to
file.analyzer. json.gz. The precise format is subject to change.

-fdump-analyzer-state-purge
As per -fdump-analyzer-supergraph, dump a representation of the “super-
graph” suitable for viewing with GraphViz, but annotate the graph with in-
formation on what state will be purged at each node. The graph is written to
file.state-purge.dot.

Chapter 3: GCC Command Options 187

-fdump-analyzer-supergraph
Dump representations of the “supergraph” suitable for viewing with GraphViz
to file.supergraph.index.kind.dot. These show all of the control flow
graphs in the program, at various stages of the analysis. The precise set of
dumps and what they show is subject to change.

-fdump-analyzer-untracked
Emit custom warnings with internal details intended for analyzer developers.

3.11 Options for Debugging Your Program

To tell GCC to emit extra information for use by a debugger, in almost all cases you need
only to add -g to your other options. Some debug formats can co-exist (like DWARF with
CTF) when each of them is enabled explicitly by adding the respective command line option
to your other options.

GCC allows you to use -g with -0. The shortcuts taken by optimized code may occa-
sionally be surprising: some variables you declared may not exist at all; flow of control may
briefly move where you did not expect it; some statements may not be executed because
they compute constant results or their values are already at hand; some statements may
execute in different places because they have been moved out of loops. Nevertheless it
is possible to debug optimized output. This makes it reasonable to use the optimizer for
programs that might have bugs.

If you are not using some other optimization option, consider using -0g (see Section 3.12
[Optimize Options|, page 194) with -g. With no -0 option at all, some compiler passes
that collect information useful for debugging do not run at all, so that -Og may result in a
better debugging experience.

-8
--debug Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, -g enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but probably makes other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use -gvms (see below).

-ggdb Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF, stabs, or the native format if neither of
those are supported), including GDB extensions if at all possible.

-gdwarf

-gdwarf-version
Produce debugging information in DWARF format (if that is supported). The
value of version may be either 2, 3, 4 or 5; the default version for most targets
is 5 (with the exception of VxWorks, TPF and Darwin / macOS, which default
to version 2, and AIX, which defaults to version 4).

Note that with DWARF Version 2, some ports require and always use some
non-conflicting DWARF 3 extensions in the unwind tables.

188

-gbtf

Using the GNU Compiler Collection (GCC)

Version 4 may require GDB 7.0 and -fvar-tracking-assignments for maxi-
mum benefit. Version 5 requires GDB 8.0 or higher.

GCC no longer supports DWARF Version 1, which is substantially different
than Version 2 and later. For historical reasons, some other DWARF-related
options such as -fno-dwarf2-cfi-asm) retain a reference to DWARF Version
2 in their names, but apply to all currently-supported versions of DWARF.

Request BTF debug information. BTF is the default debugging format for the
eBPF target. On other targets, like x86, BTF debug information can be gen-
erated along with DWARF debug information when both of the debug formats
are enabled explicitly via their respective command line options.

-gprune-btf
—-gno-prune-btf

-gctf

-gctflevel

-gvms

Prune BTF information before emission. When pruning, only type information
for types used by global variables and file-scope functions will be emitted. If
compiling for the BPF target with BPF CO-RE enabled, type information will
also be emitted for types used in BPF CO-RE relocations. In addition, struct
and union types which are only referred to via pointers from members of other
struct or union types shall be pruned and replaced with BTF_KIND_FWD, as
though those types were only present in the input as forward declarations.

This option substantially reduces the size of produced BTF information, but
at significant loss in the amount of detailed type information. It is primarily
useful when compiling for the BPF target, to minimize the size of the resulting
object, and to eliminate BTF information which is not immediately relevant to
the BPF program loading process.

This option is enabled by default for the BPF target when generating BTF
information.

Request CTF debug information and use level to specify how much CTF debug
information should be produced. If -gctf is specified without a value for level,
the default level of CTF debug information is 2.

CTF debug information can be generated along with DWARF debug informa-
tion when both of the debug formats are enabled explicitly via their respective
command line options.

Level 0 produces no CTF debug information at all. Thus, -gctf0 negates
-gctf.

Level 1 produces CTF information for tracebacks only. This includes callsite
information, but does not include type information.

Level 2 produces type information for entities (functions, data objects etc.) at
file-scope or global-scope only.

Produce debugging information in Alpha/VMS debug format (if that is sup-
ported). This is the format used by DEBUG on Alpha/VMS systems.

Chapter 3: GCC Command Options 189

-gcodeview
Produce debugging information in CodeView debug format (if that is sup-
ported). This is the format used by Microsoft Visual C++ on Windows.

-glevel

-ggdblevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 0 produces no debug information at all. Thus, -g0 negates -g.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, and line number tables, but no information
about local variables.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use -g3.

If you use multiple -g options, with or without level numbers, the last such
option is the one that is effective.

-gdwarf does not accept a concatenated debug level, to avoid confusion with
-gdwarf-level. Instead use an additional -glevel option to change the debug
level for DWARF.

-fno-eliminate-unused-debug-symbols
By default, no debug information is produced for symbols that are not actually
used. Use this option if you want debug information for all symbols.

-femit-class-debug-always
Instead of emitting debugging information for a C++ class in only one object file,
emit it in all object files using the class. This option should be used only with
debuggers that are unable to handle the way GCC normally emits debugging
information for classes because using this option increases the size of debugging
information by as much as a factor of two.

-fno-merge-debug-strings
Direct the linker to not merge together strings in the debugging information
that are identical in different object files. Merging is not supported by all
assemblers or linkers. Merging decreases the size of the debug information in
the output file at the cost of increasing link processing time. Merging is enabled
by default.

-fdebug-prefix-map=old=new

When compiling files residing in directory old, record debugging information
describing them as if the files resided in directory new instead. This can be
used to replace a build-time path with an install-time path in the debug info.
It can also be used to change an absolute path to a relative path by using . for
new. This can give more reproducible builds, which are location independent,
but may require an extra command to tell GDB where to find the source files.
See also ~ffile-prefix-map and -fcanon-prefix-map.

190

Using the GNU Compiler Collection (GCC)

-fvar-tracking

Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (-0Os, -0, -02, ...),
debugging information (-g) and the debug info format supports it.

-fvar-tracking-assignments

-fvar-trac
-fno-var-t

Annotate assignments to user variables early in the compilation and attempt to
carry the annotations over throughout the compilation all the way to the end, in
an attempt to improve debug information while optimizing. Use of ~gdwarf-4
is recommended along with it.

It can be enabled even if var-tracking is disabled, in which case annotations
are created and maintained, but discarded at the end. By default, this flag
is enabled together with -fvar-tracking, except when selective scheduling is
enabled.

king-uninit

racking-uninit

Perform variable tracking and also mark uninitialized variables in the debug
information. This flag is enabled by default by -fvar-tracking; it also im-
plies —-fvar-tracking. To do variable tracking without marking uninitialized
variables, use -fvar-tracking -fno-var-tracking-uninit.

-gsplit-dwarf

-gdwarf32
-gdwarf64

-gdescribe

-gpubnames

If DWARF debugging information is enabled, separate as much debugging in-
formation as possible into a separate output file with the extension .dwo. This
option allows the build system to avoid linking files with debug information.
To be useful, this option requires a debugger capable of reading .dwo files.

If DWARF debugging information is enabled, the ~gdwarf32 selects the 32-bit
DWARF format and the -gdwarf64 selects the 64-bit DWARF format. The
default is target specific, on most targets it is ~gdwarf32 though. The 32-bit
DWARF format is smaller, but can’t support more than 2GiB of debug infor-
mation in any of the DWARF debug information sections. The 64-bit DWARF
format allows larger debug information and might not be well supported by all
consumers yet.

-dies

Add description attributes to some DWARF DIEs that have no name attribute,
such as artificial variables, external references and call site parameter DIEs.

Generate DWARF .debug_pubnames and .debug_pubtypes sections.

-ggnu-pubnames

Generate .debug_pubnames and .debug_pubtypes sections in a format suitable
for conversion into a GDB index. This option is only useful with a linker that
can produce GDB index version 7.

Chapter 3: GCC Command Options 191

-gno-pubnames
Don’t generate DWARF' .debug_pubnames and .debug_pubtypes sections.

-fdebug-types-section
When using DWARF Version 4 or higher, type DIEs can be put into their own
.debug_types section instead of making them part of the .debug_info section.
It is more efficient to put them in a separate comdat section since the linker
can then remove duplicates. But not all DWARF consumers support .debug_
types sections yet and on some objects .debug_types produces larger instead
of smaller debugging information.

—-grecord-gcc-switches

-gno-record-gcc-switches
This switch causes the command-line options used to invoke the compiler that
may affect code generation to be appended to the DW_AT _producer attribute
in DWARF debugging information. The options are concatenated with spaces
separating them from each other and from the compiler version. It is enabled by
default. See also -frecord-gcc-switches for another way of storing compiler
options into the object file.

-gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected with
-gdwarf-version. On most targets using non-conflicting DWARF extensions
from later standard versions is allowed.

-gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
-gdwarf-version.

-gas—-loc-support
Inform the compiler that the assembler supports .loc directives. It may then
use them for the assembler to generate DWARF2+ line number tables.

This is generally desirable, because assembler-generated line-number tables are
a lot more compact than those the compiler can generate itself.

This option will be enabled by default if, at GCC configure time, the assembler
was found to support such directives.

-gno-as-loc-support
Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
line number tables are to be generated.

-gas-locview-support
Inform the compiler that the assembler supports view assignment and reset
assertion checking in .loc directives.

This option will be enabled by default if, at GCC configure time, the assembler
was found to support them.

-gno-as—locview-support
Force GCC to assign view numbers internally, if ~gvariable-location-views
are explicitly requested.

192 Using the GNU Compiler Collection (GCC)

-gcolumn-info

—-gno-column-info
Emit location column information into DWARF debugging information, rather
than just file and line. This option is enabled by default.

-gstatement-frontiers

-gno-statement-frontiers
This option causes GCC to create markers in the internal representation at
the beginning of statements, and to keep them roughly in place throughout
compilation, using them to guide the output of is_stmt markers in the line
number table. This is enabled by default when compiling with optimization
(-0s, -01, -02, ...), and outputting DWARF 2 debug information at the
normal level.

-gvariable-location-views

-gvariable-location-views=incompatb

-gno-variable-location-views
Augment variable location lists with progressive view numbers implied from the
line number table. This enables debug information consumers to inspect state
at certain points of the program, even if no instructions associated with the
corresponding source locations are present at that point. If the assembler lacks
support for view numbers in line number tables, this will cause the compiler to
emit the line number table, which generally makes them somewhat less com-
pact. The augmented line number tables and location lists are fully backward-
compatible, so they can be consumed by debug information consumers that are
not aware of these augmentations, but they won’t derive any benefit from them
either.

This is enabled by default when outputting DWARF 2 debug information at
the normal level, as long as there is assembler support, -fvar-tracking-
assignments is enabled and -gstrict-dwarf is not. When assembler support
is not available, this may still be enabled, but it will force GCC to output in-
ternal line number tables, and if -ginternal-reset-location-views is not
enabled, that will most certainly lead to silently mismatching location views.

There is a proposed representation for view numbers that is not backward
compatible with the location list format introduced in DWARF 5, that can be
enabled with -gvariable-location-views=incompatb. This option may be
removed in the future, is only provided as a reference implementation of the
proposed representation. Debug information consumers are not expected to
support this extended format, and they would be rendered unable to decode
location lists using it.

-ginternal-reset-location-views

-gno-internal-reset-location-views
Attempt to determine location views that can be omitted from location view
lists. This requires the compiler to have very accurate insn length estimates,
which isn’t always the case, and it may cause incorrect view lists to be generated
silently when using an assembler that does not support location view lists. The

Chapter 3: GCC Command Options 193

GNU assembler will flag any such error as a view number mismatch. This is
only enabled on ports that define a reliable estimation function.
-ginline-points
-gno-inline-points
Generate extended debug information for inlined functions. Location view
tracking markers are inserted at inlined entry points, so that address and view
numbers can be computed and output in debug information. This can be en-
abled independently of location views, in which case the view numbers won’t
be output, but it can only be enabled along with statement frontiers, and it is
only enabled by default if location views are enabled.

-gz[=type]

Produce compressed debug sections in DWARF format, if that is supported. If
type is not given, the default type depends on the capabilities of the assembler
and linker used. type may be one of ‘none’ (don’t compress debug sections),
‘z1ib’ (use zlib compression in ELF gABI format), or ‘zstd’ (use zstd compres-
sion in ELF gABI format). If the linker doesn’t support writing compressed
debug sections, the option is rejected. Otherwise, if the assembler does not
support them, -gz is silently ignored when producing object files.

-femit-struct-debug-baseonly
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the struct is
defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See -femit-struct-debug-reduced for a less aggressive option. See
-femit-struct-debug-detailed for more detailed control.

This option works only with DWARF debug output.

-femit-struct-debug-reduced
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information, with some
potential loss in type information to the debugger. See ~-femit-struct-debug-
baseonly for a more aggressive option. See -femit-struct-debug-detailed
for more detailed control.

This option works only with DWARF debug output.

-femit-struct-debug-detailed[=spec-1ist]
Specify the struct-like types for which the compiler generates debug informa-
tion. The intent is to reduce duplicate struct debug information between dif-
ferent object files within the same program.

This option is a detailed version of -femit-struct-debug-reduced and
-femit-struct-debug-baseonly, which serves for most needs.

A specification has the syntax

[‘dir:’|‘ind:’|[‘ord:’|‘gen:’](‘any’| ‘sys’|‘base’| ‘none’)

194 Using the GNU Compiler Collection (GCC)

The optional first word limits the specification to structs that are used directly
(‘dir:’) or used indirectly (‘ind:’). A struct type is used directly when it is
the type of a variable, member. Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect. An
example is ‘struct one direct; struct two * indirect;’.

The optional second word limits the specification to ordinary structs (‘ord:’) or
generic structs (‘gen:’). Generic structs are a bit complicated to explain. For
C++, these are non-explicit specializations of template classes, or non-template
classes within the above. Other programming languages have generics, but
-femit-struct-debug-detailed does not yet implement them.

The third word specifies the source files for those structs for which the compiler
should emit debug information. The values ‘none’ and ‘any’ have the normal
meaning. The value ‘base’ means that the base of name of the file in which
the type declaration appears must match the base of the name of the main
compilation file. In practice, this means that when compiling foo.c, debug
information is generated for types declared in that file and foo.h, but not other
header files. The value ‘sys’ means those types satisfying ‘base’ or declared in
system or compiler headers.

You may need to experiment to determine the best settings for your application.
The default is -femit-struct-debug-detailed=all.
This option works only with DWARF debug output.

-fno-dwarf2-cfi-asm
Emit DWARF unwind info as compiler generated .eh_frame section instead of
using GAS .cfi_x directives.

-fno-eliminate-unused-debug-types

Normally, when producing DWARF output, GCC avoids producing debug sym-
bol output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging information for all types
declared in a compilation unit, regardless of whether or not they are actually
used in that compilation unit, for example if, in the debugger, you want to cast
a value to a type that is not actually used in your program (but is declared).
More often, however, this results in a significant amount of wasted space.

3.12 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

Chapter 3: GCC Command Options 195

The compiler performs optimization based on the knowledge it has of the program. Com-
piling multiple files at once to a single output file mode allows the compiler to use informa-
tion gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed in this section.

Most optimizations are completely disabled at -00 or if an -0 level is not set on the
command line, even if individual optimization flags are specified. Similarly, -Og suppresses
many optimization passes.

Depending on the target and how GCC was configured, a slightly different set of opti-
mizations may be enabled at each -0 level than those listed here. You can invoke GCC
with -Q --help=optimizers to find out the exact set of optimizations that are enabled at
each level. See Section 3.2 [Overall Options], page 33, for examples.

-0

-01

--optimize
Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With -0, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

-0 is the recommended optimization level for large machine-generated code
as a sensible balance between time taken to compile and memory use: higher
optimization levels perform optimizations with greater algorithmic complexity
than at -0.

-0 turns on the following optimization flags:

-fauto-inc-dec
-fbranch-count-reg
-fcombine-stack-adjustments
-fcompare-elim
-fcprop-registers

-fdce

-fdefer-pop
-fdelayed-branch

-fdse

-fforward-propagate
-fguess-branch-probability
-fif-conversion
-fif-conversion2
-finline-functions-called-once
-fipa-modref

-fipa-profile
-fipa-pure-const
-fipa-reference
-fipa-reference-addressable
-fivopts

-fmerge-constants
-fmove-loop-invariants
-fmove-loop-stores
-fomit-frame-pointer
-freorder-blocks
-fshrink-wrap

196

-02

Using the GNU Compiler Collection (GCC)

-fshrink-wrap-separate
-fsplit-wide-types
-fssa-backprop
-fssa-phiopt
-ftree-bit-ccp
-ftree-ccp

-ftree-ch
-ftree-coalesce-vars
-ftree-copy-prop
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-pta
-ftree-scev-cprop
-ftree-sink
-ftree-slsr
-ftree-sra
-ftree-ter
-funit-at-a-time

Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. As compared to -0, this option increases
both compilation time and the performance of the generated code.

-02 turns on all optimization flags specified by -01. It also turns on the fol-
lowing optimization flags:

-falign-functions -falign-jumps
-falign-labels -falign-loops
-fcaller-saves

-fcode-hoisting

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks -fdep-fusion
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations

-ffinite-loops

-fgcse -fgcse-1m

-fhoist-adjacent-loads

-finline-functions
-finline-small-functions
-findirect-inlining

-fipa-bit-cp -fipa-cp -fipa-icf
-fipa-ra -fipa-sra -fipa-vrp
-fisolate-erroneous-paths-dereference
-flra-remat

-foptimize-crc

-foptimize-sibling-calls
-foptimize-strlen

-fpartial-inlining

-fpeephole2
-freorder-blocks-algorithm=stc
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop

-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec

Chapter 3: GCC Command Options 197

-03

-00

-0s

-0fast

-fspeculatively-call-stored-functions
-fstore-merging

-fstrict-aliasing

-fthread-jumps
-ftree-builtin-call-dce
-ftree-loop-vectorize

-ftree-pre

-ftree-slp-vectorize
-ftree-switch-conversion -ftree-tail-merge
-ftree-vrp
-fvect-cost-model=very-cheap

Please note the warning under -fgcse about invoking -02 on programs that
use computed gotos.

Optimize yet more. -03 turns on all optimizations specified by -02 and also
turns on the following optimization flags:

-fgcse-after-reload
-fipa-cp-clone
-floop-interchange
-floop-unroll-and-jam
-fpeel-loops
-fpredictive-commoning
-fsplit-loops
-fsplit-paths
-ftree-loop-distribution
-ftree-partial-pre
-funswitch-loops
-fvect-cost-model=dynamic
-fversion-loops-for-strides

Reduce compilation time and make debugging produce the expected results.
This is the default.

At -00, GCC completely disables most optimization passes; they are not run
even if you explicitly enable them on the command line, or are listed by -Q
--help=optimizers as being enabled by default. Many optimizations per-
formed by GCC depend on code analysis or canonicalization passes that are
enabled by -0, and it would not be useful to run individual optimization passes
in isolation.

Optimize for size. -0s enables all -02 optimizations except those that often
increase code size:

-falign-functions -falign-jumps

-falign-labels -falign-loops

-fprefetch-loop-arrays -freorder-blocks-algorithm=stc
It also enables —finline-functions, causes the compiler to tune for code size
rather than execution speed, and performs further optimizations designed to
reduce code size.

Disregard strict standards compliance. -0fast enables all ~03 optimizations.
It also enables optimizations that are not valid for all standard-compliant
programs. It turns on -ffast-math, -fallow-store-data-races and the
Fortran-specific ~-fstack-arrays, unless -fmax-stack-var-size is specified,
and -fno-protect-parens. It turns off ~-fsemantic-interposition.

198 Using the GNU Compiler Collection (GCC)

-0g Optimize while keeping in mind debugging experience. -0g should be the op-
timization level of choice for the standard edit-compile-debug cycle, offering a
reasonable blend of optimization, fast compilation and debugging experience
especially for code with a high abstraction penalty. In contrast to -00, this en-
ables -fvar-tracking-assignments and -fvar-tracking which handle debug
information in the prologue and epilogue of functions better than -00.

Like -00, -0g completely skips a number of optimization passes so that indi-
vidual options controlling them have no effect. Otherwise -Og enables all -01
optimization flags except for those known to greatly interfere with debugging:

-fbranch-count-reg -fdelayed-branch

-fdse -fif-conversion -fif-conversion2

-finline-functions-called-once

-fmove-loop-invariants -fmove-loop-stores -fssa-phiopt

-ftree-bit-ccp -ftree-dse -ftree-pta -ftree-sra

-0z Optimize aggressively for size rather than speed. This may increase the number

of instructions executed if those instructions require fewer bytes to encode. -0z
behaves similarly to -0s including enabling most -02 optimizations.

If you use multiple -0 options, with or without level numbers, the last such option is the
one that is effective.

Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of -ffoo is -fno-foo. In the table below,
only one of the forms is listed—the one you typically use. You can figure out the other form
by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by -0
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-defer-pop
For machines that must pop arguments after a function call, always pop the
arguments as soon as each function returns. At levels -01 and higher, -fdefer-
pop is the default; this allows the compiler to let arguments accumulate on the
stack for several function calls and pop them all at once.

-fforward-propagate
Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling is active,
two passes are performed and the second is scheduled after loop unrolling.

This option is enabled by default at optimization levels -01, -02, -03, -0s.

-favoid-store-forwarding

-fno-avoid-store-forwarding
Many CPUs will stall for many cycles when a load partially depends on previous
smaller stores. This pass tries to detect such cases and avoid the penalty by
changing the order of the load and store and then fixing up the loaded value.

Disabled by default.
—-ffp-contract=style

-ffp-contract=off disables floating-point expression contraction. -ffp-
contract=fast enables floating-point expression contraction such as forming

Chapter 3: GCC Command Options 199

of fused multiply-add operations if the target has native support for them.
-ffp-contract=on enables floating-point expression contraction if allowed by
the language standard. This is implemented for C and C++, where it enables
contraction within one expression, but not across different statements.

The default is -ffp-contract=off for C in a standards compliant mode
(-std=c11 or similar), ~-ffp-contract=fast otherwise.

-ffp-int-builtin-inexact
Allow the built-in functions ceil, floor, round and trunc, and their float and
long double variants, to generate code that raises the “inexact” floating-point
exception for noninteger arguments. ISO C99 and C11 allow these functions to
raise the “inexact” exception, but ISO/IEC TS 18661-1:2014, the C bindings
to IEEE 754-2008, as integrated into ISO C23, does not allow these functions
to do so.

The default is ~-fno-fp-int-builtin-inexact, disallowing the exception to be
raised, unless C17 or an earlier C standard is selected. This option does nothing
unless ~ftrapping-math is in effect.

Even if -fno-fp-int-builtin-inexact is used, if the functions generate a call
to a library function then the “inexact” exception may be raised if the library
implementation does not follow T'S 18661.

—fomit-frame-pointer
Omit the frame pointer in functions that don’t need one. This avoids the
instructions to save, set up and restore the frame pointer; on many targets it
also makes an extra register available.

On some targets this flag has no effect because the standard calling sequence
always uses a frame pointer, so it cannot be omitted.

Note that -fno-omit-frame-pointer doesn’t guarantee the frame pointer is
used in all functions. Several targets always omit the frame pointer in leaf
functions.

Enabled by default at -01 and higher.

-foptimize-crc

Detect loops calculating CRC (performing polynomial long division) and replace
them with a faster implementation. Detect 8, 16, 32, and 64 bit CRC, with
a constant polynomial without the leading 1 bit, for both bit-forward and bit-
reversed cases. If the target supports a CRC instruction and the polynomial
used in the source code matches the polynomial used in the CRC instruction,
generate that CRC instruction. Otherwise, if the target supports a carry-less-
multiplication instruction, generate CRC using it; otherwise generate table-
based CRC.

Enabled by default at -02 and higher.
-foptimize-sibling-calls

Optimize sibling and tail recursive calls.

Enabled at levels -02, -03, -0Os.

200 Using the GNU Compiler Collection (GCC)

-foptimize-strlen
Optimize various standard C string functions (e.g. strlen, strchr or strcpy)
and their _FORTIFY_SOURCE counterparts into faster alternatives.

Enabled at levels -02, -03.

-finline-atomics

-fno-inline-atomics
Inline ‘__atomic’ operations when a lock-free instruction sequence is available.
This optimization is enabled by default.

-finline-stringops|=fn]
Expand memory and string operations (for now, only memset) inline, even when
the length is variable or big enough as to require looping. This is most useful
along with -ffreestanding and -fno-builtin.

In some circumstances, it enables the compiler to generate code that takes
advantage of known alignment and length multipliers, but even then it may be
less efficient than optimized runtime implementations, and grow code size so
much that even a less performant but shared implementation runs faster due
to better use of code caches. This option is disabled by default.

-fno-inline
Do not expand any functions inline apart from those marked with the always_
inline attribute. This is the default when not optimizing.

Single functions can be exempted from inlining by marking them with the
noinline attribute.

-finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler heuris-
tically decides which functions are simple enough to be worth integrating in this
way. This inlining applies to all functions, even those not declared inline.

Enabled at levels -02, -03, -0Os.

-findirect-inlining
Inline also indirect calls that are discovered to be known at compile time thanks
to previous inlining. This option has any effect only when inlining itself is turned
on by the —-finline-functions or ~-finline-small-functions options.

Enabled at levels -02, -03, -0Os.

-finline-functions
Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at levels -02, -03, -0s. Also enabled by -fprofile-use and -fauto-
profile.

Chapter 3: GCC Command Options 201

—finline-functions-called-once

Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled at levels -01, -02, -03 and -0s, but not -0g.

—-fearly-inlining

-fipa-sra

Inline functions marked by always_inline and functions whose body seems
smaller than the function call overhead early before doing -fprofile-generate
instrumentation and real inlining pass. Doing so makes profiling significantly
cheaper and usually inlining faster on programs having large chains of nested
wrapper functions.

Enabled by default.

Perform interprocedural scalar replacement of aggregates, removal of unused
parameters and replacement of parameters passed by reference by parameters
passed by value.

Enabled at levels -02, -03 and -0Os.

—finline-limit=n

-fno-keep-

By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. n is the size of functions that can be inlined
in number of pseudo instructions.

Inlining is actually controlled by a number of parameters, which may be speci-
fied individually by using -—-param name=value. The -finline-1limit=n option
sets some of these parameters as follows:

max-inline-insns-single
is set to n/2.

max-inline-insns-auto
is set to n/2.

See below for a documentation of the individual parameters controlling inlining
and for the defaults of these parameters.

Note: there may be no value to -finline-limit that results in default behav-
ior.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

inline-dllexport

This is a more fine-grained version of ~-fkeep-inline-functions, which applies
only to functions that are declared using the d1lexport attribute or declspec.
See Section 6.4.1 [Declaring Attributes of Functions|, page 629.

—fkeep—-inline-functions

In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect

202 Using the GNU Compiler Collection (GCC)

functions using the extern inline extension in GNU C90. In C++, emit any
and all inline functions into the object file.

-fkeep-static-functions
Emit static functions into the object file, even if the function is never used.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check
if a variable is referenced, regardless of whether or not optimization is turned
on, use the -fno-keep-static-consts option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating-point con-
stants) across compilation units.

This option is the default for optimized compilation if the assembler and linker
support it. Use ~fno-merge-constants to inhibit this behavior.

Enabled at levels -01, -02, -03, -0Os.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ~-fmerge-constants. In addition to -fmerge-constants
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating-point types. Languages like C or C++ require each
variable, including multiple instances of the same variable in recursive calls, to
have distinct locations, so using this option results in non-conforming behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fmodulo-sched-allow-regmoves
Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are deleted, which
triggers the generation of reg-moves based on the life-range analysis. This
option is effective only with ~-fmodulo-sched enabled.

-fno-branch-count-reg

Disable the optimization pass that scans for opportunities to use “decrement
and branch” instructions on a count register instead of instruction sequences
that decrement a register, compare it against zero, and then branch based
upon the result. This option is only meaningful on architectures that support
such instructions, which include x86, PowerPC, TA-64 and S/390. Note that
the -fno-branch-count-reg option doesn’t remove the decrement and branch
instructions from the generated instruction stream introduced by other opti-
mization passes.

The default is ~-fbranch-count-reg at -01 and higher, except for -Og.

Chapter 3: GCC Command Options 203

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is —-ffunction-cse

-ffuse-ops-with-volatile-access
Allow limited optimization of operations with volatile memory access when
doing so does not change the semantics outlined in See Section 6.10 [When is a
Volatile Object Accessed?], page 760.

The default is ~-ffuse-ops-with-volatile-access

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section—e.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is -fzero-initialized-in-bss except in Ada.

-fthread-jumps
Perform optimizations that check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is
redirected to either the destination of the second branch or a point immediately
following it, depending on whether the condition is known to be true or false.

Enabled at levels -01, -02, -03, -0Os.

-fsplit-wide-types
When using a type that occupies multiple registers, such as long long on a
32-bit system, split the registers apart and allocate them independently. This
normally generates better code for those types, but may make debugging more
difficult.

Enabled at levels -01, -02, -03, -0Os.

-fsplit-wide-types—-early
Fully split wide types early, instead of very late. This option has no effect unless
-fsplit-wide-types is turned on.

This is the default on some targets.

-fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an if statement with an else clause, CSE follows the
jump when the condition tested is false.

Enabled at levels -02, -03, -0Os.

204

-fcse-skip

—-frerun-cs

-fgcse

-fgcse-1m

-fgcse-sm

-fgcse-las

-fgcse-aft

-faggressi

Using the GNU Compiler Collection (GCC)

-blocks

This is similar to ~fcse-follow-jumps, but causes CSE to follow jumps that
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ~-fcse-skip-blocks causes CSE to follow the jump around
the body of the if.

Enabled at levels -02, -03, -0Os.

e-after-loop
Re-run common subexpression elimination after loop optimizations are per-
formed.

Enabled at levels -02, -03, -0Os.

Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better run-time performance if you disable the global common
subexpression elimination pass by adding -fno-gcse to the command line.

Enabled at levels -02, -03, -0Os.

When -fgcse-1m is enabled, global common subexpression elimination at-
tempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when -fgcse is enabled.

When -fgcse-sm is enabled, a store motion pass is run after global common
subexpression elimination. This pass attempts to move stores out of loops.
When used in conjunction with -fgcse-1m, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

When -fgcse-las is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

er-reload

When -fgcse-after-reload is enabled, a redundant load elimination pass is
performed after reload. The purpose of this pass is to clean up redundant
spilling.

Enabled by -03, -fprofile-use and -fauto-profile.

ve-loop-optimizations

This option tells the loop optimizer to use language constraints to derive bounds
for the number of iterations of a loop. This assumes that loop code does not
invoke undefined behavior by for example causing signed integer overflows or

Chapter 3: GCC Command Options 205

out-of-bound array accesses. The bounds for the number of iterations of a loop
are used to guide loop unrolling and peeling and loop exit test optimizations.
This option is enabled by default.

—-funconstrained-commons
This option tells the compiler that variables declared in common blocks (e.g.
Fortran) may later be overridden with longer trailing arrays. This prevents
certain optimizations that depend on knowing the array bounds.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and saves code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels -02, -03, -0Os.

-fauto-inc-dec
Combine increments or decrements of addresses with memory accesses. This
pass is always skipped on architectures that do not have instructions to support
this. Enabled by default at =01 and higher on architectures that support this.

-fdce Perform dead code elimination (DCE) on RTL. Enabled by default at -01 and
higher.

-fdse Perform dead store elimination (DSE) on RTL. Enabled by default at -01 and
higher.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by -fif-conversion2.

Enabled at levels -01, -02, -03, -0s, but not with -0g.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels -01, -02, -03, -0s, but not with -0g.

-fdeclone-ctor-dtor
The C++ ABI requires multiple entry points for constructors and destructors:
one for a base subobject, one for a complete object, and one for a virtual
destructor that calls operator delete afterwards. For a hierarchy with virtual
bases, the base and complete variants are clones, which means two copies of the
function. With this option, the base and complete variants are changed to be
thunks that call a common implementation.

Enabled by -0s.

-fdelete-null-pointer-checks
Assume that programs cannot safely dereference null pointers, and that no code
or data element resides at address zero. This option enables simple constant
folding optimizations at all optimization levels. In addition, other optimization

206

Using the GNU Compiler Collection (GCC)

passes in GCC use this flag to control global dataflow analyses that eliminate
useless checks for null pointers; these assume that a memory access to address
zero always results in a trap, so that if a pointer is checked after it has already
been dereferenced, it cannot be null.

Note however that in some environments this assumption is not true. Use -fno-
delete-null-pointer-checks to disable this optimization for programs that
depend on that behavior.

This option is enabled by default on most targets. On AVR and MSP430, this
option is completely disabled.

Passes that use the dataflow information are enabled independently at different
optimization levels.

—fdevirtualize

Attempt to convert calls to virtual functions to direct calls. This is
done both within a procedure and interprocedurally as part of indirect
inlining (-findirect-inlining) and interprocedural constant propagation
(-fipa-cp). Enabled at levels -02, -03, -0Os.

-fdevirtualize-speculatively

Attempt to convert calls to virtual functions to speculative direct calls. Based
on the analysis of the type inheritance graph, determine for a given call the
set of likely targets. If the set is small, preferably of size 1, change the call
into a conditional deciding between direct and indirect calls. The speculative
calls enable more optimizations, such as inlining. When they seem useless after
further optimization, they are converted back into original form.

—-fdevirtualize-at-ltrans

Stream extra information needed for aggressive devirtualization when running
the link-time optimizer in local transformation mode. This option enables more
devirtualization but significantly increases the size of streamed data. For this
reason it is disabled by default.

-fexpensive-optimizations

-fext-dce

Perform a number of minor optimizations that are relatively expensive.
Enabled at levels -02, -03, -0Os.

-fno-ext-dce

-free

Perform dead code elimination on zero and sign extensions, with special
dataflow analysis.

Attempt to remove redundant extension instructions. This is especially helpful
for the x86-64 architecture, which implicitly zero-extends in 64-bit registers
after writing to their lower 32-bit half.

Enabled for Alpha, AArch64, LoongArch, PowerPC, RISC-V, SPARC, h83000
and x86 at levels -02, -03, -Os.

-fno-lifetime-dse

In C++ the value of an object is only affected by changes within its lifetime:
when the constructor begins, the object has an indeterminate value, and any

Chapter 3: GCC Command Options 207

changes during the lifetime of the object are dead when the object is destroyed.
Normally dead store elimination will take advantage of this; if your code relies
on the value of the object storage persisting beyond the lifetime of the object,
you can use this flag to disable this optimization. To preserve stores before the
constructor starts (e.g. because your operator new clears the object storage)
but still treat the object as dead after the destructor, you can use ~flifetime-
dse=1. The default behavior can be explicitly selected with ~-flifetime-dse=2.
-flifetime-dse=0 is equivalent to ~-fno-lifetime-dse.

-flive-range-shrinkage
Attempt to decrease register pressure through register live range shrinkage.
This is helpful for fast processors with small or moderate size register sets.

-fira-algorithm=algorithm
Use the specified coloring algorithm for the integrated register allocator. The
algorithm argument can be ‘priority’, which specifies Chow’s priority coloring,
or ‘CB’, which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not
implemented for all architectures, but for those targets that do support it, it is
the default because it generates better code.

-fira-region=region
Use specified regions for the integrated register allocator. The region argument
should be one of the following:

‘all’ Use all loops as register allocation regions. This can give the best
results for machines with a small and/or irregular register set.

‘mixed’ Use all loops except for loops with small register pressure as the
regions. This value usually gives the best results in most cases and
for most architectures, and is enabled by default when compiling
with optimization for speed (-0, =02, .. .).

one Use all functions as a single region. This typically results in the
smallest code size, and is enabled by default for -Os or -00.

-fira-hoist-pressure
Use TRA to evaluate register pressure in the code hoisting pass for decisions to
hoist expressions. This option usually results in smaller code, but it can slow
the compiler down.

This option is enabled at level -0s for all targets.

-fira-loop-pressure
Use TRA to evaluate register pressure in loops for decisions to move loop in-
variants. This option usually results in generation of faster and smaller code on
machines with large register files (>= 32 registers), but it can slow the compiler
down.

This option is enabled at level -03 for some targets.

—-fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard registers living
through a call. Each hard register gets a separate stack slot, and as a result
function stack frames are larger.

208 Using the GNU Compiler Collection (GCC)

—-fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-
register that does not get a hard register gets a separate stack slot, and as
a result function stack frames are larger.

-flra-remat
Enable CFG-sensitive rematerialization in LRA. Instead of loading values of
spilled pseudos, LRA tries to rematerialize (recalculate) values if it is profitable.

Enabled at levels -02, -03, -0Os.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels -01, -02, -03, -0s, but not at -0g.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating-point instruction
is required.

Conventionally enabled at optimization levels -02 and -03. However, many
targets override this behavior. For example, on x86, it is disabled at all levels,
while on AArch64, it is enabled only at -03.

-fschedule-insns2
Similar to -fschedule-insns, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels -02, -03, -0Os.

-fno-sched-interblock
Disable instruction scheduling across basic blocks, which is normally enabled
when scheduling before register allocation, i.e. with ~fschedule-insns or at
-02 or higher.

-fno-sched-spec
Disable speculative motion of non-load instructions, which is normally enabled
when scheduling before register allocation, i.e. with ~fschedule-insns or at
-02 or higher.

-fsched-pressure
Enable register pressure sensitive insn scheduling before register allocation.
This only makes sense when scheduling before register allocation is enabled,
i.e. with -fschedule-insns or at -02 or higher. Usage of this option can im-
prove the generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent spills in
register allocation.

Chapter 3: GCC Command Options 209

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with -fschedule-insns or at
-02 or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with -fschedule-insns or at
-02 or higher.

-fsched-stalled-insns

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass. -fno-
sched-stalled-insns means that no insns are moved prematurely, -fsched-
stalled-insns=0 means there is no limit on how many queued insns can be
moved prematurely. -fsched-stalled-insns without a value is equivalent to
-fsched-stalled-insns=1.

-fsched-stalled-insns-dep

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) are examined for a dependency on a
stalled insn that is a candidate for premature removal from the queue of stalled
insns. This has an effect only during the second scheduling pass, and only if
-fsched-stalled-insns is used. -fno-sched-stalled-insns-dep is equiva-
lent to -fsched-stalled-insns-dep=0. -fsched-stalled-insns-dep with-
out a value is equivalent to -fsched-stalled-insns-dep=1.

-fsched2-use-superblocks
When scheduling after register allocation, use superblock scheduling. This al-
lows motion across basic block boundaries, resulting in faster schedules. This
option is experimental, as not all machine descriptions used by GCC model the
CPU closely enough to avoid unreliable results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
-fschedule-insns2 or at -02 or higher.

-fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors the instruction
that belongs to a schedule group. This is enabled by default when scheduling
is enabled, i.e. with -fschedule-insns or -fschedule-insns2 or at -02 or
higher.

-fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors instruc-
tions on the critical path. This is enabled by default when scheduling is enabled,
i.e. with —~fschedule-insns or -fschedule-insns2 or at -02 or higher.

—fsched-spec-insn-heuristic

Enable the speculative instruction heuristic in the scheduler. This heuristic
favors speculative instructions with greater dependency weakness. This is en-

210 Using the GNU Compiler Collection (GCC)

abled by default when scheduling is enabled, i.e. with -fschedule-insns or
-fschedule-insns?2 or at -02 or higher.

-fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors the instruction
belonging to a basic block with greater size or frequency. This is enabled by de-
fault when scheduling is enabled, i.e. with ~fschedule-insns or -fschedule-
insns2 or at —02 or higher.

-fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic favors the
instruction that is less dependent on the last instruction scheduled. This is
enabled by default when scheduling is enabled, i.e. with ~-fschedule-insns or
-fschedule-insns?2 or at -02 or higher.

-fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic favors the
instruction that has more instructions depending on it. This is enabled by de-
fault when scheduling is enabled, i.e. with ~fschedule-insns or —-fschedule-
insns2 or at —02 or higher.

-fspeculatively-call-stored-functions
Attempt to convert indirect calls of function pointers to pointers loaded from
a structure field if all visible stores to that field store just a single candidate.
When doing so, turn the call into a conditional deciding between the direct call
and the original indirect one. These speculative calls often enable more opti-
mizations, such as inlining. When they seem useless after further optimization,
they are converted back into original form.

-freschedule-modulo-scheduled-loops
Modulo scheduling is performed before traditional scheduling. If a loop is mod-
ulo scheduled, later scheduling passes may change its schedule. Use this option
to control that behavior.

-fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the first scheduler pass.

-fselective-scheduling?2
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the second scheduler pass.

-fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling. This
option has no effect unless one of -fselective-scheduling or -fselective-
scheduling? is turned on.

—-fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless -fsel-sched-pipelining is turned on.

Chapter 3: GCC Command Options 211

-fsemantic-interposition

Some object formats, like ELF, allow interposing of symbols by the dynamic
linker. This means that for symbols exported from the DSO, the compiler
cannot perform interprocedural propagation, inlining and other optimizations
in anticipation that the function or variable in question may change. While
this feature is useful, for example, to rewrite memory allocation functions by a
debugging implementation, it is expensive in the terms of code quality. With
-fno-semantic-interposition the compiler assumes that if interposition hap-
pens for functions the overwriting function will have precisely the same seman-
tics (and side effects). Similarly if interposition happens for variables, the con-
structor of the variable will be the same. The flag has no effect for functions
explicitly declared inline (where it is never allowed for interposition to change
semantics) and for symbols explicitly declared weak.

-fshrink-wrap
Emit function prologues only before parts of the function that need it, rather
than at the top of the function. This flag is enabled by default at -0 and higher.

-fshrink-wrap-separate
Shrink-wrap separate parts of the prologue and epilogue separately, so that
those parts are only executed when needed. This option is on by default, but
has no effect unless -fshrink-wrap is also turned on and the target supports
this.

-fcaller-saves
Enable allocation of values to registers that are clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls.
Such allocation is done only when it seems to result in better code.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Enabled at levels -02, -03, -0Os.

-fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references and
then tries to find ways to combine them.

Enabled by default at -01 and higher.

-fipa-ra Use caller save registers for allocation if those registers are not used by any called
function. In that case it is not necessary to save and restore them around calls.
This is only possible if called functions are part of same compilation unit as
current function and they are compiled before it.

Enabled at levels -02, -03, -0s, however the option is disabled if generated
code will be instrumented for profiling (-p, or -pg) or if callee’s register usage
cannot be known exactly (this happens on targets that do not expose prologues
and epilogues in RTL).

-fconserve-stack
Attempt to minimize stack usage. The compiler attempts to use less stack
space, even if that makes the program slower. This option implies setting the

212 Using the GNU Compiler Collection (GCC)

large-stack-frame parameter to 100 and the large-stack-frame-growth
parameter to 400.

-ftree-reassoc
Perform reassociation on trees. This flag is enabled by default at -01 and
higher.

-fcode-hoisting
Perform code hoisting. Code hoisting tries to move the evaluation of expressions
executed on all paths to the function exit as early as possible. This is especially
useful as a code size optimization, but it often helps for code speed as well.
This flag is enabled by default at -02 and higher.

-ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is enabled
by default at -02 and -03.

-ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is en-
abled by default at -03.

-ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default at -01
and higher.

-ftree-fre
Perform full redundancy elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on
all paths leading to the redundant computation. This analysis is faster than
PRE, though it exposes fewer redundancies. This flag is enabled by default at
-01 and higher.

-ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This pass is en-
abled by default at -01 and higher.

-fhoist-adjacent-loads
Speculatively hoist loads from both branches of an if-then-else if the loads are
from adjacent locations in the same structure and the target architecture has a
conditional move instruction. This flag is enabled by default at -02 and higher.

-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at -01 and higher.

-fipa-pure-const
Discover which functions are pure or constant. Enabled by default at -01 and
higher.

-fipa-reference
Discover which static variables do not escape the compilation unit. Enabled by
default at -01 and higher.

Chapter 3: GCC Command Options 213

-fipa-reference-addressable

Discover read-only, write-only and non-addressable static variables. Enabled
by default at -01 and higher.

-fipa-reorder-for-locality

Group call chains close together in the binary layout to improve code
locality and minimize jump distances between frequently called func-
tions. Unlike -freorder-functions this pass considers the call chains
between functions and groups them together, rather than grouping all
hot /normal/cold /never-executed functions into separate sections. Unlike
-fprofile-reorder-functions it aims to improve code locality throughout
the runtime of the program rather than focusing on program startup. This
option is incompatible with an explicit -flto-partition= option since it
enforces a custom partitioning scheme. If using this option it is recommended
to also use profile feedback, but this option is not enabled by default otherwise.

-fipa-stack-alignment

-fipa-pta

Reduce stack alignment on call sites if possible. Enabled by default.

Perform interprocedural pointer analysis and interprocedural modification and
reference analysis. This option can cause excessive memory and compile-time
usage on large compilation units. It is not enabled by default at any optimiza-
tion level.

-fipa-profile

Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as cold,
noreturn, static constructors or destructors) are identified. Cold functions and
loop less parts of functions executed once are then optimized for size. Enabled
by default at -01 and higher.

-fipa-modref

-fipa-cp

Perform interprocedural mod /ref analysis. This optimization analyzes the side
effects of functions (memory locations that are modified or referenced) and
enables better optimization across the function call boundary. This flag is
enabled by default at -01 and higher.

Perform interprocedural constant propagation. This optimization analyzes the
program to determine when values passed to functions are constants and then
optimizes accordingly. This optimization can substantially increase perfor-
mance if the application has constants passed to functions. This flag is enabled
by default at -02, -0s and -03. It is also enabled by -fprofile-use and
-fauto-profile.

-fipa-cp-clone

Perform function cloning to make interprocedural constant propagation
stronger. When enabled, interprocedural constant propagation performs
function cloning when externally visible function can be called with
constant arguments. Because this optimization can create multiple
copies of functions, it may significantly increase code size (see --param

214

~fipa-bit-

-fipa-vrp

-fipa-icf-
-fipa-icf-

—fipa-icf

Using the GNU Compiler Collection (GCC)

ipa-cp-unit-growth=value). This flag is enabled by default at -03. It is also
enabled by -fprofile-use and -fauto-profile.

cp

When enabled, perform interprocedural bitwise constant propagation. This flag
is enabled by default at -02 and by -fprofile-use and -fauto-profile. It
requires that -fipa-cp is enabled.

When enabled, perform interprocedural propagation of value ranges. This flag
is enabled by default at -02. It requires that -fipa-cp is enabled.

functions
variables

Perform Identical Code Folding for functions (-fipa-icf-functions), read-
only variables (-fipa-icf-variables), or both (-fipa-icf). The optimiza-
tion reduces code size and may disturb unwind stacks by replacing a function
by an equivalent one with a different name. The optimization works more
effectively with link-time optimization enabled.

Although the behavior is similar to the Gold Linker’s ICF optimization, GCC
ICF works on different levels and thus the optimizations are not same - there
are equivalences that are found only by GCC and equivalences found only by
Gold.

-fipa-icf is enabled by default at -02 and -0Os.

-flate-combine-instructions

Enable two instruction combination passes that run relatively late in the com-
pilation process. One of the passes runs before register allocation and the other
after register allocation. The main aim of the passes is to substitute definitions
into all uses.

Most targets enable this flag by default at -02 and -0s.

-flive-patching=level

Control GCC’s optimizations to produce output suitable for live-patching.

If the compiler’s optimization uses a function’s body or information extracted
from its body to optimize/change another function, the latter is called an im-
pacted function of the former. If a function is patched, its impacted functions
should be patched too.

The impacted functions are determined by the compiler’s interprocedural op-
timizations. For example, a caller is impacted when inlining a function into
its caller, cloning a function and changing its caller to call this new clone, or
extracting a function’s pureness/constness information to optimize its direct or
indirect callers, etc.

Usually, the more IPA optimizations enabled, the larger the number of impacted
functions for each function. In order to control the number of impacted func-
tions and more easily compute the list of impacted function, IPA optimizations
can be partially enabled at two different levels.

Chapter 3: GCC Command Options 215

The level argument should be one of the following;:

‘inline-clone’
Only enable inlining and cloning optimizations, which includes in-
lining, cloning, interprocedural scalar replacement of aggregates
and partial inlining. As a result, when patching a function, all
its callers and its clones’ callers are impacted, therefore need to be
patched as well.

-flive-patching=inline-clone disables the following optimiza-
tion flags:
-fwhole-program -fipa-pta -fipa-reference -fipa-ra
-fipa-icf -fipa-icf-functions -fipa-icf-variables
-fipa-bit-cp -fipa-vrp -fipa-pure-const
-fipa-reference-addressable
-fipa-stack-alignment -fipa-modref
‘inline-only-static’
Only enable inlining of static functions. As a result, when patching
a static function, all its callers are impacted and so need to be
patched as well.
In addition to all the flags that -flive-patching=inline-clone
disables, ~-flive-patching=inline-only-static disables the fol-
lowing additional optimization flags:
-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp
When -flive-patching is specified without any value, the default value is
inline-clone.

This flag is disabled by default.
Note that -flive-patching is not supported with link-time optimization
(-f1to).

-fisolate-erroneous-paths-dereference
Detect paths that trigger erroneous or undefined behavior due to dereferencing
a null pointer (with -fdelete-null-pointer-checks enabled) or a division by
zero. Isolate those paths from the main control flow and turn the statement
with erroneous or undefined behavior into a trap. This flag is enabled by default
at -02 and higher.

-fisolate-erroneous-paths-attribute
Detect paths that trigger erroneous or undefined behavior due to a null value
being used in a way forbidden by a returns_nonnull or nonnull attribute.
Isolate those paths from the main control flow and turn the statement with
erroneous or undefined behavior into a trap. This is not currently enabled, but
may be enabled by -02 in the future.

-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at -01
and higher.

-ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. This pass only operates on local scalar variables

216 Using the GNU Compiler Collection (GCC)

and is enabled by default at -01 and higher, except for -0g. It requires that
-ftree-ccp is enabled.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at -01 and
higher.

-fssa-backprop
Propagate information about uses of a value up the definition chain in order to
simplify the definitions. For example, this pass strips sign operations if the sign
of a value never matters. The flag is enabled by default at -01 and higher.

-fssa-phiopt
Perform pattern matching on SSA PHI nodes to optimize conditional code.
This pass is enabled by default at -01 and higher, except for -Og.

-ftree-switch-conversion
Perform conversion of simple initializations in a switch to initializations from a
scalar array. This flag is enabled by default at -02 and higher.

-ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump to
the other. This optimization is known as tail merging or cross jumping. This
flag is enabled by default at -02 and higher. The compilation time in this pass
can be limited using max-tail-merge-comparisons parameter and max-tail-
merge-iterations parameter.

-ftree-cselim
Perform conditional store elimination on trees. This flag is enabled by default
at -01 and higher on targets that have conditional move instructions.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at -01 and higher.

-ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set errno but are otherwise free of side effects. This flag is enabled
by default at -02 and higher if -0s is not also specified.

-ffinite-loops
Assume that a loop with an exit will eventually take the exit and not loop
indefinitely. This allows the compiler to remove loops that otherwise have no
side-effects, not considering eventual endless looping as such.

This option is enabled by default at -02 for C++ with -std=c++11 or higher.

-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at -01 and higher.

Chapter 3: GCC Command Options 217

-ftree-dse
Perform dead store elimination (DSE) on trees. A dead store is a store into a
memory location that is later overwritten by another store without any inter-
vening loads. In this case the earlier store can be deleted. This flag is enabled
by default at -01 and higher.

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
enabled by default at -01 and higher. It is not enabled for -0s, since it usually
increases code size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at -01 and
higher.

-ftree-loop-linear

-floop-strip-mine

-floop-block
Perform loop nest optimizations. Same as -floop-nest-optimize. To use this
code transformation, GCC has to be configured with —-with-isl to enable the
Graphite loop transformation infrastructure.

-fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we gener-
ate the polyhedral representation and transform it back to gimple. Using
-fgraphite-identity we can check the costs or benefits of the GIMPLE -
> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are
also performed by the code generator isl, like index splitting and dead code
elimination in loops.

-floop-nest-optimize
Enable the isl based loop nest optimizer. This is a generic loop nest optimizer
based on the Pluto optimization algorithms. It calculates a loop structure
optimized for data-locality and parallelism. This option is experimental.

-floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can be paral-
lelized. Parallelize all the loops that can be analyzed to not contain loop carried
dependences without checking that it is profitable to parallelize the loops.

-ftree-coalesce-vars
While transforming the program out of the SSA representation, attempt to
reduce copying by coalescing versions of different user-defined variables, instead
of just compiler temporaries. This may severely limit the ability to debug an
optimized program compiled with -fno-var-tracking-assignments. In the
negated form, this flag prevents SSA coalescing of user variables. This option is
enabled by default if optimization is enabled, and it does very little otherwise.

—-ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to branch-less
equivalents. The intent is to remove control-flow from the innermost loops in

218 Using the GNU Compiler Collection (GCC)

order to improve the ability of the vectorization pass to handle these loops.
This is enabled by default if vectorization is enabled.

-ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on big loop
bodies and allow further loop optimizations, like parallelization or vectorization,
to take place. For example, the loop

DOI=1, N
A(I) = B(I) + C
D(I) = E(I) * F

ENDDO

is transformed to

bD0I=1, N

A(I) =B(I) +C
ENDDO
DOI =1, N

D(I) = E(I) x F
ENDDO

This flag is enabled by default at —03. It is also enabled by -fprofile-use and
-fauto-profile.

-ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with calls to
a library. This flag is enabled by default at -02 and higher, and by -fprofile-
use and -fauto-profile.

This pass distributes the initialization loops and generates a call to memset
zero. For example, the loop

DOI =1, N

ACD) =0

B(I) = A(I) + I
ENDDO

is transformed to

pD0I=1, N
A(I) =0
ENDDO
DOI =1, N
B(I) = A(D) +1I
ENDDO

and the initialization loop is transformed into a call to memset zero.

-floop-interchange
Perform loop interchange outside of graphite. This flag can improve cache per-
formance on loop nest and allow further loop optimizations, like vectorization,
to take place. For example, the loop
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
clil[j] = cl[i1[j] + alil [k1*b[k][j];
is transformed to
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)

Chapter 3: GCC Command Options 219

for (int j = 0; j < N; j++)
cli1[j] = c[i1[j] + alil [k1*b[k][j];
This flag is enabled by default at -03. It is also enabled by -fprofile-use and
—-fauto-profile.

-floop-unroll-and-jam

Apply unroll and jam transformations on feasible loops. In a loop nest this
unrolls the outer loop by some factor and fuses the resulting multiple inner
loops. This flag is enabled by default at -03. It is also enabled by -fprofile-
use and -fauto-profile.

-ftree-loop-im

Perform loop invariant motion on trees. This pass moves only invariants that
are hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns). With -funswitch-loops it also moves operands
of conditions that are invariant out of the loop, so that we can use just trivial
invariantness analysis in loop unswitching. The pass also includes store motion.

-ftree-loop-ivcanon

Create a canonical counter for number of iterations in loops for which deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-ftree-scev-cprop

-fivopts

Perform final value replacement. If a variable is modified in a loop in such a
way that its value when exiting the loop can be determined using only its initial
value and the number of loop iterations, replace uses of the final value by such a
computation, provided it is sufficiently cheap. This reduces data dependencies
and may allow further simplifications. Enabled by default at -01 and higher.

Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees. Enabled by default
at -01 and higher.

-ftree-parallelize-loops
-ftree-parallelize-loops=n

Parallelize loops, i.e., split their iteration space to run in multiple threads.
This is only possible for loops whose iterations are independent and can be
arbitrarily reordered. The optimization is only profitable on multiprocessor
machines, for loops that are CPU-intensive, rather than constrained e.g. by
memory bandwidth. This option implies -pthread, and thus is only supported
on targets that have support for -pthread.

When a positive value n is specified, the number of threads is fixed at com-
pile time and cannot be changed after compilation. The compiler generates
“#pragma omp parallel num_threads(n)”.

When used without =n (i.e., -ftree-parallelize-loops), the number of
threads is determined at program execution time via the OMP_NUM_THREADS
environment variable. If OMP_NUM_THREADS is not set, the OpenMP runtime
automatically detects the number of available processors and uses that value.

220 Using the GNU Compiler Collection (GCC)

This enables creating binaries that adapt to different hardware configurations
without recompilation.

-ftree-pta
Perform function-local points-to analysis on trees. This flag is enabled by de-
fault at -01 and higher, except for -Og.

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at -01 and higher, except for -Og.

-fstore-merging
Perform merging of narrow stores to consecutive memory addresses. This pass
merges contiguous stores of immediate values narrower than a word into fewer
wider stores to reduce the number of instructions. This is enabled by default
at —02 and higher as well as -0Os.

-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at -01 and higher.

-ftree-slsr
Perform straight-line strength reduction on trees. This recognizes related ex-
pressions involving multiplications and replaces them by less expensive calcu-
lations when possible. This is enabled by default at -01 and higher.

-ftree-vectorize
Perform vectorization on trees. This flag enables -ftree-loop-vectorize and
-ftree-slp-vectorize if not explicitly specified.

-ftree-loop-vectorize
Perform loop vectorization on trees. This flag is enabled by default at -02 and
by -ftree-vectorize, -fprofile-use, and -fauto-profile.

-ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
-02 and by -ftree-vectorize, -fprofile-use, and -fauto-profile.

-ftrivial-auto-var—-init=choice
Initialize automatic variables or temporary objects with either a pattern or with
zeroes to increase the security and predictability of a program by preventing
uninitialized memory disclosure and use. GCC still considers an automatic vari-
able that doesn’t have an explicit initializer as uninitialized, ~-Wuninitialized
and -Wanalyzer-use-of-uninitialized-value will still report warning mes-
sages on such automatic variables or temporary objects and the compiler will
perform optimization as if the variable were uninitialized. With this option,
GCC will also initialize any padding of automatic variables or temporary ob-
jects that have structure or union types to zeroes. However, the current imple-
mentation cannot initialize automatic variables whose initialization is bypassed

Chapter 3: GCC Command Options 221

through switch or goto statement. Using -Wtrivial-auto-var-init to re-
port all such cases.

The three values of choice are:
e ‘uninitialized’ doesn’t initialize any automatic variables.

e ‘pattern’ Initialize automatic variables with values which will likely trans-
form logic bugs into crashes down the line, are easily recognized in a crash
dump and without being values that programmers can rely on for useful
program semantics. The current value is byte-repeatable pattern with byte
"OxFE". The values used for pattern initialization might be changed in the
future.

e ‘zero’ Initialize automatic variables with zeroes.

The default is ‘uninitialized’ except for C++26, in which case if ~-ftrivial-
auto-var—init= is not specified at all automatic variables or temporary objects
are zero initialized, but zero initialization of padding bits does not happen.

Note that the initializer values, whether ‘zero’ or ‘pattern’, refer to data rep-
resentation (in memory or machine registers), rather than to their interpreta-
tion as numerical values. This distinction may be important in languages that
support types with biases or implicit multipliers, and with such extensions as
‘hardbool’ (see Section 6.4.3 [Type Attributes|, page 723). For example, a
variable that uses 8 bits to represent (biased) quantities in the range 160. .400
will be initialized with the bit patterns 0x00 or OxFE, depending on choice,
whether or not these representations stand for values in that range, and even if
they do, the interpretation of the value held by the variable will depend on the
bias. A ‘hardbool’ variable that uses say 0x5A and 0xA5 for false and true,
respectively, will trap with either ‘choice’ of trivial initializer, i.e., ‘zero’ ini-
tialization will not convert to the representation for false, even if it would for
a static variable of the same type. This means the initializer pattern doesn’t
generally depend on the type of the initialized variable. One notable exception
is that (non-hardened) boolean variables that fit in registers are initialized with
false (zero), even when ‘pattern’ is requested.

You can control this behavior for a specific variable by using the variable
attribute uninitialized standard attribute (see Section 6.4.2 [Variable At-
tributes|, page 707) or the C++26 [[indeterminate]].

-fvect-cost-model=model

Alter the cost model used for vectorization. The model argument should be
one of ‘unlimited’, ‘dynamic’, ‘cheap’ or ‘very-cheap’. With the ‘unlimited’
model the vectorized code-path is assumed to be profitable while with the
‘dynamic’ model a runtime check guards the vectorized code-path to enable
it only for iteration counts that will likely execute faster than when executing
the original scalar loop. The ‘cheap’ model disables vectorization of loops where
doing so would be cost prohibitive for example due to required runtime checks
for data dependence or alignment but otherwise is equal to the ‘dynamic’ model.
The ‘very-cheap’ model disables vectorization of loops when any runtime check
for data dependence or alignment is required, it also disables vectorization of
epilogue loops but otherwise is equal to the ‘cheap’ model.

222 Using the GNU Compiler Collection (GCC)

The default cost model depends on other optimization flags and is either
‘dynamic’ or ‘cheap’.

-fsimd-cost-model=model
Alter the cost model used for vectorization of loops marked with the OpenMP
simd directive. The model argument should be one of ‘unlimited’, ‘dynamic’,
‘cheap’. All values of model have the same meaning as described in -fvect-
cost-model and by default a cost model defined with -fvect-cost-model is
used.

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant
propagation pass, but instead of values, ranges of values are propagated. This
allows the optimizers to remove unnecessary range checks like array bound
checks and null pointer checks. This is enabled by default at -02 and higher.
Null pointer check elimination is only done if ~-fdelete-null-pointer-checks
is enabled.

-fsplit-paths
Split paths leading to loop backedges. This can improve dead code elimination
and common subexpression elimination. This is enabled by default at -03 and
above.

-fsplit-ivs-in-unroller
Enables expression of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

A combination of -fweb and CSE is often sufficient to obtain the same effect.
However, that is not reliable in cases where the loop body is more complicated
than a single basic block. It also does not work at all on some architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler creates multiple copies of some local variables
when unrolling a loop, which can result in superior code.

This optimization is enabled by default for PowerPC targets, but disabled by
default otherwise.

-fpartial-inlining
Inline parts of functions. This option has any effect only when inlining it-
self is turned on by the -finline-functions or -finline-small-functions
options.

Enabled at levels -02, -03, -0Os.

-fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations (espe-
cially memory loads and stores) performed in previous iterations of loops.

This option is enabled at level -03. It is also enabled by -fprofile-use and
-fauto-profile.

Chapter 3: GCC Command Options 223

—-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

Disabled at level -0Os.

-fno-printf-return-value

Do not substitute constants for known return value of formatted output func-
tions such as sprintf, snprintf, vsprintf, and vsnprintf (but not printf
of fprintf). This transformation allows GCC to optimize or even eliminate
branches based on the known return value of these functions called with ar-
guments that are either constant, or whose values are known to be in a range
that makes determining the exact return value possible. For example, when
-fprintf-return-value is in effect, both the branch and the body of the if
statement (but not the call to snprint) can be optimized away when i is a
32-bit or smaller integer because the return value is guaranteed to be at most
8.

char buf[9];
if (snprintf (buf, "%08x", i) >= sizeof buf)

The -fprintf-return-value option relies on other optimizations and yields
best results with -02 and above. It works in tandem with the -Wformat-
overflow and -Wformat-truncation options. The -fprintf-return-value
option is enabled by default.

-fno-peephole

-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between
-fno-peephole and -fno-peephole2 is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

-fpeephole is enabled by default. -fpeephole2 enabled at levels -02, -03,
-0s.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC uses heuristics to guess branch probabilities if they are not provided by
profiling feedback (-fprofile-arcs). These heuristics are based on the control
flow graph. If some branch probabilities are specified by __builtin_expect,
then the heuristics are used to guess branch probabilities for the rest of the
control flow graph, taking the __builtin_expect info into account. The in-
teractions between the heuristics and __builtin_expect can be complex, and
in some cases, it may be useful to disable the heuristics so that the effects of
__builtin_expect are easier to understand.

It is also possible to specify expected probability of the expression with __
builtin_expect_with_probability built-in function.

The default is -fguess-branch-probability at levels -0, -02, -03, -0s.

224

Using the GNU Compiler Collection (GCC)

—-freorder-blocks

Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels -01, -02, -03, -0Os.

-freorder-blocks-algorithm=algorithm

Use the specified algorithm for basic block reordering. The algorithm argument
can be ‘simple’, which does not increase code size (except sometimes due to
secondary effects like alignment), or ‘stc’, the “software trace cache” algorithm,
which tries to put all often executed code together, minimizing the number of
branches executed by making extra copies of code.

The default is ‘simple’ at levels -01, -0s, and ‘stc’ at levels -02, -03.

-freorder-blocks-and-partition

In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling or unwind tables (on targets using setjump/longjump or target specific
scheme), for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections. When -fsplit-
stack is used this option is not enabled by default (to avoid linker errors), but
may be enabled explicitly (if using a working linker).

Enabled for x86 at levels -02, -03, -0s.

—-freorder-functions

Reorder functions in the object file in order to improve code locality. Un-
like -fipa-reorder-for-locality this option prioritises grouping all functions
within a category (hot/normal/cold/never-executed) together. This is imple-
mented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

This option isn’t effective unless you either provide profile feedback (see
-fprofile-arcs for details) or manually annotate functions with hot or cold
attributes (see Section 6.4.1.1 [Common Function Attributes], page 630).

Enabled at levels -02, -03, -0Os.

-fstrict-aliasing

Allow the compiler to assume the strictest aliasing rules applicable to the lan-
guage being compiled. For C (and C++), this activates optimizations based on
the type of expressions. In particular, accessing an object of one type via an
expression of a different type is not allowed, unless the types are compatible
types, differ only in signedness or qualifiers, or the expression has a character
type. Accessing scalar objects via a corresponding vector type is also allowed.

For example, an unsigned int can alias an int, but not a void* or a double.
A character type may alias any other type.

Chapter 3: GCC Command Options 225

Pay special attention to code like this:

union a_union {
int i;
double d;

};

int £() {
union a_union t;
t.d = 3.0;
return t.i;
}
The practice of reading from a different union member than the one most re-
cently written to (called “type-punning”) is common. Even with -fstrict-
aliasing, type-punning is allowed in C, provided the memory is accessed
through the union type. In ISO C++, type-punning through a union type is
undefined behavior, but GCC supports it as an extension. So, the code above
works as expected. See Section 4.10 [Structures unions enumerations and bit-
fields implementation|, page 604. However, this code might not:

int £(O) {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Similarly, access by taking the address, casting the resulting pointer and deref-
erencing the result has undefined behavior, even if the cast uses a union type,
e.g.:
int £ {
double d = 3.0;
return ((union a_union *) &d)->i;

}
The -fstrict-aliasing option is enabled at levels -02, -03, -Os.

-fipa-strict-aliasing
Controls whether rules of -fstrict-aliasing are applied across function
boundaries. Note that if multiple functions gets inlined into a single function
the memory accesses are no longer considered to be crossing a function
boundary.

The -fipa-strict-aliasing option is enabled by default and is effective only
in combination with -fstrict-aliasing.

-falign-functions

—-falign-functions=n

-falign-functions=n:m

-falign-functions=n:m:n2

-falign-functions=n:m:n2:m2
Align the start of functions to the next power-of-two greater than or equal to
n, skipping up to m-1 bytes. This ensures that at least the first m bytes of
the function can be fetched by the CPU without crossing an n-byte alignment
boundary. This is an optimization of code performance and alignment is ignored

226 Using the GNU Compiler Collection (GCC)

for functions considered cold. If alignment is required for all functions, use
-fmin-function-alignment.

If m is not specified, it defaults to n.

Examples: -falign-functions=32 aligns functions to the next 32-byte bound-
ary, ~-falign-functions=24 aligns to the next 32-byte boundary only if this
can be done by skipping 23 bytes or less, -falign-functions=32:7 aligns to
the next 32-byte boundary only if this can be done by skipping 6 bytes or less.

The second pair of n2:m2 values allows you to specify a secondary alignment:
-falign-functions=64:7:32:3 aligns to the next 64-byte boundary if this
can be done by skipping 6 bytes or less, otherwise aligns to the next 32-byte
boundary if this can be done by skipping 2 bytes or less. If m2 is not specified,
it defaults to n2.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

-fno-align-functions and -falign-functions=1 are equivalent and mean
that functions are not aligned.

If n is not specified or is zero, use a machine-dependent default. The maximum
allowed n option value is 65536.

Enabled at levels -02, -03.

-flimit-function-alignment
If this option is enabled, the compiler tries to avoid unnecessarily overaligning
functions. It attempts to instruct the assembler to align by the amount specified
by -falign-functions, but not to skip more bytes than the size of the function.

—-falign-labels
-falign-labels=n
-falign-labels=n:m
-falign-labels=n:m:n2
-falign-labels=n:m:n2:m2
Align all branch targets to a power-of-two boundary.

Parameters of this option are analogous to the -falign-functions option.
-fno-align-labels and -falign-labels=1 are equivalent and mean that la-
bels are not aligned.

If -falign-loops or -falign-jumps are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment. The maximum allowed n option value
is 65536.

Enabled at levels -02, -03.

Chapter 3: GCC Command Options 227

-falign-loops

-falign-loops=n

-falign-loops=n:m

-falign-loops=n:m:n2

-falign-loops=n:m:n2:m2
Align loops to a power-of-two boundary. If the loops are executed many times,
this makes up for any execution of the dummy padding instructions. This is an
optimization of code performance and alignment is ignored for loops considered
cold.

If -falign-labels is greater than this value, then its value is used instead.

Parameters of this option are analogous to the -falign-functions option.
-fno-align-loops and -falign-loops=1 are equivalent and mean that loops
are not aligned. The maximum allowed n option value is 65536.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels -02, -03.

-falign-jumps

-falign-jumps=n

-falign-jumps=n:m

-falign-jumps=n:m:n2

-falign-jumps=n:m:n2:m2
Align branch targets to a power-of-two boundary, for branch targets where the
targets can only be reached by jumping. In this case, no dummy operations
need be executed. This is an optimization of code performance and alignment
is ignored for jumps considered cold.

If -falign-labels is greater than this value, then its value is used instead.

Parameters of this option are analogous to the -falign-functions option.
-fno-align-jumps and -falign-jumps=1 are equivalent and mean that loops
are not aligned.

If n is not specified or is zero, use a machine-dependent default. The maximum
allowed n option value is 65536.

Enabled at levels -02, -03.

-fmin-function-alignment
Specify minimal alignment of functions to the next power-of-two greater than
or equal to n. Unlike -falign-functions this alignment is applied also to all
functions (even those considered cold). The alignment is also not affected by
-flimit-function-alignment

-fno-allocation-dce
Do not remove unused C++ allocations (using operator new and operator
delete) in dead code elimination.

See also -fmalloc-dce.
—-fallow-store-data-races

Allow the compiler to perform optimizations that may introduce new data races
on stores, without proving that the variable cannot be concurrently accessed by

228

Using the GNU Compiler Collection (GCC)

other threads. Does not affect optimization of local data. It is safe to use this
option if it is known that global data will not be accessed by multiple threads.

Examples of optimizations enabled by -fallow-store-data-races include
hoisting or if-conversions that may cause a value that was already in memory
to be re-written with that same value. Such re-writing is safe in a single
threaded context but may be unsafe in a multi-threaded context. Note
that on some processors, if-conversions may be required in order to enable
vectorization.

Enabled at level -Ofast.

—-funit-at-a-time

This option is left for compatibility reasons. -funit-at-a-time has no ef-
fect, while ~-fno-unit-at-a-time implies ~-fno-toplevel-reorder and -fno-
section-anchors.

Enabled by default.

-fno-toplevel-reorder

Do not reorder top-level functions, variables, and asm statements. Output them
in the same order that they appear in the input file. When this option is
used, unreferenced static variables are not removed. This option is intended to
support existing code that relies on a particular ordering. For new code, it is
better to use attributes when possible.

-ftoplevel-reorder is the default at -01 and higher, and also
at -00 if -fsection-anchors is explicitly requested. Additionally
-fno-toplevel-reorder implies ~-fno-section-anchors.

-funreachable-traps

-fweb

With this option, the compiler turns calls to __builtin_unreachable into
traps, instead of using them for optimization. This also affects any such calls
implicitly generated by the compiler.

This option has the same effect as -fsanitize=unreachable -fsanitize-
trap=unreachable, but does not affect the values of those options. If
-fsanitize=unreachable is enabled, that option takes priority over this one.

This option is enabled by default at -00 and -0Og.

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a “home
register”.

Enabled by default with -funroll-loops.

-fwhole-program

Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of main and
those merged by attribute externally_visible become static functions and
in effect are optimized more aggressively by interprocedural optimizers.

Chapter 3: GCC Command Options 229

-flto[=n]

With -flto this option has a limited use. In most cases the precise list of
symbols used or exported from the binary is known the resolution info passed
to the link-time optimizer by the linker plugin. It is still useful if no linker plugin
is used or during incremental link step when final code is produced (with -f1to
-flinker-output=nolto-rel).

This option runs the standard link-time optimizer. When invoked with source
code, it generates GIMPLE (one of GCC’s internal representations) and writes
it to special ELF sections in the object file. When the object files are linked
together, all the function bodies are read from these ELF sections and instan-
tiated as if they had been part of the same translation unit.

To use the link-time optimizer, -f1to and optimization options should be spec-
ified at compile time and during the final link. It is recommended that you
compile all the files participating in the same link with the same options and
also specify those options at link time. For example:

gcc -c¢ -02 -flto foo.c

gcc —-c¢ -02 -flto bar.c

gcc -o myprog -flto -02 foo.o bar.o
The first two invocations to GCC save a bytecode representation of GIMPLE
into special ELF sections inside foo.o and bar.o. The final invocation reads
the GIMPLE bytecode from foo.o and bar.o, merges the two files into a single
internal image, and compiles the result as usual. Since both foo.o and bar.o
are merged into a single image, this causes all the interprocedural analyses and
optimizations in GCC to work across the two files as if they were a single one.
This means, for example, that the inliner is able to inline functions in bar.o
into functions in foo.o and vice-versa.

Another (simpler) way to enable link-time optimization is:
gcc -o myprog -flto -02 foo.c bar.c

The above generates bytecode for foo. c and bar. c, merges them together into a
single GIMPLE representation and optimizes them as usual to produce myprog.

The important thing to keep in mind is that to enable link-time optimizations
you need to use the GCC driver to perform the link step. GCC automatically
performs link-time optimization if any of the objects involved were compiled
with the -f1to command-line option. You can always override the automatic
decision to do link-time optimization by passing -fno-1to to the link command.

To make whole-program optimization effective, it is necessary to make certain
assumptions. The compiler needs to know what functions and variables can
be accessed by libraries and runtime outside of the link-time optimized unit.
When supported by the linker, the linker plugin (see -fuse-linker-plugin)
passes information to the compiler about used and externally visible symbols.
When the linker plugin is not available, -fwhole-program should be used to
allow the compiler to make these assumptions, which leads to more aggressive
optimization decisions.

When a file is compiled with -f1to without ~fuse-linker-plugin, the gener-
ated object file is larger than a regular object file because it contains GIMPLE

230

Using the GNU Compiler Collection (GCC)

bytecodes and the usual final code (see ~ffat-1to-objects). This means that
object files with LTO information can be linked as normal object files; if ~fno-
1to is passed to the linker, no interprocedural optimizations are applied. Note
that when -fno-fat-1to-objects is enabled the compile stage is faster but
you cannot perform a regular, non-LTO link on them.

When producing the final binary, GCC only applies link-time optimizations to
those files that contain bytecode. Therefore, you can mix and match object
files and libraries with GIMPLE bytecodes and final object code. GCC auto-
matically selects which files to optimize in LTO mode and which files to link
without further processing.

Generally, options specified at link time override those specified at compile
time, although in some cases GCC attempts to infer link-time options from the
settings used to compile the input files.

If you do not specify an optimization level option -0 at link time, then GCC
uses the highest optimization level used when compiling the object files. Note
that it is generally ineffective to specify an optimization level option only at
link time and not at compile time, for two reasons. First, compiling without
optimization suppresses compiler passes that gather information needed for
effective optimization at link time. Second, some early optimization passes can
be performed only at compile time and not at link time.

There are some code generation flags preserved by GCC when generating byte-
codes, as they need to be used during the final link. Currently, the following
options and their settings are taken from the first object file that explicitly
specifies them: -fcommon, -fexceptions, ~-fnon-call-exceptions, -fgnu-tm
and all the -m target flags.

The following options -fPIC, -fpic, -fpie and -fPIE are combined based on
the following scheme:

-fPIC + -fpic = -fpic

-fPIC + -fno-pic = -fno-pic
-fpic/-fPIC + (no option) = (no option)
-fPIC + -fPIE -fPIE

-fpic + -fPIE = -fpie

-fPIC/-fpic + -fpie = -fpie

Certain ABI-changing flags are required to match in all compilation units, and
trying to override this at link time with a conflicting value is ignored. This
includes options such as -freg-struct-return and -fpcc-struct-return.

Other options such as -ffp-contract, -fno-strict-overflow, -fwrapv,
-fno-trapv or -fno-strict-aliasing are passed through to the link stage
and merged conservatively for conflicting translation units. Specifically
—-fno-strict-overflow, ~fwrapv and -fno-trapv take precedence; and for
example -ffp-contract=off takes precedence over -ffp-contract=fast.
You can override them at link time.

Diagnostic options such as -Wstringop-overflow are passed through to the
link stage and their setting matches that of the compile-step at function granu-
larity. Note that this matters only for diagnostics emitted during optimization.

Chapter 3: GCC Command Options 231

Note that code transforms such as inlining can lead to warnings being enabled
or disabled for regions if code not consistent with the setting at compile time.

When you need to pass options to the assembler via —-Wa or —~Xassembler make
sure to either compile such translation units with -fno-1to or consistently use
the same assembler options on all translation units. You can alternatively also
specify assembler options at LTO link time.

To enable debug info generation you need to supply -g at compile time. If any
of the input files at link time were built with debug info generation enabled
the link will enable debug info generation as well. Any elaborate debug info
settings like the dwarf level ~gdwarf-5 need to be explicitly repeated at the
linker command line and mixing different settings in different translation units
is discouraged.

If LTO encounters objects with C linkage declared with incompatible types in
separate translation units to be linked together (undefined behavior according
to ISO C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still
undefined at run time. Similar diagnostics may be raised for other languages.

Another feature of LTO is that it is possible to apply interprocedural optimiza-
tions on files written in different languages:

gcc —c¢ —-flto foo.c

g++ -c —-flto bar.cc

gfortran -c -flto baz.f90

g++ -o myprog -flto -03 foo.o bar.o baz.o -lgfortran
Notice that the final link is done with g++ to get the C++ runtime libraries
and -lgfortran is added to get the Fortran runtime libraries. In general,
when mixing languages in LTO mode, you should use the same link command
options as when mixing languages in a regular (non-LTO) compilation.

If object files containing GIMPLE bytecode are stored in a library archive, say
libfoo.a, it is possible to extract and use them in an LTO link if you are
using a linker with plugin support. To create static libraries suitable for LTO,
use gcc—ar and gcc-ranlib instead of ar and ranlib; to show the symbols
of object files with GIMPLE bytecode, use gcc-nm. Those commands require
that ar, ranlib and nm have been compiled with plugin support. At link time,
use the flag -fuse-linker-plugin to ensure that the library participates in
the LTO optimization process:
gcc -o myprog -02 -flto -fuse-linker-plugin a.o b.o -1foo

With the linker plugin enabled, the linker extracts the needed GIMPLE files
from 1libfoo.a and passes them on to the running GCC to make them part of
the aggregated GIMPLE image to be optimized.

If you are not using a linker with plugin support and/or do not enable the linker
plugin, then the objects inside 1ibfoo.a are extracted and linked as usual, but
they do not participate in the LTO optimization process. In order to make a
static library suitable for both LTO optimization and usual linkage, compile its
object files with -flto -ffat-1to-objects.

Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is
possible to combine -flto and -fwhole-program to allow the interprocedural

232

Using the GNU Compiler Collection (GCC)

optimizers to use more aggressive assumptions which may lead to improved
optimization opportunities. Use of ~fwhole-program is not needed when linker
plugin is active (see -fuse-linker-plugin).

The current implementation of LTO makes no attempt to generate bytecode
that is portable between different types of hosts. The bytecode files are ver-
sioned and there is a strict version check, so bytecode files generated in one
version of GCC do not work with an older or newer version of GCC.

Link-time optimization does not work well with generation of debugging infor-
mation on systems other than those using a combination of ELF and DWARF.

If you specify the optional n, the optimization and code generation done at link
time is executed in parallel using n parallel jobs by utilizing an installed make
program. The environment variable MAKE may be used to override the program
used.

You can also specify ~-flto=jobserver to use GNU make’s job server mode to
determine the number of parallel jobs. This is useful when the Makefile calling
GCC is already executing in parallel. You must prepend a ‘+’ to the command
recipe in the parent Makefile for this to work. This option likely only works if
MAKE is GNU make. Even without the option value, GCC tries to automatically
detect a running GNU make’s job server.

Use -flto=auto to use GNU make’s job server, if available, or otherwise fall
back to autodetection of the number of CPU threads present in your system.

-flto-partition=alg

Specify the partitioning algorithm used by the link-time optimizer. The value
is either ‘1tol’ to specify a partitioning mirroring the original source files or
‘balanced’ to specify partitioning into equally sized chunks (whenever possible)
or ‘max’ to create new partition for every symbol where possible or ‘cache’ to
balance chunk sizes while keeping related symbols together for better caching in
incremental LTO. Specifying ‘none’ as an algorithm disables partitioning and
streaming completely. The default value is ‘balanced’. While ‘1tol’ can be
used as an workaround for various code ordering issues, the ‘max’ partitioning
is intended for internal testing only. The value ‘one’ specifies that exactly
one partition should be used while the value ‘none’ bypasses partitioning and
executes the link-time optimization step directly from the WPA phase.

—-flto-incremental=path

Enable incremental LTO, with its cache in given existing directory. Can signif-
icantly shorten edit-compile cycles with LTO.

When used with LTO (-flto), the output of translation units inside LTO
is cached. Cached translation units are likely to be encountered again when
recompiling with small code changes, leading to recompile time reduction.

Multiple GCC instances can use the same cache in parallel.

-flto-incremental-cache-size=n

Specifies number of cache entries in incremental LTO after which to prune old
entries. This is a soft limit, temporarily there may be more entries.

Chapter 3: GCC Command Options 233

-flto-compression-level=n
This option specifies the level of compression used for intermediate language
written to LTO object files, and is only meaningful in conjunction with LTO
mode (-f1to). GCC currently supports two LTO compression algorithms. For
zstd, valid values are 0 (no compression) to 19 (maximum compression), while
zlib supports values from 0 to 9. Values outside this range are clamped to either
minimum or maximum of the supported values. If the option is not given, a
default balanced compression setting is used.

-fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This option
relies on plugin support in the linker, which is available in gold or in GNU 1d
2.21 or newer.

This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing more
code to the link-time optimizer. This information specifies what symbols can be
accessed externally (by non-LTO object or during dynamic linking). Resulting
code quality improvements on binaries (and shared libraries that use hidden
visibility) are similar to ~fwhole-program. See -flto for a description of the
effect of this flag and how to use it.

This option is enabled by default when LTO support in GCC is enabled and
GCC was configured for use with a linker supporting plugins (GNU 1d 2.21 or
newer or gold).

-ffat-1lto-objects
Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with -f1to and is ignored
at link time.

-fno-fat-lto-objects improves compilation time over plain LTO, but re-
quires the complete toolchain to be aware of LTO. It requires a linker with linker
plugin support for basic functionality. Additionally, nm, ar and ranlib need
to support linker plugins to allow a full-featured build environment (capable of
building static libraries etc). GCC provides the gcc-ar, gcc-nm, gcc-ranlib
wrappers to pass the right options to these tools. With non fat LTO makefiles
need to be modified to use them.

Note that modern binutils provide plugin auto-load mechanism. Installing the
linker plugin into $libdir/bfd-plugins has the same effect as usage of the
command wrappers (gcc-ar, gcc-nm and gcc-ranlib).

The default is ~-fno-fat-1to-objects on targets with linker plugin support.

-fcompare-elim
After register allocation and post-register allocation instruction splitting, iden-
tify arithmetic instructions that compute processor flags similar to a comparison
operation based on that arithmetic. If possible, eliminate the explicit compar-
ison operation.
This pass only applies to certain targets that cannot explicitly represent the
comparison operation before register allocation is complete.

234

Using the GNU Compiler Collection (GCC)

Enabled at levels -01, -02, -03, -0Os.

—-ffold-mem-offsets
-fno-fold-mem-offsets

Try to eliminate add instructions by folding them in memory loads/stores.
Enabled at levels -02, -03.

-fcprop-registers

After register allocation and post-register allocation instruction splitting, per-
form a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Enabled at levels -01, -02, -03, -0Os.

—fprofile-correction

Profiles collected using an instrumented binary for multi-threaded programs
may be inconsistent due to missed counter updates. When this option is spec-
ified, GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.

This option is enabled by -fauto-profile.

—fprofile-partial-training

With -fprofile-use all portions of programs not executed during training
runs are optimized aggressively for size rather than speed. In some cases it is
not practical to train all possible hot paths in the program. (For example, it
may contain functions specific to a given hardware and training may not cover
all hardware configurations the program later runs on.) With -fprofile-
partial-training profile feedback is ignored for all functions not executed
during the training runs, causing them to be optimized as if they were compiled
without profile feedback. This leads to better performance when the training
is not representative at the cost of significantly bigger code.

-fprofile-use
-fprofile-use=path

Enable profile feedback-directed optimizations, and the following optimizations,
many of which are generally profitable only with profile feedback available:

-fbranch-probabilities -fprofile-values
-funroll-loops -fpeel-loops -ftracer -fvpt
-finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp
-fpredictive-commoning -fsplit-loops -funswitch-loops
-fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize
-fvect-cost-model=dynamic -ftree-loop-distribute-patterns
-fprofile-reorder-functions
Before you can use this option, you must first generate profiling information.
See Section 3.13 [Instrumentation Options|, page 276, for information about

the -fprofile-generate option.

By default, GCC emits an error message if the feedback profiles do not match
the source code. This error can be turned into a warning by using -Wno-
error=coverage-mismatch. Note this may result in poorly optimized code.
Additionally, by default, GCC also emits a warning message if the feedback
profiles do not exist (see -Wmissing-profile).

Chapter 3: GCC Command Options 235

If path is specified, GCC looks at the path to find the profile feedback data
files. See ~fprofile-dir.

-fauto-profile

-fauto-profile=path
Enable sampling-based feedback-directed optimizations, and the following op-
timizations, many of which are generally profitable only with profile feedback
available:

-fbranch-probabilities -fprofile-values
-funroll-loops -fpeel-loops -ftracer -fvpt
-finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp
-fpredictive-commoning -fsplit-loops -funswitch-loops
-fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize
-fvect-cost-model=dynamic -ftree-loop-distribute-patterns
-fprofile-correction

path is the name of a file containing AutoFDO profile information. If omitted,

it defaults to fbdata.afdo in the current directory.

Producing an AutoFDO profile data file requires running your program with the
perf utility on a supported GNU/Linux target system. For more information,
see https://perfwiki.github.io/main/.
E.g.

perf record -e br_inst_retired:near_taken -b -o perf.data \

-- your_program

Then use the create_gcov tool to convert the raw profile data to a format
that can be used by GCC. You must also supply the unstripped binary for your
program to this tool. See https://github.com/google/autofdo.

E.g.

create_gcov —-binary=your_program.unstripped --profile=perf.data \
--gcov=profile.afdo

-fauto-profile-inlining
When auto-profile is available inline all relevant functions which was inlined
in the tran run before reading the profile feedback. This improves context
sensitivity of the profile. Enabled by default.

The following options control compiler behavior regarding floating-point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

-fexcess-precision=style

This option allows control over excess precision on machines where floating-
point operations occur in a format with more precision or range than the IEEE
standard and interchange floating-point types. An example of such a target
is x87 floating point on x86 processors, which uses an 80-bit representation
internally instead of the 64-bit IEEE format. For most programs, the excess
precision is harmless, but some programs may rely on the requirements of the
C or C++ language standards for handling IEEE values.

By default, ~fexcess-precision=fast is in effect; this means that operations
may be carried out in a wider precision than the types specified in the source
if that would result in faster code, and it is unpredictable when rounding to

https://perfwiki.github.io/main/
https://github.com/google/autofdo

236

Using the GNU Compiler Collection (GCC)

the types specified in the source code takes place. When compiling C or C++,
if ~-fexcess-precision=standard is specified then excess precision follows the
rules specified in ISO C99 or C++; in particular, both casts and assignments
cause values to be rounded to their semantic types (whereas -ffloat-store
only affects assignments). This option is enabled by default for C or C++ if a
strict conformance option such as -std=c99 or -std=c++17 is used. -ffast-
math enables -fexcess-precision=fast by default regardless of whether a
strict conformance option is used. If ~-fexcess-precision=16 is specified, con-
stants and the results of expressions with types _Float16 and __bf16 are com-
puted without excess precision.

-fexcess-precision=standard is not implemented for languages other than
C or C++. On the x86, it has no effect if -mfpmath=sse or -mfpmath=sse+387
is specified; in the former case, IEEE semantics apply without excess precision,
and in the latter, rounding is unpredictable.

-ffloat-store

Do not store floating-point variables in registers, and inhibit other options that
might change whether a floating-point value is taken from a register or memory.
This option has generally been subsumed by -fexcess-precision=standard,
which is more general. If you do use -ffloat-store, you may need to mod-
ify your program to explicitly store intermediate computations in temporary
variables since -ffloat-store handles rounding to IEEE format only on as-
signments and not casts as ~-fexcess-precision=standard does.

-ffast-math

Sets the options -fno-math-errno, -funsafe-math-optimizations,
-ffinite-math-only, -fno-rounding-math, -fno-signaling-nans,
-fcx-limited-range and -fexcess-precision=fast.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option is not turned on by any -0 option besides -0fast since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifica-
tions.

-fno-math-errno

Do not set errno after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math
error handling may want to use this flag for speed while maintaining IEEE
arithmetic compatibility.

This option is not turned on by any -0 option besides -0fast since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifica-
tions.

The default is -fmath-errno.

Chapter 3: GCC Command Options 237

On Darwin systems, the math library never sets errno. There is therefore no
reason for the compiler to consider the possibility that it might, and -fno-
math-errno is the default.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option is not turned on by any -0 option besides -0Ofast since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifi-
cations. Enables -fno-signed-zeros, -fno-trapping-math, -fassociative-
math and -freciprocal-math.

The default is ~-fno-unsafe-math-optimizations.

-fassociative-math

Allow re-association of operands in series of floating-point operations. This vi-
olates the ISO C and C++ language standard by possibly changing computation
result. NOTE: re-ordering may change the sign of zero as well as ignore NaNs
and inhibit or create underflow or overflow (and thus cannot be used on code
that relies on rounding behavior like (x + 2**52) - 2xx52. May also reorder
floating-point comparisons and thus may not be used when ordered compar-
isons are required. This option requires that both -fno-signed-zeros and
-fno-trapping-math be in effect. Moreover, it doesn’t make much sense with
-frounding-math. For Fortran the option is automatically enabled when both
-fno-signed-zeros and -fno-trapping-math are in effect.

The default is -fno-associative-math.

-freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by the value if
this enables optimizations. For example x / y can be replaced with x * (1/y),
which is useful if (1/y) is subject to common subexpression elimination. Note
that this loses precision and increases the number of flops operating on the
value.

The default is ~-fno-reciprocal-math.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option is not turned on by any -0 option besides -0fast since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifica-
tions.

The default is -fno-finite-math-only.

238 Using the GNU Compiler Collection (GCC)

-fno-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the signedness of
zero. IEEE arithmetic specifies the behavior of distinct +0.0 and —0.0 values,
which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even
with ~ffinite-math-only). This option implies that the sign of a zero result
isn’t significant.

The default is ~-fsigned-zeros.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inexact
result and invalid operation. This option requires that ~fno-signaling-nans
be in effect. Setting this option may allow faster code if one relies on “non-stop”
IEEE arithmetic, for example.

This option is not turned on by any -0 option besides -0fast since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ~ftrapping-math.

Future versions of GCC may provide finer control of this setting using C99’s
FENV_ACCESS pragma. This command-line option will be used along with
-frounding-math to specify the default state for FENV_ACCESS.

-frounding-math

Disable transformations and optimizations that assume default floating-point
rounding behavior (round-to-nearest). This option should be specified for pro-
grams that change the FP rounding mode dynamically, or that may be exe-
cuted with a non-default rounding mode. This option disables constant folding
of floating-point expressions at compile time (which may be affected by round-
ing mode) and arithmetic transformations that are unsafe in the presence of
sign-dependent rounding modes.

The default is -fno-rounding-math.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command-line option will be used along with -ftrapping-math to specify the
default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ~ftrapping-math.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ~-fno-signaling-nans.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

Chapter 3: GCC Command Options 239

-fsingle-precision-constant
Treat floating-point constants as single precision instead of implicitly converting
them to double-precision constants.

-fcx-limited-range
When enabled, this option states that a range reduction step is not needed when
performing complex division. Also, there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case. The option is enabled by -ffast-math.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

-fcx-fortran-rules
Complex multiplication and division follow Fortran rules. Range reduction is
done as part of complex division, but there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case.

-fcx-method=method
Complex multiplication and division follow the stated method. The method
argument should be one of ‘limited-range’, ‘fortran’ or ‘stdc’.

The default is to honor language specific constraints which means ‘fortran’ for
Fortran and ‘stdc’ otherwise.

The following options control optimizations that may improve performance, but are not
enabled by any -0 options. This section includes experimental options that may produce
broken code.

—-fbranch-probabilities

After running a program compiled with -fprofile-arcs (see Section 3.13 [In-
strumentation Options|, page 276), you can compile it a second time using
-fbranch-probabilities, to improve optimizations based on the number of
times each branch was taken. When a program compiled with -fprofile-arcs
exits, it saves arc execution counts to a file called sourcename.gcda for each
source file. The information in this data file is very dependent on the structure
of the generated code, so you must use the same source code and the same
optimization options for both compilations. See details about the file naming
in -fprofile-arcs.

With -fbranch-probabilities, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in reorg.cc, instead of guessing
which path a branch is most likely to take, the ‘REG_BR_PROB’ values are used
to exactly determine which path is taken more often.

Enabled by -fprofile-use and -fauto-profile.
-fprofile-values

If combined with -fprofile-arcs, it adds code so that some data about values
of expressions in the program is gathered.

With -fbranch-probabilities, it reads back the data gathered from profiling
values of expressions for usage in optimizations.

240

Using the GNU Compiler Collection (GCC)

Enabled by -fprofile-generate, -fprofile-use, and -fauto-profile.

-fprofile-reorder-functions

-fvpt

Function reordering based on profile instrumentation collects first time of ex-
ecution of a function and orders these functions in ascending order, aiming to
optimize program startup through more efficient loading of text segments.

Enabled with -fprofile-use.
If combined with -fprofile-arcs, this option instructs the compiler to add
code to gather information about values of expressions.

With -fbranch-probabilities, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operations using the knowledge about the value of the
denominator.

Enabled with -fprofile-use and -fauto-profile.

-frename-registers

Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization most benefits processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables no longer
stay in a “home register”.

Enabled by default with -funroll-loops.

—-fschedule-fusion

Performs a target dependent pass over the instruction stream to schedule in-
structions of same type together because target machine can execute them more
efficiently if they are adjacent to each other in the instruction flow.

Enabled at levels -02, -03, -0Os.

—-fdep-fusion

—-ftracer

Detect macro-op fusible pairs consisting of single-use instructions and their
uses, and place such pairs together in the instruction stream to increase fusion
opportunities in hardware. This pass is executed once before register allocation,
and another time before register renaming.

Enabled at levels -02, -03, -0Os.

Perform tail duplication to enlarge superblock size. This transformation simpli-
fies the control flow of the function allowing other optimizations to do a better
job.

Enabled by -fprofile-use and -fauto-profile.

-funroll-loops

Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. -funroll-loops implies -frerun-cse-after-loop,
-fweb and -frename-registers. It also turns on complete loop peeling (i.e.
complete removal of loops with a small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled by -fprofile-use and -fauto-profile.

Chapter 3: GCC Command Options 241

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. —funroll-all-loops
implies the same options as ~funroll-loops.

-fpeel-loops
Peels loops for which there is enough information that they do not roll much
(from profile feedback or static analysis). It also turns on complete loop peeling
(i.e. complete removal of loops with small constant number of iterations).

Enabled by -03, -fprofile-use, and -fauto-profile.

-fmalloc-dce
Control whether malloc (and its variants such as calloc or strdup), can be
optimized away provided its return value is only used as a parameter of free
call or compared with NULL. If -fmalloc-dce=1 is used, only calls to free are
allowed while with -fmalloc-dce=2 also comparisons with NULL pointer are
considered safe to remove.

The default is -fmalloc-dce=2. See also -fallocation-dce.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level -01 and higher, except for -Og.

-fmove-loop-stores
Enables the loop store motion pass in the GIMPLE loop optimizer. This moves
invariant stores to after the end of the loop in exchange for carrying the stored
value in a register across the iteration. Note for this option to have an effect
-ftree-loop-im has to be enabled as well. Enabled at level -01 and higher,
except for -Og.

-fsplit-loops
Split a loop into two if it contains a condition that’s always true for one side of
the iteration space and false for the other.

Enabled by -fprofile-use and -fauto-profile.

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

Enabled by -fprofile-use and -fauto-profile.

-fversion-loops—-for-strides
If a loop iterates over an array with a variable stride, create another version of
the loop that assumes the stride is always one. For example:
for (int i = 0; i < n; ++i)
x[i * stride] = ...;
becomes:

if (stride == 1)
for (int i = 0; i < n; ++i)
x[i] = ...;
else
for (int i = 0; i < n; ++i)

242

Using the GNU Compiler Collection (GCC)

x[i * stride] = ...;
This is particularly useful for assumed-shape arrays in Fortran where (for ex-
ample) it allows better vectorization assuming contiguous accesses. This flag is
enabled by default at -03. It is also enabled by -fprofile-use and -fauto-
profile.

—-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format have linkers with such optimizations. On AIX, the linker
rearranges sections (CSECTSs) based on the call graph. The performance impact
varies.

Together with a linker garbage collection (linker --gc-sections option) these
options may lead to smaller statically-linked executables (after stripping).

On ELF/DWARF systems these options do not degenerate the quality of the
debug information. There could be issues with other object files/debug info
formats.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker create larger object and
executable files and are also slower. These options affect code generation. They
prevent optimizations by the compiler and assembler using relative locations
inside a translation unit since the locations are unknown until link time. An
example of such an optimization is relaxing calls to short call instructions.

-fstdarg-opt

Optimize the prologue of variadic argument functions with respect to usage of
those arguments.

-fsection—anchors

Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.

For example, the implementation of the following function foo:

static int a, b, c;

int foo (void) { return a + b + ¢; }
usually calculates the addresses of all three variables, but if you compile it with
-fsection-anchors, it accesses the variables from a common anchor point
instead. The effect is similar to the following pseudocode (which isn’t valid C):

int foo (void)
{
register int *xr = &x;
return xr([&a - &x] + xr[&b - &x] + xr[&c - &x];

}
Not all targets support this option.

Chapter 3: GCC Command Options 243

-fzero-call-used-regs=choice
Zero call-used registers at function return to increase program security by ei-
ther mitigating Return-Oriented Programming (ROP) attacks or preventing
information leakage through registers.

The possible values of choice are the same as for the zero_call_used_regs
attribute (see Section 6.4.1 [Function Attributes|, page 629). The default is
‘skip’.

You can control this behavior for a specific function by using the function

attribute zero_call_used_regs (see Section 6.4.1 [Function Attributes],
page 629).

—--param name=value

—--param=name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC does not inline functions that contain
more than a certain number of instructions. You can control some of these
constants on the command line using the -—param option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In order to get the minimal, maximal and default values of a parameter, use
the --help=param -Q options.

In each case, the value is an integer. The following choices of name are recog-
nized for all targets:

auto-profile-bbs
If non-zero and used together with -fauto-profile, the auto-
profile will be used to determine basic block profile. If zero, then
only function level profile will be read.

phiopt-factor-max-stmts-live
When factoring statements out of if/then/else, this is the max # of
statements after the defining statement to be allow to extend the
lifetime of a name

predictable-branch-outcome
When branch is predicted to be taken with probability lower than
this threshold (in percent), then it is considered well predictable.

max-rtl-if-conversion-insns
RTL if-conversion tries to remove conditional branches around a
block and replace them with conditionally executed instructions.
This parameter gives the maximum number of instructions in a
block which should be considered for if-conversion. The compiler
will also use other heuristics to decide whether if-conversion is likely
to be profitable.

244 Using the GNU Compiler Collection (GCC)

file-cache-files
Max number of files in the file cache. The file cache is used to
print source lines in diagnostics and do some source checks like
-Wmisleading-indentation.

file-cache-lines
Max number of lines to index into file cache. When 0
this is automatically sized. The file cache is used to print
source lines in diagnostics and do some source checks like
-Wmisleading-indentation.

max-rtl-if-conversion-predictable-cost

RTL if-conversion will try to remove conditional branches around
a block and replace them with conditionally executed instructions.
These parameters give the maximum permissible cost for the
sequence that would be generated by if-conversion depending on
whether the branch is statically determined to be predictable or
not. The units for this parameter are the same as those for the
GCC internal seq_cost metric. The compiler will try to provide a
reasonable default for this parameter using the BRANCH_COST
target macro.

max-crossjump-edges
The maximum number of incoming edges to consider for cross-
jumping. The algorithm used by -fcrossjumping is O(N?) in the
number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compilation time increase
with probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions that must be matched at the
end of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored.

max—-delay-slot-insn-search
The maximum number of instructions to consider when looking for
an instruction to fill a delay slot. If more than this arbitrary number
of instructions are searched, the time savings from filling the delay

Chapter 3: GCC Command Options 245

slot are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with
probably small improvement in execution time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This pa-
rameter should be removed when the delay slot code is rewritten
to maintain the control-flow graph.

max-devirt-targets
This limits number of function a virtual call may be speculatively
devirtualized to using static analysis (without profile feedback).

max-gcse-memory
The approximate maximum amount of memory in kB that can be al-
located in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization is not done.

max-gcse-insertion-ratio
If the ratio of expression insertions to deletions is larger than this
value for any expression, then RTL PRE inserts or removes the
expression and thus leaves partially redundant computations in the
instruction stream.

max-pending-list-length
The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.

max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should
make when modulo scheduling a loop. Larger values can exponen-
tially increase compilation time.

max-inline-functions-called-once-loop-depth
Maximal loop depth of a call considered by inline heuristics that
tries to inline all functions called once.

max-inline-functions—-called-once-insns
Maximal estimated size of functions produced while inlining func-
tions called once.

max-inline-insns-single
Several parameters control the tree inliner used in GCC. This num-
ber sets the maximum number of instructions (counted in GCC’s
internal representation) in a single function that the tree inliner
considers for inlining. This only affects functions declared inline
and methods implemented in a class declaration (C++).

246

Using the GNU Compiler Collection (GCC)

max-inline-insns-auto
When you use -finline-functions (included in -03), a lot of
functions that would otherwise not be considered for inlining by
the compiler are investigated. To those functions, a different (more
restrictive) limit compared to functions declared inline can be ap-
plied (--param max-inline-insns-auto).

max-inline-insns-small
This is the bound applied to calls that are considered relevant with
-finline-small-functions.

max-inline-insns-size
This is the bound applied to calls that are optimized for size. Small
growth may be desirable to anticipate optimization opportunities
exposed by inlining.

uninlined-function-insns
Number of instructions accounted by inliner for function overhead
such as function prologue and epilogue.

uninlined-function-time
Extra time accounted by inliner for function overhead such as time
needed to execute function prologue and epilogue.

inline-heuristics-hint-percent
The scale (in percents) applied to inline-insns-single,
inline-insns-single-02, inline-insns-auto when inline
heuristics hints that inlining is very profitable (will enable later
optimizations).

uninlined-thunk-insns

uninlined-thunk-time
Same as --param uninlined-function-insns and --param
uninlined-function-time but applied to function thunks.

inline-min-speedup
When estimated performance improvement of caller + callee run-
time exceeds this threshold (in percent), the function can be inlined
regardless of the limit on —-param max-inline-insns-single and
—--param max-inline-insns-auto.

large-function-insns
The limit specifying really large functions. For functions larger
than this limit after inlining, inlining is constrained by --param
large-function-growth. This parameter is useful primarily to

avoid extreme compilation time caused by non-linear algorithms
used by the back end.

large-function-growth
Specifies maximal growth of large functions caused by inlining in
percents. For example, parameter value 100 limits large function
growth to 2.0 times the original size.

Chapter 3: GCC Command Options 247

large-unit-insns

The limit specifying large translation unit. Growth caused by in-
lining of units larger than this limit is limited by --param inline-
unit-growth. For small units this might be too tight. For example,
consider a unit consisting of function A that is inline and B that
just calls A three times. If B is small relative to A, the growth of
unit is 300\% and yet such inlining is very sane. For very large
units consisting of small inlineable functions, however, the overall
unit growth limit is needed to avoid exponential explosion of code
size. Thus for smaller units, the size is increased to -—param large-
unit-insns before applying --param inline-unit-growth.

lazy-modules
Maximum number of concurrently open C++ module files when lazy
loading.

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. For example, parameter value 20 limits unit growth to 1.2
times the original size. Cold functions (either marked cold via an
attribute or by profile feedback) are not accounted into the unit
size.

ipa-cp-unit-growth
Specifies maximal overall growth of the compilation unit caused
by interprocedural constant propagation. For example, parameter
value 10 limits unit growth to 1.1 times the original size.

ipa-cp-large-unit-insns
The size of translation unit that IPA-CP pass considers large.

large-stack-frame
The limit specifying large stack frames. While inlining the algo-
rithm is trying to not grow past this limit too much.

large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining
in percents. For example, parameter value 1000 limits large stack
frame growth to 11 times the original size.

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies the maximum number of instructions an out-of-line copy of
a self-recursive inline function can grow into by performing recursive
inlining.
--param max-inline-insns-recursive applies to functions
declared inline. For functions not declared inline, recursive inlining
happens only when -finline-functions (included in -03) is
enabled; --param max-inline-insns-recursive-auto applies
instead.

248 Using the GNU Compiler Collection (GCC)

max-inline-recursive-depth

max-inline-recursive-depth-auto
Specifies the maximum recursion depth used for recursive inlining.
--param max-inline-recursive-depth applies to functions
declared inline. For functions not declared inline, recursive inlining
happens only when -finline-functions (included in -03) is
enabled; --param max-inline-recursive-depth-auto applies
instead.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.

When profile feedback is available (see ~fprofile-generate) the
actual recursion depth can be guessed from the probability that
function recurses via a given call expression. This parameter limits
inlining only to call expressions whose probability exceeds the given
threshold (in percents).
early-inlining-insns

Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.

max—-early-inliner-iterations
Limit of iterations of the early inliner. This basically bounds the
number of nested indirect calls the early inliner can resolve. Deeper
chains are still handled by late inlining.

comdat-sharing-probability
Probability (in percent) that C++ inline function with comdat vis-
ibility are shared across multiple compilation units.

modref-max-bases

modref-max-refs

modref-max-accesses
Specifies the maximal number of base pointers, references and ac-
cesses stored for a single function by mod/ref analysis.

modref-max-tests
Specifies the maxmal number of tests alias oracle can perform to dis-
ambiguate memory locations using the mod/ref information. This
parameter ought to be bigger than --param modref-max-bases
and --param modref-max-refs.

modref-max-depth
Specifies the maximum depth of DFS walk used by modref escape
analysis. Setting to 0 disables the analysis completely.

modref-max-escape-points
Specifies the maximum number of escape points tracked by modref
per SSA-name.

Chapter 3: GCC Command Options 249

modref-max-adjustments
Specifies the maximum number the access range is enlarged during
modref dataflow analysis.

profile-func-internal-id
A parameter to control whether to use function internal id in profile
database lookup. If the value is 0, the compiler uses an id that
is based on function assembler name and filename, which makes
old profile data more tolerant to source changes such as function
reordering etc.

min-vect-loop-bound
The minimum number of iterations under which loops are not vec-
torized when -ftree-vectorize is used. The number of iterations
after vectorization needs to be greater than the value specified by
this option to allow vectorization.

gcse-cost-distance-ratio
Scaling factor in calculation of maximum distance an expression can
be moved by GCSE optimizations. This is currently supported only
in the code hoisting pass. The bigger the ratio, the more aggres-
sive code hoisting is with simple expressions, i.e., the expressions
that have cost less than gcse-unrestricted-cost. Specifying 0
disables hoisting of simple expressions.

gcse-unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain the dis-
tance an expression can travel. This is currently supported only
in the code hoisting pass. The lesser the cost, the more aggres-
sive code hoisting is. Specifying 0 allows all expressions to travel
unrestricted distances.

max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm. The
value of 0 does not limit on the search, but may slow down compi-
lation of huge functions.

max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This
is used to avoid quadratic behavior in tree tail merging.

max-tail-merge-iterations
The maximum amount of iterations of the pass over the function.
This is used to limit compilation time in tree tail merging.

store-merging-allow-unaligned
Allow the store merging pass to introduce unaligned stores if it is
legal to do so.

250

Using the GNU Compiler Collection (GCC)

max-stores-to-merge
The maximum number of stores to attempt to merge into wider
stores in the store merging pass.

max-store-chains-to-track
The maximum number of store chains to track at the same time in
the attempt to merge them into wider stores in the store merging
pass.

max-stores-to-track
The maximum number of stores to track at the same time in the
attemt to to merge them into wider stores in the store merging
pass.

max-unrolled-insns
The maximum number of instructions that a loop may have to be
unrolled. If a loop is unrolled, this parameter also determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop may have to be unrolled. If a loop is
unrolled, this parameter also determines how many times the loop
code is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop may have to be
peeled. If a loop is peeled, this parameter also determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-peel-branches
The maximum number of branches on the hot path through the
peeled sequence.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-depth
The maximum depth of a loop nest to be unswitched.

Chapter 3: GCC Command Options 251

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

min-loop-cond-split-prob
When FDO profile information is available, min-loop-cond-
split-prob specifies minimum threshold for probability of
semi-invariant condition statement to trigger loop split.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables, below
which all candidates are considered for each use in induction
variable optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time
complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always-prune-cand-set-bound
If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set when adding a
new one.

avg-loop-niter
Average number of iterations of a loop.

dse-max-object-size
Maximum size (in bytes) of objects tracked bytewise by dead store
elimination. Larger values may result in larger compilation times.

dse-max-alias-queries-per-store
Maximum number of queries into the alias oracle per store. Larger
values result in larger compilation times and may result in more
removed dead stores.

scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

scev-max-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions
analyzer. Complex expressions slow the analyzer.

max-tree-if-conversion-phi-args
Maximum number of arguments in a PHI supported by TREE if
conversion unless the loop is marked with simd pragma.

vect-max-layout-candidates
The maximum number of possible vector layouts (such as permu-
tations) to consider when optimizing to-be-vectorized code.

252

Using the GNU Compiler Collection (GCC)

vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alignment in the vectorizer.

vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alias in the vectorizer.

vect-max-peeling-for-alignment
The maximum number of loop peels to enhance access alignment
for vectorizer. Value -1 means no limit.

max-iterations-to-track
The maximum number of iterations of a loop the brute-force algo-
rithm for analysis of the number of iterations of the loop tries to
evaluate.

hot-bb-count-fraction
The denominator n of fraction 1/n of the maximal execution count
of a basic block in the entire program that a basic block needs to
at least have in order to be considered hot. The default is 10000,
which means that a basic block is considered hot if its execution
count is greater than 1/10000 of the maximal execution count. 0
means that it is never considered hot. Used in non-LTO mode.

hot-bb-count-ws-permille

The number of most executed permilles, ranging from 0 to 1000, of
the profiled execution of the entire program to which the execution
count of a basic block must be part of in order to be considered hot.
The default is 990, which means that a basic block is considered
hot if its execution count contributes to the upper 990 permilles,
or 99.0%, of the profiled execution of the entire program. 0 means
that it is never considered hot. Used in LTO mode.

hot-bb-frequency-fraction
The denominator n of fraction 1/n of the execution frequency of the
entry block of a function that a basic block of this function needs
to at least have in order to be considered hot. The default is 1000,
which means that a basic block is considered hot in a function if
it is executed more frequently than 1/1000 of the frequency of the
entry block of the function. 0 means that it is never considered hot.

unlikely-bb-count-fraction

The denominator n of fraction 1/n of the number of profiled runs
of the entire program below which the execution count of a basic
block must be in order for the basic block to be considered unlikely
executed. The default is 20, which means that a basic block is
considered unlikely executed if it is executed in fewer than 1/20, or
5%, of the runs of the program. 0 means that it is always considered
unlikely executed.

Chapter 3: GCC Command Options 253

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where a function contains a single loop with known
bound and another loop with unknown bound. The known number
of iterations is predicted correctly, while the unknown number of
iterations average to roughly 10. This means that the loop without
bounds appears artificially cold relative to the other one.

builtin-expect-probability
Control the probability of the expression having the specified value.
This parameter takes a percentage (i.e. 0 ... 100) as input.

builtin-string-cmp-inline-length
The maximum length of a constant string for a builtin string cmp
call eligible for inlining.

align-threshold
Select fraction of the maximal frequency of executions of a basic
block in a function to align the basic block.

align-loop-iterations
A loop expected to iterate at least the selected number of iterations
is aligned.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.

The tracer-dynamic-coverage-feedback parameter is used only
when profile feedback is available. The real profiles (as opposed
to statically estimated ones) are much less balanced allowing the
threshold to be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is a rather artificial limit, as most of the duplicates are
eliminated later in cross jumping, so it may be set to much higher
values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

tracer-min-branch-probability
tracer-min-branch-probability-feedback
Stop forward growth if the best edge has probability lower than
this threshold.

Similarly to tracer-dynamic-coverage two parameters are
provided. tracer-min-branch-probability-feedback is used

254 Using the GNU Compiler Collection (GCC)

for compilation with profile feedback and tracer-min-branch-
probability compilation without. The value for compilation with
profile feedback needs to be more conservative (higher) in order to
make tracer effective.

stack-clash-protection-guard-size
Specify the size of the operating system provided stack guard as 2
raised to num bytes. Higher values may reduce the number of ex-
plicit probes, but a value larger than the operating system provided
guard will leave code vulnerable to stack clash style attacks.

stack-clash-protection-probe-interval
Stack clash protection involves probing stack space as it is allocated.
This param controls the maximum distance between probes into
the stack as 2 raised to num bytes. Higher values may reduce the
number of explicit probes, but a value larger than the operating
system provided guard will leave code vulnerable to stack clash
style attacks.

max-cse-path-length
The maximum number of basic blocks on path that CSE considers.

max-cse-insns
The maximum number of instructions CSE processes before flush-
ing.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of “RAM?” is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ggc-min-heapsize to zero causes a full collection to occur at
every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins both-
ering to collect garbage. The first collection occurs after the heap
expands by ggc-min-expand% beyond ggc-min-heapsize. Again,
tuning this may improve compilation speed, and has no effect on
code generation.
The default is the smaller of RAM/8, RLIMIT_RSS, or a limit

that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and

Chapter 3: GCC Command Options 255

an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ggc-min-expand to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-
timization, making the compilation time increase with probably
slightly better performance.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compilation time increase with probably slightly better
performance.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling.

max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling.

max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler.

min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
A value of 0 disables region extensions.

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion.

256

Using the GNU Compiler Collection (GCC)

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insns are scheduled.

sched-state-edge-prob-cutoff
The minimum probability an edge must have for the scheduler to
save its state across it.

sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting
same memory locations.

selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling.
It is a depth of search for available instructions.

selsched-max-sched-times
The maximum number of times that an instruction is scheduled
during selective scheduling. This is the limit on the number of
iterations through which the instruction may be pipelined.

selsched-insns-to-rename
The maximum number of best instructions in the ready list that
are considered for renaming in the selective scheduler.

sms-min-sc
The minimum value of stage count that swing modulo scheduler
generates.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register.

max—-combine-insns
The maximum number of instructions the RTL combiner tries to
combine.

max-combine-search-insns
The maximum number of instructions that the RTL combiner
searches in order to find the next use of a given register definition.
If this limit is reached without finding such a use, the combiner
will stop trying to optimize the definition.

Currently this limit only applies after certain successful combina-

tion attempts, but it could be extended to other cases in future.
integer-share-limit

Small integer constants can use a shared data structure, reducing

the compiler’s memory usage and increasing its speed. This sets

the maximum value of a shared integer constant.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that receive stack smash-
ing protection when -fstack-protector is used.

Chapter 3: GCC Command Options 257

min-size-for-stack-sharing
The minimum size of variables taking part in stack slot sharing
when not optimizing.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-jump-thread-paths
The maximum number of paths to consider when searching for jump
threading opportunities. When arriving at a block, incoming edges
are only considered if the number of paths to be searched so far
multiplied by the number of incoming edges does not exhaust the
specified maximum number of paths to consider.

max-fields-for-field-sensitive
Maximum number of fields in a structure treated in a field sensitive
manner during pointer analysis.

prefetch-latency
Estimate on average number of instructions that are executed be-
fore prefetch finishes. The distance prefetched ahead is propor-
tional to this constant. Increasing this number may also lead to
less streams being prefetched (see simultaneous-prefetches).

simultaneous-prefetches
Maximum number of prefetches that can run at the same time.

ll1-cache-line-size
The size of cache line in L1 data cache, in bytes.

ll-cache-size
The size of L1 data cache, in kilobytes.

12-cache-size
The size of L2 data cache, in kilobytes.

prefetch-dynamic-strides
Whether the loop array prefetch pass should issue software prefetch
hints for strides that are non-constant. In some cases this may be
beneficial, though the fact the stride is non-constant may make it
hard to predict when there is clear benefit to issuing these hints.

Set to 1 if the prefetch hints should be issued for non-
constant strides. Set to 0 if prefetch hints should be issued
only for strides that are known to be constant and below
prefetch-minimum-stride.

prefetch-minimum-stride
Minimum constant stride, in bytes, to start using prefetch hints for.
If the stride is less than this threshold, prefetch hints will not be
issued.

258

Using the GNU Compiler Collection (GCC)

This setting is useful for processors that have hardware prefetchers,
in which case there may be conflicts between the hardware prefetch-
ers and the software prefetchers. If the hardware prefetchers have a
maximum stride they can handle, it should be used here to improve
the use of software prefetchers.

A value of -1 means we don’t have a threshold and therefore prefetch
hints can be issued for any constant stride.

This setting is only useful for strides that are known and constant.

destructive-interference-size
constructive-interference-size

The values for the C++17 variables std: :hardware_destructive_
interference_size and std: :hardware_constructive_
interference_size. The destructive interference size is
the minimum recommended offset between two independent
concurrently-accessed objects; the constructive interference size is
the maximum recommended size of contiguous memory accessed
together. Typically both will be the size of an L1 cache line for
the target, in bytes. For a generic target covering a range of L1
cache line sizes, typically the constructive interference size will be
the small end of the range and the destructive size will be the
large end.

The destructive interference size is intended to be used for layout,
and thus has ABI impact. The default value is not expected to
be stable, and on some targets varies with -mtune, so use of this
variable in a context where ABI stability is important, such as the
public interface of a library, is strongly discouraged; if it is used in
that context, users can stabilize the value using this option.

The constructive interference size is less sensitive, as it is typically
only used in a ‘static_assert’ to make sure that a type fits within
a cache line.

See also -Winterference-size.

loop-interchange-max—num-stmts

The maximum number of stmts in a loop to be interchanged.

loop-interchange-stride-ratio

The minimum ratio between stride of two loops for interchange to
be profitable.

min-insn-to-prefetch-ratio

The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.

prefetch-min-insn-to-mem-ratio

The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.

Chapter 3: GCC Command Options 259

use-canonical-types
Whether the compiler should use the “canonical” type system.
Should always be 1, which uses a more efficient internal mecha-
nism for comparing types in C++ and Objective-C++. However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.

switch-conversion-max-branch-ratio
Switch initialization conversion refuses to create arrays that are big-
ger than switch-conversion-max-branch-ratio times the num-
ber of branches in the switch.

max-partial-antic-length

Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (-ftree-pre) when
optimizing at -03 and above. For some sorts of source code the en-
hanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for this
parameter allows an unlimited set length.

rpo-vn-max-loop-depth
Maximum loop depth that is value-numbered optimistically. When
the limit hits the innermost rpo-vn-max-loop-depth loops and the
outermost loop in the loop nest are value-numbered optimistically
and the remaining ones not.

sccvn-max-alias-queries-per-access
Maximum number of alias-oracle queries we perform when looking
for redundancies for loads and stores. If this limit is hit the search
is aborted and the load or store is not considered redundant. The
number of queries is algorithmically limited to the number of stores
on all paths from the load to the function entry.

ira-max-loops—num
TIRA uses regional register allocation by default. If a function con-
tains more loops than the number given by this parameter, only at
most the given number of the most frequently-executed loops form
regions for regional register allocation.

ira-max-conflict-table-size
Although IRA uses a sophisticated algorithm to compress the con-
flict table, the table can still require excessive amounts of memory
for huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register alloca-
tor instead uses a faster, simpler, and lower-quality algorithm that
does not require building a pseudo-register conflict table.

260 Using the GNU Compiler Collection (GCC)

ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in
loops for decisions to move loop invariants (see -03). The number
of available registers reserved for some other purposes is given by
this parameter. Default of the parameter is the best found from
numerous experiments.

ira-consider—-dup-in-all-alts

Make IRA to consider matching constraint (duplicated operand
number) heavily in all available alternatives for preferred register
class. If it is set as zero, it means IRA only respects the match-
ing constraint when it’s in the only available alternative with an
appropriate register class. Otherwise, it means IRA will check all
available alternatives for preferred register class even if it has found
some choice with an appropriate register class and respect the found
qualified matching constraint.

ira-simple-lra-insn-threshold
Approximate function insn number in 1K units triggering simple
local RA.

lra-inheritance-ebb-probability-cutoff
LRA tries to reuse values reloaded in registers in subsequent in-
sns. This optimization is called inheritance. EBB is used as a
region to do this optimization. The parameter defines a minimal
fall-through edge probability in percentage used to add BB to inher-
itance EBB in LRA. The default value was chosen from numerous
runs of SPEC2000 on x86-64.

loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation
time and in amount of needed compile-time memory, with very
large loops. Loops with more basic blocks than this parameter
won’t have loop invariant motion optimization performed on them.

loop-max-datarefs-for-datadeps
Building data dependencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies.

max-vartrack-size

Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.

Chapter 3: GCC Command Options 261

max-vartrack-expr—depth

Sets a maximum number of recursion levels when attempting to
map variable names or debug temporaries to value expressions.
This trades compilation time for more complete debug information.
If this is set too low, value expressions that are available and could
be represented in debug information may end up not being used;
setting this higher may enable the compiler to find more complex
debug expressions, but compile time and memory use may grow.

max-debug-marker-count
Sets a threshold on the number of debug markers (e.g. begin stmt
markers) to avoid complexity explosion at inlining or expanding to
RTL. If a function has more such gimple stmts than the set limit,
such stmts will be dropped from the inlined copy of a function, and
from its RTL expansion.

min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range
below the parameter is reserved exclusively for debug insns created
by -fvar-tracking-assignments, but debug insns may get (non-
overlapping) uids above it if the reserved range is exhausted.

ipa-sra-deref-prob-threshold
IPA-SRA replaces a pointer which is known not be NULL with
one or more new parameters only when the probability (in percent,
relative to function entry) of it being dereferenced is higher than
this parameter.

ipa-sra-ptr-growth-factor
IPA-SRA replaces a pointer to an aggregate with one or more new
parameters only when their cumulative size is less or equal to ipa-
sra-ptr-growth-factor times the size of the original pointer pa-
rameter.

ipa-sra-ptrwrap-growth-factor
Additional maximum allowed growth of total size of new parameters
that ipa-sra replaces a pointer to an aggregate with, if it points to
a local variable that the caller only writes to and passes it as an
argument to other functions.

ipa-sra-max-replacements
Maximum pieces of an aggregate that IPA-SRA tracks. As a conse-
quence, it is also the maximum number of replacements of a formal
parameter.

sra-max-scalarization-size-Ospeed
sra-max-scalarization-size-0Osize
The two Scalar Reduction of Aggregates passes (SRA and IPA-
SRA) aim to replace scalar parts of aggregates with uses of in-
dependent scalar variables. These parameters control the maxi-
mum size, in storage units, of aggregate which is considered for

262

Using the GNU Compiler Collection (GCC)

replacement when compiling for speed (sra-max-scalarization-
size-Ospeed) or size (sra-max-scalarization-size-Osize) re-
spectively.

sra-max-propagations
The maximum number of artificial accesses that Scalar Replace-
ment of Aggregates (SRA) will track, per one local variable, in
order to facilitate copy propagation.

tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are saved
with the logging functions as opposed to save/restore code sequence
pairs. This option only applies when using -fgnu-tm.

graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.
A value of zero can be used to lift the bound. A variable whose
value is unknown at compilation time and defined outside a SCoP
is a parameter of the SCoP.

hardcfr-max-blocks
Disable -fharden-control-flow-redundancy for functions with a
larger number of blocks than the specified value. Zero removes any
limit.

hardcfr-max-inline-blocks
Force -fharden-control-flow-redundancy to use out-of-line
checking for functions with a larger number of basic blocks than
the specified value.

loop-block-tile-size
Loop blocking or strip mining transforms, enabled with -floop-
block or ~-floop-strip-mine, strip mine each loop in the loop nest
by a given number of iterations. The strip length can be changed
using the loop-block-tile-size parameter.

ipa-jump-function-lookups
Specifies number of statements visited during jump function offset
discovery.

ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a
function’s parameter in order to propagate them and perform de-
virtualization. ipa-cp-value-list-size is the maximum number
of values and types it stores per one formal parameter of a function.

ipa-cp-eval-threshold
IPA-CP calculates its own score of cloning profitability heuristics
and performs those cloning opportunities with scores that exceed
ipa-cp-eval-threshold.

Chapter 3: GCC Command Options 263

ipa-cp-max-recursive-depth
Maximum depth of recursive cloning for self-recursive function.

ipa-cp-min-recursive-probability
Recursive cloning only when the probability of call being executed
exceeds the parameter.

ipa-cp-recursive-freq-factor
The number of times interprocedural copy propagation expects re-
cursive functions to call themselves.

ipa-cp-recursion-penalty
Percentage penalty the recursive functions will receive when they
are evaluated for cloning.

ipa-cp-single-call-penalty
Percentage penalty functions containing a single call to another
function will receive when they are evaluated for cloning.

ipa-cp-sweeps
The number of times the interprocedural constant propagation will
traverse all functions to make cloning decisions.

ipa-max-agg-items
IPA-CP is also capable to propagate a number of scalar values
passed in an aggregate. ipa-max-agg-items controls the maximum
number of such values per one parameter.

ipa-cp-loop-hint-bonus
When IPA-CP determines that a cloning candidate would make the
number of iterations of a loop known, it adds a bonus of ipa-cp-
loop-hint-bonus to the profitability score of the candidate.

ipa-max-loop-predicates
The maximum number of different predicates IPA will use to de-
scribe when loops in a function have known properties.

ipa-max-aa-steps
During its analysis of function bodies, IPA-CP employs alias anal-
ysis in order to track values pointed to by function parameters. In
order not spend too much time analyzing huge functions, it gives
up and consider all memory clobbered after examining ipa-max-
aa-steps statements modifying memory.

ipa-max-switch-predicate-bounds
Maximal number of boundary endpoints of case ranges of switch
statement. For switch exceeding this limit, IPA-CP will not con-
struct cloning cost predicate, which is used to estimate cloning
benefit, for default case of the switch statement.

ipa-max-param-expr-ops
IPA-CP will analyze conditional statement that references some
function parameter to estimate benefit for cloning upon certain

264

Using the GNU Compiler Collection (GCC)

constant value. But if number of operations in a parameter expres-
sion exceeds ipa-max-param-expr-ops, the expression is treated
as complicated one, and is not handled by IPA analysis.

lto-partitions
Specify desired number of partitions produced during WHOPR
compilation. The number of partitions should exceed the number
of CPUs used for compilation.

lto-min-partition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too
many partitions.

lto-max-partition
Size of max partition for WHOPR (in estimated instructions). to
provide an upper bound for individual size of partition. Meant to
be used only with balanced partitioning.

lto-partition-locality-frequency-cutoff
The denominator n of fraction 1/n of the execution frequency of
callee to be cloned for a particular caller. Special value of 0 dictates
to always clone without a cut-off.

lto-partition-locality-size-cutoff
Size cut-off for callee including inlined calls to be cloned for a par-
ticular caller.

lto-max-locality-partition
Maximal size of a locality partition for LTO (in estimated instruc-
tions). Value of 0 results in default value being used.

lto-max-streaming-parallelism
Maximal number of parallel processes used for LTO streaming.

cxx-max-namespaces-for-diagnostic-help
The maximum number of namespaces to consult for suggestions
when C++ name lookup fails for an identifier.

sink-frequency-threshold
The maximum relative execution frequency (in percents) of the tar-
get block relative to a statement’s original block to allow statement
sinking of a statement. Larger numbers result in more aggressive
statement sinking. A small positive adjustment is applied for state-
ments with memory operands as those are even more profitable so
sink.

max-stores-to-sink
The maximum number of conditional store pairs that can be sunk.
Set to 0 if either vectorization (-ftree-vectorize) or if-conversion
(-ftree-loop-if-convert) is disabled.

Chapter 3: GCC Command Options 265

case-values—-threshold
The smallest number of different values for which it is best to use
a jump-table instead of a tree of conditional branches. If the value
is 0, use the default for the machine.

jump-table-max-growth-ratio-for-size
The maximum code size growth ratio when expanding into a jump
table (in percent). The parameter is used when optimizing for size.

jump-table-max-growth-ratio-for-speed
The maximum code size growth ratio when expanding into a jump
table (in percent). The parameter is used when optimizing for
speed.

tree-reassoc-width
Set the maximum number of instructions executed in parallel in re-
associated tree. This parameter overrides target dependent heuris-
tics used by default if has non zero value.

sched-pressure-algorithm

Choose between the two available implementations of -fsched-
pressure. Algorithm 1 is the original implementation and is the
more likely to prevent instructions from being reordered. Algorithm
2 was designed to be a compromise between the relatively conser-
vative approach taken by algorithm 1 and the rather aggressive
approach taken by the default scheduler. It relies more heavily on
having a regular register file and accurate register pressure classes.
See haifa-sched.cc in the GCC sources for more details.

The default choice depends on the target.

max-slsr-cand-scan
Set the maximum number of existing candidates that are consid-
ered when seeking a basis for a new straight-line strength reduction
candidate.

asan-globals
Enable buffer overflow detection for global objects. This
kind of protection is enabled by default if you are using
-fsanitize=address option. To disable global objects protection
use ——param asan-globals=0.

asan-stack
Enable buffer overflow detection for stack objects. This kind of
protection is enabled by default when using -fsanitize=address.
To disable stack protection use ——param asan-stack=0 option.

asan-instrument-reads
Enable buffer overflow detection for memory reads. This
kind of protection is enabled by default when using
-fsanitize=address. To disable memory reads protection use
—--param asan-instrument-reads=0.

266

Using the GNU Compiler Collection (GCC)

asan-instrument-writes
Enable buffer overflow detection for memory writes. This
kind of protection 1is enabled by default when using
-fsanitize=address. To disable memory writes protection use
—--param asan-instrument-writes=0 option.

asan-memintrin
Enable detection for built-in functions. This kind of protection is
enabled by default when using -fsanitize=address. To disable
built-in functions protection use --param asan-memintrin=0.

asan-use-after-return
Enable detection of use-after-return. This kind of protection is
enabled by default when using the -fsanitize=address option.
To disable it use --param asan-use-after-return=0.

Note: By default the check is disabled at run time. To enable it, add
detect_stack_use_after_return=1 to the environment variable
ASAN_OPTIONS.

asan-instrumentation-with-call-threshold
If number of memory accesses in function being instrumented
is greater or equal to this number, use callbacks instead
of inline checks. E.g. to disable inline code use --param
asan-instrumentation-with-call-threshold=0.

asan-kernel-mem-intrinsic-prefix
If nonzero, prefix calls to memcpy, memset and memmove with
‘__asan_’ or ‘__hwasan_’ for -fsanitize=kernel-address or
‘~fsanitize=kernel-hwaddress’, respectively.

hwasan-instrument-stack
Enable hwasan instrumentation of statically sized stack-allocated
variables. This kind of instrumentation is enabled by default when
using -fsanitize=hwaddress and disabled by default when using
-fsanitize=kernel-hwaddress. To disable stack instrumentation
use --param hwasan-instrument-stack=0, and to enable it use
--param hwasan-instrument-stack=1.

hwasan-random-frame-tag

When using stack instrumentation, decide tags for stack variables
using a deterministic sequence beginning at a random tag for
each frame. With this parameter unset tags are chosen using
the same sequence but beginning from 1. This is enabled
by default for -fsanitize=hwaddress and unavailable for
-fsanitize=kernel-hwaddress and -fsanitize=memtag-stack.
To disable it use —-param hwasan-random-frame-tag=0.

hwasan-instrument-allocas
Enable hwasan instrumentation of dynamically sized stack-
allocated variables. This kind of instrumentation is enabled
by default when wusing -fsanitize=hwaddress and disabled

Chapter 3: GCC Command Options 267

by default when wusing -fsanitize=kernel-hwaddress.
To disable instrumentation of such variables use --param
hwasan-instrument-allocas=0, and to enable it use --param
hwasan-instrument-allocas=1.

hwasan-instrument-reads
Enable hwasan checks on memory reads. Instrumentation of
reads is enabled by default for both -fsanitize=hwaddress and
-fsanitize=kernel-hwaddress. To disable checking memory
reads use ——param hwasan-instrument-reads=0.

hwasan-instrument-writes
Enable hwasan checks on memory writes. Instrumentation of
writes is enabled by default for both -fsanitize=hwaddress and
-fsanitize=kernel-hwaddress. To disable checking memory
writes use ——param hwasan-instrument-writes=0.

hwasan-instrument-mem-intrinsics
Enable hwasan instrumentation of builtin functions. Instrumen-
tation of these builtin functions is enabled by default for both
-fsanitize=hwaddress and -fsanitize=kernel-hwaddress. To
disable instrumentation of builtin functions use --param hwasan-
instrument-mem-intrinsics=0.

memtag-instrument-allocas
Enable hardware-assisted memory tagging of dynamically sized
stack-allocated variables. This kind of code generation is enabled
by default when using -fsanitize=memtag-stack.

memtag-instrument-mem-intrinsics
When sanitizing using MTE instructions, include builtin functions.

use-after-scope-direct-emission-threshold
If the size of a local variable in bytes is smaller or equal to this
number, directly poison (or unpoison) shadow memory instead of
using run-time callbacks.

tsan-distinguish-volatile
Emit special instrumentation for accesses to volatiles.

tsan-instrument-func-entry-exit
Emit instrumentation calls to __tsan_func_entry() and
__tsan_func_exit().

max-fsm-thread-path-insns
Maximum number of instructions to copy when duplicating blocks
on a finite state automaton jump thread path.

threader-debug
threader-debug=[nonelall] Enables verbose dumping of the
threader solver.

parloops-chunk-size
Chunk size of omp schedule for loops parallelized by parloops.

268

Using the GNU Compiler Collection (GCC)

parloops—-schedule
Schedule type of omp schedule for loops parallelized by parloops
(static, dynamic, guided, auto, runtime).

parloops-min-per-thread
The minimum number of iterations per thread of an innermost
parallelized loop for which the parallelized variant is preferred over
the single threaded one. Note that for a parallelized loop nest the
minimum number of iterations of the outermost loop per thread is
two.

max-ssa-name—query-depth
Maximum depth of recursion when querying properties of SSA
names in things like fold routines. One level of recursion corre-
sponds to following a use-def chain.

max—-speculative-devirt-maydefs
The maximum number of may-defs we analyze when looking for a
must-def specifying the dynamic type of an object that invokes a
virtual call we may be able to devirtualize speculatively.

ranger—debug
Specifies the type of debug output to be issued for ranges.

unroll-jam-min-percent
The minimum percentage of memory references that must be opti-
mized away for the unroll-and-jam transformation to be considered
profitable.

unroll-jam-max-unroll
The maximum number of times the outer loop should be unrolled
by the unroll-and-jam transformation.

max-rtl-if-conversion-unpredictable-cost
Maximum permissible cost for the sequence that would be gener-
ated by the RTL if-conversion pass for a branch that is considered
unpredictable.

max-variable-expansions-in-unroller
If -fvariable-expansion-in-unroller is used, the maximum
number of times that an individual variable will be expanded
during loop unrolling.

partial-inlining-entry-probability
Maximum probability of the entry BB of split region (in percent
relative to entry BB of the function) to make partial inlining hap-
pen.

max-tracked-strlens
Maximum number of strings for which strlen optimization pass will
track string lengths.

Chapter 3: GCC Command Options 269

gcse-after-reload-partial-fraction
The threshold ratio for performing partial redundancy elimination
after reload.

gcse—after-reload-critical-fraction
The threshold ratio of critical edges execution count that permit
performing redundancy elimination after reload.

max-loop-header-insns
The maximum number of insns in loop header duplicated by the
copy loop headers pass.

vect-epilogues—nomask
Enable loop epilogue vectorization using smaller vector size.

vect-partial-vector-usage

Controls when the loop vectorizer considers using partial vector
loads and stores as an alternative to falling back to scalar code. 0
stops the vectorizer from ever using partial vector loads and stores.
1 allows partial vector loads and stores if vectorization removes
the need for the code to iterate. 2 allows partial vector loads and
stores in all loops. The parameter only has an effect on targets that
support partial vector loads and stores.

vect-inner-loop-cost-factor
The maximum factor which the loop vectorizer applies to the cost
of statements in an inner loop relative to the loop being vectorized.
The factor applied is the maximum of the estimated number of
iterations of the inner loop and this parameter. The default value
of this parameter is 50.

vect-induction-float
Enable loop vectorization of floating point inductions.

vect-scalar-cost-multiplier
Apply the given multiplier % to scalar loop costing during vector-
ization. Increasing the cost multiplier will make vector loops more
profitable.

vrp-block-1limit
Maximum number of basic blocks before VRP switches to a lower
memory algorithm.

vrp-cstload-limit
Maximum number of steps when inferring a value range from a load
from a constant aggregate.

vrp-sparse-threshold
Maximum number of basic blocks before VRP uses a sparse bitmap
cache.

vrp-switch-limit
Maximum number of outgoing edges in a switch before VRP will
not process it.

270

Using the GNU Compiler Collection (GCC)

vrp-vector-threshold
Maximum number of basic blocks for VRP to use a basic cache
vector.

avoid-fma-max-bits
Maximum number of bits for which we avoid creating FMAs.

fully-pipelined-fma
Whether the target fully pipelines FMA instructions. If non-zero,
reassociation considers the benefit of parallelizing FMA’s multipli-
cation part and addition part, assuming FMUL and FMA use the
same units that can also do FADD.

sms—-loop-average—-count-threshold
A threshold on the average loop count considered by the swing
modulo scheduler.

sms—-dfa-history
The number of cycles the swing modulo scheduler considers when
checking conflicts using DFA.

graphite-allow-codegen-errors
Whether codegen errors should be ICEs when -fchecking.

sms-max-ii-factor
A factor for tuning the upper bound that swing modulo scheduler
uses for scheduling a loop.

lra-max-considered-reload-pseudos
The max number of reload pseudos which are considered during
spilling a non-reload pseudo.

lra-max-pseudos-points-log2-considered-for-preferences
The maximum log2(number of reload pseudos * number of
program points) threshold when preferences for other reload
pseudos are still considered. Taking these preferences into account
helps to improve register allocation. However, for very large
functions, a large value can result in significant compilation time
and memory consumption. The default value is 30.

max-pow-sqrt-depth
Maximum depth of sqrt chains to use when synthesizing exponen-
tiation by a real constant.

max-dse—-active-local-stores
Maximum number of active local stores in RTL dead store elimi-
nation.

asan-instrument-allocas
Enable asan allocas/VLAs protection.

max-iterations-computation-cost
Bound on the cost of an expression to compute the number of iter-
ations.

Chapter 3: GCC Command Options 271

max-isl-operations
Maximum number of isl operations, 0 means unlimited.

graphite-max-arrays—-per—scop
Maximum number of arrays per scop.

max-vartrack-reverse-op-size
Max. size of loc list for which reverse ops should be added.

fsm-scale-path-stmts
Scale factor to apply to the number of statements in a threading
path crossing a loop backedge when comparing to —-param=max-
jump-thread-duplication-stmts.

uninit-control-dep-attempts
Maximum number of nested calls to search for control dependencies
during uninitialized variable analysis.

uninit-max-chain-len
Maximum number of predicates anded for each predicate ored in
the normalized predicate chain.

uninit-max-num-chains
Maximum number of predicates ored in the normalized predicate
chain.

uninit-max-prune-work
Maximum amount of work done to prune paths where the variable
is always initialized.

sched-autopref-queue-depth
Hardware autoprefetcher scheduler model control flag. Number of
lookahead cycles the model looks into; at ’ ’ only enable instruction
sorting heuristic.

loop-versioning-max-inner-insns
The maximum number of instructions that an inner loop can have
before the loop versioning pass considers it too big to copy.

loop-versioning-max-outer-insns
The maximum number of instructions that an outer loop can have
before the loop versioning pass considers it too big to copy, dis-
counting any instructions in inner loops that directly benefit from
versioning.

ssa—name-def-chain-limit
The maximum number of SSA_NAME assignments to follow in
determining a property of a variable such as its value. This limits
the number of iterations or recursive calls GCC performs when
optimizing certain statements or when determining their validity
prior to issuing diagnostics.

store-merging-max-size
Maximum size of a single store merging region in bytes.

272

Using the GNU Compiler Collection (GCC)

store-forwarding-max-distance
Maximum number of instruction distance that a small store for-
warded to a larger load may stall. Value '0’ disables the cost checks
for the avoid-store-forwarding pass.

hash-table-verification-limit
The number of elements for which hash table verification is done
for each searched element.

max-find-base-term-values
Maximum number of VALUEs handled during a single
find_base_term call.

analyzer-max-enodes-per-program-point
The maximum number of exploded nodes per program point within
the analyzer, before terminating analysis of that point.

analyzer-max-constraints
The maximum number of constraints per state.

analyzer-min-snodes-for-call-summary
The minimum number of supernodes within a function for the an-
alyzer to consider summarizing its effects at call sites.

analyzer-max-enodes-for-full-dump
The maximum depth of exploded nodes that should appear in a
dot dump before switching to a less verbose format.

analyzer-max-recursion-depth
The maximum number of times a callsite can appear in a call stack
within the analyzer, before terminating analysis of a call that would
recurse deeper.

analyzer-max-svalue-depth
The maximum depth of a symbolic value, before approximating the
value as unknown.

analyzer-max-infeasible-edges
The maximum number of infeasible edges to reject before declaring
a diagnostic as infeasible.

gimple-fe-computed-hot-bb-threshold
The number of executions of a basic block which is considered hot.
The parameter is used only in GIMPLE FE.

analyzer-bb-explosion-factor
The maximum number of ’after supernode’ exploded nodes within
the analyzer per supernode, before terminating analysis.

analyzer-text-art-string-ellipsis-threshold
The number of bytes at which to ellipsize string literals in analyzer
text art diagrams.

Chapter 3: GCC Command Options 273

analyzer-text-art-ideal-canvas-width
The ideal width in characters of text art diagrams generated by the
analyzer.

analyzer-text-art-string-ellipsis-head-len
The number of literal bytes to show at the head of a string literal
in text art when ellipsizing it.

analyzer-text-art-string-ellipsis-tail-len
The number of literal bytes to show at the tail of a string literal in
text art when ellipsizing it.

ranger-logical-depth
Maximum depth of logical expression evaluation ranger will look
through when evaluating outgoing edge ranges.

ranger-recompute-depth
Maximum depth of instruction chains to consider for recomputation
in the outgoing range calculator.

relation-block-1limit
Maximum number of relations the oracle will register in a basic

block.

transitive-relations-work-bound
Work bound when discovering transitive relations from existing re-
lations.

min-pagesize
Minimum page size for warning and early break vectorization pur-
poses.

openacc-kernels

Specify mode of OpenACC ‘kernels’ constructs handling. With
--param=openacc-kernels=decompose, OpenACC ‘kernels’ con-
structs are decomposed into parts, a sequence of compute con-
structs, each then handled individually. This is work in progress.
With --param=openacc-kernels=parloops, OpenACC ‘kernels’
constructs are handled by the ‘parloops’ pass, en bloc. This is
the current default.

openacc-privatization
Control whether the -fopt-info-omp-note and applicable
-fdump-tree-*-details options emit OpenACC privatization
diagnostics. With --param=openacc-privatization=quiet,
don’t diagnose. This is the current default. With
--param=openacc-privatization=noisy, do diagnose.

cycle-accurate-model
Specifies whether GCC should assume that the scheduling descrip-
tion is mostly a cycle-accurate model of the target processor the
code is intended to run on, in the absence of cache misses. Nonzero

274

Using the GNU Compiler Collection (GCC)

means that the selected scheduling model is accurate and likely
describes an in-order processor, and that scheduling should aggres-
sively spill to try and fill any pipeline bubbles. This is the current
default. Zero means the scheduling description might not be avail-
able/accurate or perhaps not applicable at all, such as for modern
out-of-order processors.

The following choices of name are available on AArch64 targets:

aarch64-vect-compare-costs
When vectorizing, consider using multiple different approaches and
use the cost model to choose the cheapest one. This includes:

e Trying both SVE and Advanced SIMD, when SVE is available.

e Trying to use 64-bit Advanced SIMD vectors for the smallest
data elements, rather than using 128-bit vectors for everything.

e Trying to use “unpacked” SVE vectors for smaller elements.
This includes storing smaller elements in larger containers and
accessing elements with extending loads and truncating stores.

aarch64-float-recp-precision
The number of Newton iterations for calculating the reciprocal for
float type. The precision of division is proportional to this param
when division approximation is enabled. The default value is 1.

aarch64-double-recp-precision
The number of Newton iterations for calculating the reciprocal for
double type. The precision of division is proportional to this param
when division approximation is enabled. The default value is 2.

aarch64-autovec-preference
An old alias for -mautovec-preference. If both -mautovec-
preference and --param=aarch64-autovec-preference are
passed, the ——param value will be used.

aarch64-1dp-policy

Fine-grained policy for load pairs. With --param=aarch64-1dp-
policy=default, use the policy of the tuning structure. This is
the current default. With --param=aarch64-1dp-policy=always,
emit 1dp regardless of alignment. With --param=aarch64-1dp-
policy=never, do not emit ldp. With --param=aarch64-1dp-
policy=aligned, emit ldp only if the source pointer is aligned to
at least double the alignment of the type.

aarch64-stp-policy

Fine-grained policy for store pairs. With --param=aarch64-stp-
policy=default, use the policy of the tuning structure. This is
the current default. With --param=aarch64-stp-policy=always,
emit stp regardless of alignment. With --param=aarch64-stp-
policy=never, do not emit stp. With --param=aarch64-stp-
policy=aligned, emit stp only if the source pointer is aligned to
at least double the alignment of the type.

Chapter 3: GCC Command Options 275

aarch64-ldp-alias—-check-1limit
Limit on the number of alias checks performed by the AArch64
load/store pair fusion pass when attempting to form an ldp/stp.
Higher values make the pass more aggressive at re-ordering loads
over stores, at the expense of increased compile time.

aarch64-1ldp-writeback

Param to control which writeback opportunities we try to handle
in the AArch64 load/store pair fusion pass. A value of zero disables
writeback handling. One means we try to form pairs involving one
or more existing individual writeback accesses where possible. A
value of two means we also try to opportunistically form writeback
opportunities by folding in trailing destructive updates of the base
register used by a pair.

aarch64-loop-vect-issue-rate-niters
The tuning for some AArch64 CPUs tries to take both latencies
and issue rates into account when deciding whether a loop should
be vectorized using SVE, vectorized using Advanced SIMD, or not
vectorized at all. If this parameter is set to n, GCC will not use
this heuristic for loops that are known to execute in fewer than n
Advanced SIMD iterations.

aarch64-vect-unroll-limit
The vectorizer will use available tuning information to determine
whether it would be beneficial to unroll the main vectorized loop
and by how much. This parameter set’s the upper bound of how
much the vectorizer will unroll the main loop. The default value is
four.

aarch64-tag-memory-loop-threshold
Param to control the treshold in number of granules beyond which
an explicit loop for tagging a memory block is emitted. The memory
block is tagged using MTE instructions.

The following choices of name are available on GCN targets:

gen-preferred-vectorization-factor
Preferred vectorization factor: ‘default’, ‘32’, ‘64’.

The following choices of name are available on 1386 and x86_64 targets:

x86-stlf-window-ninsns
Instructions number above which STFL stall penalty can be com-
pensated.

x86-stv-max-visits
The maximum number of use and def visits when discovering a STV
chain before the discovery is aborted.

ix86-vect-unroll-limit
Limit how much the autovectorizer may unroll a loop.

276 Using the GNU Compiler Collection (GCC)

ix86-vect-compare-costs
Whether x86 vectorizer cost modeling compares costs of different
vector sizes.

3.13 Program Instrumentation Options

GCC supports a number of command-line options that control adding run-time instrumen-

tation to the code it normally generates. For example, one purpose of instrumentation is

collect profiling statistics for use in finding program hot spots, code coverage analysis, or

profile-guided optimizations. Another class of program instrumentation is adding run-time

checking to detect programming errors like invalid pointer dereferences or out-of-bounds

array accesses, as well as deliberately hostile attacks such as stack smashing or C++ vtable

hijacking. There is also a general hook which can be used to implement other forms of

tracing or function-level instrumentation for debug or program analysis purposes.

Y

--profile

-fprofile

-pg Generate extra code to write profile information suitable for the analysis pro-
gram prof (for -p, --profile, and -fprofile) or gprof (for -pg). You must
use this option when compiling the source files you want data about, and you
must also use it when linking.

You can use the function attribute no_instrument_function to suppress pro-
filing of individual functions when compiling with these options. See Sec-
tion 6.4.1.1 [Common Function Attributes], page 630.

-fprofile-arcs
Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. On targets that support constructors with
priority support, profiling properly handles constructors, destructors and C++
constructors (and destructors) of classes which are used as a type of a global
variable.

When the compiled program exits it saves this data to a file called
auxname.gcda for each source file. The data may be used for profile-directed
optimizations (-fbranch-probabilities), or for test coverage analysis
(-ftest-coverage). Each object file’s auxname is generated from the name
of the output file, if explicitly specified and it is not the final executable,
otherwise it is the basename of the source file. In both cases any suffix is
removed (e.g. foo.gcda for input file dir/foo.c, or dir/foo.gcda for output
file specified as -o dir/foo.0).

Note that if a command line directly links source files, the corresponding .gcda
files will be prefixed with the unsuffixed name of the output file. E.g. gcc a.c
b.c -o binary would generate binary-a.gcda and binary-b.gcda files.

-fcondition-coverage
Add code so that program conditions are instrumented. During execution the
program records what terms in a conditional contributes to a decision, which

Chapter 3: GCC Command Options 277

can be used to verify that all terms in a Boolean function are tested and have
an independent effect on the outcome of a decision. The result can be read with
gcov ——conditions.

-fpath-coverage

Add code so that the paths taken are tracked. During execution the program
records the prime paths taken. The number of paths grows very fast with
complexity, and to avoid exploding compile times GCC will give up instru-
mentation if the approximate number of paths exceeds the limit controlled by
-fpath-coverage-1limit. The result can be read with gcov —-—-prime-paths
--prime-paths-lines --prime-paths-source, See [gcov prime paths exam-
ple], page 1117.

-fpath-coverage-limit=1imit

——coverage

—coverage

The threshold at which point -fpath-coverage gives up on instrumenting a
function. This limit is approximate and conservative, as GCC uses a pessimistic
heuristic which slightly overcounts the running number of paths, and gives up
if the threshold is reached before finding all the paths. This option is not for
fine grained control over which functions to instrument - rather it is intended
to limit the effect of path explosion and keep compile times reasonable. The
default is 250000.

See Section 11.5 [Cross-profiling], page 1121.

This option is used to compile and link code instrumented for coverage analysis.
The options -coverage and --coverage are equivalent; both are a synonym
for -fprofile-arcs -ftest-coverage (when compiling) and -lgcov (when
linking). See the documentation for those options for more details.

e Compile the source files with ~-fprofile-arcs plus optimization and code
generation options. For test coverage analysis, use the additional -ftest-
coverage option. You do not need to profile every source file in a program.

e Compile the source files additionally with -fprofile-abs-path to create
absolute path names in the .gcno files. This allows gcov to find the cor-
rect sources in projects where compilations occur with different working
directories.

e Link your object files with -1gcov or -fprofile-arcs (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Unless a strict
ISO C dialect option is in effect, fork calls are detected and correctly
handled without double counting.

Moreover, an object file can be recompiled multiple times and the cor-
responding .gcda file merges as long as the source file and the compiler
options are unchanged.

278

Using the GNU Compiler Collection (GCC)

e For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus -fbranch-
probabilities (see Section 3.12 [Options that Control Optimization],
page 194).

e For test coverage analysis, use gcov to produce human readable information
from the .gcno and .gcda files. Refer to the gcov documentation for
further information.

With -fprofile-arcs, for each function of your program GCC creates a pro-
gram flow graph, then finds a spanning tree for the graph. Only arcs that are
not on the spanning tree have to be instrumented: the compiler adds code to
count the number of times that these arcs are executed. When an arc is the only
exit or only entrance to a block, the instrumentation code can be added to the
block; otherwise, a new basic block must be created to hold the instrumentation
code.

With -fcondition-coverage, for each conditional in your program GCC cre-
ates a bitset and records the exercised boolean values that have an independent
effect on the outcome of that expression.

With -fpath-coverage, GCC finds and enumerates and records the taken
prime paths of each function, unless the number of paths would exceed the
limit controlled by -fpath-coverage-limit. If the limit is exceeded the func-
tion is not instrumented as if ~-fpath-coverage was not used. A prime path is
the longest sequence of unique blocks, except possibly the first and last, which
is not a subpath of any other path.

-ftest-coverage

Produce a notes file that the gcov code-coverage utility (see Chapter 11 [gcov—
a Test Coverage Program], page 1103) can use to show program coverage. Each
source file’s note file is called auxname.gcno. Refer to the -fprofile-arcs
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data matches the source files more closely if you
do not optimize.

-fprofile-abs-path

Automatically convert relative source file names to absolute path names in the
.gcno files. This allows gcov to find the correct sources in projects where
compilations occur with different working directories.

-fprofile-dir=path

Set the directory to search for the profile data files in to path. This option affects
only the profile data generated by -fprofile-generate, -ftest-coverage,
-fprofile-arcs and used by -fprofile-use and -fbranch-probabilities
and its related options. Both absolute and relative paths can be used. By
default, GCC uses the current directory as path, thus the profile data file ap-
pears in the same directory as the object file. In order to prevent the file name
clashing, if the object file name is not an absolute path, we mangle the abso-
lute path of the sourcename.gcda file and use it as the file name of a .gcda
file. See details about the file naming in -fprofile-arcs. See similar option
-fprofile-note.

Chapter 3: GCC Command Options 279

When an executable is run in a massive parallel environment, it is recommended
to save profile to different folders. That can be done with variables in path that
are exported during run-time:

hp process ID.
%q{VAR} value of environment variable VAR

-fprofile-generate

-fprofile-generate=path
Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use -fprofile-generate both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values,
-finline-functions, and -fipa-bit-cp.

If path is specified, GCC looks at the path to find the profile feedback data
files. See -fprofile-dir.

To optimize the program based on the collected profile information, use
-fprofile-use. See Section 3.12 [Optimize Options], page 194, for more
information.

-fprofile-info-section

-fprofile-info-section=name
Register the profile information in the specified section instead of using a con-
structor /destructor. The section name is name if it is specified, otherwise the
section name defaults to .gcov_info. A pointer to the profile information
generated by -fprofile-arcs is placed in the specified section for each trans-
lation unit. This option disables the profile information registration through
a constructor and it disables the profile information processing through a de-
structor. This option is not intended to be used in hosted environments such
as GNU/Linux. It targets freestanding environments (for example embedded
systems) with limited resources which do not support constructors/destructors
or the C library file I/O.

The linker could collect the input sections in a continuous memory block and
define start and end symbols. A GNU linker script example which defines a
linker output section follows:

.gcov_info

{
PROVIDE (__gcov_info_start = .);
KEEP (*(.gcov_info))
PROVIDE (__gcov_info_end = .);

}

The program could dump the profiling information registered in this linker set
for example like this:

#include <gcov.h>
#include <stdio.h>
#include <stdlib.h>

extern const struct gcov_info *const __gcov_info_start[];

280 Using the GNU Compiler Collection (GCC)

extern const struct gcov_info *const __gcov_info_end[];

static void
dump (const void *d, unsigned n, void *arg)
{

const unsigned char *c = d;

for (unsigned i = 0; i < n; ++i)
printf ("%02x", c[il);
}

static void
filename (const char *f, void *arg)
{
__gcov_filename_to_gcfn (f, dump, arg);

}

static void *
allocate (unsigned length, void *arg)
{
return malloc (length);
}

static void

dump_gcov_info (void)

{
const struct gcov_info *const *info = __gcov_info_start;
const struct gcov_info *const *end = __gcov_info_end;

/* Obfuscate variable to prevent compiler optimizations. */
__asm__ (Illl : Il+rll (info));

while (info != end)

{
void *arg = NULL;
__gcov_info_to_gcda (*info, filename, dump, allocate, arg);
putchar ('\n');
++info;
}
}
int
main (void)
{
dump_gcov_info Q) ;
return O;
}

The merge-stream subcommand of gcov-tool may be used to deserialize the
data stream generated by the __gcov_filename_to_gcfn and __gcov_info_
to_gcda functions and merge the profile information into .gcda files on the
host filesystem.

—fprofile-note=path
If path is specified, GCC saves .gcno file into path location. If you combine
the option with multiple source files, the .gcno file will be overwritten.

Chapter 3: GCC Command Options 281

-fprofile-prefix-path=path

This option can be used in combination with profile-generate=profile_dir
and profile-use=profile_dir to inform GCC where is the base directory of
built source tree. By default profile_dir will contain files with mangled absolute
paths of all object files in the built project. This is not desirable when direc-
tory used to build the instrumented binary differs from the directory used to
build the binary optimized with profile feedback because the profile data will
not be found during the optimized build. In such setups -fprofile-prefix-
path=path with path pointing to the base directory of the build can be used to
strip the irrelevant part of the path and keep all file names relative to the main
build directory.

-fprofile-prefix-map=old=new
When compiling files residing in directory old, record profiling information
(with --coverage) describing them as if the files resided in directory new in-
stead. See also ~-ffile-prefix-map and -fcanon-prefix-map.

-fprofile-update=method
Alter the update method for an application instrumented for profile feedback
based optimization. The method argument should be one of ‘single’; ‘atomic’
or ‘prefer-atomic’. The first one is useful for single-threaded applications,
while the second one prevents profile corruption by emitting thread-safe code.

Warning: When an application does not properly join all threads (or creates
an detached thread), a profile file can be still corrupted.

Using ‘prefer-atomic’ would be transformed either to ‘atomic’, when sup-
ported by a target, or to ‘single’ otherwise. The GCC driver automatically
selects ‘prefer-atomic’ when -pthread is present in the command line, oth-
erwise the default method is ‘single’.

If ‘atomic’ is selected, then the profile information is updated using atomic
operations on a best-effort basis. Ideally, the profile information is updated
through atomic operations in hardware. If the target platform does not support
the required atomic operations in hardware, however, 1ibatomic is available,
then the profile information is updated through calls to libatomic. If the
target platform neither supports the required atomic operations in hardware
nor libatomic, then the profile information is not atomically updated and
a warning is issued. In this case, the obtained profiling information may be
corrupt for multi-threaded applications.

For performance reasons, if 64-bit counters are used for the profiling information
and the target platform only supports 32-bit atomic operations in hardware,
then the performance critical profiling updates are done using two 32-bit atomic
operations for each counter update. If a signal interrupts these two operations
updating a counter, then the profiling information may be in an inconsistent
state.

—fprofile-filter-files=regex
Instrument only functions from files whose name matches any of the regular
expressions (separated by semi-colons).

282

Using the GNU Compiler Collection (GCC)

For example, -fprofile-filter-files=main\.c;module.*\.c will
instrument only main.c and all C files starting with ‘'module’.

-fprofile-exclude-files=regex

Instrument only functions from files whose name does not match any of the
regular expressions (separated by semi-colons).

For example, -fprofile-exclude-files=/usr/.* will prevent instrumenta-
tion of all files that are located in the /usr/ folder.

-fprofile-reproducible=[multithreaded|parallel-runs|serial]

Control level of reproducibility of profile gathered by -fprofile-generate.
This makes it possible to rebuild program with same outcome which is useful,
for example, for distribution packages.

With -fprofile-reproducible=serial the profile gathered by -fprofile-
generate is reproducible provided the trained program behaves the same at
each invocation of the train run, it is not multi-threaded and profile data stream-
ing is always done in the same order. Note that profile streaming happens at
the end of program run but also before fork function is invoked.

Note that it is quite common that execution counts of some part of programs
depends, for example, on length of temporary file names or memory space ran-
domization (that may affect hash-table collision rate). Such non-reproducible
part of programs may be annotated by no_instrument_function function at-
tribute. gcov—dump with -1 can be used to dump gathered data and verify that
they are indeed reproducible.

With -fprofile-reproducible=parallel-runs collected profile stays repro-
ducible regardless the order of streaming of the data into geda files. This setting
makes it possible to run multiple instances of instrumented program in parallel
(such as with make -j). This reduces quality of gathered data, in particular of
indirect call profiling.

-fsanitize=address

Enable AddressSanitizer, a fast memory error detector. Memory access
instructions are instrumented to detect out-of-bounds and use-after-free bugs.
The option enables -fsanitize-address-use-after-scope. See https://
github.com/google/sanitizers/wiki/AddressSanitizer for more details.
The run-time behavior can be influenced using the ASAN_OPTIONS environment
variable. When set to help=1, the available options are shown at startup of
the instrumented program. See https://github.com/google/sanitizers/
wiki/AddressSanitizerFlags#run-time-flags for a list of supported
options. The option cannot be combined with -fsanitize=thread or
-fsanitize=hwaddress. Note that the only targets -fsanitize=hwaddress
is currently supported on are x86-64 (only with -mlam=u48 or -mlam=u57
options) and AArch64, in both cases only in ABIs with 64-bit pointers.
Similarly, ~fsanitize=memtag-stack is currently only supported on AArch64
ABIs with 64-bit pointers.

When compiling with -fsanitize=address, you should also use -g to produce
more meaningful output. To get more accurate stack traces, it is possible to use
options such as -00, -01, or -0g (which, for instance, prevent most function

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags

Chapter 3: GCC Command Options 283

inlining), -fno-optimize-sibling-calls (which prevents optimizing sibling
and tail recursive calls; this option is implicit for -00, -01, or -0g), or -fno-
ipa-icf (which disables Identical Code Folding for functions). Using -fno-
omit-frame-pointer also improves stack traces. Since multiple runs of the
program may yield backtraces with different addresses due to ASLR (Address
Space Layout Randomization), it may be desirable to turn ASLR off. On Linux,
this can be achieved with ‘setarch “uname -m™ -R ./prog’.

—-fsanitize=kernel-address
Enable AddressSanitizer for Linux kernel. See https://github.com/google/
kernel-sanitizers for more details.

-fsanitize=hwaddress
Enable Hardware-assisted AddressSanitizer, which uses a hardware ability
to ignore the top byte of a pointer to allow the detection of memory
errors with a low memory overhead. @ Memory access instructions are
instrumented to detect out-of-bounds and use-after-free bugs. The option
enables -fsanitize-address-use-after-scope. See https://clang.
1llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html for more
details. The run-time behavior can be influenced using the HWASAN_OPTIONS
environment variable. When set to help=1, the available options are shown at
startup of the instrumented program. The option cannot be combined with
-fsanitize=thread or -fsanitize=address, and is currently only available

on AArch64.

-fsanitize=kernel-hwaddress
Enable Hardware-assisted AddressSanitizer for compilation of the Linux kernel.
Similar to -fsanitize=kernel-address but using an alternate instrumenta-
tion method, and similar to -fsanitize=hwaddress but with instrumentation
differences necessary for compiling the Linux kernel. These differences are to
avoid hwasan library initialization calls and to account for the stack pointer
having a different value in its top byte.

Note: This option has different defaults to the —~fsanitize=hwaddress. Instru-
menting the stack and alloca calls are not on by default but are still possible
by specifying the command-line options -—-param hwasan-instrument-stack=1
and --param hwasan-instrument-allocas=1 respectively. Using a random
frame tag is not implemented for kernel instrumentation.

-fsanitize=memtag-stack
Use Memory Tagging Extension instructions instead of instrumentation to allow
the detection of memory errors. Similar to HWASAN; it is also a probabilistic
method. This option is available only on those AArch64 architectures that
support Memory Tagging Extensions.

-fsanitize=pointer-compare
Instrument comparison operation (<, <=, > >=) with pointer operands.
The option must be combined with either -fsanitize=kernel-
address or -fsanitize=address The option cannot be combined with
-fsanitize=thread. Note: By default the check is disabled at run time.
To enable it, add detect_invalid_pointer_pairs=2 to the environment

https://github.com/google/kernel-sanitizers
https://github.com/google/kernel-sanitizers
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

284 Using the GNU Compiler Collection (GCC)

variable ASAN_OPTIONS. Using detect_invalid_pointer_pairs=1 detects
invalid operation only when both pointers are non-null.

-fsanitize=pointer-subtract
Instrument subtraction with pointer operands. The option must be combined
with either ~-fsanitize=kernel-address or -fsanitize=address The option
cannot be combined with -fsanitize=thread. Note: By default the check is
disabled at run time. To enable it, add detect_invalid_pointer_pairs=2
to the environment variable ASAN_OPTIONS. Using detect_invalid_pointer_
pairs=1 detects invalid operation only when both pointers are non-null.

-fsanitize=shadow-call-stack
Enable ShadowCallStack, a security enhancement mechanism used to protect
programs against return address overwrites (e.g. stack buffer overflows.) It
works by saving a function’s return address to a separately allocated shadow
call stack in the function prologue and restoring the return address from the
shadow call stack in the function epilogue. Instrumentation only occurs in
functions that need to save the return address to the stack.

Currently it only supports the aarch64 platform. It is specifically designed for
linux kernels that enable the CONFIG_SHADOW _CALL_STACK option. For
the user space programs, runtime support is not currently provided in libc and
libgce. Users who want to use this feature in user space need to provide their
own support for the runtime. It should be noted that this may cause the ABI
rules to be broken.

On aarch64, the instrumentation makes use of the platform register x18. This
generally means that any code that may run on the same thread as code com-
piled with ShadowCallStack must be compiled with the flag ~-ffixed-x18, oth-
erwise functions compiled without -ffixed-x18 might clobber x18 and so cor-
rupt the shadow stack pointer.

Also, because there is no userspace runtime support, code compiled with Shad-
owCallStack cannot use exception handling. Use -fno-exceptions to turn off
exceptions.

See https://clang.llvm.org/docs/ShadowCallStack.html for more details.

-fsanitize=thread

Enable ThreadSanitizer, a fast data race detector. Memory access instructions
are instrumented to detect data race bugs. See https://github.com/google/
sanitizers/wiki#threadsanitizer for more details. The run-time behavior
can be influenced using the TSAN_OPTIONS environment variable; see https://
github.com/google/sanitizers/wiki/ThreadSanitizerFlags for a list of
supported options. The option cannot be combined with ~-fsanitize=address,
-fsanitize=leak.

When compiling with -fsanitize=thread, you should also use -g to produce
more meaningful output.

Note that sanitized atomic builtins cannot throw exceptions when operating on
invalid memory addresses with non-call exceptions (-fnon-call-exceptions).

https://clang.llvm.org/docs/ShadowCallStack.html
https://github.com/google/sanitizers/wiki#threadsanitizer
https://github.com/google/sanitizers/wiki#threadsanitizer
https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags
https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags

Chapter 3: GCC Command Options 285

-fsanitize=leak
Enable LeakSanitizer, a memory leak detector. This option only matters for
linking of executables. The executable is linked against a library that over-
rides malloc and other allocator functions. See https://github.com/google/
sanitizers/wiki/AddressSanitizerLeakSanitizer for more details. The
run-time behavior can be influenced using the LSAN_OPTIONS environment vari-
able. The option cannot be combined with —~fsanitize=thread.

-fsanitize=undefined
Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
Various computations are instrumented to detect undefined behavior at run-
time. See https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.
html for more details. The run-time behavior can be influenced using the
UBSAN_OPTIONS environment variable. Current suboptions are:

-fsanitize=shift
This option enables checking that the result of a shift operation
is not undefined. Note that what exactly is considered undefined
differs slightly between C and C++, as well as between ISO C90
and C99, etc. This option has two suboptions, ~-fsanitize=shift-
base and -fsanitize=shift-exponent.

-fsanitize=shift-exponent
This option enables checking that the second argument of a shift
operation is not negative and is smaller than the precision of the
promoted first argument.

-fsanitize=shift-base
If the second argument of a shift operation is within range, check
that the result of a shift operation is not undefined. Note that what
exactly is considered undefined differs slightly between C and C++,
as well as between ISO C90 and C99, etc.

-fsanitize=integer-divide-by-zero
Detect integer division by zero.

-fsanitize=unreachable
With this option, the compiler turns the __builtin_unreachable
call into a diagnostics message call instead. When reaching the
__builtin_unreachable call, the behavior is undefined.

-fsanitize=vla-bound
This option instructs the compiler to check that the size of a vari-
able length array is positive.

-fsanitize=null
This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when
it tries to dereference a NULL pointer, or if a reference (possibly
an rvalue reference) is bound to a NULL pointer, or if a method is
invoked on an object pointed by a NULL pointer.

https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

286 Using the GNU Compiler Collection (GCC)

-fsanitize=return
This option enables return statement checking. Programs built
with this option turned on will issue an error message when the
end of a non-void function is reached without actually returning a
value. This option works in C++ only.

-fsanitize=signed-integer-overflow
This option enables signed integer overflow checking. We check that
the result of +, *, and both unary and binary - does not overflow
in the signed arithmetics. This also detects INT_MIN / -1 signed
division. Note, integer promotion rules must be taken into account.
That is, the following is not an overflow:

signed char a = SCHAR_MAX;
at++;

-fsanitize=bounds

This option enables instrumentation of array bounds. Various
out of bounds accesses are detected. Flexible array members,
flexible array member-like arrays, and initializers of variables with
static storage are not instrumented, with the exception of flexible
array member-like arrays for which -fstrict-flex-arrays
or -fstrict-flex-arrays= options or strict_flex_array
attributes say they shouldn’t be treated like flexible array
member-like arrays.

-fsanitize=bounds-strict
This option enables strict instrumentation of array bounds. Most
out of bounds accesses are detected, including flexible array
member-like arrays. Initializers of variables with static storage are
not instrumented.

-fsanitize=alignment
This option enables checking of alignment of pointers when they are
dereferenced, or when a reference is bound to insufficiently aligned
target, or when a method or constructor is invoked on insufficiently
aligned object.

-fsanitize=object-size
This option enables instrumentation of memory references using
the __builtin_dynamic_object_size function. Various out of
bounds pointer accesses are detected.

-fsanitize=float-divide-by-zero
Detect floating-point division by zero. Unlike other similar
options, -fsanitize=float-divide-by-zero is not enabled by
-fsanitize=undefined, since floating-point division by zero can
be a legitimate way of obtaining infinities and NaNs.

-fsanitize=float-cast-overflow
This option enables floating-point type to integer conversion check-
ing. We check that the result of the conversion does not overflow.

Chapter 3:

GCC Command Options 287

Unlike other similar options, -fsanitize=float-cast-overflow
is not enabled by -fsanitize=undefined. This option does not
work well with FE_INVALID exceptions enabled.

-fsanitize=nonnull-attribute
This option enables instrumentation of calls, checking whether null
values are not passed to arguments marked as requiring a non-null
value by the nonnull function attribute.

-fsanitize=returns-nonnull-attribute
This option enables instrumentation of return statements in func-
tions marked with returns_nonnull function attribute, to detect
returning of null values from such functions.

-fsanitize=bool
This option enables instrumentation of loads from bool. If a value
other than 0/1 is loaded, a run-time error is issued.

-fsanitize=enum
This option enables instrumentation of loads from an enum type.
If a value outside the range of values for the enum type is loaded,
a run-time error is issued.

-fsanitize=vptr
This option enables instrumentation of C++ member function calls,
member accesses and some conversions between pointers to base
and derived classes, to verify the referenced object has the correct
dynamic type.

-fsanitize=pointer-overflow
This option enables instrumentation of pointer arithmetics. If the
pointer arithmetics overflows, a run-time error is issued.

-fsanitize=builtin
This option enables instrumentation of arguments to selected
builtin functions. If an invalid value is passed to such arguments,
a run-time error is issued. KE.g. passing 0 as the argument to
__builtin_ctz or __builtin_clz invokes undefined behavior
and is diagnosed by this option.

Note that sanitizers tend to increase the rate of false positive warnings, most
notably those around -Wmaybe-uninitialized. We recommend against com-
bining -Werror and [the use of] sanitizers.

While -ftrapv causes traps for signed overflows to be emitted,
-fsanitize=undefined gives a diagnostic message. This currently works only
for the C family of languages.

-fno-sanitize=all

This option disables all previously enabled sanitizers. -fsanitize=all is not
allowed, as some sanitizers cannot be used together.

288 Using the GNU Compiler Collection (GCC)

-fasan-shadow-offset=number
This option forces GCC to use custom shadow offset in AddressSanitizer checks.
It is useful for experimenting with different shadow memory layouts in Kernel
AddressSanitizer.

-fsanitize-sections=s1,s2,...
Sanitize global variables in selected user-defined sections. si may contain wild-
cards.

-fsanitize-recover|=opts]

-fsanitize-recover= controls error recovery mode for sanitizers mentioned in
comma-separated list of opts. Enabling this option for a sanitizer component
causes it to attempt to continue running the program as if no error happened.
This means multiple runtime errors can be reported in a single program run,
and the exit code of the program may indicate success even when errors have
been reported. The -fno-sanitize-recover= option can be used to alter this
behavior: only the first detected error is reported and program then exits with
a non-zero exit code.

Currently this feature only works for -fsanitize=undefined (and its
suboptions except for -fsanitize=unreachable and -fsanitize=return),
-fsanitize=float-cast-overflow, -fsanitize=float-divide-by-
zero, -fsanitize=bounds-strict, -fsanitize=kernel-address and
-fsanitize=address. For these sanitizers error recovery is turned on by
default, except -fsanitize=address, for which this feature is experimental.
-fsanitize-recover=all and -fno-sanitize-recover=all is also accepted,
the former enables recovery for all sanitizers that support it, the latter disables
recovery for all sanitizers that support it.

Even if a recovery mode is turned on the compiler side, it needs to be also
enabled on the runtime library side, otherwise the failures are still fatal. The
runtime library defaults to halt_on_error=0 for ThreadSanitizer and Unde-
finedBehaviorSanitizer, while default value for AddressSanitizer is halt_on_
error=1. This can be overridden through setting the halt_on_error flag in
the corresponding environment variable.

Syntax without an explicit opts parameter is deprecated. It is equivalent to
specifying an opts list of:

undefined,float-cast-overflow,float-divide-by-zero,bounds-strict

-fsanitize-address-use-after-scope
Enable sanitization of local variables to detect use-after-scope bugs. The option
sets —fstack-reuse to ‘none’.

-fsanitize-trap[=opts]
The -fsanitize-trap= option instructs the compiler to report for sanitiz-
ers mentioned in comma-separated list of opts undefined behavior using __
builtin_trap rather than a libubsan library routine. If this option is en-
abled for certain sanitizer, it takes precedence over the -fsanitizer-recover=
for that sanitizer, __builtin_trap will be emitted and be fatal regardless of
whether recovery is enabled or disabled using -fsanitize-recover=.

Chapter 3: GCC Command Options 289

The advantage of this is that the 1ibubsan library is not needed and is not
linked in, so this is usable even in freestanding environments.

Currently this feature works with -fsanitize=undefined (and its suboptions
except for -fsanitize=vptr), -fsanitize=float-cast-overflow,
-fsanitize=float-divide-by-zero and -fsanitize=bounds-strict.
-fsanitize-trap=all can be also specified, which enables it for undefined
suboptions, ~-fsanitize=float-cast-overflow, -fsanitize=float-divide-
by-zero and -fsanitize=bounds-strict. If -fsanitize-trap=undefined
or -fsanitize-trap=all is used and -fsanitize=vptr is enabled on the
command line, the instrumentation is silently ignored as the instrumentation
always needs libubsan support, ~-fsanitize-trap=vptr is not allowed.

—fsanitize-undefined-trap-on-error
The -fsanitize-undefined-trap-on-error option is deprecated equivalent
of ~-fsanitize-trap=all.

-fsanitize-coverage=trace-pc
Enable coverage-guided fuzzing code instrumentation. Inserts a call to __
sanitizer_cov_trace_pc into every basic block.

-fsanitize-coverage=trace-cmp

Enable dataflow guided fuzzing code instrumentation. Inserts a call
to __sanitizer_cov_trace_cmpl, __sanitizer_cov_trace_cmp2,
__sanitizer_cov_trace_cmp4 or __sanitizer_cov_trace_cmp8 for integral
comparison with both operands variable or __sanitizer_cov_trace_
const_cmpl, __sanitizer_cov_trace_const_cmp2, _sanitizer_cov_
trace_const_cmp4 or __sanitizer_cov_trace_const_cmp8 for integral
comparison with one operand constant, __sanitizer_cov_trace_cmpf
or __sanitizer_cov_trace_cmpd for float or double comparisons and
__sanitizer_cov_trace_switch for switch statements.

-fcf-protection=[full|branch|return|none|check]

—-fcf-protection
Enable code instrumentation to increase program security by checking that
target addresses of control-flow transfer instructions (such as indirect function
call, function return, indirect jump) are valid. This prevents diverting the
flow of control to an unexpected target. This is intended to protect against
such threats as Return-oriented Programming (ROP), and similarly call /jmp-
oriented programming (COP/JOP).

The -fcf-protection= keywords are interpreted as follows.

The value branch tells the compiler to implement checking of validity of control-
flow transfer at the point of indirect branch instructions, i.e. call/jmp instruc-
tions.

The value return implements checking of validity at the point of returning from
a function.

The value full is an alias for specifying both branch and return.

290

Using the GNU Compiler Collection (GCC)

The value check is used for the final link with link-time optimization (LTO). An
error is issued if LTO object files are compiled with different ~-fcf-protection
values. The value check is ignored at the compile time.

The value none turns off instrumentation.

-fcf-protection is an alias for -fcf-protection=full. To over-
ride a previous -fcf-protection option on the command line, add
-fcf-protection=none and then -fcf-protection=kind.

The macro __CET__ is defined when -fcf-protection is used. The first bit of
CET__ is set to 1 for the value branch and the second bit of __CET__ is set

to 1 for the return.

You can also use the nocf_check attribute to identify which functions and calls
should be skipped from instrumentation (see Section 6.4.1 [Function Attributes],
page 629).

Currently the x86 GNU /Linux target provides an implementation based on Intel
Control-flow Enforcement Technology (CET) which works for 1686 processor or
newer.

-fharden-compares

For every logical test that survives gimple optimizations and is not the condition
in a conditional branch (for example, conditions tested for conditional moves,
or to store in boolean variables), emit extra code to compute and verify the
reversed condition, and to call __builtin_trap if the results do not match.
Use with ‘~fharden-conditional-branches’ to cover all conditionals.

-fharden-conditional-branches

For every non-vectorized conditional branch that survives gimple optimizations,
emit extra code to compute and verify the reversed condition, and to call __
builtin_trap if the result is unexpected. Use with ‘~fharden-compares’ to
cover all conditionals.

-fharden-control-flow-redundancy

Emit extra code to set booleans when entering basic blocks, and to verify and
trap, at function exits, when the booleans do not form an execution path that
is compatible with the control flow graph.

Verification takes place before returns, before mandatory tail calls (see
below) and, optionally, before escaping exceptions with -fhardcfr-check-
exceptions, before returning calls with ~-fhardcfr-check-returning-calls,
and before noreturn calls with -fhardcfr-check-noreturn-calls). Tuning
options --param hardcfr-max-blocks and --param hardcfr-max-inline-
blocks are available.

Tail call optimization takes place too late to affect control flow redundancy, but
calls annotated as mandatory tail calls by language front-ends, and any calls
marked early enough as potential tail calls would also have verification issued
before the call, but these possibilities are merely theoretical, as these conditions
can only be met when using custom compiler plugins.

-fhardcfr-skip-leaf

Disable -fharden-control-flow-redundancy in leaf functions.

Chapter 3: GCC Command Options 291

—-fhardcfr-check-exceptions
When -fharden-control-flow-redundancy is active, check the recorded exe-
cution path against the control flow graph at exception escape points, as if the
function body was wrapped with a cleanup handler that performed the check
and reraised. This option is enabled by default; use -fno-hardcfr-check-
exceptions to disable it.

-fhardcfr-check-returning-calls
When -fharden-control-flow-redundancy is active, check the recorded exe-
cution path against the control flow graph before any function call immediately
followed by a return of its result, if any, so as to not prevent tail-call optimiza-
tion, whether or not it is ultimately optimized to a tail call.

This option is enabled by default whenever sibling call optimizations are enabled
(see -foptimize-sibling-calls), but it can be enabled (or disabled, using its
negated form) explicitly, regardless of the optimizations.

-fhardcfr-check-noreturn-calls=[always|no-xthrow|nothrow|never]
When -fharden-control-flow-redundancy is active, check the recorded ex-
ecution path against the control flow graph before noreturn calls, either all
of them (always), those that aren’t expected to return control to the caller
through an exception (no-xthrow, the default), those that may not return
control to the caller through an exception either (nothrow), or none of them
(never).

Checking before a noreturn function that may return control to the caller
through an exception may cause checking to be performed more than once,
if the exception is caught in the caller, whether by a handler or a cleanup.
When -fhardcfr-check-exceptions is also enabled, the compiler will avoid
associating a noreturn call with the implicitly-added cleanup handler, since it
would be redundant with the check performed before the call, but other handlers
or cleanups in the function, if activated, will modify the recorded execution path
and check it again when another checkpoint is hit. The checkpoint may even
be another noreturn call, so checking may end up performed multiple times.

Various optimizers may cause calls to be marked as noreturn and/or nothrow,
even in the absence of the corresponding attributes, which may affect the place-
ment of checks before calls, as well as the addition of implicit cleanup handlers
for them. This unpredictability, and the fact that raising and reraising excep-
tions frequently amounts to implicitly calling noreturn functions, have made
no-xthrow the default setting for this option: it excludes from the noreturn
treatment only internal functions used to (re)raise exceptions, that are not af-
fected by these optimizations.

-fhardened
Enable a set of flags for C and C++ that improve the security of the generated
code without affecting its ABI. The precise flags enabled may change between
major releases of GCC, but are currently:

-D_FORTIFY_SOURCE=3
-D_GLIBCXX_ASSERTIONS

292 Using the GNU Compiler Collection (GCC)

-ftrivial-auto-var-init=zero

-fPIE -pie -Wl,-z,relro,-z,now
-fstack-protector-strong
-fstack-clash-protection
-fcf-protection=full (x86 GNU/Linux only)

The list of options enabled by -fhardened can be generated using the
—--help=hardened option.

When the system glibc is older than 2.35, -D_FORTIFY_SQURCE=2 is used in-
stead.

This option is intended to be used in production builds, not merely in debug
builds.

Currently, -fhardened is only supported on GNU/Linux targets.

-fhardened only enables a particular option if it wasn’t already specified any-
where on the command line. For instance, -fhardened -fstack-protector
will only enable -fstack-protector, but not -fstack-protector-strong.

-fstack-protector

Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
or equal to 8 bytes. The guards are initialized when a function is entered and
then checked when the function exits. If a guard check fails, an error message
is printed and the program exits. Only variables that are actually allocated
on the stack are considered, optimized away variables or variables allocated in
registers don’t count.

-fstack-protector-all
Like -fstack-protector except that all functions are protected.

-fstack-protector-strong
Like -fstack-protector but includes additional functions to be protected —
those that have local array definitions, or have references to local frame ad-
dresses. Only variables that are actually allocated on the stack are considered,
optimized away variables or variables allocated in registers don’t count.

-fstack-protector-explicit
Like -fstack-protector but only protects those functions which have the
stack_protect attribute.

—-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but you only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.

Note that this switch does not actually cause checking to be done; the operating
system or the language runtime must do that. The switch causes generation of
code to ensure that they see the stack being extended.

Chapter 3: GCC Command Options 293

You can additionally specify a string parameter: ‘no’ means no checking,
‘generic’ means force the use of old-style checking, ‘specific’ means use the
best checking method and is equivalent to bare -fstack-check.

Old-style checking is a generic mechanism that requires no specific target sup-
port in the compiler but comes with the following drawbacks:

1. Modified allocation strategy for large objects: they are always allocated
dynamically if their size exceeds a fixed threshold. Note this may change
the semantics of some code.

2. Fixed limit on the size of the static frame of functions: when it is topped
by a particular function, stack checking is not reliable and a warning is
issued by the compiler.

3. Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.

Note that old-style stack checking is also the fallback method for ‘specific’ if
no target support has been added in the compiler.

‘~-fstack-check=’is designed for Ada’s needs to detect infinite recursion and
stack overflows. ‘specific’ is an excellent choice when compiling Ada code.
It is not generally sufficient to protect against stack-clash attacks. To protect
against those you want ‘~fstack-clash-protection’.

-fstack-clash-protection
Generate code to prevent stack clash style attacks. When this option is enabled,
the compiler will only allocate one page of stack space at a time and each page
is accessed immediately after allocation. Thus, it prevents allocations from
jumping over any stack guard page provided by the operating system.

Most targets do not fully support stack clash protection. However, on those
targets -fstack-clash-protection will protect dynamic stack allocations.
-fstack-clash-protection may also provide limited protection for static
stack allocations if the target supports -fstack-check=specific.

-fstack-limit-register=reg

-fstack-limit-symbol=sym

-fno-stack-limit
Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If a larger stack is
required, a signal is raised at run time. For most targets, the signal is raised
before the stack overruns the boundary, so it is possible to catch the signal
without taking special precautions.

For instance, if the stack starts at absolute address ‘0x80000000’ and grows
downwards, you can use the flags ~-fstack-limit-symbol=__stack_limit and
-Wl,--defsym,__stack_limit=0x7£ffe0000 to enforce a stack limit of 128KB.
Note that this may only work with the GNU linker.

You can locally override stack limit checking by using the no_stack_limit
function attribute (see Section 6.4.1 [Function Attributes], page 629).

294 Using the GNU Compiler Collection (GCC)

-fsplit-stack
Generate code to automatically split the stack before it overflows. The resulting
program has a discontiguous stack which can only overflow if the program is
unable to allocate any more memory. This is most useful when running threaded
programs, as it is no longer necessary to calculate a good stack size to use for

each thread. This is currently only implemented for the x86 targets running
GNU/Linux.

When code compiled with -fsplit-stack calls code compiled without
-fsplit-stack, there may not be much stack space available for the latter
code to run. If compiling all code, including library code, with -fsplit-stack
is not an option, then the linker can fix up these calls so that the code
compiled without -fsplit-stack always has a large stack. Support for this is
implemented in the gold linker in GNU Binutils release 2.21 and later.

-fstrub=disable
Disable stack scrubbing entirely, ignoring any strub attributes. See See Sec-
tion 6.4.3.1 [Common Type Attributes], page 724.

-fstrub=strict
Functions default to strub mode disabled, and apply strictly the restriction
that only functions associated with strub-callable modes (at-calls,
callable and always_inline internal) are callable by functions with
strub-enabled modes (at-calls and internal).

—-fstrub=relaxed
Restore the default stack scrub (strub) setting, namely, strub is only en-
abled as required by strub attributes associated with function and data types.
Relaxed means that strub contexts are only prevented from calling functions
explicitly associated with strub mode disabled. This option is only useful to
override other -fstrub=* options that precede it in the command line.

-fstrub=at-calls

Enable at-calls strub mode where viable. The primary use of this option
is for testing. It exercises the strub machinery in scenarios strictly local to a
translation unit. This strub mode modifies function interfaces, so any function
that is visible to other translation units, or that has its address taken, will
not be affected by this option. Optimization options may also affect viability.
See the strub attribute documentation for details on viability and eligibility
requirements.

—-fstrub=internal
Enable internal strub mode where viable. The primary use of this option
is for testing. This option is intended to exercise thoroughly parts of the
strub machinery that implement the less efficient, but interface-preserving
strub mode. Functions that would not be affected by this option are quite
uncomimon.

-fstrub=all
Enable some strub mode where viable. When both strub modes are viable,
at-calls is preferred. -fdump-ipa-strubm adds function attributes that tell

Chapter 3: GCC Command Options 295

which mode was selected for each function. The primary use of this option is
for testing, to exercise thoroughly the strub machinery.

-fvtable-verify=[std|preinit|none]
This option is only available when compiling C++ code. It turns on (or off, if
using -fvtable-verify=none) the security feature that verifies at run time,
for every virtual call, that the vtable pointer through which the call is made
is valid for the type of the object, and has not been corrupted or overwritten.
If an invalid vtable pointer is detected at run time, an error is reported and
execution of the program is immediately halted.

This option causes run-time data structures to be built at program startup,
which are used for verifying the vtable pointers. The options ‘std’ and
‘preinit’ control the timing of when these data structures are built. In both
cases the data structures are built before execution reaches main. Using
-fvtable-verify=std causes the data structures to be built after shared
libraries have been loaded and initialized. -fvtable-verify=preinit causes
them to be built before shared libraries have been loaded and initialized.

If this option appears multiple times in the command line with different values
specified, ‘none’ takes highest priority over both ‘std’ and ‘preinit’; ‘preinit’
takes priority over ‘std’.

—-fvtv-debug

When used in conjunction with -fvtable-verify=std or -fvtable-
verify=preinit, causes debug versions of the runtime functions for the
vtable verification feature to be called. This flag also causes the compiler
to log information about which vtable pointers it finds for each class. This
information is written to a file named vtv_set_ptr_data.log in the directory
named by the environment variable VIV_LOGS_DIR if that is defined or the
current working directory otherwise.

Note: This feature appends data to the log file. If you want a fresh log file, be
sure to delete any existing one.

—-fvtv-counts

This is a debugging flag. When used in conjunction with ~fvtable-verify=std
or —fvtable-verify=preinit, this causes the compiler to keep track of the
total number of virtual calls it encounters and the number of verifications it
inserts. It also counts the number of calls to certain run-time library functions
that it inserts and logs this information for each compilation unit. The compiler
writes this information to a file named vtv_count_data.log in the directory
named by the environment variable VIV_LOGS_DIR if that is defined or the
current working directory otherwise. It also counts the size of the vtable pointer
sets for each class, and writes this information to vtv_class_set_sizes.log
in the same directory.

Note: This feature appends data to the log files. To get fresh log files, be sure
to delete any existing ones.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions are

296

Using the GNU Compiler Collection (GCC)

called with the address of the current function and its call site. (On some plat-
forms, __builtin_return_address does not work beyond the current function,
so the call site information may not be available to the profiling functions oth-
erwise.)

void __cyg_profile_func_enter (void *this_fn,

void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);

The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.
This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls indicate where, conceptually, the inline function is
entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use extern inline in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)
A function may be given the attribute no_instrument_function, in which case
this instrumentation is not done. This can be used, for example, for the profiling
functions listed above, high-priority interrupt routines, and any functions from
which the profiling functions cannot safely be called (perhaps signal handlers, if
the profiling routines generate output or allocate memory). See Section 6.4.1.1
[Common Function Attributes], page 630.

—-finstrument-functions-once

This is similar to -finstrument-functions, but the profiling functions are
called only once per instrumented function, i.e. the first profiling function
is called after the first entry into the instrumented function and the second
profiling function is called before the exit corresponding to this first entry.

The definition of once for the purpose of this option is a little vague because
the implementation is not protected against data races. As a result, the imple-
mentation only guarantees that the profiling functions are called at least once
per process and at most once per thread, but the calls are always paired, that
is to say, if a thread calls the first function, then it will call the second function,
unless it never reaches the exit of the instrumented function.

-finstrument-functions-exclude-file-list=file,file,...

Set the list of functions that are excluded from instrumentation (see the descrip-
tion of ~finstrument-functions). If the file that contains a function definition
matches with one of file, then that function is not instrumented. The match is
done on substrings: if the file parameter is a substring of the file name, it is
considered to be a match.
For example:

-finstrument-functions-exclude-file-list=/bits/stl,include/sys
excludes any inline function defined in files whose pathnames contain /bits/stl
or include/sys.

Chapter 3: GCC Command Options 297

If, for some reason, you want to include letter ,’ in one of sym, write ‘\,’. For
example, -finstrument-functions-exclude-file-list='\,\,tmp' (note
the single quote surrounding the option).

-finstrument-functions-exclude-function-list=sym,sym,...

This is similar to -finstrument-functions-exclude-file-list, but this
option sets the list of function names to be excluded from instrumentation.
The function name to be matched is its user-visible name, such as
vector<int> blah(const vector<int> &), not the internal mangled name
(e.g., _Z4blahRSt6vectorIiSaIliEE). The match is done on substrings: if the
sym parameter is a substring of the function name, it is considered to be
a match. For C99 and C++ extended identifiers, the function name must be
given in UTF-8, not using universal character names.

-fpatchable-function-entry=N[,M]

Generate N NOPs right at the beginning of each function, with the function
entry point before the Mth NOP. If M is omitted, it defaults to 0 so the func-
tion entry points to the address just at the first NOP. The NOP instructions
reserve extra space which can be used to patch in any desired instrumenta-
tion at run time, provided that the code segment is writable. The amount of
space is controllable indirectly via the number of NOPs; the NOP instruction
used corresponds to the instruction emitted by the internal GCC back-end in-
terface gen_nop. This behavior is target-specific and may also depend on the
architecture variant and/or other compilation options.

For run-time identification, the starting addresses of these areas, which corre-
spond to their respective function entries minus M, are additionally collected
in the __patchable_function_entries section of the resulting binary.

Note that the value of __attribute__ ((patchable_function_entry
(N,M))) takes precedence over command-line option -fpatchable-function-
entry=N,M. This can be used to increase the area size or to remove it

completely on a single function. If N=0, no pad location is recorded.

The NOP instructions are inserted at—and maybe before, depending on M—
the function entry address, even before the prologue. On PowerPC with the
ELFv2 ABI, for a function with dual entry points, the local entry point is
this function entry address by default. See the -msplit-patch-nops option to
change this.

The maximum value of N and M is 65535. On PowerPC with the ELFv2 ABI,
for a function with dual entry points, the supported values for M are 0, 2, 6
and 14 when not using -msplit-patch-nops.

3.14 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the -E option, nothing is done except preprocessing. Some of these options make
sense only together with -E because they cause the preprocessor output to be unsuitable
for actual compilation.

298 Using the GNU Compiler Collection (GCC)

In addition to the options listed here, there are a number of options to control search
paths for include files documented in Section 3.17 [Directory Options], page 312. Options
to control preprocessor diagnostics are listed in Section 3.9 [Warning Options], page 100.

-D name
—--define-macro=name
--define-macro name
Predefine name as a macro, with definition 1.

-D name=definition

-—define-macro=name=definition

--define-macro name=definition
The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
is truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you should quote the option.
With sh and csh, -D'name(args...)=definition' works.

-D and -U options are processed in the order they are given on the command
line. All -imacros file and —-include file options are processed after all -D
and -U options.

-U name

—--undefine-macro=name

—--undefine-macro name
Cancel any previous definition of name, either built in or provided with a -D
option.

-include file

—-—include=file

—-—include file
Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple -include options are given, the files are included in the order they
appear on the command line.

-imacros file

--imacros=file

-—imacros file
Exactly like —include, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

Chapter 3: GCC Command Options 299

—undef

-pthread

-M

All files specified by -imacros are processed before all files specified by
-include.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Define additional macros required for using the POSIX threads library. You
should use this option consistently for both compilation and linking. This
option is supported on GNU/Linux targets, most other Unix derivatives, and
also on x86 Cygwin and MinGW targets.

--dependencies

-MM

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from -include or
-imacros command-line options.

Unless specified explicitly (with -MT or -MQ), the object file name consists of
the name of the source file with any suffix replaced with object file suffix and
with any leading directory parts removed. If there are many included files then
the rule is split into several lines using ‘\’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as -dM. To
avoid mixing such debug output with the dependency rules you should explicitly
specify the dependency output file with -MF, or use an environment variable like
DEPENDENCIES_OUTPUT (see Section 3.23 [Environment Variables], page 587).
Debug output is still sent to the regular output stream as normal.

Passing -M to the driver implies -E, and suppresses warnings with an implicit
-W.

--user-dependencies

-MF file

Like -M but do not mention header files that are found in system header di-
rectories, nor header files that are included, directly or indirectly, from such a
header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header appears in -MM de-
pendency output.

When used with -M or -MM, specifies a file to write the dependencies to. If no
-MF switch is given the preprocessor sends the rules to the same place it would
send preprocessed output.

When used with the driver options -MD or -MMD, -MF overrides the default
dependency output file.

If file is -, then the dependencies are written to stdout.

300

-MG

Using the GNU Compiler Collection (GCC)

--print-missing-file-dependencies

In conjunction with an option such as -M requesting dependency generation, -MG
assumes missing header files are generated files and adds them to the depen-
dency list without raising an error. The dependency filename is taken directly
from the #include directive without prepending any path. -MG also suppresses
preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

-Mno-modules

-MP

-MT target

-MQ target

-MD

Disable dependency generation for compiled module interfaces.

This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without updating the
Makefile to match.

This is typical output:
test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, deletes any directory components
and any file suffix such as ‘.c’, and appends the platform’s usual object suffix.
The result is the target.
An -MT option sets the target to be exactly the string you specify. If you want
multiple targets, you can specify them as a single argument to -MT, or use
multiple -MT options.
For example, -MT '$(objpfx)foo.o' might give

$(objpfx)foo.o: foo.c

Same as -MT, but it quotes any characters which are special to Make.
-MQ '$(objpfx)foo.o0’' gives

$$(objpfx)foo.0: foo.c
The default target is automatically quoted, as if it were given with -MQ.

--write-dependencies

-MD is equivalent to -M -MF file, except that -E is not implied. The driver
determines file based on whether an —-o option is given. If it is, the driver uses
its argument but with a suffix of .d, otherwise it takes the name of the input
file, removes any directory components and suffix, and applies a .d suffix.

If -MD is used in conjunction with -E, any -o switch is understood to specify
the dependency output file (see [-MF], page 299), but if used without -E, each
-0 is understood to specify a target object file.

Since -E is not implied, -MD can be used to generate a dependency output file
as a side effect of the compilation process.

Chapter 3: GCC Command Options 301

-MMD
--write-user-dependencies
Like -MD except mention only user header files, not system header files.

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with -C to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

-fpreprocessed is implicit if the input file has one of the extensions ‘.1’, ‘. ii’
or ‘.mi’. These are the extensions that GCC uses for preprocessed files created
by -save-temps.

-fdirectives-only
When preprocessing, handle directives, but do not expand macros.

The option’s behavior depends on the -E and -fpreprocessed options.

With -E, preprocessing is limited to the handling of directives such as #define,
#ifdef, and #error. Other preprocessor operations, such as macro expansion
and trigraph conversion are not performed. In addition, the -dD option is
implicitly enabled.

With -fpreprocessed, predefinition of command line and most builtin macros
is disabled. Macros such as __LINE__, which are contextually dependent, are
handled normally. This enables compilation of files previously preprocessed
with -E -fdirectives-only.

With both -E and -fpreprocessed, the rules for ~-fpreprocessed take prece-
dence. This enables full preprocessing of files previously preprocessed with -E
-fdirectives-only.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names and extended characters in identifiers. This
option is enabled by default for C99 (and later C standard versions) and C++.

-fno-canonical-system-headers
When preprocessing, do not shorten system header paths with canonicalization.

-fmax-include-depth=depth
Set the maximum depth of the nested #include. The default is 200.

-fsearch-include-path[=kind]
Look for input files on the #include path, not just the current directory. This
is particularly useful with C++20 modules, for which both header units and
module interface units need to be compiled directly:
gt+ —-c -std=c++20 -fmodules -fsearch-include-path bits/stdc++.h bits/std.cc

kind defaults to ‘user’, which looks on the #include "..." search path; you
can also explicitly specify ‘system’ for the #include <. ..> search path.

302

Using the GNU Compiler Collection (GCC)

-ftabstop=width

Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-ftrack-macro-expansion|[=level]

Track locations of tokens across macro expansions. This allows the compiler to
emit diagnostic about the current macro expansion stack when a compilation
error occurs in a macro expansion. Using this option makes the preprocessor
and the compiler consume more memory. The level parameter can be used
to choose the level of precision of token location tracking thus decreasing the
memory consumption if necessary. Value ‘0’ of level de-activates this option.
Value ‘1’ tracks tokens locations in a degraded mode for the sake of minimal
memory overhead. In this mode all tokens resulting from the expansion of an
argument of a function-like macro have the same location. Value ‘2’ tracks
tokens locations completely. This value is the most memory hungry. When this
option is given no argument, the default parameter value is ‘2’.

Note that -ftrack-macro-expansion=2 is activated by default.

-fmacro-prefix-map=old=new

When preprocessing files residing in directory old, expand the __FILE__ and
__BASE_FILE__ macros as if the files resided in directory new instead. This can
be used to change an absolute path to a relative path by using . for new which
can result in more reproducible builds that are location independent. This
option also affects __builtin_FILE() during compilation. See also -ffile-
prefix-map and -fcanon-prefix-map.

-fexec-charset=charset

Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset

Set the wide execution character set, used for wide string and character con-
stants. The default is one of UTF-32BE, UTF-32LE, UTF-16BE, or UTF-16LE,
whichever corresponds to the width of wchar_t and the big-endian or little-
endian byte order being used for code generation. As with -fexec-charset,
charset can be any encoding supported by the system’s iconv library rou-
tine; however, you will have problems with encodings that do not fit exactly in
wchar_t.

-finput-charset=charset

Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command-line option. Currently
the command-line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

Chapter 3: GCC Command Options 303

-fpch-deps

When using precompiled headers (see Section 3.24 [Precompiled Headers],
page 591), this flag causes the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified, only the
precompiled header are listed and not the files that were used to create it,
because those files are not consulted when a precompiled header is used.

—-fpch-preprocess

This option allows use of a precompiled header (see Section 3.24 [Precompiled
Headers], page 591) together with -E. It inserts a special #pragma, #pragma
GCC pch_preprocess "filename" in the output to mark the place where the
precompiled header was found, and its filename. When -fpreprocessed is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by -save-temps.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

-fworking-directory

-C

—-—comments

-CC

Enable generation of linemarkers in the preprocessor output that let the com-
piler know the current working directory at the time of preprocessing. When
this option is enabled, the preprocessor emits, after the initial linemarker, a
second linemarker with the current working directory followed by two slashes.
GCC uses this directory, when it’s present in the preprocessed input, as the di-
rectory emitted as the current working directory in some debugging information
formats. This option is implicitly enabled if debugging information is enabled,
but this can be inhibited with the negated form -fno-working-directory. If
the -P flag is present in the command line, this option has no effect, since no
#line directives are emitted whatsoever.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using -C; it causes the preproces-
sor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

—--comments—-in-macros

Do not discard comments, including during macro expansion. This is like -C,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side effects of the -C option, the -CC option causes all C++-
style comments inside a macro to be converted to C-style comments. This

304 Using the GNU Compiler Collection (GCC)

is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The -CC option is generally used to support lint comments.

-P

--no-line-commands
Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-traditional

--traditional

-traditional-cpp

--traditional-cpp
Try to imitate the behavior of pre-standard C preprocessors, as opposed to ISO
C preprocessors. See the GNU CPP manual for details.

Note that GCC does not otherwise attempt to emulate a pre-standard C com-
piler, and these options are only supported with the —-E switch, or when invoking
CPP explicitly.

-trigraphs
--trigraphs
Support ISO C trigraphs. These are three-character sequences, all starting with
“?7’. that are defined by ISO C to stand for single characters. For example, ‘??/’
stands for ‘\’, so ‘'??7/n'’ is a character constant for a newline.
The nine trigraphs and their replacements are
Trigraph: ??7(?7) ??< 77> ?7= 7?77/ 77" 770 77—
Replacement: [] { } # \ - I -
By default, GCC ignores trigraphs, but in standard-conforming modes it con-
verts them. See the -std and -ansi options.

-remap Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

-H

-—trace-includes
Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with .. .x’ and a valid one with *...!" .

-dletters

-—dump=1letters

-—dump letters
Says to make debugging dumps during compilation as specified by letters. The
flags documented here are those relevant to the preprocessor. Other letters
are interpreted by the compiler proper, or reserved for future versions of GCC,
and so are silently ignored. If you specify letters whose behavior conflicts, the
result is undefined. See Section 3.20 [Developer Options], page 328, for more
information.

Chapter 3: GCC Command Options 305

-dM
——dump=M

-fdebug-cpp

Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file foo.h, the command

touch foo.h; cpp -dM foo.h

shows all the predefined macros.
If you use -dM without the -E option, —-dM is interpreted as a syn-

onym for -fdump-rtl-mach. See Section “Developer Options” in
gec.

Like -dM except that it outputs both the ‘#define’ directives and
the result of preprocessing. Both kinds of output go to the standard
output file.

Like -dD, but emit only the macro names, not their expansions.

Output ‘#include’ directives in addition to the result of prepro-
cessing.

Like —-dD except that only macros that are expanded, or whose de-
finedness is tested in preprocessor directives, are output; the output
is delayed until the use or test of the macro; and ‘#undef’ directives
are also output for macros tested but undefined at the time.

This option is only useful for debugging GCC. When used from CPP or with
-E, it dumps debugging information about location maps. Every token in the
output is preceded by the dump of the map its location belongs to.

When used from GCC without -E, this option has no effect.

-Wp,option

You can use -Wp, option to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and -Wp forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using -Wp and let the driver handle the options instead.

-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply
system-specific preprocessor options that GCC does not recognize.

If you want to pass an option that takes an argument, you must use
-Xpreprocessor twice, once for the option and once for the argument.

306 Using the GNU Compiler Collection (GCC)

-no-integrated-cpp

--no-integrated-cpp
Perform preprocessing as a separate pass before compilation. By default, GCC
performs preprocessing as an integrated part of input tokenization and parsing.
If this option is provided, the appropriate language front end (ccl, cciplus,
or cclobj for C, C++, and Objective-C, respectively) is instead invoked twice,
once for preprocessing only and once for actual compilation of the preprocessed
input. This option may be useful in conjunction with the -B or -wrapper
options to specify an alternate preprocessor or perform additional processing of
the program source between normal preprocessing and compilation.

3.15 Passing Options to the Assembler
You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option

--for-assembler=option

--for-assembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options that GCC does not recognize.

If you want to pass an option that takes an argument, you must use
-Xassembler twice, once for the option and once for the argument.

3.16 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options]|, page 33.

-flink-libatomic
Enable linking of libatomic if it’s supported by target, and is enabled by default.
The negative form -fno-link-libatomic can be used to explicitly disable link-
ing of libatomic.

-flinker-output=type
This option controls code generation of the link-time optimizer. By default the
linker output is automatically determined by the linker plugin. For debugging

Chapter 3: GCC Command Options 307

the compiler and if incremental linking with a non-LTO object file is desired,
it may be useful to control the type manually.

If type is ‘exec’, code generation produces a static binary. In this case -fpic
and -fpie are both disabled.

If type is ‘dyn’, code generation produces a shared library. In this case -fpic
or —fPIC is preserved, but not enabled automatically. This allows to build
shared libraries without position-independent code on architectures where this
is possible, i.e. on x86.

If type is ‘pie’, code generation produces an -fpie executable. This results in
similar optimizations as ‘exec’ except that —fpie is not disabled if specified at
compilation time.

If type is ‘rel’, the compiler assumes that incremental linking is done. The
sections containing intermediate code for link-time optimization are merged,
pre-optimized, and output to the resulting object file. In addition, if -ffat-
lto-objects is specified, binary code is produced for future non-LTO linking.
The object file produced by incremental linking is smaller than a static library
produced from the same object files. At link time the result of incremental
linking also loads faster than a static library assuming that the majority of
objects in the library are used.

Finally ‘nolto-rel’ configures the compiler for incremental linking where code
generation is forced, a final binary is produced, and the intermediate code for
later link-time optimization is stripped. When multiple object files are linked
together the resulting code is better optimized than with link-time optimiza-
tions disabled (for example, cross-module inlining happens), but most of the
benefits of whole-program optimizations are lost.

During the incremental link (by -r) the linker plugin defaults to rel. GNU
Binutils 2.44 or later is needed to incrementally link LTO objects and non-LTO
objects into a single mixed object file. If any of the object files in an incremen-
tal link cannot be used for link-time optimization, the linker plugin issues a
warning and uses ‘nolto-rel’. To maintain whole-program optimization, link
such objects into a static library instead.

—-fuse-1d=bfd
Use the bfd linker instead of the default linker.

-fuse-1ld=gold
Use the gold linker instead of the default linker.

—-fuse-1d=11d
Use the LLVM 114 linker instead of the default linker.

-fuse-1ld=mold
Use the Modern Linker (mold) instead of the default linker.

-fuse-1ld=wild
Use the Wild linker (wild) instead of the default linker.

308

-llibrary
-1 library

-lobjc

Using the GNU Compiler Collection (GCC)

Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

The -1 option is passed directly to the linker by GCC. Refer to your linker
documentation for exact details. The general description below applies to the
GNU linker.

The linker searches a standard list of directories for the library. The directories
searched include several standard system directories plus any that you specify
with -L.

Static libraries are archives of object files, and have file names like
liblibrary.a. Some targets also support shared libraries, which typically
have names like liblibrary.so. If both static and shared libraries are
found, the linker gives preference to linking with the shared library unless the
-static option is used.

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are specified.
Thus, ‘foo.o -1z bar.o’ searches library ‘z’ after file foo.o but before bar.o.
If bar. o refers to functions in ‘z’, those functions may not be loaded.

You need this special case of the -1 option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless -nostdlib, -nolibc, or —-nodefaultlibs is
used.

-nodefaultlibs

-nolibc

Do not use the standard system libraries when linking. Only the libraries you
specify are passed to the linker, and options specifying linkage of the system
libraries, such as -static-libgcc or -shared-libgcc, are ignored. The stan-
dard startup files are used normally, unless -nostartfiles is used.

The compiler may generate calls to memcmp, memset, memcpy and memmove.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is specified.

Do not use the C library or system libraries tightly coupled with it when linking.
Still link with the startup files, 1ibgcc or toolchain provided language support
libraries such as 1ibgnat, libgfortran or libstdc++ unless options prevent-
ing their inclusion are used as well. This typically removes -1c from the link
command line, as well as system libraries that normally go with it and become
meaningless when absence of a C library is assumed, for example -~1pthread or
-1m in some configurations. This is intended for bare-board targets when there
is indeed no C library available.

Chapter 3: GCC Command Options 309

-nostdlib

--no-standard-libraries

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify are passed to the linker, and
options specifying linkage of the system libraries, such as -static-1libgcc or
-shared-1libgcc, are ignored.

The compiler may generate calls to memcmp, memset, memcpy and memmove.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by -nostdlib and -nodefaultlibs
is 1ibgcc.a, a library of internal subroutines which GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
Section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of libgcc.a.) In most cases, you need libgcc.a
even when you want to avoid other standard libraries. In other words, when
you specify -nostdlib or -nodefaultlibs you should usually specify -1gcc
as well. This ensures that you have no unresolved references to internal GCC
library subroutines. (An example of such an internal subroutine is __main,
used to ensure C++ constructors are called; see Section “collect2” in GNU
Compiler Collection (GCC) Internals.)

-nostdlib++

-e entry

Do not implicitly link with standard C++ libraries.

-—entry=entry
--entry entry

-pie
--pie

-no-pie

Specify that the program entry point is entry. The argument is interpreted by
the linker; the GNU linker accepts either a symbol name or an address.

Produce a dynamically linked position independent executable on targets that
support it. For predictable results, you must also specify the same set of options
used for compilation (-fpie, —=fPIE, or model suboptions) when you specify this
linker option.

Don’t produce a dynamically linked position independent executable.

-static-pie
--static-pie

-pthread

Produce a static position independent executable on targets that support it. A
static position independent executable is similar to a static executable, but can
be loaded at any address without a dynamic linker. For predictable results, you
must also specify the same set of options used for compilation (-fpie, ~fPIE,
or model suboptions) when you specify this linker option.

Link with the POSIX threads library. This option is supported on GNU /Linux
targets, most other Unix derivatives, and also on x86 Cygwin and MinGW
targets. On some targets this option also sets flags for the preprocessor, so it
should be used consistently for both compilation and linking.

310

-r

-rdynamic

-S

-static
--static

—-shared
—-shared

Using the GNU Compiler Collection (GCC)

Produce a relocatable object as output. This is also known as partial linking.

Pass the flag -export-dynamic to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this overrides -pie and prevents
linking with the shared libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results, you
must also specify the same set of options used for compilation (-fpic, -fPIC,
or model suboptions) when you specify this linker option.*

-shared-libgcc
-static-libgcc

On systems that provide libgcc as a shared library, these options force the
use of either the shared or static version, respectively. If no shared version
of libgcc was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
libgcc instead of the static version. The most common of these is when the ap-
plication wishes to throw and catch exceptions across different shared libraries.
In that case, each of the libraries as well as the application itself should use the
shared libgcc.

Therefore, the G++ driver automatically adds -shared-1ibgcc whenever you
build a shared library or a main executable, because C++ programs typically
use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they are not always linked with the shared libgcc. If GCC finds, at its
configuration time, that you have a non-GNU linker or a GNU linker that does
not support option —-eh-frame-hdr, it links the shared version of 1ibgcc into
shared libraries by default. Otherwise, it takes advantage of the linker and
optimizes away the linking with the shared version of 1ibgcc, linking with the
static version of libgcc by default. This allows exceptions to propagate through
such shared libraries, without incurring relocation costs at library load time.
However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ driver, or using the option -shared-
libgcc, such that it is linked with the shared libgcec.

L On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous. -shared suppresses the addition of startup code to alter the floating-point environment as
done with -ffast-math, -Ofast or ~-funsafe-math-optimizations on some targets.

Chapter 3: GCC Command Options 311

-static-libasan

When the -fsanitize=address option is used to link a program, the GCC
driver automatically links against 1ibasan. If libasan is available as a shared
library, and the -static option is not used, then this links against the shared
version of libasan. The -static-libasan option directs the GCC driver to
link 1ibasan statically, without necessarily linking other libraries statically.

-static-libtsan

When the -fsanitize=thread option is used to link a program, the GCC
driver automatically links against 1ibtsan. If libtsan is available as a shared
library, and the -static option is not used, then this links against the shared
version of libtsan. The -static-libtsan option directs the GCC driver to
link 1ibtsan statically, without necessarily linking other libraries statically.

-static-liblsan

When the -fsanitize=1leak option is used to link a program, the GCC driver
automatically links against 1iblsan. If 1iblsan is available as a shared library,
and the -static option is not used, then this links against the shared version of
liblsan. The -static-liblsan option directs the GCC driver to link 1iblsan
statically, without necessarily linking other libraries statically.

-static-libubsan

When the -fsanitize=undefined option is used to link a program, the GCC
driver automatically links against libubsan. If libubsan is available as a
shared library, and the -static option is not used, then this links against the
shared version of libubsan. The -static-libubsan option directs the GCC
driver to link libubsan statically, without necessarily linking other libraries
statically.

-static-libstdc++

-symbolic
--symbolic

-T script

When the g++ program is used to link a C++ program, it normally automatically
links against libstdc++