The sigaction
function has the same basic effect as
signal
: to specify how a signal should be handled by the process.
However, sigaction
offers more control, at the expense of more
complexity. In particular, sigaction
allows you to specify
additional flags to control when the signal is generated and how the
handler is invoked.
The sigaction
function is declared in signal.h.
Structures of type struct sigaction
are used in the
sigaction
function to specify all the information about how to
handle a particular signal. This structure contains at least the
following members:
sighandler_t sa_handler
This is used in the same way as the action argument to the
signal
function. The value can be SIG_DFL
,
SIG_IGN
, or a function pointer. See Basic Signal Handling.
sigset_t sa_mask
This specifies a set of signals to be blocked while the handler runs.
Blocking is explained in Blocking Signals for a Handler. Note that the
signal that was delivered is automatically blocked by default before its
handler is started; this is true regardless of the value in
sa_mask
. If you want that signal not to be blocked within its
handler, you must write code in the handler to unblock it.
int sa_flags
This specifies various flags which can affect the behavior of
the signal. These are described in more detail in Flags for sigaction
.
int
sigaction (int signum, const struct sigaction *restrict action, struct sigaction *restrict old-action)
¶Preliminary: | MT-Safe | AS-Safe | AC-Safe | See POSIX Safety Concepts.
The action argument is used to set up a new action for the signal
signum, while the old-action argument is used to return
information about the action previously associated with this signal.
(In other words, old-action has the same purpose as the
signal
function’s return value—you can check to see what the
old action in effect for the signal was, and restore it later if you
want.)
Either action or old-action can be a null pointer. If old-action is a null pointer, this simply suppresses the return of information about the old action. If action is a null pointer, the action associated with the signal signum is unchanged; this allows you to inquire about how a signal is being handled without changing that handling.
The return value from sigaction
is zero if it succeeds, and
-1
on failure. The following errno
error conditions are
defined for this function:
EINVAL
The signum argument is not valid, or you are trying to
trap or ignore SIGKILL
or SIGSTOP
.