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1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C Library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to GNU systems.

The purpose of this manual is to tell you how to use the facilities of the GNU C Library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C Library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file stdio.h declares facilities
for performing input and output, and the header file string.h declares string processing
utilities. The organization of this manual generally follows the same division as the header

files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
Library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C Library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU C
Library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 998, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.
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1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the American Na-
tional Standards Institute (ANSI): American National Standard X3.159-1989— “ANSI C”
and later by the International Standardization Organization (ISO): ISO/IEC 9899:1990,
“Programming languages—C”. We here refer to the standard as ISO C since this is the
more general standard in respect of ratification. The header files and library facilities that
make up the GNU C Library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘~ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only ISO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros], page 16, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names], page 14,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU C Library is also compatible with the ISO POSIX family of standards, known
more formally as the Portable Operating System Interface for Computer Environments
(ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived

mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 411), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 520), and
process control functions (see Chapter 27 [Processes|, page 810).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU C Library. These include utilities for deal-
ing with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 242).

1.2.2.1 POSIX Safety Concepts

This manual documents various safety properties of GNU C Library functions, in lines that
follow their prototypes and look like:
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Preliminary: | MT-Safe | AS-Safe | AC-Safe |

The properties are assessed according to the criteria set forth in the POSIX standard for
such safety contexts as Thread-, Async-Signal- and Async-Cancel- -Safety. Intuitive defi-
nitions of these properties, attempting to capture the meaning of the standard definitions,
follow.

e MT-Safe or Thread-Safe functions are safe to call in the presence of other threads. MT,
in MT-Safe, stands for Multi Thread.

Being MT-Safe does not imply a function is atomic, nor that it uses any of the memory
synchronization mechanisms POSIX exposes to users. It is even possible that calling
MT-Safe functions in sequence does not yield an MT-Safe combination. For example,
having a thread call two MT-Safe functions one right after the other does not guaran-
tee behavior equivalent to atomic execution of a combination of both functions, since
concurrent calls in other threads may interfere in a destructive way.

Whole-program optimizations that could inline functions across library interfaces may
expose unsafe reordering, and so performing inlining across the GNU C Library inter-
face is not recommended. The documented MT-Safety status is not guaranteed under
whole-program optimization. However, functions defined in user-visible headers are
designed to be safe for inlining.

e AS-Safe or Async-Signal-Safe functions are safe to call from asynchronous signal han-
dlers. AS, in AS-Safe, stands for Asynchronous Signal.

Many functions that are AS-Safe may set errno, or modify the floating-point environ-
ment, because their doing so does not make them unsuitable for use in signal handlers.
However, programs could misbehave should asynchronous signal handlers modify this
thread-local state, and the signal handling machinery cannot be counted on to pre-
serve it. Therefore, signal handlers that call functions that may set errno or modify
the floating-point environment must save their original values, and restore them before
returning.

e AC-Safe or Async-Cancel-Safe functions are safe to call when asynchronous cancellation
is enabled. AC in AC-Safe stands for Asynchronous Cancellation.

The POSIX standard defines only three functions to be AC-Safe, namely pthread_
cancel, pthread_setcancelstate, and pthread_setcanceltype. At present the
GNU C Library provides no guarantees beyond these three functions, but does docu-

ment which functions are presently AC-Safe. This documentation is provided for use
by the GNU C Library developers.

Just like signal handlers, cancellation cleanup routines must configure the floating point
environment they require. The routines cannot assume a floating point environment,
particularly when asynchronous cancellation is enabled. If the configuration of the
floating point environment cannot be performed atomically then it is also possible that
the environment encountered is internally inconsistent.

e MT-Unsafe, AS-Unsafe, AC-Unsafe functions are not safe to call within the safety con-
texts described above. Calling them within such contexts invokes undefined behavior.
Functions not explicitly documented as safe in a safety context should be regarded as
Unsafe.

e Preliminary safety properties are documented, indicating these properties may not be
counted on in future releases of the GNU C Library.
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Such preliminary properties are the result of an assessment of the properties of our
current implementation, rather than of what is mandated and permitted by current
and future standards.

Although we strive to abide by the standards, in some cases our implementation is safe
even when the standard does not demand safety, and in other cases our implementation
does not meet the standard safety requirements. The latter are most likely bugs; the
former, when marked as Preliminary, should not be counted on: future standards may
require changes that are not compatible with the additional safety properties afforded
by the current implementation.

Furthermore, the POSIX standard does not offer a detailed definition of safety. We
assume that, by “safe to call”’, POSIX means that, as long as the program does not
invoke undefined behavior, the “safe to call” function behaves as specified, and does
not cause other functions to deviate from their specified behavior. We have chosen to
use its loose definitions of safety, not because they are the best definitions to use, but
because choosing them harmonizes this manual with POSIX.

Please keep in mind that these are preliminary definitions and annotations, and certain
aspects of the definitions are still under discussion and might be subject to clarification
or change.

Over time, we envision evolving the preliminary safety notes into stable commitments,
as stable as those of our interfaces. As we do, we will remove the Preliminary keyword
from safety notes. Aslong as the keyword remains, however, they are not to be regarded
as a promise of future behavior.

Other keywords that appear in safety notes are defined in subsequent sections.

1.2.2.2 Unsafe Features

Functions that are unsafe to call in certain contexts are annotated with keywords that
document their features that make them unsafe to call. AS-Unsafe features in this sec-
tion indicate the functions are never safe to call when asynchronous signals are enabled.
AC-Unsafe features indicate they are never safe to call when asynchronous cancellation is
enabled. There are no MT-Unsafe marks in this section.

e lock

Functions marked with lock as an AS-Unsafe feature may be interrupted by a signal
while holding a non-recursive lock. If the signal handler calls another such function
that takes the same lock, the result is a deadlock.

Functions annotated with lock as an AC-Unsafe feature may, if cancelled
asynchronously, fail to release a lock that would have been released if their execution
had not been interrupted by asynchronous thread cancellation. Once a lock is left
taken, attempts to take that lock will block indefinitely.
e corrupt

Functions marked with corrupt as an AS-Unsafe feature may corrupt data structures
and misbehave when they interrupt, or are interrupted by, another such function.
Unlike functions marked with lock, these take recursive locks to avoid MT-Safety
problems, but this is not enough to stop a signal handler from observing a partially-
updated data structure. Further corruption may arise from the interrupted function’s
failure to notice updates made by signal handlers.
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Functions marked with corrupt as an AC-Unsafe feature may leave data structures in a
corrupt, partially updated state. Subsequent uses of the data structure may misbehave.

e heap

Functions marked with heap may call heap memory management functions from the
malloc/free family of functions and are only as safe as those functions. This note is
thus equivalent to:

| AS-Unsafe lock | AC-Unsafe lock fd mem |
e dlopen

Functions marked with dlopen use the dynamic loader to load shared libraries into
the current execution image. This involves opening files, mapping them into memory,
allocating additional memory, resolving symbols, applying relocations and more, all of
this while holding internal dynamic loader locks.

The locks are enough for these functions to be AS- and AC-Unsafe, but other issues
may arise. At present this is a placeholder for all potential safety issues raised by
dlopen.

e plugin
Functions annotated with plugin may run code from plugins that may be external to
the GNU C Library. Such plugin functions are assumed to be MT-Safe, AS-Unsafe
and AC-Unsafe. Examples of such plugins are stack unwinding libraries, name service
switch (NSS) and character set conversion (iconv) back-ends.

Although the plugins mentioned as examples are all brought in by means of dlopen,
the plugin keyword does not imply any direct involvement of the dynamic loader or
the 1ibd1 interfaces, those are covered by dlopen. For example, if one function loads a
module and finds the addresses of some of its functions, while another just calls those
already-resolved functions, the former will be marked with dlopen, whereas the latter
will get the plugin. When a single function takes all of these actions, then it gets both
marks.

e i18n

Functions marked with i18n may call internationalization functions of the gettext
family and will be only as safe as those functions. This note is thus equivalent to:

| MT-Safe env | AS-Unsafe corrupt heap dlopen | AC-Unsafe corrupt |
e timer

Functions marked with timer use the alarm function or similar to set a time-out for a
system call or a long-running operation. In a multi-threaded program, there is a risk
that the time-out signal will be delivered to a different thread, thus failing to interrupt
the intended thread. Besides being MT-Unsafe, such functions are always AS-Unsafe,
because calling them in signal handlers may interfere with timers set in the interrupted
code, and AC-Unsafe, because there is no safe way to guarantee an earlier timer will
be reset in case of asynchronous cancellation.

1.2.2.3 Conditionally Safe Features

For some features that make functions unsafe to call in certain contexts, there are known
ways to avoid the safety problem other than refraining from calling the function altogether.
The keywords that follow refer to such features, and each of their definitions indicate how
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the whole program needs to be constrained in order to remove the safety problem indicated
by the keyword. Only when all the reasons that make a function unsafe are observed and
addressed, by applying the documented constraints, does the function become safe to call
in a context.

e init
Functions marked with init as an MT-Unsafe feature perform MT-Unsafe initialization
when they are first called.

Calling such a function at least once in single-threaded mode removes this specific cause
for the function to be regarded as MT-Unsafe. If no other cause for that remains, the
function can then be safely called after other threads are started.

Functions marked with init as an AS- or AC-Unsafe feature use the internal 1ibc_
once machinery or similar to initialize internal data structures.

If a signal handler interrupts such an initializer, and calls any function that also per-
forms libc_once initialization, it will deadlock if the thread library has been loaded.

Furthermore, if an initializer is partially complete before it is canceled or interrupted
by a signal whose handler requires the same initialization, some or all of the initializa-
tion may be performed more than once, leaking resources or even resulting in corrupt
internal data.

Applications that need to call functions marked with init as an AS- or AC-Unsafe
feature should ensure the initialization is performed before configuring signal handlers
or enabling cancellation, so that the AS- and AC-Safety issues related with 1ibc_once
do not arise.

® race

Functions annotated with race as an MT-Safety issue operate on objects in ways that
may cause data races or similar forms of destructive interference out of concurrent
execution. In some cases, the objects are passed to the functions by users; in others,
they are used by the functions to return values to users; in others, they are not even
exposed to users.

We consider access to objects passed as (indirect) arguments to functions to be data
race free. The assurance of data race free objects is the caller’s responsibility. We
will not mark a function as MT-Unsafe or AS-Unsafe if it misbehaves when users fail
to take the measures required by POSIX to avoid data races when dealing with such
objects. As a general rule, if a function is documented as reading from an object
passed (by reference) to it, or modifying it, users ought to use memory synchronization
primitives to avoid data races just as they would should they perform the accesses
themselves rather than by calling the library function. FILE streams are the exception
to the general rule, in that POSIX mandates the library to guard against data races
in many functions that manipulate objects of this specific opaque type. We regard
this as a convenience provided to users, rather than as a general requirement whose
expectations should extend to other types.

In order to remind users that guarding certain arguments is their responsibility, we will
annotate functions that take objects of certain types as arguments. We draw the line
for objects passed by users as follows: objects whose types are exposed to users, and
that users are expected to access directly, such as memory buffers, strings, and various
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user-visible struct types, do not give reason for functions to be annotated with race.
It would be noisy and redundant with the general requirement, and not many would
be surprised by the library’s lack of internal guards when accessing objects that can be
accessed directly by users.

As for objects that are opaque or opaque-like, in that they are to be manipulated only
by passing them to library functions (e.g., FILE, DIR, obstack, iconv_t), there might
be additional expectations as to internal coordination of access by the library. We will
annotate, with race followed by a colon and the argument name, functions that take
such objects but that do not take care of synchronizing access to them by default. For
example, FILE stream unlocked functions will be annotated, but those that perform
implicit locking on FILE streams by default will not, even though the implicit locking
may be disabled on a per-stream basis.

In either case, we will not regard as MT-Unsafe functions that may access user-supplied
objects in unsafe ways should users fail to ensure the accesses are well defined. The
notion prevails that users are expected to safeguard against data races any user-supplied
objects that the library accesses on their behalf.

This user responsibility does not apply, however, to objects controlled by the library
itself, such as internal objects and static buffers used to return values from certain
calls. When the library doesn’t guard them against concurrent uses, these cases are
regarded as MT-Unsafe and AS-Unsafe (although the race mark under AS-Unsafe will
be omitted as redundant with the one under MT-Unsafe). As in the case of user-
exposed objects, the mark may be followed by a colon and an identifier. The identifier
groups all functions that operate on a certain unguarded object; users may avoid the
MT-Safety issues related with unguarded concurrent access to such internal objects
by creating a non-recursive mutex related with the identifier, and always holding the
mutex when calling any function marked as racy on that identifier, as they would have
to should the identifier be an object under user control. The non-recursive mutex
avoids the MT-Safety issue, but it trades one AS-Safety issue for another, so use in
asynchronous signals remains undefined.

When the identifier relates to a static buffer used to hold return values, the mutex
must be held for as long as the buffer remains in use by the caller. Many functions
that return pointers to static buffers offer reentrant variants that store return values in
caller-supplied buffers instead. In some cases, such as tmpname, the variant is chosen
not by calling an alternate entry point, but by passing a non-NULL pointer to the buffer
in which the returned values are to be stored. These variants are generally preferable
in multi-threaded programs, although some of them are not MT-Safe because of other
internal buffers, also documented with race notes.

e const

Functions marked with const as an MT-Safety issue non-atomically modify internal
objects that are better regarded as constant, because a substantial portion of the
GNU C Library accesses them without synchronization. Unlike race, that causes both
readers and writers of internal objects to be regarded as MT-Unsafe and AS-Unsafe, this
mark is applied to writers only. Writers remain equally MT- and AS-Unsafe to call, but
the then-mandatory constness of objects they modify enables readers to be regarded as
MT-Safe and AS-Safe (as long as no other reasons for them to be unsafe remain), since
the lack of synchronization is not a problem when the objects are effectively constant.
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The identifier that follows the const mark will appear by itself as a safety note in
readers. Programs that wish to work around this safety issue, so as to call writers,
may use a non-recursve rwlock associated with the identifier, and guard all calls to
functions marked with const followed by the identifier with a write lock, and all calls to
functions marked with the identifier by itself with a read lock. The non-recursive locking
removes the MT-Safety problem, but it trades one AS-Safety problem for another, so
use in asynchronous signals remains undefined.

e sig

Functions marked with sig as a MT-Safety issue (that implies an identical AS-Safety is-
sue, omitted for brevity) may temporarily install a signal handler for internal purposes,
which may interfere with other uses of the signal, identified after a colon.

This safety problem can be worked around by ensuring that no other uses of the signal
will take place for the duration of the call. Holding a non-recursive mutex while calling
all functions that use the same temporary signal; blocking that signal before the call
and resetting its handler afterwards is recommended.

There is no safe way to guarantee the original signal handler is restored in case of
asynchronous cancellation, therefore so-marked functions are also AC-Unsafe.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disabling asynchronous cancellation and
installing a cleanup handler to restore the signal to the desired state and to release the
mutex are recommended.

e term

Functions marked with term as an MT-Safety issue may change the terminal settings
in the recommended way, namely: call tcgetattr, modify some flags, and then call
tcsetattr; this creates a window in which changes made by other threads are lost.
Thus, functions marked with term are MT-Unsafe. The same window enables changes
made by asynchronous signals to be lost. These functions are also AS-Unsafe, but the
corresponding mark is omitted as redundant.

It is thus advisable for applications using the terminal to avoid concurrent and reen-
trant interactions with it, by not using it in signal handlers or blocking signals that
might use it, and holding a lock while calling these functions and interacting with the
terminal. This lock should also be used for mutual exclusion with functions marked
with race:tcattr(£d), where fd is a file descriptor for the controlling terminal. The
caller may use a single mutex for simplicity, or use one mutex per terminal, even if
referenced by different file descriptors.

Functions marked with term as an AC-Safety issue are supposed to restore terminal
settings to their original state, after temporarily changing them, but they may fail to
do so if cancelled.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disa