The GNU C Library Reference Manual

The GNU C Library

Reference Manual

Sandra Loosemore
with
Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper

for version 2.41.9000

This is The GNU C Library Reference Manual, for version 2.41.9000.

Copyright (© 1993-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Free Software Needs Free
Documentation” and “GNU Lesser General Public License”, the Front-Cover texts being
“A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled "GNU Free Documentation License".

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual. Buying copies from the FSF supports it in developing GNU and promoting software
freedom.”

Short Contents

© 00 1 O Ot = W N -

W W W W N NN DD DN NN DNNIDN - P = = = = = = = =
W N P O © 0 J O O == W N = O © 0 ~J O O i W NN~ O

Introduction. 1
Error Reporting. i 24
Virtual Memory Allocation And Paging 44
Character Handling 88
String and Array Utilities. i ... 98
Character Set Handling. 142
Locales and Internationalization........................ 185
Message Translation 205
Searching and Sorting 230
Pattern Matching i 242
Input/Output Overview 264
Input/Output on Streamst 269
Low-Level Input/Output. i, 346
File System Interface......... 411
Pipesand FIFOs o e 465
SOCKetS . . vt 470
Low-Level Terminal Interface 520
SySlog . o 550
Mathematics 558
Arithmetic Functions. i L. 591
Bit Manipulation......... 639
Dateand Time. 643
Resource Usage And Limitation........................ 684
Non-Local Exits......... i 710
Signal Handlingo i 719
The Basic Program/System Interface.................... 765
Processes o 810
Inter-Process Communication. 823
Job Control 824
System Databases and Name Service Switch.............. 842
Users and GIoupsvv ettt e e e e 852
System Management i i, 882

System Configuration Parameters....................... 897

34 Cryptographic Functions., 919
35 Debugging support 921
36 Threads oo e e 924
37 Dynamic Linker. 947
38 Internal probes....... ... 964
39 Tunables. 969
A C Language Facilities in the Library 982
B Summary of Library Facilities. 998
C Installing the GNU C Library........ 1134
D Library Maintenance 1145
E Platform-specific facilities o o L. 1157
F Contributors to the GNU C Library.................... 1166
G Free Software Needs Free Documentation 1174
H GNU Lesser General Public License.................... 1176
I GNU Free Documentation License 1185
Concept Indexo 1193
TypeIndexo 1206
Function and MacroIndexo .. 1209
Variable and Constant Macro Index 1227

Program and File Index i i i 1240

11

Table of Contents

1 Introduction.................. 1
1.1 Getting Started. 1
1.2 Standards and Portability L 1

1.2.1 IS0 O 2
1.2.2 POSIX (The Portable Operating System Interface)......... 2
1.2.2.1 POSIX Safety Concepts........ccovriinininienn... 2
1.2.2.2 Unsafe Features............. ..., 4
1.2.2.3 Conditionally Safe Features 5
1.2.2.4 Other Safety Remarkso oo .. 9

1.2.3 Berkeley Unixcoouiiiiii i 11
1.2.4 SVID (The System V Interface Description)............... 11
1.2.5 XPG (The X/Open Portability Guide).................... 12
1.2.6 Linux (The Linux Kernel)o ... 12
1.3 Using the Library ... e 12
1.3.1 Header Files...... ..o 12
1.3.2 Macro Definitions of Functions............................ 14
1.3.3 Reserved Namesoouuiiiiiiiiiii i, 14
1.3.4 Feature Test Macros.........c.ooiiiiiiiiiiiiinniinn. 16
1.4 Roadmap to the Manual..................coiiiiiiiiiiiia... 21

2 Error Reporting................................ 24
2.1 Checking for Errors.o, 24
2.2 Error Codeso 25
2.3 ErTor Messagesttt 37

3 Virtual Memory Allocation And Paging 44
3.1 Process Memory Concepts.......coovuuiiiiiiieiiiieanninn... 44
3.2 Allocating Storage For Program Data.......................... 45

3.2.1 Memory Allocation in C Programs........................ 46
3.2.1.1 Dynamic Memory Allocation......................... 46
3.2.2 The GNU Allocator ..ot 47
3.2.3 Unconstrained Allocation............... ... 47
3.2.3.1 Basic Memory Allocation 47
3.2.3.2 Examples of malloc ..., 48
3.2.3.3 Freeing Memory Allocated with malloc.............. 49
3.2.3.4 Changing the Size of a Block......................... 50
3.2.3.5 Allocating Cleared Space............cccoviiiiiian... 51
3.2.3.6 Allocating Aligned Memory Blocks................... 52
3.2.3.7 Malloc Tunable Parameters.......................... 53
3.2.3.8 Heap Consistency Checking.......................... 55
3.2.3.9 Statistics for Memory Allocation with malloc........ 57

3.2.3.10 Summary of malloc-Related Functions.............. 58

iii

3.2.4 Allocation Debugging. ..., 59
3.2.4.1 How to install the tracing functionality............... 59
3.2.4.2 Example program excerpts...........ooiiiiiiiia... 60
3.2.4.3 Some more or less clever ideas 60
3.2.4.4 Interpreting the traces............., 61

3.2.5 Replacing malloc...... .ot 63

3.2.6 Obstackso 64
3.2.6.1 Creating Obstacks 64
3.2.6.2 Preparing for Using Obstacks 64
3.2.6.3 Allocation in an Obstack.............. 66
3.2.6.4 Freeing Objects in an Obstack 67
3.2.6.5 Obstack Functions and Macros....................... 67
3.2.6.6 Growing Objects........oiiiiiiiiiiii i, 68
3.2.6.7 Extra Fast Growing Objects 70
3.2.6.8 Status of an Obstack........... ... o il 71
3.2.6.9 Alignment of Data in Obstacks....................... 72
3.2.6.10 Obstack Chunks.......... i, 72
3.2.6.11 Summary of Obstack Functions..................... 73

3.2.7 Automatic Storage with Variable Size..................... 75
3.2.7.1 allocaExample......... ..o 75
3.2.7.2 Advantages of alloca.........oiiiiiiiiiii i 76
3.2.7.3 Disadvantages of alloca...........coovviiiiiia... 76
3.2.7.4 GNU C Variable-Size Arrays......................... 76

3.3 Resizing the Data Segmento oL 77
3.4 Memory Protection.......... ..o 78

3.4.1 Memory Protection Keyso il 79
3.5 Locking Pages........c.oo i 83

3.5.1 Why Lock Pages..........co i 83

3.5.2 Locked Memory Details..............cooooiiii L. 83

3.5.3 Functions To Lock And Unlock Pages..................... 84

Character Handling 88
4.1 Classification of Characters.............c.ooiiiiiiiinniiin . 88
4.2 Case CONVErSIONttt et e 90
4.3 Character class determination for wide characters.............. 91
4.4 Notes on using the wide character classes...................... 95
4.5 Mapping of wide characters. L. 96

String and Array Utilities..................... 98
5.1 Representation of Strings...........cc.ooiiiiiiiiiiiiiii., 98
5.2 String and Array Conventionsccoiuiiiiiiiean.. 99
5.3 String Length 100
5.4 Copying Strings and Arrayscooiteiiiiii 102
5.5 Concatenating Strings.......... .o, 107
5.6 Truncating Strings while Copying.............cooooiiiiii.... 110
5.7 String/Array COmpariSomouveveveneninenenenenen.. 115

5.8 Collation Functions.ot 120

iv

5.9 Search FUnctionsoouu e, 124

5.9.1 Compatibility String Search Functions................... 128
5.10 Finding Tokens in a Stringc.cooiiiiiii.. 129
5.11 FErasing Sensitive Datao i 133
5.12 Shuffling Bytes...... ... 134
5.13 Obfuscating Data ...t 135
5.14 Encode Binary Datao i 135
5.15 Argz and Envz Vectors. ...t 137

515.1 Argz Functions.......... ..., 137

5.15.2 Envz Functions.......... .. . i i 140

Character Set Handling 142
6.1 Introduction to Extended Characters......................... 142
6.2 Overview about Character Handling Functions................ 146
6.3 Restartable Multibyte Conversion Functions.................. 146

6.3.1 Selecting the conversion and its properties............... 146

6.3.2 Representing the state of the conversion 147

6.3.3 Converting Single Characters............................ 148

6.3.4 Converting Multibyte and Wide Character Strings....... 155

6.3.5 A Complete Multibyte Conversion Example.............. 158
6.4 Non-reentrant Conversion Function........................... 160

6.4.1 Non-reentrant Conversion of Single Characters........... 160

6.4.2 Non-reentrant Conversion of Strings 161

6.4.3 States in Non-reentrant Functions 163
6.5 Generic Charset Conversion ..., 164

6.5.1 Generic Character Set Conversion Interface.............. 164

6.5.2 A complete iconv examplel 167

6.5.3 Some Details about other iconv Implementations........ 170

6.5.4 The iconv Implementation in the GNU C Library 171

6.5.4.1 Format of gconv-modules files...................... 172
6.5.4.2 Finding the conversion path in iconv............... 173
6.5.4.3 iconv module data structures....................... 174
6.5.4.4 iconv module interfaces.................. 177

Locales and Internationalization............. 185
7.1 What Effects a Locale Has, 185
7.2 Choosing a Locale........ ... 186
7.3 Locale Categories ..ottt 186
7.4 How Programs Set the Locale 187
7.5 Standard Locales........ 189
7.6 Locale Names e 189
7.7 Accessing Locale Information................................. 190

7.7.1 localeconv: It is portable but 191

7.7.1.1 Generic Numeric Formatting Parameters............ 191
7.7.1.2 Printing the Currency Symbol 192
7.7.1.3 Printing the Sign of a Monetary Amount............ 194

7.7.2 Pinpoint Access to Locale Data.......................... 194

7.8 A dedicated function to format numbers...................... 200

7.9 Yes-0or-No QUeStIONS ovttt et i 203
8 Message Translation.......................... 205
8.1 X/Open Message Catalog Handling........................... 205
8.1.1 The catgets function family 205
8.1.2 Format of the message catalog files 208
8.1.3 Generate Message Catalogs files 210
8.1.4 How to use the catgets interface.................. 212
8.1.4.1 Not using symbolic names 212
8.1.4.2 Using symbolic namesc.oiiiia... 212
8.1.4.3 How does to this allow to develop................... 213

8.2 The Uniforum approach to Message Translation............... 214
8.2.1 The gettext family of functions......................... 215
8.2.1.1 What has to be done to translate a message?........ 215
8.2.1.2 How to determine which catalog to be used 217

8.2.1.3 Additional functions for more complicated situations.. 219
8.2.1.4 How to specify the output character set gettext uses.. 223

8.2.1.5 How to use gettext in GUI programs............... 224
8.2.1.6 User influence on gettext 226

8.2.2 Programs to handle message catalogs for gettext........ 228

9 Searching and Sorting........................ 230
9.1 Defining the Comparison Function............................ 230
9.2 Array Search Function............. 230
9.3 Array Sort Function.......... 231
9.4 Searching and Sorting Example............ 232
9.5 The hsearch function., 235
9.6 The tsearch function. i 238
10 Pattern Matching............................ 242
10.1 Wildcard Matching.......... .o i 242
10.2 Globbing. ..o 243
10.2.1 Calling glob ...t 243
10.2.2 Flags for Globbing i i 248
10.2.3 More Flags for Globbing............... 249
10.3 Regular Expression Matching................................ 251
10.3.1 POSIX Regular Expression Compilation 252
10.3.2 Flags for POSIX Regular Expressions................... 253
10.3.3 Matching a Compiled POSIX Regular Expression....... 254
10.3.4 Match Results with Subexpressions..................... 255
10.3.5 Complications in Subexpression Matching............... 255
10.3.6 POSIX Regexp Matching Cleanup 256
10.4 Shell-Style Word Expansioncooiiiiiiia... 257
10.4.1 The Stages of Word Expansion 257
10.4.2 Calling WordeXp......ouvtiuitiit i 258

10.4.3 Flags for Word Expansion............................. 259

vii

10.4.4 wordexp Example 260
10.4.5 Details of Tilde Expansion...................oooia... 261
10.4.6 Details of Variable Substitution......................... 261
11 Input/Output Overview 264
11.1 Input/Output Conceptsouiuiiiiiiiniiinenanan.. 264
11.1.1 Streams and File Descriptors 264
11.1.2 File Positiono 265
11.2 File Names.o e 266
11.2.1 DiIrectoriesooviin i e 266
11.2.2 File Name Resolution............. oo, 267
11.2.3 File Name Errors. ..., 267
11.2.4 Portability of File Names................... 268
12 Input/Output on Streams 269
12,1 StreamIS . vttt 269
12.2 Standard Streams........ ..o 269
12.3 Opening Streams..........ooiuteiiii i, 270
12.4 CloSing Streams.ttt 274
12.5 Streams and Threads. ..., 275
12.6 Streams in Internationalized Applications.................... 278
12.7 Simple Output by Characters or Lines....................... 280
12.8 Character Input..........coiiiiiii 283
12.9 Line-Oriented Inputco i, 286
1210 Unreadingvveviteee et 288
12.10.1 What Unreading Meansccooiiiiin... 288
12.10.2 Using ungetc To Do Unreading 289
12.11 Block Input/Output «....oovveiiiii i 290
12.12 Formatted Output ... 291
12.12.1 Formatted Output Basics.............................. 291
12.12.2 Output Conversion Syntaxcooveviiiene.n. 292
12.12.3 Table of Output Conversionscoovue... 293
12.12.4 Integer CONVersionsouuuueienneeennneeann. 295
12.12.5 Floating-Point Conversions................... 297
12.12.6 Other Output Conversions.cooveenuo... 299
12.12.7 Formatted Output Functions 300
12.12.8 Dynamically Allocating Formatted Output 303
12.12.9 Variable Arguments Output Functions................. 304
12.12.10 Parsing a Template String................. 306
12.12.11 Example of Parsing a Template String................ 308
12.13 Customizing printf ...t 309
12.13.1 Registering New Conversionsccoo.u... 309
12.13.2 Conversion Specifier Options, 310
12.13.3 Defining the Output Handler.......................... 312
12.13.4 printf Extension Example.............. 312
12.13.5 Predefined printf Handlers.................. 314

12.14 Formatted Inputcco i 315

viii

12.14.1 Formatted Input Basics 315
12.14.2 Input Conversion Syntaxccooeeviennee.... 316
12.14.3 Table of Input Conversionsccovvueean... 317
12.14.4 Numeric Input Conversions................ ..., 318
12.14.5 String Input Conversions...............ccooviion... 320
12.14.6 Dynamically Allocating String Conversions 322
12.14.7 Other Input Conversionsc.ouiueveinuennn. 322
12.14.8 Formatted Input Functions................ 323
12.14.9 Variable Arguments Input Functions................... 324
12.15 End-Of-File and Errors....... ..., 325
12.16 Recovering from errorsc.o.eeiiiiieinieninenn.. 326
12.17 Text and Binary Streams............. ... 327
12.18 File Positioning ... 328
12.19 Portable File-Position Functions............................ 331
12.20 Stream Buffering........ 333
12.20.1 Buffering Concepts.........coooviiiiiiiiiiiiiiiin. 333
12.20.2 Flushing Buffers....... oo 333
12.20.3 Controlling Which Kind of Buffering................... 335
12.21 Other Kinds of Streams, 337
12.21.1 String Streams . ..ot 337
12.21.2 Programming Your Own Custom Streams 339
12.21.2.1 Custom Streams and Cookies..................... 339
12.21.2.2 Custom Stream Hook Functions 340

12.22 Formatted Messages.viini i 341
12.22.1 Printing Formatted Messages................c.ooo.n 341
12.22.2 Adding Severity Classescooiiiiiiiii... 344
12.22.3 How to use fmtmsg and addseverity.................. 344
13 Low-Level Input/Output.................... 346
13.1 Opening and Closing Files............ ... i, 346
13.2 Input and Output Primitives............ oL, 350
13.3 Setting the File Position of a Descriptor 355
13.4 Descriptors and Streams.cooviiiiiiiiieennieeann. 358
13.5 Dangers of Mixing Streams and Descriptors.................. 359
13.5.1 Linked Channels i i, 359
13.5.2 Independent Channels............ 359
13.5.3 Cleaning Streams............cooviiiiiiiiiiniieennn.. 360
13.6 Fast Scatter-Gather I/O........ i 361
13.7 Copying data between two files............. 365
13.8 Memory-mapped I/O. ... 366
13.9 Waiting for Input or Output................ ... 375
13.10 Synchronizing I/O operationsoooia... 378
13.11 Perform I/O Operations in Parallel......................... 379
13.11.1 Asynchronous Read and Write Operations............. 382
13.11.2 Getting the Status of AIO Operations 386
13.11.3 Getting into a Consistent State........................ 387
13.11.4 Cancellation of AIO Operations 389

13.11.5 How to optimize the AIO implementation.............. 390

13.12 Control Operationson Files................................ 391
13.13 Duplicating Descriptors ..., 393
13.14 File Descriptor Flags. ... 394
13.15 File Status Flags. ... 396
13.15.1 File Access Modes.voiiiiiii i 396
13.15.2 Open-time Flags ... 397
13.15.3 I/O Operating Modescooviiiiiiiiiiiian... 399
13.15.4 Getting and Setting File Status Flags.................. 400
13.16 File LOCKS. .o .vo o 401
13.17 Open File Description Lockso oo 404
13.18 Open File Description Locks Example 407
13.19 Interrupt-Driven Input......... ... o i 408
13.20 Generic I/O Control operationsooovno... 409
13.21 Other low-level-I/O-related functions....................... 410
14 File System Interface........................ 411
14.1 Working Directory, 411
14.2 Descriptor-Relative Access ..., .. 413
14.3 Accessing Directories......... ... 415
14.3.1 Format of a Directory Entry............... 415
14.3.2 Opening a Directory Stream............................ 417
14.3.3 Reading and Closing a Directory Stream................ 419
14.3.4 Simple Program to List a Directory..................... 422
14.3.5 Random Access in a Directory Stream 422
14.3.6 Scanning the Content of a Directory 423
14.3.7 Simple Program to List a Directory, Mark IT............ 425
14.3.8 Low-level Directory Accesscovviiiiiiii ... 425
14.4 Working with Directory Treest 426
14.5 Hard Links. 430
14.6 Symbolic Links. 432
14.7 Deleting Files ... 434
14.8 Renaming Files ... i 436
14.9 Creating Directories.o 437
14.10 File Attributes.o 438
14.10.1 The meaning of the File Attributes.................... 438
14.10.2 Reading the Attributesof a File....................... 442
14.10.3 Testing the Typeofa File..........o ... 444
14.10.4 File OWner.ot 447
14.10.5 The Mode Bits for Access Permission.................. 448
14.10.6 How Your Access to a File is Decided.................. 450
14.10.7 Assigning File Permissions.............. 450
14.10.8 Testing Permission to Access a File.................... 452
14.10.9 File Timest 454
14.10.10 File SizZe ..o nn it e 457
14.10.11 Storage Allocationcoiiiiiiiiiii .. 459
14.11 Making Special Files.......... oo i i 460
14.12 Temporary Files ... 461

ix

15 Pipesand FIFOs............................. 465

15.1 Creating a Pipe ... 465
15.2 Pipe to a Subprocesso 467
15.3 FIFO Special Files 468
15.4 Atomicity of Pipe I/O...... ... o i 469
16 Sockets.......... L. 470
16.1 Socket Concepts.vvuet i 470
16.2 Communication Styles........ ... i 471
16.3 Socket Addresses.ueiimit i 472
16.3.1 Address Formats i 472
16.3.2 Setting the Address of a Socket......................... 474
16.3.3 Reading the Address of a Socket........................ 474
16.4 Interface Naming...........ccoouiiiiiiiiiiiii .. 475
16.5 The Local Namespaceoouueiiiiiiiiiiiiiiieann. 476
16.5.1 Local Namespace Conceptscoouvvveeeeneinninnn. 476
16.5.2 Details of Local Namespace............coovvvinaann... 477
16.5.3 Example of Local-Namespace Sockets................... 478
16.6 The Internet Namespaceccooiuiiiiiiiiiiiiaan.. 479
16.6.1 Internet Socket Address Formats 479
16.6.2 Host Addresses........ooiiiiiiiiiiii it 480
16.6.2.1 Internet Host Addresses, 481
16.6.2.2 Host Address Data Type ...t 482
16.6.2.3 Host Address Functions............................ 483
16.6.2.4 Host Names ..., 485
16.6.3 Internet Ports.......... .o oo 489
16.6.4 The Services Database............... 490
16.6.5 Byte Order Conversionc.oouveeiieeeeeeannnnn. 491
16.6.6 Protocols Database...............oooiiiiiii ... 492
16.6.7 Internet Socket Example............. 494
16.7 Other Namespacesooiiiiiiii i 495
16.8 Opening and Closing Sockets ..., 495
16.8.1 Creating a Socket ... 495
16.8.2 Closing a Socket....... ..o 496
16.8.3 Socket Pairs......... .o 497
16.9 Using Sockets with Connections, 498
16.9.1 Making a Connection.............c.oooviiiiiiiiiaa... 498
16.9.2 Listening for Connections., 499
16.9.3 Accepting Connectionsooeiiiiiiieninnn... 500
16.9.4 Who is Connected to Me?ot 501
16.9.5 Transferring Data, 501
16.9.5.1 Sending Data...........coocoiiiiiii i 502
16.9.5.2 Receiving Data.........o 503
16.9.5.3 Socket Data Options............ccooiiiiiiiiia.. 503
16.9.6 Byte Stream Socket Example............... 504
16.9.7 Byte Stream Connection Server Example 505
16.9.8 Out-of-Band Data........... ..., 507

16.10 Datagram Socket Operations..................coiiia. .. 509

16.10.1 Sending Datagrams............coviriieiiirineninnenn. 510

16.10.2 Receiving Datagrams................ooooiiiiiiiii.. 510
16.10.3 Datagram Socket Example, 511
16.10.4 Example of Reading Datagrams 512
16.11 The inetd Daemon ..., 513
16.11.1 inetd Servers.........oouueieemiee i 513
16.11.2 Configuring inetd.........ccoeiiiiiniiiniiinienne... 514
16.12 Socket Options.o 515
16.12.1 Socket Option Functionso, 515
16.12.2 Socket-Level Options. ..., 515
16.13 Networks Database...............oiii i, 517
16.14 Other Socket APIs. i 518
17 Low-Level Terminal Interface............... 520
17.1 Identifying Terminals........... ..o, 520
17.2 T/O QUEUES .« oottt 521
17.3 Two Styles of Input: Canonical or Not....................... 521
17.4 Terminal Modes......... ..o i 522
17.4.1 Terminal Mode Data Types............c.coooiiiiiiii... 522
17.4.2 Terminal Mode Functions........................ 523
17.4.3 Setting Terminal Modes Properly.................... ... 524
1744 Input Modes ..ot 525
17.4.5 Output Modescvvii e 527
17.4.6 Control Modes ..ot 528
17.4.7 Local Modes ..ot 530
17.4.8 Line Speed ..o 532
17.4.9 Special Characters.............ccoiiiiiiiiiiiiiiian.. 534
17.4.9.1 Characters for Input Editing....................... 535
17.4.9.2 Characters that Cause Signals 536
17.4.9.3 Special Characters for Flow Control................ 537
17.4.9.4 Other Special Characters 538
17.4.10 Noncanonical Input o i i, 539
17.5 BSD Terminal Modes, 540
17.6 Line Control Functions........... 541
17.7 Noncanonical Mode Example...................... i 543
17.8 Reading Passphrases oo i 544
17.9 Pseudo-Terminals ..., 545
17.9.1 Allocating Pseudo-Terminals 545
17.9.2 Opening a Pseudo-Terminal Pair 548
18 Syslog ... 550
18.1 Overview of Syslog ... 550
18.2 Submitting Syslog Messagescoviiiiiiiiiiiia.n. 551
18.2.1 0penlogoovu 551
18.2.2 syslog, vsyslog.o 553
18.2.3 closelog ..o 555
18.2.4 setlogmask 556

18.2.5 Syslog Example 556

xii

19 Mathematics.................., 558
19.1 Predefined Mathematical Constants 558
19.2 Trigonometric Functions...................o i L. 559
19.3 Inverse Trigonometric Functions.............. 562
19.4 Exponentiation and Logarithms 565
19.5 Hyperbolic Functions.......... i i, 573
19.6 Special Functions oo i 576
19.7 Errors in Math Functions........... i 579
19.8 Pseudo-Random Numbers............ ..., 581

19.8.1 ISO C Random Number Functions...................... 581
19.8.2 BSD Random Number Functions 0982
19.8.3 SVID Random Number Function 584
19.8.4 High Quality Random Number Functions............... 589
19.9 Is Fast Code or Small Code preferred?....................... 590

20 Arithmetic Functions........................ 591
20.1 IntegerS . ..ot 591
20.2 Integer Divisionccoiuuiiiiiiiii i 592
20.3 Floating Point Numbers........... ..., 594
20.4 Floating-Point Number Classification Functions.............. 595
20.5 Errors in Floating-Point Calculations........................ 597

20.5.1 FP Exceptions ... 597
20.5.2 Infinity and NaNo i 599
20.5.3 Examining the FPU status word........................ 600
20.5.4 Error Reporting by Mathematical Functions 602
20.6 Rounding Modesccoouuiiiiiiiii i 603
20.7 Floating-Point Control Functions............................ 605
20.8 Arithmetic Functions......... o i i 607
20.8.1 Absolute Value............ooiiiiiiiiii i, 607
20.8.2 Normalization Functions.................. ...t 608
20.8.3 Rounding Functions............... 610
20.8.4 Remainder Functions................... i i 614
20.8.5 Setting and modifying single bits of FP values.......... 615
20.8.6 Floating-Point Comparison Functions................... 618
20.8.7 Miscellaneous FP arithmetic functions.................. 620
20.9 Complex Numbers ...t 626
20.10 Projections, Conjugates, and
Decomposing of Complex Numbers.............................. 626
20.11 Parsing of Numbers......... ... 628
20.11.1 Parsing of Integers ..., 628
20.11.2 Parsing of Floats ..., 633
20.12 Printing of Floats......... ... i i 635
20.13 Old-fashioned System V number-to-string functions......... 636

21 Bit Manipulation............................ 639

22 Dateand Time............................... 643
221 Time BasiCs.t 643
22.2 TImMe TyPeS .« ottt 644
22.3 Calculating Elapsed Time ..., 645
22.4 Processor And CPU Time...........cooiiiiiiiiiiii ... 646

22.4.1 CPU Time Inquiry ... 647
22.4.2 Processor Time Inquiry.............oooiiiiiiiiii.. 647
22.5 Calendar Time.........ooiiiiiii i e 648
22.5.1 Getting the Time.......... ... o .. 648
22.5.2 Setting and Adjusting the Time 652
22.5.3 Broken-down Time.......... ..o ... 657
22.5.4 Formatting Calendar Time 660
22.5.5 Convert textual time and date information back 666
22.5.5.1 Interpret string according to given format.......... 667
22.5.5.2 A More User-friendly Way to Parse Times and Dates. . 672
22.5.6 Specifying the Time Zone with TZ 674
22.5.6.1 Geographical Format for TZ........................ 675
22.5.6.2 Proleptic Format for TZ......................... ... 675
22.5.7 State Variables for Time Zones 677
22.5.8 Time Functions Example............ 678
22.6 Setting an Alarm......... ..o 679
22,7 SlEEPING. . oottt 681

23 Resource Usage And Limitation............ 684
23.1 Resource USAgevvuieitiiiitiiiiiiiiiiiie e 684
23.2 Limiting Resource Usage ..ot .. 685
23.3 Process CPU Priority And Scheduling....................... 689

23.3.1 Absolute Priority.......... .o i 690
23.3.1.1 Using Absolute Priority............. 691
23.3.2 Realtime Scheduling............. ... i 691
23.3.3 Basic Scheduling Functions............................. 692
23.3.4 Extensible Scheduling 696
23.3.5 Traditional Scheduling.................. ..o it 698
23.3.5.1 Introduction To Traditional Scheduling 698
23.3.5.2 Functions For Traditional Scheduling 699
23.3.6 Limiting execution to certain CPUs..................... 701
23.4 Querying memory available resources................ 706
23.4.1 Overview about traditional Unix memory handling...... 706
23.4.2 How to get information about the memory subsystem? .. 707
23.5 Learn about the processors available......................... 708

24 Non-Local Exits 710
24.1 Introduction to Non-Local Exits.............. 710
24.2 Details of Non-Local Exits............... ..., 711
24.3 Non-Local Exits and Signals............ ..., 712

24.4 Complete Context Control......... ..., 713

xiii

xiv

25 Signal Handling........................... ... 719
25.1 Basic Concepts of Signals. ..., 719
25.1.1 Some Kinds of Signals................ ... i 719
25.1.2 Concepts of Signal Generation.......................... 719
25.1.3 How Signals Are Delivered.............................. 720
25.2 Standard Signals.......... ..o 721
25.2.1 Program Error Signals.............. ..o i 721
25.2.2 Termination Signals i i 724
25.2.3 Alarm Signals........ ... 725
25.2.4 Asynchronous I/O Signals.................ooooiiil 726
25.2.5 Job Control Signals...........o 726
25.2.6 Operation Error Signals............. 728
25.2.7 Miscellaneous Signals............ ... i 728
25.2.8 Signal Messagesvvuettn i 729
25.3 Specifying Signal Actions........ i, 730
25.3.1 Basic Signal Handlingl 730
25.3.2 Advanced Signal Handling.............................. 732
25.3.3 Interaction of signal and sigaction................... 734
25.3.4 sigaction Function Example, 734
25.3.5 Flags for sigaction................oooiiiiiiiiiL, 735
25.3.6 Initial Signal Actions.............cooiiiiiiiiii., 736
25.4 Defining Signal Handlers o it 737
25.4.1 Signal Handlers that Return............................ 737
25.4.2 Handlers That Terminate the Process................... 738
25.4.3 Nonlocal Control Transfer in Handlers.................. 739
25.4.4 Signals Arriving While a Handler Runs................. 740
25.4.5 Signals Close Together Merge into One 741
25.4.6 Signal Handling and Nonreentrant Functions............ 743
25.4.7 Atomic Data Access and Signal Handling 744
25.4.7.1 Problems with Non-Atomic Access................. 745
25.4.7.2 Atomic Typescooouiiiiiiiii i 745
25.4.7.3 Atomic Usage Patterns 746

25.5 Primitives Interrupted by Signals............ 746
25.6 Generating Signals 747
25.6.1 Signaling Yourself....... i 747
25.6.2 Signaling Another Process............ ..., 748
25.6.3 Permission for using kill ..., 750
25.6.4 Using kill for Communication......................... 750
25.7 Blocking Signals..........c.o.oiiiiiiiii 752
25.7.1 Why Blocking Signals is Useful 752
25.7.2 Signal Setso 752
25.7.3 Process Signal Mask........... ... i 754
25.7.4 Blocking to Test for Delivery of a Signal 755
25.7.5 Blocking Signals for a Handler.......................... 755
25.7.6 Checking for Pending Signals.................... 756
25.7.7 Remembering a Signal to Act On Later................. 757
25.8 Waiting for a Signal......... ... i i 758

25.8.1 Using pause........oiiuiiiiiiii i 758

25.8.2 Problems with pause.............. ... il 759
25.8.3 Using sigsuspend........c.o.oueiiiiiiiiiiiiiennineennn. 760
25.9 Using a Separate Signal Stack 761
25.10 BSD Signal Handling. ..., 763
26 The Basic Program/System Interface...... 765
26.1 Program Arguments................iiiiiiiiiii 765
26.1.1 Program Argument Syntax Conventions 766
26.1.2 Parsing Program Arguments........................ ..., 766
26.2 Parsing program options using getopt....................... 767
26.2.1 Using the getopt function.............. 767
26.2.2 Example of Parsing Arguments with getopt............ 768
26.2.3 Parsing Long Options with getopt_long 770
26.2.4 Example of Parsing Long Options with getopt_long.... 772
26.3 Parsing Program Options with Argp............ 774
26.3.1 The argp_parse Function........................ 774
26.3.2 Argp Global Variables.............. 775
26.3.3 Specifying Argp Parsersl 775
26.3.4 Specifying Options in an Argp Parser................... oy
26.3.4.1 Flags for Argp Options ..., 778
26.3.5 Argp Parser Functions......................ooiiL. 778
26.3.5.1 Special Keys for Argp Parser Functions............ 779
26.3.5.2 Argp Parsing State...........l 781
26.3.5.3 Functions For Use in Argp Parsers................. 783
26.3.6 Combining Multiple Argp Parsers....................... 784
26.3.7 Flags for argp_parse.........coooiiiiiiiiiiiiiiii. 785
26.3.8 Customizing Argp Help Output......................... 786
26.3.8.1 Special Keys for Argp Help Filter Functions. 786
26.3.9 The argp_help Function............, 786
26.3.10 Flags for the argp_help Function 787
26.3.11 Argp Examples. ... 788
26.3.11.1 A Minimal Program Using Argp.................. 788
26.3.11.2 A Program Using Argp with Only Default Options.. 788
26.3.11.3 A Program Using Argp with User Options........ 789
26.3.11.4 A Program Using Multiple Combined Argp Parsers. . 792
26.3.12 Argp User Customization....................cooeon... 796
26.3.12.1 Parsing of Suboptions 796
26.3.13 Parsing of Suboptions Example........................ 797
26.4 Environment Variables o i 799
26.4.1 Environment AcCesS..........couiiiiiiiiiiiiiii .. 799
26.4.2 Standard Environment Variables........................ 801
26.5 Auxiliary Vectoro 803
26.5.1 Definition of getauxval 803
26.6 System Calls..........o.iiiii i 804
26.7 Program Terminationooiiiiiiiiiiiiiii... 805
26.7.1 Normal Termination.............coooiiiiiiiiiii 806
26.7.2 EXit Status. ... 806

26.7.3 Cleanups on Exit...... ... i 807

XV

xvi

26.7.4 Aborting a Program............ ... i, 808
26.7.5 Termination Internals 808
27 Processes.............. i 810
27.1 Running a Command.c.oiiiiiiiiiiiinieanne.n. 810
27.2 Process Creation Conceptsc.ooeiiiiiiiieiiian.. 811
27.3 Process Identification......... o i 811
27.4 Creating a Process ..., 813
27.5 Querying a Process. ... 814
27.6 ExecutingaFile...... .. o 815
27.7 Process Completion ... 817
27.8 Process Completion Status..............cooiiiiiiiiiiL. 820
27.9 BSD Process Wait Function............o 821
27.10 Process Creation Example............. 821
28 Inter-Process Communication.............. 823
28.1 Semaphoresttt 823
28.1.1 System V Semaphores............ccoiiiiiiiiiiiannn... 823
28.1.2 POSIX Semaphoresc.ooviiiiiiiiiiiienne... 823
29 Job Conmtrol................... 824
29.1 Concepts of Job Control..............ooiiiii ... 824
29.2 Controlling Terminal of a Process............................ 825
29.3 Access to the Controlling Terminal 825
29.4 Orphaned Process Groups.........c.oouiiiiiiiiiiinann.. 826
29.5 Implementing a Job Control Shell 826
29.5.1 Data Structures for the Shell 826
29.5.2 Initializing the Shello L. 828
29.5.3 Launching Jobs i 829
29.5.4 Foreground and Background................. 832
29.5.5 Stopped and Terminated Jobs.......................... 834
29.5.6 Continuing Stopped Jobs.................ciiii.. 836
29.5.7 The Missing Pieces ..., 837
29.6 Functions for Job Control, 838
29.6.1 Identifying the Controlling Terminal 838
29.6.2 Process Group Functionsl 838
29.6.3 Functions for Controlling Terminal Access 840

30 System Databases and Name Service Switch .. 842

30.1 NSS BasiCs. .ottt 842
30.2 The NSS Configuration File............o ... 843
30.2.1 Services in the NSS configuration File................... 843
30.2.2 Actions in the NSS configuration 844
30.2.3 Notes on the NSS Configuration File.................... 845
30.3 NSS Module Internals 846

30.3.1 The Naming Scheme of the NSS Modules............... 846

30.3.2 The Interface of the Function in NSS Modules 847
30.4 Extending NSS.o 849
30.4.1 Adding another Service to NSS......................... 849
30.4.2 Internals of the NSS Module Functions 850
31 Usersand Groups 852
31.1 Userand Group IDs....... ..o, 852
31.2 The Persona of a Process..............oooiiiiii ... 852
31.3 Why Change the Persona of a Process?...................... 853
31.4 How an Application Can Change Persona.................... 853
31.5 Reading the Persona of a Process............................ 854
31.6 Setting the User ID i 855
31.7 Setting the Group IDs. ... 856
31.8 Enabling and Disabling Setuid Access 858
31.9 Setuid Program Example........ ... i 859
31.10 Tips for Writing Setuid Programs 861
31.11 Identifying Who Logged In............ oL, 862
31.12 The User Accounting Database............................. 863
31.12.1 Manipulating the User Accounting Database........... 863
31.12.2 XPG User Accounting Database Functions............. 868
31.12.3 LoggingInand Out, 870
31.13 User Database ... 871
31.13.1 The Data Structure that Describes a User 871
31.13.2 Looking Up One Usercooiviiiiiiiiinn... 872
31.13.3 Scanning the List of Al Users......................... 873
31.13.4 Writing a User Entry...........cooooiiiiiiit. 874
31.14 Group Database i 875
31.14.1 The Data Structure for a Group....................... 875
31.14.2 Looking Up One Groupcooveiiuieeenienaan.. 875
31.14.3 Scanning the List of All Groups 876
31.15 User and Group Database Example......................... 878
31.16 Netgroup Database.............coo i i, 879
31.16.1 Netgroup Data....... ... 879
31.16.2 Looking up one Netgroup.............cooiiiin... 879
31.16.3 Testing for Netgroup Membership 881
32 System Management 882
32.1 Host Identificationo i 882
32.2 Platform Type Identification 884
32.3 Controlling and Querying Mounts 885
32.3.1 Mount Information............. L. 886
32.3.1.1 Thefstabfile........cooiiiii i 886
32.3.1.2 Themtabfile........ccoooiiiiiii i 889

32.3.1.3 Other (Non-libc) Sources of Mount Information 892
32.3.2 Mount, Unmount, Remount 892

Xvii

xviii

33 System Configuration Parameters.......... 897
33.1 General Capacity Limits............. ..o i, 897
33.2 Overall System Optionscooiiiiiiiiiiiiiiiea.n. 898
33.3 Which Version of POSIX is Supported....................... 899
33.4 Using sysconf ... 900

33.4.1 Definition of sysconf............ 900

33.4.2 Constants for sysconf Parameters...................... 900

33.4.3 Examples of sysconf........ il 909
33.5 Minimum Values for General Capacity Limits................ 909
33.6 Limits on File System Capacitycoooiiiiiin. 910
33.7 Optional Features in File Support 912
33.8 Minimum Values for File System Limits 912
33.9 Using pathconf i 913
33.10 Utility Program Capacity Limits 915
33.11 Minimum Values for Utility Limits......................... 916
33.12 String-Valued Parameters oo 917

34 Cryptographic Functions.................... 919
34.1 Generating Unpredictable Bytes............... 919

35 Debugging support 921
35.1 Backtracesooiiiiiii 921

36 Threads L. 924
36.1 ISO C Threads.oovuuiiiinit e 924

36.1.1 Return Values........... ..o i, 924
36.1.2 Creation and Control...........o .. 924
36.1.3 Call Oneeoonunii i 926
36.1.4 MUteXeS. .. uue 926
36.1.5 Condition Variables i i 929
36.1.6 Thread-local Storagec.ociiiiiiiiiiii... 930
36.2 POSIX Threadsoouuiiiii e 931
36.2.1 Creating and Destroying Threads....................... 931
36.2.2 Thread-specific Data i 933
36.2.3 Functions for Waiting According to a Specific Clock. 933
36.2.4 POSIX Semaphoresveiiie i, 934
36.2.5 POSIX Barriersoouuuiteiiii i 936
36.2.6 POSIX Spin Locks ... 937
36.2.7 POSIX MUtexeso.uviiitiiiiiiii i 938
36.2.8 POSIX Threads Other APIs............................ 940
36.2.9 Non-POSIX Extensions............ccooviiiiiiineann... 941

36.2.9.1 Setting Process-wide defaults for thread attributes.. 941
36.2.9.2 Controlling the Initial Signal Mask of a New Thread .. 941

36.2.9.3 Thread CPU Affinityo ... 942
36.2.9.4 Wait for a thread to terminate..................... 943
36.2.9.5 Thread Names.ot 944

36.2.9.6 Detecting Single-Threaded Execution 944

36.2.9.7 Restartable Sequences............................. 945

37 Dynamic Linker.............................. 947
37.1 Dynamic Linker Invocation................ ... 947
37.1.1 Dynamic Linker Diagnostics............................ 947
37.1.1.1 Dynamic Linker Diagnostics Format 948

37.1.1.2 Dynamic Linker Diagnostics Values................ 948

37.2 Dynamic Linker Introspection 952
37.2.1 Querying information for loaded objects 953

37.3 Avoiding Unexpected Issues With Dynamic Linking.......... 956
37.3.1 Restricted Dynamic Linker Features.................... 957
37.3.2 Producing Matching Binaries........................... 961
37.3.3 Checking Binaries............ccoiiiiiiii ... 962
37.3.4 Run-time Considerationscooviiiiiiia. .. 963

38 Internal probes 964
38.1 Memory Allocation Probes............ 964
38.2 Non-local Goto Probes i 967
39 Tunables........ 969
39.1 Tunable names.......... ..ot 970
39.2 Memory Allocation Tunables........... 970
39.3 Dynamic Linking Tunables.............. oot 973
39.4 Elision Tunables ... 974
39.5 POSIX Thread Tunableso . 976
39.6 Hardware Capability Tunables............... 976
39.7 Memory Related Tunables............. i 979
39.8 gmon Tunables........ ... i 980

Appendix A C Language

Facilities in the Library........................ 982
A.1 Explicitly Checking Internal Consistency 982
A.2 Variadic Functions.......... i 983
A.2.1 Why Variadic Functions are Used 983
A.2.2 How Variadic Functions are Defined and Used 984
A.2.2.1 Syntax for Variable Arguments..................... 984
A.2.2.2 Receiving the Argument Values 985
A.2.2.3 How Many Arguments Were Supplied 985
A.2.2.4 Calling Variadic Functions 986
A.2.25 Argument Access Macros.............oooiiiiii.. 986

A.2.3 Example of a Variadic Function......................... 988
A.3 Null Pointer Constant oo . 988
A4 TImportant Data Types......c.oviiiiiii s, 989
A.5 Data Type Measurements...............coiiiiiiii... 989
A.5.1 Width of an Integer Type ..., 990

A.5.2 Range of an Integer Type 991

xix

A.5.3 Floating Type Macros.........ovvriveiiiiienninnennnn.. 992
A.5.3.1 Floating Point Representation Concepts............ 992
A.5.3.2 Floating Point Parameters 994
A.5.3.3 IEEE Floating Point 996

A.5.4 Structure Field Offset Measurement 997

Appendix B Summary of Library Facilities... 998

Appendix C Installing the GNU C Library.. 1134

C.1 Configuring and compiling the GNU C Library.............. 1134
C.2 Installing the C Library...........ooiiiiiiiiiinann.. 1140
C.3 Recommended Tools for Compilation........................ 1141
C.4 Specific advice for GNU/Linux systems 1143
C.5 Reporting Bugs. ... 1144
Appendix D Library Maintenance............ 1145
D.1 Adding New Functions.......... ..., 1145
D.1.1 Platform-specific types, macros and functions 1146

D.2 Fortification of function calls................, 1147
D.3 Symbol handling in the GNU C Library..................... 1150
D.3.1 64-bit time symbol handling in the GNU C Library..... 1150

D.4 Porting the GNU C Library.............coooiiiiiiii... 1152
D.4.1 Layout of the sysdeps Directory Hierarchy............. 1154

D.4.2 Porting the GNU C Library to Unix Systems........... 1156
Appendix E Platform-specific facilities 1157
E.1 PowerPC-specific Facilities. ...t 1157
E.2 RISC-V-specific Facilities ..., 1159
E.3 X86-specific Facilities 1159

Appendix F Contributors to the
GNU C Library 1166

Appendix G Free Software Needs
Free Documentation.......................... 1174

Appendix H GNU Lesser General
Public License................................. 1176

Appendix I GNU Free
Documentation License....................... 1185

Concept Index................................... 1193

XX

TypelIndex i, 1206
Function and Macro Index 1209
Variable and Constant Macro Index........... 1227

Program and File Index 1240

xx1

1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C Library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to GNU systems.

The purpose of this manual is to tell you how to use the facilities of the GNU C Library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C Library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file stdio.h declares facilities
for performing input and output, and the header file string.h declares string processing
utilities. The organization of this manual generally follows the same division as the header

files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
Library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C Library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU C
Library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 998, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.

Chapter 1: Introduction 2

1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the American Na-
tional Standards Institute (ANSI): American National Standard X3.159-1989— “ANSI C”
and later by the International Standardization Organization (ISO): ISO/IEC 9899:1990,
“Programming languages—C”. We here refer to the standard as ISO C since this is the
more general standard in respect of ratification. The header files and library facilities that
make up the GNU C Library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘~ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only ISO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros], page 16, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names], page 14,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU C Library is also compatible with the ISO POSIX family of standards, known
more formally as the Portable Operating System Interface for Computer Environments
(ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived

mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 411), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 520), and
process control functions (see Chapter 27 [Processes|, page 810).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU C Library. These include utilities for deal-
ing with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 242).

1.2.2.1 POSIX Safety Concepts

This manual documents various safety properties of GNU C Library functions, in lines that
follow their prototypes and look like:

Chapter 1: Introduction 3

Preliminary: | MT-Safe | AS-Safe | AC-Safe |

The properties are assessed according to the criteria set forth in the POSIX standard for
such safety contexts as Thread-, Async-Signal- and Async-Cancel- -Safety. Intuitive defi-
nitions of these properties, attempting to capture the meaning of the standard definitions,
follow.

e MT-Safe or Thread-Safe functions are safe to call in the presence of other threads. MT,
in MT-Safe, stands for Multi Thread.

Being MT-Safe does not imply a function is atomic, nor that it uses any of the memory
synchronization mechanisms POSIX exposes to users. It is even possible that calling
MT-Safe functions in sequence does not yield an MT-Safe combination. For example,
having a thread call two MT-Safe functions one right after the other does not guaran-
tee behavior equivalent to atomic execution of a combination of both functions, since
concurrent calls in other threads may interfere in a destructive way.

Whole-program optimizations that could inline functions across library interfaces may
expose unsafe reordering, and so performing inlining across the GNU C Library inter-
face is not recommended. The documented MT-Safety status is not guaranteed under
whole-program optimization. However, functions defined in user-visible headers are
designed to be safe for inlining.

e AS-Safe or Async-Signal-Safe functions are safe to call from asynchronous signal han-
dlers. AS, in AS-Safe, stands for Asynchronous Signal.

Many functions that are AS-Safe may set errno, or modify the floating-point environ-
ment, because their doing so does not make them unsuitable for use in signal handlers.
However, programs could misbehave should asynchronous signal handlers modify this
thread-local state, and the signal handling machinery cannot be counted on to pre-
serve it. Therefore, signal handlers that call functions that may set errno or modify
the floating-point environment must save their original values, and restore them before
returning.

e AC-Safe or Async-Cancel-Safe functions are safe to call when asynchronous cancellation
is enabled. AC in AC-Safe stands for Asynchronous Cancellation.

The POSIX standard defines only three functions to be AC-Safe, namely pthread_
cancel, pthread_setcancelstate, and pthread_setcanceltype. At present the
GNU C Library provides no guarantees beyond these three functions, but does docu-

ment which functions are presently AC-Safe. This documentation is provided for use
by the GNU C Library developers.

Just like signal handlers, cancellation cleanup routines must configure the floating point
environment they require. The routines cannot assume a floating point environment,
particularly when asynchronous cancellation is enabled. If the configuration of the
floating point environment cannot be performed atomically then it is also possible that
the environment encountered is internally inconsistent.

e MT-Unsafe, AS-Unsafe, AC-Unsafe functions are not safe to call within the safety con-
texts described above. Calling them within such contexts invokes undefined behavior.
Functions not explicitly documented as safe in a safety context should be regarded as
Unsafe.

e Preliminary safety properties are documented, indicating these properties may not be
counted on in future releases of the GNU C Library.

Chapter 1: Introduction 4

Such preliminary properties are the result of an assessment of the properties of our
current implementation, rather than of what is mandated and permitted by current
and future standards.

Although we strive to abide by the standards, in some cases our implementation is safe
even when the standard does not demand safety, and in other cases our implementation
does not meet the standard safety requirements. The latter are most likely bugs; the
former, when marked as Preliminary, should not be counted on: future standards may
require changes that are not compatible with the additional safety properties afforded
by the current implementation.

Furthermore, the POSIX standard does not offer a detailed definition of safety. We
assume that, by “safe to call”’, POSIX means that, as long as the program does not
invoke undefined behavior, the “safe to call” function behaves as specified, and does
not cause other functions to deviate from their specified behavior. We have chosen to
use its loose definitions of safety, not because they are the best definitions to use, but
because choosing them harmonizes this manual with POSIX.

Please keep in mind that these are preliminary definitions and annotations, and certain
aspects of the definitions are still under discussion and might be subject to clarification
or change.

Over time, we envision evolving the preliminary safety notes into stable commitments,
as stable as those of our interfaces. As we do, we will remove the Preliminary keyword
from safety notes. Aslong as the keyword remains, however, they are not to be regarded
as a promise of future behavior.

Other keywords that appear in safety notes are defined in subsequent sections.

1.2.2.2 Unsafe Features

Functions that are unsafe to call in certain contexts are annotated with keywords that
document their features that make them unsafe to call. AS-Unsafe features in this sec-
tion indicate the functions are never safe to call when asynchronous signals are enabled.
AC-Unsafe features indicate they are never safe to call when asynchronous cancellation is
enabled. There are no MT-Unsafe marks in this section.

e lock

Functions marked with lock as an AS-Unsafe feature may be interrupted by a signal
while holding a non-recursive lock. If the signal handler calls another such function
that takes the same lock, the result is a deadlock.

Functions annotated with lock as an AC-Unsafe feature may, if cancelled
asynchronously, fail to release a lock that would have been released if their execution
had not been interrupted by asynchronous thread cancellation. Once a lock is left
taken, attempts to take that lock will block indefinitely.
e corrupt

Functions marked with corrupt as an AS-Unsafe feature may corrupt data structures
and misbehave when they interrupt, or are interrupted by, another such function.
Unlike functions marked with lock, these take recursive locks to avoid MT-Safety
problems, but this is not enough to stop a signal handler from observing a partially-
updated data structure. Further corruption may arise from the interrupted function’s
failure to notice updates made by signal handlers.

Chapter 1: Introduction 5

Functions marked with corrupt as an AC-Unsafe feature may leave data structures in a
corrupt, partially updated state. Subsequent uses of the data structure may misbehave.

e heap

Functions marked with heap may call heap memory management functions from the
malloc/free family of functions and are only as safe as those functions. This note is
thus equivalent to:

| AS-Unsafe lock | AC-Unsafe lock fd mem |
e dlopen

Functions marked with dlopen use the dynamic loader to load shared libraries into
the current execution image. This involves opening files, mapping them into memory,
allocating additional memory, resolving symbols, applying relocations and more, all of
this while holding internal dynamic loader locks.

The locks are enough for these functions to be AS- and AC-Unsafe, but other issues
may arise. At present this is a placeholder for all potential safety issues raised by
dlopen.

e plugin
Functions annotated with plugin may run code from plugins that may be external to
the GNU C Library. Such plugin functions are assumed to be MT-Safe, AS-Unsafe
and AC-Unsafe. Examples of such plugins are stack unwinding libraries, name service
switch (NSS) and character set conversion (iconv) back-ends.

Although the plugins mentioned as examples are all brought in by means of dlopen,
the plugin keyword does not imply any direct involvement of the dynamic loader or
the 1ibd1 interfaces, those are covered by dlopen. For example, if one function loads a
module and finds the addresses of some of its functions, while another just calls those
already-resolved functions, the former will be marked with dlopen, whereas the latter
will get the plugin. When a single function takes all of these actions, then it gets both
marks.

e i18n

Functions marked with i18n may call internationalization functions of the gettext
family and will be only as safe as those functions. This note is thus equivalent to:

| MT-Safe env | AS-Unsafe corrupt heap dlopen | AC-Unsafe corrupt |
e timer

Functions marked with timer use the alarm function or similar to set a time-out for a
system call or a long-running operation. In a multi-threaded program, there is a risk
that the time-out signal will be delivered to a different thread, thus failing to interrupt
the intended thread. Besides being MT-Unsafe, such functions are always AS-Unsafe,
because calling them in signal handlers may interfere with timers set in the interrupted
code, and AC-Unsafe, because there is no safe way to guarantee an earlier timer will
be reset in case of asynchronous cancellation.

1.2.2.3 Conditionally Safe Features

For some features that make functions unsafe to call in certain contexts, there are known
ways to avoid the safety problem other than refraining from calling the function altogether.
The keywords that follow refer to such features, and each of their definitions indicate how

Chapter 1: Introduction 6

the whole program needs to be constrained in order to remove the safety problem indicated
by the keyword. Only when all the reasons that make a function unsafe are observed and
addressed, by applying the documented constraints, does the function become safe to call
in a context.

e init
Functions marked with init as an MT-Unsafe feature perform MT-Unsafe initialization
when they are first called.

Calling such a function at least once in single-threaded mode removes this specific cause
for the function to be regarded as MT-Unsafe. If no other cause for that remains, the
function can then be safely called after other threads are started.

Functions marked with init as an AS- or AC-Unsafe feature use the internal 1ibc_
once machinery or similar to initialize internal data structures.

If a signal handler interrupts such an initializer, and calls any function that also per-
forms libc_once initialization, it will deadlock if the thread library has been loaded.

Furthermore, if an initializer is partially complete before it is canceled or interrupted
by a signal whose handler requires the same initialization, some or all of the initializa-
tion may be performed more than once, leaking resources or even resulting in corrupt
internal data.

Applications that need to call functions marked with init as an AS- or AC-Unsafe
feature should ensure the initialization is performed before configuring signal handlers
or enabling cancellation, so that the AS- and AC-Safety issues related with 1ibc_once
do not arise.

® race

Functions annotated with race as an MT-Safety issue operate on objects in ways that
may cause data races or similar forms of destructive interference out of concurrent
execution. In some cases, the objects are passed to the functions by users; in others,
they are used by the functions to return values to users; in others, they are not even
exposed to users.

We consider access to objects passed as (indirect) arguments to functions to be data
race free. The assurance of data race free objects is the caller’s responsibility. We
will not mark a function as MT-Unsafe or AS-Unsafe if it misbehaves when users fail
to take the measures required by POSIX to avoid data races when dealing with such
objects. As a general rule, if a function is documented as reading from an object
passed (by reference) to it, or modifying it, users ought to use memory synchronization
primitives to avoid data races just as they would should they perform the accesses
themselves rather than by calling the library function. FILE streams are the exception
to the general rule, in that POSIX mandates the library to guard against data races
in many functions that manipulate objects of this specific opaque type. We regard
this as a convenience provided to users, rather than as a general requirement whose
expectations should extend to other types.

In order to remind users that guarding certain arguments is their responsibility, we will
annotate functions that take objects of certain types as arguments. We draw the line
for objects passed by users as follows: objects whose types are exposed to users, and
that users are expected to access directly, such as memory buffers, strings, and various

Chapter 1: Introduction 7

user-visible struct types, do not give reason for functions to be annotated with race.
It would be noisy and redundant with the general requirement, and not many would
be surprised by the library’s lack of internal guards when accessing objects that can be
accessed directly by users.

As for objects that are opaque or opaque-like, in that they are to be manipulated only
by passing them to library functions (e.g., FILE, DIR, obstack, iconv_t), there might
be additional expectations as to internal coordination of access by the library. We will
annotate, with race followed by a colon and the argument name, functions that take
such objects but that do not take care of synchronizing access to them by default. For
example, FILE stream unlocked functions will be annotated, but those that perform
implicit locking on FILE streams by default will not, even though the implicit locking
may be disabled on a per-stream basis.

In either case, we will not regard as MT-Unsafe functions that may access user-supplied
objects in unsafe ways should users fail to ensure the accesses are well defined. The
notion prevails that users are expected to safeguard against data races any user-supplied
objects that the library accesses on their behalf.

This user responsibility does not apply, however, to objects controlled by the library
itself, such as internal objects and static buffers used to return values from certain
calls. When the library doesn’t guard them against concurrent uses, these cases are
regarded as MT-Unsafe and AS-Unsafe (although the race mark under AS-Unsafe will
be omitted as redundant with the one under MT-Unsafe). As in the case of user-
exposed objects, the mark may be followed by a colon and an identifier. The identifier
groups all functions that operate on a certain unguarded object; users may avoid the
MT-Safety issues related with unguarded concurrent access to such internal objects
by creating a non-recursive mutex related with the identifier, and always holding the
mutex when calling any function marked as racy on that identifier, as they would have
to should the identifier be an object under user control. The non-recursive mutex
avoids the MT-Safety issue, but it trades one AS-Safety issue for another, so use in
asynchronous signals remains undefined.

When the identifier relates to a static buffer used to hold return values, the mutex
must be held for as long as the buffer remains in use by the caller. Many functions
that return pointers to static buffers offer reentrant variants that store return values in
caller-supplied buffers instead. In some cases, such as tmpname, the variant is chosen
not by calling an alternate entry point, but by passing a non-NULL pointer to the buffer
in which the returned values are to be stored. These variants are generally preferable
in multi-threaded programs, although some of them are not MT-Safe because of other
internal buffers, also documented with race notes.

e const

Functions marked with const as an MT-Safety issue non-atomically modify internal
objects that are better regarded as constant, because a substantial portion of the
GNU C Library accesses them without synchronization. Unlike race, that causes both
readers and writers of internal objects to be regarded as MT-Unsafe and AS-Unsafe, this
mark is applied to writers only. Writers remain equally MT- and AS-Unsafe to call, but
the then-mandatory constness of objects they modify enables readers to be regarded as
MT-Safe and AS-Safe (as long as no other reasons for them to be unsafe remain), since
the lack of synchronization is not a problem when the objects are effectively constant.

Chapter 1: Introduction 8

The identifier that follows the const mark will appear by itself as a safety note in
readers. Programs that wish to work around this safety issue, so as to call writers,
may use a non-recursve rwlock associated with the identifier, and guard all calls to
functions marked with const followed by the identifier with a write lock, and all calls to
functions marked with the identifier by itself with a read lock. The non-recursive locking
removes the MT-Safety problem, but it trades one AS-Safety problem for another, so
use in asynchronous signals remains undefined.

e sig

Functions marked with sig as a MT-Safety issue (that implies an identical AS-Safety is-
sue, omitted for brevity) may temporarily install a signal handler for internal purposes,
which may interfere with other uses of the signal, identified after a colon.

This safety problem can be worked around by ensuring that no other uses of the signal
will take place for the duration of the call. Holding a non-recursive mutex while calling
all functions that use the same temporary signal; blocking that signal before the call
and resetting its handler afterwards is recommended.

There is no safe way to guarantee the original signal handler is restored in case of
asynchronous cancellation, therefore so-marked functions are also AC-Unsafe.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disabling asynchronous cancellation and
installing a cleanup handler to restore the signal to the desired state and to release the
mutex are recommended.

e term

Functions marked with term as an MT-Safety issue may change the terminal settings
in the recommended way, namely: call tcgetattr, modify some flags, and then call
tcsetattr; this creates a window in which changes made by other threads are lost.
Thus, functions marked with term are MT-Unsafe. The same window enables changes
made by asynchronous signals to be lost. These functions are also AS-Unsafe, but the
corresponding mark is omitted as redundant.

It is thus advisable for applications using the terminal to avoid concurrent and reen-
trant interactions with it, by not using it in signal handlers or blocking signals that
might use it, and holding a lock while calling these functions and interacting with the
terminal. This lock should also be used for mutual exclusion with functions marked
with race:tcattr(£d), where fd is a file descriptor for the controlling terminal. The
caller may use a single mutex for simplicity, or use one mutex per terminal, even if
referenced by different file descriptors.

Functions marked with term as an AC-Safety issue are supposed to restore terminal
settings to their original state, after temporarily changing them, but they may fail to
do so if cancelled.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disa