The GNU C Library Reference Manual






The GNU C Library

Reference Manual

Sandra Loosemore
with
Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper

for version 2.42.9000



This is The GNU C Library Reference Manual, for version 2.42.9000.

Copyright (© 1993-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Free Software Needs Free
Documentation” and “GNU Lesser General Public License”, the Front-Cover texts being
“A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled "GNU Free Documentation License".

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual. Buying copies from the FSF supports it in developing GNU and promoting software
freedom.”



Short Contents

© 00 1 O Ot = W N -

W W W W N NN DD DN NN DNNIDN - P = = = = = = = =
W N P O © 0 J O O == W N = O © 0 ~J O O i W NN~ O

Introduction. ...... ... 1
Error Reporting. ....... .. i 24
Virtual Memory Allocation And Paging .................. 44
Character Handling . .......... ... .. .. 88
String and Array Utilities. . ....... .. ... . i ... 98
Character Set Handling. .. ........ .. ... . . ... 142
Locales and Internationalization........................ 185
Message Translation . ........ ... ... ... . .. ... 205
Searching and Sorting . . .......... ... ... ... ... 230
Pattern Matching .. ..... .. ... . . .. i 242
Input/Output Overview . ... ... .. 264
Input/Output on Streams . . .. ...t 269
Low-Level Input/Output. ...... ... ... i, 346
File System Interface......... ... .. ... . . . .. 411
Pipesand FIFOs . ... .. o e 465
SOCKetS . . vt 470
Low-Level Terminal Interface . ........... ... .. ... .... 520
SySlog . o 551
Mathematics .. ... . 559
Arithmetic Functions. ...... ... ... .. i L. 592
Bit Manipulation......... ... .. . . 640
Dateand Time. . ... ... . . 644
Resource Usage And Limitation........................ 685
Non-Local Exits......... i 711
Signal Handling . .. ... ..o i 720
The Basic Program/System Interface.................... 766
Processes . . ... o 811
Inter-Process Communication. ......................... 824
Job Control . ... 825
System Databases and Name Service Switch.............. 843
Users and GIoups . .. .vv ettt e e e e 853
System Management . ............ .. . i i, 883

System Configuration Parameters....................... 898



34 Cryptographic Functions. ......... ... ... ... .. ... ..., 920
35  Debugging support .. ... 922
36 Threads .. ... oo e e 925
37 Dynamic Linker. ... ... . ... . . 948
38 Internal probes....... ... 966
39 Tunables. ...... .. 971
A C Language Facilities in the Library ......... ... ... .... 984
B Summary of Library Facilities. . .......... ... .. ..... 1000
C Installing the GNU C Library............ ... 1137
D Library Maintenance . ........ ... ... .. . ... 1148
E  Platform-specific facilities . . .. ....... ... o o L. 1160
F  Contributors to the GNU C Library.................... 1169
G  Free Software Needs Free Documentation ............... 1177
H GNU Lesser General Public License.................... 1179
I GNU Free Documentation License . .................... 1188
Concept Index . . . ..o 1196
TypeIndex ... .o 1209
Function and MacroIndex . . ...... ... ... ..o .. 1212
Variable and Constant Macro Index . ...................... 1230

Program and File Index . .. ........ ... i i i 1243

11



Table of Contents

1 Introduction.................. ... ... ... ... ....... 1
1.1 Getting Started. ... ... 1
1.2 Standards and Portability ........... .. ... . L 1

1.2.1 IS0 O 2
1.2.2 POSIX (The Portable Operating System Interface)......... 2
1.2.2.1 POSIX Safety Concepts........ccovriinininienn... 2
1.2.2.2 Unsafe Features............. ..., 4
1.2.2.3 Conditionally Safe Features ........................... 5
1.2.2.4 Other Safety Remarks ........... ... ..o oo .. 9

1.2.3 Berkeley Unix ......coouiiiiii i 11
1.2.4 SVID (The System V Interface Description)............... 11
1.2.5 XPG (The X/Open Portability Guide).................... 12
1.2.6 Linux (The Linux Kernel) .............. . ..o ... 12
1.3 Using the Library ... e 12
1.3.1 Header Files...... ..o 12
1.3.2 Macro Definitions of Functions............................ 14
1.3.3 Reserved Names . .......oouuiiiiiiiiiii i, 14
1.3.4 Feature Test Macros.........c.ooiiiiiiiiiiiiinniinn. 16
1.4 Roadmap to the Manual..................coiiiiiiiiiiiia... 21

2 Error Reporting................................ 24
2.1 Checking for Errors. ....... ..o, 24
2.2 Error Codes . . ..o 25
2.3 ErTor Messages .. ...ttt 37

3 Virtual Memory Allocation And Paging ..... 44
3.1 Process Memory Concepts.......coovuuiiiiiiieiiiieanninn... 44
3.2 Allocating Storage For Program Data.......................... 45

3.2.1 Memory Allocation in C Programs........................ 46
3.2.1.1 Dynamic Memory Allocation......................... 46
3.2.2 The GNU Allocator ..ot 47
3.2.3 Unconstrained Allocation............... ... 47
3.2.3.1 Basic Memory Allocation ............................ 47
3.2.3.2 Examples of malloc ..., 48
3.2.3.3 Freeing Memory Allocated with malloc.............. 49
3.2.3.4 Changing the Size of a Block......................... 50
3.2.3.5 Allocating Cleared Space............cccoviiiiiian... 51
3.2.3.6 Allocating Aligned Memory Blocks................... 52
3.2.3.7 Malloc Tunable Parameters.......................... 53
3.2.3.8 Heap Consistency Checking.......................... 55
3.2.3.9 Statistics for Memory Allocation with malloc........ 57

3.2.3.10 Summary of malloc-Related Functions.............. 58

iii



3.2.4 Allocation Debugging. ..., 59
3.2.4.1 How to install the tracing functionality............... 59
3.2.4.2 Example program excerpts...........ooiiiiiiiia... 60
3.2.4.3 Some more or less clever ideas ....................... 60
3.2.4.4 Interpreting the traces............. ... .. ..., 61

3.2.5 Replacing malloc...... .ot 63

3.2.6 Obstacks ... ..o 64
3.2.6.1 Creating Obstacks .......... ... .. 64
3.2.6.2 Preparing for Using Obstacks ........................ 64
3.2.6.3 Allocation in an Obstack.............. ... ... ... ... 66
3.2.6.4 Freeing Objects in an Obstack ....................... 67
3.2.6.5 Obstack Functions and Macros....................... 67
3.2.6.6 Growing Objects........oiiiiiiiiiiii i, 68
3.2.6.7 Extra Fast Growing Objects ......................... 70
3.2.6.8 Status of an Obstack........... ... o il 71
3.2.6.9 Alignment of Data in Obstacks....................... 72
3.2.6.10 Obstack Chunks.......... ... . i, 72
3.2.6.11 Summary of Obstack Functions..................... 73

3.2.7 Automatic Storage with Variable Size..................... 75
3.2.7.1 allocaExample......... ..o 75
3.2.7.2 Advantages of alloca.........oiiiiiiiiiii i 76
3.2.7.3 Disadvantages of alloca...........coovviiiiiia... 76
3.2.7.4 GNU C Variable-Size Arrays......................... 76

3.3 Resizing the Data Segment .......... ... ... ..o oL 77
3.4 Memory Protection.......... ..o 78

3.4.1 Memory Protection Keys ......... ... ..o il 79
3.5 Locking Pages........c.oo i 83

3.5.1 Why Lock Pages..........co i 83

3.5.2 Locked Memory Details..............cooooiiii L. 83

3.5.3 Functions To Lock And Unlock Pages..................... 84

Character Handling ............................ 88
4.1 Classification of Characters.............c.ooiiiiiiiinniiin . 88
4.2 Case CONVErSION . . . ...ttt et e 90
4.3 Character class determination for wide characters.............. 91
4.4 Notes on using the wide character classes...................... 95
4.5 Mapping of wide characters. ............ ... .. L. 96

String and Array Utilities..................... 98
5.1 Representation of Strings...........cc.ooiiiiiiiiiiiiiii., 98
5.2 String and Array Conventions ...............ccoiuiiiiiiiean.. 99
5.3 String Length ... ... 100
5.4 Copying Strings and Arrays ..........cooiteiiiiii 102
5.5  Concatenating Strings.......... .o, 107
5.6 Truncating Strings while Copying.............cooooiiiiii.... 110
5.7 String/Array COmpariSom ... ........ouveveveneninenenenenen.. 115

5.8 Collation Functions. ........ ..ot 120

iv



5.9 Search FUnctions . ..........oouu e, 124

5.9.1 Compatibility String Search Functions................... 128
5.10 Finding Tokens in a String ...........c.cooiiiiiii.. 129
5.11 FErasing Sensitive Data ......... .. ..o i 133
5.12 Shuffling Bytes...... ... 134
5.13 Obfuscating Data ...t 135
5.14 Encode Binary Data ...............o i 135
5.15 Argz and Envz Vectors. ...t 137

515.1 Argz Functions.......... ..., 137

5.15.2 Envz Functions.......... .. . i i 140

Character Set Handling ...................... 142
6.1 Introduction to Extended Characters......................... 142
6.2 Overview about Character Handling Functions................ 146
6.3 Restartable Multibyte Conversion Functions.................. 146

6.3.1 Selecting the conversion and its properties............... 146

6.3.2 Representing the state of the conversion ................. 147

6.3.3 Converting Single Characters............................ 148

6.3.4 Converting Multibyte and Wide Character Strings....... 155

6.3.5 A Complete Multibyte Conversion Example.............. 158
6.4 Non-reentrant Conversion Function........................... 160

6.4.1 Non-reentrant Conversion of Single Characters........... 160

6.4.2 Non-reentrant Conversion of Strings ..................... 161

6.4.3 States in Non-reentrant Functions ....................... 163
6.5 Generic Charset Conversion ..., 164

6.5.1 Generic Character Set Conversion Interface.............. 164

6.5.2 A complete iconv example .......... ... ... ..l 167

6.5.3 Some Details about other iconv Implementations........ 170

6.5.4 The iconv Implementation in the GNU C Library ....... 171

6.5.4.1 Format of gconv-modules files...................... 172
6.5.4.2 Finding the conversion path in iconv............... 173
6.5.4.3 iconv module data structures....................... 174
6.5.4.4 iconv module interfaces.................. ... ...... 177

Locales and Internationalization............. 185
7.1 What Effects a Locale Has .............. ... .. ... ... ..., 185
7.2 Choosing a Locale........ ... 186
7.3 Locale Categories ..ottt 186
7.4 How Programs Set the Locale ................ .. ... .. 187
7.5 Standard Locales........ ... ... 189
7.6 Locale Names . ... e 189
7.7 Accessing Locale Information................................. 190

7.7.1 localeconv: It is portable but ... ...................... 191

7.7.1.1 Generic Numeric Formatting Parameters............ 191
7.7.1.2 Printing the Currency Symbol ...................... 192
7.7.1.3 Printing the Sign of a Monetary Amount............ 194

7.7.2 Pinpoint Access to Locale Data.......................... 194



7.8 A dedicated function to format numbers...................... 200

7.9 Yes-0or-No QUeStIONS . ... ovttt et i 203
8 Message Translation.......................... 205
8.1 X/Open Message Catalog Handling........................... 205
8.1.1 The catgets function family ............... ... ... ... 205
8.1.2 Format of the message catalog files ...................... 208
8.1.3 Generate Message Catalogs files ......................... 210
8.1.4 How to use the catgets interface.................. .. .. 212
8.1.4.1 Not using symbolic names .......................... 212
8.1.4.2 Using symbolic names ................c.oiiiia... 212
8.1.4.3 How does to this allow to develop................... 213

8.2 The Uniforum approach to Message Translation............... 214
8.2.1 The gettext family of functions......................... 215
8.2.1.1 What has to be done to translate a message?........ 215
8.2.1.2 How to determine which catalog to be used ......... 217

8.2.1.3 Additional functions for more complicated situations.. 219
8.2.1.4 How to specify the output character set gettext uses.. 223

8.2.1.5 How to use gettext in GUI programs............... 224
8.2.1.6 User influence on gettext .......................... 226

8.2.2 Programs to handle message catalogs for gettext........ 228

9 Searching and Sorting........................ 230
9.1 Defining the Comparison Function............................ 230
9.2 Array Search Function............. ... ... .. 230
9.3 Array Sort Function.......... ... .. 231
9.4 Searching and Sorting Example............ ... ... 232
9.5 The hsearch function. .......... ..., 235
9.6 The tsearch function. .......... ... i 238
10 Pattern Matching............................ 242
10.1 Wildcard Matching.......... .o i 242
10.2 Globbing. ..o 243
10.2.1 Calling glob ...t 243
10.2.2  Flags for Globbing .......... ... i i 248
10.2.3 More Flags for Globbing............... ... ... ... 249
10.3 Regular Expression Matching................................ 251
10.3.1 POSIX Regular Expression Compilation ................ 252
10.3.2 Flags for POSIX Regular Expressions................... 253
10.3.3 Matching a Compiled POSIX Regular Expression....... 254
10.3.4 Match Results with Subexpressions..................... 255
10.3.5 Complications in Subexpression Matching............... 255
10.3.6 POSIX Regexp Matching Cleanup ...................... 256
10.4  Shell-Style Word Expansion ................cooiiiiiiia... 257
10.4.1 The Stages of Word Expansion ......................... 257
10.4.2  Calling WordeXp......ouvtiuitiit i 258

10.4.3 Flags for Word Expansion............................. 259



vii

10.4.4 wordexp Example ....... ... 260
10.4.5 Details of Tilde Expansion...................oooia... 261
10.4.6 Details of Variable Substitution......................... 261
11 Input/Output Overview .................... 264
11.1 Input/Output Concepts ..........ouiuiiiiiiiniiinenanan.. 264
11.1.1 Streams and File Descriptors ................... ... ... 264
11.1.2 File Position ....... ..o 265
11.2 File Names. .. ..o e 266
11.2.1  DiIrectories .......ooviin i e 266
11.2.2  File Name Resolution............. ... ... oo, 267
11.2.3 File Name Errors. ..., 267
11.2.4 Portability of File Names................... ... ... 268
12 Input/Output on Streams .................. 269
12,1 StreamIS . vttt 269
12.2  Standard Streams........ ..o 269
12.3  Opening Streams..........ooiuteiiii i, 270
12.4  CloSing Streams. .. ...ttt 274
12.5 Streams and Threads. ..., 275
12.6 Streams in Internationalized Applications.................... 278
12.7  Simple Output by Characters or Lines....................... 280
12.8 Character Input..........coiiiiiii 283
12.9 Line-Oriented Input ...........co i, 286
1210 Unreading .. ....vveviteee et 288
12.10.1 What Unreading Means ................ccooiiiiin... 288
12.10.2 Using ungetc To Do Unreading ....................... 289
12.11  Block Input/Output «....oovveiiiii i 290
12.12 Formatted Output ... 291
12.12.1 Formatted Output Basics.............................. 291
12.12.2  Output Conversion Syntax ............cooveviiiene.n. 292
12.12.3 Table of Output Conversions ................coovue... 293
12.12.4 Integer CONVersions ...........ouuuueienneeennneeann. 295
12.12.5 Floating-Point Conversions................... ... ... 297
12.12.6  Other Output Conversions. ................cooveenuo... 299
12.12.7 Formatted Output Functions .......................... 300
12.12.8 Dynamically Allocating Formatted Output ............ 303
12.12.9 Variable Arguments Output Functions................. 304
12.12.10 Parsing a Template String................. ... . ..... 306
12.12.11 Example of Parsing a Template String................ 308
12.13  Customizing printf ...t 309
12.13.1 Registering New Conversions .................ccoo.u... 309
12.13.2  Conversion Specifier Options ................. ... ..., 310
12.13.3 Defining the Output Handler.......................... 312
12.13.4 printf Extension Example.............. ... ... .. ... 312
12.13.5 Predefined printf Handlers.................. ... .... 314

12.14 Formatted Input .........cco i 315



viii

12.14.1 Formatted Input Basics ............................... 315
12.14.2 Input Conversion Syntax .............ccooeeviennee.... 316
12.14.3 Table of Input Conversions ...............ccovvueean... 317
12.14.4 Numeric Input Conversions................ ..., 318
12.14.5 String Input Conversions...............ccooviion... 320
12.14.6 Dynamically Allocating String Conversions ............ 322
12.14.7 Other Input Conversions ............c.ouiueveinuennn. 322
12.14.8 Formatted Input Functions................ ... ... ... 323
12.14.9 Variable Arguments Input Functions................... 324
12.15 End-Of-File and Errors....... ..., 325
12.16 Recovering from errors ...........c.o.eeiiiiieinieninenn.. 326
12.17 Text and Binary Streams............. ... 327
12.18 File Positioning ... 328
12.19 Portable File-Position Functions............................ 331
12.20 Stream Buffering........ ... ... 333
12.20.1 Buffering Concepts.........coooviiiiiiiiiiiiiiiin. 333
12.20.2 Flushing Buffers....... ... ... oo 333
12.20.3 Controlling Which Kind of Buffering................... 335
12.21 Other Kinds of Streams ............ ..., 337
12.21.1  String Streams . ..ot 337
12.21.2 Programming Your Own Custom Streams ............. 339
12.21.2.1 Custom Streams and Cookies..................... 339
12.21.2.2 Custom Stream Hook Functions .................. 340

12.22  Formatted Messages. ... ...viini i 341
12.22.1 Printing Formatted Messages................c.ooo.n 341
12.22.2  Adding Severity Classes ..........cooiiiiiiiii... 344
12.22.3 How to use fmtmsg and addseverity.................. 344
13 Low-Level Input/Output.................... 346
13.1 Opening and Closing Files............ ... i, 346
13.2 Input and Output Primitives............ .. ... oL, 350
13.3  Setting the File Position of a Descriptor ..................... 355
13.4 Descriptors and Streams. ...........cooviiiiiiiiieennieeann. 358
13.5 Dangers of Mixing Streams and Descriptors.................. 359
13.5.1 Linked Channels ............ .. i i, 359
13.5.2 Independent Channels............ ... ... 359
13.5.3 Cleaning Streams............cooviiiiiiiiiiniieennn.. 360
13.6 Fast Scatter-Gather I/O........ . ... ... i 361
13.7 Copying data between two files............. ... ... 365
13.8  Memory-mapped I/O. ... 366
13.9  Waiting for Input or Output................ ... 375
13.10  Synchronizing I/O operations ....................oooia... 378
13.11 Perform I/O Operations in Parallel......................... 379
13.11.1  Asynchronous Read and Write Operations............. 382
13.11.2 Getting the Status of AIO Operations ................. 386
13.11.3 Getting into a Consistent State........................ 387
13.11.4 Cancellation of AIO Operations ....................... 389

13.11.5 How to optimize the AIO implementation.............. 390



13.12 Control Operationson Files................................ 391
13.13 Duplicating Descriptors ..., 393
13.14 File Descriptor Flags. ... 394
13.15 File Status Flags. ... 396
13.15.1 File Access Modes. ......voiiiiiii i 396
13.15.2 Open-time Flags ... 397
13.15.3 I/O Operating Modes ...........cooviiiiiiiiiiiian... 399
13.15.4 Getting and Setting File Status Flags.................. 400
13.16  File LOCKS. .o .vo o 401
13.17 Open File Description Locks .................o oo 404
13.18 Open File Description Locks Example ...................... 407
13.19 Interrupt-Driven Input......... ... o i 408
13.20 Generic I/O Control operations ...................ooovno... 409
13.21 Other low-level-I/O-related functions....................... 410
14 File System Interface........................ 411
14.1  Working Directory ..... ..., 411
14.2 Descriptor-Relative Access ..., .. 413
14.3  Accessing Directories......... ... 415
14.3.1 Format of a Directory Entry............... ... ... ... .. 415
14.3.2  Opening a Directory Stream............................ 417
14.3.3 Reading and Closing a Directory Stream................ 419
14.3.4 Simple Program to List a Directory..................... 422
14.3.5 Random Access in a Directory Stream .................. 422
14.3.6  Scanning the Content of a Directory .................... 423
14.3.7 Simple Program to List a Directory, Mark IT............ 425
14.3.8 Low-level Directory Access ........covviiiiiiii ... 425
14.4  Working with Directory Trees .......... ...t 426
14.5 Hard Links. .. ... 430
14.6  Symbolic Links. ... ... 432
14.7 Deleting Files ... 434
14.8 Renaming Files ... i 436
14.9 Creating Directories. ... ... ..o 437
14.10 File Attributes. ... ..o 438
14.10.1 The meaning of the File Attributes.................... 438
14.10.2 Reading the Attributesof a File....................... 442
14.10.3 Testing the Typeofa File.......... ... ..o ... 444
14.10.4 File OWner. .. ..ot 447
14.10.5 The Mode Bits for Access Permission.................. 448
14.10.6 How Your Access to a File is Decided.................. 450
14.10.7 Assigning File Permissions.............. ... ... 450
14.10.8 Testing Permission to Access a File.................... 452
14.10.9 File Times .. ...t 454
14.10.10  File SizZe ..o nn it e 457
14.10.11 Storage Allocation ..............coiiiiiiiiiii .. 459
14.11 Making Special Files.......... oo i i 460
14.12 Temporary Files ... 461

ix



15 Pipesand FIFOs............................. 465

15.1 Creating a Pipe ... 465
15.2 Pipe to a Subprocess . ... ..o 467
15.3 FIFO Special Files . ... 468
15.4  Atomicity of Pipe I/O...... ... o i 469
16 Sockets.......... ... ... L. 470
16.1  Socket Concepts. .. ..vvuet i 470
16.2 Communication Styles........ ... i 471
16.3  Socket Addresses. ..........ueiimit i 472
16.3.1 Address Formats .......... ... i 472
16.3.2 Setting the Address of a Socket......................... 474
16.3.3 Reading the Address of a Socket........................ 474
16.4 Interface Naming...........ccoouiiiiiiiiiiiii .. 475
16.5 The Local Namespace .........oouueiiiiiiiiiiiiiiieann. 476
16.5.1 Local Namespace Concepts ........coouvvveeeeneinninnn. 476
16.5.2 Details of Local Namespace............coovvvinaann... 477
16.5.3 Example of Local-Namespace Sockets................... 478
16.6 The Internet Namespace ..........ccooiuiiiiiiiiiiiiaan.. 479
16.6.1 Internet Socket Address Formats ....................... 479
16.6.2 Host Addresses........ooiiiiiiiiiiii it 480
16.6.2.1 Internet Host Addresses ............. ..., 481
16.6.2.2 Host Address Data Type ...t 482
16.6.2.3 Host Address Functions............................ 483
16.6.2.4 Host Names ..., 485
16.6.3 Internet Ports.......... .o oo 489
16.6.4 The Services Database............... ... .. 490
16.6.5 Byte Order Conversion ............c.oouveeiieeeeeeannnnn. 491
16.6.6 Protocols Database...............oooiiiiiii ... 492
16.6.7 Internet Socket Example............. ... ... ... 494
16.7 Other Namespaces .........ooiiiiiiii i 495
16.8 Opening and Closing Sockets ..., 495
16.8.1 Creating a Socket ... 495
16.8.2 Closing a Socket....... ..o 496
16.8.3 Socket Pairs......... .o 497
16.9 Using Sockets with Connections .............. ..., 498
16.9.1 Making a Connection.............c.oooviiiiiiiiiaa... 498
16.9.2 Listening for Connections. ............. ..., 499
16.9.3  Accepting Connections ...........ooeiiiiiiieninnn... 500
16.9.4 Who is Connected to Me? ........ .. ..ot 501
16.9.5 Transferring Data ........ ..., 501
16.9.5.1 Sending Data...........coocoiiiiiii i 502
16.9.5.2 Receiving Data......... ... ..o 503
16.9.5.3 Socket Data Options............ccooiiiiiiiiia.. 503
16.9.6 Byte Stream Socket Example............... .. ... ... .. 504
16.9.7 Byte Stream Connection Server Example ............... 505
16.9.8 Out-of-Band Data........... ..., 507

16.10 Datagram Socket Operations..................coiiia. .. 509



16.10.1 Sending Datagrams............coviriieiiirineninnenn. 510
16.10.2 Receiving Datagrams................ooooiiiiiiiii.. 510
16.10.3 Datagram Socket Example ............. ... .. ... . ..., 511
16.10.4 Example of Reading Datagrams ....................... 512
16.11 The inetd Daemon ..., 513
16.11.1  inetd Servers.........oouueieemiee i 513
16.11.2 Configuring inetd.........ccoeiiiiiniiiniiinienne... 514
16.12  Socket Options. ... ..o 515
16.12.1  Socket Option Functions .............. ..o, 515
16.12.2  Socket-Level Options. ..., 515
16.13 Networks Database...............oiii i, 517
16.14 Other Socket APIs. ... ... i 518
17 Low-Level Terminal Interface............... 520
17.1 Terminal Device Model.......... ... i, 520
17.2  Identifying Terminals.......... ... o i i 521
173 T/O QUEUES ..o 522
17.4 Two Styles of Input: Canonical or Not....................... 522
17.5 Terminal Modes. ... ... ..o 523
17.5.1 Terminal Mode Data Types.............ccooiiiiiiii ... 523
17.5.2 Terminal Mode Functions................ ... .. ... ..., 524
17.5.3 Setting Terminal Modes Properly.................... ... 525
17.5.4 Input Modes ..... .o i 526
17.5.5 Output Modes ..... ..o 528
17.5.6 Control Modes ........c.oiiii e 529
17.5.7 Local Modes .....ooinniiiii e 531
17.5.8 Line Speed ......coiiiii 533
17.5.8.1 The speed_t interface....................ooiit. 534
17.5.8.2 The baud_t interface ..........c.co ... 535
17.5.9 Special Characters. ..., 536
17.5.9.1 Characters for Input Editing....................... 537
17.5.9.2 Characters that Cause Signals ..................... 538
17.5.9.3 Special Characters for Flow Control................ 539
17.5.9.4 Other Special Characters.......................... 540
17.5.10 Noncanonical Input ......... .. ... i i, 540
17.6  BSD Terminal Modes ..., 542
17.7 Line Control Functions.......... ... .o oo, 543
17.8 Noncanonical Mode Example.................. ... ... ...... 545
17.9 Reading Passphrases ............ ... o i 546
17.10 Pseudo-Terminals......... ..., 547
17.10.1 Allocating Pseudo-Terminals .......................... 547

17.10.2 Opening a Pseudo-Terminal Pair ................... ... 549

xi



xii

18 Syslog ... 551
18.1 Overview of Syslog ... 551
18.2  Submitting Syslog Messages ..o, 552

18.2.1 0penlog . ..ot 552
18.2.2 syslog, vSyslog. . ... 554
18.2.3 closelog . ..oooiii 556
18.2.4 setlogmask ... ..o 557
18.2.5 Syslog Example ...... ..o 557

19 Mathematics................................. 559
19.1 Predefined Mathematical Constants ......................... 559
19.2  Trigonometric Functions............ .. ... o i 560
19.3 Inverse Trigonometric Functions.................... ... . ... 563
19.4 Exponentiation and Logarithms ............................. 566
19.5 Hyperbolic Functions.......... ... i i 574
19.6 Special Functions ... Yl
19.7 Errors in Math Functions.............. ... ... . ... ... 580
19.8 Pseudo-Random Numbers................oo .. 582

19.8.1 ISO C Random Number Functions...................... 582
19.8.2 BSD Random Number Functions ....................... 583
19.8.3 SVID Random Number Function ....................... 585
19.8.4 High Quality Random Number Functions............... 590
19.9 Is Fast Code or Small Code preferred?....................... 591

20 Arithmetic Functions........................ 592
20.1  INte@ers . .. oovtitt it e 592
20.2 Integer DiviSiOn ........cooiiiiiniiiiiiiii it 593
20.3 Floating Point Numbers........... ... o oot 595
20.4 Floating-Point Number Classification Functions.............. 596
20.5 Errors in Floating-Point Calculations........................ 598

20.5.1 FP Exceptions ..........oouiiiiiiiiiiiiii.. 598
20.5.2 Infinity and NaN ....... .o i i 600
20.5.3 Examining the FPU status word........................ 601
20.5.4 Error Reporting by Mathematical Functions ............ 603
20.6 Rounding Modes ...t 604
20.7 Floating-Point Control Functions............................ 606
20.8 Arithmetic Functions............ ... ... i i 608
20.8.1 Absolute Value. ... 608
20.8.2 Normalization Functions................................ 609
20.8.3 Rounding Functions............ ... ... ... oL 611
20.8.4 Remainder Functions................cooii s, 615
20.8.5 Setting and modifying single bits of FP values.......... 616
20.8.6 Floating-Point Comparison Functions................... 619
20.8.7 Miscellaneous FP arithmetic functions.................. 621
20.9 Complex Numbers ...... ..o 627

20.10 Projections, Conjugates, and
Decomposing of Complex Numbers.....................ooo... 627



20.11 Parsing of Numbers...........ooiiiiiiii i 629
20.11.1 Parsing of Integers ...t 629
20.11.2 Parsingof Floats ...t 634

20.12 Printing of Floats ...........c i 636

20.13 Old-fashioned System V number-to-string functions......... 637

21 Bit Manipulation............................ 640
22 Dateand Time............................... 644

221 Time BasiCs. ....uvue e 644

222 THime Types ..o oo e 645

22.3 Calculating Elapsed Time ............ ..., 646

22.4 Processor And CPU Time..........cooiiiiiiiiiiianin... 647
22.4.1 CPU Time Inquiry ... 648
22.4.2 Processor Time Inquiry.............ooooiiiiiiiiit. 648

22.5 Calendar Time.........ooiiiiii e 649
22.5.1 Getting the Time......... ..o i i, 649
22.5.2  Setting and Adjusting the Time ........................ 653
22.5.3 Broken-down Time.......... ..o, 658
22.5.4 Formatting Calendar Time ............................. 661
22.5.5 Convert textual time and date information back ........ 667

22.5.5.1 Interpret string according to given format.......... 668

22.5.5.2 A More User-friendly Way to Parse Times and Dates. . 673
22.5.6 Specifying the Time Zone with TZ ...................... 675
22.5.6.1 Geographical Format for TZ........................ 676
22.5.6.2 Proleptic Format for TZ.................. .. ... ... 676
22.5.7 State Variables for Time Zones ......................... 678
22.5.8 Time Functions Example.............. ... ...... 679
22.6 Setting an Alarm......... ..o 680
227 SlEEPING . .ttt 682
23 Resource Usage And Limitation............ 685

23.1 Resource Usage ......ovuuriiiiii e 685

23.2 Limiting Resource Usage .........c.ccoviiiiiiiiiiiiiine .. 686

23.3 Process CPU Priority And Scheduling....................... 690
23.3.1 Absolute Priority ... 691

23.3.1.1 Using Absolute Priority........... ... 692
23.3.2 Realtime Scheduling............. ... ... L. 692
23.3.3 Basic Scheduling Functions................ ... ... ..., 693
23.3.4 Extensible Scheduling ............. .. ... il 697
23.3.5 Traditional Scheduling............. ... ... .. oot 699

23.3.5.1 Introduction To Traditional Scheduling ............ 699

23.3.5.2 Functions For Traditional Scheduling .............. 700
23.3.6 Limiting execution to certain CPUs..................... 702

23.4 Querying memory available resources........................ 707
23.4.1 Overview about traditional Unix memory handling...... 707

23.4.2 How to get information about the memory subsystem? .. 708
23.5 Learn about the processors available......................... 709

xiii



24 Non-Local Exits ............................. 711
24.1 Introduction to Non-Local Exits............. ... .. oo.. 711
24.2  Details of Non-Local Exits................oooiiiiiit, 712
24.3 Non-Local Exits and Signals................ ... . .. 713
24.4 Complete Context Control..............c.ooiiiiiiiieiina... 714

25 Signal Handling.............................. 720
25.1 Basic Concepts of Signals......... ... 720

25.1.1 Some Kinds of Signals................ ... oL 720
25.1.2 Concepts of Signal Generation.......................... 720
25.1.3 How Signals Are Delivered.............................. 721
25.2  Standard Signals........... ..o i 722
25.2.1 Program Error Signals............. ...l 722
25.2.2  Termination Signals ........... ... ... . i i 725
25.2.3 Alarm Signals...... ... 726
25.2.4  Asynchronous I/O Signals............ ..., 727
25.2.5 Job Control Signals........... ... ... i 727
25.2.6 Operation Error Signals ........... ... ... 729
25.2.7 Miscellaneous Signals............ ... o i i 729
25.2.8 Signal Messages . .......oviiiiiiiiii 730
25.3  Specifying Signal Actions...............ciiiiiiiiiiii.. 731
25.3.1 Basic Signal Handling ........... ... il 731
25.3.2 Advanced Signal Handling............... ... ... 733
25.3.3 Interaction of signal and sigaction................... 735
25.3.4 sigaction Function Example ........... ... ... ... .. 735
25.3.5 Flags for sigaction.............ooiiiiiiiiiiiiiL, 736
25.3.6 Initial Signal Actions.......... ..., 737
25.4 Defining Signal Handlers .......... ... ... . oL 738
25.4.1 Signal Handlers that Return.................. ... ... ... 738
25.4.2 Handlers That Terminate the Process................... 739
25.4.3 Nonlocal Control Transfer in Handlers.................. 740
25.4.4  Signals Arriving While a Handler Runs ................. 741
25.4.5 Signals Close Together Merge into One ................. 742
25.4.6 Signal Handling and Nonreentrant Functions............ 744
25.4.7 Atomic Data Access and Signal Handling ............... 745
25.4.7.1 Problems with Non-Atomic Access................. 746
25.4.7.2 Atomic Types ......oviriiiiini i 746
25.4.7.3 Atomic Usage Patterns............................ 747

25.5 Primitives Interrupted by Signals............ ... ... .. ... ... 747
25.6 Generating Signals......... .. . i i 748
25.6.1 Signaling Yourself.......... ... . i 748
25.6.2 Signaling Another Process............ ... ..ot 749
25.6.3 Permission for using kill ..., 751
25.6.4 Using kill for Communication......................... 751
25.7 Blocking Signals. ........cooo i 753
25.7.1 Why Blocking Signals is Useful ......................... 753
25.7.2 Signal Sets........ooiiiiiii i 753
25.7.3 Process Signal Mask........... ... i 755

xiv



25.7.4 Blocking to Test for Delivery of a Signal ................ 756
25.7.5 Blocking Signals for a Handler.......................... 756
25.7.6 Checking for Pending Signals.................... ... ... 757
25.7.7 Remembering a Signal to Act On Later................. 758
25.8 Waiting for a Signal......... ... i 759
25.8.1 Using pause........oiiuiiiiiiii i 759
25.8.2 Problems with pause.............. ... il 760
25.8.3 Using sigsuspend............coooiiiiiiiiiiiiiiiiiin 761
25.9 Using a Separate Signal Stack ............ ... ... ... ... 762
25.10 BSD Signal Handling. ......... .. ... i, 764
26 The Basic Program/System Interface...... 766
26.1 Program Arguments..............cuiiiiiiit i 766
26.1.1 Program Argument Syntax Conventions ................ 767
26.1.2 Parsing Program Arguments.............. ... ... .. 767
26.2 Parsing program options using getopt....................... 768
26.2.1 Using the getopt function.............. ... ... ... ... 768
26.2.2 Example of Parsing Arguments with getopt............ 769
26.2.3 Parsing Long Options with getopt_long ............... 771
26.2.4 Example of Parsing Long Options with getopt_long.... 773
26.3 Parsing Program Options with Argp......................... 775
26.3.1 The argp_parse Function........................ .. ... 775
26.3.2 Argp Global Variables............ ... ...t 776
26.3.3 Specifying Argp Parsers ........ ... ... 776
26.3.4 Specifying Options in an Argp Parser................... 778
26.3.4.1 Flags for Argp Options............ccovieiiiean... 779
26.3.5 Argp Parser Functions............. .. ... .. .. 779
26.3.5.1 Special Keys for Argp Parser Functions............ 780
26.3.5.2 Argp Parsing State.......... ... ..ol 782
26.3.5.3 Functions For Use in Argp Parsers................. 784
26.3.6 Combining Multiple Argp Parsers....................... 785
26.3.7 Flags for argp_parse..........c.ooiiiiiiiiiiiiii 786
26.3.8 Customizing Argp Help Output......................... 787
26.3.8.1 Special Keys for Argp Help Filter Functions........ 787
26.3.9 The argp_help Function...................c..oooia.. 787
26.3.10 Flags for the argp_help Function ..................... 788
26.3.11 Argp Examples.........ooiiiiiiii 789
26.3.11.1 A Minimal Program Using Argp.................. 789
26.3.11.2 A Program Using Argp with Only Default Options.. 789
26.3.11.3 A Program Using Argp with User Options........ 790
26.3.11.4 A Program Using Multiple Combined Argp Parsers.. 793
26.3.12  Argp User Customization....................coooeon... 797
26.3.12.1 Parsing of Suboptions ............. ... ... ... 797
26.3.13 Parsing of Suboptions Example........................ 798
26.4 Environment Variables............. .. ... i 800
26.4.1 Environment ACCESS.........coviiiiiiiiiiiiiiiina... 800
26.4.2 Standard Environment Variables........................ 802

26.5 Auxiliary Vector ....... ..o 804

XV



26.5.1 Definition of getauxval ..., 804
26.6 System Calls...... ... i 805
26.7 Program Termination ............ ... ... 806

26.7.1 Normal Termination................ ..., 807

26.7.2 ExXit Status. ... 807

26.7.3 Cleanupson Exit............oiiiiiiiiiii i, 808

26.7.4 Aborting a Program........ ... ... ... i 809

26.7.5 Termination Internals ............ ... ... ... 809

27 Processes............. .. 811
27.1 Running a Command........... ..o, 811
27.2 Process Creation Concepts .........oooviiiiiiiiiiiinin... 812
27.3  Process Identification......... .. ... i 812
27.4 Creating a Process ... 814
27.5 Querying a Process. ....... ..o 815
27.6 Executing a File..... ... i 816
27.7 Process Completion .........c.ooouiiiiiiiiiiiiiii i 818
27.8 Process Completion Status...........cooviiiiiiiin.. 821
27.9 BSD Process Wait Function.............. ... ... oo 822
27.10 Process Creation Example........... ... ... oL, 822

28 Inter-Process Communication.............. 824
28.1 Semaphores . ..... ... 824

28.1.1 System V Semaphores............ccoviiiiiiiiiieian.. 824

28.1.2 POSIX Semaphores ........c.o.vviiiiieeiiiiiiiiinn... 824

29 Job Control................ ... ... ... 825
29.1 Concepts of Job Control...............coiiiiiiiiiiii... 825
29.2 Controlling Terminal of a Process............................ 826
29.3  Access to the Controlling Terminal .......................... 826
29.4 Orphaned Process Groups............ccoviiiiiiiiiiinnn... 827
29.5 Implementing a Job Control Shell ........................ ... 827

29.5.1 Data Structures for the Shell ........................... 827

29.5.2 Imitializing the Shell ....... .. ... ..o i 829

29.5.3 Launching Jobs ....... ... .. 830

29.5.4 Foreground and Background................ ... 833

29.5.5 Stopped and Terminated Jobs.......................... 835

29.5.6 Continuing Stopped Jobs........... ... .. ... L. 837

29.5.7 The Missing Pieces ..., 838
29.6 Functions for Job Control ........... ... ... ... ... L. 839

29.6.1 Identifying the Controlling Terminal .................... 839

29.6.2 Process Group Functions ............................... 839

29.6.3 Functions for Controlling Terminal Access.............. 841

xvi



Xvii

30 System Databases and Name Service Switch .. 843

30.1 NSS Basics. .ottt 843
30.2 The NSS Configuration File............ ... ..ot 844
30.2.1 Services in the NSS configuration File................... 844
30.2.2 Actions in the NSS configuration ....................... 845
30.2.3 Notes on the NSS Configuration File.................... 846
30.3 NSS Module Internals . ..., 847
30.3.1 The Naming Scheme of the NSS Modules............... 847
30.3.2 The Interface of the Function in NSS Modules .......... 848
30.4 Extending NSS. ... ..o 850
30.4.1 Adding another Service to NSS................... .. ... 850
30.4.2 Internals of the NSS Module Functions ................. 851
31 Usersand Groups ..................oooo... 853
31.1 Userand Group IDs....... ..o 853
31.2 The Persona of a Process..................ooiiiiiiiiiiiiL 853
31.3 Why Change the Persona of a Process?...................... 854
31.4 How an Application Can Change Persona.................... 854
31.5 Reading the Persona of a Process............................ 855
31.6 Setting the User ID ....... .. i 856
31.7 Setting the Group IDs...... ... 857
31.8 Enabling and Disabling Setuid Access ....................... 859
31.9 Setuid Program Example........ ... 860
31.10 Tips for Writing Setuid Programs .......................... 862
31.11 Identifying Who Logged In............ ... ..o .. 863
31.12 The User Accounting Database............................. 864
31.12.1 Manipulating the User Accounting Database........... 864
31.12.2 XPG User Accounting Database Functions............. 869
31.12.3 Logging Inand Out ........ ..., 871
31.13 User Database ... 872
31.13.1 The Data Structure that Describes a User............. 872
31.13.2 Looking Up One User ...........cooiviiiiiiiiiin.n. 873
31.13.3 Scanning the List of Al Users......................... 874
31.13.4 Writing a User Entry...........cooooiiiiiiiit. 875
31.14 Group Database ............oo i 876
31.14.1 The Data Structure for a Group....................... 876
31.14.2 Looking Up One Group . .......c.ooveiirieeeninnneann.. 876
31.14.3 Scanning the List of All Groups ....................... 877
31.15 User and Group Database Example......................... 879
31.16 Netgroup Database............ oo i i, 880
31.16.1 Netgroup Data....... ... 880
31.16.2 Looking up one Netgroup............c.cooviiiin... 880

31.16.3 Testing for Netgroup Membership ..................... 882



xviii

32 System Management ........................ 883
32.1 Host Identification ........ .. ... i 883
32.2 Platform Type Identification ............. ... ... ... .. 885
32.3 Controlling and Querying Mounts ........................... 886

32.3.1 Mount Information............. ... i, 887
32.3.1.1 Thefstabfile............cooiiiii .. 887
32.3.1.2 Themtabfile.........cooviiiiiiiiii .. 890
32.3.1.3 Other (Non-libc) Sources of Mount Information .. .. 893

32.3.2 Mount, Unmount, Remount ............................ 893

33 System Configuration Parameters.......... 898
33.1 General Capacity Limits. ..., 898
33.2 Overall System Options...........ccoiiiiiiiiiiiii .. 899
33.3 Which Version of POSIX is Supported....................... 900
33.4 Using sysconf ... ... 901

33.4.1 Definition of sysconf........... ... ... .o 901

33.4.2 Constants for sysconf Parameters...................... 901

33.4.3 Examplesof sysconf.......... .. .. il 910

33.5 Minimum Values for General Capacity Limits................ 910
33.6 Limits on File System Capacity .............ccooiiiiii.. 911
33.7 Optional Features in File Support ........................... 913
33.8 Minimum Values for File System Limits ..................... 913
33.9 Using pathconf ... .. i 914
33.10 Utility Program Capacity Limits ........................... 916
33.11 Minimum Values for Utility Limits ..................... ..., 917
33.12 String-Valued Parameters ............. ..., 918

34 Cryptographic Functions.................... 920
34.1 Generating Unpredictable Bytes................... ... .. ... 920

35 Debugging support............... ... ... ..... 922
35.1 Backtraces . ... ... 922

36 Threads ........... ... ...l 925
36.1 ISO C Threads. ... ..ouuinuiii i 925

36.1.1 Return Values........... ... 925

36.1.2 Creation and Control........... ..., 925

36.1.3 Call Once ...oovvit i 927

36.1.4  MuUbteXeS. oo 927

36.1.5 Condition Variables ............. ... . i i 930

36.1.6 Thread-local Storage ... 931

36.2 POSIX Threads . ......oouuiiiii i 932

36.2.1 Creating and Destroying Threads....................... 932

36.2.2 Thread-specific Data ............ ... i i 934

36.2.3 Functions for Waiting According to a Specific Clock. .. .. 934

36.2.4 POSIX Semaphores ........covvitiiiiiiiiiiiie.. 935



36.2.5 POSIX Barriers . ......oooiiiii i 937
36.2.6 POSIX Spin Locks ... 938
36.2.7 POSIX MUbeXeS . ..ottt e 939
36.2.8 POSIX Threads Other APIs............................ 941
36.2.9 Non-POSIX EXtensions. ......oooeeeeeiiiiiiinnnnen... 942

36.2.9.1 Setting Process-wide defaults for thread attributes.. 942

36.2.9.2 Controlling the Initial Signal Mask of a New Thread .. 942

36.2.9.3 Thread CPU Affinity .......... ... .. ... ... .. 943

36.2.9.4 Wait for a thread to terminate..................... 944

36.2.9.5 Thread Names..............ooiiiiiiiiiiii .. 945

36.2.9.6 Detecting Single-Threaded Execution.............. 945

36.2.9.7 Restartable Sequences ..................oiiiii... 946

37 Dynamic Linker.............................. 948
37.1 Dynamic Linker Invocation............. ... ..., 948
37.1.1 Dynamic Linker Diagnostics................ ... ..., 948
37.1.1.1 Dynamic Linker Diagnostics Format ............... 949

37.1.1.2 Dynamic Linker Diagnostics Values................ 949

37.2 Dynamic Linker Introspection .............. ... ... ... 953
37.2.1 Querying information for loaded objects ................ 954

37.3 Avoiding Unexpected Issues With Dynamic Linking.......... 958
37.3.1 Restricted Dynamic Linker Features.................... 958
37.3.2 Producing Matching Binaries........................... 962
37.3.3 Checking Binaries...............ooiiiiiiiiiiii 963
37.3.4 Run-time Considerations ...............ocooiiiiii... 964

38 Internal probes ..................... ... ... ... 966
38.1 Memory Allocation Probes.......... ... ..., 966
38.2 Non-local Goto Probes ........ ... i i 969
39 Tunables......... ... ... L. 971
39.1 Tunable names.......... ..o 972
39.2 Memory Allocation Tunables................... ... .. ....... 972
39.3 Dynamic Linking Tunables............. ... .. ... . ... .. 975
39.4 Elision Tunables ..... ... ... i 976
39.5 POSIX Thread Tunables ..............oooiiiiiiiiiiii.n. 978
39.6 Hardware Capability Tunables............................... 978
39.7 Memory Related Tunables............... ... ... 981
39.8 gmon Tunables........ ... 982

xix



Appendix A C Language

Facilities in the Library..................... ... 984
A.1 Explicitly Checking Internal Consistency ..................... 984
A2 Variadic Functions. ... 985
A.2.1 Why Variadic Functions are Used ....................... 985
A.2.2 How Variadic Functions are Defined and Used ........... 986
A.2.2.1 Syntax for Variable Arguments..................... 986
A.2.2.2 Receiving the Argument Values .................... 987
A.2.2.3 How Many Arguments Were Supplied .............. 987
A.2.2.4 Calling Variadic Functions ......................... 988
A.2.25 Argument Access Macros...........cooeviiiiiia.... 988

A.2.3 Example of a Variadic Function......................... 990
A.3 Null Pointer Constant ............ ..., 990
A4 Tmportant Data Types......c.ooiiiiiiiiii . 991
A.5 Data Type Measurements. ...........vveeeeeeeinnniiinnnnn... 991
A.5.1 Width of an Integer Type.......ooviiiiiiii .. 992
A.5.2 Range of an Integer Type ...t 993
A.5.3 Floating Type Macros. ........coviiiiiiiiiiiiii... 994
A.5.3.1 Floating Point Representation Concepts............ 994
A.5.3.2 Floating Point Parameters ......................... 996
A.5.3.3 IEEE Floating Point ............................... 998

A.5.4 Structure Field Offset Measurement ..................... 999

Appendix B Summary of Library Facilities.. 1000

Appendix C Installing the GNU C Library .. 1137

C.1 Configuring and compiling the GNU C Library.............. 1137
C.2 [Installing the C Library....... ..., 1143
C.3 Recommended Tools for Compilation........................ 1144
C.4 Specific advice for GNU/Linux systems ..................... 1146
C.5 Reporting Bugs. ... 1147
Appendix D Library Maintenance............ 1148
D.1 Adding New Functions.......... ... ... ... 1148
D.1.1 Platform-specific types, macros and functions .......... 1149

D.2  Fortification of function calls............ ... ... .. ... ..... 1150
D.3 Symbol handling in the GNU C Library..................... 1153
D.3.1 64-bit time symbol handling in the GNU C Library..... 1153

D.4 Porting the GNU C Library..........coooooiiiiiii .. 1155
D.4.1 Layout of the sysdeps Directory Hierarchy............. 1157

D.4.2 Porting the GNU C Library to Unix Systems........... 1159
Appendix E Platform-specific facilities ...... 1160
E.1 PowerPC-specific Facilities............ ..o i, 1160
E.2 RISC-V-specific Facilities ...t 1162

E.3 X86-specific Facilities ... 1162

XX



Appendix F Contributors to the
GNU C Library ............................... 1169

Appendix G Free Software Needs
Free Documentation.......................... 1177

Appendix H GNU Lesser General
Public License................................. 1179

Appendix I GNU Free

Documentation License....................... 1188
Concept Index ................... .. ... ... ....... 1196
Type Index ....... ... .. 1209
Function and Macro Index ..................... 1212
Variable and Constant Macro Index........... 1230

Program and File Index ........................ 1243

xx1



1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C Library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to GNU systems.

The purpose of this manual is to tell you how to use the facilities of the GNU C Library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C Library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file stdio.h declares facilities
for performing input and output, and the header file string.h declares string processing
utilities. The organization of this manual generally follows the same division as the header

files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
Library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C Library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU C
Library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 1000, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.



Chapter 1: Introduction 2

1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the American Na-
tional Standards Institute (ANSI): American National Standard X3.159-1989— “ANSI C”
and later by the International Standardization Organization (ISO): ISO/IEC 9899:1990,
“Programming languages—C”. We here refer to the standard as ISO C since this is the
more general standard in respect of ratification. The header files and library facilities that
make up the GNU C Library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘~ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only ISO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros], page 16, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names], page 14,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU C Library is also compatible with the ISO POSIX family of standards, known
more formally as the Portable Operating System Interface for Computer Environments
(ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived

mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 411), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 520), and
process control functions (see Chapter 27 [Processes|, page 811).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU C Library. These include utilities for deal-
ing with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 242).

1.2.2.1 POSIX Safety Concepts

This manual documents various safety properties of GNU C Library functions, in lines that
follow their prototypes and look like:



Chapter 1: Introduction 3

Preliminary: | MT-Safe | AS-Safe | AC-Safe |

The properties are assessed according to the criteria set forth in the POSIX standard for
such safety contexts as Thread-, Async-Signal- and Async-Cancel- -Safety. Intuitive defi-
nitions of these properties, attempting to capture the meaning of the standard definitions,
follow.

e MT-Safe or Thread-Safe functions are safe to call in the presence of other threads. MT,
in MT-Safe, stands for Multi Thread.

Being MT-Safe does not imply a function is atomic, nor that it uses any of the memory
synchronization mechanisms POSIX exposes to users. It is even possible that calling
MT-Safe functions in sequence does not yield an MT-Safe combination. For example,
having a thread call two MT-Safe functions one right after the other does not guaran-
tee behavior equivalent to atomic execution of a combination of both functions, since
concurrent calls in other threads may interfere in a destructive way.

Whole-program optimizations that could inline functions across library interfaces may
expose unsafe reordering, and so performing inlining across the GNU C Library inter-
face is not recommended. The documented MT-Safety status is not guaranteed under
whole-program optimization. However, functions defined in user-visible headers are
designed to be safe for inlining.

e AS-Safe or Async-Signal-Safe functions are safe to call from asynchronous signal han-
dlers. AS, in AS-Safe, stands for Asynchronous Signal.

Many functions that are AS-Safe may set errno, or modify the floating-point environ-
ment, because their doing so does not make them unsuitable for use in signal handlers.
However, programs could misbehave should asynchronous signal handlers modify this
thread-local state, and the signal handling machinery cannot be counted on to pre-
serve it. Therefore, signal handlers that call functions that may set errno or modify
the floating-point environment must save their original values, and restore them before
returning.

e AC-Safe or Async-Cancel-Safe functions are safe to call when asynchronous cancellation
is enabled. AC in AC-Safe stands for Asynchronous Cancellation.

The POSIX standard defines only three functions to be AC-Safe, namely pthread_
cancel, pthread_setcancelstate, and pthread_setcanceltype. At present the
GNU C Library provides no guarantees beyond these three functions, but does docu-

ment which functions are presently AC-Safe. This documentation is provided for use
by the GNU C Library developers.

Just like signal handlers, cancellation cleanup routines must configure the floating point
environment they require. The routines cannot assume a floating point environment,
particularly when asynchronous cancellation is enabled. If the configuration of the
floating point environment cannot be performed atomically then it is also possible that
the environment encountered is internally inconsistent.

e MT-Unsafe, AS-Unsafe, AC-Unsafe functions are not safe to call within the safety con-
texts described above. Calling them within such contexts invokes undefined behavior.
Functions not explicitly documented as safe in a safety context should be regarded as
Unsafe.

e Preliminary safety properties are documented, indicating these properties may not be
counted on in future releases of the GNU C Library.



Chapter 1: Introduction 4

Such preliminary properties are the result of an assessment of the properties of our
current implementation, rather than of what is mandated and permitted by current
and future standards.

Although we strive to abide by the standards, in some cases our implementation is safe
even when the standard does not demand safety, and in other cases our implementation
does not meet the standard safety requirements. The latter are most likely bugs; the
former, when marked as Preliminary, should not be counted on: future standards may
require changes that are not compatible with the additional safety properties afforded
by the current implementation.

Furthermore, the POSIX standard does not offer a detailed definition of safety. We
assume that, by “safe to call”’, POSIX means that, as long as the program does not
invoke undefined behavior, the “safe to call” function behaves as specified, and does
not cause other functions to deviate from their specified behavior. We have chosen to
use its loose definitions of safety, not because they are the best definitions to use, but
because choosing them harmonizes this manual with POSIX.

Please keep in mind that these are preliminary definitions and annotations, and certain
aspects of the definitions are still under discussion and might be subject to clarification
or change.

Over time, we envision evolving the preliminary safety notes into stable commitments,
as stable as those of our interfaces. As we do, we will remove the Preliminary keyword
from safety notes. Aslong as the keyword remains, however, they are not to be regarded
as a promise of future behavior.

Other keywords that appear in safety notes are defined in subsequent sections.

1.2.2.2 Unsafe Features

Functions that are unsafe to call in certain contexts are annotated with keywords that
document their features that make them unsafe to call. AS-Unsafe features in this sec-
tion indicate the functions are never safe to call when asynchronous signals are enabled.
AC-Unsafe features indicate they are never safe to call when asynchronous cancellation is
enabled. There are no MT-Unsafe marks in this section.

e lock

Functions marked with lock as an AS-Unsafe feature may be interrupted by a signal
while holding a non-recursive lock. If the signal handler calls another such function
that takes the same lock, the result is a deadlock.

Functions annotated with lock as an AC-Unsafe feature may, if cancelled
asynchronously, fail to release a lock that would have been released if their execution
had not been interrupted by asynchronous thread cancellation. Once a lock is left
taken, attempts to take that lock will block indefinitely.
e corrupt

Functions marked with corrupt as an AS-Unsafe feature may corrupt data structures
and misbehave when they interrupt, or are interrupted by, another such function.
Unlike functions marked with lock, these take recursive locks to avoid MT-Safety
problems, but this is not enough to stop a signal handler from observing a partially-
updated data structure. Further corruption may arise from the interrupted function’s
failure to notice updates made by signal handlers.



Chapter 1: Introduction 5

Functions marked with corrupt as an AC-Unsafe feature may leave data structures in a
corrupt, partially updated state. Subsequent uses of the data structure may misbehave.

e heap

Functions marked with heap may call heap memory management functions from the
malloc/free family of functions and are only as safe as those functions. This note is
thus equivalent to:

| AS-Unsafe lock | AC-Unsafe lock fd mem |
e dlopen

Functions marked with dlopen use the dynamic loader to load shared libraries into
the current execution image. This involves opening files, mapping them into memory,
allocating additional memory, resolving symbols, applying relocations and more, all of
this while holding internal dynamic loader locks.

The locks are enough for these functions to be AS- and AC-Unsafe, but other issues
may arise. At present this is a placeholder for all potential safety issues raised by
dlopen.

e plugin
Functions annotated with plugin may run code from plugins that may be external to
the GNU C Library. Such plugin functions are assumed to be MT-Safe, AS-Unsafe
and AC-Unsafe. Examples of such plugins are stack unwinding libraries, name service
switch (NSS) and character set conversion (iconv) back-ends.

Although the plugins mentioned as examples are all brought in by means of dlopen,
the plugin keyword does not imply any direct involvement of the dynamic loader or
the 1ibd1 interfaces, those are covered by dlopen. For example, if one function loads a
module and finds the addresses of some of its functions, while another just calls those
already-resolved functions, the former will be marked with dlopen, whereas the latter
will get the plugin. When a single function takes all of these actions, then it gets both
marks.

e i18n

Functions marked with i18n may call internationalization functions of the gettext
family and will be only as safe as those functions. This note is thus equivalent to:

| MT-Safe env | AS-Unsafe corrupt heap dlopen | AC-Unsafe corrupt |
e timer

Functions marked with timer use the alarm function or similar to set a time-out for a
system call or a long-running operation. In a multi-threaded program, there is a risk
that the time-out signal will be delivered to a different thread, thus failing to interrupt
the intended thread. Besides being MT-Unsafe, such functions are always AS-Unsafe,
because calling them in signal handlers may interfere with timers set in the interrupted
code, and AC-Unsafe, because there is no safe way to guarantee an earlier timer will
be reset in case of asynchronous cancellation.

1.2.2.3 Conditionally Safe Features

For some features that make functions unsafe to call in certain contexts, there are known
ways to avoid the safety problem other than refraining from calling the function altogether.
The keywords that follow refer to such features, and each of their definitions indicate how



Chapter 1: Introduction 6

the whole program needs to be constrained in order to remove the safety problem indicated
by the keyword. Only when all the reasons that make a function unsafe are observed and
addressed, by applying the documented constraints, does the function become safe to call
in a context.

e init
Functions marked with init as an MT-Unsafe feature perform MT-Unsafe initialization
when they are first called.

Calling such a function at least once in single-threaded mode removes this specific cause
for the function to be regarded as MT-Unsafe. If no other cause for that remains, the
function can then be safely called after other threads are started.

Functions marked with init as an AS- or AC-Unsafe feature use the internal 1ibc_
once machinery or similar to initialize internal data structures.

If a signal handler interrupts such an initializer, and calls any function that also per-
forms libc_once initialization, it will deadlock if the thread library has been loaded.

Furthermore, if an initializer is partially complete before it is canceled or interrupted
by a signal whose handler requires the same initialization, some or all of the initializa-
tion may be performed more than once, leaking resources or even resulting in corrupt
internal data.

Applications that need to call functions marked with init as an AS- or AC-Unsafe
feature should ensure the initialization is performed before configuring signal handlers
or enabling cancellation, so that the AS- and AC-Safety issues related with 1ibc_once
do not arise.

® race

Functions annotated with race as an MT-Safety issue operate on objects in ways that
may cause data races or similar forms of destructive interference out of concurrent
execution. In some cases, the objects are passed to the functions by users; in others,
they are used by the functions to return values to users; in others, they are not even
exposed to users.

We consider access to objects passed as (indirect) arguments to functions to be data
race free. The assurance of data race free objects is the caller’s responsibility. We
will not mark a function as MT-Unsafe or AS-Unsafe if it misbehaves when users fail
to take the measures required by POSIX to avoid data races when dealing with such
objects. As a general rule, if a function is documented as reading from an object
passed (by reference) to it, or modifying it, users ought to use memory synchronization
primitives to avoid data races just as they would should they perform the accesses
themselves rather than by calling the library function. FILE streams are the exception
to the general rule, in that POSIX mandates the library to guard against data races
in many functions that manipulate objects of this specific opaque type. We regard
this as a convenience provided to users, rather than as a general requirement whose
expectations should extend to other types.

In order to remind users that guarding certain arguments is their responsibility, we will
annotate functions that take objects of certain types as arguments. We draw the line
for objects passed by users as follows: objects whose types are exposed to users, and
that users are expected to access directly, such as memory buffers, strings, and various



Chapter 1: Introduction 7

user-visible struct types, do not give reason for functions to be annotated with race.
It would be noisy and redundant with the general requirement, and not many would
be surprised by the library’s lack of internal guards when accessing objects that can be
accessed directly by users.

As for objects that are opaque or opaque-like, in that they are to be manipulated only
by passing them to library functions (e.g., FILE, DIR, obstack, iconv_t), there might
be additional expectations as to internal coordination of access by the library. We will
annotate, with race followed by a colon and the argument name, functions that take
such objects but that do not take care of synchronizing access to them by default. For
example, FILE stream unlocked functions will be annotated, but those that perform
implicit locking on FILE streams by default will not, even though the implicit locking
may be disabled on a per-stream basis.

In either case, we will not regard as MT-Unsafe functions that may access user-supplied
objects in unsafe ways should users fail to ensure the accesses are well defined. The
notion prevails that users are expected to safeguard against data races any user-supplied
objects that the library accesses on their behalf.

This user responsibility does not apply, however, to objects controlled by the library
itself, such as internal objects and static buffers used to return values from certain
calls. When the library doesn’t guard them against concurrent uses, these cases are
regarded as MT-Unsafe and AS-Unsafe (although the race mark under AS-Unsafe will
be omitted as redundant with the one under MT-Unsafe). As in the case of user-
exposed objects, the mark may be followed by a colon and an identifier. The identifier
groups all functions that operate on a certain unguarded object; users may avoid the
MT-Safety issues related with unguarded concurrent access to such internal objects
by creating a non-recursive mutex related with the identifier, and always holding the
mutex when calling any function marked as racy on that identifier, as they would have
to should the identifier be an object under user control. The non-recursive mutex
avoids the MT-Safety issue, but it trades one AS-Safety issue for another, so use in
asynchronous signals remains undefined.

When the identifier relates to a static buffer used to hold return values, the mutex
must be held for as long as the buffer remains in use by the caller. Many functions
that return pointers to static buffers offer reentrant variants that store return values in
caller-supplied buffers instead. In some cases, such as tmpname, the variant is chosen
not by calling an alternate entry point, but by passing a non-NULL pointer to the buffer
in which the returned values are to be stored. These variants are generally preferable
in multi-threaded programs, although some of them are not MT-Safe because of other
internal buffers, also documented with race notes.

e const

Functions marked with const as an MT-Safety issue non-atomically modify internal
objects that are better regarded as constant, because a substantial portion of the
GNU C Library accesses them without synchronization. Unlike race, that causes both
readers and writers of internal objects to be regarded as MT-Unsafe and AS-Unsafe, this
mark is applied to writers only. Writers remain equally MT- and AS-Unsafe to call, but
the then-mandatory constness of objects they modify enables readers to be regarded as
MT-Safe and AS-Safe (as long as no other reasons for them to be unsafe remain), since
the lack of synchronization is not a problem when the objects are effectively constant.



Chapter 1: Introduction 8

The identifier that follows the const mark will appear by itself as a safety note in
readers. Programs that wish to work around this safety issue, so as to call writers,
may use a non-recursve rwlock associated with the identifier, and guard all calls to
functions marked with const followed by the identifier with a write lock, and all calls to
functions marked with the identifier by itself with a read lock. The non-recursive locking
removes the MT-Safety problem, but it trades one AS-Safety problem for another, so
use in asynchronous signals remains undefined.

e sig

Functions marked with sig as a MT-Safety issue (that implies an identical AS-Safety is-
sue, omitted for brevity) may temporarily install a signal handler for internal purposes,
which may interfere with other uses of the signal, identified after a colon.

This safety problem can be worked around by ensuring that no other uses of the signal
will take place for the duration of the call. Holding a non-recursive mutex while calling
all functions that use the same temporary signal; blocking that signal before the call
and resetting its handler afterwards is recommended.

There is no safe way to guarantee the original signal handler is restored in case of
asynchronous cancellation, therefore so-marked functions are also AC-Unsafe.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disabling asynchronous cancellation and
installing a cleanup handler to restore the signal to the desired state and to release the
mutex are recommended.

e term

Functions marked with term as an MT-Safety issue may change the terminal settings
in the recommended way, namely: call tcgetattr, modify some flags, and then call
tcsetattr; this creates a window in which changes made by other threads are lost.
Thus, functions marked with term are MT-Unsafe. The same window enables changes
made by asynchronous signals to be lost. These functions are also AS-Unsafe, but the
corresponding mark is omitted as redundant.

It is thus advisable for applications using the terminal to avoid concurrent and reen-
trant interactions with it, by not using it in signal handlers or blocking signals that
might use it, and holding a lock while calling these functions and interacting with the
terminal. This lock should also be used for mutual exclusion with functions marked
with race:tcattr(£d), where fd is a file descriptor for the controlling terminal. The
caller may use a single mutex for simplicity, or use one mutex per terminal, even if
referenced by different file descriptors.

Functions marked with term as an AC-Safety issue are supposed to restore terminal
settings to their original state, after temporarily changing them, but they may fail to
do so if cancelled.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disabling asynchronous cancellation and
installing a cleanup handler to restore the terminal settings to the original state and
to release the mutex are recommended.



Chapter 1: Introduction 9

1.2.2.4 Other Safety Remarks

Additional keywords may be attached to functions, indicating features that do not make
a function unsafe to call, but that may need to be taken into account in certain classes of
programs:

e locale

Functions annotated with locale as an MT-Safety issue read from the locale object
without any form of synchronization. Functions annotated with locale called concur-
rently with locale changes may behave in ways that do not correspond to any of the
locales active during their execution, but an unpredictable mix thereof.

We do not mark these functions as MT- or AS-Unsafe, however, because functions
that modify the locale object are marked with const:locale and regarded as unsafe.
Being unsafe, the latter are not to be called when multiple threads are running or asyn-
chronous signals are enabled, and so the locale can be considered effectively constant
in these contexts, which makes the former safe.

® env

Functions marked with env as an MT-Safety issue access the environment with getenv
or similar, without any guards to ensure safety in the presence of concurrent modifica-
tions.

We do not mark these functions as MT- or AS-Unsafe, however, because functions
that modify the environment are all marked with const:env and regarded as unsafe.
Being unsafe, the latter are not to be called when multiple threads are running or
asynchronous signals are enabled, and so the environment can be considered effectively
constant in these contexts, which makes the former safe.

e hostid

The function marked with hostid as an MT-Safety issue reads from the system-wide
data structures that hold the “host ID” of the machine. These data structures cannot
generally be modified atomically. Since it is expected that the “host ID” will not nor-
mally change, the function that reads from it (gethostid) is regarded as safe, whereas
the function that modifies it (sethostid) is marked with const:hostid, indicating
it may require special care if it is to be called. In this specific case, the special care
amounts to system-wide (not merely intra-process) coordination.

e sigintr
Functions marked with sigintr as an MT-Safety issue access the _sigintr internal

data structure without any guards to ensure safety in the presence of concurrent mod-
ifications.

We do not mark these functions as MT- or AS-Unsafe, however, because functions that
modify the this data structure are all marked with const:sigintr and regarded as
unsafe. Being unsafe, the latter are not to be called when multiple threads are run-
ning or asynchronous signals are enabled, and so the data structure can be considered
effectively constant in these contexts, which makes the former safe.

o fd

Functions annotated with £d as an AC-Safety issue may leak file descriptors if asyn-
chronous thread cancellation interrupts their execution.



Chapter 1: Introduction 10

Functions that allocate or deallocate file descriptors will generally be marked as such.
Even if they attempted to protect the file descriptor allocation and deallocation with
cleanup regions, allocating a new descriptor and storing its number where the cleanup
region could release it cannot be performed as a single atomic operation. Similarly,
releasing the descriptor and taking it out of the data structure normally responsible for
releasing it cannot be performed atomically. There will always be a window in which
the descriptor cannot be released because it was not stored in the cleanup handler
argument yet, or it was already taken out before releasing it. It cannot be taken out
after release: an open descriptor could mean either that the descriptor still has to be
closed, or that it already did so but the descriptor was reallocated by another thread
or signal handler.

Such leaks could be internally avoided, with some performance penalty, by temporarily
disabling asynchronous thread cancellation. However, since callers of allocation or
deallocation functions would have to do this themselves, to avoid the same sort of leak
in their own layer, it makes more sense for the library to assume they are taking care of
it than to impose a performance penalty that is redundant when the problem is solved
in upper layers, and insufficient when it is not.

This remark by itself does not cause a function to be regarded as AC-Unsafe. However,
cumulative effects of such leaks may pose a problem for some programs. If this is the
case, suspending asynchronous cancellation for the duration of calls to such functions
is recommended.

® mem

Functions annotated with mem as an AC-Safety issue may leak memory if asynchronous
thread cancellation interrupts their execution.

The problem is similar to that of file descriptors: there is no atomic interface to allocate
memory and store its address in the argument to a cleanup handler, or to release it
and remove its address from that argument, without at least temporarily disabling
asynchronous cancellation, which these functions do not do.

This remark does not by itself cause a function to be regarded as generally AC-Unsafe.
However, cumulative effects of such leaks may be severe enough for some programs that
disabling asynchronous cancellation for the duration of calls to such functions may be
required.

e cwd

Functions marked with cwd as an MT-Safety issue may temporarily change the cur-
rent working directory during their execution, which may cause relative pathnames
to be resolved in unexpected ways in other threads or within asynchronous signal or
cancellation handlers.

This is not enough of a reason to mark so-marked functions as MT- or AS-Unsafe, but
when this behavior is optional (e.g., nftw with FTW_CHDIR), avoiding the option may
be a good alternative to using full pathnames or file descriptor-relative (e.g. openat)
system calls.

e !posix

This remark, as an MT-, AS- or AC-Safety note to a function, indicates the safety status
of the function is known to differ from the specified status in the POSIX standard. For



Chapter 1: Introduction 11

example, POSIX does not require a function to be Safe, but our implementation is, or
vice-versa.

For the time being, the absence of this remark does not imply the safety properties we
documented are identical to those mandated by POSIX for the corresponding functions.

e :identifier
Annotations may sometimes be followed by identifiers, intended to group several func-
tions that e.g. access the data structures in an unsafe way, as in race and const, or to

provide more specific information, such as naming a signal in a function marked with
sig. It is envisioned that it may be applied to lock and corrupt as well in the future.

In most cases, the identifier will name a set of functions, but it may name global objects
or function arguments, or identifiable properties or logical components associated with
them, with a notation such as e.g. :buf (arg) to denote a buffer associated with the
argument arg, or :tcattr(fd) to denote the terminal attributes of a file descriptor fd.

The most common use for identifiers is to provide logical groups of functions and
arguments that need to be protected by the same synchronization primitive in order
to ensure safe operation in a given context.

e /condition

Some safety annotations may be conditional, in that they only apply if a boolean
expression involving arguments, global variables or even the underlying kernel evaluates
to true. Such conditions as /hurd or /!1linux!bsd indicate the preceding marker only
applies when the underlying kernel is the HURD, or when it is neither Linux nor a
BSD kernel, respectively. /!ps and /one_per_line indicate the preceding marker
only applies when argument ps is NULL, or global variable one_per_line is nonzero.

When all marks that render a function unsafe are adorned with such conditions, and
none of the named conditions hold, then the function can be regarded as safe.

1.2.3 Berkeley Unix

The GNU C Library defines facilities from some versions of Unix which are not formally
standardized, specifically from the 4.2 BSD, 4.3 BSD, and 4.4 BSD Unix systems (also
known as Berkeley Unix) and from SunOS (a popular 4.2 BSD derivative that includes
some Unix System V functionality). These systems support most of the ISO C and POSIX
facilities, and 4.4 BSD and newer releases of SunOS in fact support them all.

The BSD facilities include symbolic links (see Section 14.6 [Symbolic Links], page 432),
the select function (see Section 13.9 [Waiting for Input or Output], page 375), the BSD
signal functions (see Section 25.10 [BSD Signal Handling], page 764), and sockets (see
Chapter 16 [Sockets], page 470).

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T Unix
System V operating system. It is to some extent a superset of the POSIX standard (see
Section 1.2.2 [POSIX (The Portable Operating System Interface)|, page 2).

The GNU C Library defines most of the facilities required by the SVID that are not
also required by the ISO C or POSIX standards, for compatibility with System V Unix and
other Unix systems (such as SunOS) which include these facilities. However, many of the



Chapter 1: Introduction 12

more obscure and less generally useful facilities required by the SVID are not included. (In
fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process commu-
nication and shared memory, the hsearch and drand48 families of functions, fmtmsg and
several of the mathematical functions.

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide, published by the X/Open Company, Ltd., is a more gen-
eral standard than POSIX. X/Open owns the Unix copyright and the XPG specifies the
requirements for systems which are intended to be a Unix system.

The GNU C Library complies to the X/Open Portability Guide, Issue 4.2, with all exten-
sions common to XSI (X/Open System Interface) compliant systems and also all X/Open
UNIX extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems. Some of the really bad mistakes in System V systems were
corrected, though. Since fulfilling the XPG standard with the Unix extensions is a precon-
dition for getting the Unix brand chances are good that the functionality is available on
commercial systems.

1.2.6 Linux (The Linux Kernel)

The GNU C Library includes by reference the Linux man-pages 6.9.1 documentation to
document the listed syscalls for the Linux kernel. For reference purposes only, the latest
Linux man-pages Project (https://www.kernel.org/doc/man-pages/) documentation
can be accessed from the Linux kernel (https://www.kernel.org) website. Where the
syscall has more specific documentation in this manual that more specific documentation
is considered authoritative.

Throughout this manual, when we refer to a man page, for example:

sendmsg(2) (Latest, online: https://man7.org/linux/man-pages/man2/
sendmsg.2.html) See Section 1.2.6 [Linux (The Linux Kernel)|, page 12

we are referring primarily to the specific version noted above (the “normative” version),
typically accessed by running (for example) man 2 sendmsg on a system with that version
installed. For convenience, we will also link to the online latest copy of the man pages, but
keep in mind that version will almost always be newer than, and thus different than, the
normative version noted above.

Additional details on the Linux system call interface can be found in See Section 26.6
[System Calls|, page 805.

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C Library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that define types and
macros and declare variables and functions; and the actual library or archive that contains
the definitions of the variables and functions.


https://www.kernel.org/doc/man-pages/
https://www.kernel.org
https://man7.org/linux/man-pages/man2/sendmsg.2.html
https://man7.org/linux/man-pages/man2/sendmsg.2.html

Chapter 1: Introduction 13

(Recall that in C, a declaration merely provides information that a function or variable
exists and gives its type. For a function declaration, information about the types of its
arguments might be provided as well. The purpose of declarations is to allow the compiler
to correctly process references to the declared variables and functions. A definition, on the
other hand, actually allocates storage for a variable or says what a function does.)

In order to use the facilities in the GNU C Library, you should be sure that your program
source files include the appropriate header files. This is so that the compiler has declarations
of these facilities available and can correctly process references to them. Once your program
has been compiled, the linker resolves these references to the actual definitions provided in
the archive file.

Header files are included into a program source file by the ‘#include’ preprocessor
directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would contain
definitions and declarations describing the interfaces between the different parts of your
particular application. By contrast,

#include <file.h>

is typically used to include a header file file.h that contains definitions and declarations
for a standard library. This file would normally be installed in a standard place by your
system administrator. You should use this second form for the C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, before any
other code. If you begin your source files with some comments explaining what the code in
the file does (a good idea), put the ‘#include’ directives immediately afterwards, following
the feature test macro definition (see Section 1.3.4 [Feature Test Macros], page 16).

For more information about the use of header files and ‘#include’ directives, see Section
“Header Files” in The GNU C Preprocessor Manual.

The GNU C Library provides several header files, each of which contains the type and
macro definitions and variable and function declarations for a group of related facilities.
This means that your programs may need to include several header files, depending on
exactly which facilities you are using.

Some library header files include other library header files automatically. However, as a
matter of programming style, you should not rely on this; it is better to explicitly include all
the header files required for the library facilities you are using. The GNU C Library header
files have been written in such a way that it doesn’t matter if a header file is accidentally
included more than once; including a header file a second time has no effect. Likewise, if
your program needs to include multiple header files, the order in which they are included
doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any number of
times works in any ISO C implementation. However, this has traditionally not been the
case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it declares;
you could declare the function explicitly yourself, according to the specifications in this
manual. But it is usually better to include the header file because it may define types and
macros that are not otherwise available and because it may define more efficient macro
replacements for some functions. It is also a sure way to have the correct declaration.



Chapter 1: Introduction 14

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro definition as
well. This normally has no effect on how your program runs—the macro definition does
the same thing as the function would. In particular, macro equivalents for library functions
evaluate arguments exactly once, in the same way that a function call would. The main
reason for these macro definitions is that sometimes they can produce an inline expansion
that is considerably faster than an actual function call.

Taking the address of a library function works even if it is also defined as a macro. This
is because, in this context, the name of the function isn’t followed by the left parenthesis
that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—perhaps
to make your program easier to debug. There are two ways you can do this:
e You can avoid a macro definition in a specific use by enclosing the name of the function
in parentheses. This works because the name of the function doesn’t appear in a
syntactic context where it is recognizable as a macro call.

e You can suppress any macro definition for a whole source file by using the ‘#undef’
preprocessor directive, unless otherwise stated explicitly in the description of that fa-
cility.

For example, suppose the header file stdlib.h declares a function named abs with
extern int abs (int);
and also provides a macro definition for abs. Then, in:
#include <stdlib.h>
int £ (int *i) { return abs (++*i); }
the reference to abs might refer to either a macro or a function. On the other hand, in each
of the following examples the reference is to a function and not a macro.

#include <stdlib.h>
int g (int *i) { return (abs) (++*i); }

#undef abs
int h (int *i) { return abs (++*i); }
Since macro definitions that double for a function behave in exactly the same way as the
actual function version, there is usually no need for any of these methods. In fact, removing
macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from the ISO C
standard are reserved unconditionally; your program may not redefine these names. All
other library names are reserved if your program explicitly includes the header file that
defines or declares them. There are several reasons for these restrictions:

e Other people reading your code could get very confused if you were using a function
named exit to do something completely different from what the standard exit function
does, for example. Preventing this situation helps to make your programs easier to
understand and contributes to modularity and maintainability.

e It avoids the possibility of a user accidentally redefining a library function that is called
by other library functions. If redefinition were allowed, those other functions would not
work properly.



Chapter 1: Introduction 15

It allows the compiler to do whatever special optimizations it pleases on calls to these
functions, without the possibility that they may have been redefined by the user. Some
library facilities, such as those for dealing with variadic arguments (see Section A.2
[Variadic Functions], page 985) and non-local exits (see Chapter 24 [Non-Local Exits],
page 711), actually require a considerable amount of cooperation on the part of the C
compiler, and with respect to the implementation, it might be easier for the compiler
to treat these as built-in parts of the language.

In addition to the names documented in this manual, reserved names include all external

identifiers (global functions and variables) that begin with an underscore (‘_’) and all iden-
tifiers regardless of use that begin with either two underscores or an underscore followed by
a capital letter are reserved names. This is so that the library and header files can define
functions, variables, and macros for internal purposes without risk of conflict with names
in user programs.

Some additional classes of identifier names are reserved for future extensions to the C

language or the POSIX.1 environment. While using these names for your own purposes
right now might not cause a problem, they do raise the possibility of conflict with future
versions of the C or POSIX standards, so you should avoid these names.

Names beginning with a capital ‘E’ followed a digit or uppercase letter may be used for
additional error code names. See Chapter 2 [Error Reporting], page 24.

Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may be used

for additional character testing and conversion functions. See Chapter 4 [Character
Handling], page 88.

Names that begin with ‘LC_’ followed by an uppercase letter may be used for additional
macros specifying locale attributes. See Chapter 7 [Locales and Internationalization],
page 185.

Names of all existing mathematics functions (see Chapter 19 [Mathematics|, page 559)
suffixed with ‘£’ or ‘1’ are reserved for corresponding functions that operate on float
and long double arguments, respectively.

Names that begin with ‘SIG’ followed by an uppercase letter are reserved for additional
signal names. See Section 25.2 [Standard Signals], page 722.

Names that begin with ‘SIG_’ followed by an uppercase letter are reserved for additional
signal actions. See Section 25.3.1 [Basic Signal Handling], page 731.

Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter are reserved
for additional string and array functions. See Chapter 5 [String and Array Utilities],
page 98.

Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they actually

define. You only need to worry about these restrictions if your program includes that
particular header file.

The header file dirent.h reserves names prefixed with ‘d_’.
The header file fcntl.h reserves names prefixed with ‘1_", ‘F_’, ‘0_’, and ‘S_’.

The header file grp.h reserves names prefixed with ‘gr_’.

The header file 1imits.h reserves names suffixed with ‘_MAX’.



Chapter 1: Introduction 16

)

e The header file pwd.h reserves names prefixed with ‘pw_".
e The header file signal.h reserves names prefixed with ‘sa_’ and ‘SA_’.
e The header file sys/stat.h reserves names prefixed with ‘st_’ and ‘S_".
e The header file sys/times.h reserves names prefixed with ‘tms_’.

e The header file termios.h reserves names prefixed with ‘c_’, ‘V’, ‘IT’, ‘0’, and ‘TC’; and
names prefixed with ‘B’ followed by a digit.

1.3.4 Feature Test Macros

The exact set of features available when you compile a source file is controlled by which
feature test macros you define.

If you compile your programs using ‘gcc —ansi’, you get only the ISO C library features,
unless you explicitly request additional features by defining one or more of the feature
macros. See Section “GNU CC Command Options” in The GNU CC Manual, for more
information about GCC options.

You should define these macros by using ‘#define’ preprocessor directives at the top of
your source code files. These directives must come before any #include of a system header
file. It is best to make them the very first thing in the file, preceded only by comments. You
could also use the ‘-D’ option to GCC, but it’s better if you make the source files indicate
their own meaning in a self-contained way.

This system exists to allow the library to conform to multiple standards. Although the
different standards are often described as supersets of each other, they are usually incom-
patible because larger standards require functions with names that smaller ones reserve to
the user program. This is not mere pedantry — it has been a problem in practice. For
instance, some non-GNU programs define functions named getline that have nothing to
do with this library’s getline. They would not be compilable if all features were enabled
indiscriminately.

This should not be used to verify that a program conforms to a limited standard. It is
insufficient for this purpose, as it will not protect you from including header files outside
the standard, or relying on semantics undefined within the standard.

_POSIX_SOURCE [Macro]
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.

The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_C_SOURCE
to a positive integer.

_POSIX_C_SOURCE [Macro]
Define this macro to a positive integer to control which POSIX functionality is made
available. The greater the value of this macro, the more functionality is made avail-
able.

If you define this macro to a value greater than or equal to 1, then the functionality
from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990) is made
available.
If you define this macro to a value greater than or equal to 2, then the functionality
from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992) is made
available.



Chapter 1: Introduction 17

If you define this macro to a value greater than or equal to 199309L, then the function-
ality from the 1993 edition of the POSIX.1b standard (IEEE Standard 1003.1b-1993)
is made available.

If you define this macro to a value greater than or equal to 199506L, then the function-
ality from the 1995 edition of the POSIX.1c standard (IEEE Standard 1003.1¢-1995)

is made available.

If you define this macro to a value greater than or equal to 200112L, then the func-
tionality from the 2001 edition of the POSIX standard (IEEE Standard 1003.1-2001)
is made available.

If you define this macro to a value greater than or equal to 200809L, then the func-
tionality from the 2008 edition of the POSIX standard (IEEE Standard 1003.1-2008)
is made available.

Greater values for _POSIX_C_SOURCE will enable future extensions. The POSIX stan-
dards process will define these values as necessary, and the GNU C Library should sup-
port them some time after they become standardized. The 1996 edition of POSIX.1
(ISO/IEC 9945-1: 1996) states that if you define _POSIX_C_SOURCE to a value greater
than or equal to 199506L, then the functionality from the 1996 edition is made avail-
able. In general, in the GNU C Library, bugfixes to the standards are included when
specifying the base version; e.g., POSIX.1-2004 will always be included with a value

of 200112L.
_XOPEN_SOURCE [Macrol
_XOPEN_SOURCE_EXTENDED [Macro]

If you define this macro, functionality described in the X/Open Portability Guide is
included. This is a superset of the POSIX.1 and POSIX.2 functionality and in fact
_POSIX_SOURCE and _POSIX_C_SQOURCE are automatically defined.

As the unification of all Unices, functionality only available in BSD and SVID is also
included.

If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more functionality is
available. The extra functions will make all functions available which are necessary
for the X/Open Unix brand.

If the macro _XOPEN_SOURCE has the value 500 this includes all functionality described
so far plus some new definitions from the Single Unix Specification, version 2. The
value 600 (corresponding to the sixth revision) includes definitions from SUSv3, and
using 700 (the seventh revision) includes definitions from SUSvA4.

_LARGEFILE_SOURCE [Macro]
If this macro is defined some extra functions are available which rectify a few short-
comings in all previous standards. Specifically, the functions fseeko and ftello are
available. Without these functions the difference between the ISO C interface (fseek,
ftell) and the low-level POSIX interface (1seek) would lead to problems.

This macro was introduced as part of the Large File Support extension (LFS).

_LARGEFILE64_SOURCE [Macro]
If you define this macro an additional set of functions is made available which enables
32 bit systems to use files of sizes beyond the usual limit of 2GB. This interface is



Chapter 1: Introduction 18

not available if the system does not support files that large. On systems where the
natural file size limit is greater than 2GB (i.e., on 64 bit systems) the new functions
are identical to the replaced functions.

The new functionality is made available by a new set of types and functions which
replace the existing ones. The names of these new objects contain 64 to indicate the
intention, e.g., off_t vs. off64_t and fseeko vs. fseekob4.

This macro was introduced as part of the Large File Support extension (LFS). It is
a transition interface for the period when 64 bit offsets are not generally used (see
_FILE_UFFSET_BITS).

_FILE_OFFSET_BITS [Macro]
This macro determines which file system interface shall be used, one replacing the
other. Whereas _LARGEFILE64_SOURCE makes the 64 bit interface available as an
additional interface, _FILE_OFFSET_BITS allows the 64 bit interface to replace the
old interface.

If _FILE_OFFSET_BITS is defined to the value 32, the 32 bit interface is used and
types like off_t have a size of 32 bits on 32 bit systems.

If the macro is defined to the value 64, the large file interface replaces the old inter-
face. lLe., the functions are not made available under different names (as they are
with _LARGEFILE64_SOURCE). Instead the old function names now reference the new
functions, e.g., a call to £seeko now indeed calls fseeko64.

If the macro is not defined it currently defaults to 32, but this default is planned to
change due to a need to update time_t for Y2038 safety, and applications should not
rely on the default.

This macro should only be selected if the system provides mechanisms for handling
large files. On 64 bit systems this macro has no effect since the *64 functions are
identical to the normal functions.

This macro was introduced as part of the Large File Support extension (LFS).

_TIME_BITS [Macro]
Define this macro to control the bit size of time_t, and therefore the bit size of all
time_t-derived types and the prototypes of all related functions.

1. If _TIME_BITS is undefined, the bit size of time_t is architecture dependent.
Currently it defaults to 64 bits on most architectures. Although it defaults to
32 bits on some traditional architectures (1686, ARM), this is planned to change
and applications should not rely on this.

2. If _TIME_BITS is defined to be 64, time_t is defined to be a 64-bit integer. On

platforms where time_t was traditionally 32 bits, calls to proper syscalls depend
on the Linux kernel version on which the system is running. For Linux kernel
version above 5.1 syscalls supporting 64-bit time are used. Otherwise, a fallback
code is used with legacy (i.e. 32-bit) syscalls.
On such platforms, the GNU C Library will also define __USE_TIME64_REDIRECTS
to indicate whether the declarations are expanded to different ones (either by
redefining the symbol name or using a symbol alias). For instance, if the symbol
clock_gettime expands to __clock_gettime64.



Chapter 1: Introduction 19

3. If _TIME_BITS is defined to be 32, time_t is defined to be a 32-bit integer where
that is supported. This is not recommended, as 32-bit time_t stops working in
the year 2038.

4. For any other use case a compile-time error is emitted.

_TIME_BITS=64 can be defined only when _FILE_OFFSET_BITS=64 is also defined.

By using this macro certain ports gain support for 64-bit time and as a result become
immune to the Y2038 problem.

_IS0C99_SOURCE [Macro]
If this macro is defined, features from ISO C99 are included. Since these features are
included by default, this macro is mostly relevant when the compiler uses an earlier
language version.

_IS0C11_SOURCE [Macro]
If this macro is defined, ISO C11 extensions to ISO C99 are included.

_IS0C23_SOURCE [Macro]
If this macro is defined, ISO C23 extensions to ISO C11 are included. Only some
features from this draft standard are supported by the GNU C Library. The older
name _ISOC2X_SOURCE is also supported.

_IS0C2Y_SOURCE [Macro]
If this macro is defined, ISO C2Y extensions to ISO C23 are included. Only some
features from this draft standard are supported by the GNU C Library.

__STDC_WANT_LIB_EXT2__ [Macro]
If you define this macro to the value 1, features from ISO/IEC TR 24731-2:2010
(Dynamic Allocation Functions) are enabled. Only some of the features from this TR
are supported by the GNU C Library.

_STDC_WANT_IEC_60559_BFP_EXT__ [Macro]
If you define this macro, features from ISO/IEC TS 18661-1:2014 (Floating-point
extensions for C: Binary floating-point arithmetic) are enabled. Only some of the
features from this TS are supported by the GNU C Library.

__STDC_WANT_IEC_60559_FUNCS_EXT__ [Macro]
If you define this macro, features from ISO/IEC TS 18661-4:2015 (Floating-point
extensions for C: Supplementary functions) are enabled. Only some of the features
from this TS are supported by the GNU C Library.

__STDC_WANT_IEC_60559_TYPES_EXT__ [Macro]
If you define this macro, features from ISO/TEC TS 18661-3:2015 (Floating-point
extensions for C: Interchange and extended types) are enabled. Only some of the
features from this TS are supported by the GNU C Library.

_STDC_WANT_IEC_60559_EXT__ [Macro]
If you define this macro, ISO C23 features defined in Annex F of that standard are
enabled. This affects declarations of the totalorder functions and functions related
to NaN payloads.



Chapter 1: Introduction 20

_GNU_SQURCE [Macro]
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.

_DEFAULT_SOURCE [Macro]
If you define this macro, most features are included apart from X/Open, LFS and
GNU extensions: the effect is to enable features from the 2008 edition of POSIX,
as well as certain BSD and SVID features without a separate feature test macro to
control them.

Be aware that compiler options also affect included features:

e If you use a strict conformance option, features beyond those from the compiler’s
language version will be disabled, though feature test macros may be used to
enable them.

e Features enabled by compiler options are not overridden by feature test macros.

_ATFILE_SOURCE [Macro]
If this macro is defined, additional *at interfaces are included.

_FORTIFY_SOURCE [Macro]
If this macro is defined to 1, security hardening is added to various library functions. If
defined to 2, even stricter checks are applied. If defined to 3, the GNU C Library may
also use checks that may have an additional performance overhead. See Section D.2
[Fortification of function calls], page 1150.

_DYNAMIC_STACK_SIZE_SOURCE [Macro]
If this macro is defined, correct (but non compile-time constant) MINSIGSTKSZ,
SIGSTKSZ and PTHREAD_STACK_MIN are defined.

_REENTRANT [Macro]

_THREAD_SAFE [Macro]
These macros are obsolete. They have the same effect as defining _POSIX_C_SOURCE
with the value 199506L.

Some very old C libraries required one of these macros to be defined for basic func-
tionality (e.g. getchar) to be thread-safe.

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the ‘-ansi’
option to GCC, or other conformance options such as -std=c99, and don’t define any of
these macros explicitly, the effect is the same as defining _DEFAULT_SOURCE to 1.

When you define a feature test macro to request a larger class of features, it is harmless
to define in addition a feature test macro for a subset of those features. For example, if you
define _POSIX_C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise, if
you define _GNU_SOURCE, then defining either _POSIX_SOURCE or _POSIX_C_SOURCE as well
has no effect.



Chapter 1: Introduction 21

1.4 Roadmap to the Manual

Here is an overview of the contents of the remaining chapters of this manual.

Chapter 2 [Error Reporting], page 24, describes how errors detected by the library are
reported.

Chapter 3 [Virtual Memory Allocation And Paging], page 44, describes the GNU C
Library’s facilities for managing and using virtual and real memory, including dynamic
allocation of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via pointers.

Chapter 4 [Character Handling], page 88, contains information about character classi-
fication functions (such as isspace) and functions for performing case conversion.

Chapter 5 [String and Array Utilities], page 98, has descriptions of functions for ma-
nipulating strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

Chapter 6 [Character Set Handling], page 142, contains information about manipulating
characters and strings using character sets larger than will fit in the usual char data
type.

Chapter 7 [Locales and Internationalization], page 185, describes how selecting a par-
ticular country or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

Chapter 9 [Searching and Sorting], page 230, contains information about functions for
searching and sorting arrays. You can use these functions on any kind of array by
providing an appropriate comparison function.

Chapter 10 [Pattern Matching], page 242, presents functions for matching regular ex-
pressions and shell file name patterns, and for expanding words as the shell does.

Chapter 11 [Input/Output Overview|, page 264, gives an overall look at the input and
output facilities in the library, and contains information about basic concepts such as
file names.

Chapter 12 [Input/Output on Streams], page 269, describes I/O operations involving
streams (or FILE * objects). These are the normal C library functions from stdio.h.

Chapter 13 [Low-Level Input/Output], page 346, contains information about I/O op-
erations on file descriptors. File descriptors are a lower-level mechanism specific to the
Unix family of operating systems.

Chapter 14 [File System Interface|, page 411, has descriptions of operations on entire
files, such as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes of a
file, such as its owner and file protection modes.

Chapter 15 [Pipes and FIFOs|, page 465, contains information about simple inter-
process communication mechanisms. Pipes allow communication between two related
processes (such as between a parent and child), while FIFOs allow communication
between processes sharing a common file system on the same machine.

Chapter 16 [Sockets], page 470, describes a more complicated interprocess communi-
cation mechanism that allows processes running on different machines to communicate
over a network. This chapter also contains information about Internet host addressing
and how to use the system network databases.



Chapter 1: Introduction 22

e Chapter 17 [Low-Level Terminal Interface], page 520, describes how you can change
the attributes of a terminal device. If you want to disable echo of characters typed by
the user, for example, read this chapter.

e Chapter 19 [Mathematics|, page 559, contains information about the math library func-
tions. These include things like random-number generators and remainder functions on
integers as well as the usual trigonometric and exponential functions on floating-point
numbers.

e Chapter 20 [Low-Level Arithmetic Functions], page 592, describes functions for simple
arithmetic, analysis of floating-point values, and reading numbers from strings.

e Chapter 22 [Date and Time], page 644, describes functions for measuring both calendar
time and CPU time, as well as functions for setting alarms and timers.

e Chapter 24 [Non-Local Exits], page 711, contains descriptions of the setjmp and
longjmp functions. These functions provide a facility for goto-like jumps which can
jump from one function to another.

e Chapter 25 [Signal Handling], page 720, tells you all about signals—what they are, how
to establish a handler that is called when a particular kind of signal is delivered, and
how to prevent signals from arriving during critical sections of your program.

e Chapter 26 [The Basic Program/System Interface|, page 766, tells how your programs
can access their command-line arguments and environment variables.

e Chapter 27 [Processes|, page 811, contains information about how to start new processes
and run programs.

e Chapter 29 [Job Control], page 825, describes functions for manipulating process groups
and the controlling terminal. This material is probably only of interest if you are writing
a shell or other program which handles job control specially.

e Chapter 30 [System Databases and Name Service Switch], page 843, describes the ser-
vices which are available for looking up names in the system databases, how to deter-
mine which service is used for which database, and how these services are implemented
so that contributors can design their own services.

e Section 31.13 [User Database], page 872, and Section 31.14 [Group Database], page 876,
tell you how to access the system user and group databases.

e Chapter 32 [System Management]|, page 883, describes functions for controlling and
getting information about the hardware and software configuration your program is
executing under.

e Chapter 33 [System Configuration Parameters|, page 898, tells you how you can get
information about various operating system limits. Most of these parameters are pro-
vided for compatibility with POSIX.

e Appendix A [C Language Facilities in the Library], page 984, contains information
about library support for standard parts of the C language, including things like the
sizeof operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other proper-
ties of the numerical types. There is also a simple debugging mechanism which allows
you to put assertions in your code, and have diagnostic messages printed if the tests
fail.



Chapter 1: Introduction 23

e Appendix B [Summary of Library Facilities|, page 1000, gives a summary of all the
functions, variables, and macros in the library, with complete data types and function
prototypes, and says what standard or system each is derived from.

e Appendix C [Installing the GNU C Library], page 1137, explains how to build and
install the GNU C Library on your system, and how to report any bugs you might find.

e Appendix D [Library Maintenance], page 1148, explains how to add new functions or
port the library to a new system.

If you already know the name of the facility you are interested in, you can look it up in
Appendix B [Summary of Library Facilities|, page 1000. This gives you a summary of its
syntax and a pointer to where you can find a more detailed description. This appendix is
particularly useful if you just want to verify the order and type of arguments to a function,
for example. It also tells you what standard or system each function, variable, or macro is
derived from.



24

2 Error Reporting

Many functions in the GNU C Library detect and report error conditions, and sometimes
your programs need to check for these error conditions. For example, when you open an
input file, you should verify that the file was actually opened correctly, and print an error
message or take other appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program should
include the header file errno.h to use this facility.

2.1 Checking for Errors

Most library functions return a special value to indicate that they have failed. The special
value is typically -1, a null pointer, or a constant such as EOF that is defined for that
purpose. But this return value tells you only that an error has occurred. To find out what
kind of error it was, you need to look at the error code stored in the variable errno. This
variable is declared in the header file errno.h.

volatile int errno [Variable]
The variable errno contains the system error number. You can change the value of
errno.

Since errno is declared volatile, it might be changed asynchronously by a signal
handler; see Section 25.4 [Defining Signal Handlers], page 738. However, a properly
written signal handler saves and restores the value of errno, so you generally do not
need to worry about this possibility except when writing signal handlers.

The initial value of errno at program startup is zero. In many cases, when a library
function encounters an error, it will set errno to a non-zero value to indicate what
specific error condition occurred. The documentation for each function lists the error
conditions that are possible for that function. Not all library functions use this
mechanism; some return an error code directly, instead.

Warning: Many library functions may set errno to some meaningless non-zero value
even if they did not encounter any errors, and even if they return error codes directly.
Therefore, it is usually incorrect to check whether an error occurred by inspecting the
value of errno. The proper way to check for error is documented for each function.

Portability Note: ISO C specifies errno as a “modifiable lvalue” rather than as a
variable, permitting it to be implemented as a macro. For example, its expansion
might involve a function call, like *__errno_location (). In fact, that is what it is
on GNU/Linux and GNU/Hurd systems. The GNU C Library, on each system, does
whatever is right for the particular system.

There are a few library functions, like sqrt and atan, that return a perfectly legiti-
mate value in case of an error, but also set errno. For these functions, if you want
to check to see whether an error occurred, the recommended method is to set errno
to zero before calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined in errno.h. The
names start with ‘E’ and an upper-case letter or digit; you should consider names of this
form to be reserved names. See Section 1.3.3 [Reserved Names|, page 14.



Chapter 2: Error Reporting 25

The error code values are all positive integers and are all distinct, with one exception:
EWOULDBLOCK and EAGAIN are the same. Since the values are distinct, you can use them
as labels in a switch statement; just don’t use both EWOULDBLOCK and EAGAIN. Your
program should not make any other assumptions about the specific values of these symbolic
constants.

The value of errno doesn’t necessarily have to correspond to any of these macros, since
some library functions might return other error codes of their own for other situations. The
only values that are guaranteed to be meaningful for a particular library function are the
ones that this manual lists for that function.

Except on GNU/Hurd systems, almost any system call can return EFAULT if it is given
an invalid pointer as an argument. Since this could only happen as a result of a bug in your
program, and since it will not happen on GNU/Hurd systems, we have saved space by not
mentioning EFAULT in the descriptions of individual functions.

In some Unix systems, many system calls can also return EFAULT if given as an argument a
pointer into the stack, and the kernel for some obscure reason fails in its attempt to extend
the stack. If this ever happens, you should probably try using statically or dynamically
allocated memory instead of stack memory on that system.

2.2 Error Codes

The error code macros are defined in the header file errno.h. All of them expand into
integer constant values. Some of these error codes can’t occur on GNU systems, but they
can occur using the GNU C Library on other systems.

int EPERM [Macro]
“Operation not permitted.” Only the owner of the file (or other resource) or processes
with special privileges can perform the operation.

int ENOENT [Macro]
“No such file or directory.” This is a “file doesn’t exist” error for ordinary files that
are referenced in contexts where they are expected to already exist.

int ESRCH [Macro]
“No such process.” No process matches the specified process ID.

int EINTR [Macro]
“Interrupted system call.” An asynchronous signal occurred and prevented comple-
tion of the call. When this happens, you should try the call again.
You can choose to have functions resume after a signal that is handled, rather than
failing with EINTR; see Section 25.5 [Primitives Interrupted by Signals], page 747.

int EIO [Macro]
“Input/output error.” Usually used for physical read or write errors.

int ENXIO [Macro]
“No such device or address.” The system tried to use the device represented by a file
you specified, and it couldn’t find the device. This can mean that the device file was
installed incorrectly, or that the physical device is missing or not correctly attached
to the computer.



Chapter 2: Error Reporting 26

int

int

int

int

int

int

int

int

int

int

int

int

E2BIG [Macro]
“Argument list too long.” Used when the arguments passed to a new program being
executed with one of the exec functions (see Section 27.6 [Executing a File|, page 816)
occupy too much memory space. This condition never arises on GNU/Hurd systems.

ENOEXEC [Macro]
“Exec format error.” Invalid executable file format. This condition is detected by the
exec functions; see Section 27.6 [Executing a File], page 816.

EBADF [Macro]
“Bad file descriptor.” For example, I/O on a descriptor that has been closed or
reading from a descriptor open only for writing (or vice versa).

ECHILD [Macro]
“No child processes.” This error happens on operations that are supposed to manip-
ulate child processes, when there aren’t any processes to manipulate.

EDEADLK [Macro]

“Resource deadlock avoided.” Allocating a system resource would have resulted in
a deadlock situation. The system does not guarantee that it will notice all such
situations. This error means you got lucky and the system noticed; it might just
hang. See Section 13.16 [File Locks], page 401, for an example.

ENOMEM [Macro]
“Cannot allocate memory.” The system cannot allocate more virtual memory because
its capacity is full.

EACCES [Macro]
“Permission denied.” The file permissions do not allow the attempted operation.
EFAULT [Macro]

“Bad address.” An invalid pointer was detected. On GNU/Hurd systems, this error
never happens; you get a signal instead.

ENOTBLK [Macro]
“Block device required.” A file that isn’t a block special file was given in a situation
that requires one. For example, trying to mount an ordinary file as a file system in
Unix gives this error.

EBUSY [Macro]
“Device or resource busy.” A system resource that can’t be shared is already in
use. For example, if you try to delete a file that is the root of a currently mounted
filesystem, you get this error.

EEXIST [Macro]
“File exists.” An existing file was specified in a context where it only makes sense to
specify a new file.

EXDEV [Macro]

“Invalid cross-device link.” An attempt to make an improper link across file systems
was detected. This happens not only when you use link (see Section 14.5 [Hard
Links|, page 430) but also when you rename a file with rename (see Section 14.8
[Renaming Files], page 436).



Chapter 2: Error Reporting 27

int

int

int

int

int

int

int

int

int

int

int

ENODEV [Macro]
“No such device.” The wrong type of device was given to a function that expects a
particular sort of device.

ENOTDIR [Macro]
“Not a directory.” A file that isn’t a directory was specified when a directory is
required.

EISDIR [Macro]
“Is a directory.” You cannot open a directory for writing, or create or remove hard
links to it.

EINVAL [Macro]
“Invalid argument.” This is used to indicate various kinds of problems with passing
the wrong argument to a library function.

EMFILE [Macro]
“Too many open files.” The current process has too many files open and can’t open
any more. Duplicate descriptors do count toward this limit.

In BSD and GNU, the number of open files is controlled by a resource limit that
can usually be increased. If you get this error, you might want to increase the
RLIMIT_NOFILE limit or make it unlimited; see Section 23.2 [Limiting Resource Us-
agel, page 686.

ENFILE [Macro]
“Too many open files in system.” There are too many distinct file openings in the
entire system. Note that any number of linked channels count as just one file opening;
see Section 13.5.1 [Linked Channels|, page 359. This error never occurs on GNU/Hurd
systems.

ENOTTY [Macro]
“Inappropriate ioctl for device.” Inappropriate I/O control operation, such as trying
to set terminal modes on an ordinary file.

ETXTBSY [Macro]
“Text file busy.” An attempt to execute a file that is currently open for writing,
or write to a file that is currently being executed. Often using a debugger to run a
program is considered having it open for writing and will cause this error. (The name
stands for “text file busy”.) This is not an error on GNU/Hurd systems; the text is
copied as necessary.

EFBIG [Macro]
“File too large.” The size of a file would be larger than allowed by the system.

ENOSPC [Macro]
“No space left on device.” Write operation on a file failed because the disk is full.

ESPIPE [Macro]
“Illegal seek.” Invalid seek operation (such as on a pipe).



Chapter 2: Error Reporting 28

int

int

int

int

int

int

int

EROFS [Macro]
“Read-only file system.” An attempt was made to modify something on a read-only
file system.

EMLINK [Macro]
“Too many links.” The link count of a single file would become too large. rename
can cause this error if the file being renamed already has as many links as it can take
(see Section 14.8 [Renaming Files|, page 436).

EPIPE [Macro]

“Broken pipe.” There is no process reading from the other end of a pipe. Every
library function that returns this error code also generates a SIGPIPE signal; this
signal terminates the program if not handled or blocked. Thus, your program will
never actually see EPIPE unless it has handled or blocked SIGPIPE.

EDOM [Macro]
“Numerical argument out of domain.” Used by mathematical functions when an
argument value does not fall into the domain over which the function is defined.

ERANGE [Macro]
“Numerical result out of range.” Used by mathematical functions when the result
value is not representable because of overflow or underflow.

EAGAIN [Macro]
“Resource temporarily unavailable.” The call might work if you try again later. The
macro EWOULDBLOCK is another name for EAGAIN; they are always the same in the
GNU C Library.

This error can happen in a few different situations:

e An operation that would block was attempted on an object that has non-blocking
mode selected. Trying the same operation again will block until some exter-
nal condition makes it possible to read, write, or connect (whatever the opera-
tion). You can use select to find out when the operation will be possible; see
Section 13.9 [Waiting for Input or Output], page 375.

Portability Note: In many older Unix systems, this condition was indicated by
EWOULDBLOCK, which was a distinct error code different from EAGAIN. To make
your program portable, you should check for both codes and treat them the same.

e A temporary resource shortage made an operation impossible. fork can return
this error. It indicates that the shortage is expected to pass, so your program
can try the call again later and it may succeed. It is probably a good idea to
delay for a few seconds before trying it again, to allow time for other processes
to release scarce resources. Such shortages are usually fairly serious and affect
the whole system, so usually an interactive program should report the error to
the user and return to its command loop.

EWOULDBLOCK [Macro]
“Operation would block.” In the GNU C Library, this is another name for EAGAIN
(above). The values are always the same, on every operating system.

C libraries in many older Unix systems have EWOULDBLOCK as a separate error code.



Chapter 2: Error Reporting 29

int

int

int

int

int

int

int

int

int

int

EINPROGRESS [Macro]
“Operation now in progress.” An operation that cannot complete immediately was
initiated on an object that has non-blocking mode selected. Some functions that must
always block (such as connect; see Section 16.9.1 [Making a Connection|, page 498)
never return EAGAIN. Instead, they return EINPROGRESS to indicate that the operation
has begun and will take some time. Attempts to manipulate the object before the
call completes return EALREADY. You can use the select function to find out when
the pending operation has completed; see Section 13.9 [Waiting for Input or Output],
page 375.

EALREADY [Macro]
“Operation already in progress.” An operation is already in progress on an object
that has non-blocking mode selected.

ENOTSOCK [Macro]
“Socket operation on non-socket.” A file that isn’t a socket was specified when a
socket is required.

EMSGSIZE [Macro]
“Message too long.” The size of a message sent on a socket was larger than the
supported maximum size.

EPROTOTYPE [Macro]
“Protocol wrong type for socket.” The socket type does not support the requested
communications protocol.

ENOPROTOOPT [Macro]
“Protocol not available.” You specified a socket option that doesn’t make sense for
the particular protocol being used by the socket. See Section 16.12 [Socket Options],
page 515.

EPROTONOSUPPORT [Macro]
“Protocol not supported.” The socket domain does not support the requested com-
munications protocol (perhaps because the requested protocol is completely invalid).
See Section 16.8.1 [Creating a Socket], page 495.

ESOCKTNOSUPPORT [Macro]
“Socket type not supported.” The socket type is not supported.

EOPNOTSUPP [Macro]
“Operation not supported.” The operation you requested is not supported. Some
socket functions don’t make sense for all types of sockets, and others may not be
implemented for all communications protocols. On GNU/Hurd systems, this error
can happen for many calls when the object does not support the particular operation;
it is a generic indication that the server knows nothing to do for that call.

EPFNOSUPPORT [Macro]
“Protocol family not supported.” The socket communications protocol family you
requested is not supported.



Chapter 2: Error Reporting 30

int

int

int

int

int

int

int

int

int

int

int

int

EAFNOSUPPORT [Macro]
“Address family not supported by protocol.” The address family specified for a socket
is not supported; it is inconsistent with the protocol being used on the socket. See
Chapter 16 [Sockets], page 470.

EADDRINUSE [Macro]
“Address already in use.” The requested socket address is already in use. See
Section 16.3 [Socket Addresses|, page 472.

EADDRNQOTAVAIL [Macro]
“Cannot assign requested address.” The requested socket address is not available; for
example, you tried to give a socket a name that doesn’t match the local host name.
See Section 16.3 [Socket Addresses], page 472.

ENETDOWN [Macro]
“Network is down.” A socket operation failed because the network was down.

ENETUNREACH [Macro]
“Network is unreachable.” A socket operation failed because the subnet containing
the remote host was unreachable.

ENETRESET [Macro]
“Network dropped connection on reset.” A network connection was reset because the
remote host crashed.

ECONNABORTED [Macro]
“Software caused connection abort.” A network connection was aborted locally.
ECONNRESET [Macro]

“Connection reset by peer.” A network connection was closed for reasons outside the
control of the local host, such as by the remote machine rebooting or an unrecoverable
protocol violation.

ENOBUFS [Macro]
“No buffer space available.” The kernel’s buffers for I/O operations are all in use. In
GNU, this error is always synonymous with ENOMEM; you may get one or the other
from network operations.

EISCONN [Macro]
“Transport endpoint is already connected.” You tried to connect a socket that is
already connected. See Section 16.9.1 [Making a Connection], page 498.

ENOTCONN [Macro]
“Transport endpoint is not connected.” The socket is not connected to anything. You
get this error when you try to transmit data over a socket, without first specifying a
destination for the data. For a connectionless socket (for datagram protocols, such as
UDP), you get EDESTADDRREQ instead.

EDESTADDRREQ [Macro]
“Destination address required.” No default destination address was set for the socket.
You get this error when you try to transmit data over a connectionless socket, without
first specifying a destination for the data with connect.



Chapter 2: Error Reporting 31

int

int

int

int

int

int

int

int

int

int

int

int

int

ESHUTDOWN [Macro]
“Cannot send after transport endpoint shutdown.” The socket has already been shut
down.

ETOOMANYREFS [Macro]
“Too many references: cannot splice.”

ETIMEDOUT [Macro]
“Connection timed out.” A socket operation with a specified timeout received no
response during the timeout period.

ECONNREFUSED [Macro]
“Connection refused.” A remote host refused to allow the network connection (typi-
cally because it is not running the requested service).

ELOOP [Macro]
“Too many levels of symbolic links.” Too many levels of symbolic links were encoun-
tered in looking up a file name. This often indicates a cycle of symbolic links.

ENAMETOOLONG [Macro]
“File name too long.” Filename too long (longer than PATH_MAX; see Section 33.6
[Limits on File System Capacity], page 911) or host name too long (in gethostname
or sethostname; see Section 32.1 [Host Identification], page 883).

EHOSTDOWN [Macro]
“Host is down.” The remote host for a requested network connection is down.

EHOSTUNREACH [Macro]
“No route to host.” The remote host for a requested network connection is not
reachable.

ENOTEMPTY [Macro]
“Directory not empty.” Directory not empty, where an empty directory was expected.
Typically, this error occurs when you are trying to delete a directory.

EPROCLIM [Macro]

“Too many processes.” This means that the per-user limit on new process would
be exceeded by an attempted fork. See Section 23.2 [Limiting Resource Usage],
page 686, for details on the RLIMIT_NPROC limit.

EUSERS [Macro]
“Too many users.” The file quota system is confused because there are too many
users.

EDQUOT [Macro]
“Disk quota exceeded.” The user’s disk quota was exceeded.

ESTALE [Macro]
“Stale file handle.” This indicates an internal confusion in the file system which is due
to file system rearrangements on the server host for NFS file systems or corruption
in other file systems. Repairing this condition usually requires unmounting, possibly
repairing and remounting the file system.



Chapter 2: Error Reporting 32

int

int

int

int

int

int

int

int

int

int

int

int

int

EREMOTE [Macro]
“Object is remote.” An attempt was made to NFS-mount a remote file system with
a file name that already specifies an NFS-mounted file. (This is an error on some
operating systems, but we expect it to work properly on GNU/Hurd systems, making
this error code impossible.)

EBADRPC [Macro]
“RPC struct is bad.”

ERPCMISMATCH [Macro]
“RPC version wrong.”

EPROGUNAVAIL [Macro]
“RPC program not available.”

EPROGMISMATCH [Macro]
“RPC program version wrong.”

EPROCUNAVAIL [Macro]
“RPC bad procedure for program.”

ENOLCK [Macro]
“No locks available.” This is used by the file locking facilities; see Section 13.16 [File
Locks|, page 401. This error is never generated by GNU/Hurd systems, but it can
result from an operation to an NFS server running another operating system.

EFTYPE [Macro]
“Inappropriate file type or format.” The file was the wrong type for the operation,
or a data file had the wrong format.

On some systems chmod returns this error if you try to set the sticky bit on a non-
directory file; see Section 14.10.7 [Assigning File Permissions|, page 450.

EAUTH [Macro]
“Authentication error.”

ENEEDAUTH [Macro]
“Need authenticator.”

ENOSYS [Macro]
“Function not implemented.” This indicates that the function called is not imple-
mented at all, either in the C library itself or in the operating system. When you get
this error, you can be sure that this particular function will always fail with ENOSYS
unless you install a new version of the C library or the operating system.

ELIBEXEC [Macro]
“Cannot exec a shared library directly.”

ENOTSUP [Macro]
“Not supported.” A function returns this error when certain parameter values are
valid, but the functionality they request is not available. This can mean that the
function does not implement a particular command or option value or flag bit at all.



Chapter 2: Error Reporting 33

int

int

int

int

int

int

int

int

int

int

int

int

For functions that operate on some object given in a parameter, such as a file de-
scriptor or a port, it might instead mean that only that specific object (file descriptor,
port, etc.) is unable to support the other parameters given; different file descriptors
might support different ranges of parameter values.

If the entire function is not available at all in the implementation, it returns ENOSYS
instead.

EILSEQ [Macro]
“Invalid or incomplete multibyte or wide character.” While decoding a multibyte
character the function came along an invalid or an incomplete sequence of bytes or
the given wide character is invalid.

EBACKGROUND [Macro]
“Inappropriate operation for background process.” On GNU/Hurd systems, servers
supporting the term protocol return this error for certain operations when the caller
is not in the foreground process group of the terminal. Users do not usually see
this error because functions such as read and write translate it into a SIGTTIN or
SIGTTOU signal. See Chapter 29 [Job Control], page 825, for information on process
groups and these signals.

EDIED [Macro]
“Translator died.” On GNU/Hurd systems, opening a file returns this error when
the file is translated by a program and the translator program dies while starting up,
before it has connected to the file.

ED [Macro]
“?.” The experienced user will know what is wrong.

EGREGIOUS [Macro]
“You really blew it this time.” You did what?

EIEIO [Macro]
“Computer bought the farm.” Go home and have a glass of warm, dairy-fresh milk.

EGRATUITQUS [Macro]
“Gratuitous error.” This error code has no purpose.

EBADMSG [Macro]
“Bad message.”

EIDRM [Macro]
“Identifier removed.”

EMULTIHOP [Macro]
“Multihop attempted.”

ENODATA [Macro]
“No data available.”

ENOLINK [Macro]
“Link has been severed.”



Chapter 2: Error Reporting 34

int

int

int

int

int

int

int

int

int

ENOMSG [Macro]
“No message of desired type.”

ENOSR [Macro]
“Out of streams resources.”

ENOSTR [Macro]
“Device not a stream.”

EOVERFLOW [Macro]
“Value too large for defined data type.”

EPROTO [Macro]
“Protocol error.”

ETIME [Macro]
“Timer expired.”

ECANCELED [Macro]
“Operation canceled.” An asynchronous operation was canceled before it completed.
See Section 13.11 [Perform I/O Operations in Parallel], page 379. When you call
aio_cancel, the normal result is for the operations affected to complete with this
error; see Section 13.11.4 [Cancellation of ATIO Operations|, page 389.

EOWNERDEAD [Macro]
“Owner died.”
ENOTRECOVERABLE [Macro]

“State not recoverable.”

The following error codes are defined by the Linux/i386 kernel. They are not yet docu-
mented.

int

int

int

int

int

int

int

ERESTART [Macro]
“Interrupted system call should be restarted.”

ECHRNG [Macro]
“Channel number out of range.”

EL2NSYNC [Macro]
“Level 2 not synchronized.”

EL3HLT [Macro]
“Level 3 halted.”

EL3RST [Macro]
“Level 3 reset.”

ELNRNG [Macro]
“Link number out of range.”

EUNATCH [Macro]
“Protocol driver not attached.”



Chapter 2: Error Reporting

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

ENOCSI
“No CSI structure available.”

EL2HLT
“Level 2 halted.”

EBADE
“Invalid exchange.”

EBADR
“Invalid request descriptor.”

EXFULL
“Exchange full.”

ENOANO
“No anode.”

EBADRQC
“Invalid request code.”

EBADSLT
“Invalid slot.”

EDEADLOCK
“File locking deadlock error.”

EBFONT
“Bad font file format.”

ENONET
“Machine is not on the network.”

ENOPKG
“Package not installed.”

EADV

“Advertise error.”

ESRMNT
“Srmount error.”

ECOMM
“Communication error on send.”

EDOTDOT
“RFS specific error.”

ENOTUNIQ
“Name not unique on network.”

EBADFD
“File descriptor in bad state.”

35

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]



Chapter 2: Error Reporting

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

EREMCHG
“Remote address changed.”

ELIBACC
“Can not access a needed shared library.”

ELIBBAD
“Accessing a corrupted shared library.”

ELIBSCN
“.lib section in a.out corrupted.”

ELIBMAX

“Attempting to link in too many shared libraries.”

ESTRPIPE

“Streams pipe error.”

EUCLEAN
“Structure needs cleaning.”

ENOTNAM
“Not a XENIX named type file.”

ENAVAIL
“No XENIX semaphores available.”

EISNAM
“Is a named type file.”

EREMOTEIO
“Remote I/O error.”

ENOMEDIUM

“No medium found.”

EMEDIUMTYPE
“Wrong medium type.”

ENOKEY
“Required key not available.”

EKEYEXPIRED
“Key has expired.”

EKEYREVOKED
“Key has been revoked.”

EKEYREJECTED
“Key was rejected by service.”

ERFKILL
“Operation not possible due to RF-kill.”

EHWPOISON
“Memory page has hardware error.”

36

[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]

[Macro]



Chapter 2: Error Reporting 37

2.3

Error Messages

The library has functions and variables designed to make it easy for your program to report
informative error messages in the customary format about the failure of a library call. The
functions strerror and perror give you the standard error message for a given error code;
the variable program_invocation_short_name gives you convenient access to the name of
the program that encountered the error.

char

char

char

* strerror (int errnum) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap i18n | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The strerror function maps the error code (see Section 2.1 [Checking for Errors],
page 24) specified by the errnum argument to a descriptive error message string. The
string is translated according to the current locale. The return value is a pointer to
this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you make subsequent
calls to strerror or strerror_1, or the thread that obtained the string exits, the
returned pointer will be invalidated.

As there is no way to restore the previous state after calling strerror, library
code should not call this function because it may interfere with application use of
strerror, invalidating the string pointer before the application is done using it. In-
stead, strerror_r, snprintf with the ‘Ym’ or ‘/%#m’ specifiers, strerrorname_np, or
strerrordesc_np can be used instead.

The strerror function preserves the value of errno and cannot fail.

The function strerror is declared in string.h.

* strerror_1 (int errnum, locale_t locale) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap i18n | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function is like strerror, except that the returned string is translated accord-
ing to locale (instead of the current locale used by strerror). Note that calling
strerror_1 invalidates the pointer returned by strerror and vice versa.

The function strerror_1 is defined by POSIX and is declared in string.h.

* strerror_r (int errnum, char *buf, size_t n) [Function]
Preliminary: | MT-Safe | AS-Unsafe i18n | AC-Unsafe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

The following description is for the GNU variant of the function, used if _GNU_SOURCE
is defined. See Section 1.3.4 [Feature Test Macros|, page 16.

The strerror_r function works like strerror but instead of returning a pointer to
a string that is managed by the GNU C Library, it can use the user supplied buffer
starting at buf for storing the string.

At most n characters are written (including the NUL byte) to buf, so it is up to the
user to select a buffer large enough. Whether returned pointer points to the buf array



Chapter 2: Error Reporting 38

or not depends on the errnum argument. If the result string is not stored in buf, the
string will not change for the remaining execution of the program.

The function strerror_r as described above is a GNU extension and it is declared
in string.h. There is a POSIX variant of this function, described next.

int strerror_r (int errnum, char *buf, size_t n) [Function]
Preliminary: | MT-Safe | AS-Unsafe i18n | AC-Unsafe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

This variant of the strerror_r function is used if a standard is selected that includes
strerror_r, but _GNU_SOURCE is not defined. This POSIX variant of the function
always writes the error message to the specified buffer buf of size n bytes.

Upon success, strerror_r returns 0. Two more return values are used to indicate

failure.
EINVAL The errnum argument does not correspond to a known error constant.
ERANGE The buffer size n is not large enough to store the entire error message.

Even if an error is reported, strerror_r still writes as much of the error message
to the output buffer as possible. After a call to strerror_r, the value of errno is
unspecified.

If you want to use the always-copying POSIX semantics of strerror_r in a program
that is potentially compiled with _GNU_SOURCE defined, you can use snprintf with
the ‘%m’ conversion specifier, like this:
int saved_errno = errno;
errno = errnum;
int ret = snprintf (buf, n, "Ym");
errno = saved_errno;
if (strerrorname_np (errnum) == NULL)
return EINVAL;
if (ret >= n)
return ERANGE:
return O;

This function is declared in string.h if it is declared at all. It is a POSIX extension.

void perror (const char *message) [Function]
Preliminary: | MT-Unsafe race:stderr | AS-Unsafe corrupt i18n heap lock | AC-
Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function prints an error message to the stream stderr; see Section 12.2 [Standard
Streams|, page 269. The orientation of stderr is not changed.

If you call perror with a message that is either a null pointer or an empty string,
perror just prints the error message corresponding to errno, adding a trailing new-
line.

If you supply a non-null message argument, then perror prefixes its output with this
string. It adds a colon and a space character to separate the message from the error
string corresponding to errno.

The function perror is declared in stdio.h.



Chapter 2: Error Reporting 39

const char * strerrorname_np (int errnum) [Function]
| MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

This function returns the name describing the error errnum or NULL if there is no
known constant with this value (e.g "EINVAL" for EINVAL). The returned string
does not change for the remaining execution of the program.

This function is a GNU extension, declared in the header file string.h.

const char * strerrordesc_np (int errnum) [Function]
| MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety Concepts]|, page 2.

This function returns the message describing the error errnum or NULL if there is no
known constant with this value (e.g "Invalid argument" for EINVAL). Different than
strerror the returned description is not translated, and the returned string does not
change for the remaining execution of the program.

This function is a GNU extension, declared in the header file string.h.

strerror and perror produce the exact same message for any given error code under
the same locale; the precise text varies from system to system. With the GNU C Library,
the messages are fairly short; there are no multi-line messages or embedded newlines. Each
error message begins with a capital letter and does not include any terminating punctuation.

Many programs that don’t read input from the terminal are designed to exit if any
system call fails. By convention, the error message from such a program should start with
the program’s name, sans directories. You can find that name in the variable program_
invocation_short_name; the full file name is stored the variable program_invocation_
name.

char * program_invocation_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process. It is the same as argv[0]. Note that this is not necessarily a
useful file name; often it contains no directory names. See Section 26.1 [Program
Arguments|, page 766.

This variable is a GNU extension and is declared in errno.h.

char * program_invocation_short_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process, with directory names removed. (That is to say, it is the same as
program_invocation_name minus everything up to the last slash, if any.)

This variable is a GNU extension and is declared in errno.h.

The library initialization code sets up both of these variables before calling main.

Portability Note: If you want your program to work with non-GNU libraries, you must
save the value of argv [0] in main, and then strip off the directory names yourself. We added
these extensions to make it possible to write self-contained error-reporting subroutines that
require no explicit cooperation from main.

Here is an example showing how to handle failure to open a file correctly. The function
open_sesame tries to open the named file for reading and returns a stream if successful. The
fopen library function returns a null pointer if it couldn’t open the file for some reason. In



Chapter 2: Error Reporting 40

that situation, open_sesame constructs an appropriate error message using the strerror
function, and terminates the program. If we were going to make some other library calls
before passing the error code to strerror, we’d have to save it in a local variable instead,
because those other library functions might overwrite errno in the meantime.

#define _GNU_SOURCE

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE =*
open_sesame (char *name)

{
FILE *stream;

errno = 0;
stream = fopen (name, "r");
if (stream == NULL)
{
fprintf (stderr, "¥%s: Couldn't open file %s; %s\n",
program_invocation_short_name, name, strerror (errno));
exit (EXIT_FAILURE);
}
else
return stream;
}

Using perror has the advantage that the function is portable and available on all systems
implementing ISO C. But often the text perror generates is not what is wanted and there
is no way to extend or change what perror does. The GNU coding standard, for instance,
requires error messages to be preceded by the program name and programs which read some
input files should provide information about the input file name and the line number in case
an error is encountered while reading the file. For these occasions there are two functions
available which are widely used throughout the GNU project. These functions are declared
in error.h.

void error (int status, int errnum, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Safe | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The error function can be used to report general problems during program execution.
The format argument is a format string just like those given to the printf family of
functions. The arguments required for the format can follow the format parameter.
Just like perror, error also can report an error code in textual form. But unlike
perror the error value is explicitly passed to the function in the errnum parameter.
This eliminates the problem mentioned above that the error reporting function must
be called immediately after the function causing the error since otherwise errno might
have a different value.

error prints first the program name. If the application defined a global variable
error_print_progname and points it to a function this function will be called to
print the program name. Otherwise the string from the global variable program_
name is used. The program name is followed by a colon and a space which in turn



Chapter 2: Error Reporting 41

is followed by the output produced by the format string. If the errnum parameter is
non-zero the format string output is followed by a colon and a space, followed by the
error message for the error code errnum. In any case is the output terminated with a
newline.

The output is directed to the stderr stream. If the stderr wasn’t oriented before
the call it will be narrow-oriented afterwards.

The function will return unless the status parameter has a non-zero value. In this case
the function will call exit with the status value for its parameter and therefore never
return. If error returns, the global variable error_message_count is incremented
by one to keep track of the number of errors reported.

void error_at_line (int status, int errnum, const char *fname, [Function]
unsigned int lineno, const char *format, . ..)
Preliminary: | MT-Unsafe race:error_at_line/error_one_per_line locale | AS-Unsafe
corrupt heap i18n | AC-Unsafe corrupt/error_one_per_line | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The error_at_line function is very similar to the error function. The only dif-
ferences are the additional parameters fname and lineno. The handling of the other
parameters is identical to that of error except that between the program name and
the string generated by the format string additional text is inserted.

Directly following the program name a colon, followed by the file name pointed to by
fname, another colon, and the value of lineno is printed.

This additional output of course is meant to be used to locate an error in an input
file (like a programming language source code file etc).

If the global variable error_one_per_line is set to a non-zero value error_at_line
will avoid printing consecutive messages for the same file and line. Repetition which
are not directly following each other are not caught.

Just like error this function only returns if status is zero. Otherwise exit is called
with the non-zero value. If error returns, the global variable error_message_count
is incremented by one to keep track of the number of errors reported.

As mentioned above, the error and error_at_line functions can be customized by
defining a variable named error_print_progname.

void (*error_print_progname) (void) [Variable]
If the error_print_progname variable is defined to a non-zero value the function
pointed to is called by error or error_at_line. It is expected to print the program
name or do something similarly useful.

The function is expected to print to the stderr stream and must be able to handle
whatever orientation the stream has.

The variable is global and shared by all threads.

unsigned int error_message_count [Variable]
The error_message_count variable is incremented whenever one of the functions
error or error_at_line returns. The variable is global and shared by all threads.



Chapter 2: Error Reporting 42

int error_one_per_line [Variable]
The error_one_per_line variable influences only error_at_line. Normally the
error_at_line function creates output for every invocation. If error_one_per_
line is set to a non-zero value error_at_line keeps track of the last file name and
line number for which an error was reported and avoids directly following messages
for the same file and line. This variable is global and shared by all threads.

A program which read some input file and reports errors in it could look like this:

{
char *1line NULL;
size_t len 0;
unsigned int lineno

0;

error_message_count = 0;
while (! feof_unlocked (fp))

{
ssize_t n = getline (&line, &len, fp);
if (n <= 0)
/* End of file or error. */
break;
++lineno;

/* Process the line. */

if (Detect error in line)
error_at_line (0, errval, filename, lineno,
"some error text %s", some_variable);

}

if (error_message_count != 0)
error (EXIT_FAILURE, O, "/u errors found", error_message_count);
}

error and error_at_line are clearly the functions of choice and enable the programmer
to write applications which follow the GNU coding standard. The GNU C Library addi-
tionally contains functions which are used in BSD for the same purpose. These functions
are declared in err.h. It is generally advised to not use these functions. They are included
only for compatibility.

void warn (const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
The warn function is roughly equivalent to a call like

error (0, errno, format, the parameters)

except that the global variables error respects and modifies are not used.

void vwarn (const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The vwarn function is just like warn except that the parameters for the handling of
the format string format are passed in as a value of type va_list.



Chapter 2: Error Reporting 43

void warnx (const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The warnx function is roughly equivalent to a call like

error (0, 0, format, the parameters)

except that the global variables error respects and modifies are not used. The dif-
ference to warn is that no error number string is printed.

void vwarnx (const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The vwarnx function is just like warnx except that the parameters for the handling
of the format string format are passed in as a value of type va_list.

void err (int status, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The err function is roughly equivalent to a call like

error (status, errno, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero.

void verr (int status, const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The verr function is just like err except that the parameters for the handling of the
format string format are passed in as a value of type va_list.

void errx (int status, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The errx function is roughly equivalent to a call like

error (status, 0, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero. The difference to err is that no error
number string is printed.

void verrx (int status, const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The verrx function is just like errx except that the parameters for the handling of
the format string format are passed in as a value of type va_list.



44

3 Virtual Memory Allocation And Paging

This chapter describes how processes manage and use memory in a system that uses the
GNU C Library.

The GNU C Library has several functions for dynamically allocating virtual memory in
various ways. They vary in generality and in efficiency. The library also provides functions
for controlling paging and allocation of real memory.

Memory mapped I/0 is not discussed in this chapter. See Section 13.8 [Memory-mapped
I/0], page 366.

3.1 Process Memory Concepts

One of the most basic resources a process has available to it is memory. There are a lot of
different ways systems organize memory, but in a typical one, each process has one linear
virtual address space, with addresses running from zero to some huge maximum. It need
not be contiguous; i.e., not all of these addresses actually can be used to store data.

The virtual memory is divided into pages (4 kilobytes is typical). Backing each page
of virtual memory is a page of real memory (called a frame) or some secondary storage,
usually disk space. The disk space might be swap space or just some ordinary disk file.
Actually, a page of all zeroes sometimes has nothing at all backing it — there’s just a flag
saying it is all zeroes.

The same frame of real memory or backing store can back multiple virtual pages be-
longing to multiple processes. This is normally the case, for example, with virtual memory
occupied by GNU C Library code. The same real memory frame containing the printf
function backs a virtual memory page in each of the existing processes that has a printf
call in its program.

In order for a program to access any part of a virtual page, the page must at that moment
be backed by (“connected t0”) a real frame. But because there is usually a lot more virtual
memory than real memory, the pages must move back and forth between real memory and
backing store regularly, coming into real memory when a process needs to access them and
then retreating to backing store when not needed anymore. This movement is called paging.

When a program attempts to access a page which is not at that moment backed by
real memory, this is known as a page fault. When a page fault occurs, the kernel suspends
the process, places the page into a real page frame (this is called “paging in” or “faulting
in”), then resumes the process so that from the process’ point of view, the page was in
real memory all along. In fact, to the process, all pages always seem to be in real memory.
Except for one thing: the elapsed execution time of an instruction that would normally be
a few nanoseconds is suddenly much, much, longer (because the kernel normally has to do
I/O to complete the page-in). For programs sensitive to that, the functions described in
Section 3.5 [Locking Pages], page 83, can control it.

Within each virtual address space, a process has to keep track of what is at which
addresses, and that process is called memory allocation. Allocation usually brings to mind
meting out scarce resources, but in the case of virtual memory, that’s not a major goal,
because there is generally much more of it than anyone needs. Memory allocation within a
process is mainly just a matter of making sure that the same byte of memory isn’t used to
store two different things.



Chapter 3: Virtual Memory Allocation And Paging 45

Processes allocate memory in two major ways: by exec and programmatically. Actually,
forking is a third way, but it’s not very interesting. See Section 27.4 [Creating a Process],
page 814.

Exec is the operation of creating a virtual address space for a process, loading its basic
program into it, and executing the program. It is done by the “exec” family of functions
(e.g. execl). The operation takes a program file (an executable), it allocates space to
load all the data in the executable, loads it, and transfers control to it. That data is most
notably the instructions of the program (the text), but also literals and constants in the
program and even some variables: C variables with the static storage class (see Section 3.2.1
[Memory Allocation in C Programs|, page 46).

Once that program begins to execute, it uses programmatic allocation to gain additional
memory. In a C program with the GNU C Library, there are two kinds of programmatic
allocation: automatic and dynamic. See Section 3.2.1 [Memory Allocation in C Programs],
page 46.

Memory-mapped 1/0 is another form of dynamic virtual memory allocation. Mapping
memory to a file means declaring that the contents of certain range of a process’ addresses
shall be identical to the contents of a specified regular file. The system makes the virtual
memory initially contain the contents of the file, and if you modify the memory, the system
writes the same modification to the file. Note that due to the magic of virtual memory and
page faults, there is no reason for the system to do I/O to read the file, or allocate real
memory for its contents, until the program accesses the virtual memory. See Section 13.8
[Memory-mapped I/0], page 366.

Just as it programmatically allocates memory, the program can programmatically deal-
locate (free) it. You can’t free the memory that was allocated by exec. When the program
exits or execs, you might say that all its memory gets freed, but since in both cases the ad-
dress space ceases to exist, the point is really moot. See Section 26.7 [Program Termination],
page 806.

A process’ virtual address space is divided into segments. A segment is a contiguous
range of virtual addresses. Three important segments are:

The text segment contains a program’s instructions and literals and static constants.
It is allocated by exec and stays the same size for the life of the virtual address space.

e The data segment is working storage for the program. It can be preallocated and
preloaded by exec and the process can extend or shrink it by calling functions as
described in See Section 3.3 [Resizing the Data Segment], page 77. Its lower end is
fixed.

e The stack segment contains a program stack. It grows as the stack grows, but doesn’t
shrink when the stack shrinks.

3.2 Allocating Storage For Program Data

This section covers how ordinary programs manage storage for their data, including the
famous malloc function and some fancier facilities special to the GNU C Library and GNU
Compiler.



Chapter 3: Virtual Memory Allocation And Paging 46

3.2.1 Memory Allocation in C Programs

The C language supports two kinds of memory allocation through the variables in C pro-
grams:

e Static allocation is what happens when you declare a static or global variable. Each
static or global variable defines one block of space, of a fixed size. The space is allocated
once, when your program is started (part of the exec operation), and is never freed.

e Automatic allocation happens when you declare an automatic variable, such as a func-
tion argument or a local variable. The space for an automatic variable is allocated
when the compound statement containing the declaration is entered, and is freed when
that compound statement is exited.

In GNU C, the size of the automatic storage can be an expression that varies. In other
C implementations, it must be a constant.

A third important kind of memory allocation, dynamic allocation, is not supported by
C variables but is available via GNU C Library functions.

3.2.1.1 Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they are running
where to store some information. You need dynamic allocation when the amount of memory
you need, or how long you continue to need it, depends on factors that are not known before
the program runs.

For example, you may need a block to store a line read from an input file; since there is
no limit to how long a line can be, you must allocate the memory dynamically and make it
dynamically larger as you read more of the line.

Or, you may need a block for each record or each definition in the input data; since
you can’t know in advance how many there will be, you must allocate a new block for each
record or definition as you read it.

When you use dynamic allocation, the allocation of a block of memory is an action that
the program requests explicitly. You call a function or macro when you want to allocate
space, and specify the size with an argument. If you want to free the space, you do so by
calling another function or macro. You can do these things whenever you want, as often as
you want.

Dynamic allocation is not supported by C variables; there is no storage class “dynamic”,
and there can never be a C variable whose value is stored in dynamically allocated space.
The only way to get dynamically allocated memory is via a system call (which is generally
via a GNU C Library function call), and the only way to refer to dynamically allocated
space is through a pointer. Because it is less convenient, and because the actual process of
dynamic allocation requires more computation time, programmers generally use dynamic
allocation only when neither static nor automatic allocation will serve.

For example, if you want to allocate dynamically some space to hold a struct foobar,
you cannot declare a variable of type struct foobar whose contents are the dynamically
allocated space. But you can declare a variable of pointer type struct foobar * and assign
it the address of the space. Then you can use the operators ‘*’ and ‘-=>’ on this pointer
variable to refer to the contents of the space:

{



Chapter 3: Virtual Memory Allocation And Paging 47

struct foobar *ptr = malloc (sizeof *ptr);
ptr->name = Xx;

ptr->next = current_foobar;
current_foobar = ptr;

3.2.2 The GNU Allocator

The malloc implementation in the GNU C Library is derived from ptmalloc (pthreads
malloc), which in turn is derived from dlmalloc (Doug Lea malloc). This malloc may
allocate memory in two different ways depending on their size and certain parameters that
may be controlled by users. The most common way is to allocate portions of memory (called
chunks) from a large contiguous area of memory and manage these areas to optimize their
use and reduce wastage in the form of unusable chunks. Traditionally the system heap was
set up to be the one large memory area but the GNU C Library malloc implementation
maintains multiple such areas to optimize their use in multi-threaded applications. Each
such area is internally referred to as an arena.

As opposed to other versions, the malloc in the GNU C Library does not round up
chunk sizes to powers of two, neither for large nor for small sizes. Neighboring chunks
can be coalesced on a free no matter what their size is. This makes the implementation
suitable for all kinds of allocation patterns without generally incurring high memory waste
through fragmentation. The presence of multiple arenas allows multiple threads to allocate
memory simultaneously in separate arenas, thus improving performance.

The other way of memory allocation is for very large blocks, i.e. much larger than a page.
These requests are allocated with mmap (anonymous or via /dev/zero; see Section 13.8
[Memory-mapped I/0], page 366)). This has the great advantage that these chunks are
returned to the system immediately when they are freed. Therefore, it cannot happen that
a large chunk becomes “locked” in between smaller ones and even after calling free wastes
memory. The size threshold for mmap to be used is dynamic and gets adjusted according to
allocation patterns of the program. mallopt can be used to statically adjust the threshold
using M_MMAP_THRESHOLD and the use of mmap can be disabled completely with M_MMAP_MAX;
see Section 3.2.3.7 [Malloc Tunable Parameters], page 53.

A more detailed technical description of the GNU Allocator is maintained in the GNU
C Library wiki. See https://sourceware.org/glibc/wiki/MallocInternals.

It is possible to use your own custom malloc instead of the built-in allocator provided
by the GNU C Library. See Section 3.2.5 [Replacing malloc], page 63.

3.2.3 Unconstrained Allocation

The most general dynamic allocation facility is malloc. It allows you to allocate blocks of
memory of any size at any time, make them bigger or smaller at any time, and free the
blocks individually at any time (or never).

3.2.3.1 Basic Memory Allocation

To allocate a block of memory, call malloc. The prototype for this function is in stdlib.h.


https://sourceware.org/glibc/wiki/MallocInternals

Chapter 3: Virtual Memory Allocation And Paging 48

void * malloc (size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function returns a pointer to a newly allocated block size bytes long, or a null
pointer (setting errno) if the block could not be allocated.

The contents of the block are undefined; you must initialize it yourself (or use calloc
instead; see Section 3.2.3.5 [Allocating Cleared Space], page 51). Normally you would
convert the value to a pointer to the kind of object that you want to store in the block.
Here we show an example of doing so, and of initializing the space with zeros using the
library function memset (see Section 5.4 [Copying Strings and Arrays], page 102):

struct foo *ptr = malloc (sizeof *ptr);
if (ptr == 0) abort (O;
memset (ptr, O, sizeof (struct foo));

You can store the result of malloc into any pointer variable without a cast, because
ISO C automatically converts the type void * to another type of pointer when necessary.
However, a cast is necessary if the type is needed but not specified by context.

Remember that when allocating space for a string, the argument to malloc must be one
plus the length of the string. This is because a string is terminated with a null character
that doesn’t count in the “length” of the string but does need space. For example:

char *ptr = malloc (length + 1);

See Section 5.1 [Representation of Strings|, page 98, for more information about this.

3.2.3.2 Examples of malloc

If no more space is available, malloc returns a null pointer. You should check the value of
every call to malloc. It is useful to write a subroutine that calls malloc and reports an
error if the value is a null pointer, returning only if the value is nonzero. This function is
conventionally called xmalloc. Here it is:

void *

xmalloc (size_t size)

{
void *value = malloc (size);
if (value == 0)
fatal ("virtual memory exhausted");
return value;

}
Here is a real example of using malloc (by way of xmalloc). The function savestring
will copy a sequence of characters into a newly allocated null-terminated string:

char *
savestring (const char *ptr, size_t len)
{

char *value = xmalloc (len + 1);
value[len] = '\0';
return memcpy (value, ptr, len);
}
The block that malloc gives you is guaranteed to be aligned so that it can hold any
type of data. On GNU systems, the address is always a multiple of eight on 32-bit systems,
and a multiple of 16 on 64-bit systems. Only rarely is any higher boundary (such as a



Chapter 3: Virtual Memory Allocation And Paging 49

page boundary) necessary; for those cases, use aligned_alloc or posix_memalign (see
Section 3.2.3.6 [Allocating Aligned Memory Blocks], page 52).

Note that the memory located after the end of the block is likely to be in use for something
else; perhaps a block already allocated by another call to malloc. If you attempt to treat
the block as longer than you asked for it to be, you are liable to destroy the data that
malloc uses to keep track of its blocks, or you may destroy the contents of another block.
If you have already allocated a block and discover you want it to be bigger, use realloc
(see Section 3.2.3.4 [Changing the Size of a Block], page 50).

Portability Notes:

e In the GNU C Library, a successful malloc (0) returns a non-null pointer to a newly
allocated size-zero block; other implementations may return NULL instead. POSIX and
the ISO C standard allow both behaviors.

e In the GNU C Library, a failed malloc call sets errno, but ISO C does not require
this and non-POSIX implementations need not set errno when failing.

e In the GNU C Library, malloc always fails when size exceeds PTRDIFF_MAX, to avoid
problems with programs that subtract pointers or use signed indexes. Other imple-
mentations may succeed in this case, leading to undefined behavior later.

3.2.3.3 Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function free to make
the block available to be allocated again. The prototype for this function is in stdlib.h.

void free (void *ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The free function deallocates the block of memory pointed at by ptr.

Freeing a block alters the contents of the block. Do not expect to find any data (such as
a pointer to the next block in a chain of blocks) in the block after freeing it. Copy whatever
you need out of the block before freeing it! Here is an example of the proper way to free all
the blocks in a chain, and the strings that they point to:

struct chain
{
struct chain *next;
char *name;

}

void
free_chain (struct chain *chain)
{
while (chain != 0)
{
struct chain *next = chain->next;
free (chain->name);
free (chain);
chain = next;
}
}

Occasionally, free can actually return memory to the operating system and make the
process smaller. Usually, all it can do is allow a later call to malloc to reuse the space. In



Chapter 3: Virtual Memory Allocation And Paging 50

the meantime, the space remains in your program as part of a free-list used internally by
malloc.

The free function preserves the value of errno, so that cleanup code need not worry
about saving and restoring errno around a call to free. Although neither ISO C nor
POSIX.1-2017 requires free to preserve errno, a future version of POSIX is planned to
require it.

There is no point in freeing blocks at the end of a program, because all of the program’s
space is given back to the system when the process terminates.

3.2.3.4 Changing the Size of a Block

Often you do not know for certain how big a block you will ultimately need at the time you
must begin to use the block. For example, the block might be a buffer that you use to hold
a line being read from a file; no matter how long you make the buffer initially, you may
encounter a line that is longer.

You can make the block longer by calling realloc or reallocarray. These functions
are declared in stdlib.h.

void * realloc (void *ptr, size_t newsize) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The realloc function changes the size of the block whose address is ptr to be newsize.

Since the space after the end of the block may be in use, realloc may find it necessary
to copy the block to a new address where more free space is available. The value of
realloc is the new address of the block. If the block needs to be moved, realloc
copies the old contents.

If you pass a null pointer for ptr, realloc behaves just like ‘malloc (newsize)’.
Otherwise, if newsize is zero realloc frees the block and returns NULL. Otherwise,
if realloc cannot reallocate the requested size it returns NULL and sets errno; the
original block is left undisturbed.

void * reallocarray (void *ptr, size_t nmemb, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The reallocarray function changes the size of the block whose address is ptr to be
long enough to contain a vector of nmemb elements, each of size size. It is equiva-
lent to ‘realloc (ptr, nmemb * size)’, except that reallocarray fails safely if the
multiplication overflows, by setting errno to ENOMEM, returning a null pointer, and
leaving the original block unchanged.

reallocarray should be used instead of realloc when the new size of the allocated
block is the result of a multiplication that might overflow.

This function was originally derived from OpenBSD 5.6, but was added in POSIX.1-
2024.

Like malloc, realloc and reallocarray may return a null pointer if no memory space
is available to make the block bigger. When this happens, the original block is untouched;
it has not been modified or relocated.



Chapter 3: Virtual Memory Allocation And Paging 51

In most cases it makes no difference what happens to the original block when realloc
fails, because the application program cannot continue when it is out of memory, and the
only thing to do is to give a fatal error message. Often it is convenient to write and use
subroutines, conventionally called xrealloc and xreallocarray, that take care of the error
message as xmalloc does for malloc:

void =*

xreallocarray (void *ptr, size_t nmemb, size_t size)

{
void *value = reallocarray (ptr, nmemb, size);
if (value == 0)
fatal ("Virtual memory exhausted");
return value;

}
void *
xrealloc (void *ptr, size_t size)
{
return xreallocarray (ptr, 1, size);
}

You can also use realloc or reallocarray to make a block smaller. The reason you
would do this is to avoid tying up a lot of memory space when only a little is needed. In
several allocation implementations, making a block smaller sometimes necessitates copying
it, so it can fail if no other space is available.

Portability Notes:

e Portable programs should not attempt to reallocate blocks to be size zero. On other
implementations if ptr is non-null, realloc (ptr, 0) might free the block and return
a non-null pointer to a size-zero object, or it might fail and return NULL without freeing
the block. The ISO C17 standard allows these variations.

e In the GNU C Library, reallocation fails if the resulting block would exceed PTRDIFF_
MAX in size, to avoid problems with programs that subtract pointers or use signed
indexes. Other implementations may succeed, leading to undefined behavior later.

e Inthe GNU C Library, if the new size is the same as the old, realloc and reallocarray
are guaranteed to change nothing and return the same address that you gave. However,
POSIX and ISO C allow the functions to relocate the object or fail in this situation.

3.2.3.5 Allocating Cleared Space

The function calloc allocates memory and clears it to zero. It is declared in stdlib.h.

void * calloc (size_t count, size_t eltsize) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function allocates a block long enough to contain a vector of count elements,
each of size eltsize. Its contents are cleared to zero before calloc returns.

You could define calloc as follows:

void *
calloc (size_t count, size_t eltsize)

{

void *value = reallocarray (0, count, eltsize);



Chapter 3: Virtual Memory Allocation And Paging 52

if (value != 0)
memset (value, O, count * eltsize);
return value;
}

But in general, it is not guaranteed that calloc calls reallocarray and memset inter-
nally. For example, if the calloc implementation knows for other reasons that the new
memory block is zero, it need not zero out the block again with memset. Also, if an ap-
plication provides its own reallocarray outside the C library, calloc might not use that
redefinition. See Section 3.2.5 [Replacing malloc|, page 63.

3.2.3.6 Allocating Aligned Memory Blocks

The address of a block returned by malloc or realloc in GNU systems is always a multiple
of eight (or sixteen on 64-bit systems). If you need a block whose address is a multiple of
a higher power of two than that, use aligned_alloc or posix_memalign. aligned_alloc
and posix_memalign are declared in stdlib.h.

void * aligned_alloc (size_t alignment, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The aligned_alloc function allocates a block of size bytes whose address is a multiple
of alignment. The alignment must be a power of two.

The aligned_alloc function returns a null pointer on error and sets errno to one of
the following values:

ENOMEM There was insufficient memory available to satisfy the request.

EINVAL alignment is not a power of two.

This function was introduced in ISO C11 and hence may have better
portability to modern non-POSIX systems than posix_memalign.

void * memalign (size_t boundary, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The memalign function allocates a block of size bytes whose address is a multiple of
boundary. The boundary must be a power of two! The function memalign works by
allocating a somewhat larger block, and then returning an address within the block
that is on the specified boundary.

The memalign function returns a null pointer on error and sets errno to one of the
following values:

ENOMEM There was insufficient memory available to satisfy the request.
EINVAL boundary is not a power of two.

The memalign function is obsolete and aligned_alloc or posix_memalign should
be used instead.

int posix_memalign (void **memptr, size_t alignment, size_t size)  [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.



Chapter 3: Virtual Memory Allocation And Paging 53

The posix_memalign function is similar to the memalign function in that it returns
a buffer of size bytes aligned to a multiple of alignment. But it adds one requirement
to the parameter alignment: the value must be a power of two multiple of sizeof
(void *).

If the function succeeds in allocation memory a pointer to the allocated memory is
returned in *memptr and the return value is zero. Otherwise the function returns an
error value indicating the problem. The possible error values returned are:

ENOMEM There was insufficient memory available to satisfy the request.
EINVAL alignment is not a power of two multiple of sizeof (void *).

This function was introduced in POSIX 1003.1d. Although this function is superseded
by aligned_alloc, it is more portable to older POSIX systems that do not support
ISO C11.

void * valloc (size_t size) [Function]
Preliminary: | MT-Unsafe init | AS-Unsafe init lock | AC-Unsafe init lock fd mem
| See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

Using valloc is like using memalign and passing the page size as the value of the first
argument. It is implemented like this:

void *

valloc (size_t size)

{

return memalign (getpagesize (), size);

}

Section 23.4.2 [How to get information about the memory subsystem?], page 708, for

more information about the memory subsystem.

The valloc function is obsolete and aligned_alloc or posix_memalign should be
used instead.

3.2.3.7 Malloc Tunable Parameters

You can adjust some parameters for dynamic memory allocation with the mallopt function.
This function is the general SVID/XPG interface, defined in malloc.h.

int mallopt (int param, int value) [Function]
Preliminary: | MT-Unsafe init const:mallopt | AS-Unsafe init lock | AC-Unsafe init
lock | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

When calling mallopt, the param argument specifies the parameter to be set, and
value the new value to be set. Possible choices for param, as defined in malloc.h,
are:

M_MMAP_MAX
The maximum number of chunks to allocate with mmap. Setting this to
zero disables all use of mmap.

The default value of this parameter is 65536.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_MMAP_MAX_ to the desired value.



Chapter 3: Virtual Memory Allocation And Paging 54

M_MMAP_THRESHOLD

M_PERTURB

M_TOP_PAD

All chunks larger than this value are allocated outside the normal heap,
using the mmap system call. This way it is guaranteed that the memory for
these chunks can be returned to the system on free. Note that requests
smaller than this threshold might still be allocated via mmap.

If this parameter is not set, the default value is set as 128 KiB and the
threshold is adjusted dynamically to suit the allocation patterns of the
program. If the parameter is set, the dynamic adjustment is disabled and
the value is set statically to the input value.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_MMAP_THRESHOLD_ to the desired value.

If non-zero, memory blocks are filled with values depending on some low
order bits of this parameter when they are allocated (except when al-
located by calloc) and freed. This can be used to debug the use of
uninitialized or freed heap memory. Note that this option does not guar-
antee that the freed block will have any specific values. It only guarantees
that the content the block had before it was freed will be overwritten.

The default value of this parameter is 0.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_PERTURB_ to the desired value.

This parameter determines the amount of extra memory to obtain from
the system when an arena needs to be extended. It also specifies the
number of bytes to retain when shrinking an arena. This provides the
necessary hysteresis in heap size such that excessive amounts of system
calls can be avoided.

The default value of this parameter is 0.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_TOP_PAD_ to the desired value.

M_TRIM_THRESHOLD

This is the minimum size (in bytes) of the top-most, releasable chunk
that will trigger a system call in order to return memory to the system.

If this parameter is not set, the default value is set as 128 KiB and the
threshold is adjusted dynamically to suit the allocation patterns of the
program. If the parameter is set, the dynamic adjustment is disabled and
the value is set statically to the provided input.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_TRIM_THRESHOLD_ to the desired value.

M_ARENA_TEST

This parameter specifies the number of arenas that can be created before
the test on the limit to the number of arenas is conducted. The value is
ignored if M_ARENA_MAX is set.



Chapter 3: Virtual Memory Allocation And Paging 55

The default value of this parameter is 2 on 32-bit systems and 8 on 64-bit
systems.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_ARENA_TEST to the desired value.

M_ARENA_MAX
This parameter sets the number of arenas to use regardless of the number
of cores in the system.

The default value of this tunable is 0, meaning that the limit on the
number of arenas is determined by the number of CPU cores online. For
32-bit systems the limit is twice the number of cores online and on 64-
bit systems, it is eight times the number of cores online. Note that the
default value is not derived from the default value of M_ARENA_TEST
and is computed independently.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_ARENA_MAX to the desired value.

3.2.3.8 Heap Consistency Checking

You can ask malloc to check the consistency of dynamic memory by using the mcheck func-
tion and preloading the malloc debug library 1ibc_malloc_debug using the LD_PRELOAD
environment variable. This function is a GNU extension, declared in mcheck.h.

int mcheck (void (*abortfn) (enum mcheck_status status)) [Function]
Preliminary: | MT-Unsafe race:mcheck const:malloc_hooks | AS-Unsafe corrupt |
AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Calling mcheck tells malloc to perform occasional consistency checks. These will
catch things such as writing past the end of a block that was allocated with malloc.

The abortfn argument is the function to call when an inconsistency is found. If you
supply a null pointer, then mcheck uses a default function which prints a message
and calls abort (see Section 26.7.4 [Aborting a Program]|, page 809). The function
you supply is called with one argument, which says what sort of inconsistency was
detected; its type is described below.

It is too late to begin allocation checking once you have allocated anything with
malloc. So mcheck does nothing in that case. The function returns -1 if you call it
too late, and 0 otherwise (when it is successful).

The easiest way to arrange to call mcheck early enough is to use the option ‘~1mcheck’
when you link your program; then you don’t need to modify your program source at
all. Alternatively you might use a debugger to insert a call to mcheck whenever the
program is started, for example these gdb commands will automatically call mcheck
whenever the program starts:

(gdb) break main

Breakpoint 1, main (argc=2, argv=0xbffff964) at whatever.c:10

(gdb) command 1

Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

>call mcheck(0)

>continue



Chapter 3: Virtual Memory Allocation And Paging 56

>end

(gdb) ...
This will however only work if no initialization function of any object involved calls
any of the malloc functions since mcheck must be called before the first such function.

enum mcheck_status mprobe (void *pointer) [Function]
Preliminary: | MT-Unsafe race:mcheck const:malloc_hooks | AS-Unsafe corrupt |
AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The mprobe function lets you explicitly check for inconsistencies in a particular allo-
cated block. You must have already called mcheck at the beginning of the program,
to do its occasional checks; calling mprobe requests an additional consistency check
to be done at the time of the call.

The argument pointer must be a pointer returned by malloc or realloc. mprobe
returns a value that says what inconsistency, if any, was found. The values are
described below.

enum mcheck_status [Data Type]
This enumerated type describes what kind of inconsistency was detected in an allo-
cated block, if any. Here are the possible values:

MCHECK_DISABLED
mcheck was not called before the first allocation. No consistency checking
can be done.

MCHECK_OK
No inconsistency detected.

MCHECK_HEAD
The data immediately before the block was modified. This commonly
happens when an array index or pointer is decremented too far.

MCHECK_TAIL
The data immediately after the block was modified. This commonly
happens when an array index or pointer is incremented too far.

MCHECK_FREE
The block was already freed.

Another possibility to check for and guard against bugs in the use of malloc, realloc
and free is to set the environment variable MALLOC_CHECK_. When MALLOC_CHECK_ is set
to a non-zero value less than 4, a special (less efficient) implementation is used which is
designed to be tolerant against simple errors, such as double calls of free with the same
argument, or overruns of a single byte (off-by-one bugs). Not all such errors can be protected
against, however, and memory leaks can result. Like in the case of mcheck, one would need
to preload the 1ibc_malloc_debug library to enable MALLOC_CHECK _ functionality. Without
this preloaded library, setting MALLOC_CHECK_ will have no effect.

Any detected heap corruption results in immediate termination of the process.

There is one problem with MALLOC_CHECK_: in SUID or SGID binaries it could possibly
be exploited since diverging from the normal programs behavior it now writes something to



Chapter 3: Virtual Memory Allocation And Paging 57

the standard error descriptor. Therefore the use of MALLOC_CHECK_ is disabled by default
for SUID and SGID binaries.

So, what’s the difference between using MALLOC_CHECK_ and linking with ‘-~1mcheck’?
MALLOC_CHECK_ is orthogonal with respect to ‘~1lmcheck’. ‘-~lmcheck’ has been added for
backward compatibility. Both MALLOC_CHECK_ and ‘-lmcheck’ should uncover the same
bugs - but using MALLOC_CHECK_ you don’t need to recompile your application.

3.2.3.9 Statistics for Memory Allocation with malloc

You can get information about dynamic memory allocation by calling the mallinfo2 func-
tion. This function and its associated data type are declared in malloc.h; they are an
extension of the standard SVID/XPG version.

struct mallinfo2 [Data Type]
This structure type is used to return information about the dynamic memory alloca-
tor. It contains the following members:

size_t arena
This is the total size of memory allocated with sbrk by malloc, in bytes.

size_t ordblks
This is the number of chunks not in use. (The memory allocator internally
gets chunks of memory from the operating system, and then carves them
up to satisfy individual malloc requests; see Section 3.2.2 [The GNU
Allocator]|, page 47.)

size_t smblks
This field is unused.

size_t hblks
This is the total number of chunks allocated with mmap.

size_t hblkhd
This is the total size of memory allocated with mmap, in bytes.

size_t usmblks
This field is unused and always 0.

size_t fsmblks
This field is unused.

size_t uordblks
This is the total size of memory occupied by chunks handed out by
malloc.

size_t fordblks
This is the total size of memory occupied by free (not in use) chunks.

size_t keepcost
This is the size of the top-most releasable chunk that normally borders
the end of the heap (i.e., the high end of the virtual address space’s data
segment).



Chapter 3: Virtual Memory Allocation And Paging 58

struct mallinfo2 mallinfo2 (void) [Function]
Preliminary: | MT-Unsafe init const:mallopt | AS-Unsafe init lock | AC-Unsafe init
lock | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function returns information about the current dynamic memory usage in a
structure of type struct mallinfo?2.

3.2.3.10 Summary of malloc-Related Functions
Here is a summary of the functions that work with malloc:

void *malloc (size_t size)
Allocate a block of size bytes. See Section 3.2.3.1 [Basic Memory Allocation],
page 47.

void free (void *addr)
Free a block previously allocated by malloc. See Section 3.2.3.3 [Freeing Mem-
ory Allocated with malloc|, page 49.

void *realloc (void *addr, size_t size)
Make a block previously allocated by malloc larger or smaller, possibly by
copying it to a new location. See Section 3.2.3.4 [Changing the Size of a Block],
page 50.

void *reallocarray (void *ptr, size_t nmemb, size_t size)
Change the size of a block previously allocated by malloc to nmemb * size bytes
as with realloc. See Section 3.2.3.4 [Changing the Size of a Block], page 50.

void *calloc (size_t count, size_t eltsize)
Allocate a block of count * eltsize bytes using malloc, and set its contents to
zero. See Section 3.2.3.5 [Allocating Cleared Space], page 51.

void *valloc (size_t size)
Allocate a block of size bytes, starting on a page boundary. See Section 3.2.3.6
[Allocating Aligned Memory Blocks], page 52.

void *aligned_alloc (size_t alignment, size_t size)
Allocate a block of size bytes, starting on an address that is a multiple of
alignment. See Section 3.2.3.6 [Allocating Aligned Memory Blocks|, page 52.

int posix_memalign (void **memptr, size_t alignment, size_t size)
Allocate a block of size bytes, starting on an address that is a multiple of
alignment. See Section 3.2.3.6 [Allocating Aligned Memory Blocks|, page 52.

void *memalign (size_t boundary, size_t size)
Allocate a block of size bytes, starting on an address that is a multiple of
boundary. See Section 3.2.3.6 [Allocating Aligned Memory Blocks|, page 52.

int mallopt (int param, int value)
Adjust a tunable parameter. See Section 3.2.3.7 [Malloc Tunable Parameters],
page 53.

int mcheck (void (*abortfn) (void))
Tell malloc to perform occasional consistency checks on dynamically allocated
memory, and to call abortfn when an inconsistency is found. See Section 3.2.3.8
[Heap Consistency Checking], page 55.



Chapter 3: Virtual Memory Allocation And Paging 59

struct mallinfo2 mallinfo2 (void)
Return information about the current dynamic memory usage. See
Section 3.2.3.9 [Statistics for Memory Allocation with malloc|, page 57.

3.2.4 Allocation Debugging

A complicated task when programming with languages which do not use garbage collected
dynamic memory allocation is to find memory leaks. Long running programs must ensure
that dynamically allocated objects are freed at the end of their lifetime. If this does not
happen the system runs out of memory, sooner or later.

The malloc implementation in the GNU C Library provides some simple means to detect
such leaks and obtain some information to find the location. To do this the application must
be started in a special mode which is enabled by an environment variable. There are no
speed penalties for the program if the debugging mode is not enabled.

3.2.4.1 How to install the tracing functionality

void mtrace (void) [Function]
Preliminary: | MT-Unsafe env race:mtrace init | AS-Unsafe init heap corrupt lock |
AC-Unsafe init corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The mtrace function provides a way to trace memory allocation events in the program
that calls it. It is disabled by default in the library and can be enabled by preload-
ing the debugging library libc_malloc_debug using the LD_PRELOAD environment
variable.
When the mtrace function is called it looks for an environment variable named
MALLOC_TRACE. This variable is supposed to contain a valid file name. The user
must have write access. If the file already exists it is truncated. If the environment
variable is not set or it does not name a valid file which can be opened for writing
nothing is done. The behavior of malloc etc. is not changed. For obvious reasons
this also happens if the application is installed with the SUID or SGID bit set.

If the named file is successfully opened, mtrace installs special handlers for the func-
tions malloc, realloc, and free. From then on, all uses of these functions are traced
and protocolled into the file. There is now of course a speed penalty for all calls to
the traced functions so tracing should not be enabled during normal use.

This function is a GNU extension and generally not available on other systems. The
prototype can be found in mcheck.h.

void muntrace (void) [Function]
Preliminary: | MT-Unsafe race:mtrace locale | AS-Unsafe corrupt heap | AC-Unsafe
corrupt mem lock fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
The muntrace function can be called after mtrace was used to enable tracing the
malloc calls. If no (successful) call of mtrace was made muntrace does nothing.
Otherwise it deinstalls the handlers for malloc, realloc, and free and then closes
the protocol file. No calls are protocolled anymore and the program runs again at full
speed.
This function is a GNU extension and generally not available on other systems. The
prototype can be found in mcheck.h.



Chapter 3: Virtual Memory Allocation And Paging 60

3.2.4.2 Example program excerpts

Even though the tracing functionality does not influence the runtime behavior of the pro-
gram it is not a good idea to call mtrace in all programs. Just imagine that you debug
a program using mtrace and all other programs used in the debugging session also trace
their malloc calls. The output file would be the same for all programs and thus is unusable.
Therefore one should call mtrace only if compiled for debugging. A program could therefore
start like this:

#include <mcheck.h>

int
main (int argc, char *argv[])
{
#ifdef DEBUGGING
mtrace ();
#endif
}

This is all that is needed if you want to trace the calls during the whole runtime of the
program. Alternatively you can stop the tracing at any time with a call to muntrace. It
is even possible to restart the tracing again with a new call to mtrace. But this can cause
unreliable results since there may be calls of the functions which are not called. Please
note that not only the application uses the traced functions, also libraries (including the C
library itself) use these functions.

This last point is also why it is not a good idea to call muntrace before the program
terminates. The libraries are informed about the termination of the program only after the
program returns from main or calls exit and so cannot free the memory they use before
this time.

So the best thing one can do is to call mtrace as the very first function in the program
and never call muntrace. So the program traces almost all uses of the malloc functions
(except those calls which are executed by constructors of the program or used libraries).

3.2.4.3 Some more or less clever ideas

You know the situation. The program is prepared for debugging and in all debugging
sessions it runs well. But once it is started without debugging the error shows up. A typical
example is a memory leak that becomes visible only when we turn off the debugging. If you
foresee such situations you can still win. Simply use something equivalent to the following
little program:

#include <mcheck.h>
#include <signal.h>

static void
enable (int sig)
{
mtrace ();
signal (SIGUSR1, enable);



Chapter 3: Virtual Memory Allocation And Paging 61

static void
disable (int sig)

{
muntrace ();
signal (SIGUSR2, disable);
}
int
main (int argc, char *argv[])
{
signal (SIGUSR1, enable);
signal (SIGUSR2, disable);
}

Le., the user can start the memory debugger any time s/he wants if the program was
started with MALLOC_TRACE set in the environment. The output will of course not show the
allocations which happened before the first signal but if there is a memory leak this will
show up nevertheless.

3.2.4.4 Interpreting the traces
If you take a look at the output it will look similar to this:

= Start
[0x8048209] - 0x8064cc8
[0x8048209] - 0x8064ce0
[0x8048209] - 0x8064cf8

[0x80481eb] + 0x8064c48 0x14

[0x80481eb] + 0x8064c60 0x14

[0x80481eb] + 0x8064c78 0x14

[0x80481eb] + 0x8064c90 0x14
= End

What this all means is not really important since the trace file is not meant to be read
by a human. Therefore no attention is given to readability. Instead there is a program
which comes with the GNU C Library which interprets the traces and outputs a summary
in an user-friendly way. The program is called mtrace (it is in fact a Perl script) and it
takes one or two arguments. In any case the name of the file with the trace output must
be specified. If an optional argument precedes the name of the trace file this must be the
name of the program which generated the trace.

drepper$ mtrace tst-mtrace log
No memory leaks.



Chapter 3: Virtual Memory Allocation And Paging 62

In this case the program tst-mtrace was run and it produced a trace file log. The
message printed by mtrace shows there are no problems with the code, all allocated memory
was freed afterwards.

If we call mtrace on the example trace given above we would get a different output:

drepper$ mtrace errlog

- 0x08064cc8 Free 2 was never alloc'd 0x8048209
- 0x08064ce0 Free 3 was never alloc'd 0x8048209
- 0x08064cf8 Free 4 was never alloc'd 0x8048209

Memory not freed:

Address Size Caller
0x08064c48 0x14 at 0x80481leb
0x08064c60 0x14 at 0x80481eb
0x08064c78 0x14 at 0x80481eb
0x08064c90 0x14 at 0x80481eb

We have called mtrace with only one argument and so the script has no chance to find
out what is meant with the addresses given in the trace. We can do better:

drepper$ mtrace tst errlog

- 0x08064cc8 Free 2 was never alloc'd /home/drepper/tst.c:39
- 0x08064ce0 Free 3 was never alloc'd /home/drepper/tst.c:39
- 0x08064cf8 Free 4 was never alloc'd /home/drepper/tst.c:39

Memory not freed:

Address Size Caller
0x08064c48 0x14 at /home/drepper/tst.c:33
0x08064c60 0x14 at /home/drepper/tst.c:33
0x08064c78 0x14 at /home/drepper/tst.c:33
0x08064c90 0x14 at /home/drepper/tst.c:33

Suddenly the output makes much more sense and the user can see immediately where
the function calls causing the trouble can be found.

Interpreting this output is not complicated. There are at most two different situations
being detected. First, free was called for pointers which were never returned by one of the
allocation functions. This is usually a very bad problem and what this looks like is shown
in the first three lines of the output. Situations like this are quite rare and if they appear
they show up very drastically: the program normally crashes.

The other situation which is much harder to detect are memory leaks. As you can see in
the output the mtrace function collects all this information and so can say that the program
calls an allocation function from line 33 in the source file /home/drepper/tst-mtrace.c
four times without freeing this memory before the program terminates. Whether this is a
real problem remains to be investigated.



Chapter 3: Virtual Memory Allocation And Paging 63

3.2.5 Replacing malloc

The GNU C Library supports replacing the built-in malloc implementation with a different
allocator with the same interface. For dynamically linked programs, this happens through
ELF symbol interposition, either using shared object dependencies or LD_PRELOAD. For
static linking, the malloc replacement library must be linked in before linking against
libc.a (explicitly or implicitly).

Care must be taken not to use functionality from the GNU C Library that uses malloc
internally. For example, the fopen, opendir, dlopen, and pthread_setspecific functions
currently use the malloc subsystem internally. If the replacement malloc or its dependen-
cies use thread-local storage (TLS), it must use the initial-exec TLS model, and not one of
the dynamic TLS variants.

Note: Failure to provide a complete set of replacement functions (that is, all the functions
used by the application, the GNU C Library, and other linked-in libraries) can lead to static
linking failures, and, at run time, to heap corruption and application crashes. Replacement
functions should implement the behavior documented for their counterparts in the GNU C
Library; for example, the replacement free should also preserve errno.

The minimum set of functions which has to be provided by a custom malloc is given in
the table below.
malloc
free
calloc

realloc

These malloc-related functions are required for the GNU C Library to work.*

The malloc implementation in the GNU C Library provides additional functionality not
used by the library itself, but which is often used by other system libraries and applications.
A general-purpose replacement malloc implementation should provide definitions of these
functions, too. Their names are listed in the following table.

aligned_alloc
malloc_usable_size
memalign

posix_memalign
pvalloc

valloc

In addition, very old applications may use the obsolete cfree function.

Further malloc-related functions such as mallopt or mallinfo2 will not have any effect
or return incorrect statistics when a replacement malloc is in use. However, failure to
replace these functions typically does not result in crashes or other incorrect application
behavior, but may result in static linking failures.

1 Versions of the GNU C Library before 2.25 required that a custom malloc defines __libc_memalign
(with the same interface as the memalign function).



Chapter 3: Virtual Memory Allocation And Paging 64

There are other functions (reallocarray, strdup, etc.) in the GNU C Library that
are not listed above but return newly allocated memory to callers. Replacement of these
functions is not supported and may produce incorrect results. The GNU C Library imple-
mentations of these functions call the replacement allocator functions whenever available,
so they will work correctly with malloc replacement.

3.2.6 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any number of
separate obstacks, and then allocate objects in specified obstacks. Within each obstack, the
last object allocated must always be the first one freed, but distinct obstacks are independent
of each other.

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack
can contain any number of objects of any size. They are implemented with macros, so
allocation is usually very fast as long as the objects are usually small. And the only space
overhead per object is the padding needed to start each object on a suitable boundary.

3.2.6.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file obstack.h.

struct obstack [Data Type]
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space in
which objects are allocated. It does not contain any of the objects themselves. You
should not try to access the contents of the structure directly; use only the functions
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can
allocate obstacks dynamically like any other kind of object. Dynamic allocation of obstacks
allows your program to have a variable number of different stacks. (You can even allocate
an obstack structure in another obstack, but this is rarely useful.)

All the functions that work with obstacks require you to specify which obstack to use.
You do this with a pointer of type struct obstack *. In the following, we often say “an
obstack” when strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct
obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t
fit in the previous chunk. Since the obstack library manages chunks automatically, you
don’t need to pay much attention to them, but you do need to supply a function which the
obstack library should use to get a chunk. Usually you supply a function which uses malloc
directly or indirectly. You must also supply a function to free a chunk. These matters are
described in the following section.

3.2.6.2 Preparing for Using Obstacks

Fach source file in which you plan to use the obstack functions must include the header file
obstack.h, like this:
#include <obstack.h>



Chapter 3: Virtual Memory Allocation And Paging 65

Also, if the source file uses the macro obstack_init, it must declare or define two
functions or macros that will be called by the obstack library. One, obstack_chunk_alloc,
is used to allocate the chunks of memory into which objects are packed. The other, obstack_
chunk_free, is used to return chunks when the objects in them are freed. These macros
should appear before any use of obstacks in the source file.

Usually these are defined to use malloc via the intermediary xmalloc (see Section 3.2.3
[Unconstrained Allocation], page 47). This is done with the following pair of macro defini-
tions:

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

Though the memory you get using obstacks really comes from malloc, using obstacks is
faster because malloc is called less often, for larger blocks of memory. See Section 3.2.6.10
[Obstack Chunks|, page 72, for full details.

At run time, before the program can use a struct obstack object as an obstack, it must
initialize the obstack by calling obstack_init.

int obstack_init (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Initialize obstack obstack-ptr for allocation of objects. This function calls the ob-
stack’s obstack_chunk_alloc function. If allocation of memory fails, the function
pointed to by obstack_alloc_failed_handler is called. The obstack_init func-
tion always returns 1 (Compatibility notice: Former versions of obstack returned 0 if
allocation failed).

Here are two examples of how to allocate the space for an obstack and initialize it. First,
an obstack that is a static variable:

static struct obstack myobstack;

obstack_init (&myobstack);

Second, an obstack that is itself dynamically allocated:
struct obstack *myobstack_ptr

= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

obstack_alloc_failed_handler [Variable]
The value of this variable is a pointer to a function that obstack uses when obstack_
chunk_alloc fails to allocate memory. The default action is to print a message and
abort. You should supply a function that either calls exit (see Section 26.7 [Program
Termination|, page 806) or Longjmp (see Chapter 24 [Non-Local Exits], page 711) and
doesn’t return.

void my_obstack_alloc_failed (void)

obstack_alloc_failed_handler = &my_obstack_alloc_failed;



Chapter 3: Virtual Memory Allocation And Paging 66

3.2.6.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which is
invoked almost like malloc.

void * obstack_alloc (struct obstack *obstack-ptr, int size) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack-ptr specifies which obstack to allocate the block in; it is the address of
the struct obstack object which represents the obstack. Each obstack function or
macro requires you to specify an obstack-ptr as the first argument.

This function calls the obstack’s obstack_chunk_alloc function if it needs to allocate
a new chunk of memory; it calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

For example, here is a function that allocates a copy of a string str in a specific obstack,
which is in the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

size_t len = strlen (string) + 1;
char *s = (char *) obstack_alloc (&string_obstack, len);
memcpy (s, string, len);
return s;
}
To allocate a block with specified contents, use the function obstack_copy, declared like

this:

void * obstack_copy (struct obstack *obstack-ptr, void [Function]
*address, int size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This allocates a block and initializes it by copying size bytes of data starting
at address. It calls obstack_alloc_failed_handler if allocation of memory by
obstack_chunk_alloc failed.

void * obstack_copyO (struct obstack *obstack-ptr, void [Function]
*address, int size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Like obstack_copy, but appends an extra byte containing a null character. This
extra byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of characters into an
obstack as a null-terminated string. Here is an example of its use:

char *
obstack_savestring (char *addr, int size)



Chapter 3: Virtual Memory Allocation And Paging 67

{
return obstack_copyO (&myobstack, addr, size);

}
Contrast this with the previous example of savestring using malloc (see Section 3.2.3.1
[Basic Memory Allocation], page 47).

3.2.6.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free. Since the obstack
is a stack of objects, freeing one object automatically frees all other objects allocated more
recently in the same obstack.

void obstack_free (struct obstack *obstack-ptr, void *object) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack-ptr since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free all
memory in an obstack but leave it valid for further allocation, call obstack_free with the
address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the objects in
a chunk become free, the obstack library automatically frees the chunk (see Section 3.2.6.2
[Preparing for Using Obstacks]|, page 64). Then other obstacks, or non-obstack allocation,
can reuse the space of the chunk.

3.2.6.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros, depending
on the compiler. The obstack facility works with all C compilers, including both ISO C and
traditional C, but there are precautions you must take if you plan to use compilers other
than GNU C.

If you are using an old-fashioned non-ISO C compiler, all the obstack “functions” are
actually defined only as macros. You can call these macros like functions, but you cannot
use them in any other way (for example, you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than once. For
example, if you write this:

obstack_alloc (get_obstack (), 4);
you will find that get_obstack may be called several times. If you use *obstack_list_
ptr++ as the obstack pointer argument, you will get very strange results since the incre-
mentation may occur several times.

In ISO C, each function has both a macro definition and a function definition. The
function definition is used if you take the address of the function without calling it. An
ordinary call uses the macro definition by default, but you can request the function definition
instead by writing the function name in parentheses, as shown here:

char *x;



Chapter 3: Virtual Memory Allocation And Paging 68

void *(xfuncp) ;
/* Use the macro. */
x = (char *) obstack_alloc (obptr, size);
/* Call the function. =*/
x = (char *) (obstack_alloc) (obptr, size);
/* Take the address of the function. */
funcp = obstack_alloc;
This is the same situation that exists in ISO C for the standard library functions. See

Section 1.3.2 [Macro Definitions of Functions], page 14.

Warning: When you do use the macros, you must observe the precaution of avoiding
side effects in the first operand, even in ISO C.

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

3.2.6.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build up an object
step by step, adding one or more bytes at a time to the end of the object. With this
technique, you do not need to know how much data you will put in the object until you
come to the end of it. We call this the technique of growing objects. The special functions
for adding data to the growing object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of
the functions to add data to the object automatically starts it. However, it is necessary to
say explicitly when the object is finished. This is done with the function obstack_finish.

The actual address of the object thus built up is not known until the object is finished.
Until then, it always remains possible that you will add so much data that the object must
be copied into a new chunk.

While the obstack is in use for a growing object, you cannot use it for ordinary allocation
of another object. If you try to do so, the space already added to the growing object will
become part of the other object.

void obstack_blank (struct obstack *obstack-ptr, int size) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The most basic function for adding to a growing object is obstack_blank, which adds
space without initializing it.

void obstack_grow (struct obstack *obstack-ptr, void *data, int [Function]
size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack_grow0 (struct obstack *obstack-ptr, void *data, int [Function]
size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.



Chapter 3: Virtual Memory Allocation And Paging 69

This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_lgrow (struct obstack *obstack-ptr, char c) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

To add one character at a time, use the function obstack_1igrow. It adds a single
byte containing ¢ to the growing object.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data)  [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Adding the value of a pointer one can use the function obstack_ptr_grow. It adds
sizeof (void *) bytes containing the value of data.

void obstack_int_grow (struct obstack *obstack-ptr, int data) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

A single value of type int can be added by using the obstack_int_grow function. It
adds sizeof (int) bytes to the growing object and initializes them with the value
of data.

void * obstack_finish (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

When you are finished growing the object, use the function obstack_finish to close
it off and return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

This function can return a null pointer under the same conditions as obstack_alloc
(see Section 3.2.6.3 [Allocation in an Obstack|, page 66).

When you build an object by growing it, you will probably need to know afterward
how long it became. You need not keep track of this as you grow the object, because you
can find out the length from the obstack just before finishing the object with the function
obstack_object_size, declared as follows:

int obstack_object_size (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function returns the current size of the growing object, in bytes. Remember to
call this function before finishing the object. After it is finished, obstack_object_
size will return zero.

If you have started growing an object and wish to cancel it, you should finish it and then
free it, like this:
obstack_free (obstack_ptr, obstack_finish (obstack_ptr));



Chapter 3: Virtual Memory Allocation And Paging 70

This has no effect if no object was growing.

You can use obstack_blank with a negative size argument to make the current object
smaller. Just don’t try to shrink it beyond zero length—there’s no telling what will happen
if you do that.

3.2.6.7 Extra Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether there is room
for the new growth in the current chunk. If you are frequently constructing objects in small
steps of growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” functions that grow the
object without checking. In order to have a robust program, you must do the checking
yourself. If you do this checking in the simplest way each time you are about to add data to
the object, you have not saved anything, because that is what the ordinary growth functions
do. But if you can arrange to check less often, or check more efficiently, then you make the
program faster.

The function obstack_room returns the amount of room available in the current chunk.
It is declared as follows:

int obstack_room (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack-ptr using the fast
growth functions.

While you know there is room, you can use these fast growth functions for adding data
to a growing object:

void obstack_lgrow_fast (struct obstack *obstack-ptr, char c) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function obstack_lgrow_fast adds one byte containing the character ¢ to the
growing object in obstack obstack-ptr.

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void [Function]
*data)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The function obstack_ptr_grow_fast adds sizeof (void *) bytes containing the
value of data to the growing object in obstack obstack-ptr.

void obstack_int_grow_fast (struct obstack *obstack-ptr, int [Function]
data)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The function obstack_int_grow_fast adds sizeof (int) bytes containing the value
of data to the growing object in obstack obstack-ptr.



Chapter 3: Virtual Memory Allocation And Paging 71

void obstack_blank_fast (struct obstack *obstack-ptr, int size) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.
The function obstack_blank_fast adds size bytes to the growing object in obstack
obstack-ptr without initializing them.

When you check for space using obstack_room and there is not enough room for what
you want to add, the fast growth functions are not safe. In this case, simply use the
corresponding ordinary growth function instead. Very soon this will copy the object to a
new chunk; then there will be lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient space
using obstack_room. Once the object is copied to a new chunk, there will be plenty of
space again, so the program will start using the fast growth functions again.

Here is an example:

void
add_string (struct obstack *obstack, const char *ptr, int len)
{
while (len > 0)
{
int room = obstack_room (obstack);
if (room == 0)
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);
len—-;
}
else
{
if (room > len)
room = len;
/* Add fast as much as we have room for. */
len -= room;
while (room-- > 0)
obstack_lgrow_fast (obstack, *ptr++);
}
}
}

3.2.6.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in an obstack.
You can use them to learn about an object while still growing it.

void * obstack_base (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.
This function returns the tentative address of the beginning of the currently growing
object in obstack-ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will
change!
If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).



Chapter 3: Virtual Memory Allocation And Paging 72

void * obstack_next_free (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

This function returns the address of the first free byte in the current chunk of obstack
obstack-ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

int obstack_object_size (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function returns the size in bytes of the currently growing object. This is equiv-
alent to
obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)

3.2.6.9 Alignment of Data in Obstacks

Each obstack has an alignment boundary; each object allocated in the obstack automatically
starts on an address that is a multiple of the specified boundary. By default, this boundary
is aligned so that the object can hold any type of data.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask,
whose function prototype looks like this:

int obstack_alignment_mask (struct obstack *obstack-ptr) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The mask value should be one less than a power of
2; the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is a value that allows aligned objects to hold any type of data: for
example, if its value is 3, any type of data can be stored at locations whose addresses
are multiples of 4. A mask value of 0 means an object can start on any multiple of 1
(that is, no alignment is required).

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:
obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an
object is allocated or finished in the obstack. If you are not growing an object, you can
make the new alignment mask take effect immediately by calling obstack_finish. This
will finish a zero-length object and then do proper alignment for the next object.

3.2.6.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out
space in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless
you specify a different chunk size. The chunk size includes 8 bytes of overhead that are
not actually used for storing objects. Regardless of the specified size, longer chunks will be
allocated when necessary for long objects.



Chapter 3: Virtual Memory Allocation And Paging 73

The obstack library allocates chunks by calling the function obstack_chunk_alloc,
which you must define. When a chunk is no longer needed because you have freed all the
objects in it, the obstack library frees the chunk by calling obstack_chunk_free, which
you must also define.

These two must be defined (as macros) or declared (as functions) in each source file that
uses obstack_init (see Section 3.2.6.1 [Creating Obstacks|, page 64). Most often they are
defined as macros like this:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with arguments
will not work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone,
expand into a function name if it is not itself a function name.

If you allocate chunks with malloc, the chunk size should be a power of 2. The default
chunk size, 4096, was chosen because it is long enough to satisfy many typical requests on
the obstack yet short enough not to waste too much memory in the portion of the last chunk
not yet used.

int obstack_chunk_size (struct obstack *obstack-ptr) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning
it a new value. Doing so does not affect the chunks already allocated, but will change the
size of chunks allocated for that particular obstack in the future. It is unlikely to be useful
to make the chunk size smaller, but making it larger might improve efficiency if you are
allocating many objects whose size is comparable to the chunk size. Here is how to do so
cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)
obstack_chunk_size (obstack_ptr) = new-chunk-size;

3.2.6.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the address of
an obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack. See Section 3.2.6.1 [Creating Obstacks], page 64.

void *obstack_alloc (struct obstack *obstack-ptr, int size)
Allocate an object of size uninitialized bytes. See Section 3.2.6.3 [Allocation in
an Obstack], page 66.

void *obstack_copy (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size bytes, with contents copied from address. See
Section 3.2.6.3 [Allocation in an Obstack], page 66.

void *obstack_copy0 (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size+l bytes, with size of them copied from address,
followed by a null character at the end. See Section 3.2.6.3 [Allocation in an
Obstack], page 66.



Chapter 3: Virtual Memory Allocation And Paging 74

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object (and everything allocated in the specified obstack more recently
than object). See Section 3.2.6.4 [Freeing Objects in an Obstack], page 67.

void obstack_blank (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object. See Section 3.2.6.6 [Growing
Objects], page 68.

void obstack_grow (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object. See Section 3.2.6.6
[Growing Objects|, page 68.

void obstack_grow0 (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object, and then add another
byte containing a null character. See Section 3.2.6.6 [Growing Objects]|, page 68.

void obstack_lgrow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object. See Section 3.2.6.6
[Growing Objects], page 68.

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address. See
Section 3.2.6.6 [Growing Objects], page 68.

int obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object. See Section 3.2.6.6 [Grow-
ing Objects], page 68.

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object without checking that there is
enough room. See Section 3.2.6.7 [Extra Fast Growing Objects|, page 70.

void obstack_lgrow_fast (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object without checking
that there is enough room. See Section 3.2.6.7 [Extra Fast Growing Objects],
page 70.

int obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object. See
Section 3.2.6.7 [Extra Fast Growing Objects|, page 70.

int obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an lvalue. See
Section 3.2.6.9 [Alignment of Data in Obstacks], page 72.

int obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue. See Section 3.2.6.10 [Obstack
Chunks], page 72.

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object. See Section 3.2.6.8
[Status of an Obstack], page 71.



Chapter 3: Virtual Memory Allocation And Paging 75

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object. See Section 3.2.6.8
[Status of an Obstack], page 71.

3.2.7 Automatic Storage with Variable Size

The function alloca supports a kind of half-dynamic allocation in which blocks are allocated
dynamically but freed automatically.

Allocating a block with alloca is an explicit action; you can allocate as many blocks as
you wish, and compute the size at run time. But all the blocks are freed when you exit the
function that alloca was called from, just as if they were automatic variables declared in
that function. There is no way to free the space explicitly.

The prototype for alloca is in stdlib.h. This function is a BSD extension.

void * alloca (size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The return value of alloca is the address of a block of size bytes of memory, allocated
in the stack frame of the calling function.

Do not use alloca inside the arguments of a function call—you will get unpredictable
results, because the stack space for the alloca would appear on the stack in the middle
of the space for the function arguments. An example of what to avoid is foo (x, alloca
4, y).

3.2.7.1 alloca Example

As an example of the use of alloca, here is a function that opens a file name made from
concatenating two argument strings, and returns a file descriptor or minus one signifying
failure:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open (name, flags, mode);

}

Here is how you would get the same results with malloc and free:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = malloc (strlen (strl) + strlen (str2) + 1);
int desc;
if (name == 0)

fatal ("virtual memory exceeded");
stpcpy (stpcpy (name, strl), str2);
desc = open (name, flags, mode);
free (name);
return desc;

}

As you can see, it is simpler with alloca. But alloca has other, more important
advantages, and some disadvantages.



Chapter 3: Virtual Memory Allocation And Paging 76

3.2.7.2 Advantages of alloca
Here are the reasons why alloca may be preferable to malloc:

e Using alloca wastes very little space and is very fast. (It is open-coded by the GNU
C compiler.)

e Since alloca does not have separate pools for different sizes of blocks, space used
for any size block can be reused for any other size. alloca does not cause memory
fragmentation.

e Nonlocal exits done with longjmp (see Chapter 24 [Non-Local Exits], page 711) au-
tomatically free the space allocated with alloca when they exit through the function
that called alloca. This is the most important reason to use alloca.

To illustrate this, suppose you have a function open_or_report_error which returns
a descriptor, like open, if it succeeds, but does not return to its caller if it fails. If
the file cannot be opened, it prints an error message and jumps out to the command
level of your program using longjmp. Let’s change open2 (see Section 3.2.7.1 [alloca
Example], page 75) to use this subroutine:
int
open2 (char *strl, char *str2, int flags, int mode)
{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open_or_report_error (name, flags, mode) ;
}
Because of the way alloca works, the memory it allocates is freed even when an error
occurs, with no special effort required.

By contrast, the previous definition of open2 (which uses malloc and free) would
develop a memory leak if it were changed in this way. Even if you are willing to make
more changes to fix it, there is no easy way to do so.

3.2.7.3 Disadvantages of alloca
These are the disadvantages of alloca in comparison with malloc:

e If you try to allocate more memory than the machine can provide, you don’t get a
clean error message. Instead you get a fatal signal like the one you would get from
an infinite recursion; probably a segmentation violation (see Section 25.2.1 [Program
Error Signals|, page 722).

e Some non-GNU systems fail to support alloca, so it is less portable. However, a slower
emulation of alloca written in C is available for use on systems with this deficiency.

3.2.7.4 GNU C Variable-Size Arrays

In GNU C, you can replace most uses of alloca with an array of variable size. Here is how
open2 would look then:

int open2 (char *strl, char *str2, int flags, int mode)
{

char name[strlen (strl) + strlen (str2) + 1];

stpcpy (stpcpy (name, strl), str2);

return open (name, flags, mode);

}



Chapter 3: Virtual Memory Allocation And Paging 7

But alloca is not always equivalent to a variable-sized array, for several reasons:

e A variable size array’s space is freed at the end of the scope of the name of the array.
The space allocated with alloca remains until the end of the function.

e [t is possible to use alloca within a loop, allocating an additional block on each
iteration. This is impossible with variable-sized arrays.

NB: If you mix use of alloca and variable-sized arrays within one function, exiting a
scope in which a variable-sized array was declared frees all blocks allocated with alloca
during the execution of that scope.

3.3 Resizing the Data Segment

The symbols in this section are declared in unistd.h.

You will not normally use the functions in this section, because the functions described
in Section 3.2 [Allocating Storage For Program Data|, page 45, are easier to use. Those are
interfaces to a GNU C Library memory allocator that uses the functions below itself. The
functions below are simple interfaces to system calls.

int brk (void *addr) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.
brk sets the high end of the calling process’ data segment to addr.
The address of the end of a segment is defined to be the address of the last byte in
the segment plus 1.
The function has no effect if addr is lower than the low end of the data segment.
(This is considered success, by the way.)
The function fails if it would cause the data segment to overlap another segment or
exceed the process’ data storage limit (see Section 23.2 [Limiting Resource Usage],
page 686).
The function is named for a common historical case where data storage and the stack
are in the same segment. Data storage allocation grows upward from the bottom of
the segment while the stack grows downward toward it from the top of the segment
and the curtain between them is called the break.
The return value is zero on success. On failure, the return value is -1 and errno is
set accordingly. The following errno values are specific to this function:

ENOMEM The request would cause the data segment to overlap another segment or
exceed the process’ data storage limit.

void * sbrk (ptrdiff_t delta) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
This function is the same as brk except that you specify the new end of the data
segment as an offset delta from the current end and on success the return value is the
address of the resulting end of the data segment instead of zero.

This means you can use ‘sbrk(0)’ to find out what the current end of the data
segment is.



Chapter 3: Virtual Memory Allocation And Paging 78

3.4 Memory Protection

When a page is mapped using mmap, page protection flags can be specified using the pro-
tection flags argument. See Section 13.8 [Memory-mapped 1/0], page 366.

The following flags are available:

PROT_WRITE
The memory can be written to.

PROT_READ
The memory can be read. On some architectures, this flag implies that the
memory can be executed as well (as if PROT_EXEC had been specified at the
same time).

PROT_EXEC
The memory can be used to store instructions which can then be executed.
On most architectures, this flag implies that the memory can be read (as if
PROT_READ had been specified).

PROT_NONE
This flag must be specified on its own.

The memory is reserved, but cannot be read, written, or executed. If this flag
is specified in a call to mmap, a virtual memory area will be set aside for future
use in the process, and mmap calls without the MAP_FIXED flag will not use it for
subsequent allocations. For anonymous mappings, the kernel will not reserve
any physical memory for the allocation at the time the mapping is created.

The operating system may keep track of these flags separately even if the underlying
hardware treats them the same for the purposes of access checking (as happens with PROT_
READ and PROT_EXEC on some platforms). On GNU systems, PROT_EXEC always implies
PROT_READ, so that users can view the machine code which is executing on their system.

Inappropriate access will cause a segfault (see Section 25.2.1 [Program Error Signals],
page 722).
After allocation, protection flags can be changed using the mprotect function.

int mprotect (void *address, size_t length, int protection) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

A successful call to the mprotect function changes the protection flags of at least
length bytes of memory, starting at address.

address must be aligned to the page size for the mapping. The system page size can
be obtained by calling sysconf with the _SC_PAGESIZE parameter (see Section 33.4.1
[Definition of sysconf], page 901). The system page size is the granularity in which
the page protection of anonymous memory mappings and most file mappings can be
changed. Memory which is mapped from special files or devices may have larger page
granularity than the system page size and may require larger alignment.

length is the number of bytes whose protection flags must be changed. It is automat-
ically rounded up to the next multiple of the system page size.

protection is a combination of the PROT_* flags described above.



Chapter 3: Virtual Memory Allocation And Paging 79

The mprotect function returns 0 on success and —1 on failure.

The following errno error conditions are defined for this function:

ENOMEM The system was not able to allocate resources to fulfill the request. This
can happen if there is not enough physical memory in the system for the
allocation of backing storage. The error can also occur if the new protec-
tion flags would cause the memory region to be split from its neighbors,
and the process limit for the number of such distinct memory regions
would be exceeded.

EINVAL address is not properly aligned to a page boundary for the mapping, or
length (after rounding up to the system page size) is not a multiple of
the applicable page size for the mapping, or the combination of flags in
protection is not valid.

EACCES The file for a file-based mapping was not opened with open flags which
are compatible with protection.

EPERM The system security policy does not allow a mapping with the specified
flags. For example, mappings which are both PROT_EXEC and PROT_WRITE
at the same time might not be allowed.

If the mprotect function is used to make a region of memory inaccessible by specifying
the PROT_NONE protection flag and access is later restored, the memory retains its previous
contents.

On some systems, it may not be possible to specify additional flags which were not
present when the mapping was first created. For example, an attempt to make a region of
memory executable could fail if the initial protection flags were ‘PROT_READ | PROT_WRITE’.

In general, the mprotect function can be used to change any process memory, no matter
how it was allocated. However, portable use of the function requires that it is only used
with memory regions returned by mmap or mmap64.

3.4.1 Memory Protection Keys

On some systems, further access restrictions can be added to specific pages using memory
protection keys. These restrictions work as follows:

e All memory pages are associated with a protection key. The default protection key
does not cause any additional protections to be applied during memory accesses. New
keys can be allocated with the pkey_alloc function, and applied to pages using pkey_
mprotect.

e Fach thread has a set of separate access restrictions for each protection key. These
access restrictions can be manipulated using the pkey_set and pkey_get functions.

e During a memory access, the system obtains the protection key for the accessed page
and uses that to determine the applicable access restrictions, as configured for the
current thread. If the access is restricted, a segmentation fault is the result ((see
Section 25.2.1 [Program Error Signals], page 722). These checks happen in addition to
the PROT_* protection flags set by mprotect or pkey_mprotect.



Chapter 3: Virtual Memory Allocation And Paging 80

New threads and subprocesses inherit the access restrictions of the current thread. If a
protection key is allocated subsequently, existing threads (except the current) will use an
unspecified system default for the access restrictions associated with newly allocated keys.

Upon entering a signal handler, the system resets the access restrictions of the current
thread so that pages with the default key can be accessed, but the access restrictions for
other protection keys are unspecified.

Applications are expected to allocate a key once using pkey_alloc, and apply the key
to memory regions which need special protection with pkey_mprotect:
int key = pkey_alloc (0, PKEY_DISABLE_ACCESS);
if (key < 0)
/* Perform error checking, including fallback for lack of support. */

.« ey

/* Apply the key to a special memory region used to store critical
data. */
if (pkey_mprotect (region, region_length,
PROT_READ | PROT_WRITE, key) < 0)
...; /* Perform error checking (generally fatal). */

If the key allocation fails due to lack of support for memory protection keys, the pkey_
mprotect call can usually be skipped. In this case, the region will not be protected by
default. It is also possible to call pkey_mprotect with a key value of —1, in which case it
will behave in the same way as mprotect.

After key allocation assignment to memory pages, pkey_set can be used to temporarily
acquire access to the memory region and relinquish it again:

if (key >= 0 && pkey_set (key, PKEY_UNRESTRICTED) < 0)
...; /* Perform error checking (generally fatal). x*/

/* At this point, the current thread has read-write access to the
memory region. */

/* Revoke access again. */
if (key >= 0 && pkey_set (key, PKEY_DISABLE_ACCESS) < 0)
...; /* Perform error checking (generally fatal). */
In this example, a negative key value indicates that no key had been allocated, which
means that the system lacks support for memory protection keys and it is not necessary to
change the the access restrictions of the current thread (because it always has access).

Compared to using mprotect to change the page protection flags, this approach has two
advantages: It is thread-safe in the sense that the access restrictions are only changed for
the current thread, so another thread which changes its own access restrictions concurrently
to gain access to the mapping will not suddenly see its access restrictions updated. And
pkey_set typically does not involve a call into the kernel and a context switch, so it is more
efficient.

int pkey_alloc (unsigned int flags, unsigned int [Function]
access_restrictions)
Preliminary: | MT-Safe | AS-Safe | AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX

Safety Concepts], page 2.

Allocate a new protection key. The flags argument is reserved and must be zero.
The access_restrictions argument specifies access restrictions which are applied to the



Chapter 3: Virtual Memory Allocation And Paging 81

current thread (as if with pkey_set below). Access restrictions of other threads are
not changed.

The function returns the new protection key, a non-negative number, or —1 on error.

The following errno error conditions are defined for this function:
ENOSYS The system does not implement memory protection keys.

EINVAL The flags argument is not zero.
The access_restrictions argument is invalid.

The system does not implement memory protection keys or runs in a
mode in which memory protection keys are disabled.

ENOSPC All available protection keys already have been allocated.

The system does not implement memory protection keys or runs in a
mode in which memory protection keys are disabled.

int pkey_free (int key) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Deallocate the protection key, so that it can be reused by pkey_alloc.

Calling this function does not change the access restrictions of the freed protection key.
The calling thread and other threads may retain access to it, even if it is subsequently
allocated again. For this reason, it is not recommended to call the pkey_free function.

ENOSYS The system does not implement memory protection keys.

EINVAL The key argument is not a valid protection key.

int pkey_mprotect (void *address, size_t length, int protection, [Function]
int key)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts]|, page 2.

Similar to mprotect, but also set the memory protection key for the memory region
to key.

Some systems use memory protection keys to emulate certain combinations of pro-
tection flags. Under such circumstances, specifying an explicit protection key may
behave as if additional flags have been specified in protection, even though this does
not happen with the default protection key. For example, some systems can support
PROT_EXEC-only mappings only with a default protection key, and memory with a key
which was allocated using pkey_alloc will still be readable if PROT_EXEC is specified
without PROT_READ.

If key is —1, the default protection key is applied to the mapping, just as if mprotect
had been called.

The pkey_mprotect function returns 0 on success and —1 on failure. The same errno
error conditions as for mprotect are defined for this function, with the following
addition:

EINVAL The key argument is not —1 or a valid memory protection key allocated
using pkey_alloc.



Chapter 3: Virtual Memory Allocation And Paging 82

ENOSYS The system does not implement memory protection keys, and key is not
—1.
int pkey_set (int key, unsigned int access_restrictions) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Change the access restrictions of the current thread for memory pages with the pro-
tection key key to access_restrictions. If access_restrictions is PKEY_UNRESTRICTED
(zero), no additional access restrictions on top of the page protection flags are ap-
plied. Otherwise, access_restrictions is a combination of the following flags:

PKEY_DISABLE_READ
Subsequent attempts to read from memory with the specified protection
key will fault. At present only AArch64 platforms with enabled Stage 1
permission overlays feature support this type of restriction.

PKEY_DISABLE_WRITE
Subsequent attempts to write to memory with the specified protection
key will fault.

PKEY_DISABLE_ACCESS
Subsequent attempts to write to or read from memory with the specified
protection key will fault. On AArch64 platforms with enabled Stage 1
permission overlays feature this restriction value has the same effect as
combination of PKEY_DISABLE_READ and PKEY_DISABLE_WRITE.

PKEY_DISABLE_EXECUTE
Subsequent attempts to execute from memory with the specified protec-
tion key will fault. At present only A Arch64 platforms with enabled Stage
1 permission overlays feature support this type of restriction.

Operations not specified as flags are not restricted. In particular, this means that the
memory region will remain executable if it was mapped with the PROT_EXEC protection
flag and PKEY_DISABLE_ACCESS has been specified.

Calling the pkey_set function with a protection key which was not allocated by
pkey_alloc results in undefined behavior. This means that calling this function on
systems which do not support memory protection keys is undefined.

The pkey_set function returns 0 on success and —1 on failure.
The following errno error conditions are defined for this function:

EINVAL The system does not support the access restrictions expressed in the
access_restrictions argument.

int pkey_get (int key) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Return the access restrictions of the current thread for memory pages with protection
key key. The return value is zero or a combination of the PKEY_DISABLE_* flags; see
the pkey_set function.



Chapter 3: Virtual Memory Allocation And Paging 83

The returned value should be checked for presence or absence of specific flags using
bitwise operations. Comparing the returned value with any of the flags or their
combination using equals will almost certainly fail.

Calling the pkey_get function with a protection key which was not allocated by
pkey_alloc results in undefined behavior. This means that calling this function on
systems which do not support memory protection keys is undefined.

3.5 Locking Pages

You can tell the system to associate a particular virtual memory page with a real page
frame and keep it that way — i.e., cause the page to be paged in if it isn’t already and
mark it so it will never be paged out and consequently will never cause a page fault. This
is called locking a page.

The functions in this chapter lock and unlock the calling process’ pages.

3.5.1 Why Lock Pages

Because page faults cause paged out pages to be paged in transparently, a process rarely
needs to be concerned about locking pages. However, there are two reasons people some-
times are:

e Speed. A page fault is transparent only insofar as the process is not sensitive to how
long it takes to do a simple memory access. Time-critical processes, especially realtime
processes, may not be able to wait or may not be able to tolerate variance in execution
speed.

A process that needs to lock pages for this reason probably also needs priority among
other processes for use of the CPU. See Section 23.3 [Process CPU Priority And
Scheduling], page 690.

In some cases, the programmer knows better than the system’s demand paging allocator
which pages should remain in real memory to optimize system performance. In this
case, locking pages can help.

e Privacy. If you keep secrets in virtual memory and that virtual memory gets paged
out, that increases the chance that the secrets will get out. If a passphrase gets written
out to disk swap space, for example, it might still be there long after virtual and real
memory have been wiped clean.

Be aware that when you lock a page, that’s one fewer page frame that can be used to
back other virtual memory (by the same or other processes), which can mean more page
faults, which means the system runs more slowly. In fact, if you lock enough memory, some
programs may not be able to run at all for lack of real memory.

3.5.2 Locked Memory Details

A memory lock is associated with a virtual page, not a real frame. The paging rule is: If a
frame backs at least one locked page, don’t page it out.

Memory locks do not stack. I.e., you can’t lock a particular page twice so that it has to
be unlocked twice before it is truly unlocked. It is either locked or it isn’t.



Chapter 3: Virtual Memory Allocation And Paging 84

A memory lock persists until the process that owns the memory explicitly unlocks it.
(But process termination and exec cause the virtual memory to cease to exist, which you
might say means it isn’t locked any more).

Memory locks are not inherited by child processes. (But note that on a modern Unix
system, immediately after a fork, the parent’s and the child’s virtual address space are
backed by the same real page frames, so the child enjoys the parent’s locks). See Section 27.4
[Creating a Process|, page 814.

Because of its ability to impact other processes, only the superuser can lock a page. Any
process can unlock its own page.

The system sets limits on the amount of memory a process can have locked and the
amount of real memory it can have dedicated to it. See Section 23.2 [Limiting Resource
Usage], page 686.

In Linux, locked pages aren’t as locked as you might think. Two virtual pages that are
not shared memory can nonetheless be backed by the same real frame. The kernel does this
in the name of efficiency when it knows both virtual pages contain identical data, and does
it even if one or both of the virtual pages are locked.

But when a process modifies one of those pages, the kernel must get it a separate frame
and fill it with the page’s data. This is known as a copy-on-write page fault. It takes a
small amount of time and in a pathological case, getting that frame may require 1/0.

To make sure this doesn’t happen to your program, don’t just lock the pages. Write
to them as well, unless you know you won’t write to them ever. And to make sure you
have pre-allocated frames for your stack, enter a scope that declares a C automatic variable
larger than the maximum stack size you will need, set it to something, then return from its
scope.

3.5.3 Functions To Lock And Unlock Pages

The symbols in this section are declared in sys/mman.h. These functions are defined by
POSIX.1b, but their availability depends on your kernel. If your kernel doesn’t allow these
functions, they exist but always fail. They are available with a Linux kernel.

Portability Note: POSIX.1b requires that when the mlock and munlock functions are
available, the file unistd.h define the macro _POSIX_MEMLOCK_RANGE and the file 1imits.h
define the macro PAGESIZE to be the size of a memory page in bytes. It requires that when
the mlockall and munlockall functions are available, the unistd.h file define the macro
_POSIX_MEMLOCK. The GNU C Library conforms to this requirement.

int mlock (const void *addr, size_t len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

mlock locks a range of the calling process’ virtual pages.
The range of memory starts at address addr and is len bytes long. Actually, since you

must lock whole pages, it is the range of pages that include any part of the specified
range.

When the function returns successfully, each of those pages is backed by (connected
to) a real frame (is resident) and is marked to stay that way. This means the function
may cause page-ins and have to wait for them.



Chapter 3: Virtual Memory Allocation And Paging 85

When the function fails, it does not affect the lock status of any pages.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
e At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL len is not positive.
ENOSYS The kernel does not provide mlock capability.

int mlock2 (const void *addr, size_t len, unsigned int flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.
This function is similar to mlock. If flags is zero, a call to mlock2 behaves exactly as
the equivalent call to mlock.

The flags argument must be a combination of zero or more of the following flags:

MLOCK_ONFAULT
Only those pages in the specified address range which are already in
memory are locked immediately. Additional pages in the range are auto-
matically locked in case of a page fault and allocation of memory.

Like mlock, mlock2 returns zero on success and -1 on failure, setting errno accord-
ingly. Additional errno values defined for mlock?2 are:

EINVAL The specified (non-zero) flags argument is not supported by this system.

You can lock all a process’ memory with mlockall. You unlock memory with munlock
or munlockall.

To avoid all page faults in a C program, you have to use mlockall, because some of the
memory a program uses is hidden from the C code, e.g. the stack and automatic variables,
and you wouldn’t know what address to tell mlock.

int munlock (const void *addr, size_t len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

munlock unlocks a range of the calling process’ virtual pages.

munlock is the inverse of mlock and functions completely analogously to mlock, except
that there is no EPERM failure.

int mlockall (int flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
mlockall locks all the pages in a process’ virtual memory address space, and/or any
that are added to it in the future. This includes the pages of the code, data and



Chapter 3: Virtual Memory Allocation And Paging 86

stack segment, as well as shared libraries, user space kernel data, shared memory, and
memory mapped files.

flags is a string of single bit flags represented by the following macros. They tell
mlockall which of its functions you want. All other bits must be zero.

MCL_CURRENT
Lock all pages which currently exist in the calling process’ virtual address
space.

MCL_FUTURE
Set a mode such that any pages added to the process’ virtual address
space in the future will be locked from birth. This mode does not affect
future address spaces owned by the same process so exec, which replaces
a process’ address space, wipes out MCL_FUTURE. See Section 27.6 [Exe-
cuting a File], page 816.

When the function returns successfully, and you specified MCL_CURRENT, all of the
process’ pages are backed by (connected to) real frames (they are resident) and are
marked to stay that way. This means the function may cause page-ins and have to
wait for them.

When the process is in MCL_FUTURE mode because it successfully executed this func-
tion and specified MCL_CURRENT, any system call by the process that requires space
be added to its virtual address space fails with errno = ENOMEM if locking the addi-
tional space would cause the process to exceed its locked page limit. In the case that
the address space addition that can’t be accommodated is stack expansion, the stack
expansion fails and the kernel sends a SIGSEGV signal to the process.

When the function fails, it does not affect the lock status of any pages or the future
locking mode.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
e At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL Undefined bits in flags are not zero.
ENOSYS The kernel does not provide mlockall capability.

You can lock just specific pages with mlock. You unlock pages with munlockall and
munlock.

int munlockall (void) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
munlockall unlocks every page in the calling process’ virtual address space and turns
off MCL_FUTURE future locking mode.



87

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is
set accordingly. The only way this function can fail is for generic reasons that all
functions and system calls can fail, so there are no specific errno values.



88

4 Character Handling

Programs that work with characters and strings often need to classify a character—is it
alphabetic, is it a digit, is it whitespace, and so on—and perform case conversion operations
on characters. The functions in the header file ctype.h are provided for this purpose.

Since the choice of locale and character set can alter the classifications of particular
character codes, all of these functions are affected by the current locale. (More precisely,
they are affected by the locale currently selected for character classification—the LC_CTYPE
category; see Section 7.3 [Locale Categories|, page 186.)

The ISO C standard specifies two different sets of functions. The one set works on char
type characters, the other one on wchar_t wide characters (see Section 6.1 [Introduction to
Extended Characters|, page 142).

4.1 Classification of Characters

This section explains the library functions for classifying characters. For example, isalpha
is the function to test for an alphabetic character. It takes one argument, the character to
test as an unsigned char value, and returns a nonzero integer if the character is alphabetic,
and zero otherwise. You would use it like this:
if (isalpha ((unsigned char) c))
printf ("The character “¥c' is alphabetic.\n", c);

Each of the functions in this section tests for membership in a particular class of char-
acters; each has a name starting with ‘is’. Each of them takes one argument, which is a
character to test. The character argument must be in the value range of unsigned char (0
to 255 for the GNU C Library). On a machine where the char type is signed, it may be
necessary to cast the argument to unsigned char, or mask it with ‘¢ Oxff’. (On unsigned
char machines, this step is harmless, so portable code should always perform it.) The ‘is’
functions return an int which is treated as a boolean value.

All ‘is’ functions accept the special value EOF and return zero. (Note that EOF must not
be cast to unsigned char for this to work.)

As an extension, the GNU C Library accepts signed char values as ‘is’ functions ar-
guments in the range -128 to -2, and returns the result for the corresponding unsigned
character. However, as there might be an actual character corresponding to the EOF integer
constant, doing so may introduce bugs, and it is recommended to apply the conversion to
the unsigned character range as appropriate.

The attributes of any given character can vary between locales. See Chapter 7 [Locales
and Internationalization], page 185, for more information on locales.

These functions are declared in the header file ctype.h.

int islower (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.
Returns true if ¢ is a lower-case letter. The letter need not be from the Latin alphabet,
any alphabet representable is valid.



Chapter 4: Character Handling 89

int isupper (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

Returns true if ¢ is an upper-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.

int isalpha (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is an alphabetic character (a letter). If islower or isupper is true
of a character, then isalpha is also true.

In some locales, there may be additional characters for which isalpha is true—letters
which are neither upper case nor lower case. But in the standard "C" locale, there
are no such additional characters.

int isdigit (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is a decimal digit (‘0’ through ‘9’).

int isalnum (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is an alphanumeric character (a letter or number); in other words,
if either isalpha or isdigit is true of a character, then isalnum is also true.

int isxdigit (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.

int ispunct (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Returns true if ¢ is a punctuation character. This means any printing character that
is not alphanumeric or a space character.

int isspace (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Returns true if ¢ is a whitespace character. In the standard "C" locale, isspace
returns true for only the standard whitespace characters:

' space
"\f' formfeed

'"\n' newline



Chapter 4: Character Handling 90

"\r' carriage return
"\t' horizontal tab
"\v' vertical tab
int isblank (int c) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is a blank character; that is, a space or a tab. This function was
originally a GNU extension, but was added in ISO C99.

int isgraph (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is a graphic character; that is, a character that has a glyph associated
with it. The whitespace characters are not considered graphic.

int isprint (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if c is a printing character. Printing characters include all the graphic
characters, plus the space (‘) character.

int iscntrl (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is a control character (that is, a character that is not a printing
character).

int isascii (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is a 7-bit unsigned char value that fits into the US/UK ASCII
character set. This function is a BSD extension and is also an SVID extension.

4.2 Case Conversion

This section explains the library functions for performing conversions such as case mappings
on characters. For example, toupper converts any character to upper case if possible. If
the character can’t be converted, toupper returns it unchanged.

These functions take one argument of type int, which is the character to convert, and
return the converted character as an int. If the conversion is not applicable to the argument
given, the argument is returned unchanged.

Compatibility Note: In pre-ISO C dialects, instead of returning the argument
unchanged, these functions may fail when the argument is not suitable for the conversion.
Thus for portability, you may need to write islower(c) ? toupper(c) : c¢ rather than
just toupper(c).

These functions are declared in the header file ctype.h.



Chapter 4: Character Handling 91

int tolower (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

If ¢ is an upper-case letter, tolower returns the corresponding lower-case letter. If ¢
is not an upper-case letter, c¢ is returned unchanged.

int toupper (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

If c is a lower-case letter, toupper returns the corresponding upper-case letter. Oth-
erwise c is returned unchanged.

int toascii (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function converts ¢ to a 7-bit unsigned char value that fits into the US/UK
ASCII character set, by clearing the high-order bits. This function is a BSD extension
and is also an SVID extension.

int _tolower (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This is identical to tolower, and is provided for compatibility with the SVID. See
Section 1.2.4 [SVID (The System V Interface Description)], page 11.

int _toupper (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This is identical to toupper, and is provided for compatibility with the SVID.

4.3 Character class determination for wide characters

Amendment 1 to ISO C90 defines functions to classify wide characters. Although the orig-
inal ISO C90 standard already defined the type wchar_t, no functions operating on them
were defined.

The general design of the classification functions for wide characters is more general.
It allows extensions to the set of available classifications, beyond those which are always
available. The POSIX standard specifies how extensions can be made, and this is already
implemented in the GNU C Library implementation of the localedef program.

The character class functions are normally implemented with bitsets, with a bitset per
character. For a given character, the appropriate bitset is read from a table and a test is
performed as to whether a certain bit is set. Which bit is tested for is determined by the
class.

For the wide character classification functions this is made visible. There is a type
classification type defined, a function to retrieve this value for a given class, and a function
to test whether a given character is in this class, using the classification value. On top of
this the normal character classification functions as used for char objects can be defined.



Chapter 4: Character Handling 92

wctype_t [Data type]
The wctype_t can hold a value which represents a character class. The only defined
way to generate such a value is by using the wctype function.

This type is defined in wctype.h.

wctype_t wctype (const char *property) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

wctype returns a value representing a class of wide characters which is identified by
the string property. Besides some standard properties each locale can define its own
ones. In case no property with the given name is known for the current locale selected
for the LC_CTYPE category, the function returns zero.

The properties known in every locale are:

"alnum" "alpha" "cntrl" "digit"
llgraphll Illowerll "print" "pllnCt"
"Space" Hupperll "Xdlglt n

This function is declared in wctype.h.

To test the membership of a character to one of the non-standard classes the ISO C
standard defines a completely new function.

int iswctype (wint_t wc, wctype_t desc) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
This function returns a nonzero value if wc is in the character class specified by desc.
desc must previously be returned by a successful call to wctype.

This function is declared in wctype.h.

To make it easier to use the commonly-used classification functions, they are defined in
the C library. There is no need to use wctype if the property string is one of the known
character classes. In some situations it is desirable to construct the property strings, and
then it is important that wctype can also handle the standard classes.

int iswalnum (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
This function returns a nonzero value if we is an alphanumeric character (a letter or
number); in other words, if either iswalpha or iswdigit is true of a character, then
iswalnum is also true.
This function can be implemented using

iswctype (wc, wctype ("alnum"))

It is declared in wctype.h.

int iswalpha (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.



Chapter 4: Character Handling 93

Returns true if we is an alphabetic character (a letter). If iswlower or iswupper is
true of a character, then iswalpha is also true.

In some locales, there may be additional characters for which iswalpha is true—
letters which are neither upper case nor lower case. But in the standard "C" locale,
there are no such additional characters.
This function can be implemented using

iswctype (wc, wctype ("alpha"))

It is declared in wctype.h.

int iswcntrl (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a control character (that is, a character that is not a printing
character).
This function can be implemented using

iswctype (wc, wctype ("cntrl"))

It is declared in wctype.h.

int iswdigit (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a digit (e.g., ‘0’ through ‘9’). Please note that this function
does not only return a nonzero value for decimal digits, but for all kinds of digits.
A consequence is that code like the following will not work unconditionally for wide

characters:
n = 0;
while (iswdigit (*wc))
{
n x= 10;
n += *wc++ - L'0';
}

This function can be implemented using

iswctype (wc, wctype ("digit"))

It is declared in wctype.h.

int iswgraph (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a graphic character; that is, a character that has a glyph asso-
ciated with it. The whitespace characters are not considered graphic.

This function can be implemented using

iswctype (wc, wctype ("graph"))

It is declared in wctype.h.



Chapter 4: Character Handling 94

int iswlower (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Returns true if we is a lower-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.

This function can be implemented using
iswctype (wc, wctype ("lower"))

It is declared in wctype.h.

int iswprint (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Returns true if we is a printing character. Printing characters include all the graphic
characters, plus the space (‘ ’) character.

This function can be implemented using
iswctype (wc, wctype ("print"))

It is declared in wctype.h.

int iswpunct (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if wc is a punctuation character. This means any printing character
that is not alphanumeric or a space character.

This function can be implemented using
iswctype (wc, wctype ("punct"))

It is declared in wctype.h.

int iswspace (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
Returns true if wc is a whitespace character. In the standard "C" locale, iswspace
returns true for only the standard whitespace characters:

L' space

L'\f"' formfeed

L'\n' newline

L'\r' carriage return
L'\t' horizontal tab
L'\v' vertical tab

This function can be implemented using
iswctype (wc, wctype ("space"))

It is declared in wctype.h.



Chapter 4: Character Handling 95

int iswupper (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Returns true if wc is an upper-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.
This function can be implemented using

iswctype (wc, wctype ("upper"))

It is declared in wctype.h.

int iswxdigit (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
Returns true if we is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0" through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.
This function can be implemented using

iswctype (wc, wctype ("xdigit"))

It is declared in wctype.h.

The GNU C Library also provides a function which is not defined in the ISO C standard
but which is available as a version for single byte characters as well.

int iswblank (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a blank character; that is, a space or a tab. This function was
originally a GNU extension, but was added in ISO C99. It is declared in wchar.h.

4.4 Notes on using the wide character classes

The first note is probably not astonishing but still occasionally a cause of problems. The
iswXXX functions can be implemented using macros and in fact, the GNU C Library does
this. They are still available as real functions but when the wctype.h header is included
the macros will be used. This is the same as the char type versions of these functions.

The second note covers something new. It can be best illustrated by a (real-world)
example. The first piece of code is an excerpt from the original code. It is truncated a bit
but the intention should be clear.

int
is_in_class (int c, const char *class)
{

if (strcmp (class, "alnum") == 0)

return isalnum (c);

if (strcmp (class, "alpha") == 0)
return isalpha (c);

if (strcmp (class, "cntrl") == 0)
return iscntrl (c);

return O;

}



Chapter 4: Character Handling 96

Now, with the wctype and iswctype you can avoid the if cascades, but rewriting the
code as follows is wrong:
int
is_in_class (int c, const char *class)
¢ wctype_t desc = wctype (class);
return desc 7 iswctype ((wint_t) c, desc) : O;
}

The problem is that it is not guaranteed that the wide character representation of a
single-byte character can be found using casting. In fact, usually this fails miserably. The
correct solution to this problem is to write the code as follows:

int
is_in_class (int c, const char *class)
¢ wctype_t desc = wctype (class);
return desc ? iswctype (btowc (c), desc) : 0;
}

See Section 6.3.3 [Converting Single Characters], page 148, for more information on
btowc. Note that this change probably does not improve the performance of the program
a lot since the wctype function still has to make the string comparisons. It gets really
interesting if the is_in_class function is called more than once for the same class name.
In this case the variable desc could be computed once and reused for all the calls. Therefore
the above form of the function is probably not the final one.

4.5 Mapping of wide characters.

The classification functions are also generalized by the ISO C standard. Instead of just
allowing the two standard mappings, a locale can contain others. Again, the localedef
program already supports generating such locale data files.

wctrans_t [Data Type]
This data type is defined as a scalar type which can hold a value representing the
locale-dependent character mapping. There is no way to construct such a value apart
from using the return value of the wctrans function.

This type is defined in wctype.h.

wctrans_t wctrans (const char *property) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The wctrans function has to be used to find out whether a named mapping is defined
in the current locale selected for the LC_CTYPE category. If the returned value is non-
zero, you can use it afterwards in calls to towctrans. If the return value is zero no
such mapping is known in the current locale.

Beside locale-specific mappings there are two mappings which are guaranteed to be
available in every locale:

"tolower" "toupper"

These functions are declared in wctype.h.



Chapter 4: Character Handling 97

wint_t towctramns (wint_t wc, wctrans_t desc) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

towctrans maps the input character wc according to the rules of the mapping for
which desc is a descriptor, and returns the value it finds. desc must be obtained by
a successful call to wctrans.

This function is declared in wctype.h.

For the generally available mappings, the ISO C standard defines convenient shortcuts
so that it is not necessary to call wctrans for them.

wint_t towlower (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

If we is an upper-case letter, towlower returns the corresponding lower-case letter.
If wc is not an upper-case letter, wc is returned unchanged.
towlower can be implemented using

towctrans (wc, wctrans ("tolower"))

This function is declared in wctype.h.

wint_t towupper (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
If we is a lower-case letter, towupper returns the corresponding upper-case letter.
Otherwise wc is returned unchanged.
towupper can be implemented using

towctrans (wc, wctrans ("toupper"))

This function is declared in wctype.h.

The same warnings given in the last section for the use of the wide character classification
functions apply here. It is not possible to simply cast a char type value to a wint_t and
use it as an argument to towctrans calls.



98

5 String and Array Utilities

Operations on strings (null-terminated byte sequences) are an important part of many
programs. The GNU C Library provides an extensive set of string utility functions, including
functions for copying, concatenating, comparing, and searching strings. Many of these
functions can also operate on arbitrary regions of storage; for example, the memcpy function
can be used to copy the contents of any kind of array.

It’s fairly common for beginning C programmers to “reinvent the wheel” by duplicating
this functionality in their own code, but it pays to become familiar with the library functions
and to make use of them, since this offers benefits in maintenance, efficiency, and portability.

For instance, you could easily compare one string to another in two lines of C code, but
if you use the built-in strecmp function, you're less likely to make a mistake. And, since
these library functions are typically highly optimized, your program may run faster too.

5.1 Representation of Strings

This section is a quick summary of string concepts for beginning C programmers. It de-
scribes how strings are represented in C and some common pitfalls. If you are already
familiar with this material, you can skip this section.

A string is a null-terminated array of bytes of type char, including the terminating
null byte. String-valued variables are usually declared to be pointers of type char *. Such
variables do not include space for the contents of a string; that has to be stored some-
where else—in an array variable, a string constant, or dynamically allocated memory (see
Section 3.2 [Allocating Storage For Program Datal, page 45). It’s up to you to store the
address of the chosen memory space into the pointer variable. Alternatively you can store a
null pointer in the pointer variable. The null pointer does not point anywhere, so attempting
to reference the string it points to gets an error.

A multibyte character is a sequence of one or more bytes that represents a single character
using the locale’s encoding scheme; a null byte always represents the null character. A
multibyte string is a string that consists entirely of multibyte characters. In contrast, a
wide string is a null-terminated sequence of wchar_t objects. A wide-string variable is
usually declared to be a pointer of type wchar_t *, by analogy with string variables and
char *. See Section 6.1 [Introduction to Extended Characters|, page 142.

By convention, the null byte, '\0', marks the end of a string and the null wide character,
L'\0', marks the end of a wide string. For example, in testing to see whether the char *
variable p points to a null byte marking the end of a string, you can write !*p or *p ==
"\O0".

A null byte is quite different conceptually from a null pointer, although both are repre-
sented by the integer constant 0.

A string literal appears in C program source as a multibyte string between double-quote
characters (‘"’). If the initial double-quote character is immediately preceded by a capital ‘L’
(ell) character (as in L"foo"), it is a wide string literal. String literals can also contribute to
string concatenation: "a" "b" is the same as "ab". For wide strings one can use either L"a"
L"b" or L"a" "b". Modification of string literals is not allowed by the GNU C compiler,
because literals are placed in read-only storage.



Chapter 5: String and Array Utilities 99

Arrays that are declared const cannot be modified either. It’s generally good style to
declare non-modifiable string pointers to be of type const char *, since this often allows
the C compiler to detect accidental modifications as well as providing some amount of
documentation about what your program intends to do with the string.

The amount of memory allocated for a byte array may extend past the null byte that
marks the end of the string that the array contains. In this document, the term allocated
size is always used to refer to the total amount of memory allocated for an array, while the
term length refers to the number of bytes up to (but not including) the terminating null
byte. Wide strings are similar, except their sizes and lengths count wide characters, not
bytes.

A notorious source of program bugs is trying to put more bytes into a string than fit
in its allocated size. When writing code that extends strings or moves bytes into a pre-
allocated array, you should be very careful to keep track of the length of the string and
make explicit checks for overflowing the array. Many of the library functions do not do this
for you! Remember also that you need to allocate an extra byte to hold the null byte that
marks the end of the string.

Originally strings were sequences of bytes where each byte represented a single character.
This is still true today if the strings are encoded using a single-byte character encoding.
Things are different if the strings are encoded using a multibyte encoding (for more informa-
tion on encodings see Section 6.1 [Introduction to Extended Characters|, page 142). There
is no difference in the programming interface for these two kind of strings; the programmer
has to be aware of this and interpret the byte sequences accordingly.

But since there is no separate interface taking care of these differences the byte-based
string functions are sometimes hard to use. Since the count parameters of these functions
specify bytes a call to memcpy could cut a multibyte character in the middle and put an
incomplete (and therefore unusable) byte sequence in the target buffer.

To avoid these problems later versions of the ISO C standard introduce a second set of
functions which are operating on wide characters (see Section 6.1 [Introduction to Extended
Characters], page 142). These functions don’t have the problems the single-byte versions
have since every wide character is a legal, interpretable value. This does not mean that
cutting wide strings at arbitrary points is without problems. It normally is for alphabet-
based languages (except for non-normalized text) but languages based on syllables still have
the problem that more than one wide character is necessary to complete a logical unit. This
is a higher level problem which the C library functions are not designed to solve. But it is
at least good that no invalid byte sequences can be created. Also, the higher level functions
can also much more easily operate on wide characters than on multibyte characters so that
a common strategy is to use wide characters internally whenever text is more than simply
copied.

The remaining of this chapter will discuss the functions for handling wide strings in
parallel with the discussion of strings since there is almost always an exact equivalent
available.

5.2 String and Array Conventions

This chapter describes both functions that work on arbitrary arrays or blocks of memory,
and functions that are specific to strings and wide strings.



Chapter 5: String and Array Utilities 100

Functions that operate on arbitrary blocks of memory have names beginning with ‘mem’
and ‘wmem’ (such as memcpy and wmemcpy) and invariably take an argument which specifies
the size (in bytes and wide characters respectively) of the block of memory to operate on.
The array arguments and return values for these functions have type void * or wchar_t *.
As a matter of style, the elements of the arrays used with the ‘mem’ functions are referred to
as “bytes”. You can pass any kind of pointer to these functions, and the sizeof operator
is useful in computing the value for the size argument. Parameters to the ‘wmem’ functions
must be of type wchar_t *. These functions are not really usable with anything but arrays
of this type.

In contrast, functions that operate specifically on strings and wide strings have names
beginning with ‘str’ and ‘wcs’ respectively (such as strcpy and wcscpy) and look for a
terminating null byte or null wide character instead of requiring an explicit size argument to
be passed. (Some of these functions accept a specified maximum length, but they also check
for premature termination.) The array arguments and return values for these functions have
type char * and wchar_t * respectively, and the array elements are referred to as “bytes”
and “wide characters”.

In many cases, there are both ‘mem’ and ‘str’/‘wcs’ versions of a function. The one that
is more appropriate to use depends on the exact situation. When your program is manipu-
lating arbitrary arrays or blocks of storage, then you should always use the ‘mem’ functions.
On the other hand, when you are manipulating strings it is usually more convenient to use
the ‘str’/‘wcs’ functions, unless you already know the length of the string in advance. The
‘wmem’ functions should be used for wide character arrays with known size.

Some of the memory and string functions take single characters as arguments. Since
a value of type char is automatically promoted into a value of type int when used as a
parameter, the functions are declared with int as the type of the parameter in question. In
case of the wide character functions the situation is similar: the parameter type for a single
wide character is wint_t and not wchar_t. This would for many implementations not be
necessary since wchar_t is large enough to not be automatically promoted, but since the
ISO C standard does not require such a choice of types the wint_t type is used.

5.3 String Length

You can get the length of a string using the strlen function. This function is declared in
the header file string.h.

size_t strlen (const char *s) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The strlen function returns the length of the string s in bytes. (In other words, it
returns the offset of the terminating null byte within the array.)

For example,
strlen ("hello, world")
= 12
When applied to an array, the strlen function returns the length of the string stored
there, not its allocated size. You can get the allocated size of the array that holds a
string using the sizeof operator:
char string[32] = "hello, world";



Chapter 5: String and Array Utilities 101

sizeof (string)
= 32

strlen (string)
= 12

But beware, this will not work unless string is the array itself, not a pointer to it.
For example:
char string[32] = "hello, world";
char *ptr = string;
sizeof (string)
= 32
sizeof (ptr)
= 4 /* (on a machine with 4 byte pointers) */
This is an easy mistake to make when you are working with functions that take string
arguments; those arguments are always pointers, not arrays.

It must also be noted that for multibyte encoded strings the return value does not
have to correspond to the number of characters in the string. To get this value the
string can be converted to wide characters and wcslen can be used or something like
the following code can be used:
/* The input is in string.
The length is expected in n. */
{
mbstate_t t;
char *scopy = string;
/* In initial state. */
memset (&t, '\0', sizeof (t));
/* Determine number of characters. */
n = mbsrtowcs (NULL, &scopy, strlen (scopy), &t);
}
This is cumbersome to do so if the number of characters (as opposed to bytes) is

needed often it is better to work with wide characters.
The wide character equivalent is declared in wchar.h.

size_t wcslen (const wchar_t *ws) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The weslen function is the wide character equivalent to strlen. The return value is
the number of wide characters in the wide string pointed to by ws (this is also the
offset of the terminating null wide character of ws).

Since there are no multi wide character sequences making up one wide character the
return value is not only the offset in the array, it is also the number of wide characters.

This function was introduced in Amendment 1 to ISO C90.

size_t strnlen (const char *s, size_t maxlen) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This returns the offset of the first null byte in the array s, except that it returns
maxlen if the first maxlen bytes are all non-null. Therefore this function is equivalent



Chapter 5: String and Array Utilities 102

to (strlen (s) < maxlen ? strlen (s) : maxlen) but it is more efficient and works
even if s is not null-terminated so long as maxlen does not exceed the size of s’s array.

char string[32] = "hello, world";
strnlen (string, 32)
= 12
strnlen (string, 5)
= 5
This function is part of POSIX.1-2008 and later editions, but was available in the
GNU C Library and other systems as an extension long before it was standardized.

It is declared in string.h.

size_t wcsnlen (const wchar_t *ws, size_t maxlen) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

wcsnlen is the wide character equivalent to strnlen. The maxlen parameter specifies
the maximum number of wide characters.

This function is part of POSIX.1-2008 and later editions, and is declared in wchar.h.

5.4 Copying Strings and Arrays

You can use the functions described in this section to copy the contents of strings, wide

strings, and arrays. The ‘str’ and ‘mem’ functions are declared in string.h while the ‘w
functions are declared in wchar.h.

A helpful way to remember the ordering of the arguments to the functions in this section
is that it corresponds to an assignment expression, with the destination array specified to
the left of the source array. Most of these functions return the address of the destination
array; a few return the address of the destination’s terminating null, or of just past the
destination.

Most of these functions do not work properly if the source and destination arrays overlap.
For example, if the beginning of the destination array overlaps the end of the source array,
the original contents of that part of the source array may get overwritten before it is copied.
Even worse, in the case of the string functions, the null byte marking the end of the string
may be lost, and the copy function might get stuck in a loop trashing all the memory
allocated to your program.

All functions that have problems copying between overlapping arrays are explicitly iden-
tified in this manual. In addition to functions in this section, there are a few others like
sprintf (see Section 12.12.7 [Formatted Output Functions|, page 300) and scanf (see
Section 12.14.8 [Formatted Input Functions|, page 323).

void * memcpy (void *restrict to, const void *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The memcpy function copies size bytes from the object beginning at from into the
object beginning at to. The behavior of this function is undefined if the two arrays
to and from overlap; use memmove instead if overlapping is possible.

The value returned by memcpy is the value of to.



Chapter 5: String and Array Utilities 103

Here is an example of how you might use memcpy to copy the contents of an array:

struct foo *oldarray, *newarray;
int arraysize;

memcpy (new, old, arraysize * sizeof (struct foo));

wchar_t * wmemcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The wmemcpy function copies size wide characters from the object beginning at wfrom
into the object beginning at wto. The behavior of this function is undefined if the
two arrays wto and wirom overlap; use wmemmove instead if overlapping is possible.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmemcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) memcpy (wto, wfrom, size * sizeof (wchar_t));

}
The value returned by wmemcpy is the value of wto.
This function was introduced in Amendment 1 to ISO C90.

void * mempcpy (void *restrict to, const void *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The mempcpy function is nearly identical to the memcpy function. It copies size bytes
from the object beginning at from into the object pointed to by to. But instead of
returning the value of to it returns a pointer to the byte following the last written byte
in the object beginning at to. Le., the value is ((void *) ((char *) to + size)).

This function is useful in situations where a number of objects shall be copied to
consecutive memory positions.
void =*
combine (void *o0l, size_t sl1, void *02, size_t s2)
{
void *result = malloc (sl + s2);
if (result !'= NULL)
mempcpy (mempcpy (result, ol, sl1), 02, s2);
return result;

}
This function is a GNU extension.

wchar_t * wmempcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The wmempcpy function is nearly identical to the wmemcpy function. It copies size
wide characters from the object beginning at wfrom into the object pointed to by



Chapter 5: String and Array Utilities 104

wto. But instead of returning the value of wto it returns a pointer to the wide
character following the last written wide character in the object beginning at wto.
Le., the value is wto + size.

This function is useful in situations where a number of objects shall be copied to
consecutive memory positions.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}

This function is a GNU extension.

void * memmove (void *to, const void *from, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

memmove copies the size bytes at from into the size bytes at to, even if those two
blocks of space overlap. In the case of overlap, memmove is careful to copy the original
values of the bytes in the block at from, including those bytes which also belong to
the block at to.

The value returned by memmove is the value of to.

wchar_t * wmemmove (wchar_t *wto, const wchar_t *wfrom, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

wmemmove copies the size wide characters at wfrom into the size wide characters at
wto, even if those two blocks of space overlap. In the case of overlap, wmemmove
is careful to copy the original values of the wide characters in the block at wifrom,
including those wide characters which also belong to the block at wto.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmempcpy (wchar_t #*restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}
The value returned by wmemmove is the value of wto.

This function is a GNU extension.

void * memccpy (void *restrict to, const void *restrict from, int c, [Function]
size_t size)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.



Chapter 5: String and Array Utilities 105

This function copies no more than size bytes from from to to, stopping if a byte
matching c is found. The return value is a pointer into to one byte past where ¢ was
copied, or a null pointer if no byte matching ¢ appeared in the first size bytes of from.

void * memset (void *block, int c, size-t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function copies the value of ¢ (converted to an unsigned char) into each of the
first size bytes of the object beginning at block. It returns the value of block.

wchar_t * wmemset (wchar_t *block, wchar_t wc, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function copies the value of wc into each of the first size wide characters of the
object beginning at block. It returns the value of block.

char * strcpy (char *restrict to, const char *restrict from) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This copies bytes from the string from (up to and including the terminating null
byte) into the string to. Like memcpy, this function has undefined results if the strings
overlap. The return value is the value of to.

wchar_t * wcscpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts], page 2.

This copies wide characters from the wide string wfrom (up to and including the
terminating null wide character) into the string wto. Like wmemcpy, this function has
undefined results if the strings overlap. The return value is the value of wto.

char * strdup (const char *s) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function copies the string s into a newly allocated string. The string is allocated
using malloc; see Section 3.2.3 [Unconstrained Allocation], page 47. If malloc cannot
allocate space for the new string, strdup returns a null pointer. Otherwise it returns
a pointer to the new string.

wchar_t * wcsdup (const wchar_t *ws) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.
This function copies the wide string ws into a newly allocated string. The string is al-
located using malloc; see Section 3.2.3 [Unconstrained Allocation], page 47. If malloc
cannot allocate space for the new string, wcsdup returns a null pointer. Otherwise it
returns a pointer to the new wide string.

This function is a GNU extension.



Chapter 5: String and Array Utilities 106

char * stpcpy (char *restrict to, const char *restrict from) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is like strcpy, except that it returns a pointer to the end of the string
to (that is, the address of the terminating null byte to + strlen (from)) rather than
the beginning.

For example, this program uses stpcpy to concatenate ‘foo’ and ‘bar’ to produce
‘foobar’, which it then prints.

#include <string.h>
#include <stdio.h>

int

main (void)

{
char buffer[10];
char *to = buffer;
to = stpcpy (to, "foo");
to = stpcpy (to, "bar");
puts (buffer);
return O;

}

This function is part of POSIX.1-2008 and later editions, but was available in the
GNU C Library and other systems as an extension long before it was standardized.

Its behavior is undefined if the strings overlap. The function is declared in string.h.

wchar_t * wcpepy (wchar_t *restrict wto, const wchar_t *restrict [Function]

char

wfrom)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function is like wcscpy, except that it returns a pointer to the end of the
string wto (that is, the address of the terminating null wide character wto + wcslen
(wfrom)) rather than the beginning.

This function is not part of ISO or POSIX but was found useful while developing the
GNU C Library itself.

The behavior of wepepy is undefined if the strings overlap.
wepepy is a GNU extension and is declared in wchar.h.

* strdupa (const char *s) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This macro is similar to strdup but allocates the new string using alloca instead
of malloc (see Section 3.2.7 [Automatic Storage with Variable Size], page 75). This
means of course the returned string has the same limitations as any block of memory
allocated using alloca.

For obvious reasons strdupa is implemented only as a macro; you cannot get the
address of this function. Despite this limitation it is a useful function. The following
code shows a situation where using malloc would be a lot more expensive.



Chapter 5: String and Array Utilities 107

#include <paths.h>
#include <string.h>
#include <stdio.h>

const char path[] = _PATH_STDPATH;

int

main (void)

{
char *wr_path = strdupa (path);
char *cp = strtok (wr_path, ":");

while (cp != NULL)
{
puts (cp);
cp = strtok (NULL, ":");
}
return O;
}
Please note that calling strtok using path directly is invalid. It is also not al-
lowed to call strdupa in the argument list of strtok since strdupa uses alloca (see
Section 3.2.7 [Automatic Storage with Variable Size|, page 75) can interfere with the

parameter passing.
This function is only available if GNU CC is used.

void bcopy (const void *from, void *to, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This is a partially obsolete alternative for memmove, derived from BSD. Note that it
is not quite equivalent to memmove, because the arguments are not in the same order
and there is no return value.

void bzero (void *block, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This is a partially obsolete alternative for memset, derived from BSD. Note that it is
not as general as memset, because the only value it can store is zero.

5.5 Concatenating Strings

The functions described in this section concatenate the contents of a string or wide string
to another. They follow the string-copying functions in their conventions. See Section 5.4
[Copying Strings and Arrays], page 102. ‘strcat’ is declared in the header file string.h
while ‘wcscat’ is declared in wchar.h.

As noted below, these functions are problematic as their callers may have performance
issues.

char * strcat (char *restrict to, const char *restrict from) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.



Chapter 5: String and Array Utilities 108

The strcat function is similar to strcpy, except that the bytes from from are con-
catenated or appended to the end of to, instead of overwriting it. That is, the first
byte from from overwrites the null byte marking the end of to.

An equivalent definition for strcat would be:

char *
strcat (char *restrict to, const char *restrict from)
{

strcpy (to + strlen (to), from);

return to;

}
This function has undefined results if the strings overlap.

As noted below, this function has significant performance issues.

wchar_t * wcscat (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The wescat function is similar to wescpy, except that the wide characters from wfrom
are concatenated or appended to the end of wto, instead of overwriting it. That is,
the first wide character from wfrom overwrites the null wide character marking the
end of wto.

An equivalent definition for wescat would be:

wchar_t x*
wcscat (wchar_t *wto, const wchar_t *wfrom)
{

wcscpy (wto + wcslen (wto), wfrom);
return wto;

}
This function has undefined results if the strings overlap.

As noted below, this function has significant performance issues.

Programmers using the strcat or wcscat functions (or the strlcat, strncat and
wcsncat functions defined in a later section, for that matter) can easily be recognized
as lazy and reckless. In almost all situations the lengths of the participating strings are
known (it better should be since how can one otherwise ensure the allocated size of the
buffer is sufficient?) Or at least, one could know them if one keeps track of the results of
the various function calls. But then it is very inefficient to use strcat/wcscat. A lot of
time is wasted finding the end of the destination string so that the actual copying can start.
This is a common example:

/* This function concatenates arbitrarily many strings. The last
parameter must be NULL. */
char *
concat (const char *str, ...)
{
va_list ap, ap2;
size_t total = 1;

va_start (ap, str);
va_copy (ap2, ap);



Chapter 5: String and Array Utilities 109

/* Determine how much space we need. */
for (const char *s = str; s != NULL; s = va_arg (ap, const char *))
total += strlen (8);

va_end (ap);

char *result = malloc (total);
if (result != NULL)
{
result[0] = '\0';

/* Copy the strings. */
for (s = str; s != NULL; s = va_arg (ap2, const char *))
strcat (result, s);

}
va_end (ap2);

return result;

}

This looks quite simple, especially the second loop where the strings are actually copied.
But these innocent lines hide a major performance penalty. Just imagine that ten strings
of 100 bytes each have to be concatenated. For the second string we search the already
stored 100 bytes for the end of the string so that we can append the next string. For all
strings in total the comparisons necessary to find the end of the intermediate results sums
up to 5500! If we combine the copying with the search for the allocation we can write this
function more efficiently:

char *
concat (const char *str, ...)
{
size_t allocated = 100;
char *result = malloc (allocated);

if (result !'= NULL)
{
va_list ap;
size_t resultlen = 0;
char *newp;

va_start (ap, str);

for (const char *s = str; s != NULL; s = va_arg (ap, const char x))
{

size_t len = strlen (s);

/* Resize the allocated memory if necessary. */
if (resultlen + len + 1 > allocated)
{
allocated += len;
newp = reallocarray (result, allocated, 2);
allocated *= 2;
if (newp == NULL)
{
free (result);
return NULL;
}



Chapter 5: String and Array Utilities 110

result = newp;

}

memcpy (result + resultlen, s, len);
resultlen += len;

}

/* Terminate the result string. */
result[resultlen++] = '\0';

/* Resize memory to the optimal size. */
newp = realloc (result, resultlen);
if (newp != NULL)

result = newp;

va_end (ap);

}

return result;
}

With a bit more knowledge about the input strings on