The use of threads or processes with shared memory allows an application to take advantage of all the processing power a system can provide. If the task can be parallelized the optimal way to write an application is to have at any time as many processes running as there are processors. To determine the number of processors available to the system one can run
sysconf (_SC_NPROCESSORS_CONF)
which returns the number of processors the operating system configured. But it might be possible for the operating system to disable individual processors and so the call
sysconf (_SC_NPROCESSORS_ONLN)
returns the number of processors which are currently online (i.e., available).
For these two pieces of information the GNU C Library also provides functions to get the information directly. The functions are declared in sys/sysinfo.h.
int
get_nprocs_conf (void)
¶Preliminary: | MT-Safe | AS-Unsafe heap lock | AC-Unsafe lock fd mem | See POSIX Safety Concepts.
The get_nprocs_conf
function returns the number of processors the
operating system configured.
This function is a GNU extension.
int
get_nprocs (void)
¶Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See POSIX Safety Concepts.
The get_nprocs
function returns the number of available processors.
This function is a GNU extension.
Before starting more threads it should be checked whether the processors are not already overused. Unix systems calculate something called the load average. This is a number indicating how many processes were running. This number is an average over different periods of time (normally 1, 5, and 15 minutes).
int
getloadavg (double loadavg[], int nelem)
¶Preliminary: | MT-Safe | AS-Safe | AC-Safe fd | See POSIX Safety Concepts.
This function gets the 1, 5 and 15 minute load averages of the
system. The values are placed in loadavg. getloadavg
will
place at most nelem elements into the array but never more than
three elements. The return value is the number of elements written to
loadavg, or -1 on error.
This function is declared in stdlib.h.