The GNU Modula-2 Compiler

For ccc version 16.0.1 (pre-release)

(GCC)

Gaius Mulley

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999-2026 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

1 Overview of GNU Modula-2.................... 1
1.1 What is GNU Modula-2 ... 1
1.2 Why use GNU Modula-2 oo 1
1.3 How to get source code using git..............ocoiiiiiiiii.. 1
1.4 GNU Modula-2 Features.c.ooiiiiiiiiiiienn... 1

2 Using GNU Modula-2........................... 3
2.1 Example compile and link 3
2.2 Compiler Optionst 3
2.3 Elementary data types...... ... 10
2.4 Permanently accessible base procedures. 11

2.4.1 Standard procedures and functions common to PIM and ISO.. 11
2.4.2 IS0 specific standard procedures and functions............ 16
2.5 Behavior of the high procedure function........................ 17
2.6 GNU Modula-2 supported dialects...............ccooiiiia.. 18
2.6.1 Integer division, remainder and modulus 19
2.7 Module Search Path........ i i 19
2.8 FException implementation, 20
2.9 How to detect run time problems at compile time.............. 20
2.10 GNU Modula-2 language extensionsc...... 23
2.10.1 Optional procedure parameter 26
2.11 Type compatibility 27
2.11.1 Expression compatibility............. ...l 28
2.11.2 Assignment compatibilityl 28
2.11.3 Parameter compatibility oo 29
2.12 Exception handling............ .o i i 29
2.13 Unbounded by reference..............cooiii i, 32
2.14 Building a shared library i 34
2.15 How to produce swig interface files 34
2.15.1 Limitations of automatic generated of Swig files.......... 35
2.16 How to produce a Python module 36
2.17 Interfacing GNU Modula-2 to C.......t 40
2.18 Interface to assembly language..........., 41
2.19 Data type alignment 42
2.20 Packing data types...... ..o 44
2.21 Accessing GNU Modula-2 Built-ins, 45
2.22 The PIM system module i 52
2.23 The ISO system module........ ... 56
2.24 Release map.o 61
2.25 Documentation......... ... 61
2.26 Regression tests for gm2 in the repository..................... 61
2.27 LAmitations.ooouiiur i 61

2.28 ODJECHIVES. « ottt et e 61

229 FAQ .+ .o oot 62
2.29.1 Why use the C++ exception mechanism in GCC, rather
than a bespoke Modula-2 mechanism? 62
2,30 ComMUDNILY . . .vvt ettt e e 62
2.31 Other languages for GCC......... ... i .. 62
2.32 License of GNU Modula-2 ... 62
GNU General Public License 63
Contributing to GNU Modula-2.......... i, 73
3 EBNF of GNU Modula-2...................... 75
4 PIM and ISO library definitions.............. 84
4.1 Base libraries.oooiiii e 84
4.1.1 gm2-libs/ARRAYOFCHAR, 84
4.1.2 gm2-libs/ASCITo 85
4.1.3 gm2-1Ibs/ATES ..o 86
4.1.4 gm?2-libs/Assertion........... ... oo 87
4.1.5 gm2-libs/Break.......... ... 88
4.1.6 gm2-libs/Builtins.......... ..o i 89
4.1.7 gm2-libs/CFileSysOpooouinii i 95
4.1.8 gm2-libs/CHAR 97
4.1.9 gm2-libs/COROUTINESt 98
4.1.10 gm2-libs/CmdATES ..ot 99
4.1.11 gm2-libs/Debugooviuiii 100
4.1.12 gm2-libs/DynamicStrings...........coovuiiiiiiin... 101
4.1.13 gm2-libs/Environment.............oooiiuiiiniiia... 109
4.1.14 gm2-libs/FIO ... 110
4.1.15 gm2-1ibs/FileSysOpoovviriii i 117
4.1.16 gm2-libs/FormatStrings ...t 118
4117 @m2-Bibs/FPulO .o 120
4.1.18 gm2-1ibs/GetOpt .. .o.vviri i 121
4.1.19 gm2-libs/IOo 124
4.1.20 gm2-libs/Indexingcoooiiiiiiiiiiiiii 126
4.1.21 gm2-libs/LMathlib0o 129
4.1.22 gm2-libs/LegacyReall 130
4.1.23 gm?2-libs/M2Dependent........ ... 131
4.1.24 gm2-libs/M2EXCEPTION, 133
4.1.25 gm2-libs/M2RTSo 134
4.1.26 gm2-libs/MathLibO......... ... 138
4.1.27 gm2-libs/MemUtils........ ... 139
4.1.28 gm2-libs/NumberIO 140
4.1.29 gm2-libs/OptLib 142
4.1.30 gm2-libs/PushBackInput, 144
4.1.31 gm2-libs/RTExceptions.c..oovuiiiiiiiiiinia.. 147

ii

4.1.32 gm2-libs/RTint.......ooviiii e 151
4.1.33 gm2-1ibs/SATES. ..o\t 154
4.1.34 gm2-libs/SCmAATESt 155
4.1.35 gm2-libs/SEnvironment............o 156
4.1.36 gm2-libs/SFIOo 157
4.1.37 gm2-libs/SMathLib0.... ..., 159
4.1.38 gm2-libs/SYSTEM 160
4.1.39 gm2-libs/Scan..... ... 164
4.1.40 gm2-libs/Selective....... i 166
4141 gm2-libs/StdIO.o 168
4.1.42 gm2-1ibs/Storageovviiii 170
4.1.43 gm2-libs/StrCase.... ... 171
4.1.44 gm2-libs/StrIO o 172
4.1.45 gm2-libs/Strlib ... 173
4.1.46 gm2-libs/Stringoovuiiiiiii 175
4.1.47 gm2-libs/StringConvert. ..o, 176
4.1.48 gm2-libs/StringFileSysOp ...t 183
4.1.49 gm2-libs/SysExceptionsc.coiiiiiiiiiiii. 184
4.1.50 gm2-1ibs/SysStorageo.vueiiiiiiii i 185
4.1.51 gm2-libs/TimeString 187
4.1.52 gm2-1ibs/UnixArgsovuitiii i 188
4.1.53 gm2-libs/cbuiltin.......... ..o oo 189
4.1.54 gm2-1ibs/cgetopt ... o.vvii 194
4.1.55 gm2-libs/cxxabi... ... 196
4.1.56 gm2-libs/dtoa...... ..o 197
4.1.57 gm2-libs/errnoo. o 198
4.1.58 gm2-libs/gdbif. 199
4.1.59 gm2-libs/ldtoa ... 200
4.1.60 gm2-libs/libc.. ... 201
4.1.61 gm2-libs/libm ... 213
4.1.62 gm?2-libs/sckt... ... 215
4.1.63 gm2-libs/termioso.iiiiii 218
4.1.64 gm2-IDS/WIAPC. .\ttt 223
4.2 PIM and Logitech 3.0 Compatible 227
4.2.1 gm2-libs-log/BitBlockOpso, 227
4.2.2 gm2-libs-log/BitByteOpsoooviiiiiiiii 230
4.2.3 gm2-libs-log/BitWordOps.........ooviiiiiiiiiiiiia. 233
4.2.4 gm2-libs-log/BlockOps..... ... 236
4.2.5 gm2-libs-log/Breako 238
4.2.6 gm2-libs-log/CardinallO. ..., 239
4.2.7 gm2-libs-log/Conversionsc.coevuiiiiiiinia... 242
4.2.8 gm2-libs-log/DebugPMD i 243
4.2.9 gm2-libs-log/DebugTracecccooviiiiiiiiiiin... 244
4.2.10 gm2-libs-log/Delayccooiiiiiiiiiiii i 245
4.2.11 gm2-libs-log/Display........cooiiiiiiiiiiii.. 246
4212 gm2-libs-log/ErrorCode ... 247
4.2.13 gm2-libs-log/FileSystem ... 248

iii

4.2.14 gm2-libs-log/FloatingUtilities................. ... 254
4.2.15 gm2-libs-log/InOut ... 256
4.2.16 gm2-libs-log/Keyboard ..., 260
4217 gm2-libs-log/LonglOo i 261
4.2.18 gm2-libs-log/NumberConversion 262
4.2.19 gm2-libs-log/Random., 263
4.2.20 gm2-libs-log/RealConversions.ooovien... 265
4.2.21 gm2-libs-log/ReallnOut.t 268
4.2.22 gm2-libs-log/Strings 271
4.2.23 gm2-libs-log/Termbase ... 273
4.2.24 gm2-libs-log/Terminal ..., 275
4.2.25 gm2-libs-log/TimeDate..... ..., 277
4.3 PIM coroutine SUppOrtcovuiiiiiiii i 279
4.3.1 gm2-libs-coroutines/Executive 279
4.3.2 gm2-libs-coroutines/KeyBoardLEDs 282
4.3.3 gm2-libs-coroutines/SYSTEM 283
4.3.4 gm2-libs-coroutines/TimerHandler 289
4.4 M2 ISO Libraries.oouueit i 291
4.4.1 gm2-libs-iso/COROUTINES ..., 292
442 gm2-libs-iso/ChanConsts oo 295
4.4.3 gm?2-libs-iso/CharClass ... 297
4.4.4 gm2-libs-iso/ClientSocketo, 298
4.4.5 gm2-libs-iso/ComplexMath, 299
4.4.6 gm2-libs-iso/ConvStringlong, 301
4.4.7 gm2-libs-iso/ConvStringReal 302
4.4.8 gm2-libs-iso/ConvStringShort.............. ..., 303
4.4.9 gm2-1ibs-i80/ConvTyPesvueuiiiiiiii i, 304
4410 gm2-libs-iso/EXCEPTIONS ..., 305
4.4.11 gm2-libs-iso/ErrnoCategorycovviiiiioa.. 307
4.4.12 gm?2-libs-iso/GeneralUserExceptions 309
4.4.13 gm2-libs-iso/IOChancooviiiiiiiin 310
4.4.14 gm2-libs-iso/IOConStSot 314
4.4.15 gm2-libs-iso/IOLink 315
4416 gm2-libs-iso/IOResult il 318
4.417 gm2-libs-iso/LongComplexMath 319
4418 gm2-libs-iso/LongConv ..ot 321
4419 gm2-libs-iso/LonglO. 323
4.4.20 gm2-libs-iso/LongMath..........l 325
4421 gm2-libs-iso/LongStr ... 327
4.4.22 gm2-libs-iso/LongWholelO 329
4.4.23 gm2-libs-iso/LowlLongooiiiiiiiiiiii ... 330
4.4.24 gm2-libs-iso/LowReal..........l 332
4.4.25 gm2-libs-iso/LowShort............. oo 334
4.4.26 gm2-libs-iso/M2EXCEPTIONt 336
4.4.27 gm?2-libs-iso/M2RTS.o i 337
4.4.28 gm2-libs-iso/MemStream, 341
4.4.29 gm2-libs-iso/Preemptive..... ..., 343

iv

4.4.30
4.4.31
4.4.32
4.4.33
4.4.34
4.4.35
4.4.36
4.4.37
4.4.38
4.4.39
4.4.40
4.4.41
4.4.42
4.4.43
4.4.44
4.4.45
4.4.46
4.4.47
4.4.48
4.4.49
4.4.50
4.4.51
4.4.52
4.4.53
4.4.54
4.4.55
4.4.56
4.4.57
4.4.58
4.4.59
4.4.60
4.4.61
4.4.62
4.4.63
4.4.64
4.4.65
4.4.66
4.4.67
4.4.68
4.4.69
4.4.70
4.4.71
4.4.72
4.4.73
4.4.74
4.4.75
4.4.76

gm2-1ibs-180/Processes 344

gm2-libs-iso/ProgramArgs, 348
gm?2-1ibs-i80/RTco.o 349
gm?2-libs-iso/RTdata...................o i, 351
gm2-libs-iso/RTentity., 353
gm2-libs-iso/RTfio............oo i 354
gm2-libs-iso/RTgen.vei i 356
gm2-libs-iso/RTgenif i 359
gm?2-libs-iso/RTio ... 362
gm?2-libs-iso/RandomNumber........................... 364
gm2-libs-iso/RawlIO 367
gm?2-libs-iso/RealConv..............ooooiiiiiiiiiiia., 368
gm?2-libs-iso/ReallO ... 370
gm?2-libs-iso/RealMath 372
gm?2-libs-iso/RealStr..................... ... 374
gm2-libs-iso/RndFile ... 376
gm?2-libs-iso/SIOResult, 379
gm2-libs-iso/SLonglOo 380
gm2-libs-iso/SLongWholelO, 382
gm2-libs-iso/SRawlO 383
gm?2-libs-iso/SReallO 384
gm?2-libs-iso/SShortIO 386
gm?2-libs-iso/SShortWholeIO....................... 388
gm?2-libs-iso/STextIO.......... il 389
gm2-1libs-iso/SWholeIOot 391
gm?2-1ibs-iso/SYSTEM ...t 392
gm?2-libs-iso/Semaphoresol 397
gm2-libs-iso/SeqFile........o i 398
gm2-libs-iso/ShortComplexMath........................ 401
gm2-libs-iso/ShortConv......... 403
gm?2-libs-iso/ShortIOo 405
gm?2-libs-iso/ShortMath 407
gm?2-libs-iso/ShortStr...........o i 409
gm?2-libs-iso/ShortWholelO............................. 411
gm?2-libs-iso/SimpleCipher.......... ..., 412
gm?2-libs-iso/StdChans., 413
gm2-1ibs-iS0/Storageot 415
gm?2-libs-iso/StreamFile o oL 417
gm2-libs-iso/StringChano 418
gm2-1ibs-180/Stringsot 419
gm2-libs-iso/SysClock 423
gm2-libs-iso/TERMINATION ...t 425
gm?2-libs-iso/TermFile 426
gm?2-libs-iso/TextIO i 428
gm2-libs-iso/TextUtil. ... i, 430
gm?2-libs-iso/WholeConv........... ..., 431

gm?2-libs-iso/WholelO, 433

4.4.77
4.4.78
4.4.79
4.4.80

gm2-libs-iso/WholeStr............., 434
gm?2-libs-iso/wrapclock o i 435
gm2-libs-iso/wrapsocko i 438
gm2-libs-iso/wraptime.o 441

4.5 IndiCes . ..o 445

vi

1 Overview of GNU Modula-2

1.1 What is GNU Modula-2

GNU Modula-2 is a front end (https://gcc.gnu.org/frontends.html) for the GNU Com-
piler Collection (GCC (https://gcc.gnu.org)). The GNU Modula-2 compiler is compliant
with the PIM2, PIM3, PIM4 and ISO dialects. Also implemented are a complete set of free
ISO libraries and PIM libraries.

1

1.2 Why use GNU Modula-2

There are a number of advantages of using GNU Modula-2 rather than translate an existing
project into another language.

The first advantage is of maintainability of the original sources and the ability to debug
the original project source code using a combination of gm2 and gdb.

The second advantage is that gcc runs on many processors and platforms. gm2 builds
and runs on powerpc64le, amd64, 1386, aarch64 to name but a few processors.

gm?2 can produce swig interface headers to allow access from Python and other scripting
languages. It can also be used with C/C++ and generate shared libraries.

The compiler provides semantic analysis and run time checking (full ISO Modula-2
checking is implemented) and there is a plugin which can, under certain conditions, detect
run time errors at compile time.

The compiler supports PIM2, PIM3, PIM4 and ISO dialects of Modula-2, work is under-
way to implement M2R10. Many of the GCC builtins are available and access to assembly
programming is achieved using the same syntax as that used by GCC.

The gm2 driver allows third party libraries to be installed alongside gm2 libraries. See
Section 2.7 [Module Search Path], page 19.

1.3 How to get source code using git
GNU Modula-2 is now in the GCC git tree (https://gcc.gnu.org/git.html).

1.4 GNU Modula-2 Features

e the compiler currently complies with Programming in Modula-2 Edition 2, 3, 4 and ISO
Modula-2. Users can switch on specific language features by using: ‘~fpim’, ‘~-fpim2’,
‘~fpim3’, ‘~fpimé’ or ‘~fiso’.

! The four Modula-2 dialects supported are defined in the following references:
PIM2: 'Programming in Modula-2’, 2nd Edition, Springer Verlag, 1982, 1983 by Niklaus Wirth (PIM2).
PIM3: 'Programming in Modula-2’, 3rd Corrected Edition, Springer Verlag, 1985 (PIM3).

PIM4: 'Programming in Modula-2’, 4th Edition, Springer Verlag, 1988 (PIM4 (https://freepages.
modula2.org/report4/modula-2.html)).

ISO: the ISO Modula-2 language as defined in 'ISO/IEC Information technology - programming languages
- part 1: Modula-2 Language, ISO/IEC 10514-1 (1996)

https://gcc.gnu.org/frontends.html
https://gcc.gnu.org
https://gcc.gnu.org/git.html
https://freepages.modula2.org/report4/modula-2.html
https://freepages.modula2.org/report4/modula-2.html

Chapter 1: Overview of GNU Modula-2 2

e the option ‘~fswig’ will automatically create a swig interface file which corresponds to
the definition module of the file being compiled.

e exception handling is compatible with C++ and swig. Modula-2 code can be used with
C or C++ code.

e Python can call GNU Modula-2 modules via swig.
e shared libraries can be built.

e fixed sized types are now available from ‘SYSTEM’.
e variables can be declared at addresses.

e much better dwarf-2 debugging support and when used with ‘gdb’ the programmer
can display RECORDs, ARRAYs, SETs, subranges and constant char literals in Modula-2
syntax.

e supports sets of any ordinal size (memory permitting).

e casy interface to C, and varargs can be passed to C routines.

e many Logitech libraries have been implemented and can be accessed via:
‘~flibs=m2log,m2pim,m2iso’.

e coroutines have been implemented in the PIM style and these are accessible from SY'S-
TEM. A number of supporting libraries (executive and file descriptor mapping to in-
terrupt vector libraries are available through the ‘~flibs=m2iso,m2pim’ switch).

e can be built as a cross compiler (for embedded microprocessors such as the AVR and
the ARM).

2 Using GNU Modula-2

This document contains the user and design issues relevant to the Modula-2 front end to
gcc.

2.1 Example compile and link

The gm2 command is the GNU compiler for the Modula-2 language and supports many
of the same options as gcc. See Section “Option Summary” in Using the GNU Compiler
Collection (GCC). This manual only documents the options specific to gm2.

This section describes how to compile and link a simple hello world program. It provides
a few examples of using the different options mentioned in see Section 2.2 [Compiler options],
page 3. Assuming that you have a file called hello.mod in your current directory which
contains:

MODULE hello ;
FROM StrI0 IMPORT WriteString, Writeln ;

BEGIN
WriteString ('hello world') ; Writeln
END hello.

You can compile and link it by: ‘gm2 -g hello.mod’. The result will be an ‘a.out’ file
created in your directory.

You can split this command into two steps if you prefer. The compile step can be
achieved by: ‘gm2 -g -c -fscaffold-main hello.mod’ and the link via: ‘gm2 -g hello.o’.
1

2.2 Compiler options

This section describes the compiler options specific to GNU Modula-2 for generic flags
details See Section “Invoking GCC” in gcc.

For any given input file, the file name suffix determines what kind of compilation is done.
The following kinds of input file names are supported:

file.mod Modula-2 implementation or program source files. See the ‘~fmod=" option if
you wish to compile a project which uses a different source file extension.

file.def Modula-2 definition module source files. Definition modules are not compiled
separately, in GNU Modula-2 definition modules are parsed as required when
program or implementation modules are compiled. See the ‘-fdef=’ option if
you wish to compile a project which uses a different source file extension.

¢

1 To see all the compile actions taken by ‘gm2’ users can also add the ‘-v’ flag at the command line, for

example:
‘gm2 -v -g -I. hello.mod’
This displays the sub processes initiated by ‘gm2’ which can be useful when trouble shooting.

Chapter 2: Using GNU Modula-2 4

You can specify more than one input file on the gm2 command line,

-g create debugging information so that debuggers such as gdb can inspect and
control executable.

-I used to specify the search path for definition and implementation modules. An
example is: gm2 -g -c -I.:../../libs foo.mod. If this option is not specified
then the default path is added which consists of the current directory followed
by the appropriate language dialect library directories.

-fauto-init
turns on auto initialization of pointers to NIL. Whenever a block is created all
pointers declared within this scope will have their addresses assigned to NIL.

-fbounds turns on run time subrange, array index and indirection via NIL pointer check-
ing.

-fcase turns on compile time checking to check whether a CASE statement requires an
ELSE clause when on was not specified.

-fcpp preprocess the source with ‘cpp -lang-asm -traditional-cpp’ For further de-
tails about these options See Section “Invocation” in cpp. If ‘~fcpp’ is supplied
then all definition modules and implementation modules which are parsed will
be prepossessed by ‘cpp’.

-fdebug-builtins
call a real function, rather than the builtin equivalent. This can be useful for
debugging parameter values to a builtin function as it allows users to single
step code into an intrinsic function.

-fdef= recognize the specified suffix as a definition module filename. The default im-
plementation and module filename suffix is .def. If this option is used GNU
Modula-2 will still fall back to this default if a requested definition module is
not found.

-fdump-system-exports
display all inbuilt system items. This is an internal command line option.

-fexceptions
turn on exception handling code. By default this option is on. Exception
handling can be disabled by ‘-fno-exceptions’ and no references are made to
the run time exception libraries.

-fextended-opaque
allows opaque types to be implemented as any type. This is a GNU Modula-2
extension and it requires that the implementation module defining the opaque
type is available so that it can be resolved when compiling the module which
imports the opaque type.

-ffloatvalue
turns on run time checking to check whether a floating point number is about
to exceed range.

Chapter 2: Using GNU Modula-2 5

-fgen-modu

—-findex

-fiso

—-flibs=

-static-1i

-fm2-debug

-fm2-dump=

-fm2-dump-

-fm2-dump-

-fm2-dump-

-fm2-dump-

le-list=filename

attempt to find all modules when linking and generate a module list. If the
filename is ‘-’ then the contents are not written and only used to force the
linking of all module ctors. This option cannot be used if ‘~fuse-list=’ is
enabled.

generate code to check whether array index values are out of bounds. Array
index checking can be disabled via ‘~fno-index’.

turn on ISO standard features. Currently this enables the ISO SYSTEM module
and alters the default library search path so that the ISO libraries are searched
before the PIM libraries. It also effects the behavior of DIV and MOD operators.
See Section 2.6 [Dialect], page 18.

modifies the default library search path. The libraries supplied are: m2pim,
m2iso, m2min, m2log and m2cor. These map onto the Programming in Modula-
2 base libraries, ISO standard libraries, minimal library support, Logitech com-
patible library and Programming in Modula-2 with coroutines. Multiple li-
braries can be specified and are comma separated with precedence going to
the first in the list. It is not necessary to use -flibs=m2pim or -flibs=m2iso
if you also specify -fpim, -fpim2, -fpim3, -fpim4 or -fiso. Unless you are using
-flibs=m2min you should include m2pim as the they provide the base modules
which all other dialects utilize. The option ‘~fno-libs=-" disables the ‘gm2’
driver from modifying the search and library paths.

bgm2
On systems that provide the m2 runtimes as both shared and static libraries,
this option forces the use of the static version.

-trace=
turn on trace debugging using a comma separated list: ‘line,token,quad,all’.
This is an internal command line option.

enable dumping of modula-2 internal representation of data structures using a
comma separated list. The list can contain: ‘quad,gimple,decl,all’.

decl=filestem
dump the modula-2 representation of a symbol to the filestem specified. This
option only takes effect if the ‘~fm2-dump-filter’ is specified.

gimple=filestem
dump modula-2 gimple representation to the filestem specified.

quad=filestem
dump quadruple representation to the filestem specified.

filter=‘rules’

filter the language dumps ‘-fdump-lang-decl’, ‘-fdump-lang-gimple’
and‘-fdump-lang-quad’ on ‘rules’. ‘rules’ must be a comma separated
list which can take three forms: the full decl textual name of a procedure,
‘[libname.]module.ident’ or ‘[filename:]module.ident’. This is an

Chapter 2: Using GNU Modula-2 6

internal command line option. Currently it only filters on procedure
names and regexp matching is not implemented. Three examples of
its use following the previous forms could be: -fm2-dump-filter=_
M2_hello_init, -fm2-dump-filter=m2pim.StrI0.WriteString and
-fm2-dump-filter=StrLib.mod:StrI0.WriteString.

-fm2-file-offset-bits=
force the type SYSTEM.COFF_T to be built using the specified number of bits. If
this option is not used then default is CSSIZE_T bits.

-fm2-g improve the debugging experience for new programmers at the expense of gen-
erating nop instructions if necessary to ensure single stepping precision over all
code related keywords. An example of this is in termination of a list of nested
IF statements where multiple END keywords are mapped onto a sequence of nop
instructions.

-fm2-lower-case
render keywords in error messages using lower case.

-fm2-pathname=
specify the module mangled prefix name for all modules in the following include
paths.

-fm2-pathnamel
for internal use only: used by the driver to copy the user facing ‘-I’ option.

-fm2-pathname-root=pathroot
add search paths derived from the specified pathroot. See Section 2.7 [Module
Search Path], page 19, for examples.

-fm2-pathname-rootI

for internal wuse only: used by the driver to copy every user
‘~fm2-pathname-root=" facing option in order with all other ‘-T’
options.

-fm2-plugin

insert plugin to identify run time errors at compile time (default on).

-fm2-prefix=
specify the module mangled prefix name. All exported symbols from a definition
module will have the prefix name.

-fm2-statistics
generates quadruple information: number of quadruples generated, number of
quadruples remaining after optimization and number of source lines compiled.

-fm2-strict-type
experimental flag to turn on the new strict type checker.

-fm2-strict-type-reason
provides more detail why the types are incompatible.

-fm2-whole-program
compile all implementation modules and program module at once. Notice that
you need to take care if you are compiling different dialect modules (particu-

Chapter 2:

—-fmod=

-fnil

—-fpim

-fpim2

-fpim3

-fpim4

Using GNU Modula-2 7

larly with the negative operands to modulus). But this option, when coupled
together with -03, can deliver huge performance improvements.

recognize the specified suffix as implementation and module filenames. The
default implementation and module filename suffix is .mod. If this option is
used GNU Modula-2 will still fall back to this default if it needs to read an
implementation module and the specified suffixed filename does not exist.

generate code to detect accessing data through a NIL value pointer. Derefer-
encing checking through a NIL pointer can be disabled by ‘~fno-nil’.

turn on PIM standard features. Currently this enables the PIM SYSTEM module
and determines which identifiers are pervasive (declared in the base module).
If no other ‘-fpim[234]° switch is used then division and modulus operators
behave as defined in PIM4. See Section 2.6 [Dialect], page 18.

turn on PIM-2 standard features. Currently this removes SIZE from being a
pervasive identifier (declared in the base module). It places SIZE in the SYSTEM
module. It also effects the behavior of DIV and MOD operators. See Section 2.6
[Dialect], page 18.

turn on PIM-3 standard features. Currently this only effects the behavior of
DIV and MOD operators. See Section 2.6 [Dialect], page 18.

turn on PIM-4 standard features. Currently this only effects the behavior of
DIV and MOD operators. See Section 2.6 [Dialect], page 18.

-fpositive-mod-floor-div

-fpthread

-frange

—-freturn

forces the DIV and MOD operators to behave as defined by PIM4. All modulus
results are positive and the results from the division are rounded to the floor.
See Section 2.6 [Dialect], page 18.

link against the pthread library. By default this option is on. It can be dis-
abled by ‘~fno-pthread’. GNU Modula-2 uses the GCC pthread libraries to
implement coroutines (see the SYSTEM implementation module).

generate code to check the assignment range, return value range set range and
constructor range. Range checking can be disabled via ‘~fno-range’.

generate code to check that functions always exit with a RETURN and do not fall
out at the end. Return checking can be disabled via ‘-fno-return’.

-fruntime-modules=

specify, wusing a comma separated list, the run time modules and
their order. These modules will initialized first before any other
modules in the application dependency. By default the run time
modules list is set to m2iso:RTentity,m2iso:Storage,m2iso:SYSTEM,
m2iso:M2RTS,m2iso:RTExceptions,m2iso:I0Link. Note that these modules
will only be linked into your executable if they are required. Adding a long
list of dependent modules will not effect the size of the executable it merely
states the initialization order should they be required.

Chapter 2: Using GNU Modula-2 8

-fscaffold-dynamic
the option ensures that ‘gm2’ will generate a dynamic scaffold infrastructure
when compiling implementation and program modules. By default this
option is on. Use ‘-fno-scaffold-dynamic’ to turn it off or select
‘~fno-scaffold-static’.

-fscaffold-c
generate a C source scaffold for the current module being compiled.

-fscaffold-c++
generate a C++ source scaffold for the current module being compiled.

-fscaffold-main
force the generation of the ‘main’ function. This is not necessary if the ‘-c’ is
omitted.

-fscaffold-static
the option ensures that ‘gm2’ will generate a static scaffold within the pro-
gram module. The static scaffold consists of sequences of calls to all dependent
module initialization and finalization procedures. The static scaffold is useful
for debugging and single stepping the initialization blocks of implementation
modules.

-fshared generate a shared library from the module.

-fsoft-check-all
turns on all run time checks. This is the same as invoking GNU Modula-2 us-
ing the command options -fnil -frange -findex -fwholevalue -fwholediv
-fcase -freturn.

-fsources
displays the path to the source of each module. This option can be used at
compile time to check the correct definition module is being used.

-fswig generate a swig interface file.

-funbounded-by-reference

enable optimization of unbounded parameters by attempting to pass non VAR
unbounded parameters by reference. This optimization avoids the implicit copy
inside the callee procedure. GNU Modula-2 will only allow unbounded param-
eters to be passed by reference if, inside the callee procedure, they are not
written to, no address is calculated on the array and it is not passed as a VAR
parameter. Note that it is possible to write code to break this optimization,
therefore this option should be used carefully. For example it would be possible
to take the address of an array, pass the address and the array to a procedure,
read from the array in the procedure and write to the location using the address
parameter.

Due to the dangerous nature of this option it is not enabled when the ‘-0’
option is specified.

-fuse-list=filename
if ‘~fscaffold-static’ is enabled then use the file filename for the initial-
ization order of modules. Whereas if ‘-fscaffold-dynamic’ is enabled then

Chapter 2: Using GNU Modula-2 9

use this file to force linking of all module ctors. This option cannot be used if
‘~fgen-module-list=’is enabled.

-fwholediv
generate code to detect whole number division by zero or modulus by zero.

-fwholevalue
generate code to detect whole number overflow and underflow.

-Wcase-enum
generate a warning if a CASE statement selects on an enumerated type expression
and the statement is missing one or more CASE labels. No warning is issued if
the CASE statement has a default ELSE clause. The option ‘-Wall’ will turn on
this flag.

-Wuninit-variable-checking
issue a warning if a variable is used before it is initialized. The checking only
occurs in the first basic block in each procedure. It does not check parameters,
array types or set types.

-Wuninit-variable-checking=all,known,cond

issue a warning if a variable is used before it is initialized. The checking will
only occur in the first basic block in each procedure if ‘known’ is specified.
If ‘cond’ or ‘all’ is specified then checking continues into conditional
branches of the flow graph. All checking will stop when a procedure
call is invoked or the top of a loop is encountered. The option ‘-Wall’
will turn on this flag with ‘-Wuninit-variable-checking=known’. The
‘~Wuninit-variable-checking=all’ will increase compile time.

-fwideset
turn on access to the runtime support library module ‘M2WIDESET’. By default
this option is on. Wideset provision can be disabled by ‘~fno-wideset’ and no
reference will be made to the run time ‘M2WIDESET’ library.

This section describes the linking related options. There are three linking strategies avail-
able which are dynamic scaffold, static scaffold and user defined. The dynamic scaffold is
enabled by default and each module will register itself to the run time ‘M2RTS’ via a construc-
tor. The static scaffold mechanism will invoke each modules ‘_init’ and ‘_finish’ function
in turn via a sequence of calls from within ‘main’. Lastly the user defined strategy can be
implemented by turning off the dynamic and static options via ‘~fno-scaffold-dynamic’
and ‘-fno-scaffold-static’.

In the simple test below:

$ gm2 hello.mod

the driver will add the options ‘-fscaffold-dynamic’ and ‘-fgen-module-list=-’
which generate a list of application modules and also creates the ‘main’ function with calls
to ‘M2RTS’. It can be useful to add the option ‘-fsources’ which displays the source files
as they are parsed and summarizes whether the source file is required for compilation or
linking.

If you wish to split the above command line into a compile and link then you could use
these steps:

$ gm2 -c -fscaffold-main hello.mod

Chapter 2: Using GNU Modula-2 10

$ gm2 hello.o

The ‘-fscaffold-main’ informs the compiler to generate the ‘main’ function and scaf-
fold. You can enable the environment variable ‘GCC_M2LINK_RTFLAG’ to trace the construc-
tion and destruction of the application. The values for ‘GCC_M2LINK_RTFLAG’ are shown in
the table below:

value | meaning

all turn on all flags below

module trace modules as they register themselves
hex display the hex address of the init/fini functions
warning | show any warnings

dep trace module dependency resolution
post generate module list after dependency resolution
force generate a module list after dependency and forced

I
|
|
|
pre | generate module list prior to dependency resolution
I
|
|
|

ordering is complete
The values can be combined using a comma separated list.

One of the advantages of the dynamic scaffold is that the driver behaves in a similar
way to the other front end drivers. For example consider a small project consisting of
4 definition implementation modules (‘a.def’, ‘a.mod’, ‘b.def’, ‘b.mod’, ‘c.def’, ‘c.mod’,
‘d.def’, ‘d.mod’) and a program module ‘program.mod’.

To link this project we could:

$ gm2 -g -c a.mod
$ gm2 -g -c b.mod
$ gm2 -g -c c.mod
$ gm2 -g -c d.mod
$ gm2 -g program.mod a.o b.o c.o d.o

The module initialization sequence is defined by the ISO standard to follow the import
graph traversal. The initialization order is the order in which the corresponding separate
modules finish the processing of their import lists.

However, if required, you can override this using ‘-fruntime-modules=a,b,c,d’ for
example which forces the initialization sequence to ‘a’, ‘b’, ‘c’ and ‘d’.

2.3 Elementary data types

This section describes the elementary data types supported by GNU Modula-2. It also
describes the relationship between these data types and the equivalent C data types.

The following data types are supported: INTEGER, LONGINT, SHORTINT, CARDINAL,
LONGCARD, SHORTCARD, BOOLEAN, REAL, LONGREAL, SHORTREAL, COMPLEX, LONGCOMPLEX,
SHORTCOMPLEX and CHAR.

An equivalence table is given below:
GNU Modula-2 GNU C

INTEGER int
LONGINT long long int

Chapter 2: Using GNU Modula-2

11

SHORTINT short int

CARDINAL unsigned int
LONGCARD long long unsigned int
SHORTCARD short unsigned int
BOOLEAN bool

REAL double

LONGREAL long double
SHORTREAL float

CHAR char

SHORTCOMPLEX complex float
COMPLEX complex double
LONGCOMPLEX complex long double

Note that GNU Modula-2 also supports fixed sized data types which are exported from
the SYSTEM module. See Section 2.22 [The PIM system module], page 52. See Section 2.23
[The ISO system module|, page 56.

2.4 Permanently accessible base procedures.

This section describes the procedures and functions which are always visible.

2.4.1 Standard procedures and functions common to PIM and
ISO

The following procedures are implemented and conform with Programming in Modula-2
and ISO Modula-2: NEW, DISPOSE, INC, DEC, INCL, EXCL and HALT. The standard functions
are: ABS, CAP, CHR, FLOAT, HIGH, LFLOAT, LTRUNC, MIN, MAX, ODD, SFLOAT, STRUNC TRUNC
and VAL. All these functions and procedures (except HALT, NEW, DISPOSE and, under non
constant conditions, LENGTH) generate in-line code for efficiency.

(*
ABS - returns the positive value of i.

*)

PROCEDURE ABS (i: <any signed type>) : <any signed type> ;

(*
CAP - returns the capital of character ch providing
ch lies within the range 'a'..'z'. Otherwise ch
is returned unaltered.
*)

PROCEDURE CAP (ch: CHAR) : CHAR ;

(*

CHR - converts a value of a <whole number type> into a CHAR.

Chapter 2: Using GNU Modula-2

CHR(x) is shorthand for VAL(CHAR, x).
*)

PROCEDURE CHR (x: <whole number type>) : CHAR ;

(*
DISPOSE - the procedure DISPOSE is replaced by:
DEALLOCATE(p, TSIZE(p~)) ;
The user is expected to import the procedure DEALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type which has been
initialized by a call to NEW.

Out: the area of memory
holding p~ is returned to the system.
Note that the underlying procedure DEALLOCATE
procedure in module Storage will assign p to NIL.

*)

PROCEDURE DISPOSE (VAR p:<any pointer type>) ;

(*
DEC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
DEC, v will have its predecessor value. If two
parameters are supplied then the value v will have its
n'th predecessor. For these reasons the value of n
must be >=0.
*)
PROCEDURE DEC (VAR v: <any base type>; [n: <any base type> = 1]) ;
(*
EXCL - excludes bit element e from a set type s.

*)

PROCEDURE EXCL (VAR s: <any set type>; e: <element of set type s>) ;

(*
FLOAT - will return a REAL number whose value is the same as o.

*)

PROCEDURE FLOAT (o: <any whole number type>) : REAL ;

(*

12

Chapter 2: Using GNU Modula-2 13

FLOATS - will return a SHORTREAL number whose value is the same as o.
*)

PROCEDURE FLOATS (o: <any whole number type>) : REAL ;

(*
FLOATL - will return a LONGREAL number whose value is the same as o.

*)

PROCEDURE FLOATL (o: <any whole number type>) : REAL ;

(*
HALT - will call the HALT procedure inside the module M2RTS.
Users can replace M2RTS.
*)

PROCEDURE HALT ;

(*
HIGH - returns the last accessible index of an parameter declared as
ARRAY OF CHAR. Thus

PROCEDURE foo (a: ARRAY OF CHAR) ;
VAR
c: CARDINAL ;
BEGIN
c := HIGH(a)
END foo ;

BEGIN
foo('hello')
END

will cause the local variable c¢ to contain the value 5

*)

PROCEDURE HIGH (a: ARRAY OF CHAR) : CARDINAL ;

(*
INC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
INC, v will have its successor value. If two
parameters are supplied then the value v will have its
n'th successor. For these reasons the value of n
must be >=0.

PROCEDURE

(*
INCL -
*)

PROCEDURE

(*
LFLOAT
*)

PROCEDURE

(*

LTRUNC

*)

PROCEDURE

(*
MIN -
*)

PROCEDURE

(*
MAX -
*)

PROCEDURE

(*
NEW -

Chapter 2: Using GNU Modula-2 14

INC (VAR v: <any base type>; [n: <any base type> = 1]) ;

includes bit element e to a set type s.

INCL (VAR s: <any set type>; e: <element of set type s>) ;

- will return a LONGREAL number whose value is the same as o.

LFLOAT (o: <any whole number type>) : LONGREAL ;

- will return a LONG<type> number whose value is the
same as o. PIM2, PIM3 and ISO Modula-2 will return
a LONGCARD whereas PIM4 returns LONGINT.

LTRUNC (o: <any floating point type>) : LONG<type> ;

returns the lowest legal value of an ordinal type.

MIN (t: <ordinal type>) : <ordinal type> ;

returns the largest legal value of an ordinal type.

MAX (t: <ordinal type>) : <ordinal type> ;

the procedure NEW is replaced by:

ALLOCATE(p, TSIZE(p™)) ;

The user is expected to import the procedure ALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type.
Out: variable p is set to some allocated memory

Chapter 2: Using GNU Modula-2 15

which is large enough to hold all the contents of p~.
*)

PROCEDURE NEW (VAR p:<any pointer type>) ;

€
0DD - returns TRUE if the value is not divisible by 2.
*)

PROCEDURE ODD (x: <whole number type>) : BOOLEAN ;

(*
SFLOAT - will return a SHORTREAL number whose value is the same
as o.

*)

PROCEDURE SFLOAT (o: <any whole number type>) : SHORTREAL ;

(*
STRUNC - will return a SHORT<type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE STRUNC (o: <any floating point type>) : SHORT<type> ;

(*

TRUNC - will return a <type> number whose value is the same as o.
PIM2, PIM3 and ISO Modula-2 will return a CARDINAL
whereas PIM4 returns INTEGER.

*)

PROCEDURE TRUNC (o: <any floating point type>) : <type> ;

(*
TRUNCS - will return a <type> number whose value is the same
as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE TRUNCS (o: <any floating point type>) : <type> ;

(*

TRUNCL - will return a <type> number whose value is the same

Chapter 2: Using GNU Modula-2 16

as o. PIM2, PIM3 and ISO Modula-2 will return a
LONGCARD whereas PIM4 returns LONGINT.
*)

PROCEDURE TRUNCL (o: <any floating point type>) : <type> ;

(*
VAL - converts data i of <any simple data type 2> to
<any simple data type 1> and returns this value.
No range checking is performed during this conversion.

*)

PROCEDURE VAL (<any simple data type 1>,
i: <any simple data type 2>) : <any simple data type 1> ;

2.4.2 1ISO specific standard procedures and functions
The standard function LENGTH is specific to ISO Modula-2 and is defined as:

(*
IM - returns the imaginary component of a complex type.
The return value will the same type as the imaginary field
within the complex type.

*)

PROCEDURE IM (c: <any complex type>) : <floating point type> ;

(*
INT - returns an INTEGER value which has the same value as V.
This function is equivalent to: VAL(INTEGER, v).
*)

PROCEDURE INT (v: <any ordinal type>) : INTEGER ;

(*
LENGTH - returns the length of string a.
*)

PROCEDURE LENGTH (a: ARRAY OF CHAR) : CARDINAL ;

This function is evaluated at compile time, providing that string a is a constant. If a
cannot be evaluated then a call is made to M2RTS.Length.

(*
0DD - returns a BOOLEAN indicating whether the whole number
value, v, is odd.

Chapter 2: Using GNU Modula-2 17

*)

PROCEDURE ODD (v: <any whole number type>) : BOOLEAN ;

(*
RE - returns the real component of a complex type.
The return value will the same type as the real field
within the complex type.

*)

PROCEDURE RE (c: <any complex type>) : <floating point type> ;

2.5 Behavior of the high procedure function

This section describes the behavior of the standard procedure function HIGH and it includes
a table of parameters with the expected return result. The standard procedure function will
return the last accessible indice of an ARRAY. If the parameter to HIGH is a static array then
the result will be a CARDINAL value matching the upper bound in the ARRAY declaration.

The section also describes the behavior of a string literal actual parameter and how it
relates to HIGH. The PIM2, PIM3, PIM4 and ISO standard is silent on the issue of whether
a nul is present in an ARRAY OF CHAR actual parameter.

If the first parameter to HIGH is an unbounded ARRAY the return value from HIGH will
be the last accessible element in the array. If a constant string literal is passed as an actual
parameter then it will be nul terminated. The table and example code below describe the
effect of passing an actual parameter and the expected HIGH value.

MODULE examplel ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR

x: CARDINAL ;
BEGIN

x := HIGH (a) ;

END test ;

BEGIN
test ('') ;
test ('1') ;
test ('12') ;
test ('123') ;
END examplel.

Actual parameter | HIGH (a) | a[HIGH (a)] = nul

Chapter 2: Using GNU Modula-2 18

v | 0 | TRUE
1! | 1 | TRUE
12! | 2 | TRUE
'123' | 3 | TRUE

A constant string literal will be passed to an ARRAY OF CHAR with an appended nul CHAR.
Thus if the constant string literal '' is passed as an actual parameter (in examplel) then
the result from HIGH(a) will be 0.

MODULE example2 ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR

x: CARDINAL ;
BEGIN

x := HIGH (a) ;

END test ;

VAR
str0: ARRAY [0..0] OF CHAR ;
strl: ARRAY [0..1] OF CHAR ;

str2: ARRAY [0..2] OF CHAR ;
str3: ARRAY [0..3] OF CHAR ;

BEGIN

str0 := 'a' ; (* No room for the nul terminator. *)
test (str0) ;

strl := 'ab' ; (* No room for the nul terminator. x*)
test (strl) ;

str2 := 'ab' ; (* Terminated with a nul. *)

test (str2) ;

str2 := 'abc' ; (* Terminated with a nul. x*)

test (str3) ;
END example2.

Actual parameter | HIGH (a) | al[HIGH (a)] = nul

str0 | O | FALSE
stri | 1 | FALSE
atr2 | 2 | TRUE
str3 | 3 | TRUE

2.6 GNU Modula-2 supported dialects

This section describes the dialects understood by GNU Modula-2. It also describes the
differences between the dialects and any command line switches which determine dialect
behaviour.

The GNU Modula-2 compiler is compliant with four dialects of Modula-2. The lan-
guage as defined in ’Programming in Modula-2’ 2nd Edition, Springer Verlag, 1982, 1983

Chapter 2: Using GNU Modula-2 19

by Niklaus Wirth (PIM2), 'Programming in Modula-2’, 3rd Corrected Edition, Springer
Verlag, 1985 (PIM3) and 'Programming in Modula-2’, 4th Edition, Springer Verlag, 1988
(PIM4) https://freepages.modula2.org/report4d/modula-2.html and the ISO Modula-

2 language as defined in ISO/IEC Information technology - programming languages - part
1: Modula-2 Language, ISO/IEC 10514-1 (1996) (ISO).

The command line switches ‘~fpim2’, ‘-fpim3’, ‘~fpim4’ and ‘-fiso’ can be used to
force mutually exclusive features. However by default the compiler will not aggressively fail

if a non mutually exclusive feature is used from another dialect. For example it is possible
to specify ‘-fpim2’ and still utilize ‘DEFINITION’ ‘MODULES’ which have no export list.

Some dialect differences will force a compile time error, for example in PIM2 the user
must IMPORT SIZE from the module SYSTEM, whereas in PIM3 and PIM4 SIZE is a pervasive
function. Thus compiling PIM4 source code with the ‘~fpim2’ switch will cause a compile
time error. This can be fixed quickly with an additional IMPORT or alternatively by compiling
with the ‘-fpim4’ switch.

However there are some very important differences between the dialects which are mu-
tually exclusive and therefore it is vital that users choose the dialects with care when these
language features are used.

2.6.1 Integer division, remainder and modulus

The most dangerous set of mutually exclusive features found in the four dialects supported
by GNU Modula-2 are the INTEGER division, remainder and modulus arithmetic operators.
It is important to note that the same source code can be compiled to give different run time
results depending upon these switches! The reference manual for the various dialects of
Modula-2 are quite clear about this behavior and sadly there are three distinct definitions.

The table below illustrates the problem when a negative operand is used.

Pim2/3 Pim4 IS0
lval rval DIV MOD DIV MOD DIV MOD / REM
31 10 3 1 3 1 3 1 3 1
-31 10 -3 -1 -4 9 -4 9 -3 -1
31 -10 -3 1 -3 1 Exception -3 1
-31 -10 3 -1 4 9 Exception 3 -1

See also P24 of PIM2, P27 of PIM3, P29 of PIM4 and P201 of the ISO Standard. At
present all dialect division, remainder and modulus are implemented as above, apart from
the exception calling in the ISO dialect. Instead of exception handling the results are the
same as the PIM4 dialect. This is a temporary implementation situation.

2.7 Module Search Path

This section describes the default module search path and how this might be changed. By
default the compiler will search the current directory, local include dir, prefix include dir,
gce version specific modules and lastly native system header dir. The exact location and
whether all these directories are used depends upon the configuration options used when
building GCC.

The ‘-1’ option option can be used to introduce new directories in the module search path
and for convenience the options ‘-f1ibs=" and ‘-fm2-pathname-root=" are also provided.

https://freepages.modula2.org/report4/modula-2.html

Chapter 2: Using GNU Modula-2 20

The site wide modules are typically located at prefix/include/m2 whereas the version
specific modules are located in libsubdir/m2. Both of these /m2 directories are organized
such that the non dialect specific modules are at the top and dialect specific modules are
in subdirectories.

The ‘~fm2-pathname-root=’ option is equivalent to adding a ‘-I’ path for every library
dialect. For example if the library dialect order is selected by ‘~flibs=pim,iso,log’ and
‘~fm2-pathname-root=foo’ is supplied then this is equivalent to the following pairs of
options:

-fm2-pathname=m2pim -Ifoo/m2/m2pim
-fm2-pathname=m2iso -Ifoo/m2/m2iso
-fm2-pathname=m2log -Ifoo/m2/m2log
-fm2-pathname=- -Ifoo/m2

The option ‘-fsources’ will show the source module, path and pathname for each mod-
ule parsed.

2.8 Exception implementation

This section describes how exceptions are implemented in GNU Modula-2 and how com-
mand line switches affect their behavior. The option ‘~fsoft-check-all’ enables all soft-
ware checking of nil dereferences, division by zero etc. Additional code is produced to check
these conditions and exception handlers are invoked if the conditions prevail.

Without ‘-fsoft-check-all’ these exceptions will be caught by hardware (assuming
the hardware support exists) and a signal handler is invoked. The signal handler will
in turn THROW an exception which will be caught by the appropriate Modula-2 handler.
However the action of throwing an exception from within a signal handler is implementation
defined (according to the C++ documentation). For example on the x86_64 architecture this
works whereas on the i686 architecture it does not. Therefore to ensure portability it is
recommended to use ‘-fsoft-check-all’.

2

2.9 How to detect run time problems at compile time

Consider the following program:

MODULE assignvalue ; (*!m2iso+gm2x*)

PROCEDURE bad () : INTEGER ;
VAR
i: INTEGER ;
BEGIN
i=-1;
RETURN i
END bad ;

VAR

2 ‘_fsoft-check-all’ can be effectively combined with ‘-02’ to semantically analyze source code for pos-

sible run time errors at compile time.

Chapter 2: Using GNU Modula-2 21

foo: CARDINAL ;
BEGIN
(* The m2rte plugin will detect this as an error, post
optimization. *)
foo := bad ()
END assignvalue.

here we see that the programmer has overlooked that the return value from ‘bad’ will
cause an overflow to ‘foo’. If we compile the code with the following options:

$ gm2 -g -fsoft-check-all -02 -fm2-plugin -c assignvalue.mod
assignvalue.mod:16:0:inevitable that this error will occur at run time,
assignment will result in an overflow

The gm2 semantic plugin is automatically run and will generate a warning message for
every exception call which is known as reachable. It is highly advised to run the optimizer
(‘-02’ or ‘-03’) with ‘-fsoft-check-all’ so that the compiler is able to run the optimizer
and perform variable and flow analysis before the semantic plugin is invoked.

The ‘-Wuninit-variable-checking’ can be used to identify uninitialized variables
within the first basic block in a procedure. The checking is limited to variables so long as
they are not an array or set or a variant record or var parameter.

The following example detects whether a sub component within a record is uninitialized.
MODULE testlarge2 ;

TYPE
color = RECORD
r, g, b: CARDINAL ;
END ;
pixel = RECORD

fg, bg: color ;
END ;

PROCEDURE test ;
VAR

p: pixel ;
BEGIN

p

fg.r =1
p.-fg.g := 2 ;
p-fg.g 3 ; (* Deliberate typo should be p.fg.b. *)

p-bg := p.fg ; (* Accessing an uninitialized field. x*)
END test ;

0o 0’ 09

BEGIN
test
END testlarge2.

$ gm2 -c -Wuninit-variable-checking testlarge2.mod
testlarge2.mod:19:13: warning: In procedure ‘test’: attempting to

Chapter 2: Using GNU Modula-2 22

access expression before it has been initialized
19 | p-bg := p.fg ; (* Accessing an uninitialized field. x*)

I ~

The following example detects if an individual field is uninitialized.

MODULE testwithnoptr ;

TYPE
Vec = RECORD
x, y: CARDINAL ;
END ;

PROCEDURE test ;
VAR
p: Vec ;
BEGIN
WITH p DO
x =1 ;
x := 2 (x Deliberate typo, user meant y. *)
END ;
IF p.y = 2
THEN
END
END test ;

BEGIN
test
END testwithnoptr.
The following example detects a record is uninitialized via a pointer variable in a ‘WITH’
block.
$ gm2 -g -c -Wuninit-variable-checking testwithnoptr.mod
testwithnoptr.mod:21:8: warning: In procedure ‘test’: attempting to
access expression before it has been initialized
21 | IF p.y = 2

MODULE testnew6 ;
FROM Storage I