The GNU C Library Reference Manual

The GNU C Library

Reference Manual

Sandra Loosemore
with
Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper

for version 2.42.9000

This is The GNU C Library Reference Manual, for version 2.42.9000.

Copyright (© 1993-2025 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Free Software Needs Free
Documentation” and “GNU Lesser General Public License”, the Front-Cover texts being
“A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled "GNU Free Documentation License".

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual. Buying copies from the FSF supports it in developing GNU and promoting software
freedom.”

Short Contents

© 00 1 O Ot = W N -

W W W W N NN DD DN NN DNNIDN - P = = = = = = = =
W N P O © 0 J O O == W N = O © 0 ~J O O i W NN~ O

Introduction. 1
Error Reporting. i 24
Virtual Memory Allocation And Paging 44
Character Handling 89
String and Array Utilities. i ... 99
Character Set Handling. 144
Locales and Internationalization........................ 187
Message Translation 207
Searching and Sorting 232
Pattern Matching i 244
Input/Output Overview 266
Input/Output on Streamst 271
Low-Level Input/Output. i, 349
File System Interface......... 414
Pipesand FIFOs o e 468
SOCKetS . . vt 473
Low-Level Terminal Interface 523
SySlog . o 554
Mathematics 562
Arithmetic Functions. i L. 595
Bit Manipulation......... 643
Dateand Time. 647
Resource Usage And Limitation........................ 688
Non-Local Exits......... i 714
Signal Handlingo i 723
The Basic Program/System Interface.................... 769
Processes o 814
Inter-Process Communication. 827
Job Control 828
System Databases and Name Service Switch.............. 846
Users and GIoupsvv ettt e e e e 856
System Management i i, 886

System Configuration Parameters....................... 901

34 Cryptographic Functions., 923
35 Debugging support 925
36 Threads oo e e 928
37 Dynamic Linker. 951
38 Internal probes....... ... 969
39 Tunables. 974
A C Language Facilities in the Library 987
B Summary of Library Facilities. 1003
C Installing the GNU C Library........ 1140
D Library Maintenance 1151
E Platform-specific facilities o o L. 1163
F Contributors to the GNU C Library.................... 1172
G Free Software Needs Free Documentation 1180
H GNU Lesser General Public License.................... 1182
I GNU Free Documentation License 1191
Concept Indexo 1199
TypeIndexo 1212
Function and MacroIndexo .. 1215
Variable and Constant Macro Index 1233

Program and File Index i i i 1246

11

Table of Contents

1 Introduction.................. 1
1.1 Getting Started. 1
1.2 Standards and Portability L 1

1.2.1 IS0 O 2
1.2.2 POSIX (The Portable Operating System Interface)......... 2
1.2.2.1 POSIX Safety Concepts........ccovriinininienn... 2
1.2.2.2 Unsafe Features............. ..., 4
1.2.2.3 Conditionally Safe Features 5
1.2.2.4 Other Safety Remarkso oo .. 9

1.2.3 Berkeley Unixcoouiiiiii i 11
1.2.4 SVID (The System V Interface Description)............... 11
1.2.5 XPG (The X/Open Portability Guide).................... 12
1.2.6 Linux (The Linux Kernel)o ... 12
1.3 Using the Library ... e 12
1.3.1 Header Files...... ..o 12
1.3.2 Macro Definitions of Functions............................ 14
1.3.3 Reserved Namesoouuiiiiiiiiiii i, 14
1.3.4 Feature Test Macros.........c.ooiiiiiiiiiiiiinniinn. 16
1.4 Roadmap to the Manual..................coiiiiiiiiiiiia... 21

2 Error Reporting................................ 24
2.1 Checking for Errors.o, 24
2.2 Error Codeso 25
2.3 ErTor Messagesttt 37

3 Virtual Memory Allocation And Paging 44
3.1 Process Memory Concepts.......coovuuiiiiiiieiiiieanninn... 44
3.2 Allocating Storage For Program Data.......................... 45

3.2.1 Memory Allocation in C Programs........................ 46
3.2.1.1 Dynamic Memory Allocation......................... 46
3.2.2 The GNU Allocator ..ot 47
3.2.3 Unconstrained Allocation............... ... 47
3.2.3.1 Basic Memory Allocation 47
3.2.3.2 Examples of malloc ..., 48
3.2.3.3 Freeing Memory Allocated with malloc.............. 49
3.2.3.4 Changing the Size of a Block......................... 50
3.2.3.5 Allocating Cleared Space............cccoviiiiiian... 51
3.2.3.6 Allocating Aligned Memory Blocks................... 52
3.2.3.7 Malloc Tunable Parameters.......................... 54
3.2.3.8 Heap Consistency Checking.......................... 56
3.2.3.9 Statistics for Memory Allocation with malloc........ 57

3.2.3.10 Summary of malloc-Related Functions.............. 58

iii

3.2.4 Allocation Debugging. ..., 59
3.2.4.1 How to install the tracing functionality............... 59
3.2.4.2 Example program excerpts...........ooiiiiiiiia... 60
3.2.4.3 Some more or less clever ideas 61
3.2.4.4 Interpreting the traces............., 62

3.2.5 Replacing malloc...... .ot 63

3.2.6 Obstackso 64
3.2.6.1 Creating Obstacks 64
3.2.6.2 Preparing for Using Obstacks 65
3.2.6.3 Allocation in an Obstack.............. 66
3.2.6.4 Freeing Objects in an Obstack 67
3.2.6.5 Obstack Functions and Macros....................... 68
3.2.6.6 Growing Objects........oiiiiiiiiiiii i, 68
3.2.6.7 Extra Fast Growing Objects 70
3.2.6.8 Status of an Obstack........... ... o il 72
3.2.6.9 Alignment of Data in Obstacks....................... 73
3.2.6.10 Obstack Chunks.......... i, 73
3.2.6.11 Summary of Obstack Functions..................... 74

3.2.7 Automatic Storage with Variable Size..................... 75
3.2.7.1 allocaExample......... ..o 76
3.2.7.2 Advantages of alloca.........oiiiiiiiiiii i 76
3.2.7.3 Disadvantages of alloca...........coovviiiiiia... 7
3.2.7.4 GNU C Variable-Size Arrays......................... 77

3.3 Resizing the Data Segmento oL 78
3.4 Memory Protection.......... ..o 78

3.4.1 Memory Protection Keyso il 81
3.5 Locking Pages........c.oo i 84

3.5.1 Why Lock Pages..........co i 84

3.5.2 Locked Memory Details..............cooooiiii L. 85

3.5.3 Functions To Lock And Unlock Pages..................... 86

Character Handling 89
4.1 Classification of Characters.............c.ooiiiiiiiinniiin . 89
4.2 Case CONVErSIONttt et e 91
4.3 Character class determination for wide characters.............. 92
4.4 Notes on using the wide character classes...................... 96
4.5 Mapping of wide characters. L. 97

String and Array Utilities..................... 99
5.1 Representation of Strings...........cc.ooiiiiiiiiiiiiiii., 99
5.2 String and Array Conventionsc.oooviiiiiiin... 100
5.3 String Length 101
5.4 Copying Strings and Arrayscooiteiiiiii 103
5.5 Concatenating Strings.......... .o, 108
5.6 Truncating Strings while Copying.............cooooiiiiii.... 111
5.7 String/Array COmpariSomouveveveneninenenenenen.. 116

5.8 Collation Functions.ot 121

iv

5.9 Search FUnctionsoouu e, 125

5.9.1 Compatibility String Search Functions................... 129
5.10 Finding Tokens in a Stringc.cooiiiiiii.. 130
5.11 FErasing Sensitive Datao i 134
5.12 Shuffling Bytes...... ... 136
5.13 Obfuscating Data ...t 136
5.14 Encode Binary Datao i 137
5.15 Argz and Envz Vectors. ...t 139

515.1 Argz Functions.......... ..., 139

5.15.2 Envz Functions.......... .. . i i 141

Character Set Handling 144
6.1 Introduction to Extended Characters......................... 144
6.2 Overview about Character Handling Functions................ 148
6.3 Restartable Multibyte Conversion Functions.................. 148

6.3.1 Selecting the conversion and its properties............... 148

6.3.2 Representing the state of the conversion 149

6.3.3 Converting Single Characters............................ 150

6.3.4 Converting Multibyte and Wide Character Strings....... 157

6.3.5 A Complete Multibyte Conversion Example.............. 160
6.4 Non-reentrant Conversion Function........................... 162

6.4.1 Non-reentrant Conversion of Single Characters........... 162

6.4.2 Non-reentrant Conversion of Strings 163

6.4.3 States in Non-reentrant Functions 165
6.5 Generic Charset Conversion ..., 166

6.5.1 Generic Character Set Conversion Interface.............. 166

6.5.2 A complete iconv examplel 169

6.5.3 Some Details about other iconv Implementations........ 172

6.5.4 The iconv Implementation in the GNU C Library 173

6.5.4.1 Format of gconv-modules files...................... 174
6.5.4.2 Finding the conversion path in iconv............... 175
6.5.4.3 iconv module data structures....................... 176
6.5.4.4 iconv module interfaces.................. 179

Locales and Internationalization............. 187
7.1 What Effects a Locale Has, 187
7.2 Choosing a Locale........ ... 188
7.3 Locale Categories ..ottt 188
7.4 How Programs Set the Locale 189
7.5 Standard Locales........ 191
7.6 Locale Names e 191
7.7 Accessing Locale Information................................. 192

7.7.1 localeconv: It is portable but 193

7.7.1.1 Generic Numeric Formatting Parameters............ 193
7.7.1.2 Printing the Currency Symbol 194
7.7.1.3 Printing the Sign of a Monetary Amount............ 196

7.7.2 Pinpoint Access to Locale Data.......................... 196

7.8 A dedicated function to format numbers...................... 202

7.9 Yes-0or-No QUeStIONS ovttt et i 205
8 Message Translation.......................... 207
8.1 X/Open Message Catalog Handling........................... 207
8.1.1 The catgets function family 207
8.1.2 Format of the message catalog files 210
8.1.3 Generate Message Catalogs files 212
8.1.4 How to use the catgets interface.................. 214
8.1.4.1 Not using symbolic names 214
8.1.4.2 Using symbolic namesc.oiiiia... 214
8.1.4.3 How does to this allow to develop................... 215

8.2 The Uniforum approach to Message Translation............... 216
8.2.1 The gettext family of functions......................... 217
8.2.1.1 What has to be done to translate a message?........ 217
8.2.1.2 How to determine which catalog to be used 219

8.2.1.3 Additional functions for more complicated situations. . 221
8.2.1.4 How to specify the output character set gettext uses.. 225

8.2.1.5 How to use gettext in GUI programs............... 226
8.2.1.6 User influence on gettext 228

8.2.2 Programs to handle message catalogs for gettext........ 230

9 Searching and Sorting........................ 232
9.1 Defining the Comparison Function............................ 232
9.2 Array Search Function............. 232
9.3 Array Sort Function.......... 233
9.4 Searching and Sorting Example............ 234
9.5 The hsearch function., 237
9.6 The tsearch function. i 240
10 Pattern Matching............................ 244
10.1 Wildcard Matching.......... .o i 244
10.2 Globbing. ..o 245
10.2.1 Calling glob ...t 245
10.2.2 Flags for Globbing i i 250
10.2.3 More Flags for Globbing............... 251
10.3 Regular Expression Matching................................ 253
10.3.1 POSIX Regular Expression Compilation 254
10.3.2 Flags for POSIX Regular Expressions................... 255
10.3.3 Matching a Compiled POSIX Regular Expression....... 256
10.3.4 Match Results with Subexpressions..................... 257
10.3.5 Complications in Subexpression Matching............... 257
10.3.6 POSIX Regexp Matching Cleanup 258
10.4 Shell-Style Word Expansioncooiiiiiiia... 259
10.4.1 The Stages of Word Expansion 259
10.4.2 Calling WordeXp......ouvtiuitiit i 260

10.4.3 Flags for Word Expansionccviiiion... 261

vii

10.4.4 wordexp Example 262
10.4.5 Details of Tilde Expansion...................oooia... 263
10.4.6 Details of Variable Substitution......................... 263
11 Input/Output Overview 266
11.1 Input/Output Conceptsouiuiiiiiiiniiinenanan.. 266
11.1.1 Streams and File Descriptors 266
11.1.2 File Positiono 267
11.2 File Names.o e 268
11.2.1 DiIrectoriesooviin i e 268
11.2.2 File Name Resolution............. oo, 269
11.2.3 File Name Errors. ..., 269
11.2.4 Portability of File Names................... 270
12 Input/Output on Streams 271
12,1 StreamIS . vttt 271
12.2 Standard Streams........ ..o 271
12.3 Opening Streams..........ooiuteiiii i, 272
12.4 CloSing Streams.ttt 276
12.5 Streams and Threads. ..., 277
12.6 Streams in Internationalized Applications.................... 280
12.7 Simple Output by Characters or Lines....................... 282
12.8 Character Input..........coiiiiiii 285
12.9 Line-Oriented Inputco i, 288
1210 Unreadingvveviteee et 290
12.10.1 What Unreading Meansccooiiiiin... 290
12.10.2 Using ungetc To Do Unreading 291
12.11 Block Input/Output «....oovveiiiii i 292
12.12 Formatted Output ... 293
12.12.1 Formatted Output Basics.............................. 293
12.12.2 Output Conversion Syntaxcooveviiiene.n. 294
12.12.3 Table of Output Conversionscoovue... 295
12.12.4 Integer CONVersionsouuuueienneeennneeann. 297
12.12.5 Floating-Point Conversions................... 299
12.12.6 Other Output Conversions.c.covvevvnen.... 301
12.12.7 Formatted Output Functions 302
12.12.8 Dynamically Allocating Formatted Output 305
12.12.9 Variable Arguments Output Functions................. 306
12.12.10 Parsing a Template String................. 308
12.12.11 Example of Parsing a Template String................ 310
12.13 Customizing printf ...t 311
12.13.1 Registering New Conversionsccoo.u... 311
12.13.2 Conversion Specifier Options, 312
12.13.3 Defining the Output Handler.......................... 314
12.13.4 printf Extension Example.............. 314
12.13.5 Predefined printf Handlers.................. 316

12.14 Formatted Inputcco i 317

viii

12.14.1 Formatted Input Basics 317
12.14.2 Input Conversion Syntaxccooeeviennee.... 318
12.14.3 Table of Input Conversionsccovvueean... 319
12.14.4 Numeric Input Conversions................ ..., 320
12.14.5 String Input Conversions...............ccooviion... 322
12.14.6 Dynamically Allocating String Conversions 324
12.14.7 Other Input Conversionsc.ouiueveinuennn. 324
12.14.8 Formatted Input Functions................ 325
12.14.9 Variable Arguments Input Functions................... 326
12.15 End-Of-File and Errors....... ..., 327
12.16 Recovering from errorsc.o.eeiiiiieinieninenn.. 328
12.17 Text and Binary Streams............. ... 329
12.18 File Positioning ... 330
12.19 Portable File-Position Functions............................ 333
12.20 Stream Buffering........ 335
12.20.1 Buffering Concepts.........coooviiiiiiiiiiiiiiiin. 335
12.20.2 Flushing Buffers....... oo 335
12.20.3 Controlling Which Kind of Buffering................... 337
12.21 Other Kinds of Streams, 339
12.21.1 String Streams . ..ot 339
12.21.2 Programming Your Own Custom Streams 341
12.21.2.1 Custom Streams and Cookies..................... 341
12.21.2.2 Custom Stream Hook Functions 342

12.22 Formatted Messages.viini i 343
12.22.1 Printing Formatted Messages................c.ooo.n 343
12.22.2 Adding Severity Classescooiiiiiiiii... 346
12.22.3 How to use fmtmsg and addseverity.................. 346
13 Low-Level Input/Output.................... 349
13.1 Opening and Closing Files............ ... i, 349
13.2 Input and Output Primitives............ oL, 353
13.3 Setting the File Position of a Descriptor 358
13.4 Descriptors and Streams..............coiiiiiiiiiiiii... 361
13.5 Dangers of Mixing Streams and Descriptors.................. 362
13.5.1 Linked Channels i i, 362
13.5.2 Independent Channels............ 362
13.5.3 Cleaning Streams............cooviiiiiiiiiiniieennn.. 363
13.6 Fast Scatter-Gather I/O........ i 364
13.7 Copying data between two files............. 368
13.8 Memory-mapped I/O. ... 369
13.9 Waiting for Input or Output................ ... 378
13.10 Synchronizing I/O operationsoooia... 381
13.11 Perform I/O Operations in Parallel......................... 382
13.11.1 Asynchronous Read and Write Operations............. 385
13.11.2 Getting the Status of AIO Operations 389
13.11.3 Getting into a Consistent State........................ 390
13.11.4 Cancellation of AIO Operations 392

13.11.5 How to optimize the AIO implementation.............. 393

13.12 Control Operationson Files................................ 394
13.13 Duplicating Descriptors ..., 396
13.14 File Descriptor Flags. ... 397
13.15 File Status Flags. ... 399
13.15.1 File Access Modes.voiiiiiii i 399
13.15.2 Open-time Flags ... 400
13.15.3 I/0O Operating Modesoooviiiiiii.... 402
13.15.4 Getting and Setting File Status Flags.................. 403
13.16 File LOCKS. .o .vo o 404
13.17 Open File Description Lockso oo 407
13.18 Open File Description Locks Example 410
13.19 Interrupt-Driven Input......... ... o i 411
13.20 Generic I/O Control operationsooovno... 412
13.21 Other low-level-I/O-related functions....................... 413
14 File System Interface........................ 414
14.1 Working Directory, 414
14.2 Descriptor-Relative Access ..., .. 416
14.3 Accessing Directories......... ... 418
14.3.1 Format of a Directory Entry............... 418
14.3.2 Opening a Directory Stream............................ 420
14.3.3 Reading and Closing a Directory Stream................ 422
14.3.4 Simple Program to List a Directory..................... 425
14.3.5 Random Access in a Directory Stream 425
14.3.6 Scanning the Content of a Directory 426
14.3.7 Simple Program to List a Directory, Mark IT............ 428
14.3.8 Low-level Directory Accesscovviiiiiiii ... 428
14.4 Working with Directory Treest 429
14.5 Hard Links. 433
14.6 Symbolic Links. 435
14.7 Deleting Files ... 437
14.8 Renaming Files ... i 439
14.9 Creating Directories.o 440
14.10 File Attributes.o 441
14.10.1 The meaning of the File Attributes.................... 441
14.10.2 Reading the Attributesof a File....................... 445
14.10.3 Testing the Typeofa File..........o ... 447
14.10.4 File OWner.ot 450
14.10.5 The Mode Bits for Access Permission.................. 451
14.10.6 How Your Access to a File is Decided.................. 453
14.10.7 Assigning File Permissions.............. 453
14.10.8 Testing Permission to Access a File.................... 455
14.10.9 File Timest 457
14.10.10 File SizZe ..o nn it e 460
14.10.11 Storage Allocationcoiiiiiiiiiii .. 462
14.11 Making Special Files.......... oo i i 463
14.12 Temporary Files ... 464

ix

15 Pipesand FIFOs............................. 468

15.1 Creating a Pipe ... 468
15.2 Pipe to a Subprocesso 470
15.3 FIFO Special Files 471
15.4 Atomicity of Pipe I/O...... ... o i 472
16 Sockets.......... L. 473
16.1 Socket Concepts.vvuet i 473
16.2 Communication Styles........ ... i 474
16.3 Socket Addresses.ueiimit i 475
16.3.1 Address Formats i 475
16.3.2 Setting the Address of a Socket......................... 477
16.3.3 Reading the Address of a Socket........................ 477
16.4 Interface Naming...........ccoouiiiiiiiiiiiii .. 478
16.5 The Local Namespaceoouueiiiiiiiiiiiiiiieann. 479
16.5.1 Local Namespace Conceptscoouvvveeeeneinninnn. 479
16.5.2 Details of Local Namespace............coovvvinaann... 480
16.5.3 Example of Local-Namespace Sockets................... 481
16.6 The Internet Namespaceccooiuiiiiiiiiiiiiaan.. 482
16.6.1 Internet Socket Address Formats 482
16.6.2 Host Addresses........ooiiiiiiiiiiii it 483
16.6.2.1 Internet Host Addresses, 484
16.6.2.2 Host Address Data Type ...t 485
16.6.2.3 Host Address Functions............................ 486
16.6.2.4 Host Names ..., 488
16.6.3 Internet Ports.......... .o oo 492
16.6.4 The Services Database............... 493
16.6.5 Byte Order Conversionc.oouveeiieeeeeeannnnn. 494
16.6.6 Protocols Database...............oooiiiiiii ... 495
16.6.7 Internet Socket Example............. 497
16.7 Other Namespacesooiiiiiiii i 498
16.8 Opening and Closing Sockets ..., 498
16.8.1 Creating a Socket ... 498
16.8.2 Closing a Socket....... ..o 499
16.8.3 Socket Pairs......... .o 500
16.9 Using Sockets with Connections, 501
16.9.1 Making a Connection.............c.oooviiiiiiiiiaa... 501
16.9.2 Listening for Connections., 502
16.9.3 Accepting Connectionsooeiiiiiiieninnn... 503
16.9.4 Who is Connected to Me?ot 504
16.9.5 Transferring Data, 505
16.9.5.1 Sending Data...........coocoiiiiiii i 505
16.9.5.2 Receiving Data.........o 506
16.9.5.3 Socket Data Options............ccooiiiiiiiiia.. 507
16.9.6 Byte Stream Socket Example............... 507
16.9.7 Byte Stream Connection Server Example 508
16.9.8 Out-of-Band Data........... ..., 510

16.10 Datagram Socket Operations..................coiiia. .. 513

16.10.1 Sending Datagrams............coviriieiiirineninnenn. 513
16.10.2 Receiving Datagrams................ooooiiiiiiiii.. 514
16.10.3 Datagram Socket Example, 514
16.10.4 Example of Reading Datagrams 515
16.11 The inetd Daemon ..., 517
16.11.1 inetd Servers.........oouueieemiee i 517
16.11.2 Configuring inetd.........ccoeiiiiiniiiniiinienne... 517
16.12 Socket Options.o 518
16.12.1 Socket Option Functionso, 518
16.12.2 Socket-Level Options. ..., 519
16.13 Networks Database...............oiii i, 521
16.14 Other Socket APIs. i 522
17 Low-Level Terminal Interface............... 523
17.1 Terminal Device Model.......... ... i, 923
17.2 Identifying Terminals.......... ... o i i 524
173 T/O QUEUES ..o 525
17.4 Two Styles of Input: Canonical or Not....................... 525
17.5 Terminal Modes. 526
17.5.1 Terminal Mode Data Types.............ccooiiiiiiii ... 526
17.5.2 Terminal Mode Functions................, 527
17.5.3 Setting Terminal Modes Properly.................... ... 528
17.5.4 Input Modesovinriiii e 529
17.5.5 Output Modeso 531
17.5.6 Control Modesc.oiiii e 532
17.5.7 Local Modesooinniiiii e 534
17.5.8 Line Speedcoiiiii 536
17.5.8.1 The speed_t interface....................ooiit. 537
17.5.8.2 The baud_t interfacec.co ... 538
17.5.9 Special Characters. ..., 539
17.5.9.1 Characters for Input Editing....................... 540
17.5.9.2 Characters that Cause Signals 541
17.5.9.3 Special Characters for Flow Control................ 542
17.5.9.4 Other Special Characters.......................... 543
17.5.10 Noncanonical Input i i, 543
17.6 BSD Terminal Modes ..., 545
17.7 Line Control Functions..........o oo, 546
17.8 Noncanonical Mode Example.................. 548
17.9 Reading Passphrases o i 549
17.10 Pseudo-Terminals..........couiiiiiiiiiiiiiiiiiieen... 550
17.10.1 Allocating Pseudo-Terminals 550

17.10.2 Opening a Pseudo-Terminal Pair 552

xi

xii

18 Syslog ... 554
18.1 Overview of Syslog ... 554
18.2 Submitting Syslog Messages ..o, 555

18.2.1 0penlog . ..ot 555
18.2.2 syslog, vsyslog.o 557
18.2.3 closelog ..o 559
18.2.4 setlogmasko 560
18.2.5 Syslog Exampleo 560

19 Mathematics................................. 562
19.1 Predefined Mathematical Constants 562
19.2 Trigonometric Functions............ o i 563
19.3 Inverse Trigonometric Functions.................... 566
19.4 Exponentiation and Logarithms 569
19.5 Hyperbolic Functions.......... ... i i 877
19.6 Special Functions ... 580
19.7 Errors in Math Functions.............. 583
19.8 Pseudo-Random Numbers................oo .. 585

19.8.1 ISO C Random Number Functions...................... 585
19.8.2 BSD Random Number Functions 586
19.8.3 SVID Random Number Function 588
19.8.4 High Quality Random Number Functions............... 593
19.9 Is Fast Code or Small Code preferred?....................... 594

20 Arithmetic Functions........................ 595
20.1 INte@ers . .. oovtitt it e 595
20.2 Integer DiviSiOncooiiiiiniiiiiiiii it 596
20.3 Floating Point Numbers........... ... o oot 598
20.4 Floating-Point Number Classification Functions.............. 599
20.5 Errors in Floating-Point Calculations........................ 601

20.5.1 FP Exceptionsoouiiiiiiiiiiiiii.. 601
20.5.2 Infinity and NaNo i i 603
20.5.3 Examining the FPU status word........................ 604
20.5.4 Error Reporting by Mathematical Functions 606
20.6 Rounding Modes ...t 607
20.7 Floating-Point Control Functions............................ 609
20.8 Arithmetic Functions............ i i 611
20.8.1 Absolute Value. ... 611
20.8.2 Normalization Functions................................ 612
20.8.3 Rounding Functions............ oL 614
20.8.4 Remainder Functions............. .. oo, 618
20.8.5 Setting and modifying single bits of FP values.......... 619
20.8.6 Floating-Point Comparison Functions................... 622
20.8.7 Miscellaneous FP arithmetic functions.................. 624
20.9 Complex Numberso 630

20.10 Projections, Conjugates, and
Decomposing of Complex Numbers.....................ooo... 630

20.11 Parsing of Numbers...........ooiiiiiiii i 632
20.11.1 Parsing of Integers ...t 632
20.11.2 Parsingof Floats ...t 637

20.12 Printing of Floatsc i 639

20.13 Old-fashioned System V number-to-string functions......... 640

21 Bit Manipulation............................ 643
22 Dateand Time............................... 647

221 Time BasiCs.uvue e 647

222 THime Types ..o oo e 648

22.3 Calculating Elapsed Time, 649

22.4 Processor And CPU Time..........cooiiiiiiiiiiianin... 650
22.4.1 CPU Time Inquiry ... 651
22.4.2 Processor Time Inquiry.............ooooiiiiiiiiit. 651

22.5 Calendar Time.........ooiiiiii e 652
22.5.1 Getting the Time......... ..o i i, 652
22.5.2 Setting and Adjusting the Time 656
22.5.3 Broken-down Time.......... ..o, 661
22.5.4 Formatting Calendar Time 664
22.5.5 Convert textual time and date information back 670

22.5.5.1 Interpret string according to given format.......... 671

22.5.5.2 A More User-friendly Way to Parse Times and Dates. . 676
22.5.6 Specifying the Time Zone with TZ 678
22.5.6.1 Geographical Format for TZ........................ 679
22.5.6.2 Proleptic Format for TZ.................. 679
22.5.7 State Variables for Time Zones 681
22.5.8 Time Functions Example.............. 682
22.6 Setting an Alarm......... ..o 683
227 SlEEPING . .ttt 685
23 Resource Usage And Limitation............ 688

23.1 Resource Usageovuuriiiiii e 688

23.2 Limiting Resource Usagec.ccoviiiiiiiiiiiiiine .. 689

23.3 Process CPU Priority And Scheduling....................... 693
23.3.1 Absolute Priority ... 694

23.3.1.1 Using Absolute Priority........... ... 695
23.3.2 Realtime Scheduling............. L. 695
23.3.3 Basic Scheduling Functions................, 696
23.3.4 Extensible Scheduling il 700
23.3.5 Traditional Scheduling............. oot 702

23.3.5.1 Introduction To Traditional Scheduling 702

23.3.5.2 Functions For Traditional Scheduling 703
23.3.6 Limiting execution to certain CPUs..................... 705

23.4 Querying memory available resources........................ 710
23.4.1 Overview about traditional Unix memory handling. 710

23.4.2 How to get information about the memory subsystem?.. 711
23.5 Learn about the processors available......................... 712

xiii

24 Non-Local Exits 714
24.1 Introduction to Non-Local Exits............. oo.. 714
24.2 Details of Non-Local Exits................oooiiiiiit, 715
24.3 Non-Local Exits and Signals................ 716
24.4 Complete Context Control..............c.ooiiiiiiiieiina... 717

25 Signal Handling.............................. 723
25.1 Basic Concepts of Signals......... ... 723

25.1.1 Some Kinds of Signals................ ... oL 723
25.1.2 Concepts of Signal Generation.......................... 723
25.1.3 How Signals Are Delivered.............................. 724
25.2 Standard Signals........... ..o i 725
25.2.1 Program Error Signals............. ...l 725
25.2.2 Termination Signals i i 728
25.2.3 Alarm Signals...... ... 729
25.2.4 Asynchronous I/O Signals............ ..., 730
25.2.5 Job Control Signals........... i 730
25.2.6 Operation Error Signals 732
25.2.7 Miscellaneous Signals............ ... o i i 732
25.2.8 Signal Messagesoviiiiiiiiii 733
25.3 Specifying Signal Actions...............ciiiiiiiiiiii.. 734
25.3.1 Basic Signal Handling il 734
25.3.2 Advanced Signal Handling............... 736
25.3.3 Interaction of signal and sigaction................... 738
25.3.4 sigaction Function Example 738
25.3.5 Flags for sigaction.............ooiiiiiiiiiiiiiL, 739
25.3.6 Initial Signal Actions.......... ..., 740
25.4 Defining Signal Handlers oL 741
25.4.1 Signal Handlers that Return.................. 741
25.4.2 Handlers That Terminate the Process................... 742
25.4.3 Nonlocal Control Transfer in Handlers.................. 743
25.4.4 Signals Arriving While a Handler Runs 744
25.4.5 Signals Close Together Merge into One 745
25.4.6 Signal Handling and Nonreentrant Functions............ 747
25.4.7 Atomic Data Access and Signal Handling 748
25.4.7.1 Problems with Non-Atomic Access................. 749
25.4.7.2 Atomic Typesoviriiiiini i 749
25.4.7.3 Atomic Usage Patterns............................ 750

25.5 Primitives Interrupted by Signals............ 750
25.6 Generating Signals......... .. . i i 751
25.6.1 Signaling Yourself.......... i 751
25.6.2 Signaling Another Process............ot 752
25.6.3 Permission for using kill ..., 754
25.6.4 Using kill for Communication......................... 754
25.7 Blocking Signals.cooo i 756
25.7.1 Why Blocking Signals is Useful 756
25.7.2 Signal Sets........ooiiiiiii i 756
25.7.3 Process Signal Mask........... ... i 758

xiv

25.7.4 Blocking to Test for Delivery of a Signal 759
25.7.5 Blocking Signals for a Handler.......................... 759
25.7.6 Checking for Pending Signals.................... 760
25.7.7 Remembering a Signal to Act On Later................. 761
25.8 Waiting for a Signal......... ... i 762
25.8.1 Using pause........oiiuiiiiiiii i 762
25.8.2 Problems with pause.............. ... il 763
25.8.3 Using sigsuspend............coooiiiiiiiiiiiiiiiiiin 764
25.9 Using a Separate Signal Stack 765
25.10 BSD Signal Handling. i, 767
26 The Basic Program/System Interface...... 769
26.1 Program Arguments..............cuiiiiiiit i 769
26.1.1 Program Argument Syntax Conventions 770
26.1.2 Parsing Program Arguments.............. 770
26.2 Parsing program options using getopt....................... 771
26.2.1 Using the getopt function.............. 771
26.2.2 Example of Parsing Arguments with getopt............ 772
26.2.3 Parsing Long Options with getopt_long 774
26.2.4 Example of Parsing Long Options with getopt_long.... 776
26.3 Parsing Program Options with Argp......................... 778
26.3.1 The argp_parse Function........................ 778
26.3.2 Argp Global Variables............t 779
26.3.3 Specifying Argp Parsers 779
26.3.4 Specifying Options in an Argp Parser................... 781
26.3.4.1 Flags for Argp Options............ccovieiiiean... 782
26.3.5 Argp Parser Functions............. 782
26.3.5.1 Special Keys for Argp Parser Functions............ 783
26.3.5.2 Argp Parsing State..........ol 785
26.3.5.3 Functions For Use in Argp Parsers................. 787
26.3.6 Combining Multiple Argp Parsers....................... 788
26.3.7 Flags for argp_parse..........c.ooiiiiiiiiiiiiii 789
26.3.8 Customizing Argp Help Output......................... 790
26.3.8.1 Special Keys for Argp Help Filter Functions........ 790
26.3.9 The argp_help Function...................c..oooia.. 790
26.3.10 Flags for the argp_help Function 791
26.3.11 Argp Examples.........ooiiiiiiii 792
26.3.11.1 A Minimal Program Using Argp.................. 792
26.3.11.2 A Program Using Argp with Only Default Options.. 792
26.3.11.3 A Program Using Argp with User Options........ 793
26.3.11.4 A Program Using Multiple Combined Argp Parsers. . 796
26.3.12 Argp User Customization....................coooeon... 800
26.3.12.1 Parsing of Suboptions 800
26.3.13 Parsing of Suboptions Example........................ 801
26.4 Environment Variables............. i 803
26.4.1 Environment ACCESS.........coviiiiiiiiiiiiiiiina... 803
26.4.2 Standard Environment Variables........................ 805

26.5 Auxiliary Vectoro 807

XV

26.5.1 Definition of getauxval ..., 807
26.6 System Calls...... ... i 808
26.7 Program Termination 809

26.7.1 Normal Termination................ ..., 810

26.7.2 ExXit Status. ... 810

26.7.3 Cleanupson Exit............oiiiiiiiiiii i, 811

26.7.4 Aborting a Program........ i 812

26.7.5 Termination Internals 812

27 Processes............. .. 814
27.1 Running a Command........... ..o, 814
27.2 Process Creation Conceptsoooviiiiiiiiiiiinin... 815
27.3 Process Identification......... i 815
27.4 Creating a Process ... 817
27.5 Querying a Process.o 818
27.6 Executing a File..... ... i 819
27.7 Process Completionc.ooouiiiiiiiiiiiiiii i 821
27.8 Process Completion Status...........cooviiiiiiiin.. 824
27.9 BSD Process Wait Function.............. oo 825
27.10 Process Creation Example........... oL, 825

28 Inter-Process Communication.............. 827
28.1 Semaphores 827

28.1.1 System V Semaphores............ccoviiiiiiiiiieian.. 827

28.1.2 POSIX Semaphoresc.o.vviiiiieeiiiiiiiiinn... 827

29 Job Control................ 828
29.1 Concepts of Job Control...............coiiiiiiiiiiii... 828
29.2 Controlling Terminal of a Process............................ 829
29.3 Access to the Controlling Terminal 829
29.4 Orphaned Process Groups............ccoviiiiiiiiiiinnn... 830
29.5 Implementing a Job Control Shell 830

29.5.1 Data Structures for the Shell 830

29.5.2 Imitializing the Shello i 832

29.5.3 Launching Jobs 833

29.5.4 Foreground and Background................ ... 836

29.5.5 Stopped and Terminated Jobs.......................... 838

29.5.6 Continuing Stopped Jobs........... L. 840

29.5.7 The Missing Pieces ..., 841
29.6 Functions for Job Control, 842

29.6.1 Identifying the Controlling Terminal 842

29.6.2 Process Group Functions 842

29.6.3 Functions for Controlling Terminal Access.............. 844

xvi

Xvii

30 System Databases and Name Service Switch .. 846

30.1 NSS Basics. .ottt 846
30.2 The NSS Configuration File............ot 847
30.2.1 Services in the NSS configuration File................... 847
30.2.2 Actions in the NSS configuration 848
30.2.3 Notes on the NSS Configuration File.................... 849
30.3 NSS Module Internals, 850
30.3.1 The Naming Scheme of the NSS Modules............... 850
30.3.2 The Interface of the Function in NSS Modules 851
30.4 Extending NSS.o 853
30.4.1 Adding another Service to NSS................... 853
30.4.2 Internals of the NSS Module Functions 854
31 Usersand Groupsoooo... 856
31.1 Userand Group IDs....... ..o 856
31.2 The Persona of a Process..................ooiiiiiiiiiiiiL 856
31.3 Why Change the Persona of a Process?...................... 857
31.4 How an Application Can Change Persona.................... 857
31.5 Reading the Persona of a Process............................ 858
31.6 Setting the User ID i 859
31.7 Setting the Group IDs...... ... 860
31.8 Enabling and Disabling Setuid Access 862
31.9 Setuid Program Example........ ... 863
31.10 Tips for Writing Setuid Programs 865
31.11 Identifying Who Logged In............o .. 866
31.12 The User Accounting Database............................. 867
31.12.1 Manipulating the User Accounting Database........... 867
31.12.2 XPG User Accounting Database Functions............. 872
31.12.3 Logging Inand Out, 874
31.13 User Database ... 875
31.13.1 The Data Structure that Describes a User............. 875
31.13.2 Looking Up One Usercooiviiiiiiiiiin.n. 876
31.13.3 Scanning the List of All Users......................... 877
31.13.4 Writing a User Entry...........cooooiiiiiiiit. 878
31.14 Group Databaseoo i 879
31.14.1 The Data Structure for a Group....................... 879
31.14.2 Looking Up One Groupc.ooveiirieeeninnneann.. 879
31.14.3 Scanning the List of All Groups 880
31.15 User and Group Database Example......................... 882
31.16 Netgroup Database............ oo i i, 883
31.16.1 Netgroup Data....... ... 883
31.16.2 Looking up one Netgroup............c.cooviiiin... 883

31.16.3 Testing for Netgroup Membership 885

xviii

32 System Management 886
32.1 Host Identification ...t 886
32.2 Platform Type Identification 888
32.3 Controlling and Querying Mounts 889

32.3.1 Mount Information...................... i 890
32.3.1.1 Thefstabfile............cooiiiii .. 890
32.3.1.2 Themtabfile.........cooviiiiiiiiii .. 893
32.3.1.3 Other (Non-libc) Sources of Mount Information 896

32.3.2 Mount, Unmount, Remount 896

33 System Configuration Parameters.......... 901
33.1 General Capacity Limits. ..., 901
33.2 Overall System Optionsccooiiiiiiiiieinia... 902
33.3 Which Version of POSIX is Supported....................... 903
33.4 Using sysconf 904

33.4.1 Definition of sysconf...........o 904

33.4.2 Constants for sysconf Parameters...................... 904

33.4.3 Examplesof sysconf.......... il 913

33.5 Minimum Values for General Capacity Limits................ 913
33.6 Limits on File System Capacityccooiiiiii.. 914
33.7 Optional Features in File Support 916
33.8 Minimum Values for File System Limits 916
33.9 Using pathconf i 917
33.10 Utility Program Capacity Limits 919
33.11 Minimum Values for Utility Limits, 920
33.12 String-Valued Parameters, 921

34 Cryptographic Functions.................... 923
34.1 Generating Unpredictable Bytes................... 923

35 Debugging support.......................... 925
35.1 Backtracesooii 925

36 Threadsl 928
36.1 ISO CThreads........cooviiiiiiiii i 928

36.1.1 Return Values........... ... 928

36.1.2 Creation and Control........... ..., 928

36.1.3 Call Once ...oovvit i 930

36.1.4 MUteXesS. ..ottt e 931

36.1.5 Condition Variables i i i, 933

36.1.6 Thread-local Storage ... 934

36.2 POSIX Threadsoouuiiiii i 935

36.2.1 Creating and Destroying Threads....................... 935

36.2.2 Thread-specific Data i i 937

36.2.3 Functions for Waiting According to a Specific Clock.. ... 937

36.2.4 POSIX Semaphorescovvitiiiiiiiiiiiie.. 938

36.2.5 POSIX Barriersoooiiiii i 940
36.2.6 POSIX Spin Locks ... 941
36.2.7 POSIX MUbeXeS . ..ottt e 942
36.2.8 POSIX Threads Other APIs............................ 944
36.2.9 Non-POSIX EXtensions.oooeeeeeiiiiiiinnnnen... 945

36.2.9.1 Setting Process-wide defaults for thread attributes.. 945
36.2.9.2 Controlling the Initial Signal Mask of a New Thread .. 945

36.2.9.3 Thread CPU Affinity 946

36.2.9.4 Wait for a thread to terminate..................... 947

36.2.9.5 Thread Names..............ooiiiiiiiiiiii .. 948

36.2.9.6 Detecting Single-Threaded Execution.............. 948

36.2.9.7 Restartable Sequencesoiiiii... 949

37 Dynamic Linker.............................. 951
37.1 Dynamic Linker Invocation............., 951
37.1.1 Dynamic Linker Diagnostics................, 951
37.1.1.1 Dynamic Linker Diagnostics Format 952

37.1.1.2 Dynamic Linker Diagnostics Values................ 952

37.2 Dynamic Linker Environment Variables...................... 956
37.3 Dynamic Linker Introspection 957
37.3.1 Querying information for loaded objects 958

37.4 Avoiding Unexpected Issues With Dynamic Linking.......... 961
37.4.1 Restricted Dynamic Linker Features.................... 962
37.4.2 Producing Matching Binaries........................... 966
37.4.3 Checking Binaries........... ... i, 967
37.4.4 Run-time Considerationsooiiiiiii... 968

38 Internal probes 969
38.1 Memory Allocation Probes..........o, 969
38.2 Non-local Goto Probeso i, 972
39 Tunables............ 974
39.1 Tunable NAMESottt e 975
39.2 Memory Allocation Tunables............ 975
39.3 Dynamic Linking Tunables 978
39.4 Elision Tunables i 979
39.5 POSIX Thread Tunablescoiiiiiiiiiii.... 981
39.6 Hardware Capability Tunables........................ 981
39.7 Memory Related Tunables.............. 984
39.8 gmon Tunables........ ... i 985

xix

Appendix A C Language

Facilities in the Library..................... ... 987
A.1 Explicitly Checking Internal Consistency 987
A2 Variadic Functions. ... 988
A.2.1 Why Variadic Functions are Used 988
A.2.2 How Variadic Functions are Defined and Used 989
A.2.2.1 Syntax for Variable Arguments..................... 989
A.2.2.2 Receiving the Argument Values 990
A.2.2.3 How Many Arguments Were Supplied 990
A.2.2.4 Calling Variadic Functions 991
A.2.25 Argument Access Macros...........cooeviiiiiia.... 991

A.2.3 Example of a Variadic Function......................... 993
A.3 Null Pointer Constant, 993
A4 Tmportant Data Types......c.ooiiiiiiiiii . 994
A.5 Data Type Measurements.vveeeeeeeinnniiinnnnn... 994
A.5.1 Width of an Integer Type.......ooviiiiiiii .. 995
A.5.2 Range of an Integer Type ...t 996
A.5.3 Floating Type Macros.coviiiiiiiiiiiiii... 997
A.5.3.1 Floating Point Representation Concepts............ 997
A.5.3.2 Floating Point Parameters 999
A.5.3.3 IEEE Floating Point 1001

A.5.4 Structure Field Offset Measurement.................... 1002

Appendix B Summary of Library Facilities.. 1003

Appendix C Installing the GNU C Library .. 1140

C.1 Configuring and compiling the GNU C Library.............. 1140
C.2 [Installing the C Library....... ..., 1146
C.3 Recommended Tools for Compilation........................ 1147
C.4 Specific advice for GNU/Linux systems 1149
C.5 Reporting Bugs. ... 1150
Appendix D Library Maintenance............ 1151
D.1 Adding New Functions.......... 1151
D.1.1 Platform-specific types, macros and functions 1152

D.2 Fortification of function calls............ 1153
D.3 Symbol handling in the GNU C Library..................... 1156
D.3.1 64-bit time symbol handling in the GNU C Library..... 1156

D.4 Porting the GNU C Library..........coooooiiiiiii .. 1158
D.4.1 Layout of the sysdeps Directory Hierarchy............. 1160

D.4.2 Porting the GNU C Library to Unix Systems........... 1162
Appendix E Platform-specific facilities 1163
E.1 PowerPC-specific Facilities............ ..o i, 1163
E.2 RISC-V-specific Facilities ...t 1165

E.3 X86-specific Facilities ... 1165

XX

Appendix F Contributors to the
GNU C Library 1172

Appendix G Free Software Needs
Free Documentation.......................... 1180

Appendix H GNU Lesser General
Public License................................. 1182

Appendix I GNU Free

Documentation License....................... 1191
Concept Index 1199
TypeIndex 1212
Function and Macro Index 1215
Variable and Constant Macro Index........... 1233

Program and File Index 1246

xx1

1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C Library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to GNU systems.

The purpose of this manual is to tell you how to use the facilities of the GNU C Library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C Library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file stdio.h declares facilities
for performing input and output, and the header file string.h declares string processing
utilities. The organization of this manual generally follows the same division as the header

files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
Library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C Library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU C
Library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 1003, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.

Chapter 1: Introduction 2

1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the American Na-
tional Standards Institute (ANSI): American National Standard X3.159-1989— “ANSI C”
and later by the International Standardization Organization (ISO): ISO/IEC 9899:1990,
“Programming languages—C”. We here refer to the standard as ISO C since this is the
more general standard in respect of ratification. The header files and library facilities that
make up the GNU C Library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘~ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only ISO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros], page 16, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names], page 14,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU C Library is also compatible with the ISO POSIX family of standards, known
more formally as the Portable Operating System Interface for Computer Environments
(ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived

mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 414), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 523), and
process control functions (see Chapter 27 [Processes|, page 814).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU C Library. These include utilities for deal-
ing with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 244).

1.2.2.1 POSIX Safety Concepts

This manual documents various safety properties of GNU C Library functions, in lines that
follow their prototypes and look like:

Chapter 1: Introduction 3

Preliminary: | MT-Safe | AS-Safe | AC-Safe |

The properties are assessed according to the criteria set forth in the POSIX standard for
such safety contexts as Thread-, Async-Signal- and Async-Cancel- -Safety. Intuitive defi-
nitions of these properties, attempting to capture the meaning of the standard definitions,
follow.

e MT-Safe or Thread-Safe functions are safe to call in the presence of other threads. MT,
in MT-Safe, stands for Multi Thread.

Being MT-Safe does not imply a function is atomic, nor that it uses any of the memory
synchronization mechanisms POSIX exposes to users. It is even possible that calling
MT-Safe functions in sequence does not yield an MT-Safe combination. For example,
having a thread call two MT-Safe functions one right after the other does not guaran-
tee behavior equivalent to atomic execution of a combination of both functions, since
concurrent calls in other threads may interfere in a destructive way.

Whole-program optimizations that could inline functions across library interfaces may
expose unsafe reordering, and so performing inlining across the GNU C Library inter-
face is not recommended. The documented MT-Safety status is not guaranteed under
whole-program optimization. However, functions defined in user-visible headers are
designed to be safe for inlining.

e AS-Safe or Async-Signal-Safe functions are safe to call from asynchronous signal han-
dlers. AS, in AS-Safe, stands for Asynchronous Signal.

Many functions that are AS-Safe may set errno, or modify the floating-point environ-
ment, because their doing so does not make them unsuitable for use in signal handlers.
However, programs could misbehave should asynchronous signal handlers modify this
thread-local state, and the signal handling machinery cannot be counted on to pre-
serve it. Therefore, signal handlers that call functions that may set errno or modify
the floating-point environment must save their original values, and restore them before
returning.

e AC-Safe or Async-Cancel-Safe functions are safe to call when asynchronous cancellation
is enabled. AC in AC-Safe stands for Asynchronous Cancellation.

The POSIX standard defines only three functions to be AC-Safe, namely pthread_
cancel, pthread_setcancelstate, and pthread_setcanceltype. At present the
GNU C Library provides no guarantees beyond these three functions, but does docu-

ment which functions are presently AC-Safe. This documentation is provided for use
by the GNU C Library developers.

Just like signal handlers, cancellation cleanup routines must configure the floating point
environment they require. The routines cannot assume a floating point environment,
particularly when asynchronous cancellation is enabled. If the configuration of the
floating point environment cannot be performed atomically then it is also possible that
the environment encountered is internally inconsistent.

e MT-Unsafe, AS-Unsafe, AC-Unsafe functions are not safe to call within the safety con-
texts described above. Calling them within such contexts invokes undefined behavior.
Functions not explicitly documented as safe in a safety context should be regarded as
Unsafe.

e Preliminary safety properties are documented, indicating these properties may not be
counted on in future releases of the GNU C Library.

Chapter 1: Introduction 4

Such preliminary properties are the result of an assessment of the properties of our
current implementation, rather than of what is mandated and permitted by current
and future standards.

Although we strive to abide by the standards, in some cases our implementation is safe
even when the standard does not demand safety, and in other cases our implementation
does not meet the standard safety requirements. The latter are most likely bugs; the
former, when marked as Preliminary, should not be counted on: future standards may
require changes that are not compatible with the additional safety properties afforded
by the current implementation.

Furthermore, the POSIX standard does not offer a detailed definition of safety. We
assume that, by “safe to call”’, POSIX means that, as long as the program does not
invoke undefined behavior, the “safe to call” function behaves as specified, and does
not cause other functions to deviate from their specified behavior. We have chosen to
use its loose definitions of safety, not because they are the best definitions to use, but
because choosing them harmonizes this manual with POSIX.

Please keep in mind that these are preliminary definitions and annotations, and certain
aspects of the definitions are still under discussion and might be subject to clarification
or change.

Over time, we envision evolving the preliminary safety notes into stable commitments,
as stable as those of our interfaces. As we do, we will remove the Preliminary keyword
from safety notes. Aslong as the keyword remains, however, they are not to be regarded
as a promise of future behavior.

Other keywords that appear in safety notes are defined in subsequent sections.

1.2.2.2 Unsafe Features

Functions that are unsafe to call in certain contexts are annotated with keywords that
document their features that make them unsafe to call. AS-Unsafe features in this sec-
tion indicate the functions are never safe to call when asynchronous signals are enabled.
AC-Unsafe features indicate they are never safe to call when asynchronous cancellation is
enabled. There are no MT-Unsafe marks in this section.

e lock

Functions marked with lock as an AS-Unsafe feature may be interrupted by a signal
while holding a non-recursive lock. If the signal handler calls another such function
that takes the same lock, the result is a deadlock.

Functions annotated with lock as an AC-Unsafe feature may, if cancelled
asynchronously, fail to release a lock that would have been released if their execution
had not been interrupted by asynchronous thread cancellation. Once a lock is left
taken, attempts to take that lock will block indefinitely.
e corrupt

Functions marked with corrupt as an AS-Unsafe feature may corrupt data structures
and misbehave when they interrupt, or are interrupted by, another such function.
Unlike functions marked with lock, these take recursive locks to avoid MT-Safety
problems, but this is not enough to stop a signal handler from observing a partially-
updated data structure. Further corruption may arise from the interrupted function’s
failure to notice updates made by signal handlers.

Chapter 1: Introduction 5

Functions marked with corrupt as an AC-Unsafe feature may leave data structures in a
corrupt, partially updated state. Subsequent uses of the data structure may misbehave.

e heap

Functions marked with heap may call heap memory management functions from the
malloc/free family of functions and are only as safe as those functions. This note is
thus equivalent to:

| AS-Unsafe lock | AC-Unsafe lock fd mem |
e dlopen

Functions marked with dlopen use the dynamic loader to load shared libraries into
the current execution image. This involves opening files, mapping them into memory,
allocating additional memory, resolving symbols, applying relocations and more, all of
this while holding internal dynamic loader locks.

The locks are enough for these functions to be AS- and AC-Unsafe, but other issues
may arise. At present this is a placeholder for all potential safety issues raised by
dlopen.

e plugin
Functions annotated with plugin may run code from plugins that may be external to
the GNU C Library. Such plugin functions are assumed to be MT-Safe, AS-Unsafe
and AC-Unsafe. Examples of such plugins are stack unwinding libraries, name service
switch (NSS) and character set conversion (iconv) back-ends.

Although the plugins mentioned as examples are all brought in by means of dlopen,
the plugin keyword does not imply any direct involvement of the dynamic loader or
the 1ibd1 interfaces, those are covered by dlopen. For example, if one function loads a
module and finds the addresses of some of its functions, while another just calls those
already-resolved functions, the former will be marked with dlopen, whereas the latter
will get the plugin. When a single function takes all of these actions, then it gets both
marks.

e i18n

Functions marked with i18n may call internationalization functions of the gettext
family and will be only as safe as those functions. This note is thus equivalent to:

| MT-Safe env | AS-Unsafe corrupt heap dlopen | AC-Unsafe corrupt |
e timer

Functions marked with timer use the alarm function or similar to set a time-out for a
system call or a long-running operation. In a multi-threaded program, there is a risk
that the time-out signal will be delivered to a different thread, thus failing to interrupt
the intended thread. Besides being MT-Unsafe, such functions are always AS-Unsafe,
because calling them in signal handlers may interfere with timers set in the interrupted
code, and AC-Unsafe, because there is no safe way to guarantee an earlier timer will
be reset in case of asynchronous cancellation.

1.2.2.3 Conditionally Safe Features

For some features that make functions unsafe to call in certain contexts, there are known
ways to avoid the safety problem other than refraining from calling the function altogether.
The keywords that follow refer to such features, and each of their definitions indicate how

Chapter 1: Introduction 6

the whole program needs to be constrained in order to remove the safety problem indicated
by the keyword. Only when all the reasons that make a function unsafe are observed and
addressed, by applying the documented constraints, does the function become safe to call
in a context.

e init
Functions marked with init as an MT-Unsafe feature perform MT-Unsafe initialization
when they are first called.

Calling such a function at least once in single-threaded mode removes this specific cause
for the function to be regarded as MT-Unsafe. If no other cause for that remains, the
function can then be safely called after other threads are started.

Functions marked with init as an AS- or AC-Unsafe feature use the internal 1ibc_
once machinery or similar to initialize internal data structures.

If a signal handler interrupts such an initializer, and calls any function that also per-
forms libc_once initialization, it will deadlock if the thread library has been loaded.

Furthermore, if an initializer is partially complete before it is canceled or interrupted
by a signal whose handler requires the same initialization, some or all of the initializa-
tion may be performed more than once, leaking resources or even resulting in corrupt
internal data.

Applications that need to call functions marked with init as an AS- or AC-Unsafe
feature should ensure the initialization is performed before configuring signal handlers
or enabling cancellation, so that the AS- and AC-Safety issues related with 1ibc_once
do not arise.

® race

Functions annotated with race as an MT-Safety issue operate on objects in ways that
may cause data races or similar forms of destructive interference out of concurrent
execution. In some cases, the objects are passed to the functions by users; in others,
they are used by the functions to return values to users; in others, they are not even
exposed to users.

We consider access to objects passed as (indirect) arguments to functions to be data
race free. The assurance of data race free objects is the caller’s responsibility. We
will not mark a function as MT-Unsafe or AS-Unsafe if it misbehaves when users fail
to take the measures required by POSIX to avoid data races when dealing with such
objects. As a general rule, if a function is documented as reading from an object
passed (by reference) to it, or modifying it, users ought to use memory synchronization
primitives to avoid data races just as they would should they perform the accesses
themselves rather than by calling the library function. FILE streams are the exception
to the general rule, in that POSIX mandates the library to guard against data races
in many functions that manipulate objects of this specific opaque type. We regard
this as a convenience provided to users, rather than as a general requirement whose
expectations should extend to other types.

In order to remind users that guarding certain arguments is their responsibility, we will
annotate functions that take objects of certain types as arguments. We draw the line
for objects passed by users as follows: objects whose types are exposed to users, and
that users are expected to access directly, such as memory buffers, strings, and various

Chapter 1: Introduction 7

user-visible struct types, do not give reason for functions to be annotated with race.
It would be noisy and redundant with the general requirement, and not many would
be surprised by the library’s lack of internal guards when accessing objects that can be
accessed directly by users.

As for objects that are opaque or opaque-like, in that they are to be manipulated only
by passing them to library functions (e.g., FILE, DIR, obstack, iconv_t), there might
be additional expectations as to internal coordination of access by the library. We will
annotate, with race followed by a colon and the argument name, functions that take
such objects but that do not take care of synchronizing access to them by default. For
example, FILE stream unlocked functions will be annotated, but those that perform
implicit locking on FILE streams by default will not, even though the implicit locking
may be disabled on a per-stream basis.

In either case, we will not regard as MT-Unsafe functions that may access user-supplied
objects in unsafe ways should users fail to ensure the accesses are well defined. The
notion prevails that users are expected to safeguard against data races any user-supplied
objects that the library accesses on their behalf.

This user responsibility does not apply, however, to objects controlled by the library
itself, such as internal objects and static buffers used to return values from certain
calls. When the library doesn’t guard them against concurrent uses, these cases are
regarded as MT-Unsafe and AS-Unsafe (although the race mark under AS-Unsafe will
be omitted as redundant with the one under MT-Unsafe). As in the case of user-
exposed objects, the mark may be followed by a colon and an identifier. The identifier
groups all functions that operate on a certain unguarded object; users may avoid the
MT-Safety issues related with unguarded concurrent access to such internal objects
by creating a non-recursive mutex related with the identifier, and always holding the
mutex when calling any function marked as racy on that identifier, as they would have
to should the identifier be an object under user control. The non-recursive mutex
avoids the MT-Safety issue, but it trades one AS-Safety issue for another, so use in
asynchronous signals remains undefined.

When the identifier relates to a static buffer used to hold return values, the mutex
must be held for as long as the buffer remains in use by the caller. Many functions
that return pointers to static buffers offer reentrant variants that store return values in
caller-supplied buffers instead. In some cases, such as tmpname, the variant is chosen
not by calling an alternate entry point, but by passing a non-NULL pointer to the buffer
in which the returned values are to be stored. These variants are generally preferable
in multi-threaded programs, although some of them are not MT-Safe because of other
internal buffers, also documented with race notes.

e const

Functions marked with const as an MT-Safety issue non-atomically modify internal
objects that are better regarded as constant, because a substantial portion of the
GNU C Library accesses them without synchronization. Unlike race, that causes both
readers and writers of internal objects to be regarded as MT-Unsafe and AS-Unsafe, this
mark is applied to writers only. Writers remain equally MT- and AS-Unsafe to call, but
the then-mandatory constness of objects they modify enables readers to be regarded as
MT-Safe and AS-Safe (as long as no other reasons for them to be unsafe remain), since
the lack of synchronization is not a problem when the objects are effectively constant.

Chapter 1: Introduction 8

The identifier that follows the const mark will appear by itself as a safety note in
readers. Programs that wish to work around this safety issue, so as to call writers,
may use a non-recursve rwlock associated with the identifier, and guard all calls to
functions marked with const followed by the identifier with a write lock, and all calls to
functions marked with the identifier by itself with a read lock. The non-recursive locking
removes the MT-Safety problem, but it trades one AS-Safety problem for another, so
use in asynchronous signals remains undefined.

e sig

Functions marked with sig as a MT-Safety issue (that implies an identical AS-Safety is-
sue, omitted for brevity) may temporarily install a signal handler for internal purposes,
which may interfere with other uses of the signal, identified after a colon.

This safety problem can be worked around by ensuring that no other uses of the signal
will take place for the duration of the call. Holding a non-recursive mutex while calling
all functions that use the same temporary signal; blocking that signal before the call
and resetting its handler afterwards is recommended.

There is no safe way to guarantee the original signal handler is restored in case of
asynchronous cancellation, therefore so-marked functions are also AC-Unsafe.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disabling asynchronous cancellation and
installing a cleanup handler to restore the signal to the desired state and to release the
mutex are recommended.

e term

Functions marked with term as an MT-Safety issue may change the terminal settings
in the recommended way, namely: call tcgetattr, modify some flags, and then call
tcsetattr; this creates a window in which changes made by other threads are lost.
Thus, functions marked with term are MT-Unsafe. The same window enables changes
made by asynchronous signals to be lost. These functions are also AS-Unsafe, but the
corresponding mark is omitted as redundant.

It is thus advisable for applications using the terminal to avoid concurrent and reen-
trant interactions with it, by not using it in signal handlers or blocking signals that
might use it, and holding a lock while calling these functions and interacting with the
terminal. This lock should also be used for mutual exclusion with functions marked
with race:tcattr(£d), where fd is a file descriptor for the controlling terminal. The
caller may use a single mutex for simplicity, or use one mutex per terminal, even if
referenced by different file descriptors.

Functions marked with term as an AC-Safety issue are supposed to restore terminal
settings to their original state, after temporarily changing them, but they may fail to
do so if cancelled.

Besides the measures recommended to work around the MT- and AS-Safety problem,
in order to avert the cancellation problem, disabling asynchronous cancellation and
installing a cleanup handler to restore the terminal settings to the original state and
to release the mutex are recommended.

Chapter 1: Introduction 9

1.2.2.4 Other Safety Remarks

Additional keywords may be attached to functions, indicating features that do not make
a function unsafe to call, but that may need to be taken into account in certain classes of
programs:

e locale

Functions annotated with locale as an MT-Safety issue read from the locale object
without any form of synchronization. Functions annotated with locale called concur-
rently with locale changes may behave in ways that do not correspond to any of the
locales active during their execution, but an unpredictable mix thereof.

We do not mark these functions as MT- or AS-Unsafe, however, because functions
that modify the locale object are marked with const:locale and regarded as unsafe.
Being unsafe, the latter are not to be called when multiple threads are running or asyn-
chronous signals are enabled, and so the locale can be considered effectively constant
in these contexts, which makes the former safe.

® env

Functions marked with env as an MT-Safety issue access the environment with getenv
or similar, without any guards to ensure safety in the presence of concurrent modifica-
tions.

We do not mark these functions as MT- or AS-Unsafe, however, because functions
that modify the environment are all marked with const:env and regarded as unsafe.
Being unsafe, the latter are not to be called when multiple threads are running or
asynchronous signals are enabled, and so the environment can be considered effectively
constant in these contexts, which makes the former safe.

e hostid

The function marked with hostid as an MT-Safety issue reads from the system-wide
data structures that hold the “host ID” of the machine. These data structures cannot
generally be modified atomically. Since it is expected that the “host ID” will not nor-
mally change, the function that reads from it (gethostid) is regarded as safe, whereas
the function that modifies it (sethostid) is marked with const:hostid, indicating
it may require special care if it is to be called. In this specific case, the special care
amounts to system-wide (not merely intra-process) coordination.

e sigintr
Functions marked with sigintr as an MT-Safety issue access the _sigintr internal

data structure without any guards to ensure safety in the presence of concurrent mod-
ifications.

We do not mark these functions as MT- or AS-Unsafe, however, because functions that
modify the this data structure are all marked with const:sigintr and regarded as
unsafe. Being unsafe, the latter are not to be called when multiple threads are run-
ning or asynchronous signals are enabled, and so the data structure can be considered
effectively constant in these contexts, which makes the former safe.

o fd

Functions annotated with £d as an AC-Safety issue may leak file descriptors if asyn-
chronous thread cancellation interrupts their execution.

Chapter 1: Introduction 10

Functions that allocate or deallocate file descriptors will generally be marked as such.
Even if they attempted to protect the file descriptor allocation and deallocation with
cleanup regions, allocating a new descriptor and storing its number where the cleanup
region could release it cannot be performed as a single atomic operation. Similarly,
releasing the descriptor and taking it out of the data structure normally responsible for
releasing it cannot be performed atomically. There will always be a window in which
the descriptor cannot be released because it was not stored in the cleanup handler
argument yet, or it was already taken out before releasing it. It cannot be taken out
after release: an open descriptor could mean either that the descriptor still has to be
closed, or that it already did so but the descriptor was reallocated by another thread
or signal handler.

Such leaks could be internally avoided, with some performance penalty, by temporarily
disabling asynchronous thread cancellation. However, since callers of allocation or
deallocation functions would have to do this themselves, to avoid the same sort of leak
in their own layer, it makes more sense for the library to assume they are taking care of
it than to impose a performance penalty that is redundant when the problem is solved
in upper layers, and insufficient when it is not.

This remark by itself does not cause a function to be regarded as AC-Unsafe. However,
cumulative effects of such leaks may pose a problem for some programs. If this is the
case, suspending asynchronous cancellation for the duration of calls to such functions
is recommended.

® mem

Functions annotated with mem as an AC-Safety issue may leak memory if asynchronous
thread cancellation interrupts their execution.

The problem is similar to that of file descriptors: there is no atomic interface to allocate
memory and store its address in the argument to a cleanup handler, or to release it
and remove its address from that argument, without at least temporarily disabling
asynchronous cancellation, which these functions do not do.

This remark does not by itself cause a function to be regarded as generally AC-Unsafe.
However, cumulative effects of such leaks may be severe enough for some programs that
disabling asynchronous cancellation for the duration of calls to such functions may be
required.

e cwd

Functions marked with cwd as an MT-Safety issue may temporarily change the cur-
rent working directory during their execution, which may cause relative pathnames
to be resolved in unexpected ways in other threads or within asynchronous signal or
cancellation handlers.

This is not enough of a reason to mark so-marked functions as MT- or AS-Unsafe, but
when this behavior is optional (e.g., nftw with FTW_CHDIR), avoiding the option may
be a good alternative to using full pathnames or file descriptor-relative (e.g. openat)
system calls.

e !posix

This remark, as an MT-, AS- or AC-Safety note to a function, indicates the safety status
of the function is known to differ from the specified status in the POSIX standard. For

Chapter 1: Introduction 11

example, POSIX does not require a function to be Safe, but our implementation is, or
vice-versa.

For the time being, the absence of this remark does not imply the safety properties we
documented are identical to those mandated by POSIX for the corresponding functions.

e :identifier
Annotations may sometimes be followed by identifiers, intended to group several func-
tions that e.g. access the data structures in an unsafe way, as in race and const, or to

provide more specific information, such as naming a signal in a function marked with
sig. It is envisioned that it may be applied to lock and corrupt as well in the future.

In most cases, the identifier will name a set of functions, but it may name global objects
or function arguments, or identifiable properties or logical components associated with
them, with a notation such as e.g. :buf (arg) to denote a buffer associated with the
argument arg, or :tcattr(fd) to denote the terminal attributes of a file descriptor fd.

The most common use for identifiers is to provide logical groups of functions and
arguments that need to be protected by the same synchronization primitive in order
to ensure safe operation in a given context.

e /condition

Some safety annotations may be conditional, in that they only apply if a boolean
expression involving arguments, global variables or even the underlying kernel evaluates
to true. Such conditions as /hurd or /!1linux!bsd indicate the preceding marker only
applies when the underlying kernel is the HURD, or when it is neither Linux nor a
BSD kernel, respectively. /!ps and /one_per_line indicate the preceding marker
only applies when argument ps is NULL, or global variable one_per_line is nonzero.

When all marks that render a function unsafe are adorned with such conditions, and
none of the named conditions hold, then the function can be regarded as safe.

1.2.3 Berkeley Unix

The GNU C Library defines facilities from some versions of Unix which are not formally
standardized, specifically from the 4.2 BSD, 4.3 BSD, and 4.4 BSD Unix systems (also
known as Berkeley Unix) and from SunOS (a popular 4.2 BSD derivative that includes
some Unix System V functionality). These systems support most of the ISO C and POSIX
facilities, and 4.4 BSD and newer releases of SunOS in fact support them all.

The BSD facilities include symbolic links (see Section 14.6 [Symbolic Links], page 435),
the select function (see Section 13.9 [Waiting for Input or Output], page 378), the BSD
signal functions (see Section 25.10 [BSD Signal Handling], page 767), and sockets (see
Chapter 16 [Sockets], page 473).

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T Unix
System V operating system. It is to some extent a superset of the POSIX standard (see
Section 1.2.2 [POSIX (The Portable Operating System Interface)|, page 2).

The GNU C Library defines most of the facilities required by the SVID that are not
also required by the ISO C or POSIX standards, for compatibility with System V Unix and
other Unix systems (such as SunOS) which include these facilities. However, many of the

Chapter 1: Introduction 12

more obscure and less generally useful facilities required by the SVID are not included. (In
fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process commu-
nication and shared memory, the hsearch and drand48 families of functions, fmtmsg and
several of the mathematical functions.

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide, published by the X/Open Company, Ltd., is a more gen-
eral standard than POSIX. X/Open owns the Unix copyright and the XPG specifies the
requirements for systems which are intended to be a Unix system.

The GNU C Library complies to the X/Open Portability Guide, Issue 4.2, with all exten-
sions common to XSI (X/Open System Interface) compliant systems and also all X/Open
UNIX extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems. Some of the really bad mistakes in System V systems were
corrected, though. Since fulfilling the XPG standard with the Unix extensions is a precon-
dition for getting the Unix brand chances are good that the functionality is available on
commercial systems.

1.2.6 Linux (The Linux Kernel)

The GNU C Library includes by reference the Linux man-pages 6.9.1 documentation to
document the listed syscalls for the Linux kernel. For reference purposes only, the latest
Linux man-pages Project (https://www.kernel.org/doc/man-pages/) documentation
can be accessed from the Linux kernel (https://www.kernel.org) website. Where the
syscall has more specific documentation in this manual that more specific documentation
is considered authoritative.

Throughout this manual, when we refer to a man page, for example:

sendmsg(2) (Latest, online: https://man7.org/linux/man-pages/man2/
sendmsg.2.html) See Section 1.2.6 [Linux (The Linux Kernel)|, page 12

we are referring primarily to the specific version noted above (the “normative” version),
typically accessed by running (for example) man 2 sendmsg on a system with that version
installed. For convenience, we will also link to the online latest copy of the man pages, but
keep in mind that version will almost always be newer than, and thus different than, the
normative version noted above.

Additional details on the Linux system call interface can be found in See Section 26.6
[System Calls|, page 808.

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C Library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that define types and
macros and declare variables and functions; and the actual library or archive that contains
the definitions of the variables and functions.

https://www.kernel.org/doc/man-pages/
https://www.kernel.org
https://man7.org/linux/man-pages/man2/sendmsg.2.html
https://man7.org/linux/man-pages/man2/sendmsg.2.html

Chapter 1: Introduction 13

(Recall that in C, a declaration merely provides information that a function or variable
exists and gives its type. For a function declaration, information about the types of its
arguments might be provided as well. The purpose of declarations is to allow the compiler
to correctly process references to the declared variables and functions. A definition, on the
other hand, actually allocates storage for a variable or says what a function does.)

In order to use the facilities in the GNU C Library, you should be sure that your program
source files include the appropriate header files. This is so that the compiler has declarations
of these facilities available and can correctly process references to them. Once your program
has been compiled, the linker resolves these references to the actual definitions provided in
the archive file.

Header files are included into a program source file by the ‘#include’ preprocessor
directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would contain
definitions and declarations describing the interfaces between the different parts of your
particular application. By contrast,

#include <file.h>

is typically used to include a header file file.h that contains definitions and declarations
for a standard library. This file would normally be installed in a standard place by your
system administrator. You should use this second form for the C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, before any
other code. If you begin your source files with some comments explaining what the code in
the file does (a good idea), put the ‘#include’ directives immediately afterwards, following
the feature test macro definition (see Section 1.3.4 [Feature Test Macros], page 16).

For more information about the use of header files and ‘#include’ directives, see Section
“Header Files” in The GNU C Preprocessor Manual.

The GNU C Library provides several header files, each of which contains the type and
macro definitions and variable and function declarations for a group of related facilities.
This means that your programs may need to include several header files, depending on
exactly which facilities you are using.

Some library header files include other library header files automatically. However, as a
matter of programming style, you should not rely on this; it is better to explicitly include all
the header files required for the library facilities you are using. The GNU C Library header
files have been written in such a way that it doesn’t matter if a header file is accidentally
included more than once; including a header file a second time has no effect. Likewise, if
your program needs to include multiple header files, the order in which they are included
doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any number of
times works in any ISO C implementation. However, this has traditionally not been the
case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it declares;
you could declare the function explicitly yourself, according to the specifications in this
manual. But it is usually better to include the header file because it may define types and
macros that are not otherwise available and because it may define more efficient macro
replacements for some functions. It is also a sure way to have the correct declaration.

Chapter 1: Introduction 14

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro definition as
well. This normally has no effect on how your program runs—the macro definition does
the same thing as the function would. In particular, macro equivalents for library functions
evaluate arguments exactly once, in the same way that a function call would. The main
reason for these macro definitions is that sometimes they can produce an inline expansion
that is considerably faster than an actual function call.

Taking the address of a library function works even if it is also defined as a macro. This
is because, in this context, the name of the function isn’t followed by the left parenthesis
that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—perhaps
to make your program easier to debug. There are two ways you can do this:
e You can avoid a macro definition in a specific use by enclosing the name of the function
in parentheses. This works because the name of the function doesn’t appear in a
syntactic context where it is recognizable as a macro call.

e You can suppress any macro definition for a whole source file by using the ‘#undef’
preprocessor directive, unless otherwise stated explicitly in the description of that fa-
cility.

For example, suppose the header file stdlib.h declares a function named abs with
extern int abs (int);
and also provides a macro definition for abs. Then, in:
#include <stdlib.h>
int £ (int *i) { return abs (++*i); }
the reference to abs might refer to either a macro or a function. On the other hand, in each
of the following examples the reference is to a function and not a macro.

#include <stdlib.h>
int g (int *i) { return (abs) (++*i); }

#undef abs
int h (int *i) { return abs (++*i); }
Since macro definitions that double for a function behave in exactly the same way as the
actual function version, there is usually no need for any of these methods. In fact, removing
macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from the ISO C
standard are reserved unconditionally; your program may not redefine these names. All
other library names are reserved if your program explicitly includes the header file that
defines or declares them. There are several reasons for these restrictions:

e Other people reading your code could get very confused if you were using a function
named exit to do something completely different from what the standard exit function
does, for example. Preventing this situation helps to make your programs easier to
understand and contributes to modularity and maintainability.

e It avoids the possibility of a user accidentally redefining a library function that is called
by other library functions. If redefinition were allowed, those other functions would not
work properly.

Chapter 1: Introduction 15

It allows the compiler to do whatever special optimizations it pleases on calls to these
functions, without the possibility that they may have been redefined by the user. Some
library facilities, such as those for dealing with variadic arguments (see Section A.2
[Variadic Functions], page 988) and non-local exits (see Chapter 24 [Non-Local Exits],
page 714), actually require a considerable amount of cooperation on the part of the C
compiler, and with respect to the implementation, it might be easier for the compiler
to treat these as built-in parts of the language.

In addition to the names documented in this manual, reserved names include all external

identifiers (global functions and variables) that begin with an underscore (‘_’) and all iden-
tifiers regardless of use that begin with either two underscores or an underscore followed by
a capital letter are reserved names. This is so that the library and header files can define
functions, variables, and macros for internal purposes without risk of conflict with names
in user programs.

Some additional classes of identifier names are reserved for future extensions to the C

language or the POSIX.1 environment. While using these names for your own purposes
right now might not cause a problem, they do raise the possibility of conflict with future
versions of the C or POSIX standards, so you should avoid these names.

Names beginning with a capital ‘E’ followed a digit or uppercase letter may be used for
additional error code names. See Chapter 2 [Error Reporting], page 24.

Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may be used

for additional character testing and conversion functions. See Chapter 4 [Character
Handling], page 89.

Names that begin with ‘LC_’ followed by an uppercase letter may be used for additional
macros specifying locale attributes. See Chapter 7 [Locales and Internationalization],
page 187.

Names of all existing mathematics functions (see Chapter 19 [Mathematics|, page 562)
suffixed with ‘£’ or ‘1’ are reserved for corresponding functions that operate on float
and long double arguments, respectively.

Names that begin with ‘SIG’ followed by an uppercase letter are reserved for additional
signal names. See Section 25.2 [Standard Signals], page 725.

Names that begin with ‘SIG_’ followed by an uppercase letter are reserved for additional
signal actions. See Section 25.3.1 [Basic Signal Handling], page 734.

Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter are reserved
for additional string and array functions. See Chapter 5 [String and Array Utilities],
page 99.

Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they actually

define. You only need to worry about these restrictions if your program includes that
particular header file.

The header file dirent.h reserves names prefixed with ‘d_’.
The header file fcntl.h reserves names prefixed with ‘1_", ‘F_’, ‘0_’, and ‘S_’.

The header file grp.h reserves names prefixed with ‘gr_’.

The header file 1imits.h reserves names suffixed with ‘_MAX’.

Chapter 1: Introduction 16

)

e The header file pwd.h reserves names prefixed with ‘pw_".
e The header file signal.h reserves names prefixed with ‘sa_’ and ‘SA_’.
e The header file sys/stat.h reserves names prefixed with ‘st_’ and ‘S_".
e The header file sys/times.h reserves names prefixed with ‘tms_’.

e The header file termios.h reserves names prefixed with ‘c_’, ‘V’, ‘IT’, ‘0’, and ‘TC’; and
names prefixed with ‘B’ followed by a digit.

1.3.4 Feature Test Macros

The exact set of features available when you compile a source file is controlled by which
feature test macros you define.

If you compile your programs using ‘gcc —ansi’, you get only the ISO C library features,
unless you explicitly request additional features by defining one or more of the feature
macros. See Section “GNU CC Command Options” in The GNU CC Manual, for more
information about GCC options.

You should define these macros by using ‘#define’ preprocessor directives at the top of
your source code files. These directives must come before any #include of a system header
file. It is best to make them the very first thing in the file, preceded only by comments. You
could also use the ‘-D’ option to GCC, but it’s better if you make the source files indicate
their own meaning in a self-contained way.

This system exists to allow the library to conform to multiple standards. Although the
different standards are often described as supersets of each other, they are usually incom-
patible because larger standards require functions with names that smaller ones reserve to
the user program. This is not mere pedantry — it has been a problem in practice. For
instance, some non-GNU programs define functions named getline that have nothing to
do with this library’s getline. They would not be compilable if all features were enabled
indiscriminately.

This should not be used to verify that a program conforms to a limited standard. It is
insufficient for this purpose, as it will not protect you from including header files outside
the standard, or relying on semantics undefined within the standard.

_POSIX_SOURCE [Macro]
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.

The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_C_SOURCE
to a positive integer.

_POSIX_C_SOURCE [Macro]
Define this macro to a positive integer to control which POSIX functionality is made
available. The greater the value of this macro, the more functionality is made avail-
able.

If you define this macro to a value greater than or equal to 1, then the functionality
from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990) is made
available.
If you define this macro to a value greater than or equal to 2, then the functionality
from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992) is made
available.

Chapter 1: Introduction 17

If you define this macro to a value greater than or equal to 199309L, then the function-
ality from the 1993 edition of the POSIX.1b standard (IEEE Standard 1003.1b-1993)
is made available.

If you define this macro to a value greater than or equal to 199506L, then the function-
ality from the 1995 edition of the POSIX.1c standard (IEEE Standard 1003.1¢-1995)
is made available.

If you define this macro to a value greater than or equal to 200112L, then the func-
tionality from the 2001 edition of the POSIX standard (IEEE Standard 1003.1-2001)
is made available.

If you define this macro to a value greater than or equal to 200809L, then the func-
tionality from the 2008 edition of the POSIX standard (IEEE Standard 1003.1-2008)
is made available.

If you define this macro to a value greater than or equal to 202405L, then the func-
tionality from the 2024 edition of the POSIX standard (IEEE Standard 1003.1-2024)
is made available.

Greater values for _POSIX_C_SOURCE will enable future extensions. The POSIX stan-
dards process will define these values as necessary, and the GNU C Library should sup-
port them some time after they become standardized. The 1996 edition of POSIX.1
(ISO/IEC 9945-1: 1996) states that if you define _POSIX_C_SOURCE to a value greater
than or equal to 199506L, then the functionality from the 1996 edition is made avail-
able. In general, in the GNU C Library, bugfixes to the standards are included when
specifying the base version; e.g., POSIX.1-2004 will always be included with a value

of 200112L.
_XOPEN_SOURCE [Macro]
_XOPEN_SQOURCE_EXTENDED [Macro]

If you define this macro, functionality described in the X/Open Portability Guide is
included. This is a superset of the POSIX.1 and POSIX.2 functionality and in fact
_POSIX_SOURCE and _POSIX_C_SOURCE are automatically defined.

As the unification of all Unices, functionality only available in BSD and SVID is also
included.

If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more functionality is
available. The extra functions will make all functions available which are necessary
for the X/Open Unix brand.

If the macro _XOPEN_SOURCE has the value 500 this includes all functionality described
so far plus some new definitions from the Single Unix Specification, version 2. The
value 600 (corresponding to the sixth revision) includes definitions from SUSv3, and
using 700 (the seventh revision) includes definitions from SUSv4. The value 800
includes definitions from POSIX.1-2024.

_LARGEFILE_SOURCE [Macro]
If this macro is defined some extra functions are available which rectify a few short-
comings in all previous standards. Specifically, the functions fseeko and ftello are
available. Without these functions the difference between the ISO C interface (fseek,
ftell) and the low-level POSIX interface (1seek) would lead to problems.

This macro was introduced as part of the Large File Support extension (LFS).

Chapter 1: Introduction 18

_LARGEFILE64_SOURCE [Macro]
If you define this macro an additional set of functions is made available which enables
32 bit systems to use files of sizes beyond the usual limit of 2GB. This interface is
not available if the system does not support files that large. On systems where the
natural file size limit is greater than 2GB (i.e., on 64 bit systems) the new functions
are identical to the replaced functions.

The new functionality is made available by a new set of types and functions which
replace the existing ones. The names of these new objects contain 64 to indicate the
intention, e.g., off_t vs. of£f64_t and fseeko vs. fseekob4.

This macro was introduced as part of the Large File Support extension (LFS). It is
a transition interface for the period when 64 bit offsets are not generally used (see
_FILE_UFFSET_BITS).

_FILE_OFFSET_BITS [Macro]
This macro determines which file system interface shall be used, one replacing the
other. Whereas _LARGEFILE64_SOURCE makes the 64 bit interface available as an
additional interface, _FILE_OFFSET_BITS allows the 64 bit interface to replace the
old interface.

If _FILE_OFFSET_BITS is defined to the value 32, the 32 bit interface is used and
types like off_t have a size of 32 bits on 32 bit systems.

If the macro is defined to the value 64, the large file interface replaces the old inter-
face. lLe., the functions are not made available under different names (as they are
with _LARGEFILE64_SOURCE). Instead the old function names now reference the new
functions, e.g., a call to £seeko now indeed calls fseeko64.

If the macro is not defined it currently defaults to 32, but this default is planned to
change due to a need to update time_t for Y2038 safety, and applications should not
rely on the default.

This macro should only be selected if the system provides mechanisms for handling
large files. On 64 bit systems this macro has no effect since the *64 functions are
identical to the normal functions.

This macro was introduced as part of the Large File Support extension (LFS).

_TIME_BITS [Macro]
Define this macro to control the bit size of time_t, and therefore the bit size of all
time_t-derived types and the prototypes of all related functions.

1. If _TIME_BITS is undefined, the bit size of time_t is architecture dependent.
Currently it defaults to 64 bits on most architectures. Although it defaults to
32 bits on some traditional architectures (1686, ARM), this is planned to change
and applications should not rely on this.

2. If _TIME_BITS is defined to be 64, time_t is defined to be a 64-bit integer. On
platforms where time_t was traditionally 32 bits, calls to proper syscalls depend
on the Linux kernel version on which the system is running. For Linux kernel
version above 5.1 syscalls supporting 64-bit time are used. Otherwise, a fallback
code is used with legacy (i.e. 32-bit) syscalls.

On such platforms, the GNU C Library will also define __USE_TIME64_REDIRECTS
to indicate whether the declarations are expanded to different ones (either by

Chapter 1: Introduction 19

redefining the symbol name or using a symbol alias). For instance, if the symbol
clock_gettime expands to __clock_gettime64.

3. If _TIME_BITS is defined to be 32, time_t is defined to be a 32-bit integer where
that is supported. This is not recommended, as 32-bit time_t stops working in
the year 2038.

4. For any other use case a compile-time error is emitted.

_TIME_BITS=64 can be defined only when _FILE_QFFSET_BITS=64 is also defined.

By using this macro certain ports gain support for 64-bit time and as a result become
immune to the Y2038 problem.

_IS0C99_SOURCE [Macro]
If this macro is defined, features from ISO C99 are included. Since these features are
included by default, this macro is mostly relevant when the compiler uses an earlier
language version.

_IS0C11_SOURCE [Macro]
If this macro is defined, ISO C11 extensions to ISO C99 are included.

_IS0C23_S0OURCE [Macro]
If this macro is defined, ISO C23 extensions to ISO C11 are included. Only some
features from this draft standard are supported by the GNU C Library. The older
name _ISOC2X_SOURCE is also supported.

_ISO0C2Y_SOURCE [Macro]
If this macro is defined, ISO C2Y extensions to ISO C23 are included. Only some
features from this draft standard are supported by the GNU C Library.

__STDC_WANT_LIB_EXT2__ [Macro]
If you define this macro to the value 1, features from ISO/IEC TR 24731-2:2010
(Dynamic Allocation Functions) are enabled. Only some of the features from this TR
are supported by the GNU C Library.

__STDC_WANT_IEC_60559_BFP_EXT__ [Macro]
If you define this macro, features from ISO/TEC TS 18661-1:2014 (Floating-point
extensions for C: Binary floating-point arithmetic) are enabled. Only some of the
features from this TS are supported by the GNU C Library.

_STDC_WANT_IEC_60559_FUNCS_EXT__ [Macro]
If you define this macro, features from ISO/IEC TS 18661-4:2015 (Floating-point
extensions for C: Supplementary functions) are enabled. Only some of the features
from this TS are supported by the GNU C Library.

_STDC_WANT_IEC_60559_TYPES_EXT__ [Macro]
If you define this macro, features from ISO/IEC TS 18661-3:2015 (Floating-point
extensions for C: Interchange and extended types) are enabled. Only some of the
features from this TS are supported by the GNU C Library.

Chapter 1: Introduction 20

__STDC_WANT_IEC_60559_EXT__ [Macro]
If you define this macro, ISO C23 features defined in Annex F of that standard are
enabled. This affects declarations of the totalorder functions and functions related
to NaN payloads.

_GNU_SQURCE [Macro]
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.

_DEFAULT_SOURCE [Macro]
If you define this macro, most features are included apart from X/Open, LFS and
GNU extensions: the effect is to enable features from the 2008 edition of POSIX,
as well as certain BSD and SVID features without a separate feature test macro to
control them.

Be aware that compiler options also affect included features:

e If you use a strict conformance option, features beyond those from the compiler’s
language version will be disabled, though feature test macros may be used to
enable them.

e Features enabled by compiler options are not overridden by feature test macros.

_ATFILE_SOURCE [Macro]
If this macro is defined, additional *at interfaces are included.

_FORTIFY_SOURCE [Macro]
If this macro is defined to 1, security hardening is added to various library functions. If
defined to 2, even stricter checks are applied. If defined to 3, the GNU C Library may
also use checks that may have an additional performance overhead. See Section D.2
[Fortification of function calls|, page 1153.

_DYNAMIC_STACK_SIZE_SOURCE [Macro]
If this macro is defined, correct (but non compile-time constant) MINSIGSTKSZ,
SIGSTKSZ and PTHREAD_STACK_MIN are defined.

_REENTRANT [Macro]

_THREAD_SAFE [Macro]
These macros are obsolete. They have the same effect as defining _POSIX_C_SOURCE
with the value 199506L.

Some very old C libraries required one of these macros to be defined for basic func-
tionality (e.g. getchar) to be thread-safe.

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the ‘-ansi’
option to GCC, or other conformance options such as -std=c99, and don’t define any of
these macros explicitly, the effect is the same as defining _DEFAULT_SOURCE to 1.

When you define a feature test macro to request a larger class of features, it is harmless
to define in addition a feature test macro for a subset of those features. For example, if you
define _POSIX_C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise, if
you define _GNU_SOURCE, then defining either _POSIX_SOURCE or _POSIX_C_SOURCE as well
has no effect.

Chapter 1: Introduction 21

1.4 Roadmap to the Manual

Here is an overview of the contents of the remaining chapters of this manual.

Chapter 2 [Error Reporting], page 24, describes how errors detected by the library are
reported.

Chapter 3 [Virtual Memory Allocation And Paging], page 44, describes the GNU C
Library’s facilities for managing and using virtual and real memory, including dynamic
allocation of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via pointers.

Chapter 4 [Character Handling], page 89, contains information about character classi-
fication functions (such as isspace) and functions for performing case conversion.

Chapter 5 [String and Array Utilities], page 99, has descriptions of functions for ma-
nipulating strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

Chapter 6 [Character Set Handling], page 144, contains information about manipulating
characters and strings using character sets larger than will fit in the usual char data
type.

Chapter 7 [Locales and Internationalization], page 187, describes how selecting a par-
ticular country or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

Chapter 9 [Searching and Sorting], page 232, contains information about functions for
searching and sorting arrays. You can use these functions on any kind of array by
providing an appropriate comparison function.

Chapter 10 [Pattern Matching], page 244, presents functions for matching regular ex-
pressions and shell file name patterns, and for expanding words as the shell does.

Chapter 11 [Input/Output Overview|, page 266, gives an overall look at the input and
output facilities in the library, and contains information about basic concepts such as
file names.

Chapter 12 [Input/Output on Streams], page 271, describes I/O operations involving
streams (or FILE * objects). These are the normal C library functions from stdio.h.

Chapter 13 [Low-Level Input/Output], page 349, contains information about I/O op-
erations on file descriptors. File descriptors are a lower-level mechanism specific to the
Unix family of operating systems.

Chapter 14 [File System Interface|, page 414, has descriptions of operations on entire
files, such as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes of a
file, such as its owner and file protection modes.

Chapter 15 [Pipes and FIFOs|, page 468, contains information about simple inter-
process communication mechanisms. Pipes allow communication between two related
processes (such as between a parent and child), while FIFOs allow communication
between processes sharing a common file system on the same machine.

Chapter 16 [Sockets], page 473, describes a more complicated interprocess communi-
cation mechanism that allows processes running on different machines to communicate
over a network. This chapter also contains information about Internet host addressing
and how to use the system network databases.

Chapter 1: Introduction 22

e Chapter 17 [Low-Level Terminal Interface], page 523, describes how you can change
the attributes of a terminal device. If you want to disable echo of characters typed by
the user, for example, read this chapter.

e Chapter 19 [Mathematics|, page 562, contains information about the math library func-
tions. These include things like random-number generators and remainder functions on
integers as well as the usual trigonometric and exponential functions on floating-point
numbers.

e Chapter 20 [Low-Level Arithmetic Functions], page 595, describes functions for simple
arithmetic, analysis of floating-point values, and reading numbers from strings.

e Chapter 22 [Date and Time], page 647, describes functions for measuring both calendar
time and CPU time, as well as functions for setting alarms and timers.

e Chapter 24 [Non-Local Exits], page 714, contains descriptions of the setjmp and
longjmp functions. These functions provide a facility for goto-like jumps which can
jump from one function to another.

e Chapter 25 [Signal Handling], page 723, tells you all about signals—what they are, how
to establish a handler that is called when a particular kind of signal is delivered, and
how to prevent signals from arriving during critical sections of your program.

e Chapter 26 [The Basic Program/System Interface|, page 769, tells how your programs
can access their command-line arguments and environment variables.

e Chapter 27 [Processes|, page 814, contains information about how to start new processes
and run programs.

e Chapter 29 [Job Control], page 828, describes functions for manipulating process groups
and the controlling terminal. This material is probably only of interest if you are writing
a shell or other program which handles job control specially.

e Chapter 30 [System Databases and Name Service Switch], page 846, describes the ser-
vices which are available for looking up names in the system databases, how to deter-
mine which service is used for which database, and how these services are implemented
so that contributors can design their own services.

e Section 31.13 [User Database], page 875, and Section 31.14 [Group Database], page 879,
tell you how to access the system user and group databases.

e Chapter 32 [System Management]|, page 886, describes functions for controlling and
getting information about the hardware and software configuration your program is
executing under.

e Chapter 33 [System Configuration Parameters|, page 901, tells you how you can get
information about various operating system limits. Most of these parameters are pro-
vided for compatibility with POSIX.

e Appendix A [C Language Facilities in the Library], page 987, contains information
about library support for standard parts of the C language, including things like the
sizeof operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other proper-
ties of the numerical types. There is also a simple debugging mechanism which allows
you to put assertions in your code, and have diagnostic messages printed if the tests
fail.

Chapter 1: Introduction 23

e Appendix B [Summary of Library Facilities|, page 1003, gives a summary of all the
functions, variables, and macros in the library, with complete data types and function
prototypes, and says what standard or system each is derived from.

e Appendix C [Installing the GNU C Library], page 1140, explains how to build and
install the GNU C Library on your system, and how to report any bugs you might find.

e Appendix D [Library Maintenance], page 1151, explains how to add new functions or
port the library to a new system.

If you already know the name of the facility you are interested in, you can look it up in
Appendix B [Summary of Library Facilities|, page 1003. This gives you a summary of its
syntax and a pointer to where you can find a more detailed description. This appendix is
particularly useful if you just want to verify the order and type of arguments to a function,
for example. It also tells you what standard or system each function, variable, or macro is
derived from.

24

2 Error Reporting

Many functions in the GNU C Library detect and report error conditions, and sometimes
your programs need to check for these error conditions. For example, when you open an
input file, you should verify that the file was actually opened correctly, and print an error
message or take other appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program should
include the header file errno.h to use this facility.

2.1 Checking for Errors

Most library functions return a special value to indicate that they have failed. The special
value is typically -1, a null pointer, or a constant such as EOF that is defined for that
purpose. But this return value tells you only that an error has occurred. To find out what
kind of error it was, you need to look at the error code stored in the variable errno. This
variable is declared in the header file errno.h.

volatile int errno [Variable]
The variable errno contains the system error number. You can change the value of
errno.

Since errno is declared volatile, it might be changed asynchronously by a signal
handler; see Section 25.4 [Defining Signal Handlers], page 741. However, a properly
written signal handler saves and restores the value of errno, so you generally do not
need to worry about this possibility except when writing signal handlers.

The initial value of errno at program startup is zero. In many cases, when a library
function encounters an error, it will set errno to a non-zero value to indicate what
specific error condition occurred. The documentation for each function lists the error
conditions that are possible for that function. Not all library functions use this
mechanism; some return an error code directly, instead.

Warning: Many library functions may set errno to some meaningless non-zero value
even if they did not encounter any errors, and even if they return error codes directly.
Therefore, it is usually incorrect to check whether an error occurred by inspecting the
value of errno. The proper way to check for error is documented for each function.

Portability Note: ISO C specifies errno as a “modifiable lvalue” rather than as a
variable, permitting it to be implemented as a macro. For example, its expansion
might involve a function call, like *__errno_location (). In fact, that is what it is
on GNU/Linux and GNU/Hurd systems. The GNU C Library, on each system, does
whatever is right for the particular system.

There are a few library functions, like sqrt and atan, that return a perfectly legiti-
mate value in case of an error, but also set errno. For these functions, if you want
to check to see whether an error occurred, the recommended method is to set errno
to zero before calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined in errno.h. The
names start with ‘E’ and an upper-case letter or digit; you should consider names of this
form to be reserved names. See Section 1.3.3 [Reserved Names|, page 14.

Chapter 2: Error Reporting 25

The error code values are all positive integers and are all distinct, with one exception:
EWOULDBLOCK and EAGAIN are the same. Since the values are distinct, you can use them
as labels in a switch statement; just don’t use both EWOULDBLOCK and EAGAIN. Your
program should not make any other assumptions about the specific values of these symbolic
constants.

The value of errno doesn’t necessarily have to correspond to any of these macros, since
some library functions might return other error codes of their own for other situations. The
only values that are guaranteed to be meaningful for a particular library function are the
ones that this manual lists for that function.

Except on GNU/Hurd systems, almost any system call can return EFAULT if it is given
an invalid pointer as an argument. Since this could only happen as a result of a bug in your
program, and since it will not happen on GNU/Hurd systems, we have saved space by not
mentioning EFAULT in the descriptions of individual functions.

In some Unix systems, many system calls can also return EFAULT if given as an argument a
pointer into the stack, and the kernel for some obscure reason fails in its attempt to extend
the stack. If this ever happens, you should probably try using statically or dynamically
allocated memory instead of stack memory on that system.

2.2 Error Codes

The error code macros are defined in the header file errno.h. All of them expand into
integer constant values. Some of these error codes can’t occur on GNU systems, but they
can occur using the GNU C Library on other systems.

int EPERM [Macro]
“Operation not permitted.” Only the owner of the file (or other resource) or processes
with special privileges can perform the operation.

int ENOENT [Macro]
“No such file or directory.” This is a “file doesn’t exist” error for ordinary files that
are referenced in contexts where they are expected to already exist.

int ESRCH [Macro]
“No such process.” No process matches the specified process ID.

int EINTR [Macro]
“Interrupted system call.” An asynchronous signal occurred and prevented comple-
tion of the call. When this happens, you should try the call again.
You can choose to have functions resume after a signal that is handled, rather than
failing with EINTR; see Section 25.5 [Primitives Interrupted by Signals], page 750.

int EIO [Macro]
“Input/output error.” Usually used for physical read or write errors.

int ENXIO [Macro]
“No such device or address.” The system tried to use the device represented by a file
you specified, and it couldn’t find the device. This can mean that the device file was
installed incorrectly, or that the physical device is missing or not correctly attached
to the computer.

Chapter 2: Error Reporting 26

int

int

int

int

int

int

int

int

int

int

int

int

E2BIG [Macro]
“Argument list too long.” Used when the arguments passed to a new program being
executed with one of the exec functions (see Section 27.6 [Executing a File|, page 819)
occupy too much memory space. This condition never arises on GNU/Hurd systems.

ENOEXEC [Macro]
“Exec format error.” Invalid executable file format. This condition is detected by the
exec functions; see Section 27.6 [Executing a File], page 819.

EBADF [Macro]
“Bad file descriptor.” For example, I/O on a descriptor that has been closed or
reading from a descriptor open only for writing (or vice versa).

ECHILD [Macro]
“No child processes.” This error happens on operations that are supposed to manip-
ulate child processes, when there aren’t any processes to manipulate.

EDEADLK [Macro]

“Resource deadlock avoided.” Allocating a system resource would have resulted in
a deadlock situation. The system does not guarantee that it will notice all such
situations. This error means you got lucky and the system noticed; it might just
hang. See Section 13.16 [File Locks], page 404, for an example.

ENOMEM [Macro]
“Cannot allocate memory.” The system cannot allocate more virtual memory because
its capacity is full.

EACCES [Macro]
“Permission denied.” The file permissions do not allow the attempted operation.
EFAULT [Macro]

“Bad address.” An invalid pointer was detected. On GNU/Hurd systems, this error
never happens; you get a signal instead.

ENOTBLK [Macro]
“Block device required.” A file that isn’t a block special file was given in a situation
that requires one. For example, trying to mount an ordinary file as a file system in
Unix gives this error.

EBUSY [Macro]
“Device or resource busy.” A system resource that can’t be shared is already in
use. For example, if you try to delete a file that is the root of a currently mounted
filesystem, you get this error.

EEXIST [Macro]
“File exists.” An existing file was specified in a context where it only makes sense to
specify a new file.

EXDEV [Macro]

“Invalid cross-device link.” An attempt to make an improper link across file systems
was detected. This happens not only when you use link (see Section 14.5 [Hard
Links|, page 433) but also when you rename a file with rename (see Section 14.8
[Renaming Files], page 439).

Chapter 2: Error Reporting 27

int

int

int

int

int

int

int

int

int

int

int

ENODEV [Macro]
“No such device.” The wrong type of device was given to a function that expects a
particular sort of device.

ENOTDIR [Macro]
“Not a directory.” A file that isn’t a directory was specified when a directory is
required.

EISDIR [Macro]
“Is a directory.” You cannot open a directory for writing, or create or remove hard
links to it.

EINVAL [Macro]
“Invalid argument.” This is used to indicate various kinds of problems with passing
the wrong argument to a library function.

EMFILE [Macro]
“Too many open files.” The current process has too many files open and can’t open
any more. Duplicate descriptors do count toward this limit.

In BSD and GNU, the number of open files is controlled by a resource limit that
can usually be increased. If you get this error, you might want to increase the
RLIMIT_NOFILE limit or make it unlimited; see Section 23.2 [Limiting Resource Us-
agel, page 689.

ENFILE [Macro]
“Too many open files in system.” There are too many distinct file openings in the
entire system. Note that any number of linked channels count as just one file opening;
see Section 13.5.1 [Linked Channels|, page 362. This error never occurs on GNU/Hurd
systems.

ENOTTY [Macro]
“Inappropriate ioctl for device.” Inappropriate I/O control operation, such as trying
to set terminal modes on an ordinary file.

ETXTBSY [Macro]
“Text file busy.” An attempt to execute a file that is currently open for writing,
or write to a file that is currently being executed. Often using a debugger to run a
program is considered having it open for writing and will cause this error. (The name
stands for “text file busy”.) This is not an error on GNU/Hurd systems; the text is
copied as necessary.

EFBIG [Macro]
“File too large.” The size of a file would be larger than allowed by the system.

ENOSPC [Macro]
“No space left on device.” Write operation on a file failed because the disk is full.

ESPIPE [Macro]
“Illegal seek.” Invalid seek operation (such as on a pipe).

Chapter 2: Error Reporting 28

int

int

int

int

int

int

int

EROFS [Macro]
“Read-only file system.” An attempt was made to modify something on a read-only
file system.

EMLINK [Macro]
“Too many links.” The link count of a single file would become too large. rename
can cause this error if the file being renamed already has as many links as it can take
(see Section 14.8 [Renaming Files|, page 439).

EPIPE [Macro]

“Broken pipe.” There is no process reading from the other end of a pipe. Every
library function that returns this error code also generates a SIGPIPE signal; this
signal terminates the program if not handled or blocked. Thus, your program will
never actually see EPIPE unless it has handled or blocked SIGPIPE.

EDOM [Macro]
“Numerical argument out of domain.” Used by mathematical functions when an
argument value does not fall into the domain over which the function is defined.

ERANGE [Macro]
“Numerical result out of range.” Used by mathematical functions when the result
value is not representable because of overflow or underflow.

EAGAIN [Macro]
“Resource temporarily unavailable.” The call might work if you try again later. The
macro EWOULDBLOCK is another name for EAGAIN; they are always the same in the
GNU C Library.

This error can happen in a few different situations:

e An operation that would block was attempted on an object that has non-blocking
mode selected. Trying the same operation again will block until some exter-
nal condition makes it possible to read, write, or connect (whatever the opera-
tion). You can use select to find out when the operation will be possible; see
Section 13.9 [Waiting for Input or Output], page 378.

Portability Note: In many older Unix systems, this condition was indicated by
EWOULDBLOCK, which was a distinct error code different from EAGAIN. To make
your program portable, you should check for both codes and treat them the same.

e A temporary resource shortage made an operation impossible. fork can return
this error. It indicates that the shortage is expected to pass, so your program
can try the call again later and it may succeed. It is probably a good idea to
delay for a few seconds before trying it again, to allow time for other processes
to release scarce resources. Such shortages are usually fairly serious and affect
the whole system, so usually an interactive program should report the error to
the user and return to its command loop.

EWOULDBLOCK [Macro]
“Operation would block.” In the GNU C Library, this is another name for EAGAIN
(above). The values are always the same, on every operating system.

C libraries in many older Unix systems have EWOULDBLOCK as a separate error code.

Chapter 2: Error Reporting 29

int

int

int

int

int

int

int

int

int

int

EINPROGRESS [Macro]
“Operation now in progress.” An operation that cannot complete immediately was
initiated on an object that has non-blocking mode selected. Some functions that must
always block (such as connect; see Section 16.9.1 [Making a Connection], page 501)
never return EAGAIN. Instead, they return EINPROGRESS to indicate that the operation
has begun and will take some time. Attempts to manipulate the object before the
call completes return EALREADY. You can use the select function to find out when
the pending operation has completed; see Section 13.9 [Waiting for Input or Output],
page 378.

EALREADY [Macro]
“Operation already in progress.” An operation is already in progress on an object
that has non-blocking mode selected.

ENOTSOCK [Macro]
“Socket operation on non-socket.” A file that isn’t a socket was specified when a
socket is required.

EMSGSIZE [Macro]
“Message too long.” The size of a message sent on a socket was larger than the
supported maximum size.

EPROTOTYPE [Macro]
“Protocol wrong type for socket.” The socket type does not support the requested
communications protocol.

ENOPROTOOPT [Macro]
“Protocol not available.” You specified a socket option that doesn’t make sense for
the particular protocol being used by the socket. See Section 16.12 [Socket Options],
page 518.

EPROTONOSUPPORT [Macro]
“Protocol not supported.” The socket domain does not support the requested com-
munications protocol (perhaps because the requested protocol is completely invalid).
See Section 16.8.1 [Creating a Socket], page 498.

ESOCKTNOSUPPORT [Macro]
“Socket type not supported.” The socket type is not supported.

EOPNOTSUPP [Macro]
“Operation not supported.” The operation you requested is not supported. Some
socket functions don’t make sense for all types of sockets, and others may not be
implemented for all communications protocols. On GNU/Hurd systems, this error
can happen for many calls when the object does not support the particular operation;
it is a generic indication that the server knows nothing to do for that call.

EPFNOSUPPORT [Macro]
“Protocol family not supported.” The socket communications protocol family you
requested is not supported.

Chapter 2: Error Reporting 30

int

int

int

int

int

int

int

int

int

int

int

int

EAFNOSUPPORT [Macro]
“Address family not supported by protocol.” The address family specified for a socket
is not supported; it is inconsistent with the protocol being used on the socket. See
Chapter 16 [Sockets], page 473.

EADDRINUSE [Macro]
“Address already in use.” The requested socket address is already in use. See
Section 16.3 [Socket Addresses|, page 475.

EADDRNQOTAVAIL [Macro]
“Cannot assign requested address.” The requested socket address is not available; for
example, you tried to give a socket a name that doesn’t match the local host name.
See Section 16.3 [Socket Addresses], page 475.

ENETDOWN [Macro]
“Network is down.” A socket operation failed because the network was down.

ENETUNREACH [Macro]
“Network is unreachable.” A socket operation failed because the subnet containing
the remote host was unreachable.

ENETRESET [Macro]
“Network dropped connection on reset.” A network connection was reset because the
remote host crashed.

ECONNABORTED [Macro]
“Software caused connection abort.” A network connection was aborted locally.
ECONNRESET [Macro]

“Connection reset by peer.” A network connection was closed for reasons outside the
control of the local host, such as by the remote machine rebooting or an unrecoverable
protocol violation.

ENOBUFS [Macro]
“No buffer space available.” The kernel’s buffers for I/O operations are all in use. In
GNU, this error is always synonymous with ENOMEM; you may get one or the other
from network operations.

EISCONN [Macro]
“Transport endpoint is already connected.” You tried to connect a socket that is
already connected. See Section 16.9.1 [Making a Connection], page 501.

ENOTCONN [Macro]
“Transport endpoint is not connected.” The socket is not connected to anything. You
get this error when you try to transmit data over a socket, without first specifying a
destination for the data. For a connectionless socket (for datagram protocols, such as
UDP), you get EDESTADDRREQ instead.

EDESTADDRREQ [Macro]
“Destination address required.” No default destination address was set for the socket.
You get this error when you try to transmit data over a connectionless socket, without
first specifying a destination for the data with connect.

Chapter 2: Error Reporting 31

int

int

int

int

int

int

int

int

int

int

int

int

int

ESHUTDOWN [Macro]
“Cannot send after transport endpoint shutdown.” The socket has already been shut
down.

ETOOMANYREFS [Macro]
“Too many references: cannot splice.”

ETIMEDOUT [Macro]
“Connection timed out.” A socket operation with a specified timeout received no
response during the timeout period.

ECONNREFUSED [Macro]
“Connection refused.” A remote host refused to allow the network connection (typi-
cally because it is not running the requested service).

ELOOP [Macro]
“Too many levels of symbolic links.” Too many levels of symbolic links were encoun-
tered in looking up a file name. This often indicates a cycle of symbolic links.

ENAMETOOLONG [Macro]
“File name too long.” Filename too long (longer than PATH_MAX; see Section 33.6
[Limits on File System Capacity], page 914) or host name too long (in gethostname
or sethostname; see Section 32.1 [Host Identification], page 886).

EHOSTDOWN [Macro]
“Host is down.” The remote host for a requested network connection is down.

EHOSTUNREACH [Macro]
“No route to host.” The remote host for a requested network connection is not
reachable.

ENOTEMPTY [Macro]
“Directory not empty.” Directory not empty, where an empty directory was expected.
Typically, this error occurs when you are trying to delete a directory.

EPROCLIM [Macro]

“Too many processes.” This means that the per-user limit on new process would
be exceeded by an attempted fork. See Section 23.2 [Limiting Resource Usage],
page 689, for details on the RLIMIT_NPROC limit.

EUSERS [Macro]
“Too many users.” The file quota system is confused because there are too many
users.

EDQUOT [Macro]
“Disk quota exceeded.” The user’s disk quota was exceeded.

ESTALE [Macro]
“Stale file handle.” This indicates an internal confusion in the file system which is due
to file system rearrangements on the server host for NFS file systems or corruption
in other file systems. Repairing this condition usually requires unmounting, possibly
repairing and remounting the file system.

Chapter 2: Error Reporting 32

int

int

int

int

int

int

int

int

int

int

int

int

int

EREMOTE [Macro]
“Object is remote.” An attempt was made to NFS-mount a remote file system with
a file name that already specifies an NFS-mounted file. (This is an error on some
operating systems, but we expect it to work properly on GNU/Hurd systems, making
this error code impossible.)

EBADRPC [Macro]
“RPC struct is bad.”

ERPCMISMATCH [Macro]
“RPC version wrong.”

EPROGUNAVAIL [Macro]
“RPC program not available.”

EPROGMISMATCH [Macro]
“RPC program version wrong.”

EPROCUNAVAIL [Macro]
“RPC bad procedure for program.”

ENOLCK [Macro]
“No locks available.” This is used by the file locking facilities; see Section 13.16 [File
Locks|, page 404. This error is never generated by GNU/Hurd systems, but it can
result from an operation to an NFS server running another operating system.

EFTYPE [Macro]
“Inappropriate file type or format.” The file was the wrong type for the operation,
or a data file had the wrong format.

On some systems chmod returns this error if you try to set the sticky bit on a non-
directory file; see Section 14.10.7 [Assigning File Permissions|, page 453.

EAUTH [Macro]
“Authentication error.”

ENEEDAUTH [Macro]
“Need authenticator.”

ENOSYS [Macro]
“Function not implemented.” This indicates that the function called is not imple-
mented at all, either in the C library itself or in the operating system. When you get
this error, you can be sure that this particular function will always fail with ENOSYS
unless you install a new version of the C library or the operating system.

ELIBEXEC [Macro]
“Cannot exec a shared library directly.”

ENOTSUP [Macro]
“Not supported.” A function returns this error when certain parameter values are
valid, but the functionality they request is not available. This can mean that the
function does not implement a particular command or option value or flag bit at all.

Chapter 2: Error Reporting 33

int

int

int

int

int

int

int

int

int

int

int

int

For functions that operate on some object given in a parameter, such as a file de-
scriptor or a port, it might instead mean that only that specific object (file descriptor,
port, etc.) is unable to support the other parameters given; different file descriptors
might support different ranges of parameter values.

If the entire function is not available at all in the implementation, it returns ENOSYS
instead.

EILSEQ [Macro]
“Invalid or incomplete multibyte or wide character.” While decoding a multibyte
character the function came along an invalid or an incomplete sequence of bytes or
the given wide character is invalid.

EBACKGROUND [Macro]
“Inappropriate operation for background process.” On GNU/Hurd systems, servers
supporting the term protocol return this error for certain operations when the caller
is not in the foreground process group of the terminal. Users do not usually see
this error because functions such as read and write translate it into a SIGTTIN or
SIGTTOU signal. See Chapter 29 [Job Control], page 828, for information on process
groups and these signals.

EDIED [Macro]
“Translator died.” On GNU/Hurd systems, opening a file returns this error when
the file is translated by a program and the translator program dies while starting up,
before it has connected to the file.

ED [Macro]
“?.” The experienced user will know what is wrong.

EGREGIOUS [Macro]
“You really blew it this time.” You did what?

EIEIO [Macro]
“Computer bought the farm.” Go home and have a glass of warm, dairy-fresh milk.

EGRATUITQUS [Macro]
“Gratuitous error.” This error code has no purpose.

EBADMSG [Macro]
“Bad message.”

EIDRM [Macro]
“Identifier removed.”

EMULTIHOP [Macro]
“Multihop attempted.”

ENODATA [Macro]
“No data available.”

ENOLINK [Macro]
“Link has been severed.”

Chapter 2: Error Reporting 34

int

int

int

int

int

int

int

int

int

ENOMSG [Macro]
“No message of desired type.”

ENOSR [Macro]
“Out of streams resources.”

ENOSTR [Macro]
“Device not a stream.”

EOVERFLOW [Macro]
“Value too large for defined data type.”

EPROTO [Macro]
“Protocol error.”

ETIME [Macro]
“Timer expired.”

ECANCELED [Macro]
“Operation canceled.” An asynchronous operation was canceled before it completed.
See Section 13.11 [Perform I/O Operations in Parallel], page 382. When you call
aio_cancel, the normal result is for the operations affected to complete with this
error; see Section 13.11.4 [Cancellation of AIO Operations|, page 392.

EOWNERDEAD [Macro]
“Owner died.”
ENOTRECOVERABLE [Macro]

“State not recoverable.”

The following error codes are defined by the Linux/i386 kernel. They are not yet docu-
mented.

int

int

int

int

int

int

int

ERESTART [Macro]
“Interrupted system call should be restarted.”

ECHRNG [Macro]
“Channel number out of range.”

EL2NSYNC [Macro]
“Level 2 not synchronized.”

EL3HLT [Macro]
“Level 3 halted.”

EL3RST [Macro]
“Level 3 reset.”

ELNRNG [Macro]
“Link number out of range.”

EUNATCH [Macro]
“Protocol driver not attached.”

Chapter 2: Error Reporting

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

ENOCSI
“No CSI structure available.”

EL2HLT
“Level 2 halted.”

EBADE
“Invalid exchange.”

EBADR
“Invalid request descriptor.”

EXFULL
“Exchange full.”

ENOANO
“No anode.”

EBADRQC
“Invalid request code.”

EBADSLT
“Invalid slot.”

EDEADLOCK
“File locking deadlock error.”

EBFONT
“Bad font file format.”

ENONET
“Machine is not on the network.”

ENOPKG
“Package not installed.”

EADV

“Advertise error.”

ESRMNT
“Srmount error.”

ECOMM
“Communication error on send.”

EDOTDOT
“RFS specific error.”

ENOTUNIQ
“Name not unique on network.”

EBADFD
“File descriptor in bad state.”

35

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

Chapter 2: Error Reporting

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

EREMCHG
“Remote address changed.”

ELIBACC
“Can not access a needed shared library.”

ELIBBAD
“Accessing a corrupted shared library.”

ELIBSCN
“.lib section in a.out corrupted.”

ELIBMAX

“Attempting to link in too many shared libraries.”

ESTRPIPE

“Streams pipe error.”

EUCLEAN
“Structure needs cleaning.”

ENOTNAM
“Not a XENIX named type file.”

ENAVAIL
“No XENIX semaphores available.”

EISNAM
“Is a named type file.”

EREMOTEIO
“Remote I/O error.”

ENOMEDIUM

“No medium found.”

EMEDIUMTYPE
“Wrong medium type.”

ENOKEY
“Required key not available.”

EKEYEXPIRED
“Key has expired.”

EKEYREVOKED
“Key has been revoked.”

EKEYREJECTED
“Key was rejected by service.”

ERFKILL
“Operation not possible due to RF-kill.”

EHWPOISON
“Memory page has hardware error.”

36

[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]
[Macro]

[Macro]

Chapter 2: Error Reporting 37

2.3

Error Messages

The library has functions and variables designed to make it easy for your program to report
informative error messages in the customary format about the failure of a library call. The
functions strerror and perror give you the standard error message for a given error code;
the variable program_invocation_short_name gives you convenient access to the name of
the program that encountered the error.

char

char

char

* strerror (int errnum) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap i18n | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The strerror function maps the error code (see Section 2.1 [Checking for Errors],
page 24) specified by the errnum argument to a descriptive error message string. The
string is translated according to the current locale. The return value is a pointer to
this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you make subsequent
calls to strerror or strerror_1, or the thread that obtained the string exits, the
returned pointer will be invalidated.

As there is no way to restore the previous state after calling strerror, library
code should not call this function because it may interfere with application use of
strerror, invalidating the string pointer before the application is done using it. In-
stead, strerror_r, snprintf with the ‘Ym’ or ‘/%#m’ specifiers, strerrorname_np, or
strerrordesc_np can be used instead.

The strerror function preserves the value of errno and cannot fail.

The function strerror is declared in string.h.

* strerror_1 (int errnum, locale_t locale) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap i18n | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function is like strerror, except that the returned string is translated accord-
ing to locale (instead of the current locale used by strerror). Note that calling
strerror_1 invalidates the pointer returned by strerror and vice versa.

The function strerror_1 is defined by POSIX and is declared in string.h.

* strerror_r (int errnum, char *buf, size_t n) [Function]
Preliminary: | MT-Safe | AS-Unsafe i18n | AC-Unsafe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

The following description is for the GNU variant of the function, used if _GNU_SOURCE
is defined. See Section 1.3.4 [Feature Test Macros|, page 16.

The strerror_r function works like strerror but instead of returning a pointer to
a string that is managed by the GNU C Library, it can use the user supplied buffer
starting at buf for storing the string.

At most n characters are written (including the NUL byte) to buf, so it is up to the
user to select a buffer large enough. Whether returned pointer points to the buf array

Chapter 2: Error Reporting 38

or not depends on the errnum argument. If the result string is not stored in buf, the
string will not change for the remaining execution of the program.

The function strerror_r as described above is a GNU extension and it is declared
in string.h. There is a POSIX variant of this function, described next.

int strerror_r (int errnum, char *buf, size_t n) [Function]
Preliminary: | MT-Safe | AS-Unsafe i18n | AC-Unsafe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

This variant of the strerror_r function is used if a standard is selected that includes
strerror_r, but _GNU_SOURCE is not defined. This POSIX variant of the function
always writes the error message to the specified buffer buf of size n bytes.

Upon success, strerror_r returns 0. Two more return values are used to indicate

failure.
EINVAL The errnum argument does not correspond to a known error constant.
ERANGE The buffer size n is not large enough to store the entire error message.

Even if an error is reported, strerror_r still writes as much of the error message
to the output buffer as possible. After a call to strerror_r, the value of errno is
unspecified.

If you want to use the always-copying POSIX semantics of strerror_r in a program
that is potentially compiled with _GNU_SOURCE defined, you can use snprintf with
the ‘%m’ conversion specifier, like this:
int saved_errno = errno;
errno = errnum;
int ret = snprintf (buf, n, "Ym");
errno = saved_errno;
if (strerrorname_np (errnum) == NULL)
return EINVAL;
if (ret >= n)
return ERANGE:
return O;

This function is declared in string.h if it is declared at all. It is a POSIX extension.

void perror (const char *message) [Function]
Preliminary: | MT-Unsafe race:stderr | AS-Unsafe corrupt i18n heap lock | AC-
Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function prints an error message to the stream stderr; see Section 12.2 [Standard
Streams|, page 271. The orientation of stderr is not changed.

If you call perror with a message that is either a null pointer or an empty string,
perror just prints the error message corresponding to errno, adding a trailing new-
line.

If you supply a non-null message argument, then perror prefixes its output with this
string. It adds a colon and a space character to separate the message from the error
string corresponding to errno.

The function perror is declared in stdio.h.

Chapter 2: Error Reporting 39

const char * strerrorname_np (int errnum) [Function]
| MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

This function returns the name describing the error errnum or NULL if there is no
known constant with this value (e.g "EINVAL" for EINVAL). The returned string
does not change for the remaining execution of the program.

This function is a GNU extension, declared in the header file string.h.

const char * strerrordesc_np (int errnum) [Function]
| MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety Concepts]|, page 2.

This function returns the message describing the error errnum or NULL if there is no
known constant with this value (e.g "Invalid argument" for EINVAL). Different than
strerror the returned description is not translated, and the returned string does not
change for the remaining execution of the program.

This function is a GNU extension, declared in the header file string.h.

strerror and perror produce the exact same message for any given error code under
the same locale; the precise text varies from system to system. With the GNU C Library,
the messages are fairly short; there are no multi-line messages or embedded newlines. Each
error message begins with a capital letter and does not include any terminating punctuation.

Many programs that don’t read input from the terminal are designed to exit if any
system call fails. By convention, the error message from such a program should start with
the program’s name, sans directories. You can find that name in the variable program_
invocation_short_name; the full file name is stored the variable program_invocation_
name.

char * program_invocation_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process. It is the same as argv[0]. Note that this is not necessarily a
useful file name; often it contains no directory names. See Section 26.1 [Program
Arguments|, page 769.

This variable is a GNU extension and is declared in errno.h.

char * program_invocation_short_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process, with directory names removed. (That is to say, it is the same as
program_invocation_name minus everything up to the last slash, if any.)

This variable is a GNU extension and is declared in errno.h.

The library initialization code sets up both of these variables before calling main.

Portability Note: If you want your program to work with non-GNU libraries, you must
save the value of argv [0] in main, and then strip off the directory names yourself. We added
these extensions to make it possible to write self-contained error-reporting subroutines that
require no explicit cooperation from main.

Here is an example showing how to handle failure to open a file correctly. The function
open_sesame tries to open the named file for reading and returns a stream if successful. The
fopen library function returns a null pointer if it couldn’t open the file for some reason. In

Chapter 2: Error Reporting 40

that situation, open_sesame constructs an appropriate error message using the strerror
function, and terminates the program. If we were going to make some other library calls
before passing the error code to strerror, we’d have to save it in a local variable instead,
because those other library functions might overwrite errno in the meantime.

#define _GNU_SOURCE

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE =*
open_sesame (char *name)

{
FILE *stream;

errno = 0;
stream = fopen (name, "r");
if (stream == NULL)
{
fprintf (stderr, "¥%s: Couldn't open file %s; %s\n",
program_invocation_short_name, name, strerror (errno));
exit (EXIT_FAILURE);
}
else
return stream;
}

Using perror has the advantage that the function is portable and available on all systems
implementing ISO C. But often the text perror generates is not what is wanted and there
is no way to extend or change what perror does. The GNU coding standard, for instance,
requires error messages to be preceded by the program name and programs which read some
input files should provide information about the input file name and the line number in case
an error is encountered while reading the file. For these occasions there are two functions
available which are widely used throughout the GNU project. These functions are declared
in error.h.

void error (int status, int errnum, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Safe | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The error function can be used to report general problems during program execution.
The format argument is a format string just like those given to the printf family of
functions. The arguments required for the format can follow the format parameter.
Just like perror, error also can report an error code in textual form. But unlike
perror the error value is explicitly passed to the function in the errnum parameter.
This eliminates the problem mentioned above that the error reporting function must
be called immediately after the function causing the error since otherwise errno might
have a different value.

error prints first the program name. If the application defined a global variable
error_print_progname and points it to a function this function will be called to
print the program name. Otherwise the string from the global variable program_
name is used. The program name is followed by a colon and a space which in turn

Chapter 2: Error Reporting 41

is followed by the output produced by the format string. If the errnum parameter is
non-zero the format string output is followed by a colon and a space, followed by the
error message for the error code errnum. In any case is the output terminated with a
newline.

The output is directed to the stderr stream. If the stderr wasn’t oriented before
the call it will be narrow-oriented afterwards.

The function will return unless the status parameter has a non-zero value. In this case
the function will call exit with the status value for its parameter and therefore never
return. If error returns, the global variable error_message_count is incremented
by one to keep track of the number of errors reported.

void error_at_line (int status, int errnum, const char *fname, [Function]
unsigned int lineno, const char *format, . ..)
Preliminary: | MT-Unsafe race:error_at_line/error_one_per_line locale | AS-Unsafe
corrupt heap i18n | AC-Unsafe corrupt/error_one_per_line | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The error_at_line function is very similar to the error function. The only dif-
ferences are the additional parameters fname and lineno. The handling of the other
parameters is identical to that of error except that between the program name and
the string generated by the format string additional text is inserted.

Directly following the program name a colon, followed by the file name pointed to by
fname, another colon, and the value of lineno is printed.

This additional output of course is meant to be used to locate an error in an input
file (like a programming language source code file etc).

If the global variable error_one_per_line is set to a non-zero value error_at_line
will avoid printing consecutive messages for the same file and line. Repetition which
are not directly following each other are not caught.

Just like error this function only returns if status is zero. Otherwise exit is called
with the non-zero value. If error returns, the global variable error_message_count
is incremented by one to keep track of the number of errors reported.

As mentioned above, the error and error_at_line functions can be customized by
defining a variable named error_print_progname.

void (*error_print_progname) (void) [Variable]
If the error_print_progname variable is defined to a non-zero value the function
pointed to is called by error or error_at_line. It is expected to print the program
name or do something similarly useful.

The function is expected to print to the stderr stream and must be able to handle
whatever orientation the stream has.

The variable is global and shared by all threads.

unsigned int error_message_count [Variable]
The error_message_count variable is incremented whenever one of the functions
error or error_at_line returns. The variable is global and shared by all threads.

Chapter 2: Error Reporting 42

int error_one_per_line [Variable]
The error_one_per_line variable influences only error_at_line. Normally the
error_at_line function creates output for every invocation. If error_one_per_
line is set to a non-zero value error_at_line keeps track of the last file name and
line number for which an error was reported and avoids directly following messages
for the same file and line. This variable is global and shared by all threads.

A program which read some input file and reports errors in it could look like this:

{
char *1line NULL;
size_t len 0;
unsigned int lineno

0;

error_message_count = 0;
while (! feof_unlocked (fp))

{
ssize_t n = getline (&line, &len, fp);
if (n <= 0)
/* End of file or error. */
break;
++lineno;

/* Process the line. */

if (Detect error in line)
error_at_line (0, errval, filename, lineno,
"some error text %s", some_variable);

}

if (error_message_count != 0)
error (EXIT_FAILURE, O, "/u errors found", error_message_count);
}

error and error_at_line are clearly the functions of choice and enable the programmer
to write applications which follow the GNU coding standard. The GNU C Library addi-
tionally contains functions which are used in BSD for the same purpose. These functions
are declared in err.h. It is generally advised to not use these functions. They are included
only for compatibility.

void warn (const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
The warn function is roughly equivalent to a call like

error (0, errno, format, the parameters)

except that the global variables error respects and modifies are not used.

void vwarn (const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The vwarn function is just like warn except that the parameters for the handling of
the format string format are passed in as a value of type va_list.

Chapter 2: Error Reporting 43

void warnx (const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The warnx function is roughly equivalent to a call like

error (0, 0, format, the parameters)

except that the global variables error respects and modifies are not used. The dif-
ference to warn is that no error number string is printed.

void vwarnx (const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The vwarnx function is just like warnx except that the parameters for the handling
of the format string format are passed in as a value of type va_list.

void err (int status, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The err function is roughly equivalent to a call like

error (status, errno, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero.

void verr (int status, const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap i18n | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The verr function is just like err except that the parameters for the handling of the
format string format are passed in as a value of type va_list.

void errx (int status, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The errx function is roughly equivalent to a call like

error (status, 0, format, the parameters)

except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero. The difference to err is that no error
number string is printed.

void verrx (int status, const char *format, va_list ap) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap | AC-Unsafe corrupt lock
mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The verrx function is just like errx except that the parameters for the handling of
the format string format are passed in as a value of type va_list.

44

3 Virtual Memory Allocation And Paging

This chapter describes how processes manage and use memory in a system that uses the
GNU C Library.

The GNU C Library has several functions for dynamically allocating virtual memory in
various ways. They vary in generality and in efficiency. The library also provides functions
for controlling paging and allocation of real memory.

Memory mapped I/0 is not discussed in this chapter. See Section 13.8 [Memory-mapped
I/0], page 369.

3.1 Process Memory Concepts

One of the most basic resources a process has available to it is memory. There are a lot of
different ways systems organize memory, but in a typical one, each process has one linear
virtual address space, with addresses running from zero to some huge maximum. It need
not be contiguous; i.e., not all of these addresses actually can be used to store data.

The virtual memory is divided into pages (4 kilobytes is typical). Backing each page
of virtual memory is a page of real memory (called a frame) or some secondary storage,
usually disk space. The disk space might be swap space or just some ordinary disk file.
Actually, a page of all zeroes sometimes has nothing at all backing it — there’s just a flag
saying it is all zeroes.

The same frame of real memory or backing store can back multiple virtual pages be-
longing to multiple processes. This is normally the case, for example, with virtual memory
occupied by GNU C Library code. The same real memory frame containing the printf
function backs a virtual memory page in each of the existing processes that has a printf
call in its program.

In order for a program to access any part of a virtual page, the page must at that moment
be backed by (“connected t0”) a real frame. But because there is usually a lot more virtual
memory than real memory, the pages must move back and forth between real memory and
backing store regularly, coming into real memory when a process needs to access them and
then retreating to backing store when not needed anymore. This movement is called paging.

When a program attempts to access a page which is not at that moment backed by
real memory, this is known as a page fault. When a page fault occurs, the kernel suspends
the process, places the page into a real page frame (this is called “paging in” or “faulting
in”), then resumes the process so that from the process’ point of view, the page was in
real memory all along. In fact, to the process, all pages always seem to be in real memory.
Except for one thing: the elapsed execution time of an instruction that would normally be
a few nanoseconds is suddenly much, much, longer (because the kernel normally has to do
I/O to complete the page-in). For programs sensitive to that, the functions described in
Section 3.5 [Locking Pages], page 84, can control it.

Within each virtual address space, a process has to keep track of what is at which
addresses, and that process is called memory allocation. Allocation usually brings to mind
meting out scarce resources, but in the case of virtual memory, that’s not a major goal,
because there is generally much more of it than anyone needs. Memory allocation within a
process is mainly just a matter of making sure that the same byte of memory isn’t used to
store two different things.

Chapter 3: Virtual Memory Allocation And Paging 45

Processes allocate memory in two major ways: by exec and programmatically. Actually,
forking is a third way, but it’s not very interesting. See Section 27.4 [Creating a Process],
page 817.

Exec is the operation of creating a virtual address space for a process, loading its basic
program into it, and executing the program. It is done by the “exec” family of functions
(e.g. execl). The operation takes a program file (an executable), it allocates space to
load all the data in the executable, loads it, and transfers control to it. That data is most
notably the instructions of the program (the text), but also literals and constants in the
program and even some variables: C variables with the static storage class (see Section 3.2.1
[Memory Allocation in C Programs|, page 46).

Once that program begins to execute, it uses programmatic allocation to gain additional
memory. In a C program with the GNU C Library, there are two kinds of programmatic
allocation: automatic and dynamic. See Section 3.2.1 [Memory Allocation in C Programs],
page 46.

Memory-mapped 1/0 is another form of dynamic virtual memory allocation. Mapping
memory to a file means declaring that the contents of certain range of a process’ addresses
shall be identical to the contents of a specified regular file. The system makes the virtual
memory initially contain the contents of the file, and if you modify the memory, the system
writes the same modification to the file. Note that due to the magic of virtual memory and
page faults, there is no reason for the system to do I/O to read the file, or allocate real
memory for its contents, until the program accesses the virtual memory. See Section 13.8
[Memory-mapped I/0], page 369.

Just as it programmatically allocates memory, the program can programmatically deal-
locate (free) it. You can’t free the memory that was allocated by exec. When the program
exits or execs, you might say that all its memory gets freed, but since in both cases the ad-
dress space ceases to exist, the point is really moot. See Section 26.7 [Program Termination],
page 809.

A process’ virtual address space is divided into segments. A segment is a contiguous
range of virtual addresses. Three important segments are:

The text segment contains a program’s instructions and literals and static constants.
It is allocated by exec and stays the same size for the life of the virtual address space.

e The data segment is working storage for the program. It can be preallocated and
preloaded by exec and the process can extend or shrink it by calling functions as
described in See Section 3.3 [Resizing the Data Segment], page 78. Its lower end is
fixed.

e The stack segment contains a program stack. It grows as the stack grows, but doesn’t
shrink when the stack shrinks.

3.2 Allocating Storage For Program Data

This section covers how ordinary programs manage storage for their data, including the
famous malloc function and some fancier facilities special to the GNU C Library and GNU
Compiler.

Chapter 3: Virtual Memory Allocation And Paging 46

3.2.1 Memory Allocation in C Programs

The C language supports two kinds of memory allocation through the variables in C pro-
grams:

e Static allocation is what happens when you declare a static or global variable. Each
static or global variable defines one block of space, of a fixed size. The space is allocated
once, when your program is started (part of the exec operation), and is never freed.

e Automatic allocation happens when you declare an automatic variable, such as a func-
tion argument or a local variable. The space for an automatic variable is allocated
when the compound statement containing the declaration is entered, and is freed when
that compound statement is exited.

In GNU C, the size of the automatic storage can be an expression that varies. In other
C implementations, it must be a constant.

A third important kind of memory allocation, dynamic allocation, is not supported by
C variables but is available via GNU C Library functions.

3.2.1.1 Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they are running
where to store some information. You need dynamic allocation when the amount of memory
you need, or how long you continue to need it, depends on factors that are not known before
the program runs.

For example, you may need a block to store a line read from an input file; since there is
no limit to how long a line can be, you must allocate the memory dynamically and make it
dynamically larger as you read more of the line.

Or, you may need a block for each record or each definition in the input data; since
you can’t know in advance how many there will be, you must allocate a new block for each
record or definition as you read it.

When you use dynamic allocation, the allocation of a block of memory is an action that
the program requests explicitly. You call a function or macro when you want to allocate
space, and specify the size with an argument. If you want to free the space, you do so by
calling another function or macro. You can do these things whenever you want, as often as
you want.

Dynamic allocation is not supported by C variables; there is no storage class “dynamic”,
and there can never be a C variable whose value is stored in dynamically allocated space.
The only way to get dynamically allocated memory is via a system call (which is generally
via a GNU C Library function call), and the only way to refer to dynamically allocated
space is through a pointer. Because it is less convenient, and because the actual process of
dynamic allocation requires more computation time, programmers generally use dynamic
allocation only when neither static nor automatic allocation will serve.

For example, if you want to allocate dynamically some space to hold a struct foobar,
you cannot declare a variable of type struct foobar whose contents are the dynamically
allocated space. But you can declare a variable of pointer type struct foobar * and assign
it the address of the space. Then you can use the operators ‘*’ and ‘-=>’ on this pointer
variable to refer to the contents of the space:

{

Chapter 3: Virtual Memory Allocation And Paging 47

struct foobar *ptr = malloc (sizeof *ptr);
ptr->name = Xx;

ptr->next = current_foobar;
current_foobar = ptr;

3.2.2 The GNU Allocator

The malloc implementation in the GNU C Library is derived from ptmalloc (pthreads
malloc), which in turn is derived from dlmalloc (Doug Lea malloc). This malloc may
allocate memory in two different ways depending on their size and certain parameters that
may be controlled by users. The most common way is to allocate portions of memory (called
chunks) from a large contiguous area of memory and manage these areas to optimize their
use and reduce wastage in the form of unusable chunks. Traditionally the system heap was
set up to be the one large memory area but the GNU C Library malloc implementation
maintains multiple such areas to optimize their use in multi-threaded applications. Each
such area is internally referred to as an arena.

As opposed to other versions, the malloc in the GNU C Library does not round up
chunk sizes to powers of two, neither for large nor for small sizes. Neighboring chunks
can be coalesced on a free no matter what their size is. This makes the implementation
suitable for all kinds of allocation patterns without generally incurring high memory waste
through fragmentation. The presence of multiple arenas allows multiple threads to allocate
memory simultaneously in separate arenas, thus improving performance.

The other way of memory allocation is for very large blocks, i.e. much larger than a page.
These requests are allocated with mmap (anonymous or via /dev/zero; see Section 13.8
[Memory-mapped I/0], page 369)). This has the great advantage that these chunks are
returned to the system immediately when they are freed. Therefore, it cannot happen that
a large chunk becomes “locked” in between smaller ones and even after calling free wastes
memory. The size threshold for mmap to be used is dynamic and gets adjusted according to
allocation patterns of the program. mallopt can be used to statically adjust the threshold
using M_MMAP_THRESHOLD and the use of mmap can be disabled completely with M_MMAP_MAX;
see Section 3.2.3.7 [Malloc Tunable Parameters], page 54.

A more detailed technical description of the GNU Allocator is maintained in the GNU
C Library wiki. See https://sourceware.org/glibc/wiki/MallocInternals.

It is possible to use your own custom malloc instead of the built-in allocator provided
by the GNU C Library. See Section 3.2.5 [Replacing malloc], page 63.

3.2.3 Unconstrained Allocation

The most general dynamic allocation facility is malloc. It allows you to allocate blocks of
memory of any size at any time, make them bigger or smaller at any time, and free the
blocks individually at any time (or never).

3.2.3.1 Basic Memory Allocation

To allocate a block of memory, call malloc. The prototype for this function is in stdlib.h.

https://sourceware.org/glibc/wiki/MallocInternals

Chapter 3: Virtual Memory Allocation And Paging 48

void * malloc (size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function returns a pointer to a newly allocated block size bytes long, or a null
pointer (setting errno) if the block could not be allocated.

The contents of the block are undefined; you must initialize it yourself (or use calloc
instead; see Section 3.2.3.5 [Allocating Cleared Space], page 51). Normally you would
convert the value to a pointer to the kind of object that you want to store in the block.
Here we show an example of doing so, and of initializing the space with zeros using the
library function memset (see Section 5.4 [Copying Strings and Arrays], page 103):

struct foo *ptr = malloc (sizeof *ptr);
if (ptr == 0) abort (O;
memset (ptr, O, sizeof (struct foo));

You can store the result of malloc into any pointer variable without a cast, because
ISO C automatically converts the type void * to another type of pointer when necessary.
However, a cast is necessary if the type is needed but not specified by context.

Remember that when allocating space for a string, the argument to malloc must be one
plus the length of the string. This is because a string is terminated with a null character
that doesn’t count in the “length” of the string but does need space. For example:

char *ptr = malloc (length + 1);

See Section 5.1 [Representation of Strings|, page 99, for more information about this.

3.2.3.2 Examples of malloc

If no more space is available, malloc returns a null pointer. You should check the value of
every call to malloc. It is useful to write a subroutine that calls malloc and reports an
error if the value is a null pointer, returning only if the value is nonzero. This function is
conventionally called xmalloc. Here it is:

void *

xmalloc (size_t size)

{
void *value = malloc (size);
if (value == 0)
fatal ("virtual memory exhausted");
return value;

}
Here is a real example of using malloc (by way of xmalloc). The function savestring
will copy a sequence of characters into a newly allocated null-terminated string:

char *
savestring (const char *ptr, size_t len)
{

char *value = xmalloc (len + 1);
value[len] = '\0';
return memcpy (value, ptr, len);
}
The block that malloc gives you is guaranteed to be aligned so that it can hold any
type of data. On GNU systems, the address is always a multiple of eight on 32-bit systems,
and a multiple of 16 on 64-bit systems. Only rarely is any higher boundary (such as a

Chapter 3: Virtual Memory Allocation And Paging 49

page boundary) necessary; for those cases, use aligned_alloc or posix_memalign (see
Section 3.2.3.6 [Allocating Aligned Memory Blocks], page 52).

Note that the memory located after the end of the block is likely to be in use for something
else; perhaps a block already allocated by another call to malloc. If you attempt to treat
the block as longer than you asked for it to be, you are liable to destroy the data that
malloc uses to keep track of its blocks, or you may destroy the contents of another block.
If you have already allocated a block and discover you want it to be bigger, use realloc
(see Section 3.2.3.4 [Changing the Size of a Block], page 50).

Portability Notes:

e In the GNU C Library, a successful malloc (0) returns a non-null pointer to a newly
allocated size-zero block; other implementations may return NULL instead. POSIX and
the ISO C standard allow both behaviors.

e In the GNU C Library, a failed malloc call sets errno, but ISO C does not require
this and non-POSIX implementations need not set errno when failing.

e In the GNU C Library, malloc always fails when size exceeds PTRDIFF_MAX, to avoid
problems with programs that subtract pointers or use signed indexes. Other imple-
mentations may succeed in this case, leading to undefined behavior later.

3.2.3.3 Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function free to make
the block available to be allocated again. The prototype for this function is in stdlib.h.

void free (void *ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The free function deallocates the block of memory pointed at by ptr.

Freeing a block alters the contents of the block. Do not expect to find any data (such as
a pointer to the next block in a chain of blocks) in the block after freeing it. Copy whatever
you need out of the block before freeing it! Here is an example of the proper way to free all
the blocks in a chain, and the strings that they point to:

struct chain
{
struct chain *next;
char *name;

}

void
free_chain (struct chain *chain)
{
while (chain != 0)
{
struct chain *next = chain->next;
free (chain->name);
free (chain);
chain = next;
}
}

Occasionally, free can actually return memory to the operating system and make the
process smaller. Usually, all it can do is allow a later call to malloc to reuse the space. In

Chapter 3: Virtual Memory Allocation And Paging 50

the meantime, the space remains in your program as part of a free-list used internally by
malloc.

The free function preserves the value of errno, so that cleanup code need not worry
about saving and restoring errno around a call to free. Although neither ISO C nor
POSIX.1-2017 requires free to preserve errno, a future version of POSIX is planned to
require it.

There is no point in freeing blocks at the end of a program, because all of the program’s
space is given back to the system when the process terminates.

3.2.3.4 Changing the Size of a Block

Often you do not know for certain how big a block you will ultimately need at the time you
must begin to use the block. For example, the block might be a buffer that you use to hold
a line being read from a file; no matter how long you make the buffer initially, you may
encounter a line that is longer.

You can make the block longer by calling realloc or reallocarray. These functions
are declared in stdlib.h.

void * realloc (void *ptr, size_t newsize) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The realloc function changes the size of the block whose address is ptr to be newsize.

Since the space after the end of the block may be in use, realloc may find it necessary
to copy the block to a new address where more free space is available. The value of
realloc is the new address of the block. If the block needs to be moved, realloc
copies the old contents.

If you pass a null pointer for ptr, realloc behaves just like ‘malloc (newsize)’.
Otherwise, if newsize is zero realloc frees the block and returns NULL. Otherwise,
if realloc cannot reallocate the requested size it returns NULL and sets errno; the
original block is left undisturbed.

void * reallocarray (void *ptr, size_t nmemb, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The reallocarray function changes the size of the block whose address is ptr to be
long enough to contain a vector of nmemb elements, each of size size. It is equiva-
lent to ‘realloc (ptr, nmemb * size)’, except that reallocarray fails safely if the
multiplication overflows, by setting errno to ENOMEM, returning a null pointer, and
leaving the original block unchanged.

reallocarray should be used instead of realloc when the new size of the allocated
block is the result of a multiplication that might overflow.

This function was originally derived from OpenBSD 5.6, but was added in POSIX.1-
2024.

Like malloc, realloc and reallocarray may return a null pointer if no memory space
is available to make the block bigger. When this happens, the original block is untouched;
it has not been modified or relocated.

Chapter 3: Virtual Memory Allocation And Paging 51

In most cases it makes no difference what happens to the original block when realloc
fails, because the application program cannot continue when it is out of memory, and the
only thing to do is to give a fatal error message. Often it is convenient to write and use
subroutines, conventionally called xrealloc and xreallocarray, that take care of the error
message as xmalloc does for malloc:

void =*

xreallocarray (void *ptr, size_t nmemb, size_t size)

{
void *value = reallocarray (ptr, nmemb, size);
if (value == 0)
fatal ("Virtual memory exhausted");
return value;

}
void *
xrealloc (void *ptr, size_t size)
{
return xreallocarray (ptr, 1, size);
}

You can also use realloc or reallocarray to make a block smaller. The reason you
would do this is to avoid tying up a lot of memory space when only a little is needed. In
several allocation implementations, making a block smaller sometimes necessitates copying
it, so it can fail if no other space is available.

Portability Notes:

e Portable programs should not attempt to reallocate blocks to be size zero. On other
implementations if ptr is non-null, realloc (ptr, 0) might free the block and return
a non-null pointer to a size-zero object, or it might fail and return NULL without freeing
the block. The ISO C17 standard allows these variations.

e In the GNU C Library, reallocation fails if the resulting block would exceed PTRDIFF_
MAX in size, to avoid problems with programs that subtract pointers or use signed
indexes. Other implementations may succeed, leading to undefined behavior later.

e Inthe GNU C Library, if the new size is the same as the old, realloc and reallocarray
are guaranteed to change nothing and return the same address that you gave. However,
POSIX and ISO C allow the functions to relocate the object or fail in this situation.

3.2.3.5 Allocating Cleared Space

The function calloc allocates memory and clears it to zero. It is declared in stdlib.h.

void * calloc (size_t count, size_t eltsize) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function allocates a block long enough to contain a vector of count elements,
each of size eltsize. Its contents are cleared to zero before calloc returns.

You could define calloc as follows:

void *
calloc (size_t count, size_t eltsize)

{

void *value = reallocarray (0, count, eltsize);

Chapter 3: Virtual Memory Allocation And Paging 52

if (value != 0)
memset (value, O, count * eltsize);
return value;
}

But in general, it is not guaranteed that calloc calls reallocarray and memset inter-
nally. For example, if the calloc implementation knows for other reasons that the new
memory block is zero, it need not zero out the block again with memset. Also, if an ap-
plication provides its own reallocarray outside the C library, calloc might not use that
redefinition. See Section 3.2.5 [Replacing malloc|, page 63.

3.2.3.6 Allocating Aligned Memory Blocks

The address of a block returned by malloc or realloc in GNU systems is always a multiple
of eight (or sixteen on 64-bit systems). If you need a block whose address is a multiple of
a higher power of two than that, use aligned_alloc or posix_memalign. aligned_alloc
and posix_memalign are declared in stdlib.h.

void * aligned_alloc (size_t alignment, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The aligned_alloc function allocates a block of size bytes whose address is a multiple
of alignment. The alignment must be a power of two.

The aligned_alloc function returns a null pointer on error and sets errno to one of
the following values:

ENOMEM There was insufficient memory available to satisfy the request.

EINVAL alignment is not a power of two.

This function was introduced in ISO C11 and hence may have better
portability to modern non-POSIX systems than posix_memalign.

void * memalign (size_t boundary, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The memalign function allocates a block of size bytes whose address is a multiple of
boundary. The boundary must be a power of two! The function memalign works by
allocating a somewhat larger block, and then returning an address within the block
that is on the specified boundary.

The memalign function returns a null pointer on error and sets errno to one of the
following values:

ENOMEM There was insufficient memory available to satisfy the request.
EINVAL boundary is not a power of two.

The memalign function is obsolete and aligned_alloc or posix_memalign should
be used instead.

int posix_memalign (void **memptr, size_t alignment, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe lock | AC-Unsafe lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Chapter 3: Virtual Memory Allocation And Paging 53

The posix_memalign function is similar to the memalign function in that it returns
a buffer of size bytes aligned to a multiple of alignment. But it adds one requirement
to the parameter alignment: the value must be a power of two multiple of sizeof
(void *).

If the function succeeds in allocation memory a pointer to the allocated memory is
returned in *memptr and the return value is zero. Otherwise the function returns an
error value indicating the problem. The possible error values returned are:

ENOMEM There was insufficient memory available to satisfy the request.
EINVAL alignment is not a power of two multiple of sizeof (void *).

This function was introduced in POSIX 1003.1d. Although this function is superseded
by aligned_alloc, it is more portable to older POSIX systems that do not support
ISO C11.

void * valloc (size_t size) [Function]
Preliminary: | MT-Unsafe init | AS-Unsafe init lock | AC-Unsafe init lock fd mem
| See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Using valloc is like using memalign and passing the page size as the value of the first
argument. It is implemented like this:

void *

valloc (size_t size)

{

return memalign (getpagesize (), size);

}
Section 23.4.2 [How to get information about the memory subsystem?], page 711, for
more information about the memory subsystem.

The valloc function is obsolete and aligned_alloc or posix_memalign should be
used instead.

You can determine the alignment of a pointer with the memalignment function.

size_t memalignment (void *p) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function, defined in C23, returns the alignment of p, as a power of two. If p is
a null pointer, it returns zero. C23 requires p to be a valid pointer to an object or
a null pointer; as a GNU extension, the GNU C Library supports this function on
arbitrary bit patterns of pointer type.

This function was added to the C23 standard to support unconventional platforms
where a pointer’s low-order bits are unrelated to alignment. For conventional plat-
forms, one can instead cast the pointer to uintptr_t and then test the low order bits:
this is portable to pre-C23 and is typically a bit faster.

For example, if you want to read an int addressed by possibly-misaligned pointer p,
the following pre-C23 code works on all conventional platforms:
int i;
if (((uintptr_t) p & (alignof (int) - 1)) !'= 0)
memcpy (&i, p, sizeof i);

Chapter 3: Virtual Memory Allocation And Paging 54

else
1 = *p;
However, it might not work on unconventional platforms, where one would need
something like the following C23 code:
int i;
if (memalignment (p) < alignof (int))
memcpy (&i, p, sizeof i);
else
i = *p;
However, for this particular case, performance does not improve if different code is
used for aligned and unaligned pointers, and the following code is preferable:
int i;
memcpy (&i, p, sizeof i);
The compiler will generate the most efficient way to access unaligned data for the
architecture, optimizing away the memcpy call.

3.2.3.7 Malloc Tunable Parameters

You can adjust some parameters for dynamic memory allocation with the mallopt function.
This function is the general SVID/XPG interface, defined in malloc.h.

int mallopt (int param, int value) [Function]
Preliminary: | MT-Unsafe init const:mallopt | AS-Unsafe init lock | AC-Unsafe init
lock | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

When calling mallopt, the param argument specifies the parameter to be set, and
value the new value to be set. Possible choices for param, as defined in malloc.h,
are:

M_MMAP_MAX
The maximum number of chunks to allocate with mmap. Setting this to
zero disables all use of mmap.

The default value of this parameter is 65536.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_MMAP_MAX_ to the desired value.

M_MMAP_THRESHOLD
All chunks larger than this value are allocated outside the normal heap,
using the mmap system call. This way it is guaranteed that the memory for
these chunks can be returned to the system on free. Note that requests
smaller than this threshold might still be allocated via mmap.

If this parameter is not set, the default value is set as 128 KiB and the
threshold is adjusted dynamically to suit the allocation patterns of the
program. If the parameter is set, the dynamic adjustment is disabled and
the value is set statically to the input value.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_MMAP_THRESHOLD_ to the desired value.

M_PERTURB
If non-zero, memory blocks are filled with values depending on some low
order bits of this parameter when they are allocated (except when al-

Chapter 3: Virtual Memory Allocation And Paging 55

M_TOP_PAD

located by calloc) and freed. This can be used to debug the use of
uninitialized or freed heap memory. Note that this option does not guar-
antee that the freed block will have any specific values. It only guarantees
that the content the block had before it was freed will be overwritten.

The default value of this parameter is 0.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_PERTURB_ to the desired value.

This parameter determines the amount of extra memory to obtain from
the system when an arena needs to be extended. It also specifies the
number of bytes to retain when shrinking an arena. This provides the
necessary hysteresis in heap size such that excessive amounts of system
calls can be avoided.

The default value of this parameter is 0.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_TOP_PAD_ to the desired value.

M_TRIM_THRESHOLD

This is the minimum size (in bytes) of the top-most, releasable chunk
that will trigger a system call in order to return memory to the system.
If this parameter is not set, the default value is set as 128 KiB and the
threshold is adjusted dynamically to suit the allocation patterns of the
program. If the parameter is set, the dynamic adjustment is disabled and
the value is set statically to the provided input.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_TRIM_THRESHOLD_ to the desired value.

M_ARENA_TEST

This parameter specifies the number of arenas that can be created before
the test on the limit to the number of arenas is conducted. The value is
ignored if M_ARENA_MAX is set.

The default value of this parameter is 2 on 32-bit systems and 8 on 64-bit
systems.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_ARENA_TEST to the desired value.

M_ARENA_MAX

This parameter sets the number of arenas to use regardless of the number
of cores in the system.

The default value of this tunable is 0, meaning that the limit on the
number of arenas is determined by the number of CPU cores online. For
32-bit systems the limit is twice the number of cores online and on 64-
bit systems, it is eight times the number of cores online. Note that the
default value is not derived from the default value of M_ARENA_TEST
and is computed independently.

This parameter can also be set for the process at startup by setting the
environment variable MALLOC_ARENA_MAX to the desired value.

Chapter 3: Virtual Memory Allocation And Paging 56

3.2.3.8 Heap Consistency Checking

You can ask malloc to check the consistency of dynamic memory by using the mcheck func-
tion and preloading the malloc debug library 1ibc_malloc_debug using the LD_PRELOAD
environment variable. This function is a GNU extension, declared in mcheck.h.

int mcheck (void (*abortfn) (enum mcheck_status status)) [Function]

enum

Preliminary: | MT-Unsafe race:mcheck const:malloc_hooks | AS-Unsafe corrupt |
AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Calling mcheck tells malloc to perform occasional consistency checks. These will
catch things such as writing past the end of a block that was allocated with malloc.

The abortfn argument is the function to call when an inconsistency is found. If you
supply a null pointer, then mcheck uses a default function which prints a message
and calls abort (see Section 26.7.4 [Aborting a Program], page 812). The function
you supply is called with one argument, which says what sort of inconsistency was
detected; its type is described below.

It is too late to begin allocation checking once you have allocated anything with
malloc. So mcheck does nothing in that case. The function returns -1 if you call it
too late, and 0 otherwise (when it is successful).

The easiest way to arrange to call mcheck early enough is to use the option ‘~1mcheck’
when you link your program; then you don’t need to modify your program source at
all. Alternatively you might use a debugger to insert a call to mcheck whenever the
program is started, for example these gdb commands will automatically call mcheck
whenever the program starts:

(gdb) break main

Breakpoint 1, main (argc=2, argv=0xbffff964) at whatever.c:10

(gdb) command 1

Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

>call mcheck(0)

>continue

>end

(gdb) ...

This will however only work if no initialization function of any object involved calls
any of the malloc functions since mcheck must be called before the first such function.

mcheck_status mprobe (void *pointer) [Function]
Preliminary: | MT-Unsafe race:mcheck const:malloc_hooks | AS-Unsafe corrupt |
AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The mprobe function lets you explicitly check for inconsistencies in a particular allo-
cated block. You must have already called mcheck at the beginning of the program,
to do its occasional checks; calling mprobe requests an additional consistency check
to be done at the time of the call.

The argument pointer must be a pointer returned by malloc or realloc. mprobe
returns a value that says what inconsistency, if any, was found. The values are
described below.

Chapter 3: Virtual Memory Allocation And Paging 57

enum mcheck_status [Data Type]
This enumerated type describes what kind of inconsistency was detected in an allo-
cated block, if any. Here are the possible values:

MCHECK_DISABLED
mcheck was not called before the first allocation. No consistency checking
can be done.

MCHECK_OK
No inconsistency detected.

MCHECK_HEAD
The data immediately before the block was modified. This commonly
happens when an array index or pointer is decremented too far.

MCHECK_TAIL
The data immediately after the block was modified. This commonly
happens when an array index or pointer is incremented too far.

MCHECK_FREE
The block was already freed.

Another possibility to check for and guard against bugs in the use of malloc, realloc
and free is to set the environment variable MALLOC_CHECK_. When MALLOC_CHECK_ is set
to a non-zero value less than 4, a special (less efficient) implementation is used which is
designed to be tolerant against simple errors, such as double calls of free with the same
argument, or overruns of a single byte (off-by-one bugs). Not all such errors can be protected
against, however, and memory leaks can result. Like in the case of mcheck, one would need
to preload the 1ibc_malloc_debug library to enable MALLOC_CHECK _ functionality. Without
this preloaded library, setting MALLOC_CHECK_ will have no effect.

Any detected heap corruption results in immediate termination of the process.

There is one problem with MALLOC_CHECK_: in SUID or SGID binaries it could possibly
be exploited since diverging from the normal programs behavior it now writes something to
the standard error descriptor. Therefore the use of MALLOC_CHECK_ is disabled by default
for SUID and SGID binaries.

So, what’s the difference between using MALLOC_CHECK_ and linking with ‘-lmcheck’?
MALLOC_CHECK_ is orthogonal with respect to ‘-1mcheck’. ‘-lmcheck’ has been added for
backward compatibility. Both MALLOC_CHECK_ and ‘-lmcheck’ should uncover the same
bugs - but using MALLOC_CHECK_ you don’t need to recompile your application.

3.2.3.9 Statistics for Memory Allocation with malloc

You can get information about dynamic memory allocation by calling the mallinfo2 func-
tion. This function and its associated data type are declared in malloc.h; they are an
extension of the standard SVID/XPG version.

struct mallinfo2 [Data Type]
This structure type is used to return information about the dynamic memory alloca-
tor. It contains the following members:

size_t arena
This is the total size of memory allocated with sbrk by malloc, in bytes.

Chapter 3: Virtual Memory Allocation And Paging 58

size_t ordblks
This is the number of chunks not in use. (The memory allocator internally
gets chunks of memory from the operating system, and then carves them
up to satisfy individual malloc requests; see Section 3.2.2 [The GNU
Allocator|, page 47.)

size_t smblks
This field is unused.

size_t hblks
This is the total number of chunks allocated with mmap.

size_t hblkhd
This is the total size of memory allocated with mmap, in bytes.

size_t usmblks
This field is unused and always 0.

size_t fsmblks
This field is unused.

size_t uordblks
This is the total size of memory occupied by chunks handed out by
malloc.

size_t fordblks
This is the total size of memory occupied by free (not in use) chunks.

size_t keepcost
This is the size of the top-most releasable chunk that normally borders
the end of the heap (i.e., the high end of the virtual address space’s data
segment).

struct mallinfo2 mallinfo2 (void) [Function]
Preliminary: | MT-Unsafe init const:mallopt | AS-Unsafe init lock | AC-Unsafe init
lock | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
This function returns information about the current dynamic memory usage in a
structure of type struct mallinfo2.

3.2.3.10 Summary of malloc-Related Functions
Here is a summary of the functions that work with malloc:

void *malloc (size_t size)
Allocate a block of size bytes. See Section 3.2.3.1 [Basic Memory Allocation],
page 47.

void free (void *addr)
Free a block previously allocated by malloc. See Section 3.2.3.3 [Freeing Mem-
ory Allocated with malloc|, page 49.

void *realloc (void *addr, size_t size)
Make a block previously allocated by malloc larger or smaller, possibly by
copying it to a new location. See Section 3.2.3.4 [Changing the Size of a Block],
page 50.

Chapter 3: Virtual Memory Allocation And Paging 59

void *reallocarray (void *ptr, size_t nmemb, size_t size)
Change the size of a block previously allocated by malloc to nmemb * size bytes
as with realloc. See Section 3.2.3.4 [Changing the Size of a Block], page 50.

void *calloc (size_t count, size_t eltsize)
Allocate a block of count * eltsize bytes using malloc, and set its contents to
zero. See Section 3.2.3.5 [Allocating Cleared Space], page 51.

void *valloc (size_t size)
Allocate a block of size bytes, starting on a page boundary. See Section 3.2.3.6
[Allocating Aligned Memory Blocks], page 52.

void *aligned_alloc (size_t alignment, size_t size)
Allocate a block of size bytes, starting on an address that is a multiple of
alignment. See Section 3.2.3.6 [Allocating Aligned Memory Blocks|, page 52.

int posix_memalign (void **memptr, size_t alignment, size_t size)
Allocate a block of size bytes, starting on an address that is a multiple of
alignment. See Section 3.2.3.6 [Allocating Aligned Memory Blocks], page 52.

void *memalign (size_t boundary, size_t size)
Allocate a block of size bytes, starting on an address that is a multiple of
boundary. See Section 3.2.3.6 [Allocating Aligned Memory Blocks], page 52.

int mallopt (int param, int value)
Adjust a tunable parameter. See Section 3.2.3.7 [Malloc Tunable Parameters],
page H4.

int mcheck (void (*abortfn) (void))
Tell malloc to perform occasional consistency checks on dynamically allocated
memory, and to call abortfn when an inconsistency is found. See Section 3.2.3.8
[Heap Consistency Checking], page 56.

struct mallinfo2 mallinfo2 (void)
Return information about the current dynamic memory usage. See
Section 3.2.3.9 [Statistics for Memory Allocation with malloc|, page 57.

3.2.4 Allocation Debugging

A complicated task when programming with languages which do not use garbage collected
dynamic memory allocation is to find memory leaks. Long running programs must ensure
that dynamically allocated objects are freed at the end of their lifetime. If this does not
happen the system runs out of memory, sooner or later.

The malloc implementation in the GNU C Library provides some simple means to detect
such leaks and obtain some information to find the location. To do this the application must
be started in a special mode which is enabled by an environment variable. There are no
speed penalties for the program if the debugging mode is not enabled.

3.2.4.1 How to install the tracing functionality

void mtrace (void) [Function]
Preliminary: | MT-Unsafe env race:mtrace init | AS-Unsafe init heap corrupt lock |
AC-Unsafe init corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.

Chapter 3: Virtual Memory Allocation And Paging 60

void

The mtrace function provides a way to trace memory allocation events in the program
that calls it. It is disabled by default in the library and can be enabled by preload-
ing the debugging library libc_malloc_debug using the LD_PRELOAD environment
variable.

When the mtrace function is called it looks for an environment variable named
MALLOC_TRACE. This variable is supposed to contain a valid file name. The user
must have write access. If the file already exists it is truncated. If the environment
variable is not set or it does not name a valid file which can be opened for writing
nothing is done. The behavior of malloc etc. is not changed. For obvious reasons
this also happens if the application is installed with the SUID or SGID bit set.

If the named file is successfully opened, mtrace installs special handlers for the func-
tions malloc, realloc, and free. From then on, all uses of these functions are traced
and protocolled into the file. There is now of course a speed penalty for all calls to
the traced functions so tracing should not be enabled during normal use.

This function is a GNU extension and generally not available on other systems. The
prototype can be found in mcheck.h.

muntrace (void) [Function]
Preliminary: | MT-Unsafe race:mtrace locale | AS-Unsafe corrupt heap | AC-Unsafe
corrupt mem lock fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The muntrace function can be called after mtrace was used to enable tracing the
malloc calls. If no (successful) call of mtrace was made muntrace does nothing.

Otherwise it deinstalls the handlers for malloc, realloc, and free and then closes
the protocol file. No calls are protocolled anymore and the program runs again at full
speed.

This function is a GNU extension and generally not available on other systems. The
prototype can be found in mcheck.h.

3.2.4.2 Example program excerpts

Even though the tracing functionality does not influence the runtime behavior of the pro-

gram

it is not a good idea to call mtrace in all programs. Just imagine that you debug

a program using mtrace and all other programs used in the debugging session also trace
their malloc calls. The output file would be the same for all programs and thus is unusable.
Therefore one should call mtrace only if compiled for debugging. A program could therefore
start like this:

#include <mcheck.h>

int
main (int argc, char *argv[])
{
#ifdef DEBUGGING
mtrace ();
#endif

Chapter 3: Virtual Memory Allocation And Paging 61

This is all that is needed if you want to trace the calls during the whole runtime of the
program. Alternatively you can stop the tracing at any time with a call to muntrace. It
is even possible to restart the tracing again with a new call to mtrace. But this can cause
unreliable results since there may be calls of the functions which are not called. Please
note that not only the application uses the traced functions, also libraries (including the C
library itself) use these functions.

This last point is also why it is not a good idea to call muntrace before the program
terminates. The libraries are informed about the termination of the program only after the
program returns from main or calls exit and so cannot free the memory they use before
this time.

So the best thing one can do is to call mtrace as the very first function in the program
and never call muntrace. So the program traces almost all uses of the malloc functions
(except those calls which are executed by constructors of the program or used libraries).

3.2.4.3 Some more or less clever ideas

You know the situation. The program is prepared for debugging and in all debugging
sessions it runs well. But once it is started without debugging the error shows up. A typical
example is a memory leak that becomes visible only when we turn off the debugging. If you
foresee such situations you can still win. Simply use something equivalent to the following
little program:

#include <mcheck.h>
#include <signal.h>

static void
enable (int sig)
{
mtrace ();
signal (SIGUSR1, enable);
}

static void
disable (int sig)

{

muntrace ();

signal (SIGUSR2, disable);
}
int
main (int argc, char *argv[])
{

signal (SIGUSR1, enable);
signal (SIGUSR2, disable);

Chapter 3: Virtual Memory Allocation And Paging 62

}

Le., the user can start the memory debugger any time s/he wants if the program was
started with MALLOC_TRACE set in the environment. The output will of course not show the
allocations which happened before the first signal but if there is a memory leak this will
show up nevertheless.

3.2.4.4 Interpreting the traces

If you take a look at the output it will look similar to this:

= Start
[0x8048209] - 0x8064cc8
[0x8048209] - 0x8064ce0
[0x8048209] - 0x8064cf8

[0x80481eb] + 0x8064c48 0x14

[0x80481eb] + 0x8064c60 0x14

[0x80481eb] + 0x8064c78 0x14

[0x80481eb] + 0x8064c90 0x14
= End

What this all means is not really important since the trace file is not meant to be read
by a human. Therefore no attention is given to readability. Instead there is a program
which comes with the GNU C Library which interprets the traces and outputs a summary
in an user-friendly way. The program is called mtrace (it is in fact a Perl script) and it
takes one or two arguments. In any case the name of the file with the trace output must
be specified. If an optional argument precedes the name of the trace file this must be the
name of the program which generated the trace.

drepper$ mtrace tst-mtrace log
No memory leaks.

In this case the program tst-mtrace was run and it produced a trace file log. The
message printed by mtrace shows there are no problems with the code, all allocated memory
was freed afterwards.

If we call mtrace on the example trace given above we would get a different output:

drepper$ mtrace errlog

- 0x08064cc8 Free 2 was never alloc'd 0x8048209
- 0x08064ce0 Free 3 was never alloc'd 0x8048209
- 0x08064cf8 Free 4 was never alloc'd 0x8048209

Memory not freed:

Address Size Caller
0x08064c48 0x14 at 0x80481eb
0x08064c60 0x14 at 0x80481eb
0x08064c78 0x14 at 0x80481eb
0x08064c90 0x14 at 0x80481eb

We have called mtrace with only one argument and so the script has no chance to find
out what is meant with the addresses given in the trace. We can do better:

drepper$ mtrace tst errlog

Chapter 3: Virtual Memory Allocation And Paging 63

- 0x08064cc8 Free 2 was never alloc'd /home/drepper/tst.c:39
- 0x08064ce0 Free 3 was never alloc'd /home/drepper/tst.c:39
- 0x08064cf8 Free 4 was never alloc'd /home/drepper/tst.c:39

Memory not freed:

Address Size Caller
0x08064c48 0x14 at /home/drepper/tst.c:33
0x08064c60 0x14 at /home/drepper/tst.c:33
0x08064c78 0x14 at /home/drepper/tst.c:33
0x08064c90 0x14 at /home/drepper/tst.c:33

Suddenly the output makes much more sense and the user can see immediately where
the function calls causing the trouble can be found.

Interpreting this output is not complicated. There are at most two different situations
being detected. First, free was called for pointers which were never returned by one of the
allocation functions. This is usually a very bad problem and what this looks like is shown
in the first three lines of the output. Situations like this are quite rare and if they appear
they show up very drastically: the program normally crashes.

The other situation which is much harder to detect are memory leaks. As you can see in
the output the mtrace function collects all this information and so can say that the program
calls an allocation function from line 33 in the source file /home/drepper/tst-mtrace.c
four times without freeing this memory before the program terminates. Whether this is a
real problem remains to be investigated.

3.2.5 Replacing malloc

The GNU C Library supports replacing the built-in malloc implementation with a different
allocator with the same interface. For dynamically linked programs, this happens through
ELF symbol interposition, either using shared object dependencies or LD_PRELOAD. For
static linking, the malloc replacement library must be linked in before linking against
libc.a (explicitly or implicitly).

Care must be taken not to use functionality from the GNU C Library that uses malloc
internally. For example, the fopen, opendir, dlopen, and pthread_setspecific functions
currently use the malloc subsystem internally. If the replacement malloc or its dependen-
cies use thread-local storage (TLS), it must use the initial-exec TLS model, and not one of
the dynamic TLS variants.

Note: Failure to provide a complete set of replacement functions (that is, all the functions
used by the application, the GNU C Library, and other linked-in libraries) can lead to static
linking failures, and, at run time, to heap corruption and application crashes. Replacement
functions should implement the behavior documented for their counterparts in the GNU C
Library; for example, the replacement free should also preserve errno.

The minimum set of functions which has to be provided by a custom malloc is given in
the table below.

malloc

free

Chapter 3: Virtual Memory Allocation And Paging 64

calloc
realloc

These malloc-related functions are required for the GNU C Library to work.*

The malloc implementation in the GNU C Library provides additional functionality not
used by the library itself, but which is often used by other system libraries and applications.
A general-purpose replacement malloc implementation should provide definitions of these
functions, too. Their names are listed in the following table.

aligned_alloc
malloc_usable_size
memalign

posix_memalign
pvalloc

valloc

In addition, very old applications may use the obsolete cfree function.

Further malloc-related functions such as mallopt or mallinfo2 will not have any effect
or return incorrect statistics when a replacement malloc is in use. However, failure to
replace these functions typically does not result in crashes or other incorrect application
behavior, but may result in static linking failures.

There are other functions (reallocarray, strdup, etc.) in the GNU C Library that
are not listed above but return newly allocated memory to callers. Replacement of these
functions is not supported and may produce incorrect results. The GNU C Library imple-
mentations of these functions call the replacement allocator functions whenever available,
so they will work correctly with malloc replacement.

3.2.6 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any number of
separate obstacks, and then allocate objects in specified obstacks. Within each obstack, the
last object allocated must always be the first one freed, but distinct obstacks are independent
of each other.

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack
can contain any number of objects of any size. They are implemented with macros, so
allocation is usually very fast as long as the objects are usually small. And the only space
overhead per object is the padding needed to start each object on a suitable boundary.

3.2.6.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file obstack.h.

struct obstack [Data Type]
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space in
which objects are allocated. It does not contain any of the objects themselves. You

1 Versions of the GNU C Library before 2.25 required that a custom malloc defines __libc_memalign
(with the same interface as the memalign function).

Chapter 3: Virtual Memory Allocation And Paging 65

should not try to access the contents of the structure directly; use only the functions
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can
allocate obstacks dynamically like any other kind of object. Dynamic allocation of obstacks
allows your program to have a variable number of different stacks. (You can even allocate
an obstack structure in another obstack, but this is rarely useful.)

All the functions that work with obstacks require you to specify which obstack to use.
You do this with a pointer of type struct obstack *. In the following, we often say “an
obstack” when strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct
obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t
fit in the previous chunk. Since the obstack library manages chunks automatically, you
don’t need to pay much attention to them, but you do need to supply a function which the
obstack library should use to get a chunk. Usually you supply a function which uses malloc
directly or indirectly. You must also supply a function to free a chunk. These matters are
described in the following section.

3.2.6.2 Preparing for Using Obstacks

Each source file in which you plan to use the obstack functions must include the header file
obstack.h, like this:
#include <obstack.h>

Also, if the source file uses the macro obstack_init, it must declare or define two
functions or macros that will be called by the obstack library. One, obstack_chunk_alloc,
is used to allocate the chunks of memory into which objects are packed. The other, obstack_
chunk_free, is used to return chunks when the objects in them are freed. These macros
should appear before any use of obstacks in the source file.

Usually these are defined to use malloc via the intermediary xmalloc (see Section 3.2.3
[Unconstrained Allocation], page 47). This is done with the following pair of macro defini-
tions:

#define obstack_chunk_alloc xmalloc

#define obstack_chunk_free free
Though the memory you get using obstacks really comes from malloc, using obstacks is
faster because malloc is called less often, for larger blocks of memory. See Section 3.2.6.10
[Obstack Chunks|, page 73, for full details.

At run time, before the program can use a struct obstack object as an obstack, it must
initialize the obstack by calling obstack_init.

int obstack_init (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Initialize obstack obstack-ptr for allocation of objects. This function calls the ob-
stack’s obstack_chunk_alloc function. If allocation of memory fails, the function
pointed to by obstack_alloc_failed_handler is called. The obstack_init func-
tion always returns 1 (Compatibility notice: Former versions of obstack returned 0 if
allocation failed).

Chapter 3: Virtual Memory Allocation And Paging 66

Here are two examples of how to allocate the space for an obstack and initialize it. First,
an obstack that is a static variable:

static struct obstack myobstack;

obstack_init (&myobstack);

Second, an obstack that is itself dynamically allocated:

struct obstack *myobstack_ptr
= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

obstack_alloc_failed_handler [Variable]
The value of this variable is a pointer to a function that obstack uses when obstack_
chunk_alloc fails to allocate memory. The default action is to print a message and
abort. You should supply a function that either calls exit (see Section 26.7 [Program
Termination|, page 809) or longjmp (see Chapter 24 [Non-Local Exits], page 714) and
doesn’t return.
void my_obstack_alloc_failed (void)

obstack_alloc_failed_handler = &my_obstack_alloc_failed;

3.2.6.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which is
invoked almost like malloc.

void * obstack_alloc (struct obstack *obstack-ptr, int size) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack-ptr specifies which obstack to allocate the block in; it is the address of
the struct obstack object which represents the obstack. Each obstack function or
macro requires you to specify an obstack-ptr as the first argument.

This function calls the obstack’s obstack_chunk_alloc function if it needs to allocate
a new chunk of memory; it calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

For example, here is a function that allocates a copy of a string str in a specific obstack,
which is in the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

size_t len = strlen (string) + 1;

char *s = (char *) obstack_alloc (&string_obstack, len);
memcpy (s, string, len);

return s;

}

To allocate a block with specified contents, use the function obstack_copy, declared like
this:

Chapter 3: Virtual Memory Allocation And Paging 67

void * obstack_copy (struct obstack *obstack-ptr, void [Function]
*address, int size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This allocates a block and initializes it by copying size bytes of data starting
at address. It calls obstack_alloc_failed_handler if allocation of memory by
obstack_chunk_alloc failed.

void * obstack_copyO (struct obstack *obstack-ptr, void [Function]
*address, int size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Like obstack_copy, but appends an extra byte containing a null character. This
extra byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of characters into an
obstack as a null-terminated string. Here is an example of its use:
char *
obstack_savestring (char *addr, int size)
{

return obstack_copy0 (&myobstack, addr, size);

}

Contrast this with the previous example of savestring using malloc (see Section 3.2.3.1
[Basic Memory Allocation|, page 47).

3.2.6.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free. Since the obstack
is a stack of objects, freeing one object automatically frees all other objects allocated more
recently in the same obstack.

void obstack_free (struct obstack *obstack-ptr, void *object) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack-ptr since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free all
memory in an obstack but leave it valid for further allocation, call obstack_free with the
address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the objects in
a chunk become free, the obstack library automatically frees the chunk (see Section 3.2.6.2
[Preparing for Using Obstacks|, page 65). Then other obstacks, or non-obstack allocation,
can reuse the space of the chunk.

Chapter 3: Virtual Memory Allocation And Paging 68

3.2.6.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros, depending
on the compiler. The obstack facility works with all C compilers, including both ISO C and
traditional C, but there are precautions you must take if you plan to use compilers other
than GNU C.

If you are using an old-fashioned non-ISO C compiler, all the obstack “functions” are
actually defined only as macros. You can call these macros like functions, but you cannot
use them in any other way (for example, you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than once. For
example, if you write this:

obstack_alloc (get_obstack (), 4);

you will find that get_obstack may be called several times. If you use *obstack_list_
ptr++ as the obstack pointer argument, you will get very strange results since the incre-
mentation may occur several times.

In ISO C, each function has both a macro definition and a function definition. The
function definition is used if you take the address of the function without calling it. An
ordinary call uses the macro definition by default, but you can request the function definition
instead by writing the function name in parentheses, as shown here:

char *x;
void *(xfuncp) ();
/* Use the macro. */
x = (char *) obstack_alloc (obptr, size);
/* Call the function. */
x = (char *) (obstack_alloc) (obptr, size);
/* Take the address of the function. */
funcp = obstack_alloc;
This is the same situation that exists in ISO C for the standard library functions. See

Section 1.3.2 [Macro Definitions of Functions], page 14.

Warning: When you do use the macros, you must observe the precaution of avoiding
side effects in the first operand, even in ISO C.

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

3.2.6.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build up an object
step by step, adding one or more bytes at a time to the end of the object. With this
technique, you do not need to know how much data you will put in the object until you
come to the end of it. We call this the technique of growing objects. The special functions
for adding data to the growing object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of
the functions to add data to the object automatically starts it. However, it is necessary to
say explicitly when the object is finished. This is done with the function obstack_finish.

The actual address of the object thus built up is not known until the object is finished.
Until then, it always remains possible that you will add so much data that the object must
be copied into a new chunk.

Chapter 3: Virtual Memory Allocation And Paging 69

While the obstack is in use for a growing object, you cannot use it for ordinary allocation
of another object. If you try to do so, the space already added to the growing object will
become part of the other object.

void obstack_blank (struct obstack *obstack-ptr, int size) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The most basic function for adding to a growing object is obstack_blank, which adds
space without initializing it.

void obstack_grow (struct obstack *obstack-ptr, void *data, int [Function]
size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack_grow0 (struct obstack *obstack-ptr, void *data, int [Function]
size)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_lgrow (struct obstack *obstack-ptr, char c) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

To add one character at a time, use the function obstack_igrow. It adds a single
byte containing ¢ to the growing object.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Adding the value of a pointer one can use the function obstack_ptr_grow. It adds
sizeof (void *) bytes containing the value of data.

void obstack_int_grow (struct obstack *obstack-ptr, int data) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

A single value of type int can be added by using the obstack_int_grow function. It
adds sizeof (int) bytes to the growing object and initializes them with the value
of data.

void * obstack_finish (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Chapter 3: Virtual Memory Allocation And Paging 70

When you are finished growing the object, use the function obstack_finish to close
it off and return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

This function can return a null pointer under the same conditions as obstack_alloc
(see Section 3.2.6.3 [Allocation in an Obstack], page 66).

When you build an object by growing it, you will probably need to know afterward
how long it became. You need not keep track of this as you grow the object, because you
can find out the length from the obstack just before finishing the object with the function
obstack_object_size, declared as follows:

int obstack_object_size (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function returns the current size of the growing object, in bytes. Remember to
call this function before finishing the object. After it is finished, obstack_object_
size will return zero.

If you have started growing an object and wish to cancel it, you should finish it and then
free it, like this:

obstack_free (obstack_ptr, obstack_finish (obstack_ptr));
This has no effect if no object was growing.

You can use obstack_blank with a negative size argument to make the current object
smaller. Just don’t try to shrink it beyond zero length—there’s no telling what will happen
if you do that.

3.2.6.7 Extra Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether there is room
for the new growth in the current chunk. If you are frequently constructing objects in small
steps of growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” functions that grow the
object without checking. In order to have a robust program, you must do the checking
yourself. If you do this checking in the simplest way each time you are about to add data to
the object, you have not saved anything, because that is what the ordinary growth functions
do. But if you can arrange to check less often, or check more efficiently, then you make the
program faster.

The function obstack_room returns the amount of room available in the current chunk.
It is declared as follows:

int obstack_room (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack-ptr using the fast
growth functions.

Chapter 3: Virtual Memory Allocation And Paging 71

While you know there is room, you can use these fast growth functions for adding data
to a growing object:

void obstack_lgrow_fast (struct obstack *obstack-ptr, char c) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function obstack_lgrow_fast adds one byte containing the character ¢ to the
growing object in obstack obstack-ptr.

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void [Function]
*data)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The function obstack_ptr_grow_fast adds sizeof (void *) bytes containing the
value of data to the growing object in obstack obstack-ptr.

void obstack_int_grow_fast (struct obstack *obstack-ptr, int [Function]
data)
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The function obstack_int_grow_fast adds sizeof (int) bytes containing the value
of data to the growing object in obstack obstack-ptr.

void obstack_blank_fast (struct obstack *obstack-ptr, int size) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The function obstack_blank_fast adds size bytes to the growing object in obstack
obstack-ptr without initializing them.

When you check for space using obstack_room and there is not enough room for what
you want to add, the fast growth functions are not safe. In this case, simply use the
corresponding ordinary growth function instead. Very soon this will copy the object to a
new chunk; then there will be lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient space
using obstack_room. Once the object is copied to a new chunk, there will be plenty of

space again, so the program will start using the fast growth functions again.

Here is an example:

Chapter 3: Virtual Memory Allocation And Paging 72

void
add_string (struct obstack *obstack, const char *ptr, int len)
{
while (len > 0)
{
int room = obstack_room (obstack);
if (room == 0)
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);
len--;

else
{
if (room > len)
room = len;
/* Add fast as much as we have room for. */
len -= room;
while (room-- > 0)
obstack_lgrow_fast (obstack, *ptr++);

}
3.2.6.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in an obstack.
You can use them to learn about an object while still growing it.

void * obstack_base (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function returns the tentative address of the beginning of the currently growing
object in obstack-ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will
change!

If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).

void * obstack_next_free (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

This function returns the address of the first free byte in the current chunk of obstack
obstack-ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

int obstack_object_size (struct obstack *obstack-ptr) [Function]
Preliminary: | MT-Safe race:obstack-ptr | AS-Safe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function returns the size in bytes of the currently growing object. This is equiv-
alent to
obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)

Chapter 3: Virtual Memory Allocation And Paging 73

3.2.6.9 Alignment of Data in Obstacks

Each obstack has an alignment boundary; each object allocated in the obstack automatically
starts on an address that is a multiple of the specified boundary. By default, this boundary
is aligned so that the object can hold any type of data.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask,
whose function prototype looks like this:

int obstack_alignment_mask (struct obstack *obstack-ptr) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The mask value should be one less than a power of
2; the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is a value that allows aligned objects to hold any type of data: for
example, if its value is 3, any type of data can be stored at locations whose addresses
are multiples of 4. A mask value of 0 means an object can start on any multiple of 1
(that is, no alignment is required).

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:
obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an
object is allocated or finished in the obstack. If you are not growing an object, you can
make the new alignment mask take effect immediately by calling obstack_finish. This
will finish a zero-length object and then do proper alignment for the next object.

3.2.6.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out
space in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless
you specify a different chunk size. The chunk size includes 8 bytes of overhead that are
not actually used for storing objects. Regardless of the specified size, longer chunks will be
allocated when necessary for long objects.

The obstack library allocates chunks by calling the function obstack_chunk_alloc,
which you must define. When a chunk is no longer needed because you have freed all the
objects in it, the obstack library frees the chunk by calling obstack_chunk_free, which
you must also define.

These two must be defined (as macros) or declared (as functions) in each source file that
uses obstack_init (see Section 3.2.6.1 [Creating Obstacks], page 64). Most often they are
defined as macros like this:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with arguments
will not work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone,
expand into a function name if it is not itself a function name.

Chapter 3: Virtual Memory Allocation And Paging 74

If you allocate chunks with malloc, the chunk size should be a power of 2. The default
chunk size, 4096, was chosen because it is long enough to satisfy many typical requests on
the obstack yet short enough not to waste too much memory in the portion of the last chunk
not yet used.

int obstack_chunk_size (struct obstack *obstack-ptr) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning
it a new value. Doing so does not affect the chunks already allocated, but will change the
size of chunks allocated for that particular obstack in the future. It is unlikely to be useful
to make the chunk size smaller, but making it larger might improve efficiency if you are
allocating many objects whose size is comparable to the chunk size. Here is how to do so
cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)
obstack_chunk_size (obstack_ptr) = new-chunk-size;

3.2.6.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the address of
an obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack. See Section 3.2.6.1 [Creating Obstacks], page 64.

void *obstack_alloc (struct obstack *obstack-ptr, int size)
Allocate an object of size uninitialized bytes. See Section 3.2.6.3 [Allocation in
an Obstack], page 66.

void *obstack_copy (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size bytes, with contents copied from address. See
Section 3.2.6.3 [Allocation in an Obstack], page 66.

void *obstack_copy0 (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size+l bytes, with size of them copied from address,
followed by a null character at the end. See Section 3.2.6.3 [Allocation in an
Obstack], page 66.

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object (and everything allocated in the specified obstack more recently
than object). See Section 3.2.6.4 [Freeing Objects in an Obstack], page 67.

void obstack_blank (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object. See Section 3.2.6.6 [Growing
Objects|, page 68.

void obstack_grow (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object. See Section 3.2.6.6
[Growing Objects|, page 68.

Chapter 3: Virtual Memory Allocation And Paging 75

void obstack_grow0 (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object, and then add another
byte containing a null character. See Section 3.2.6.6 [Growing Objects]|, page 68.

void obstack_lgrow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object. See Section 3.2.6.6
[Growing Objects|, page 68.

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address. See
Section 3.2.6.6 [Growing Objects], page 68.

int obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object. See Section 3.2.6.6 [Grow-
ing Objects], page 68.

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object without checking that there is
enough room. See Section 3.2.6.7 [Extra Fast Growing Objects], page 70.

void obstack_lgrow_fast (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object without checking
that there is enough room. See Section 3.2.6.7 [Extra Fast Growing Objects],
page 70.

int obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object. See
Section 3.2.6.7 [Extra Fast Growing Objects|, page 70.

int obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an lvalue. See
Section 3.2.6.9 [Alignment of Data in Obstacks], page 73.

int obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue. See Section 3.2.6.10 [Obstack
Chunks], page 73.

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object. See Section 3.2.6.8
[Status of an Obstack], page 72.

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object. See Section 3.2.6.8
[Status of an Obstack], page 72.

3.2.7 Automatic Storage with Variable Size

The function alloca supports a kind of half-dynamic allocation in which blocks are allocated
dynamically but freed automatically.

Allocating a block with alloca is an explicit action; you can allocate as many blocks as
you wish, and compute the size at run time. But all the blocks are freed when you exit the
function that alloca was called from, just as if they were automatic variables declared in
that function. There is no way to free the space explicitly.

The prototype for alloca is in stdlib.h. This function is a BSD extension.

Chapter 3: Virtual Memory Allocation And Paging 76

void * alloca (size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The return value of alloca is the address of a block of size bytes of memory, allocated
in the stack frame of the calling function.

Do not use alloca inside the arguments of a function call—you will get unpredictable
results, because the stack space for the alloca would appear on the stack in the middle
of the space for the function arguments. An example of what to avoid is foo (x, alloca
@, .

3.2.7.1 alloca Example

As an example of the use of alloca, here is a function that opens a file name made from
concatenating two argument strings, and returns a file descriptor or minus one signifying
failure:
int
open2 (char *strl, char *str2, int flags, int mode)
{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open (name, flags, mode);

}

Here is how you would get the same results with malloc and free:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = malloc (strlen (strl) + strlen (str2) + 1);
int desc;
if (name == 0)

fatal ("virtual memory exceeded");
stpcpy (stpcpy (name, strl), str2);
desc = open (name, flags, mode);
free (name);
return desc;
}
As you can see, it is simpler with alloca. But alloca has other, more important

advantages, and some disadvantages.

3.2.7.2 Advantages of alloca
Here are the reasons why alloca may be preferable to malloc:
e Using alloca wastes very little space and is very fast. (It is open-coded by the GNU
C compiler.)

e Since alloca does not have separate pools for different sizes of blocks, space used
for any size block can be reused for any other size. alloca does not cause memory
fragmentation.

e Nonlocal exits done with longjmp (see Chapter 24 [Non-Local Exits], page 714) au-
tomatically free the space allocated with alloca when they exit through the function
that called alloca. This is the most important reason to use alloca.

Chapter 3: Virtual Memory Allocation And Paging 7

To illustrate this, suppose you have a function open_or_report_error which returns
a descriptor, like open, if it succeeds, but does not return to its caller if it fails. If
the file cannot be opened, it prints an error message and jumps out to the command
level of your program using longjmp. Let’s change open2 (see Section 3.2.7.1 [alloca
Example], page 76) to use this subroutine:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open_or_report_error (name, flags, mode);

}

Because of the way alloca works, the memory it allocates is freed even when an error
occurs, with no special effort required.

By contrast, the previous definition of open2 (which uses malloc and free) would
develop a memory leak if it were changed in this way. Even if you are willing to make
more changes to fix it, there is no easy way to do so.

3.2.7.3 Disadvantages of alloca

These are the disadvantages of alloca in comparison with malloc:

e If you try to allocate more memory than the machine can provide, you don’t get a
clean error message. Instead you get a fatal signal like the one you would get from
an infinite recursion; probably a segmentation violation (see Section 25.2.1 [Program
Error Signals|, page 725).

e Some non-GNU systems fail to support alloca, so it is less portable. However, a slower
emulation of alloca written in C is available for use on systems with this deficiency.

3.2.7.4 GNU C Variable-Size Arrays

In GNU C, you can replace most uses of alloca with an array of variable size. Here is how
open2 would look then:

int open2 (char *strl, char *str2, int flags, int mode)

{
char name[strlen (strl) + strlen (str2) + 1];
stpcpy (stpcpy (name, strl), str2);
return open (name, flags, mode);

}
But alloca is not always equivalent to a variable-sized array, for several reasons:

e A variable size array’s space is freed at the end of the scope of the name of the array.
The space allocated with alloca remains until the end of the function.

e [t is possible to use alloca within a loop, allocating an additional block on each
iteration. This is impossible with variable-sized arrays.

NB: If you mix use of alloca and variable-sized arrays within one function, exiting a
scope in which a variable-sized array was declared frees all blocks allocated with alloca
during the execution of that scope.

Chapter 3: Virtual Memory Allocation And Paging 78

3.3 Resizing the Data Segment

The symbols in this section are declared in unistd.h.

You will not normally use the functions in this section, because the functions described
in Section 3.2 [Allocating Storage For Program Data|, page 45, are easier to use. Those are
interfaces to a GNU C Library memory allocator that uses the functions below itself. The
functions below are simple interfaces to system calls.

int brk (void *addr) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

brk sets the high end of the calling process’ data segment to addr.

The address of the end of a segment is defined to be the address of the last byte in
the segment plus 1.

The function has no effect if addr is lower than the low end of the data segment.
(This is considered success, by the way.)

The function fails if it would cause the data segment to overlap another segment or
exceed the process’ data storage limit (see Section 23.2 [Limiting Resource Usage],
page 689).

The function is named for a common historical case where data storage and the stack
are in the same segment. Data storage allocation grows upward from the bottom of
the segment while the stack grows downward toward it from the top of the segment
and the curtain between them is called the break.

The return value is zero on success. On failure, the return value is -1 and errno is
set accordingly. The following errno values are specific to this function:

ENOMEM The request would cause the data segment to overlap another segment or
exceed the process’ data storage limit.

void * sbrk (ptrdiff.t delta) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function is the same as brk except that you specify the new end of the data
segment as an offset delta from the current end and on success the return value is the
address of the resulting end of the data segment instead of zero.

This means you can use ‘sbrk(0)’ to find out what the current end of the data
segment is.

3.4 Memory Protection

When a page is mapped using mmap, page protection flags can be specified using the pro-
tection flags argument. See Section 13.8 [Memory-mapped 1/0], page 369.

The following flags are available:

PROT_WRITE
The memory can be written to.

Chapter 3: Virtual Memory Allocation And Paging 79

PROT_READ
The memory can be read. On some architectures, this flag implies that the
memory can be executed as well (as if PROT_EXEC had been specified at the
same time).

PROT_EXEC
The memory can be used to store instructions which can then be executed.
On most architectures, this flag implies that the memory can be read (as if
PROT_READ had been specified).

PROT_NONE
This flag must be specified on its own.

The memory is reserved, but cannot be read, written, or executed. If this flag
is specified in a call to mmap, a virtual memory area will be set aside for future
use in the process, and mmap calls without the MAP_FIXED flag will not use it for
subsequent allocations. For anonymous mappings, the kernel will not reserve
any physical memory for the allocation at the time the mapping is created.

The operating system may keep track of these flags separately even if the underlying
hardware treats them the same for the purposes of access checking (as happens with PROT_
READ and PROT_EXEC on some platforms). On GNU systems, PROT_EXEC always implies
PROT_READ, so that users can view the machine code which is executing on their system.

Inappropriate access will cause a segfault (see Section 25.2.1 [Program Error Signals],
page 725).

After allocation, protection flags can be changed using the mprotect function.

int mprotect (void *address, size_t length, int protection) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

A successful call to the mprotect function changes the protection flags of at least
length bytes of memory, starting at address.

address must be aligned to the page size for the mapping. The system page size can
be obtained by calling sysconf with the _SC_PAGESIZE parameter (see Section 33.4.1
[Definition of sysconf], page 904). The system page size is the granularity in which
the page protection of anonymous memory mappings and most file mappings can be
changed. Memory which is mapped from special files or devices may have larger page
granularity than the system page size and may require larger alignment.

length is the number of bytes whose protection flags must be changed. It is automat-
ically rounded up to the next multiple of the system page size.

protection is a combination of the PROT_* flags described above.

The mprotect function returns 0 on success and —1 on failure.

The following errno error conditions are defined for this function:

ENOMEM The system was not able to allocate resources to fulfill the request. This
can happen if there is not enough physical memory in the system for the

allocation of backing storage. The error can also occur if the new protec-
tion flags would cause the memory region to be split from its neighbors,

Chapter 3: Virtual Memory Allocation And Paging 80

and the process limit for the number of such distinct memory regions
would be exceeded.

EINVAL address is not properly aligned to a page boundary for the mapping, or
length (after rounding up to the system page size) is not a multiple of
the applicable page size for the mapping, or the combination of flags in
protection is not valid.

EACCES The file for a file-based mapping was not opened with open flags which
are compatible with protection.

EPERM The system security policy does not allow a mapping with the specified
flags. For example, mappings which are both PROT_EXEC and PROT_WRITE
at the same time might not be allowed.

If the mprotect function is used to make a region of memory inaccessible by specifying
the PROT_NONE protection flag and access is later restored, the memory retains its previous
contents.

On some systems, it may not be possible to specify additional flags which were not
present when the mapping was first created. For example, an attempt to make a region of
memory executable could fail if the initial protection flags were ‘PROT_READ | PROT_WRITE’.

In general, the mprotect function can be used to change any process memory, no matter

how it was allocated. However, portable use of the function requires that it is only used
with memory regions returned by mmap or mmap64.

int mseal (void *address, size_t length, unsigned long flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
A successful call to the mseal function protects the memory range address of length
bytes, previously allocated with mmap or mremap, against further metadata changes,
such as:
e Unmapping, moving to another location, extending or shrinking the size, via
munmap and mremap.

e Moving or expanding a different VMA into the current location, via mremap.
e Modifying the memory range with mmap along with the flag MAP_FIXED.

e Change the protection flags with mprotect or pkey_mprotect. Also for certain
destructive madvise behaviours (MADV_DONTNEED, MADV_FREE, MADV_DONTNEED_
LOCKED, and MADV_WIPEONFORK), mseal only blocks the operation if the protec-
tion key associated with the memory denies write.

e Destructive behaviors on anonymous memory, such as madvice with
MADV_DONTNEED.

The address must be an allocated virtual memory done by mmap or mremap, and it
must be page-aligned. The end address (address plus length) must be within an
allocated virtual memory range. There should be no unallocated memory between
the start and end of the address range.

The flags is currently unused.

The mseal function returns 0 on success and —1 on failure.

Chapter 3: Virtual Memory Allocation And Paging 81

The following errno error conditions are defined for this function:

EPERM The system blocked the operation, and the given address range is unmod-
ified without a partial update. This error is also returned when mseal
is issued on a 32-bit CPU (sealing is currently supported only on 64-bit
CPUs, although 32-bit binaries running on a 64-bit kernel are supported).

ENOMEM Either the address is not allocated, or the end address is not within the
allocation, or there is unallocated memory between the start and end
address.

ENOSYS The kernel does not support the mseal syscall.

NB: The memory sealing changes the lifetime of a mapping, where the sealing memory
could not be unmapped until the process terminates or replaces the process image through
execve function. The sealed mappings are inherited through fork.

3.4.1 Memory Protection Keys

On some systems, further access restrictions can be added to specific pages using memory
protection keys. These restrictions work as follows:

e All memory pages are associated with a protection key. The default protection key
does not cause any additional protections to be applied during memory accesses. New
keys can be allocated with the pkey_alloc function, and applied to pages using pkey_
mprotect.

e Each thread has a set of separate access restrictions for each protection key. These
access restrictions can be manipulated using the pkey_set and pkey_get functions.

e During a memory access, the system obtains the protection key for the accessed page
and uses that to determine the applicable access restrictions, as configured for the
current thread. If the access is restricted, a segmentation fault is the result ((see
Section 25.2.1 [Program Error Signals], page 725). These checks happen in addition to
the PROT_* protection flags set by mprotect or pkey_mprotect.

New threads and subprocesses inherit the access restrictions of the current thread. If a
protection key is allocated subsequently, existing threads (except the current) will use an
unspecified system default for the access restrictions associated with newly allocated keys.

Upon entering a signal handler, the system resets the access restrictions of the current
thread so that pages with the default key can be accessed, but the access restrictions for
other protection keys are unspecified.

Applications are expected to allocate a key once using pkey_alloc, and apply the key
to memory regions which need special protection with pkey_mprotect:
int key = pkey_alloc (0, PKEY_DISABLE_ACCESS);
if (key < 0)
/* Perform error checking, including fallback for lack of support. */

ey

/* Apply the key to a special memory region used to store critical
data. */
if (pkey_mprotect (region, region_length,
PROT_READ | PROT_WRITE, key) < 0)
...; /* Perform error checking (generally fatal). x*/

Chapter 3: Virtual Memory Allocation And Paging 82

If the key allocation fails due to lack of support for memory protection keys, the pkey_
mprotect call can usually be skipped. In this case, the region will not be protected by
default. It is also possible to call pkey_mprotect with a key value of —1, in which case it
will behave in the same way as mprotect.

After key allocation assignment to memory pages, pkey_set can be used to temporarily
acquire access to the memory region and relinquish it again:

if (key >= O && pkey_set (key, PKEY_UNRESTRICTED) < 0)
...; /* Perform error checking (generally fatal). */

/* At this point, the current thread has read-write access to the
memory region. */

);.Revoke access again. */
if (key >= 0 &% pkey_set (key, PKEY_DISABLE_ACCESS) < 0)
...; /* Perform error checking (generally fatal). x*/
In this example, a negative key value indicates that no key had been allocated, which
means that the system lacks support for memory protection keys and it is not necessary to
change the the access restrictions of the current thread (because it always has access).

Compared to using mprotect to change the page protection flags, this approach has two
advantages: It is thread-safe in the sense that the access restrictions are only changed for
the current thread, so another thread which changes its own access restrictions concurrently
to gain access to the mapping will not suddenly see its access restrictions updated. And
pkey_set typically does not involve a call into the kernel and a context switch, so it is more
efficient.

int pkey_alloc (unsigned int flags, unsigned int [Function]

access_restrictions)
Preliminary: | MT-Safe | AS-Safe | AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Allocate a new protection key. The flags argument is reserved and must be zero.
The access_restrictions argument specifies access restrictions which are applied to the
current thread (as if with pkey_set below). Access restrictions of other threads are
not changed.

The function returns the new protection key, a non-negative number, or —1 on error.

The following errno error conditions are defined for this function:
ENOSYS The system does not implement memory protection keys.

EINVAL The flags argument is not zero.
The access_restrictions argument is invalid.
The system does not implement memory protection keys or runs in a
mode in which memory protection keys are disabled.

ENOSPC All available protection keys already have been allocated.

The system does not implement memory protection keys or runs in a
mode in which memory protection keys are disabled.

int pkey_free (int key) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 3: Virtual Memory Allocation And Paging 83

Deallocate the protection key, so that it can be reused by pkey_alloc.

Calling this function does not change the access restrictions of the freed protection key.
The calling thread and other threads may retain access to it, even if it is subsequently
allocated again. For this reason, it is not recommended to call the pkey_free function.

ENOSYS The system does not implement memory protection keys.

EINVAL The key argument is not a valid protection key.

int pkey_mprotect (void *address, size_t length, int protection, [Function]
int key)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

Similar to mprotect, but also set the memory protection key for the memory region
to key.

Some systems use memory protection keys to emulate certain combinations of pro-
tection flags. Under such circumstances, specifying an explicit protection key may
behave as if additional flags have been specified in protection, even though this does
not happen with the default protection key. For example, some systems can support
PROT_EXEC-only mappings only with a default protection key, and memory with a key
which was allocated using pkey_alloc will still be readable if PROT_EXEC is specified
without PROT_READ.

If key is —1, the default protection key is applied to the mapping, just as if mprotect
had been called.

The pkey_mprotect function returns 0 on success and —1 on failure. The same errno
error conditions as for mprotect are defined for this function, with the following
addition:

EINVAL The key argument is not —1 or a valid memory protection key allocated
using pkey_alloc.

ENOSYS The system does not implement memory protection keys, and key is not
—1.
int pkey_set (int key, unsigned int access_restrictions) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Change the access restrictions of the current thread for memory pages with the pro-
tection key key to access_restrictions. If access_restrictions is PKEY_UNRESTRICTED
(zero), no additional access restrictions on top of the page protection flags are ap-
plied. Otherwise, access_restrictions is a combination of the following flags:

PKEY_DISABLE_READ
Subsequent attempts to read from memory with the specified protection
key will fault. At present only AArch64 platforms with enabled Stage 1
permission overlays feature support this type of restriction.

PKEY_DISABLE_WRITE
Subsequent attempts to write to memory with the specified protection
key will fault.

Chapter 3: Virtual Memory Allocation And Paging 84

PKEY_DISABLE_ACCESS
Subsequent attempts to write to or read from memory with the specified
protection key will fault. On AArch64 platforms with enabled Stage 1
permission overlays feature this restriction value has the same effect as
combination of PKEY_DISABLE_READ and PKEY_DISABLE_WRITE.

PKEY_DISABLE_EXECUTE
Subsequent attempts to execute from memory with the specified protec-
tion key will fault. At present only AArch64 platforms with enabled Stage
1 permission overlays feature support this type of restriction.

Operations not specified as flags are not restricted. In particular, this means that the
memory region will remain executable if it was mapped with the PROT_EXEC protection
flag and PKEY_DISABLE_ACCESS has been specified.

Calling the pkey_set function with a protection key which was not allocated by
pkey_alloc results in undefined behavior. This means that calling this function on
systems which do not support memory protection keys is undefined.

The pkey_set function returns 0 on success and —1 on failure.

The following errno error conditions are defined for this function:

EINVAL The system does not support the access restrictions expressed in the
access_restrictions argument.

int pkey_get (int key) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

Return the access restrictions of the current thread for memory pages with protection
key key. The return value is zero or a combination of the PKEY_DISABLE_* flags; see
the pkey_set function.

The returned value should be checked for presence or absence of specific flags using
bitwise operations. Comparing the returned value with any of the flags or their
combination using equals will almost certainly fail.

Calling the pkey_get function with a protection key which was not allocated by

pkey_alloc results in undefined behavior. This means that calling this function on
systems which do not support memory protection keys is undefined.

3.5 Locking Pages

You can tell the system to associate a particular virtual memory page with a real page
frame and keep it that way — i.e., cause the page to be paged in if it isn’t already and
mark it so it will never be paged out and consequently will never cause a page fault. This
is called locking a page.

The functions in this chapter lock and unlock the calling process’ pages.

3.5.1 Why Lock Pages

Because page faults cause paged out pages to be paged in transparently, a process rarely
needs to be concerned about locking pages. However, there are two reasons people some-
times are:

Chapter 3: Virtual Memory Allocation And Paging 85

e Speed. A page fault is transparent only insofar as the process is not sensitive to how
long it takes to do a simple memory access. Time-critical processes, especially realtime
processes, may not be able to wait or may not be able to tolerate variance in execution
speed.

A process that needs to lock pages for this reason probably also needs priority among
other processes for use of the CPU. See Section 23.3 [Process CPU Priority And
Scheduling], page 693.

In some cases, the programmer knows better than the system’s demand paging allocator
which pages should remain in real memory to optimize system performance. In this
case, locking pages can help.

e Privacy. If you keep secrets in virtual memory and that virtual memory gets paged
out, that increases the chance that the secrets will get out. If a passphrase gets written
out to disk swap space, for example, it might still be there long after virtual and real
memory have been wiped clean.

Be aware that when you lock a page, that’s one fewer page frame that can be used to
back other virtual memory (by the same or other processes), which can mean more page
faults, which means the system runs more slowly. In fact, if you lock enough memory, some
programs may not be able to run at all for lack of real memory.

3.5.2 Locked Memory Details

A memory lock is associated with a virtual page, not a real frame. The paging rule is: If a
frame backs at least one locked page, don’t page it out.

Memory locks do not stack. I.e., you can’t lock a particular page twice so that it has to
be unlocked twice before it is truly unlocked. It is either locked or it isn’t.

A memory lock persists until the process that owns the memory explicitly unlocks it.
(But process termination and exec cause the virtual memory to cease to exist, which you
might say means it isn’t locked any more).

Memory locks are not inherited by child processes. (But note that on a modern Unix
system, immediately after a fork, the parent’s and the child’s virtual address space are
backed by the same real page frames, so the child enjoys the parent’s locks). See Section 27.4
[Creating a Process|, page 817.

Because of its ability to impact other processes, only the superuser can lock a page. Any
process can unlock its own page.

The system sets limits on the amount of memory a process can have locked and the
amount of real memory it can have dedicated to it. See Section 23.2 [Limiting Resource
Usage], page 689.

In Linux, locked pages aren’t as locked as you might think. Two virtual pages that are
not shared memory can nonetheless be backed by the same real frame. The kernel does this
in the name of efficiency when it knows both virtual pages contain identical data, and does
it even if one or both of the virtual pages are locked.

But when a process modifies one of those pages, the kernel must get it a separate frame
and fill it with the page’s data. This is known as a copy-on-write page fault. It takes a
small amount of time and in a pathological case, getting that frame may require 1/0.

Chapter 3: Virtual Memory Allocation And Paging 86

To make sure this doesn’t happen to your program, don’t just lock the pages. Write
to them as well, unless you know you won’t write to them ever. And to make sure you
have pre-allocated frames for your stack, enter a scope that declares a C automatic variable
larger than the maximum stack size you will need, set it to something, then return from its
scope.

3.5.3 Functions To Lock And Unlock Pages

The symbols in this section are declared in sys/mman.h. These functions are defined by
POSIX.1b, but their availability depends on your kernel. If your kernel doesn’t allow these
functions, they exist but always fail. They are available with a Linux kernel.

Portability Note: POSIX.1b requires that when the mlock and munlock functions are
available, the file unistd.h define the macro _POSIX_MEMLOCK_RANGE and the file 1imits.h
define the macro PAGESIZE to be the size of a memory page in bytes. It requires that when
the mlockall and munlockall functions are available, the unistd.h file define the macro
_POSIX_MEMLOCK. The GNU C Library conforms to this requirement.

int mlock (const void *addr, size_t len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

mlock locks a range of the calling process’ virtual pages.

The range of memory starts at address addr and is len bytes long. Actually, since you
must lock whole pages, it is the range of pages that include any part of the specified
range.

When the function returns successfully, each of those pages is backed by (connected
to) a real frame (is resident) and is marked to stay that way. This means the function
may cause page-ins and have to wait for them.

When the function fails, it does not affect the lock status of any pages.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
o At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL len is not positive.
ENOSYS The kernel does not provide mlock capability.

int mlock2 (const void *addr, size_t len, unsigned int flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
This function is similar to mlock. If flags is zero, a call to mlock2 behaves exactly as
the equivalent call to mlock.

Chapter 3: Virtual Memory Allocation And Paging 87

The flags argument must be a combination of zero or more of the following flags:

MLOCK_ONFAULT
Only those pages in the specified address range which are already in
memory are locked immediately. Additional pages in the range are auto-
matically locked in case of a page fault and allocation of memory.

Like mlock, mlock?2 returns zero on success and -1 on failure, setting errno accord-
ingly. Additional errno values defined for mlock?2 are:

EINVAL The specified (non-zero) flags argument is not supported by this system.

You can lock all a process’ memory with mlockall. You unlock memory with munlock
or munlockall.

To avoid all page faults in a C program, you have to use mlockall, because some of the
memory a program uses is hidden from the C code, e.g. the stack and automatic variables,
and you wouldn’t know what address to tell mlock.

int munlock (const void *addr, size_t len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

munlock unlocks a range of the calling process’ virtual pages.

munlock is the inverse of mlock and functions completely analogously to mlock, except
that there is no EPERM failure.

int mlockall (int flags) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

mlockall locks all the pages in a process’ virtual memory address space, and/or any
that are added to it in the future. This includes the pages of the code, data and
stack segment, as well as shared libraries, user space kernel data, shared memory, and
memory mapped files.

flags is a string of single bit flags represented by the following macros. They tell
mlockall which of its functions you want. All other bits must be zero.

MCL_CURRENT
Lock all pages which currently exist in the calling process’ virtual address
space.

MCL_FUTURE
Set a mode such that any pages added to the process’ virtual address
space in the future will be locked from birth. This mode does not affect
future address spaces owned by the same process so exec, which replaces
a process’ address space, wipes out MCL_FUTURE. See Section 27.6 [Exe-
cuting a File], page 819.

When the function returns successfully, and you specified MCL_CURRENT, all of the
process’ pages are backed by (connected to) real frames (they are resident) and are
marked to stay that way. This means the function may cause page-ins and have to
wait for them.

Chapter 3: Virtual Memory Allocation And Paging 88

When the process is in MCL_FUTURE mode because it successfully executed this func-
tion and specified MCL_CURRENT, any system call by the process that requires space
be added to its virtual address space fails with errno = ENOMEM if locking the addi-
tional space would cause the process to exceed its locked page limit. In the case that
the address space addition that can’t be accommodated is stack expansion, the stack
expansion fails and the kernel sends a SIGSEGV signal to the process.

When the function fails, it does not affect the lock status of any pages or the future
locking mode.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
o At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL Undefined bits in flags are not zero.
ENOSYS The kernel does not provide mlockall capability.

You can lock just specific pages with mlock. You unlock pages with munlockall and
munlock.

int munlockall (void) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
munlockall unlocks every page in the calling process’ virtual address space and turns
off MCL_FUTURE future locking mode.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is
set accordingly. The only way this function can fail is for generic reasons that all
functions and system calls can fail, so there are no specific errno values.

89

4 Character Handling

Programs that work with characters and strings often need to classify a character—is it
alphabetic, is it a digit, is it whitespace, and so on—and perform case conversion operations
on characters. The functions in the header file ctype.h are provided for this purpose.

Since the choice of locale and character set can alter the classifications of particular
character codes, all of these functions are affected by the current locale. (More precisely,
they are affected by the locale currently selected for character classification—the LC_CTYPE
category; see Section 7.3 [Locale Categories|, page 188.)

The ISO C standard specifies two different sets of functions. The one set works on char
type characters, the other one on wchar_t wide characters (see Section 6.1 [Introduction to
Extended Characters|, page 144).

4.1 Classification of Characters

This section explains the library functions for classifying characters. For example, isalpha
is the function to test for an alphabetic character. It takes one argument, the character to
test as an unsigned char value, and returns a nonzero integer if the character is alphabetic,
and zero otherwise. You would use it like this:
if (isalpha ((unsigned char) c))
printf ("The character “¥c' is alphabetic.\n", c);

Each of the functions in this section tests for membership in a particular class of char-
acters; each has a name starting with ‘is’. Each of them takes one argument, which is a
character to test. The character argument must be in the value range of unsigned char (0
to 255 for the GNU C Library). On a machine where the char type is signed, it may be
necessary to cast the argument to unsigned char, or mask it with ‘¢ Oxff’. (On unsigned
char machines, this step is harmless, so portable code should always perform it.) The ‘is’
functions return an int which is treated as a boolean value.

All ‘is’ functions accept the special value EOF and return zero. (Note that EOF must not
be cast to unsigned char for this to work.)

As an extension, the GNU C Library accepts signed char values as ‘is’ functions ar-
guments in the range -128 to -2, and returns the result for the corresponding unsigned
character. However, as there might be an actual character corresponding to the EOF integer
constant, doing so may introduce bugs, and it is recommended to apply the conversion to
the unsigned character range as appropriate.

The attributes of any given character can vary between locales. See Chapter 7 [Locales
and Internationalization], page 187, for more information on locales.

These functions are declared in the header file ctype.h.

int islower (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.
Returns true if ¢ is a lower-case letter. The letter need not be from the Latin alphabet,
any alphabet representable is valid.

Chapter 4: Character Handling 90

int isupper (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

Returns true if ¢ is an upper-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.

int isalpha (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is an alphabetic character (a letter). If islower or isupper is true
of a character, then isalpha is also true.

In some locales, there may be additional characters for which isalpha is true—letters
which are neither upper case nor lower case. But in the standard "C" locale, there
are no such additional characters.

int isdigit (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is a decimal digit (‘0’ through ‘9’).

int isalnum (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is an alphanumeric character (a letter or number); in other words,
if either isalpha or isdigit is true of a character, then isalnum is also true.

int isxdigit (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.

int ispunct (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Returns true if ¢ is a punctuation character. This means any printing character that
is not alphanumeric or a space character.

int isspace (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

Returns true if ¢ is a whitespace character. In the standard "C" locale, isspace
returns true for only the standard whitespace characters:

' space
"\f' formfeed

'"\n' newline

Chapter 4: Character Handling 91

"\r' carriage return
"\t' horizontal tab
"\v' vertical tab
int isblank (int c) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns true if ¢ is a blank character; that is, a space or a tab. This function was
originally a GNU extension, but was added in ISO C99.

int isgraph (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is a graphic character; that is, a character that has a glyph associated
with it. The whitespace characters are not considered graphic.

int isprint (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if c is a printing character. Printing characters include all the graphic
characters, plus the space (‘) character.

int iscntrl (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is a control character (that is, a character that is not a printing
character).

int isascii (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
Returns true if ¢ is a 7-bit unsigned char value that fits into the US/UK ASCII
character set. This function is a BSD extension and is also an SVID extension.

4.2 Case Conversion

This section explains the library functions for performing conversions such as case mappings
on characters. For example, toupper converts any character to upper case if possible. If
the character can’t be converted, toupper returns it unchanged.

These functions take one argument of type int, which is the character to convert, and
return the converted character as an int. If the conversion is not applicable to the argument
given, the argument is returned unchanged.

Compatibility Note: In pre-ISO C dialects, instead of returning the argument
unchanged, these functions may fail when the argument is not suitable for the conversion.
Thus for portability, you may need to write islower(c) ? toupper(c) : c¢ rather than
just toupper(c).

These functions are declared in the header file ctype.h.

Chapter 4: Character Handling 92

int tolower (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

If ¢ is an upper-case letter, tolower returns the corresponding lower-case letter. If ¢
is not an upper-case letter, c¢ is returned unchanged.

int toupper (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

If c is a lower-case letter, toupper returns the corresponding upper-case letter. Oth-
erwise c is returned unchanged.

int toascii (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function converts ¢ to a 7-bit unsigned char value that fits into the US/UK
ASCII character set, by clearing the high-order bits. This function is a BSD extension
and is also an SVID extension.

int _tolower (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This is identical to tolower, and is provided for compatibility with the SVID. See
Section 1.2.4 [SVID (The System V Interface Description)], page 11.

int _toupper (int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This is identical to toupper, and is provided for compatibility with the SVID.

4.3 Character class determination for wide characters

Amendment 1 to ISO C90 defines functions to classify wide characters. Although the orig-
inal ISO C90 standard already defined the type wchar_t, no functions operating on them
were defined.

The general design of the classification functions for wide characters is more general.
It allows extensions to the set of available classifications, beyond those which are always
available. The POSIX standard specifies how extensions can be made, and this is already
implemented in the GNU C Library implementation of the localedef program.

The character class functions are normally implemented with bitsets, with a bitset per
character. For a given character, the appropriate bitset is read from a table and a test is
performed as to whether a certain bit is set. Which bit is tested for is determined by the
class.

For the wide character classification functions this is made visible. There is a type
classification type defined, a function to retrieve this value for a given class, and a function
to test whether a given character is in this class, using the classification value. On top of
this the normal character classification functions as used for char objects can be defined.

Chapter 4: Character Handling 93

wctype_t [Data type]
The wctype_t can hold a value which represents a character class. The only defined
way to generate such a value is by using the wctype function.

This type is defined in wctype.h.

wctype_t wctype (const char *property) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

wctype returns a value representing a class of wide characters which is identified by
the string property. Besides some standard properties each locale can define its own
ones. In case no property with the given name is known for the current locale selected
for the LC_CTYPE category, the function returns zero.

The properties known in every locale are:

"alnum" "alpha" "cntrl" "digit"
llgraphll Illowerll "print" "pllnCt"
"Space" Hupperll "Xdlglt n

This function is declared in wctype.h.

To test the membership of a character to one of the non-standard classes the ISO C
standard defines a completely new function.

int iswctype (wint_t wc, wctype_t desc) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
This function returns a nonzero value if wc is in the character class specified by desc.
desc must previously be returned by a successful call to wctype.

This function is declared in wctype.h.

To make it easier to use the commonly-used classification functions, they are defined in
the C library. There is no need to use wctype if the property string is one of the known
character classes. In some situations it is desirable to construct the property strings, and
then it is important that wctype can also handle the standard classes.

int iswalnum (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
This function returns a nonzero value if we is an alphanumeric character (a letter or
number); in other words, if either iswalpha or iswdigit is true of a character, then
iswalnum is also true.
This function can be implemented using

iswctype (wc, wctype ("alnum"))

It is declared in wctype.h.

int iswalpha (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Chapter 4: Character Handling 94

Returns true if we is an alphabetic character (a letter). If iswlower or iswupper is
true of a character, then iswalpha is also true.

In some locales, there may be additional characters for which iswalpha is true—
letters which are neither upper case nor lower case. But in the standard "C" locale,
there are no such additional characters.
This function can be implemented using

iswctype (wc, wctype ("alpha"))

It is declared in wctype.h.

int iswcntrl (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a control character (that is, a character that is not a printing
character).
This function can be implemented using

iswctype (wc, wctype ("cntrl"))

It is declared in wctype.h.

int iswdigit (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a digit (e.g., ‘0’ through ‘9’). Please note that this function
does not only return a nonzero value for decimal digits, but for all kinds of digits.
A consequence is that code like the following will not work unconditionally for wide

characters:
n = 0;
while (iswdigit (*wc))
{
n x= 10;
n += *wc++ - L'0';
}

This function can be implemented using

iswctype (wc, wctype ("digit"))

It is declared in wctype.h.

int iswgraph (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a graphic character; that is, a character that has a glyph asso-
ciated with it. The whitespace characters are not considered graphic.

This function can be implemented using

iswctype (wc, wctype ("graph"))

It is declared in wctype.h.

Chapter 4: Character Handling 95

int iswlower (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Returns true if we is a lower-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.

This function can be implemented using
iswctype (wc, wctype ("lower"))

It is declared in wctype.h.

int iswprint (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Returns true if we is a printing character. Printing characters include all the graphic
characters, plus the space (‘ ’) character.

This function can be implemented using
iswctype (wc, wctype ("print"))

It is declared in wctype.h.

int iswpunct (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if wc is a punctuation character. This means any printing character
that is not alphanumeric or a space character.

This function can be implemented using
iswctype (wc, wctype ("punct"))

It is declared in wctype.h.

int iswspace (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
Returns true if wc is a whitespace character. In the standard "C" locale, iswspace
returns true for only the standard whitespace characters:

L' space

L'\f"' formfeed

L'\n' newline

L'\r' carriage return
L'\t' horizontal tab
L'\v' vertical tab

This function can be implemented using
iswctype (wc, wctype ("space"))

It is declared in wctype.h.

Chapter 4: Character Handling 96

int iswupper (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

Returns true if wc is an upper-case letter. The letter need not be from the Latin
alphabet, any alphabet representable is valid.
This function can be implemented using

iswctype (wc, wctype ("upper"))

It is declared in wctype.h.

int iswxdigit (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.
Returns true if we is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0" through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.
This function can be implemented using

iswctype (wc, wctype ("xdigit"))

It is declared in wctype.h.

The GNU C Library also provides a function which is not defined in the ISO C standard
but which is available as a version for single byte characters as well.

int iswblank (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

Returns true if we is a blank character; that is, a space or a tab. This function was
originally a GNU extension, but was added in ISO C99. It is declared in wchar.h.

4.4 Notes on using the wide character classes

The first note is probably not astonishing but still occasionally a cause of problems. The
iswXXX functions can be implemented using macros and in fact, the GNU C Library does
this. They are still available as real functions but when the wctype.h header is included
the macros will be used. This is the same as the char type versions of these functions.

The second note covers something new. It can be best illustrated by a (real-world)
example. The first piece of code is an excerpt from the original code. It is truncated a bit
but the intention should be clear.

int
is_in_class (int c, const char *class)
{

if (strcmp (class, "alnum") == 0)

return isalnum (c);

if (strcmp (class, "alpha") == 0)
return isalpha (c);

if (strcmp (class, "cntrl") == 0)
return iscntrl (c);

return O;

}

Chapter 4: Character Handling 97

Now, with the wctype and iswctype you can avoid the if cascades, but rewriting the
code as follows is wrong:
int
is_in_class (int c, const char *class)

¢ wctype_t desc = wctype (class);
return desc 7 iswctype ((wint_t) c, desc) : O;
}

The problem is that it is not guaranteed that the wide character representation of a
single-byte character can be found using casting. In fact, usually this fails miserably. The
correct solution to this problem is to write the code as follows:

int
is_in_class (int c, const char *class)
¢ wctype_t desc = wctype (class);
return desc ? iswctype (btowc (c), desc) : 0;
}

See Section 6.3.3 [Converting Single Characters], page 150, for more information on
btowc. Note that this change probably does not improve the performance of the program
a lot since the wctype function still has to make the string comparisons. It gets really
interesting if the is_in_class function is called more than once for the same class name.
In this case the variable desc could be computed once and reused for all the calls. Therefore
the above form of the function is probably not the final one.

4.5 Mapping of wide characters.

The classification functions are also generalized by the ISO C standard. Instead of just
allowing the two standard mappings, a locale can contain others. Again, the localedef
program already supports generating such locale data files.

wctrans_t [Data Type]
This data type is defined as a scalar type which can hold a value representing the
locale-dependent character mapping. There is no way to construct such a value apart
from using the return value of the wctrans function.

This type is defined in wctype.h.

wctrans_t wctrans (const char *property) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.
The wctrans function has to be used to find out whether a named mapping is defined
in the current locale selected for the LC_CTYPE category. If the returned value is non-
zero, you can use it afterwards in calls to towctrans. If the return value is zero no
such mapping is known in the current locale.

Beside locale-specific mappings there are two mappings which are guaranteed to be
available in every locale:

"tolower" "toupper"

These functions are declared in wctype.h.

Chapter 4: Character Handling 98

wint_t towctramns (wint_t wc, wctrans_t desc) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

towctrans maps the input character wc according to the rules of the mapping for
which desc is a descriptor, and returns the value it finds. desc must be obtained by
a successful call to wctrans.

This function is declared in wctype.h.

For the generally available mappings, the ISO C standard defines convenient shortcuts
so that it is not necessary to call wctrans for them.

wint_t towlower (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

If we is an upper-case letter, towlower returns the corresponding lower-case letter.
If wc is not an upper-case letter, wc is returned unchanged.
towlower can be implemented using

towctrans (wc, wctrans ("tolower"))

This function is declared in wctype.h.

wint_t towupper (wint_t wc) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

If we is a lower-case letter, towupper returns the corresponding upper-case letter.
Otherwise wc is returned unchanged.
towupper can be implemented using

towctrans (wc, wctrans ("toupper"))

This function is declared in wctype.h.

The same warnings given in the last section for the use of the wide character classification
functions apply here. It is not possible to simply cast a char type value to a wint_t and
use it as an argument to towctrans calls.

99

5 String and Array Utilities

Operations on strings (null-terminated byte sequences) are an important part of many
programs. The GNU C Library provides an extensive set of string utility functions, including
functions for copying, concatenating, comparing, and searching strings. Many of these
functions can also operate on arbitrary regions of storage; for example, the memcpy function
can be used to copy the contents of any kind of array.

It’s fairly common for beginning C programmers to “reinvent the wheel” by duplicating
this functionality in their own code, but it pays to become familiar with the library functions
and to make use of them, since this offers benefits in maintenance, efficiency, and portability.

For instance, you could easily compare one string to another in two lines of C code, but
if you use the built-in strecmp function, you're less likely to make a mistake. And, since
these library functions are typically highly optimized, your program may run faster too.

5.1 Representation of Strings

This section is a quick summary of string concepts for beginning C programmers. It de-
scribes how strings are represented in C and some common pitfalls. If you are already
familiar with this material, you can skip this section.

A string is a null-terminated array of bytes of type char, including the terminating
null byte. String-valued variables are usually declared to be pointers of type char *. Such
variables do not include space for the contents of a string; that has to be stored some-
where else—in an array variable, a string constant, or dynamically allocated memory (see
Section 3.2 [Allocating Storage For Program Datal, page 45). It’s up to you to store the
address of the chosen memory space into the pointer variable. Alternatively you can store a
null pointer in the pointer variable. The null pointer does not point anywhere, so attempting
to reference the string it points to gets an error.

A multibyte character is a sequence of one or more bytes that represents a single character
using the locale’s encoding scheme; a null byte always represents the null character. A
multibyte string is a string that consists entirely of multibyte characters. In contrast, a
wide string is a null-terminated sequence of wchar_t objects. A wide-string variable is
usually declared to be a pointer of type wchar_t *, by analogy with string variables and
char *. See Section 6.1 [Introduction to Extended Characters|, page 144.

By convention, the null byte, '\0', marks the end of a string and the null wide character,
L'\0', marks the end of a wide string. For example, in testing to see whether the char *
variable p points to a null byte marking the end of a string, you can write !*p or *p ==
"\O0".

A null byte is quite different conceptually from a null pointer, although both are repre-
sented by the integer constant 0.

A string literal appears in C program source as a multibyte string between double-quote
characters (‘"’). If the initial double-quote character is immediately preceded by a capital ‘L’
(ell) character (as in L"foo"), it is a wide string literal. String literals can also contribute to
string concatenation: "a" "b" is the same as "ab". For wide strings one can use either L"a"
L"b" or L"a" "b". Modification of string literals is not allowed by the GNU C compiler,
because literals are placed in read-only storage.

Chapter 5: String and Array Utilities 100

Arrays that are declared const cannot be modified either. It’s generally good style to
declare non-modifiable string pointers to be of type const char *, since this often allows
the C compiler to detect accidental modifications as well as providing some amount of
documentation about what your program intends to do with the string.

The amount of memory allocated for a byte array may extend past the null byte that
marks the end of the string that the array contains. In this document, the term allocated
size is always used to refer to the total amount of memory allocated for an array, while the
term length refers to the number of bytes up to (but not including) the terminating null
byte. Wide strings are similar, except their sizes and lengths count wide characters, not
bytes.

A notorious source of program bugs is trying to put more bytes into a string than fit
in its allocated size. When writing code that extends strings or moves bytes into a pre-
allocated array, you should be very careful to keep track of the length of the string and
make explicit checks for overflowing the array. Many of the library functions do not do this
for you! Remember also that you need to allocate an extra byte to hold the null byte that
marks the end of the string.

Originally strings were sequences of bytes where each byte represented a single character.
This is still true today if the strings are encoded using a single-byte character encoding.
Things are different if the strings are encoded using a multibyte encoding (for more informa-
tion on encodings see Section 6.1 [Introduction to Extended Characters|, page 144). There
is no difference in the programming interface for these two kind of strings; the programmer
has to be aware of this and interpret the byte sequences accordingly.

But since there is no separate interface taking care of these differences the byte-based
string functions are sometimes hard to use. Since the count parameters of these functions
specify bytes a call to memcpy could cut a multibyte character in the middle and put an
incomplete (and therefore unusable) byte sequence in the target buffer.

To avoid these problems later versions of the ISO C standard introduce a second set of
functions which are operating on wide characters (see Section 6.1 [Introduction to Extended
Characters], page 144). These functions don’t have the problems the single-byte versions
have since every wide character is a legal, interpretable value. This does not mean that
cutting wide strings at arbitrary points is without problems. It normally is for alphabet-
based languages (except for non-normalized text) but languages based on syllables still have
the problem that more than one wide character is necessary to complete a logical unit. This
is a higher level problem which the C library functions are not designed to solve. But it is
at least good that no invalid byte sequences can be created. Also, the higher level functions
can also much more easily operate on wide characters than on multibyte characters so that
a common strategy is to use wide characters internally whenever text is more than simply
copied.

The remaining of this chapter will discuss the functions for handling wide strings in
parallel with the discussion of strings since there is almost always an exact equivalent
available.

5.2 String and Array Conventions

This chapter describes both functions that work on arbitrary arrays or blocks of memory,
and functions that are specific to strings and wide strings.

Chapter 5: String and Array Utilities 101

Functions that operate on arbitrary blocks of memory have names beginning with ‘mem’
and ‘wmem’ (such as memcpy and wmemcpy) and invariably take an argument which specifies
the size (in bytes and wide characters respectively) of the block of memory to operate on.
The array arguments and return values for these functions have type void * or wchar_t *.
As a matter of style, the elements of the arrays used with the ‘mem’ functions are referred to
as “bytes”. You can pass any kind of pointer to these functions, and the sizeof operator
is useful in computing the value for the size argument. Parameters to the ‘wmem’ functions
must be of type wchar_t *. These functions are not really usable with anything but arrays
of this type.

In contrast, functions that operate specifically on strings and wide strings have names
beginning with ‘str’ and ‘wcs’ respectively (such as strcpy and wcscpy) and look for a
terminating null byte or null wide character instead of requiring an explicit size argument to
be passed. (Some of these functions accept a specified maximum length, but they also check
for premature termination.) The array arguments and return values for these functions have
type char * and wchar_t * respectively, and the array elements are referred to as “bytes”
and “wide characters”.

In many cases, there are both ‘mem’ and ‘str’/‘wcs’ versions of a function. The one that
is more appropriate to use depends on the exact situation. When your program is manipu-
lating arbitrary arrays or blocks of storage, then you should always use the ‘mem’ functions.
On the other hand, when you are manipulating strings it is usually more convenient to use
the ‘str’/‘wcs’ functions, unless you already know the length of the string in advance. The
‘wmem’ functions should be used for wide character arrays with known size.

Some of the memory and string functions take single characters as arguments. Since
a value of type char is automatically promoted into a value of type int when used as a
parameter, the functions are declared with int as the type of the parameter in question. In
case of the wide character functions the situation is similar: the parameter type for a single
wide character is wint_t and not wchar_t. This would for many implementations not be
necessary since wchar_t is large enough to not be automatically promoted, but since the
ISO C standard does not require such a choice of types the wint_t type is used.

5.3 String Length

You can get the length of a string using the strlen function. This function is declared in
the header file string.h.

size_t strlen (const char *s) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The strlen function returns the length of the string s in bytes. (In other words, it
returns the offset of the terminating null byte within the array.)

For example,
strlen ("hello, world")
= 12
When applied to an array, the strlen function returns the length of the string stored
there, not its allocated size. You can get the allocated size of the array that holds a
string using the sizeof operator:
char string[32] = "hello, world";

Chapter 5: String and Array Utilities 102

sizeof (string)
= 32

strlen (string)
= 12

But beware, this will not work unless string is the array itself, not a pointer to it.
For example:
char string[32] = "hello, world";
char *ptr = string;
sizeof (string)
= 32
sizeof (ptr)
= 4 /* (on a machine with 4 byte pointers) */
This is an easy mistake to make when you are working with functions that take string
arguments; those arguments are always pointers, not arrays.

It must also be noted that for multibyte encoded strings the return value does not
have to correspond to the number of characters in the string. To get this value the
string can be converted to wide characters and wcslen can be used or something like
the following code can be used:
/* The input is in string.
The length is expected in n. */
{
mbstate_t t;
char *scopy = string;
/* In initial state. */
memset (&t, '\0', sizeof (t));
/* Determine number of characters. */
n = mbsrtowcs (NULL, &scopy, strlen (scopy), &t);
}
This is cumbersome to do so if the number of characters (as opposed to bytes) is

needed often it is better to work with wide characters.
The wide character equivalent is declared in wchar.h.

size_t wcslen (const wchar_t *ws) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The weslen function is the wide character equivalent to strlen. The return value is
the number of wide characters in the wide string pointed to by ws (this is also the
offset of the terminating null wide character of ws).

Since there are no multi wide character sequences making up one wide character the
return value is not only the offset in the array, it is also the number of wide characters.

This function was introduced in Amendment 1 to ISO C90.

size_t strnlen (const char *s, size_t maxlen) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This returns the offset of the first null byte in the array s, except that it returns
maxlen if the first maxlen bytes are all non-null. Therefore this function is equivalent

Chapter 5: String and Array Utilities 103

to (strlen (s) < maxlen ? strlen (s) : maxlen) but it is more efficient and works
even if s is not null-terminated so long as maxlen does not exceed the size of s’s array.

char string[32] = "hello, world";
strnlen (string, 32)
= 12
strnlen (string, 5)
= 5
This function is part of POSIX.1-2008 and later editions, but was available in the
GNU C Library and other systems as an extension long before it was standardized.

It is declared in string.h.

size_t wcsnlen (const wchar_t *ws, size_t maxlen) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

wcsnlen is the wide character equivalent to strnlen. The maxlen parameter specifies
the maximum number of wide characters.

This function is part of POSIX.1-2008 and later editions, and is declared in wchar.h.

5.4 Copying Strings and Arrays

You can use the functions described in this section to copy the contents of strings, wide

strings, and arrays. The ‘str’ and ‘mem’ functions are declared in string.h while the ‘w
functions are declared in wchar.h.

A helpful way to remember the ordering of the arguments to the functions in this section
is that it corresponds to an assignment expression, with the destination array specified to
the left of the source array. Most of these functions return the address of the destination
array; a few return the address of the destination’s terminating null, or of just past the
destination.

Most of these functions do not work properly if the source and destination arrays overlap.
For example, if the beginning of the destination array overlaps the end of the source array,
the original contents of that part of the source array may get overwritten before it is copied.
Even worse, in the case of the string functions, the null byte marking the end of the string
may be lost, and the copy function might get stuck in a loop trashing all the memory
allocated to your program.

All functions that have problems copying between overlapping arrays are explicitly iden-
tified in this manual. In addition to functions in this section, there are a few others like
sprintf (see Section 12.12.7 [Formatted Output Functions|, page 302) and scanf (see
Section 12.14.8 [Formatted Input Functions|, page 325).

void * memcpy (void *restrict to, const void *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The memcpy function copies size bytes from the object beginning at from into the
object beginning at to. The behavior of this function is undefined if the two arrays
to and from overlap; use memmove instead if overlapping is possible.

The value returned by memcpy is the value of to.

Chapter 5: String and Array Utilities 104

Here is an example of how you might use memcpy to copy the contents of an array:

struct foo *oldarray, *newarray;
int arraysize;

memcpy (new, old, arraysize * sizeof (struct foo));

wchar_t * wmemcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The wmemcpy function copies size wide characters from the object beginning at wfrom
into the object beginning at wto. The behavior of this function is undefined if the
two arrays wto and wirom overlap; use wmemmove instead if overlapping is possible.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmemcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) memcpy (wto, wfrom, size * sizeof (wchar_t));

}
The value returned by wmemcpy is the value of wto.
This function was introduced in Amendment 1 to ISO C90.

void * mempcpy (void *restrict to, const void *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The mempcpy function is nearly identical to the memcpy function. It copies size bytes
from the object beginning at from into the object pointed to by to. But instead of
returning the value of to it returns a pointer to the byte following the last written byte
in the object beginning at to. Le., the value is ((void *) ((char *) to + size)).

This function is useful in situations where a number of objects shall be copied to
consecutive memory positions.
void =*
combine (void *o0l, size_t sl1, void *02, size_t s2)
{
void *result = malloc (sl + s2);
if (result !'= NULL)
mempcpy (mempcpy (result, ol, sl1), 02, s2);
return result;

}
This function is a GNU extension.

wchar_t * wmempcpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The wmempcpy function is nearly identical to the wmemcpy function. It copies size
wide characters from the object beginning at wfrom into the object pointed to by

Chapter 5: String and Array Utilities 105

wto. But instead of returning the value of wto it returns a pointer to the wide
character following the last written wide character in the object beginning at wto.
Le., the value is wto + size.

This function is useful in situations where a number of objects shall be copied to
consecutive memory positions.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}

This function is a GNU extension.

void * memmove (void *to, const void *from, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

memmove copies the size bytes at from into the size bytes at to, even if those two
blocks of space overlap. In the case of overlap, memmove is careful to copy the original
values of the bytes in the block at from, including those bytes which also belong to
the block at to.

The value returned by memmove is the value of to.

wchar_t * wmemmove (wchar_t *wto, const wchar_t *wfrom, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

wmemmove copies the size wide characters at wfrom into the size wide characters at
wto, even if those two blocks of space overlap. In the case of overlap, wmemmove
is careful to copy the original values of the wide characters in the block at wifrom,
including those wide characters which also belong to the block at wto.

The following is a possible implementation of wmemcpy but there are more optimiza-
tions possible.

wchar_t *
wmempcpy (wchar_t #*restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}
The value returned by wmemmove is the value of wto.

This function is a GNU extension.

void * memccpy (void *restrict to, const void *restrict from, int c, [Function]
size_t size)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 5: String and Array Utilities 106

This function copies no more than size bytes from from to to, stopping if a byte
matching c is found. The return value is a pointer into to one byte past where ¢ was
copied, or a null pointer if no byte matching ¢ appeared in the first size bytes of from.

void * memset (void *block, int c, size-t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function copies the value of ¢ (converted to an unsigned char) into each of the
first size bytes of the object beginning at block. It returns the value of block.

wchar_t * wmemset (wchar_t *block, wchar_t wc, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function copies the value of wc into each of the first size wide characters of the
object beginning at block. It returns the value of block.

char * strcpy (char *restrict to, const char *restrict from) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This copies bytes from the string from (up to and including the terminating null
byte) into the string to. Like memcpy, this function has undefined results if the strings
overlap. The return value is the value of to.

wchar_t * wcscpy (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts], page 2.

This copies wide characters from the wide string wfrom (up to and including the
terminating null wide character) into the string wto. Like wmemcpy, this function has
undefined results if the strings overlap. The return value is the value of wto.

char * strdup (const char *s) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function copies the string s into a newly allocated string. The string is allocated
using malloc; see Section 3.2.3 [Unconstrained Allocation], page 47. If malloc cannot
allocate space for the new string, strdup returns a null pointer. Otherwise it returns
a pointer to the new string.

wchar_t * wcsdup (const wchar_t *ws) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.
This function copies the wide string ws into a newly allocated string. The string is al-
located using malloc; see Section 3.2.3 [Unconstrained Allocation], page 47. If malloc
cannot allocate space for the new string, wcsdup returns a null pointer. Otherwise it
returns a pointer to the new wide string.

This function is a GNU extension.

Chapter 5: String and Array Utilities 107

char * stpcpy (char *restrict to, const char *restrict from) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is like strcpy, except that it returns a pointer to the end of the string
to (that is, the address of the terminating null byte to + strlen (from)) rather than
the beginning.

For example, this program uses stpcpy to concatenate ‘foo’ and ‘bar’ to produce
‘foobar’, which it then prints.

#include <string.h>
#include <stdio.h>

int

main (void)

{
char buffer[10];
char *to = buffer;
to = stpcpy (to, "foo");
to = stpcpy (to, "bar");
puts (buffer);
return O;

}

This function is part of POSIX.1-2008 and later editions, but was available in the
GNU C Library and other systems as an extension long before it was standardized.

Its behavior is undefined if the strings overlap. The function is declared in string.h.

wchar_t * wcpepy (wchar_t *restrict wto, const wchar_t *restrict [Function]

char

wfrom)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function is like wcscpy, except that it returns a pointer to the end of the
string wto (that is, the address of the terminating null wide character wto + wcslen
(wfrom)) rather than the beginning.

This function is not part of ISO or POSIX but was found useful while developing the
GNU C Library itself.

The behavior of wepepy is undefined if the strings overlap.

wepepy is a GNU extension and is declared in wchar.h.

* strdupa (const char *s) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This macro is similar to strdup but allocates the new string using alloca instead
of malloc (see Section 3.2.7 [Automatic Storage with Variable Size], page 75). This
means of course the returned string has the same limitations as any block of memory
allocated using alloca.

For obvious reasons strdupa is implemented only as a macro; you cannot get the
address of this function. Despite this limitation it is a useful function. The following
code shows a situation where using malloc would be a lot more expensive.

Chapter 5: String and Array Utilities 108

#define _GNU_SOURCE 1
#include <paths.h>
#include <string.h>
#include <stdio.h>

const char path[] = _PATH_STDPATH;

int

main (void)

{
char *wr_path = strdupa (path);
char *cp = strtok (wr_path, ":");

while (cp !'= NULL)
{
puts (cp);
cp = strtok (NULL, ":");
}

return O;
}
Please note that calling strtok using path directly is invalid. It is also not al-
lowed to call strdupa in the argument list of strtok since strdupa uses alloca (see
Section 3.2.7 [Automatic Storage with Variable Size|, page 75) can interfere with the
parameter passing.

This function is only available if GNU CC is used.

void bcopy (const void *from, void *to, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.
This is a partially obsolete alternative for memmove, derived from BSD. Note that it
is not quite equivalent to memmove, because the arguments are not in the same order
and there is no return value.

void bzero (void *block, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This is a partially obsolete alternative for memset, derived from BSD. Note that it is
not as general as memset, because the only value it can store is zero.

5.5 Concatenating Strings

The functions described in this section concatenate the contents of a string or wide string
to another. They follow the string-copying functions in their conventions. See Section 5.4
[Copying Strings and Arrays|, page 103. ‘strcat’ is declared in the header file string.h
while ‘wcscat’ is declared in wchar.h.

As noted below, these functions are problematic as their callers may have performance
issues.

char * strcat (char *restrict to, const char *restrict from) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 5: String and Array Utilities 109

The strcat function is similar to strcpy, except that the bytes from from are con-
catenated or appended to the end of to, instead of overwriting it. That is, the first
byte from from overwrites the null byte marking the end of to.

An equivalent definition for strcat would be:

char *
strcat (char *restrict to, const char *restrict from)
{

strcpy (to + strlen (to), from);

return to;

}
This function has undefined results if the strings overlap.

As noted below, this function has significant performance issues.

wchar_t * wcscat (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The wescat function is similar to wescpy, except that the wide characters from wfrom
are concatenated or appended to the end of wto, instead of overwriting it. That is,
the first wide character from wfrom overwrites the null wide character marking the
end of wto.

An equivalent definition for wescat would be:

wchar_t x*
wcscat (wchar_t *wto, const wchar_t *wfrom)
{

wcscpy (wto + wcslen (wto), wfrom);
return wto;

}
This function has undefined results if the strings overlap.

As noted below, this function has significant performance issues.

Programmers using the strcat or wcscat functions (or the strlcat, strncat and
wcsncat functions defined in a later section, for that matter) can easily be recognized
as lazy and reckless. In almost all situations the lengths of the participating strings are
known (it better should be since how can one otherwise ensure the allocated size of the
buffer is sufficient?) Or at least, one could know them if one keeps track of the results of
the various function calls. But then it is very inefficient to use strcat/wcscat. A lot of
time is wasted finding the end of the destination string so that the actual copying can start.
This is a common example:

/* This function concatenates arbitrarily many strings. The last
parameter must be NULL. */
char *
concat (const char *str, ...)
{
va_list ap, ap2;
size_t total = 1;

va_start (ap, str);
va_copy (ap2, ap);

Chapter 5: String and Array Utilities 110

/* Determine how much space we need. */
for (const char *s = str; s != NULL; s = va_arg (ap, const char *))
total += strlen (8);

va_end (ap);

char *result = malloc (total);
if (result != NULL)
{
result[0] = '\0';

/* Copy the strings. */
for (s = str; s != NULL; s = va_arg (ap2, const char *))
strcat (result, s);

}
va_end (ap2);

return result;

}

This looks quite simple, especially the second loop where the strings are actually copied.
But these innocent lines hide a major performance penalty. Just imagine that ten strings
of 100 bytes each have to be concatenated. For the second string we search the already
stored 100 bytes for the end of the string so that we can append the next string. For all
strings in total the comparisons necessary to find the end of the intermediate results sums
up to 5500! If we combine the copying with the search for the allocation we can write this
function more efficiently:

char *
concat (const char *str, ...)
{
size_t allocated = 100;
char *result = malloc (allocated);

if (result !'= NULL)
{
va_list ap;
size_t resultlen = 0;
char *newp;

va_start (ap, str);

for (const char *s = str; s != NULL; s = va_arg (ap, const char x))
{

size_t len = strlen (s);

/* Resize the allocated memory if necessary. */
if (resultlen + len + 1 > allocated)
{
allocated += len;
newp = reallocarray (result, allocated, 2);
allocated *= 2;
if (newp == NULL)
{
free (result);
return NULL;
}

Chapter 5: String and Array Utilities 111

result = newp;

}

memcpy (result + resultlen, s, len);
resultlen += len;

}

/* Terminate the result string. */
result[resultlen++] = '\0';

/* Resize memory to the optimal size. */
newp = realloc (result, resultlen);
if (newp != NULL)

result = newp;

va_end (ap);

}

return result;
}

With a bit more knowledge about the input strings one could fine-tune the memory
allocation. The difference we are pointing to here is that we don’t use strcat anymore. We
always keep track of the length of the current intermediate result so we can save ourselves
the search for the end of the string and use mempcpy. Please note that we also don’t use
stpcpy which might seem more natural since we are handling strings. But this is not
necessary since we already know the length of the string and therefore can use the faster
memory copying function. The example would work for wide characters the same way.

Whenever a programmer feels the need to use strcat she or he should think twice and
look through the program to see whether the code cannot be rewritten to take advantage of
already calculated results. The related functions strlcat, strncat, wcscat and wcsncat
are almost always unnecessary, too. Again: it is almost always unnecessary to use functions
like strcat.

5.6 Truncating Strings while Copying

The functions described in this section copy or concatenate the possibly-truncated contents
of a string or array to another, and similarly for wide strings. They follow the string-
copying functions in their header conventions. See Section 5.4 [Copying Strings and Arrays],
page 103. The ‘str’ functions are declared in the header file string.h and the ‘wc’ functions
are declared in the file wchar .h.

As noted below, these functions are problematic as their callers may have truncation-
related bugs and performance issues.

char * strncpy (char *restrict to, const char *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
This function is similar to strcpy but always copies exactly size bytes into to.

If from does not contain a null byte in its first size bytes, strncpy copies just the first
size bytes. In this case no null terminator is written into to.

Chapter 5: String and Array Utilities 112

Otherwise from must be a string with length less than size. In this case strncpy
copies all of from, followed by enough null bytes to add up to size bytes in all.

The behavior of strncpy is undefined if the strings overlap.

This function was designed for now-rarely-used arrays consisting of non-null bytes
followed by zero or more null bytes. It needs to set all size bytes of the destination,
even when size is much greater than the length of from. As noted below, this function
is generally a poor choice for processing strings.

wchar_t * wcsncpy (wchar_t *restrict wto, const wchar_t *restrict [Function]

char

char

wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function is similar to wescpy but always copies exactly size wide characters into
wto.

If wirom does not contain a null wide character in its first size wide characters, then
wcsncpy copies just the first size wide characters. In this case no null terminator is
written into wto.

Otherwise wfrom must be a wide string with length less than size. In this case wcsncpy
copies all of wfrom, followed by enough null wide characters to add up to size wide
characters in all.

The behavior of wesncpy is undefined if the strings overlap.

This function is the wide-character counterpart of strncpy and suffers from most
of the problems that strncpy does. For example, as noted below, this function is
generally a poor choice for processing strings.

* strndup (const char *s, size_t size) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function is similar to strdup but always copies at most size bytes into the newly
allocated string.

If the length of s is more than size, then strndup copies just the first size bytes and
adds a closing null byte. Otherwise all bytes are copied and the string is terminated.

This function differs from strncpy in that it always terminates the destination string.
As noted below, this function is generally a poor choice for processing strings.
strndup is a GNU extension.

* strndupa (const char *s, size_t size) [Macro]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function is similar to strndup but like strdupa it allocates the new string using
alloca see Section 3.2.7 [Automatic Storage with Variable Size|, page 75. The same
advantages and limitations of strdupa are valid for strndupa, too.

This function is implemented only as a macro, just like strdupa. Just as strdupa
this macro also must not be used inside the parameter list in a function call.

As noted below, this function is generally a poor choice for processing strings.
strndupa is only available if GNU CC is used.

Chapter 5: String and Array Utilities 113

char

* stpncpy (char *restrict to, const char *restrict from, size_t [Function]
size)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts|, page 2.

This function is similar to stpcpy but copies always exactly size bytes into to.

If the length of from is more than size, then stpncpy copies just the first size bytes
and returns a pointer to the byte directly following the one which was copied last.
Note that in this case there is no null terminator written into to.

If the length of from is less than size, then stpncpy copies all of from, followed by
enough null bytes to add up to size bytes in all. This behavior is rarely useful, but it
is implemented to be useful in contexts where this behavior of the strncpy is used.
stpncpy returns a pointer to the first written null byte.

This function is not part of ISO or POSIX but was found useful while developing the
GNU C Library itself.

Its behavior is undefined if the strings overlap. The function is declared in string.h.

As noted below, this function is generally a poor choice for processing strings.

wchar_t * wcpncpy (wchar_t *restrict wto, const wchar_t *restrict [Function]

char

wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function is similar to wcpcpy but copies always exactly wsize wide characters
into wto.

If the length of wfrom is more than size, then wecpncpy copies just the first size wide
characters and returns a pointer to the wide character directly following the last non-
null wide character which was copied last. Note that in this case there is no null
terminator written into wto.

If the length of wfrom is less than size, then wcpncpy copies all of wirom, followed by
enough null wide characters to add up to size wide characters in all. This behavior is
rarely useful, but it is implemented to be useful in contexts where this behavior of the
wesnepy is used. wepnepy returns a pointer to the first written null wide character.

This function is not part of ISO or POSIX but was found useful while developing the
GNU C Library itself.

Its behavior is undefined if the strings overlap.
As noted below, this function is generally a poor choice for processing strings.

wepnepy is a GNU extension.

* strncat (char *restrict to, const char *restrict from, size_t [Function]
size)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts], page 2.

This function is like strcat except that not more than size bytes from from are
appended to the end of to, and from need not be null-terminated. A single null byte
is also always appended to to, so the total allocated size of to must be at least size
+ 1 bytes longer than its initial length.

Chapter 5: String and Array Utilities 114

The strncat function could be implemented like this:

char *
strncat (char *to, const char *from, size_t size)
{
size_t len = strlen (to);
memcpy (to + len, from, strnlen (from, size));
to[len + strnlen (from, size)] = '\0';
return to;

}
The behavior of strncat is undefined if the strings overlap.

As a companion to strncpy, strncat was designed for now-rarely-used arrays consist-
ing of non-null bytes followed by zero or more null bytes. However, As noted below,
this function is generally a poor choice for processing strings. Also, this function has
significant performance issues. See Section 5.5 [Concatenating Strings|, page 108.

wchar_t * wcsncat (wchar_t *restrict wto, const wchar_t *restrict [Function]
wfrom, size_t size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is like wescat except that not more than size wide characters from from
are appended to the end of to, and from need not be null-terminated. A single null
wide character is also always appended to to, so the total allocated size of to must be
at least wesnlen (wfrom, size) + 1 wide characters longer than its initial length.

The wesncat function could be implemented like this:

wchar_t *
wcsncat (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)
{
size_t len = wcslen (wWto);
memcpy (wto + len, wfrom, wcsnlen (wfrom, size) * sizeof (wchar_t));
wto[len + wcsnlen (wfrom, size)] = L'\0';
return wto;

}
The behavior of wcsncat is undefined if the strings overlap.

As noted below, this function is generally a poor choice for processing strings. Also,
this function has significant performance issues. See Section 5.5 [Concatenating
Strings|, page 108.

size_t strlcpy (char *restrict to, const char *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function copies the string from to the destination array to, limiting the result’s
size (including the null terminator) to size. The caller should ensure that size includes
room for the result’s terminating null byte.

If size is greater than the length of the string from, this function copies the non-null
bytes of the string from to the destination array to, and terminates the copy with
a null byte. Like other string functions such as strcpy, but unlike strncpy, any
remaining bytes in the destination array remain unchanged.

Chapter 5: String and Array Utilities 115

If size is nonzero and less than or equal to the the length of the string from, this
function copies only the first ‘size - 1’ bytes to the destination array to, and writes
a terminating null byte to the last byte of the array.

This function returns the length of the string from. This means that truncation occurs
if and only if the returned value is greater than or equal to size.

The behavior is undefined if to or from is a null pointer, or if the destination array’s
size is less than size, or if the string from overlaps the first size bytes of the destination
array.

As noted below, this function is generally a poor choice for processing strings. Also,
this function has a performance issue, as its time cost is proportional to the length of
from even when size is small.

This function was originally derived from OpenBSD 2.4, but was added in POSIX.1-
2024.

size_t wcslcpy (wchar_t *restrict to, const wchar_t *restrict from, [Function]
size_t size)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is a variant of strlcpy for wide strings. The size argument counts the
length of the destination buffer in wide characters (and not bytes).

This function was originally a BSD extension, but was added in POSIX.1-2024.

size_t strlcat (char *restrict to, const char *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function appends the string from to the string to, limiting the result’s total size
(including the null terminator) to size. The caller should ensure that size includes
room for the result’s terminating null byte.

This function copies as much as possible of the string from into the array at to of size
bytes, starting at the terminating null byte of the original string to. In effect, this
appends the string from to the string to. Although the resulting string will contain a
null terminator, it can be truncated (not all bytes in from may be copied).

This function returns the sum of the original length of to and the length of from.
This means that truncation occurs if and only if the returned value is greater than or
equal to size.

The behavior is undefined if to or from is a null pointer, or if the destination array’s
size is less than size, or if the destination array does not contain a null byte in its first
size bytes, or if the string from overlaps the first size bytes of the destination array.

As noted below, this function is generally a poor choice for processing strings. Also,
this function has significant performance issues. See Section 5.5 [Concatenating
Strings|, page 108.

This function was originally derived from OpenBSD 2.4, but was added in POSIX.1-
2024.

Chapter 5: String and Array Utilities 116

size_t wcslcat (wchar_t *restrict to, const wchar_t *restrict from, [Function]
size_t size)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function is a variant of strlcat for wide strings. The size argument counts the
length of the destination buffer in wide characters (and not bytes).

This function was originally a BSD extension, but was added in POSIX.1-2024.

Because these functions can abruptly truncate strings or wide strings, they are generally
poor choices for processing them. When copying or concatening multibyte strings, they
can truncate within a multibyte character so that the result is not a valid multibyte string.
When combining or concatenating multibyte or wide strings, they may truncate the output
after a combining character, resulting in a corrupted grapheme. They can cause bugs even
when processing single-byte strings: for example, when calculating an ASCII-only user
name, a truncated name can identify the wrong user.

Although some buffer overruns can be prevented by manually replacing calls to copying
functions with calls to truncation functions, there are often easier and safer automatic
techniques, such as fortification (see Section D.2 [Fortification of function calls|, page 1153)
and AddressSanitizer (see Section “Program Instrumentation Options” in Using GCC).
Because truncation functions can mask application bugs that would otherwise be caught
by the automatic techniques, these functions should be used only when the application’s
underlying logic requires truncation.

Note: GNU programs should not truncate strings or wide strings to fit arbitrary size
limits. See Section “Writing Robust Programs” in The GNU Coding Standards. Instead
of string-truncation functions, it is usually better to use dynamic memory allocation (see
Section 3.2.3 [Unconstrained Allocation], page 47) and functions such as strdup or asprintf
to construct strings.

5.7 String/Array Comparison

You can use the functions in this section to perform comparisons on the contents of strings
and arrays. As well as checking for equality, these functions can also be used as the ordering
functions for sorting operations. See Chapter 9 [Searching and Sorting], page 232, for an
example of this.

Unlike most comparison operations in C, the string comparison functions return a
nonzero value if the strings are not equivalent rather than if they are. The sign of the
value indicates the relative ordering of the first part of the strings that are not equivalent:
a negative value indicates that the first string is “less” than the second, while a positive
value indicates that the first string is “greater”.

The most common use of these functions is to check only for equality. This is canonically
done with an expression like ‘! strcmp (s1, s2)’.

All of these functions are declared in the header file string.h.

int memcmp (const void *al, const void *a2, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 5: String and Array Utilities 117

The function memcmp compares the size bytes of memory beginning at al against
the size bytes of memory beginning at a2. The value returned has the same sign as
the difference between the first differing pair of bytes (interpreted as unsigned char
objects, then promoted to int).

If the contents of the two blocks are equal, memcmp returns 0.

int wmemcmp (const wchar_t *al, const wchar_t *a2, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The function wmemcmp compares the size wide characters beginning at al against the
size wide characters beginning at a2. The value returned is smaller than or larger
than zero depending on whether the first differing wide character is al is smaller or
larger than the corresponding wide character in aZ2.

If the contents of the two blocks are equal, wmemcmp returns O.

On arbitrary arrays, the memcmp function is mostly useful for testing equality. It usually
isn’t meaningful to do byte-wise ordering comparisons on arrays of things other than bytes.
For example, a byte-wise comparison on the bytes that make up floating-point numbers isn’t
likely to tell you anything about the relationship between the values of the floating-point
numbers.

wmemcmp is really only useful to compare arrays of type wchar_t since the function looks
at sizeof (wchar_t) bytes at a time and this number of bytes is system dependent.

You should also be careful about using memcmp to compare objects that can contain
“holes”, such as the padding inserted into structure objects to enforce alignment require-
ments, extra space at the end of unions, and extra bytes at the ends of strings whose
length is less than their allocated size. The contents of these “holes” are indeterminate and
may cause strange behavior when performing byte-wise comparisons. For more predictable
results, perform an explicit component-wise comparison.

For example, given a structure type definition like:

struct foo

{
unsigned char tag;
union
{
double f;
long ij;
char *p;
} value;
};
you are better off writing a specialized comparison function to compare struct foo objects
instead of comparing them with memcmp.

int strcmp (const char *s1, const char *s2) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The strcmp function compares the string s1 against s2, returning a value that has
the same sign as the difference between the first differing pair of bytes (interpreted
as unsigned char objects, then promoted to int).

Chapter 5: String and Array Utilities 118

If the two strings are equal, strcmp returns 0.

A consequence of the ordering used by strcmp is that if sI is an initial substring of
s2, then sl is considered to be “less than” s2.

strcmp does not take sorting conventions of the language the strings are written in
into account. To get that one has to use strcoll.

int wcscmp (const wchar_t *ws1, const wchar_t *ws2) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The wescmp function compares the wide string wsl against ws2. The value returned
is smaller than or larger than zero depending on whether the first differing wide
character is wsl is smaller or larger than the corresponding wide character in ws2.

If the two strings are equal, wcscmp returns O.

A consequence of the ordering used by wcscmp is that if wsl is an initial substring of
ws2, then wsl is considered to be “less than” ws2.

wcscmp does not take sorting conventions of the language the strings are written in
into account. To get that one has to use wcscoll.

int strcasecmp (const char *s1, const char *s2) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function is like strcmp, except that differences in case are ignored, and its
arguments must be multibyte strings. How uppercase and lowercase characters are
related is determined by the currently selected locale. In the standard "C" locale the
characters A and & do not match but in a locale which regards these characters as
parts of the alphabet they do match.

strcasecmp is derived from BSD.

int wcscasecmp (const wchar_t *ws1, const wchar_t *ws2) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function is like wcscmp, except that differences in case are ignored. How up-
percase and lowercase characters are related is determined by the currently selected
locale. In the standard "C" locale the characters A and & do not match but in a locale
which regards these characters as parts of the alphabet they do match.

wescasecmp is a GNU extension.

int strncmp (const char *s1, const char *s2, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function is the similar to strcmp, except that no more than size bytes are
compared. In other words, if the two strings are the same in their first size bytes, the
return value is zero.

Chapter 5: String and Array Utilities 119

int wcsnemp (const wchar_t *ws1, const wchar_t *ws2, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is similar to wcscmp, except that no more than size wide characters
are compared. In other words, if the two strings are the same in their first size wide
characters, the return value is zero.

int strncasecmp (const char *si, const char *s2, size_t n) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This function is like strncmp, except that differences in case are ignored, and the
compared parts of the arguments should consist of valid multibyte characters. Like
strcasecmp, it is locale dependent how uppercase and lowercase characters are re-
lated.

strncasecmp is a GNU extension.

int wcsncasecmp (const wchar_t *ws1, const wchar_t *s2, size_t n) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.
This function is like wcsnemp, except that differences in case are ignored. Like

wcscasecnp, it is locale dependent how uppercase and lowercase characters are re-
lated.

wesncasecmp is a GNU extension.

Here are some examples showing the use of strcmp and strncmp (equivalent examples
can be constructed for the wide character functions). These examples assume the use of
the ASCII character set. (If some other character set—say, EBCDIC—is used instead, then
the glyphs are associated with different numeric codes, and the return values and ordering

may differ.)
strcmp ("hello", "hello")
=0 /* These two strings are the same. */

strcmp ("hello", "Hello")
= 32 /* Comparisons are case-sensitive. */
strcmp ("hello", "world")
= -15 /* The byte 'h' comes before 'w'. */
strcmp ("hello", "hello, world")
= -44 /* Comparing a null byte against a comma. */
strncmp ("hello", "hello, world", 5)
=0 /* The initial 5 bytes are the same. */
strncmp ("hello, world", "hello, stupid world!!!", 5)
=0 /* The initial 5 bytes are the same. */

int strverscmp (const char *s1, const char *s2) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The strverscmp function compares the string sI against s2, considering them as
holding indices/version numbers. The return value follows the same conventions as
found in the strcmp function. In fact, if sI and s2 contain no digits, strverscmp
behaves like strcmp (in the sense that the sign of the result is the same).

Chapter 5: String and Array Utilities 120

The comparison algorithm which the strverscmp function implements differs slightly
from other version-comparison algorithms. The implementation is based on a finite-
state machine, whose behavior is approximated below.

e The input strings are each split into sequences of non-digits and digits. These
sequences can be empty at the beginning and end of the string. Digits are
determined by the isdigit function and are thus subject to the current locale.

e Comparison starts with a (possibly empty) non-digit sequence. The first non-
equal sequences of non-digits or digits determines the outcome of the comparison.

e Corresponding non-digit sequences in both strings are compared lexicographically
if their lengths are equal. If the lengths differ, the shorter non-digit sequence is
extended with the input string character immediately following it (which may be
the null terminator), the other sequence is truncated to be of the same (extended)
length, and these two sequences are compared lexicographically. In the last
case, the sequence comparison determines the result of the function because the
extension character (or some character before it) is necessarily different from the
character at the same offset in the other input string.

e For two sequences of digits, the number of leading zeros is counted (which can
be zero). If the count differs, the string with more leading zeros in the digit
sequence is considered smaller than the other string.

e If the two sequences of digits have no leading zeros, they are compared as integers,
that is, the string with the longer digit sequence is deemed larger, and if both
sequences are of equal length, they are compared lexicographically.

e If both digit sequences start with a zero and have an equal number of leading
zeros, they are compared lexicographically if their lengths are the same. If the
lengths differ, the shorter sequence is extended with the following character in its
input string, and the other sequence is truncated to the same length, and both
sequences are compared lexicographically (similar to the non-digit sequence case
above).

The treatment of leading zeros and the tie-breaking extension characters (which in ef-
fect propagate across non-digit/digit sequence boundaries) differs from other version-
comparison algorithms.
strverscmp ("no digit", "no digit")
=0 /* same behavior as strcmp. */
strverscmp ("item#99", "item#100")
= <0 /* same prefix, but 99 < 100. */
strverscmp ("alphal", "alphaOO1")
= >0 /x different number of leading zeros (0 and 2). */
strverscmp ("partl_f012", "partl_f01")
= >0 /x lexicographical comparison with leading zeros. */
strverscmp ("f00.009", "foo.0")
= <0 /* different number of leading zeros (2 and 1). */

strverscmp is a GNU extension.

int bemp (const void *al, const void *a2, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This is an obsolete alias for memcmp, derived from BSD.

Chapter 5: String and Array Utilities 121

5.8 Collation Functions

In some locales, the conventions for lexicographic ordering differ from the strict numeric
ordering of character codes. For example, in Spanish most glyphs with diacritical marks
such as accents are not considered distinct letters for the purposes of collation. On the
other hand, in Czech the two-character sequence ‘ch’ is treated as a single letter that is
collated between ‘h’ and ‘i’.

You can use the functions strcoll and strxfrm (declared in the headers file string.h)
and wcscoll and wesxfrm (declared in the headers file wchar) to compare strings using a
collation ordering appropriate for the current locale. The locale used by these functions in
particular can be specified by setting the locale for the LC_COLLATE category; see Chapter 7
[Locales and Internationalization], page 187.

In the standard C locale, the collation sequence for strcoll is the same as that for
strcmp. Similarly, wecscoll and wescmp are the same in this situation.

Effectively, the way these functions work is by applying a mapping to transform the
characters in a multibyte string to a byte sequence that represents the string’s position in
the collating sequence of the current locale. Comparing two such byte sequences in a simple
fashion is equivalent to comparing the strings with the locale’s collating sequence.

The functions strcoll and wcscoll perform this translation implicitly, in order to do
one comparison. By contrast, strxfrm and wcsxfrm perform the mapping explicitly. If
you are making multiple comparisons using the same string or set of strings, it is likely
to be more efficient to use strxfrm or wesxfrm to transform all the strings just once, and
subsequently compare the transformed strings with strcmp or wescmp.

int strcoll (const char *s1, const char *s2) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe heap | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The strcoll function is similar to strcmp but uses the collating sequence of the
current locale for collation (the LC_COLLATE locale). The arguments are multibyte

strings.
int wecscoll (const wchar_t *ws1, const wchar_t *ws2) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe heap | AC-Unsafe mem | See

Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The wcscoll function is similar to wescmp but uses the collating sequence of the
current locale for collation (the LC_COLLATE locale).

Here is an example of sorting an array of strings, using strcoll to compare them. The
actual sort algorithm is not written here; it comes from gsort (see Section 9.3 [Array Sort
Function], page 233). The job of the code shown here is to say how to compare the strings
while sorting them. (Later on in this section, we will show a way to do this more efficiently
using strxfrm.)

/* This is the comparison function used with gsort. */
int
compare_elements (const void *vl, const void *v2)

{

char * const *pl = vi;

Chapter 5: String and Array Utilities 122

char * const *p2 = v2;

return strcoll (¥pl, *p2);
}

/* This is the entry point—the function to sort
strings using the locale’s collating sequence. */

void
sort_strings (char *xarray, int nstrings)
{
/* Sort temp_array by comparing the strings. */
gsort (array, nstrings,
sizeof (char *), compare_elements);

}
size_t strxfrm (char *restrict to, const char *restrict from, size_t [Function]
size)
Preliminary: | MT-Safe locale | AS-Unsafe heap | AC-Unsafe mem | See

Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function strxfrm transforms the multibyte string from using the collation trans-
formation determined by the locale currently selected for collation, and stores the
transformed string in the array to. Up to size bytes (including a terminating null
byte) are stored.

The behavior is undefined if the strings to and from overlap; see Section 5.4 [Copying
Strings and Arrays|, page 103.

The return value is the length of the entire transformed string. This value is not
affected by the value of size, but if it is greater or equal than size, it means that the
transformed string did not entirely fit in the array to. In this case, only as much
of the string as actually fits was stored. To get the whole transformed string, call
strxfrm again with a bigger output array.

The transformed string may be longer than the original string, and it may also be
shorter.

If size is zero, no bytes are stored in to. In this case, strxfrm simply returns the
number of bytes that would be the length of the transformed string. This is useful
for determining what size the allocated array should be. It does not matter what to
is if size is zero; to may even be a null pointer.

size_t wcsxfrm (wchar_t *restrict wto, const wchar_t *wfrom, size_.t [Function]
size)
Preliminary: | MT-Safe locale | AS-Unsafe heap | AC-Unsafe mem | See

Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function wesxfrm transforms wide string wfrom using the collation transforma-
tion determined by the locale currently selected for collation, and stores the trans-
formed string in the array wto. Up to size wide characters (including a terminating
null wide character) are stored.

The behavior is undefined if the strings wto and wfrom overlap; see Section 5.4
[Copying Strings and Arrays|, page 103.

Chapter 5: String and Array Utilities 123

The return value is the length of the entire transformed wide string. This value is
not affected by the value of size, but if it is greater or equal than size, it means that
the transformed wide string did not entirely fit in the array wto. In this case, only
as much of the wide string as actually fits was stored. To get the whole transformed
wide string, call wesxfrm again with a bigger output array.

The transformed wide string may be longer than the original wide string, and it may
also be shorter.

If size is zero, no wide characters are stored in to. In this case, wesxfrm simply
returns the number of wide characters that would be the length of the transformed
wide string. This is useful for determining what size the allocated array should be
(remember to multiply with sizeof (wchar_t)). It does not matter what wto is if
size is zero; wto may even be a null pointer.

Here is an example of how you can use strxfrm when you plan to do many comparisons.
It does the same thing as the previous example, but much faster, because it has to transform
each string only once, no matter how many times it is compared with other strings. Even
the time needed to allocate and free storage is much less than the time we save, when there
are many strings.

struct sorter { char *input; char *transformed; };

/* This is the comparison function used with gsort
to sort an array of struct sorter. */

int
compare_elements (const void *vl, const void *v2)
{

const struct sorter *pl = vi;

const struct sorter *p2 = v2;

return strcmp (pl->transformed, p2->transformed);

}

/* This is the entry point—the function to sort
strings using the locale’s collating sequence. */

void
sort_strings_fast (char **array, int nstrings)
{

struct sorter temp_array[nstrings];

int i;

/* Set up temp_array. Each element contains
one input string and its transformed string. */
for (i = 0; i < nstrings; i++)
{
size_t length = strlen (array[i]) * 2;
char *transformed;
size_t transformed_length;

temp_array[i] .input = arrayl[i];

/* First try a buffer perhaps big enough. */
transformed = (char *) xmalloc (length);

Chapter 5: String and Array Utilities 124

/* Transform array[i]. =/
transformed_length = strxfrm (transformed, array[i], length);

/* If the buffer was not large enough, resize it
and try again. */
if (transformed_length >= length)
{
/* Allocate the needed space. +1 for terminating
'\0' byte. */
transformed = xrealloc (transformed,
transformed_length + 1);

/* The return value is not interesting because we know
how long the transformed string is. */
(void) strxfrm (transformed, arrayl[i],
transformed_length + 1);
}

temp_array[i] .transformed = transformed;

}

/* Sort temp_array by comparing transformed strings. */
gsort (temp_array, nstrings,
sizeof (struct sorter), compare_elements);

/* Put the elements back in the permanent array
in their sorted order. */
for (i = 0; i < nstrings; i++)
array[i] = temp_array[i].input;

/* Free the strings we allocated. */
for (i = 0; i < nstrings; i++)
free (temp_arrayl[i].transformed);

}
The interesting part of this code for the wide character version would look like this:
void
sort_strings_fast (wchar_t #**array, int nstrings)
{

/* Transform array[i]. =/
transformed_length = wcsxfrm (transformed, array[i], length);

/* If the buffer was not large enough, resize it
and try again. */
if (transformed_length >= length)
{
/* Allocate the needed space. +1 for terminating
L'\0' wide character. */
transformed = xreallocarray (transformed,
transformed_length + 1,
sizeof *transformed);

/* The return value is not interesting because we know
how long the transformed string is. */
(void) wesxfrm (transformed, arrayl[il,
transformed_length + 1);

Chapter 5: String and Array Utilities 125

Note the additional multiplication with sizeof (wchar_t) in the realloc call.

Compatibility Note: The string collation functions are a new feature of ISO C90. Older
C dialects have no equivalent feature. The wide character versions were introduced in
Amendment 1 to ISO C90.

5.9 Search Functions

This section describes library functions which perform various kinds of searching operations
on strings and arrays. These functions are declared in the header file string.h.

void * memchr (const void *block, int c, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function finds the first occurrence of the byte ¢ (converted to an unsigned char)
in the initial size bytes of the object beginning at block. The return value is a pointer
to the located byte, or a null pointer if no match was found.

wchar_t * wmemchr (const wchar_t *block, wchar_t wc, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This function finds the first occurrence of the wide character wc in the initial size
wide characters of the object beginning at block. The return value is a pointer to the
located wide character, or a null pointer if no match was found.

void * rawmemchr (const void *block, int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

Often the memchr function is used with the knowledge that the byte c is available in
the memory block specified by the parameters. But this means that the size parameter
is not really needed and that the tests performed with it at runtime (to check whether
the end of the block is reached) are not needed.

The rawmemchr function exists for just this situation which is surprisingly frequent.
The interface is similar to memchr except that the size parameter is missing. The
function will look beyond the end of the block pointed to by block in case the pro-
grammer made an error in assuming that the byte c is present in the block. In this
case the result is unspecified. Otherwise the return value is a pointer to the located
byte.

When looking for the end of a string, use strchr.

This function is a GNU extension.

void * memrchr (const void *block, int c, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The function memrchr is like memchr, except that it searches backwards from the end
of the block defined by block and size (instead of forwards from the front).

This function is a GNU extension.

Chapter 5: String and Array Utilities 126

char

* strchr (const char *string, int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The strchr function finds the first occurrence of the byte ¢ (converted to a char) in
the string beginning at string. The return value is a pointer to the located byte, or a
null pointer if no match was found.

For example,
strchr ("hello, world", 'l')
= "llo, world"
strchr ("hello, world", '?')
= NULL
The terminating null byte is considered to be part of the string, so you can use this
function get a pointer to the end of a string by specifying zero as the value of the c
argument.
When strchr returns a null pointer, it does not let you know the position of the
terminating null byte it has found. If you need that information, it is better (but less
portable) to use strchrnul than to search for it a second time.

wchar_t * wcschr (const wchar_t *wstring, wchar_t wc) [Function]

char

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The wcschr function finds the first occurrence of the wide character we in the wide
string beginning at wstring. The return value is a pointer to the located wide char-
acter, or a null pointer if no match was found.

The terminating null wide character is considered to be part of the wide string, so
you can use this function get a pointer to the end of a wide string by specifying a
null wide character as the value of the wc argument. It would be better (but less
portable) to use weschrnul in this case, though.

* strchrnul (const char *string, int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

strchrnul is the same as strchr except that if it does not find the byte, it returns
a pointer to string’s terminating null byte rather than a null pointer.

This function is a GNU extension.

wchar_t * wcschrnul (const wchar_t *wstring, wchar_t wc) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

wcschrnul is the same as weschr except that if it does not find the wide character,
it returns a pointer to the wide string’s terminating null wide character rather than
a null pointer.

This function is a GNU extension.

One useful, but unusual, use of the strchr function is when one wants to have a pointer
pointing to the null byte terminating a string. This is often written in this way:

s += strlen (s);

Chapter 5: String and Array Utilities 127

This is almost optimal but the addition operation duplicated a bit of the work already done
in the strlen function. A better solution is this:

s = strchr (s, '\0");

There is no restriction on the second parameter of strchr so it could very well also be
zero. Those readers thinking very hard about this might now point out that the strchr
function is more expensive than the strlen function since we have two abort criteria. This
is right. But in the GNU C Library the implementation of strchr is optimized in a special
way so that strchr actually is faster.

char * strrchr (const char *string, int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The function strrchr is like strchr, except that it searches backwards from the end
of the string string (instead of forwards from the front).

For example,

strrchr ("hello, world", 'l')
j llldll

wchar_t * wcsrchr (const wchar_t *wstring, wchar_t wc) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The function wesrchr is like weschr, except that it searches backwards from the end
of the string wstring (instead of forwards from the front).

char * strstr (const char *haystack, const char *needle) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This is like strchr, except that it searches haystack for a substring needle rather
than just a single byte. It returns a pointer into the string haystack that is the first
byte of the substring, or a null pointer if no match was found. If needle is an empty
string, the function returns haystack.

For example,

strstr ("hello, world", "1")
= "llo, world"

strstr ("hello, world", "wo")
= "world"

wchar_t * wcsstr (const wchar_t *haystack, const wchar_t [Function]
*needle)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts|, page 2.

This is like wcschr, except that it searches haystack for a substring needle rather
than just a single wide character. It returns a pointer into the string haystack that
is the first wide character of the substring, or a null pointer if no match was found.
If needle is an empty string, the function returns haystack.

Chapter 5: String and Array Utilities 128

wchar_t * wcswcs (const wchar_t *haystack, const wchar_t [Function]
*needle)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

wcswes is a deprecated alias for wesstr. This is the name originally used in the
X/Open Portability Guide before the Amendment 1 to ISO C90 was published.

char * strcasestr (const char *haystack, const char *needle) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

This is like strstr, except that it ignores case in searching for the substring. Like
strcasecmp, it is locale dependent how uppercase and lowercase characters are re-
lated, and arguments are multibyte strings.

For example,

strcasestr ("hello, world", "L")
= "llo, world"

strcasestr ("hello, World", "wo")
= "World"

void * memmem (const void *haystack, size_t haystack-1len, [Function]
const void *needle, size_t needle-len)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

This is like strstr, but needle and haystack are byte arrays rather than strings.
needle-len is the length of needle and haystack-len is the length of haystack.

This function was originally a GNU extension, but was added in POSIX.1-2024.

size_t strspn (const char *string, const char *skipset) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The strspn (“string span”) function returns the length of the initial substring of
string that consists entirely of bytes that are members of the set specified by the
string skipset. The order of the bytes in skipset is not important.

For example,
strspn ("hello, world", "abcdefghijklmnopqrstuvwxyz")
= 5
In a multibyte string, characters consisting of more than one byte are not treated as
single entities. Each byte is treated separately. The function is not locale-dependent.

size_t wcsspn (const wchar_t *wstring, const wchar_t *skipset) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The wcsspn (“wide character string span”) function returns the length of the initial
substring of wstring that consists entirely of wide characters that are members of the
set specified by the string skipset. The order of the wide characters in skipset is not
important.

Chapter 5: String and Array Utilities 129

size_t strcspn (const char *string, const char *stopset) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The strecspn (“string complement span”) function returns the length of the initial
substring of string that consists entirely of bytes that are mot members of the set
specified by the string stopset. (In other words, it returns the offset of the first byte
in string that is a member of the set stopset.)

For example,
strcspn ("hello, world", " \t\m,.;!?")
=5
In a multibyte string, characters consisting of more than one byte are not treated as a
single entities. Each byte is treated separately. The function is not locale-dependent.

size_t wcscspn (const wchar_t *wstring, const wchar_t *stopset) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The wescspn (“wide character string complement span”) function returns the length
of the initial substring of wstring that consists entirely of wide characters that are
not members of the set specified by the string stopset. (In other words, it returns the
offset of the first wide character in string that is a member of the set stopset.)

char * strpbrk (const char *string, const char *stopset) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The strpbrk (“string pointer break”) function is related to strcspn, except that it
returns a pointer to the first byte in string that is a member of the set stopset instead
of the length of the initial substring. It returns a null pointer if no such byte from
stopset is found.

For example,

strpbrk ("hello, world", " \t\m,.;!?")
= ", world"

In a multibyte string, characters consisting of more than one byte are not treated as
single entities. Each byte is treated separately. The function is not locale-dependent.

wchar_t * wcspbrk (const wchar_t *wstring, const wchar_t [Function]
*stopset)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The wcspbrk (“wide character string pointer break”) function is related to wcscspn,
except that it returns a pointer to the first wide character in wstring that is a member
of the set stopset instead of the length of the initial substring. It returns a null pointer
if no such wide character from stopset is found.

5.9.1 Compatibility String Search Functions

char * index (const char *string, int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 5: String and Array Utilities 130

index is another name for strchr; they are exactly the same. New code should always
use strchr since this name is defined in ISO C while index is a BSD invention which
never was available on System V derived systems.

char * rindex (const char *string, int c) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
rindex is another name for strrchr; they are exactly the same. New code should
always use strrchr since this name is defined in ISO C while rindex is a BSD
invention which never was available on System V derived systems.

5.10 Finding Tokens in a String

It’s fairly common for programs to have a need to do some simple kinds of lexical analysis
and parsing, such as splitting a command string up into tokens. You can do this with the
strtok function, declared in the header file string.h.

char * strtok (char *restrict newstring, const char *restrict [Function]
delimiters)
Preliminary: | MT-Unsafe race:strtok | AS-Unsafe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

A string can be split into tokens by making a series of calls to the function strtok.

The string to be split up is passed as the newstring argument on the first call only.
The strtok function uses this to set up some internal state information. Subsequent
calls to get additional tokens from the same string are indicated by passing a null
pointer as the newstring argument. Calling strtok with another non-null newstring
argument reinitializes the state information. It is guaranteed that no other library
function ever calls strtok behind your back (which would mess up this internal state
information).

The delimiters argument is a string that specifies a set of delimiters that may surround
the token being extracted. All the initial bytes that are members of this set are
discarded. The first byte that is not a member of this set of delimiters marks the
beginning of the next token. The end of the token is found by looking for the next
byte that is a member of the delimiter set. This byte in the original string newstring is
overwritten by a null byte, and the pointer to the beginning of the token in newstring
is returned.

On the next call to strtok, the searching begins at the next byte beyond the one
that marked the end of the previous token. Note that the set of delimiters delimiters
do not have to be the same on every call in a series of calls to strtok.

If the end of the string newstring is reached, or if the remainder of string consists
only of delimiter bytes, strtok returns a null pointer.

In a multibyte string, characters consisting of more than one byte are not treated as
single entities. Each byte is treated separately. The function is not locale-dependent.

wchar_t * wcstok (wchar_t *newstring, const wchar_t [Function]
*delimiters, wchar_t **save_ptr)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts|, page 2.

Chapter 5: String and Array Utilities 131

A string can be split into tokens by making a series of calls to the function wcstok.

The string to be split up is passed as the newstring argument on the first call only.
The westok function uses this to set up some internal state information. Subsequent
calls to get additional tokens from the same wide string are indicated by passing a
null pointer as the newstring argument, which causes the pointer previously stored
in save_ptr to be used instead.

The delimiters argument is a wide string that specifies a set of delimiters that may
surround the token being extracted. All the initial wide characters that are members
of this set are discarded. The first wide character that is not a member of this set of
delimiters marks the beginning of the next token. The end of the token is found by
looking for the next wide character that is a member of the delimiter set. This wide
character in the original wide string newstring is overwritten by a null wide character,
the pointer past the overwritten wide character is saved in save_ptr, and the pointer
to the beginning of the token in newstring is returned.

On the next call to wcstok, the searching begins at the next wide character beyond
the one that marked the end of the previous token. Note that the set of delimiters
delimiters do not have to be the same on every call in a series of calls to wcstok.

If the end of the wide string newstring is reached, or if the remainder of string consists
only of delimiter wide characters, wcstok returns a null pointer.

Warning: Since strtok and wcstok alter the string they is parsing, you should always
copy the string to a temporary buffer before parsing it with strtok/wcstok (see Section 5.4
[Copying Strings and Arrays|, page 103). If you allow strtok or wcstok to modify a string
that came from another part of your program, you are asking for trouble; that string might
be used for other purposes after strtok or wcstok has modified it, and it would not have
the expected value.

The string that you are operating on might even be a constant. Then when strtok
or wcstok tries to modify it, your program will get a fatal signal for writing in read-only
memory. See Section 25.2.1 [Program Error Signals|, page 725. Even if the operation of
strtok or westok would not require a modification of the string (e.g., if there is exactly
one token) the string can (and in the GNU C Library case will) be modified.

This is a special case of a general principle: if a part of a program does not have as its
purpose the modification of a certain data structure, then it is error-prone to modify the
data structure temporarily.

The function strtok is not reentrant, whereas westok is. See Section 25.4.6 [Signal Han-
dling and Nonreentrant Functions], page 747, for a discussion of where and why reentrancy
is important.

Here is a simple example showing the use of strtok.

#include <string.h>
#include <stddef.h>

const char string[] = "words separated by spaces -- and, punctuation!";
const char delimiters[] =" .,;:!-";
char *token, *cp;

Chapter 5: String and Array Utilities 132

cp = strdupa (string); /* Make writable copy. */
token = strtok (cp, delimiters); /* token => "words" */
token = strtok (NULL, delimiters); /* token => "separated" */
token = strtok (NULL, delimiters); /* token => "by" x/

token = strtok (NULL, delimiters); /* token => "spaces" */
token = strtok (NULL, delimiters); /* token => "and" x/

token = strtok (NULL, delimiters); /* token => "punctuation" */
token = strtok (NULL, delimiters); /* token => NULL */

The GNU C Library contains two more functions for tokenizing a string which overcome
the limitation of non-reentrancy. They are not available available for wide strings.

char

char

* strtok_r (char *newstring, const char *delimiters, char [Function]
**save_ptr)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts], page 2.

Just like strtok, this function splits the string into several tokens which can be
accessed by successive calls to strtok_r. The difference is that, as in wcstok, the
information about the next token is stored in the space pointed to by the third
argument, save_ptr, which is a pointer to a string pointer. Calling strtok_r with a
null pointer for newstring and leaving save_ptr between the calls unchanged does the
job without hindering reentrancy.

This function is defined in POSIX.1 and can be found on many systems which support
multi-threading.

* strsep (char **string_ptr, const char *delimiter) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function has a similar functionality as strtok_r with the newstring argument
replaced by the save_ptr argument. The initialization of the moving pointer has to be
done by the user. Successive calls to strsep move the pointer along the tokens sep-
arated by delimiter, returning the address of the next token and updating string_ptr
to point to the beginning of the next token.

One difference between strsep and strtok_r is that if the input string contains more
than one byte from delimiter in a row strsep returns an empty string for each pair
of bytes from delimiter. This means that a program normally should test for strsep
returning an empty string before processing it.

This function was introduced in 4.3BSD and therefore is widely available.

Here is how the above example looks like when strsep is used.

#include <string.h>
#include <stddef.h>

const char string[] = "words separated by spaces -- and, punctuation!";
const char delimiters[] =" .,;:!-";

char *running;

char *token;

Chapter 5: String and Array Utilities 133

char

char

running = strdupa (string);

token = strsep (&running, delimiters); /* token => "words" */

token = strsep (&running, delimiters); /* token => "separated" */
token = strsep (&running, delimiters); /* token => "by" */

token = strsep (&running, delimiters); /* token => "spaces" */
token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "and" */

token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => "punctuation" */
token = strsep (&running, delimiters); /* token => "" x/

token = strsep (&running, delimiters); /* token => NULL */

* basename (const char *filename) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The GNU version of the basename function returns the last component of the path in
filename. This function is the preferred usage, since it does not modify the argument,
filename, and respects trailing slashes. The prototype for basename can be found
in string.h. Note, this function is overridden by the XPG version, if libgen.h is
included.
Example of using GNU basename:

#include <string.h>

int

main (int argc, char *argv[])

{

char *prog = basename (argv[0]);

if (argec < 2)
{
fprintf (stderr, "Usage %s <arg>\n", prog);
exit (1);
}

L
Portability Note: This function may produce different results on different systems.

* basename (char *path) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This is the standard XPG defined basename. It is similar in spirit to the GNU
version, but may modify the path by removing trailing ’/’ bytes. If the path is made
up entirely of ’/’ bytes, then "/" will be returned. Also, if path is NULL or an empty
string, then "." is returned. The prototype for the XPG version can be found in
libgen.h.
Example of using XPG basename:

#include <libgen.h>

Chapter 5: String and Array Utilities 134

int
main (int argc, char *argv[])
{
char *prog;
char *path = strdupa (argv[0]);

prog = basename (path);

if (argec < 2)

{
fprintf (stderr, "Usage s <arg>\n", prog);
exit (1);
}
}
char * dirname (char *path) [Function]

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The dirname function is the compliment to the XPG version of basename. It returns
the parent directory of the file specified by path. If path is NULL, an empty string,
or contains no ’/’ bytes, then "." is returned. The prototype for this function can be
found in 1libgen.h.

5.11 Erasing Sensitive Data

Sensitive data, such as cryptographic keys, should be erased from memory after use, to
reduce the risk that a bug will expose it to the outside world. However, compiler opti-
mizations may determine that an erasure operation is “unnecessary,” and remove it from
the generated code, because no correct program could access the variable or heap object
containing the sensitive data after it’s deallocated. Since erasure is a precaution against
bugs, this optimization is inappropriate.

The functions explicit_bzero and memset_explicit erase a block of memory, and
guarantee that the compiler will not remove the erasure as “unnecessary.”

#include <string.h>

extern void encrypt (const char *key, const char *in,
char *out, size_t n);
extern void genkey (const char *phrase, char *key);

void encrypt_with_phrase (const char *phrase, const char *in,
char *out, size_t n)
{
char key[16];
genkey (phrase, key);
encrypt (key, in, out, n);
explicit_bzero (key, 16);
}

In this example, if memset, bzero, or a hand-written loop had been used, the compiler
might remove them as “unnecessary.”

Chapter 5: String and Array Utilities 135

Warning: explicit_bzero and memset_explicit do not guarantee that sensitive data is
completely erased from the computer’s memory. There may be copies in temporary storage
areas, such as registers and “scratch” stack space; since these are invisible to the source
code, a library function cannot erase them.

Also, explicit_bzero and memset_explicit only operate on RAM. If a sensitive data
object never needs to have its address taken other than to call explicit_bzero or memset_
explicit, it might be stored entirely in CPU registers until the call to explicit_bzero
or memset_explicit. Then it will be copied into RAM, the copy will be erased, and the
original will remain intact. Data in RAM is more likely to be exposed by a bug than data
in registers, so this creates a brief window where the data is at greater risk of exposure than
it would have been if the program didn’t try to erase it at all.

Declaring sensitive variables as volatile will make both the above problems worse; a
volatile variable will be stored in memory for its entire lifetime, and the compiler will
make more copies of it than it would otherwise have. Attempting to erase a normal variable
“by hand” through a volatile-qualified pointer doesn’t work at all—because the variable
itself is not volatile, some compilers will ignore the qualification on the pointer and remove
the erasure anyway.

Having said all that, in most situations, using explicit_bzero or memset_explicit is
better than not using it. At present, the only way to do a more thorough job is to write
the entire sensitive operation in assembly language. We anticipate that future compilers
will recognize calls to explicit_bzero or memset_explicit and take appropriate steps to
erase all the copies of the affected data, wherever they may be.

void explicit_bzero (void *block, size_t len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

explicit_bzero writes zero into len bytes of memory beginning at block, just as
bzero would. The zeroes are always written, even if the compiler could determine
that this is “unnecessary” because no correct program could read them back.

Note: The only optimization that explicit_bzero disables is removal of “unneces-
sary” writes to memory. The compiler can perform all the other optimizations that it
could for a call to memset. For instance, it may replace the function call with inline
memory writes, and it may assume that block cannot be a null pointer.

Portability Note: This function first appeared in OpenBSD 5.5 and has not been
standardized. Other systems may provide the same functionality under a different
name, such as explicit_memset, memset_s, or SecureZeroMemory.

The GNU C Library declares this function in string.h, but on other systems it may
be in strings.h instead.

void * memset_explicit (void *block, int c, size_t size) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

This function copies the value of ¢ (converted to an unsigned char) into each of the
first size bytes of the object beginning at block, just as memset would. It returns the
value of block. The bytes are always written, even if the compiler could determine
that this is “unnecessary” because no correct program could read them back.

Chapter 5: String and Array Utilities 136

Note: The only optimization that memset_explicit disables is removal of “unneces-
sary” writes to memory. The compiler can perform all the other optimizations that it
could for a call to memset. For instance, it may replace the function call with inline
memory writes, and it may assume that block cannot be a null pointer.

5.12 Shuffling Bytes

The function below addresses the perennial programming quandary: “How do I take good
data in string form and painlessly turn it into garbage?” This is not a difficult thing to
code for oneself, but the authors of the GNU C Library wish to make it as convenient as
possible.

To erase data, use explicit_bzero (see Section 5.11 [Erasing Sensitive Data], page 134);
to obfuscate it reversibly, use memfrob (see Section 5.13 [Obfuscating Data|, page 136).

char * strfry (char *string) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

strfry performs an in-place shuffle on string. Each character is swapped to a position
selected at random, within the portion of the string starting with the character’s
original position. (This is the Fisher-Yates algorithm for unbiased shuffling.)

Calling strfry will not disturb any of the random number generators that have global
state (see Section 19.8 [Pseudo-Random Numbers], page 585).

The return value of strfry is always string.

Portability Note: This function is unique to the GNU C Library. It is declared in
string.h.

5.13 Obfuscating Data

The memfrob function reversibly obfuscates an array of binary data. This is not true
encryption; the obfuscated data still bears a clear relationship to the original, and no secret
key is required to undo the obfuscation. It is analogous to the “Rot13” cipher used on
Usenet for obscuring offensive jokes, spoilers for works of fiction, and so on, but it can be
applied to arbitrary binary data.

Programs that need true encryption—a transformation that completely obscures the
original and cannot be reversed without knowledge of a secret key—should use a dedicated
cryptography library, such as libgcrypt.

Programs that need to destroy data should use explicit_bzero (see Section 5.11 [Eras-
ing Sensitive Data|, page 134), or possibly strfry (see Section 5.12 [Shuffling Bytes],
page 136).

void * memfrob (void *mem, size_t length) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.
The function memfrob obfuscates length bytes of data beginning at mem, in place.
Each byte is bitwise xor-ed with the binary pattern 00101010 (hexadecimal 0x2A).
The return value is always mem.

https://www.gnu.org/software/libgcrypt/

Chapter 5: String and Array Utilities 137

memfrob a second time on the same data returns it to its original state.

Portability Note: This function is unique to the GNU C Library. It is declared in
string.h.

5.14 Encode Binary Data

To store or transfer binary data in environments which only support text one has to encode
the binary data by mapping the input bytes to bytes in the range allowed for storing
or transferring. SVID systems (and nowadays XPG compliant systems) provide minimal
support for this task.

char * 164a (long int n) [Function]
Preliminary: | MT-Unsafe race:164a | AS-Unsafe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function encodes a 32-bit input value using bytes from the basic character set.
It returns a pointer to a 7 byte buffer which contains an encoded version of n. To
encode a series of bytes the user must copy the returned string to a destination buffer.
It returns the empty string if n is zero, which is somewhat bizarre but mandated by
the standard.

Warning: Since a static buffer is used this function should not be used in multi-
threaded programs. There is no thread-safe alternative to this function in the C
library.

Compatibility Note: The XPG standard states that the return value of 164a is un-
defined if n is negative. In the GNU implementation, 164a treats its argument as
unsigned, so it will return a sensible encoding for any nonzero n; however, portable
programs should not rely on this.

To encode a large buffer 164a must be called in a loop, once for each 32-bit word of
the buffer. For example, one could do something like this:

char *

encode (const void *buf, size_t len)

{
/* We know in advance how long the buffer has to be. */
unsigned char *in = (unsigned char *) buf;
char *out = malloc (6 + ((len + 3) / 4) * 6 + 1);
char *cp = out, *p;

/* Encode the length. */

/* Using ‘htonl’ is necessary so that the data can be
decoded even on machines with different byte order.
‘164a’ can return a string shorter than 6 bytes, so
we pad it with encoding of 0 ('."') at the end by
hand. */

p = stpcpy (cp, 164a (htonl (len)));
c

p = mempcpy (p, "...... , 6 - (p - cp));

while (len > 3)
{
unsigned long int n = *in++;
n = (n << 8) | *in++;
n (n << 8) | *in++;

Chapter 5: String and Array Utilities 138

n = (n << 8) | *xin++;

len —= 4;
p = stpcpy (cp, 164a (htonl (n)));
cp = mempcpy (p, "...... ", 6 - (p-cp));
}
if (len > 0)
{

unsigned long int n = *in++;
if (--len > 0)
{
n = (n << 8) | *in++;
if (--len > 0)
n = (n << 8) | *in;
}
cp = stpcpy (cp, 164a (htonl (n)));
}
xcp = '\0';
return out;

}

It is strange that the library does not provide the complete functionality needed but
so be it.

To decode data produced with 164a the following function should be used.

long int a64l (const char *string) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The parameter string should contain a string which was produced by a call to 164a.
The function processes at least 6 bytes of this string, and decodes the bytes it finds
according to the table below. It stops decoding when it finds a byte not in the table,
rather like atoi; if you have a buffer which has been broken into lines, you must be
careful to skip over the end-of-line bytes.

The decoded number is returned as a long int value.

The 164a and a641 functions use a base 64 encoding, in which each byte of an encoded
string represents six bits of an input word. These symbols are used for the base 64 digits:

0 1 2 3 4 5 6 7
0 . / 0 1 2 3 4 5
8 6 7 8 9 A B C D
16 E F G H I J K L
24 M N 0 p Q R S T
32 U v W X Y Z a b
40 c d e f g h i j
48 k 1 m n o P q r
56 s t u v W X v zZ

This encoding scheme is not standard. There are some other encoding methods which
are much more widely used (UU encoding, MIME encoding). Generally, it is better to use
one of these encodings.

Chapter 5: String and Array Utilities 139

5.15 Argz and Envz Vectors

argz vectors are vectors of strings in a contiguous block of memory, each element separated
from its neighbors by null bytes ('\0").

Envz vectors are an extension of argz vectors where each element is a name-value pair,
separated by a '=' byte (as in a Unix environment).

5.15.1 Argz Functions

Each argz vector is represented by a pointer to the first element, of type char *, and a size,
of type size_t, both of which can be initialized to 0 to represent an empty argz vector. All
argz functions accept either a pointer and a size argument, or pointers to them, if they will
be modified.

The argz functions use malloc/realloc to allocate/grow argz vectors, and so any argz
vector created using these functions may be freed by using free; conversely, any argz
function that may grow a string expects that string to have been allocated using malloc
(those argz functions that only examine their arguments or modify them in place will work
on any sort of memory). See Section 3.2.3 [Unconstrained Allocation], page 47.

All argz functions that do memory allocation have a return type of error_t, and return
0 for success, and ENOMEM if an allocation error occurs.

These functions are declared in the standard include file argz.h.

error_t argz_create (char *const argvl|, char **argz, size_t [Function]
*argz_len)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The argz_create function converts the Unix-style argument vector argv (a vector
of pointers to normal C strings, terminated by (char *)0; see Section 26.1 [Program
Arguments|, page 769) into an argz vector with the same elements, which is returned
in argz and argz_len.

error_t argz_create_sep (const char *string, int sep, char [Function]
**argz, size_t *argz_len)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.
The argz_create_sep function converts the string string into an argz vector (re-
turned in argz and argz_len) by splitting it into elements at every occurrence of the
byte sep.

size_t argz_count (const char *argz, size_t argz_len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Returns the number of elements in the argz vector argz and argz_len.

void argz_extract (const char *argz, size_t argz_len, char [Function]
**argv)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 5: String and Array Utilities 140

The argz_extract function converts the argz vector argz and argz_len into a Unix-
style argument vector stored in argv, by putting pointers to every element in argz into
successive positions in argv, followed by a terminator of 0. Argv must be pre-allocated
with enough space to hold all the elements in argz plus the terminating (char *)0
((argz_count (argz, argz_len) + 1) * sizeof (char *) bytes should be enough).
Note that the string pointers stored into argv point into argz—they are not copies—
and so argz must be copied if it will be changed while argv is still active. This
function is useful for passing the elements in argz to an exec function (see Section 27.6
[Executing a File], page 819).

void argz_stringify (char *argz, size_t len, int sep) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The argz_stringify converts argz into a normal string with the elements separated
by the byte sep, by replacing each '\0' inside argz (except the last one, which
terminates the string) with sep. This is handy for printing argz in a readable manner.

error_t argz_add (char **argz, size_t *argz_len, const char *str) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The argz_add function adds the string str to the end of the argz vector *argz, and
updates *argz and *argz_len accordingly.

error_t argz_add_sep (char **argz, size_t *argz_len, const char [Function]
*str, int delim)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The argz_add_sep function is similar to argz_add, but str is split into separate
elements in the result at occurrences of the byte delim. This is useful, for instance,
for adding the components of a Unix search path to an argz vector, by using a value
of ':" for delim.

error_t argz_append (char **argz, size_t *argz_len, const char [Function]
*buf, size_t buf_len)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The argz_append function appends buf_len bytes starting at buf to the argz vector
xargz, reallocating *argz to accommodate it, and adding buf_len to *argz_len.

void argz_delete (char **argz, size_t *argz_len, char *entry) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

If entry points to the beginning of one of the elements in the argz vector *argz, the
argz_delete function will remove this entry and reallocate *argz, modifying *argz
and *argz_len accordingly. Note that as destructive argz functions usually reallocate
their argz argument, pointers into argz vectors such as entry will then become invalid.

Chapter 5: String and Array Utilities 141

error_t argz_insert (char **argz, size_t *argz_len, char [Function]
*before, const char *entry)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The argz_insert function inserts the string entry into the argz vector *argz at a
point just before the existing element pointed to by before, reallocating *argz and
updating *argz and *argz_len. If before is 0, entry is added to the end instead (as
if by argz_add). Since the first element is in fact the same as *argz, passing in *argz
as the value of before will result in entry being inserted at the beginning.

char * argz_next (const char *argz, size_t argz_len, const char [Function]
*entry)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The argz_next function provides a convenient way of iterating over the elements in
the argz vector argz. It returns a pointer to the next element in argz after the element
entry, or O if there are no elements following entry. If entry is 0, the first element of
argz is returned.

This behavior suggests two styles of iteration:
char *entry = 0;
while ((entry = argz_next (argz, argz_len, entry)))
action;
(the double parentheses are necessary to make some C compilers shut up about what
they consider a questionable while-test) and:

char *entry;
for (entry = argz;
entry;
entry = argz_next (argz, argz_len, entry))
action;
Note that the latter depends on argz having a value of 0 if it is empty (rather than a
pointer to an empty block of memory); this invariant is maintained for argz vectors
created by the functions here.

error_t argz_replace (char **argz, size_t *argz_len, [Function]
const char *str, const char *with, unsigned *replace_count)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

Replace any occurrences of the string str in argz with with, reallocating argz as
necessary. If replace_count is non-zero, *replace_count will be incremented by the
number of replacements performed.

5.15.2 Envz Functions

Envz vectors are just argz vectors with additional constraints on the form of each element;
as such, argz functions can also be used on them, where it makes sense.

Each element in an envz vector is a name-value pair, separated by a '="' byte; if multiple
'=' bytes are present in an element, those after the first are considered part of the value,
and treated like all other non-'\0' bytes.

Chapter 5: String and Array Utilities 142

If no '=' bytes are present in an element, that element is considered the name of a
“null” entry, as distinct from an entry with an empty value: envz_get will return 0 if given
the name of null entry, whereas an entry with an empty value would result in a value of
" envz_entry will still find such entries, however. Null entries can be removed with the
envz_strip function.

As with argz functions, envz functions that may allocate memory (and thus fail) have a
return type of error_t, and return either 0 or ENOMEM.

These functions are declared in the standard include file envz.h.

char * envz_entry (const char *envz, size_t envz_len, const char [Function]
*name)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The envz_entry function finds the entry in envz with the name name, and returns a
pointer to the whole entry—that is, the argz element which begins with name followed
by a '=' byte. If there is no entry with that name, 0 is returned.

char * envz_get (const char *envz, size_t envz_len, const char [Function]
*name)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety

Concepts|, page 2.

The envz_get function finds the entry in envz with the name name (like envz_entry),
and returns a pointer to the value portion of that entry (following the '="). If there
is no entry with that name (or only a null entry), 0 is returned.

error_t envz_add (char **envz, size_t *envz_len, const char [Function]
*name, const char *value)

Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The envz_add function adds an entry to *envz (updating *envz and *envz_len)
with the name name, and value value. If an entry with the same name already exists
in envz, it is removed first. If value is 0, then the new entry will be the special null
type of entry (mentioned above).

error_t envz_merge (char **envz, size_t *envz_len, const char [Function]
*envz2, size_t envz2_len, int override)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The envz_merge function adds each entry in envz2 to envz, as if with envz_add,
updating *envz and *envz_len. If override is true, then values in envz2 will supersede
those with the same name in envz, otherwise not.

Null entries are treated just like other entries in this respect, so a null entry in envz
can prevent an entry of the same name in envz2 from being added to envz, if override
is false.

void envz_strip (char **envz, size_t *envz_len) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

Chapter 5: String and Array Utilities 143

The envz_strip function removes any null entries from envz, updating *envz and
*envz_len.

void envz_remove (char **envz, size_t *envz_len, const char [Function]
*name)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.
The envz_remove function removes an entry named name from envz, updating *envz
and *envz_len.

144

6 Character Set Handling

Character sets used in the early days of computing had only six, seven, or eight bits for
each character: there was never a case where more than eight bits (one byte) were used
to represent a single character. The limitations of this approach became more apparent
as more people grappled with non-Roman character sets, where not all the characters that
make up a language’s character set can be represented by 2° choices. This chapter shows
the functionality that was added to the C library to support multiple character sets.

6.1 Introduction to Extended Characters

A variety of solutions are available to overcome the differences between character sets with
a 1:1 relation between bytes and characters and character sets with ratios of 2:1 or 4:1.
The remainder of this section gives a few examples to help understand the design decisions
made while developing the functionality of the C library.

A distinction we have to make right away is between internal and external representation.
Internal representation means the representation used by a program while keeping the text
in memory. External representations are used when text is stored or transmitted through
some communication channel. Examples of external representations include files waiting in
a directory to be read and parsed.

Traditionally there has been no difference between the two representations. It was equally
comfortable and useful to use the same single-byte representation internally and externally.
This comfort level decreases with more and larger character sets.

One of the problems to overcome with the internal representation is handling text that
is externally encoded using different character sets. Assume a program that reads two texts
and compares them using some metric. The comparison can be usefully done only if the
texts are internally kept in a common format.

For such a common format (= character set) eight bits are certainly no longer enough.
So the smallest entity will have to grow: wide characters will now be used. Instead of one
byte per character, two or four will be used instead. (Three are not good to address in
memory and more than four bytes seem not to be necessary).

As shown in some other part of this manual, a completely new family has been created
of functions that can handle wide character texts in memory. The most commonly used
character sets for such internal wide character representations are Unicode and ISO 10646
(also known as UCS for Universal Character Set). Unicode was originally planned as a 16-
bit character set; whereas, ISO 10646 was designed to be a 31-bit large code space. The two
standards are practically identical. They have the same character repertoire and code table,
but Unicode specifies added semantics. At the moment, only characters in the first 0x10000
code positions (the so-called Basic Multilingual Plane, BMP) have been assigned, but the
assignment of more specialized characters outside this 16-bit space is already in progress.
A number of encodings have been defined for Unicode and ISO 10646 characters: UCS-2
is a 16-bit word that can only represent characters from the BMP, UCS-4 is a 32-bit word
than can represent any Unicode and ISO 10646 character, UTF-8 is an ASCII compatible
encoding where ASCII characters are represented by ASCII bytes and non-ASCII characters
by sequences of 2-6 non-ASCII bytes, and finally UTF-16 is an extension of UCS-2 in which
pairs of certain UCS-2 words can be used to encode non-BMP characters up to 0x10f£ff.

Chapter 6: Character Set Handling 145

To represent wide characters the char type is not suitable. For this reason the ISO C
standard introduces a new type that is designed to keep one character of a wide character
string. To maintain the similarity there is also a type corresponding to int for those
functions that take a single wide character.

wchar_t [Data type]
This data type is used as the base type for wide character strings. In other words,
arrays of objects of this type are the equivalent of char[] for multibyte character
strings. The type is defined in stddef.h.

The ISO C90 standard, where wchar_t was introduced, does not say anything specific
about the representation. It only requires that this type is capable of storing all
elements of the basic character set. Therefore it would be legitimate to define wchar_
t as char, which might make sense for embedded systems.

But in the GNU C Library wchar_t is always 32 bits wide and, therefore, capable of
representing all UCS-4 values and, therefore, covering all of ISO 10646. Some Unix
systems define wchar_t as a 16-bit type and thereby follow Unicode very strictly.
This definition is perfectly fine with the standard, but it also means that to repre-
sent all characters from Unicode and ISO 10646 one has to use UTF-16 surrogate
characters, which is in fact a multi-wide-character encoding. But resorting to multi-
wide-character encoding contradicts the purpose of the wchar_t type.

wint_t [Data type]
wint_t is a data type used for parameters and variables that contain a single wide
character. As the name suggests this type is the equivalent of int when using the
normal char strings. The types wchar_t and wint_t often have the same represen-
tation if their size is 32 bits wide but if wchar_t is defined as char the type wint_t
must be defined as int due to the parameter promotion.

This type is defined in wchar.h and was introduced in Amendment 1 to ISO C90.

As there are for the char data type macros are available for specifying the minimum
and maximum value representable in an object of type wchar_t.

wint_t WCHAR_MIN [Macro]
The macro WCHAR_MIN evaluates to the minimum value representable by an object of
type wint_t.

This macro was introduced in Amendment 1 to ISO C90.

wint_t WCHAR_MAX [Macro]
The macro WCHAR_MAX evaluates to the maximum value representable by an object of
type wint_t.

This macro was introduced in Amendment 1 to ISO C90.
Another special wide character value is the equivalent to EOF.

wint_t WEOF [Macro]
The macro WEOF evaluates to a constant expression of type wint_t whose value is
different from any member of the extended character set.

Chapter 6: Character Set Handling 146

WEQF need not be the same value as EOF and unlike EOF it also need not be negative.
In other words, sloppy code like
{

int c;
while ((c = getc (fp)) < 0)

}

has to be rewritten to use WEOF explicitly when wide characters are used:
{

wint_t c;
while ((c = getwc (fp)) != WEQOF)

}
This macro was introduced in Amendment 1 to ISO C90 and is defined in wchar.h.

These internal representations present problems when it comes to storage and transmit-
tal. Because each single wide character consists of more than one byte, they are affected by
byte-ordering. Thus, machines with different endianesses would see different values when
accessing the same data. This byte ordering concern also applies for communication pro-
tocols that are all byte-based and therefore require that the sender has to decide about
splitting the wide character in bytes. A last (but not least important) point is that wide
characters often require more storage space than a customized byte-oriented character set.

For all the above reasons, an external encoding that is different from the internal encoding
is often used if the latter is UCS-2 or UCS-4. The external encoding is byte-based and can
be chosen appropriately for the environment and for the texts to be handled. A variety of
different character sets can be used for this external encoding (information that will not
be exhaustively presented here-instead, a description of the major groups will suffice). All
of the ASCII-based character sets fulfill one requirement: they are "filesystem safe." This
means that the character '/' is used in the encoding only to represent itself. Things are a
bit different for character sets like EBCDIC (Extended Binary Coded Decimal Interchange
Code, a character set family used by IBM), but if the operating system does not understand
EBCDIC directly the parameters-to-system calls have to be converted first anyhow.

e The simplest character sets are single-byte character sets. There can be only up to
256 characters (for 8 bit character sets), which is not sufficient to cover all languages
but might be sufficient to handle a specific text. Handling of a 8 bit character sets is
simple. This is not true for other kinds presented later, and therefore, the application
one uses might require the use of 8 bit character sets.

e The ISO 2022 standard defines a mechanism for extended character sets where one
character can be represented by more than one byte. This is achieved by associating a
state with the text. Characters that can be used to change the state can be embedded
in the text. Each byte in the text might have a different interpretation in each state.
The state might even influence whether a given byte stands for a character on its own
or whether it has to be combined with some more bytes.

In most uses of ISO 2022 the defined character sets do not allow state changes that
cover more than the next character. This has the big advantage that whenever one
can identify the beginning of the byte sequence of a character one can interpret a text

Chapter 6: Character Set Handling 147

correctly. Examples of character sets using this policy are the various EUC character
sets (used by Sun’s operating systems, EUC-JP, EUC-KR, EUC-TW, and EUC-CN)
or Shift_JIS (SJIS, a Japanese encoding).

But there are also character sets using a state that is valid for more than one character
and has to be changed by another byte sequence. Examples for this are ISO-2022-JP,
1S0O-2022-KR, and ISO-2022-CN.

e Early attempts to fix 8 bit character sets for other languages using the Roman alphabet
lead to character sets like ISO 6937. Here bytes representing characters like the acute
accent do not produce output themselves: one has to combine them with other charac-
ters to get the desired result. For example, the byte sequence 0xc2 0x61 (non-spacing
acute accent, followed by lower-case ‘a’) to get the “small a with acute” character. To
get the acute accent character on its own, one has to write 0xc2 0x20 (the non-spacing
acute followed by a space).

Character sets like ISO 6937 are used in some embedded systems such as teletex.

e Instead of converting the Unicode or ISO 10646 text used internally, it is often also
sufficient to simply use an encoding different than UCS-2/UCS-4. The Unicode and
ISO 10646 standards even specify such an encoding: UTF-8. This encoding is able to
represent all of ISO 10646 31 bits in a byte string of length one to six.

There were a few other attempts to encode ISO 10646 such as UTF-7, but UTF-8 is
today the only encoding that should be used. In fact, with any luck UTF-8 will soon be
the only external encoding that has to be supported. It proves to be universally usable
and its only disadvantage is that it favors Roman languages by making the byte string
representation of other scripts (Cyrillic, Greek, Asian scripts) longer than necessary if
using a specific character set for these scripts. Methods like the Unicode compression
scheme can alleviate these problems.

The question remaining is: how to select the character set or encoding to use. The
answer: you cannot decide about it yourself, it is decided by the developers of the system
or the majority of the users. Since the goal is interoperability one has to use whatever the
other people one works with use. If there are no constraints, the selection is based on the
requirements the expected circle of users will have. In other words, if a project is expected
to be used in only, say, Russia it is fine to use KOI8-R or a similar character set. But if
at the same time people from, say, Greece are participating one should use a character set
that allows all people to collaborate.

The most widely useful solution seems to be: go with the most general character set,
namely ISO 10646. Use UTF-8 as the external encoding and problems about users not
being able to use their own language adequately are a thing of the past.

One final comment about the choice of the wide character representation is necessary
at this point. We have said above that the natural choice is using Unicode or ISO 10646.
This is not required, but at least encouraged, by the ISO C standard. The standard defines
at least a macro __STDC_IS0_10646__ that is only defined on systems where the wchar_t
type encodes ISO 10646 characters. If this symbol is not defined one should avoid making
assumptions about the wide character representation. If the programmer uses only the
functions provided by the C library to handle wide character strings there should be no
compatibility problems with other systems.

Chapter 6: Character Set Handling 148

6.2 Overview about Character Handling Functions

A Unix C library contains three different sets of functions in two families to handle character
set conversion. One of the function families (the most commonly used) is specified in the
ISO C90 standard and, therefore, is portable even beyond the Unix world. Unfortunately
this family is the least useful one. These functions should be avoided whenever possible,
especially when developing libraries (as opposed to applications).

The second family of functions got introduced in the early Unix standards (XPG2) and
is still part of the latest and greatest Unix standard: Unix 98. It is also the most powerful
and useful set of functions. But we will start with the functions defined in Amendment 1
to ISO C90.

6.3 Restartable Multibyte Conversion Functions

The ISO C standard defines functions to convert strings from a multibyte representation to
wide character strings. There are a number of peculiarities:

e The character set assumed for the multibyte encoding is not specified as an argument
to the functions. Instead the character set specified by the LC_CTYPE category of the
current locale is used; see Section 7.3 [Locale Categories]|, page 188.

e The functions handling more than one character at a time require NUL terminated
strings as the argument (i.e., converting blocks of text does not work unless one can
add a NUL byte at an appropriate place). The GNU C Library contains some extensions
to the standard that allow specifying a size, but basically they also expect terminated
strings.

Despite these limitations the ISO C functions can be used in many contexts. In graphical
user interfaces, for instance, it is not uncommon to have functions that require text to be
displayed in a wide character string if the text is not simple ASCII. The text itself might
come from a file with translations and the user should decide about the current locale,
which determines the translation and therefore also the external encoding used. In such a
situation (and many others) the functions described here are perfect. If more freedom while
performing the conversion is necessary take a look at the iconv functions (see Section 6.5
[Generic Charset Conversion|, page 166).

6.3.1 Selecting the conversion and its properties

We already said above that the currently selected locale for the LC_CTYPE category decides
the conversion that is performed by the functions we are about to describe. Each locale
uses its own character set (given as an argument to localedef) and this is the one assumed
as the external multibyte encoding. The wide character set is always UCS-4 in the GNU C
Library.

A characteristic of each multibyte character set is the maximum number of bytes that
can be necessary to represent one character. This information is quite important when
writing code that uses the conversion functions (as shown in the examples below). The
ISO C standard defines two macros that provide this information.

Chapter 6: Character Set Handling 149

int MB_LEN_MAX [Macro]
MB_LEN_MAX specifies the maximum number of bytes in the multibyte sequence for a
single character in any of the supported locales. It is a compile-time constant and is
defined in 1imits.h.

int MB_CUR_MAX [Macro]
MB_CUR_MAX expands into a positive integer expression that is the maximum number
of bytes in a multibyte character in the current locale. The value is never greater than
MB_LEN_MAX. Unlike MB_LEN_MAX this macro need not be a compile-time constant, and
in the GNU C Library it is not.

MB_CUR_MAX is defined in stdlib.h.

Two different macros are necessary since strictly ISO C90 compilers do not allow variable
length array definitions, but still it is desirable to avoid dynamic allocation. This incomplete
piece of code shows the problem:

{
char buf [MB_LEN_MAX];
ssize_t len = 0;

while (! feof (fp))

{
fread (&buf([len], 1, MB_CUR_MAX - len, fp);
/* ... process buf */
len -= used;

}

}

The code in the inner loop is expected to have always enough bytes in the array buf
to convert one multibyte character. The array buf has to be sized statically since many
compilers do not allow a variable size. The fread call makes sure that MB_CUR_MAX bytes
are always available in buf. Note that it isn’t a problem if MB_CUR_MAX is not a compile-time
constant.

6.3.2 Representing the state of the conversion

In the introduction of this chapter it was said that certain character sets use a stateful
encoding. That is, the encoded values depend in some way on the previous bytes in the
text.

Since the conversion functions allow converting a text in more than one step we must
have a way to pass this information from one call of the functions to another.

mbstate_t [Data type]
A variable of type mbstate_t can contain all the information about the shift state
needed from one call to a conversion function to another.

mbstate_t is defined in wchar.h. It was introduced in Amendment 1 to ISO C90.

To use objects of type mbstate_t the programmer has to define such objects (normally
as local variables on the stack) and pass a pointer to the object to the conversion functions.
This way the conversion function can update the object if the current multibyte character
set is stateful.

Chapter 6: Character Set Handling 150

There is no specific function or initializer to put the state object in any specific state.
The rules are that the object should always represent the initial state before the first use,
and this is achieved by clearing the whole variable with code such as follows:

{
mbstate_t state;
memset (&state, '\0', sizeof (state));
/* from now on state can be used. */

N

When using the conversion functions to generate output it is often necessary to test
whether the current state corresponds to the initial state. This is necessary, for example,
to decide whether to emit escape sequences to set the state to the initial state at certain
sequence points. Communication protocols often require this.

int mbsinit (const mbstate_t *ps) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The mbsinit function determines whether the state object pointed to by ps is in the
initial state. If ps is a null pointer or the object is in the initial state the return value
is nonzero. Otherwise it is zero.

mbsinit was introduced in Amendment 1 to ISO C90 and is declared in wchar.h.

Code using mbsinit often looks similar to this:

{
mbstate_t state;
memset (&state, '\0', sizeof (state));
/* Use state. */

if (! mbsinit (&state))
{
/* Emit code to return to initial state. */
const wchar_t empty[] = L"";
const wchar_t *srcp = empty;
wcsrtombs (outbuf, &srcp, outbuflen, &state);

}

The code to emit the escape sequence to get back to the initial state is interesting. The
wesrtombs function can be used to determine the necessary output code (see Section 6.3.4
[Converting Multibyte and Wide Character Strings|, page 157). Please note that with the
GNU C Library it is not necessary to perform this extra action for the conversion from
multibyte text to wide character text since the wide character encoding is not stateful. But
there is nothing mentioned in any standard that prohibits making wchar_t use a stateful
encoding.

6.3.3 Converting Single Characters

The most fundamental of the conversion functions are those dealing with single characters.
Please note that this does not always mean single bytes. But since there is very often
a subset of the multibyte character set that consists of single byte sequences, there are
functions to help with converting bytes. Frequently, ASCII is a subset of the multibyte

Chapter 6: Character Set Handling 151

character set. In such a scenario, each ASCII character stands for itself, and all other
characters have at least a first byte that is beyond the range 0 to 127.

wint_t btowc (int c) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe corrupt
lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The btowc function (“byte to wide character”) converts a valid single byte character
¢ in the initial shift state into the wide character equivalent using the conversion rules
from the currently selected locale of the LC_CTYPE category.

If (unsigned char) c is no valid single byte multibyte character or if ¢ is EOF, the
function returns WEOF.

Please note the restriction of ¢ being tested for validity only in the initial shift state.
No mbstate_t object is used from which the state information is taken, and the
function also does not use any static state.

The btowc function was introduced in Amendment 1 to ISO C90 and is declared in
wchar.h.

Despite the limitation that the single byte value is always interpreted in the initial state,
this function is actually useful most of the time. Most characters are either entirely single-
byte character sets or they are extensions to ASCII. But then it is possible to write code
like this (not that this specific example is very useful):

wchar_t *
itow (unsigned long int val)
{
static wchar_t buf[30];
wchar_t *wcp = &buf[29];

xwcp = L'\0"';
while (val != 0)
{
*——wcp = btowc ('0' + val % 10);
val /= 10;
}

if (wcp == &buf[29])
*--wcp = L'0';
return wcp;
}

Why is it necessary to use such a complicated implementation and not simply cast '0'
+val % 10 to a wide character? The answer is that there is no guarantee that one can
perform this kind of arithmetic on the character of the character set used for wchar_t
representation. In other situations the bytes are not constant at compile time and so the
compiler cannot do the work. In situations like this, using btowc is required.

There is also a function for the conversion in the other direction.

int wctob (wint_t c) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe corrupt
lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The wctob function (“wide character to byte”) takes as the parameter a valid wide
character. If the multibyte representation for this character in the initial state is

Chapter 6: Character Set Handling 152

exactly one byte long, the return value of this function is this character. Otherwise
the return value is EOF.

wctob was introduced in Amendment 1 to ISO C90 and is declared in wchar.h.

There are more general functions to convert single characters from multibyte represen-
tation to wide characters and vice versa. These functions pose no limit on the length of the
multibyte representation and they also do not require it to be in the initial state.

size_t mbrtowc (wchar_t *restrict pwc, const char *restrict s, size.t [Function]
n, mbstate_t *restrict ps)

Preliminary: | MT-Unsafe race:mbrtowc/!ps | AS-Unsafe corrupt heap lock dlopen
| AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The mbrtowc function (“multibyte restartable to wide character”) converts the next
multibyte character in the string pointed to by s into a wide character and stores it in
the location pointed to by pwc. The conversion is performed according to the locale
currently selected for the LC_CTYPE category. If the conversion for the character set
used in the locale requires a state, the multibyte string is interpreted in the state
represented by the object pointed to by ps. If ps is a null pointer, a static, internal
state variable used only by the mbrtowc function is used.

If the next multibyte character corresponds to the null wide character, the return
value of the function is 0 and the state object is afterwards in the initial state. If
the next n or fewer bytes form a correct multibyte character, the return value is the
number of bytes starting from s that form the multibyte character. The conversion
state is updated according to the bytes consumed in the conversion. In both cases
the wide character (either the L'\0"' or the one found in the conversion) is stored in
the string pointed to by pwc if pwc is not null.

If the first n bytes of the multibyte string possibly form a valid multibyte character
but there are more than n bytes needed to complete it, the return value of the function
is (size_t) -2 and no value is stored in *pwc. The conversion state is updated and
all n input bytes are consumed and should not be submitted again. Please note that
this can happen even if n has a value greater than or equal to MB_CUR_MAX since the
input might contain redundant shift sequences.

If the first n bytes of the multibyte string cannot possibly form a valid multibyte
character, no value is stored, the global variable errno is set to the value EILSEQ,
and the function returns (size_t) -1. The conversion state is afterwards undefined.

As specified, the mbrtowc function could deal with multibyte sequences which contain
embedded null bytes (which happens in Unicode encodings such as UTF-16), but the
GNU C Library does not support such multibyte encodings. When encountering a null
input byte, the function will either return zero, or return (size_t) -1) and report
a EILSEQ error. The iconv function can be used for converting between arbitrary
encodings. See Section 6.5.1 [Generic Character Set Conversion Interface], page 166.

mbrtowc was introduced in Amendment 1 to ISO C90 and is declared in wchar.h.

A function that copies a multibyte string into a wide character string while at the same
time converting all lowercase characters into uppercase could look like this:

wchar_t *

Chapter 6: Character Set Handling 153

mbstouwcs (const char *s)
{
/* Include the null terminator in the conversion. */
size_t len = strlen (s) + 1;
wchar_t #*result = reallocarray (NULL, len, sizeof (wchar_t));
if (result == NULL)
return NULL;

wchar_t *wcp = result;
mbstate_t state;
memset (&state, '\0', sizeof (state));

while (true)
{
wchar_t wc;
size_t nbytes = mbrtowc (&wc, s, len, &state);
if (nbytes == 0)

{
/* Terminate the result string. */
xwcp = L'\0"';
break;
}
else if (nbytes == (size_t) -2)
{

/* Truncated input string. */
errno = EILSEQ;
free (result);
return NULL;

}

else if (nbytes == (size_t) -1)

{
/* Some other error (including EILSEQ). */
free (result);
return NULL;

else

{
/* A character was converted. */
xwcp++ = towupper (wc);
len -= nbytes;
s += nbytes;

}

}
return result;

}

In the inner loop, a single wide character is stored in wc, and the number of consumed
bytes is stored in the variable nbytes. If the conversion is successful, the uppercase variant
of the wide character is stored in the result array and the pointer to the input string and
the number of available bytes is adjusted. If the mbrtowc function returns zero, the null
input byte has not been converted, so it must be stored explicitly in the result.

The above code uses the fact that there can never be more wide characters in the
converted result than there are bytes in the multibyte input string. This method yields a
pessimistic guess about the size of the result, and if many wide character strings have to be
constructed this way or if the strings are long, the extra memory required to be allocated
because the input string contains multibyte characters might be significant. The allocated

Chapter 6: Character Set Handling 154

memory block can be resized to the correct size before returning it, but a better solution
might be to allocate just the right amount of space for the result right away. Unfortunately
there is no function to compute the length of the wide character string directly from the
multibyte string. There is, however, a function that does part of the work.

size_t mbrlen (const char *restrict s, size_t n, mbstate_t *ps) [Function]
Preliminary: | MT-Unsafe race:mbrlen/!ps | AS-Unsafe corrupt heap lock dlopen
| AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The mbrlen function (“multibyte restartable length”) computes the number of at most
n bytes starting at s, which form the next valid and complete multibyte character.

If the next multibyte character corresponds to the NUL wide character, the return
value is 0. If the next n bytes form a valid multibyte character, the number of bytes
belonging to this multibyte character byte sequence is returned.

If the first n bytes possibly form a valid multibyte character but the character is
incomplete, the return value is (size_t) -2. Otherwise the multibyte character se-
quence is invalid and the return value is (size_t) -1.

The multibyte sequence is interpreted in the state represented by the object pointed
to by ps. If ps is a null pointer, a state object local to mbrlen is used.

mbrlen was introduced in Amendment 1 to ISO C90 and is declared in wchar.h.

The attentive reader now will note that mbrlen can be implemented as
mbrtowc (NULL, s, n, ps != NULL ? ps : &internal)

This is true and in fact is mentioned in the official specification. How can this function be
used to determine the length of the wide character string created from a multibyte character
string? It is not directly usable, but we can define a function mbslen using it:

size_t
mbslen (const char *s)
{
mbstate_t state;
size_t result = 0;
size_t nbytes;
memset (&state, '\0', sizeof (state));
while ((nbytes = mbrlen (s, MB_LEN_MAX, &state)) > 0)
{
if (nbytes >= (size_t) -2)
/* Something is wrong. */
return (size_t) -1;
s += nbytes;
++result;
}
return result;

}

This function simply calls mbrlen for each multibyte character in the string and counts
the number of function calls. Please note that we here use MB_LEN_MAX as the size argument
in the mbrlen call. This is acceptable since a) this value is larger than the length of the
longest multibyte character sequence and b) we know that the string s ends with a NUL byte,
which cannot be part of any other multibyte character sequence but the one representing
the NUL wide character. Therefore, the mbrlen function will never read invalid memory.

Chapter 6: Character Set Handling 155

Now that this function is available (just to make this clear, this function is not part of
the GNU C Library) we can compute the number of wide characters required to store the
converted multibyte character string s using

wcs_bytes = (mbslen (s) + 1) * sizeof (wchar_t);

Please note that the mbslen function is quite inefficient. The implementation of
mbstouwcs with mbslen would have to perform the conversion of the multibyte character
input string twice, and this conversion might be quite expensive. So it is necessary to
think about the consequences of using the easier but imprecise method before doing the
work twice.

size_t wcrtomb (char *restrict s, wchar_t wc, mbstate_t *restrict ps) [Function]
Preliminary: | MT-Unsafe race:wertomb/!ps | AS-Unsafe corrupt heap lock dlopen
| AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The wertomb function (“wide character restartable to multibyte”) converts a single
wide character into a multibyte string corresponding to that wide character.

If s is a null pointer, the function resets the state stored in the object pointed to by
ps (or the internal mbstate_t object) to the initial state. This can also be achieved
by a call like this:

wcrtombs (temp_buf, L'\0', ps)

since, if s is a null pointer, wcrtomb performs as if it writes into an internal buffer,
which is guaranteed to be large enough.

If we is the NUL wide character, wcrtomb emits, if necessary, a shift sequence to get
the state ps into the initial state followed by a single NUL byte, which is stored in
the string s.

Otherwise a byte sequence (possibly including shift sequences) is written into the
string s. This only happens if wc is a valid wide character (i.e., it has a multibyte
representation in the character set selected by locale of the LC_CTYPE category). If wc
is no valid wide character, nothing is stored in the strings s, errno is set to EILSEQ,
the conversion state in ps is undefined and the return value is (size_t) -1.

If no error occurred the function returns the number of bytes stored in the string s.
This includes all bytes representing shift sequences.

One word about the interface of the function: there is no parameter specifying the
length of the array s, so the caller has to make sure that there is enough space
available, otherwise buffer overruns can occur. This version of the GNU C Library
does not assume that s is at least MB_CUR_MAX bytes long, but programs that
need to run on GNU C Library versions that have this assumption documented in
the manual must comply with this limit.

wcrtomb was introduced in Amendment 1 to ISO C90 and is declared in wchar.h.

Using wcrtomb is as easy as using mbrtowc. The following example appends a wide
character string to a multibyte character string. Again, the code is not really useful (or
correct), it is simply here to demonstrate the use and some problems.

char *
mbscatwcs (char *s, size_t len, const wchar_t *ws)

{

Chapter 6:

Character Set Handling

mbstate_t state;

/* Find the end of the existing string. */
char *wp = strchr (s, '\0');

len -= wp - s;

memset (&state, '\0', sizeof (state));

do
{

}

size_t nbytes;
if (len < MB_CUR_LEN)
{

/* We cannot guarantee that the next
character fits into the buffer, so
return an error. */

errno = E2BIG;

return NULL;

}
nbytes = wcrtomb (wp, *ws, &state);
if (nbytes == (size_t) -1)
/* Error in the conversion. */
return NULL;
len -= nbytes;
wp += nbytes;

while (xws++ != L'\0');
return s;

}

156

First the function has to find the end of the string currently in the array s. The strchr
call does this very efficiently since a requirement for multibyte character representations is
that the NUL byte is never used except to represent itself (and in this context, the end of

the string).

After initializing the state object the loop is entered where the first task is to make sure
there is enough room in the array s. We abort if there are not at least MB_CUR_LEN bytes
available. This is not always optimal but we have no other choice. We might have less than
MB_CUR_LEN bytes available but the next multibyte character might also be only one byte
long. At the time the wcrtomb call returns it is too late to decide whether the buffer was
large enough. If this solution is unsuitable, there is a very slow but more accurate solution.

if (len < MB_CUR_LEN)

{

mbstate_t temp_state;

memcpy (&temp_state, &state, sizeof (state));
if (wecrtomb (NULL, *ws, &temp_state) > len)

{

/* We cannot guarantee that the next
character fits into the buffer, so
return an error. */

errno = E2BIG;

return NULL;

}

Here we perform the conversion that might overflow the buffer so that we are afterwards

in the position to make an exact decision about the buffer size.

Please note the NULL

argument for the destination buffer in the new wcrtomb call; since we are not interested in

Chapter 6: Character Set Handling 157

the converted text at this point, this is a nice way to express this. The most unusual thing
about this piece of code certainly is the duplication of the conversion state object, but if a
change of the state is necessary to emit the next multibyte character, we want to have the
same shift state change performed in the real conversion. Therefore, we have to preserve
the initial shift state information.

There are certainly many more and even better solutions to this problem. This example
is only provided for educational purposes.

6.3.4 Converting Multibyte and Wide Character Strings

The functions described in the previous section only convert a single character at a time.
Most operations to be performed in real-world programs include strings and therefore the
ISO C standard also defines conversions on entire strings. However, the defined set of
functions is quite limited; therefore, the GNU C Library contains a few extensions that can
help in some important situations.

size_t mbsrtowcs (wchar_t *restrict dst, const char **restrict src, [Function]
size_t len, mbstate_t *restrict ps)

Preliminary: | MT-Unsafe race:mbsrtowes/!ps | AS-Unsafe corrupt heap lock dlopen
| AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The mbsrtowcs function (“multibyte string restartable to wide character string”)
converts the NUL-terminated multibyte character string at *src into an equivalent
wide character string, including the NUL wide character at the end. The conversion
is started using the state information from the object pointed to by ps or from an
internal object of mbsrtowcs if psis a null pointer. Before returning, the state object
is updated to match the state after the last converted character. The state is the
initial state if the terminating NUL byte is reached and converted.

If dst is not a null pointer, the result is stored in the array pointed to by dst; otherwise,
the conversion result is not available since it is stored in an internal buffer.

If len wide characters are stored in the array dst before reaching the end of the input
string, the conversion stops and len is returned. If dst is a null pointer, len is never

checked.

Another reason for a premature return from the function call is if the input string
contains an invalid multibyte sequence. In this case the global variable errno is set
to EILSEQ and the function returns (size_t) -1.

In all other cases the function returns the number of wide characters converted during
this call. If dst is not null, mbsrtowcs stores in the pointer pointed to by src either a
null pointer (if the NUL byte in the input string was reached) or the address of the
byte following the last converted multibyte character.

Like mbstowcs the dst parameter may be a null pointer and the function can be used
to count the number of wide characters that would be required.

mbsrtowcs was introduced in Amendment 1 to ISO C90 and is declared in wchar.h.

The definition of the mbsrtowcs function has one important limitation. The requirement
that dst has to be a NUL-terminated string provides problems if one wants to convert buffers
with text. A buffer is not normally a collection of NUL-terminated strings but instead a

Chapter 6: Character Set Handling 158

continuous collection of lines, separated by newline characters. Now assume that a function
to convert one line from a buffer is needed. Since the line is not NUL-terminated, the source
pointer cannot directly point into the unmodified text buffer. This means, either one inserts
the NUL byte at the appropriate place for the time of the mbsrtowcs function call (which is
not doable for a read-only buffer or in a multi-threaded application) or one copies the line
in an extra buffer where it can be terminated by a NUL byte. Note that it is not in general
possible to limit the number of characters to convert by setting the parameter len to any
specific value. Since it is not known how many bytes each multibyte character sequence is
in length, one can only guess.

There is still a problem with the method of NUL-terminating a line right after the
newline character, which could lead to very strange results. As said in the description of
the mbsrtowcs function above, the conversion state is guaranteed to be in the initial shift
state after processing the NUL byte at the end of the input string. But this NUL byte is
not really part of the text (i.e., the conversion state after the newline in the original text
could be something different than the initial shift state and therefore the first character
of the next line is encoded using this state). But the state in question is never accessible
to the user since the conversion stops after the NUL byte (which resets the state). Most
stateful character sets in use today require that the shift state after a newline be the initial
state-but this is not a strict guarantee. Therefore, simply NUL-terminating a piece of a
running text is not always an adequate solution and, therefore, should never be used in
generally used code.

The generic conversion interface (see Section 6.5 [Generic Charset Conversion], page 166)
does not have this limitation (it simply works on buffers, not strings), and the GNU C
Library contains a set of functions that take additional parameters specifying the maxi-
mal number of bytes that are consumed from the input string. This way the problem of
mbsrtowcs’s example above could be solved by determining the line length and passing this
length to the function.

size_t wcsrtombs (char *restrict dst, const wchar_t **restrict src, [Function]
size_t len, mbstate_t *restrict ps)

Preliminary: | MT-Unsafe race:wesrtombs/!ps | AS-Unsafe corrupt heap lock dlopen
| AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The wesrtombs function (“wide character string restartable to multibyte string”) con-
verts the NUL-terminated wide character string at *src into an equivalent multibyte
character string and stores the result in the array pointed to by dst. The NUL wide
character is also converted. The conversion starts in the state described in the object
pointed to by ps or by a state object local to wcsrtombs in case ps is a null pointer.
If dst is a null pointer, the conversion is performed as usual but the result is not
available. If all characters of the input string were successfully converted and if dst
is not a null pointer, the pointer pointed to by src gets assigned a null pointer.

If one of the wide characters in the input string has no valid multibyte character
equivalent, the conversion stops early, sets the global variable errno to EILSEQ, and
returns (size_t) -1.

Another reason for a premature stop is if dst is not a null pointer and the next
converted character would require more than len bytes in total to the array dst. In

Chapter 6: Character Set Handling 159

this case (and if dst is not a null pointer) the pointer pointed to by src is assigned a
value pointing to the wide character right after the last one successfully converted.

Except in the case of an encoding error the return value of the wcsrtombs function
is the number of bytes in all the multibyte character sequences which were or would
have been (if dst was not a null) stored in dst. Before returning, the state in the
object pointed to by ps (or the internal object in case ps is a null pointer) is updated
to reflect the state after the last conversion. The state is the initial shift state in case
the terminating NUL wide character was converted.

The wesrtombs function was introduced in Amendment 1 to ISO C90 and is declared
in wchar.h.

The restriction mentioned above for the mbsrtowcs function applies here also. There is
no possibility of directly controlling the number of input characters. One has to place the
NUL wide character at the correct place or control the consumed input indirectly via the
available output array size (the len parameter).

size_t mbsnrtowcs (wchar_t *restrict dst, const char **restrict src, [Function]
size_t nmc, size_t len, mbstate_t *restrict ps)
Preliminary: | MT-Unsafe race:mbsnrtowcs/!ps | AS-Unsafe corrupt heap lock

dlopen | AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The mbsnrtowcs function is very similar to the mbsrtowcs function. All the param-
eters are the same except for nmc, which is new. The return value is the same as for
mbsrtowcs.

This new parameter specifies how many bytes at most can be used from the multibyte
character string. In other words, the multibyte character string *src need not be
NUL-terminated. But if a NUL byte is found within the nmc first bytes of the string,
the conversion stops there.

Like mbstowcs the dst parameter may be a null pointer and the function can be used
to count the number of wide characters that would be required.

This function is a GNU extension. It is meant to work around the problems mentioned
above. Now it is possible to convert a buffer with multibyte character text piece by
piece without having to care about inserting NUL bytes and the effect of NUL bytes
on the conversion state.

A function to convert a multibyte string into a wide character string and display it could
be written like this (this is not a really useful example):
void
showmbs (const char *src, FILE *fp)
{
mbstate_t state;
int cnt = 0;
memset (&state, '\0', sizeof (state));
while (1)
{
wchar_t linebuf[100];
const char *endp = strchr (src, '\n');
size_t n;

Chapter 6: Character Set Handling 160

/* Exit if there is no more line. */
if (endp == NULL)
break;

n = mbsnrtowcs (linebuf, &src, endp - src, 99, &state);
linebuf[n] = L'\0';
fprintf (fp, "line %d: \"%S\"\n", linebuf);

}

There is no problem with the state after a call to mbsnrtowcs. Since we don’t insert
characters in the strings that were not in there right from the beginning and we use state
only for the conversion of the given buffer, there is no problem with altering the state.

size_t wcsnrtombs (char *restrict dst, const wchar_t **restrict src, [Function]
size_t nwc, size_t len, mbstate_t *restrict ps)
Preliminary: | MT-Unsafe race:wcsnrtombs/!ps | AS-Unsafe corrupt heap lock
dlopen | AC-Unsafe corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The wcsnrtombs function implements the conversion from wide character strings to
multibyte character strings. It is similar to wcsrtombs but, just like mbsnrtowcs, it
takes an extra parameter, which specifies the length of the input string.

No more than nwc wide characters from the input string *src are converted. If the
input string contains a NUL wide character in the first nwc characters, the conversion
stops at this place.

The wcsnrtombs function is a GNU extension and just like mbsnrtowcs helps in
situations where no NUL-terminated input strings are available.

6.3.5 A Complete Multibyte Conversion Example

The example programs given in the last sections are only brief and do not contain all the
error checking, etc. Presented here is a complete and documented example. It features the
mbrtowc function but it should be easy to derive versions using the other functions.
int
file_mbsrtowcs (int input, int output)
{
/* Note the use of MB_LEN_MAX.
MB_CUR_MAX cannot portably be used here. */
char buffer [BUFSIZ + MB_LEN_MAX];
mbstate_t state;
int filled = 0;
int eof = 0;

/* Initialize the state. */
memset (&state, '\0', sizeof (state));

while ('eof)
{
ssize_t nread;
ssize_t nwrite;
char *inp = buffer;
wchar_t outbuf [BUFSIZ];
wchar_t *outp = outbuf;

Chapter 6: Character Set Handling 161

}

}

/* Fill up the buffer from the input file. */
nread = read (input, buffer + filled, BUFSIZ);
if (nread < 0)
{
perror ("read");
return O;
}
/* If we reach end of file, make a note to read no more. */
if (nread == 0)
eof = 1;

/* filled is now the number of bytes in buffer. */
filled += nread;

/* Convert those bytes to wide characters—as many as we can. */
while (1)
{
size_t thislen = mbrtowc (outp, inp, filled, &state);
/* Stop converting at invalid character;
this can mean we have read just the first part
of a valid character. */
if (thislen == (size_t) -1)
break;
/* We want to handle embedded NUL bytes
but the return value is 0. Correct this. */
if (thislen == 0)
thislen = 1;
/* Advance past this character. */
inp += thislen;
filled -= thislen;
++outp;

}

/* Write the wide characters we just made. */
nwrite = write (output, outbuf,
(outp - outbuf) * sizeof (wchar_t));
if (nwrite < 0)
{
perror ("write");
return O;

}

/* See if we have a real invalid character. */
if ((eof && filled > 0) || filled >= MB_CUR_MAX)
{
error (0, 0, "invalid multibyte character");
return O;

}

/* If any characters must be carried forward,
put them at the beginning of buffer. */
if (filled > 0)
memmove (buffer, inp, filled);

return 1;

Chapter 6: Character Set Handling 162

6.4 Non-reentrant Conversion Function

The functions described in the previous chapter are defined in Amendment 1 to ISO C90,
but the original ISO C90 standard also contained functions for character set conversion.
The reason that these original functions are not described first is that they are almost
entirely useless.

The problem is that all the conversion functions described in the original ISO C90 use a
local state. Using a local state implies that multiple conversions at the same time (not only
when using threads) cannot be done, and that you cannot first convert single characters
and then strings since you cannot tell the conversion functions which state to use.

These original functions are therefore usable only in a very limited set of situations. One
must complete converting the entire string before starting a new one, and each string/text
must be converted with the same function (there is no problem with the library itself; it is
guaranteed that no library function changes the state of any of these functions). For the
above reasons it is highly requested that the functions described in the previous section be
used in place of non-reentrant conversion functions.

6.4.1 Non-reentrant Conversion of Single Characters

int mbtowc (wchar_t *restrict result, const char *restrict string, [Function]
size_t size)
Preliminary: | MT-Unsafe race | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The mbtowe (“multibyte to wide character”) function when called with non-null string
converts the first multibyte character beginning at string to its corresponding wide
character code. It stores the result in *result.

mbtowc never examines more than size bytes. (The idea is to supply for size the
number of bytes of data you have in hand.)

mbtowc with non-null string distinguishes three possibilities: the first size bytes at
string start with valid multibyte characters, they start with an invalid byte sequence
or just part of a character, or string points to an empty string (a null character).

For a valid multibyte character, mbtowc converts it to a wide character and stores
that in *result, and returns the number of bytes in that character (always at least
1 and never more than size).

For an invalid byte sequence, mbtowc returns —1. For an empty string, it returns 0,
also storing '\0' in *result.

If the multibyte character code uses shift characters, then mbtowc maintains and
updates a shift state as it scans. If you call mbtowc with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns nonzero if the
multibyte character code in use actually has a shift state. See Section 6.4.3 [States
in Non-reentrant Functions|, page 165.

int wctomb (char *string, wchar_t wchar) [Function]
Preliminary: | MT-Unsafe race | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Chapter 6: Character Set Handling 163

The wctomb (“wide character to multibyte”) function converts the wide character
code wchar to its corresponding multibyte character sequence, and stores the result
in bytes starting at string. At most MB_CUR_MAX characters are stored.

wctomb with non-null string distinguishes three possibilities for wchar: a valid wide
character code (one that can be translated to a multibyte character), an invalid code,
and L'\0".

Given a valid code, wctomb converts it to a multibyte character, storing the bytes
starting at string. Then it returns the number of bytes in that character (always at
least 1 and never more than MB_CUR_MAX).

If wchar is an invalid wide character code, wctomb returns —1. If wchar is L'\0', it
returns 0, also storing '\0' in *string.

If the multibyte character code uses shift characters, then wctomb maintains and
updates a shift state as it scans. If you call wctomb with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns nonzero if the
multibyte character code in use actually has a shift state. See Section 6.4.3 [States
in Non-reentrant Functions|, page 165.

Calling this function with a wchar argument of zero when string is not null has
the side-effect of reinitializing the stored shift state as well as storing the multibyte
character '\0' and returning 0.

Similar to mbrlen there is also a non-reentrant function that computes the length of a
multibyte character. It can be defined in terms of mbtowc.

int mblen (const char *string, size_t size) [Function]
Preliminary: | MT-Unsafe race | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The mblen function with a non-null string argument returns the number of bytes that
make up the multibyte character beginning at string, never examining more than size
bytes. (The idea is to supply for size the number of bytes of data you have in hand.)

The return value of mblen distinguishes three possibilities: the first size bytes at
string start with valid multibyte characters, they start with an invalid byte sequence
or just part of a character, or string points to an empty string (a null character).

For a valid multibyte character, mblen returns the number of bytes in that character
(always at least 1 and never more than size). For an invalid byte sequence, mblen
returns —1. For an empty string, it returns 0.

If the multibyte character code uses shift characters, then mblen maintains and up-
dates a shift state as it scans. If you call mblen with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns a nonzero value
if the multibyte character code in use actually has a shift state. See Section 6.4.3
[States in Non-reentrant Functions], page 165.

The function mblen is declared in stdlib.h.

6.4.2 Non-reentrant Conversion of Strings

For convenience the ISO C90 standard also defines functions to convert entire strings instead
of single characters. These functions suffer from the same problems as their reentrant

Chapter 6: Character Set Handling 164

counterparts from Amendment 1 to ISO C90; see Section 6.3.4 [Converting Multibyte and
Wide Character Strings], page 157.

size_t mbstowcs (wchar_t *wstring, const char *string, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe corrupt
lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The mbstowcs (“multibyte string to wide character string”) function converts the
null-terminated string of multibyte characters string to an array of wide character
codes, storing not more than size wide characters into the array beginning at wstring.
The terminating null character counts towards the size, so if size is less than the
actual number of wide characters resulting from string, no terminating null character
is stored.

The conversion of characters from string begins in the initial shift state.

If an invalid multibyte character sequence is found, the mbstowcs function returns
a value of —1. Otherwise, it returns the number of wide characters stored in the
array wstring. This number does not include the terminating null character, which is
present if the number is less than size.

Here is an example showing how to convert a string of multibyte characters, allocating
enough space for the result.

wchar_t *
mbstowcs_alloc (const char *string)
{
size_t size = strlen (string) + 1;
wchar_t *buf = xmalloc (size * sizeof (wchar_t));

size = mbstowcs (buf, string, size);
if (size == (size_t) -1)
return NULL;
buf = xreallocarray (buf, size + 1, sizeof *buf);
return buf;
}

If wstring is a null pointer then no output is written and the conversion proceeds as
above, and the result is returned. In practice such behaviour is useful for calculating
the exact number of wide characters required to convert string. This behaviour of
accepting a null pointer for wstring is an XPG4.2 extension that is not specified in
ISO C and is optional in POSIX.

size_t wcstombs (char *string, const wchar_t *wstring, size_t [Function]
size)
Preliminary: | MT-Safe | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe corrupt
lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The westombs (“wide character string to multibyte string”) function converts the null-
terminated wide character array wstring into a string containing multibyte characters,
storing not more than size bytes starting at string, followed by a terminating null
character if there is room. The conversion of characters begins in the initial shift
state.

The terminating null character counts towards the size, so if size is less than or equal
to the number of bytes needed in wstring, no terminating null character is stored.

Chapter 6: Character Set Handling 165

If a code that does not correspond to a valid multibyte character is found, the
wcstombs function returns a value of —1. Otherwise, the return value is the number
of bytes stored in the array string. This number does not include the terminating
null character, which is present if the number is less than size.

6.4.3 States in Non-reentrant Functions

In some multibyte character codes, the meaning of any particular byte sequence is not fixed;
it depends on what other sequences have come earlier in the same string. Typically there are
just a few sequences that can change the meaning of other sequences; these few are called
shift sequences and we say that they set the shift state for other sequences that follow.

To illustrate shift state and shift sequences, suppose we decide that the sequence 0200
(just one byte) enters Japanese mode, in which pairs of bytes in the range from 0240 to 0377
are single characters, while 0201 enters Latin-1 mode, in which single bytes in the range
from 0240 to 0377 are characters, and interpreted according to the ISO Latin-1 character
set. This is a multibyte code that has two alternative shift states (“Japanese mode” and
“Latin-1 mode”), and two shift sequences that specify particular shift states.

When the multibyte character code in use has shift states, then mblen, mbtowc, and
wctomb must maintain and update the current shift state as they scan the string. To make
this work properly, you must follow these rules:

e Before starting to scan a string, call the function with a null pointer for the multibyte
character address—for example, mblen (NULL, 0). This initializes the shift state to its
standard initial value.

e Scan the string one character at a time, in order. Do not “back up” and rescan
characters already scanned, and do not intersperse the processing of different strings.

Here is an example of using mblen following these rules:

void
scan_string (char *s)
{
int length = strlen (s);

/* Initialize shift state. */
mblen (NULL, 0);

while (1)
{
int thischar = mblen (s, length);
/* Deal with end of string and invalid characters. */
if (thischar == 0)

break;
if (thischar == -1)
{
error ("invalid multibyte character");
break;
}

/* Advance past this character. */
s += thischar;
length -= thischar;

Chapter 6: Character Set Handling 166

The functions mblen, mbtowc and wctomb are not reentrant when using a multibyte code
that uses a shift state. However, no other library functions call these functions, so you don’t
have to worry that the shift state will be changed mysteriously.

6.5 Generic Charset Conversion

The conversion functions mentioned so far in this chapter all had in common that they
operate on character sets that are not directly specified by the functions. The multibyte
encoding used is specified by the currently selected locale for the LC_CTYPE category. The
wide character set is fixed by the implementation (in the case of the GNU C Library it is
always UCS-4 encoded ISO 10646).

This has of course several problems when it comes to general character conversion:

e For every conversion where neither the source nor the destination character set is the
character set of the locale for the LC_CTYPE category, one has to change the LC_CTYPE
locale using setlocale.

Changing the LC_CTYPE locale introduces major problems for the rest of the programs
since several more functions (e.g., the character classification functions, see Section 4.1
[Classification of Characters|, page 89) use the LC_CTYPE category.

e Parallel conversions to and from different character sets are not possible since the LC_
CTYPE selection is global and shared by all threads.

e If neither the source nor the destination character set is the character set used for
wchar_t representation, there is at least a two-step process necessary to convert a
text using the functions above. One would have to select the source character set as
the multibyte encoding, convert the text into a wchar_t text, select the destination
character set as the multibyte encoding, and convert the wide character text to the
multibyte (= destination) character set.

Even if this is possible (which is not guaranteed) it is a very tiring work. Plus it suffers
from the other two raised points even more due to the steady changing of the locale.

The XPG2 standard defines a completely new set of functions, which has none of these
limitations. They are not at all coupled to the selected locales, and they have no con-
straints on the character sets selected for source and destination. Only the set of available
conversions limits them. The standard does not specify that any conversion at all must be
available. Such availability is a measure of the quality of the implementation.

In the following text first the interface to iconv and then the conversion function, will
be described. Comparisons with other implementations will show what obstacles stand in
the way of portable applications. Finally, the implementation is described in so far as might
interest the advanced user who wants to extend conversion capabilities.

6.5.1 Generic Character Set Conversion Interface

This set of functions follows the traditional cycle of using a resource: open—use—close. The
interface consists of three functions, each of which implements one step.

Before the interfaces are described it is necessary to introduce a data type. Just like
other open—use—close interfaces the functions introduced here work using handles and the
iconv.h header defines a special type for the handles used.

Chapter 6: Character Set Handling 167

iconv_t [Data Type]
This data type is an abstract type defined in iconv.h. The user must not assume
anything about the definition of this type; it must be completely opaque.

Objects of this type can be assigned handles for the conversions using the iconv
functions. The objects themselves need not be freed, but the conversions for which
the handles stand for have to.

The first step is the function to create a handle.

iconv_t iconv_open (const char *tocode, const char *fromcode) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The iconv_open function has to be used before starting a conversion. The two
parameters this function takes determine the source and destination character set
for the conversion, and if the implementation has the possibility to perform such a
conversion, the function returns a handle.

If the wanted conversion is not available, the iconv_open function returns (iconv_t)
-1. In this case the global variable errno can have the following values:

EMFILE The process already has OPEN_MAX file descriptors open.
ENFILE The system limit of open files is reached.

ENOMEM Not enough memory to carry out the operation.

EINVAL The conversion from fromcode to tocode is not supported.

It is not possible to use the same descriptor in different threads to perform independent
conversions. The data structures associated with the descriptor include information
about the conversion state. This must not be messed up by using it in different
conversions.

An iconv descriptor is like a file descriptor as for every use a new descriptor must
be created. The descriptor does not stand for all of the conversions from fromset to
toset.

The GNU C Library implementation of iconv_open has one significant extension to
other implementations. To ease the extension of the set of available conversions, the
implementation allows storing the necessary files with data and code in an arbitrary
number of directories. How this extension must be written will be explained below
(see Section 6.5.4 [The iconv Implementation in the GNU C Library], page 173).
Here it is only important to say that all directories mentioned in the GCONV_PATH
environment variable are considered only if they contain a file gconv-modules. These
directories need not necessarily be created by the system administrator. In fact, this
extension is introduced to help users writing and using their own, new conversions.
Of course, this does not work for security reasons in SUID binaries; in this case
only the system directory is considered and this normally is prefix/1ib/gconv. The
GCONV_PATH environment variable is examined exactly once at the first call of the
iconv_open function. Later modifications of the variable have no effect.

The iconv_open function was introduced early in the X/Open Portability Guide,
version 2. It is supported by all commercial Unices as it is required for the Unix

Chapter 6: Character Set Handling 168

branding. However, the quality and completeness of the implementation varies widely.
The iconv_open function is declared in iconv.h.

The iconv implementation can associate large data structure with the handle returned
by iconv_open. Therefore, it is crucial to free all the resources once all conversions are
carried out and the conversion is not needed anymore.

int iconv_close (iconv_t cd) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe corrupt
lock mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The iconv_close function frees all resources associated with the handle cd, which
must have been returned by a successful call to the iconv_open function.

If the function call was successful the return value is 0. Otherwise it is —1 and errno
is set appropriately. Defined errors are:

EBADF The conversion descriptor is invalid.

The iconv_close function was introduced together with the rest of the iconv func-
tions in XPG2 and is declared in iconv.h.

The standard defines only one actual conversion function. This has, therefore, the most
general interface: it allows conversion from one buffer to another. Conversion from a file to
a buffer, vice versa, or even file to file can be implemented on top of it.

size_t iconv (iconv_t cd, char **inbuf, size_t *inbytesleft, char [Function]
**outbuf, size_t *outbytesleft)
Preliminary: | MT-Safe race:cd | AS-Safe | AC-Unsafe corrupt | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The iconv function converts the text in the input buffer according to the rules associ-
ated with the descriptor cd and stores the result in the output buffer. It is possible to
call the function for the same text several times in a row since for stateful character
sets the necessary state information is kept in the data structures associated with the
descriptor.

The input buffer is specified by *inbuf and it contains *inbytesleft bytes. The
extra indirection is necessary for communicating the used input back to the caller
(see below). It is important to note that the buffer pointer is of type char and the
length is measured in bytes even if the input text is encoded in wide characters.

The output buffer is specified in a similar way. *outbuf points to the beginning of
the buffer with at least *outbytesleft bytes room for the result. The buffer pointer
again is of type char and the length is measured in bytes. If outbuf or *outbuf is a
null pointer, the conversion is performed but no output is available.

If inbuf is a null pointer, the iconv function performs the necessary action to put the
state of the conversion into the initial state. This is obviously a no-op for non-stateful
encodings, but if the encoding has a state, such a function call might put some byte
sequences in the output buffer, which perform the necessary state changes. The next
call with inbuf not being a null pointer then simply goes on from the initial state.
It is important that the programmer never makes any assumption as to whether the
conversion has to deal with states. Even if the input and output character sets are

Chapter 6: Character Set Handling 169

not stateful, the implementation might still have to keep states. This is due to the
implementation chosen for the GNU C Library as it is described below. Therefore
an iconv call to reset the state should always be performed if some protocol requires
this for the output text.

The conversion stops for one of three reasons. The first is that all characters from
the input buffer are converted. This actually can mean two things: either all bytes
from the input buffer are consumed or there are some bytes at the end of the buffer
that possibly can form a complete character but the input is incomplete. The second
reason for a stop is that the output buffer is full. And the third reason is that the
input contains invalid characters.

In all of these cases the buffer pointers after the last successful conversion, for the
input and output buffers, are stored in inbuf and outbuf, and the available room in
each buffer is stored in inbytesleft and outbytesleft.

Since the character sets selected in the iconv_open call can be almost arbitrary,
there can be situations where the input buffer contains valid characters, which have
no identical representation in the output character set. The behavior in this situation
is undefined. The current behavior of the GNU C Library in this situation is to
return with an error immediately. This certainly is not the most desirable solution;
therefore, future versions will provide better ones, but they are not yet finished.

If all input from the input buffer is successfully converted and stored in the output
buffer, the function returns the number of non-reversible conversions performed. In
all other cases the return value is (size_t) -1 and errno is set appropriately. In
such cases the value pointed to by inbytesleft is nonzero.

EILSEQ The conversion stopped because of an invalid byte sequence in the input.
After the call, *inbuf points at the first byte of the invalid byte sequence.

E2BIG The conversion stopped because it ran out of space in the output buffer.

EINVAL The conversion stopped because of an incomplete byte sequence at the
end of the input buffer.

EBADF The cd argument is invalid.

The iconv function was introduced in the XPG2 standard and is declared in the
iconv.h header.

The definition of the iconv function is quite good overall. It provides quite flexible
functionality. The only problems lie in the boundary cases, which are incomplete byte
sequences at the end of the input buffer and invalid input. A third problem, which is not
really a design problem, is the way conversions are selected. The standard does not say
anything about the legitimate names, a minimal set of available conversions. We will see
how this negatively impacts other implementations, as demonstrated below.

6.5.2 A complete iconv example

The example below features a solution for a common problem. Given that one knows the
internal encoding used by the system for wchar_t strings, one often is in the position to read
text from a file and store it in wide character buffers. One can do this using mbsrtowcs,
but then we run into the problems discussed above.

int

Chapter 6: Character Set Handling

file2wcs (int fd, const char *charset, wchar_t *outbuf, size_t avail)

{

char inbuf [BUFSIZ];
size_t insize = 0;
char *wrptr = (char *) outbuf;

int

result = 0;

iconv_t cd;

cd = iconv_open ("WCHAR_T", charset);
if (cd == (icomnv_t) -1)

{

}

/* Something went wrong. */
if (errno == EINVAL)

error (0, 0, "conversion from '%s' to wchar_t not available",

charset) ;
else
perror ("iconv_open");

/* Terminate the output string. */
*outbuf = L'\0"';

return -1;

while (avail > 0)

{

size_t nread;
size_t nconv;
char *inptr = inbuf;

/* Read more input. */
nread = read (fd, inbuf + insize, sizeof (inbuf) - insize);
if (nread == 0)

{

/* When we come here the file is completely read.
This still could mean there are some unused
characters in the inbuf. Put them back. */

if (1seek (fd, -insize, SEEK_CUR) == -1)

result = -1;

/* Now write out the byte sequence to get into the
initial state if this is necessary. */

iconv (cd, NULL, NULL, &wrptr, &avail);

break;

}

insize += nread;

/* Do the conversion. */
nconv = iconv (cd, &inptr, &insize, &wrptr, &avail);
if (nconv == (size_t) -1)
{
/* Not everything went right. It might only be
an unfinished byte sequence at the end of the
buffer. Or it is a real problem. */
if (errno == EINVAL)
/* This is harmless. Simply move the unused
bytes to the beginning of the buffer so that

170

Chapter 6: Character Set Handling 171

they can be used in the next round. */
memmove (inbuf, inptr, insize);
else
{

/* It is a real problem. Maybe we ran out of
space in the output buffer or we have invalid
input. In any case back the file pointer to
the position of the last processed byte. */

lseek (fd, -insize, SEEK_CUR);

result = -1;

break;

}
}

/* Terminate the output string. */
if (avail >= sizeof (wchar_t))
*((wchar_t *) wrptr) = L'\0';

if (iconv_close (cd) !'= 0)
perror ("iconv_close");

return (wchar_t *) wrptr - outbuf;

This example shows the most important aspects of using the iconv functions. It shows
how successive calls to iconv can be used to convert large amounts of text. The user does
not have to care about stateful encodings as the functions take care of everything.

An interesting point is the case where iconv returns an error and errno is set to EINVAL.
This is not really an error in the transformation. It can happen whenever the input character
set contains byte sequences of more than one byte for some character and texts are not
processed in one piece. In this case there is a chance that a multibyte sequence is cut. The
caller can then simply read the remainder of the takes and feed the offending bytes together
with new character from the input to iconv and continue the work. The internal state kept
in the descriptor is not unspecified after such an event as is the case with the conversion
functions from the ISO C standard.

The example also shows the problem of using wide character strings with iconv. As
explained in the description of the iconv function above, the function always takes a pointer
to a char array and the available space is measured in bytes. In the example, the output
buffer is a wide character buffer; therefore, we use a local variable wrptr of type char *,
which is used in the iconv calls.

This looks rather innocent but can lead to problems on platforms that have tight restric-
tion on alignment. Therefore the caller of iconv has to make sure that the pointers passed
are suitable for access of characters from the appropriate character set. Since, in the above
case, the input parameter to the function is a wchar_t pointer, this is the case (unless the
user violates alignment when computing the parameter). But in other situations, especially
when writing generic functions where one does not know what type of character set one
uses and, therefore, treats text as a sequence of bytes, it might become tricky.

Chapter 6: Character Set Handling 172

6.5.3 Some Details about other iconv Implementations

This is not really the place to discuss the iconv implementation of other systems but it
is necessary to know a bit about them to write portable programs. The above mentioned
problems with the specification of the iconv functions can lead to portability issues.

The first thing to notice is that, due to the large number of character sets in use, it is
certainly not practical to encode the conversions directly in the C library. Therefore, the
conversion information must come from files outside the C library. This is usually done in
one or both of the following ways:

e The C library contains a set of generic conversion functions that can read the needed
conversion tables and other information from data files. These files get loaded when
necessary.

This solution is problematic as it requires a great deal of effort to apply to all char-
acter sets (potentially an infinite set). The differences in the structure of the different
character sets is so large that many different variants of the table-processing functions
must be developed. In addition, the generic nature of these functions make them slower
than specifically implemented functions.

e The C library only contains a framework that can dynamically load object files and
execute the conversion functions contained therein.

This solution provides much more flexibility. The C library itself contains only very lit-
tle code and therefore reduces the general memory footprint. Also, with a documented
interface between the C library and the loadable modules it is possible for third parties
to extend the set of available conversion modules. A drawback of this solution is that
dynamic loading must be available.

Some implementations in commercial Unices implement a mixture of these possibilities;
the majority implement only the second solution. Using loadable modules moves the code
out of the library itself and keeps the door open for extensions and improvements, but
this design is also limiting on some platforms since not many platforms support dynamic
loading in statically linked programs. On platforms without this capability it is therefore
not possible to use this interface in statically linked programs. The GNU C Library has, on
ELF platforms, no problems with dynamic loading in these situations; therefore, this point
is moot. The danger is that one gets acquainted with this situation and forgets about the
restrictions on other systems.

A second thing to know about other iconv implementations is that the number of
available conversions is often very limited. Some implementations provide, in the standard
release (not special international or developer releases), at most 100 to 200 conversion
possibilities. This does not mean 200 different character sets are supported; for example,
conversions from one character set to a set of 10 others might count as 10 conversions.
Together with the other direction this makes 20 conversion possibilities used up by one
character set. Omne can imagine the thin coverage these platforms provide. Some Unix
vendors even provide only a handful of conversions, which renders them useless for almost
all uses.

This directly leads to a third and probably the most problematic point. The way the
iconv conversion functions are implemented on all known Unix systems and the availability
of the conversion functions from character set A to B and the conversion from B to C does
not imply that the conversion from A to C is available.

Chapter 6: Character Set Handling 173

This might not seem unreasonable and problematic at first, but it is a quite big problem
as one will notice shortly after hitting it. To show the problem we assume to write a program
that has to convert from A to C. A call like

cd = iconv_open ("C", "A");

fails according to the assumption above. But what does the program do now? The conver-
sion is necessary; therefore, simply giving up is not an option.

This is a nuisance. The iconv function should take care of this. But how should the
program proceed from here on? If it tries to convert to character set B, first the two
iconv_open calls

cdl = iconv_open ("B", "A");
and

cd2 = iconv_open ("C", "B");
will succeed, but how to find B?

Unfortunately, the answer is: there is no general solution. On some systems guessing
might help. On those systems most character sets can convert to and from UTF-8 encoded
ISO 10646 or Unicode text. Besides this only some very system-specific methods can help.
Since the conversion functions come from loadable modules and these modules must be
stored somewhere in the filesystem, one could try to find them and determine from the
available file which conversions are available and whether there is an indirect route from A
to C.

This example shows one of the design errors of iconv mentioned above. It should at
least be possible to determine the list of available conversions programmatically so that
if iconv_open says there is no such conversion, one could make sure this also is true for
indirect routes.

6.5.4 The iconv Implementation in the GNU C Library

After reading about the problems of iconv implementations in the last section it is certainly
good to note that the implementation in the GNU C Library has none of the problems
mentioned above. What follows is a step-by-step analysis of the points raised above. The
evaluation is based on the current state of the development (as of January 1999). The
development of the iconv functions is not complete, but basic functionality has solidified.

The GNU C Library’s iconv implementation uses shared loadable modules to implement
the conversions. A very small number of conversions are built into the library itself but
these are only rather trivial conversions.

All the benefits of loadable modules are available in the GNU C Library implementation.
This is especially appealing since the interface is well documented (see below), and it,
therefore, is easy to write new conversion modules. The drawback of using loadable objects
is not a problem in the GNU C Library, at least on ELF systems. Since the library is able
to load shared objects even in statically linked binaries, static linking need not be forbidden
in case one wants to use iconv.

The second mentioned problem is the number of supported conversions. Currently, the
GNU C Library supports more than 150 character sets. The way the implementation is
designed the number of supported conversions is greater than 22350 (150 times 149). If any
conversion from or to a character set is missing, it can be added easily.

Chapter 6: Character Set Handling 174

Particularly impressive as it may be, this high number is due to the fact that the GNU
C Library implementation of iconv does not have the third problem mentioned above (i.e.,
whenever there is a conversion from a character set A to B and from B to C it is always
possible to convert from A to C directly). If the iconv_open returns an error and sets errno
to EINVAL, there is no known way, directly or indirectly, to perform the wanted conversion.

Triangulation is achieved by providing for each character set a conversion from and to
UCS-4 encoded ISO 10646. Using ISO 10646 as an intermediate representation it is possible
to triangulate (i.e., convert with an intermediate representation).

There is no inherent requirement to provide a conversion to ISO 10646 for a new char-
acter set, and it is also possible to provide other conversions where neither source nor
destination character set is ISO 10646. The existing set of conversions is simply meant to
cover all conversions that might be of interest.

All currently available conversions use the triangulation method above, making conver-
sion run unnecessarily slow. If, for example, somebody often needs the conversion from
1S0O-2022-JP to EUC-JP, a quicker solution would involve direct conversion between the
two character sets, skipping the input to ISO 10646 first. The two character sets of interest
are much more similar to each other than to ISO 10646.

In such a situation one easily can write a new conversion and provide it as a better
alternative. The GNU C Library iconv implementation would automatically use the module
implementing the conversion if it is specified to be more efficient.

6.5.4.1 Format of gconv-modules files

All information about the available conversions comes from a file named gconv-modules,
which can be found in any of the directories along the GCONV_PATH. The gconv-modules
files are line-oriented text files, where each of the lines has one of the following formats:

e If the first non-whitespace character is a # the line contains only comments and is
ignored.

e Lines starting with alias define an alias name for a character set. Two more words
are expected on the line. The first word defines the alias name, and the second defines
the original name of the character set. The effect is that it is possible to use the alias
name in the fromset or toset parameters of iconv_open and achieve the same result as
when using the real character set name.

This is quite important as a character set has often many different names. There is
normally an official name but this need not correspond to the most popular name.
Besides this many character sets have special names that are somehow constructed.
For example, all character sets specified by the ISO have an alias of the form ISO-IR-
nnn where nnn is the registration number. This allows programs that know about the
registration number to construct character set names and use them in iconv_open
calls. More on the available names and aliases follows below.

e Lines starting with module introduce an available conversion module. These lines must
contain three or four more words.

The first word specifies the source character set, the second word the destination char-
acter set of conversion implemented in this module, and the third word is the name
of the loadable module. The filename is constructed by appending the usual shared
object suffix (normally .so) and this file is then supposed to be found in the same

Chapter 6: Character Set Handling 175

directory the gconv-modules file is in. The last word on the line, which is optional, is
a numeric value representing the cost of the conversion. If this word is missing, a cost
of 1 is assumed. The numeric value itself does not matter that much; what counts are
the relative values of the sums of costs for all possible conversion paths. Below is a
more precise description of the use of the cost value.

Returning to the example above where one has written a module to directly convert
from ISO-2022-JP to EUC-JP and back. All that has to be done is to put the new module,
let its name be ISO2022JP-EUCJP.so, in a directory and add a file gconv-modules with
the following content in the same directory:

module IS0-2022-JP// EUC-JP// IS02022JP-EUCJP 1
module EUC-JP// I1S0-2022-Jp// 1S02022JP-EUCJP 1

To see why this is sufficient, it is necessary to understand how the conversion used by
iconv (and described in the descriptor) is selected. The approach to this problem is quite
simple.

At the first call of the iconv_open function the program reads all available
gconv-modules files and builds up two tables: one containing all the known aliases and
another that contains the information about the conversions and which shared object
implements them.

6.5.4.2 Finding the conversion path in iconv

The set of available conversions form a directed graph with weighted edges. The weights
on the edges are the costs specified in the gconv-modules files. The iconv_open function
uses an algorithm suitable for search for the best path in such a graph and so constructs a
list of conversions that must be performed in succession to get the transformation from the
source to the destination character set.

Explaining why the above gconv-modules files allows the iconv implementation to
resolve the specific ISO-2022-JP to EUC-JP conversion module instead of the conversion
coming with the library itself is straightforward. Since the latter conversion takes two
steps (from ISO-2022-JP to ISO 10646 and then from ISO 10646 to EUC-JP), the cost
is 1 +1 = 2. The above gconv-modules file, however, specifies that the new conversion
modules can perform this conversion with only the cost of 1.

A mysterious item about the gconv-modules file above (and also the file coming with
the GNU C Library) are the names of the character sets specified in the module lines. Why
do almost all the names end in //7 And this is not all: the names can actually be regular
expressions. At this point in time this mystery should not be revealed, unless you have the
relevant spell-casting materials: ashes from an original DOS 6.2 boot disk burnt in effigy, a
crucifix blessed by St. Emacs, assorted herbal roots from Central America, sand from Cebu,
etc. Sorry! The part of the implementation where this is used is not yet finished. For now
please simply follow the existing examples. It’ll become clearer once it is. —drepper

A last remark about the gconv-modules is about the names not ending with //. A
character set named INTERNAL is often mentioned. From the discussion above and the
chosen name it should have become clear that this is the name for the representation used
in the intermediate step of the triangulation. We have said that this is UCS-4 but actually
that is not quite right. The UCS-4 specification also includes the specification of the byte
ordering used. Since a UCS-4 value consists of four bytes, a stored value is affected by byte

Chapter 6: Character Set Handling 176

ordering. The internal representation is not the same as UCS-4 in case the byte ordering
of the processor (or at least the running process) is not the same as the one required for
UCS-4. This is done for performance reasons as one does not want to perform unnecessary
byte-swapping operations if one is not interested in actually seeing the result in UCS-4. To
avoid trouble with endianness, the internal representation consistently is named INTERNAL
even on big-endian systems where the representations are identical.

6.5.4.3 iconv module data structures

So far this section has described how modules are located and considered to be used. What
remains to be described is the interface of the modules so that one can write new ones. This
section describes the interface as it is in use in January 1999. The interface will change a
bit in the future but, with luck, only in an upwardly compatible way.

The definitions necessary to write new modules are publicly available in the non-standard
header gconv.h. The following text, therefore, describes the definitions from this header
file. First, however, it is necessary to get an overview.

From the perspective of the user of iconv the interface is quite simple: the iconv_open
function returns a handle that can be used in calls to iconv, and finally the handle is freed
with a call to iconv_close. The problem is that the handle has to be able to represent the
possibly long sequences of conversion steps and also the state of each conversion since the
handle is all that is passed to the iconv function. Therefore, the data structures are really
the elements necessary to understanding the implementation.

We need two different kinds of data structures. The first describes the conversion and
the second describes the state etc. There are really two type definitions like this in gconv.h.

struct __gconv_step [Data type]
This data structure describes one conversion a module can perform. For each func-
tion in a loaded module with conversion functions there is exactly one object of this
type. This object is shared by all users of the conversion (i.e., this object does not
contain any information corresponding to an actual conversion; it only describes the
conversion itself).

struct __gconv_loaded_object *__shlib_handle

const char *__modname

int __counter
All these elements of the structure are used internally in the C library
to coordinate loading and unloading the shared object. One must not
expect any of the other elements to be available or initialized.

const char *__from_name

const char *__to_name
__from_name and __to_name contain the names of the source and desti-
nation character sets. They can be used to identify the actual conversion
to be carried out since one module might implement conversions for more

than one character set and/or direction.

Chapter 6: Character Set Handling 177

gconv_fct __fct
gconv_init_fct __init_fct
gconv_end_fct __end_fct

int
int
int
int

These elements contain pointers to the functions in the loadable module.
The interface will be explained below.

__min_needed_from
__max_needed_from
__min_needed_to
__max_needed_to;

These values have to be supplied in the init function of the module. The
__min_needed_from value specifies how many bytes a character of the
source character set at least needs. The __max_needed_from specifies
the maximum value that also includes possible shift sequences.

The __min_needed_to and __max_needed_to values serve the same pur-
pose as __min_needed_from and __max_needed_from but this time for
the destination character set.

It is crucial that these values be accurate since otherwise the conversion
functions will have problems or not work at all.

int __stateful

This element must also be initialized by the init function. int
__stateful is nonzero if the source character set is stateful. Otherwise
it is zero.

void *__data

This element can be used freely by the conversion functions in the module.
void *__data can be used to communicate extra information from one
call to another. void *__data need not be initialized if not needed at all.
If void *__data element is assigned a pointer to dynamically allocated
memory (presumably in the init function) it has to be made sure that the
end function deallocates the memory. Otherwise the application will leak
memory.

It is important to be aware that this data structure is shared by all users

of this specification conversion and therefore the __data element must
not contain data specific to one specific use of the conversion function.

struct __gconv_step_data [Data type]
This is the data structure that contains the information specific to each use of the
conversion functions.

char *__outbuf
char *__outbufend

These elements specify the output buffer for the conversion step. The __
outbuf element points to the beginning of the buffer, and __outbufend
points to the byte following the last byte in the buffer. The conversion
function must not assume anything about the size of the buffer but it can
be safely assumed there is room for at least one complete character in the
output buffer.

Chapter 6: Character Set Handling 178

Once the conversion is finished, if the conversion is the last step, the __
outbuf element must be modified to point after the last byte written into
the buffer to signal how much output is available. If this conversion step
is not the last one, the element must not be modified. The __outbufend
element must not be modified.

int __flags
This field is a set of flags. The __GCONV_IS_LAST bit is set if this conver-
sion step is the last one. This information is necessary for the recursion.
See the description of the conversion function internals below. This ele-
ment must never be modified.

int __invocation_counter
The conversion function can use this element to see how many calls of
the conversion function already happened. Some character sets require a
certain prolog when generating output, and by comparing this value with
zero, one can find out whether it is the first call and whether, therefore,
the prolog should be emitted. This element must never be modified.

int __internal_use
This element is another one rarely used but needed in certain situations.
It is assigned a nonzero value in case the conversion functions are used to
implement mbsrtowcs et.al. (i.e., the function is not used directly through
the iconv interface).

This sometimes makes a difference as it is expected that the iconv func-
tions are used to translate entire texts while the mbsrtowcs functions are
normally used only to convert single strings and might be used multiple
times to convert entire texts.

But in this situation we would have problem complying with some rules
of the character set specification. Some character sets require a pro-
log, which must appear exactly once for an entire text. If a number of
mbsrtowcs calls are used to convert the text, only the first call must add
the prolog. However, because there is no communication between the
different calls of mbsrtowcs, the conversion functions have no possibility
to find this out. The situation is different for sequences of iconv calls
since the handle allows access to the needed information.

The int __internal_use element is mostly used together with
_invocation_counter as follows:

if (!data->__internal_use
&& data->__invocation_counter == 0)
/* Emit prolog. =*/

This element must never be modified.

mbstate_t *__statep
The __statep element points to an object of type mbstate_t (see

Section 6.3.2 [Representing the state of the conversion|, page 149). The
conversion of a stateful character set must use the object pointed to

Chapter 6: Character Set Handling 179

by __statep to store information about the conversion state. The
__statep element itself must never be modified.

mbstate_t __state
This element must never be used directly. It is only part of this structure
to have the needed space allocated.

6.5.4.4 iconv module interfaces

With the knowledge about the data structures we now can describe the conversion function
itself. To understand the interface a bit of knowledge is necessary about the functionality
in the C library that loads the objects with the conversions.

It is often the case that one conversion is used more than once (i.e., there are several
iconv_open calls for the same set of character sets during one program run). The mbsrtowcs
et.al. functions in the GNU C Library also use the iconv functionality, which increases the
number of uses of the same functions even more.

Because of this multiple use of conversions, the modules do not get loaded exclusively
for one conversion. Instead a module once loaded can be used by an arbitrary number
of iconv or mbsrtowcs calls at the same time. The splitting of the information between
conversion- function-specific information and conversion data makes this possible. The last
section showed the two data structures used to do this.

This is of course also reflected in the interface and semantics of the functions that the
modules must provide. There are three functions that must have the following names:

geconv_init
The gconv_init function initializes the conversion function specific data struc-
ture. This very same object is shared by all conversions that use this conversion
and, therefore, no state information about the conversion itself must be stored
in here. If a module implements more than one conversion, the gconv_init
function will be called multiple times.

gconv_end
The gconv_end function is responsible for freeing all resources allocated by the
gconv_init function. If there is nothing to do, this function can be missing.
Special care must be taken if the module implements more than one conver-
sion and the gconv_init function does not allocate the same resources for all
conversions.

gconv This is the actual conversion function. It is called to convert one block of text.
It gets passed the conversion step information initialized by gconv_init and
the conversion data, specific to this use of the conversion functions.

There are three data types defined for the three module interface functions and these
define the interface.

int (*__gconv_init_fct) (struct __gconv_step *) [Data type]
This specifies the interface of the initialization function of the module. It is called
exactly once for each conversion the module implements.

As explained in the description of the struct __gconv_step data structure above
the initialization function has to initialize parts of it.

Chapter 6: Character Set Handling

__min_needed_from
__max_needed_from
__min_needed_to

__max_needed_to

These elements must be initialized to the exact numbers of the minimum
and maximum number of bytes used by one character in the source and
destination character sets, respectively. If the characters all have the

same size, the minimum and maximum values are the same.

__stateful

180

This element must be initialized to a nonzero value if the source character

set is stateful. Otherwise it must be zero.

If the initialization function needs to communicate some information to the conversion
function, this communication can happen using the __data element of the __gconv_
step structure. But since this data is shared by all the conversions, it must not be
modified by the conversion function. The example below shows how this can be used.

#define MIN_NEEDED_FROM 1
#define MAX_NEEDED_FROM 4
#define MIN_NEEDED_TO 4
#define MAX_NEEDED_TO 4

int
gconv_init (struct __gconv_step *step)

{

/* Determine which direction. */
struct is02022jp_data *new_data;
enum direction dir = illegal_dir;
enum variant var = illegal_var;
int result;

if (__strcasecmp (step->__from_name, "IS0-2022-JP//") == 0)
{
dir = from_iso02022jp;
var = is02022jp;
}
else if (__strcasecmp (step->__to_name, "IS0-2022-JP//") == 0)
{
dir = to_is02022jp;
var = is02022jp;
}
else if (__strcasecmp (step->__from_name, "IS0-2022-JP-2//") == 0)
{
dir = from_iso02022jp;
var = is02022jp2;
}
else if (__strcasecmp (step->__to_name, "IS0-2022-JP-2//") == 0)
{
dir = to_is02022jp;
var = is02022jp2;
}
result = __GCONV_NOCONV;
if (dir !'= illegal_dir)
{

new_data = (struct iso2022jp_data *)

Chapter 6: Character Set Handling 181

malloc (sizeof (struct iso02022jp_data));

result = __GCONV_NOMEM;
if (new_data != NULL)
{
new_data->dir dir;
new_data->var var;
step->__data = new_data;

if (dir == from_iso02022jp)
{
step->__min_needed_from = MIN_NEEDED_FROM;
step->__max_needed_from = MAX_NEEDED_FROM;
step->__min_needed_to = MIN_NEEDED_TO;
step—->__max_needed_to = MAX_NEEDED_TO;

MIN_NEEDED_TO;
MAX_NEEDED_TO;
MIN_NEEDED_FROM;
MAX_NEEDED_FROM + 2;

step->__min_needed_from
step->__max_needed_from
step—>__min_needed_to
step—>__max_needed_to

}

/* Yes, this is a stateful encoding. */
step->__stateful = 1;

result = __GCONV_0OK;
}

return result;
}
The function first checks which conversion is wanted. The module from which this
function is taken implements four different conversions; which one is selected can be
determined by comparing the names. The comparison should always be done without
paying attention to the case.

Next, a data structure, which contains the necessary information about which conver-
sion is selected, is allocated. The data structure struct iso2022jp_data is locally
defined since, outside the module, this data is not used at all. Please note that if all
four conversions this module supports are requested there are four data blocks.

One interesting thing is the initialization of the __min_ and __max_ elements of the
step data object. A single ISO-2022-JP character can consist of one to four bytes.
Therefore the MIN_NEEDED_FROM and MAX_NEEDED_FROM macros are defined this way.
The output is always the INTERNAL character set (aka UCS-4) and therefore each
character consists of exactly four bytes. For the conversion from INTERNAL to ISO-
2022-JP we have to take into account that escape sequences might be necessary to
switch the character sets. Therefore the __max_needed_to element for this direction
gets assigned MAX_NEEDED_FROM + 2. This takes into account the two bytes needed for
the escape sequences to signal the switching. The asymmetry in the maximum values
for the two directions can be explained easily: when reading ISO-2022-JP text, escape
sequences can be handled alone (i.e., it is not necessary to process a real character
since the effect of the escape sequence can be recorded in the state information).

Chapter 6: Character Set Handling 182

The situation is different for the other direction. Since it is in general not known
which character comes next, one cannot emit escape sequences to change the state in
advance. This means the escape sequences have to be emitted together with the next
character. Therefore one needs more room than only for the character itself.

The possible return values of the initialization function are:

__GCONV_OK
The initialization succeeded

__GCONV_NOCONV
The requested conversion is not supported in the module. This can hap-
pen if the gconv-modules file has errors.

__GCONV_NOMEM
Memory required to store additional information could not be allocated.

The function called before the module is unloaded is significantly easier. It often has
nothing at all to do; in which case it can be left out completely.

void (*__gconv_end_fct) (struct gconv_step *) [Data type]
The task of this function is to free all resources allocated in the initialization function.
Therefore only the __data element of the object pointed to by the argument is of
interest. Continuing the example from the initialization function, the finalization
function looks like this:

void
gconv_end (struct __gconv_step *data)
{
free (data->__data);
}

The most important function is the conversion function itself, which can get quite com-
plicated for complex character sets. But since this is not of interest here, we will only
describe a possible skeleton for the conversion function.

int (*__gconv_fct) (struct __gconv_step * struct [Data type]
__gconv_step_data *, const char **, const char *, size_t *, int)
The conversion function can be called for two basic reasons: to convert text or to reset
the state. From the description of the iconv function it can be seen why the flushing
mode is necessary. What mode is selected is determined by the sixth argument, an
integer. This argument being nonzero means that flushing is selected.

Common to both modes is where the output buffer can be found. The information
about this buffer is stored in the conversion step data. A pointer to this information
is passed as the second argument to this function. The description of the struct
__gconv_step_data structure has more information on the conversion step data.

What has to be done for flushing depends on the source character set. If the source
character set is not stateful, nothing has to be done. Otherwise the function has to
emit a byte sequence to bring the state object into the initial state. Once this all
happened the other conversion modules in the chain of conversions have to get the
same chance. Whether another step follows can be determined from the __GCONV_IS_
LAST flag in the __flags field of the step data structure to which the first parameter
points.

Chapter 6: Character Set Handling 183

The more interesting mode is when actual text has to be converted. The first step in
this case is to convert as much text as possible from the input buffer and store the
result in the output buffer. The start of the input buffer is determined by the third
argument, which is a pointer to a pointer variable referencing the beginning of the
buffer. The fourth argument is a pointer to the byte right after the last byte in the
buffer.

The conversion has to be performed according to the current state if the character
set is stateful. The state is stored in an object pointed to by the __statep element of
the step data (second argument). Once either the input buffer is empty or the output
buffer is full the conversion stops. At this point, the pointer variable referenced by
the third parameter must point to the byte following the last processed byte (i.e., if
all of the input is consumed, this pointer and the fourth parameter have the same
value).

What now happens depends on whether this step is the last one. If it is the last
step, the only thing that has to be done is to update the __outbuf element of the
step data structure to point after the last written byte. This update gives the caller
the information on how much text is available in the output buffer. In addition,
the variable pointed to by the fifth parameter, which is of type size_t, must be
incremented by the number of characters (not bytes) that were converted in a non-
reversible way. Then, the function can return.

In case the step is not the last one, the later conversion functions have to get a chance
to do their work. Therefore, the appropriate conversion function has to be called. The
information about the functions is stored in the conversion data structures, passed as
the first parameter. This information and the step data are stored in arrays, so the
next element in both cases can be found by simple pointer arithmetic:
int
gconv (struct __gconv_step *step, struct __gconv_step_data *data,
const char **xinbuf, const char *inbufend, size_t *written,
int do_flush)
{
struct __gconv_step *next_step = step + 1;
struct __gconv_step_data *next_data = data + 1;

The next_step pointer references the next step information and next_data the next
data record. The call of the next function therefore will look similar to this:
next_step->__fct (next_step, next_data, &outerr, outbuf,
written, 0)

But this is not yet all. Once the function call returns the conversion function might
have some more to do. If the return value of the function is __GCONV_EMPTY_INPUT,
more room is available in the output buffer. Unless the input buffer is empty, the
conversion functions start all over again and process the rest of the input buffer. If
the return value is not __GCONV_EMPTY_INPUT, something went wrong and we have
to recover from this.

A requirement for the conversion function is that the input buffer pointer (the third
argument) always point to the last character that was put in converted form into the
output buffer. This is trivially true after the conversion performed in the current step,
but if the conversion functions deeper downstream stop prematurely, not all characters

Chapter 6: Character Set Handling 184

from the output buffer are consumed and, therefore, the input buffer pointers must
be backed off to the right position.

Correcting the input buffers is easy to do if the input and output character sets
have a fixed width for all characters. In this situation we can compute how many
characters are left in the output buffer and, therefore, can correct the input buffer
pointer appropriately with a similar computation. Things are getting tricky if either
character set has characters represented with variable length byte sequences, and it
gets even more complicated if the conversion has to take care of the state. In these
cases the conversion has to be performed once again, from the known state before
the initial conversion (i.e., if necessary the state of the conversion has to be reset and
the conversion loop has to be executed again). The difference now is that it is known
how much input must be created, and the conversion can stop before converting the
first unused character. Once this is done the input buffer pointers must be updated
again and the function can return.

One final thing should be mentioned. If it is necessary for the conversion to know
whether it is the first invocation (in case a prolog has to be emitted), the conver-
sion function should increment the __invocation_counter element of the step data
structure just before returning to the caller. See the description of the struct __
gconv_step_data structure above for more information on how this can be used.

The return value must be one of the following values:

__GCONV_EMPTY_INPUT
All input was consumed and there is room left in the output buffer.

__GCONV_FULL_OUTPUT
No more room in the output buffer. In case this is not the last step this
value is propagated down from the call of the next conversion function in
the chain.

__GCONV_INCOMPLETE_INPUT
The input buffer is not entirely empty since it contains an incomplete
character sequence.

The following example provides a framework for a conversion function. In case a new
conversion has to be written the holes in this implementation have to be filled and
that is it.

int

gconv (struct __gconv_step *step, struct __gconv_step_data *data,

const char **xinbuf, const char *inbufend, size_t *written,
int do_flush)

struct __gconv_step *next_step = step + 1;
struct __gconv_step_data *next_data = data + 1;
geconv_fct fct = next_step->__fct;

int status;

/* If the function is called with no input this means we have
to reset to the initial state. The possibly partly
converted input is dropped. */

if (do_flush)

{

Chapter 6: Character Set Handling 185

status = __GCONV_OK;

/* Possible emit a byte sequence which put the state object
into the initial state. */

/* Call the steps down the chain if there are any but only
if we successfully emitted the escape sequence. */
if (status == __GCONV_OK && ! (data->__flags & __GCONV_IS_LAST))
status = fct (next_step, next_data, NULL, NULL,
written, 1);

/* We preserve the initial values of the pointer variables. */
const char *inptr = *inbuf;

char *outbuf = data->__outbuf;

char *outend = data->__outbufend;

char *outptr;

do
{
/* Remember the start value for this round. */
inptr = *inbuf;
/* The outbuf buffer is empty. */
outptr = outbuf;

/* For stateful encodings the state must be safe here. */

/* Run the conversion loop. status is set
appropriately afterwards. */

/* If this is the last step, leave the loop. There is
nothing we can do. */
if (data->__flags & __GCONV_IS_LAST)
{
/* Store information about how many bytes are
available. */
data->__outbuf = outbuf;

/* If any non-reversible conversions were performed,
add the number to *written. */

break;

}

/* Write out all output that was produced. */
if (outbuf > outptr)
{
const char *outerr = data->__outbuf;
int result;

result = fct (next_step, next_data, &outerr,
outbuf, written, 0);

if (result != __GCONV_EMPTY_INPUT)
{

if (outerr !'= outbuf)

{

186

/* Reset the input buffer pointer. We
document here the complex case. */
size_t nstatus;

/* Reload the pointers. */
*inbuf = inptr;
outbuf = outptr;

/* Possibly reset the state. */

/* Redo the conversion, but this time
the end of the output buffer is at
outerr. */

}

/* Change the status. */
status = result;
}
else
/* All the output is consumed, we can make
another run if everything was ok. */

if (status == __GCONV_FULL_OUTPUT)
status = __GCONV_0K;
}
}
while (status == __GCONV_0K);

/* We finished one use of this step. */
++data->__invocation_counter;

}

return status;

}

This information should be sufficient to write new modules. Anybody doing so should
also take a look at the available source code in the GNU C Library sources. It contains
many examples of working and optimized modules.

187

7 Locales and Internationalization

Different countries and cultures have varying conventions for how to communicate. These
conventions range from very simple ones, such as the format for representing dates and
times, to very complex ones, such as the language spoken.

Internationalization of software means programming it to be able to adapt to the user’s
favorite conventions. In ISO C, internationalization works by means of locales. Each locale
specifies a collection of conventions, one convention for each purpose. The user chooses a
set of conventions by specifying a locale (via environment variables).

All programs inherit the chosen locale as part of their environment. Provided the pro-
grams are written to obey the choice of locale, they will follow the conventions preferred by
the user.

7.1 What Effects a Locale Has

Each locale specifies conventions for several purposes, including the following:

e What multibyte character sequences are valid, and how they are interpreted (see
Chapter 6 [Character Set Handling], page 144).

e C(lassification of which characters in the local character set are considered alphabetic,
and upper- and lower-case conversion conventions (see Chapter 4 [Character Handling],
page 89).

e The collating sequence for the local language and character set (see Section 5.8 [Colla-
tion Functions], page 121).

e Formatting of numbers and currency amounts (see Section 7.7.1.1 [Generic Numeric
Formatting Parameters], page 193).

e Formatting of dates and times (see Section 22.5.4 [Formatting Calendar Time],
page 664).

e What language to use for output, including error messages (see Chapter 8 [Message
Translation], page 207).

e What language to use for user answers to yes-or-no questions (see Section 7.9 [Yes-or-No
Questions], page 205).

e What language to use for more complex user input. (The C library doesn’t yet help
you implement this.)

Some aspects of adapting to the specified locale are handled automatically by the library
subroutines. For example, all your program needs to do in order to use the collating sequence
of the chosen locale is to use strcoll or strxfrm to compare strings.

Other aspects of locales are beyond the comprehension of the library. For example, the
library can’t automatically translate your program’s output messages into other languages.
The only way you can support output in the user’s favorite language is to program this
more or less by hand. The C library provides functions to handle translations for multiple
languages easily.

This chapter discusses the mechanism by which you can modify the current locale. The
effects of the current locale on specific library functions are discussed in more detail in the
descriptions of those functions.

Chapter 7: Locales and Internationalization 188

7.2 Choosing a Locale

The simplest way for the user to choose a locale is to set the environment variable LANG.
This specifies a single locale to use for all purposes. For example, a user could specify a
hypothetical locale named ‘espana-castellano’ to use the standard conventions of most
of Spain.

The set of locales supported depends on the operating system you are using, and so
do their names, except that the standard locale called ‘C’ or ‘POSIX’ always exist. See
Section 7.6 [Locale Names], page 191.

In order to force the system to always use the default locale, the user can set the LC_ALL
environment variable to ‘C’.

A user also has the option of specifying different locales for different purposes—in effect,
choosing a mixture of multiple locales. See Section 7.3 [Locale Categories], page 188.

For example, the user might specify the locale ‘espana-castellano’ for most purposes,
but specify the locale ‘usa-english’ for currency formatting. This might make sense if
the user is a Spanish-speaking American, working in Spanish, but representing monetary
amounts in US dollars.

Note that both locales ‘espana-castellano’ and ‘usa-english’, like all locales, would
include conventions for all of the purposes to which locales apply. However, the user can
choose to use each locale for a particular subset of those purposes.

7.3 Locale Categories

The purposes that locales serve are grouped into categories, so that a user or a program
can choose the locale for each category independently. Here is a table of categories; each
name is both an environment variable that a user can set, and a macro name that you can
use as the first argument to setlocale.

The contents of the environment variable (or the string in the second argument to
setlocale) has to be a valid locale name. See Section 7.6 [Locale Names], page 191.

LC_COLLATE
This category applies to collation of strings (functions strcoll and strxfrm);
see Section 5.8 [Collation Functions], page 121.

LC_CTYPE This category applies to classification and conversion of characters, and to
multibyte and wide characters; see Chapter 4 [Character Handling], page 89,
and Chapter 6 [Character Set Handling], page 144.

LC_MONETARY
This category applies to formatting monetary values; see Section 7.7.1.1
[Generic Numeric Formatting Parameters|, page 193.

LC_NUMERIC
This category applies to formatting numeric values that are not monetary; see
Section 7.7.1.1 [Generic Numeric Formatting Parameters], page 193.

LC_TIME This category applies to formatting date and time values; see Section 22.5.4
[Formatting Calendar Time|, page 664.

Chapter 7: Locales and Internationalization 189

LC_MESSAGES
This category applies to selecting the language used in the user interface for mes-
sage translation (see Section 8.2 [The Uniforum approach to Message Transla-
tion], page 216; see Section 8.1 [X/Open Message Catalog Handling], page 207)
and contains regular expressions for affirmative and negative responses.

LC_ALL This is not a category; it is only a macro that you can use with setlocale to
set a single locale for all purposes. Setting this environment variable overwrites
all selections by the other LC_x* variables or LANG.

LANG If this environment variable is defined, its value specifies the locale to use for
all purposes except as overridden by the variables above.

When developing the message translation functions it was felt that the functionality
provided by the variables above is not sufficient. For example, it should be possible to
specify more than one locale name. Take a Swedish user who better speaks German than
English, and a program whose messages are output in English by default. It should be
possible to specify that the first choice of language is Swedish, the second German, and
if this also fails to use English. This is possible with the variable LANGUAGE. For further
description of this GNU extension see Section 8.2.1.6 [User influence on gettext|, page 228.

7.4 How Programs Set the Locale

A C program inherits its locale environment variables when it starts up. This happens
automatically. However, these variables do not automatically control the locale used by the
library functions, because ISO C says that all programs start by default in the standard ‘C’
locale. To use the locales specified by the environment, you must call setlocale. Call it
as follows:
setlocale (LC_ALL, "");

to select a locale based on the user choice of the appropriate environment variables.

You can also use setlocale to specify a particular locale, for general use or for a specific
category.

The symbols in this section are defined in the header file locale.h.

char * setlocale (int category, const char *locale) [Function]
Preliminary: | MT-Unsafe const:locale env | AS-Unsafe init lock heap corrupt |
AC-Unsafe init corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.
The function setlocale sets the current locale for category category to locale.

If category is LC_ALL, this specifies the locale for all purposes. The other possi-
ble values of category specify a single purpose (see Section 7.3 [Locale Categories],
page 188).

You can also use this function to find out the current locale by passing a null pointer
as the locale argument. In this case, setlocale returns a string that is the name of
the locale currently selected for category category.

The string returned by setlocale can be overwritten by subsequent calls, so you
should make a copy of the string (see Section 5.4 [Copying Strings and Arrays],

Chapter 7: Locales and Internationalization 190

page 103) if you want to save it past any further calls to setlocale. (The standard
library is guaranteed never to call setlocale itself.)

You should not modify the string returned by setlocale. It might be the same string
that was passed as an argument in a previous call to setlocale. One requirement is
that the category must be the same in the call the string was returned and the one
when the string is passed in as locale parameter.

When you read the current locale for category LC_ALL, the value encodes the entire
combination of selected locales for all categories. If you specify the same “locale name”
with LC_ALL in a subsequent call to setlocale, it restores the same combination of
locale selections.

To be sure you can use the returned string encoding the currently selected locale at a
later time, you must make a copy of the string. It is not guaranteed that the returned
pointer remains valid over time.

When the locale argument is not a null pointer, the string returned by setlocale
reflects the newly-modified locale.

If you specify an empty string for locale, this means to read the appropriate environ-
ment variable and use its value to select the locale for category.

If a nonempty string is given for locale, then the locale of that name is used if possible.

The effective locale name (either the second argument to setlocale, or if the argu-
ment is an empty string, the name obtained from the process environment) must be
a valid locale name. See Section 7.6 [Locale Names], page 191.

If you specify an invalid locale name, setlocale returns a null pointer and leaves the
current locale unchanged.

Here is an example showing how you might use setlocale to temporarily switch to a
new locale.

#include <stddef.h>
#include <locale.h>
#include <stdlib.h>
#include <string.h>

void

with_other_locale (char *new_locale,
void (*subroutine) (int),
int argument)

char *old_locale, *saved_locale;

/* Get the name of the current locale. */
old_locale = setlocale (LC_ALL, NULL);

/* Copy the name so it won’t be clobbered by setlocale. */
saved_locale = strdup (old_locale);
if (saved_locale == NULL)

fatal ("Out of memory");

/* Now change the locale and do some stuff with it. */
setlocale (LC_ALL, new_locale);
(*subroutine) (argument);

Chapter 7: Locales and Internationalization 191

/* Restore the original locale. */
setlocale (LC_ALL, saved_locale);
free (saved_locale);

}

Portability Note: Some ISO C systems may define additional locale categories, and
future versions of the library will do so. For portability, assume that any symbol beginning
with ‘LC_" might be defined in locale.h.

7.5 Standard Locales

The only locale names you can count on finding on all operating systems are these three
standard ones:

"c" This is the standard C locale. The attributes and behavior it provides are
specified in the ISO C standard. When your program starts up, it initially uses
this locale by default.

"POSIX" This is the standard POSIX locale. Currently, it is an alias for the standard C
locale.

e The empty name says to select a locale based on environment variables. See
Section 7.3 [Locale Categories]|, page 188.

Defining and installing named locales is normally a responsibility of the system admin-
istrator at your site (or the person who installed the GNU C Library). It is also possible
for the user to create private locales. All this will be discussed later when describing the
tool to do so.

If your program needs to use something other than the ‘C’ locale, it will be more portable
if you use whatever locale the user specifies with the environment, rather than trying to
specify some non-standard locale explicitly by name. Remember, different machines might
have different sets of locales installed.

7.6 Locale Names
The following command prints a list of locales supported by the system:
locale -a

Portability Note: With the notable exception of the standard locale names ‘C’ and
‘POSIX’, locale names are system-specific.

Most locale names follow XPG syntax and consist of up to four parts:

language[_territoryl[.codeset]] [@modifier]

Beside the first part, all of them are allowed to be missing. If the full specified locale is
not found, less specific ones are looked for. The various parts will be stripped off, in the
following order:

1. codeset

2. normalized codeset
3. territory
4

. modifier

Chapter 7: Locales and Internationalization 192

For example, the locale name ‘de_AT.is0885915@euro’ denotes a German-language lo-
cale for use in Austria, using the ISO-8859-15 (Latin-9) character set, and with the Euro
as the currency symbol.

In addition to locale names which follow XPG syntax, systems may provide aliases such
as ‘german’. Both categories of names must not contain the slash character ‘/’.

If the locale name starts with a slash ¢/’, it is treated as a path relative to the configured
locale directories; see LOCPATH below. The specified path must not contain a component
‘..’, or the name is invalid, and setlocale will fail.

Portability Note: POSIX suggests that if a locale name starts with a slash ‘/’, it is
resolved as an absolute path. However, the GNU C Library treats it as a relative path
under the directories listed in LOCPATH (or the default locale directory if LOCPATH is unset).

Locale names which are longer than an implementation-defined limit are invalid and
cause setlocale to fail.

As a special case, locale names used with LC_ALL can combine several locales, reflecting
different locale settings for different categories. For example, you might want to use a U.S.
locale with ISO A4 paper format, so you set LANG to ‘en_US.UTF-8’, and LC_PAPER to
‘de_DE.UTF-8’. In this case, the LC_ALL-style combined locale name is

LC_CTYPE=en_US.UTF-8;LC_TIME=en_US.UTF-8;LC_PAPER=de_DE.UTF-8;. ..

followed by other category settings not shown here.

The path used for finding locale data can be set using the LOCPATH environment variable.
This variable lists the directories in which to search for locale definitions, separated by a
colon ‘:’.

The default path for finding locale data is system specific. A typical value for the
LOCPATH default is:

/usr/share/locale

The value of LOCPATH is ignored by privileged programs for security reasons, and only
the default directory is used.

7.7 Accessing Locale Information

There are several ways to access locale information. The simplest way is to let the C library
itself do the work. Several of the functions in this library implicitly access the locale data,
and use what information is provided by the currently selected locale. This is how the locale
model is meant to work normally.

As an example take the strftime function, which is meant to nicely format date and
time information (see Section 22.5.4 [Formatting Calendar Time], page 664). Part of the
standard information contained in the LC_TIME category is the names of the months. Instead
of requiring the programmer to take care of providing the translations the strftime function
does this all by itself. %A in the format string is replaced by the appropriate weekday name
of the locale currently selected by LC_TIME. This is an easy example, and wherever possible
functions do things automatically in this way.

But there are quite often situations when there is simply no function to perform the task,
or it is simply not possible to do the work automatically. For these cases it is necessary to
access the information in the locale directly. To do this the C library provides two functions:
localeconv and nl_langinfo. The former is part of ISO C and therefore portable, but

Chapter 7: Locales and Internationalization 193

has a brain-damaged interface. The second is part of the Unix interface and is portable in
as far as the system follows the Unix standards.

7.7.1 localeconv: It is portable but ...

Together with the setlocale function the ISO C people invented the localeconv function.
It is a masterpiece of poor design. It is expensive to use, not extensible, and not generally
usable as it provides access to only LC_MONETARY and LC_NUMERIC related information.
Nevertheless, if it is applicable to a given situation it should be used since it is very portable.
The function strfmon formats monetary amounts according to the selected locale using this
information.

struct lconv * localeconv (void) [Function]
Preliminary: | MT-Unsafe race:localeconv locale | AS-Unsafe | AC-Safe | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The localeconv function returns a pointer to a structure whose components contain
information about how numeric and monetary values should be formatted in the
current locale.

You should not modify the structure or its contents. The structure might be over-
written by subsequent calls to localeconv, or by calls to setlocale, but no other
function in the library overwrites this value.

struct lconv [Data Type]
localeconv’s return value is of this data type. Its elements are described in the
following subsections.

If a member of the structure struct lconv has type char, and the value is CHAR_MAX,
it means that the current locale has no value for that parameter.

7.7.1.1 Generic Numeric Formatting Parameters
These are the standard members of struct lconv; there may be others.

char *decimal_point

char *mon_decimal_point
These are the decimal-point separators used in formatting non-monetary and
monetary quantities, respectively. In the ‘C’ locale, the value of decimal_point
is "." and the value of mon_decimal_point is "".

char *thousands_sep

char *mon_thousands_sep
These are the separators used to delimit groups of digits to the left of the decimal
point in formatting non-monetary and monetary quantities, respectively. In the
‘C’ locale, both members have a value of "" (the empty string).

char *grouping

char *mon_grouping
These are strings that specify how to group the digits to the left of the decimal
point. grouping applies to non-monetary quantities and mon_grouping applies
to monetary quantities. Use either thousands_sep or mon_thousands_sep to
separate the digit groups.

Chapter 7: Locales and Internationalization 194

Each member of these strings is to be interpreted as an integer value of type
char. Successive numbers (from left to right) give the sizes of successive groups
(from right to left, starting at the decimal point.) The last member is either
0, in which case the previous member is used over and over again for all the
remaining groups, or CHAR_MAX, in which case there is no more grouping—or,
put another way, any remaining digits form one large group without separators.

For example, if grouping is "\04\03\02", the correct grouping for the number
123456787654321 is ‘127, ‘34’, ‘567, ‘78’, “765’, ‘4321°. This uses a group of 4
digits at the end, preceded by a group of 3 digits, preceded by groups of 2 digits
(as many as needed). With a separator of ‘,’, the number would be printed as
‘12,34,56,78,765,4321’.

A value of "\03" indicates repeated groups of three digits, as normally used in
the U.S.

In the standard ‘C’ locale, both grouping and mon_grouping have a value of
", This value specifies no grouping at all.

char int_frac_digits

char frac_digits
These are small integers indicating how many fractional digits (to the right of
the decimal point) should be displayed in a monetary value in international and
local formats, respectively. (Most often, both members have the same value.)

In the standard ‘C’ locale, both of these members have the value CHAR_MAX,
meaning “unspecified”. The ISO standard doesn’t say what to do when you
find this value; we recommend printing no fractional digits. (This locale also
specifies the empty string for mon_decimal_point, so printing any fractional
digits would be confusing!)

7.7.1.2 Printing the Currency Symbol

These members of the struct lconv structure specify how to print the symbol to identify
a monetary value—the international analog of ‘$’ for US dollars.

Each country has two standard currency symbols. The local currency symbol is used
commonly within the country, while the international currency symbol is used interna-
tionally to refer to that country’s currency when it is necessary to indicate the country
unambiguously.

For example, many countries use the dollar as their monetary unit, and when dealing with
international currencies it’s important to specify that one is dealing with (say) Canadian
dollars instead of U.S. dollars or Australian dollars. But when the context is known to be
Canada, there is no need to make this explicit—dollar amounts are implicitly assumed to
be in Canadian dollars.

char *currency_symbol
The local currency symbol for the selected locale.

In the standard ‘C’ locale, this member has a value of "" (the empty string),
meaning “unspecified”. The ISO standard doesn’t say what to do when you
find this value; we recommend you simply print the empty string as you would
print any other string pointed to by this variable.

Chapter 7: Locales and Internationalization 195

char *int_curr_symbol
The international currency symbol for the selected locale.

The value of int_curr_symbol should normally consist of a three-letter ab-
breviation determined by the international standard ISO 4217 Codes for the
Representation of Currency and Funds, followed by a one-character separator
(often a space).

In the standard ‘C’ locale, this member has a value of "" (the empty string),
meaning “unspecified”. We recommend you simply print the empty string as
you would print any other string pointed to by this variable.

char p_cs_precedes

char n_cs_precedes

char int_p_cs_precedes

char int_n_cs_precedes
These members are 1 if the currency_symbol or int_curr_symbol strings
should precede the value of a monetary amount, or 0 if the strings should
follow the value. The p_cs_precedes and int_p_cs_precedes members apply
to positive amounts (or zero), and the n_cs_precedes and int_n_cs_precedes
members apply to negative amounts.

In the standard ‘C’ locale, all of these members have a value of CHAR_MAX,
meaning “unspecified”. The ISO standard doesn’t say what to do when you
find this value. We recommend printing the currency symbol before the amount,
which is right for most countries. In other words, treat all nonzero values alike
in these members.

The members with the int_ prefix apply to the int_curr_symbol while the
other two apply to currency_symbol.

char p_sep_by_space

char n_sep_by_space

char int_p_sep_by_space

char int_n_sep_by_space
These members are 1 if a space should appear between the currency_symbol or
int_curr_symbol strings and the amount, or 0 if no space should appear. The
p_sep_by_space and int_p_sep_by_space members apply to positive amounts
(or zero), and the n_sep_by_space and int_n_sep_by_space members apply
to negative amounts.

In the standard ‘C’ locale, all of these members have a value of CHAR_MAX,
meaning “unspecified”. The ISO standard doesn’t say what you should do
when you find this value; we suggest you treat it as 1 (print a space). In other
words, treat all nonzero values alike in these members.

The members with the int_ prefix apply to the int_curr_symbol while the
other two apply to currency_symbol. There is one specialty with the int_
curr_symbol, though. Since all legal values contain a space at the end of
the string one either prints this space (if the currency symbol must appear in
front and must be separated) or one has to avoid printing this character at all
(especially when at the end of the string).

Chapter 7: Locales and Internationalization 196

7.7.1.3 Printing the Sign of a Monetary Amount

These members of the struct lconv structure specify how to print the sign (if any) of a
monetary value.

char *positive_sign

char *negative_sign
These are strings used to indicate positive (or zero) and negative monetary
quantities, respectively.

In the standard ‘C’ locale, both of these members have a value of "" (the empty
string), meaning “unspecified”.

The ISO standard doesn’t say what to do when you find this value; we recom-
mend printing positive_sign as you find it, even if it is empty. For a negative
value, print negative_sign as you find it unless both it and positive_sign
are empty, in which case print ‘-’ instead. (Failing to indicate the sign at all
seems rather unreasonable.)

char p_sign_posn

char n_sign_posn

char int_p_sign_posn

char int_n_sign_posn
These members are small integers that indicate how to position the sign for
nonnegative and negative monetary quantities, respectively. (The string used
for the sign is what was specified with positive_sign or negative_sign.) The
possible values are as follows:

0 The currency symbol and quantity should be surrounded by paren-
theses.

1 Print the sign string before the quantity and currency symbol.

2 Print the sign string after the quantity and currency symbol.

3 Print the sign string right before the currency symbol.

4 Print the sign string right after the currency symbol.

CHAR_MAX “Unspecified”. Both members have this value in the standard ‘C’
locale.

The ISO standard doesn’t say what you should do when the value is CHAR_MAX.
We recommend you print the sign after the currency symbol.

The members with the int_ prefix apply to the int_curr_symbol while the
other two apply to currency_symbol.

7.7.2 Pinpoint Access to Locale Data

When writing the X/Open Portability Guide the authors realized that the localeconv
function is not enough to provide reasonable access to locale information. The information
which was meant to be available in the locale (as later specified in the POSIX.1 standard)
requires more ways to access it. Therefore the n1_langinfo function was introduced.

Chapter 7: Locales and Internationalization 197

char * nl_langinfo (nl_item item) [Function]
Preliminary: | MT-Safe locale | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The nl_langinfo function can be used to access individual elements of the locale
categories. Unlike the localeconv function, which returns all the information, nl_
langinfo lets the caller select what information it requires. This is very fast and it
is not a problem to call this function multiple times.

A second advantage is that in addition to the numeric and monetary formatting
information, information from the LC_TIME and LC_MESSAGES categories is available.

The type nl_item is defined in nl_types.h. The argument item is a numeric value
defined in the header langinfo.h. The X/Open standard defines the following values:

CODESET

ABDAY_1
ABDAY_2
ABDAY_3
ABDAY_4
ABDAY_b5
ABDAY_6
ABDAY_7

DAY_1
DAY_2
DAY_3
DAY_4
DAY_5
DAY_6
DAY_7

ABMON_1
ABMON_2
ABMON_3
ABMON_4
ABMON_5
ABMON_6
ABMON_7
ABMON_8
ABMON_9
ABMON_10
ABMON_11
ABMON_12

nl_langinfo returns a string with the name of the coded character set
used in the selected locale.

nl_langinfo returns the abbreviated weekday name. ABDAY_1 corre-
sponds to Sunday.

Similar to ABDAY_1, etc., but here the return value is the unabbreviated
weekday name.

The return value is the abbreviated name of the month, in the grammat-
ical form used when the month forms part of a complete date. ABMON_1
corresponds to January.

Chapter 7: Locales and Internationalization 198

MON_1
MON_2
MON_3
MON_4
MON_5
MON_6
MON_7
MON_8
MON_9
MON_10
MON_11
MON_12

ALTMON_1
ALTMON_2
ALTMON_3
ALTMON_4
ALTMON_5
ALTMON_6
ALTMON_7
ALTMON_8
ALTMON_9
ALTMON_10
ALTMON_11
ALTMON_12

AM_STR
PM_STR

D_T_FMT

D_FMT

Similar to ABMON_1, etc., but here the month names are not abbreviated.
Here the first value MON_1 also corresponds to January.

Similar to MON_1, etc., but here the month names are in the grammatical
form used when the month is named by itself. The strftime functions
use these month names for the conversion specifier %0B (see Section 22.5.4
[Formatting Calendar Time], page 664).

Note that not all languages need two different forms of the month names,
so the strings returned for MON_. .. and ALTMON_. .. may or may not be
the same, depending on the locale.

NB: ABALTMON_. .. constants corresponding to the %0b conversion speci-
fier are not currently provided, but are expected to be in a future release.
In the meantime, it is possible to use _NL_ABALTMON_....

The return values are strings which can be used in the representation of
time as an hour from 1 to 12 plus an am/pm specifier.

Note that in locales which do not use this time representation these strings
might be empty, in which case the am/pm format cannot be used at all.

The return value can be used as a format string for strftime to represent
time and date in a locale-specific way.

The return value can be used as a format string for strftime to represent
a date in a locale-specific way.

Chapter 7: Locales and Internationalization 199

T_FMT

The return value can be used as a format string for strftime to represent
time in a locale-specific way.

T_FMT_AMPM

ERA

ERA_YEAR

The return value can be used as a format string for strftime to represent
time in the am/pm format.

Note that if the am/pm format does not make any sense for the selected
locale, the return value might be the same as the one for T_FMT.

The return value represents the era used in the current locale.

Most locales do not define this value. An example of a locale which
does define this value is the Japanese one. In Japan, the traditional
representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying
the E modifier in their format strings causes the strftime functions to
use this information. The format of the returned string is not specified,
and therefore you should not assume knowledge of it on different systems.

The return value gives the year in the relevant era of the locale. As for
ERA it should not be necessary to use this value directly.

ERA_D_T_FMT

ERA_D_FMT

ERA_T_FMT

ALT_DIGITS

This return value can be used as a format string for strftime to represent
dates and times in a locale-specific era-based way.

This return value can be used as a format string for strftime to represent
a date in a locale-specific era-based way.

This return value can be used as a format string for strftime to represent
time in a locale-specific era-based way.

The return value is a representation of up to 100 values used to represent
the values 0 to 99. As for ERA this value is not intended to be used
directly, but instead indirectly through the strftime function. When
the modifier 0 is used in a format which would otherwise use numerals
to represent hours, minutes, seconds, weekdays, months, or weeks, the
appropriate value for the locale is used instead.

INT_CURR_SYMBOL

The same as the value returned by localeconv in the int_curr_symbol
element of the struct lconv.

CURRENCY_SYMBOL

CRNCYSTR

The same as the value returned by localeconv in the currency_symbol
element of the struct lconv.

CRNCYSTR is a deprecated alias still required by Unix98.

Chapter 7: Locales and Internationalization 200

MON_DECIMAL_POINT
The same as the value returned by localeconv in the mon_decimal_
point element of the struct lconv.

MON_THOUSANDS_SEP
The same as the value returned by localeconv in the mon_thousands_
sep element of the struct lconv.

MON_GROUPING
The same as the value returned by localeconv in the mon_grouping
element of the struct lconv.

POSITIVE_SIGN
The same as the value returned by localeconv in the positive_sign
element of the struct lconv.

NEGATIVE_SIGN
The same as the value returned by localeconv in the negative_sign
element of the struct lconv.

INT_FRAC_DIGITS
The same as the value returned by localeconv in the int_frac_digits
element of the struct lconv.

FRAC_DIGITS
The same as the value returned by localeconv in the frac_digits ele-
ment of the struct lconv.

P_CS_PRECEDES
The same as the value returned by localeconv in the p_cs_precedes
element of the struct lconv.

P_SEP_BY_SPACE
The same as the value returned by localeconv in the p_sep_by_space
element of the struct lconv.

N_CS_PRECEDES
The same as the value returned by localeconv in the n_cs_precedes
element of the struct lconv.

N_SEP_BY_SPACE
The same as the value returned by localeconv in the n_sep_by_space
element of the struct lconv.

P_SIGN_POSN
The same as the value returned by localeconv in the p_sign_posn ele-
ment of the struct lconv.

N_SIGN_POSN
The same as the value returned by localeconv in the n_sign_posn ele-
ment of the struct lconv.

INT_P_CS_PRECEDES
The same as the value returned by localeconv in the int_p_cs_
precedes element of the struct lconv.

Chapter 7: Locales and Internationalization 201

INT_P_SEP_BY_SPACE

The same as the value returned by localeconv in the int_p_sep_by_
space element of the struct lconv.

INT_N_CS_PRECEDES

The same as the value returned by localeconv in the int_n_cs_
precedes element of the struct lconv.

INT_N_SEP_BY_SPACE

The same as the value returned by localeconv in the int_n_sep_by_
space element of the struct lconv.

INT_P_SIGN_POSN

The same as the value returned by localeconv in the int_p_sign_posn
element of the struct lconv.

INT_N_SIGN_POSN

The same as the value returned by localeconv in the int_n_sign_posn
element of the struct lconv.

DECIMAL_POINT

RADIXCHAR

THOUSANDS_

THOUSEP

GROUPING

YESEXPR

NOEXPR

YESSTR

NOSTR

The same as the value returned by localeconv in the decimal_point
element of the struct lconv.

The name RADIXCHAR is a deprecated alias still used in Unix98.

SEP
The same as the value returned by localeconv in the thousands_sep
element of the struct lconv.

The name THOUSEP is a deprecated alias still used in Unix98.

The same as the value returned by localeconv in the grouping element
of the struct lconv.

The return value is a regular expression which can be used with the
regex function to recognize a positive response to a yes/no question.
The GNU C Library provides the rpmatch function for easier handling
in applications.

The return value is a regular expression which can be used with the regex
function to recognize a negative response to a yes/no question.

The return value is a locale-specific translation of the positive response
to a yes/no question.

Using this value is deprecated since it is a very special case of message
translation, and is better handled by the message translation functions
(see Chapter 8 [Message Translation], page 207).

The use of this symbol is deprecated. Instead message translation should
be used.

The return value is a locale-specific translation of the negative response
to a yes/no question. What is said for YESSTR is also true here.

Chapter 7: Locales and Internationalization 202

The use of this symbol is deprecated. Instead message translation should
be used.

The file langinfo.h defines a lot more symbols but none of them are official. Using
them is not portable, and the format of the return values might change. Therefore
we recommended you not use them.

Note that the return value for any valid argument can be used in all situations (with
the possible exception of the am/pm time formatting codes). If the user has not
selected any locale for the appropriate category, nl_langinfo returns the information
from the "C" locale. It is therefore possible to use this function as shown in the
example below.

If the argument item is not valid, a pointer to an empty string is returned.

An example of nl_langinfo usage is a function which has to print a given date and
time in a locale-specific way. At first one might think that, since strftime internally uses
the locale information, writing something like the following is enough:

size_t
i18n_time_n_data (char *s, size_t len, const struct tm *tp)
{
return strftime (s, len, "%X %D", tp);
}

The format contains no weekday or month names and therefore is internationally usable.
Wrong! The output produced is something like "hh:mm: ss MM/DD/YY". This format is only
recognizable in the USA. Other countries use different formats. Therefore the function
should be rewritten like this:

size_t
i18n_time_n_data (char *s, size_t len, const struct tm *tp)
{
return strftime (s, len, nl_langinfo (D_T_FMT), tp);
}

Now it uses the date and time format of the locale selected when the program runs. If
the user selects the locale correctly there should never be a misunderstanding over the time
and date format.

7.8 A dedicated function to format numbers

We have seen that the structure returned by localeconv as well as the values given to nl_
langinfo allow you to retrieve the various pieces of locale-specific information to format
numbers and monetary amounts. We have also seen that the underlying rules are quite
complex.

Therefore the X/Open standards introduce a function which uses such locale information,
making it easier for the user to format numbers according to these rules.

ssize_t strfmon (char *s, size_t maxsize, const char *format, ...) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe heap | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The strfmon function is similar to the strftime function in that it takes a buffer,
its size, a format string, and values to write into the buffer as text in a form specified

Chapter 7: Locales and Internationalization 203

by the format string. Like strftime, the function also returns the number of bytes
written into the buffer.

There are two differences: strfmon can take more than one argument, and, of course,
the format specification is different. Like strftime, the format string consists of
normal text, which is output as is, and format specifiers, which are indicated by a
‘%’. Immediately after the ‘%’, you can optionally specify various flags and formatting
information before the main formatting character, in a similar way to printf:

e Immediately following the ‘%’ there can be one or more of the following flags:

=f The single byte character f is used for this field as the numeric fill
character. By default this character is a space character. Filling with
this character is only performed if a left precision is specified. It is
not just to fill to the given field width.

The number is printed without grouping the digits according to the
rules of the current locale. By default grouping is enabled.

470 At most one of these flags can be used. They select which format
to represent the sign of a currency amount. By default, and if ‘+’ is
given, the locale equivalent of +/— is used. If ‘(’ is given, negative
amounts are enclosed in parentheses. The exact format is determined
by the values of the LC_MONETARY category of the locale selected at
program runtime.

The output will not contain the currency symbol.

=’ The output will be formatted left-justified instead of right-justified
if it does not fill the entire field width.

The next part of the specification is an optional field width. If no width is specified 0
is taken. During output, the function first determines how much space is required. If
it requires at least as many characters as given by the field width, it is output using
as much space as necessary. Otherwise, it is extended to use the full width by filling
with the space character. The presence or absence of the ‘=’ flag determines the side
at which such padding occurs. If present, the spaces are added at the right making
the output left-justified, and vice versa.

So far the format looks familiar, being similar to the printf and strftime formats.
However, the next two optional fields introduce something new. The first one is a ‘#’
character followed by a decimal digit string. The value of the digit string specifies
the number of digit positions to the left of the decimal point (or equivalent). This
does not include the grouping character when the ‘*’ flag is not given. If the space
needed to print the number does not fill the whole width, the field is padded at the
left side with the fill character, which can be selected using the ‘=" flag and by default
is a space. For example, if the field width is selected as 6 and the number is 123, the
fill character is ‘*’ the result will be ‘*x**123’.

The second optional field starts with a ‘.’ (period) and consists of another decimal
digit string. Its value describes the number of characters printed after the decimal
point. The default is selected from the current locale (frac_digits, int_frac_
digits, see see Section 7.7.1.1 [Generic Numeric Formatting Parameters|, page 193).

Chapter 7: Locales and Internationalization 204

If the exact representation needs more digits than given by the field width, the dis-
played value is rounded. If the number of fractional digits is selected to be zero, no
decimal point is printed.

As a GNU extension, the strfmon implementation in the GNU C Library allows an
optional ‘L’ next as a format modifier. If this modifier is given, the argument is
expected to be a long double instead of a double value.

Finally, the last component is a format specifier. There are three specifiers defined:

‘i’ Use the locale’s rules for formatting an international currency value.
‘n’ Use the locale’s rules for formatting a national currency value.
A Place a ‘/%’ in the output. There must be no flag, width specifier or

modifier given, only ‘%%’ is allowed.

As for printf, the function reads the format string from left to right and uses the
values passed to the function following the format string. The values are expected to
be either of type double or long double, depending on the presence of the modifier
‘L’. The result is stored in the buffer pointed to by s. At most maxsize characters
are stored.

The return value of the function is the number of characters stored in s, including the
terminating NULL byte. If the number of characters stored would exceed maxsize, the
function returns —1 and the content of the buffer s is unspecified. In this case errno
is set to E2BIG.

A few examples should make clear how the function works. It is assumed that all the
following pieces of code are executed in a program which uses the USA locale (en_US). The
simplest form of the format is this:

strfmon (buf, 100, "@%n@%ne@%ne", 123.45, -567.89, 12345.678);

The output produced is
"@$123.450-$567.890$12,345.680"

We can notice several things here. First, the widths of the output numbers are different.
We have not specified a width in the format string, and so this is no wonder. Second, the
third number is printed using thousands separators. The thousands separator for the en_US
locale is a comma. The number is also rounded. .678 is rounded to .68 since the format
does not specify a precision and the default value in the locale is 2. Finally, note that the
national currency symbol is printed since ‘%n’ was used, not ‘i’. The next example shows
how we can align the output.

strfmon (buf, 100, "@%=+*11n@)=+*11n@%=*11n@", 123.45, -567.89, 12345.678);

The output this time is:
"Q $123.45@ -$567.89@ $12,345.68Q"

Two things stand out. Firstly, all fields have the same width (eleven characters) since
this is the width given in the format and since no number required more characters to be
printed. The second important point is that the fill character is not used. This is correct
since the white space was not used to achieve a precision given by a ‘#’ modifier, but
instead to fill to the given width. The difference becomes obvious if we now add a width
specification.

strfmon (buf, 100, "@Y%=+11#5n@%=+11#5n@%=+11#5nQ",

Chapter 7: Locales and Internationalization 205

123.45, -567.89, 12345.678);

The output is
"@ $*xx123.450-$*x*567.89Q $12,456.680"

Here we can see that all the currency symbols are now aligned, and that the space
between the currency sign and the number is filled with the selected fill character. Note
that although the width is selected to be 5 and 123.45 has three digits left of the decimal
point, the space is filled with three asterisks. This is correct since, as explained above, the
width does not include the positions used to store thousands separators. One last example
should explain the remaining functionality.

strfmon (buf, 100, "@%=0(16#5.310@%=0(16#5.310%=0(16#5.3i@",
123.45, -567.89, 12345.678);
This rather complex format string produces the following output:
"@ USD 000123,450 @(USD 000567.890)@ USD 12,345.678 @"

The most noticeable change is the alternative way of representing negative numbers. In
financial circles this is often done using parentheses, and this is what the ‘(' flag selected.
The fill character is now ‘0’. Note that this ‘0’ character is not regarded as a numeric zero,
and therefore the first and second numbers are not printed using a thousands separator.
Since we used the format specifier ‘i’ instead of ‘n’, the international form of the currency
symbol is used. This is a four letter string, in this case "USD ". The last point is that since
the precision right of the decimal point is selected to be three, the first and second numbers
are printed with an extra zero at the end and the third number is printed without rounding.

7.9 Yes-or-No Questions

Some non GUI programs ask a yes-or-no question. If the messages (especially the questions)
are translated into foreign languages, be sure that you localize the answers too. It would be
very bad habit to ask a question in one language and request the answer in another, often
English.

The GNU C Library contains rpmatch to give applications easy access to the corre-
sponding locale definitions.

int rpmatch (const char *response) [Function]
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function rpmatch checks the string in response for whether or not it is a correct
yes-or-no answer and if yes, which one. The check uses the YESEXPR and NOEXPR data
in the LC_MESSAGES category of the currently selected locale. The return value is as

follows:

1 The user entered an affirmative answer.

0 The user entered a negative answer.

-1 The answer matched neither the YESEXPR nor the NOEXPR regular expres-

sion.

This function is not standardized but available beside in the GNU C Library at least
also in the IBM AIX library.

This function would normally be used like this:

/* Use a safe default. */
_Bool doit = false;

fputs (gettext ("Do you really want to do this? "), stdout);
fflush (stdout);
/* Prepare the getline call. */

line = NULL;

len = 0;

while (getline (&line, &len, stdin) >= 0)
{

/* Check the response. */
int res = rpmatch (line);
if (res >= 0)
{
/* We got a definitive answer. */
if (res > 0)
doit = true;
break;
}
}
/* Free what getline allocated. */
free (1line);

206

Note that the loop continues until a read error is detected or until a definitive (positive

or negative) answer is read.

207

8 Message Translation

The program’s interface with the user should be designed to ease the user’s task. One way
to ease the user’s task is to use messages in whatever language the user prefers.

Printing messages in different languages can be implemented in different ways. One could
add all the different languages in the source code and choose among the variants every time
a message has to be printed. This is certainly not a good solution since extending the set of
languages is cumbersome (the code must be changed) and the code itself can become really
big with dozens of message sets.

A better solution is to keep the message sets for each language in separate files which
are loaded at runtime depending on the language selection of the user.

The GNU C Library provides two different sets of functions to support message trans-
lation. The catgets family of functions were previously the only family defined in the
X/Open standard but they were derived from industry decisions and therefore not neces-
sarily based on reasonable decisions. However, the preferable gettext family of functions
was standardized in POSIX-1.2024.

As mentioned above, the message catalog handling provides easy extendability by using
external data files which contain the message translations. I.e., these files contain for each
of the messages used in the program a translation for the appropriate language. So the
tasks of the message handling functions are

e locate the external data file with the appropriate translations
e load the data and make it possible to address the messages
e map a given key to the translated message

The two approaches mainly differ in the implementation of this last step. Decisions made
in the last step influence the rest of the design.

8.1 X/Open Message Catalog Handling

The catgets functions are based on the simple scheme:

Associate every message to translate in the source code with a unique identifier.
To retrieve a message from a catalog file solely the identifier is used.

This means for the author of the program that s/he will have to make sure the meaning
of the identifier in the program code and in the message catalogs is always the same.

Before a message can be translated the catalog file must be located. The user of the
program must be able to guide the responsible function to find whatever catalog the user
wants. This is separated from what the programmer had in mind.

All the types, constants and functions for the catgets functions are defined/declared in
the nl_types.h header file.

8.1.1 The catgets function family

nl_catd catopen (const char *cat_name, int flag) [Function]
Preliminary: | MT-Safe env | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

Chapter 8: Message Translation 208

The catopen function tries to locate the message data file named cat_name and loads
it when found. The return value is of an opaque type and can be used in calls to the
other functions to refer to this loaded catalog.

The return value is (nl_catd) -1 in case the function failed and no catalog was
loaded. The global variable errno contains a code for the error causing the failure.
But even if the function call succeeded this does not mean that all messages can be
translated.

Locating the catalog file must happen in a way which lets the user of the program
influence the decision. It is up to the user to decide about the language to use and
sometimes it is useful to use alternate catalog files. All this can be specified by the
user by setting some environment variables.

The first problem is to find out where all the message catalogs are stored. Every
program could have its own place to keep all the different files but usually the catalog
files are grouped by languages and the catalogs for all programs are kept in the same
place.

To tell the catopen function where the catalog for the program can be found the user
can set the environment variable NLSPATH to a value which describes her /his choice.
Since this value must be usable for different languages and locales it cannot be a
simple string. Instead it is a format string (similar to printf’s). An example is

/usr/share/locale/%L/%N: /usr/share/locale/%L/LC_MESSAGES/%N

First one can see that more than one directory can be specified (with the usual syntax
of separating them by colons). The next things to observe are the format string, %L
and %N in this case. The catopen function knows about several of them and the
replacement for all of them is of course different.

YA This format element is substituted with the name of the catalog file. This
is the value of the cat_name argument given to catgets.

L This format element is substituted with the name of the currently selected
locale for translating messages. How this is determined is explained be-
low.

Al (This is the lowercase ell.) This format element is substituted with the

language element of the locale name. The string describing the selected
locale is expected to have the form lang[_terr[.codeset]] and this
format uses the first part lang.

YA" This format element is substituted by the territory part terr of the name
of the currently selected locale. See the explanation of the format above.

he This format element is substituted by the codeset part codeset of the
name of the currently selected locale. See the explanation of the format
above.

o Since % is used as a meta character there must be a way to express the

% character in the result itself. Using %% does this just like it works for
printf.

Chapter 8: Message Translation 209

Using NLSPATH allows arbitrary directories to be searched for message catalogs while
still allowing different languages to be used. If the NLSPATH environment variable is
not set, the default value is

prefix/share/locale/}L/)\N: prefix/share/locale/%,L/LC_MESSAGES/YN

where prefix is given to configure while installing the GNU C Library (this value is
in many cases /usr or the empty string).

The remaining problem is to decide which must be used. The value decides about
the substitution of the format elements mentioned above. First of all the user can
specify a path in the message catalog name (i.e., the name contains a slash character).
In this situation the NLSPATH environment variable is not used. The catalog must
exist as specified in the program, perhaps relative to the current working directory.
This situation in not desirable and catalogs names never should be written this way.
Beside this, this behavior is not portable to all other platforms providing the catgets
interface.

Otherwise the values of environment variables from the standard environment are
examined (see Section 26.4.2 [Standard Environment Variables|, page 805). Which
variables are examined is decided by the flag parameter of catopen. If the value is
NL_CAT_LOCALE (which is defined in n1_types.h) then the catopen function uses the
name of the locale currently selected for the LC_MESSAGES category.

If flag is zero the LANG environment variable is examined. This is a left-over from
the early days when the concept of locales had not even reached the level of POSIX
locales.

The environment variable and the locale name should have a value of the form Iang[_
terr[.codeset]] as explained above. If no environment variable is set the "C" locale
is used which prevents any translation.

The return value of the function is in any case a valid string. Either it is a translation
from a message catalog or it is the same as the string parameter. So a piece of code
to decide whether a translation actually happened must look like this:

{
char *trans = catgets (desc, set, msg, input_string);
if (trans == input_string)
{
/* Something went wrong. */
}
}

When an error occurs the global variable errno is set to
EBADF The catalog does not exist.

ENOMSG The set/message tuple does not name an existing element in the message
catalog.

While it sometimes can be useful to test for errors programs normally will avoid any
test. If the translation is not available it is no big problem if the original, untranslated
message is printed. Either the user understands this as well or s/he will look for the
reason why the messages are not translated.

Please note that the currently selected locale does not depend on a call to the setlocale
function. It is not necessary that the locale data files for this locale exist and calling

Chapter 8: Message Translation 210

setlocale succeeds. The catopen function directly reads the values of the environment
variables.

char * catgets (nl-catd catalog_desc, int set, int message, const [Function]
char *string)

Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts]|, page 2.

The function catgets has to be used to access the message catalog previously opened
using the catopen function. The catalog_desc parameter must be a value previously
returned by catopen.

The next two parameters, set and message, reflect the internal organization of the
message catalog files. This will be explained in detail below. For now it is interesting
to know that a catalog can consist of several sets and the messages in each thread
are individually numbered using numbers. Neither the set number nor the message
number must be consecutive. They can be arbitrarily chosen. But each message
(unless equal to another one) must have its own unique pair of set and message
numbers.

Since it is not guaranteed that the message catalog for the language selected by
the user exists the last parameter string helps to handle this case gracefully. If no
matching string can be found string is returned. This means for the programmer that

e the string parameters should contain reasonable text (this also helps to under-
stand the program seems otherwise there would be no hint on the string which
is expected to be returned.

e all string arguments should be written in the same language.

It is somewhat uncomfortable to write a program using the catgets functions if no
supporting functionality is available. Since each set/message number tuple must be unique
the programmer must keep lists of the messages at the same time the code is written. And
the work between several people working on the same project must be coordinated. We
will see how some of these problems can be relaxed a bit (see Section 8.1.4 [How to use the
catgets interface|, page 214).

int catclose (nl_catd catalog_desc) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The catclose function can be used to free the resources associated with a message
catalog which previously was opened by a call to catopen. If the resources can be
successfully freed the function returns 0. Otherwise it returns —1 and the global
variable errno is set. Errors can occur if the catalog descriptor catalog_desc is not
valid in which case errno is set to EBADF.

8.1.2 Format of the message catalog files

The only reasonable way to translate all the messages of a function and store the result in a
message catalog file which can be read by the catopen function is to write all the message
text to the translator and let her/him translate them all. I.e., we must have a file with

Chapter 8: Message Translation 211

entries which associate the set/message tuple with a specific translation. This file format is
specified in the X/Open standard and is as follows:

e Lines containing only whitespace characters or empty lines are ignored.

e Lines which contain as the first non-whitespace character a $ followed by a whitespace
character are comment and are also ignored.

e If a line contains as the first non-whitespace characters the sequence $set followed by
a whitespace character an additional argument is required to follow. This argument
can either be:

— a number. In this case the value of this number determines the set to which the
following messages are added.

— an identifier consisting of alphanumeric characters plus the underscore character.
In this case the set get automatically a number assigned. This value is one added
to the largest set number which so far appeared.

How to use the symbolic names is explained in section Section 8.1.4 [How to use
the catgets interface], page 214.

It is an error if a symbol name appears more than once. All following messages
are placed in a set with this number.

e If a line contains as the first non-whitespace characters the sequence $delset followed
by a whitespace character an additional argument is required to follow. This argument
can either be:

— a number. In this case the value of this number determines the set which will be
deleted.

— an identifier consisting of alphanumeric characters plus the underscore character.
This symbolic identifier must match a name for a set which previously was defined.
It is an error if the name is unknown.

In both cases all messages in the specified set will be removed. They will not appear in
the output. But if this set is later again selected with a $set command again messages
could be added and these messages will appear in the output.

e If a line contains after leading whitespaces the sequence $quote, the quoting character
used for this input file is changed to the first non-whitespace character following $quote.
If no non-whitespace character is present before the line ends quoting is disabled.

By default no quoting character is used. In this mode strings are terminated with the
first unescaped line break. If there is a $quote sequence present newline need not be
escaped. Instead a string is terminated with the first unescaped appearance of the
quote character.

A common usage of this feature would be to set the quote character to ". Then any
appearance of the " in the strings must be escaped using the backslash (i.e., \" must
be written).

e Any other line must start with a number or an alphanumeric identifier (with the under-
score character included). The following characters (starting after the first whitespace
character) will form the string which gets associated with the currently selected set and
the message number represented by the number and identifier respectively.

If the start of the line is a number the message number is obvious. It is an error if the
same message number already appeared for this set.

Chapter 8: Message Translation 212

If the leading token was an identifier the message number gets automatically assigned.
The value is the current maximum message number for this set plus one. It is an error if
the identifier was already used for a message in this set. It is OK to reuse the identifier
for a message in another thread. How to use the symbolic identifiers will be explained
below (see Section 8.1.4 [How to use the catgets interface], page 214). There is one
limitation with the identifier: it must not be Set. The reason will be explained below.

The text of the messages can contain escape characters. The usual bunch of characters
known from the ISO C language are recognized (\n, \t, \v, \b, \r, \f, \\, and \nnan,
where nnn is the octal coding of a character code).

Important: The handling of identifiers instead of numbers for the set and messages is
a GNU extension. Systems strictly following the X/Open specification do not have this
feature. An example for a message catalog file is this:

$ This is a leading comment.
$quote "

$set SetOne
1 Message with ID 1.
two " Message with ID \"two\", which gets the value 2 assigned"

$set SetTwo
$ Since the last set got the number 1 assigned this set has number 2.
4000 "The numbers can be arbitrary, they need not start at omne."

This small example shows various aspects:
e Lines 1 and 9 are comments since they start with $ followed by a whitespace.

e The quoting character is set to ". Otherwise the quotes in the message definition would
have to be omitted and in this case the message with the identifier two would lose its
leading whitespace.

e Mixing numbered messages with messages having symbolic names is no problem and
the numbering happens automatically.

While this file format is pretty easy it is not the best possible for use in a running
program. The catopen function would have to parse the file and handle syntactic errors
gracefully. This is not so easy and the whole process is pretty slow. Therefore the catgets
functions expect the data in another more compact and ready-to-use file format. There is
a special program gencat which is explained in detail in the next section.

Files in this other format are not human readable. To be easy to use by programs it is a
binary file. But the format is byte order independent so translation files can be shared by
systems of arbitrary architecture (as long as they use the GNU C Library).

Details about the binary file format are not important to know since these files are always
created by the gencat program. The sources of the GNU C Library also provide the sources
for the gencat program and so the interested reader can look through these source files to
learn about the file format.

8.1.3 Generate Message Catalogs files

The gencat program is specified in the X/Open standard and the GNU implementation
follows this specification and so processes all correctly formed input files. Additionally some

Chapter 8: Message Translation 213

extension are implemented which help to work in a more reasonable way with the catgets
functions.

The gencat program can be invoked in two ways:
“gencat [Option ...] [Output-File [Input-File ...]]°

This is the interface defined in the X/Open standard. If no Input-File parameter is
given, input will be read from standard input. Multiple input files will be read as if they
were concatenated. If Output-File is also missing, the output will be written to standard
output. To provide the interface one is used to from other programs a second interface is
provided.

“gencat [Option ...] -o Output-File [Input-File ...]"

The option ‘-0’ is used to specify the output file and all file arguments are used as input
files.

Beside this one can use - or /dev/stdin for Input-File to denote the standard input.
Corresponding one can use - and /dev/stdout for Output-File to denote standard output.
Using - as a file name is allowed in X/Open while using the device names is a GNU extension.

The gencat program works by concatenating all input files and then merging the result-
ing collection of message sets with a possibly existing output file. This is done by removing
all messages with set/message number tuples matching any of the generated messages from
the output file and then adding all the new messages. To regenerate a catalog file while ig-
noring the old contents therefore requires removing the output file if it exists. If the output
is written to standard output no merging takes place.

The following table shows the options understood by the gencat program. The X/Open
standard does not specify any options for the program so all of these are GNU extensions.

L_V7
‘——version’
Print the version information and exit.

4_h7
‘-—help’ Print a usage message listing all available options, then exit successfully.

‘~—new’ Do not merge the new messages from the input files with the old content of the
output file. The old content of the output file is discarded.

g
‘~—header=name’
This option is used to emit the symbolic names given to sets and messages in
the input files for use in the program. Details about how to use this are given in
the next section. The name parameter to this option specifies the name of the
output file. It will contain a number of C preprocessor #defines to associate a
name with a number.

Please note that the generated file only contains the symbols from the input
files. If the output is merged with the previous content of the output file the
possibly existing symbols from the file(s) which generated the old output files
are not in the generated header file.

Chapter 8: Message Translation 214

8.1.4 How to use the catgets interface

The catgets functions can be used in two different ways. By following slavishly the X/Open
specs and not relying on the extension and by using the GNU extensions. We will take a
look at the former method first to understand the benefits of extensions.

8.1.4.1 Not using symbolic names

Since the X/Open format of the message catalog files does not allow symbol names we have
to work with numbers all the time. When we start writing a program we have to replace
all appearances of translatable strings with something like

catgets (catdesc, set, msg, "string")

catgets is retrieved from a call to catopen which is normally done once at the program
start. The "string" is the string we want to translate. The problems start with the set
and message numbers.

In a bigger program several programmers usually work at the same time on the program
and so coordinating the number allocation is crucial. Though no two different strings must
be indexed by the same tuple of numbers it is highly desirable to reuse the numbers for
equal strings with equal translations (please note that there might be strings which are
equal in one language but have different translations due to difference contexts).

The allocation process can be relaxed a bit by different set numbers for different parts
of the program. So the number of developers who have to coordinate the allocation can be
reduced. But still lists must be keep track of the allocation and errors can easily happen.
These errors cannot be discovered by the compiler or the catgets functions. Only the user
of the program might see wrong messages printed. In the worst cases the messages are
so irritating that they cannot be recognized as wrong. Think about the translations for
"true" and "false" being exchanged. This could result in a disaster.

8.1.4.2 Using symbolic names
The problems mentioned in the last section derive from the fact that:

1. the numbers are allocated once and due to the possibly frequent use of them it is
difficult to change a number later.

2. the numbers do not allow guessing anything about the string and therefore collisions
can easily happen.

By constantly using symbolic names and by providing a method which maps the string
content to a symbolic name (however this will happen) one can prevent both problems
above. The cost of this is that the programmer has to write a complete message catalog file
while s/he is writing the program itself.

This is necessary since the symbolic names must be mapped to numbers before the
program sources can be compiled. In the last section it was described how to generate a
header containing the mapping of the names. E.g., for the example message file given in
the last section we could call the gencat program as follows (assume ex.msg contains the
sources).

gencat -H ex.h -o ex.cat ex.msg

This generates a header file with the following content:
#define SetTwoSet 0x2 /* ex.msg:8 */

Chapter 8: Message Translation 215

#define SetOneSet Ox1 /* ex.msg:4 */
#define SetOnetwo 0x2 /* ex.msg:6 */

As can be seen the various symbols given in the source file are mangled to generate unique
identifiers and these identifiers get numbers assigned. Reading the source file and knowing
about the rules will allow to predict the content of the header file (it is deterministic) but
this is not necessary. The gencat program can take care for everything. All the programmer
has to do is to put the generated header file in the dependency list of the source files of
her/his project and add a rule to regenerate the header if any of the input files change.

One word about the symbol mangling. Every symbol consists of two parts: the name
of the message set plus the name of the message or the special string Set. So SetOnetwo
means this macro can be used to access the translation with identifier two in the message
set SetOne.

The other names denote the names of the message sets. The special string Set is used
in the place of the message identifier.

If in the code the second string of the set SetOne is used the C code should look like
this:
catgets (catdesc, SetOneSet, SetOnetwo,
" Message with ID \"two\", which gets the value 2 assigned")

Writing the function this way will allow to change the message number and even the
set number without requiring any change in the C source code. (The text of the string is
normally not the same; this is only for this example.)

8.1.4.3 How does to this allow to develop

To illustrate the usual way to work with the symbolic version numbers here is a little
example. Assume we want to write the very complex and famous greeting program. We
start by writing the code as usual:
#include <stdio.h>
int
main (void)
{
printf ("Hello, world!\n");
return O;

}

Now we want to internationalize the message and therefore replace the message with
whatever the user wants.

#include <nl_types.h>

#include <stdio.h>

#include "msgnrs.h"

int

main (void)

{
nl_catd catdesc = catopen ("hello.cat", NL_CAT_LOCALE);
printf (catgets (catdesc, SetMainSet, SetMainHello,

"Hello, world!\n"));

catclose (catdesc);
return O;

}

We see how the catalog object is opened and the returned descriptor used in the other
function calls. It is not really necessary to check for failure of any of the functions since

Chapter 8: Message Translation 216

even in these situations the functions will behave reasonable. They simply will be return a
translation.

What remains unspecified here are the constants SetMainSet and SetMainHello. These
are the symbolic names describing the message. To get the actual definitions which match
the information in the catalog file we have to create the message catalog source file and
process it using the gencat program.

$ Messages for the famous greeting program.
$quote "

$set Main
Hello "Hallo, Welt!\n"

Now we can start building the program (assume the message catalog source file is named
hello.msg and the program source file hello.c):

% gencat -H msgnrs.h -o hello.cat hello.msg
% cat msgnrs.h

#define MainSet Ox1 /* hello.msg:4 */
#define MainHello Ox1 /% hello.msg:5 */

% gcc -o hello hello.c -I.

% cp hello.cat /usr/share/locale/de/LC_MESSAGES
% echo $LC_ALL

de

% ./hello

Hallo, Welt!

%

The call of the gencat program creates the missing header file msgnrs.h as well as the
message catalog binary. The former is used in the compilation of hello.c while the later is
placed in a directory in which the catopen function will try to locate it. Please check the
LC_ALL environment variable and the default path for catopen presented in the description
above.

8.2 The Uniforum approach to Message Translation

Sun Microsystems tried to standardize a different approach to message translation in the
Uniforum group. There never was a real standard defined but still the interface was used
in Sun’s operating systems. Since this approach fits better in the development process of
free software it is also used throughout the GNU project and the GNU gettext package
provides support for this outside the GNU C Library.

The code of the 1ibintl from GNU gettext is the same as the code in the GNU C
Library. So the documentation in the GNU gettext manual is also valid for the functional-
ity here. The following text will describe the library functions in detail. But the numerous
helper programs are not described in this manual. Instead people should read the GNU
gettext manual (see Section “GNU gettext utilities” in Native Language Support Library
and Tools). We will only give a short overview.

Though the catgets functions are available by default on more systems the gettext
interface is at least as portable as the former. The GNU gettext package can be used
wherever the functions are not available.

Chapter 8: Message Translation 217

8.2.1 The gettext family of functions

The paradigms underlying the gettext approach to message translations is different from
that of the catgets functions the basic functionally is equivalent. There are functions of
the following categories:

8.2.1.1 What has to be done to translate a message?

The gettext functions have a very simple interface. The most basic function just takes
the string which shall be translated as the argument and it returns the translation. This
is fundamentally different from the catgets approach where an extra key is necessary and
the original string is only used for the error case.

If the string which has to be translated is the only argument this of course means the
string itself is the key. l.e., the translation will be selected based on the original string.
The message catalogs must therefore contain the original strings plus one translation for
any such string. The task of the gettext function is to compare the argument string with
the available strings in the catalog and return the appropriate translation. Of course this
process is optimized so that this process is not more expensive than an access using an
atomic key like in catgets.

The gettext approach has some advantages but also some disadvantages. Please see
the GNU gettext manual for a detailed discussion of the pros and cons.

All the definitions and declarations for gettext can be found in the 1ibintl.h header
file. On systems where these functions are not part of the C library they can be found in a
separate library named 1ibintl.a (or accordingly different for shared libraries).

char * gettext (const char *msgid) [Function]
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The gettext function searches the currently selected message catalogs for a string
which is equal to msgid. If there is such a string available it is returned. Otherwise
the argument string msgid is returned.

Please note that although the return value is char * the returned string must not
be changed. This broken type results from the history of the function and does not
reflect the way the function should be used.

Please note that above we wrote “message catalogs” (plural). This is a specialty of
the GNU implementation of these functions and we will say more about this when
we talk about the ways message catalogs are selected (see Section 8.2.1.2 [How to
determine which catalog to be used], page 219).

The gettext function does not modify the value of the global errno variable. This
is necessary to make it possible to write something like
printf (gettext ("Operation failed: %m\n"));

Here the errno value is used in the printf function while processing the %m format
element and if the gettext function would change this value (it is called before printf
is called) we would get a wrong message.

So there is no easy way to detect a missing message catalog besides comparing the
argument string with the result. But it is normally the task of the user to react
on missing catalogs. The program cannot guess when a message catalog is really

Chapter 8: Message Translation 218

necessary since for a user who speaks the language the program was developed in, the
message does not need any translation.

The remaining two functions to access the message catalog add some functionality to
select a message catalog which is not the default one. This is important if parts of the
program are developed independently. Every part can have its own message catalog and all
of them can be used at the same time. The C library itself is an example: internally it uses
the gettext functions but since it must not depend on a currently selected default message
catalog it must specify all ambiguous information.

char * dgettext (const char *domainname, const char *msgid) [Function]
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The dgettext function acts just like the gettext function. It only takes an additional
first argument domainname which guides the selection of the message catalogs which
are searched for the translation. If the domainname parameter is the null pointer the
dgettext function is exactly equivalent to gettext since the default value for the
domain name is used.

As for gettext the return value type is char * which is an anachronism. The returned
string must never be modified.

char * dcgettext (const char *domainname, const char *msgid, int [Function]
category)
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The dcgettext adds another argument to those which dgettext takes. This argu-
ment category specifies the last piece of information needed to localize the message
catalog. I.e., the domain name and the locale category exactly specify which message
catalog has to be used (relative to a given directory, see below).

The dgettext function can be expressed in terms of dcgettext by using
dcgettext (domain, string, LC_MESSAGES)

instead of

dgettext (domain, string)

This also shows which values are expected for the third parameter. One has to use the
available selectors for the categories available in locale.h. Normally the available
values are LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_
TIME. Please note that LC_ALL must not be used and even though the names might
suggest this, there is no relation to the environment variable of this name.

The dcgettext function is only implemented for compatibility with other systems
which have gettext functions. There is not really any situation where it is necessary
(or useful) to use a different value than LC_MESSAGES for the category parameter. We
are dealing with messages here and any other choice can only be irritating.

As for gettext the return value type is char * which is an anachronism. The returned
string must never be modified.

Chapter 8: Message Translation 219

When using the three functions above in a program it is a frequent case that the msgid
argument is a constant string. So it is worthwhile to optimize this case. Thinking shortly
about this one will realize that as long as no new message catalog is loaded the translation
of a message will not change. This optimization is actually implemented by the gettext,
dgettext and dcgettext functions.

8.2.1.2 How to determine which catalog to be used

The functions to retrieve the translations for a given message have a remarkable simple
interface. But to provide the user of the program still the opportunity to select exactly the
translation s/he wants and also to provide the programmer the possibility to influence the
way to locate the search for catalogs files there is a quite complicated underlying mechanism
which controls all this. The code is complicated the use is easy.

Basically we have two different tasks to perform which can also be performed by the
catgets functions:

1. Locate the set of message catalogs. There are a number of files for different languages
which all belong to the package. Usually they are all stored in the filesystem below a
certain directory.

There can be arbitrarily many packages installed and they can follow different guidelines
for the placement of their files.

2. Relative to the location specified by the package the actual translation files must be
searched, based on the wishes of the user. L.e., for each language the user selects the
program should be able to locate the appropriate file.

This is the functionality required by the specifications for gettext and this is also what
the catgets functions are able to do. But there are some problems unresolved:

e The language to be used can be specified in several different ways. There is no generally
accepted standard for this and the user always expects the program to understand
what s/he means. E.g., to select the German translation one could write de, german,
or deutsch and the program should always react the same.

e Sometimes the specification of the user is too detailed. If s/he, e.g., specifies de_
DE.IS0-8859-1 which means German, spoken in Germany, coded using the ISO 8859-1
character set there is the possibility that a message catalog matching this exactly is
not available. But there could be a catalog matching de and if the character set used
on the machine is always I[SO 8859-1 there is no reason why this later message catalog
should not be used. (We call this message inheritance.)

e If a catalog for a wanted language is not available it is not always the second best choice
to fall back on the language of the developer and simply not translate any message.
Instead a user might be better able to read the messages in another language and so
the user of the program should be able to define a precedence order of languages.

We can divide the configuration actions in two parts: the one is performed by the
programmer, the other by the user. We will start with the functions the programmer can
use since the user configuration will be based on this.

As the functions described in the last sections already mention separate sets of messages
can be selected by a domain name. This is a simple string which should be unique for each
program part that uses a separate domain. It is possible to use in one program arbitrarily

Chapter 8: Message Translation 220

many domains at the same time. E.g., the GNU C Library itself uses a domain named 1ibc

while the program using the C Library could use a domain named foo. The important
point is that at any time exactly one domain is active. This is controlled with the following
function.

char * textdomain (const char *domainname) [Function]

char

Preliminary: | MT-Safe | AS-Unsafe lock heap | AC-Unsafe lock mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The textdomain function sets the default domain, which is used in all future gettext
calls, to domainname. Please note that dgettext and dcgettext calls are not influ-
enced if the domainname parameter of these functions is not the null pointer.

Before the first call to textdomain the default domain is messages. This is the name
specified in the specification of the gettext APIL. This name is as good as any other
name. No program should ever really use a domain with this name since this can
only lead to problems.

The function returns the value which is from now on taken as the default domain. If
the system went out of memory the returned value is NULL and the global variable
errno is set to ENOMEM. Despite the return value type being char * the return string
must not be changed. It is allocated internally by the textdomain function.

If the domainname parameter is the null pointer no new default domain is set. Instead
the currently selected default domain is returned.

If the domainname parameter is the empty string the default domain is reset to its
initial value, the domain with the name messages. This possibility is questionable to
use since the domain messages really never should be used.

* bindtextdomain (const char *domainname, const char [Function]
*dirname)

Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1

[POSIX Safety Concepts|, page 2.

The bindtextdomain function can be used to specify the directory which contains
the message catalogs for domain domainname for the different languages. To be
correct, this is the directory where the hierarchy of directories is expected. Details
are explained below.

For the programmer it is important to note that the translations which come with the
program have to be placed in a directory hierarchy starting at, say, /foo/bar. Then
the program should make a bindtextdomain call to bind the domain for the current
program to this directory. So it is made sure the catalogs are found. A correctly
running program does not depend on the user setting an environment variable.

The bindtextdomain function can be used several times and if the domainname
argument is different the previously bound domains will not be overwritten.

If the program which wish to use bindtextdomain at some point of time use the chdir
function to change the current working directory it is important that the dirname
strings ought to be an absolute pathname. Otherwise the addressed directory might
vary with the time.

If the dirname parameter is the null pointer bindtextdomain returns the currently
selected directory for the domain with the name domainname.

Chapter 8: Message Translation 221

The bindtextdomain function returns a pointer to a string containing the name of
the selected directory name. The string is allocated internally in the function and
must not be changed by the user. If the system went out of core during the execution
of bindtextdomain the return value is NULL and the global variable errno is set
accordingly.

8.2.1.3 Additional functions for more complicated situations

The functions of the gettext family described so far (and all the catgets functions as
well) have one problem in the real world which has been neglected completely in all existing
approaches. What is meant here is the handling of plural forms.

Looking through Unix source code before the time anybody thought about internation-
alization (and, sadly, even afterwards) one can often find code similar to the following:
printf ("%d file%s deleted", mn, n == 1 7 "" : "s");
After the first complaints from people internationalizing the code people either completely
avoided formulations like this or used strings like "file(s)". Both look unnatural and
should be avoided. First tries to solve the problem correctly looked like this:

if (n == 1)
printf ("%d file deleted", n);
else

printf ("%d files deleted", n);

But this does not solve the problem. It helps languages where the plural form of a noun
is not simply constructed by adding an ‘s’ but that is all. Once again people fell into the trap
of believing the rules their language uses are universal. But the handling of plural forms
differs widely between the language families. There are two things we can differ between
(and even inside language families);

e The form how plural forms are build differs. This is a problem with language which
have many irregularities. German, for instance, is a drastic case. Though English and
German are part of the same language family (Germanic), the almost regular forming
of plural noun forms (appending an ‘s’) is hardly found in German.

e The number of plural forms differ. This is somewhat surprising for those who only have
experiences with Romanic and Germanic languages since here the number is the same
(there are two).

But other language families have only one form or many forms. More information on
this in an extra section.

The consequence of this is that application writers should not try to solve the problem in
their code. This would be localization since it is only usable for certain, hardcoded language
environments. Instead the extended gettext interface should be used.

These extra functions are taking instead of the one key string two strings and a numerical
argument. The idea behind this is that using the numerical argument and the first string
as a key, the implementation can select using rules specified by the translator the right
plural form. The two string arguments then will be used to provide a return value in case
no message catalog is found (similar to the normal gettext behavior). In this case the
rules for Germanic language are used and it is assumed that the first string argument is the
singular form, the second the plural form.

This has the consequence that programs without language catalogs can display the cor-
rect strings only if the program itself is written using a Germanic language. This is a

Chapter 8: Message Translation 222

limitation but since the GNU C Library (as well as the GNU gettext package) is written
as part of the GNU package and the coding standards for the GNU project require programs
to be written in English, this solution nevertheless fulfills its purpose.

char * ngettext (const char *msgidl, const char *msgid2, unsigned [Function]
long int n)
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The ngettext function is similar to the gettext function as it finds the message
catalogs in the same way. But it takes two extra arguments. The msgidl parameter
must contain the singular form of the string to be converted. It is also used as the
key for the search in the catalog. The msgid2 parameter is the plural form. The
parameter n is used to determine the plural form. If no message catalog is found
msgidl is returned if n == 1, otherwise msgid?2.

An example for the use of this function is:

printf (ngettext ("%d file removed", "%d files removed", n), n);

Please note that the numeric value n has to be passed to the printf function as well.
It is not sufficient to pass it only to ngettext.

char * dngettext (const char *domain, const char *msgid1, const [Function]
char *msgid2, unsigned long int n)
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The dngettext is similar to the dgettext function in the way the message catalog is
selected. The difference is that it takes two extra parameters to provide the correct
plural form. These two parameters are handled in the same way ngettext handles
them.

char * dcngettext (const char *domain, const char *msgid1, const [Function]
char *msgid2, unsigned long int n, int category)
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The dcngettext is similar to the dcgettext function in the way the message catalog
is selected. The difference is that it takes two extra parameters to provide the correct
plural form. These two parameters are handled in the same way ngettext handles
them.

The problem of plural forms

A description of the problem can be found at the beginning of the last section. Now there
is the question how to solve it. Without the input of linguists (which was not available) it
was not possible to determine whether there are only a few different forms in which plural
forms are formed or whether the number can increase with every new supported language.

Therefore the solution implemented is to allow the translator to specify the rules of how
to select the plural form. Since the formula varies with every language this is the only viable
solution except for hardcoding the information in the code (which still would require the
possibility of extensions to not prevent the use of new languages). The details are explained
in the GNU gettext manual. Here only a bit of information is provided.

Chapter 8: Message Translation 223

The information about the plural form selection has to be stored in the header entry
(the one with the empty msgid string). It looks like this:

Plural-Forms: nplurals=2; plural=n == 1 7 0 : 1;

The nplurals value must be a decimal number which specifies how many different
plural forms exist for this language. The string following plural is an expression using the
C language syntax. Exceptions are that no negative numbers are allowed, numbers must be
decimal, and the only variable allowed is n. This expression will be evaluated whenever one
of the functions ngettext, dngettext, or dcngettext is called. The numeric value passed
to these functions is then substituted for all uses of the variable n in the expression. The
resulting value then must be greater or equal to zero and smaller than the value given as
the value of nplurals.

The following rules are known at this point. The language with families are listed. But this
does not necessarily mean the information can be generalized for the whole family (as can
be easily seen in the table below).!

Only one form:
Some languages only require one single form. There is no distinction between
the singular and plural form. An appropriate header entry would look like this:

Plural-Forms: nplurals=1; plural=0;
Languages with this property include:
Finno-Ugric family

Hungarian

Asian family
Japanese, Korean

Turkic/Altaic family
Turkish

Two forms, singular used for one only
This is the form used in most existing programs since it is what English uses.
A header entry would look like this:
Plural-Forms: nplurals=2; plural=n != 1;
(Note: this uses the feature of C expressions that boolean expressions have to
value zero or one.)

Languages with this property include:

Germanic family
Danish, Dutch, English, German, Norwegian, Swedish

Finno-Ugric family
Estonian, Finnish

Latin/Greek family
Greek

Semitic family
Hebrew

1 Additions are welcome. Send appropriate information to libc-alpha@sourceware.org.

mailto:libc-alpha@sourceware.org

Chapter 8: Message Translation 224

Romance family
Italian, Portuguese, Spanish

Artificial Esperanto

Two forms, singular used for zero and one
Exceptional case in the language family. The header entry would be:

Plural-Forms: nplurals=2; plural=n>1;

Languages with this property include:

Romanic family
French, Brazilian Portuguese

Three forms, special case for zero
The header entry would be:

Plural-Forms: nplurals=3; plural=nj}10==1 && nJ100!=11 ? 0 : n !=0 7 1 : 2;
Languages with this property include:

Baltic family
Latvian

Three forms, special cases for one and two
The header entry would be:

Plural-Forms: nplurals=3; plural=n==1 ? 0 : n==2 7 1 : 2;

Languages with this property include:
Celtic Gaeilge (Irish)

Three forms, special case for numbers ending in 1[2-9]
The header entry would look like this:

Plural-Forms: nplurals=3; \
plural=n%10==1 && n%100!=11 7 0 : \
n%10>=2 && (n%100<10 || n’%100>=20) 7 1 : 2;

Languages with this property include:

Baltic family
Lithuanian

Three forms, special cases for numbers ending in 1 and 2, 3, 4, except those ending in
1[1-4]
The header entry would look like this:
Plural-Forms: nplurals=3; \
plural=n%100/10==1 ? 2 : n%10==1 7 0 : (n+9)%10>3 7 2 : 1;

Languages with this property include:

Slavic family
Croatian, Czech, Russian, Ukrainian

Three forms, special cases for 1 and 2, 3, 4
The header entry would look like this:

Plural-Forms: nplurals=3; \
plural=(n==1) ? 1 : (n>=2 && n<=4) ? 2 : 0;

Chapter 8: Message Translation 225

Languages with this property include:

Slavic family
Slovak

Three forms, special case for one and some numbers ending in 2, 3, or 4
The header entry would look like this:

Plural-Forms: nplurals=3; \
plural=n==1 7 0 : \
n%10>=2 && n’%10<=4 && (n%100<10 || n%100>=20) 7 1 : 2;

Languages with this property include:

Slavic family
Polish

Four forms, special case for one and all numbers ending in 02, 03, or 04
The header entry would look like this:
Plural-Forms: nplurals=4; \

plural=n%100==1 ? 0 : n%100==2 7 1 : n%100==3 || n’)100==4 7 2 : 3;

Languages with this property include:

Slavic family
Slovenian

8.2.1.4 How to specify the output character set gettext uses

gettext not only looks up a translation in a message catalog, it also converts the translation
on the fly to the desired output character set. This is useful if the user is working in
a different character set than the translator who created the message catalog, because it
avoids distributing variants of message catalogs which differ only in the character set.

The output character set is, by default, the value of n1_langinfo (CODESET), which
depends on the LC_CTYPE part of the current locale. But programs which store strings in a
locale independent way (e.g. UTF-8) can request that gettext and related functions return
the translations in that encoding, by use of the bind_textdomain_codeset function.

Note that the msgid argument to gettext is not subject to character set conversion.
Also, when gettext does not find a translation for msgid, it returns msgid unchanged —
independently of the current output character set. It is therefore recommended that all

msgids be US-ASCII strings.

char * bind_textdomain_codeset (const char *domainname, const [Function]
char *codeset)
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The bind_textdomain_codeset function can be used to specify the output character
set for message catalogs for domain domainname. The codeset argument must be a
valid codeset name which can be used for the iconv_open function, or a null pointer.

If the codeset parameter is the null pointer, bind_textdomain_codeset returns the
currently selected codeset for the domain with the name domainname. It returns
NULL if no codeset has yet been selected.

Chapter 8: Message Translation 226

The bind_textdomain_codeset function can be used several times. If used multiple
times with the same domainname argument, the later call overrides the settings made
by the earlier one.

The bind_textdomain_codeset function returns a pointer to a string containing the
name of the selected codeset. The string is allocated internally in the function and
must not be changed by the user. If the system went out of core during the execution
of bind_textdomain_codeset, the return value is NULL and the global variable errno
is set accordingly.

8.2.1.5 How to use gettext in GUI programs

One place where the gettext functions, if used normally, have big problems is within
programs with graphical user interfaces (GUIs). The problem is that many of the strings
which have to be translated are very short. They have to appear in pull-down menus
which restricts the length. But strings which are not containing entire sentences or at least
large fragments of a sentence may appear in more than one situation in the program but
might have different translations. This is especially true for the one-word strings which are
frequently used in GUI programs.

As a consequence many people say that the gettext approach is wrong and instead
catgets should be used which indeed does not have this problem. But there is a very
simple and powerful method to handle these kind of problems with the gettext functions.
As an example consider the following fictional situation. A GUI program has a menu bar
with the following entries:

o fommm———e T e +
| File | Printer | |
+ S — - +
| Open | | Select |
| New | | Open |
Fmm + | Connect |

B +

To have the strings File, Printer, Open, New, Select, and Connect translated there
has to be at some point in the code a call to a function of the gettext family. But in two
places the string passed into the function would be Open. The translations might not be
the same and therefore we are in the dilemma described above.

One solution to this problem is to artificially extend the strings to make them unambigu-
ous. But what would the program do if no translation is available? The extended string is
not what should be printed. So we should use a slightly modified version of the functions.

To extend the strings a uniform method should be used. E.g., in the example above, the

strings could be chosen as

Menu|File

Menu|Printer

Menu|File|Open

Menu|File|New

Menu|Printer|Select

Menu|Printer|Open

Menu|Printer|Connect

Now all the strings are different and if now instead of gettext the following little wrapper
function is used, everything works just fine:

char *

Chapter 8: Message Translation 227

sgettext (const char *msgid)
{
char *msgval = gettext (msgid);
if (msgval == msgid)
msgval = strrchr (msgid, '[|') + 1;
return msgval;

}

What this little function does is to recognize the case when no translation is available.
This can be done very efficiently by a pointer comparison since the return value is the input
value. If there is no translation we know that the input string is in the format we used
for the Menu entries and therefore contains a | character. We simply search for the last
occurrence of this character and return a pointer to the character following it. That’s it!

If one now consistently uses the extended string form and replaces the gettext calls with
calls to sgettext (this is normally limited to very few places in the GUI implementation)
then it is possible to produce a program which can be internationalized.

With advanced compilers (such as GNU C) one can write the sgettext functions as an
inline function or as a macro like this:

#define sgettext(msgid) \
({ const char *__msgid = (msgid);
char *__msgstr = gettext (__msgid);
if (__msgval == __msgid)
__msgval = strrchr (__msgid, '|') + 1;
__msgval; })

\
\
\
\

The other gettext functions (dgettext, dcgettext and the ngettext equivalents) can
and should have corresponding functions as well which look almost identical, except for the
parameters and the call to the underlying function.

Now there is of course the question why such functions do not exist in the GNU C
Library? There are two parts of the answer to this question.

e They are easy to write and therefore can be provided by the project they are used in.
This is not an answer by itself and must be seen together with the second part which
is:

e There is no way the C library can contain a version which can work everywhere. The
problem is the selection of the character to separate the prefix from the actual string in
the extended string. The examples above used | which is a quite good choice because
it resembles a notation frequently used in this context and it also is a character not
often used in message strings.

But what if the character is used in message strings. Or if the chose character is not
available in the character set on the machine one compiles (e.g., | is not required to exist
for ISO C; this is why the is0646.h file exists in ISO C programming environments).

There is only one more comment to make left. The wrapper function above requires
that the translations strings are not extended themselves. This is only logical. There is no
need to disambiguate the strings (since they are never used as keys for a search) and one
also saves quite some memory and disk space by doing this.

Chapter 8: Message Translation 228

8.2.1.6 User influence on gettext

The last sections described what the programmer can do to internationalize the messages
of the program. But it is finally up to the user to select the message s/he wants to see.
S/He must understand them.

The POSIX locale model uses the environment variables LC_COLLATE, LC_CTYPE, LC_
MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME to select the locale which is to be used.
This way the user can influence lots of functions. As we mentioned above, the gettext
functions also take advantage of this.

To understand how this happens it is necessary to take a look at the various components
of the filename which gets computed to locate a message catalog. It is composed as follows:

dir_name/locale/LC_category/domain_name.mo

The default value for dir_name is system specific. It is computed from the value given
as the prefix while configuring the C library. This value normally is /usr or /. For the
former the complete dir_name is:

/usr/share/locale

We can use /usr/share since the .mo files containing the message catalogs are sys-
tem independent, so all systems can use the same files. If the program executed the
bindtextdomain function for the message domain that is currently handled, the dir_name
component is exactly the value which was given to the function as the second parameter.
L.e., bindtextdomain allows overwriting the only system dependent and fixed value to make
it possible to address files anywhere in the filesystem.

The category is the name of the locale category which was selected in the program code.
For gettext and dgettext this is always LC_MESSAGES, for dcgettext this is selected by
the value of the third parameter. As said above it should be avoided to ever use a category
other than LC_MESSAGES.

The locale component is computed based on the category used. Just like for the
setlocale function here comes the user selection into the play. Some environment variables
are examined in a fixed order and the first environment variable set determines the return
value of the lookup process. In detail, for the category LC_xxx the following variables in
this order are examined:

LANGUAGE
LC_ALL
LC_xxx
LANG

This looks very familiar. With the exception of the LANGUAGE environment variable this
is exactly the lookup order the setlocale function uses. But why introduce the LANGUAGE
variable?

The reason is that the syntax of the values these variables can have is different to what
is expected by the setlocale function. If we would set LC_ALL to a value following the
extended syntax that would mean the setlocale function will never be able to use the
value of this variable as well. An additional variable removes this problem plus we can
select the language independently of the locale setting which sometimes is useful.

Chapter 8: Message Translation 229

While for the LC_xxx variables the value should consist of exactly one specification of a
locale the LANGUAGE variable’s value can consist of a colon separated list of locale names.
The attentive reader will realize that this is the way we manage to implement one of our
additional demands above: we want to be able to specify an ordered list of languages.

Back to the constructed filename we have only one component missing. The
domain_name part is the name which was either registered using the textdomain function
or which was given to dgettext or dcgettext as the first parameter. Now it becomes
obvious that a good choice for the domain name in the program code is a string which is
closely related to the program/package name. E.g., for the GNU C Library the domain
name is libc.

A limited piece of example code should show how the program is supposed to work:

{
setlocale (LC_ALL, "");
textdomain ("test-package");
bindtextdomain ("test-package", "/usr/local/share/locale");
puts (gettext ("Hello, world!"));
}

At the program start the default domain is messages, and the default locale is "C".
The setlocale call sets the locale according to the user’s environment variables; remember
that correct functioning of gettext relies on the correct setting of the LC_MESSAGES locale
(for looking up the message catalog) and of the LC_CTYPE locale (for the character set
conversion). The textdomain call changes the default domain to test-package. The
bindtextdomain call specifies that the message catalogs for the domain test-package can
be found below the directory /usr/local/share/locale.

If the user sets in her/his environment the variable LANGUAGE to de the gettext function
will try to use the translations from the file
/usr/local/share/locale/de/LC_MESSAGES/test-package.mo

From the above descriptions it should be clear which component of this filename is
determined by which source.

In the above example we assumed the LANGUAGE environment variable to be de. This
might be an appropriate selection but what happens if the user wants to use LC_ALL be-
cause of the wider usability and here the required value is de_DE.IS0-8859-17 We already
mentioned above that a situation like this is not infrequent. E.g., a person might prefer
reading a dialect and if this is not available fall back on the standard language.

The gettext functions know about situations like this and can handle them gracefully.
The functions recognize the format of the value of the environment variable. It can split the
value is different pieces and by leaving out the only or the other part it can construct new
values. This happens of course in a predictable way. To understand this one must know
the format of the environment variable value. There is one more or less standardized form,
originally from the X/Open specification:

language[_territory[.codeset]] [@modifier]

Less specific locale names will be stripped in the order of the following list:
1. codeset
2. normalized codeset

3. territory

Chapter 8: Message Translation 230

4. modifier

The language field will never be dropped for obvious reasons.

The only new thing is the normalized codeset entry. This is another goodie which is
introduced to help reduce the chaos which derives from the inability of people to stan-
dardize the names of character sets. Instead of ISO-8859-1 one can often see 8859-1,
88591, is08859-1, or is0_8859-1. The normalized codeset value is generated from the
user-provided character set name by applying the following rules:

1. Remove all characters besides numbers and letters.
2. Fold letters to lowercase.

3. If the same only contains digits prepend the string "iso".

So all of the above names will be normalized to is088591. This allows the program user
much more freedom in choosing the locale name.

Even this extended functionality still does not help to solve the problem that completely
different names can be used to denote the same locale (e.g., de and german). To be of
help in this situation the locale implementation and also the gettext functions know about
aliases.

The file /usr/share/locale/locale.alias (replace /usr with whatever prefix you used
for configuring the C library) contains a mapping of alternative names to more regular
names. The system manager is free to add new entries to fill her/his own needs. The
selected locale from the environment is compared with the entries in the first column of this
file ignoring the case. If they match, the value of the second column is used instead for the
further handling.

In the description of the format of the environment variables we already mentioned the
character set as a factor in the selection of the message catalog. In fact, only catalogs which
contain text written using the character set of the system/program can be used (directly;
there will come a solution for this some day). This means for the user that s/he will always
have to take care of this. If in the collection of the message catalogs there are files for the
same language but coded using different character sets the user has to be careful.

8.2.2 Programs to handle message catalogs for gettext

The GNU C Library does not contain the source code for the programs to handle message
catalogs for the gettext functions. As part of the GNU project the GNU gettext package
contains everything the developer needs. The functionality provided by the tools in this
package by far exceeds the abilities of the gencat program described above for the catgets
functions.

There is a program msgfmt which is the equivalent program to the gencat program. It
generates from the human-readable and -editable form of the message catalog a binary file
which can be used by the gettext functions. But there are several more programs available.

The xgettext program can be used to automatically extract the translatable messages
from a source file. L.e., the programmer need not take care of the translations and the list
of messages which have to be translated. S/He will simply wrap the translatable string in
calls to gettext et.al and the rest will be done by xgettext. This program has a lot of
options which help to customize the output or help to understand the input better.

231

Other programs help to manage the development cycle when new messages appear in
the source files or when a new translation of the messages appears. Here it should only
be noted that using all the tools in GNU gettext it is possible to completely automate the
handling of message catalogs. Besides marking the translatable strings in the source code
and generating the translations the developers do not have anything to do themselves.

232

9 Searching and Sorting

This chapter describes functions for searching and sorting arrays of arbitrary objects. You
pass the appropriate comparison function to be applied as an argument, along with the size
of the objects in the array and the total number of elements.

9.1 Defining the Comparison Function

In order to use the sorted array library functions, you have to describe how to compare the
elements of the array.

To do this, you supply a comparison function to compare two elements of the array. The
library will call this function, passing as arguments pointers to two array elements to be
compared. Your comparison function should return a value the way strcmp (see Section 5.7
[String/Array Comparison], page 116) does: negative if the first argument is “less” than
the second, zero if they are “equal”, and positive if the first argument is “greater”.

Here is an example of a comparison function which works with an array of numbers of
type long int:

int
compare_long_ints (const void *a, const void *b)
{

const long int *la = a;

const long int *1b = b;

return (xla > *1b) - (*la < *1b);

}

(The code would have to be more complicated for an array of double, to handle NaNs
correctly.)

The header file std1lib.h defines a name for the data type of comparison functions. This
type is a GNU extension.

int comparison_fn_t (const void *, const void *);

9.2 Array Search Function

Generally searching for a specific element in an array means that potentially all elements
must be checked. The GNU C Library contains functions to perform linear search. The
prototypes for the following two functions can be found in search.h.

void * 1find (const void *key, const void *base, size_t *nmemb, [Function]
size_t size, comparison_ifn_t compar)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
The 1find function searches in the array with *nmemb elements of size bytes pointed
to by base for an element which matches the one pointed to by key. The function
pointed to by compar is used to decide whether two elements match.

The return value is a pointer to the matching element in the array starting at base if
it is found. If no matching element is available NULL is returned.

The mean runtime of this function is proportional to *nmemb/2, assuming random
elements of the array are searched for. This function should be used only if elements

Chapter 9: Searching and Sorting 233

often get added to or deleted from the array in which case it might not be useful to
sort the array before searching.

void * lsearch (const void *key, void *base, size_t *nmemb, size_t [Function]
size, comparison_fn_t compar)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.

The 1search function is similar to the 1find function. It searches the given array
for an element and returns it if found. The difference is that if no matching element
is found the lsearch function adds the object pointed to by key (with a size of size
bytes) at the end of the array and it increments the value of *nmemb to reflect this
addition.

This means for the caller that if it is not sure that the array contains the element one
is searching for the memory allocated for the array starting at base must have room
for at least size more bytes. If one is sure the element is in the array it is better to use
1find so having more room in the array is always necessary when calling 1search.

To search a sorted or partially sorted array for an element matching the key, use the
bsearch function. The prototype for this function is in the header file stdlib.h.

void * bsearch (const void *key, const void *array, size_t count, [Function]
size_t size, comparison_fn_t compare)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

The bsearch function searches array for an element that is equivalent to key. The
array contains count elements, each of which is of size size bytes.

The compare function is used to perform the comparison. This function is called with
arguments that point to the key and to an array element, in that order, and should
return an integer less than, equal to, or greater than zero corresponding to whether
the key is considered less than, equal to, or greater than the array element. The
function should not alter the array’s contents, and the same array element should
always compare the same way with the key.

Although the array need not be completely sorted, it should be partially sorted with
respect to key. That is, the array should begin with elements that compare less than
key, followed by elements that compare equal to key, and ending with elements that
compare greater than key. Any or all of these element sequences can be empty.

The return value is a pointer to a matching array element, or a null pointer if no
match is found. If the array contains more than one element that matches, the one
that is returned is unspecified.

This function derives its name from the fact that it is implemented using the binary
search algorithm.

9.3 Array Sort Function

To sort an array using an arbitrary comparison function, use the gsort function. The
prototype for this function is in stdlib.h.

Chapter 9: Searching and Sorting 234

void gsort (void *array, size_t count, size_t size, comparison_fn_t [Function]
compare)
Preliminary: | MT-Safe | AS-Safe | AC-Unsafe corrupt | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The gsort function sorts the array array. The array contains count elements, each
of which is of size size.

The compare function is used to perform the comparison on the array elements. This
function is called with two pointer arguments and should return an integer less than,
equal to, or greater than zero corresponding to whether its first argument is considered
less than, equal to, or greater than its second argument. The function must not alter
the array’s contents, and must define a total ordering on the array elements, including
any unusual values such as floating-point NaN (see Section 20.5.2 [Infinity and NaN],
page 603). Because the sorting process can move elements, the function’s return value
must not depend on the element addresses or the relative positions of elements within
the array, as these are meaningless while gsort is running.

Warning: If two elements compare equal, their order after sorting is unpredictable.
That is to say, the sorting is not stable. This can make a difference when the compar-
ison considers only part of the elements and two elements that compare equal may
differ in other respects. To ensure a stable sort in this situation, you can augment
each element with an appropriate tie-breaking value, such as its original array index.

Here is a simple example of sorting an array of long int in numerical order, using
the comparison function defined above (see Section 9.1 [Defining the Comparison
Function], page 232):

{

long int *array;
size_t nmemb;

gsort (array, nmemb, sizeof *array, compare_long_ints);
}
The gsort function derives its name from the fact that it was originally implemented
using the “quick sort” algorithm.

The implementation of gsort attempts to allocate auxiliary memory and use the
merge sort algorithm, without violating C standard requirement that arguments
passed to the comparison function point within the array. If the memory allocation
fails, gsort resorts to a slower algorithm.

9.4 Searching and Sorting Example

Here is an example showing the use of gsort and bsearch with an array of structures. The
elements of the array are sorted by comparing their name fields with the strcmp function.
Then, we can look up individual elements based on their names.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* Define an array of critters to sort. */

Chapter 9: Searching and Sorting 235

struct critter
{
const char *name;
const char *species;

};

struct critter muppets[] =
{

{"Kermit", "frog"},
{"Piggy", "pig"},
{"Gonzo", "whatever"},
{"Fozzie", "bear"},
{nsa_mn’ "eagle"},
{"Robin", "fI‘Og"},

{"Animal", "animal"},
{"Camilla", "chicken"},
{"Sweetums", "monster"},

{"Dr. Strangepork", "pig"},
{"Link Hogthrob", "pig"},
{"ZOOt", "human"},
{"Dr. Bunsen Honeydew", "human"},
{"Beaker", "human"},
{"Swedish Chef", "human"}

};

int count = sizeof (muppets) / sizeof (struct critter);

/* This is the comparison function used for sorting and searching. */

int
critter_cmp (const void #vl1, const void *v2)
{

const struct critter *cl = vi;

const struct critter *c2 = v2;

return strcmp (cl->name, c2->name);

}

/* Print information about a critter. */

void
print_critter (const struct critter *c)
{
printf ("%s, the %s\n", c->name, c->species);

}

Chapter 9: Searching and Sorting

/* Do the lookup into the sorted array. */

void

find_critter (const char *name)

{
struct critter target, *result;
target.name = name;

result = bsearch (&target, muppets, count, sizeof (struct critter),

critter_cmp);
if (result)
print_critter (result);
else

printf ("Couldn't find %s.\n", name);

}

/* Main program. */

int
main (void)
{

int i;

for (i = 0; i < count; i++)
print_critter (&muppets[i]);
printf ("\n");

gsort (muppets, count, sizeof (struct critter), critter_cmp);

for (i = 0; i < count; i++)
print_critter (&muppetsl[i]);
printf ("\n");

find_critter ("Kermit");
find_critter ("Gonzo");
find_critter ("Janice");

return O;

}

The output from this program looks like:

Kermit, the frog

Piggy, the pig

Gonzo, the whatever
Fozzie, the bear

Sam, the eagle

Robin, the frog

Animal, the animal
Camilla, the chicken
Sweetums, the monster
Dr. Strangepork, the pig
Link Hogthrob, the pig
Zoot, the human

Dr. Bunsen Honeydew, the human
Beaker, the human
Swedish Chef, the human

Animal, the animal
Beaker, the human
Camilla, the chicken

236

Chapter 9: Searching and Sorting 237

Dr. Bunsen Honeydew, the human
Dr. Strangepork, the pig
Fozzie, the bear

Gonzo, the whatever

Kermit, the frog

Link Hogthrob, the pig

Piggy, the pig

Robin, the frog

Sam, the eagle

Swedish Chef, the human
Sweetums, the monster
Zoot, the human

Kermit, the frog
Gonzo, the whatever
Couldn't find Janice.

9.5 The hsearch function.

The functions mentioned so far in this chapter are for searching in a sorted or unsorted
array. There are other methods to organize information which later should be searched.
The costs of insert, delete and search differ. One possible implementation is using hashing
tables. The following functions are declared in the header file search.h.

int hcreate (size_t nel) [Function]
Preliminary: | MT-Unsafe race:hsearch | AS-Unsafe heap | AC-Unsafe corrupt mem
| See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The hcreate function creates a hashing table which can contain at least nel elements.
There is no possibility to grow this table so it is necessary to choose the value for
nel wisely. The method used to implement this function might make it necessary to
make the number of elements in the hashing table larger than the expected maximal
number of elements. Hashing tables usually work inefficiently if they are filled 80%
or more. The constant access time guaranteed by hashing can only be achieved if few
collisions exist. See Knuth’s “The Art of Computer Programming, Part 3: Searching
and Sorting” for more information.

The weakest aspect of this function is that there can be at most one hashing table
used through the whole program. The table is allocated in local memory out of control
of the programmer. As an extension the GNU C Library provides an additional set
of functions with a reentrant interface which provides a similar interface but which
allows keeping arbitrarily many hashing tables.

It is possible to use more than one hashing table in the program run if the former
table is first destroyed by a call to hdestroy.

The function returns a non-zero value if successful. If it returns zero, something went
wrong. This could either mean there is already a hashing table in use or the program
ran out of memory.

void hdestroy (void) [Function]
Preliminary: | MT-Unsafe race:hsearch | AS-Unsafe heap | AC-Unsafe corrupt mem
| See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

Chapter 9: Searching and Sorting 238

The hdestroy function can be used to free all the resources allocated in a previous
call of hcreate. After a call to this function it is again possible to call hcreate and
allocate a new table with possibly different size.

It is important to remember that the elements contained in the hashing table at the
time hdestroy is called are not freed by this function. It is the responsibility of
the program code to free those strings (if necessary at all). Freeing all the element
memory is not possible without extra, separately kept information since there is no
function to iterate through all available elements in the hashing table. If it is really
necessary to free a table and all elements the programmer has to keep a list of all
table elements and before calling hdestroy s/he has to free all element’s data using
this list. This is a very unpleasant mechanism and it also shows that this kind of
hashing table is mainly meant for tables which are created once and used until the
end of the program run.

Entries of the hashing table and keys for the search are defined using this type:

ENTRY [Data type]

char *key Pointer to a zero-terminated string of characters describing the key for
the search or the element in the hashing table.

This is a limiting restriction of the functionality of the hsearch functions:
They can only be used for data sets which use the NUL character always
and solely to terminate keys. It is not possible to handle general binary
data for keys.

void *data
Generic pointer for use by the application. The hashing table implemen-
tation preserves this pointer in entries, but does not use it in any way

otherwise.

struct entry [Data type]
The underlying type of ENTRY.

ENTRY * hsearch (ENTRY item, ACTION action) [Function]
Preliminary: | MT-Unsafe race:hsearch | AS-Unsafe | AC-Unsafe cor-
rupt/action==ENTER | See Section 1.2.2.1 [POSIX Safety Concepts],
page 2.

To search in a hashing table created using hcreate the hsearch function must be
used. This function can perform a simple search for an element (if action has the value
FIND) or it can alternatively insert the key element into the hashing table. Entries
are never replaced.

The key is denoted by a pointer to an object of type ENTRY. For locating the cor-
responding position in the hashing table only the key element of the structure is
used.

If an entry with a matching key is found the action parameter is irrelevant. The found
entry is returned. If no matching entry is found and the action parameter has the
value FIND the function returns a NULL pointer. If no entry is found and the action
parameter has the value ENTER a new entry is added to the hashing table which is
initialized with the parameter item. A pointer to the newly added entry is returned.

Chapter 9: Searching and Sorting 239

As mentioned before, the hashing table used by the functions described so far is global
and there can be at any time at most one hashing table in the program. A solution is to
use the following functions which are a GNU extension. All have in common that they
operate on a hashing table which is described by the content of an object of the type
struct hsearch_data. This type should be treated as opaque, none of its members should
be changed directly.

int hcreate_r (size_t nel, struct hsearch_data *htab) [Function]

void

Preliminary: | MT-Safe race:htab | AS-Unsafe heap | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The hcreate_r function initializes the object pointed to by htab to contain a hashing
table with at least nel elements. So this function is equivalent to the hcreate function
except that the initialized data structure is controlled by the user.

This allows having more than one hashing table at one time. The memory neces-
sary for the struct hsearch_data object can be allocated dynamically. It must be
initialized with zero before calling this function.

The return value is non-zero if the operation was successful. If the return value is
zero, something went wrong, which probably means the program ran out of memory.

hdestroy_r (struct hsearch_data *htab) [Function]
Preliminary: | MT-Safe race:htab | AS-Unsafe heap | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The hdestroy_r function frees all resources allocated by the hcreate_r function for
this very same object htab. As for hdestroy it is the program’s responsibility to free
the strings for the elements of the table.

int hsearch_r (ENTRY item, ACTION action, ENTRY **retval, [Function]

struct hsearch_data *htab)
Preliminary: | MT-Safe race:htab | AS-Safe | AC-Unsafe corrupt/action==ENTER
| See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The hsearch_r function is equivalent to hsearch. The meaning of the first two
arguments is identical. But instead of operating on a single global hashing table the
function works on the table described by the object pointed to by htab (which is
initialized by a call to hcreate_r).

Another difference to hcreate is that the pointer to the found entry in the table is
not the return value of the function. It is returned by storing it in a pointer variable
pointed to by the retval parameter. The return value of the function is an integer
value indicating success if it is non-zero and failure if it is zero. In the latter case the
global variable errno signals the reason for the failure.

ENOMEM The table is filled and hsearch_r was called with a so far unknown key
and action set to ENTER.

ESRCH The action parameter is FIND and no corresponding element is found in
the table.

Chapter 9: Searching and Sorting 240

9.6 The tsearch function.

Another common form to organize data for efficient search is to use trees. The tsearch
function family provides a nice interface to functions to organize possibly large amounts
of data by providing a mean access time proportional to the logarithm of the number of
elements. The GNU C Library implementation even guarantees that this bound is never
exceeded even for input data which cause problems for simple binary tree implementations.

The functions described in the chapter are all described in the System V and X/Open
specifications and are therefore quite portable.

In contrast to the hsearch functions the tsearch functions can be used with arbitrary
data and not only zero-terminated strings.

The tsearch functions have the advantage that no function to initialize data structures
is necessary. A simple pointer of type void * initialized to NULL is a valid tree and can be
extended or searched. The prototypes for these functions can be found in the header file
search.h.

void * tsearch (const void *key, void **rootp, comparison_fn_t [Function]
compar)
Preliminary: | MT-Safe race:rootp | AS-Unsafe heap | AC-Unsafe corrupt mem |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The tsearch function searches in the tree pointed to by *rootp for an element match-
ing key. The function pointed to by compar is used to determine whether two ele-
ments match. See Section 9.1 [Defining the Comparison Function], page 232, for a
specification of the functions which can be used for the compar parameter.

If the tree does not contain a matching entry the key value will be added to the tree.
tsearch does not make a copy of the object pointed to by key (how could it since the
size is unknown). Instead it adds a reference to this object which means the object
must be available as long as the tree data structure is used.

The tree is represented by a pointer to a pointer since it is sometimes necessary to
change the root node of the tree. So it must not be assumed that the variable pointed
to by rootp has the same value after the call. This also shows that it is not safe to
call the tsearch function more than once at the same time using the same tree. It is
no problem to run it more than once at a time on different trees.

The return value is a pointer to the matching element in the tree. If a new element
was created the pointer points to the new data (which is in fact key). If an entry had
to be created and the program ran out of space NULL is returned.

void * tfind (const void *key, void *const *rootp, comparison_fn_t [Function]
compar)
Preliminary: | MT-Safe race:rootp | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

The tfind function is similar to the tsearch function. It locates an element matching
the one pointed to by key and returns a pointer to this element. But if no matching
element is available no new element is entered (note that the rootp parameter points
to a constant pointer). Instead the function returns NULL.

Chapter 9: Searching and Sorting 241

Another advantage of the tsearch functions in contrast to the hsearch functions is that
there is an easy way to remove elements.

void * tdelete (const void *key, void **rootp, comparison_fn_t [Function]
compar)
Preliminary: | MT-Safe race:rootp | AS-Unsafe heap | AC-Unsafe corrupt mem |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

To remove a specific element matching key from the tree tdelete can be used. It
locates the matching element using the same method as tfind. The corresponding
element is then removed and a pointer to the parent of the deleted node is returned
by the function. If there is no matching entry in the tree nothing can be deleted and
the function returns NULL. If the root of the tree is deleted tdelete returns some
unspecified value not equal to NULL.

void tdestroy (void *vroot, __free_fn_t freefct) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

If the complete search tree has to be removed one can use tdestroy. It frees all
resources allocated by the tsearch functions to generate the tree pointed to by vroot.

For the data in each tree node the function freefct is called. The pointer to the data
is passed as the argument to the function. If no such work is necessary freefct must
point to a function doing nothing. It is called in any case.

This function is a GNU extension and not covered by the System V or X/Open
specifications.

In addition to the functions to create and destroy the tree data structure, there is another
function which allows you to apply a function to all elements of the tree. The function must
have this type:

void __action_fn_t (const void #*nodep, VISIT value, int level);

The nodep is the data value of the current node (once given as the key argument to
tsearch). level is a numeric value which corresponds to the depth of the current node in
the tree. The root node has the depth 0 and its children have a depth of 1 and so on. The
VISIT type is an enumeration type.

VISIT [Data Type]
The VISIT value indicates the status of the current node in the tree and how the
function is called. The status of a node is either ‘leaf’ or ‘internal node’. For each
leaf node the function is called exactly once, for each internal node it is called three
times: before the first child is processed, after the first child is processed and after
both children are processed. This makes it possible to handle all three methods of
tree traversal (or even a combination of them).

preorder The current node is an internal node and the function is called before the
first child was processed.

postorder
The current node is an internal node and the function is called after the
first child was processed.

Chapter 9: Searching and Sorting 242

endorder The current node is an internal node and the function is called after the
second child was processed.

leaf The current node is a leaf.

void twalk (const void *root, __action_fn_t action) [Function]
Preliminary: | MT-Safe race:root | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

For each node in the tree with a node pointed to by root, the twalk function calls
the function provided by the parameter action. For leaf nodes the function is called
exactly once with value set to leaf. For internal nodes the function is called three
times, setting the value parameter or action to the appropriate value. The level
argument for the action function is computed while descending the tree by increasing
the value by one for each descent to a child, starting with the value 0 for the root
node.

Since the functions used for the action parameter to twalk must not modify the tree
data, it is safe to run twalk in more than one thread at the same time, working on
the same tree. It is also safe to call tfind in parallel. Functions which modify the
tree must not be used, otherwise the behavior is undefined. However, it is difficult
to pass data external to the tree to the callback function without resorting to global
variables (and thread safety issues), so see the twalk_r function below.

void twalk_r (const void *root, void (*action) (const void *key, [Function]
VISIT which, void *closure), void *closure)
Preliminary: | MT-Safe race:root | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

For each node in the tree with a node pointed to by root, the twalk_r function calls
the function provided by the parameter action. For leaf nodes the function is called
exactly once with which set to leaf. For internal nodes the function is called three
times, setting the which parameter of action to the appropriate value. The closure
parameter is passed down to each call of the action function, unmodified.

It is possible to implement the twalk function on top of the twalk_r function, which
is why there is no separate level parameter.

#define _GNU_SOURCE 1
#include <search.h>

struct twalk_with_twalk_r_closure

{

void (*action) (const void *, VISIT, int);
int depth;

};

static void
twalk_with_twalk_r_action (const void *nodep, VISIT which, void *closureO)
{

struct twalk_with_twalk_r_closure *closure = closureO;

switch (which)
{

case leaf:

243

closure->action (nodep, which, closure->depth);
break;

case preorder:
closure->action (nodep, which, closure->depth);
++closure->depth;
break;

case postorder:
/* The preorder action incremented the depth. */
closure->action (nodep, which, closure->depth - 1);
break;

case endorder:
--closure->depth;
closure->action (nodep, which, closure->depth);
break;

}

void
twalk (const void *root, void (*action) (const void *, VISIT, int))
{
struct twalk_with_twalk_r_closure closure = { action, O };
twalk_r (root, twalk_with_twalk_r_action, &closure);

}

244

10 Pattern Matching

The GNU C Library provides pattern matching facilities for two kinds of patterns: regular
expressions and file-name wildcards. The library also provides a facility for expanding
variable and command references and parsing text into words in the way the shell does.

10.1 Wildcard Matching

This section describes how to match a wildcard pattern against a particular string. The
result is a yes or no answer: does the string fit the pattern or not. The symbols described
here are all declared in fnmatch.h.

int fnmatch (const char *pattern, const char *string, int flags) [Function]
Preliminary: | MT-Safe env locale | AS-Unsafe heap | AC-Unsafe mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function tests whether the string string matches the pattern pattern. It re-
turns O if they do match; otherwise, it returns the nonzero value FNM_NOMATCH. The
arguments pattern and string are both strings.

The argument flags is a combination of flag bits that alter the details of matching.
See below for a list of the defined flags.

In the GNU C Library, fnmatch might sometimes report “errors” by returning nonzero
values that are not equal to FNM_NOMATCH.

These are the available flags for the flags argument:

FNM_FILE_NAME
Treat the ‘/’ character specially, for matching file names. If this flag is set,
wildcard constructs in pattern cannot match ‘/’ in string. Thus, the only way
to match ‘/’ is with an explicit ‘/’ in pattern.

FNM_PATHNAME
This is an alias for FNM_FILE_NAME; it comes from POSIX.2. We don’t recom-
mend this name because we don’t use the term “pathname” for file names.

FNM_PERIOD

Treat the ‘.’ character specially if it appears at the beginning of string. If this
flag is set, wildcard constructs in pattern cannot match .’ as the first character
of string.

If you set both FNM_PERIOD and FNM_FILE_NAME, then the special treatment
applies to ‘.’ following ‘/’ as well as to ‘.’ at the beginning of string. (The
shell uses the FNM_PERIOD and FNM_FILE_NAME flags together for matching file
names.)

FNM_NOESCAPE
Don’t treat the *\’ character specially in patterns. Normally, ‘\’ quotes the
following character, turning off its special meaning (if any) so that it matches
only itself. When quoting is enabled, the pattern ‘\?’ matches only the string
“?’, because the question mark in the pattern acts like an ordinary character.

If you use FNM_NOESCAPE, then ‘\’ is an ordinary character.

Chapter 10: Pattern Matching 245

FNM_LEADING_DIR
Ignore a trailing sequence of characters starting with a ‘/’ in string; that is to
say, test whether string starts with a directory name that pattern matches.

If this flag is set, either ‘foo*’ or ‘foobar’ as a pattern would match the string
‘foobar/frobozz’.

FNM_CASEFOLD
Ignore case in comparing string to pattern.

This macro was originally a GNU extension, but was added in POSIX.1-2024.

FNM_EXTMATCH
Besides the normal patterns, also recognize the extended patterns introduced
in ksh. The patterns are written in the form explained in the following table
where pattern-list is a | separated list of patterns.

?(pattern-list)
The pattern matches if zero or one occurrences of any of the pat-
terns in the pattern-list allow matching the input string.

*(pattern-1ist)
The pattern matches if zero or more occurrences of any of the pat-
terns in the pattern-list allow matching the input string.

+(pattern-1list)
The pattern matches if one or more occurrences of any of the pat-
terns in the pattern-list allow matching the input string.

Q@(pattern-1ist)
The pattern matches if exactly one occurrence of any of the patterns
in the pattern-list allows matching the input string.

! (pattern-1ist)
The pattern matches if the input string cannot be matched with
any of the patterns in the pattern-list.

10.2 Globbing

The archetypal use of wildcards is for matching against the files in a directory, and making
a list of all the matches. This is called globbing.

You could do this using fnmatch, by reading the directory entries one by one and testing
each one with fomatch. But that would be slow (and complex, since you would have to
handle subdirectories by hand).

The library provides a function glob to make this particular use of wildcards convenient.
glob and the other symbols in this section are declared in glob.h.

10.2.1 Calling glob

The result of globbing is a vector of file names (strings). To return this vector, glob uses a
special data type, glob_t, which is a structure. You pass glob the address of the structure,
and it fills in the structure’s fields to tell you about the results.

Chapter 10: Pattern Matching 246

glob_t

[Data Type]

This data type holds a pointer to a word vector. More precisely, it records both the
address of the word vector and its size. The GNU implementation contains some
more fields which are non-standard extensions.

gl_pathc

gl_pathv
gl_offs

The number of elements in the vector, excluding the initial null entries if
the GLOB_DOOFFS flag is used (see gl_offs below).

The address of the vector. This field has type char *x*.

The offset of the first real element of the vector, from its nominal address
in the gl_pathv field. Unlike the other fields, this is always an input to
glob, rather than an output from it.

If you use a nonzero offset, then that many elements at the beginning
of the vector are left empty. (The glob function fills them with null
pointers.)

The gl_offs field is meaningful only if you use the GLOB_DOOFFS flag.
Otherwise, the offset is always zero regardless of what is in this field, and
the first real element comes at the beginning of the vector.

gl_closedir

gl_readdir

The address of an alternative implementation of the closedir function.
It is used if the GLOB_ALTDIRFUNC bit is set in the flag parameter. The
type of this field is void (*) (void *).

This is a GNU extension.

The address of an alternative implementation of the readdir
function used to read the contents of a directory. It is used if the
GLOB_ALTDIRFUNC bit is set in the flag parameter. The type of this field
is struct dirent *(x) (void *).

An implementation of gl_readdir needs to initialize the following mem-
bers of the struct dirent object:

d_type This member should be set to the file type of the entry if
it is known. Otherwise, the value DT_UNKNOWN can be used.
The glob function may use the specified file type to avoid
callbacks in cases where the file type indicates that the data
is not required.

d_ino This member needs to be non-zero, otherwise glob may skip
the current entry and call the gl_readdir callback function
again to retrieve another entry.

d_name This member must be set to the name of the entry. It must
be null-terminated.

The example below shows how to allocate a struct dirent object con-
taining a given name.

#include <dirent.h>

Chapter 10: Pattern Matching 247

gl_opendir

gl_stat

gl_lstat

#include <errno.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

struct dirent *
mkdirent (const char *name)
{
size_t dirent_size offsetof (struct dirent, d_name) + 1;
size_t name_length = strlen (name);
size_t total_size = dirent_size + name_length;
if (total_size < dirent_size)
{
errno = ENOMEM;
return NULL;
}
struct dirent *result = malloc (total_size);
if (result == NULL)
return NULL;
result->d_type = DT_UNKNOWN;
result->d_ino = 1; /* Do not skip this entry. */
memcpy (result->d_name, name, name_length + 1);
return result;

}

The glob function reads the struct dirent members listed above and
makes a copy of the file name in the d_name member immediately after
the gl_readdir callback function returns. Future invocations of any of
the callback functions may deallocate or reuse the buffer. It is the respon-
sibility of the caller of the glob function to allocate and deallocate the
buffer, around the call to glob or using the callback functions. For exam-
ple, an application could allocate the buffer in the gl_readdir callback
function, and deallocate it in the gl_closedir callback function.

The gl_readdir member is a GNU extension.

The address of an alternative implementation of the opendir function.
It is used if the GLOB_ALTDIRFUNC bit is set in the flag parameter. The
type of this field is void *(*) (const char *).

This is a GNU extension.

The address of an alternative implementation of the stat function to get
information about an object in the filesystem. It is used if the GLOB_
ALTDIRFUNC bit is set in the flag parameter. The type of this field is
int (*) (const char *, struct stat *).

This is a GNU extension.

The address of an alternative implementation of the 1lstat function to
get information about an object in the filesystems, not following symbolic
links. It is used if the GLOB_ALTDIRFUNC bit is set in the flag parameter.
The type of this field is int (*) (const char *, struct stat *).

This is a GNU extension.

Chapter 10: Pattern Matching 248

gl_flags The flags used when glob was called. In addition, GLOB_MAGCHAR might
be set. See Section 10.2.2 [Flags for Globbing], page 250, for more details.

This is a GNU extension.

For use in the glob64 function glob.h contains another definition for a very similar type.
glob64_t differs from glob_t only in the types of the members gl_readdir, gl_stat, and
gl_lstat.

glob64_t [Data Type]
This data type holds a pointer to a word vector. More precisely, it records both the
address of the word vector and its size. The GNU implementation contains some
more fields which are non-standard extensions.

gl_pathc The number of elements in the vector, excluding the initial null entries if
the GLOB_DOOFFS flag is used (see gl_offs below).

gl_pathv The address of the vector. This field has type char *x*.

gl_offs The offset of the first real element of the vector, from its nominal address
in the gl_pathv field. Unlike the other fields, this is always an input to
glob, rather than an output from it.

If you use a nonzero offset, then that many elements at the beginning
of the vector are left empty. (The glob function fills them with null
pointers.)

The gl_offs field is meaningful only if you use the GLOB_DOOFFS flag.
Otherwise, the offset is always zero regardless of what is in this field, and
the first real element comes at the beginning of the vector.

gl_closedir
The address of an alternative implementation of the closedir function.
It is used if the GLOB_ALTDIRFUNC bit is set in the flag parameter. The
type of this field is void (*) (void *).

This is a GNU extension.

gl_readdir
The address of an alternative implementation of the readdir64 func-
tion used to read the contents of a directory. It is used if the GLOB_
ALTDIRFUNC bit is set in the flag parameter. The type of this field is
struct dirent64 *(x) (void *).

This is a GNU extension.

gl_opendir
The address of an alternative implementation of the opendir function.
It is used if the GLOB_ALTDIRFUNC bit is set in the flag parameter. The
type of this field is void *(*) (const char *).

This is a GNU extension.

gl_stat The address of an alternative implementation of the stat64 function to
get information about an object in the filesystem. It is used if the GLOB_
ALTDIRFUNC bit is set in the flag parameter. The type of this field is
int (*) (const char *, struct stat64 *).

Chapter 10: Pattern Matching 249

This is a GNU extension.

gl_lstat The address of an alternative implementation of the 1stat64 function to
get information about an object in the filesystems, not following symbolic
links. It is used if the GLOB_ALTDIRFUNC bit is set in the flag parameter.
The type of this field is int (*) (const char *, struct stat64 *).

This is a GNU extension.

gl_flags The flags used when glob was called. In addition, GLOB_MAGCHAR might
be set. See Section 10.2.2 [Flags for Globbing], page 250, for more details.

This is a GNU extension.

int glob (const char *pattern, int flags, int (*errfunc) (const [Function]
char *filename, int error-code), glob_t *vector-ptr)
Preliminary: | MT-Unsafe race:utent env sig:ALRM timer locale | AS-Unsafe dlopen
plugin corrupt heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The function glob does globbing using the pattern pattern in the current directory.
It puts the result in a newly allocated vector, and stores the size and address of
this vector into *vector-ptr. The argument flags is a combination of bit flags; see
Section 10.2.2 [Flags for Globbing], page 250, for details of the flags.

The result of globbing is a sequence of file names. The function glob allocates a string
for each resulting word, then allocates a vector of type char ** to store the addresses
of these strings. The last element of the vector is a null pointer. This vector is called
the word vector.

To return this vector, glob stores both its address and its length (number of elements,
not counting the terminating null pointer) into *vector-ptr.

Normally, glob sorts the file names alphabetically before returning them. You can
turn this off with the flag GLOB_NOSORT if you want to get the information as fast
as possible. Usually it’s a good idea to let glob sort them—if you process the files
in alphabetical order, the users will have a feel for the rate of progress that your
application is making.

If glob succeeds, it returns 0. Otherwise, it returns one of these error codes:

GLOB_ABORTED
There was an error opening a directory, and you used the flag GLOB_ERR
or your specified errfunc returned a nonzero value. See below for an
explanation of the GLOB_ERR flag and errfunc.

GLOB_NOMATCH
The pattern didn’t match any existing files. If you use the GLOB_NOCHECK
flag, then you never get this error code, because that flag tells glob to
pretend that the pattern matched at least one file.

GLOB_NOSPACE
It was impossible to allocate memory to hold the result.

In the event of an error, glob stores information in *vector-ptr about all the matches
it has found so far.

Chapter 10: Pattern Matching 250

It is important to notice that the glob function will not fail if it encounters directories
or files which cannot be handled without the LFS interfaces. The implementation of
glob is supposed to use these functions internally. This at least is the assumption
made by the Unix standard. The GNU extension of allowing the user to provide their
own directory handling and stat functions complicates things a bit. If these callback
functions are used and a large file or directory is encountered glob can fail.

int glob64 (const char *pattern, int flags, int (*errfunc) (const [Function]
char *filename, int error-code), glob64_t *vector-ptr)
Preliminary: | MT-Unsafe race:utent env sig:ALRM timer locale | AS-Unsafe dlopen
corrupt heap lock | AC-Unsafe corrupt lock fd mem | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

The glob64 function was added as part of the Large File Summit extensions but is not
part of the original LFS proposal. The reason for this is simple: it is not necessary.
The necessity for a glob64 function is added by the extensions of the GNU glob
implementation which allows the user to provide their own directory handling and
stat functions. The readdir and stat functions do depend on the choice of _FILE_
OFFSET_BITS since the definition of the types struct dirent and struct stat will
change depending on the choice.

Besides this difference, glob64 works just like glob in all aspects.

This function is a GNU extension.

10.2.2 Flags for Globbing

This section describes the standard flags that you can specify in the flags argument to glob.
Choose the flags you want, and combine them with the C bitwise OR operator |.

Note that there are Section 10.2.3 [More Flags for Globbing], page 251, available as GNU
extensions.

GLOB_APPEND
Append the words from this expansion to the vector of words produced by
previous calls to glob. This way you can effectively expand several words as if
they were concatenated with spaces between them.

In order for appending to work, you must not modify the contents of the word
vector structure between calls to glob. And, if you set GLOB_DOOFFS in the first
call to glob, you must also set it when you append to the results.

Note that the pointer stored in gl_pathv may no longer be valid after you call
glob the second time, because glob might have relocated the vector. So always
fetch gl_pathv from the glob_t structure after each glob call; never save the
pointer across calls.

GLOB_DOOFFS
Leave blank slots at the beginning of the vector of words. The gl_offs field
says how many slots to leave. The blank slots contain null pointers.

GLOB_ERR Give up right away and report an error if there is any difficulty reading the
directories that must be read in order to expand pattern fully. Such difficulties

Chapter 10: Pattern Matching 251

might include a directory in which you don’t have the requisite access. Nor-
mally, glob tries its best to keep on going despite any errors, reading whatever
directories it can.

You can exercise even more control than this by specifying an error-handler
function errfunc when you call glob. If errfunc is not a null pointer, then
glob doesn’t give up right away when it can’t read a directory; instead, it calls
errfunc with two arguments, like this:

(xerrfunc) (filename, error-code)

The argument filename is the name of the directory that glob couldn’t open
or couldn’t read, and error-code is the errno value that was reported to glob.

If the error handler function returns nonzero, then glob gives up right away.
Otherwise, it continues.

GLOB_MARK
If the pattern matches the name of a directory, append ‘/’ to the directory’s
name when returning it.

GLOB_NOCHECK
If the pattern doesn’t match any file names, return the pattern itself as if it
were a file name that had been matched. (Normally, when the pattern doesn’t
match anything, glob returns that there were no matches.)

GLOB_NOESCAPE
Don’t treat the ‘\’ character specially in patterns. Normally, ‘\’ quotes the
following character, turning off its special meaning (if any) so that it matches
only itself. When quoting is enabled, the pattern ‘\?’ matches only the string
“?’. because the question mark in the pattern acts like an ordinary character.

If you use GLOB_NOESCAPE, then ‘\’ is an ordinary character.

glob does its work by calling the function fnmatch repeatedly. It handles the
flag GLOB_NOESCAPE by turning on the FNM_NOESCAPE flag in calls to fnmatch.

GLOB_NOSORT
Don’t sort the file names; return them in no particular order. (In practice, the
order will depend on the order of the entries in the directory.) The only reason
not to sort is to save time.

10.2.3 More Flags for Globbing

Beside the flags described in the last section, the GNU implementation of glob allows a
few more flags which are also defined in the glob.h file. Some of the extensions implement
functionality which is available in modern shell implementations.

GLOB_PERIOD
The . character (period) is treated special. It cannot be matched by wildcards.
See Section 10.1 [Wildcard Matching], page 244, FNM_PERIOD.

GLOB_MAGCHAR
The GLOB_MAGCHAR value is not to be given to glob in the flags parameter. In-
stead, glob sets this bit in the gl_flags element of the glob_t structure provided
as the result if the pattern used for matching contains any wildcard character.

Chapter 10: Pattern Matching 252

GLOB_ALTDIRFUNC
Instead of using the normal functions for accessing the filesystem the glob im-
plementation uses the user-supplied functions specified in the structure pointed
to by pglob parameter. For more information about the functions refer to
the sections about directory handling see Section 14.3 [Accessing Directories],
page 418, and Section 14.10.2 [Reading the Attributes of a File], page 445.

GLOB_BRACE
If this flag is given, the handling of braces in the pattern is changed. It is
now required that braces appear correctly grouped. l.e., for each opening brace
there must be a closing one. Braces can be used recursively. So it is possible
to define one brace expression in another one. It is important to note that
the range of each brace expression is completely contained in the outer brace
expression (if there is one).

The string between the matching braces is separated into single expressions
by splitting at , (comma) characters. The commas themselves are discarded.
Please note what we said above about recursive brace expressions. The commas
used to separate the subexpressions must be at the same level. Commas in brace
subexpressions are not matched. They are used during expansion of the brace
expression of the deeper level. The example below shows this

glob ("{foo/{,bar,biz},baz}", GLOB_BRACE, NULL, &result)

is equivalent to the sequence

glob ("foo/", GLOB_BRACE, NULL, &result)

glob ("foo/bar", GLOB_BRACE|GLOB_APPEND, NULL, &result)
glob ("foo/biz", GLOB_BRACE|GLOB_APPEND, NULL, &result)
glob ("baz", GLOB_BRACE|GLOB_APPEND, NULL, &result)

if we leave aside error handling.

GLOB_NOMAGIC
If the pattern contains no wildcard constructs (it is a literal file name), return
it as the sole “matching” word, even if no file exists by that name.

GLOB_TILDE
If this flag is used the character ~ (tilde) is handled specially if it appears at the
beginning of the pattern. Instead of being taken verbatim it is used to represent
the home directory of a known user.

If = is the only character in pattern or it is followed by a / (slash), the home
directory of the process owner is substituted. Using getlogin and getpwnam
the information is read from the system databases. As an example take user
bart with his home directory at /home/bart. For him a call like

glob ("~/bin/x", GLOB_TILDE, NULL, &result)

would return the contents of the directory /home/bart/bin. Instead of referring
to the own home directory it is also possible to name the home directory of other
users. To do so one has to append the user name after the tilde character. So
the contents of user homer’s bin directory can be retrieved by

glob ("“homer/bin/*", GLOB_TILDE, NULL, &result)

If the user name is not valid or the home directory cannot be determined
for some reason the pattern is left untouched and itself used as the result.

Chapter 10: Pattern Matching 253

Le., if in the last example home is not available the tilde expansion yields to
"“homer/bin/*" and glob is not looking for a directory named ~homer.

This functionality is equivalent to what is available in C-shells if the nonomatch
flag is set.

GLOB_TILDE_CHECK
If this flag is used glob behaves as if GLOB_TILDE is given. The only difference
is that if the user name is not available or the home directory cannot be deter-
mined for other reasons this leads to an error. glob will return GLOB_NOMATCH
instead of using the pattern itself as the name.

This functionality is equivalent to what is available in C-shells if the nonomatch
flag is not set.

GLOB_ONLYDIR
If this flag is used the globbing function takes this as a hint that the caller is
only interested in directories matching the pattern. If the information about
the type of the file is easily available non-directories will be rejected but no
extra work will be done to determine the information for each file. I.e., the
caller must still be able to filter directories out.

This functionality is only available with the GNU glob implementation. It is
mainly used internally to increase the performance but might be useful for a
user as well and therefore is documented here.

Calling glob will in most cases allocate resources which are used to represent the result
of the function call. If the same object of type glob_t is used in multiple call to glob the
resources are freed or reused so that no leaks appear. But this does not include the time
when all glob calls are done.

void globfree (glob_t *pglob) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt heap | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
The globfree function frees all resources allocated by previous calls to glob associ-
ated with the object pointed to by pglob. This function should be called whenever
the currently used glob_t typed object isn’t used anymore.

void globfree64 (glob64_t *pglob) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt lock | AC-Unsafe corrupt lock fd mem
| See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function is equivalent to globfree but it frees records of type glob64_t which
were allocated by glob64.

10.3 Regular Expression Matching

The GNU C Library supports two interfaces for matching regular expressions. One is the
standard POSIX.2 interface, and the other is what the GNU C Library has had for many
years.

Both interfaces are declared in the header file regex.h. If you define _POSIX_C_SOURCE,
then only the POSIX.2 functions, structures, and constants are declared.

Chapter 10: Pattern Matching 254

10.3.1 POSIX Regular Expression Compilation

Before you can actually match a regular expression, you must compile it. This is not true
compilation—it produces a special data structure, not machine instructions. But it is like
ordinary compilation in that its purpose is to enable you to “execute” the pattern fast. (See
Section 10.3.3 [Matching a Compiled POSIX Regular Expression], page 256, for how to use
the compiled regular expression for matching.)

There is a special data type for compiled regular expressions:

regex_t [Data Type]
This type of object holds a compiled regular expression. It is actually a structure. It
has just one field that your programs should look at:

re_nsub This field holds the number of parenthetical subexpressions in the regular
expression that was compiled.

There are several other fields, but we don’t describe them here, because only the
functions in the library should use them.

After you create a regex_t object, you can compile a regular expression into it by calling
regcomp.

int regcomp (regex_t *restrict compiled, const char *restrict [Function]
pattern, int cflags)
Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function regcomp “compiles” a regular expression into a data structure that you
can use with regexec to match against a string. The compiled regular expression
format is designed for efficient matching. regcomp stores it into *compiled.

It’s up to you to allocate an object of type regex_t and pass its address to regcomp.

The argument cflags lets you specify various options that control the syntax and
semantics of regular expressions. See Section 10.3.2 [Flags for POSIX Regular Ex-
pressions], page 255.

If you use the flag REG_NOSUB, then regcomp omits from the compiled regular expres-
sion the information necessary to record how subexpressions actually match. In this
case, you might as well pass 0 for the matchptr and nmatch arguments when you call
regexec.

If you don’t use REG_NOSUB, then the compiled regular expression does have the
capacity to record how subexpressions match. Also, regcomp tells you how many
subexpressions pattern has, by storing the number in compiled->re_nsub. You can
use that value to decide how long an array to allocate to hold information about
subexpression matches.

regcomp returns O if it succeeds in compiling the regular expression; otherwise, it
returns a nonzero error code (see the table below). You can use regerror to produce
an error message string describing the reason for a nonzero value; see Section 10.3.6
[POSIX Regexp Matching Cleanup], page 258.

Chapter 10: Pattern Matching 255

Here are the possible nonzero values that regcomp can return:

REG_BADBR
There was an invalid ‘\{...\}’ construct in the regular expression. A valid
\{...\} construct must contain either a single number, or two numbers in
increasing order separated by a comma.

REG_BADPAT
There was a syntax error in the regular expression.

REG_BADRPT

A repetition operator such as ‘?” or ‘*’ appeared in a bad position (with no
preceding subexpression to act on).

REG_ECOLLATE
The regular expression referred to an invalid collating element (one not defined
in the current locale for string collation). See Section 7.3 [Locale Categories],
page 188.

REG_ECTYPE
The regular expression referred to an invalid character class name.

REG_EESCAPE
The regular expression ended with ‘\’.

REG_ESUBREG
There was an invalid number in the ‘\digit’ construct.

REG_EBRACK
There were unbalanced square brackets in the regular expression.

REG_EPAREN
An extended regular expression had unbalanced parentheses, or a basic regular
expression had unbalanced ‘\ (" and ‘\)’.

REG_EBRACE
The regular expression had unbalanced ‘\{’ and ‘\}’.

REG_ERANGE
One of the endpoints in a range expression was invalid.

REG_ESPACE
regcomp ran out of memory.

10.3.2 Flags for POSIX Regular Expressions

These are the bit flags that you can use in the cflags operand when compiling a regular
expression with regcomp.

REG_EXTENDED
Treat the pattern as an extended regular expression, rather than as a basic
regular expression.

REG_ICASE
Ignore case when matching letters.

Chapter 10: Pattern Matching 256

REG_NOSUB
Don’t bother storing the contents of the matchptr array.

REG_NEWLINE
Treat a newline in string as dividing string into multiple lines, so that ‘$’ can
match before the newline and ‘~’ can match after. Also, don’t permit ‘.’ to
match a newline, and don’t permit ‘[~...] to match a newline.

Otherwise, newline acts like any other ordinary character.

10.3.3 Matching a Compiled POSIX Regular Expression

Once you have compiled a regular expression, as described in Section 10.3.1 [POSIX Regular
Expression Compilation], page 254, you can match it against strings using regexec. A
match anywhere inside the string counts as success, unless the regular expression contains
anchor characters (‘*’ or ‘§’).

int regexec (const regex_t *restrict compiled, const char *restrict [Function]
string, size_t nmatch, regmatch_t matchptr{restrict], int eflags)

Preliminary: | MT-Safe locale | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock mem fd | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function tries to match the compiled regular expression *compiled against string.

regexec returns O if the regular expression matches; otherwise, it returns a nonzero
value. See the table below for what nonzero values mean. You can use regerror
to produce an error message string describing the reason for a nonzero value; see
Section 10.3.6 [POSIX Regexp Matching Cleanup]|, page 258.

The argument eflags is a word of bit flags that enable various options.

If you want to get information about what part of string actually matched the regular
expression or its subexpressions, use the arguments matchptr and nmatch. Otherwise,
pass 0 for nmatch, and NULL for matchptr. See Section 10.3.4 [Match Results with
Subexpressions|, page 257.

You must match the regular expression with the same set of current locales that were in
effect when you compiled the regular expression.

The function regexec accepts the following flags in the eflags argument:
REG_NOTBOL

Do not regard the beginning of the specified string as the beginning of a line;
more generally, don’t make any assumptions about what text might precede it.

REG_NOTEQOL
Do not regard the end of the specified string as the end of a line; more generally,
don’t make any assumptions about what text might follow it.

Here are the possible nonzero values that regexec can return:

REG_NOMATCH
The pattern didn’t match the string. This isn’t really an error.

REG_ESPACE
regexec ran out of memory.

Chapter 10: Pattern Matching 257

10.3.4 Match Results with Subexpressions

When regexec matches parenthetical subexpressions of pattern, it records which parts of
string they match. It returns that information by storing the offsets into an array whose
elements are structures of type regmatch_t. The first element of the array (index 0) records
the part of the string that matched the entire regular expression. Each other element of
the array records the beginning and end of the part that matched a single parenthetical
subexpression.

regmatch_t [Data Type]
This is the data type of the matchptr array that you pass to regexec. It contains
two structure fields, as follows:

rm_so The offset in string of the beginning of a substring. Add this value to
string to get the address of that part.
rm_eo The offset in string of the end of the substring.
regoff_t [Data Type]

regoff_t is an alias for another signed integer type. The fields of regmatch_t have
type regoff_t.

The regmatch_t elements correspond to subexpressions positionally; the first element
(index 1) records where the first subexpression matched, the second element records the
second subexpression, and so on. The order of the subexpressions is the order in which they
begin.

When you call regexec, you specify how long the matchptr array is, with the nmatch
argument. This tells regexec how many elements to store. If the actual regular expression
has more than nmatch subexpressions, then you won’t get offset information about the rest
of them. But this doesn’t alter whether the pattern matches a particular string or not.

If you don’t want regexec to return any information about where the subexpressions
matched, you can either supply 0 for nmatch, or use the flag REG_NOSUB when you compile
the pattern with regcomp.

10.3.5 Complications in Subexpression Matching

Sometimes a subexpression matches a substring of no characters. This happens when
‘f\ (o*\)’ matches the string ‘fum’. (It really matches just the ‘f’.) In this case, both
of the offsets identify the point in the string where the null substring was found. In this
example, the offsets are both 1.

Sometimes the entire regular expression can match without using some of its subex-
pressions at all—for example, when ‘ba\ (na\)*’ matches the string ‘ba’, the parenthetical
subexpression is not used. When this happens, regexec stores -1 in both fields of the
element for that subexpression.

Sometimes matching the entire regular expression can match a particular subexpression
more than once—for example, when ‘ba\ (na\)*’ matches the string ‘bananana’, the par-
enthetical subexpression matches three times. When this happens, regexec usually stores
the offsets of the last part of the string that matched the subexpression. In the case of
‘bananana’, these offsets are 6 and 8.

Chapter 10: Pattern Matching 258

But the last match is not always the one that is chosen. It’s more accurate to say that
the last opportunity to match is the one that takes precedence. What this means is that
when one subexpression appears within another, then the results reported for the inner
subexpression reflect whatever happened on the last match of the outer subexpression. For
an example, consider ‘\(ba\(na\)*s \)*’ matching the string ‘bananas bas ’. The last
time the inner expression actually matches is near the end of the first word. But it is
considered again in the second word, and fails to match there. regexec reports nonuse of
the “na” subexpression.

Another place where this rule applies is when the regular expression
\(ba\(na\)*s \lnefer\(ti\)* \)*
matches ‘bananas nefertiti’. The “na” subexpression does match in the first word, but it
doesn’t match in the second word because the other alternative is used there. Once again,
the second repetition of the outer subexpression overrides the first, and within that second
repetition, the “na” subexpression is not used. So regexec reports nonuse of the “na”
subexpression.

10.3.6 POSIX Regexp Matching Cleanup

When you are finished using a compiled regular expression, you can free the storage it uses
by calling regfree.

void regfree (regex_t *compiled) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap | AC-Unsafe mem | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

Calling regfree frees all the storage that *compiled points to. This includes various
internal fields of the regex_t structure that aren’t documented in this manual.

regfree does not free the object *compiled itself.

You should always free the space in a regex_t structure with regfree before using the
structure to compile another regular expression.

When regcomp or regexec reports an error, you can use the function regerror to turn
it into an error message string.

size_t regerror (int errcode, const regex_t *restrict compiled, [Function]
char *restrict buffer, size_t length)
Preliminary: | MT-Safe env | AS-Unsafe corrupt heap lock dlopen | AC-Unsafe
corrupt lock fd mem | See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function produces an error message string for the error code errcode, and stores
the string in length bytes of memory starting at buffer. For the compiled argument,
supply the same compiled regular expression structure that regcomp or regexec was
working with when it got the error. Alternatively, you can supply NULL for compiled;
you will still get a meaningful error message, but it might not be as detailed.

If the error message can’t fit in length bytes (including a terminating null character),
then regerror truncates it. The string that regerror stores is always null-terminated
even if it has been truncated.

The return value of regerror is the minimum length needed to store the entire error
message. If this is less than length, then the error message was not truncated, and
you can use it. Otherwise, you should call regerror again with a larger buffer.

Chapter 10: Pattern Matching 259

Here is a function which uses regerror, but always dynamically allocates a buffer for
the error message:
char *get_regerror (int errcode, regex_t *compiled)
{
size_t length = regerror (errcode, compiled, NULL, 0);
char *buffer = xmalloc (length);
(void) regerror (errcode, compiled, buffer, length);
return buffer;

}

10.4 Shell-Style Word Expansion

Word expansion means the process of splitting a string into words and substituting for
variables, commands, and wildcards just as the shell does.

For example, when you write ‘ls -1 foo.c’, this string is split into three separate

o

words—*1s’, ‘=1’ and ‘foo.c’. This is the most basic function of word expansion.

When you write ‘1s *.c’, this can become many words, because the word ‘*.c’ can be
replaced with any number of file names. This is called wildcard expansion, and it is also a
part of word expansion.

When you use ‘echo $PATH’ to print your path, you are taking advantage of variable
substitution, which is also part of word expansion.

Ordinary programs can perform word expansion just like the shell by calling the library
function wordexp.

10.4.1 The Stages of Word Expansion

When word expansion is applied to a sequence of words, it performs the following transfor-
mations in the order shown here:

1. Tilde expansion: Replacement of ‘“foo’ with the name of the home directory of ‘foo’.
2. Next, three different transformations are applied in the same step, from left to right:

e Variable substitution: Environment variables are substituted for references such
as ‘$foo’.

e Command substitution: Constructs such as ‘“cat foo™’ and the equivalent
‘$(cat foo)’ are replaced with the output from the inner command.

e Arithmetic expansion: Constructs such as ‘¢ (($x-1))’ are replaced with the result
of the arithmetic computation.

3. Field splitting: subdivision of the text into words.

Wildcard expansion: The replacement of a construct such as ‘*x.c’ with a list of ‘.c’

file names. Wildcard expansion applies to an entire word at a time, and replaces that
word with 0 or more file names that are themselves words.

5. Quote removal: The deletion of string-quotes, now that they have done their job by
inhibiting the above transformations when appropriate.

For the details of these transformations, and how to write the constructs that use them,
see The BASH Manual (to appear).

Chapter 10: Pattern Matching 260

10.4.2 Calling wordexp

All the functions, constants and data types for word expansion are declared in the header
file wordexp.h.

Word expansion produces a vector of words (strings). To return this vector, wordexp
uses a special data type, wordexp_t, which is a structure. You pass wordexp the address
of the structure, and it fills in the structure’s fields to tell you about the results.

wordexp_t [Data Type]
This data type holds a pointer to a word vector. More precisely, it records both the
address of the word vector and its size.

we_wordc The number of elements in the vector.
we_wordv The address of the vector. This field has type char *x*.

we_offs The offset of the first real element of the vector, from its nominal address
in the we_wordv field. Unlike the other fields, this is always an input to
wordexp, rather than an output from it.

If you use a nonzero offset, then that many elements at the beginning
of the vector are left empty. (The wordexp function fills them with null
pointers.)

The we_offs field is meaningful only if you use the WRDE_DOOFFS flag.
Otherwise, the offset is always zero regardless of what is in this field, and
the first real element comes at the beginning of the vector.

int wordexp (const char *words, wordexp_t *word-vector-ptr, int [Function]
flags)
Preliminary: | MT-Unsafe race:utent const:env env sig:ALRM timer locale | AS-

Unsafe dlopen plugin i18n heap corrupt lock | AC-Unsafe corrupt lock fd mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Perform word expansion on the string words, putting the result in a newly allocated
vector, and store the size and address of this vector into *word-vector-ptr. The
argument flags is a combination of bit flags; see Section 10.4.3 [Flags for Word Ex-
pansion|, page 261, for details of the flags.

You shouldn’t use any of the characters ‘1&;<>’ in the string words unless they are
quoted; likewise for newline. If you use these characters unquoted, you will get the
WRDE_BADCHAR error code. Don’t use parentheses or braces unless they are quoted
or part of a word expansion construct. If you use quotation characters ‘'"*’ they
should come in pairs that balance.

The results of word expansion are a sequence of words. The function wordexp allocates
a string for each resulting word, then allocates a vector of type char ** to store the
addresses of these strings. The last element of the vector is a null pointer. This vector
is called the word vector.

To return this vector, wordexp stores both its address and its length (number of
elements, not counting the terminating null pointer) into *word-vector-ptr.

If wordexp succeeds, it returns 0. Otherwise, it returns one of these error codes:

Chapter 10: Pattern Matching 261

WRDE_BADCHAR

The input string words contains an unquoted invalid character such as
¢ | 7‘

WRDE_BADVAL
The input string refers to an undefined shell variable, and you used the
flag WRDE_UNDEF to forbid such references.

WRDE_CMDSUB
The input string uses command substitution, and you used the flag WRDE _
NOCMD to forbid command substitution.

WRDE_NOSPACE
It was impossible to allocate memory to hold the result. In this case,
wordexp can store part of the results—as much as it could allocate room
for.

WRDE_SYNTAX
There was a syntax error in the input string. For example, an unmatched
quoting character is a syntax error. This error code is also used to signal
division by zero and overflow in arithmetic expansion.

void wordfree (wordexp-t *word-vector-ptr) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt heap | AC-Unsafe corrupt mem | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Free the storage used for the word-strings and vector that *word-vector-ptr points
to. This does not free the structure *word-vector-ptr itself—only the other data it
points to.

10.4.3 Flags for Word Expansion

This section describes the flags that you can specify in the flags argument to wordexp.
Choose the flags you want, and combine them with the C operator |.

WRDE_APPEND
Append the words from this expansion to the vector of words produced by
previous calls to wordexp. This way you can effectively expand several words
as if they were concatenated with spaces between them.

In order for appending to work, you must not modify the contents of the word
vector structure between calls to wordexp. And, if you set WRDE_DOOFFS in the
first call to wordexp, you must also set it when you append to the results.

WRDE_DOQOFFS
Leave blank slots at the beginning of the vector of words. The we_offs field
says how many slots to leave. The blank slots contain null pointers.

WRDE_NOCMD
Don’t do command substitution; if the input requests command substitution,
report an error.

Chapter 10: Pattern Matching 262

WRDE_REUSE
Reuse a word vector made by a previous call to wordexp. Instead of allocating
a new vector of words, this call to wordexp will use the vector that already
exists (making it larger if necessary).

Note that the vector may move, so it is not safe to save an old pointer and use
it again after calling wordexp. You must fetch we_pathv anew after each call.

WRDE_SHOWERR
Do show any error messages printed by commands run by command substi-
tution. More precisely, allow these commands to inherit the standard error
output stream of the current process. By default, wordexp gives these com-
mands a standard error stream that discards all output.

WRDE_UNDEF
If the input refers to a shell variable that is not defined, report an error.

10.4.4 wordexp Example

Here is an example of using wordexp to expand several strings and use the results to run a
shell command. It also shows the use of WRDE_APPEND to concatenate the expansions and
of wordfree to free the space allocated by wordexp.
int
expand_and_execute (const char *program, const char **options)
{
wordexp_t result;
pid_t pid
int status, i;

/* Expand the string for the program to run. */
switch (wordexp (program, &result, 0))
{
case 0: /* Successful. =/
break;
case WRDE_NOSPACE:
/* If the error was WRDE_NOSPACE,
then perhaps part of the result was allocated. */
wordfree (&result);
default: /* Some other error. */
return -1;

}

/* Expand the strings specified for the arguments. */
for (i = 0; optioms[i] != NULL; i++)

{
if (wordexp (options[i], &result, WRDE_APPEND))
{
wordfree (&result);
return -1;
}
}

pid = fork ();
if (pid == 0)
{
/* This is the child process. Execute the command. */
execv (result.we_wordv[0], result.we_wordv);

Chapter 10: Pattern Matching 263

exit (EXIT_FAILURE);
}
else if (pid < 0)
/* The fork failed. Report failure. */
status = -1;
else
/* This is the parent process. Wait for the child to complete. */
if (waitpid (pid, &status, 0) != pid)
status = -1;

wordfree (&result);
return status;

}
10.4.5 Details of Tilde Expansion

It’s a standard part of shell syntax that you can use ‘=’ at the beginning of a file name to
stand for your own home directory. You can use ‘“user’ to stand for user’s home directory.
Tilde expansion is the process of converting these abbreviations to the directory names
that they stand for.
Tilde expansion applies to the ‘~’ plus all following characters up to whitespace or a

slash. It takes place only at the beginning of a word, and only if none of the characters to
be transformed is quoted in any way.

(~

Plain ‘=’ uses the value of the environment variable HOME as the proper home directory
name. ‘~’ followed by a user name uses getpwname to look up that user in the user database,
and uses whatever directory is recorded there. Thus, ‘~’ followed by your own name can
give different results from plain ‘~’, if the value of HOME is not really your home directory.

10.4.6 Details of Variable Substitution

Part of ordinary shell syntax is the use of ‘$variable’ to substitute the value of a shell
variable into a command. This is called variable substitution, and it is one part of doing
word expansion.

There are two basic ways you can write a variable reference for substitution:

${variable}
If you write braces around the variable name, then it is completely unambiguous
where the variable name ends. You can concatenate additional letters onto the
end of the variable value by writing them immediately after the close brace.
For example, ‘${foo}s’ expands into ‘tractors’.

$variable
If you do not put braces around the variable name, then the variable name
consists of all the alphanumeric characters and underscores that follow the ‘$’.
The next punctuation character ends the variable name. Thus, ‘$foo-bar’
refers to the variable foo and expands into ‘tractor-bar’.

When you use braces, you can also use various constructs to modify the value that is
substituted, or test it in various ways.

${variable:-default}
Substitute the value of variable, but if that is empty or undefined, use default
instead.

Chapter 10: Pattern Matching 264

${variable:=default}
Substitute the value of variable, but if that is empty or undefined, use default
instead and set the variable to default.

${variable: ?message}
If variable is defined and not empty, substitute its value.

Otherwise, print message as an error message on the standard error stream,
and consider word expansion a failure.

${variable:+replacement}
Substitute replacement, but only if variable is defined and nonempty. Other-
wise, substitute nothing for this construct.

${#variable}
Substitute a numeral which expresses in base ten the number of characters
in the value of variable. ‘${#foo}’ stands for ‘7’, because ‘tractor’ is seven
characters.

These variants of variable substitution let you remove part of the variable’s value before
substituting it. The prefix and suffix are not mere strings; they are wildcard patterns, just
like the patterns that you use to match multiple file names. But in this context, they match
against parts of the variable value rather than against file names.

${variablellhsuffix}
Substitute the value of variable, but first discard from that variable any portion
at the end that matches the pattern suffix.
If there is more than one alternative for how to match against suffix, this con-
struct uses the longest possible match.

Thus, ‘${foo%%r*}’ substitutes ‘t’, because the largest match for ‘r*’ at the
end of ‘tractor’ is ‘ractor’.

${variablefsuffix}
Substitute the value of variable, but first discard from that variable any portion
at the end that matches the pattern suffix.
If there is more than one alternative for how to match against suffix, this con-
struct uses the shortest possible alternative.

Thus, ‘${foolr*}’ substitutes ‘tracto’, because the shortest match for ‘r*’ at
the end of ‘tractor’ is just ‘r’.

${variable#itprefix}
Substitute the value of variable, but first discard from that variable any portion
at the beginning that matches the pattern prefix.
If there is more than one alternative for how to match against prefix, this
construct uses the longest possible match.
Thus, ‘${foo##xt}’ substitutes ‘or’, because the largest match for ‘*t’ at the
beginning of ‘tractor’ is ‘tract’.

${variablettprefix}
Substitute the value of variable, but first discard from that variable any portion
at the beginning that matches the pattern prefix.

265

If there is more than one alternative for how to match against prefix, this
construct uses the shortest possible alternative.

Thus, ‘${foo#*t}’ substitutes ‘ractor’, because the shortest match for ‘*t’ at
the beginning of ‘tractor’ is just ‘t’.

266

11 Input/Output Overview

Most programs need to do either input (reading data) or output (writing data), or most
frequently both, in order to do anything useful. The GNU C Library provides such a large
selection of input and output functions that the hardest part is often deciding which function
is most appropriate!

This chapter introduces concepts and terminology relating to input and output. Other
chapters relating to the GNU 1/0 facilities are:

e Chapter 12 [Input/Output on Streams|, page 271, which covers the high-level functions
that operate on streams, including formatted input and output.

e Chapter 13 [Low-Level Input/Output], page 349, which covers the basic I/O and control
functions on file descriptors.

e Chapter 14 [File System Interface], page 414, which covers functions for operating on
directories and for manipulating file attributes such as access modes and ownership.

e Chapter 15 [Pipes and FIFOs|, page 468, which includes information on the basic
interprocess communication facilities.

e Chapter 16 [Sockets|, page 473, which covers a more complicated interprocess commu-
nication facility with support for networking.

e Chapter 17 [Low-Level Terminal Interface|, page 523, which covers functions for chang-
ing how input and output to terminals or other serial devices are processed.

11.1 Input/Output Concepts

Before you can read or write the contents of a file, you must establish a connection or
communications channel to the file. This process is called opening the file. You can open
a file for reading, writing, or both.

The connection to an open file is represented either as a stream or as a file descriptor.
You pass this as an argument to the functions that do the actual read or write operations,
to tell them which file to operate on. Certain functions expect streams, and others are
designed to operate on file descriptors.

When you have finished reading from or writing to the file, you can terminate the
connection by closing the file. Once you have closed a stream or file descriptor, you cannot
do any more input or output operations on it.

11.1.1 Streams and File Descriptors

When you want to do input or output to a file, you have a choice of two basic mechanisms for
representing the connection between your program and the file: file descriptors and streams.
File descriptors are represented as objects of type int, while streams are represented as FILE
* objects.

File descriptors provide a primitive, low-level interface to input and output operations.
Both file descriptors and streams can represent a connection to a device (such as a terminal),
or a pipe or socket for communicating with another process, as well as a normal file. But,
if you want to do control operations that are specific to a particular kind of device, you
must use a file descriptor; there are no facilities to use streams in this way. You must also

Chapter 11: Input/Output Overview 267

use file descriptors if your program needs to do input or output in special modes, such as
nonblocking (or polled) input (see Section 13.15 [File Status Flags|, page 399).

Streams provide a higher-level interface, layered on top of the primitive file descriptor
facilities. The stream interface treats all kinds of files pretty much alike—the sole exception
being the three styles of buffering that you can choose (see Section 12.20 [Stream Buffering],
page 335).

The main advantage of using the stream interface is that the set of functions for per-
forming actual input and output operations (as opposed to control operations) on streams is
much richer and more powerful than the corresponding facilities for file descriptors. The file
descriptor interface provides only simple functions for transferring blocks of characters, but
the stream interface also provides powerful formatted input and output functions (printf
and scanf) as well as functions for character- and line-oriented input and output.

Since streams are implemented in terms of file descriptors, you can extract the file de-
scriptor from a stream and perform low-level operations directly on the file descriptor. You
can also initially open a connection as a file descriptor and then make a stream associated
with that file descriptor.

In general, you should stick with using streams rather than file descriptors, unless there
is some specific operation you want to do that can only be done on a file descriptor. If
you are a beginning programmer and aren’t sure what functions to use, we suggest that
you concentrate on the formatted input functions (see Section 12.14 [Formatted Input],
page 317) and formatted output functions (see Section 12.12 [Formatted Output], page 293).

If you are concerned about portability of your programs to systems other than GNU, you
should also be aware that file descriptors are not as portable as streams. You can expect
any system running ISO C to support streams, but non-GNU systems may not support file
descriptors at all, or may only implement a subset of the GNU functions that operate on
file descriptors. Most of the file descriptor functions in the GNU C Library are included in
the POSIX.1 standard, however.

11.1.2 File Position

One of the attributes of an open file is its file position that keeps track of where in the file
the next character is to be read or written. On GNU systems, and all POSIX.1 systems,
the file position is simply an integer representing the number of bytes from the beginning
of the file.

The file position is normally set to the beginning of the file when it is opened, and each
time a character is read or written, the file position is incremented. In other words, access
to the file is normally sequential.

Ordinary files permit read or write operations at any position within the file. Some other
kinds of files may also permit this. Files which do permit this are sometimes referred to as
random-access files. You can change the file position using the fseek function on a stream
(see Section 12.18 [File Positioning], page 330) or the lseek function on a file descriptor
(see Section 13.2 [Input and Output Primitives], page 353). If you try to change the file
position on a file that doesn’t support random access, you get the ESPIPE error.

Streams and descriptors that are opened for append access are treated specially for
output: output to such files is always appended sequentially to the end of the file, regardless

Chapter 11: Input/Output Overview 268

of the file position. However, the file position is still used to control where in the file reading
is done.

If you think about it, you'll realize that several programs can read a given file at the same
time. In order for each program to be able to read the file at its own pace, each program
must have its own file pointer, which is not affected by anything the other programs do.

In fact, each opening of a file creates a separate file position. Thus, if you open a file
twice even in the same program, you get two streams or descriptors with independent file
positions.

By contrast, if you open a descriptor and then duplicate it to get another descriptor,
these two descriptors share the same file position: changing the file position of one descriptor
will affect the other.

11.2 File Names

In order to open a connection to a file, or to perform other operations such as deleting a file,
you need some way to refer to the file. Nearly all files have names that are strings—even
files which are actually devices such as tape drives or terminals. These strings are called
file names. You specify the file name to say which file you want to open or operate on.

This section describes the conventions for file names and how the operating system works
with them.

11.2.1 Directories

In order to understand the syntax of file names, you need to understand how the file system
is organized into a hierarchy of directories.

A directory is a file that contains information to associate other files with names; these
associations are called links or directory entries. Sometimes, people speak of “files in a
directory”, but in reality, a directory only contains pointers to files, not the files themselves.

The name of a file contained in a directory entry is called a file name component. In
general, a file name consists of a sequence of one or more such components, separated by
the slash character (‘/’). A file name which is just one component names a file with respect
to its directory. A file name with multiple components names a directory, and then a file
in that directory, and so on.

Some other documents, such as the POSIX standard, use the term pathname for what
we call a file name, and either filename or pathname component for what this manual
calls a file name component. We don’t use this terminology because a “path” is something
completely different (a list of directories to search), and we think that “pathname” used for
something else will confuse users. We always use “file name” and “file name component”
(or sometimes just “component”, where the context is obvious) in GNU documentation.
Some macros use the POSIX terminology in their names, such as PATH_MAX. These macros
are defined by the POSIX standard, so we cannot change their names.

You can find more detailed information about operations on directories in Chapter 14
[File System Interface], page 414.

Chapter 11: Input/Output Overview 269

11.2.2 File Name Resolution

A file name consists of file name components separated by slash (‘/’) characters. On the
systems that the GNU C Library supports, multiple successive ‘/’ characters are equivalent
to a single ‘/’ character.

The process of determining what file a file name refers to is called file name resolution.
This is performed by examining the components that make up a file name in left-to-right
order, and locating each successive component in the directory named by the previous
component. Of course, each of the files that are referenced as directories must actually
exist, be directories instead of regular files, and have the appropriate permissions to be
accessible by the process; otherwise the file name resolution fails.

If a file name begins with a ¢/’ the first component in the file name is located in the root
directory of the process (usually all processes on the system have the same root directory).
Such a file name is called an absolute file name.

Otherwise, the first component in the file name is located in the current working directory
(see Section 14.1 [Working Directory], page 414). This kind of file name is called a relative
file name.

The file name components . (“dot”) and .. (“dot-dot”) have special meanings. Every
directory has entries for these file name components. The file name component . refers to
the directory itself, while the file name component .. refers to its parent directory (the
directory that contains the link for the directory in question). As a special case, .. in the
root directory refers to the root directory itself, since it has no parent; thus /. . is the same
as /.

Here are some examples of file names:

/a The file named a, in the root directory.
/a/b The file named b, in the directory named a in the root directory.
a The file named a, in the current working directory.

/a/./b This is the same as /a/b.
./a The file named a, in the current working directory.
../a The file named a, in the parent directory of the current working directory.

A file name that names a directory may optionally end in a ‘/’. You can specify a file
name of / to refer to the root directory, but the empty string is not a meaningful file name.
If you want to refer to the current working directory, use a file name of . or ./.

Unlike some other operating systems, GNU systems don’t have any built-in support for
file types (or extensions) or file versions as part of its file name syntax. Many programs and
utilities use conventions for file names—for example, files containing C source code usually
have names suffixed with ‘.c’—but there is nothing in the file system itself that enforces
this kind of convention.

11.2.3 File Name Errors

Functions that accept file name arguments usually detect these errno error conditions
relating to the file name syntax or trouble finding the named file. These errors are referred
to throughout this manual as the usual file name errors.

Chapter 11: Input/Output Overview 270

EACCES The process does not have search permission for a directory component of the
file name.
ENAMETOOLONG

This error is used when either the total length of a file name is greater than
PATH_MAX, or when an individual file name component has a length greater than
NAME_MAX. See Section 33.6 [Limits on File System Capacity], page 914.

On GNU/Hurd systems, there is no imposed limit on overall file name length,
but some file systems may place limits on the length of a component.

ENQENT This error is reported when a file referenced as a directory component in the
file name doesn’t exist, or when a component is a symbolic link whose target
file does not exist. See Section 14.6 [Symbolic Links]|, page 435.

ENOTDIR A file that is referenced as a directory component in the file name exists, but
it isn’t a directory.

ELOOP Too many symbolic links were resolved while trying to look up the file name.
The system has an arbitrary limit on the number of symbolic links that may
be resolved in looking up a single file name, as a primitive way to detect loops.
See Section 14.6 [Symbolic Links], page 435.

11.2.4 Portability of File Names

The rules for the syntax of file names discussed in Section 11.2 [File Names], page 268, are
the rules normally used by GNU systems and by other POSIX systems. However, other
operating systems may use other conventions.

There are two reasons why it can be important for you to be aware of file name portability
issues:

e If your program makes assumptions about file name syntax, or contains embedded
literal file name strings, it is more difficult to get it to run under other operating
systems that use different syntax conventions.

e Even if you are not concerned about running your program on machines that run other
operating systems, it may still be possible to access files that use different naming
conventions. For example, you may be able to access file systems on another computer
running a different operating system over a network, or read and write disks in formats
used by other operating systems.

The ISO C standard says very little about file name syntax, only that file names are
strings. In addition to varying restrictions on the length of file names and what characters
can validly appear in a file name, different operating systems use different conventions
and syntax for concepts such as structured directories and file types or extensions. Some
concepts such as file versions might be supported in some operating systems and not by
others.

The POSIX.1 standard allows implementations to put additional restrictions on file name
syntax, concerning what characters are permitted in file names and on the length of file
name and file name component strings. However, on GNU systems, any character except
the null character is permitted in a file name string, and on GNU/Hurd systems there are
no limits on the length of file name strings.

271

12 Input/Output on Streams

This chapter describes the functions for creating streams and performing input and output
operations on them. As discussed in Chapter 11 [Input/Output Overview|, page 266, a
stream is a fairly abstract, high-level concept representing a communications channel to a
file, device, or process.

12.1 Streams

For historical reasons, the type of the C data structure that represents a stream is called
FILE rather than “stream”. Since most of the library functions deal with objects of type
FILE *, sometimes the term file pointer is also used to mean “stream”. This leads to
unfortunate confusion over terminology in many books on C. This manual, however, is
careful to use the terms “file” and “stream” only in the technical sense.

The FILE type is declared in the header file stdio.h.

FILE [Data Type]
This is the data type used to represent stream objects. A FILE object holds all of the
internal state information about the connection to the associated file, including such
things as the file position indicator and buffering information. Each stream also has
error and end-of-file status indicators that can be tested with the ferror and feof
functions; see Section 12.15 [End-Of-File and Errors], page 327.

FILE objects are allocated and managed internally by the input/output library functions.
Don’t try to create your own objects of type FILE; let the library do it. Your programs
should deal only with pointers to these objects (that is, FILE * values) rather than the
objects themselves.

12.2 Standard Streams

When the main function of your program is invoked, it already has three predefined streams
open and available for use. These represent the “standard” input and output channels that
have been established for the process.

These streams are declared in the header file stdio.h.

FILE * stdin [Variable]
The standard input stream, which is the normal source of input for the program.

FILE * stdout [Variable]
The standard output stream, which is used for normal output from the program.

FILE * stderr [Variable]
The standard error stream, which is used for error messages and diagnostics issued
by the program.

On GNU systems, you can specify what files or processes correspond to these streams
using the pipe and redirection facilities provided by the shell. (The primitives shells use to
implement these facilities are described in Chapter 14 [File System Interface], page 414.)

Chapter 12: Input/Output on Streams 272

Most other operating systems provide similar mechanisms, but the details of how to use
them can vary.

In the GNU C Library, stdin, stdout, and stderr are normal variables which you can
set just like any others. For example, to redirect the standard output to a file, you could
do:

fclose (stdout);
stdout = fopen ("standard-output-file", "w");

Note however, that in other systems stdin, stdout, and stderr are macros that you
cannot assign to in the normal way. But you can use freopen to get the effect of closing
one and reopening it. See Section 12.3 [Opening Streams]|, page 272.

The three streams stdin, stdout, and stderr are not unoriented at program start (see
Section 12.6 [Streams in Internationalized Applications|, page 280).

12.3 Opening Streams

Opening a file with the fopen function creates a new stream and establishes a connection
between the stream and a file. This may involve creating a new file.

Everything described in this section is declared in the header file stdio.h.

FILE * fopen (const char *filename, const char *opentype) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap lock | AC-Unsafe mem fd lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fopen function opens a stream for 1/O to the file filename, and returns a pointer
to the stream.

The opentype argument is a string that controls how the file is opened and specifies
attributes of the resulting stream. It must begin with one of the following sequences
of characters:

r Open an existing file for reading only.

W Open the file for writing only. If the file already exists, it is truncated to
zero length. Otherwise a new file is created.

a Open a file for append access; that is, writing at the end of file only. If
the file already exists, its initial contents are unchanged and output to
the stream is appended to the end of the file. Otherwise, a new, empty
file is created.

‘r+’ Open an existing file for both reading and writing. The initial contents
of the file are unchanged and the initial file position is at the beginning
of the file.

‘wt’ Open a file for both reading and writing. If the file already exists, it is
truncated to zero length. Otherwise, a new file is created.

‘at’ Open or create file for both reading and appending. If the file exists,

its initial contents are unchanged. Otherwise, a new file is created. The
initial file position for reading is at the beginning of the file, but output
is always appended to the end of the file.

Chapter 12: Input/Output on Streams 273

As you can see, ‘+’ requests a stream that can do both input and output. When using
such a stream, you must call £flush (see Section 12.20 [Stream Buffering], page 335)
or a file positioning function such as fseek (see Section 12.18 [File Positioning],
page 330) when switching from reading to writing or vice versa. Otherwise, internal
buffers might not be emptied properly.

Additional characters may appear after these to specify flags for the call. Always
put the mode (‘r’, ‘w+’, etc.) first; that is the only part you are guaranteed will be
understood by all systems.

The GNU C Library defines additional characters for use in opentype:
c The file is opened with cancellation in the I/O functions disabled.

e The underlying file descriptor will be closed if you use any of the exec. ..
functions (see Section 27.6 [Executing a File|, page 819). (This is equiva-
lent to having set FD_CLOEXEC on that descriptor. See Section 13.14 [File
Descriptor Flags|, page 397.)

m The file is opened and accessed using mmap. This is only supported with
files opened for reading.

X Insist on creating a new file—if a file filename already exists, fopen fails
rather than opening it. If you use ‘x’ you are guaranteed that you will not
clobber an existing file. This is equivalent to the 0_EXCL option to the
open function (see Section 13.1 [Opening and Closing Files], page 349).

The ‘x’ modifier is part of ISO C11, which says the file is created with
exclusive access; in the GNU C Library this means the equivalent of 0_
EXCL.

The character ‘b’ in opentype has a standard meaning; it requests a binary stream
rather than a text stream. But this makes no difference in POSIX systems (including
GNU systems). If both ‘+’ and ‘b’ are specified, they can appear in either order. See
Section 12.17 [Text and Binary Streams|, page 329.

If the opentype string contains the sequence ,ccs=STRING then STRING is taken as
the name of a coded character set and fopen will mark the stream as wide-oriented
with appropriate conversion functions in place to convert from and to the character
set STRING. Any other stream is opened initially unoriented and the orientation is
decided with the first file operation. If the first operation is a wide character operation,
the stream is not only marked as wide-oriented, also the conversion functions to
convert to the coded character set used for the current locale are loaded. This will
not change anymore from this point on even if the locale selected for the LC_CTYPE
category is changed.

Any other characters in opentype are simply ignored. They may be meaningful in
other systems.

If the open fails, fopen returns a null pointer.

When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32 bit machine
this function is in fact fopen64 since the LF'S interface replaces transparently the old
interface.

Chapter 12: Input/Output on Streams 274

You can have multiple streams (or file descriptors) pointing to the same file open at the
same time. If you do only input, this works straightforwardly, but you must be careful if any
output streams are included. See Section 13.5 [Dangers of Mixing Streams and Descriptors],
page 362. This is equally true whether the streams are in one program (not usual) or in
several programs (which can easily happen). It may be advantageous to use the file locking
facilities to avoid simultaneous access. See Section 13.16 [File Locks|, page 404.

FILE * fopen64 (const char *filename, const char *opentype) [Function]
Preliminary: | MT-Safe | AS-Unsafe heap lock | AC-Unsafe mem fd lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function is similar to fopen but the stream it returns a pointer for is opened
using open64. Therefore this stream can be used even on files larger than 23! bytes
on 32 bit machines.

Please note that the return type is still FILE *. There is no special FILE type for the
LFS interface.

If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32 bits machine this
function is available under the name fopen and so transparently replaces the old
interface.

int FOPEN_MAX [Macro]
The value of this macro is an integer constant expression that represents the minimum
number of streams that the implementation guarantees can be open simultaneously.
You might be able to open more than this many streams, but that is not guaranteed.
The value of this constant is at least eight, which includes the three standard streams
stdin, stdout, and stderr. In POSIX.1 systems this value is determined by the
OPEN_MAX parameter; see Section 33.1 [General Capacity Limits]|, page 901. In BSD
and GNU, it is controlled by the RLIMIT_NOFILE resource limit; see Section 23.2
[Limiting Resource Usage|, page 689.

FILE * freopen (const char *filename, const char *opentype, [Function]
FILE *stream)
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt fd | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function is like a combination of fclose and fopen. It first closes the stream
referred to by stream, ignoring any errors that are detected in the process. (Because
errors are ignored, you should not use freopen on an output stream if you have
actually done any output using the stream.) Then the file named by filename is
opened with mode opentype as for fopen, and associated with the same stream object
stream.

If the operation fails, a null pointer is returned; otherwise, freopen returns stream.
On Linux, freopen may also fail and set errno to EBUSY when the kernel structure
for the old file descriptor was not initialized completely before freopen was called.
This can only happen in multi-threaded programs, when two threads race to allocate
the same file descriptor number. To avoid the possibility of this race, do not use
close to close the underlying file descriptor for a FILE; either use freopen while the
file is still open, or use open and then dup2 to install the new file descriptor.

Chapter 12: Input/Output on Streams 275

freopen has traditionally been used to connect a standard stream such as stdin with
a file of your own choice. This is useful in programs in which use of a standard stream
for certain purposes is hard-coded. In the GNU C Library, you can simply close the
standard streams and open new ones with fopen. But other systems lack this ability,
so using freopen is more portable.

When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32 bit machine
this function is in fact freopen64 since the LFS interface replaces transparently the
old interface.

The GNU C Library only supports use of freopen on streams opened with fopen
or fopen64 and on the original values of the standard streams stdin, stdout, and
stderr; such a stream may be reopened multiple times with freopen. If it is called
on another kind of stream (opened with functions such as popen, fmemopen, open_
memstream, and fopencookie), freopen fails and returns a null pointer.

FILE * freopen64 (const char *filename, const char *opentype, [Function]
FILE *stream)
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt fd | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function is similar to freopen. The only difference is that on 32 bit machine the
stream returned is able to read beyond the 23! bytes limits imposed by the normal
interface. It should be noted that the stream pointed to by stream need not be opened
using fopen64 or freopen64 since its mode is not important for this function.

If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32 bits machine this
function is available under the name freopen and so transparently replaces the old
interface.

In some situations it is useful to know whether a given stream is available for reading
or writing. This information is normally not available and would have to be remembered
separately. Solaris introduced a few functions to get this information from the stream
descriptor and these functions are also available in the GNU C Library.

int __freadable (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The __freadable function determines whether the stream stream was opened to
allow reading. In this case the return value is nonzero. For write-only streams the
function returns zero.

This function is declared in stdio_ext.h.

int __fwritable (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.
The __fwritable function determines whether the stream stream was opened to
allow writing. In this case the return value is nonzero. For read-only streams the
function returns zero.

This function is declared in stdio_ext.h.

Chapter 12: Input/Output on Streams 276

For slightly different kinds of problems there are two more functions. They provide even
finer-grained information.

int __freading (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
The __freading function determines whether the stream stream was last read from
or whether it is opened read-only. In this case the return value is nonzero, otherwise it
is zero. Determining whether a stream opened for reading and writing was last used
for writing allows to draw conclusions about the content about the buffer, among
other things.

This function is declared in stdio_ext.h.

int __fwriting (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts|, page 2.
The __fwriting function determines whether the stream stream was last written to
or whether it is opened write-only. In this case the return value is nonzero, otherwise

it is zero.

This function is declared in stdio_ext.h.

12.4 Closing Streams

When a stream is closed with fclose, the connection between the stream and the file is
canceled. After you have closed a stream, you cannot perform any additional operations on
it.

int fclose (FILE *stream) [Function]

Preliminary: | MT-Safe | AS-Unsafe heap lock | AC-Unsafe lock mem fd | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function causes stream to be closed and the connection to the corresponding file
to be broken. Any buffered output is written and any buffered input is discarded.
The fclose function returns a value of 0 if the file was closed successfully, and EOF
if an error was detected.

It is important to check for errors when you call fclose to close an output stream,
because real, everyday errors can be detected at this time. For example, when fclose
writes the remaining buffered output, it might get an error because the disk is full.
Even if you know the buffer is empty, errors can still occur when closing a file if you
are using NF'S.

The function fclose is declared in stdio.h.
To close all streams currently available the GNU C Library provides another function.

int fcloseall (void) [Function]
Preliminary: | MT-Unsafe race:streams | AS-Unsafe | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

This function causes all open streams of the process to be closed and the connections
to corresponding files to be broken. All buffered data is written and any buffered

Chapter 12: Input/Output on Streams 277

input is discarded. The fcloseall function returns a value of 0 if all the files were
closed successfully, and EOF if an error was detected.

This function should be used only in special situations, e.g., when an error occurred
and the program must be aborted. Normally each single stream should be closed
separately so that problems with individual streams can be identified. It is also prob-
lematic since the standard streams (see Section 12.2 [Standard Streams], page 271)
will also be closed.

The function fcloseall is declared in stdio.h.

If the main function to your program returns, or if you call the exit function (see
Section 26.7.1 [Normal Termination], page 810), all open streams are automatically closed
properly. If your program terminates in any other manner, such as by calling the abort
function (see Section 26.7.4 [Aborting a Program], page 812) or from a fatal signal (see
Chapter 25 [Signal Handling], page 723), open streams might not be closed properly.
Buffered output might not be flushed and files may be incomplete. For more information
on buffering of streams, see Section 12.20 [Stream Buffering], page 335.

12.5 Streams and Threads

Streams can be used in multi-threaded applications in the same way they are used in single-
threaded applications. But the programmer must be aware of the possible complications.
It is important to know about these also if the program one writes never use threads since
the design and implementation of many stream functions are heavily influenced by the
requirements added by multi-threaded programming.

The POSIX standard requires that by default the stream operations are atomic. I.e.,
issuing two stream operations for the same stream in two threads at the same time will cause
the operations to be executed as if they were issued sequentially. The buffer operations
performed while reading or writing are protected from other uses of the same stream. To
do this each stream has an internal lock object which has to be (implicitly) acquired before
any work can be done.

But there are situations where this is not enough and there are also situations where
this is not wanted. The implicit locking is not enough if the program requires more than
one stream function call to happen atomically. One example would be if an output line a
program wants to generate is created by several function calls. The functions by themselves
would ensure only atomicity of their own operation, but not atomicity over all the function
calls. For this it is necessary to perform the stream locking in the application code.

void flockfile (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Unsafe lock | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The flockfile function acquires the internal locking object associated with
the stream stream. This ensures that no other thread can explicitly through
flockfile/ftrylockfile or implicitly through the call of a stream function lock
the stream. The thread will block until the lock is acquired. An explicit call to
funlockfile has to be used to release the lock.

Chapter 12: Input/Output on Streams 278

int ftrylockfile (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Unsafe lock | See Section 1.2.2.1 [POSIX
Safety Concepts|, page 2.

The ftrylockfile function tries to acquire the internal locking object associated
with the stream stream just like flockfile. But unlike flockfile this function
does not block if the lock is not available. ftrylockfile returns zero if the lock was
successfully acquired. Otherwise the stream is locked by another thread.

void funlockfile (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Safe | AC-Unsafe lock | See Section 1.2.2.1 [POSIX
Safety Concepts], page 2.

The funlockfile function releases the internal locking object of the stream stream.
The stream must have been locked before by a call to flockfile or a successful call
of ftrylockfile. The implicit locking performed by the stream operations do not
count. The funlockfile function does not return an error status and the behavior
of a call for a stream which is not locked by the current thread is undefined.

The following example shows how the functions above can be used to generate an output
line atomically even in multi-threaded applications (yes, the same job could be done with
one fprintf call but it is sometimes not possible):

FILE *fp;
{

flockfile (fp);
fputs ("This is test number ", fp);
fprintf (fp, "%d\n", test);
funlockfile (£fp)

}

Without the explicit locking it would be possible for another thread to use the stream fp
after the fputs call returns and before fprintf was called with the result that the number
does not follow the word ‘number’.

From this description it might already be clear that the locking objects in streams are
no simple mutexes. Since locking the same stream twice in the same thread is allowed the
locking objects must be equivalent to recursive mutexes. These mutexes keep track of the
owner and the number of times the lock is acquired. The same number of funlockfile
calls by the same threads is necessary to unlock the stream completely. For instance:

void

foo (FILE *fp)

{
ftrylockfile (fp);
fputs ("in foo\n", fp);
/* This is very wrong!!! */
funlockfile (fp);

}

It is important here that the funlockfile function is only called if the ftrylockfile
function succeeded in locking the stream. It is therefore always wrong to ignore the result
of ftrylockfile. And it makes no sense since otherwise one would use flockfile. The
result of code like that above is that either funlockfile tries to free a stream that hasn’t

Chapter 12: Input/Output on Streams 279

been locked by the current thread or it frees the stream prematurely. The code should look
like this:
void
foo (FILE *fp)
{
if (ftrylockfile (fp) == 0)
{
fputs ("in foo\n", fp);
funlockfile (fp);
}
}

Now that we covered why it is necessary to have locking it is necessary to talk about
situations when locking is unwanted and what can be done. The locking operations (explicit
or implicit) don’t come for free. Even if a lock is not taken the cost is not zero. The
operations which have to be performed require memory operations that are safe in multi-
processor environments. With the many local caches involved in such systems this is quite
costly. So it is best to avoid the locking completely if it is not needed — because the code in
question is never used in a context where two or more threads may use a stream at a time.
This can be determined most of the time for application code; for library code which can
be used in many contexts one should default to be conservative and use locking.

There are two basic mechanisms to avoid locking. The first is to use the _unlocked
variants of the stream operations. The POSIX standard defines quite a few of those and
the GNU C Library adds a few more. These variants of the functions behave just like
the functions with the name without the suffix except that they do not lock the stream.
Using these functions is very desirable since they are potentially much faster. This is
not only because the locking operation itself is avoided. More importantly, functions like
putc and getc are very simple and traditionally (before the introduction of threads) were
implemented as macros which are very fast if the buffer is not empty. With the addition of
locking requirements these functions are no longer implemented as macros since they would
expand to too much code. But these macros are still available with the same functionality
under the new names putc_unlocked and getc_unlocked. This possibly huge difference
of speed also suggests the use of the _unlocked functions even if locking is required. The
difference is that the locking then has to be performed in the program:

void
foo (FILE *fp, char *buf)
{

flockfile (fp);

while (*buf != '/")

putc_unlocked (*buf++, fp);
funlockfile (fp);
}

If in this example the putc function would be used and the explicit locking would be
missing the putc function would have to acquire the lock in every call, potentially many
times depending on when the loop terminates. Writing it the way illustrated above allows
the putc_unlocked macro to be used which means no locking and direct manipulation of
the buffer of the stream.

A second way to avoid locking is by using a non-standard function which was introduced
in Solaris and is available in the GNU C Library as well.

Chapter 12: Input/Output on Streams 280

int __fsetlocking (FILE *stream, int type) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe lock | AC-Safe | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The __fsetlocking function can be used to select whether the stream operations will
implicitly acquire the locking object of the stream stream. By default this is done but
it can be disabled and reinstated using this function. There are three values defined
for the type parameter.

FSETLOCKING_INTERNAL
The stream stream will from now on use the default internal locking.
Every stream operation with exception of the _unlocked variants will
implicitly lock the stream.

FSETLOCKING_BYCALLER
After the __fsetlocking function returns, the user is responsible for

locking the stream. None of the stream operations will implicitly do this
anymore until the state is set back to FSETLOCKING_INTERNAL.

FSETLOCKING_QUERY
__fsetlocking only queries the current locking state of the stream. The
return value will be FSETLOCKING_INTERNAL or FSETLOCKING_BYCALLER
depending on the state.

The return value of __fsetlocking is either FSETLOCKING_INTERNAL or
FSETLOCKING_BYCALLER depending on the state of the stream before the call.

This function and the values for the type parameter are declared in stdio_ext.h.

This function is especially useful when program code has to be used which is written
without knowledge about the _unlocked functions (or if the programmer was too lazy to
use them).

12.6 Streams in Internationalized Applications

ISO C90 introduced the new type wchar_t to allow handling larger character sets. What
was missing was a possibility to output strings of wchar_t directly. One had to convert
them into multibyte strings using mbstowcs (there was no mbsrtowcs yet) and then use the
normal stream functions. While this is doable it is very cumbersome since performing the
conversions is not trivial and greatly increases program complexity and size.

The Unix standard early on (I think in XPG4.2) introduced two additional format spec-
ifiers for the printf and scanf families of functions. Printing and reading of single wide
characters was made possible using the %C specifier and wide character strings can be
handled with %S. These modifiers behave just like %c and %s only that they expect the
corresponding argument to have the wide character type and that the wide character and
string are transformed into/from multibyte strings before being used.

This was a beginning but it is still not good enough. Not always is it desirable to use
printf and scanf. The other, smaller and faster functions cannot handle wide characters.
Second, it is not possible to have a format string for printf and scanf consisting of wide
characters. The result is that format strings would have to be generated if they have to
contain non-basic characters.

Chapter 12: Input/Output on Streams 281

In the Amendment 1 to ISO C90 a whole new set of functions was added to solve the
problem. Most of the stream functions got a counterpart which take a wide character
or wide character string instead of a character or string respectively. The new functions
operate on the same streams (like stdout). This is different from the model of the C++
runtime library where separate streams for wide and normal I/O are used.

Being able to use the same stream for wide and normal operations comes with a re-
striction: a stream can be used either for wide operations or for normal operations. Once
it is decided there is no way back. Only a call to freopen or freopen64 can reset the
orientation. The orientation can be decided in three ways:

e If any of the normal character functions are used (this includes the fread and fwrite
functions) the stream is marked as not wide oriented.

e If any of the wide character functions are used the stream is marked as wide oriented.

e The fwide function can be used to set the orientation either way.

It is important to never mix the use of wide and not wide operations on a stream. There
are no diagnostics issued. The application behavior will simply be strange or the application
will simply crash. The fwide function can help avoid this.

int fwide (FILE *stream, int mode) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock | See Section 1.2.2.1
[POSIX Safety Concepts|, page 2.

The fwide function can be used to set and query the state of the orientation of the
stream stream. If the mode parameter has a positive value the streams get wide
oriented, for negative values narrow oriented. It is not possible to overwrite previous
orientations with fwide. Le., if the stream stream was already oriented before the
call nothing is done.

If mode is zero the current orientation state is queried and nothing is changed.

The fwide function returns a negative value, zero, or a positive value if the stream is
narrow, not at all, or wide oriented respectively.

This function was introduced in Amendment 1 to ISO C90 and is declared in wchar . h.

It is generally a good idea to orient a stream as early as possible. This can prevent
surprise especially for the standard streams stdin, stdout, and stderr. If some library
function in some situations uses one of these streams and this use orients the stream in a
different way the rest of the application expects it one might end up with hard to reproduce
errors. Remember that no errors are signal if the streams are used incorrectly. Leaving
a stream unoriented after creation is normally only necessary for library functions which
create streams which can be used in different contexts.

When writing code which uses streams and which can be used in different contexts it
is important to query the orientation of the stream before using it (unless the rules of the
library interface demand a specific orientation). The following little, silly function illustrates
this.

void
print_f (FILE *fp)
{
if (fwide (fp, 0) > 0)
/* Positive return value means wide orientation. */

Chapter 12: Input/Output on Streams 282

fputwe (L'f', fp);
else
fputc ('f', fp);
}
Note that in this case the function print_f decides about the orientation of the stream

if it was unoriented before (will not happen if the advice above is followed).

The encoding used for the wchar_t values is unspecified and the user must not make any
assumptions about it. For I/O of wchar_t values this means that it is impossible to write
these values directly to the stream. This is not what follows from the ISO C locale model
either. What happens instead is that the bytes read from or written to the underlying media
are first converted into the internal encoding chosen by the implementation for wchar_t.
The external encoding is determined by the LC_CTYPE category of the current locale or by
the ‘ccs’ part of the mode specification given to fopen, fopen64, freopen, or freopen64.
How and when the conversion happens is unspecified and it happens invisibly to the user.

Since a stream is created in the unoriented state it has at that point no conversion
associated with it. The conversion which will be used is determined by the LC_CTYPE
category selected at the time the stream is oriented. If the locales are changed at the runtime
this might produce surprising results unless one pays attention. This is just another good
reason to orient the stream explicitly as soon as possible, perhaps with a call to fwide.

12.7 Simple Output by Characters or Lines

This section describes functions for performing character- and line-oriented output.

These narrow stream functions are declared in the header file stdio.h and the wide
stream functions in wchar.h.

int fputc (int ¢, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fputc function converts the character ¢ to type unsigned char, and writes it to
the stream stream. EOF is returned if a write error occurs; otherwise the character c
is returned.

wint_t fputwc (wchar_t we, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fputwc function writes the wide character wc to the stream stream. WEOF is
returned if a write error occurs; otherwise the character wc is returned.

int fputc_unlocked (int ¢, FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fputc_unlocked function is equivalent to the fputc function except that it does
not implicitly lock the stream.

wint_t fputwc_unlocked (wchar_t wc, FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Chapter 12: Input/Output on Streams 283

The fputwc_unlocked function is equivalent to the fputwc function except that it
does not implicitly lock the stream.

This function is a GNU extension.

int putc (int ¢, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This is just like fputc, except that it may be implemented as a macro and may
evaluate the stream argument more than once. Therefore, stream should never be an
expression with side-effects.

wint_t putwc (wchar_t we, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This is just like fputwc, except that it may be implemented as a macro and may
evaluate the stream argument more than once. Therefore, stream should never be an
expression with side-effects.

int putc_unlocked (int ¢, FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The putc_unlocked function is equivalent to the putc function except that it does
not implicitly lock the stream. Like putc, it may be implemented as a macro and
may evaluate the stream argument more than once. Therefore, stream should not be
an expression with side-effects.

wint_t putwc_unlocked (wchar_t wc, FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The putwec_unlocked function is equivalent to the putwc function except that it does
not implicitly lock the stream.

This function is a GNU extension.

int putchar (int c) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The putchar function is equivalent to putc with stdout as the value of the stream
argument.

wint_t putwchar (wchar_t wc) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The putwchar function is equivalent to putwc with stdout as the value of the stream
argument.

int putchar_unlocked (int c) [Function]
Preliminary: | MT-Unsafe race:stdout | AS-Unsafe corrupt | AC-Unsafe corrupt |
See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

Chapter 12: Input/Output on Streams 284

The putchar_unlocked function is equivalent to the putchar function except that it
does not implicitly lock the stream.

wint_t putwchar_unlocked (wchar_t wc) [Function]
Preliminary: | MT-Unsafe race:stdout | AS-Unsafe corrupt | AC-Unsafe corrupt |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The putwchar_unlocked function is equivalent to the putwchar function except that
it does not implicitly lock the stream.

This function is a GNU extension.

int fputs (const char *s, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function fputs writes the string s to the stream stream. The terminating null
character is not written. This function does not add a newline character, either. It
outputs only the characters in the string.

This function returns EOF if a write error occurs, and otherwise a non-negative value.

For example:

fputs ("Are ", stdout);
fputs ("you ", stdout);
fputs ("hungry?\n", stdout);

outputs the text ‘Are you hungry?’ followed by a newline.

int fputws (const wchar_t *ws, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe corrupt lock | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The function fputws writes the wide character string ws to the stream stream. The
terminating null character is not written. This function does not add a newline
character, either. It outputs only the characters in the string.

This function returns WEOF if a write error occurs, and otherwise a non-negative value.

int fputs_unlocked (const char *s, FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fputs_unlocked function is equivalent to the fputs function except that it does
not implicitly lock the stream.

This function is a GNU extension.

int fputws_unlocked (const wchar_t *ws, FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fputws_unlocked function is equivalent to the fputws function except that it
does not implicitly lock the stream.

This function is a GNU extension.

Chapter 12: Input/Output on Streams 285

int puts (const char *s) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The puts function writes the string s to the stream stdout followed by a newline.
The terminating null character of the string is not written. (Note that fputs does
not write a newline as this function does.)

puts is the most convenient function for printing simple messages. For example:

puts ("This is a message.");

outputs the text ‘This is a message.’ followed by a newline.

int putw (int w, FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function writes the word w (that is, an int) to stream. It is provided for com-
patibility with SVID, but we recommend you use fwrite instead (see Section 12.11
[Block Input/Output], page 292).

12.8 Character Input

This section describes functions for performing character-oriented input. These narrow
stream functions are declared in the header file stdio.h and the wide character functions
are declared in wchar.h.

These functions return an int or wint_t value (for narrow and wide stream functions
respectively) that is either a character of input, or the special value EOF /WEOF (usually -1).
For the narrow stream functions it is important to store the result of these functions in
a variable of type int instead of char, even when you plan to use it only as a character.
Storing EOF in a char variable truncates its value to the size of a character, so that it is
no longer distinguishable from the valid character ‘(char) -1’. So always use an int for
the result of getc and friends, and check for EOF after the call; once you've verified that
the result is not EOF, you can be sure that it will fit in a ‘char’ variable without loss of
information.

int fgetc (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function reads the next character as an unsigned char from the stream stream
and returns its value, converted to an int. If an end-of-file condition or read error
occurs, EOF is returned instead.

wint_t fgetwc (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
This function reads the next wide character from the stream stream and returns its
value. If an end-of-file condition or read error occurs, WEOF is returned instead.

int fgetc_unlocked (FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Chapter 12: Input/Output on Streams 286

The fgetc_unlocked function is equivalent to the fgetc function except that it does
not implicitly lock the stream.

wint_t fgetwc_unlocked (FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The fgetwc_unlocked function is equivalent to the fgetwc function except that it
does not implicitly lock the stream.

This function is a GNU extension.

int getc (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This is just like fgetc, except that it may be implemented as a macro and may
evaluate the stream argument more than once. Therefore, stream should never be an
expression with side-effects.

wint_t getwc (FILE *stream) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This is just like fgetwc, except that it may be implemented as a macro and may
evaluate the stream argument more than once. Therefore, stream should never be an
expression with side-effects.

int getc_unlocked (FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The getc_unlocked function is equivalent to the getc function except that it does
not implicitly lock the stream. Like getc, it may be implemented as a macro and
may evaluate the stream argument more than once. Therefore, stream should not be
an expression with side-effects.

wint_t getwc_unlocked (FILE *stream) [Function]
Preliminary: | MT-Safe race:stream | AS-Unsafe corrupt | AC-Unsafe corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.
The getwc_unlocked function is equivalent to the getwc function except that it does
not implicitly lock the stream.

This function is a GNU extension.

int getchar (void) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The getchar function is equivalent to getc with stdin as the value of the stream
argument.

wint_t getwchar (void) [Function]
Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

Chapter 12: Input/Output on Streams 287

The getwchar function is equivalent to getwc with stdin as the value of the stream
argument.

int getchar_unlocked (void) [Function]
Preliminary: | MT-Unsafe race:stdin | AS-Unsafe corrupt | AC-Unsafe corrupt |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The getchar_unlocked function is equivalent to the getchar function except that it
does not implicitly lock the stream.

wint_t getwchar_unlocked (void) [Function]
Preliminary: | MT-Unsafe race:stdin | AS-Unsafe corrupt | AC-Unsafe corrupt |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

The getwchar_unlocked function is equivalent to the getwchar function except that
it does not implicitly lock the stream.

This function is a GNU extension.

Here is an example of a function that does input using fgetc. It would work just as well
using getc instead, or using getchar () instead of fgetc (stdin). The code would also
work the same for the wide character stream functions.

int
y_or_n_p (const char *question)
{
fputs (question, stdout);
while (1)
{
int c, answer;
/* Write a space to separate answer from question. */
fputc (' ', stdout);
/* Read the first character of the line.
This should be the answer character, but might not be. */
c = tolower (fgetc (stdin));
answer = c;
/* Discard rest of input line. */
while (c !'= '\n' && c != EOF)
c = fgetc (stdin);
/* Obey the answer if it was valid. */

if (answer == 'y')
return 1;
if (answer == 'n')
return O;
/* Answer was invalid: ask for valid answer. */
fputs ("Please answer y or n:", stdout);
}
}
int getw (FILE *stream) [Function]

Preliminary: | MT-Safe | AS-Unsafe corrupt | AC-Unsafe lock corrupt | See
Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function reads a word (that is, an int) from stream. It’s provided for compat-
ibility with SVID. We recommend you use fread instead (see Section 12.11 [Block
Input/Output|, page 292). Unlike getc, any int value could be a valid result. getw
returns EOF when it encounters end-of-file or an error, but there is no way to distin-
guish this from an input word with value -1.

Chapter 12: Input/Output on Streams 288

12.9 Line-Oriented Input

Since many programs interpret input on the basis of lines, it is convenient to have functions
to read a line of text from a stream.

Standard C has functions to do this, but they aren’t very safe: null characters and
even (for gets) long lines can confuse them. So the GNU C Library provides the getline
function that makes it easy to read lines reliably.

The getdelim function is a generalized version of getline. It reads a delimited record,
defined as everything through the next occurrence of a specified delimiter character. These
functions were both GNU extensions until standardized by POSIX.1-2008.

All these functions are declared in stdio.h.

ssize_t getline (char **restrict lineptr, size_t *restrict n, FILE [Function]
*restrict stream)
Preliminary: | MT-Safe | AS-Unsafe corrupt heap | AC-Unsafe lock corrupt mem |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This function reads an entire line from stream, storing the text (including the new-
line and a terminating null character) in a buffer and storing the buffer address in
*]ineptr.

Before calling getline, you should place in *lineptr the address of a buffer *n
bytes long, allocated with malloc. If this buffer is long enough to hold the line,
getline stores the line in this buffer. Otherwise, getline makes the buffer bigger
using realloc, storing the new buffer address back in *1ineptr and the increased
size back in *n. See Section 3.2.3 [Unconstrained Allocation|, page 47.

If you set *1ineptr to a null pointer, and *n to zero, before the call, then getline
allocates the initial buffer for you by calling malloc. This buffer remains allocated
even if getline encounters errors and is unable to read any bytes.

In either case, when getline returns, *lineptr is a char * which points to the text
of the line.

When getline is successful, it returns the number of characters read (including
the newline, but not including the terminating null). This value enables you to
distinguish null characters that are part of the line from the null character inserted
as a terminator.

This function was originally a GNU extension, but was added in POSIX.1-2008.

If an error occurs or end of file is reached without any bytes read, getline returns
-1.

ssize_t getdelim (char **restrict lineptr, size_t *restrict n, int [Function]
delimiter, FILE *restrict stream)
Preliminary: | MT-Safe | AS-Unsafe corrupt heap | AC-Unsafe lock corrupt mem |
See Section 1.2.2.1 [POSIX Safety Concepts|, page 2.

This functi