
GNU poke Manual
for version 3.0-dev-210-g8be11-dirty, 23 September 2023

by Jose E. Marchesi et al.

This manual describes GNU poke (version 3.0-dev-210-g8be11-dirty, 23 September 2023).

Copyright c© 2019, 2020, 2021, 2022, 2023 The poke authors.

You can redistribute it and/or modify this manual under the terms of the GNU
General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

i

Table of Contents

1 Introduction . 2
1.1 Motivation . 2

1.1.1 Decode-Compute-Encode . 2
1.1.2 Describe-Compute . 3

1.2 Nomenclature . 4
1.3 Invoking poke . 4
1.4 Commanding poke . 5

1.4.1 The REPL . 5
1.4.2 Evaluation . 6
1.4.3 Commands and Dot-Commands . 6

1.4.3.1 Dot-Commands . 6
1.4.3.2 Commands . 7

1.4.4 Command Files . 8
1.4.5 Scripts . 8

2 Setting Up . 10
2.1 Setting up Hyperlinks . 10

2.1.1 Make sure your poke speaks hyperlinks . 10
2.1.2 Use a terminal emulator that supports hyperlinks . 10
2.1.3 Get and install the app-client utility . 10
2.1.4 GNOME Terminal . 10

2.2 Simple Init File . 11

3 Basic Editing . 12
3.1 Binary Files . 12
3.2 Files as IO Spaces . 12
3.3 Dumping File Contents . 14
3.4 Poking Bytes . 16
3.5 Values and Variables . 17
3.6 From Bytes to Integers . 18
3.7 Big and Little Endians . 20
3.8 Negative Integers . 22

3.8.1 Negative Encodings . 22
3.8.2 Signed Integers . 22
3.8.3 Mixing Signed and Unsigned Integers . 23

3.9 Weird Integers . 23
3.9.1 Incomplete Bytes . 24
3.9.2 Quantum Bytenics . 25
3.9.3 Signed Weird Numbers . 26

3.10 Unaligned Integers . 27
3.11 Integers of Different Sizes . 28
3.12 Offsets and Sizes . 28
3.13 Buffers as IO Spaces . 30
3.14 Copying Bytes . 31
3.15 Saving Buffers in Files . 32
3.16 Character Sets . 32
3.17 From Bytes to Characters . 33

ii

3.17.1 Character Literals . 33
3.17.2 Classifying Characters . 33
3.17.3 Non-printable Characters . 34

3.18 ASCII Strings . 34
3.18.1 String Values . 34
3.18.2 Poking Strings . 34
3.18.3 From Characters to Strings . 35

3.19 From Strings to Characters . 36
3.20 Strings are not Arrays . 36

4 Structuring Data . 38
4.1 The SBM Format . 38

4.1.1 Images as Maps of Pixels . 38
4.1.2 SBM header . 38
4.1.3 SBM data . 39

4.2 Poking a SBM Image . 39
4.2.1 P is for poke . 39
4.2.2 Preparing the Canvas . 39
4.2.3 Poking the Header . 40
4.2.4 Poking the Pixels . 40
4.2.5 Poking Lines . 42
4.2.6 Poking Images . 43
4.2.7 Saving the Image . 43

4.3 Modifying SBM Images . 44
4.3.1 Reading a SBM File . 44
4.3.2 Painting Pixels . 44
4.3.3 Cropping the R . 48
4.3.4 Shortening and Shifting Lines . 49
4.3.5 Updating the Header . 49
4.3.6 Saving the Result . 50

4.4 Defining Types . 50
4.4.1 Naming your Own Abstractions . 50
4.4.2 Abstracting the Structure of Entities . 50

4.5 Pickles . 51
4.5.1 poke Commands versus Poke Constructions . 51
4.5.2 Poke Files . 51
4.5.3 Pickling Abstractions . 52
4.5.4 Exploring Pickles . 53
4.5.5 Startup . 55

4.6 Poking Structs . 55
4.6.1 Heterogeneous Related Data . 55
4.6.2 Mapping Structs . 55
4.6.3 Modifying Mapped Structs . 56

4.7 How Structs are Built . 56
4.8 Variables in Structs . 57
4.9 Functions in Structs . 58
4.10 Struct Methods . 60
4.11 Padding and Alignment . 64

4.11.1 Esoteric and exoteric padding . 64
4.11.2 Reserved fields . 64
4.11.3 Payloads . 65

iii

4.11.4 Aligning struct fields . 67
4.11.5 Padding array elements . 68

4.12 Dealing with Alternatives . 69
4.12.1 BSON . 69
4.12.2 Unions are Tagged . 71

4.13 Structured Integers . 72
4.14 Working with Incorrect Data . 74

5 Maps and Map-files . 77
5.1 Editing using Variables . 77
5.2 poke Maps . 78
5.3 Loading Maps . 79
5.4 Multiple Maps . 81
5.5 Auto-map . 83
5.6 Constructing Maps . 83
5.7 Predefined Maps . 84

6 Writing Pickles . 85
6.1 Pretty-printers . 85

6.1.1 Convention for pretty-printed Output . 85
6.1.2 Pretty Printing Optional Fields . 86

6.2 Setters and Getters . 88

7 Writing Binary Utilities . 90
7.1 Poke Scripts . 90
7.2 Command-Line Arguments . 90
7.3 Exiting from Scripts . 91
7.4 Loading pickles as Modules . 91
7.5 elfextractor . 92
7.6 Filters . 94

7.6.1 Stream IO Spaces . 95
7.6.2 Reading from Streams . 95
7.6.3 Writing to Streams . 96
7.6.4 pk-strings . 96

8 Configuration . 97
8.1 .pokerc . 97
8.2 Load Path . 97
8.3 Styling . 97

9 IOS . 98
9.1 ios dump bytes . 98
9.2 ios copy bytes . 98
9.3 ios save bytes . 99

10 Data Encodings . 100
10.1 base64 . 100

iv

11 Time . 101
11.1 POSIX Time . 101

12 Colors . 102
12.1 The Color Registry . 102
12.2 RGB24 Encoding . 102

13 Audio . 104
13.1 MP3 . 104

13.1.1 ID3V1 Tags . 104
13.1.1.1 Song Genres . 104
13.1.1.2 The ID3V1 Tag Type . 104

14 Object Formats . 106
14.1 ELF . 106
14.2 Dwarf . 106

15 Programs . 107
15.1 argp . 107

16 poked . 109

17 pokefmt . 111

18 Programming Emacs Modes . 113
18.1 poke-mode . 113
18.2 poke-map-mode . 113
18.3 poke-ras-mode . 113

19 Vim Syntax Highlighting . 114
19.1 poke.vim . 114

20 Dot-Commands . 115
20.1 .load . 115
20.2 .source . 115
20.3 .file . 115
20.4 .mem . 115
20.5 .nbd . 116
20.6 .proc . 116
20.7 .sub . 116
20.8 .ios . 116
20.9 .close . 116
20.10 .doc . 117
20.11 .editor . 117
20.12 .info . 117
20.13 .set . 118
20.14 .vm . 120

v

20.14.1 .vm disassemble . 120
20.14.2 .vm profile . 121
20.14.3 .vm dispatch . 121

20.15 .exit . 121
20.16 .quit . 121

21 Commands . 122
21.1 dump . 122

21.1.1 Information dump shows . 122
21.1.2 Presentation options for dump . 123

21.2 copy . 124
21.3 save . 124
21.4 sdiff . 125
21.5 extract . 125
21.6 scrabble . 125

22 The Poke Language . 127
22.1 Source Code Encoding . 127
22.2 Integers . 127

22.2.1 Integer Literals . 127
22.2.1.1 The digits separator _ . 127
22.2.1.2 Types of integer literals . 127

22.2.2 Characters . 128
22.2.3 Booleans . 128
22.2.4 Integer Types . 128
22.2.5 Casting Integers . 129
22.2.6 Relational Operators . 129
22.2.7 Arithmetic Operators . 130
22.2.8 Bitwise Operators . 130
22.2.9 Boolean Operators . 130
22.2.10 Integer Attributes . 131

22.3 Offsets . 131
22.3.1 Offset Literals . 131
22.3.2 Offset Units . 131

22.3.2.1 Named Units . 132
22.3.2.2 Arbitrary Units . 132
22.3.2.3 Types as Units . 132

22.3.3 Offset Types . 133
22.3.4 Casting Offsets . 133
22.3.5 Offset Operations . 133

22.3.5.1 Addition and subtraction . 133
22.3.5.2 Multiplication by a scalar . 134
22.3.5.3 Division . 134
22.3.5.4 Division by an integer . 134
22.3.5.5 Modulus . 134

22.3.6 Offset Attributes . 134
22.4 Strings . 135

22.4.1 String Literals . 135
22.4.2 String Types . 136
22.4.3 String Indexing . 136
22.4.4 String Concatenation . 136

vi

22.4.5 String Attributes . 137
22.4.6 String Formatting . 137

22.5 Arrays . 137
22.5.1 Array Literals . 137
22.5.2 Array Types . 138

22.5.2.1 Writing unbounded array literals . 138
22.5.2.2 Array boundaries and closures . 138

22.5.3 Casting Arrays . 139
22.5.4 Array Constructors . 140
22.5.5 Array Comparison . 141
22.5.6 Array Indexing . 141

22.5.6.1 Indexing an array by number of element . 141
22.5.6.2 Indexing an array by offset of element . 141

22.5.7 Array Trimming . 142
22.5.8 Array Elements . 142
22.5.9 Array Concatenation . 143
22.5.10 Array Attributes . 143
22.5.11 Arrays as Stacks . 144

22.6 Structs . 144
22.6.1 Struct Types . 144
22.6.2 Struct Constructors . 145
22.6.3 Struct Comparison . 146
22.6.4 Field Endianness . 146
22.6.5 Accessing Fields . 147
22.6.6 Field Constraints . 147
22.6.7 Field Initializers . 148
22.6.8 Field Labels . 149
22.6.9 Pinned Structs . 151
22.6.10 The OFFSET variable . 151
22.6.11 Integral Structs . 151
22.6.12 Unions . 155
22.6.13 Union Constructors . 156
22.6.14 Integral Unions . 156
22.6.15 Optional Fields . 157
22.6.16 Casting Structs . 158
22.6.17 Declarations in Structs . 159
22.6.18 Methods . 159
22.6.19 Struct Pretty Printers . 159
22.6.20 Computed Fields . 160
22.6.21 Struct Attributes . 161

22.7 Types . 162
22.7.1 type . 162
22.7.2 The any Type . 163
22.7.3 The isa Operator . 163
22.7.4 typeof . 163

22.8 Assignments . 165
22.8.1 Simple Assignments . 165
22.8.2 Bit Assignments . 166

22.9 Compound Statements . 166
22.10 Conditionals . 167

22.10.1 if-else . 167
22.10.2 Conditional Expressions . 167

vii

22.11 Loops . 167
22.11.1 while . 167
22.11.2 for . 168
22.11.3 for-in . 168

22.12 Expression Statements . 168
22.13 Functions . 168

22.13.1 Function Declarations . 168
22.13.2 Optional Arguments . 169
22.13.3 Variadic Functions . 169
22.13.4 Calling Functions . 169
22.13.5 Function Types . 170
22.13.6 Lambdas . 170
22.13.7 Function Comparison . 170
22.13.8 Function Attributes . 171

22.14 Assembler . 171
22.15 Endianness . 171

22.15.1 .set endian . 171
22.15.2 Endian in Fields . 172
22.15.3 Endian built-ins . 172

22.16 Mapping . 174
22.16.1 IO Spaces . 174

22.16.1.1 open . 174
22.16.1.2 opensub . 175
22.16.1.3 openproc . 175
22.16.1.4 close . 176
22.16.1.5 flush . 176
22.16.1.6 get_ios . 176
22.16.1.7 set_ios . 176
22.16.1.8 iosearch . 176
22.16.1.9 iolist . 176
22.16.1.10 openset . 177
22.16.1.11 iosize . 177
22.16.1.12 iohandler . 177
22.16.1.13 ioflags . 177
22.16.1.14 IO Space Hooks . 177

22.16.2 The Map Operator . 178
22.16.3 Mapping Simple Types . 179
22.16.4 Mapping Structs . 179
22.16.5 Mapping Arrays . 179

22.16.5.1 Array maps bounded by number of elements . 179
22.16.5.2 Array maps bounded by size . 180
22.16.5.3 Unbounded array maps . 181
22.16.5.4 Mapped bounds in bounded arrays . 182

22.16.6 Mapping Functions . 182
22.16.7 Non-strict Mapping . 182
22.16.8 Auto-Remapping . 183
22.16.9 Unmapping . 183

22.17 Exception Handling . 183
22.17.1 Exceptions . 183
22.17.2 try-catch . 185
22.17.3 try-until . 185
22.17.4 raise . 185

viii

22.17.5 exception-predicate . 185
22.17.6 assert . 186

22.18 Terminal . 186
22.18.1 Terminal Colors . 186
22.18.2 Terminal Styling . 187
22.18.3 Terminal Hyperlinks . 187

22.19 Printing . 187
22.19.1 print . 187
22.19.2 printf . 188

22.20 Comments . 189
22.20.1 Multi-line comments . 189
22.20.2 Single line comments . 190
22.20.3 Vertical separator . 190

22.21 Modules . 190
22.22 System . 190

22.22.1 getenv . 190
22.22.2 rand . 191

22.23 VM . 191
22.23.1 vm_obase . 191
22.23.2 vm_set_obase . 191
22.23.3 vm_opprint . 191
22.23.4 vm_set_opprint . 191
22.23.5 vm_oacutoff . 191
22.23.6 vm_set_oacutoff . 191
22.23.7 vm_odepth . 192
22.23.8 vm_set_odepth . 192
22.23.9 vm_oindent . 192
22.23.10 vm_set_oindent . 192
22.23.11 vm_omaps . 192
22.23.12 vm_set_omaps . 192
22.23.13 vm_omode . 192
22.23.14 vm_set_omode . 192
22.23.15 vm_autoremap . 193
22.23.16 vm_set_autoremap . 193

22.24 Debugging . 193
22.24.1 __LINE__ and __FILE__ . 193
22.24.2 strace . 193
22.24.3 rtrace . 193

23 The Standard Library . 194
23.1 Standard Integral Types . 194
23.2 Standard Offset Types . 194
23.3 Standard Units . 194
23.4 Conversion Functions . 195

23.4.1 catos . 195
23.4.2 stoca . 195
23.4.3 strtoi . 195
23.4.4 atoi . 196
23.4.5 ltos . 196
23.4.6 stof . 196
23.4.7 stod . 197

ix

23.5 Array Functions . 197
23.5.1 reverse . 197

23.6 String Functions . 197
23.6.1 ltrim . 197
23.6.2 rtrim . 197
23.6.3 strchr . 197
23.6.4 strrchr . 197
23.6.5 strtok . 197

23.7 Character Functions . 199
23.8 Values Functions . 199

23.8.1 eoffset . 199
23.9 IO Space Functions . 199

23.9.1 with_cur_ios . 199
23.9.2 with_temp_ios . 199

23.10 Sorting Functions . 200
23.10.1 qsort . 200

23.11 CRC Functions . 200
23.12 Dates and Times . 201
23.13 Offset Functions . 202

23.13.1 alignto . 202
23.14 Other Standard Library Functions . 202

23.14.1 GNU poke Version String Parsing Utilities . 202

24 The Poke Virtual Machine . 204
24.1 PVM Instructions . 204

24.1.1 VM instructions . 204
24.1.1.1 Instruction canary . 204
24.1.1.2 Instruction exit . 204
24.1.1.3 Instruction pushend . 204
24.1.1.4 Instruction popend . 204
24.1.1.5 Instruction pushob . 204
24.1.1.6 Instruction popob . 205
24.1.1.7 Instruction pushom . 205
24.1.1.8 Instruction popom . 205
24.1.1.9 Instruction pushoo . 205
24.1.1.10 Instruction popoo . 205
24.1.1.11 Instruction pushoi . 206
24.1.1.12 Instruction popoi . 206
24.1.1.13 Instruction pushod . 206
24.1.1.14 Instruction popod . 206
24.1.1.15 Instruction pushoac . 206
24.1.1.16 Instruction popoac . 207
24.1.1.17 Instruction pushopp . 207
24.1.1.18 Instruction popopp . 207
24.1.1.19 Instruction pushoc . 207
24.1.1.20 Instruction popoc . 207
24.1.1.21 Instruction pushobc . 207
24.1.1.22 Instruction popobc . 208
24.1.1.23 Instruction sync . 208
24.1.1.24 Instruction pusharem . 208
24.1.1.25 Instruction poparem . 208

x

24.1.2 IOS related instructions . 208
24.1.2.1 Instruction open . 208
24.1.2.2 Instruction close . 209
24.1.2.3 Instruction flush . 209
24.1.2.4 Instruction pushios . 209
24.1.2.5 Instruction popios . 209
24.1.2.6 Instruction ioflags . 209
24.1.2.7 Instruction iosize . 210
24.1.2.8 Instruction ionum . 210
24.1.2.9 Instruction ioref . 210
24.1.2.10 Instruction iohandler . 210
24.1.2.11 Instruction iogetb . 210
24.1.2.12 Instruction iosetb . 210

24.1.3 Function management instructions . 211
24.1.3.1 Instruction call . 211
24.1.3.2 Instruction prolog . 211
24.1.3.3 Instruction return . 211

24.1.4 Environment instructions . 211
24.1.4.1 Instruction pushf . 211
24.1.4.2 Instruction popf . 211
24.1.4.3 Instruction pushvar . 211
24.1.4.4 Instruction pushtopvar . 212
24.1.4.5 Instruction popvar . 212
24.1.4.6 Instruction regvar . 212
24.1.4.7 Instruction duc . 212
24.1.4.8 Instruction pec . 212

24.1.5 Printing Instructions . 212
24.1.5.1 Instruction printi . 212
24.1.5.2 Instruction printiu . 213
24.1.5.3 Instruction printl . 213
24.1.5.4 Instruction printlu . 213
24.1.5.5 Instruction prints . 213
24.1.5.6 Instruction beghl . 213
24.1.5.7 Instruction endhl . 213
24.1.5.8 Instruction begsc . 213
24.1.5.9 Instruction endsc . 214

24.1.6 Format Instructions . 214
24.1.6.1 Instruction formati . 214
24.1.6.2 Instruction formatiu . 214
24.1.6.3 Instruction formatl . 214
24.1.6.4 Instruction formatlu . 214
24.1.6.5 Instruction formatf32 . 214
24.1.6.6 Instruction formatf64 . 215

24.1.7 Floating-point conversion instructions . 215
24.1.7.1 Instruction stof . 215
24.1.7.2 Instruction stod . 215

24.1.8 Main stack manipulation instructions . 215
24.1.8.1 Instruction push . 215
24.1.8.2 Instruction drop . 216
24.1.8.3 Instruction drop2 . 216
24.1.8.4 Instruction drop3 . 216
24.1.8.5 Instruction drop4 . 216

xi

24.1.8.6 Instruction swap . 216
24.1.8.7 Instruction nip . 216
24.1.8.8 Instruction nip2 . 216
24.1.8.9 Instruction nip3 . 216
24.1.8.10 Instruction dup . 217
24.1.8.11 Instruction over . 217
24.1.8.12 Instruction oover . 217
24.1.8.13 Instruction rot . 217
24.1.8.14 Instruction nrot . 217
24.1.8.15 Instruction tuck . 217
24.1.8.16 Instruction quake . 217
24.1.8.17 Instruction revn . 217
24.1.8.18 Instruction push32 . 218

24.1.9 Registers manipulation instructions . 218
24.1.9.1 Instruction pushr . 218
24.1.9.2 Instruction popr . 218
24.1.9.3 Instruction setr . 218

24.1.10 Return stack manipulation instructions . 218
24.1.10.1 Instruction saver . 218
24.1.10.2 Instruction restorer . 218
24.1.10.3 Instruction tor . 218
24.1.10.4 Instruction fromr . 219
24.1.10.5 Instruction atr . 219

24.1.11 Integer overflow checking instructions. 219
24.1.11.1 Instruction addiof . 219
24.1.11.2 Instruction addlof . 219
24.1.11.3 Instruction subiof . 219
24.1.11.4 Instruction sublof . 219
24.1.11.5 Instruction muliof . 220
24.1.11.6 Instruction mullof . 220
24.1.11.7 Instruction diviof . 220
24.1.11.8 Instruction divlof . 220
24.1.11.9 Instruction modiof . 220
24.1.11.10 Instruction modlof . 220
24.1.11.11 Instruction negiof . 220
24.1.11.12 Instruction neglof . 221
24.1.11.13 Instruction powiof . 221
24.1.11.14 Instruction powlof . 221

24.1.12 Arithmetic instructions . 221
24.1.12.1 Instruction addi . 221
24.1.12.2 Instruction addiu . 221
24.1.12.3 Instruction addl . 221
24.1.12.4 Instruction addlu . 222
24.1.12.5 Instruction subi . 222
24.1.12.6 Instruction subiu . 222
24.1.12.7 Instruction subl . 222
24.1.12.8 Instruction sublu . 222
24.1.12.9 Instruction muli . 222
24.1.12.10 Instruction muliu . 223
24.1.12.11 Instruction mull . 223
24.1.12.12 Instruction mullu . 223
24.1.12.13 Instruction divi . 223

xii

24.1.12.14 Instruction diviu . 223
24.1.12.15 Instruction divl . 224
24.1.12.16 Instruction divlu . 224
24.1.12.17 Instruction modi . 224
24.1.12.18 Instruction modiu . 224
24.1.12.19 Instruction modl . 225
24.1.12.20 Instruction modlu . 225
24.1.12.21 Instruction negi . 225
24.1.12.22 Instruction negiu . 225
24.1.12.23 Instruction negl . 225
24.1.12.24 Instruction neglu . 226
24.1.12.25 Instruction powi . 226
24.1.12.26 Instruction powiu . 226
24.1.12.27 Instruction powl . 226
24.1.12.28 Instruction powlu . 226

24.1.13 Relational instructions . 226
24.1.13.1 Instruction eqi . 226
24.1.13.2 Instruction eqiu . 227
24.1.13.3 Instruction eql . 227
24.1.13.4 Instruction eqlu . 227
24.1.13.5 Instruction eqs . 227
24.1.13.6 Instruction nei . 227
24.1.13.7 Instruction neiu . 227
24.1.13.8 Instruction nel . 227
24.1.13.9 Instruction nelu . 228
24.1.13.10 Instruction nes . 228
24.1.13.11 Instruction nn . 228
24.1.13.12 Instruction nnn . 228
24.1.13.13 Instruction lti . 228
24.1.13.14 Instruction ltiu . 228
24.1.13.15 Instruction ltl . 228
24.1.13.16 Instruction ltlu . 229
24.1.13.17 Instruction lei . 229
24.1.13.18 Instruction leiu . 229
24.1.13.19 Instruction lel . 229
24.1.13.20 Instruction lelu . 229
24.1.13.21 Instruction gti . 229
24.1.13.22 Instruction gtiu . 229
24.1.13.23 Instruction gtl . 230
24.1.13.24 Instruction gtlu . 230
24.1.13.25 Instruction gei . 230
24.1.13.26 Instruction geiu . 230
24.1.13.27 Instruction gel . 230
24.1.13.28 Instruction gelu . 230
24.1.13.29 Instruction lts . 230
24.1.13.30 Instruction gts . 231
24.1.13.31 Instruction ges . 231
24.1.13.32 Instruction les . 231
24.1.13.33 Instruction eqc . 231
24.1.13.34 Instruction nec . 231

24.1.14 Concatenation instructions . 231
24.1.14.1 Instruction sconc . 231

xiii

24.1.15 Logical instructions . 231
24.1.15.1 Instruction and . 232
24.1.15.2 Instruction or . 232
24.1.15.3 Instruction not . 232

24.1.16 Bitwise instructions . 232
24.1.16.1 Instruction bxori . 232
24.1.16.2 Instruction bxoriu . 232
24.1.16.3 Instruction bxorl . 232
24.1.16.4 Instruction bxorlu . 232
24.1.16.5 Instruction bori . 233
24.1.16.6 Instruction boriu . 233
24.1.16.7 Instruction borl . 233
24.1.16.8 Instruction borlu . 233
24.1.16.9 Instruction bandi . 233
24.1.16.10 Instruction bandiu . 233
24.1.16.11 Instruction bandl . 233
24.1.16.12 Instruction bandlu . 233
24.1.16.13 Instruction bnoti . 234
24.1.16.14 Instruction bnotiu . 234
24.1.16.15 Instruction bnotl . 234
24.1.16.16 Instruction bnotlu . 234

24.1.17 Shift instructions . 234
24.1.17.1 Instruction bsli . 234
24.1.17.2 Instruction bsliu . 234
24.1.17.3 Instruction bsll . 235
24.1.17.4 Instruction bsllu . 235
24.1.17.5 Instruction bsri . 235
24.1.17.6 Instruction bsriu . 235
24.1.17.7 Instruction bsrl . 235
24.1.17.8 Instruction bsrlu . 235

24.1.18 Compare-and-swap instructions . 236
24.1.18.1 Instruction swapgti . 236
24.1.18.2 Instruction swapgtiu . 236
24.1.18.3 Instruction swapgtl . 236
24.1.18.4 Instruction swapgtlu . 236

24.1.19 Branch instructions . 236
24.1.19.1 Instruction ba . 236
24.1.19.2 Instruction bn . 236
24.1.19.3 Instruction bnn . 237
24.1.19.4 Instruction bzi . 237
24.1.19.5 Instruction bziu . 237
24.1.19.6 Instruction bzl . 237
24.1.19.7 Instruction bzlu . 237
24.1.19.8 Instruction bnzi . 237
24.1.19.9 Instruction bnziu . 237
24.1.19.10 Instruction bnzl . 237
24.1.19.11 Instruction bnzlu . 238

24.1.20 Conversion instructions . 238
24.1.20.1 Instruction ctos . 238
24.1.20.2 Instruction itoi . 238
24.1.20.3 Instruction itoiu . 238
24.1.20.4 Instruction itol . 238

xiv

24.1.20.5 Instruction itolu . 238
24.1.20.6 Instruction iutoi . 239
24.1.20.7 Instruction iutoiu . 239
24.1.20.8 Instruction iutol . 239
24.1.20.9 Instruction iutolu . 239
24.1.20.10 Instruction ltoi . 239
24.1.20.11 Instruction ltoiu . 239
24.1.20.12 Instruction ltol . 240
24.1.20.13 Instruction ltolu . 240
24.1.20.14 Instruction lutoi . 240
24.1.20.15 Instruction lutoiu . 240
24.1.20.16 Instruction lutol . 240
24.1.20.17 Instruction lutolu . 240

24.1.21 String instructions . 240
24.1.21.1 Instruction strref . 241
24.1.21.2 Instruction strset . 241
24.1.21.3 Instruction substr . 241
24.1.21.4 Instruction muls . 241
24.1.21.5 Instruction sprops . 241
24.1.21.6 Instruction sproph . 242
24.1.21.7 Instruction spropc . 242

24.1.22 Closure instructions . 242
24.1.22.1 Instruction cgetn . 242

24.1.23 Array instructions . 242
24.1.23.1 Instruction mka . 242
24.1.23.2 Instruction ains . 242
24.1.23.3 Instruction arem . 243
24.1.23.4 Instruction aset . 243
24.1.23.5 Instruction aref . 243
24.1.23.6 Instruction arefo . 243

24.1.24 Struct instructions . 243
24.1.24.1 Instruction mksct . 243
24.1.24.2 Instruction sset . 244
24.1.24.3 Instruction sseti . 244
24.1.24.4 Instruction sref . 244
24.1.24.5 Instruction srefo . 244
24.1.24.6 Instruction srefmnt . 244
24.1.24.7 Instruction srefnt . 244
24.1.24.8 Instruction srefi . 245
24.1.24.9 Instruction srefia . 245
24.1.24.10 Instruction srefio . 245
24.1.24.11 Instruction srefin . 245
24.1.24.12 Instruction smodi . 245

24.1.25 Offset Instructions . 245
24.1.25.1 Instruction mko . 246
24.1.25.2 Instruction mkoq . 246
24.1.25.3 Instruction ogetm . 246
24.1.25.4 Instruction osetm . 246
24.1.25.5 Instruction ogetu . 246
24.1.25.6 Instruction ogetbt . 246

24.1.26 Instructions to handle mapped values . 246
24.1.26.1 Instruction mm . 246

xv

24.1.26.2 Instruction map . 247
24.1.26.3 Instruction unmap . 247
24.1.26.4 Instruction reloc . 247
24.1.26.5 Instruction ureloc . 247
24.1.26.6 Instruction mgets . 247
24.1.26.7 Instruction msets . 247
24.1.26.8 Instruction mgeto . 248
24.1.26.9 Instruction mseto . 248
24.1.26.10 Instruction mgetios . 248
24.1.26.11 Instruction msetios . 248
24.1.26.12 Instruction mgetm . 248
24.1.26.13 Instruction msetm . 248
24.1.26.14 Instruction mgetw . 249
24.1.26.15 Instruction msetw . 249
24.1.26.16 Instruction mgetsel . 249
24.1.26.17 Instruction msetsel . 249
24.1.26.18 Instruction mgetsiz . 249
24.1.26.19 Instruction msetsiz . 249

24.1.27 Type related instructions . 250
24.1.27.1 Instruction isa . 250
24.1.27.2 Instruction typof . 250
24.1.27.3 Instruction isty . 250
24.1.27.4 Instruction tyisi . 250
24.1.27.5 Instruction tyisiu . 250
24.1.27.6 Instruction tyisl . 250
24.1.27.7 Instruction tyislu . 250
24.1.27.8 Instruction tyiso . 251
24.1.27.9 Instruction tyiss . 251
24.1.27.10 Instruction tyisa . 251
24.1.27.11 Instruction tyisc . 251
24.1.27.12 Instruction tyissct . 251
24.1.27.13 Instruction tyisv . 251
24.1.27.14 Instruction mktyv . 251
24.1.27.15 Instruction mktyi . 252
24.1.27.16 Instruction tyigetsz . 252
24.1.27.17 Instruction tyigetsg . 252
24.1.27.18 Instruction mktys . 252
24.1.27.19 Instruction mktyo . 252
24.1.27.20 Instruction tyogetm . 252
24.1.27.21 Instruction tyogetu . 252
24.1.27.22 Instruction tyogetrt . 253
24.1.27.23 Instruction tyosetrt . 253
24.1.27.24 Instruction mktya . 253
24.1.27.25 Instruction tyagett . 253
24.1.27.26 Instruction tyagetb . 253
24.1.27.27 Instruction tyasetb . 253
24.1.27.28 Instruction mktyc . 253
24.1.27.29 Instruction mktysct . 254
24.1.27.30 Instruction tysctgetc . 254
24.1.27.31 Instruction tysctsetc . 254
24.1.27.32 Instruction tysctgetn . 254
24.1.27.33 Instruction tysctgetnf . 254

xvi

24.1.27.34 Instruction tysctgetfn . 254
24.1.27.35 Instruction tysctgetft . 254

24.1.28 IO instructions . 255
24.1.28.1 Instruction write . 255
24.1.28.2 Instruction peeki . 255
24.1.28.3 Instruction peekiu . 255
24.1.28.4 Instruction peekl . 255
24.1.28.5 Instruction peeklu . 255
24.1.28.6 Instruction peekdi . 256
24.1.28.7 Instruction peekdiu . 256
24.1.28.8 Instruction peekdl . 256
24.1.28.9 Instruction peekdlu . 256
24.1.28.10 Instruction pokei . 256
24.1.28.11 Instruction pokeiu . 257
24.1.28.12 Instruction pokel . 257
24.1.28.13 Instruction pokelu . 257
24.1.28.14 Instruction pokedi . 257
24.1.28.15 Instruction pokediu . 257
24.1.28.16 Instruction pokedl . 258
24.1.28.17 Instruction pokedlu . 258
24.1.28.18 Instruction peeks . 258
24.1.28.19 Instruction pokes . 258

24.1.29 Exceptions handling instructions . 258
24.1.29.1 Instruction pushe . 258
24.1.29.2 Instruction pope . 259
24.1.29.3 Instruction raise . 259
24.1.29.4 Instruction popexite . 259

24.1.30 Debugging Instructions . 259
24.1.30.1 Instruction strace . 259
24.1.30.2 Instruction rtrace . 259
24.1.30.3 Instruction disas . 259
24.1.30.4 Instruction note . 260
24.1.30.5 Instruction vmdisp . 260

24.1.31 System Interaction Instructions . 260
24.1.31.1 Instruction getenv . 260

24.1.32 Miscellaneous Instructions . 260
24.1.32.1 Instruction nop . 260
24.1.32.2 Instruction rand . 260
24.1.32.3 Instruction time . 260
24.1.32.4 Instruction sleep . 261
24.1.32.5 Instruction siz . 261
24.1.32.6 Instruction sel . 261

Appendix A Table of ASCII Codes . 262

Appendix B GNU Free Documentation License 265

Appendix C Indices . 272
C.1 Concept Index . 272
C.2 PVM Instruction Index . 275

1

GNU poke is an interactive, extensible editor for binary data. Not limited to editing basic
entities such as bits and bytes, it provides a full-fledged procedural, interactive programming
language designed to describe data structures and to operate on them.

This manual describes the poke binary data editor as well as the Poke language.

2

1 Introduction

1.1 Motivation

The main purpose of GNU poke is to manipulate structured binary data in terms of abstractions
provided by the user. The Poke type definitions can be seen as a sort of declarative specifications
for decoding and encoding procedures. The user specifies the structure of the data to be ma-
nipulated, and poke uses that information to automagically decode and encode the data. Under
this perspective, struct types correspond to sequences of instructions, array types to repetitions
or loops, union types to alternatives or conditionals, and so on.

1.1.1 Decode-Compute-Encode

Computing with data whose form is not the most convenient way to be manipulated, like is often
the case in unstructured binary data, requires performing a preliminary step that transforms the
data into a more convenient representation, usually featuring a higher level of abstraction. This
step is known in computer jargon as unmarshalling, when the data is fetch from some storage
or transmission media or, more generally, decoding.

Once the computation has been performed, the result should be transformed back to the
low-level representation to be stored or transmitted. This is performed in a closing step known
as marshalling or, more generally, encoding.

Consider the following C program whose purpose is to read a 32-bit signed integer from a
byte-oriented storage media at a given offset, multiply it by two, and store the result at the
same offset.

void double_number (int fd, off_t offset, int endian)

{

int number, i;

unsigned char b[4];

/* Decode. */

lseek (fd, offset, SEEK_SET);

for (i = 0; i < 4; ++i)

read (fd, &b[i], 1);

if (endian == BIG)

number = b[0] << 24 | b[1] << 16 | b[2] << 8 | b[3];

else

number = b[3] << 24 | b[2] << 16 | b[1] << 8 | b[0];

/* Compute. */

number = number * 2;

/* Encode. */

if (endian == BIG)

{

b[0] = (number >> 24) & 0xff;

b[1] = (number >> 16) & 0xff;

b[2] = (number >> 8) & 0xff;

b[3] = number & 0xff;

}

else

{

Chapter 1: Introduction 3

b[3] = (number >> 24) & 0xff;

b[2] = (number >> 16) & 0xff;

b[1] = (number >> 8) & 0xff;

b[0] = number & 0xff;

}

lseek (fd, offset, SEEK_SET);

for (i = 0; i < 4; ++i)

write (fd, &b[i], 1);

}

As we can see, decoding takes care of fetching the data from the storage in simple units,
bytes. Then it mounts the more abstract entity on which the computation will be performed,
in this case a signed 32-bit integer. Considerations like endianness, negative encoding (which is
assumed to be two’s complement in this example and handled automatically by C) and error
conditions (omitted in this example for clarity) should be handled properly.

Conversely, encoding turns the signed 32-bit integer into a sequence of bytes and then writes
them out to the storage at the desired offset. Again, this requires taking endianness into account
and handling error conditions.

This example may look simplistic and artificial, and it is, but too often the computation
proper (like multiplying the integer by two) is way more straightforward than the decoding and
encoding of the data used for the computation.

Generally speaking, decoding and encoding binary data is laborious and error prone. Think
about sequences of elements, variable-length and clever compact encodings, elements not aligned
to byte boundaries, the always bug-prone endianness, and a long etc. Dirty business, sometimes
risky, and always boring.

1.1.2 Describe-Compute

This is where poke comes into play. Basically, it allows you to describe the characteristics of the
data you want to compute on, and then decodes and encodes it for you, taking care of the gory
details. That way you can concentrate your energy on the fun part: computing on the data at
your pleasure.

Of course, you are still required to provide a description of the data. In the Poke language,
these descriptions take the form of type definitions, which are declarative: you specify what you
want, and poke extracts the how from that.

For example, consider the following Poke type definition:

type Packet =

struct

{

uint<16> magic == 0xef;

uint<32> size;

byte[size] data @ 8#B;

};

This tells poke that, in order to decode a Packet, it should perform the following procedure
(a similar procedure is implied for encoding):

− Read two bytes from the IO space, mount them into an unsigned 16-bit integer using
whatever current endianness, and put it in magic. If this unsigned 16-bit integer doesn’t
equal to 0xef, then stop and emit a “data integrity” error.

− Read four bytes, mount them into an unsigned 32-bit integer using the same endianness,
and put it in size.

Chapter 1: Introduction 4

− Seek the IO space to advance 16 bits.

− Do size times:

− Read one byte and mount it into an unsigned 8-bit integer.

− Put the integer in the proper place in the data array.

If during this procedure an end of file is encountered, or some other erroneous condition
happens, an appropriate error is raised.

In the procedure sketched above we find a sequence of operations, implied by the struct type,
and a loop, implied by the array type. As we shall see later in this book, it is also possible to
decode conditionally. Union types are used for that purpose.

1.2 Nomenclature

GNU poke is a new program and it introduces many new concepts. It is a good idea to clarify
how we call things in the poke community. Unless everyone uses the same nomenclature to refer
to pokish thingies, it is gonna get very confusing very soon!

First of all we have poke, the program. Since “poke” is a very common English word, when
the context is not clear we either use the full denomination GNU poke, or quote the word using
some other notation.

Then we have Poke, with upper case P, which is the name of the domain-specific programming
language implemented by poke, the program.

This distinction is important. For example, when people talk about “poke programmers” they
refer to the group of people hacking GNU poke. When they talk about “Poke programmers”
they refer to the people who write programs using the Poke programming language.

Finally, a pickle is a Poke source file containing definitions of types, variables, functions,
etc, that conceptually apply to some definite domain. For example, elf.pk is a pickle that
provides facilities to poke ELF object files. Pickles are not necessarily related to file formats: a
set of functions to work with bit patterns, for example, could be implemented in a pickle named
bitpatterns.pk.

We hope this helps to clarify things.

1.3 Invoking poke

Synopsis:

poke [option...] [file]

The following options are available.

‘-l’
‘--load=file’

Load the given file as a Poke program. Any number of ‘-l’ options can be specified,
and they are loaded in the given order.

‘-L file’ Load the given file as a Poke program and exit. The rest of the command-line is
not processed by poke, and is available to the Poke script in the argv variable.
This is commonly used along with a shebang (see Section 1.4.5 [Scripts], page 8) to
implement Poke scripts.

Commanding poke from the command line:

‘-c’
‘--command=cmd’

Execute the given command. Any number of ‘-c’ options can be specified, and they
are executed in the given order.

Chapter 1: Introduction 5

‘-s’
‘--source=file’

Load file as a command file. Any number of ‘-s’ options may be specified, and they
are loaded in the given order. See Section 1.4.4 [Command Files], page 8.

Styling text output:

‘--color=how’
Whether to use styled output, and how. Valid options for how are ‘yes’, ‘no’, ‘auto’,
‘html’ and ‘test’.

‘--style-dark’
Use the default style that works better for dark backgrounds. This is the default.

‘--style-bright’
Use the default style that works better for bright backgrounds.

‘--style=file’
Use file as the CSS to use for styling poke, instead of the default style.

Other options:

-q

--no-init-file

Do not load the ~/.pokerc init file.

--no-auto-map

Do not load map-files automatically when poke opens IO spaces.

--no-hserver

Do not run the terminal hyperlinks server.

--no-stdtypes

Do not define standard Poke types (such as int, char, etc) in the Poke incremental
compiler.

--quiet Be as terse as possible.

--help Print a help message and exit.

--version

Show version and exit.

The following environment variables, if set, are used by poke:

POKE_LOAD_PATH

List of file paths separated by the colon characters (:) which is prepended to the
load_path when poke starts.

1.4 Commanding poke

GNU poke is primarily an interactive editor that works in the command line. However, it is also
possible to use it in a non-interactive way. This chapter documents both possibilities.

1.4.1 The REPL

If poke is invoked with an interactive TTY connected to the standard input, it greets you with
a welcome message, licensing information and such, and finally a prompt that looks like:

(poke)

At this point, the program is ready to be commanded. You are expected to introduce a line
and press enter. At that point poke will examine the command, notify you if there is some
error condition, process the line and maybe displaying something in the terminal.

Chapter 1: Introduction 6

Repeatedly typing complex commands can be tiresome. To help you, poke uses the readline
library See GNU Readline Library . This provides shortcuts and simple keystrokes to repeat
previous commands with or without modification, fast selection of file names and entries from
other multiple choice contexts, and navigation within a command and among previous com-
mands. When the REPL starts, the history of your previous sessions are loaded from the file
.poke_history located in your home directory (if it exists).

There are several kinds of lines that can be provided in the REPL:

• A dot-command invocation, that starts with a dot character (.).

• A command invocation.

• A Poke statement.

• A Poke expression.

These are explained in the following sections.

1.4.2 Evaluation

You can evaluate a Poke statement by typing it at the REPL’s prompt. Only a single statement,
including expression statements (see Section 22.12 [Expression Statements], page 168) and com-
pound statements (see Section 22.9 [Compound Statements], page 166), can be evaluated this
way. It needs not be terminated by a semicolon.

When an expression is evaluated, the result of the evaluation is printed back to you. For
example:

(poke) 23

23

(poke) [1,2,3]

[1,2,3]

(poke) Packet @ 0#B

Packet {i=1179403647,j=65794L}

When a statement other than an expression statement is executed in the REPL no result is
printed, but of course the statement can print on its own:

(poke) fun do_foo = void: {}

(poke) do_foo

(poke) for (i in [1,2,3]) printf "elem %i32d\n", i;

elem 1

elem 2

elem 3

If there is an error compiling the line, you are notified with a nice error message, showing
the location of the error. For example:

(poke) [1,2,3 + "foo"]

<stdin>:1:6: error: invalid operands in expression

[1,2,3 + "foo"];

^~~~~~~~~

1.4.3 Commands and Dot-Commands

There are two kinds of commands in poke: the dot-commands, which are written in C and have
their own conventions for handling sub-commands and passing arguments and flags, and normal
commands, which are written in Poke.

1.4.3.1 Dot-Commands

Dot-commands are so called because their names start with the dot character (.). They can
feature subcommands. Example:

Chapter 1: Introduction 7

(poke) .vm disassemble expression int[] @ 0#B

(poke) .vm disassemble function (dump)

When there is no ambiguity, the command name and the subcommands can be shortened to
prefixes. The commands above can also be written as:

(poke) .vm dis e int[] @ 0#B

(poke) .vm dis f (dump)

Some commands also get flags, which are one-letter indicators that can be appended to the
command name (including subcommands) after a slash character (/). For example, the .vm

disassembler commands accept a n flag to indicate we want a native disassemble. We can pass
it as follows:

(poke) .vm disassemble expression/n int[] @ 0#B

(poke) .vm disassemble function/n (dump)

If a dot-command accepts more than one argument, they are separated using comma char-
acters (,). Spaces are generally ignored.

1.4.3.2 Commands

Regular poke commands are written in Poke and use different conventions. The name of com-
mands follow the same rules as normal Poke identifiers, and do not start with a dot character.

An example is the dump command:

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 f700 0100 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 8001 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0800 0700@.....@.....

00000040: 1800 0000 0000 0000 0000 0000 0000 0000

00000050: 7900 0000 0000 0000 b701 0000 9a02 0000 y...............

00000060: 7b10 0000 0000 0000 1800 0000 0000 0000 {...............

00000070: 0000 0000 0000 0000 7900 0000 0000 0000y.......

After the name of the command, arguments can be specified by name, like this:

(poke) dump :from 0#B :size 8#B

(poke) dump :from 0#B :size 8#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 .ELF....

The dump command is discussed in greater detail below (see Section 21.1 [dump], page 122).
The order of arguments is irrelevant in principle:

(poke) dump :from 0#B :size 8#B :ascii 0 :ruler 0

00000000: 7f45 4c46 0201 0100

(poke) dump :ruler 0 :from 0#B :size 8#B :ascii 0

00000000: 7f45 4c46 0201 0100

However, beware side effects while computing the values you pass as the arguments! The
expressions themselves are evaluated from left to right (according to the order of declaration in
the signature).

Which arguments are accepted, and their kind, depend on the specific command.

Note that the idea is to restrict the number of dot-commands to the absolutely minimum.
Most of the command-like functionality provided in poke shall be implemented as regular com-
mands.

Chapter 1: Introduction 8

1.4.4 Command Files

Command files contain poke commands. A poke command may be a dot command, a Poke
statement or a Poke expression. Lines starting with # are comments will be ignored. However
a comment must start at the beginning of a line. Here is an example of a script:

The following two lines are dot commands

.load my-pickle.pk

.set obase 16

The following line is a Poke statement

dump :size 0x100#B :from 0x10#B

The following line is a Poke expression statement without any side effect.

Consequently it is valid, but rather useless.

4 == 4

A command file contains commands, not Poke code. This means it gets read line by line and
commands cannot occupy more than one line. Hence the following is a valid command file:

type foo = struct {int this; int that;}

but this is not valid as a command file (although it is a valid Poke statement) and will provoke
an error:

type foo = struct

{

int this;

int that;

}

Command files can be loaded at startup using the -s command line option (see Section 1.3
[Invoking poke], page 4). The ~/.pokerc startup file is also an example of a poke command file
(see Section 8.1 [pokerc], page 97).

1.4.5 Scripts

Following the example of Guile Scheme, the Poke syntax includes support for multi-line com-
ments using the #! and !# delimiters. This, along with the -L command line option, allows to
write Poke scripts and execute them in the command line like if they were normal programs.
Example of a script:

#!/usr/bin/poke -L

!#

print "Hello world!\n";

The resulting script can process command-line options by accessing the argv array. The
following Poke script prints its arguments:

#!/usr/bin/poke -L

!#

for (arg in argv)

printf ("Argument: %s\n", arg);

If you want to pass additional flags to the poke command, you need to use a slightly different
kind of shebang:

#!/usr/bin/env sh

exec poke -L "$0" "$@"

!#

Chapter 1: Introduction 9

load elf;

open (argv[0]);

printf ("%v\n", Elf64_Ehdr @ 0#B);

10

2 Setting Up

2.1 Setting up Hyperlinks

GNU poke uses terminal hyperlinks in order to improve the interactive usage of the tool: clicking
on terminal hyperlinks requests poke to execute certain actions. This is used to implement
buttons and other interactive goodies.

Many terminal emulators support terminal hyperlinks. However, we are using a very simple
protocol called app:// that is not supported (yet) on GNU/Linux distros. Fortunately, it is
very easy to set your system to use this protocol, and this chapter shows you how.

2.1.1 Make sure your poke speaks hyperlinks

The first step in having an hyperlinks-capable poke is to make sure to have a recent enough
version of libtextstyle when building poke. If your poke can emit hyperlinks you will see a
message like this when running it on the terminal:

hserver listening in port 43713.

2.1.2 Use a terminal emulator that supports hyperlinks

Gnome Terminal has support for displaying hyperlinks as do many other emula-
tors that rely on VTE. Check the list at https://gist.github.com/egmontkob/

eb114294efbcd5adb1944c9f3cb5feda#supporting-apps for a mostly up-to-date,
non-exhaustive list of emulators that support printing hyperlinks.

2.1.3 Get and install the app-client utility

Since app:// is a new URI protocol that we designed, common terminal emulators don’t know
what to do when they encounter such a URI. To work around this problem we use the XDG
Desktop Specification and a little C utility called app-client, which can be found at https://
gitlab.com/darnir/hyperlink-app-client.

By setting app-client as the default handler for app:// URIs, the terminal emulator does
not need to understand the syntax or semantics of the app:// protocol. It offloads the handling
of the URI entirely to app-client. In order to use this, first download and install app-client:

$ git clone https://gitlab.com/darnir/hyperlink-app-client

$ cd hyperlink-app-client

$ make

$ sudo make install

This is enough for any utility (like terminals) that use xdg-open to do the right thing with
hyperlinks. However, certain terminals require additional setup. See below if that is your case.

2.1.4 GNOME Terminal

Gnome Terminal doesn’t use xdg-open to start the applications. Instead, it parses the
mimeapps.list file manually to find the right application.

Edit your mimeapps.list, it is usually located at $HOME/.local/share/applications/mimeapps.list,
but it might also be at $XDG_CONFIG_DIR/mimeapps.list, and add the following line to it:

x-scheme-handler/app=app-client.desktop

This let’s Gnome Terminal know how to open app:// links.

https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda#supporting-apps
https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda#supporting-apps
https://gitlab.com/darnir/hyperlink-app-client
https://gitlab.com/darnir/hyperlink-app-client

Chapter 2: Setting Up 11

2.2 Simple Init File

GNU poke is a spartan program that tries to be as simple as possible by default, without fancy
displays. Therefore, before exploring poke you may want to configure it minimally. This section
contains a few recommendations in that respect.

First we must say that poke reads a per-user configuration from the ~/.pokerc file. See
Section 8.1 [pokerc], page 97.

We recommend new users to set the following options:

.set endian little

.set omode tree

.set oacutoff 5

.set pretty-print yes

.set pager yes

.set endian little will make poke to use little-endian by default when accessing IO spaces,
such as files or memory buffers. See Section 3.7 [Big and Little Endians], page 20.

.set omode tree will make poke to format composite data structures, such as arrays and
struct, in several lines in a nice tree-like format. By default the program will format these values
in a single line (what we call the “plain” output mode) which can be difficult to read.

.set oacutoff 5 will make poke to output at most five elements in array values, followed by
a dieresis

.set pretty-print yes will make poke to use pretty-printers when printing out values of
struct types that have a pretty-printer defined for them. You can recognize pretty-printed
values because, by convention, they are emitted between #< and > markers, like for example
#<leb128:1234>. If you see a pretty-printed value and you need to look at its internal structure,
you can disable pretty-printing using a .set pretty-print no dot-command at any time. See
Section 6.1 [Pretty-printers], page 85.

.set pager yes will make poke to page the output of commands that emit output larger
than the visible terminal. This of course only has an effect when running poke interactively.

These options are fully explained later in this manual. See Section 20.13 [set command],
page 118.

12

3 Basic Editing

In this chapter you will learn how to shuffle binary data around with poke, in terms of funda-
mental predefined entities: bits, bytes, integers, and the like.

3.1 Binary Files

GNU poke is an editor for binary files. Right, so what is a binary file? Strictly speaking, every
file in a computer’s file system is binary. This is because, in a very fundamental level, files are
just sequences of bytes.

Colloquially, however, it is very common to talk about “binary files” as opposed to “text
files”. In this informal meaning, a text file is basically a file composed, mostly, of bytes (and
byte sequences) that can be translated into printable characters in some character set, such as
ASCII, EBCDIC or Unicode. It follows that binary files would then be files composed, mostly,
of bytes not intended to be interpreted as encoded characters.

Some text files contain non-printable characters, such as form feed characters, and many
binary files contain printable strings, such as a string table in an ELF object file. That is
why we used the word “mostly” in the definitions above. In practice, however, the distinction
is almost always clear and there is common consensus on whether a given file format can be
considered as a binary format, or not.

GNU poke can edit any file, and as we shall see, it provides some nice features to manipulate
sequences of bytes interpreted as character strings. However, it is called a “binary editor”
because it is especially designed to be particularly useful editing binary files, in the sense of the
term defined above.

In this chapter, we will be using ELF object files as the experiment subject in most of
the examples. ELF files are good for this purpose, because they are eminently binary, highly
structured, and still strings play a role in them, encoding names of entities like sections and
symbols. You don’t need to have a perfect knowledge of the ELF format in order to follow the
examples, but being familiarized with the concept of object file formats should surely help.

You will need to install the ELF pickle. You can get it at https://jemarch.net/poke-elf.

Obtaining a simple ELF object file is easy, if you have a C compiler installed:

$ echo 'int foo () { return 0; }' | gcc -c -xc -o foo.o -

The command above compiles a very simple ELF object file that contains the compiled form
of a little dummy function. This object file will be our companion for a while, and will be the
subject of much analysis and abuse, as we poke it.

3.2 Files as IO Spaces

Now that we have a binary file (foo.o) it is time to open it with poke. There are two ways to
do that.

One way is to pass the name of the file in the poke invocation. The program will start, open
the file, and present you with the REPL, like in:

$ poke foo.o

[...]

(poke)

The other way is to fire up poke without arguments, and then use the .file dot-command
to open the file:

$ poke

[...]

(poke) .file foo.o

https://jemarch.net/poke-elf

Chapter 3: Basic Editing 13

The current IOS is now `./foo.o'.

(poke)

Note how poke replies to the dot-command, stating that the current IOS is now the file we
opened.

You may be wondering, what is this IOS thing? It is an acronym for Input/Output Space,
often written IO Space. This is the denomination used to refer to the entities being edited with
poke. In this case the IO space being edited is a file, but we will see that is not always the case:
poke can also edit other entities such as memory buffers and remote block-oriented devices over
the network. For now, let’s keep in mind that IOS, or IO space, refers to the file being edited.

And why “current”? GNU poke is capable of editing several files (more generally, several IO
spaces) simultaneously. At any time, one of these files is the “current one”. In our case, the
current IO space is the file foo.o, since it is the only file poke knows about:

(poke) .info ios

Id Type Mode Bias Size Name

* #0 FILE rw 0x00000000#B 0x00000398#B ./foo.o

The command .info ios gives us information about all the IO spaces that are currently open.
The first column tells us a tag that identifies the IOS. In this example, the tag corresponding
to foo.o is #0. The second column tells us the type of IO space. The third column tells us
that foo.o allows both reading and writing. The fourth column tells us the size of the file, in
hexadecimal.

You may wonder what is that weird suffix #B. It is a unit, and tells us that the size 0x398 is
measured in bytes, i.e. the size of foo.o is 0x398 bytes (or, in decimal, 920 bytes.)

Finally, the asterisk character at the left of the entry for foo.o identifies it as the current IO
space. To see this more clearly, let’s open another file:

(poke) .file bar.o

The current IOS is now `./bar.o'.

(poke) .info ios

Id Type Mode Bias Size Name

* #1 FILE rw 0x00000000#B 0x00000398#B ./bar.o

#0 FILE rw 0x00000000#B 0x00000398#B ./foo.o

Ah, there we have both foo.o and bar.o. Now the current IO space (the entry featuring
the asterisk at the left) is the file that we just opened, bar.o. This is because poke always sets
the most recently open file as the current one. We can switch back to foo.o using yet another
dot-command, .ios, which gets an IO space tag as an argument:

(poke) .ios #0

The current IOS is now `./foo.o'.

(poke) .info ios

Id Type Mode Bias Size Name

#1 FILE rw 0x00000000#B 0x00000398#B ./bar.o

* #0 FILE rw 0x00000000#B 0x00000398#B ./foo.o

We are back to foo.o. Since we are not really interested in bar.o, let’s close it:

(poke) .close #1

(poke) .info ios

Id Type Mode Bias Size Name

* #0 FILE rw 0x00000000#B 0x00000398#B ./foo.o

Awesome. Now we can focus on foo.o’s contents. . .

Chapter 3: Basic Editing 14

3.3 Dumping File Contents

Data stored in modern computers, in both volatile memory and persistent files, is fundamentally
a sequence of entities called bytes. The bytes can be addressed by its position in the sequence,
starting with zero:

+--------+--------+--------+ ... +--------+

| byte 0 | byte 1 | byte 2 | | byte N |

+--------+--------+--------+ ... +--------+

Each byte has capacity to store a little unsigned integer in the range 0..255. Therefore, the IO
spaces that we edit with poke (like the file foo.o) can be seen as a sequence of little numbers,
like depicted in the figure above.

GNU poke provides a command whose purpose is to display the values of these bytes: dump1

. It is called like that because it dumps ranges of bytes to the terminal, allowing the user to
inspect them.

So let’s use our first poke command! Fire up poke, open the file foo.o as explained above,
and execute the dump command:

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 f700 0102 0000 0000 0000 0000 0000

00000020: 0102 0000 0000 0000 9801 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0800 0700

00000040: 2564 0a00 0000 0000 0000 0000 0000 0000 %d..............

00000050: b702 0000 0100 0000 1801 0000 0000 0000

00000060: 0000 0000 0000 0000 8510 0000 ffff ffff

00000070: b700 0000 0000 0000 9500 0000 0000 0000

(poke)

What are we looking at?

The first line of the output, starting with 76543210, is a ruler. It is there to help us to
visually determine the location (or offset) of the data.

The rest of the lines show the values of the bytes that are stored in the file, 16 bytes per line.
The first column in these data lines shows the offset, in hexadecimal and measured in number
of bytes, from which the row of data starts. For example, the offset of the first byte shown in
the third data line has offset 0x20 in the file, the second byte has offset 0x21, and so on. Note
how the data rows show the values of the individual bytes, in hexadecimal. Generally speaking,
when dealing with bytes (and binary data in general) it is useful to manipulate magnitudes in
hexadecimal, or octal. This is because it is easy to group digits in these bases to little groups
of bits (four and three respectively) in the equivalent binary representation. In this case, each
couple of hexadecimal digits denote the value of a single byte2. For example, the value of the
first byte in the third data row is 0x01, the value of the second byte 0x02, and so on.

Using the ruler and the column of offsets, locating bytes in the data is very easy. Let’s say
for example we are interested in the byte at offset 0x68: we use the first column to quickly find
the row starting at 0x60, and the ruler to find the column marked with 88. Cross column and
row and. . . voila! The byte in question has the value 0x85. The reverse process is just as easy.
What is the offset of the first 0x40 in the file? Try it!

1 Note that this is not a dot-command like .file, .ios or .close: dump does not start with a dot! We will see
later how dot-commands differ from “normal commands” like dump, but for now, let’s ignore the distinction.

2 Do not be fooled by the fact dump shows the hexadecimal digits in groups of four: this is just a visual aid and,
as we shall see, it is possible to change the grouping by passing arguments to dump.

Chapter 3: Basic Editing 15

The section at the right of the output is the ASCII output. It shows the row of bytes at
the left interpreted as ASCII characters. Non-printable characters are shown as . to avoid
scrambling the terminal, and yes, there is actually way to customize what character to use, so
they are not confused from real ASCII dot characters (0x2e) :P In this particular dump we can
see that near the beginning of the file there are three bytes whose value, if interpreted as ASCII
characters, conform the string “ELF”. As we shall see, this is part of the ELF magic number.
Again, the ruler is very useful to locate the byte corresponding to some character in the ASCII
section, or the other way around. What is the value of the byte corresponding to the F in ELF?
Try it!

Something to notice in the dump output above is that these are not, by any mean, the complete
contents of the file foo.o. The .info ios dot-command informed us in the last section that
foo.o contains 920 bytes, of which the dump command only showed us. . . 0x80 bytes, or 128
bytes in decimal.

dump is certainly capable of showing more (and less) than 128 bytes. We can ask dump

to display some given amount of data by specifying its size using a command argument. For
example:

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 f700 0102 0000 0000 0000 0000 0000

00000020: 0102 0000 0000 0000 9801 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0800 0700

The command above asks poke to “dump 64 bytes”. In this example :size is the name of
the argument, and 64#B is the argument’s value. Again, the suffix #B tells poke we want to
dump 64 bytes, not 64 kilobits nor 64 potatoes.

Another interesting aspect of our first dump (ahem) is that the dumped bytes start from the
beginning of the file, i.e. the offset of the first byte is 0x0. Certainly there should be other areas
of the file with interesting contents for us to inspect. To that purpose, we can use yet another
option, :from:

(poke) dump :size 64#B :from 128#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000080: 1400 0000 0000 0000 0000 0000 0000 0000

00000090: 0000 0000 0000 0000 0000 0000 0000 0000

000000a0: 0000 0000 0300 0100 0000 0000 0000 0000

000000b0: 0000 0000 0000 0000 0000 0000 0300 0300

The command above asks poke to “dump 64 bytes starting at 128 bytes from the beginning
of the file”. Note how the first row of bytes start at offset 0x80, i.e. 128 in decimal.

Passing options to commands is easy and natural, but we may find ourselves passing the
same values again and again to certain command options. For example, if the default size of
dump of 128 bytes is not what you prefer, because you have a particularly tall monitor, or you
are one of these people using sub-atomic sized fonts, it can be tiresome and error-prone to pass
:size to dump every time you use it. Fortunately, the default size can be customized by setting
a global variable:

(poke) pk_dump_size = 160#B

This tells poke to set 160 bytes as the new value for the pk_dump_size variable. This is a global
variable that the dump command uses to determine how much data to show if the user doesn’t
specify an explicit value with the :size option. Many other commands use the same strategy
in order to alter their default behavior, not just dump.

Chapter 3: Basic Editing 16

And now that we are talking about that, it is also cumbersome to have to set the default
size used by dump every time we run poke. But no problem, just set the variable in a file called
.pokerc in your home directory, like this:

pk_dump_size = 160#B

Every time poke starts, it reads ~/.pokerc and executes the commands contained in it. See
Section 8.1 [pokerc], page 97.

The dump command is very flexible, and accepts a lot of options and customization variables
that we won’t be covering in this chapter. For a complete description of the command, see
Section 21.1 [dump], page 122.

3.4 Poking Bytes

Let’s look again at the first bytes of the file foo.o:

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 f700 0102 0000 0000 0000 0000 0000

00000020: 0102 0000 0000 0000 9801 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0800 0700

At this point we know how to use the ruler to localize specific bytes just by looking at the
displayed data. If we wanted to operate on the values of some given bytes, we could look at
the dump and type the values in the REPL. For example, if we wanted to add the values of the
bytes at offsets 0x2 and 0x4, we could look at the dump and then type:

(poke) 0x4c + 0x02

0x4e

GNU poke supports many operators that take integers as arguments, to perform arithmetic,
relational, logical and bit-wise operations on them (see Section 22.2 [Integers], page 127). Since
bytes are no more (and no less) than little unsigned integers, we can use these operators to
perform calculations on bytes.

For example, this is how we would calculate whether the highest bit in the second byte in
foo.o is set:

(poke) 0x45 & 0x80

0

Note how booleans are encoded in Poke as integers, 0 meaning false, any other value meaning
true.

Looking at the output of dump and writing the desired byte value in the prompt is cumber-
some. Fortunately, there is a much more convenient way to access the value of a byte, given its
offset in the file: it is called mapping a byte value. This operation is implemented by a binary
operator, called the map operator.

This is how it works. Assuming we were interested in the byte at 64 bytes from the beginning
of the file, this is how we would refer to it (or “map” it):

(poke) byte @ 64#B

37UB

This application of the map operator tells poke to map a byte at the offset 64 bytes. It can be
read as “byte at 64 bytes”. Note how poke replies with the value 37UB. The suffix UB means
“unsigned byte”, and is an indication for the user about the nature of the preceding number: it
is unsigned, and it occupies a byte when stored.

As we can see in this example, poke uses decimal by default when showing values in the REPL.
We already noted how it is usually better to work in hexadecimal when dealing with byte values.

Chapter 3: Basic Editing 17

Fortunately, we can change the numeration base used by poke when printing numbers, using
the .set obase (“set output base”) dot-command as this:

(poke) .set obase 16

After this, we can map the byte again, this time getting the result expressed in hexadecimal:

(poke) byte @ 64#B

0x25UB

Again, you may find it useful to add the .set obase 16 command to your .pokerc file, if you
want the customization to be persistent between poke invocations.

Going back to the example of calculating whether the highest bit in the second byte in foo.o

is set, this is how we would do it with a map:

(poke) (byte @ 2#B) & 0x80

0

Turns out the answer is no.

The map operator can also be used at the left side of an assignment operator:

(poke) byte @ 0x28#B = 0xff

Which reads “assign 0xff to the byte at offset 0x4a bytes”. Dumping again, we can verify that
the byte actually changed:

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 f700 0102 0000 0000 0000 0000 0000

00000020: 0102 0000 0000 0000 ff01 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0800 0700

Does this mean that foo.o changed accordingly, in disk? The answer is yes. poke always
commits changes immediately to the file being edited. This, that is an useful feature, can also
be a bit tricky if you forget about it, leading to data corruption, so please be careful.

Incidentally, altering the byte at offset 0x28 most probably have caused foo.o to stop being
a valid ELF file, but since we are just editing bytes (and not ELF structures) we actually don’t
care much.

3.5 Values and Variables

Up to now we have worked with byte values, either writing them in the REPL or mapping them
at the current IO space. Often it is useful to save values under meaningful names, and access
to them by name. In poke we do that by storing the values in variables.

Before being used, variables shall be defined using the var construction. Let’s get the byte
at offset 64 bytes and save it in a variable called foo:

(poke) var foo = byte @ 64#B

This defines a new variable (foo) and initializes it to the value of the byte at offset 64 bytes.
This results on foo to hold the value 37.

Once defined, we can get the value of a variable by just giving its name to poke:

(poke) foo

37UB

Several variables can be defined in a single var declaration. Each definition is separated by a
comma. This is equivalent of issuing several vars:

(poke) var a = 10, b = 20

Chapter 3: Basic Editing 18

In general, a variable containing a byte value can be used in any context where the contained
value would be expected. If we wanted to check the highest bit in the byte value stored in foo

we would do:

(poke) foo & 0x80

0x0

Assigning a value to a variable makes the value the new contents of the variable. For example,
we can increase the value of foo by one like this:

(poke) foo = foo + 1

At this point, an important question is: when we change the value of the variable foo, are
we also changing the value of the byte stored in foo.o at offset 64 bytes? The answer is no.
This is because when we do the mapping:

(poke) var foo = byte @ 64#B

The value stored in foo is a copy of the value returned by the map operator @. You can imagine
the variable as a storage cell located somewhere in poke’s memory. After the assignment above
is executed there are two copies of the byte value 0x25: one in foo.o at offset 64 bytes, and the
other in the variable foo.

It follows that if we wanted to increase the byte in the file, we would need to do something
like:

(poke) var foo = byte @ 64#B

(poke) foo = foo + 1

(poke) byte @ 64#B = foo

Or, more succinctly, omitting the usage of a variable:

(poke) byte @ 64#B = (byte @ 64#B) + 1

Or, even more succinctly:

(poke) (byte @ 64#B) += 1

Note how we have to use parenthesis around the map at the right hand side, because the map
operator @ has less precedence than the plus operator +.

3.6 From Bytes to Integers

The bytes we have been working with are unsigned whole numbers (or integers) in the range
0..255. We saw how poke sees the contents of the files as a sequence of bytes, and how each
byte can be addressed using an offset. Mapping bytes using the map operator @ gives us these
values, which are denoted in poke with literals like 10UB or 0x0aUB.

This very limited range of values have consequences when it comes to do arithmetic with
bytes. Suppose for example we wanted to calculate the average of the first three byte values
stored in foo.o. We could do something like:

(poke) a0 = byte @ 0#B

(poke) a1 = byte @ 1#B

(poke) a2 = byte @ 2#B

(poke) a0

0x7fUB

(poke) a1

0x45UB

(poke) a2

0x4cUB

(poke) (a0 + a1 + a2) / 3UB

5UB

Chapter 3: Basic Editing 19

That is obviously the wrong answer. What happened? Let’s do it step by step. First, we add
the first two bytes:

(poke) a0 + a1

0xc4UB

Which is all right. 0xc4 is 0x7f plus 0x45. But, let’s add now the third byte:

(poke) a0 + a1 + a2

0x10UB

That’s no good. Adding the value of the third byte (0x4c) we overflow the range of valid values
for a byte value. The calculation went banana at this point.

Another obvious problem is that we surely will want to store integers bigger than 255 in our
files. Clearly we need a way to encode them somehow, and since all we have in a file are bytes,
the integers will have to be composed of them.

Integers bigger than 255 can be encoded by interpreting consecutive byte values in a certain
way. First, let’s consider a single byte. If we print a byte value using binary rather than decimal
or hexadecimal, we will observe that eight bits are what it takes to encode the numbers between
0 and 0xff (255) using a natural binary encoding :

(poke) .set obase 2

(poke) 0UB

0b00000000UB

(poke) 0xFFUB

0b11111111UB

This is the reason why people say bytes are “composed” of eight bits, or that the width of
a byte is eight bits. But this way of talking doesn’t really reflect the view that the operating
system has of devices like files or memory buffers: both disk and memory controllers provide
and consume bytes, i.e. little unsigned numbers in the range 0..255. At that level, bytes are
indivisible. We will see later that poke provides ways to work on the “sub-byte” level, but that
is just really an artifact to make our life easier: underneath, all that goes in and out are bytes.

Anyhow, if we were to “concatenate” the binary representation of two consecutive bytes,
we would end with a much bigger range of possible numbers, in the range 0b00000000_

00000000..0b11111111_111111113, or 0x0000..0xffff in hexadecimal. poke provides a bit-
concatenation operator ::: that does exactly that:

(poke) 0x1UB

0b00000001UB

(poke) 0x1UB ::: 0x1UB

0b0000000100000001UH

Note how the suffix of the resulting number is now UH. This indicates that the number is no
longer a byte value: it is too big for that. The H in this new suffix means “half”, and it is a
traditional way to call an integer that is encoded using two bytes, or 16 bits.

So, using our method of encoding bigger numbers concatenating bytes, what would be the
“half” integer composed of two bytes at the beginning of foo.o?

(poke) .set obase 16

(poke) (byte @ 0#B):::(byte @ 1#B)

0x7f45UH

Now, let’s go back to the syntax we used to map a byte value. In the invocation of the map
operator byte @ 0#B the operand at the left (in this case byte) tells the operator what kind of

3 poke allows to insert underscore characters _ anywhere in number literals. The only purpose of these characters
is to improve readability, and they are totally ignored by poke, i.e. they do not alter the value of the number.

Chapter 3: Basic Editing 20

value to map. This is called a type specifier; byte is the type specifier for a single byte value,
and byte[3] is the type specifier for a group of three byte values arranged in an array.

As it happens, byte is a synonym for another slightly more interesting type specifier:
uint<8>. You can probably infer the meaning already: a byte is an unsigned integer which
is 8 bits big. We can of course use this alternate specifier in a mapping operation, achieving
exactly the same result than if we were using byte:

(poke) uint<8> @ 0#B

0x7fUB

You may be wondering: is it possible to use a similar type specifier for mapping bigger
integers, like these “halves” that are composed of two bytes? Yeah, it is indeed possible:

(poke) uint<16> @ 0#B

0x7f45UH

Mapping an unsigned integer of 16-bits at the offset 0 gives us an unsigned “half” value, as
expected.

You can easily build bigger and bigger numbers concatenating more and more bytes. Three
bytes? sure:

(poke) uint<24> @ 0#B

(uint<24>) 0x7f454c

Note that in this case poke uses a prefix instead of a suffix to indicate that the given value is
24-bits long. This is because only a limited number of suffixes (which are more concise and more
readable than the prefix form) are available, corresponding to common or typical widths.

Four bytes?

(poke) uint<32> @ 0#B

0x7f454c46U

Certain integer widths are so often used that easier-to-type synonyms for their type specifiers
are provided. We already know byte for uint<8>. Similarly, ushort is a synonym for uint<16>,
uint is a synonym for uint<32> and ulong is a synonym for uint<64>. Try them!

GNU poke supports integers up to eight bytes, i.e. up to 64-bits. This may change in the
future, as we are planning to support arbitrarily large integers.

3.7 Big and Little Endians

When talking about whole numbers (integers) we should distinguish between their value (such
as 123) and their written form that we would use when writing the number on a piece of paper,
such as 123.

The written form of a number is composed of digits, arranged in certain order. We all know
that the ordering of the digits in the written form of a number is important: if we write 123

we are referring to a different value than if we write 321. The mathematical reason for this is
that depending on the position they occupy in the written form, each digit contributes with a
different “weight” to the total value of the number. This is always the case, regardless of the
numerical base used to denote the number.

For example, the value of the number 123 (whose written form is 123) is calculated as
1*10^2+2*10^1+3*10^0. If we swap the last two digits in the written form of the number,
132, we have 1*10^2+3*10^1+2*10^0, which results in a different value: 132. When we con-
sider other numerical bases, the bases in the polynomial change accordingly, but the correspon-
dence between written form and value stands: for example, the value of 0x123 is calculated as
1*16^2+2*16^1+3*16^0.

The “higher” a digit is in the polynomial, the more significant it is, i.e. the more weight it
has on the value of the number where it appears. In the written number 123, for example, the
digit 1 is the most significant digit of the number, and the digit 3 is the least significant digit.

Chapter 3: Basic Editing 21

This distinction between the written form of a number and its value is very important. Just
like in certain languages letters are read right-to-left (Arabic) or even down-to-up (Japanese) we
could certainly conceive a language in which the digits of numbers were arranged from right-to-
left instead of left-to-right. In such a language the written representation of 123 would be 321,
not 123. In other words: the least significant digit would come first, not last, in the written
form of the number.

Now when it comes to store numbers in computers, rather than writing them on a paper, the
role of the paper is played by the computer’s memory, be it ephemeral (like RAM) or persistent
(like a spinning hard disk or a Flash memory), which is organized as a sequence of bytes. Since
we are composing numbers with bytes, it makes sense to have each byte to play the role of a
digit in the written form of the bigger number. Since bytes can have values from 0 to 255, the
base is 256. But what is the “written form” for our byte-composed numbers?

In the last section we tried to compose bigger integers by concatenating bytes together and
interpreting the result. In doing so, we assumed (quite naturally) that in the written form of
the resulting integer the bytes are ordered in the same order than they appear in the file, i.e. we
assume that the written form of the number b1*256^2+b2*256^1+b3*256^0 would be b1b2b3,
where b1, b2 and b3 are bytes. In other words, given a written form b1b2b3, b1 would be the
most significant byte (digit) and b3 would be the least significant byte (digit). In our world
of IO spaces, the “written form” is the disposition of the bytes in the IO space (file, memory
buffer, etc) being edited.

That interpretation of the written form is exactly what the bit-concatenation operator im-
plements:

(poke) dump :from 0#B :size 3#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c .EL

(poke) var b1 = byte @ 0#B

(poke) var b2 = byte @ 1#B

(poke) var b3 = byte @ 2#B

(poke) b1:::b2:::b3

(uint<24>) 0x7f454c

However, much like in certain human languages the written form is read from right to left,
some computers also read numbers from right to left in their “written form”. Actually, turns
out that most modern computers do it like that. This means that, in these computers, given
the written form b1b2b3 (i.e. given a file where b1 comes first, followed by b2 and then b3)
the most significant byte is b3 and the least significant byte is b1. Therefore, the value of the
number would be b3*256^2+b2*256^1+b3*256^0.

So, given the written form of a bigger number b1b2b3 (i.e. some ordering of bytes implied by
the file they are stored in) there are at least two ways to interpret them to calculate the value
of the number. When the written form is read from left to right, we talk about a big endian
interpretation. When the written form is read from right to left, we talk about a little endian
interpretation.

Given the first three bytes in foo.o, we can determine the value of the integer composed of
these three bytes in both interpretations:

(poke) b1:::b2:::b3

(uint<24>) 0x7f454c

(poke) b3:::b2:::b1

(uint<24>) 0x4c457f

Remember how the type specifier byte is just a synonym of uint<8>, and how we can use
type specifiers like uint<24> and uint<32> to map bigger integers? When we do that, like in:

(poke) uint<24> @ 0#B

Chapter 3: Basic Editing 22

(uint<24>) 0x7f454c

Poke should somehow decide what kind of interpretation to use, i.e. how to read the “written
form” of the number. As you can see from the example, poke uses the left-to-right interpretation,
or big-endian, by default. But you can change it using a new dot-command: .set endian:

(poke) .set endian little

(poke) uint<24> @ 0#B

(uint<24>) 0x4c457f

The currently used interpretation (also called endianness) is shown if you invoke the dot-
command without an argument4:

(poke) .set endian

little

Different systems use different endianness. Into a given system, it is to be expected that
most files will be encoded following the same conventions. Therefore poke provides you a way
to set the endianness to whatever endianness is in the system. You do it this way:

(poke) .set endian host

3.8 Negative Integers

3.8.1 Negative Encodings

Up to this point we have worked with unsigned integers, i.e. whole numbers which are zero
or bigger than zero. Much like it happened with endianness, the interpretation of the value of
several bytes as a negative number depends on the specific interpretation.

In computing there are two main ways to interpret the values of a group of bytes as a negative
number: one’s complement and two’s complement.

At the moment GNU poke supports the two complement interpretation, which is really
ubiquitous and is the negative encoding used by the vast majority of modern computers and
operating systems.

We may consider adding support for one’s complement in the future, but only if there are
real needs that would justify the effort (which wouldn’t be a small one ;)).

3.8.2 Signed Integers

Unsigned values are never negative. For example:

(poke) 0UB - 1UB

0xffUB

Instead of getting a -1, we get the result of an unsigned underflow, which is the biggest possible
value for an unsigned integer of size 8 bits: 0xff.

When using type specifiers like uint<8> or uint<16> in a map, we get unsigned values such as
0UB. We need other type specifiers to map signed values. These look like int<8> and int<16>.

For example, let’s map a signed 16-bit value from foo.o:

(poke) .set obase 10

(poke) int<16> @ 0#B

28515H

Note how the suffix of the value is now H and not UH. This means that the value is signed! But
in this case the mapped integer is still positive, so let’s try to get an actual negative value:

(poke) var h = int<16> @ 0#B

(poke) h - h - 1H

-1H

4 This also applies to the other .set commands

Chapter 3: Basic Editing 23

3.8.3 Mixing Signed and Unsigned Integers

Adding two signed integers gives you a signed integer:

(poke) 1 + 2

3

Likewise, adding two unsigned integers results in an unsigned integer:

(poke) 1U + 2U

3U

But, what happens if we mix signed and unsigned values in an expression? Is the result signed,
or unsigned? Let’s find out:

(poke) 1U + 2

3U

Looks like combining an unsigned value with a signed value gives us an unsigned value. This
actually applies to all the operators that work on integer values: multiplication, division, expo-
nentiation, etc.

What actually happens is that the signed operand is converted to an unsigned value before
executing the expression. You can also convert signed values into unsigned values (and vice-
versa) using cast constructions:

(poke) 2 as uint<32>

2U

Therefore, the expression 1U + 2 is equivalent to 1U + 2 as uint<32>:

(poke) 1U + 2 as uint<32>

3U

You may be wondering: why not doing it the other way around? Why not converting the
unsigned operand into a signed value and then operate? The reason is that, given an integer of
some particular size, the positive range that you can store in it is bigger when interpreted as an
unsigned integer than when interpreted as a signed integer. Therefore, converting signed into
unsigned before operating reduces the risk of positive overflow, which by the way is not allowed
in poke. This of course assumes that we, as users, will be working with positive numbers more
often than with negative numbers, but that is a reasonable assumption to do, as it is often the
case!

3.9 Weird Integers

Up to this point we have been playing with integers that are built using a whole number of
bytes. However, we have seen that the type specifier for an integer has the form int<N> or
uint<N> for signed and unsigned variants, where N is the width of the integer, in bits. We have
used bit-sizes that are multiple of 8, which is the size of a byte. So, why is this so? Why is N
not measured in bytes instead?

The reason is that poke is not limited to integers composed of a whole number of bytes. You
can actually have integers composed of any number of bits, between 1 and 64. So yes, int<3>
is a type specifier for signed 3-bit integers, and uint<17> is a type specifier for unsigned 17-bit
integers.

We call integers like this weird integers.

The vast majority of programming languages do not provide any support for weird integers.
In the few cases they do, it is often in a very limited and specific way, like bitmap fields in C
structs. Such constructions are often vague, obscure, and often their semantics depend on the
specific implementation of the language, and/or the characteristics of the system where you run
your program.

Chapter 3: Basic Editing 24

In poke, on the contrary, weird numbers are first class citizens, and they don’t differ in any
way from “normal” integers which are composed of a whole number of bytes. Their interpretation
is also well defined, and they keep the same semantics regardless of the characteristics of the
computer on which poke is running.

3.9.1 Incomplete Bytes

Let’s consider first weird numbers that span for more than one byte. For example, an unsigned
integer of 12 bits. Let’s visualize the written form of this number, i.e. the sequence of its
constituent bytes as they appear in the underlying IO space:

byte 0 | byte 1

+---------+----+----+

|::::::::::::::| |

+---------+----+----+

| uint<12> |

All right, the first byte is used in its entirely, but only half of the second byte is used to conform
the value of the number. The other half of the second byte has no influence of the value of the
12 bits number.

Now, we talk about the “second half of the byte”, but what do that means exactly? We
know that bytes in memory and files (bytes in IO spaces) are indivisible at the system level:
bytes are read and written one at a time, as little integers in the range 0..255. However, we can
create the useful fiction that each byte is composed by bits, which are the digits in the binary
representation of the byte value.

So, we can look at a byte as composed of a group of eight bits, like this:

byte

+-------------------------+

| b7 b6 b5 b4 b3 b2 b1 b0 |

+-------------------------+

Note how we decided to number the bits in descending order from left to right. This is because
these bits correspond to the base of the polynomial equivalent to the binary value of the byte, i.e.
the value of the byte is b7*2^7+b6*2^6+b5*2^5+b4*2^4+b3*2^3+b2*2^2+b1*2^1+b0*2^0. In
other words: at the bit level poke always uses a big endian interpretation, and the bit that “comes
first” in this imaginary stream of bits is the most significant bit in the binary representation
of the number. Please note that this is just a convention imposed by the poke authors: the
opposite could have been chosen, but it would have been a bit confusing, as we would have to
picture binary numbers in reverse order!

With this new way of looking at bytes, we can now visualize what we mean exactly with the
“first half” and “second half” of the trailing byte, in our 12 bits unsigned number:

byte 0 | byte 1

+-------------------------+-------------+-------------+

| a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 : |

+-------------------------+-------------+-------------+

| uint<12> |

Thus the first half of byte 1 is the sequence of bits b7 b6 b5 b4. The second half, which is not
pictured since it doesn’t contribute to the value of the number, would be b3 b2 b1 b0.

So what would be the value of the 12-bit integer? Exactly like with non-weird numbers, this
depends on the current selected endianness, which determines the ordering of bytes.

If the current endianness is big, then byte 0 provides the most significant bits of the result
number, and the used portion of byte 1 provides the least significant bits of the result number:

0b a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4

Chapter 3: Basic Editing 25

However, if the current selected endianness is little, then the used portion of byte 1 provides
the most significant bits of the result number, and byte 0 provides the least significant bits of
the result number:

0b b7 b6 b5 b4 a7 a6 a5 a4 a3 a2 a1 a0

Let’s see this in action. Let’s take a look to the value of the first two bytes in foo.o, in
binary:

(poke) .set obase 2

(poke) byte @ 0#B

0b01111111UB

(poke) byte @ 1#B

0b01000101UB

Looking at these bytes as sequences of bits, we have:

byte @ 0#B | byte @ 1#B

+-------------------------+-------------+-------------+

| 0 1 1 1 1 1 1 1 0 1 0 0 : 0 1 0 1

+-------------------------+-------------+-------------+

| uint<12> |

Let’s map our weird number at offset 0 bytes, using big endian:

(poke) .set endian big

(poke) uint<12> @ 0#B

(uint<12>) 0b011111110100

That matches what we explained before: the most significant bits of the unsigned 12 bits number
come from the byte at offset 0, i.e. 01111111, whereas the least significant bits come from the
byte at offset 1, i.e. 0100.

Now let’s map it using little endian:

(poke) uint<12> @ 0#B

(uint<12>) 0b010001111111

This time the most significant bits of the unsigned 12 bits number come from the byte at offset
1, i.e. 0100, whereas the least significant bits come from the byte at offset 0, i.e. 01111111.

An important thing to note is that non-weird numbers, i.e. numbers built with a whole
number of bytes, are basically a particular case of weird numbers where the last byte in the
written form (in the IO space) provides all its bits. The rules are exactly the same in all cases,
which makes it easy to obtain predictable and natural results when building integers using poke.

3.9.2 Quantum Bytenics

The second kind of weird numbers are integers using less than 8 bits. These “sub-byte” numbers
do not use all the bits of their containing byte. Consider for example the written form of an
unsigned integer of size 5 bits:

byte

+-----+----+

|:::::| |

+-----+----+

uint<5>

Now let’s view the byte as a sequence of bits:

byte

+----------------+----------+

| b7 b6 b5 b4 b3 | |

+----------------+----------+

Chapter 3: Basic Editing 26

| uint<5> |

What is the value of this number? Applying the general rules for building integers from bytes,
we can easily see that regardless of the current endianness the value, in binary, is:

0b b7 b6 b5 b4 b3

Let’s see this in poke:

(poke) .set obase 2

(poke) .set endian big

(poke) byte @ 0#B

0b01111111UB

(poke) uint<5> @ 0#B

(uint<5>) 0b01111

(poke) .set endian little

(poke) uint<5> @ 0#B

(uint<5>) 0b01111

3.9.3 Signed Weird Numbers

In the section discussing negative integers, we saw how the difference between a signed number
and an unsigned number is basically a different interpretation of the most significant bit. Exactly
the same applies to weird numbers.

Let’s summon our unsigned 12-bit integer at the beginning of the file foo.o:

(poke) .set endian big

(poke) uint<12> @ 0#B

(uint<12>) 0b011111110100

The most significant bit of the resulting value (not of its written form) indicates that this number
would be positive if we were mapping the corresponding signed value. Let’s see:

(poke) int<12> @ 0#B

(int<12>) 0b010001111111

(poke) .set obase 10

(poke) int<12> @ 0#B

(int<12>) 1151

Let’s make it a bit more interesting, and change the value of the first byte in the file so we
get a negative number:

(poke) .set obase 2

(poke) byte @ 0#B = 0b1111_1111

(poke) int<12> @ 0#B

(int<12>) 0b111111110100

(poke) .set obase 10

(poke) int<12> @ 0#B

(int<12>) -12

Now, let’s switch to little endian:

(poke) .set endian little

(poke) .set obase 2

(poke) int<12> @ 0#B

(int<12>) 0b010011111111

(poke) .set obase 10

(poke) int<12> 0#B

(int<12>) 1279

Chapter 3: Basic Editing 27

3.10 Unaligned Integers

We have mentioned above that the data stored in computers, that we edit with poke, is arranged
as a sequence of bytes. The entities we edit with poke (that we call IO devices) are presented
to us as IO spaces. Up to now, we have accessed this IO space in terms of bytes, in commands
like dump :from 32#B and in expressions like 2UB + byte @ 0#B. We said that mapped integers
are built from bytes read from the IO space.

However, the IO space that poke offers to us is actually a space of bits, not a space of bytes,
and the poke values are mapped on this space of bits. The following figure shows this:

poke values | uint<16> @ 2#b |

----------- | |

IO space |b|

----------- | | | |

IO device | byte0 | byte1 | byte2 |

The main consequence of this, that you can see in the figure above, is that we can use offsets in
mapping operations that are not aligned to bytes. You can specify an offset in bits, instead of
bytes, using the #b suffix instead of #B. Little b means bits, and big B means bytes.

Let’s map an unaligned 16 bit unsigned integer in foo.o:

(poke) dump :from 0#B :size 3#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c .EL

(poke) .set obase 2

(poke) byte @ 0#B

0b01111111UB

(poke) byte @ 1#B

0b01000101UB

(poke) byte @ 2#B

0b01001100UB

(poke) .set endian big

(poke) uint<16> @ 2#b

0b1111110100010101UH

Graphically:

poke values | uint<16> @ 2#b |

----------- | |

IO space |0|1|1|1|1|1|1|1|0|1|0|0|0|1|0|1|0|1|0|0|1|1|0|0|

----------- | | | |

IO device | 0x7f | 0x45 | 0x4c |

These three levels of abstractions make it very easy and natural to work with unaligned data.
Imagine for example that you are poking packages in a network protocol that is bit-oriented.
This means that the packages will generally not be aligned to byte boundaries, but still the
payload stored in the packages contains integers of several sizes. Other conventional binary
editors or programming languages, that are almost always byte oriented, would require us to
“unpack” the network data to a different, byte oriented, representation before messing with it.
poke, on the contrary, allows you to directly map these integers as if they were aligned to byte
boundaries, and work with them.

However, when one tries to determine the correspondence between a given poke value and
the underlying bytes in the IO device, things can get complicated. This is particularly true when
we map what we called “weird numbers”, i.e. numbers with partial bytes. As we saw, the rules
to build these numbers were expressed in terms of bytes.

Chapter 3: Basic Editing 28

In order to ease the visualization of the process used to build integer values (especially if
they are weird numbers, i.e. integers with partial bytes) one can imagine an additional layer of
“virtual bytes” above the space of bits provided by the IO space. Graphically:

poke values | uint<16> @ 2#b |

----------- | |

Virtual bytes | virt. byte1 | virt. byte2 |

----------- | | |

IO space |0|1|1|1|1|1|1|1|0|1|0|0|0|1|0|1|0|1|0|0|1|1|0|0|

----------- | | | |

IO device | 0x7f | 0x45 | 0x4c |

It is very important to understand that the IO space is an abstraction provided by poke. The
underlying file, or memory buffer, or whatever, is actually a sequence of bytes; poke translates
the operations on integers, bits, bytes, etc into the corresponding byte operations, and this
translation is far from trivial. Fortunately, we can let poke do the dirty job for us, and abstract
ourselves from that complexity.

3.11 Integers of Different Sizes

When integer values of different sizes are passed to an arithmetic or relational operator, the
“smaller” operand gets converted into the size of the “bigger” operand. For example:

(poke) 1H + 2

3

The operands are of size 16-bit and 32-bit respectively, and the result is a 32-bit integer. This
is equivalent to:

(poke) 1H as int<32> + 2

3

3.12 Offsets and Sizes

Early in the design of what is becoming GNU poke I was struck by a problem that, to my surprise,
would prove not easy to fix in a satisfactory way: would I make a byte-oriented program, or a
bit-oriented program? Considering that the program in question was nothing less than an editor
for binary data, this was no petty dilemma.

Since the very beginning I had a pretty clear idea of what I wanted to achieve: a binary editor
that would be capable of editing user defined data structures, besides mere bytes and bits. I also
knew I needed some sort of domain specific language to describe these structures and operate
on them. How that language would look like, and what kind of abstractions it would provide,
however, was not clear to me. Not at all.

So once I sketched an initial language design, barely something very similar to C structs, I
was determined to not continue with the poke implementation until I had described as many
as binary formats in my language as possible. That, I reckoned, was the only way to make
sure the implemented language would be expressive, complete and useful enough to fulfil my
requirements.

The first formats I implemented using my immature little language included ELF, FLV, MP3,
BSON. . . all of them describing structures based on whole bytes. Even when they try to be
compact, it is always by packing bit-fields in elements that are, invariably, sized as a multiple
of bytes. Consequently, the language I was evolving became byte oriented as well. No doubt
also influenced by my C inheritance, I would think of bit-fields either as a sort of second class
citizen, or as mere results of shifting and masking.

This worked well. The language evolved to be able to express many different aspects of these
formats in a very nice way, like variable-length data and holes in structures.

Chapter 3: Basic Editing 29

Consider the following definition, which is not valid in today’s Poke:

type Data =

struct

{

byte magic;

byte count;

byte dstart;

byte[count] data @ dstart;

};

The data starts with a byte that is a magic number. Then the size of the data stored, in
bytes, and then the data itself. This data, however, doesn’t start right after dstart: it starts at
dstart, which is expressed as an offset, in bytes, since the beginning of the Data. I conceived
struct field labels to be any expression evaluating to an integer, which would be interpreted as
a number of bytes, obviously.

Then, one day, it was the turn for IETF RFC1951, which is the specification of the DEFLATE
algorithm and associated file format. Oh dear. Near the beginning of the spec document it can
be read:

This document does not address the issue of the order in which bits of a byte are
transmitted on a bit-sequential medium, since the final data format described here
is byte- rather than bit-oriented. However, we describe the compressed block format
in below, as a sequence of data elements of various bit lengths, not a sequence of
bytes.

Then it goes on describing rules to pack the DEFLATE elements into bytes. I was appalled,
and certainly sort of deflated as well. The purpose of my program was precisely to edit binary
in terms of the data elements described by a format. And in this case, these data elements came
in all sort of bit lengths and alignments. This can be seen in the following RFC1951 excerpt,
that describes the header of a compressed block:

Each block of compressed data begins with 3 header bits containing the following
data:

first bit BFINAL

next 2 bits BTYPE

Note that the header bits do not necessarily begin on a byte boundary, since a block
does not necessarily occupy an integral number of bytes.

At this point I understood that my little language on the works would never be capable to
describe the DEFLATE structures naturally: C-like bit-fields, masking and shifting, all based
on byte-oriented containers and boundaries, would never provide the slickness I wanted for my
editor. I mean, just use C and get done with it.

This pissed me off. Undoubtedly other formats and protocols would be impacted in a similar
way. Even when most formats are byte oriented, what am I supposed to tell to the people
hacking bit-oriented stuff? “Sorry pal, this is not supported, this program is not for you”? No
way, I thought, not on my watch.

The obvious solution for the problem, is to be general. In this case, to express every offset
and every memory size in bits instead of bytes. While this obviously gives the language max-
imum expressiveness power, and is ideal for expressing the few bit-oriented formats, it has the
disadvantage of being very inconvenient for most situations.

To see how annoying this is, let’s revisit the little BitData structure we saw above. In a
bit-oriented description language, we would need to write something like:

type BitData =

Chapter 3: Basic Editing 30

struct

{

byte magic;

byte count;

byte dstart;

byte[count] data @ dstart * 8;

};

Yeah. . . exactly. The * and 8 keys in the keyboards of the poke users would wear out very
fast, not to mention their patience as well. Also, should I provide both sizeof and bitsizeof

operators? Nasty.

I am very fond of the maxim “Never write a program you would never use yourself”5, so I
resigned myself to make GNU poke byte oriented, and to provide as many facilities for operating
on bit-fields as possible.

Fortunately, I have smart friends. . .

During one of the Rabbit Herd’s Hacking Weekends6 I shared my frustration and struggle
with the other rabbits, and we came to realize that offsets and data sizes in Poke should not be
pure magnitudes or mere integer values: they should be united. They should have units.

It makes full sense when you come to think about it. For a program like poke, it is only
natural to talk about different memory units, like bits, bytes, kilobytes, megabits, and so on.
Bits and bytes are just two common units.

The syntax that we eventually used to denote united values is to specify the magnitude part,
a hash ('#' character, and then the unit. For example, the size “three bytes” is expressed as
3#B, and “three bits” as 3#b.

Apart from allowing me to express values in different units, this approach also has other
benefits as we will see shortly.

I’m really grateful to Bruno Haible, Luca Saiu and Nacho Gonzalez for putting me on the
right track.

3.13 Buffers as IO Spaces

We have mentioned already that files are not the only entities that can be edited using poke.
Remember the dot-command .file that opened a file as an IO space?

(poke) .file foo.o

The current IOS is now `./foo.o'.

(poke) .info ios

Id Type Mode Bias Size Name

* #0 FILE rw 0x00000000#B 0x000004c8#B ./foo.o

Memory buffers can be created using a similar dot-command, .mem:

(poke) .mem foo

The current IOS is now `*foo*'.

(poke) .info ios

Id Type Mode Bias Size Name

* #1 MEMORY 0x00000000#B 0x00001000#B *foo*

#0 FILE rw 0x00000000#B 0x000004c8#B ./foo.o

Note how the name of the buffer is built by prepending and appending asterisks. Therefore,
the name of the buffer created by the command .mem foo is *foo*. Note also that the new

5 Actually it is Lord Vetinari’s “Never build a dungeon you can’t get out of.” but the point is the same.
6 http://www.jemarch.net/rhhw

http://www.jemarch.net/rhhw

Chapter 3: Basic Editing 31

buffer is created with a default size of 0x1000 bytes, or 4096 bytes. The contents of the buffer
are zeroed:

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 0000 0000 0000 0000

00000030: 0000 0000 0000 0000 0000 0000 0000 0000

00000040: 0000 0000 0000 0000 0000 0000 0000 0000

00000050: 0000 0000 0000 0000 0000 0000 0000 0000

00000060: 0000 0000 0000 0000 0000 0000 0000 0000

00000070: 0000 0000 0000 0000 0000 0000 0000 0000

Memory buffer IO spaces grow automatically when a value is mapped beyond their current
size. This is very useful when populating newly created buffers. However, for security reasons,
there is a limit: the IO spaces are only allow to grow 4096 bytes at a time.

When it comes to map values, there is absolutely no difference between an IO space backed
by a file and an IO space backed by a memory buffer. Exactly the same rules apply in both
cases.

3.14 Copying Bytes

Memory buffer IO spaces are cheap, and they are often used as “scratch” areas.

Suppose for example we want to experiment with the ELF header of foo.o. We could open
it in poke:

(poke) .file foo.o

The current IOS is now `./foo.o'.

The header of an ELF file comprises the first 64 bytes in the file:

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 3e00 0100 0000 0000 0000 0000 0000 ..>.............

00000020: 0000 0000 0000 0000 0802 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0b00 0a00

We know that as soon as we poke something on an IO space, the underlying file is immediately
modified. So if we start playing with foo.o’s header, we may corrupt the file. We could of course
make a copy of foo.o and work on the copy, but it is much better to create a memory IO space
and copy the ELF header there:

(poke) .mem scratch

The current IOS is now `*scratch*'.

(poke) copy :from_ios 0 :from 0#B :size 64#B

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0100 3e00 0100 0000 0000 0000 0000 0000 ..>.............

00000020: 0000 0000 0000 0000 0802 0000 0000 0000

00000030: 0000 0000 4000 0000 0000 4000 0b00 0a00

The command copy above copies 64 bytes starting at byte 0 from the IO with id 0 (the file
foo.o) to the current IO space (the buffer *scratch*).

Once we are done working with the copy of the ELF header, and satisfied, we can copy it
back to the file and close the memory IO space:

Chapter 3: Basic Editing 32

(poke) copy :from 0#B :size 64#B :to_ios 0

(poke) .close

The current IOS is now `./foo.o'.

Note how the command arguments :from_ios and :to_ios are assumed to be the current IO
space if they are not explicitly specified in the command invocation. For detailed information
on the copy command, see Section 21.2 [copy], page 124.

3.15 Saving Buffers in Files

Another useful command when working with buffer IO spaces (and in general, with any IO
space) is save. Let’s say we want to save a copy of the header of an ELF file in another file. We
could do it the pokeish way:

$ poke foo.o

[...]

(poke) save :from 0#B :size 64#B :file "header.dat"

The command above saves the first 64 bytes in the current IO space (which is backed by the file
foo.o) into a new file header.dat in the current working directory.

Let’s now consider again the scenario where we are using a memory IO space as a scratch
area. It is late in the night and we are tired, so we would like to save the contents of the scratch
buffer to a file, so we can continue our work tomorrow. This is how we would do that:

(poke) .info ios

Id Type Mode Bias Size Name

* #1 MEMORY 0x00000000#B 0x00001000#B *scratch*

#0 FILE rw 0x00000000#B 0x000f4241#B ./foo.o

(poke) save :from 0#B :size iosize (1) :file "scratch.dat"

Here we used the built-in function iosize, that given an IO space identifier returns its size.

3.16 Character Sets

Computers understand text as a sequence of codes, which are numbers identifying some partic-
ular character. A character can represent things like letters, digits, ideograms, word separators,
religious symbols, etc. Collections of character codes are called character sets.

Some character sets try to cover one or a few similar written languages. This is the case of
ASCII and ISO Latin-1, for example. These character sets are small, i.e. just a few hundred
codes.

Other character sets are much more ambitious. This is the case of Unicode, that tries to cover
the entire totality of human languages in the globe, including the fictitious ones, like klingon.
Unicode is a really big character set.

In order to store character codes in a computer’s memory, or a file, we need to encode each
character code in one or more bytes. The number of bytes needed to encode a given character
code depends on the range of codes in the containing set.

ASCII, for example, defines 128 character codes: a single byte is enough to encode every
possible ASCII character. It is very easy to encode ASCII.

Unicode, on the contrary, defines many thousand of character codes, and has room for many
more: we would need 31 bits in order to encode any conceivable Unicode character code. How-
ever, it would be wasteful to use that many bits per character: most used character codes tend
to be in lower regions of the code space. For example, the code corresponding to the Latin
letter 'a' is a fairly small number, whereas the codes corresponding to the Klingon alphabet
are really big numbers. Consequently, some systems opt to just encode a subset of Unicode, like
the first 16 bits of the Unicode space, which is called the Basic Multilingual Plane, and contains

Chapter 3: Basic Editing 33

all the characters that most people will ever need. There are also variable-length encodings of
Unicode, that try to use as less bytes as possible to encode any given code. A particularly clever
encoding of Unicode, designed by Rob Pike, is backwards compatible with the ASCII encoding,
i.e. it encodes all the ASCII codes in one byte each, and the values of these byte are the same
than in ASCII. This clever encoding is called UTF-8.

3.17 From Bytes to Characters

3.17.1 Character Literals

poke has built-in support for ASCII, and its simple encoding: each ASCII code is encoded using
one byte. Let’s see:

(poke) 'a'

0x61UB

We presented poke with the character a, and it answered with its corresponding code in the
ASCII character set, which is 0x61. In fact, ’a’ and 0x61UB are just two ways to write exactly
the same byte value in poke:

(poke) 'a' == 0x61UB

1

(poke) 'a' + 1

0x62U

In order to make this more explicit, poke provides yet another synonym for the type specifier
uint<8>: char.

3.17.2 Classifying Characters

When working with characters it is very useful to have some acquaintance of the ASCII character
set, which is designed in a very clever way with the goal of easing certain code calculations. See
Appendix A [Table of ASCII Codes], page 262, for a table of ASCII codes in different numeration
bases.

Consider for example the problem of determining whether a byte we map from an IO space
is a digit. Looking at the ASCI table, we observe that digits all have consecutive codes, so we
can do:

(poke) var b = byte @ 23#B

(poke) b >= '0' && b <= '9'

1

Now that we know that b is a digit, how could we calculate its digit value? If we look at
the ASCII table again, we will find that the character codes for digits are not only consecutive:
they are also ordered in ascending order 0, 1, . . . Therefore, we can do:

(poke) b

0x37UB

(poke) b - '0'

7UB

b contains the ASCII code 0x37UB, which corresponds to the character 7, which is a digit.

How would we check whether b is a letter? Looking at the ASCII table, we find that lower-
case letters are encoded consecutively, and the same applies to upper-case letters. This leads to
repeat the trick again:

(poke) (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z')

0

Chapter 3: Basic Editing 34

3.17.3 Non-printable Characters

Not all ASCII code are printable using the glyph that are usually supported in terminals. If
you look at the table in Appendix A [Table of ASCII Codes], page 262, you will find codes for
characters described as “start of text”, “vertical tab”, and so on.

These character codes, which are commonly known as non-printable characters, can be rep-
resented in poke using its octal code:

(poke) '\002'

0x2UB

This is of course no different than using 2UB directly, but in some contexts the “character like”
notation may be desirable, to stress the fact that the byte value is used as an ASCII character.

Some of the non-printable characters also have alternative notations. This includes new-line
and horizontal tab:

(poke) '\n'

0xaUB

(poke) '\t'

0x9UB

These \ constructions in character literals are called escape sequences. See Section 22.2.2 [Char-
acters], page 128, for a complete list of allowed escapes in character literals.

3.18 ASCII Strings

3.18.1 String Values

Now that we know how to manipulate ASCII codes in poke, we may wonder how can we combine
them to conform words or, more generally, strings of ASCII characters.

GNU poke has support for native ASCII string values. The characters conforming the string
are written between " and " characters, like in:

(poke) "word"

"word"

Note, and this is important, that string values are as atomic as integer values: they are not
really composite values. The fact that "word" contains an r at position 3 is like the fact that
the value 123 contains a digit 2 at position 2.

Like in character literals, poke strings support several escape sequences that help to denote
non-printed characters, such as new lines and horizontal tabs. See Section 22.4.1 [String Literals],
page 135.

3.18.2 Poking Strings

Let’s start with a fresh memory buffer IOS *scratch*:

(poke) .mem scratch

The current IOS is now `*scratch*'.

(poke) dump :size 48#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 0000 0000 0000 0000

If we wanted to, somehow, store the word word in this IO space, encoded in ASCII, we could
proceed as:

(poke) char @ 0x12#B = 'w'

(poke) char @ 0x13#B = 'o'

Chapter 3: Basic Editing 35

(poke) char @ 0x14#B = 'r'

(poke) char @ 0x15#B = 'd'

(poke) dump :size 48#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 776f 7264 0000 0000 0000 0000 0000 ..word..........

00000020: 0000 0000 0000 0000 0000 0000 0000 0000

This worked. The ASCII part of the dump output, which interprets the bytes as ASCII, clearly
shows the word word at the offset where we poked the character values. However, we can do
better: string values can be mapped themselves.

String values use the type specifier string. As any other kind of value in poke, they can be
mapped from an IO space:

(poke) string @ 0x12#B

"word"

Clearly that is the string resulting from the concatenation of the character values that we poked
before.

The question now is: how did poke know that the last character of the string was the d at
offset 0x15#B? The fact the character code 0 (also known as the NULL character) at offset
0x16#B is non-printable, doesn’t imply it is not part of the ASCII character set. Clearly, we
have to pick an ASCII code and reserve it to mark the end of strings. Like the C programming
language, and countless formats and systems do, poke uses the NULL character to delimit
strings.

Now consider this:

(poke) "word"'length

4UL

(poke) "word"'size

40UL#b

Using the length and size attributes, poke tells us that the length of the string "word" is 4
characters, but the size of the string value is 40 bits, or 5 bytes. Why this discrepancy? The
size value attribute tells how much storage space a given value required once mapped to an IO
space, and in the case of strings it should count the space occupied by the terminating NULL
character.

Poking string values on the IO space is as straightforward as poking integers:

(poke) string @ 0x22#B = "WORD"

(poke) dump :size 48#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 776f 7264 0000 0000 0000 0000 0000 ..word..........

00000020: 0000 574f 5244 0000 0000 0000 0000 0000 ..WORD..........

3.18.3 From Characters to Strings

Strings can be concatenated using the string-concatenation + operators:

(poke) "foo" + "bar"

"foobar"

The string resulting from the operation above has length 6 characters, and size 7 bytes. The
terminating NULL character of "foo" is lost in the operation. This is easily seen:

(poke) "foo"'size + "bar"'size

0x40UL#b

(poke) ("foo" + "bar")'size

Chapter 3: Basic Editing 36

0x38UL#b

The string concatenation operator requires two strings. Therefore, if we wanted to append a
character to a string, we would get an error:

(poke) "Putin" + 'a'

<stdin>:1:1: error: invalid operands in expression

"Putin" + 'a';

^~~~~~~~~~~~~

It is possible to transform a character value (i.e. a byte value) into a string composed of that
character using a cast:

(poke) 'a' as string

"a"

Using that cast, we can now append:

(poke) "Putin" + 'a' as string

"Putina"

3.19 From Strings to Characters

Despite being atomic values, poke strings can be indexed in order to retrieve individual charac-
ters:

(poke) "word"[2]

0x72UB

Note how the indexing is zero-based, i.e. the first position in the string is referred as [0], the
second position with [1], and so on.

If you specify a negative index, or an index that is too big, you will get an error:

(poke) "word"[-1]

<stdin>:1:8: error: index is out of bounds of string

"word"[-1];

^

(poke) "word"[5]

<stdin>:1:8: error: index is out of bounds of string

"word"[5];

^

3.20 Strings are not Arrays

Arrays are collections of homogeneous data organized in a sequence. We have already seen
(briefly) arrays of bytes, which use the type specifier byte[].

Similarly, it is possible to arrange characters (which are basically little numbers) in an array,
like in:

(poke) ['a','b','c']

[0x61UB,0x62UB,0x63UB]

However, the array above is not equivalent to the string "abc". The later is a simple value,
whereas an array is a composite value, and also is implicitly terminated with a NULL character,
i.e. a 0 byte.

The Poke standard library provides a couple of utility functions to convert between string
values and character arrays: catos and stoca.

catos gets an array of characters and returns an equivalent string. For example:

(poke) catos (['a','b','c'])

"abc"

Chapter 3: Basic Editing 37

stoca gets a string and an array and sets the element of the array to the characters composing
the string. For example:

(poke) stoca("abc")

[0x61UB,0x62UB,0x63UB]

(poke) var a = char[3]()

(poke) stoca ("abc", a)

(poke) a

[0x61UB,0x62UB,0x63UB]

38

4 Structuring Data

In the previous chapter we learned how to manipulate pre-defined entities like bytes, integers
and strings. One of the big points of poke, however, is that it allows you to define your own
data abstractions, and to operate in term of them. This is achieved by defining data structures.

4.1 The SBM Format

4.1.1 Images as Maps of Pixels

There are two main ways to store two-dimensional images in computers.

One is to explicitly store the different pixels that compose the image. In these bitmaps, the
pixels are arranged sequentially and implicitly organized into lines. A header typically provides
information to determine how many pixels fit in each line:

<--- line_width --->

| pixel | pixel | ... | pixel | pixel | ... | ...

| line 1 | line 2 |

Several properties have to be encoded for each pixel, depending on the sophistication of the
image: for monochrome images each pixel can be just either switched on or off, so a single bit
could be used to encode each pixel (this is the origin of the term “bitmap”). When color is
added, a bit is no longer sufficient: the color of the pixel shall be encoded in some way, typically
using a color schema such as RGB, that requires triplet of little integers to be encoded. If
transparency is to be supported, the degree of transparency of the pixel shall also be encoded
somehow.

The other way to store an image is to store a functional description of the “painted” parts
of the image. This functional description usually contains instructions like “paint a line of
thickness 1 and color red from the coordinate 10,20 to coordinate 10,40”. Once executed with
certain parameters (like the desired resolution) the functional description generates a bitmap.
Image formats using this approach are commonly known as vectorial formats.

When it comes to bitmaps, there are a plethora of different formats out there (bmp, jpg,
png) competing in terms of capabilities such as higher color depths, better resolution, support
for transparency (alpha channels), higher compression level, and the like. These capabilities
greatly complicate these formats, but ultimately any bitmap can be reduced to a sequence of
pixels, which can be further structured in terms of lines.

We don’t know enough poke yet to handle the complications of these real-life bitmap formats,
so in subsequent sections we introduce a very simple format for bitmaps, the Stupid BitMap
format, or simply SBM, that we will use for learning purposes.

But please do not feel disappointed: later in this book, when we become more proficient
pokers, we will be messing with these shiny complex formats as well :)

4.1.2 SBM header

A SBM file starts with a header that contains a “magic number” composed of the three bytes ’S’
(0x53UB), ’B’ (0x42UB) and ’M’ (0x4dUB). The next two bytes indicate the number of pixels
per line, and the number of lines, respectively. In summary:

SBM header

+-------+-------+-------+-------+-------+

| 'S' | 'B' | 'M' | ppl | lines |

+-------+-------+-------+-------+-------+

byte0 byte1 byte2 byte3 byte4

Here ppl stands for pixels-per-line. The encoding of these fields implies that the bigger image
that can be encoded in SBM has dimensions 255x255.

Chapter 4: Structuring Data 39

4.1.3 SBM data

Albeit stupid, SBM is a colorful format. It supports more than a million colors, encoding each
color in what is known as RGB24. In RGB24, each color is encoded using three little integers,
specifying the amount of red, green and blue that, added together, compose the color.

The name RGB24 comes from the fact that each color is encoded using three bytes, or 24
bits. Therefore, each pixel in a SBM image is encoded using three consecutive bytes:

SBM pixel

+-------+-------+-------+

| Red | Green | Blue |

+-------+-------+-------+

byte0 byte1 byte2

Each byte in this encoding determines the amount of the base color (red, green or blue) that
compose the color. We will talk more about these components later.

4.2 Poking a SBM Image

4.2.1 P is for poke

Let’s compose our first SBM image, using poke. The image we want to encode is the very simple
rendering of the letter P shown in the figure below.

| 0 | 1 | 2 | 3 | 4 |

+---+---+---+---+---+

0 | | * | * | | |

1 | | * | | * | |

2 | | * | | * | |

3 | | * | * | | |

4 | | * | | | |

5 | | * | | | |

6 | | * | | | |

The image has seven lines, and there are five pixels per line, i.e. the dimension of the image
in pixels is 5x7. Also, the pixels denoted by asterisks are red, whereas the pixels denoted
with empty spaces are white. In other words, our image uses a red foreground over a white
background. The “painted” pixels are called foreground pixels, the non painted pixels are called
background pixels.

4.2.2 Preparing the Canvas

The first thing we need is some suitable IO space where to encode the image. Let’s fire up poke
and create a memory buffer:

$ poke

[...]

(poke) .mem image

The current IOS is now `*image*'.

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

00000020: 0000 0000 0000 0000 0000 0000 0000 0000

00000030: 0000 0000 0000 0000 0000 0000 0000 0000

00000040: 0000 0000 0000 0000 0000 0000 0000 0000

00000050: 0000 0000 0000 0000 0000 0000 0000 0000

Chapter 4: Structuring Data 40

00000060: 0000 0000 0000 0000 0000 0000 0000 0000

00000070: 0000 0000 0000 0000 0000 0000 0000 0000

Freshly created memory IO spaces are 4096 bytes long, and that’s big enough for our little image.
If we wanted to work with more data, remember that memory IO spaces will grow automagically
when poked past their size.

4.2.3 Poking the Header

The first three bytes of the header of a SBM file contains the magic number that identifies the
file as a SBM bitmap. We can poke these bytes very easily:

(poke) byte @ 0#B = 'S'

(poke) byte @ 1#B = 'B'

(poke) byte @ 2#B = 'M'

The next couple of bytes encode the dimensions of the bitmap, in this case 5x7:

(poke) byte @ 3#B = 5

(poke) byte @ 4#B = 7

There is something worth noting in this last mapping. Even though we were poking bytes
(passing the byte type specifier to the map operators) we specified the 32-bit signed integers
5 and 7 instead of 5UB and 7UB. When poke finds a situation like this, where certain kind of
integers are expected but other kind are provided, it converts the value from the provided type
to the expected type. This conversion may result in truncation (think about converting, say
0xfff to an unsigned byte, whose maximum possible value is 0xff) but certainly not in the case
at hands.

The final header looks like:

(poke) dump :size 16#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 5342 4d05 0700 0000 0000 0000 0000 0000 SBM.............

4.2.4 Poking the Pixels

Now that we have written a SBM header, we have to encode the sequence of pixels composing
the image.

Recall that every pixel is encoded using three bytes, that conform a RGB24 color. We have
two kinds of pixels in our image: white pixels, and red pixels. In RGB24 white is encoded as
(255,255,255). Pure red is encoded as (255,0,0), but to make things more interesting we will
be using a nicer tomato-like red (255,99,71).

Therefore, poking a white pixel at some offset offset would involve the following operations:

(poke) byte @ offset = 255

(poke) byte @ offset+1#B = 255

(poke) byte @ offset+2#B = 255

Likewise, the operations to poke a tomato pixel would look like:

(poke) byte @ offset = 255

(poke) byte @ offset+1#B = 99

(poke) byte @ offset+2#B = 71

To ease things a bit, we can define variables with the color components for both foreground and
background pixels:

(poke) var bg1 = 255

(poke) var bg2 = 255

(poke) var bg3 = 255

(poke) var fg1 = 255

Chapter 4: Structuring Data 41

(poke) var fg2 = 99

(poke) var fg3 = 71

Then to poke a foreground pixel would involve doing:

(poke) byte @ offset = fg1

(poke) byte @ offset+1#B = fg2

(poke) byte @ offset+2#B = fg3

At this point, you may feel that the prospect of mapping the pixels of our image is not very
appealing, considering we have 5x7 = 35 pixels in our image. We will need to poke 35 * 3 =
105 bytes. We may feel tempted to, somehow, use a bigger integer to “encapsulate” the bytes.
Using the bit-concatenation operator, we could do something like:

(poke) var bg = 255UB:::255UB:::255UB

(poke) var fg = 255UB:::99UB:::71UB

(poke) bg

(uint<24>) 0xffffff

(poke) fg

(uint<24>) 0xff6347

This encodes each color with a 24-bit unsigned integer. When looking at the hexadecimal values
of bg and fg above, note that 0xff = 255, 0x63 = 99 and 0x47 = 71. Each byte seems to be
in the right position in the 24-bit containing number. Now, poking a pixel at some given offset
should be as easy as issuing just one map operation, right? Let’s see, using some arbitrary offset
10#B:

(poke) uint<24> @ 10#B = fg

(poke) dump :from 10#B :size 4#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

0000000a: 4763 ff00 Gc..

If your current endianness is little (i.e. you are running on a x86 system or similar) you will get
the dump above. The bytes are reversed, and consequently the resulting pixel has the wrong
color. Our little trick didn’t work :(

So are we doomed to poke three bytes for each pixel we want to poke in our image? No, not
really. The Poke language provides a construction oriented to alleviate cases like this, where
several similar elements are to be “encapsulated” in a container. These constructions are called
arrays.

Using array values, we can define the foreground and background colors like this:

(poke) var bga = [255UB, 255UB, 255UB]

(poke) var fga = [255UB, 99UB, 71UB]

All the elements on an array should be of the same kind, i.e. of the same type. Therefore, this
is not allowed:

(poke) [1,"foo"]

<stdin>:1:1: error: array initializers should be of the same type

[1,"foo"];

^~~~~~~~~

Given an array value, it is possible to query for the number of values contained in it (called
elements) by using the 'length value attribute. For example:

(poke) bga'length

3UL

Tells us that the array value stored in the variable bga has three elements.

How can we poke an array value? We know that the map operator accepts two operands:
a type specifier and the value to map. The type specifier of an array of three bytes is denoted

Chapter 4: Structuring Data 42

as byte[3]. Therefore, we can again try to poke a foreground pixel at offset 10#B, this time
using fga:

(poke) byte[3] @ 10#B = fga

(poke) dump :from 10#B :size 4#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

0000000a: ff63 4700 .cG.

This time, the bytes were written in the right order. This is because array elements are
always written using their “written” ordering, with no mind to endianness. We can also map a
pixel from a given offset:

(poke) byte[3] @ 10#B

[255UB,99UB,71UB]

4.2.5 Poking Lines

At this point, we could encode the 40 pixels composing the image, by issuing the same number
of pokes of byte[3] arrays. However, we can simplify the task even further.

Our pixels are arrays of bytes, denoted by the type specifier byte[3]. Similarly, we could
conceive arrays of 32-bit signed integers, denoted by int[3], or arrays of bits, denoted by
uint<1>[3]. But, is it possible to have arrays of other arrays? Yes, it is:

(poke) [[1,2],[3,4]]

The value above is an array of two arrays of two integers each. If we wanted to map such an
array, what would be the type specifier we would need to use? It would be int[2][2], which
should be read from right-to-left as “array of two arrays of two integers”. Let’s map one from
an arbitrary offset in our IO space:

(poke) int[2][2] @ 100#B

[[0,0],[0,0]]

Consider again the sequence of pixels composing the image. Using the information we have
in the SBM header, we can group the pixels in the sequence into “lines”. In our example image,
each line contains 5 pixels. It would be natural to express each line as a sequence of pixels. The
first line in our image would be:

(poke) var l0 = [bga,fga,fga,bga,bga]

(poke) l0

[[255UB,255UB,255UB],[255UB,99UB,71UB],...]

Let’s complete the image lines:

(poke) var l0 = [bga,fga,bga,fga,bga]

(poke) var l1 = [bga,fga,bga,fga,bga]

(poke) var l2 = [bga,fga,fga,bga,bga]

(poke) var l3 = [bga,fga,bga,bga,bga]

(poke) var l4 = l3

(poke) var l5 = l4

Note how we exploited the fact that the three last lines of our image are identical, to avoid to
write the same array thrice. Array values can be assigned, and in general manipulated, like any
other kind of value, such as integers or strings.

At this point, we could poke the pixels line-by-line. What would be the type specifier for a
line? A line is an array of five arrays of 3 bytes each, so the type specifier would be byte[3][5].
Let’s do that:

(poke) byte[3][5] @ 5#B = l0

(poke) byte[3][5] @ 10#B = l1

(poke) byte[3][5] @ 15#B = l2

(poke) byte[3][5] @ 20#B = l3

Chapter 4: Structuring Data 43

(poke) byte[3][5] @ 25#B = l4

(poke) byte[3][5] @ 30#B = l5

(poke) byte[3][5] @ 35#B = l6

Not bad, we went from poking 105 bytes in the IO space to poking six lines. But we can still
do better. . .

4.2.6 Poking Images

When we poked the lines at the end of the previous section, we had to increase the offset in
every map operation. This is inconvenient.

In the same way that a sequence of bytes can be abstracted in a line, a sequence of lines
can be abstracted in an image. It follows that we can look at the image data as an array of
lines. But lines are themselves arrays of arrays. . . no matter, there is no limit on the number
of arrays-of levels that you can nest.

So, let’s define our image as an array of the lines defined above:

(poke) var image_data = [l0,l1,l2,l3,l4,l5]

(poke) image_data

[[[255UB,255UB,255UB],[255UB,99UB,71UB],[255UB,99UB,71UB]...]...]

What would be the type specifier for an image? It would be an array of seven arrays of five
arrays of three bytes each, in other words byte[3][5][7]. Let’s poke the pixels:

(poke) byte[3][5][6] @ 5#B = image_data

This is an example of how abstraction can simplify the handling of binary data: we switched
from manipulating bytes to manipulate higher abstractions such as colors, lines and images. We
achieved that by structuring the data in a way that reflects these abstractions. That’s the way
of the Poker.

4.2.7 Saving the Image

Now that we have completed the SBM image in our buffer *image*, it is time to save it to disk.
For that, we can use the save command we are already familiar with.

We know that the SBM image starts at offset 0#B, but what is the size of its entire binary
representation? The header is easy: it spans for 5 bytes. The size of the sequence of pixels can
be derived from the pixels per line byte, and the number of lines byte. We know that each pixel
occupies 3 bytes, so calculating. . .

(poke) var ppl = byte @ 3#B

(poke) var lines = byte @ 4#B

(poke) save :from 0#B :size 5#B + ppl#B * lines :file "p.sbm"

Note how we expressed “ppl bytes” as ppl#B. This is the same than expressing “10 bytes” as
10#B. We will talk more about these united values later.

There is another way of getting the size of the stream of pixels. Recall that we have the
entire set of pixels, structured as lines, stored in the variable image_data. Given an array, it is
possible to query for its size using the 'size attribute:

(poke) .set obase 10

(poke) [1,2,3]'size

96UL#b

The above indicates that the size of the array of the three integers 1, 2 and 3 is 96 bits. Using
that attribute, we can also obtain the size of the pixels in the image:

(poke) image_data'size

720UL#b

Chapter 4: Structuring Data 44

And we can use it in the save command:

(poke) save :from 0#B :size 5#B + image_data'size :file "p.sbm"

Using either strategy, at this point a file named p.sbm should have been written in the current
working directory, containing our “P is for poke” image. Keep that file around, because we will
be poking it further!

4.3 Modifying SBM Images

4.3.1 Reading a SBM File

Let’s open with poke the cute image we created in the last section, p.sbm:

$ poke p.sbm

[...]

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 5342 4d05 07ff ffff ff63 47ff 6347 ffff SBM......cG.cG..

00000010: ffff ffff ffff ffff 6347 ffff ffff 6347cG....cG

00000020: ffff ffff ffff ff63 47ff ffff ff63 47ffcG....cG.

00000030: ffff ffff ffff 6347 ff63 47ff ffff ffffcG.cG.....

00000040: ffff ffff ff63 47ff ffff ffff ffff ffffcG.........

00000050: ffff ffff 6347 ffff ffff ffff ffff ffffcG..........

00000060: ffff ff63 47ff ffff ffff ffff ffff ...cG.........

You can see the P in the ASCII column, right? If it wasn’t for the header, it would be pictured
almost straight. This is because dump shows 16 bytes per row, and our image has lines that are
15 bytes long. This is a happy coincidence: you definitely shouldn’t expect to see ASCII art in
the dump output of SBM files in general! :)

Now let’s read the image’s metadata from the header: pixels per line and how many lines
are contained in the image:

(poke) var ppl = byte @ 3#B

(poke) ppl

5UB

(poke) var lines = byte @ 4#B

(poke) lines

7UB

All right, our image is 7x5. Knowing that each pixel occupies three bytes, and that each line
contains ppl pixels, and that we have lines lines, we can map the entire image data using an
array type specifier:

(poke) var image_data = byte[3][ppl][lines] @ 5#B

(poke) image_data

[[[255UB,255UB,255UB],[255UB,99UB,71UB], ...]...]

4.3.2 Painting Pixels

The “P is for poke” slogan was so successful and widely appraised that the recutils1 chaps
wanted to do a similar campaign “R is for recutils”. For that purpose, they asked us for a
tomato-colored SBM image with an R in it.

Our creative department got at it, and after a lot of work they came with the following
design:

| 0 | 1 | 2 | 3 | 4 |

1 http://www.gnu.org/s/recutils

Chapter 4: Structuring Data 45

+---+---+---+---+---+

0 | | * | * | | |

1 | | * | | * | |

2 | | * | | * | |

3 | | * | * | | |

4 | | * | * | | |

5 | | * | | * | |

6 | | * | | * | |

Observe that this design really looks like our P (so much for a creative department). The
bitmap has exactly the same dimensions, and difference are just three pixels, that pass from
being background pixels to foreground pixels.

Therefore, it makes sense to read our p.sbm and use it as a base, completing the missing
pixels. We saw in the last section how to read a SBM image. This time, however, we will copy
the image first to a memory IO space to avoid overwriting p.sbm:

$ poke p.sbm

[...]

(poke) .mem scratch

The current IOS is now `*scratch*'.

(poke) .info ios

Id Type Mode Bias Size Name

* #1 MEMORY 0x00000000#B 0x00001000#B *scratch*

#0 FILE rw 0x00000000#B 0x0000006e#B ./p.sbm

(poke) copy :from_ios 0 :from 0#B :to 0#B :size iosize (0)

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 5342 4d05 07ff ffff ff63 47ff 6347 ffff SBM......cG.cG..

00000010: ffff ffff ffff ffff 6347 ffff ffff 6347cG....cG

00000020: ffff ffff ffff ff63 47ff ffff ff63 47ffcG....cG.

00000030: ffff ffff ffff 6347 ff63 47ff ffff ffffcG.cG.....

00000040: ffff ffff ff63 47ff ffff ffff ffff ffffcG.........

00000050: ffff ffff 6347 ffff ffff ffff ffff ffffcG..........

00000060: ffff ff63 47ff ffff ffff ffff ffff 0000 ...cG...........

00000070: 0000 0000 0000 0000 0000 0000 0000 0000

Good. Now let’s map the contents of the image, both header information and the sequence of
pixels:

(poke) var ppl = byte @ 3#B

(poke) var lines = byte @ 4#B

(poke) var image_data = byte[3][ppl][lines] @ 5#B

Let’s modify the image. Since the dimensions of the new image are exactly the same, the header
remains the same. It is the pixel sequence that is different. We basically need to turn the pixels
at coordinates (4,2), (5,3) and (6,3) from background pixels to foreground pixels.

Remember how we would change the value of some integer in the IO space? First, we would
map it into a variable, change the value, and then poke it back to the IO space. Something like
this:

(poke) var n = int @ offset

(poke) n = n + 1

(poke) int @ offset = n

This three-steps process is necessary because in the n = n + 1 above we are modifying the value
of the variable n, not the integer actually stored at offset offset in the current IO space. Therefore
we have to explicitly poke it back if we want the IO space to be updated as well.

Chapter 4: Structuring Data 46

Array values (and, as we shall see, other “composited” values) are different: when they are
the result of the application of the map operator, the resulting values are mapped themselves.

When a Poke value is mapped, updating their elements have a side effect: the area corre-
sponding to the updated element, in whatever IO space it is mapped on, is updated as well!

Why is this? The map operator, regardless of the kind of value it is mapping, always returns
a copy of the value found stored in the IO space. We already saw how this worked with integers.
However, in Poke values are copied around using a mechanism called “shared value”. This means
that when a composite value like an array is copied, its elements are shared by both the original
value and the new value.

We can depict this graphically for better understanding. A Poke array like:

(poke) var a = [1,2,3]

is stored in memory like this:

+---+---+---+

a | 1 | 2 | 3 |

+---+---+---+

If we make a copy of the array in another variable b:

(poke) var b = a

we get

+---+---+---+ +---+---+---+

a | 1 | 2 | 3 | b | 1 | 2 | 3 |

+---+---+---+ +---+---+---+

Note how each of the integer elements has been copied to the new value. The resulting two
arrays can then be modified independently:

(poke) a[1] = 5

resulting in:

+---+---+---+ +---+---+---+

a | 1 | 5 | 3 | b | 1 | 2 | 3 |

+---+---+---+ +---+---+---+

However, consider the following array whose elements are also arrays:

(poke) var a = [[1,2],[3,4],[5,6]]

This array is stored in memory like this:

+---+---+---+

a | | | |

+---+---+---+

| | | +---+---+

| | +---| 5 | 6 |

| | +---+---+

| |

| | +---+---+

| +-------| 3 | 4 |

| +---+---+

|

| +---+---+

+-----------| 1 | 2 |

+---+---+

If now we make a copy of the same array into another variable b:

(poke) var b = a

Chapter 4: Structuring Data 47

The elements of the array are copied “by shared value”, i.e.

+---+---+---+ +---+---+---+

a | | | | b | | | |

+---+---+---+ +---+---+---+

| | | +---+---+ | | |

| | +---| 5 | 6 |---+ | |

| | +---+---+ | |

| | | |

| | +---+---+ | |

| +-------| 3 | 4 |-------+ |

| +---+---+ |

| |

| +---+---+ |

+-----------| 1 | 2 |-----------+

+---+---+

The elements are indeed shared between the original array and the copy! If now we modify any
of the shared values, this will be reflected in both containing values:

(poke) a[1][1] = 9

(poke) a

[[1,2],[3,9],[5,6]]

(poke) b

[[1,2],[3,9],[5,6]]

or graphically:

+---+---+---+ +---+---+---+

a | | | | b | | | |

+---+---+---+ +---+---+---+

| | | +---+---+ | | |

| | +---| 5 | 6 |---+ | |

| | +---+---+ | |

| | | |

| | +---+---+ | |

| +-------| 3 | 9 |-------+ |

| +---+---+ |

| |

| +---+---+ |

+-----------| 1 | 2 |-----------+

+---+---+

Back to our image, it follows that if we wanted to change the color of some SBM pixel stored
at offset offset, we would do this:

(poke) var a = byte[3] @ offset

(poke) a[1] = 10

There is no need to poke the array back explicitly: the side effect of assigning 10 to a[1] is that
the byte at offset offset+1 is poked.

Generally speaking, mapped values can be handled in exactly the same way than non-mapped
values. This is actually a very central concept in poke. However, it is possible to check whether
a given value is mapped or not using the 'mapped attribute.

As we said, simple values such as integers and strings are never mapped, regardless of where
they come from. Both ppl and lines are integers, therefore:

(poke) ppl'mapped

Chapter 4: Structuring Data 48

0

(poke) lines'mapped

0

However, image_data is an array that was the result of the application of a map operator, so:

(poke) image_data'mapped

1

When a value is mapped, you can ask for the offset where it is mapped, and the IO space where
it is mapped, using the attributes 'offset and 'ios respectively. Therefore:

(poke) image_data'ios

1

(poke) image_data'offset

40UL#b

In other words, image_data is mapped in the IO space with id 1 (the *scratch* buffer) at
offset 40 bits, or 5 bytes. We already knew that, because we mapped the image data ourselves,
but in other situations these attributes are most useful. We shall see how later.

Well, at this point it should be clear how to paint pixels. First, let’s define our background
and foreground pixels:

(poke) var bga = [255UB, 255UB, 255UB]

(poke) var fga = [255UB, 99UB, 71UB]

Then, we just update the pixels in the image data using the right coordinates:

(poke) image_data[4][2] = fga

(poke) image_data[5][3] = fga

(poke) image_data[6][3] = fga

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 5342 4d05 07ff ffff ff63 47ff 6347 ffff SBM......cG.cG..

00000010: ffff ffff ffff ffff 6347 ffff ffff 6347cG....cG

00000020: ffff ffff ffff ff63 47ff ffff ff63 47ffcG....cG.

00000030: ffff ffff ffff 6347 ff63 47ff ffff ffffcG.cG.....

00000040: ffff ffff ff63 47ff 6347 ffff ffff ffffcG.cG......

00000050: ffff ffff 6347 ffff ffff 6347 ffff ffffcG....cG....

00000060: ffff ff63 47ff ffff ff63 47ff ffff 0000 ...cG....cG.....

00000070: 0000 0000 0000 0000 0000 0000 0000 0000

4.3.3 Cropping the R

Looking at our new image, we realize that the first and the last column are all background
pixels. We are aware that the recutils project is always short of resources, so we would like to
modify the image to remove these columns, cropping it so it looks like this:

| 0 | 1 | 2 |

+---+---+---+

0 | * | * | |

1 | * | | * |

2 | * | | * |

3 | * | * | |

4 | * | * | |

5 | * | | * |

6 | * | | * |

In order to perform this operation we need to rework the stream of pixels to reflect the desired
result, and then to update the header metadata accordingly.

Chapter 4: Structuring Data 49

4.3.4 Shortening and Shifting Lines

Let’s think in term of lines. In the original image, each line has 5 pixels, that we can enumerate
as:

+----+----+----+----+----+

line | p0 | p1 | p2 | p3 | p4 |

+----+----+----+----+----+

What we want is to crop out the first and the last column, so the resulting line would look like:

+----+----+----+

line | p1 | p2 | p3 |

+----+----+----+

Let’s get the first line from the original image_data:

(poke) var l0 = image_data[0]

(poke) l0

[[255UB,255UB,255UB],[255UB,99UB,71UB],...]

We could create the corresponding cropped line, by doing something like this:

(poke) var cl0 = [l0[1],l0[2],l0[3]]

And the same for the other lines. However, Poke provides a better way to easily obtain sub
portions of arrays. It is called trimming. Given an array like the line l0, we can obtain the
desired portion of it by issuing:

(poke) l0[1:4]

[[255UB,99UB,71UB],[255UB,99UB,71UB]]

Note how the limits of the semi-open interval specified in the trim reflect array indexes, and
hence they are 0 based. Also, the left limit is closed and the right limit is open. The result of
an array trimming is always another array, which may be empty:

(poke) l0[1:3]

[[255UB,99UB,71UB]]

Armed with this new operation, we can very easily mount the sequence of pixels for our
cropped image:

(poke) var l0 = image_data[0]

(poke) var l1 = image_data[1]

(poke) var l2 = image_data[2]

(poke) var l3 = image_data[3]

(poke) var l4 = image_data[4]

(poke) var l5 = image_data[5]

And then update the lines in the mapped image data:

(poke) image_data[0] = l0[1:4]

(poke) image_data[0] = l1[1:4]

(poke) image_data[1] = l2[1:4]

(poke) image_data[2] = l3[1:4]

(poke) image_data[3] = l4[1:4]

(poke) image_data[4] = l5[1:4]

4.3.5 Updating the Header

The last step is to update the header to reflect the new dimensions of the image:

(poke) byte[] @ 0#B = ['S','B','M']

(poke) byte @ 3#B = 3

(poke) byte @ 4#B = 7

Chapter 4: Structuring Data 50

And we are done. Note how this time we wrote the magic bytes as an array, to save some
typing and silly manual offset arithmetic. You may have noticed that the type specifier we used
this time in the map is byte[] instead of byte[3]. This type specifier denotes an array of any
number of bytes, which certainly includes arrays of three bytes, like in the example.

4.3.6 Saving the Result

And finally, let’s write out the new file as r.sbm:

(poke) save :from 0#B :size 5#B + image_data'size :file "r.sbm"

4.4 Defining Types

4.4.1 Naming your Own Abstractions

During the process of creating and manipulating SBM files we soon started talking about things
like lines, pixel sequences, pixels, colors, and so on. What is more, very naturally we started
thinking in terms of these entities: let’s drop this or that line, or let’s change the green component
of this pixel.

Consider for example RGB colors. We know that each color is defined by three levels of light:
red, green and blue. These components are also called color beams. Since each color beam has
a range of 0 to 255, many formats, like SBM, use bytes to encode them.

Therefore, in the previous sections we used the type specifier byte when we needed to map
RGB color beams, like in:

(poke) byte[3] @ 5#B

Recall that the mapping operation above means “map three bytes at the offset 5 bytes in the
current IO space”. But what we really want is to map color beams, not bytes!

Poke provides a way to assign names to type specifiers:

(poke) type RGB_Color_Beam = byte

The definition above tells poke that a RGB color beam is composed of a byte, i.e. an unsigned
8-bit integer. Any type specifier can be used at the right side of the assignment sign, and also
names of already defined types. From this point on, we can map in terms of color beams:

(poke) RGB_Color_Beam[3] @ 5#B

Meaning “map three RGB color beams at the offset 5 in the current IO space”.

Once a type is defined, the name can be used anywhere where a type specifier is expected.

By the way, we mentioned many times how byte is a synonym for uint<8>, int is a synonym
for int<32> and so on. These synonyms are actually result of type definitions that are in the
poke standard library. This library is loaded by poke at startup time.

4.4.2 Abstracting the Structure of Entities

Since we didn’t know better, during our work with SBM images we had to remember how these
entities were constructed from more simple entities such as bits and bytes, every time we needed
to map them, or to poke them. For example, if we wanted to map a pixel at some particular
offset, we had to issue the following command:

(poke) var pixel = byte[3] @ 5#B

Now that we made poke aware of what a RGB color beam is, we can rewrite the above as:

(poke) var pixel = RGB_Color_Beam[3] @ 5#B

This is better, but still adoleces from a big problem: what if at some point the SBM pixels get
expanded to also have a transparency index, stored in a fourth byte? If that ever happens (and

Chapter 4: Structuring Data 51

will happen later in this book) then we would need to remember it before issuing commands
like:

(poke) var image_data = RGB_Color_Beam[4][ppl][lines] @ 5#B

To avoid this problem, we define yet another type, this time describing the structure of a
SBM pixel:

(poke) type SBM_Pixel = RGB_Color_Beam[3]

And then we can define image_data as a table of SBM pixels, instead of as a table of triplets
of RGB color beams:

(poke) var image_data = SBM_Pixel[ppl][lines] @ 5#B

This later definition doesn’t need to be changed if we change the definition of what a SBM
pixel is. This is called encapsulation and is a very useful abstraction in computing.

4.5 Pickles

4.5.1 poke Commands versus Poke Constructions

In Section 1.2 [Nomenclature], page 4, we mentioned that poke, the program, implements a
domain specific programming language called Poke, with a big p. In the examples so far we
have already used the Poke language, somewhat extensively, while interacting with the program
using the REPL.

For example, in:

(poke) 10 + 2

12

We are giving poke a Poke expression 10 + 2 to be evaluated. Once the expression is evaluated,
the REPL prints the resulting value for us.

Similarly, when we define a variable or a type with var and type respectively, we are providing
poke definitions to be evaluated. When we assign a value to a variable we are actually providing
a Poke statement to be executed.

So the REPL accepts poke commands, some of which happen to be Poke expressions, def-
initions or statements. But we also have used dot-commands like .file or .info. These
dot-commands are not part of the Poke programming language.

Every time we insert a line in the REPL and hit enter, poke recognizes the nature of the
line, and then does the right thing. If the line is recognized as a Poke expression, for example,
the Poke compiler is used to compile the statement into a routine, that is executed by the Poke
Virtual Machine. The resulting value is then printed for the benefit of the user.

4.5.2 Poke Files

Poke programs are basically a collection of definitions and statements, which most often than
not are stored in files, which avoids the need to type them again and again. By convention, we
use the .pk file extension when naming files containing Poke programs.

Remember how we defined the foreground and background pixels for p.sbm in the REPL?

(poke) var bga = [255UB, 255UB, 255UB]

(poke) var fga = [255UB, 99UB, 71UB]

Where bga is a white pixel and fga is a tomato colored pixel. We could write these definitions
in a file colors.pk like this:

var white = [255UB, 255UB, 255UB];

var tomato = [255UB, 99UB, 71UB];

Note that variable definitions in Poke are terminated by a semicolon (;) character, but we didn’t
need to specify them when we issued the definitions in the REPL. This is because poke adds

Chapter 4: Structuring Data 52

the trailing semicolon for us when it detects a Poke construction requiring it is introduced in
the REPL.

Another difference is that Poke constructions can span for multiple lines, like in most program-
ming languages. For example, we could have the following variable definition in a file:

var matrix = [[10, 20, 30],

[40, 50, 60],

[70, 80, 90]];

Once we have written our colors.pk file, how can we make poke aware of it? A possibility
is to use the load construction:

(poke) load colors

Assuming a file named colors.pk exists in the current working directory, poke will load it and
evaluate its contents. After this, we can use the colors:

(poke) tomato

[0xffUB,0x63UB,0x47UB]

Before, we would need to define these colors every time we would like to poke SBM files or,
in fact, any RGB24 data. Now we just have to load the file colors.pk and use the variables
defined there.

If you try to load a file whose name contains a dash character (-) you will get an error
message:

(poke) load my-colors

<stdin>:1:8: error: syntax error, unexpected '-', expecting ';'

load my-colors;

^

This is because the argument to load is interpreted as a Poke identifier, and dash characters
are not allowed in identifiers. To alleviate this problem, you can also specify the name of the
file to load encoded in a string, line in:

(poke) load "my-colors.pk"

If you use this form of load, however, you are required to specify the complete name of the file,
including the .pk file extension.

Since loading files is such a common operation, poke provides a dot-command .load that
does auto-completion:

(poke) .load my-colors.pk

Which is equivalent to load "my-colors.pk".

Since load is part of the Poke language, it can also be used in Poke programs stored in files.
We will explore this later.

4.5.3 Pickling Abstractions

In the last section we defined a couple of RGB colors white and tomato in a file called colors.pk.
If we keep adding colors to the file, we may end with a nice collection of colors that are available
to us at any time, by just loading the file.

Since there are many ways to understand the notion of “color”, and also many ways to
implement these many notions, it would be better to be more precise and call our file rgb24.pk,
since the notion of color we are using is of that RGB24. While are at it, let’s also rename the
variables to reflect the fact they denote not just any kind of colors, but RGB24 colors:

var rgb24_white = [255UB, 255UB, 255UB];

var rgb24_tomato = [255UB, 99UB, 71UB];

At this point, we can also add the definitions of a couple of types to our rgb24.pk:

type RGB_Color_Beam = byte;

Chapter 4: Structuring Data 53

type RGB24_Color = RGB_Color_Beam[3];

var rgb24_white = [255UB, 255UB, 255UB];

var rgb24_tomato = [255UB, 99UB, 71UB];

Any time we want to manipulate RGB24 colors we can just load the file rgb24.pk and use these
types and variables.

In poke parlance we call files like the above, that contain definitions of conceptually re-
lated entities, pickles. Pickles can be very simple, like the rgb24.pk sketched above, or fairly
complicated like dwarf.pk.

It is common for pickles to load other pickles. For example, if we were to write a SBM pickle,
we would load the RGB24 pickle from it:

load rgb24;

[... SBM definitions ...]

This way, when we load sbm from the repl, the dependencies get loaded as well.

GNU poke includes several already written pickles for commonly used file formats, and other
domains. The load construction knows where these pickles are installed, so in order to load the
pickle to manipulate ELF files, for example, all you have to do is to:

(poke) load elf

4.5.4 Exploring Pickles

As we have seen, a pickle provides Poke variables, types and functions related to some definite
domain. Let’s say we are interested in editing an ELF file. We know that GNU poke comes
with a pre-installed pickle named elf.pk. We can load it like this:

(poke) load elf

By convention, the entities provided by a pickle foo.pk are usually prefixed like:

− Variables, units and functions are prefixed with foo_.

− Types are prefixed with Foo_.

Therefore, once the pickle is loaded we can use the .info dot-command in order to get a
glimpse of the functionality provided by the pickle. See Section 20.12 [info command], page 117.
Example:

(poke) .info variables elf

Name Declared at

elf_stb_names elf-common.pk:53

elf_stt_names elf-common.pk:72

elf_stv_names elf-common.pk:84

The above tells us that the elf.pk pickle provides these three variables. Types are way more
interesting:

(poke) .info types Elf64

Name Declared at

Elf64_Ehdr elf-64.pk:184

Elf64_Off elf-64.pk:26

Elf64_SectionFlags elf-64.pk:130

Elf64_Shdr elf-64.pk:152

Elf64_RelInfo elf-64.pk:36

Elf64_Chdr elf-64.pk:85

Elf64_Rela elf-64.pk:61

Elf64_Phdr elf-64.pk:169

Chapter 4: Structuring Data 54

Elf64_Sxword elf-64.pk:24

Elf64_Sym elf-64.pk:71

Elf64_Rel elf-64.pk:45

Elf64_File elf-64.pk:207

Elf64_Addr elf-64.pk:25

Elf64_Group elf-64.pk:121

Elf64_Dyn elf-64.pk:98

Elf64_Xword elf-64.pk:23

We immediately notice the Elf64_File. Looks like what we would need to map in order to
access the entire ELF data in some given IO space (like a file.) We can ask for more details
about it:

(poke) .info type Elf64_File

Class: struct

Name: Elf64_File

Complete: no

Fields:

Name Type

ehdr Elf64_Ehdr

shdr Elf64_Shdr[]

phdr Elf64_Phdr[]

Methods:

Name Type

get_section_name (offset<Elf_Word,8>)string

get_symbol_name (Elf64_Shdr,,offset<Elf_Word,8>)string

get_sections_by_name (string)Elf64_Shdr[]

get_sections_by_type (Elf_Word)Elf64_Shdr[]

section_name_p (string)int

get_string (offset<Elf_Word,8>)string

get_group_signature (Elf64_Shdr)string

get_group_signatures ()string[]

get_section_group (string)Elf64_Shdr[]

We see that an Elf64_File has three fields, and the nature of these files: a header ehdr, an
array of section headers shdr and an array of program headers phdr.

The type description above also lists the methods defined in the type. Looking at the method
name and its type is very usually revealing enough to use it. For example, we see that get_

sections_by_name returns an array of section headers, characterized by some given section
name:

(poke) var elf = Elf64_File @ 0#B

(poke) elf.get_sections_by_name (".text")

[Elf64_Shdr {

sh_name=0x1bU#B,

sh_type=0x1U,

sh_flags=#<ALLOC,EXECINSTR>,

sh_addr=0x0UL#B,

sh_offset=0x40UL#B,

sh_size=0xbUL#B,

sh_link=0x0U,

sh_info=0x0U,

sh_addralign=0x1UL,

sh_entsize=0x0UL#b

}]

Chapter 4: Structuring Data 55

Ultimately, of course the best way to see what a pickle provides is to go read its source code.

4.5.5 Startup

When poke starts it loads the file .pokerc located in our home directory, if it exists. This
initialization file contains poke commands, one per line.

If we wanted to get some Poke file loaded at startup, we could do it by adding a load command
to our .pokerc. For example:

My poke configuration - jemarch

[...]

.load ~/.poke.d/mydefs.pk

4.6 Poking Structs

4.6.1 Heterogeneous Related Data

Let’s recap the structure of the header of a Stupid BitMap:

SBM header

+-------+-------+-------+-------+-------+

| 'S' | 'B' | 'M' | ppl | lines |

+-------+-------+-------+-------+-------+

byte0 byte1 byte2 byte3 byte4

The header is composed of five fields, which actually compose three different logical fields: a
magic number, the number of pixels per line, and the number of lines.

We could of course abstract the header using an array of five bytes, like this:

type SBM_Header = byte[5];

However, this would not capture the properties of the fields themselves, which would need
to be remembered by the user: which of these five bytes correspond to the magic number? Is
the pixels per line number signed or unsigned? etc.

Poke provides a much better way to abstract collections of heterogeneous data: struct types.
Using a struct type we can abstract the SBM header like this:

type SBM_Header =

struct

{

byte[3] magic;

uint<8> ppl;

uint<8> lines;

}

Note how the struct has three named fields: magic, ppl and lines. magic is an array of
three bytes, while ppl and lines are both unsigned integers.

4.6.2 Mapping Structs

Once defined, struct types can be referred by name. For example, we can map the SBM header
at the beginning of our file p.sbm like this:

(poke) SBM_Header @ 0#B

SBM_Header {

magic=[0x53UB,0x42UB,0x4dUB],

ppl=0x5UB,

lines=0x7UB

}

Chapter 4: Structuring Data 56

The value resulting from the mapping is a struct value. The fields of struct values are accessed
using the familiar dot-notation:

(poke) var header = SBM_Header @ 0#B

(poke) header.ppl * header.lines

35UB

The total number of pixels in the image is 35. Note how both header.ppl and header.lines

are indeed unsigned byte values, and thus the result of the multiplication is also an unsigned
byte. This could be problematic if the image contained more than 255 pixels, but this can be
prevented by using a cast:

(poke) header.ppl as uint * header.lines

35U

Now the second operand header.lines is promoted to a 32-bit unsigned value before the mul-
tiplication is performed. Consequently, the result of the operation is also 32-bit wide (note the
suffix of the result.)

4.6.3 Modifying Mapped Structs

Remember when we wanted to crop a SBM image by removing the first and last row? We
updated the header in a byte by byte manner, like this:

(poke) byte @ 3#B = 3

(poke) byte @ 4#B = 7

Now that we have the header mapped in a variable, updating it is much more easy and conve-
nient. The dot-notation is used to update the contents of a struct field, by placing it at the left
hand side of an assignment:

(poke) header.ppl = 3

(poke) header.lines = 7

This updates the pixel per line and the number of lines, in the IO space:

(poke) dump :size 5#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 5342 4d03 07 SBM..

4.7 How Structs are Built

First we need to define some structure to use as an example. Let’s say we are interesting in
poking Packets, as defined by the Packet Specification 1.2 published by the Packet Foundation
(none less).

In a nutshell, each Packet starts with a byte whose value is always 0xab, followed by a
byte that defines the size of the payload. A stream of bytes conforming the payload follows,
themselves followed by another stream of the same number of bytes with “control” values.

We could translate this description into the following Poke struct type definition:

type Packet =

struct

{

byte magic == 0xab;

byte size;

byte[size] payload;

byte[size] control;

};

There are some details described by the fictitious Packet Specification 1.2 that are not covered
in this simple definition, but we will be attending to that later in this manual.

Chapter 4: Structuring Data 57

So, given the definition of a struct type like Packet, there are only two ways to build a struct
value in Poke.

One is to map it from some IO space. This is achieved using the map operator:

(poke) Packet @ 12#B

Packet {

magic == 0xab,

size = 2,

payload = [0x12UB,0x30UB],

control = [0x1UB,0x1UB]

}

The expression above maps a Packet starting at offset 12 bytes, in the current IO space. See
the Poke manual for more details on using the map operator.

The second way to build a struct value is to construct one, specifying the value to some,
all or none of its fields. It looks like this:

(poke) Packet {size = 2, payload = [1UB,2UB]}

Packet {

magic == 0xab,

size = 2,

payload = [0x1UB,0x2UB],

control = [0x0UB,0x0UB]

}

In either case, building a struct involves to determine the value of all the fields of the struct,
one by one. The order in which the struct fields are built is determined by the order of appearance
of the fields in the type description.

In our example, the value of magic is determined first, then size, payload and finally
control. This is the reason why we can refer to the values of previous fields when defining
fields, such as in the size of the payload array above, but not the other way around: by the time
payload is mapped or constructed, the value of size, has already been mapped or constructed.

What happens behind the curtains is that when poke finds the definition of a struct type, like
Packet, it compiles two functions from it: a mapper function, and a constructor function. The
mapper function gets as arguments the IO space and the offset from which to map the struct
value, whereas the constructor function gets the template specifying the initial values for some,
or all of the fields; reasonable default values (like zeroes) are used for fields for which no initial
values have been specified.

These functions, mapper and constructor, are invoked to create fresh values when a map
operator @ or a struct constructor is used in a Poke program, or at the poke prompt.

4.8 Variables in Structs

Fields are not the only entity that can appear in the definition of a struct type.

Suppose that after reading more carefully the Packet Specification 1.2 (that spans for several
thousand of pages) we realize that the field size doesn’t really store the number of bytes of the
payload and control arrays, like we thought initially. Or not exactly: the Packet Foundation
says that if size has the special value 0xff, then the size is zero.

We could of course do something like this:

type Packet =

struct

{

byte magic == 0xab;

Chapter 4: Structuring Data 58

byte size;

byte[size == 0xff ? 0 : size] payload;

byte[size == 0xff ? 0 : size] control;

};

However, we can avoid replicating code by using a variable instead:

type Packet =

struct

{

byte magic == 0xab;

byte size;

var real_size = (size == 0xff ? 0 : size);

byte[real_size] payload;

byte[real_size] control;

};

Note how the variable can be used after it gets defined. In the underlying process of mapping
or constructing the struct, the variable is incorporated into the lexical environment. Once
defined, it can be used in constraint expressions, array sizes, and the like. We will see more
about this later.

Incidentally, it is of course possible to use global variables as well. For example:

var packet_special = 0xff;

type Packet =

struct

{

byte magic == 0xab;

byte size;

var real_size = (size == packet_special ? 0 : size);

byte[real_size] payload;

byte[real_size] control;

};

In this case, the global packet_special gets captured in the lexical environment of the
struct type (in reality in the lexical environment of the implicitly created mapper and construc-
tor functions) in a way that if you later modify packet_special the new value will be used
when mapping/constructing new values of type Packet. Which is really cool, but let’s not get
distracted from the main topic... :)

4.9 Functions in Structs

Further reading of the Packet Specification 1.2 reveals that each Packet has an additional crc
field. The content of this field is derived from both the payload bytes and the control bytes.

But this is no vulgar CRC we are talking about. On the contrary, it is a special function
developed by the CRC Foundation in partnership with the Packet Foundation, called superCRC
(patented, TM).

Fortunately, the CRC Foundation distributes a pickle supercrc.pk, that provides a
calculate_crc function with the following spec:

fun calculate_crc = (byte[] data, byte[] control) int:

Chapter 4: Structuring Data 59

So let’s use the function like this in our type, after loading the supercrc pickle:

load supercrc;

type Packet =

struct

{

byte magic == 0xab;

byte size;

var real_size = (size == 0xff ? 0 : size);

byte[real_size] payload;

byte[real_size] control;

int crc = calculate_crc (payload, control);

};

However, there is a caveat: it happens that the calculation of the CRC may involve arithmetic
and division, so the CRC Foundation warns us that the calculate_crc function may raise
E div by zero. However, the Packet 1.2 Specification tells us that in these situations, the crc

field of the packet should contain zero. If we used the type above, any exception raised by
calculate_crc would be propagated by the mapper/constructor:

(poke) Packet @ 12#B

unhandled division by zero exception

A solution is to use a function that takes care of the extra needed logic, wrapping calcu-
late crc:

load supercrc;

type Packet =

struct

{

byte magic == 0xab;

byte size;

var real_size = (size == 0xff ? 0 : size);

byte[real_size] payload;

byte[real_size] control;

fun corrected_crc = int:

{

try return calculate_crc (payload, control);

catch if E_div_by_zero { return 0; }

}

int crc == corrected_crc;

};

Again, note how the function is accessible after its definition. Note as well how both fields
and variables and other functions can be used in the function body. There is no difference to
define variables and functions in struct types than to define them inside other functions or in
the top-level environment: the same lexical rules apply.

Chapter 4: Structuring Data 60

4.10 Struct Methods

At this point you may be thinking something on the line of “hey, since variables and functions
are also members of the struct, I should be able to access them the same way than fields, right?”.

So you will want to do:

(poke) var p = Packet 12#B

(poke) p.real_size

(poke) p.corrected_crc

But sorry, this won’t work.

To understand why, think about the struct building process we sketched above. The mapper
and constructor functions are derived/compiled from the struct type. You can imagine them to
have prototypes like:

Packet_mapper (IOspace, offset) -> Packet value

Packet_constructor (template) -> Packet value

You can also picture the fields, variables and functions in the struct type specification as
being defined inside the bodies of Packet mapper and Packet constructor, as their contents get
mapped/constructed. For example, let’s see what the mapper does:

Packet_mapper:

. Map a byte, put it in a local `magic'.

. Map a byte, put it in a local `size'.

. Calculate the real size, put it in a local `real_size'.

. Map an array of real_size bytes, put it in a local `payload'.

. Map an array of real_size bytes, put it in a local `control'.

. Compile a function, put it in a local `corrected_crc'.

. map a byte, call the function in the local `corrected_crc',

complain if the values are not the same, otherwise put the

mapped byte in a local `crc'.

. Build a struct value with the values from the locals `magic',

`size', `payload', `control' and `crc', and return it.

The pseudo-code for the constructor would be almost identical. Just replace "map a byte"
with “construct a byte”.

So you see, both the values for the mapped fields and the values for the variables and functions
defined inside the struct type end as locals of the mapping process, but only the values of the
fields are actually put in the struct value that is returned in the last step.

This is where methods come in the picture. A method looks very similar to a function, but
it is not quite the same thing. Let me show you an example:

load supercrc;

type Packet =

struct

{

byte magic == 0xab;

byte size;

var real_size = (size == 0xff ? 0 : size);

byte[real_size] payload;

byte[real_size] control;

Chapter 4: Structuring Data 61

fun corrected_crc = int:

{

try return calculate_crc (payload, control);

catch if E_div_by_zero { return 0; }

}

int crc = corrected_crc;

method c_crc = int:

{

return corrected_crc;

}

};

We have added a method c_crc to our Packet struct type, that just returns the corrected
superCRC (patented, TM) of a packet. This can be invoked using dot-notation, once a Packet
value is mapped/constructed:

(poke) var p = Packet 12#B

(poke) p.c_crc

0xdeadbeef

Now, the important bit here is that the method returns the corrected crc of a Packet. That’s
it, it actually operates on a Packet value. This Packet value gets implicitly passed as an argument
whenever a method is invoked.

We can visualize this with the following “pseudo Poke”:

method c_crc = (Packet SELF) int:

{

return SELF.corrected_crc;

}

Fortunately, poke takes care to recognize when you are referring to fields of this implicit
struct value, and does The Right Thing(TM) for you. This includes calling other methods:

method foo = void: { ... }

method bar = void:

{

[...]

foo;

}

The corresponding “pseudo-poke” being:

method bar = (Packet SELF) void:

{

[...]

SELF.foo ();

}

It is also possible to define methods that modify the contents of struct fields, no problem:

var packet_special = 0xff;

type Packet =

struct

{

byte magic == 0xab;

byte size;

Chapter 4: Structuring Data 62

[...]

method set_size = (byte s) void:

{

if (s == 0)

size = packet_special;

else

size = s;

}

};

This is what is commonly known as a setter. Note, incidentally, how a method can also use
regular variables. The Poke compiler knows when to generate a store in a normal variable such
as packet_special, and when to generate a set to a SELF field.

Given the different nature of the variables, functions and methods, there are a couple of
restrictions:

• Functions can’t set fields defined in the struct type.

This will be rejected by the compiler:

type Foo =

struct

{

int field;

fun wrong = void: { field = 10; }

};

Remember the construction/mapping process. When a function accesses a field of the
struct type like in the example above, it is not doing one of these pseudo SELF.field = 10.
Instead, it is simply updating the value of the local created in this step in Foo mapper:

Foo_mapper:

. Map an int, put it in a local `field'.

. [...]

Setting that local would impact the mapping of the subsequent fields if they refer to field

(for example, in their constraint expression) but it wouldn’t actually alter the value of the
field field in the struct value that is created and returned from the mapper!

This is very confusing, so we just disallow this with a compiler error “invalid assignment to
struct field”, for your own sanity 8-)

• Methods can’t be used in field constraint expressions, nor in variables or functions defined
in a struct type.

How could they be? The field constraint expressions, the initialization expressions of
variables, and the functions defined in struct types are all executed as part of the map-
per/constructor and, at that time, there is no struct value yet to pass to the method.

If you try to do this, the compiler will greet you with an “invalid reference to struct method”
message.

Something to keep in mind about methods is that they can destroy the integrity of the data
stored in a struct. Consider for example the following struct type:

type Packet =

struct

{

byte magic == 0xab;

byte size : size <= 4096;

Chapter 4: Structuring Data 63

[...]

method set_size = (byte s) void:

{

if (s == 0)

size = packet_special;

else

size = s;

}

};

Observe how this new version of Packet has an additional constraint that specifies size should
not exceed 4096. However, when the method set_size is executed the constraints are not
checked again. This is useful at times, but can also lead to unintended data corruption.

A solution for this problem is to make methods aware of the restrictions. Like in this case:

type Packet =

struct

{

var MAXSIZE = 4096;

byte magic == 0xab;

byte size : size <= MAXSIZE;

[...]

method set_size = (byte s) void:

{

if (s == 0)

size = packet_special;

else if (s > MAXSIZE)

raise E_inval;

else

size = s;

}

};

Note how we use a variable MAXSIZE in order to avoid hard-coding 4096 twice in the struct
definition.

Occasionally it is useful to access to additional properties of a containing struct or union in
a method, other than its fields. For this purpose it is possible to refer explicitly to the struct
using the SELF keyword. Note that the value referred has type any.

For example, this is how we could print the name of the current alternative in a pretty-printer
for an union:

type Foo =

union int<32>

{

int<32> One == 1;

int<32> Two == 2;

method _print = void:

{

printf ("%s (%v)", SELF'ename (0), SELF'elem (0));

}

};

Chapter 4: Structuring Data 64

4.11 Padding and Alignment

It is often the case in binary formats that certain elements are separated by some data that
is not really used for any meaningful purpose other than occupy that space. The reason for
keeping that space varies from case to case; sometimes to reserve it for future use, sometimes
to make sure that the following data is aligned to some particular alignment. This is known as
padding. There are several ways to implement padding in GNU poke. This article shows these
techniques and discusses their advantages and disadvantages.

4.11.1 Esoteric and exoteric padding

Padding is the technique of keeping some amount of space between two different elements in
some data stream. GNU poke provides two different ways to express sequences of data elements:
the fields of a struct type, which are defined one after the other, and elements in an array.

We call adding space between two struct fields esoteric (or internal) padding.

We call adding space between two array elements exoteric (or external) padding.

The following sections contain examples of the two kinds of padding and how to better handle
them in Poke.

4.11.2 Reserved fields

People designing binary encoded formats tend to be cautious and try to avoid future backward
incompatibilities by keeping some unused fields that are reserved for future use. This is the first
kind of padding we will be looking at, and is particularly common in structures like headers.

See for example the header used to characterize compressed section contents in ELF files:

type Elf64_Chdr =

struct

{

Elf_Word ch_type;

Elf_Word ch_reserved;

offset<Elf64_Xword,B> ch_size;

offset<Elf64_Xword,B> ch_addralign;

};

where the ch_reserved field is reserved for future use. When the time comes the space
occupied by that field (32 bits in this case) will be used to hold additional data in the form of
one or more fields. The idea is that implementations of the older formats will still work.

The most obvious way to handle this in Poke is using a named field like ch_reserved above.
This field will be decoded/encoded by poke when constructing/mapping/writing struct values
of this type, and will be available to the user as chdr.ch_reserved.

Sometimes reserved space is required to be filled with certain data values, such as zeroes.
This may be to simplify things, or to force data producers to initialize the memory in order to
avoid potential leaking of sensible information. In these cases we can use Poke initial values:

type Elf64_Chdr =

struct

{

Elf_Word ch_type;

Elf_Word ch_reserved == 0;

offset<Elf64_Xword,B> ch_size;

offset<Elf64_Xword,B> ch_addralign;

};

This will make poke to check that ch_reserved is zero when constructing or mapping headers
for compressed sections raising a constraint violation exception otherwise. It will also make poke
to make sure ch_reserved to 0 when constructing Elf64_Chdr struct values:

Chapter 4: Structuring Data 65

(poke) Elf64_Chdr { ch_reserved = 23 }

unhandled constraint violation exception

An alternative way to characterize reserved space in Poke is to use anonymous fields. For
example:

type Elf64_Chdr =

struct

{

Elf_Word ch_type;

Elf_Word;

offset<Elf64_Xword,B> ch_size;

offset<Elf64_Xword,B> ch_addralign;

};

Using Poke anonymous fields to implement reserved fields has at least two advantages. First,
the user cannot anymore temper with the data in the reserved space in an easy way, i.e. chdr.ch_
reserved = 666 is no longer valid. Second, the printed representation of anonymous struct fields
is more compact and denotes better than the involved space is not to be messed with:

(poke) Elf64_Chdr {}

Elf64_Chdr {

ch_type=0x0U,

0x0U,

ch_size=0x0UL#B,

ch_addralign=0x0UL#B

}

A disadvantage of using anonymous fields is that you cannot specify constraint expressions
for them, nor initial values. At some point we will probably add syntax to declare certain struct
fields as read-only.

At this point, it is important to note that anonymous fields are still encoded/decoded by
poke every time the struct value is mapped or written, exactly like regular fields. Therefore
using them doesn’t pose any advantage in terms of performance.

4.11.3 Payloads

The reserved fields discussed in the previous section are most often discrete units like words,
double-words, and the like, they are usually of some fixed size, and they are used to delimit
some space that is not to be used.

Another kind of padding happens when an entity contains space to be used to store some
kind of payload whose contents are not determined. This would be such an example:

type Packet =

struct

{

offset<uint<32>,B> payload_size;

byte[payload_size] payload;

int flags;

};

In this example we are using a payload field which is an array of bytes. The size of the
payload is determined by the packet header, and the contents are not determined. Of course
this assumes that the payload sizes are divisible in whole bytes; a bit-oriented format may need
to use an array of bits instead.

This approach of using a byte (or bit) array like in the example above has the advantage of
providing a field with the bytes (or bits) to the user, for inspection and modification:

(poke) packet.payload

Chapter 4: Structuring Data 66

[23UB, ...]

(poke) packet.payload[0] = 0

The user can still map whatever payload structure in that space using the attributes of a
mapped Packet. For example, if the packet contains an array of ULEB128 numbers, we could
do:

(poke) var numbers = ULEB128[packet.payload'size] @ packet.payload'offset

But this approach has a disadvantage: every time the packet structure is mapped or written
the entire payload array gets decoded and encoded. If the payloads are big enough (think about
the data blocks of a file described by a file system i-node for example) this can be a big problem
in terms of performance.

Another problem of using byte (or bit) arrays for payloads is that the printed representation
of the struct values include the contents of the arrays, and most often the user won’t be interested
in seeing that:

(poke) Packet { payload_size = 23#B }

Packet {

payload_size=0x17U#B,

payload=[0x0UB,0x0UB,0x0UB,0x0UB,0x0UB,...],

flags=0x0

}

Another alternative is to implement the padding implied by a payload using field labels:

type Packet =

struct

{

offset<uint<32>,B> payload_size;

int flags @ OFFSET + payload_size;

};

Note how a payload field no longer exists in the struct type, and the field flags is defined
to start at offset OFFSET + payload_size. This way no explicit array is encoded/decoded when
manipulating Packet values:

(poke) .set omaps yes

(poke) Packet { payload_size = 500#Mb }

Packet {

payload_size=62500000U#B @ 0UL#b,

flags=0 @ 4000000032UL#b

} @ 0UL#b

In this example we used the omaps option, which asks poke to print the offsets of the fields.
The offset of flags is 4000000032 bits, or 500 megabytes:

(poke) 4000000032UL #b/#MB

500UL

Mapping this new Packet involves reading and decoding five bytes, for the payload_size

and flags only. This is clearly much faster and avoids unneeded IO.

However you may be wondering, if there is no explicit payload field, how to access the
payload space? A way is to define a method to the struct to provide the payload attributes:

type Packet =

struct

{

offset<uint<32>,B> payload_size;:

var payload_offset = OFFSET;

int flags @ OFFSET + payload_size;

Chapter 4: Structuring Data 67

method get_payload_offset = off64:

{

return payload_offset;

}

};

Note how we captured the offset of the payload using a variable in the strict type definition.
Returning OFFSET in get_payload_offset wouldn’t work for obvious reasons: in the body of
the method OFFSET evaluates to the end of flags in this case.

Using this method you can easily access the payload (again as an array of ULEB128 numbers)
like this:

var numbers = ULEB128[packet.payload_size @ packet.get_payload_offset

Finally, using labels for this purpose makes the printed representation of the struct values
more readable by not including the payload bytes in it:

(poke) Packet {}

Packet {

payload_size=0x0U#B,

flags=0x0

}

4.11.4 Aligning struct fields

Another kind of esoteric padding happens when certain fields in entities are required to be
aligned to some particular alignment. For example, suppose that the flags field in the packets
used in the previous sections is required to always be aligned to 4 bytes regardless of the size of
the payload. This would be a common requirement if the format is intended to be implemented
in systems where data is to be accessed using its “natural” alignment.

Using explicit fields for both the payload and the additional padding, we could come with:

type Packet =

struct

{

offset<uint<32>,B> payload_size;

byte[payload_size] payload;

byte[alignto (OFFSET, 4#B)] padding;

int flags;

};

Where alignto is a little function defined in the Poke standard library, like this:

fun alignto = (uoff64 offset, uoff64 to) uoff64:

{

return (to - (offset % to)) % to;

}

Alternatively, using the labels approach (which is generally better as we discussed in the last
section) the definition would become:

type Packet =

struct

{

offset<uint<32>,B> payload_size;:

var payload_offset = OFFSET;

int flags @ OFFSET + payload_size + alignto (payload_size, 4#B);

Chapter 4: Structuring Data 68

method get_payload_offset = off64:

{

return payload_offset;

}

};

In this case, the payload space is still completely characterized by the payload_size field
and the get_payload_offset method.

4.11.5 Padding array elements

Up to now all the examples of padding we have shown are in the category of esoteric or internal
padding, i.e. it was intended to add space between fields of some particular entity.

However, sometimes we want to specify some padding between the elements of a sequence of
entities. In Poke this basically means an array.

Suppose we have a simple file system that is conformed by a sequence of inodes. The contents
of the file system have the following form:

+-----------------+

| inode |

+-----------------+

: :

: data :

: :

+-----------------+

| inode |

+-----------------+

: :

: data :

: :

+-----------------+

| ... |

That’s it, each inode describes a block of data of variable size that immediately follows. Then
more pairs of inode-data follow until the end of the device. However, a requirement is that each
inode has to be aligned to 128 bytes.

Let’s start by writing a simple type definition for the inodes:

type Inode =

struct

{

string filename;

int perms;

offset<uint<32>,B> data_size;

};

This definition is simple enough, but it doesn’t allow us to just map an array of inodes like
this:

(poke) Inode[] 0#B

We could of course add the data and padding explicitly to the inode structure:

type Inode =

struct

{

string filename;

int perms;

Chapter 4: Structuring Data 69

offset<uint<32>,B> data_size;

byte[data_size] data;

byte[alignto (data_size, 128#B)] padding;

};

Then we could just map Inode[] @ 0#B and we would the get expected result.

But this is not a good idea. On one hand because, as we know, this would imply mapping
the full file system data byte by byte, and that would be very very slow. On the other hand,
because the data is not part of the inode, conceptually speaking.

A better solution is to use this idiom:

type Inode =

struct

{

string filename;

int perms;

offset<uint<32>,B> data_size;

byte[0] @ OFFSET + data_size + alignto (data_size, 128#B);

};

This uses an anonymous field at the end of the struct type, of size zero, located at exactly
the offset where the data plus padding would end in the version with explicit fields.

This later solution is fast and still allows us to get an array of inodes reflecting the whole file
system with:

(poke) var inodes = Inode[] @ 0#B

Like in the previous sections, a method =get data offset= can be added to the struct type
in order to allow accessing the data blocks corresponding to a given inode.

4.12 Dealing with Alternatives

4.12.1 BSON

BSON2 is a binary encoding for JSON documents. The top-level entity described by the spec
is the document, which contains the total size of the document, a sequence of elements, and a
trailing null byte.

We can describe the above in Poke with the following type definition:

type BSON_Doc =

struct

{

offset<int<32>,B> size;

BSON_Elem[size - size'size - 1#B] elements;

byte endmark : endmark == 0x0;

};

BSON elements come in different kinds, which correspond to the different types of JSON
entities: 32-bit integers, 64-bit integers, strings, arrays, timestamps, and so on. Every element
starts with a tag, which is a 8-bit unsigned integer that identifies it’s kind, and a name encoded
as a NULL-terminated string. What comes next depends on the kind of element.

The following Poke type definition describes a subset of BSON elements, namely integers,
big integers and strings:

type BSON_Elem =

2 http://bsonspec.org/spec.html

Chapter 4: Structuring Data 70

struct

{

byte tag;

string name;

union

{

int32 integer32 : tag == 0x10;

int64 integer64 : tag == 0x12;

BSON_String str : tag == 0x02;

} value;

};

The union in BSON_Elem corresponds to the variable part. When poke decodes an union, it
tries to decode each alternative (union field) in turn. The first alternative that is successfully
decoded without raising a constraint violation exception is the chosen one. If no alternative can
be decoded, a constraint violation exception is raised.

To see this process in action, let’s use the BSON corresponding to the following little JSON
document:

{

"name" : "Jose E. Marchesi",

"age" : 40,

"big" : 1076543210012345

}

Let’s take a look to the different elements:

(poke) .load bson.pk

(poke) var d = BSON_Doc 0#B

(poke) d.elements'length

0x3UL

(poke) d.elements[0]

BSON_Elem {

tag=0x2UB,

name="name",

value=struct {

str=BSON_String {

size=0x11,

value="Jose E. Marchesi",

chars=[0x4aUB,0x6fUB,0x73UB,0x65UB...]

}

}

}

(poke) d.elements[1]

BSON_Elem {

tag=0x10UB,

name="age",

value=struct {

integer32=0x27

}

}

(poke) d.elements[2]

BSON_Elem {

tag=0x12UB,

Chapter 4: Structuring Data 71

name="big",

value=struct {

integer64=0x3d31c3f9e3eb9L

}

}

Note how unions decode into structs featuring different fields. What field is available depends
on the alternative chosen while decoding.

In the session above, d.elements[1].value contains an integer32 field, whereas
d.elements[2].value contains an integer64 field. Let’s see what happens if we try to access
the wrong field:

(poke) d.elements[1].value.integer64

unhandled invalid element exception

We get a run-time exception. This kind of errors cannot be caught at compile time, since
both integer32 and integer64 are potentially valid fields in the union value.

4.12.2 Unions are Tagged

Unlike in C, Poke unions are tagged. Unions have their own lexical closures, and it is the
capured values that determine what field is chosen at every time. Wherever the union goes, its
tag accompanies it.

To see this more clearly, consider the following alternative Poke description of the BSON
elements:

type BSON_Elem =

union

{

struct

{

byte tag : tag == 0x10;

string name;

int32 value;

} integer32;

struct

{

byte tag : tag == 0x12;

string name;

int64 value;

} integer64;

struct

{

byte tag : tag == 0x12;

string name;

BSON_String value;

} str;

};

This description is way more verbose than the one used in previous sections, but it shows a
few important properties of Poke unions.

First, the constraints guiding the decoding are not required to appear in the union itself: it
is a recursive process. In this example, BSON_String could have constraints on it’s own, and
these constraints will also impact the decoding of the union.

Chapter 4: Structuring Data 72

Second, there are generally many different ways to express the same plain binary using
different type structures. This is no different than getting different parse trees from the same
sequence of tokens using different grammars denoting the same language.

See how different a BSON element looks (and feels) using this alternative description:

(poke) d.elements[0]

BSON_Elem {

str=struct {

tag=0x2UB,

name="name",

value=BSON_String {

size=0x11,

value="Jose E. Marchesi",

chars=[0x4aUB,0x6fUB,0x73UB,0x65UB...]

}

}

}

(poke) d.elements[1]

BSON_Elem {

integer32=struct {

tag=0x10UB,

name="age",

value=0x27

}

}

(poke) d.elements[2]

BSON_Elem {

integer64=struct {

tag=0x12UB,

name="big",

value=0x3d31c3f9e3eb9L

}

}

What is the best way? It certainly depends on the kind of data you want to manipulate, and
the level of abstraction you want to achieve. Ultimately, it is up to you.

Generally speaking, the best structuring is the one that allows you to manipulate the data in
terms of the structured abstractions as naturally as possible. That’s the art and craft of writing
good pickles.

4.13 Structured Integers

When we structure data using Poke structs, arrays and the like, we often use the same structure
than a C programmer would use. For example, to model ELF RELA structures, which are
defined in C like:

typedef struct

{

Elf64_Addr r_offset; /* Address */

Elf64_Xword r_info; /* Relocation type and symbol index */

Elf64_Sxword r_addend; /* Addend */

} Elf64_Rela;

we could use something like this in Poke:

type Elf64_Rela =

Chapter 4: Structuring Data 73

struct

{

Elf64_Addr r_offset;

Elf64_Xword r_info;

Elf64_Sxword r_addend;

};

Here the Poke struct type is pretty equivalent to the C incarnation. In both cases the fields
are always stored in the given order, regardless of endianness or any other consideration.

However, there are situations where stored integral values are to be interpreted as composite
data. This is the case of the r_info field above, which is a 64-bit unsigned integer (Elf64_Xword)
which is itself composed by several fields, depicted here:

63 0

+----------------------+----------------------+

| r_sym | r_type |

+----------------------+----------------------+

MSB LSB

In order to support this kind of composition of integers, C programmers usually resort to
either bit masking (most often) or to the often obscure and undefined behaviour-prone C bit
fields. In the case of ELF, the GNU implementations define a few macros to access these “sub-
fields”:

#define ELF64_R_SYM(i) ((i) >> 32)

#define ELF64_R_TYPE(i) ((i) & 0xffffffff)

#define ELF64_R_INFO(sym,type) ((((Elf64_Xword) (sym)) << 32) + (type))

Where ELF64_R_SYM and ELF64_R_TYPE are used to extract the fields from an r_info, and
ELF64_R_INFO is used to compose it. This is typical of C data structures.

We could of course mimic the C implementation in Poke:

fun Elf64_R_Sym = (Elf64_Xword i) uint<32>:

{ return i .>> 32; }

fun Elf64_R_Type = (Elf64_Xword i) uint<32>:

{ return i & 0xffff_ffff; }

fun Elf64_R_Info = (uint<32> sym, uint<32> type) Elf64_Xword:

{ return sym as Elf64_Xword <<. 32 + type; }

However, this approach has a huge disadvantage: since we are not able to encode the logic of
these “sub-fields” in proper Poke fields, they become second class citizens, with all that implies:
no constraints on their own, can’t be auto-completed, can’t be assigned individually, etc.

But we can use the so-called integral structs! These are structs that are defined exactly like
your garden variety Poke structs, with a small addition:

type Elf64_RelInfo =

struct uint<64>

{

uint<32> r_sym;

uint<32> r_type;

};

Note the uint<64> addition after struct. This can be any integer type (signed or unsigned).
The fields of an integral struct should be integral themselves (this includes both integers and
offsets) and the total size occupied by the fields should be the same size than the one declared
in the struct’s integer type. This is checked and enforced by the compiler.

The Elf64 RELA in Poke can then be encoded like:

type Elf64_Rela =

Chapter 4: Structuring Data 74

struct

{

Elf64_Addr r_offset;

struct Elf64_Xword

{

uint<32> r_sym;

uint<32> r_type;

} r_info;

Elf64_Sxword r_addend;

};

When an integral struct is mapped from some IO space, the total number of bytes occupied
by the struct is read as a single integer value, and then the values of the fields are extracted
from it. A similar process is using when writing. That is what makes it different with respect a
normal Poke struct.

It is possible to obtain the integral value corresponding to an integral struct using a cast to
an integral type:

(poke) type Foo = struct int<32> { int<16> hi; uint<16> lo; };

(poke) Foo { hi = 1 } as int<32>

0x10000

An useful idiom, that doesn’t require to specify an explicit integral type, is this:

(poke) type Foo = struct int<32> { int<16> hi; uint<16> lo; };

(poke) var x = Foo @ 0#B;

(poke) +x

0xfe00aa

These casts allow to “integrate” struct values explicitly, but the compiler also implicitly
promotes integral struct values to integers in all contexts where an integer is expected:

• Operator to an addition, subtraction, multiplication, division, ceil division, bit left shift, bit
right shift, bit-wise not, bit-wise and, bit-wise or, bit-wise xor, logical and, logical or, log-
ical not, logical implication, positive, negative, bit-concatenation, condition in conditional
expression.

• Argument to a function whose formal expects an integer.

• Value returned from a function that returns an integer.

• Condition in loop statement.

• Constraint expression in a struct field.

• Expression in a conditional struct field.

Note that the above list doesn’t include relational operators, since these operators work with
struct values.

4.14 Working with Incorrect Data

We have seen how Poke type definitions very often include constraint expressions reflecting the
integrity of the data stored in these types.

Consider for example the following abbreviated description of the header of an ELF file:

type Elf64_Ehdr =

struct

{

struct

{

byte[4] ei_mag = [0x7fUB, 'E', 'L', 'F'];

Chapter 4: Structuring Data 75

byte ei_class;

[...]

} e_ident;

Elf_Half e_type;

Elf_Half e_machine;

Elf_Word e_version = EV_CURRENT;

[...]

Elf_Half e_shstrndx : e_shnum == 0 || e_shstrndx < e_shnum;

};

There are three constraint expressions in the definition above:

• The constraint expression in the field ei_mag makes sure that a right magic number begins
the header.

• The constraint expression in e_version checks that the ELF version is the current version.

• The constraint expression in e_shstrndx checks that the index stored in the field doesn’t
overflow the section header table of the file.

Every time we construct or map an Elf64_Ehdr value the constraint expressions are checked.
In case any of the constraints are not satisfied we get a “constraint violation exception”. This is
useful to realize that we are facing invalid data (when mapping) or that we are trying to build
an invalid ELF header (when constructing.)

However, the exception avoids the completion of the mapping or construction operation.
Sometimes this is inconvenient:

• When we are given invalid data that we want to explore or fix. Imagine for example a
programmer investigating a possible assembler or linker bug that results in an invalid ELF
file.

• When we are discovering or inferring the structure of some data: we suspect at some point
there may be something that is similar to an ELF header.

• When we want to create invalid data. Suppose for example a programmer who is building
a test case for the linker, that requires a corrupted ELF file.

The way poke provides support for these situation is using the concept of map strictness.
Suppose we map an ELF header in some IO space:

(poke) load elf

(poke) var ehdr = Elf64_Ehdr @ 0#B

The mapping operator @ performs a strict mapping. This means that constraint expressions are
evaluated and the operation is interrupted if any constraint fails, as described above. Also, this
means the integrity will be checked when the data is modified:

(poke) ehdr.e_version = 666

unhandled constraint violation exception

So the mapping operator generates “strict” values. We can check the strictness of a mapped
value using the 'strict attribute:

(poke) ehdr'strict

1

If we know that we are facing corrupted data, or if we want to corrupt the ELF header, we
perform a non-strict mapping using a variant of the mapping operator:

(poke) var ehdr_ns = Elf64_Ehdr @! 0#B

(poke) ehdr_ns'strict

0

Chapter 4: Structuring Data 76

When mapping is performend in non-strict mode, the constraint expressions are still executed,
but their resulting value is discarded. The constraint expressions are executed regardless of
strictness because it is fairly common for them to include side-effects that have a calculated
impact in subsequent operations, such as for example setting the endianness or some other
global state.

We can now corrupt the header in the example above:

(poke) ehdr_ns.e_version = 666

77

5 Maps and Map-files

Editing data with GNU poke mainly involves creating mapped values and storing them in Poke
variables. However, this may not be that convenient when poking several files simultaneously,
and when the complexity of the data increases. poke provides a convenient mechanism for this:
maps and map files.

5.1 Editing using Variables

Editing data with GNU poke mainly involves creating mapped values and storing them in Poke
variables. For example, if we were interested in altering the fields of the header in an ELF file,
we would map an Elf64_Ehdr struct at the beginning of the underlying IO space (the file), like
in:

(poke) .file foo.o

(poke) load elf

(poke) var ehdr = Elf64_Ehdr @ 0#B

At this point the variable ehdr holds an Elf64_Ehdr structure, which is mapped. As such,
altering any of the fields of the struct will update the corresponding bytes in foo.o. For example:

(poke) ehdr.e_entry = 0#B

A Poke value has three mapping related attributes: whether it is mapped, the offset at which
it is mapped in an IO space, and in which IO space. This information is accessible for both the
user and Poke programs using the following attributes:

(poke) ehdr'mapped

1

(poke) ehdr'offset

0UL#b

(poke) ehdr'ios

0

That’s it, ehdr is mapped at offset zero byte in the IO space #0, which corresponds to foo.o:

(poke) .info ios

Id Type Mode Bias Size Name

* #0 FILE rw 0x00000000#B 0x000004c8#B ./foo.o

Now that we have the ELF header, we may use it to get access to the ELF section header
table in the file, that we will reference using another variable shdr:

(poke) var shdr = Elf64_Shdr[ehdr.e_shnum] @ ehdr.e_shoff

(poke) shdr[1]

Elf64_Shdr {

sh_name=0x1bU#B,

sh_type=0x1U,

sh_flags=#<ALLOC,EXECINSTR>,

sh_addr=0x0UL#B,

sh_offset=0x40UL#B,

sh_size=0xbUL#B,

sh_link=0x0U,

sh_info=0x0U,

sh_addralign=0x1UL,

sh_entsize=0x0UL#b

}

Variables are convenient entities to manipulate in Poke. Let’s suppose that the file has a
lot of sections and we want to do some transformation in every section. It is a time consuming

Chapter 5: Maps and Map-files 78

operation, and we may forget which sections we have already processed and which not. We
could create an empty array to hold the sections already processed:

(poke) var processed = Elf64_Shdr[] ()

And then, once we have processed some given section, add it to the array:

... edit shdr[23] ...

(poke) processed += [shdr[23]]

Note how the array =processed= is not mapped, but the sections contained in it are mapped:
Poke uses copy by shared value. So, after we spend the day carefully poking our ELF file, we
can ask poke, are we done with all the sections in the file?

(poke) shdr'length == processed'length

1

Yes, we are. This can be made as sophisticated as desired. We could easily write a function
that saves the contents of processed in files, so we can continue hacking tomorrow, for example.

We can then concluding that using mapped variables to edit data structures stored in IO
spaces works well in common and simple cases like the above: we make our ways mapping here
and there, defining variables to hold data that interests us, and it is easy to remember that the
variables ehdr and shdr are mapped, where are they mapped, and that they are mapped in the
file foo.o.

However, GNU poke allows to edit more than one IO space simultaneously. Let’s say we now
want to poke the sections of another ELF file: bar.o. We would start by opening the file:

(poke) .file bar.o

(poke) .info ios

Id Type Mode Bias Size Name

* #1 FILE rw 0x00000000#B 0x000004c8#B ./bar.o

#0 FILE rw 0x00000000#B 0x000004c8#B ./foo.o

Now that bar.o is the current IO space, we can map its header. But now, what variable to
use? We would rather not redefine ehdr, because that is already holding the header of foo.o.
We could adapt our naming schema on the fly:

(poke) var foo_ehdr = ehdr

(poke) var bar_ehdr = Elf64_Ehdr @ 0#B

But then we would need to do the same for the other variables too:

(poke) var foo_shdr = shdr

(poke) var bar_shdr = Elf64_Shdr[bar_ehdr.e_shnum] @ bar_ehdr.e_shoff

However, we can easily see how this can degenerate quickly: what about processed, for
example? In general, as the number of IO spaces being edited increases it becomes more and
more difficult to manage our mapped variables, which are associated to each IO space.

5.2 poke Maps

As we have seen mapping variables is a very powerful, general and flexible mean to edit stored
binary data in one or more IO spaces. However it is easy to lose track of where the variables
are mapped and, ideally speaking, we would want to have a mean to refer to, say, the “ELF
header”, and get the header as a mapped value regardless of what specific file we are editing.
Sort of a “meta variable”. GNU poke provides a way to do this: maps.

A map can be conceived as a sort of “view” that can be applied to a given IO space. Maps
have entries, which are values mapped at some given offset, under certain conditions. For
example, we have seen an ELF file contains, among other things, a header at the beginning of
the file and a table of section headers of certain size and located at certain location determined
by the header. These would be two entries of a so-called ELF map.

Chapter 5: Maps and Map-files 79

poke maps are defined in map files. These files use the .map extension. A map file self.map
(for sectioned/simple elf) defining the view of an ELF file as a header and a table of section
header would look like this:

/* self.map - map file for a simplified view of an ELF file. */

load elf;

%%

%entry

%name ehdr

%type Elf64_Ehdr

%offset 0#B

%entry

%name shdr

%type Elf64_Shdr[(Elf64_Ehdr @ 0#B).e_shnum]

%condition (Elf64_Ehdr @ 0#B).e_shnum > 0

%offset (Elf64_Ehdr @ 0#B).e_shoff

This map file defines a view of an ELF file as a header entry ehdr and an entry with a table
of section headers shdr.

The first section of the file, which spans until the separator line containing %%, is arbitrary
Poke code which as we shall see, gets evaluated before the map entries are processed. This
is called the map "prologue". In this case, the prologue contains a comment explaining the
purpose of the file, and a single statement load that loads the elf.pk pickle, since the entries
below use definitions like Elf64_Ehdr that are defined by that pickle. The prologue is useful to
define Poke functions and other entities that are then used in the definitions of the entries.

A separator line containing only %% separates the prologue from the next section, which is a
list of entries definitions. Each entry definition starts with a line %entry, and has the following
attributes:

%name Like ehdr and shdr. These names should follow the same rules than Poke variables,
but as we shall see later, map entries are not Poke variables. This attribute is
mandatory.

%type This can be any Poke expression denoting a type, like int, Elf64_Ehdr or Elf64_
Shdr[(Elf64_Ehdr @ 0#B).e_shnum]. This attribute is mandatory.

%condition

If specified, will determine whether to include the entry in the map. In the example
above, the map will have an entry shdr only if the ELF file has one or more sec-
tions. Any Poke expression evaluating to a boolean can be used as conditions. This
attribute is optional: entries not having a condition will always be included in the
map.

%offset

Offset in the IO space where the entry will be mapped. Any Poke expression eval-
uating to an offset can be used as entry offset. This attribute is mandatory.

5.3 Loading Maps

So we have written our =self.map=, which denotes a view or structure of ELF files we are
interested on, and that resides in the current working directory. How to use it?

Chapter 5: Maps and Map-files 80

The first step is to fire up poke and open some object file. Let’s start with foo.o:

(poke) .file foo.o

Now, we can load the map using the .map load dot-command:

(poke) .map load self

[self](poke)

The .map load self command makes poke to look in certain directories for a file called
self.map, and to load it. The list of directories where poke looks for map files is encoded in the
variable map_load_path as a string containing a maybe empty list of directories separated by :

characters. Each directory is tried in turn. This variable is initialized with suitable defaults:

(poke) map_load_path

"/home/jemarch/.poke.d:.:/home/jemarch/.local/share/poke:[...]"

Once a map is loaded, observe how the prompt changed to contain a prefix [self]. This
means that the map self is loaded for the current IO space. You can choose to not see this
information in the prompt by setting the prompt-maps option either at the prompt or in your
.pokerc:

poke) .set prompt-maps no

By default prompt-maps is yes. This prompt aid is intended to provide a cursory look of the
"views" or maps loaded for the current IO space. If we load another IO space and switch to it,
the prompt changes accordingly:

(poke) [self](poke) .mem foo

The current IOS is now `*foo*'.

(poke) .ios #0

The current IOS is now `./foo.o'.

[self](poke)

At any time the .info maps dot-command can be used to obtain a full list of loaded maps,
with more information about them:

(poke) .info maps

IOS Name Source

#0 self ./self.map

In this case, there is a map self loaded in the IO space #0, which corresponds to foo.o.

Once we make foo.o our current IO space, we can ask poke to show us the entries corre-
sponding to this map using another dot-command:

: (poke) .map show self

: Offset Entry

: 0x0UL#B $self::ehdr

: 0x208UL#B $self::shdr

This tells us there are two entries for self in foo.o: $self::ehdr and $self::shdr= Note
how map entries use names that start with the $ character, then contain the name of the map
an the name of the entry we defined in the map file, separated by ::.

We can now use these entries at the prompt like if they were regular mapped variables:

[self](poke) $self::ehdr

Elf64_Ehdr {

e_ident=struct {

ei_mag=[0x7fUB,0x45UB,0x4cUB,0x46UB],

[...]

},

e_type=0x1UH,

e_machine=0x3eUH,

Chapter 5: Maps and Map-files 81

[...]

}

(poke) $self::shdr'length

11UL

It is important to note, however, that map entries like $foo::bar are not part of the Poke
language, and are only available when using poke interactively. Poke programs and scripts can’t
use them.

Let’s now open another ELF file, and the =self= map in it:

(poke) .file /usr/local/lib/libpoke.so.0.0.0

(poke) .map load self

[self](poke)

So now we have two ELF files loaded in poke: foo.o and libpoke.so.0.0.0, and in both
IO spaces we have the self map loaded. We can easily see that the map entries are different
depending on the current IO space:

[self](poke) .map show self

Offset Entry

0UL#B $self::ehdr

3158952UL#B $self::shdr

[self](poke) .ios #0

The current IOS is now `./foo.o'.

[self](poke) .map show self

Offset Entry

0UL#B $self::ehdr

520UL#B $self::shdr

foo.o is an object file, whereas libpoke.so.0.0.0 is a DSO:

(poke) .ios #0

The current IOS is now `./foo.o'.

[self](poke) $self::ehdr.e_type

1UH

[self](poke) .ios #2

The current IOS is now `/usr/local/lib/libpoke.so.0.0.0'.

[self](poke) $self::ehdr.e_type

3UH

The interpretation of the map entry $self::ehdr is different depending on the current IO
space. This makes it possible to refer to the “ELF header” of the current file.

Underneath, poke implements this by defining mapped variables and “redirecting” the entry
names $foo::bar to the right variable depending on the IO space that is currently selected. It
hides all that complexity from us.

5.4 Multiple Maps

It is perfectly possible (and useful!) to load more than one map in the same IO space. It is very
natural for a single file, for example, to contain data that can be interpreted in several ways, or
of different nature.

Let’s for example open again an ELF file, this time compiled with -g:

(poke) .file foo.o

We now load our self map, to get a view of the file as a collection of sections:

(poke) .map load self

[self](poke)

Chapter 5: Maps and Map-files 82

And now we load the dwarf map that comes with poke, to get a view of the file as having
debugging information encoded in DWARF:

[self(poke) .map load dwarf

[dwarf,self](poke)

See how the prompt now reflects the fact that the current IO space contains DWARF info!
Let’s take a look:

[dwarf,self](poke) .info maps

IOS Name Source

#0 dwarf /home/jemarch/gnu/hacks/poke/maps/dwarf.map

#0 self ./self.map

[dwarf,self](poke) .map show dwarf

Offset Entry

0x5bUL#B $dwarf::info

Now we can access entries from any of the loaded maps, i.e. access the file in terms of
different perspectives. As an ELF file:

[dwarf,self](poke) $self::shdr[1]

Elf64_Shdr {

sh_name=0xb5U#B,

sh_type=0x11U,

sh_flags=#<>,

sh_addr=0x0UL#B,

sh_offset=0x40UL#B,

sh_size=0x8UL#B,

sh_link=0x18U,

sh_info=0xfU,

sh_addralign=0x4UL,

sh_entsize=0x4UL#b

}

And as a file containing DWARF info:

[dwarf,self](poke) $dwarf::info

Dwarf_CU_Header {

unit_length=#<0x0000004eU#B>,

version=0x4UH,

debug_abbrev_offset=#<0x00000000U#B>,

address_size=0x8UB#B

}

If you are curious about how the DWARF entries are defined, look at maps/dwarf.map in
the poke source distribution, or in your installed poke (.info maps will tell you the file the map
got loaded from.)

It is possible to unload or remove a map from a given IO space using the .map remove dot-
command. Say we are done looking at the DWARF in foo.o, and we are no longer interested
in it as a file containing debugging info. We can do:

[dwarf,self](poke) .map remove dwarf

[self](poke)

Note how the prompt was updated accordingly: only self remains as a loaded map on this
file.

Chapter 5: Maps and Map-files 83

5.5 Auto-map

Certain maps make sense when editing certain types of data. For example, dwarf.map is intended
to be used in ELF files. In order to ease using maps, poke provides a feature called auto mapping,
which is disabled by default.

You can set auto mapping like this:

(poke) .set auto-map yes

When auto mapping is enabled, poke will look to the value of the pre-defined variable auto_
map, which must contain an array of pairs of strings, associating a regular expression with a map
name.

For example, you may want to initialize auto_map like this in your .pokerc file:

auto_map = [[".*\\.mp3$", "mp3"],

[".*\\.o$", "elf"],

["a\\.out$", "elf"]];

This will make poke to load =mp3.map= for every file whose name ends with .mp3, and
elf.map for files having names like foo.o and a.out.

Following the usual pokeish philosophy of being as less as intrusive by default as possible,
the default value of auto_map is the empty string.

5.6 Constructing Maps

As we have seen, we can define our own maps using map files like self.map, which contain a
prologue and a set of map entries. However, sometimes it is useful to create maps “on the fly”
while we explore some data with poke.

To make this possible, poke provides a suitable set of dot-commands. Let’s say we are poking
some data, and we want to create a map for it. We can do that like this:

(poke) .map create mymap

This creates an empty map named mymap, with no entries:

[mymap](poke) .map show mymap

Offset Entry

Adding entries is easy. First, we have to map some variable, and then use it as the base for
the new entry:

[mymap](poke) var foo = int[3] 0#B

[mymap](poke) .map entry add mymap, foo

[mymap](poke) .map show mymap

Offset Entry

0x0UL#B $mymap::foo

Note how the entry $mymap::foo gets created, associated to the current IO space and mapped
at the same offset than the variable foo.

We can remove entries from existing maps using the .map entry remove dot-command:

[mymap](poke) .map entry remove mymap, foo

[mymap](poke) .map show mymap

Offset Entry

[mymap](poke)

We plan to add an additional command to save maps to map files. The idea is that you can
create your maps on the fly, save them, and then load them back some other day when you are
ready to continue poking. This is not implemented yet though.

Chapter 5: Maps and Map-files 84

5.7 Predefined Maps

GNU poke comes with a set of useful pre-written maps, which get installed in a system location.
We want to expand this collection, so please send us your map files!

85

6 Writing Pickles

GNU poke encourages the user to write little pieces of code in order to face spontaneous needs
and fix situations. Is that name in the file encoded in a fixed array of characters padded with
white spaces? No problem, just write a three lines function so you can update the file using
a comfortable NULL-terminated string. Better than waiting for some poke maintainer to add
that function for you, isn’t it?

Just save your functions in some personal .pk file that you load at startup, and your magic
tricks bag will increase in time, making your poking more and more efficient.

However, when it comes to share the code with other people, it is important to follow certain
conventions in order to achieve certain uniformity. This makes it easier for other people to
discover what your hack provides, and how it works. It is this consistency, and these conventions,
that makes some random .pk file a pickle.

This guide contains guidelines and recommendations for the pickle’s writer.

6.1 Pretty-printers

6.1.1 Convention for pretty-printed Output

Very often the structure of the data encoded in binary is not very intelligible. This is because
it is usual for binary formats to be designed with goals in mind other than being readable by
humans: compactness, detail etc.

In our pickle we of course want to provide access to the very finer detail of the data structures.
However, we also want for the user to be able to peruse the data visually, and only look at the
fine detail on demand.

Consider for example an ID3V1 tag data from some MP3 file. This is the result of mapping
a ID3V1_Tag:

ID3V1_Tag {

id=[0x54UB,0x41UB,0x47UB],

title=[0x30UB,0x31UB,0x20UB,0x2dUB,0x20UB,...],

artist=[0x4aUB,0x6fUB,0x61UB,0x71UB,0x75UB,...],

album=[0x4dUB,0x65UB,0x6eUB,0x74UB,0x69UB,...],

year=[0x20UB,0x20UB,0x20UB,0x20UB],

data=struct {

extended=struct {

comment=[0x20UB,0x20UB,0x20UB,0x20UB,0x20UB,...],

zero=0x0UB,

track=0x1UB

}

},

genre=0xffUB

}

Not very revealing. Fortunately, poke supports pretty printers. If a struct type has a method
called _print, it will be used by poke as a pretty printer if the pretty-print option is set:

(poke) .set pretty-print yes

By convention, the output of pretty-printers should always start with #< and end with >. The
convention makes it explicit for the user that everything she sees between #< and > is pretty-
printed, and do not necessarily reflect the physical structure of the data. Also some information
may be missing. In order to get an exact and complete description of the data, the user should
.set pretty-print no and evaluate the value again at the prompt.

Chapter 6: Writing Pickles 86

For example, in the following BPF instructions it is obvious at first sight that the shown
register values are pretty-printed:

BPF_Insn = {

...

regs=BPF_Regs {

src=#<%r3>,

dst=#<%r0>

}

...

}

If the pretty-printed representation spans for more than one line, please place the opening
#< in its own line, then the lines with the data, and finally > in its own line, starting at column
0.

Example of the MP3 tag above, this time pretty-printed:

#<

genre: 255

title: 01 - Eclipse De Mar

artist: Joaquin Sabina

album: Mentiras Piadosas

year:

comment:

track: 1

>

6.1.2 Pretty Printing Optional Fields

Let’s say we are writing a pretty-printer method for a struct type that has an optional field.
Like for example:

type Packet =

struct

{

byte magic : magic in [MAGIC1,MAGIC2];

byte n;

byte[n] payload;

if (magic == MAGIC2)

PacketTrailer trailer;

}

In this case, the struct value will have a trailer conditionally, which has to be tackled on the
pretty-printer somehow.

An approach that often works good is to replicate the logic in the optional field condition
expression, like this:

struct

{

byte magic : magic in [MAGIC1,MAGIC2];

[...]

PacketTrailer trailer if packet_magic2_p (magic);

method _print = void:

{

[...]

if (magic == MAGIC2)

Chapter 6: Writing Pickles 87

pretty_print_trailer;

}

}

This works well in this simple example. In case the expression is big and complicated, we can
avoid rewriting the same expression by encapsulating the logic in a function:

fun packet_magic2_p = int: { return magic == MAGIC2; }

type Packet =

struct

{

byte magic : magic in [MAGIC1,MAGIC2];

[...]

if (packet_magic2_p (magic))

PacketTrailer trailer;

method _print = void:

{

[...]

if (packet_magic2_p (magic))

pretty_print_trailer;

}

}

However, this may feel weird, as the internal logic of the type somehow leaks its natural boundary
into the external function packet_magic2_p.

An alternative is to use the following idiom, that checks whether the field actually exists in
the struct:

type Packet =

struct

{

byte magic : magic in [MAGIC1,MAGIC2];

[...]

if (packet_magic2_p (magic))

PacketTrailer trailer;

method _print = void:

{

[...]

try pretty_print_trailer;

catch if E_elem {}

}

}

This approach also works with unions:

type ID3V1_Tag =

struct

{

[...]

union

{

/* ID3v1.1 */

struct

{

Chapter 6: Writing Pickles 88

char[28] comment;

byte zero = 0;

byte track : track != 0;

} extended;

/* ID3v1 */

char[30] comment;

} data;

[...]

method _print = void:

{

[...]

try print " comment: " + catos (data.comment) + "\n";

catch if E_elem

{

print " comment: " + catos (data.extended.comment) + "\n";

printf " track: %u8d", data.extended.track;

}

}

}

6.2 Setters and Getters

Given a struct value, the obvious way to access the value of a field is to just refer to it using
dot-notation.

For example, for the following struct type:

type ID3V1_Tag =

struct

{

[...]

char[30] title;

char[30] artist;

char[30] album;

char[4] year;

[...]

}

Suppose the find out the year in the tag is wrong, off by two years: the song was release
in 1980, not in 1978!. Unfortunately, due to the bizarre way the year is stored in the file (as a
sequence of digits encoded in ASCII, non-NULL terminated) we cannot just write:

(poke) tag.year = tag.year + 2

error

Instead, we can use facilities from the standard library and a bit of programming:

(poke) stoca (format ("%d", atoi (catos (tag.year)) + 2), tag.year)

The above line basically transforms the data we want to operate on (the tag year) from the
stored representation into a more useful representation (from an array of character digits to an
integer) then operates with it (adds two) then converts back to the stored representation. Let’s
call this “more useful” representation the “preferred representation”.

A well written pickle should provide getter and setter methods for fields in struct types for
which the stored representation is not the preferred representation. By convention, getter and
setter methods have the following form:

method get_field preferred_type: { ... }

Chapter 6: Writing Pickles 89

method set_field (preferred_type val) void: { ... }

Using the get_ and set_ prefixes consistently is very important, because the pokist using your
pickle can easily find out the available methods for some given value using tab-completion in
the REPL.

For example, let’s add setter and getter methods for the field year in the ID3V1 tag struct
above:

type ID3V1_Tag =

struct

{

[...]

char[4] year;

method get_year = int: { return atoi (catos (year)); }

method set_year = (int val) void:

{

var str = format ("%d", val);

stoca (str, year);

}

[...]

}

What constitutes the preferred representation of a field is up to the criteria of the pickle
writer. For the tag above, I would say the preferred representations for the title, artist, album
and year are string for title, artist and album, and an integer for the year.

90

7 Writing Binary Utilities

GNU poke is, first and foremost, intended to be used as an interactive editor, either directly on
the command line or using a graphical user interface built on it. However, since its conception
poke was intended to also provide a suitable and useful foundation on which other programs,
the so-called binary utilities, could be written. This chapter shows how to write Poke scripts
and programs.

7.1 Poke Scripts

In interactive usage, there are two main ways to execute Poke code: at the interactive prompt
(or REPL), and loading “pickles”.

Executing Poke code at the REPL is as easy as introducing a statement or expression:

(poke) print "Hello\n"

Hello

Executing Poke code in a pickle is performed by loading the file containing the code:

(poke) .load say-hello.pk

Hello

Where say-hello.pk contains simply:

print "Hello\n";

However, we would like to have Poke scripts, i.e. to be able to execute Poke programs as
standalone programs, from the shell. In other words, we want to use GNU poke as an interpreter.
This is achieved by using a shebang, which should appear at the top of the script file. The poke
shebang looks like this:

#!/usr/bin/poke -L

!#

The -L command line option tells poke that it is being used as an interpreter. Additional
arguments for poke can be specified before -L (but not after). The #! ... !# is an alternative
syntax for multi-line comments, which allows to have the shebang at the top of a Poke program
without causing a syntax error. This nice trick has been borrowed from guile.

Therefore, we could write say-hello as a Poke script like this:

#!/usr/bin/poke -L

!#

print "Hello\n";

And then execute it like any other program or script:

$./say-hello

7.2 Command-Line Arguments

When a Poke script is executed, the command line arguments passed to the script become
available in the array argv. Example:

#!/usr/bin/poke -L

!#

for (arg in argv)

print "Argument: " + arg + "\n";

Executing this script results in:

$./printargs foo bar 'baz quux'

Chapter 7: Writing Binary Utilities 91

Argument: foo

Argument: bar

Argument: baz quux

Note how it is not needed to have an argc variable, since the number of elements stored in a
Poke array can be queried using an attribute: argv'length.

Note also that argv is only defined when poke runs as an interpreter:

$ poke

[...]

(poke) argv

<stdin>:1:1: error: undefined variable 'argv'

argv;

^~~~

Accessing the argv is more than enough for many simple programs. However, we may need
a more sophisticated handling of command-line options: support for both short and long style
options, adherence to the GNU coding standards, and the like. For these cases poke provides a
pickle argp. See Section 15.1 [argp], page 107.

7.3 Exiting from Scripts

By default a Poke script will communicate a successful status to the environment, upon exiting:

$ cat hello

#!/usr/bin/poke -L

!#

print "hello\n";

$./hello && echo $?

0

In order to exit with some other status code, most typically to signal an erroneous situation,
the Pokeish way is to raise an E_exit exception with the desired exit status code:

raise Exception { code = EC_exit, exit_status = 1 };

This can be a bit cumbersome to write, so poke provides a more conventional syntax in the
form of an exit function:

fun exit = (int<32> exit_code = 0) void:

{

raise Exception { code = EC_exit, exit_status = exit_code };

}

Using exit, the above raise statement becomes the much simpler:

exit (1);

7.4 Loading pickles as Modules

Suppose we want to write a Poke program to extract the contents of sections in a given ELF
object file. Extracting sections requires dealing with several data structures encoded in the ELF
file, such as the header, the section header table, the string table (that contains the names of the
sections) and so on. It would be of course possible to define Poke types for these structures in
the script itself but, as it happens, GNU poke ships with an already written pickle that describes
the ELF structures. It is called elf.pk.

So a script needing to mess with ELF data structures can just make use of elf.pk using the
load construction:

load elf;

Chapter 7: Writing Binary Utilities 92

This looks for a file called elf.pk in a set of directories, which are predefined by poke, and
loads it. The list of directories where poke looks for pickles is stored in the load path variable
as a colon separated list of directory names, and can be customized:

$ poke

[...]

(poke) load_path

"/home/jemarch/.poke.d:.:/home/jemarch/.local/share/poke:..."

The default value of load_path contains both user-specific directories and system-wide di-
rectories. This assures that all the pickles installed by poke are available, and that the user can
load her own pickles in her scripts.

Once a pickle is loaded in a script the types, functions and variables defined in it (either
directly or indirectly by loading its own pickles) become available.

7.5 elfextractor

As an example, in this section we will be hacking a very simple utility called elfextractor, that
extracts the contents of the sections of an ELF file, whose name is provided as an argument in
the command line, into several output files. This is the synopsis of the program:

elfextractor file [section_name]

Where file is the name of the ELF file from which to extract sections, and an optional
section name specifies the name of the section to extract.

Say we have a file foo.o and we would like to extract its text section. We would use
elfextractor like:

$ elfextractor foo.o .text

Provided foo.o indeed has a section named .text, the utility will create a file foo.o.text

with the section’s contents. Note how the names of the output files are derived concatenating
the name of the input ELF file and the name of the extracted section.

If no section name is specified, then all sections are extracted. For example:

$ elfextractor foo.o

$ ls foo.o*

foo.o foo.o.eh_frame foo.o.shstrtab foo.o.symtab

foo.o.comment foo.o.rela.eh_frame foo.o.strtab foo.o.text

This is a possible implementation of elfextractor:

#!/usr/bin/poke -L

!#

/* elfextractor - Extract sections from ELF64 files. */

load elf;

if (!(argv'length in [1UL,2UL]))

{

print "Usage: elfextractor FILE [SECTION_NAME]\n";

exit (1);

}

var file_name = argv[0];

var section_name = (argv'length > 1) ? argv[1] : "";

Chapter 7: Writing Binary Utilities 93

try

{

var fd = open (file_name, IOS_M_RDONLY);

var elf = Elf64_File @ fd : 0#B;

for (shdr in elf.shdr where shdr.sh_type != 0x0)

{

var sname = elf.get_section_name (shdr.sh_name);

if (section_name == "" || sname == section_name)

save :ios elf'ios :file file_name + sname

:from shdr.sh_offset :size shdr.sh_size;

}

close (fd);

}

catch (Exception e)

{

if (e == E_constraint)

printf ("error: `%s' is not a valid ELF64 file\n", file_name);

else if (e == E_io)

printf ("error: couldn't open file `%s'\n", file_name);

else

raise e;

exit (1);

}

First the command line arguments are handled. The script checks whether the right number
of arguments have been passed (either 1 or 2) exiting with an error code otherwise. The file
name and the section name are then extracted from the argv array.

Once we have the file name and the optional desired section name, it is time to do the real
work. The code is enclosed in a try-catch block statement, because some of the operations may
result on exceptions being raised.

First, the ELF file whose name is specified in the command line is opened for reading:

var fd = open (file_name, IOS_M_RDONLY);

The built-in function open returns a file descriptor that can be subsequently used in mapping
operations. If the provided file name doesn’t identify a file, or if the file can’t be read for
whatever reason, an E_io exception is raised. Note how the exception is handled in the catch

block, emitting an appropriate diagnostic message and exiting with an error status.

Once the ELF file is open for reading, we map an Elf64_File on it, at the expected offset
(zero bytes from the beginning of the file):

var elf = Elf64_File @ fd : 0#B;

If the file doesn’t contain valid ELF data, this map will fail and raise an E_constraint

exception. Again, the catch block handles this situation.

At this point the variable elf contains an Elf64_File. Since we want to extract the sections
contained in the file, we need to somehow iterate on them. The section header table is available
in elf.shdr. A for-in-where loop is used to iterate on all the headers, skipping the “null”
ELF sections which are always empty, and are characterized by a shdr.sh_type of 0. An inner
conditional filters out sections whose name do not match the provided name in the command
line, if it was specified at all.

Chapter 7: Writing Binary Utilities 94

For each matching section we then save its contents in a file named after the input ELF file,
by calling a function save, which is provided by poke:

save :ios elf'ios :file file_name + sname

:from shdr.sh_offset :size shdr.sh_size;

The above is exactly what we would have written at the poke REPL! (modulus trailing
semicolon). How is this supposed to work? Thing is, GNU poke commands are implemented as
Poke functions. Let’s consider save, for example. It is defined as a function having the following
prototype:

fun save = (int ios = get_ios,

string file = "",

off64 from = 0#B,

off64 size = 0#B,

int append = 0,

int verbose = 0) void:

{ ... }

Once a Poke function is defined in the environment, it becomes available as such. Therefore,
in a poke session we could call it like:

(poke) save (get_ios, "filename", 0#B, 12#B, 0, 1)

However, this is cumbersome and error prone. To begin with, we should remember the name,
position and nature of each argument accepted by the command. What is even more annoying,
we are forced to provide explicit values for them, like in the example above we have to pass the
current IOS (the default), and 0 for append (the default) just to being able to set verbose. Too
bad.

To ease commanding poke, the Poke language supports an alternative syntax to call functions,
in which the function arguments are referred by name, can be given in any order, and can be
omitted. The command above can be thus written like:

(poke) save :from 0#B :size 12#B :verbose 1

This syntax is mostly intended to be used interactively, but nothing prevents to use it in
Poke programs and scripts whenever it is deemed appropriate, like we did in elfextractor. We
could of course have used the more conventional syntax:

if (section_name == "" || sname == section_name)

save (elf'ios, file_name + sname,

shdr.sh_offset, shdr.sh_size, 0, 0);

What style to use is certainly a matter of taste.

Anyhow, once the sections have been written out, the file descriptor is closed and the program
exits with the default status, which is success. Should the save function find any problem saving
the data, such as a full disk, not enough permissions or the like, exceptions will be raised, caught
and maybe handled by our catch block.

And this is it! The complete program is 44 lines long. This is a good example that shows
how, given a pickle providing a reasonable description of some binary-oriented format (ELF in
this case) poke can be leveraged to achieve a lot in a very concise way, free from the many details
involved in the encoding, reading and writing of binary data.

7.6 Filters

The classic notion of filter in Unix-like systems and other Operating Systems is of a program
that reads certain input using its standard input, realized some transformations on it, and writes
the result on its standard output. The filter doesn’t need to operate on all the data at once, nor
to buffer it: it reads input in chunks once it becomes available and is needed, and write output
as necessary.

Chapter 7: Writing Binary Utilities 95

GNU poke provides the so called stream IO spaces in order to implement binary utilities that
act like filters.

7.6.1 Stream IO Spaces

GNU poke provides support for opening and operating on several kinds of IO spaces: files,
memory buffers, process memory, etc. An IO space can be opened for reading, for writing or
both, and they all can be accessed randomly, i.e. to read or write some data from/to a particular
offset in the IO space.

Writing a filter would involve to peek data from the standard input and then poke the data
(maybe transformed) to the standard output or the standard error output. However, we know
that these devices are not random oriented devices that can be accessed at any offset, but rather
stream-like devices whose special characteristics are:

− They are either read-only or write-only. You cannot write to an input stream and you
cannot read from an output stream.

− Once data is read from an input stream, it can’t be read again. It is not buffered.

− Once data is written to an output stream, it can’t be altered again.

Given the above characteristics of streams like the standard input and output, it is clear we
cannot use the File IO streams on them. It is also not clear how could we perform a map
operation on a stream device: in poke these operations always require an explicit offset.

GNU poke solves this by providing three special IO spaces that the user can open using the
following handlers:

<stdin> Read-only stream IOS that is connected to the standard input of the poke process.

<stdout> Write-only stream IOS that is connected to the standard output of the poke process.

<stderr> Write-only stream IOS that is connected to the standard error of the poke process.

Opening these IO spaces is done exactly like with any other IO space. Example:

var stdin = open ("<stdin>");

7.6.2 Reading from Streams

Unlike normal Unix file descriptors, read-only poke streams are buffered. Let’s supposed we
open the standard input:

var stdin = open ("<stdin>");

Then we map some data (one byte) at some particular offset:

var b = byte @ stdin : 28#B;

The mapping operation above causes poke to read 28 bytes from the standard input and to set
the variable b to the 28-th byte. The bytes read from the stream are still available (buffered)
and the offsets are still relative from the “beginning” of the standard input:

var c = byte @stdin : 0#B;

The byte in c is the byte that appeared in the standard input 27 bytes before the byte in b.

This buffering is nice, and it is what allows us to access the standard input like if it were a
random oriented device. However, it is obvious we would be in trouble if we filter big amounts
of data, like in a network interface: we would likely use all available memory.

To allow filtering big amount of data, poke allows to flush the read-only streams. Flushing
means that the buffered data in the read-only stream is “forgotten”, and trying to access it will
result in an exception:

var stdin = open ("<stdin>");

Chapter 7: Writing Binary Utilities 96

var b = byte @ stdin : 28#B;

var c = byte @ stdin : 29#B;

flush (stdin, 29#B);

var d = byte @ stdin : 30#B;

var e = byte @ stdin : 20#B; /* Exception. */

7.6.3 Writing to Streams

Similarly, unlike normal Unix file descriptors, write-only poke streams are also buffered and can
be accesses randomly:

var stdout = open ("<stdout>");

We can write to the output stream by mapping as usual:

byte @ stdout : 28#B = 0xff;

The mapping operation above writes 27 null bytes, i.e. it fills until reaching the requested offset
in the output stream. Then it writes the byte 0xff at offset 28 bytes. If we then write to one
of the buffered bytes:

byte @ stdout : 27#B = 0xab;

This results in updating the byte that will be written right before the 0xff once the output
stream is flushed.

Again, we cannot buffer ad-infinitum: we would exhaust all available output. Therefore,
XXX

7.6.4 pk-strings

Below you can find a very simple Poke program that works like the standard Unix utility
strings.

#!/usr/local/bin/poke -L

!#

/* Printable ASCII characters: 0x20..0x7e */

var stdin = open ("<stdin>");

var stdout = open ("<stdout>");

var offset = 0#B;

try

{

flush (stdin, offset);

var b = byte @ stdin : offset;

if (b >= 0x20 && b <= 0x7e)

byte stdout : iosize (stdout) = b;

offset = offset + 1#B;

}

until E_eof;

close (stdin);

close (stdout);

97

8 Configuration

8.1 .pokerc

Upon invocation poke will read and execute the commands of an initialization file, if it exists:
the pokerc file. There are two ways to keep an initialization file.

The simple, traditional way is to have a file named .pokerc in your home directory. GNU
poke will look for a file like that first.

If .pokerc is not found your home directory, poke looks in the locations specified by the XDG
Base Directory Specification1 for a file named poke/pokerc.conf. For example, you could use
~/.config/poke/pokerc.conf.

Which way is better depends on your specific requirements and taste.

GNU poke can be insturcted to not read the initialization file by passing -q or --no-init-
file in the command line.

Example of initialization file:

My poke configuration.

.set endian host

.set obase 16

.set pretty-print yes

pk_dump_cluster_by = 4

.load ~/.poke.d/mypickles.pk

8.2 Load Path

The load_path Poke variable contains a list of directories separated by the colon character
(:). When a module is loaded using the load construction, these directories are searched in
sequential order for the file corresponding to the requested module.

Empty directory names and entries that do not name existing directories are ignored.

Some entries have special meanings:

%DATADIR%

This is interpreted as the system-wide datadir directory, that depends on the prefix
where poke is installed.

For example, say you want to maintain .pk files in your ~/.poke.d directory. You will
probably want to add that directory to the load_path, when poke initializes. A way to do that
is to add a command like this to your pokerc file:

load_path = getenv ("HOME") + "/.poke.d:" + load_path

If the environment variable POKE_LOAD_PATH is defined in the environment, its value is added
to load_path at poke startup time.

8.3 Styling

XXX

1 https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

98

9 IOS

The ios pickle contains functions that are useful to work with IO spaces.

9.1 ios dump bytes

The ios_dump_bytes function prints a byte dump of an area in a given IO space.

It has the following prototype:

fun ios_dump_bytes = (int<32> ios,

offset<uint<64>,b> from,

offset<uint<64>,b> size,

offset<uint<64>, b> group_by = 2#B,

int<32> cluster_by = 8,

int<32> ruler = 0,

int<32> ascii = 0,

string unknown_byte = "??",

uint<8> nonprintable_char = '.') void

Where ios is the IO space form which dump bytes.

from is the offset from which start dumping bytes. This location is truncated to bytes.

size is an offset specifying the amount of bytes to dump. The offset is rounded up to the
next byte.

group by determines how the bytes are grouped together in the output. Defaults to two
bytes.

cluster by specifies to display additioanl space after the specified number of groups have been
displayed. Defaults to 8.

ruler is a boolean determining whether to include a ruler line in the output. Defaults to 0.

ascii p is a boolean determining whether to include an ASCII dump. Defaults to 0.

unknown byte is the string to use to denote bytes that can’t be read from the IO space.
Defaults to "??". Note this string is expected to be of length two characters.

nonprintable char is the character code to use to denote non-printable characters. Defaults
to '.'.

This function may raise E_io, E_perm, and E_eof on several error conditions.

9.2 ios copy bytes

The ios_copy_bytes copies a range of bytes between IO spaces.

It has the following prototype:

fun ios_copy_bytes = (int<32> from_ios, int<32> to_ios,

offset<uint<64>,B> from,

offset<uint<64>,B> to,

offset<uint<64>,B> size) void

Where from ios is the origin IO space, i.e. the IO space from which bytes are to be copied.

to ios is the destination IO space, i.e. the IO space to which bytes are to be copied.

from is a byte offset in from ios with the beginning of the range to copy.

to is a byte offset in to ios where the bytes will be copied.

size is a byte offset specifying the amount of data to be copied.

Chapter 9: IOS 99

9.3 ios save bytes

The function ios_save_bytes saves a range of bytes from an IO space to a file.

It has the following prototype:

fun ios_save_bytes = (int<32> ios, string file,

offset<uint<64>,B> from,

offset<uint<64>,B> size,

int<32> append_p) void

Where ios is the IO space from which save bytes.

file is the name of the file where to save the bytes.

to and size are byte offsets in the IO space determining the range of bytes to save.

By default the output file is truncated if it already exists. If append p is true, then the data
is instead appended at the end of the file.

100

10 Data Encodings

This chapter documents pickles that are related to encoding and decoding data in certain formats
such as base64.

10.1 base64

The base64 implements base64 encoding and decoding as described by RFC 46481. It provides
the following pair of functions:

fun base64_encode = (uint<8>[] src) string

fun base64_decode = (string src) uint<8>

1 https://datatracker.ietf.org/doc/html/rfc4648

101

11 Time

Systems encode time-stamps or dates in several ways. GNU poke provides support for some of
them.

11.1 POSIX Time

In POSIX systems time is encoded as a certain number of seconds elapsed since some origin
date, namely the first of January 1970. The time pickle provides two types for 32-bit and 64-bit
POSIX time encodings:

POSIX_Time32

POSIX_Time64

A function ptime is also provided, that prints a human-readable representation of a POSIX
date, given a number of seconds.

102

12 Colors

Colors are often found in binary data, encoded in several different ways. GNU poke provides
several pickles that makes it easier to work with these colors.

12.1 The Color Registry

The color pickle provides a registry of standard colors, organized as a space of integers. Each
integer identifies a standard color, which are accessible as variables named color_* after the
pickle is loaded. Example:

(poke) load color

(poke) color_tomato

114

The purpose of having this register is to have a global namespace for colors that can be used
in different pickles. The position of each color in the registry is totally unrelated to how the
color may be encoded. Other pickles, as we shall see below, contain tables associating standard
colors with their encoding, such as RGB.

If you want to add a new color that is not in the standard collection, you can use the
color_register function, which gets no arguments:

(poke) var mycolor = color_register

(poke) mycolor

490

The total number of registered colors is recorded in the variable color_num_colors. You
can use it to iterate on all the colors in the register, from 0 to color_num_colors - 1.

The index in the registry of the first user-defined color is hold in the variable color_LAST.
For example, if you wanted to store a frob per standard color, you would do it like:

(poke) type Frobs = Frob[color_LAST]

The pickle also provides a function color_name that, given a color code, returns a printable
name for the color, i.e. a string describing it. For user defined colors, this string is fixed:

(poke) color_name (23)

"lavender blush"

(poke) color_name (color_register)

"user-defined color"

If a non-existent color code is passed to color_name the function raises E_out_of_bounds:

(poke) color_name (color_num_colors)

unhandled out of bounds exception

12.2 RGB24 Encoding

The RGB24 encoding encodes each color as a triplet of color beans, each beam indicating a level
of red, green and blue respectively.

Types are provided for both the color beams, and the triplets:

type RGB24_Color_Beam = uint<8>;

type RGB24_Color = RGB24_Color_Beam[3];

The indexes RGB24_RED, RGB24_GREEN and RGB24_BLUE can be used to access to a specific beam
of a given color:

(poke) rgb24_color[color_tomato][RGB24_GREEN]

99UB

Chapter 12: Colors 103

The rgb24 pickle also provides a table associating poke standard colors (see Section 12.1
[The Color Registry], page 102) with their RGB24 encodings. Once the pickle is loaded, this
table is available in the variable rgb24_color. The table is to be indexed by color codes:

(poke) load rgb24

(poke) rgb24_color[color_tomato]

[255UB,99UB,71UB]

104

13 Audio

13.1 MP3

13.1.1 ID3V1 Tags

The id3v1 pickle provides abstractions in order to edit the metadata stored in a MP3 file.

13.1.1.1 Song Genres

The ID3V1 tags support the notion of song genre. The space for genres is from 0 to 254. The
genre code 255 is reserved to mean “no genre”.

The table id3v1_genres can be indexed with a code in order to get the corresponding genre
name:

(poke) id3v1_genres[14]

"rhythm and blues"

Conversely, the function id3v1_search_genre gives us the code of a genre, given its name.
The prototype of this function is:

fun id3v1_search_genre = (string name) uint<8>:

For example:

(poke) id3v1_search_genre ("rock")

17UB

If id3v1_search_genre is given a name that doesn’t correspond with any genre in the genres
table, then E_inval is raised.

13.1.1.2 The ID3V1 Tag Type

The main data structure defined in the id3v1 pickle is ID3V1_Tag, which corresponds to a ID3V1
tag (surprise!).

Tags comprise the following information:

− The title of the song, which is limited to 30 bytes.

− The artist, which is limited to 30 bytes.

− The album, which is limited to 30 bytes.

− The year, which is encoded as text in 4 bytes, each byte containing the ASCII code for the
corresponding digit.

− A comment, which is limited to either 28 or 30 bytes, depending whether the tag contains
track information or not.

− An optional track, which is an unsigned 8-bit number.

The specification does not mention any specific encoding for the entries that store text (such
as title or artist), but it is safe to assume some ASCII-compatible encoding is used.

The text entries are stored as arrays of characters, and they are not finished by NULL
characters. Instead the arrays of characters are filled with whitespaces (ASCII code 0x20) at
the right. For example, the artist name Picasso encoded in ID3V1 would be:

['P','i','c','a','s','s','o',' ',' ', ..., ' ']

In order to ease the manipulation of the text fields, setters and getters are provided in order
to handle these values as strings and not as whitespace-filled arrays of characters. Example:

(poke) tag.title

[48UB,49UB,32UB,45UB,32UB,...]

(poke) tag.get_title

Chapter 13: Audio 105

"01 - Eclipse De Mar"

Also for setters:

(poke) tag.set_title ("Join us Now")

(poke) tag.title

[74UB,111UB,105UB,110UB,32UB,...]

Setters and getters are also provided in order to manipulate the year as an integer value:

(poke) tag.year

[0x31UB,0x39UB,0x38UB,0x30UB]

(poke) tag.get_year

1980

(poke) tag.set_year (1988)

106

14 Object Formats

This chapter is of special interest to toolchain developers, people doing reverse-engineering, and
similar low-level development activities.

14.1 ELF

poke-elf (https://jemarch.net/poke-elf) is a full-fledged pickle for editing ELF object files,
executables, shared libraries and core dumps. It supports many architectures and extensions.

14.2 Dwarf

XXX

https://jemarch.net/poke-elf

107

15 Programs

This chapter describes pickles whose purpose is to facilitate the writing of binary utilities in
Poke.

15.1 argp

Like any other program, Poke scripts often need to handle options passed in the command line.
The argp pickle provides a convenient and easy way to handle these arguments.

The main entry point of the pickle is the function argp_parse, with the following prototype:

fun argp_parse = (string program,

string version = "",

string summary = "",

Argp_Option[] opts = Argp_Option[](),

string[] argv = string[](),

int allow_unknown = 0) string[]

Where program is the name of the program providing the command-line options. version is
either a string identifying the version of the program, or the empty string. summary is a short
summary of what the program does. opts is an array of Argp_Option structs, each of which
describe a command line option and, in particular, a handler for that option. argv is an array
of string containing the command line elements to process. Finally, allow unknown specifies
whether unknown options constitute an error or not. This last option is useful in order to
support sub-parsers.

Once invoked, argp_parse analyzes the command line provided in argv, recognizes options,
performs checks making sure that all specified options are well formed, and that every option
requiring an argument gets one, invokes the handlers registered for each option, and finally
returns an array of non-option arguments in argv, for further processing by the user.

Each Argp_Option struct describes an option. They have this form:

type Argp_Option =

struct

{

string name;

string long_name;

string summary;

string arg_name;

int arg_required;

Argp_Option_Handler handler;

};

Where name is a string of size one character specifying the short name for the option. long name
is a non-empty string of any size specifying the long name for the option. summary is a short
paragraph with a summary of that the option does. arg name, if specified, is a string to be
used to describe the argument of the option in the --help output. If arg name is not specified
then "ARG" is used. arg required is a boolean specifying whether the option accepts and expects
an argument. Defaults to 0. Finally, handler is a function that will be invoked to process the
option. The function has the following prototype:

type Argp_Option_Handler = (string)void

The argp_parse function provides default handlers for several standard options:

--help The default handler for this option prints out an usage message in the standard
GNU way, and exits. In particular, this output is compatible with the help2man

utility.

Chapter 15: Programs 108

--version

The default handler for this option prints out the name and the version of the
program, and exits.

If the user provides handlers for the options above, these take precedence wrt the default han-
dlers.

Several short options can be accumulated this way:

foo -qyz

The special option --, if found in the command line, stops the processing of options. Every-
thing found about it is considered non-option arguments.

109

16 poked

The poke application is a REPL (Read-Evaluate-Print-Loop) and therefore the user interacts
with it by providing Poke statements or expressions (or dot-commands) in the standard input,
and then the program prints the response to the commands in the standard output, or standard
error. This is good for human users, but not that convenient for other programs that may wish
to communicate with a poke incremental compiler.

poked is a different sort of application that accepts Poke code (and more) over Unix sockets
and provides responses over the same socket. This is very convenient for programs to interact
with the poke incremental compiler. The client programs that interact with poked are called
pokelets.

This form of interaction is particularly useful to write user interfaces to GNU poke, in the
form of several pokelets. Examples of such interfaces are Emacs interface to poke (https://git.
savannah.gnu.org/cgit/poke/poke-el.git) and pacme (https://sourceware.org/pacme/
).

poked is basically a message broker that provides (for now) 120 input channels and 120
output channels. The first 60 channels are reserved for the poked developers in order to provide
standard channels whose meaning is fixed and the same for any pokelet. The rest of the channels
can be freely dedicated for any purpose by anybode else.

The combination of channel number and channel direction creates the client’s role. For now,
it’s a single byte. The most significant bit determines whether it’s an input or output channel.
Or in poke syntax:

var PDAP_DIRECTION_IN = 0 as uint<1>,

PDAP_DIRECTION_OUT = 1 as uint<1>;

type PDAP_Role = struct uint<8>

{

uint<1> direction;

uint<7> channel : 0 < channel && channel <= 120;

};

Pokelets are expected to write their role over the socket when they’re connected to the poked.

poked, on start up, will create a Unix socket and prints current options to the stdout.
Options are a pair of space-separated key/values, each on one line. Options will end with an
empty line. An example of poked output:

socket_path /tmp/poked.ipc

pdap_version 0

Currently, only first two input channels are active. Input channel number 1 is for code input
which means anything sent to this channel will be compiled and executed using pk_compile_

buffer function of libpoke; and input channel number 2 is for command input which will
compile and execute the input message using pk_compile_statement function.

For output channels:

Channel 1 Terminal output.

Channel 2 View (vu) output.

Channel 3 Poke Virtual Machine (PVM) disassembly output.

Channel 4 Treevu (tree view) output (not supported yet).

Channel 5 Auto-completion output.

https://git.savannah.gnu.org/cgit/poke/poke-el.git
https://git.savannah.gnu.org/cgit/poke/poke-el.git
https://sourceware.org/pacme/
https://sourceware.org/pacme/

Chapter 16: poked 110

Channel 6 CPU disassembly output.

The format of each message written to output channels are documented in pdap.pk pickle.

The following functions are available for pokelets:

poked_pdap_version

Version of current PDAP (PokeD Application Protocol).

poked_libpoke_version

Version of libpoke.

poked_restart

Restart the Poke environment of poked.

poked_exit

Exit the poked.

poked_chan_send

Signature: (uint<7> chan, byte[] data) void. Send data to the specified output
channel.

The following variable is also available for pokelets to use:

poked_after_cmd_hook

An array of callbacks to be run after executing the command (received from input
channel 2). Callback signature: ()void.

111

17 pokefmt

pokefmt is a template system to embed Poke code in files. It copies the content from standard
input to standard output and replaces the Poke code with the result of execution. You can
write Poke code between %{ and }% delimters. To simplify printing of expressions, pokefmt also
supports embedding of Poke expressions between %(and %) delimiters.

As as example, pokefmt will transform the following text

%{

load riscv;

var a = 1, a = 2;

}%

The encoding of ADD R3, R2, R1 instruction in RISC-V instruction set

is %{printf "0x%u32x", rv32_add (3, 2, 1);}%.

The result of %(a)% + %(b)% is %(a + b)%.

to this text:

The encoding of ADD R3, R2, R1 instruction in RISC-V instruct set

is 0x001101b3.

The result of 1 + 2 is 3.

You can customize the printer for expressions by re-defining pokefmt_expr_printer function.
For example,

#as: -march=rv32i

#objdump: -dr

%{

load riscv;

fun pokefmt_expr_printer = (any i32) void:

{

printf ("%u32x", i32 as uint<32>);

}

}%

.*:[]+file format .*

Disassembly of section .text:

0+000 <target>:

#...

[]+40:[]+%(+(rv32_auipc :rd 0 :imm 0))%[]+auipc[]+zero,0x0

%{

/* Change the expression printer to accept RV32_Insn. */

fun pokefmt_expr_printer = (any rv32insn) void:

{

printf ("%u32x", +(rv32insn as RV32_Insn));

}

}%[]+44:[]+%(rv32_lw :rd 0 :rs1 0 :imm 0)%[]+lw[]+zero,0\(zero\) # 0 .*

will be transformed to:

#as: -march=rv32i

Chapter 17: pokefmt 112

#objdump: -dr

.*:[]+file format .*

Disassembly of section .text:

0+000 <target>:

#...

[]+40:[]+00000017[]+auipc[]+zero,0x0

[]+44:[]+00002003[]+lw[]+zero,0\(zero\) # 0 .*

113

18 Programming Emacs Modes

GNU poke ships with a bunch of Emacs major modes that eases writing Poke and PVM assembly.
This chapter documents these modes.

18.1 poke-mode

poke-mode is a major mode for editing Poke source files, i.e. .pk files. It provides font-lock,
auto-completion and indentation features.

poke-mode is no longer part of the poke source, it is available from GNU ELPA instead
and can be installed via M-x package-install ret poke-mode. You can automatically load
poke-mode by adding it to auto-mode-alist:

(add-to-list 'auto-mode-alist '("\\.pk\\'" . poke-mode))

18.2 poke-map-mode

poke-map-mode is a major mode for editing poke map-files. It provides font-lock. See Chapter 5
[Maps and Map-files], page 77.

18.3 poke-ras-mode

poke-ras-mode is a major mode for editing PVM assembly. It is used in the development of
GNU poke. See the file libpoke/ras in the source distribution for more information about
RAS, our Retarded Assembler.

114

19 Vim Syntax Highlighting

GNU poke ships with a vim syntax highlighter for *.pk files. Normally this should be installed
as part of your existing poke installation and work out of the box. If that is not the case this
chapter explains how to install it manually.

19.1 poke.vim

etc/vim/syntax/poke.vim is a syntax highlighter for Poke source i.e. .pk files. To use
it, first place the file in your ~/.vimrc/syntax/ folder on Unix based systems, or in
$HOME/vimfiles/syntax/ on Windows. There are a few ways to tell Vim to use poke.vim for
.pk files, but the quickest is to add the following line to your .vimrc:

au BufRead,BufNewFile *.pk set filetype=poke

115

20 Dot-Commands

20.1 .load

The .load command loads a file containing Poke code and compiles and executes it. These files
usually have the extension .pk.

If a relative path is provided, then prefix/share/poke is tried first as a base directory to
find the specified file. If it is not found, then the current directory is tried next.

If the environment variable POKEDATADIR is defined, it replaces prefix/share/poke. This is
mainly intended to test a poke program before it gets installed in its final location.

If an absolute path is provided, it is used as-is.

20.2 .source

The .source command executes command lines from some given file. The syntax is:

.source path

where path is a path to the file containing the commands. See Section 1.4.4 [Command Files],
page 8.

20.3 .file

The .file command opens a new IO space backed by a file, or switches to a previously opened
file. The syntax is:

.file path

where path is a path to a file to open, which can be relative to poke’s current working directory
or absolute.

Tilde expansion is performed in path, much like it’s done in the shell. This means you can
include special characters like ~ (which will expand to your home directory) delimit the file name
with " in case it includes leading or trailing blank characters, etc.

When a new file is opened it becomes the current IO space. From that point on, every map
executed in the REPL or while loading a Poke program will operate on that IO space:

(poke) .file foo.o

The current file is now `foo.o'.

When .file opens a file, it is opened in whatever mode makes more sense: if the file allows
to be written and read then the IO space is open in read/write mode, for example.

If the specified file path doesn’t exist then poke emits an error. However, the flag /c (for
“create”) can be passed to the command to tell poke it should create a new file.

20.4 .mem

The .mem command opens a new IO space backed by a memory buffer. The syntax is:

.mem name

where name is the name of the buffer to create. Note that poke adds prefix and trailing asterisk
characters, to differentiate file names from buffer names.

When invoked with no name, poke generates a new unique name for the buffer.

When a new memory buffer IOS is opened it becomes the current IO space. See Section 20.3
[file command], page 115.

Chapter 20: Dot-Commands 116

20.5 .nbd

The .nbd command opens a new IO space backed by an external NBD server. The syntax is:

.nbd uri

where uri is the name of the newly created buffer, matching the NBD URI specification
(https://github.com/NetworkBlockDevice/nbd/blob/master/doc/uri.md).

When a new NBD IOS is opened, it becomes the current IO space. See Section 20.3 [file
command], page 115.

NBD support in GNU poke is optional, depending on whether poke was compiled against
libnbd.

For an example of connecting to the guest-visible content of a qcow2 image, with the default
export name as exposed by using qemu as an NBD server:

$ qemu-nbd --socket=/tmp/mysock -f qcow2 image.qcow2

$ poke

(poke) .nbd nbd+unix:///socket=?/tmp/mysock

The current file is now `nbd+unix:///socket=?/tmp/mysock'.

20.6 .proc

The .proc command opens a new IO space backed by the memory mapped for some live process,
or switches to a previously opened process. The syntax is:

.proc pid

where pid is a process identifier. In most systems this is a number.

20.7 .sub

The .sub command opens a new IO sub-space. The syntax is:

.sub ios, base, size[, name]

where ios is the tag of some existing IO space, base and size are integers denoting the base and
size of the range covered by the sub-space (in bytes) and name is an optional name.

20.8 .ios

A list of open files, and their corresponding tags, can be obtained using the .info ios command.
Once a tag is known, you can use the .ios command to switch back to that file:

(poke) .ios #1

The current IOS is now `foo.o'.

20.9 .close

The .close command closes the selected IO space. The syntax is:

.close #tag

where #tag is a tag identifying an open IO space.

Note that closing an IO space with this dot-command implies closing any sub IO space having
it as a base.

https://github.com/NetworkBlockDevice/nbd/blob/master/doc/uri.md
https://github.com/NetworkBlockDevice/nbd/blob/master/doc/uri.md
http://libguestfs.org/libnbd.3.html

Chapter 20: Dot-Commands 117

20.10 .doc

The .doc command is used to display this manual in poke’s REPL. The syntax is:

.doc [node]

where node is an optional parameter which indicates the chapter or section at which the manual
should be opened.

This command uses whatever documentation viewer configured using .set doc-viewer

whose valid options are either info and less.

Unless doc-viewer is set to less, this command uses the info program (The GNU Texinfo
Manual) to interactively present the manual. If info is not installed, then less is tried next.

When using less to display the documentation, the entry in the Table of Contents correspond-
ing to the requested entry is highlighted. Just press / and then RET to jump to the corresponding
section in the manual.

If neither info nor less are installed, the .doc command will fail. If poke is not running
interactively then .doc does nothing.

20.11 .editor

The .editor command (usually abbreviated as .edit) invokes an external text editor on a
temporary file. You can then put contents on that file, save it and exit the editor. At that point
poke will read the file contents, turn them into a single line and execute them in the repl. If
poke is not running interactively, then .editor does nothing.

The editor used is identified by the EDITOR environment variable.

20.12 .info

The .info command provides information about several kinds of entities. The recognized sub
commands are:

.info ios Display a list of open files.

(poke) .info ios

Id Type Mode Bias Size Name

#1 FILE r 0x00000000#B 0x0000df78#B foo.o

* #0 FILE rw 0x00000000#B 0x00000022#B foo.bson

The file acting as the current IO space is marked with an asterisk character * at
the beginning of the file. The mode in which the file is open is also specified. The
Id field is the tag of the file that can be passed to the .file command in order to
switch to it as the new current IO space:

(poke) .ios #1

The current file is now `foo.o'.

(poke) .info ios

Id Type Mode Bias Size Name

* #1 FILE r 0x00000000#B 0x0000df78#B foo.o

#0 FILE rw 0x00000000#B 0x00000022#B foo.bson

.info variables [regexp]

Shows a list of defined variables along with their current values and the location
where the variables were defined. If a regular expression is provided then only the
types whose name match the expression are listed. If a regular expression is provided
then only the types whose name match the expression are listed.

Chapter 20: Dot-Commands 118

.info functions [regexp]

Shows a list of defined functions along with their prototypes and the location where
the functions were defined. If a regular expression is provided then only the types
whose name match the expression are listed. If a regular expression is provided then
only the types whose name match the expression are listed.

.info types [regexp]

Shows a list of defined types along with the locations where the types were de-
fined. If a regular expression is provided then only the types whose name match the
expression are listed.

.info type name

Prints a description of the type with name name.

20.13 .set

The .set command allows you to inspect and set the value of global settings. The following
invocations are valid:

.set Prints all settings along with their values.

.set setting

Prints the value of the given setting.

.set setting value

Sets the value of setting to value.

The following settings can be handled with .set:

pretty-print

This setting determines whether poke should use pretty-printers while printing out
the written representation of struct values.

Pretty-printers are defined as methods named ‘ print’.

auto-map This setting determines whether to automatically load map files when opening IO
spaces.

The decision of what maps to load is driven by the contents of the array ‘auto map’.
Each entry in the array is an array whose first element is a regular expression, and
the second element is the name of a map.

Example:

auto map = [["\.o", "elf"], ["\.o", "dwarf"]];

The entry above makes poke to automatically load the maps ‘elf.map’ and
‘dwarf.map’ when opening any file whose name ends in ‘.o’, provided ‘auto-map’ is
set to ‘yes’.

prompt-commented

This setting determines whether the prompt is a shebang-comment, allowing for
easy copy-paste of full terminal lines because the prompt will be a syntactic no-op.

Example of a prompt with prompt-commented enabled:

#!!# 1+2; 3

Example of a prompt with prompt-commented, map information, and ‘prompt-
maps’ set to ‘yes’:

#!!# .file foo.o #![dwarf,elf]!# 1+2; 3 #![dwarf,elf]!#

prompt-maps

This setting determines whether a list of open maps is displayed before the poke
prompt.

Chapter 20: Dot-Commands 119

Example of a prompt with map information and ‘prompt-maps’ set to ‘yes’:

(poke) .file foo.o [dwarf,elf](poke)

Which indicates that the opening of the IO space ‘foo.o’ resulted in the ‘elf.map’
and ‘dwarf.map’ maps to be automatically loaded.

omaps This sort of misnamed setting determines whether to show the mapped offsets and
element/field offsets of composite values like arrays and structs.

Example:

(poke) .set omaps yes (poke) [1,2,3] [0x1 @ 0x0UL#b,0x2 @ 0x20UL#b,0x3 @
0x40UL#b] @ 0x0UL#b

This setting defaults to ‘no’.

obase This setting determines the output numerical base to use when printing integral
values like integers, offset magnitudes, and the like. The supported bases are 2 for
binary, 8 for octal, 10 for decimal and 16 for hexadecimal.

oacutoff This setting determines the maximum number of elements to output when printing
out array values. Once the maximum number of elements is reached, an ellipsis ‘...’
is printed to represent the rest of the elements.

Example:

(poke) [1,2,3,4,5] [1,2,3,4,5] (poke) .set oacutoff 3 [1,2,3,...]

The default value is 0, which means no limit.

odepth This setting determines the maximum number of nested structs to output when
printing struct and union values. Once the maximum number of nested values is
reached, a collapsed form ‘Type {...}’ is printed.
Example:

(poke) type Foo = struct { struct { int i; } bar; } (poke) Foo {} Foo { bar=struct
{...} }
The default value for ‘odepth’ is 0, which means infinite depth.

oindent This setting determines the width (in blank characters) of each indentation level
when printing out struct values in ‘tree’ mode.

Example:

(poke) .set oindent 4 (poke) Foo {} Foo { i=0x0, l=0x0L }
This setting defaults to 2. See also ".help omode".

omode This setting determines the way binary struct data is displayed.

In ‘flat’ mode data is not formatted in any special way. Each value, be it simple or
composite, is printed on one line.

In ‘tree’ mode composite values like structs and arrays are displayed in an hierar-
chical way, using newlines and indentation.

Examples:

(poke) .set omode flat (poke) Foo {} Foo {i=0x0,l=0x0L}
(poke) .set omode tree (poke) Foo {} Foo { i=0x0, l=0x0L }
The default value of ‘omode’ is ‘flat’.

endian This setting determines the byte endianness used when accessing IO spaces. Valid
values are ‘big’, ‘little’, ‘host’ and ‘network’.

The meaning of ‘big’ and ‘little’ is the obvious one: the endianness is set to big-
endian and little-endian respectively.

Chapter 20: Dot-Commands 120

The ‘host’ endianness is the endianness used by the computer and operating system
that is running poke in order to handle it’s own memory and files.

The ‘network’ endianness is the endianness used by the host machine in order to
communicate with the network.

doc-viewer

This setting determines what mechanism to use to open the online user manual.

If ‘info’ is selected, the GNU info standalone program is launched to show the info
version of the user manual.

If ‘less’ is selected, the less utility is launched to show a plain text version of the
user manual.

See also ".help .doc".

pager This setting determines whether the output of poke commands will be paged or not.
Each page will have the height of the terminal.

This setting is ‘no’ by default.

tracer This setting determines whether the Poke compiler and runtime will generate tracing
events or not. This is mainly useful for debugging purposes.

Beware that enabling tracer will undoubtly have an impact in performance, and
that every type compiled when tracing is enabled will contain instrumentalization.
This means you will most likely want to re-compile the types with tracing disabled
once the debugging is done.

This setting is ‘no’ by default.

autoremap

This setting determines whether poke will remap mapped values automatically when
they are referred to. This assures that the values are always up to date with respect
the contents of the IO space.

Turning auto-remap off may be useful in situations where it is very slow to keep all
the data structures up to date. In these case, you can ‘.set autoremap off’ and then
use the ‘remap’ Poke operator to force the re-mapping of any given value, explicitly.

This setting is ‘yes’ by default.

20.14 .vm

The Poke Virtual Machine (PVM) executes the programs that are the result of the compilation of
what you write in the REPL or the pickles you load. The .vm command provides sub-commands
to interact with the PVM.

20.14.1 .vm disassemble

The .vm disassemble command provides access to the PVM disassembler. It supports the
following subcommands:

.vm disassemble expression expr

Dumps the assembler corresponding to the Poke expression expr.

.vm disassemble function function

Dumps the assembler corresponding to the Poke function called function. The func-
tion shall be reachable from the top-level.

.vm disassemble mapper expr

If expr is a mapped value, dumps the assembler corresponding to its mapper func-
tion.

Chapter 20: Dot-Commands 121

.vm disassemble writer expr

If expr is a mapped value, dumps the assembler corresponding to its writer function.

The disassembler will provide a PVM disassembly by default, but it can be passed the flag
/n to do a native disassembly instead in whatever architecture running poke.

20.14.2 .vm profile

The .vm profile command provides access to the PVM profiler. This profiler is only available
if poke has been configured with PVM profiling support. This command supports the following
subcommands:

.vm profile reset

Resets the profiling counts in the virtual machine.

.vm profile show

Outputs a summary with both counts and sample information.

20.14.3 .vm dispatch

The .vm dispatch command prints the current dispatching strategy in PVM (provided by Jit-
ter). There are four different kind of dispatches:

• switch

• direct threading

• minimal threading

• no threading

no threading is the fastest one and the least portable dispatch, and switch is the slowest
and the most portable one.

Jitter by default will use the most efficient dispatch which is both stable and available for
the current configuration.

20.15 .exit

The .exit command exits poke. The syntax is:

.exit [status]

Poke will terminate, returning the exit status status. If status is omitted, then the exit status
zero will be returned.

20.16 .quit

The .quit command behaves exactly like .exit. See Section 20.15 [exit command], page 121.

122

21 Commands

21.1 dump

At the most basic level, memory can be examined byte by byte. To do this, use the dump

command.

This command has the following synopsis.

dump [:from offset] [:size offset] [:val val]

[:ios int] [:ruler bool]

[:ascii bool] [:group_by int] [:cluster_by int]

All arguments are optional, which means the simplest use of the command is to simply type
dump:

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 9b07 5a61 4783 f306 4897 f37c fe39 4cd3 ..ZaG...H..|.9L.

00000010: b6a2 a578 8d82 7b7f 2076 374c 3eab 7150 ...x..{. v7L>.qP

00000020: 31df 8ecb 3d33 ee12 429b 2e13 670d 948e 1...=3..B...g...

00000030: 86f1 2228 ae07 d95c 9884 cf0a d1a8 072e .."(...\........

00000040: f93c 5368 9617 6c96 3d61 7b92 9038 a93b .<Sh..l.=a{..8.;

00000050: 3b0d f8c9 efbd a959 88d0 e523 fd3b b029 ;......Y...#.;.)

00000060: e2eb 51d5 cb5b 5ba9 b890 9d7a 2746 72ad ..Q..[[....z'Fr.

00000070: 6cbd 6e27 1c7f a554 8d2e 77f9 315a 4415 l.n'...T..w.1ZD.

The first row is the ruler which serves as a heading for each subsequent row. On the left hand
side is the offset of the io space under examination. The centre block displays the hexadecimal
representation of each byte, and on the right hand side is their ascii representation. If a byte is
not representable in ascii, then the byte will be displayed as a dot.

By default the dump command reads from the currently selected IO space. However, it is
possible to specify an explicit IO space using the ios option:

(poke) var myfile = open ("/path/to/file")

(poke) dump :ios myfile

21.1.1 Information dump shows

By default dump displays 128 bytes of memory starting at offset 0#B. You can change the
quantity and starting offset by using the size and from arguments. For example:

(poke) dump :from 0x10#B :size 0x40#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000010: b6a2 a578 8d82 7b7f 2076 374c 3eab 7150 ...x..{. v7L>.qP

00000020: 31df 8ecb 3d33 ee12 429b 2e13 670d 948e 1...=3..B...g...

00000030: 86f1 2228 ae07 d95c 9884 cf0a d1a8 072e .."(...\........

00000040: f93c 5368 9617 6c96 3d61 7b92 9038 a93b .<Sh..l.=a{..8.;

Note that both the size and from arguments are offsets. As such, both must be specified using
and an appropriate unit. (see Section 22.3.1 [Offset Literals], page 131).

The other arguments change the appearance of the dump. If the ruler argument is zero,
then the ruler will be omitted:

(poke) dump :ruler 0 :size 0x40#B

00000000: b1fd 1608 2346 759c 46a6 aa94 6fcd 846a#Fu.F...o..j

00000010: e39f 473f 3247 415f 174d a32b ed89 a435 ..G?2GA_.M.+...5

00000020: d2c6 2c52 bc82 e0a7 e767 31ea 84de 41e5 ..,R.....g1...A.

00000030: 2add 2869 e9c2 226b e222 8c74 4b94 af24 *.(i.."k.".tK..$

Chapter 21: Commands 123

To omit the ascii representation of the memory, call dump with the ascii argument set to
zero:

(poke) dump :ruler 0 :size 0x40#B :ascii 0

00000000: 4393 85e7 0b0c 3921 5a26 39ec 2f5f 5f15

00000010: cc46 e6f3 d50f 6ae6 8988 d50e f8c4 d1c6

00000020: 5a2f 7c3e 490b 18d8 d867 4b6f 2549 1f6c

00000030: 34a9 a0d7 24d2 e9ac 9240 8247 10cb 4ba1

Instead of an explicit from+size range, a mapped value can be specified using the val

argument. In this case, dump will show the bytes corresponding to the given value, with visual
indications on what bytes correspond to what element contained in the value.

Let’s first see an example with a struct:

(poke) type Foo = struct { int<32> one; int<64> two; }

(poke) dump :val Foo @ 0#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 one two

Where both the bytes and the field names are colorized in order to establish a visual correspon-
dence.

Similarly, the bytes corresponding to array elements are also characterized:

(poke) dump :val int[3] @ 2#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 0000 [0] [1] [2]

If some of the elements contained in the value passed to dump is itself complex, then a number
is printed right before its name. For example:

(poke) type Foo = struct { int<32> one; struct { int<64> three; } two; }

(poke) dump :val Foo @ 0#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 one 1=two

This number can be used as an identifier in a subsequent invocation to dump to quickly refer to
that value:

(poke) dump :val 1

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 0000 0000 0000 0000 0000 0000 three

Note that these indexes get reset every time dump :val gets executed.

A function dumpval is also provided in order to ease accessing the values whose bytes we
dump. It has prototype:

dumpval (int<32> val = -1) any

Where val is the index of a value whose bytes have been printed by the last dump :val command.
The function returns that value. If no index is specified, then dumpval returns the value passed
as :val instead of some of its constituents.

21.1.2 Presentation options for dump

By default, the hexadecimal display shows two bytes grouped together, and then a space. You
can alter this behaviour using the group_by parameter.

(poke) dump :ascii 0 :size 0x40#B :group_by 4#B

00000000: 68f19a63 df2a8886 c466631c a7fdd5c7 h..c.*...fc.....

00000010: 3075746a 0adb03ca f5b1ff14 6166fa07 0utj........af..

00000020: 0dd3cfbd 8eff46a2 4152a81d 471beddfF.AR..G...

00000030: a0501cae 8bfcec6f 7a4f5701 45ba9fc3 .P.....ozOW.E...

Chapter 21: Commands 124

Another parameter is the cluster_by argument. By setting cluster_by to n, this causes
dump to display an additional space after the nth group has been displayed, and also in the
corresponding position in the ascii display:

(poke) dump :size 0x40#B :group_by 2#B :cluster_by 4

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 01234567 89ABCDEF

00000000: 91b8 540d d4dc 49ae 3320 ba7d efd1 16ab ..T...I. 3 .}....

00000010: b1a8 5ea0 5846 8bea f741 3f80 42bc 201f ..^.XF.. .A?.B. .

00000020: 6e5e fa50 23fb f16a d380 be8c fc98 d195 n^.P#..j

00000030: 7bbf fa3e 3fc2 43a4 2a1e 9763 2bd6 5d24 {..>?.C. *..c+.]$

Another variable that the user can customize is pk_dump_nonprintable_char. It defaults to
'.', and contains the character to use in the ASCII dump to represent a non-printable character.

Not all bytes from an IO space can be read, depending on the kind of IO device. When dump

cannot read a byte it will print pk_dump_unknown_byte instead, which is a string.

If the variable pk_dump_addr_hyperlinks is 1 then the dump command will emit hyperlinks
in the printed bytes. Clicking on a byte value will result on the address of that byte to be
inserted at the prompt.

If you have a personal preference on how memory dumps should appear, you can set the
relevant pk_dump_* variables. These global variables serve as the defaults for dump, so this way,
you will not need to explicitly pass them when you call the function.

21.2 copy

The command copy allows to copy regions of data inside an IO space, or between different IO
spaces.

This command has the following synopsis.

copy [:from offset] [:to offset] [:size offset]

[:from_ios ios] [:to_ios ios]

All arguments are optional. When invoked with no arguments, copy does nothing.

The arguments from and size determine the region to copy. By default, this region is taken
from the current IO space, but this can be overwritten using the optional from_ios argument.

The argument to tells copy where to copy the stuff. It defaults to from. Again, this offset
is applied to the current IO space by default, but this can be overwritten using the to_ios

argument.

Note that it is allowed for the source and destination ranges to overlap.

21.3 save

Use the save command in order to write a region from an IO space into a file in your file system.

This command has the following synopsis.

save [:ios ios] [:from offset] [:size offset] [:file string]

[:append bool] [:verbose bool]

All arguments are optional. When invoked with no arguments, save does nothing.

The arguments from and size are used to determine the region of the IO space to save. This
is how you would extract and save the contents of an ELF section to a file out.text:

(poke) var s = elf_section_by_name (Elf64_Ehdr @ 0#B, ".text")

(poke) save :file "out.text" :from s.sh_offset :size s.sh_size

Both from and size are arbitrary offsets. You should keep in mind however that files are byte
oriented. Therefore saving, say, nine bits to a file will actually write two bytes.

Chapter 21: Commands 125

By default save will extract the data from the current IO space. However, it is possible to
specify an alternative IOS by using the ios argument.

By default save will truncate the output file, if it exists, before starting writing. If the
argument append is set as true, however, it will append to the existing contents of the file. In
this case, the file should exist.

21.4 sdiff

The sdiff command provides structured byte differences between two mapped values.

This command has the following synopsis:

sdiff :a any :b any [:group_by offset] \

[:values bool]

Where :a and :b are two mapped values of the same type.

By default, the bytes are shown in the diff separated by white characters. You can alter this
behaviour using the group_by parameter.

If values is true, then include field interpreted values in the diff output.

If the two values are not mapped, this command raises E_no_map. If the two values are not
of the same type, the output will probably not be meaningful.

21.5 extract

Use the extract command in order to create a temporary memory IO space with the contents
of a mapped value.

This command has the following synopsis.

extract :val val [:to ios_name]

Where :val is a mapped value, and :to is the name of the memory IOS to create (or use). The
contents of value are copied to the beginning of the memory IOS *ios_name*.

If no :to argument is specified, or if it is the empty string, then the extract command will
generate a suitable unique name and use it.

21.6 scrabble

The scrabble command rearranges portions of an IO space based on a transformation defined
by a pair of patterns.

This command has the following synopsis:

scrabble [:from offset] [:size offset]

[:from_pattern string] [:to_pattern string]

[:ent_size offset]

[:from_ios ios] [:to_ios ios]

The optional arguments are documented below.

:from offset

Beginning of the range in the origin IO space from where to start rearranging units.
Defaults to 0#B.

:size offset

Size of the range to scrabble in the origin IO space. Defaults to 0#B.

:from_pattern string

String specifying a sequence of units. Each character is an unit. Defaults to "".

Chapter 21: Commands 126

:to_pattern string

String specifying the scrabbled units. Each character is an unit. If a character that
doesn’t appear in the from_pattern is found in this string, it is ignored. Defaults
to from_pattern.

:ent_size offset

Size of the entities to scrabble around. Defaults to 1#B.

:from_ios ios

IO space from where to obtain the data to scrabble. Defaults to the current IO
space.

:to_ios ios

The IO space to where write the scrabbled data. Defaults to from_ios.

127

22 The Poke Language

22.1 Source Code Encoding

poke reads program source as UTF-8 encoded text. Program sources can span over multiple
lines. A line is a sequence of characters terminated by an end-of-line. End-of-line can be a
signle new-line character (ASCII LF or \n), the UNIX form, or pair of ASCII CR and ASCII
LF (\r\n) characters, the Windows form.

22.2 Integers

Most of the values manipulated in Poke programs are whole numbers, also typically known as
integers in computing parlance. This is because integers are pervasive in binary formats, often
featuring unusual characteristics in terms of size and/or alignment. Single bits denoting flags
or packed small integers are good examples of this. In order to ease the manipulation of such
entities, and unlike most programming languages, Poke provides integer types of any number of
bits and a rich set of accompanying operators.

22.2.1 Integer Literals

Integers literals can be expressed in several numeration bases.

Decimal numbers use the usual syntax [1-9][0-9]*. For example, 2345.

Octal numbers are expressed using a prefix 0o (or 0O) followed by one or more digits in the
range [0-7]. Examples are 0o0, 0o100 and 0o777.

Hexadecimal numbers are expressed using a prefix 0x (or 0X) followed by one or more hex-
adecimal digits in the range [0-f]. Examples are 0x0 and 0xfe00ffff. Note that both the x

in the prefix and the letters in the hexadecimal number are case insensitive. Thus, 0XdeadBEEF
is a valid (but ugly as hell) literal.

Binary numbers are expressed using a prefix 0b (or 0B) followed by one or more binary digits
in the range [0-1]. Examples of binary literals are 0b0 and 0B010.

Negative numbers, of any numeration base, are constructed using the minus operator as
explained below. Therefore the minus symbol - in negative numbers is not part of the literal
themselves.

22.2.1.1 The digits separator _

The character _ can appear anywhere in a numeric literal except as the first character. It is
ignored, and its purpose is to make it easier for programmers to read them:

0xf000_0000_0000_0000

0b0000_0001_0000_0001

22.2.1.2 Types of integer literals

The type of a numeric literal is the smallest signed integer capable of holding it, starting with
32 bits, in steps of powers of two and up to 64 bits.1

So, for example, the value 2 has type int<32>, but the value 0xffff_ffff has type int<64>,
because it is out of the range of signed 32-bit numbers.

A set of suffixes can be used to construct integer literals of certain types explicitly. L or l is
for 64-bit integers. H or h is for 16-bit integers (also known as halves), B or b is for 8-bit integers

1 Rationale: the width of a C “int” is 32 bits in most currently used architectures, and binary data formats are
usually modelled after C.

Chapter 22: The Poke Language 128

(also known as bytes) n or N is for 4-bit integers (also known as nibbles) and t or T is for 1-bit
integers (also known as bits).

Thus, 10L is a 64-bit integer with value 0x0000_0000_0000_000A, 10H is a 16-bit integer
with value 0x000A and 10b is a 8-bit integer with value 0x0A.

Similarly, the signed or unsigned attribute of an integer can be explicitly specified using the
suffix u or U (the default are signed types). For example 0xffff_ffffU has type uint<32>

and 0ub has type uint<8>. It is possible to combine width-indicating suffixes with signedness
suffixes: 10UL denotes the same literal as 10LU. Note that bit constants (suffix t or T) are always
unsigned and do not require U.

The above rules guarantee that it is always possible to determine the width and signedness
of an integer constant just by looking at it, with no ambiguity.

22.2.2 Characters

8-bit unsigned integers can use an alternative literal notation that is useful when working with
ASCII character codes. Printable character codes can be denoted with 'c'.

Non-printable characters can be expressed using escape-sequences. The allowed sequences
are:

\n New-line character (ASCII 012).

\t Tab character (ASCII 011).

\\ The backslash character.

\[0-9][0-9]?[0-9]?

Character whose ASCII code is the specified number, in octal.

Examples:

'o'

'\n'

'\t'

'\\'

'\0'

The type of a character literal is always char, aka uint<8>.

22.2.3 Booleans

Like in C, truth values in Poke are encoded using integers. Zero (0) denotes the logical value
“false”, and any integer other than zero denotes the logical value “true”.

22.2.4 Integer Types

Most general-purpose programming languages provide a small set of integer types, each featuring
a range corresponding to strategic storage sizes: basically, signed and unsigned variants of 8, 16,
32, 64 bits. As we have seen in the previous sections, suffixes like H or L are used in Poke for
that purpose.

However, in conventional programming languages when integers having an “odd” width (like
13 bits, for example) get into play for whatever reason, the programmer is required to use the
integer arithmetic operators (and sometimes bit-wise operators) herself, in a clever way, in order
to achieve the desired results.

Poke, on the contrary, provides a rich set of integer types featuring different widths, in both
signed and unsigned variants. The language operators are aware of these types, and will do the
right thing when operating on integer values having different widths.

Chapter 22: The Poke Language 129

Unsigned integer types are specified using the type constructor uint<n>, where n is the
number of bits. n should be an integer literal in the range [1,64]. Examples:

uint<1>

uint<7>

uint<64>

Similarly, signed integer types are created using the type constructor int<n>, where n is the
number of bits. n should be an integer literal in the range [1,64]. Examples:

int<1>

int<8>

int<64>

Note that expressions are not allowed in the type integral constructor parameters. Not even
constant expressions. Thus, things like int<foo> and uint<2+3> are not allowed.

22.2.5 Casting Integers

The right-associative unary operator cast as can be used to derive a new integer value having a
different type from an existing value.

For example, this is how we would create a signed 12-bit integer value holding the value 666:

(poke) 666 as int<12>

(int<12>) 666

Note that the 666 literal is originally a 32-bit signed integer. The cast performs the conver-
sion.

Casts between integer types are always allowed, and never fail. If the new type is narrower
than the existing type, truncation may be performed to accommodate the value in its new type.
For example, the expression 0x8765_4321 as uint<16> evaluates to 0x4321. If the new type is
wider than the existing type, either zero-extension or sign-extension is performed depending on
the signedness of the operand.

The semantics of the sign-extension operation depends on the signedness of the value being
converted, and on the currently selected encoding for negative numbers.

When using two’s complement encoding, converting a signed value will always sign-extend
regardless of the signedness of the target type. Thus:

(poke) -2H as uint<32>

0xfffffffeU

(poke) -2H as int<32>

0xfffffffe

Likewise, converting an unsigned value will always zero-extend regardless of the signedness
of the target type. Thus:

(poke) 0xffffUH as uint<32>

0xffffU

(poke) 0xffffUH as int<32>

0xffff

22.2.6 Relational Operators

The following binary relational operators are supported on integer values, in descending prece-
dence order:

• Equality == and inequality !=.

• Less than < and less or equal than <=.

• Greater than > and greater or equal than >=.

Chapter 22: The Poke Language 130

When applied to integer and character values, these operators implement an arithmetic or-
dering.

These operators resolve in boolean values encoded as 32-bit integers: 0 meaning false and 1

meaning true.

22.2.7 Arithmetic Operators

The following left-associative binary arithmetic operators are supported, in descending prece-
dence order:

• Exponentiation **, multiplication *, integer division /, integer ceil-division /^ and modulus
%.

• Addition + and subtraction -.

In all the binary arithmetic operations automatic promotions (coercions) are performed in
the operands as needed. The rules are:

• If one of the operands is unsigned and the other operand is signed, the second is converted
to an unsigned value.

• If the size in bits of one of the operands is bigger than the size of the other operand, the
second is converted to the same number of bits.

The following right-associative unary arithmetic operators are supported:

• Unary minus - and unary plus +.

Finally, pre-increment, pre-decrement, post-increment and post-decrement operators ++ and
-- are supported.

22.2.8 Bitwise Operators

The following left-associative bitwise binary operators are supported, in descending precedence
order:

• Bitwise shift left <<. and bitwise shift right .>>.

• Bitwise AND &.

• Bitwise exclusive OR ^.

• Bitwise inclusive OR |.

• Bitwise concatenation :::.

Both <<. and .>> operators perform logical shifting. Unlike in many other programming
languages, arithmetic right-shifting operators are not provided. This means that right shifting
always inserts zeroes at the most-significant side of the value operand, whereas left shifting
always inserts zeroes at the least-significant side of the value operand.

Left shifting by a number of bits equal or bigger than the size of the value operand is an
error, and will trigger either a compile-time error or a run-time E_out_of_bounds exception.
This does not apply to right shifting.

Bitwise concatenation works with any integral type, of any bit length.

The following right-associative unary bitwise operators are supported:

• Bitwise complement ~.

22.2.9 Boolean Operators

The following left-associative, short-circuited binary logical operators are supported, in descend-
ing precedence order:

• Logical implication: =>.

• Logical AND: &&.

Chapter 22: The Poke Language 131

• Inclusive OR: ||.

The following right-associative unary logical operators are supported:

• Logical negation !.

22.2.10 Integer Attributes

The following attributes are defined for integer values.

size Gives an offset with the storage occupied by the string. This includes the terminating
null. Examples:

(poke) 10'size

0x20UL#b

(poke) 10N'size

0x4UL#b

(poke) (10 as int<1>)'size

0x1UL#b

signed Gives 1 if the value is a signed integer, 0 otherwise. Examples:

(poke) 10'signed

1

(poke) 10UL'signed

0

mapped Always 0 for integers. (see Section 22.16 [Mapping], page 174).

length Always 1UL for integers.

22.3 Offsets

Poke uses united values to handle offsets and data sizes. This is a very central concept in poke.

22.3.1 Offset Literals

Poke provides a convenient syntax to provide united values, which are called offsets (because in
a binary editor you mostly use them to denote offsets in the file you are editing):

12#B

7#b

1024#KB

The offsets above denote twelve bytes, seven bits and one thousand twenty four kilobytes,
respectively. The unit can be separated from the magnitude by blank characters, so you can
write the following instead if you are so inclined:

12 #B

7 #b

(1024 * 1024) #Kb

Note how the magnitude part of an offset doesn’t need to be constant. If the variable a

contains an integer, this is how you would denote “a bytes”:

a#B

In the offset syntax units are specified as #unit, where unit is the specification of an unit.
See the next section for details.

22.3.2 Offset Units

There are several ways to express the unit of an offset, which is always interpreted as a multiple
of the basic unit, which is the bit (one bit).

Chapter 22: The Poke Language 132

22.3.2.1 Named Units

The first way is to refer to an unit by name. For example, 2#B for two bytes. Units are defined
using the unit construction:

unit name = constant_expression [, name = constant_expression]...;

where name is the name of the unit, and constant expression is a constant expression that
should evaluate to an integral value. The resulting value is always coerced into an unsigned
64-bit integer.

Note that unit names live in a different namespace than variables and types. However, when
a given name is both a type name and an unit name in an unit context, the named unit takes
precedence:

(poke) type xx = int

(poke) unit xx = 2

(poke) 1#xx

1#2

Many useful units are defined in the standard library. See Section 23.3 [Standard Units],
page 194.

22.3.2.2 Arbitrary Units

It is also possible to express units in multiples of the base unit, which is the bit. Using this
syntax, it becomes possible to express offsets in any arbitrary unit, as disparate as it may seem:

17#3

0#12

8#1

That’s it: 17 units of 3 bits each, zero units of 12 bits each, and eight units of 1 bit each.
Note that the unit should be greater than 0.

22.3.2.3 Types as Units

But then, why stop there? Poking is all about defining data structures and operating on them. . .
so why not use these structures as units as well? Consider the following struct:

type Packet = struct { int i; long j; };

The size of a Packet is known at compile time (which is not generally true for Poke structs).
Wouldn’t it be nice to use it as a unit in offsets? Sure it is:

23#Packet

The above is the size occupied by 23 packets. Any type whose size is known at compile time
can be specified as an offset unit.

Expressing offsets as united values also relieves the programmer from doing many explicit
unit conversions: poke can do them for you. Consider for example an ELF section header. One
of its fields is the size of the described section, in bytes:

type Elf64_Shdr =

struct

{

...

offset<Elf64_Xword,B> sh_size;

...

};

If a given section is to contain, say, relocations with addends, we can set its size doing
something like this:

shdr.sh_size = 10#Elf64_Rela;

Chapter 22: The Poke Language 133

Instead of doing the conversion to bytes explicitly.

If the magnitude of an offset is 1 then it is allowed to omit it entirely. To denote one kilobyte,
for example, we can write #KB.

22.3.3 Offset Types

Offset types are denoted as offset<base_type,unit[,ref_type]>, where base type is an in-
teger type, unit the specification of an unit, and ref type is an optional type of a referred value.

The offset base type is the type of the magnitude part of the united value. It can be any
integer type, signed or unsigned, of any size.

The unit specification should be one of the unit identifiers that are allowed in offset literals
(see above), a constant positive integer or the name of a Poke type whose size is known at
compile time.

If a referred type is specified, this tells poke that the offset may be used in order to refer to a
value stored on some IO space. This is similar to the notion of a pointer in other programming
languages.

Let’s see some examples. A signed 32-bit offset expressed in bytes has type
offset<int<32>,B>. An unsigned 12-bit offset expressed in kilobits has type
offset<uint<12>,Kb>. The latter type can also be written using an explicit integer unit like in
offset<uint<12>,1024>. Finally, a signed 64-bit offset in units of “packets”, where a packet
is denoted with a Poke type Packet has type offset<uint<64>,Packet>.

An offset whose purpose is to refer to some data structure of type Packet stored in some IO
space could have type offset<uint<64>,B,Packet>.

22.3.4 Casting Offsets

The right-associative unary operator cast as can be used to derive a new offset value having a
different type from an existing value.

For example, this is how we would create a signed 12-bit offset in units bytes:

(poke) 1024#b as offset<int<12>,B>

(int<12>) 128#B

The same rules governing conversion of integers apply for the magnitude part. Depending
on the unit, there can be truncation, like in:

(poke) 9#b as offset<int,B>

1#B

22.3.5 Offset Operations

Poke supports a little algebra for offsets.

22.3.5.1 Addition and subtraction

The addition or subtraction of two offsets results in another offset. Examples:

(poke) 1#B + 1#b

9#b

(poke) 2#KB - 1024#B

1024#B

The unit of the result is the greatest common divisor of the units of the operands. The result
offset is not a referring offset.

The operators ++ and --, in their prefix and suffix versions, can be applied to offsets as well.
The step used in the increment/decrement is one unit.

Chapter 22: The Poke Language 134

22.3.5.2 Multiplication by a scalar

Multiplying an offset by a magnitude gives you another offset. Examples:

(poke) 8#b * 2

16#b

(poke) 16#MB * 0

0#MB

The unit of the result is the same as the unit of the offset operand. The result offset is not
a referring offset.

Note that multiplying two offsets is not supported. This makes sense, since computer memory
is linear, and therefore it wouldn’t make any sense to have units like #B2.

22.3.5.3 Division

Dividing two offsets gives you a magnitude. Examples:

(poke) 16#b / 1#B

2

(poke) 1024#MB / 512#Mb

16

Dividing offsets is the Pokish way of converting memory magnitudes between different units:
just use units like you do when doing physics or working with units in other contexts.

For example, using the syntactic trick of omitting the magnitude (in which case it is assumed
to be 1) it is very natural to write something like the following to convert from kilobits to bytes:

(poke) 24 #Kb/#B

3072

There is also a ceil-division operator for offsets, with the same semantics as the ceil-division
for integers:

(poke) 10#B /^ 3#B

4

22.3.5.4 Division by an integer

Dividing an offset by an integer gives you an offset. Example:

(poke) 8#B / 2

4#B

The unit of the result is the unit of the offset operand. The result offset is not a referring
offset.

22.3.5.5 Modulus

The modulus of two offsets gives you another offset with the expected semantics. Examples:

(poke) 9#b % 1#B

1#b

(poke) 1#B % 9#b

8#b

The unit of the result is the greatest common divisor of the units of the operands. The result
offset is not a referring offset.

22.3.6 Offset Attributes

The following attributes are defined for offset values.

size Gives an offset with the storage occupied by the offset. Examples:

(poke) 10#B'size

Chapter 22: The Poke Language 135

0x20UL#b

(poke) 10N#B'size

0x4UL#b

magnitude

Gives the magnitude part of the offset. Examples:

(poke) 10#B'magnitude

10

(poke) 2H#b'magnitude

2H

unit Gives a number with the unit of the offset, expressed in bits. Examples:

(poke) 10#B'unit

8UL

(poke) 2H#b'unit

1UL

mapped Always 0 for offsets. (see Section 22.16 [Mapping], page 174).

length Always 1UL for offsets.

ref ([IOS])

If the value is a referring offset, then the application of the 'ref attribute implies
the mapping of the referred value.

The attribute gets an optional argument which is the IO space to use when mapping
the referred value. If this argument is not provided then the current IO space is
assumed. The application of this attribute may result in a E_no_ios exception.

22.4 Strings

Poke supports a notion of strings which is very similar to the C programming language: a string
value is a sequence of characters that is terminated by the so-called null character.

The standard library provides functions which process strings. See Section 23.6 [String
Functions], page 197.

22.4.1 String Literals

NULL-terminated sequences of ASCII codes can be denoted using the following syntax:

"foo"

Poke string values are very similar to C strings. They comprise a sequence of 8-bit character
codes, terminated by the value 0UB.

The following escape sequences are supported inside string literals:

\n Denotes a new line character.

\t Denotes an horizontal tab.

\\ Denotes a backlash \ character.

\" Denotes a double-quote " character.

\num num is a number in the range 1 to 255 (inclusive) in base 8.

\xnum num is a number in the range 1 to 255 (inclusive) in base 16.

Strings cannot contain 0UB character, and inserting one using escape sequences (\0 or \x0)
leads to compilation error.

Chapter 22: The Poke Language 136

22.4.2 String Types

Every string value in Poke is of type string.

22.4.3 String Indexing

Poke supports accessing the characters in a string using the array indexing notation. The indexes
are in the [0,n] range, where n is the length of the string minus one. Note the length doesn’t
include the null character, i.e. it is not possible to access the terminating null. Examples:

(poke) "foo"[0]

0x66UB

(poke) "foo"[1]

0x6fUB

If the passed index is less than zero or it is too big, an E_out_of_bounds exception is raised:

(poke) "foo"[-1]

unhandled out of bounds exception

(poke) "foo"[3]

unhandled out of bounds exception

Poke also provides a way to refer to a character in a string by the offset the character occupies in
the string. This is done by using as index an expression that evaluates to an offset value. This
value is then implicitly promoted to have an unsigned 64-bit magnitude and unit bits whenever
needed. If no character starts exactly at the provided offset then an E_out_of_bounds exception
is raised.

22.4.4 String Concatenation

Strings can be concatenated using the + operator. This works like this:

(poke) "foo" + "bar"

"foobar"

Note how the null character terminating the first string is removed. Therefore, the length of
the concatenation of two given strings of lengths N and M is always N+M-1.

Concatenation and indexing are useful together for building strings. A string can be created
empty, and additional characters added to it by means of concatenation:

(poke) var bytes = "";

(poke) bytes = bytes + 'x' as string;

Then, we can retrieve characters from the string we built using indexing:

(poke) bytes[0]

0x78UB

Additionally, the * operator allows to “multiply” a string by concatenating it with itself a
given number of times. This works like this:

(poke) "foo" * 3

"foofoofoo"

(poke) "foo" * 0

""

This is useful for building strings whose length is not known at compile time. For example:

fun make_empty_string = (int length) string:

{

return " " * length;

}

Chapter 22: The Poke Language 137

22.4.5 String Attributes

The following attributes are defined for string values.

length Gives the number of characters composing the string, not counting the terminating
null. Examples:

(poke) "foo"'length

3UL

(poke) ""'length

0UL

size Gives an offset with the storage occupied by the string. This includes the terminating
null. Examples:

(poke) "foo"'size

32UL#b

(poke) ""'size

8UL#b

mapped Always 0 for strings. (see Section 22.16 [Mapping], page 174).

22.4.6 String Formatting

Poke provides a built-in function format that can be used in order to format, or build, a string
value that is derived from a set of zero or more Poke values:

format (fmt[, value...])

Where fmt is a format string that interpreted verbatim but for predefined format tags which
start with %. These format tags are interpreted especially. See Section 22.19.2 [printf], page 188.

Example:

var s = format ("Age is %i32d.", 66);

The value of the variable s is "Age is 66.".

22.5 Arrays

Arrays are homogeneous collections of values.

22.5.1 Array Literals

Array literals are constructed using the following syntax:

[exp,exp...]

where exp is an arbitrary expression.

For example, [1,2,3] constructs an array of three signed 32-bit integers. Likewise,
['a','b','c'] constructs an array of three unsigned 8-bit integers (characters). For conve-
nience, a trailing comma is accepted but not required.

The type of the array literal is inferred from the type of its elements. Accordingly, all the
elements in an array literal must be of the same type. Examples of invalid array literals, that
will raise a compilation-time error if evaluated, are:

[1,2u,3]

[1,0xffff_ffff,3]

['a',"b",'c']

Array literals must contain at least one element. Accordingly, [] is not a valid array literal.

This is how a 3x3 matrix could be constructed using an array of arrays:

[[1,2,3],[4,5,6],[7,8,9],]

Chapter 22: The Poke Language 138

It is possible to refer to specific elements when constructing array literals. For example,
[1,2,3,.[3] = 4] denotes the same array as [1,2,3,4].

This allows creating arrays without having to specify all its elements; every unspecified
element takes the value of the first specified element to its right. For example, [.[2] = 2]

denotes the same array as [2,2,2].

Note that an array element can be referenced more than once. When that happens, the final
value of the element is the last specified. For example, [1,2,3,.[1]=10] denotes the array
[1,10,3].

22.5.2 Array Types

There are three different kind of array types in Poke.

Unbounded arrays have no explicit boundaries. Examples are int[] or Elf64_Shdr[]. Ar-
rays can be bounded by number of elements specifying a Poke expression that evaluates to an
integer value. For example, int[2]. Finally, arrays can be bounded by size specifying a Poke
expression that evaluates to an offset value. For example, int[8#B].

22.5.2.1 Writing unbounded array literals

The type of an array literal is always bounded by number of elements. For example, the type of
[1,2,3] is int[3]. If what we want is an unbounded array literal we can obtain it with a case
like [1,2,3] as int[].

22.5.2.2 Array boundaries and closures

Poke arrays are rather peculiar. One of their seemingly bizarre characteristics is the fact that the
expressions calculating their boundaries (when they are bounded) evaluate in their own lexical
environment, which is captured. In other words: the expressions denoting the boundaries of Poke
arrays conform closures. Also, the way they evaluate may be surprising. This is no capricious.

When an array type is bounded, be it by number of elements or by size, the expression
indicating the boundary doesn’t need to be constant and it can involve variables. For example,
consider the following type definition:

var N = 2;

type List = int[N*2];

Let’s map a List at some offset:

(poke) List @ 0#B

[0x746f6f72,0x303a783a,0x723a303a,0x3a746f6f]

As expected, we get an array of four integers. Very good, obviously the boundary expression
N*2 got evaluated when defining the type List, and the result of the evaluation was 4, right?.
Typical semantics like in my garden variety programming language. . . ? Right?!?

Well, not really. Let’s modify the value of N and map a List again. . .

(poke) N = 1

(poke) List @ 0#B

[0x746f6f72,0x303a783a]

Yes, The boundary of the array type changed. . . on, this is Poke, was you really expecting
something typical? ;)

What happens is that at type definition time the lexical environment is captured and a
closure is created. The body of the closure is the expression. Every time the type is referred,
the closure is re-evaluated and a new value is computed.

Consequently, if the value of a variable referred in the expression changes, like in our example,
the type itself gets updated auto-magically. Very nice but, why is Poke designed like this? Just
to impress the cat? Nope.

Chapter 22: The Poke Language 139

In binary formats, and also in protocols, the size of some given data is often defined in terms
of some other data that should be decoded first. Consider for example the following definition
of a Packet:

type Packet =

struct

{

byte size;

byte[size] payload;

};

Each packet contains a 8-bit integer specifying the size of the payload transported in the
packet. The payload, a sequence of size bytes, follows.

In struct types like the above, the boundaries of arrays depend on fields that have been
decoded before and that exist, like variables, in the lexical scope captured by the struct type
definition (yes, these are also closures, but that’s for another article.) This absolutely depends
on having the array types evaluate their bounding expressions when the type is used, and not
at type definition time.

To show this property in action, let’s play a bit:

(poke) var data = byte[4] @ 0#B

(poke) data[0] = 2

(poke) data[1] = 3

(poke) data[2] = 4

(poke) data[3] = 5

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0203 0405 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

(poke) var p1 = Packet @ 0#B

(poke) var p2 = Packet @ 1#B

(poke) p1

Packet {size=0x2UB,payload=[0x3UB,0x4UB]}

(poke) p2

Packet {size=0x3UB,payload=[0x4UB,0x5UB,0x0UB]}

Now, let’s change the data and see how the sizes of the payloads are adjusted accordingly:

(poke) data[0] = 1

(poke) data[1] = 0

(poke) p1

Packet {size=0x1UB,payload=[0x0UB]}

(poke) p2

Packet {size=0x0UB,payload=[]}

So, as we have seen, Poke’s way of handling boundaries in array types allows data structures
to adjust to the particular data they contain, so usual in binary formats. This is an important
feature, that gives Poke part of its feel and magic.

22.5.3 Casting Arrays

There are two kinds of casts for array values:

• Cast to array types that may have a different bounding.

• Cast of array of integers or integral structs to an integral type.

For example, we have seen that the type of an array literal is always bounded by a constant
number of elements. Thus the type of [1,2,3] is int[3].

Chapter 22: The Poke Language 140

We could cast the value above to an unbounded array type by doing:

[1,2,3] as int[]

Or to an array bounded by size:

[1,2,3] as int[12#B]

Of course trying to cast an array value to a type for which the bounding restrictions will fail.
This will give you a compile-time error:

[1,2,3] as int[4]

And this will result in a run-time error:

(poke) [1,2,3] as int[13#B]

unhandled conversion error exception

Now let’s see how Poke reinterprets integral arrays as integers:

(poke) [0xdeUB,0xadUB] as uint16

0xdeadUH

(poke) [0xdeUB,0xadUB,0UB] as int

0xdead00

Trying to cast an array with a size larger than 64-bit will result in an error:

(poke) [1,2,3] as int

unhandled conversion error exception

arrays bigger than 64-bit cannot be casted to integral types

It also works for nested arrays and arrays of integral structs (See Section 22.6.11 [Integral
Structs], page 151):

(poke) type Foo = struct uint { int16 hi; int16 lo; };

(poke) [[Foo{ hi=0xdeadH, lo=0xbeefH}],[Foo{}]] as ulong

0xdeadbeef00000000UL

The way it works is like putting all array elements in an uint<64> number and then casting
that number to the destination integral type.

22.5.4 Array Constructors

Array literals can only specify arrays which a constant number of elements. They also require
initial values for their elements, and it is also not possible to construct an array literal denoting
an empty array of some given type.

Array constructors provide a suitable way to build such array values. The syntax is:

array_type ([value])

Where array type is an array type, or the name of an array type, and value is an optional
argument that specify the value to which the elements of the new array are initialized. If no
value is provided in the constructor then default values are calculated.

If the boundaries of the array can’t be satisfied while constructing, E_constraint is raised.

Examples:

(poke) int[]()

[]

(poke) int[2]()

[0,0]

(poke) int[2](10)

[10,10]

(poke) offset<int,B>[2](16#b)

[2#B,2#B]

(poke) string[3]()

Chapter 22: The Poke Language 141

["","",""]

(poke) int[][3](int[2](666))

[[666,666],[666,666],[666,666]]

(poke) Packet[3]()

[Packet {...}, Packet {...}, Packet {...}]

Note that array constructors are implicitly involved when you construct a struct or union
value that contains a field whose type is an array. For example, consider the following type:

type Packet =

struct

{

byte sz;

byte[sz] data;

};

When a packet is constructed using Packet {} the data field of the struct is also constructed,
implicitly using a constructor for the array type byte[sz].

22.5.5 Array Comparison

The equality operator (==) and the inequality operator (!=) can be applied to arrays. Examples:

(poke) [1,2,3] == [1,2,3]

1

(poke) [[1,2],[3,4]] != [[5,6],[7,8]]

1

Note that the array elements are compared recursively.

22.5.6 Array Indexing

Arrays are indexed using the usual notation, providing an index enclosed between square brackets
with [and]:

(poke) [1,2,3][0]

1

(poke) [1,2,3][8#B]

2

22.5.6.1 Indexing an array by number of element

Indexing by number of element is performed by providing as index an expression that evaluates
to an integral value. This value is then implicitly promoted to an unsigned 64-bit integer when
needed.

The valid range for the index is [0,n] where n is the number of elements stored in the array
minus one. If the passed integer is out of that range, an E_out_of_bounds exception is raised:

(poke) [1,2,3][-1]

unhandled out of bounds exception

(poke) [1,2,3][3]

unhandled out of bounds exception

22.5.6.2 Indexing an array by offset of element

Poke also provides a way to refer to the element of an array by the offset where the element
appears inside the array. This is done by providing as index an expression that evaluates to an
offset value. This value is then implicitly promoted to an offset with magnitude unsigned 64-bit
integer and bit unit when needed.

If there is not element in the indexed array that starts exactly at the given offset then an
E_out_of_bounds exception is raised.

Chapter 22: The Poke Language 142

22.5.7 Array Trimming

Indexing is used to fetch elements from arrays. Another operation, called trimming, allows you
to extract a subset of the array, as another array.

Trims use the following notation, where a range is specified between square brackets. The
left sides of the range are closed, whereas the right sides of the range are open:

(poke) [1,2,3][0:2]

[1,2]

(poke) [1,2,3][1:2]

[2]

(poke) [1,2,3][0:3]

[1,2,3]

If the minimum side of the range is omitted, it is assumed to be zero. If the maximum side
of the range is omitted, it is assumed to be the length of the trimmed array:

(poke) [1,2,3][:2]

[1,2]

(poke) [1,2,3][1:]

[2,3]

(poke) [1,2,3][:]

[1,2,3]

The elements of the base array and the trimmed sub-array are copied by shared value,
exactly like when passing arguments to functions. This means that for simple types, copies of
the elements are done:

(poke) var a = [1,2,3]

(poke) var s = a[1:2]

(poke) s[0] = 66

(poke) a

[1,2,3]

However, for complex types like arrays and structs, the values are shared:

(poke) var a = Packet[] @ 0#B

(poke) var s = a[1:2]

(poke) s[0].field = 66

(poke) a[1].field

66

There is an alternative syntax that can be used in order to denote trims, in which the length
of the trim is specified instead of the index of the second element. It has this form:

(poke) [1,2,3][0+:3]

[1,2,3]

(poke) [1,2,3][1+:2]

[2,3]

(poke) [1,2,3][1+:0]

[]

22.5.8 Array Elements

The in operator can be used to determine whether a given element is stored in an array. Ex-
amples:

(poke) 2 in [1,2,3]

1

(poke) 2 in [4,5,6]

0

Chapter 22: The Poke Language 143

(poke) 10#b in [1#B] #! Promotion doesn't happen. !#

<stdin>:1:1: error: invalid operand in expression

<stdin>:1:1: error: expected offset<int<32>,8>, got offset<int<32>,1>

22.5.9 Array Concatenation

The operator + can be used to build new arrays resulting from the concatenation of the elements
of two arrays given as operands:

(poke) [1,2] + [3,4,5]

[1,2,3,4,5]

The two arrays given as operands shall have the same elements of the same type. The resulting
array is always unbounded.

22.5.10 Array Attributes

The following attributes are defined for array values.

size Gives an offset with the storage occupied by the complete array. Example:

(poke) [1,2,3]'size

96UL#b

length Gives the number of elements stored in the array. Example:

(poke) [1,2,3]'length

3

mapped Boolean indicating whether the array is mapped. Examples:

(poke) var a = [1,2,3]

(poke) var b = int[3] @ 0#B

(poke) a'mapped

0

(poke) b'mapped

1

strict Boolean indicating whether the array is mapped in strict mode. Examples:

(poke) var a = int[3] @ 0#B

(poke) a'strict

1

(poke) var a = int[3] @! 0#B

(poke) a'strict

0

elem (idx)

Element occupying the position idx in the array. Note that this attribute evaluates
to a value of type any.

eoffset (idx)

Offset of the element identified by the index idx in the array. Examples:

(poke) [1,2,3]'eoffset (1)

32#b

If the provided index is out of bounds then E_out_of_bounds is raised.

esize (idx)

Size of the element identified by the index idx in the array. Examples:

(poke) ["foo","x",""]'esize (1)

16#b

If the provided index is out of bounds then E_out_of_bounds is raised.

Chapter 22: The Poke Language 144

ename (idx)

The string "[idx]".

If the provided index is out of bounds then E_out_of_bounds is raised.

22.5.11 Arrays as Stacks

Array values can be manipulated as stacks using two operators: apush and apop.

The apush operator gets an array and a value and appends the value into the array. Note it
has a destructive side-effect in the array value, and also it returns the modified value:

(poke) var a = [1,2,3]

(poke) apush (a, 4)

[1,2,3,4]

(poke) a

[1,2,3,4]

the apop operators gets an array and removes the last value of the array. If the given array
is empty then E_out_of_bounds is raised. As with apush, the operation has the side effect of
modifying the given array and also it returns the popped element:

(poke) var a = [1,2,3]

(poke) apop (a)

3

(poke) apop (a)

2

(poke) apop (a)

1

(poke) apop (a)

unhandled out of bounds exception

22.6 Structs

Structs are the main abstraction that Poke provides to structure data. They contain heteroge-
neous collections of values.

22.6.1 Struct Types

A simple struct type definition in Poke looks like:

type Packet =

struct

{

byte magic;

uint<16> length;

byte[length] data;

}

The above defines a “Packet”, which consists on a magic number encoded in a byte, a length
encoded in an unsigned 16-bit integer, and an array of length bytes, which is the payload of
the packet.

Each entry in the struct type above defines a struct field.

Each field has a type, which is mandatory, and a name, which is optional. Fields without
names are not accessible (not even within the struct itself) but they are handy for expressing
esoteric padding. See Section 4.11 [Padding and Alignment], page 64. Example:

type Imm64 =

struct

{

Chapter 22: The Poke Language 145

uint<32> lo;

uint<32>;

uint<32> hi;

}

It is not allowed to have several fields with the same name in the same struct. The compiler
will complain if it finds such an occurrence.

22.6.2 Struct Constructors

Once a struct type gets defined, there are two ways to build struct values from it. One ismapping.
See Section 22.16.4 [Mapping Structs], page 179. The other is using a struct constructor, which
is explained in this section.

Struct constructors have the following form:

type_name { [field_initializer,]... }

where each field initializer has the form:

[field_name=]exp

Note how each field has an optional name field name and a value exp. The expression for
the value can be of any type. For convenience, a trailing comma is accepted but not required.

Suppose for example that we have a type defined as:

type Packet =

struct

{

uint<16> flags;

byte[32] data;

}

We can construct a new packet, with all its fields initialized to zero, like this:

(poke) Packet {}

Packet {

flags=0x0UH,

data=[0x0UB,0x0UB,0x0UB,0x0UB,0x0UB,...]

}

In the constructor we can specify initial values for some of the fields:

(poke) Packet { flags = 0x8 }

Packet {

flags=0x8UH,

data=[0x0UB,0x0UB,0x0UB,0x0UB,0x0UB,...]

}

It is not allowed to specify initializers that are not part of the type being constructed:

(poke) Packet { foo = 10 }

<stdin>:1:10: error: invalid struct field `foo' in constructor

Packet { foo = 10 };

^~~

As we shall see later, many struct types define constraints on the values their fields can hold.
This is a way to implement data integrity. While building struct values using constructors, these
constraints are taken into account. For example, given the following struct type:

type BPF_Reg =

struct

{

uint<4> code : code < 11;

Chapter 22: The Poke Language 146

};

we will get a constraint violation exception if we try to construct an BPF_Reg:

(poke) BPF_Reg { code = 20 }

unhandled constraint violation exception

22.6.3 Struct Comparison

The equality operator (==) and the inequality operator (!=) can be applied to struct values.
Examples:

(poke) E_eof == E_eof

1

(Poke) Packet { payload=0x3 } != Packet { payload=0x4 }

1

The struct values are compares recursively.

22.6.4 Field Endianness

By default fields are accessed in IO space using the current default endianness. However, it is
possible to annotate fields with an explicit endianness, like in:

type Foo =

struct

{

little int a;

big int b;

int c;

};

In the example above, the field a will be stored using little-endian, the field b will be stored
using big-endian, and the field c will be stored using whatever current endianness.

The endianness annotations can be used in any kind of fields, like offsets, arrays and structs,
and will impact the storage ofintegral fields defined in them.

When endianness annotations are used in struct fields which are themselves structs, they
effectively change the default endianness in the contained struct. Therefore, in the following
struct type:

type Bar =

struct

{

little struct

{

big int a;

int b;

} f;

int c;

}

a is big endian, but b is little endian.

However, note that the scope of the big and little annotations is lexical. Therefore, in
these types:

type Foo =

struct

{

int a;

int b;

Chapter 22: The Poke Language 147

};

type Bar =

struct

{

big Foo f;

int c;

};

The endianness of the a and b fields stored in f is the default endianness, not big.

22.6.5 Accessing Fields

Poke uses the usual dot-notation to provide access to struct fields. Examples:

(poke) var s = struct { i = 10, l = 20L }

(poke) s.i

10

(poke) s.l

20L

Writing to fields is achieved by having the field reference in the left side of an assignment
statement:

(poke) s.i = 100

(poke) s.l = 200

(poke) s

struct {i=100,l=200L}

22.6.6 Field Constraints

It is common for struct fields to be constrained to their values to satisfy some conditions. Obvious
examples are magic numbers, and specification-derived constraints.

In Poke you can specify a field’s constraint using the following syntax:

field_type field_name : expression ;

where expression is an arbitrary Poke expression, that should evaluate to an integer value. The
result is interpreted as a boolean. As an example, this is how the ELF magic number is checked
for:

type Ctf_Preamble =

struct

{

uint<16> ctp_magic : ctp_magic == CTF_MAGIC;

byte ctp_version;

byte ctp_flags;

};

The constraint expression will often include the field where it is installed, but that’s not
mandatory.

Field constraints play an important role in mapping. On one side, a map will fail if there
is some constraint that fails. On the other, they guide the mapping of unbounded arrays. See
Section 22.16.5 [Mapping Arrays], page 179.

Another common usage of constraint expressions is to alter the global state after decoding a
field. For example, this is how mapping an ELF header sets the current endianness, depending
on the value of ei_data:

byte ei_data : ei_data == ELFDATA2LSB \

? set_endian (ENDIAN_LITTLE) \

Chapter 22: The Poke Language 148

: set_endian (ENDIAN_BIG);

Note that set_endian always returns 1.

22.6.7 Field Initializers

We saw that field constraints are useful to express magic numbers, which are pretty common in
binary formats. Imagine a package has a marker byte at the beginning, which should always be
0xff. We could use a constraint like in:

type Packet =

struct

{

byte marker : marker == 0xff;

byte length;

byte[length] payload;

};

This works well when mapping packages. The constraint is checked and a constraint violation
exception is raised if the first byte of the alleged package is not 0xff.

However, suppose we want to construct a new Package, with no particular contents. We
would use a constructor, but unfortunately:

(poke) Packet { }

unhandled constraint violation exception

What happened? Since we didn’t specify a value for the marker in the struct constructor,
a default value was used. The default value for an integral type is zero, which violates the
constraint associated with the field. Therefore, we would need to remember to specify the
marker, every time we construct a new packet:

(poke) Packet { marker = 0xff }

Packet {

marker=0xffUB,

length=0x0UB,

payload=[]

}

Unfortunately, such markers and magic numbers are not precisely very memorable. To help
with this, Poke has the notion of type field initializers. Let’s use one in our example:

type Packet =

struct

{

byte marker = 0xff;

byte length;

byte[length] payload;

};

Note how the syntax is different than the one used for constraints. When a field in a struct
type has an initializer, the struct constructor will use the initializer expression as the initial
value for the field. For example:

(poke) Packet {}

Packet {

marker=0xffUB,

length=0x0UB,

payload=[]

}

Chapter 22: The Poke Language 149

It is possible to specify both a constraint and an initializer in the same field. Suppose we want
to support several kinds of packets, characterized by several markers. The supported markers
are however a closed set. We could do it like this:

type Packet =

struct

{

byte marker = 0xff : marker in [0xffUB, 0xfeUB];

byte length;

byte[length] payload;

};

Note however that struct mappers do not make use of field initializers, since the mapped IO
space provides values for all the fields in the struct type. If we mapped the Packet type above,
we would need to add also a constraint to make sure the value of marker is the right one. This
also applies to constructing Packet types where an initial value is explicitly specified. We could
do it by specifying both an initial value, and a constraint expression:

type Packet =

struct

{

byte marker = 0xff : marker == 0xff;

byte length;

byte[length] payload;

};

This idiom is to common that Poke provides a more compact syntax to denote it, that avoids
verbosity and replicated logic:

type Packet =

struct

{

byte marker == 0xff;

byte length;

byte[length] payload;

};

It is considered good practice to design struct types in a way that a constructor with no
arguments will result in something usable.

22.6.8 Field Labels

In structs, each field is associated with an offset, which is relative to the beginning of the struct.
This is the offset used when reading and writing the field from/to the IO space when mapping.

The offset is reset to zero bits at the beginning of the struct type, and it is increased by the
size of the fields:

struct

{

/* Offset: 0#b */

uint<1> f1; /* Offset: 1#b */

sint<7> f2; /* Offset: 1#B */

int f3; /* Offset: 5#B */

Bar f4; /* Offset: 23#B */

}

It is possible to specify an alternative offset for a field using a field label.

Consider for example an entry in an ELF symbol table. Each entry has a st_info field which
is 64-bits long, that in turn can be interpreted as two fields st_bind and st_type.

Chapter 22: The Poke Language 150

The obvious solution is to encode st_info as a sub-struct that is integral, like this:

struct

{

elf32_word st_name;

struct uint<64>

{

uint<60> st_bind;

uint<4> st_type;

} st_info;

}

This makes the value of st_info easily accessible as an integral value. But we may prefer to
use labels instead:

struct

{

elf32_word st_name;

elf64_word st_info;

uint<60> st_bind @ 4#B;

uint<4> st_type @ 4#B + 60#b;

}

The resulting struct has fields st_info, st_bind and st_type, with the last two overlapping
the first.

Field labels are also useful in the rare cases where a variable part of a struct depends on
some data that comes after it. This happens for example in the COFF “line number” structures,
which are defined like this in C:

struct external_lineno

{

union

{

char l_symndx[4]; /* function name symbol index, iff l_lnno == 0*/

char l_paddr[4]; /* (physical) address of line number */

} l_addr;

char l_lnno[L_LNNO_SIZE]; /* line number */

};

i.e. the l_addr field is to be interpreted as an index in a table or as a physical address depending
on the value of l_lnno.

This is one way to denote the above data structure using Poke struct labels:

type COFF_LINENO_32 =

struct

{

uint<32> l_lnno 4#B; /* Line number. */

union

{

uint<32> l_symndx : l_lnno == 0;

offset<uint<32>,B> l_paddr;

} l_addr 0#B;

};

Note how the l_lnno field is stored after l_addr even if they appear in reverse order in the
struct definition. This allows us to refer to l_nno in the constraints for the union fields.

Chapter 22: The Poke Language 151

22.6.9 Pinned Structs

Pinned structs is a convenient way to write struct types where the offset of all its fields is zero.
They are equivalent to C unions.

For example, consider the _u field below in a CTF type description:

type Ctf_Stype_V1 =

struct

{

Ctf_Name ctt_name;

Ctf_Info_V1 ctt_info;

pinned struct

{

uint32 _size; /* Size of entire type in bytes. */

uint32 _type; /* Reference to another type. */

} _u;

};

Note that integral structs cannot be pinned. See Section 22.6.11 [Integral Structs], page 151.
And field labels are not allowed in pinned structs.

22.6.10 The OFFSET variable

The offset of the current field being mapped or constructed, relative to the beginning of the
struct, is at all times available in a variable called OFFSET. This is useful in situations where
we need that information in a constraint expression, the boundary of an array, an initialization
value, or the like.

For example, what follows is a typical usage of OFFSET in order to introduce some padding
in a struct:

type Elf64_Note =

struct

{

[...]

Elf64_Xword name;

byte[alignto (OFFSET, 4#B)] padding;

[...]

};

The value of this variable changes every time a new field is mapped or constructed, so
writing to it will only have effect until the next field is processed: at that time the value will be
overwritten.

22.6.11 Integral Structs

Integral structs are useful to cover cases where data is stored in composited integral containers,
i.e. where data is structured within stored integers.

Basically, when we structure data using Poke structs, arrays and the like, we often use the
same structure than a C programmer would use. For example, to model ELF RELA structures,
which are defined in C like:

type struct

{

Elf64_Addr r_offset; /* Address */

Elf64_Xword r_info; /* Relocation type and symbol index */

Chapter 22: The Poke Language 152

Elf64_Sxword r_addend; /* Addend */

} Elf64_Rela;

we could use something like this in Poke:

type Elf64_Rela =

struct

{

Elf64_Addr r_offset;

Elf64_Xword r_info;

Elf64_Sxword r_addend;

};

Here the Poke struct type is pretty equivalent to the C incarnation. In both cases the fields
are always stored in the given order, regardless of endianness or any other consideration.

However, there are situations where stored integral values are to be interpreted as composite
data. This is the case of the r_info field above, which is a 64-bit unsigned integer (Elf64_Xword)
which is itself composed by several fields, depicted here:

63 0

+----------------------+----------------------+

| r_sym | r_type |

+----------------------+----------------------+

MSB LSB

In order to support this kind of composition of integers, C programmers usually resort to
either bit masking (most often) or to the often obscure and undefined behaviour-prone C bit
fields. In the case of ELF, the GNU implementations define a few macros to access these sub-
fields:

#define ELF64_R_SYM(i) ((i) >> 32)

#define ELF64_R_TYPE(i) ((i) & 0xffffffff)

#define ELF64_R_INFO(sym,type) ((((Elf64_Xword) (sym)) << 32) + (type))

Where ELF64_R_SYM and ELF64_R_TYPE are used to extract the fields from an r_info, and
ELF64_R_INFO is used to compose it. This is typical of C data structures.

We could of course mimic the C implementation in Poke:

fun Elf64_R_Sym = (Elf64_Xword i) uint<32>:

{ return i .>> 32; }

fun Elf64_R_Type = (Elf64_Xword i) uint<32>:

{ return i & 0xffff_ffff; }

fun Elf64_R_Info = (uint<32> sym, uint<32> type) Elf64_Xword:

{ return sym as Elf64_Xword <<. 32 + type; }

However, this approach has a huge disadvantage: since we are not able to encode the logic of
these "sub-fields" in proper Poke fields, they become second class citizens, with all that implies:
no constraints on their own, can’t be auto-completed, can’t be assigned individually, etc.

This is where integral structs come to play. These are structs that are defined exactly like
your garden variety Poke structs, with a small addition:

type Elf64_RelInfo =

struct uint<64>

{

uint<32> r_sym;

uint<32> r_type;

};

Note the uint<64> addition after struct. This can be any integer type (signed or unsigned).
The fields of an integral struct should be integral themselves (this includes both integers and

Chapter 22: The Poke Language 153

offsets) and the total size occupied by the fields should be the same size than the one declared
in the struct’s integer type. This is checked and enforced by the compiler.

The Elf64 RELA in Poke can then be encoded like:

type Elf64_Rela =

struct

{

Elf64_Addr r_offset;

struct Elf64_Xword

{

uint<32> r_sym;

uint<32> r_type;

} r_info;

Elf64_Sxword r_addend;

};

When an integral struct is mapped from some IO space, the total number of bytes occupied
by the struct is read as a single integer value, and then the values of the fields are extracted
from it. A similar process is using when writing. That is what makes it different with respect a
normal Poke struct.

Consider for example we have the following sequence of bytes in our IO space (like a file):

0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80

Let’s see what happens when we map the integral struct above, in both big and little endian:

(poke) .set endian big

(poke) Elf64_RelInfo @ 0#B

Elf64_RelInfo {

r_sym=0x10203040U,

r_type=0x50607080U

}

(poke) .set endian little

(poke) Elf64_RelInfo @ 0#B

Elf64_RelInfo {

r_sym=0x80706050U,

r_type=0x40302010U

}

Looks good. For comparison, this is what happens when we do the same with an "equivalent"
(not really) non-integral struct operating on the same data:

type Elf64_RelInfoBogus =

struct

{

uint<32> r_sym;

uint<32> r_type;

};

We would get:

(poke) .set endian big

(poke) Elf64_RelInfoBogus @ 0#B

Elf64_RelInfoBogus {

r_sym=0x10203040U,

r_type=0x50607080U

}

(poke) .set endian little

Chapter 22: The Poke Language 154

(poke) Elf64_RelInfoBogus 0#B

Elf64_RelInfoBogus {

r_sym=0x40302010U,

r_type=0x80706050U

}

In this case, and unlike with integral structs, the endianness impacts the bytes of the indi-
vidual fields, not of the whole struct.

As you can see, integral structs can be used to denote a lot of commonly found idioms in
data structures and this includes a lot of what is sometimes denoted in C bit field. However, one
should be cautious when "translating" C structures to Poke, especially when the C programmer
has not been careful and incurres in sometimes obscure implementation-defined behavior. An
integral struct is not always the right abstraction to use when we see a C bit field!

As an example of the above, consider the following C struct:

struct regs

{

__u8 dst_reg:4;

__u8 src_reg:4;

};

Certain virtual architecture uses that data layout to store registers in instructions (no com-
ment.) Thing is, in bit fields like the above with sub-byte field sizes, the ordering of the fields
is not clearly defined, and ultimately what order to use is up to the compiler, i.e. to lore and
tradition. As it happens, GCC encodes src_reg in the most significant nibble of the byte and
dst_reg in the least significant nibble of the byte when compiling for a little-endian target, and
the other way around when compiling for a big-endian target. (I may have had that wrong, this
always confuses me.)

How could we encode the C struct regs in Poke? Let’s see.

A normal Poke struct clearly won’t do it:

type RegsBogus1 =

struct

{

uint<4> src;

uint<4> dst;

};

The reason being, the ordering of src and dst does not change when you switch endian-
ness (since this is Poke, we can in fact talk about real ordering of bits)... remember, poke is
WYPIWIG (what you poke is what you get) ;)

What about an integral struct?

type RegsBogus2 =

struct uint<8>

{

uint<4> src;

uint<4> dst;

};

This won’t work either. In fact, the net effect of the normal decoding of the normal struct
type RegsBogus1 and the map-an-integer-and-extract-fields decoding of the integral struct Regs-
Bogus2 is in this case totally equivalent.

A solution is to use a normal struct, and field labels:

type RegsBogus =

struct

Chapter 22: The Poke Language 155

{

var little_p = (get_endian == ENDIAN_LITTLE);

uint<8> src @ !little_p * 4#b;

uint<8> dst @ little_p * 4#b;

};

At this point, you may be wondering: is there anything particular in a field defined in an
integral struct? The answer is: no, not at all. These are regular, first-class fields. Likewise,
integral structs are perfectly regular structs. And of course, since this is poke, you can have
integral structs of say, 11 bits, or 3 bits, map them at offsets not aligned to bytes, and all the
typical poke-atrocities that we enjoy so much.

However, there exist a few restrictions, some of them fundamental, the others to be lifted
eventually:

− Integral structs can only have integral fields. This includes offsets and integral structs.

− No labels are allowed in the fields of integral structs. This is not a fundamental limitation,
and may be supported at some point.

− No optional fields are supported in integral structs. Support for this is actually partially
implemented (the mapper supports them but not the writer) and most probably will be
completed one of these days.

Integral structs can be converted from/to integral structs to/from integers, so we can do
things like:

rel.r_info as uint<64>;

And also automatic promotions in arithmetic operators, like:

rel.r_info + 20 * rel.r_info.r_type

Integers can also be “structured” into integral structs:

(poke) 0xdeadbeef as Elf32_RelInfo

Elf32_RelInfo {

r_sym=(uint<24>) 0xdeadbe,

r_type=0xefUB

}

22.6.12 Unions

Union types are defined much like struct types, using a very similar syntax:

union

{

[... elements ...]

}

Like in structs, the main kind of elements are fields. However, unlike in structs, the fields in an
union type denote alternatives. At any given time, only one alternative is selected, and therefore
union values have only one field.

Which of the several alternatives is selected is determined by the data integrity defined
by means of constraint expressions and other means. Alternatives are considered in turn, in
written order, and the first alternative that can be used without triggering a constraint violation
exception is selected.

It makes little sense to mark union types as pinned, since whatever alternative is chosen
will always be located at the beginning of the union. To avoid unnecessary confusion, the Poke
compiler will emit an error if you try to tag an union as pinned.

Similarly, labels are not allowed in union alternatives.

Chapter 22: The Poke Language 156

22.6.13 Union Constructors

Constructing union values is very similar to constructing struct values:

type_name { [field_initializer] }

The main difference is that union constructors require either exactly one field initializer, or
none. Specifying initialization values for more than one field doesn’t make sense in the case of
unions.

Suppose we have the following union type:

type Packet =

union

{

byte b : b > 0;

int k;

};

If we try to construct a Packet with an invalid b, we get a constraint error:

(poke) Packet {b = 0}

unhandled constraint violation exception

The reason why k is not chosen is because we specified b in the union constructor: we explicitly
as for a Packet of that kind, but the data we provide doesn’t accommodate to that. If we
wanted another kind of value, we could of course specify an initial value for k instead:

(poke) Packet {k = 10}

Packet {

k=10

}

If no field initializer is specified in an union constructor then each alternative is tried assuming
all fields have default values, which in the case of integral types is a zero:

(poke) Packet {}

Packet {

k=0

}

Therefore the alternative b is considered invalid (it has to be bigger than 0) and k is chosen
instead.

22.6.14 Integral Unions

Integral unions are useful to cover cases where we have variants of data encoded in integers.
One example could be CPU instructions encoded as 16-bit or 32-bit numbers.

type InstructionFormat_1 =

struct uint<32>

{

uint<20> imm31_12;

uint<5> rd;

uint<7> opcode : valid_opcode_for_format_1 (opcode);

};

type InstructionFormat_2 =

struct uint<32>

{

uint<7> funct7;

uint<5> rs2;

uint<5> rs1;

Chapter 22: The Poke Language 157

uint<3> funct3;

uint<5> rd;

uint<7> opcode : valid_opcode_for_format_2 (opcode);

};

type Instruction =

union uint<32>

{

InstructionFormat_1 f1;

InstructionFomrat_2 f2;

};

Like integral structs, integral unions can be casted to/from integers; e.g., 3211411U as

Instruction will create an Instruction union.

Like integral structs, integral unions can have fields of the following types: integral, offset,
integral struct or union.

22.6.15 Optional Fields

Sometimes a field in a struct is optional, i.e. it exists or not depending on some criteria. A good
example of this is the “extended header” in a MP3 id3v2 tag. From the specification:

The second bit (bit 6) indicates whether or not the header is followed

by an extended header. The extended header is described in section

3.2. A set bit indicates the presence of an extended header.

In order to express this in a Poke struct type, we could of course use an union, like:

type ID3V2_Tag =

struct

{

ID3V2_Hdr hdr;

union

{

ID3V2_Ext_Hdr hdr : hdr.extended_hdr_present;

struct {};

} ext;

...

}

That’s it, we use an union with an empty alternative. However, this approach has two
problems. First, it is a bit cumbersome to write and it becomes necessary to introduce an inter-
mediate named field like ext above. Second, and most importantly, the constraint expression in
the union alternative is evaluated only once the alternative has been already decoded.

Therefore Poke provides a more convenient way to denote this:

type ID3V2_Tag =

struct

{

ID3V2_Hdr hdr;

if (hdr.extended_hdr_present)

IDV2_Ext_Hdr ext_hdr;

...

}

In the example above ext_hdr will be decoded only if hdr.extended_hdr_present is true,
which is what we want.

Chapter 22: The Poke Language 158

Sometimes, however, we really need to decode a field to decide whether it is present or absent
in the final struct. In these cases, we can use a suffix syntax:

type ID3V2_Tag =

struct

{

ID3V2_Hdr hdr;

IDV2_Ext_Hdr ext_hdr if hdr.extended_hdr_present

&& ext_hdr.invisible;

...

}

Note how in this example the field ext_hdr can appear itself in the conditional expression.

If both a constraint and a suffix optional field expression are specified, the second should
follow the first.

One important characteristic of optional fields with suffix expressions to keep in mind is that
they are always constructed or mapped, even when they are omitted. This is because, generally
speaking, the value of an optional field may be necessary in order to determine whether the
optional field is present or not.

This may result on unexpected results for the unaware pokist, like in the example below:

struct

{

Header hdr;

byte[hdr.len - hdr.padding] data if hdr.len >= hdr.padding;

}

where the array index may underflow if hdr.len is less or equal than hdr.padding.

The obvious solution for this problem is to use a prefix conditional expression instead.

For obvious reasons, optional fields are not allowed in unions.

22.6.16 Casting Structs

It is possible to cast a struct of some particular type into another struct type (but not to an
union.) Examples:

(poke) type Foo = struct { int i; int j; };

(poke) type Bar = struct { int k; int j; };

(poke) Bar {j=2} as Foo {}

Foo {i=0,j=2}

The semantics of the cast are exactly the same than constructing a struct of the target type
using the struct provided as an expression to the cast.

This means that some fields in the original struct may be “lost” when the struct is converted
to the new type. Consider the following two definitions:

type Foo = struct { int i; long j; };

type Bar = struct { int i; }

Let’s cast some values and see what we obtain:

(poke) Bar {}

Bar {

i=0x0

}

(poke) Bar {} as Foo

Foo {

i=0x0,

Chapter 22: The Poke Language 159

j=0x0L

}

(poke) Foo {} as Bar

Bar {

i=0x0

}

It is possible to cast an integral struct into an integral type. The value to cast is extracted
from the struct fields, and then it is converted to the target type.

Given the following integral struct type:

type Foo =

struct int<64>

{

int<32> f1;

uint<32> f2;

};

We can operate:

(poke) Foo { f1 = 1, f2 = 1 } as uint<64> + 2

0x100000003UL

Conversely, it is possible to cast an integral value to an integral struct:

(poke) 0x100000003UL as Foo

Foo {

f1=0x1,

f2=0x3U

}

22.6.17 Declarations in Structs

Type declarations, variable declarations and function declarations are all allowed inside struct
and union types. The scope of the entity being declared spans from the declaration until the
end of the struct or union type being defined.

Functions can’t set fields defined in the struct type.

22.6.18 Methods

Methods in structs can be defined using the method keyword in definitions like this:

method identifier = function_body

where function body is the body of a function. See Section 22.13.1 [Function Declarations],
page 168.

When invoked, a method gets an implicit last argument which is the struct value whose
method is being used.

Methods can refer to the fields of the containing struct type that have been defined before
the method itself, by name.

Additionally, the containing struct can be referred explicitly under the name SELF in the
body of the method. SELF has type any.

22.6.19 Struct Pretty Printers

By default the printing statements will print a very detailed written representation of struct and
union values. This implies printing out every detail of every field.

However, it is possible to change the written representation of a struct value by defining
pretty-printing methods, which have prototypes:

method _print = void: { method_body }

Chapter 22: The Poke Language 160

If a struct or union type has a method called _print, then it is invoked every time a printed
representation of the value shall be printed on the terminal.

For example a value of a struct type:

type Switch =

struct

{

int<32> state;

method _print = void:

{

printf "#<switch:%i32d>", state;

}

};

When printed when pretty-printers are active, will result in:

(poke) .set pretty-print yes

(poke) Switch { state = 1 }

#<switch:1>

Struct or union fields can also have pretty-printers defined for them: just define a method
called _print_field_name to pretty-print a particular field.

For example a value of a struct type:

type Switch =

struct

{

int<32> state;

method _print_state = void:

{

printf ("#<%s>", state ? "on" : "off");

}

};

This will result in:

(poke) .set pretty-print yes

(poke) Switch { state = 1 }

Switch {

state=#<on>

}

22.6.20 Computed Fields

A computed field declaration in a struct or union type has the form:

computed field_type field_name;

Where field type is a type specifier denoting the type of the computed field, and field name is an
identifier. Note that, unlike regular fields, computed fields cannot have endianness annotations,
constraints defined for them, cannot be optional, nor have initialization values.

Computed fields are not really stored in the corresponding struct values: their value is
computed every time they are referred, by invoking a couple of methods that the user should
define:

− A getter method with name get_field_name and signature ()field_type.

This getter is used to compute the value of the computed field when it is referenced as a
r-value.

Chapter 22: The Poke Language 161

− A setter method with name set_field_name and signature (field_type)void.

This setter is called when the computed field is assigned to in a l-value.

For example, consider the following struct denoting a RISC-V instruction where the imme-
diate is distributed in several chunks:

type RV32_InsnFmt_J = struct uint<32>

{

uint<1> imm20;

uint<10> imm10_1;

uint<1> imm11;

uint<8> imm19_12;

RV_Reg rd;

RV_Opcode opcode : opcode in RV_OPCODES_J;

computed int<32> imm;

method get_imm = int<32>:

{

return imm20:::imm19_12:::imm11:::imm10_1:::(0 as int<1>) as int<21>;

}

method set_imm = (int<32> imm) void:

{

imm20 = (imm .>> 20) & 1;

imm10_1 = (imm .>> 19) & 0x3ff;

imm11 = (imm .>> 10) & 1;

imm19_12 = (imm .>> 19) & 0xff;

}

};

When we create a value of type RV32_InsnFmt_J we can then externally access the computed
field imm like any other normal field. However, computed fields are not accessible in other struct
methods, functions, constraint expressions and the like.

22.6.21 Struct Attributes

The following attributes are defined for struct values.

size Gives an offset with the storage occupied by the complete struct. Example:

(poke) type Packet = struct { byte s; byte[s] d; }

(poke) (Packet { s = 3 })'size

32UL#b

length Gives the number of fields stored in the struct. Note that, due to absent fields, this
doesn’t always corresponds to the number of fields that appear in the definition of
a struct type.

For example, for the following struct type:

type Packet =

struct

{

byte magic: magic in [0xffUB,0xfeUB];

byte control if magic == 0xfe;

byte[128] payload;

};

Chapter 22: The Poke Language 162

We get the following results:

(poke) (Packet { magic = 0xff })'length

2UL

(poke) (Packet { magic = 0xfe })'length

3UL

mapped Boolean indicating whether the struct is mapped.

strict Boolean indicating whether the struct is mapped in strict mode.

elem (idx)

Element occupying the position idx in the array. Note that this attribute evaluates
to a value of type any.

eoffset (idx)

Offset of the field identified by the index idx in the struct. Examples:

(poke) type Foo = struct { int i; long l; }

(poke) Foo{}'eoffset (1)

32#b

If the provided index is out of bounds then E_out_of_bounds is raised.

esize (idx)

Size of the field identified by the index idx in the struct. Examples:

(poke) type Foo = struct { int i; long l; }

(poke) Foo{}'esize (1)

64#b

If the provided index is out of bounds then E_out_of_bounds is raised.

ename (idx)

Name of the field identified by the index idx in the struct. If the field is anonymous
then the empty string.

Examples:

(poke) type Foo = struct { int foo; long bar; }

(poke) Foo{}'ename (0)

"foo"

If the provided index is out of bounds then E_out_of_bounds is raised.

22.7 Types

22.7.1 type

The type directive allows you to declare named types. The syntax is:

type name = type [, name = type]...;

where name is the name of the new type, and type is either a type specifier or the name of some
other type.

The supported type specifiers are:

int<n>, uint<n>

Integral types. See Section 22.2.4 [Integer Types], page 128.

string The string type. See Section 22.4.2 [String Types], page 136.

type[boundary]

Array types. See Section 22.5.2 [Array Types], page 138.

Chapter 22: The Poke Language 163

struct { ... }

Struct types. See Section 22.6.1 [Struct Types], page 144.

(type,...)type:

Function types. See Section 22.13.5 [Function Types], page 170.

any The any type is used to implement polymorphism. See Section 22.7.2 [The any
Type], page 163.

22.7.2 The any Type

Poke supports polymorphism with the any type. This type is used in contexts where a value of
any type is allowed. For example, this is how you would declare a function that prints the size
of any given value:

fun print_size = (any value) void:

{

printf "%v\n", any'size;

}

The rules for handling any values are simple:

− Everything coerces to any.

− Nothing coerces from any.

This means that using any operator that require certain types with any values will fail: you
have to cast them first. Example:

(poke) fun foo = (any v) int: { return v as int; }

Arrays of any, any[], are also supported.

Values of type any can be compared for equality and inequality, using the == and != operators.

22.7.3 The isa Operator

The binary operator isa allows you to check for the type of a given value:

(poke) 10 isa int

1

(poke) "foo" isa string

1

(poke) (Packet 0#B) isa Packet

1

(poke) 2 as int<3> isa uint<4>

0

22.7.4 typeof

The typeof language construction provides information about some Poke type. It has the form:

typeof (entity)

where entity is either a value or a type specifier. It returns a Pk_Type value describing either
the specified type, or the type of the specified value.

The Pk_Type struct provides the following fields for all kind of types:

uint<32> code

This is a numerical code that identifies the kind of the described type.

Valid codes are PK_TYPE_UNKNOWN, PK_TYPE_INTEGRAL, PK_TYPE_OFFSET, PK_TYPE_
STRING, PK_TYPE_ARRAY, PK_TYPE_STRUCT, PK_TYPE_FUNCTION and PK_TYPE_ANY.

Chapter 22: The Poke Language 164

string name

If the described type is named, then this field contains the name. Otherwise it is
the empty string.

(poke) type myint = int

(poke) typeof (1 as myint)

Pk_Type {

code=1,

name="myint",

[...]

}

int<32> complete_p

If the size of the described type can be determined at compile time, then this field
is 1, 0 otherwise.

The following fields are provided in Pk_Type only for integral, offset and integral struct types:

int<32> signed_p

If the described type is signed, this field is 1, 0 otherwise.

uint<64> size

The number of bits of values of the described integral type, or the number of bits
of the integral value of the described integral struct type, or the number of bits of
the magnitude of the described offset type.

This would be 23UL for an int<23> type, and 32UL for an offset<int<32>,1>

type.

The following fields are provided in Pk_Type only for offset types:

_unit The unit of the described offset type, in bit units. This would be 8UL for an
offset<int<32>,B> type, for example.

The following fields are provided in Pk_Type only for array types:

int<32> bounded_p

This field is 1 if the described array type is bounded by either number of elements
or by size, 0 otherwise.

The following fields are provided in Pk_Type only for struct types:

int<32> union_p

This field is 1 if the described struct type is an union, 0 otherwise.

int<32> pinned_p

This field is 1 if the described struct type is pinned, 0 otherwise.

int<32> integral_p

This field is 1 if the described struct type is integral, 0 otherwise.

int<32> nfields

Number of fields defined in the described struct type. This count includes optional
fields and computed fields.

int<32> nmethods

Number of methods defined in the described struct type.

string[] fnames

Array of nfields strings, with the names of the fields defined in the described struct
type. Anonymous fields feature empty strings.

Chapter 22: The Poke Language 165

int<32>[] fcomputed

Array of nfields integers, which are 1 for fields that are computed, 0 for fields that
are not computed.

string[] ftypes

Array of nfields strings, with the type specifiers of the types of the fields defined
in the described struct type.

string[] mnames

Array of nmethods strings, with the names of the methods defined in the described
struct type.

string[] mtypes

Array of nmethods strings, with the type specifiers of the types of the methods
defined in the described struct type.

(any)any deintegrator

Closure that, when passed an integral value of the same signedness and width than
the described integral struct, returns the struct value corresponding to that value.

(poke) type Foo = struct int<32> { int<16> a; uint<16> b; }

(poke) typeof (Foo).deintegrator (0x0eadbeef)

Foo {

a=0x0eadH,

b=0xbeefUH

}

The following fields are provided in Pk_Type only for struct and array types:

(int<32>,int<32>,uint<64>)any mapper

Closure that, when passed an integer predicate denoting whether to do a strict
mapping, an IO space identifier, a bit-offset in the given IO space, map a value of
the described type.

(any)void writer

Closure that, when passed a mapped value of the described type, writes the contents
of the value to the corresponding IO space.

(any)any integrator

Closure that, when passed a value of the described type (an array type or an integral
struct type) returns the integral value corresponding to the contents of the value.

(poke) type Foo = struct int<32> { int<16> a; uint<16> b; }

(poke) typeof (Foo).integrator (Foo { a = 0xab, b = 0xcd })

0x00ab00cd

(any,any)int<32> comparator

Closure that, when passed two values of the described type, returns 1 if the values
are equal,0 otherwise.

22.8 Assignments

22.8.1 Simple Assignments

The assignment statement has the form:

lvalue = exp;

where lvalue is either:

• A variable.

Chapter 22: The Poke Language 166

• A field reference like foo.bar.

• An index reference like foo[30].

• A map of a type, like int @ 0#B or int[3] @ 0#B or Packet @ 12#B.

In all cases, the type of exp should match the type of the referred entity.

Examples:

(poke) foo = 10

(poke) packet.length = 4

(poke) packet.data = [1,2,3,4]

(poke) packet.data[2] = 666

(poke) int @ 23#B = 23

(poke) string @ str.offset = "foo"

(poke) int[2] @ 23#B = [1,2]

(poke) Packet @ 0#B = Packet { ... }

22.8.2 Bit Assignments

Bit assignment statements have the form:

bconc_exp = exp

Where bconc exp is an expression composed by bit-concatenation operators and operands that
should be valid l-values themselves, and exp is an expression whose type must be integral and
whose width must correspond exactly to the width of the integral type of bconc exp.

For example, consider this code:

var a = 0UH;

var b = 0UH;

a:::b = 0xbeef;

The assignment above updates the value of the variable a to be 0xbeUH and the value of the
variable b to be 0xefUH. Note how the signedness of bconc exp and exp may differ.

Any valid l-value can be used as an operand of the bit-concatenation operators in bconc exp.
For example:

var a = [0UH,0UH];

a[0]:::a[1] = 0xbeef;

or, using struct fields:

type Foo = struct { uint<16> hi; uint<16> lo; };

var f = Foo {};

f.hi:::f.lo = 0xbeef;

22.9 Compound Statements

Compound statements have the form

{ stmt... }

where stmt. . . is a list of statements, which can be themselves compound statements. Compound
statements are primarily used to sequence instructions like:

{

do_a;

do_b;

do_c;

Chapter 22: The Poke Language 167

}

A compound statement introduces a new lexical scope. Declarations in the compound state-
ments are local to that statement.

Finally, compound statements can be empty: { }.

22.10 Conditionals

Poke provides several conditional statements, and a ternary conditional operator, which are
discussed in the sections below.

22.10.1 if-else

The if-else statement has the form

if (exp) if_stmt [else else_stmt]

where exp is an expression that should evaluate to a boolean value (i.e. to an integer), if stmt
is a statement that will be executed if exp holds true, and else stmt is a statement that will be
executed if exp holds false. The else part of the statement is optional.

22.10.2 Conditional Expressions

Poke supports a ternary conditional expression that has the form:

condition ? true_expression : false_expression

where condition is an expression that should evaluate to a boolean, and true expression and
false expression are expressions that have exactly the same type.

22.11 Loops

Poke supports several iteration statements, which are discussed in the sections below.

22.11.1 while

The while statement has this form:

while (exp) stmt

where exp is an expression that should evaluate to a boolean (i.e. to an integer) and stmt is an
statement that will be executed until exp holds false.

It is possible to leave the loop from within stmt using the break statement. Example:

while (1)

{

[...]

if (exit_loop)

break;

}

It is also possible to jump to the next iteration of the loop from within stmt using the
continue statement. Example:

while (1)

{

[...]

if (continue_loop)

continue;

}

Chapter 22: The Poke Language 168

22.11.2 for

The for statement has this form:

for ([decls];[expr];[stmts]) stmt

where decls is an optional declaration or chain of declarations separated by commas, expr is an
optional boolean expression, stmts is an optional comma-separated list of statements, and stmt
is a statement.

22.11.3 for-in

The for-in statement has this form:

for (formal in container [where exp]) stmt

where, in each iteration, the name formal will be associated with consecutive values of container,
which shall be an expression evaluating to an array or a string. formal is available in stmt, which
is the statement executed in each iteration.

If the where part is specified, then only iteration in which exp holds true are processed.
formal can be referred in exp. Note that this doesn’t mean the loop will stop after processing
the first “not selected” element. See the following example:

(poke) for (c in [1,2,3,4] where c % 2) printf " %v", c

1 3

It is possible to leave the loop from within stmt using the break statement.

It is also possible to jump to the next iteration of the loop from within stmt using the
continue statement.

22.12 Expression Statements

Poke is one of these languages where there is a clear separation between expressions and state-
ments. However, it is often useful to use an expression in the place of an statement, in order to
benefit from its side effects.

For that purpose Poke allows you to expressions as statements using the following syntax:

exp;

The value computed by the expression will be discarded.

22.13 Functions

22.13.1 Function Declarations

A function is declared using the following syntax:

fun name = [(formal,...)] ret_type:

{

... body ...

}

where name is the name of the function, which uses the same namespace as variables and types
and ret type is the type of the value returned by the function. If the function returns no value
then it is void.

Each formal argument has the form:

type name [= exp]

where type is the type of the formal, name its name, and exp is an optional expression that will
be used to initialize the argument in case it is not specified when the function is called.

The last formal argument can take the form name..., meaning the function is variadic. See
Section 22.13.3 [Variadic Functions], page 169.

Chapter 22: The Poke Language 169

If the function takes no arguments, it is possible to omit the list of arguments entirely:

fun hello = void: { print "Hello!\n"; }

The return statement is used to return values in functions that return a value. Example:

fun gcd = (uint<64> a, uint<64> b) uint<64>:

{

if (b == 0)

return a;

else

return gcd (b, a % b);

}

Note that reaching the end of a non-void function will trigger a run-time error.

22.13.2 Optional Arguments

Optional function arguments are specified like:

fun atoi = (string s, int b = 10) long: { ... }

Which means that if the base argument is not specified when passed to atoi then it is
initialized to 10.

Optional arguments should not appear before any non-optional argument in function decla-
rations. The following is not valid Poke:

fun foo = (int i = 10, int j) int: { return i + j; }

Note that arguments declared before an optional argument can be used in its initialization
expression. This is valid Poke:

fun foo = (int n, int[n] array = init_array (n)) void: { ... }

22.13.3 Variadic Functions

Functions getting an arbitrary number of arguments are denoted like this:

fun printf (string fmt, args...) void: { ... }

The variadic argument shall be the last argument in the function, and it is of type any[].

22.13.4 Calling Functions

To call a function, write its name followed by the arguments in parentheses. Examples:

foo (1,2,3)

bar ()

If the function takes no arguments then it is not necessary to write the empty list of argu-
ments. Therefore the following two calls are equivalent:

bar ()

bar

If the closure of function that takes no arguments is needed, the call can be avoided by
putting the variable immediately inside parenthesis, like this:

(poke) (foo)

#<closure>

There is an alternate syntax that can be used in both expressions and expression-statements.
This alternate syntax is:

function_name :arg1 val1...

where arg1 is the name of an argument and val1 the value to pass for that argument. This is
useful when using functions as commands in the REPL:

(poke) dump :from 12#B :size 16#B :ascii 0

Chapter 22: The Poke Language 170

Note that the named arguments can appear in any order. The following two calls are equiv-
alent:

dump :from 12#B :size 16#B

dump :size 16#B :from 12#B

If this alternate syntax for function calls is to be used in an expression, it is necessary to
surround it with parenthesis:

2 + (gcd :a 1024 :b 8)

22.13.5 Function Types

Function types are denoted like:

(type,...)ret_type:

where type are the types of the arguments and ret type is the type of the value returned by the
function.

Optional arguments are marked with a ? after the type. For example, the type of the atoi

function with declaration:

fun atoi = (string s, int b = 10) long: { ... }

is (string,int?)long:.

If the function has variadic arguments, the position of the variadic argument in the function
type specifier contains For example, the type of a printf function with declaration:

fun printf (string fmt, args...) void: { ... }

is (string,...)void:.

22.13.6 Lambdas

Poke support lambda expressions using the following syntax:

lambda function_specifier

Where function specifier is any function specifier. Examples:

lambda void: {}

lambda (int i) int: { return i * 2; }

Lambdas can be manipulated exactly like any other Poke value, and can be stored in variables.
Therefore, this is an alternative way of defining a named function (which can’t be recursive for
obvious reasons):

var double = lambda (int i) int: { return i * 2 };

22.13.7 Function Comparison

The equality operator (==) and the inequality operator (!=) can be applied to functions. They
evaluate to true if the operands are the same function value. Examples:

(poke) lambda void: {} == lambda void: {}

0

(poke) lambda void: {} != lambda void: {}

1

(poke) var f = void: {}

(poke) f == f

1

(poke) f != f

0

Chapter 22: The Poke Language 171

22.13.8 Function Attributes

The following attributes are defined for function values.

size Gives an offset 0#B, by convention.

22.14 Assembler

Poke provides two ways to execute PVM assembler instructions: an asm expression and an asm

statement.

asm statements take the following form:

asm (template [: outputs [: inputs]])

where template is the written form of a PVM assembler program, outputs a comma separated
list of l-values and inputs a comma separated list of expressions.

Before the assembler program in template is executed, the inputs (if any) are pushed on the
stack. After the assembler program is executed, it is expected to have left the same number of
elements on the stack than outputs specified. These values are then assigned to the outputs, in
reverse order.

Example:

var result = 0;

asm ("addi; nip2" : result : 10, 20);

After the execution of the asm statement above, the value 30 is stored in the variable result.

asm expressions take the form:

asm type: (template [: inputs])

where type is a simple type specifier and template and inputs have the same meaning than in
asm statements. A single output is always expected to be generated on the stack, of type type.

Example:

(poke) asm int: ("addi; nip2" : 10, 20) + 2

32

In both asm statements and expressions the compiler generates code that tries to determine
whether the execution of the assembler code results in the original stack being underflown or
overflown. If this is found to happen an exception E_stack is raised.

E_stack is also raised in case an asm statement or expression leaves a non-representable PVM
value as an output. This is for example the case of PVM_NULL, which can’t be represented in
Poke.

Note however that the above mentioned tests are not perfect, and it is generally possible to
crash the system using asm statements or expressions.

22.15 Endianness

Byte endianness is an important aspect of encoding data. As a good binary editor poke provides
support for both little and big endian, and will soon acquire the ability to encode exotic endi-
anness like PDP endian. Endianness control is integrated in the Poke language, and is designed
to be easily used in type descriptions.

22.15.1 .set endian

GNU poke maintains a global variable that holds the current endianness. This is the endianness
that will be used when mapping integers whose types do not specify an explicit endianness.

Like other poke global state, this global variable can be modified using the .set dot-
command:

.set endian little

Chapter 22: The Poke Language 172

.set endian big

.set endian host

The current endianness can be obtained like this:

(poke) .set endian

little

We can easily see how changing the current endianness indeed impacts the way integers are
mapped:

(poke) dump :from 0#B :size 4#B :ruler 0 :ascii 0

00000000: 8845 4c46

(poke) .set endian little

(poke) int @ 0#B

0x464c4588

(poke) .set endian big

(poke) int @ 0#B

0x88454c46

22.15.2 Endian in Fields

It is possible to set the endianness of integral fields in struct type descriptors. See Section 22.6.4
[Field Endianness], page 146.

22.15.3 Endian built-ins

As handy as the .set endian dot-command may be, it is also important to be able to change
the current endianness programmatically from a Poke program. For that purpose, the PKL
compiler provides a couple of built-in functions: get_endian and set_endian.

Their definitions, along with the specific supported values, look like:

var ENDIAN_LITTLE = 0;

var ENDIAN_BIG = 1;

fun get_endian = int: { ... }

fun set_endian = (int endian) int: { ... }

Accessing the current endianness programmatically is especially useful in situations where
the data being poked features a different structure, depending on the endianness.

A good (or bad) example of this is the way registers are encoded in eBPF instructions. eBPF
is the in-kernel virtual machine of Linux, and features an ISA with ten general-purpose registers.
eBPF instructions generally use two registers, namely the source register and the destination
register. Each register is encoded using 4 bits, and the fields encoding registers are consecutive
in the instructions.

Typical. However, for reasons we won’t be discussing here the order of the source and
destination register fields is switched depending on the endianness.

In big-endian systems the order is:

dst:4 src:4

Whereas in little-endian systems the order is:

src:4 dst:4

In Poke, the obvious way of representing data whose structure depends on some condition is
using an union. In this case, it could read like this:

type BPF_Insn_Regs =

union

{

Chapter 22: The Poke Language 173

struct

{

BPF_Reg src;

BPF_Reg dst;

} le : get_endian == ENDIAN_LITTLE;

struct

{

BPF_Reg dst;

BPF_Reg src;

} be;

};

Note the call to the get_endian function (which takes no arguments and thus can be called
Algol68-style, without specifying an empty argument list) in the constraint of the union al-
ternative. This way, the register fields will have the right order corresponding to the current
endianness.

Nifty. However, there is an ever better way to denote the structure of these fields. This is it:

type BPF_Insn_Regs =

struct

{

var little_p = (get_endian == ENDIAN_LITTLE);

BPF_Reg src @ !little_p * 4#b;

BPF_Reg dst @ little_p * 4#b;

};

This version, where the ordering of the fields is implemented using field labels, is not only
more compact, but also has the virtue of not requiring additional “intermediate” fields like le

and be above. It also shows how convenient can be to declare variables inside structs.

Let’s see it in action:

(poke) BPF_Insn_Regs @ 1#B

BPF_Insn_Regs {src=#<%r4>,dst=#<%r5>}

(poke) .set endian big

(poke) BPF_Insn_Regs @ 1#B

BPF_Insn_Regs {src=#<%r5>,dst=#<%r4>}

Changing the current endianness in constraint expressions is useful when dealing with binary
formats that specify the endianness of the data that follows using some sort of tag. This is the
case of ELF, for example. The first few bytes in an ELF header conform what is known as the
e_ident. One of these bytes is called ei_data and its value specifies the endianness of the data
stored in the ELF file.

This is how we handle this in Poke:

fun elf_endian = (int endian) byte:

{

if (endian == ENDIAN_LITTLE)

return ELFDATA2LSB;

else

return ELFDAT2MSB;

}

[...]

Chapter 22: The Poke Language 174

type Elf64_Ehdr =

struct

{

struct

{

byte[4] ei_mag : ei_mag[0] == 0x7fUB

&& ei_mag[1] == 'E'

&& ei_mag[2] == 'L'

&& ei_mag[3] == 'F';

byte ei_class;

byte ei_data : (ei_data != ELFDATANONE

&& set_endian (elf_endian (ei_data)));

byte ei_version;

byte ei_osabi;

byte ei_abiversion;

byte[6] ei_pad;

offset<byte,B> ei_nident;

} e_ident;

[...]

};

Note how set_endian returns an integer value. . . it is always 1. This is to facilitate its usage
in field constraint expressions.

22.16 Mapping

The purpose of poke is to edit IO spaces, which are the files or devices, or memory areas being
edited. This is achieved by mapping values. Mapping is perhaps the most important concept in
Poke.

22.16.1 IO Spaces

GNU poke supports the abstract notion of IO space, which is an addressable space of Poke
objects: integers, strings, arrays, structs, etc. This underlying storage for the IO spaces (which
we call IO devices) can be heterogeneous: from a file your file system to the memory of some
process.

22.16.1.1 open

The open builtin allows you to create new IO spaces, by opening an IO device. It has the
following prototype:

fun open = (string handler, uint<64> flags = 0) int<32>

where handler is a string identifying the IO device that will serve the IO space. This handler
can be:

name An auto growing memory buffer.

pid://[0-9]+

The process ID of some process.

/path/to/file

An either absolute or relative path to a file.

nbd://host:port/export

nbd+unix:///export?socket=/path/to/socket

A connection to an NBD server. See Section 20.5 [nbd command], page 116,

Chapter 22: The Poke Language 175

flags is a bitmask that specifies several aspects of the operation, including the mode in which
the IO space is opened. Its value is usually built by ORing a set of flags that are provided by
the compiler. These are:

IOS_F_READ

The IO space is intended to be read.

IOS_F_WRITE

The IO space is intended to be written.

IOS_F_CREATE

If the IO device doesn’t exist, then create it, usually empty.

Note that the specific behaviour of these flags depend on the nature of the IO space that is
opened. For example a memory buffer is always truncated at creation by default.

In order to ease the usage of open, a few pre-made bitmaps are provided to specify opening
modes:

IOS_M_RDONLY

This is equivalent to IOS_F_READ.

IOS_M_WRONLY

This is equivalent to IOS_F_WRITE.

IOS_M_RDWR

This is equivalent to IOS_F_READ | IOS_F_WRITE.

The open builtin returns a signed 32-bit integer. This number will identify the just opened
IOS until it gets closed.

If there is a problem opening the specified IO device then open will raise an E_no_ios

exception.

22.16.1.2 opensub

The opensub standard function allows you to create IO spaces that show a sub-region of some
other IO space. The prototype is:

fun opensub = (int<32> ios,

offset<uint<64>,B> base, offset<uint<64>,B> size,

string name = "",

uint<64> flags = 0) int<32>

where ios is the ID of the base IOS, base is the offset in ios where the sub-range starts and size
is the size of the range.

The argument name is a descriptive name of the contents of the range, and it is empty by
default.

The argument flags is an ORed value of IOS_F_* flags. If no explicit flags are specified then
the sub space inherits the flags of the underlying base IOS. If explicit flags are provided and
they contradict the flags of the underlying IOS then E_ios_flags is raised.

Trying to access a sub space whose base IOS has been closed results in a E_io exception.

22.16.1.3 openproc

The openproc standard function allows you to create IO spaces to access the memory of some
running program, given its process ID. The prototype is:

fun openproc = (uint<64> pid, uint<64> flags = 0) int<32>

where pid is the process ID whose memory we want to poke and flags is a set of open flags.

Chapter 22: The Poke Language 176

22.16.1.4 close

The close builtin allows you to destroy IO spaces, closing the underlying IO device. The
prototype is:

fun close = (int<32> ios) void

where ios is some previously created IO space. All pending data is written to the underlying IO
device.

If the IO space specified to close doesn’t exist then an E_no_ios exception is raised.

If errors occurred while closing the IO space, then E_ios exception is raised.

22.16.1.5 flush

The builtin flush performs a “flushing” operation on a given IO space. The prototype is:

fun flush = (int<32> ios, offset<uint<64>,1> offset) void

Where ios is the IOS identifier where to perform the flush. The semantics associated with
the “flushing” operation depends on the kind of IO space:

• Read-only stream IOS will discard already mapped input up to offset. Any further attempt
of mapping data at that area will cause an E eof exception (for Early Of File ;)).

• Flushing is a no-operation for other kind of IO spaces.

22.16.1.6 get_ios

GNU poke maintains a current IO space, which is the last created IO space (this includes IO
spaces opened and selected using a dot-command). The builtin get_ios returns this space. It
has the following prototype:

fun get_ios = int<32>

If there is no IO space, get_ios will raise the E_no_ios exception.

22.16.1.7 set_ios

The set_ios builtin allows you to set a specific IO space as the new current IO space. It has
the following prototype:

fun set_ios = (int<32> ios) int<32>

where ios is the IO space that will become the current IO space. If the IO space specified to
set_ios doesn’t exist, E_no_ios will be raised.

Note that set_ios always returns 1. This is to ease its usage in struct fields constraint
expressions.

22.16.1.8 iosearch

The following builtin allows to search for an IO space by name, or handler. It has the following
prototype:

fun iosearch = (string handler) int<32>

It returns the identifier of the IO space named handler. If no such IO space is found, then the
exception E_no_ios is raised.

22.16.1.9 iolist

At any time there are zero or more open IO spaces. The iolist builtin returns an array of
identifiers of these IO spaces. It has the following prototype:

fun iolist = int<32>[]

If no IO space is currently open then iolist returns the empty array. The ordering of the IO
spaces in the array is arbitrary.

Chapter 22: The Poke Language 177

22.16.1.10 openset

Generally when an IO space is opened with open it won’t automatically become the current IO
space; it will only happens if there wasn’t an IO space previously open.

The standard function openset is like open that always sets the opened IO space as the new
current space. It has the following prototype:

fun openset = (string handler, uint<64> flags = 0) int<32>

Where the meaning of handler, flags and the returned value are exactly like in open.

22.16.1.11 iosize

The iosize builtin returns the size of a given IO space, as an offset. It has the following
prototype:

fun iosize = (int<32> ios = get_ios) offset<uint<64>,1>

If the IO space specified to iosize doesn’t exist, E_no_ios will be raised.

22.16.1.12 iohandler

The iohandler builtin returns the handler string of some given IO space. It has the following
prototype:

fun iohandler = (int<32> ios = get_ios) string

If the IO space specified to iohandler doesn’t exist, E_no_ios will be raised.

22.16.1.13 ioflags

The ioflags builtin returns the flags active in a given IO space, encoded in an unsigned 64-bit
integer. It has the following prototype:

fun ioflags = (int<32> ios = get_ios) uint<64>

If the IO space specified to ioflags doesn’t exist, E_no_ios will be raised.

22.16.1.14 IO Space Hooks

The user can hook in the IO subsystem by installing functions that will be invoked when certain
operations on IO spaces are being performed.

The functions in ios_open_hook are invoked once a new IO space has been opened.

The functions in ios_close_pre_hook are invoked when an IO space is about to be closed.
Note that a close pre hook can prevent the closing operation to be performed by raising an
exception.

The functions in ios_close_hook are invoked when an IO space has been closed.

The functions in ios_set_hook are invoked when an IO space becomes the current IO space.

All the hooks above get the id of an IO space as arguments:

type IOS_Hook_Fn = (int<32>)void

The different io* built-ins can be then used by the handlers in order to fetch additional
properties of the IO space. For example:

fun my_open_handler = (int<32> ios) void:

{

printf ("*** The IO space '%s' (%i32d) has been opened.\n",

iohandler (ios), ios);

}

type IOS_Hook_Close_Fn = (int<32>)void;

Chapter 22: The Poke Language 178

22.16.2 The Map Operator

Poke values reside in memory, and their in-memory representation is not visible from Poke
programs. For example, 32 is a 32-bit signed integer value, and it happens to not be boxed in
the Poke Virtual Machine. Therefore, it occupies exactly 32-bit in the memory of the machine
running poke. Other values, like arrays for example, are boxed, and they need to store various
meta-data.

Regardless of the internal representation, we say these values live “in memory”. Now, it is
also possible to “map” a value to some area in some underlying IO space. This is done with the
map operator @, which has two alternate syntax:

type @ offset

type @ ios : offset

The ternary version creates a new value using the data located at the offset offset in the
specified IO space ios, which shall be an expression evaluating to a signed 32-bit integer.

The binary version uses the current IO space.

If there is no IO space, or the specified IO space doesn’t exist, an E_no_ios exception is
raised:

(poke) int @ 0#B

unhandled no IOS exception

The value created in a map can be either mapped or not mapped. Mapping simple types
produces not mapped values, whereas mapping non-simple types create mapped values.

The value attributes mapped and offset can be used to check whether a value is mapped or
not, and in that case the offset where it is mapped:

(poke) var p = Packet @ 0#B

(poke) p'mapped

0x1

(poke) p'offset

0x0UL#b

Using the offset attribute in a not mapped value results in the E_no_map exception being
raised:

(poke) [1,2,3]'mapped

0x0

(poke) [1,2,3]'offset

unhandled no map exception

If the type specified in the map is not a simple type, like an array or a struct, the resulting
value is said to be mapped in the IO space:

(poke) type Packet = struct { int i; long l; }

(poke) Packet @ 0#B

Packet {i=0x464c457f,l=0x10102L}

(poke) uint<8>[2] @ 0#B

[0x7fUB,0x45UB]

A very important idea on Poke mapping is that it should be possible to manipulate mapped
and non-mapped values in a transparent way. For example, consider the quick sort implemen-
tation in poke’s standard library. The prototype is:

fun qsort = (any[] array, Comparator cmp_f,

long left = 0, long right = array'length - 1) void

qsort works with both mapped and not-mapped arrays:

(poke) var a = [2,3,1]

(poke) var b = int[3] @ 0#B

Chapter 22: The Poke Language 179

(poke) b

[1179403647,65794,0]

(poke) qsort (a, IntComparator)

(poke) a

[1,2,3]

(poke) qsort (b, IntComparator)

(poke) b

[0,33620224,1179403647]

(poke) dump :from b'offset :size b'size :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0000 0000 0001 0102 7f45 4c46

Similarly, you can write functions that operate on abstract entities and data structures such
as ELF relocations and sections, DWARF DIEs, etc, and the same code will work with non
mapped and mapped values.

22.16.3 Mapping Simple Types

Simple values (i.e. integers, offsets, strings) cannot be mapped. Therefore, if the type specified
in the map is a simple type, the resulting value will be a regular non-mapped value. Examples:

(poke) uint<8> @ 0#B

0x7fUB

(poke) string @ 0#B

"ELF"

22.16.4 Mapping Structs

Struct and union types can be referred by name in a mapping (@) operation. For example, given
a struct type Foo defined as:

type Foo =

struct

{

int i;

long l;

}

we could get a mapped struct value of that type like this:

var f = Foo @ 128#B;

22.16.5 Mapping Arrays

Arrays can be mapped in IO space in three different ways, depending on the characteristics of
the type provided to the mapping operator.

22.16.5.1 Array maps bounded by number of elements

When an array type bounded by number of elements is used in a mapping operation, the resulting
mapped array is also bounded by number of elements.

For example, this is how we would map an array of four 32-bit signed integers in the current
IO space:

(poke) int[4] @ 0#B

[10,20,30,40]

Since you can also provide a dynamic array type to the map operator, the number of elements
doesn’t need to be constant. For example, given the variable nelems has a value of 2:

(poke) var nelems = 2

Chapter 22: The Poke Language 180

(poke) int[nelems + 1] @ 0#B

[100,222,333]

If for whatever reason the exact requested number of elements can’t be mapped, then E_

constraint is raised.

If an end-of-file condition happens while mapping the array, because the number of elements
specified in the array type, at the given offset, exceeds the capacity of the underlying IO device,
an exception is raised and the mapping is not completed:

(poke) int[99999999999] @ 0#B

unhandled EOF exception

Likewise, if a constraint fails while performing the mapping (while mapping an array of
structs, for example) an exception is raised and the map is aborted.

22.16.5.2 Array maps bounded by size

While dealing with binary formats, it often happens that the number of entities in a collection
is given by the space they occupy, rather than the count itself.

For example, consider ELF sections holding relocations. These sections contain a collection
of zero or more relocations. The layout of each relocation is specified by the following type:

type Elf64_Rela =

struct

{

offset<Elf64_Addr,B> r_offset;

Elf64_Xword r_info;

Elf64_Sxword r_addend;

};

The section is described by an entry in the ELF sections header table:

type Elf64_Shdr =

struct

{

Elf_Word sh_name;

Elf_Word sh_type;

Elf64_Xword sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

offset<Elf64_Xword,B> sh_size;

Elf_Word sh_link;

Elf_Word sh_info;

Elf64_Xword sh_addralign;

offset<Elf64_Xword,b> sh_entsize;

};

The relevant elements of Elf64_Shdr are sh_offset and sh_size, which indicate the offset
of the beginning of the section’s contents, and its size, respectively. At this point, if we wanted
to get an array with all the relocations in the section, we could map an array bounded by number
of elements like we saw in the previous section, like this:

(poke) Elf64_Rela[sh_size / 1#Elf64_Rela]

[... relocs ...]

However, this approach adoleces from two problems. First, it doesn’t work with any entity
type. For an offset like 1#Elf64_Rela to work, it is required to know the size of the type specified
as the unit at compile time. In the particular case of Elf64_Rela, that condition is satisfied, but
too often that’s not the case. For example, think about a section containing NULL terminated

Chapter 22: The Poke Language 181

strings: you can’t know the number of strings contained in the section until you actually read
it.

Another problem is when the data in the header is corrupt. Using the mapping bounded by
number of elements, we wouldn’t realize it. It would be good if the tool would tell us whether
the specified size actually holds an exact number of the requested elements.

A mapping bound by size is what we need. Fortunately, as we saw when discussing array
types, Poke allows you to specify an offset instead of an integral value, in the array type specifi-
cation. The right amount of entities (in this case relocations) to strictly satisfy the provided size
will be mapped in the IO space. So, in order to obtain an array containing all the relocations
in the section, we simply write:

(poke) Elf64_Rela[ehdr.sh_size] @ ehdr.sh_offset

[... relocs ...]

The strictness mentioned above is important. GNU poke will complain (and abort the map-
ping) if it is not possible to map an exact number of elements. Thus the following mapping
would not be successful:

(poke) int[33#b] @ 0#B

unhandled out of map bounds exception

Like in mappings bounded by number of elements, if a constraint fails while performing the
mapping, an exception is raised and the map is aborted.

Likewise, if the exact size specified as the array boundaries can’t be achieved, then E_

constraint is raised.

22.16.5.3 Unbounded array maps

We mentioned above that if an end-of-file condition happens while performing a mapping (be
it bounded by number of elements or bounded by size) an EOF exception is raised, and the
mapping operation is aborted.

Unbounded array mappings are performed by using an unbounded array type in the mapping
operation, like in:

type[] @ 0#B

The above construction will map values of type type in the IO space until there is an end-of-
file condition, or a constraint fails, whatever happens first. When it is a constraint expression
that fails, that last element is not included in the mapped array.

Let’s assume a binary file contains a series of blocks, located one after the other, of a kind
described by the following struct type:

type Block =

struct

{

byte magic[2] : magic[0] == 'B' && magic[1] == 'K';

... other data ...

};

we can map the blocks using an unbounded array map:

(poke) Block[] @ 0#B

[... blocks ...]

If the blocks extend up to the end of the IO space, that many blocks will be mapped. If there
is some other content in the file following the blocks, the constraint in the magic field will fail
and will delimit the map that way (provided the binary format is well designed.)

Chapter 22: The Poke Language 182

22.16.5.4 Mapped bounds in bounded arrays

When an array map is bounded, be it by number of elements or by size, the bounding value
can be mapped itself. To illustrate how this works, let’s go back to our ELF file and the section
containing relocations. First, we map an Elf64_Shdr to get the section header:

(poke) var shdr = Elf64_Shdr @ offset

(poke) shdr.sh_offset

120#B

(poke) shdr.sh_size

24#B

Now we map an array with the relocations themselves, using a map bounded by size, as we
learned in the last section:

(poke) var relocs = ELF64_Rela[shdr.sh_size] @ shdr.sh_offset

(poke) relocs'length

3

Now, observe that shdr.sh_size is mapped itself! This means that, should the section size
be modified (to accommodate an extra relocation, for example) the mapping of relocs will
reflect that automatically:

(poke) shdr.sh_size = shdr.sh_size + 1#Elf64_Rela

(poke) relocs'length

4

This is certainly an useful idiom, that is often used while poking around. However, sometimes
this is not what we want. If we don’t want the mapping bounds of relocs to be tied to shdr,
we can just use a temporary for the size:

(poke) var s = shdr.sh_size

(poke) var relocs = Elf64_Rela[s] @ shdr.sh_offset

Since simple values (such as the size above) are not mapped, this trick works as intended.

22.16.6 Mapping Functions

Struct fields can be of any type, and that includes function types or closures. This is especially
useful to build interfaces.

For orthogonality, it is possible to map function types. The result of the mapping is not
very useful though: mapping a function type results in a function with an empty body. If the
function returns a value, a default value (zero for integral types, empty arrays for array types,
etc) is returned.

Example:

(poke) type Fun = (int) int

(poke) Fun @ 0#B

#<closure>

(poke) (Fun @ 0#B) (10)

0x0

22.16.7 Non-strict Mapping

The map operator @ performs what we call a strict mapping. This means that the data integrity
of the mapped data is checked for. Often this is what we want.

However, sometimes we have to work with incorrect or incomplete data. In these cases, we
want to inspect that data and complete it using poke.

For this purpose poke provides an alternate map operator @! that behaves exactly like the
normal operator, but inhibits the control of data integrity.

Chapter 22: The Poke Language 183

The attribute 'strict can be used to query whether a given value is strict or non-strict.
Non-mapped values are strict by definition.

22.16.8 Auto-Remapping

By default poke always tries to handle mapped values in a transparent way, i.e. in the same
way than if the values weren’t mapped. To guarantee that the contents of mapped values are
always up to date, it issues remaps every time the value gets referenced.

For example, consider the following Poke program:

var arr = X86_Insn[1024];

There, an array of 1024 x86 instructions arr is mapped. Every time the array value is referenced
it is re-mapped from the corresponding IO space. For example:

arr[2].opcode = 0x0b;

In the reference above, the whole array should be re-mapped from IO space, because x86 instruc-
tions are variable-length, so it is necessary to re-read all the previous values before accessing the
element in position 2.

This re-mapping 100% guarantees that the mapped values are up to date. However, this can
get very slow, depending on the data structures we are poking at.

poke offers a way to turn this auto re-mapping off. In Poke code:

vm_set_autoremap (0)

Or using the poke application CLI:

(poke) .set autoremap no

When auto-remap is switched off, mapped values are used as-is. It is then the responsibility of
the user to explicitly re-map values using the remap operator. Like:

(poke) remap arr

22.16.9 Unmapping

The unary unmap operator has the form:

unmap value

It gets any value and produces the same value, making it not mapped in case it is a mapped
value.

This is useful when we want to read a data structure from the IO space (say, an array of
integers) and then use it for storage without changing the underlying IO space. We would do
something like:

(poke) var a = unmap (int[3] @ 10#B)

(poke) a[2] = 100

22.17 Exception Handling

Sometimes an error or some other unexpected situation arises. Poke provides an exceptions
mechanism to deal with these situations.

22.17.1 Exceptions

Exceptions in Poke are values of type Exception, which is a struct defined like this:

type Exception =

struct

{

int<32> code;

string msg;

Chapter 22: The Poke Language 184

};

where code identifies the type of the exception, and msg is supposed to be a textual description
of the exceptional situation.

You can use codes 255 and higher for your own exceptions. For example:

raise Exception { code = 255; msg = "double upset event" };

User-defined exceptions should be registered using exception_code function. For example:

var E_my_exception = Exception {

code = exception_code,

msg = "double upset event",

};

where the E_my_exception.code is a unique number greater than or equal to 255.

Exception codes in the range 0..254 are reserved for poke. These are used in predefined
exceptions which are standard, and have specific meanings:

E_generic

Generic error.

E_out_of_bounds

Out of bounds exception. This can be raised when accessing containers, like arrays
and strings.

E_eof End of file exception. This can be raised when mapping in the IO space.

E_elem Invalid element exception. This is raised when attempting to access union fields
that do not exist.

E_constraint

Constraint violation exception. This is raised when a constraint exception fails while
mapping or constructing a struct.

E_conv Conversion exception. This can be raised while casting values.

E_map No map exception. This is raised when trying to map a not mapped value.

E_div_by_zero

Division by zero exception.

E_no_ios No IOS exception. This is raised when the IO space is accessed but there is no IO
space.

E_no_return

No return exception. This is raised when the end of a non-void function is reached.

E_io Generic IO exception.

E_io_flags

Invalid flags were tried while opening an IO device.

E_assert Assertion failure exception. This is raised by assert statement.

E_overflow

This exception is raised when signed overflow is detected in an arithmetic operation.

E_perm This exception is raised when some operation can’t be performed due to incorrect
(lack of) permissions or capabilities. An example is writing to a read-only IO space.

The exception codes of the standard exceptions are available in the form of EC_* variables.
For example, this how you would raise an IO error with a particular message:

raise Exception { code = EC_io,

msg = "fluzo capacitator overheat impedes IO" }

Chapter 22: The Poke Language 185

22.17.2 try-catch

The try-catch statement provides a way to catch exceptions and handle them.

The simplest form of the statement is:

try stmt catch compound_stmt

where stmt is any statement and compound stmt is a compound statement. First, stmt is
executed. If during its execution an exception is raised, then compound stmt is executed.

The second form of the statement allows you to catch just one type of exception:

try stmt catch if exp compound_stmt

where exp is an expression that should evaluate to an Exception. The handler compound stmt
will only be executed if that specific exception is caught. Any other exception will be re-raised.

The third form of the statement is the most generic:

try stmt catch (Exception formal) compound_stmt

where formal is a formal argument that contains the exception when compound stmt is executed.

22.17.3 try-until

The try-until statement allows you to execute instructions until some exception is caught.
The syntax is:

try stmt until exp

where stmt is the statement that will be executed repeatedly until some exception is raised. If the
raised exception has type exp then execution continues normally. exp should be an expression
that evaluates to an Exception.

This statement is particularly useful for mapping IO spaces until an eof condition occurs.
For example, this is how we would compute with every integer in the current IO space:

var o = 0#B;

try

{

compute (int @ o);

o = o + 1#B;

} until E_eof;

It is possible to leave the loop from within stmt using the break statement.

22.17.4 raise

In previous sections we saw how exceptions are usually the side-product of performing certain
operations. For example, a division by zero.

However, it is also useful to explicitly raise exceptions. The raise statement can be used for
that purpose. Its syntax is:

raise exception;

where exception is an integer. This integer can be any number, but most often is one of the E_*
codes defined in Poke.

22.17.5 exception-predicate

It is often needed to determine whether the execution of some given code raised some particular
exception. A possibility is to use a try-catch statement like in the following example, a pretty-
printer in an union type:

method _print = void:

{

try print "#<%u32d>", simple_value;

Chapter 22: The Poke Language 186

catch if E_elem { print "%v\n", complex_value; }

}

This works as intended, but it is somewhat verbose and not that easy to read for anyone not
accustomed to the idiom. It is better to use the exception predicate operator, ?!, that has two
forms:

exp ?! exception

{ [statements...] } ?! exception

In the first form, the expression exp is executed. If the execution raises the exception ex-
ception then the result of the predicate is 1 (true), otherwise it is 0 (false). The value of the
expression is discarded.

In the second form, the compound statement passed as the first operand is executed. If the
exception exception is raised, then the result of the predicate is 0 (false), otherwise it is 1 (true).

Using exception predicates the pretty-printer above can be written in a much more readable
way:

method _print = void:

{

if (simple_value ?! E_elem)

print "%v\n", complex_value;

else

print "#<%u32d>", simple_value;

}

Or, alternatively (and slightly more efficiently):

method _print = void:

{

({ print "<%u32d>", simple_value; } ?! E_elem)

&& print "%v\n", complex_value;

}

22.17.6 assert

The assert statement allows you test if a condition is true, if not, the program will raise an
exception with code EC_assert.

assert (condition)

assert (condition, message)

The optionalmessage will be part of the msg field of raised Exception to explain the situation.
If no message is explicitly specified, msg is set to the source code of the expression evaluated as
the assert condition.

assert (1 == 1);

assert (0 == 0, ``Zero is equal to zero'');

assert is useful for writing unit tests.

22.18 Terminal

Poke programs have access to a text-oriented terminal, that can be used to communicate with
the user. The system provides several primitive functions to manipulate the terminal, which are
described in the sections below.

22.18.1 Terminal Colors

At every moment the text terminal is configured to use certain foreground and background colors.
Initially, these are the default colors, which depend on the underlying terminal capabilities, and
maybe also on some system wide configuration setting.

Chapter 22: The Poke Language 187

Terminal colors are encoded in triplets of integers signifying RGB colors, i.e. levels of beams
for red, green and blue. These triplets are implemented as values of type int<32>[3].

The special value [-1, -1, -1]means the default color, for both foreground and background.
There are two predefined variables for this:

var term_default_color = [-1,-1,-1];

var term_default_bgcolor = [-1,-1,-1];

Getting and setting the foreground and background colors is performed using the term_get_
color, term_set_color, term_get_fgcolor and term_set_fgcolor functions, with signatures:

fun term_get_color = int<32>[3]

fun term_set_color = (int<32>[3] color) void

fun term_get_bgcolor = int<32>[3]

fun term_set_bgcolor = (int<32>[3] color) void

22.18.2 Terminal Styling

Styling of the output sent to the terminal is supported in the form of styling classes. Each class
is characterized by a name, a string.

A class is activated by using the function term_begin_class, and deactivated by using the
function term_end_class. Several classes can be activated simultaneously, but they should be
deactivated in reverse order. It is down to the implementation to decide how to honor some given
class, i.e. to decide how to characterize it physically (visually, or audibly, or using an electrical
discharge on the keyboard, or whatever) The class may very well be ignored all together. Poke
programs should never rely on how a specific class is implemented.

The term_begin_class and term_end_class functions have the following signatures:

fun term_begin_class = (string class) void

fun term_end_class = (string class) void

Styling classes can overlap, but trying to deactivate them in the wrong order will cause an error
in the form of an E_inval exception.

22.18.3 Terminal Hyperlinks

The poke terminal supports terminal hyperlinks. Each hyperlink is characterized by an URL,
and an ID. The term_begin_hyperlink and term_end_hyperlink functions have the following
signatures:

fun term_begin_hyperlink = (string url, string id) void

fun term_end_hyperlink = void

Hyperlinks can overlap, but trying to end an hyperlink when there is no t a currently open one
will result in an E_generic exception raised.

22.19 Printing

Poke programs can print text to the standard output in two ways: simple unformatted output,
and formatted output.

22.19.1 print

The print statement prints the given string to the standard output. print outputs text strings
verbatim. It can be invoked using two alternative syntaxes, which are equivalent:

print (str);

print str;

print is simple, but fast. It is good to use it in simple cases where the information to print
out doesn’t require any kind of formatting and styling.

Chapter 22: The Poke Language 188

22.19.2 printf

The printf statement gets a format string and, optionally, a list of values to print. It can be
invoked using two alternative syntaxes, which are equivalent:

printf (fmt[, value...])

printf fmt[, value...]

The format string fmt is printed verbatim to the standard output, but for format tags which
start with %. These format tags are interpreted especially. Most of the format tags “consume”
one of the specified values. Every value in the list shall be described by a tag, or the compiler
will signal an error. Likewise, values without a corresponding describing tag is an error. These
tags are:

%s Print the argument as a string.

%ibits(d|x|o|b|c)

Print the argument as a signed integer of size bits. The last letter determines how
the argument is printed.

d Print the integer in decimal.

x Print the integer in hexadecimal.

o Print the integer in octal.

b Print the integer in binary.

c Print the integer as an ASCII character. This only works with 8 bit
integers.

%u Same as %i, but for unsigned integers.

%c A shorter way to write %u8c.

%fbits[.precision]d

%ebits[.precision]d

%gbits[.precision]d

These tags accept integral values, that are cast to an integral value of width bits
and then interpreted as an IEEE 754 floating-point number. Currently, valid values
for bits are 32 and 64.

When using %f tag, the number will be printed in decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal-point character is equal
to the precision specification. The default precision for %f32 tag is 7 and for %f64
is 15.

The %e tag will print the number in the style [-]d.ddde+-dd where there is one
digit (which is non-zero if the floating-point number is non-zero) before the decimal-
point character and the number of digits after it is equal the precision. The exponent
always contains at least two digits; if the value is zero, the exponent is 00.

And %g tag will print the number in style %f or %e. The precision specifies the
number of the significant digits. Style %e is used if the exponent from its conversion
is less than -4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional part of the result; a decimal point appears only if it is followed
by at least one digit.

(poke) printf ("%f64d\n", 0x40091eb851eb851fUL);

3.140000000000000

(poke) printf ("pi:%e32d\n", 0x4048f5c3U)

pi:3.1400001e+00

Chapter 22: The Poke Language 189

%v Print the value printed representation of the argument, which can be of any type in-
cluding complex types like arrays and structs. This is similar to the write operation
available in many Lisp systems.

This tag supports an optional numerical argument (restricted to a single digit) that
specifies the maximum depth level when printing structures. Example:

(poke) printf ("%1v\n", struct { s = struct { i = 10 }, l = 20L });

struct {s=struct {...},l=0x14L}

By default, the depth level is 0, which means no limit.

This tag also support an optional flag that specifies how the value is printed. The
supported tags are F (for flat) and T (for tree). The default is flat. Example:

(poke) printf ("%Tv\n", struct { s = struct { i = 10 }, l = 20L });

struct {

s=struct {

i=0xa

},

l=0x14L

}

(poke) printf ("%Fv\n", struct { s = struct { i = 10 }, l = 20L });

struct {s=struct {i=0xa},l=0x14L}

This tag is mainly intended to be used in pretty-printers.

The following format tags do not consume arguments. They support emitting styled text
using the libtextstyle approach of having styling classes that you can customize in a .css file.

%<classname:

Start the styling class with name classname. The class name cannot be empty.

%> End the last opened styling class. All styling classes should be ended before finishing
the format string.

%% Print % character.

Note that styling classes can be nested, but all classes should be ended before finishing the
format string.

If you use a name class, you can define how to style it in the .css file (poke installs and uses
poke-default.css but you can set the POKE_STYLE environment variable to point to another css)
like this:

.NAME { text-decoration: blink; color : pink; }

Examples:

(poke) printf "This is a NAME: %<NAME:xxx%>"

This is a NAME: xxx

(poke) printf "Name: %<string:%s%> Age: %<integer:%i32d%>, "Jose", 39

Name: Jose Age: 39

22.20 Comments

There are several ways to document your Poke programs: comments of several types and support
for separator characters.

22.20.1 Multi-line comments

Poke supports C-like multi-line, comments, which is text enclosed between /* and */ sequences.
These comments cannot be nested.

Chapter 22: The Poke Language 190

22.20.2 Single line comments

C++-like single line comments are supported. Everything after the // sequence is interpreted as
a comment, until the end of the line or the end of the file, whatever comes first.

22.20.3 Vertical separator

Poke ignores form feed characters (ASCII code 12, often visualized as ^L). In GNU software,
this character is traditionally used to separate conceptually different entities in source files.

22.21 Modules

It is common for pickles to depend on stuff defined in other pickles. In such cases, the load

language construction can be used to load pickles from your Poke program. The syntax is:

load module;

where module is the name of the pickle to load.

For example, your Poke program may want to access some ELF data structures. In that
case, we can just do:

/* Pickle to poke the contents of some ELF section. */

load elf;

/* ... code ... */

When asked to open a module, poke assumes it is implemented in a file named module.pk.
In the example above, it will try to load elf.pk.

The pickles are searched first in the current working directory. If not found, then
prefix/share/poke/module.pk is tried next.

If the environment variable POKEDATADIR is defined, it replaces prefix/share/poke. This is
mainly intended to test a poke program before it gets installed in its final location.

Nothing prevents you to load the same pickle twice. This will work if the pickle doesn’t
include definitions, but just executes statements. Otherwise, you will likely get an error due to
trying to define stuff twice.

There is an alternate syntax of the load construction that is useful when the module is
implemented in a file whose name doesn’t conform to a Poke identifier. This happens, for
example, when the file name contains hyphens. Example:

load "my-pickle.pk";

Note that if you use this variant of load, you must specify the full file name, including
whatever extension it uses (usually .pk).

22.22 System

Poke provides several constructions to interact with the operating system. These are described
in the subsections below.

22.22.1 getenv

The getenv built-in function has the form:

fun getenv (string name) string:

Given the name of an environment variable, it returns a string with its value. If the variable is
not defined in the environment, then the E_inval exception is raised.

Chapter 22: The Poke Language 191

22.22.2 rand

The rand built-in function has the form:

fun rand = (uint<32> seed = 0) int<32>:

It returns a pseudo-random number in the range of the unsigned 32-bit integers. If a seed
different to zero is provided, it is used to initialize a new sequence of pseudo-random numbers
(which includes the one returned.)

The gettime builtin function can be used in order to seed the pseudo-random number gen-
erator very easily:

srand (gettime[1])

22.23 VM

The Poke language provides a set of pre-defined functions which can be used to access and
modify properties of the underlying implementation running the Poke programs.

22.23.1 vm_obase

The pre-defined function vm_obase returns the current output base in use in the underlying
VM. It has the following prototype:

fun vm_obase = int<32>:

22.23.2 vm_set_obase

The pre-defined function vm_set_obase sets the output base in the underlying VM. It has the
following prototype:

fun vm_set_obase = (int<32> obase) void:

Where obase is the output base to set. The base must be one of 2 (for binary), 8 (for octal),
10 (for decimal) or 16 (for hexadecimal). If the provided base is not contained in that set,
vm_set_obase raises E_inval.

22.23.3 vm_opprint

The pre-defined function vm_opprint returns a boolean indicating whether pretty-printers are
used when printing struct values, or not. It has the following prototype:

fun vm_opprint = int<32>:

22.23.4 vm_set_opprint

The pre-defined function vm_set_opprint sets a flag in the underlying VM, indicating whether
pretty-printers are used when printing struct values. It has the following prototype:

fun vm_set_opprint = (int<32> pretty_print_p) void:

22.23.5 vm_oacutoff

The pre-defined function vm_oacutoff returns an integer indicating the current cutoff limit used
when printing array values. It has the following prototype:

fun vm_oacutoff = int<32>:

22.23.6 vm_set_oacutoff

The pre-defined function vm_set_oacutoff sets the current cutoff limit used when printing
array values. It has the following prototype:

fun vm_set_oacutoff = (int<32> cutoff) void:

where cutoff is an integer specifying the maximum number of array elements that get printed.

Chapter 22: The Poke Language 192

22.23.7 vm_odepth

The pre-defined function vm_odepth returns an integer indicating the maximum depth level used
when printing nested structures. It has the following prototype:

fun vm_odepth = int<32>:

22.23.8 vm_set_odepth

The pre-defined function vm_set_odepth sets the maximum depth level to be used when printing
nested structures. It has the following prototype:

fun vm_set_odepth = (int<32> depth_level) void:

where depth level specifies the number of depth levels in nested structs to consider when printing
nested structures.

22.23.9 vm_oindent

The pre-defined function vm_oindent returns an integer indicating the indentation step. It has
the following prototype:

fun vm_oindent = int<32>:

22.23.10 vm_set_oindent

The pre-defined function vm_set_oindent sets the indentation level used when printing nested
structures. It has the following prototype:

fun vm_set_oindent = (int<32> step) void:

where step specifies how much to indent when printing nested structures. This value typically
translates into the number of white spaces (or tabs) used in terminals, but this must not be
relied on since other printing media may interpret it differently.

22.23.11 vm_omaps

The pre-defined function vm_omaps returns a boolean indicating whether offset information is
included when printing out values. It has the following prototype:

fun vm_omaps = int<32>:

22.23.12 vm_set_omaps

The pre-defined function vm_set_omaps sets whether offset information is included when printing
out values. It has the following prototype:

fun vm_set_omaps = (int<32> omaps_p) void:

22.23.13 vm_omode

The pre-defined function vm_omode returns an integer indicating the currently enabled output
mode. It has the following prototype:

fun vm_omode = int<32>:

There are currently two supported output modes:

var VM_OMODE_PLAIN = 0;

var VM_OMODE_TREE = 1;

22.23.14 vm_set_omode

The pre-defined function vm_set_omode sets the output mode to use by default when printing
values. It has the following prototype:

fun vm_set_omode = (int<32> omode) void:

Where omode is one of the VM_OMODE_* values documented above.

Chapter 22: The Poke Language 193

22.23.15 vm_autoremap

The pre-defined function vm_autoremap returns a boolean indicating whether auto-remapping
of mapped values is switched on. It has the following prototype:

fun vm_autoremap = int<32>:

22.23.16 vm_set_autoremap

The pre-defined function vm_set_autoremap sets whether auto-remapping of mapped values is
switched on. It has the following prototype:

fun vm_set_autoremap = (int<32)void:

22.24 Debugging

22.24.1 __LINE__ and __FILE__

When printing traces it is often useful to include a description of the location of the trace. The
poke compiler provides two builtins for this purpose.

__LINE__ Expands to an unsigned 64-bit integer containing the current line of the program
being compiled.

__FILE__ Expands to a string with the name of the file currently being compiled. If the
program is read from the standard input (like in the REPL) then this is "<stdin>".

22.24.2 strace

The strace built-in function has the prototype:

fun strace = void:

It prints out the current contents of the PVM stack. This is especially useful to debug the code
generated by the compiler.

22.24.3 rtrace

The rtrace built-in function has the prototype:

fun rtrace = void:

It prints out the current call stack in the PVM, a function name in each line.

194

23 The Standard Library

GNU poke ships with a standard library for Poke programs that is available to Poke programs.
The following sections detail the facilities provided by the library.

23.1 Standard Integral Types

The Poke standard library provides the following standard integral types.

bit 1-bit unsigned integer.

nibble 4-bit unsigned integer.

uint8

byte

char 8-bit unsigned integer.

uint16

ushort 16-bit unsigned integer.

uint32

uint 32-bit unsigned integer.

uint64

ulong 64-bit unsigned integer.

int8 8-bit signed integer.

int16

short 16-bit signed integer.

int32

int 32-bit signed integer.

int64

long 64-bit signed integer.

23.2 Standard Offset Types

The Poke standard library provides the following standard offset types.

off64 64-bit signed offset in bits.

uoff64 64-bit unsigned offset in bits.

23.3 Standard Units

The following list of units are defined in the standard library.

Base units:

b bits.

N nibbles.

B bytes.

Base 10 units:

Kb kilo bits (1000 bits.)

KB Kilo bytes (1000 bytes.)

Chapter 23: The Standard Library 195

Mb Mega bits.

MB Mega bytes.

Gb Giga bits.

GB Giga bytes.

Base 2 units:

Kib kilo bits (1000 bits.)

KiB Kilo bytes (1000 bytes.)

Mib Mega bits.

MiB Mega bytes.

Gib Giga bits.

GiB Giga bytes.

23.4 Conversion Functions

The Poke standard library provides the following functions to do useful conversions.

23.4.1 catos

It is often useful to convert arrays of characters into strings. The standard function catos

provides the following interface:

fun catos = (char[] chars) string: { ... }

It builds a string containing the characters in chars, and returns it. Examples:

(poke) catos (['a','b','c'])

"abc"

(poke) catos (['\0'])

""

Note that if the passed array contains a NULL character '\0' then no further characters are
processed. For example:

(poke) catos (['f','o','o','\0','b','a','r'])

"foo"

23.4.2 stoca

Sometimes we want to store strings in character arrays. The standard function stoca provides
the following interface:

fun stoca = (string s, uint<8>[] ca = uint<8>[](), uint<8> fill = 0) uint<8>[]: { ... }

If ca has zero length (for example, if the parameter is omitted), the function returns an array
with the contents of the string s, excluding the terminating NULL. Otherwise, it fills the given
array ca with the contents of the string s. If the string doesn’t fit in the array, then E_out_

of_bounds is raised. If the length of the string is less than the length of the array, the extra
characters are set to the fill character, which defaults to \0. The array ca is also returned.

23.4.3 strtoi

The standard function strtoi provides the following interface:

type Strtoi_Result =

struct

{

Chapter 23: The Standard Library 196

uint<64> off;

int<64> val;

};

fun strtoi = (string str, int base = 10, ulong start = 0) Stroi_Result: { ... }

It parses a signed integral number in the given base in the string str at position start and
returns its value and its length in the val and off fields of a new Strtoi_Result instance.

Specifying a start that is greater than or equal to the length of the string causes a E_out_

of_bound exception to be raised.

The accepted values for base are 2, 8, 10 (the default) and 16. If any other base is requested
an E_inval exception is raised.

Note that this function parses an integer but permits more characters to follow the given
integer. As an example, take a look at parsing “12foo” in base 16:

#!!# strtoi ("12foo", 16)

Strtoi_Result {

off=3UL,

val=303L

}

#!!# strtoi ("12foo", 16, 1)

Strtoi_Result {

off=3UL,

val=47L

}

23.4.4 atoi

The standard function atoi provides the following interface:

fun atoi = (string str, int base = 10) long: { ... }

It parses a signed integral number in the given base in the string str and returns it as a
signed 64-bit integer.

The accepted values for base are the same as for ‘strtoi’. See Section 23.4.3 [strtoi], page 195,
for a list of supported bases.

Note that atoi allows for extra information to be stored in str after the parsed integer. Thus,
this works:

(poke) atoi ("10foo")

10L

23.4.5 ltos

The ltos standard function converts a given long integer into its printed representation in some
given base. It has the following prototype:

fun ltos = (long i, uint base = 10) string:

where i is the number for which to calculate the printed representation, and base is a number
between 0 and 16.

23.4.6 stof

The stof standard function converts a given string into a 32-bit floating-point number repre-
sented as a uint<32> integer. It has the following prototype:

fun stof = (string s) uint<32>:

Chapter 23: The Standard Library 197

23.4.7 stod

The stod standard function converts a given string into a 64-bit floating-point number repre-
sented as a uint<64> integer. It has the following prototype:

fun stod = (string s) uint<64>:

23.5 Array Functions

The Poke standard library provides the following functions to do work on arrays:

23.5.1 reverse

The standard function reverse provides the following interface:

fun reverse = (any[] a) void:

It reverses the elements of the given array.

23.6 String Functions

The Poke standard library provides the following functions to do work on strings:

23.6.1 ltrim

The standard function ltrim provides the following interface:

fun ltrim = (string s, string cs = " \t") string: { ... }

It returns a copy of the input string s with any leading character that also appears in cs
removed.

23.6.2 rtrim

The standard function rtrim provides the following interface:

fun rtrim = (string s, string cs = " \t") string: { ... }

It returns a copy of the input string s with any trailing character that also appears in cs
removed.

23.6.3 strchr

The standard function strchr provides the following interface:

fun strchr = (string s, uint<8> c) int<32>: { ... }

It returns the index of the first occurrence of the character c in the string s. If the character
is not found in the string, this function returns the length of the string.

23.6.4 strrchr

The standard function strrchr provides the following interface:

fun strrchr = (string s, uint<8> c) int<32>: { ... }

It returns the index of the last occurrence of the character c in the string s. If the character
is not found in the string, this function returns -1.

23.6.5 strtok

strtok is a helper for tokenizing strings. The synopsis of this API are:

type String_Tokenizer =

struct

{

uint<64> i;

string str;

Chapter 23: The Standard Library 198

computed uint<32> more;

method get_more = uint<32>: { ... }

method peek = char: { ... }

method pop = char: { ... }

method pop_number = (int<32> base = 10) int<64>: { ... }

method popdelim = (string delimiters) string: { ... }

method poprdelim = (string delimiters) string: { ... }

method raise_exception = (Exception base, string message) void: { ... }

}

fun strtok = (string a) String_Tokenizer: { ... }

[Function]String_Tokenizer strtok (string a)
Creates a new tokenizer for the string a, initially on the zero position.

The members of the String_Tokenizer class are:

[Instance Variable of String_Tokenizer]uint<64> i
Offset to the next character to be tokenized, i.e. to the first character that has not already
been consumed.

[Instance Variable of String_Tokenizer]string str
The string being tokenized. This string is never tokenized.

[Instance Variable of String_Tokenizer]uint<32> more
A read-only computed property whose value is truthy if there’s more characters and falsey
otherwise.

[Method on String_Tokenizer]char poke ()
Returns the first unread character of the string, but does not advance the i offset.

Raises E_out_of_bounds if at the end of the string.

[Method on String_Tokenizer]char peek ()
Returns the first unread character of the string, and advances the tokenizer.

Raises E_out_of_bounds if at the end of the string.

[Method on String_Tokenizer]int<64> pop_number (int<32> base = 10)
Returns the number at the start of the string and advances the tokenizer in the given base.
The bases that are supported are the same as for strtoi. See Section 23.4.3 [strtoi], page 195,
for a list of supported bases.

Raises E_out_of_bounds if at the end of the string.

[Method on String_Tokenizer]string popdelim (string delim)
Returns the substring up to the first character also present in the string delim. Advances the
tokenizer to after the delimiter character (i.e. it consumes the delimiter character).

Raises E_out_of_bounds if at the end of the string.

[Method on String_Tokenizer]string poprdelim (string delim)
Returns the substring up to the last character also present in the string delim. Advances the
tokenizer to after the delimiter character (i.e. it consumes the delimiter character).

Raises E_out_of_bounds if at the end of the string.

Chapter 23: The Standard Library 199

[Method on String_Tokenizer]void raise_exception (Exception base, string
message)

Raises a copy of base augmented so that it contains a description of the tokenizers current
position, as well as the programmer-specified message.

23.7 Character Functions

The Poke standard library provides the following functions to deal with characters:

The standard function isdigit provides the following interface:

fun isdigit = (uint<8> c) int<32>

it returns 0 when the given ASCII character c is not a decimal digit, otherwise it returns a
non-zero value.

The standard function isxdigit provides the following interface:

fun isxdigit = (uint<8> c) int<32>

it returns 0 when the given ASCII character c is not a hexadecimal digit, otherwise it returns a
non-zero value.

23.8 Values Functions

The Poke standard library provides the following functions to handle values in general:

23.8.1 eoffset

The standard function eoffset provides the following interface:

fun eoffset = (any val, string name) offset<uint<64>,b>

It returns the offset of the element having the given name in the given composite value. If the
value doesn’t contain an element with the given name then the exception E_inval is raised.

23.9 IO Space Functions

23.9.1 with_cur_ios

The standard function with_cur_ios provides the following interface:

fun with_cur_ios = (int<32> ios,

Pk_With_Ios_Fn do = lambda void:{},

int<32> endian = get_endian) void:

Where ios is an IO space identifier, do is a function of type ()void that defaults to a function
that does nothing, and endian is the endianness to use by default when accessing ios.

When invoked it switches to the given IO space and executes the given function. Once the
function finishes executing, either by returning or by the raise of an exception, the current IO
space and endianness are restored to their previous values.

23.9.2 with_temp_ios

The standard function with_temp_ios provides the following interface:

fun with_temp_ios = (string handler = pk_get_unique_mem_ios_handler,

uint<32> flags = 0,

Pk_With_Ios_Fn do = lambda void:{},

int<32> endian = get_endian) void:

Where handler is the handler to use for the IO space.

Chapter 23: The Standard Library 200

flags are the flags passed to open when opening the temporary IO space. Defaults to 0, which
means to use whatever opening mode makes more sense depending on the kind of the IO space
and it’s permissions.

do is a function of type ()void. Defaults to a function that does nothing.

endian is the endianness to use by default when accessing the temporary IO space. Defaults
to the current endianness.

When invoked it opens a IO space, like openset, but takes care of calling close and restoring
the original current IO space and endianness after the lambda returns or raises an exception.

It can be used to deal with files without risk of leaking file descriptors.

with_cur_ios

:handler "*buf*"

:do lambda void:

{

var arr = uint<32>[1] 0#B;

arr[0] = 0x1234;

printf("%v", byte[4] 0#b);

}

23.10 Sorting Functions

23.10.1 qsort

The standard function qsort has the following prototype:

fun qsort = (any[] array, Comparator cmp_f,

long left = 0,

long right = array'length - 1) void

where array is the array to sort, cmp f is a comparator function, left is the index of the first
array element to include in the sorting, and right is the index of the last array element to include
in the sorting. Both left and right are optional, and the default is to cover the whole array.

The comparator function cmp f should have the following prototype:

type Comparator = (any,any)int<32>;

for example:

fun CompareInts = (any a, any b) int<32>:

{

var ai = a as int<32>;

var bi = b as int<32>;

if (ai == bi)

return 0;

else if (ai > bi)

return 1;

else

return -1;

}

23.11 CRC Functions

Many file formats use checksums of one sort or another. Therefore you may want to write such
a checksum or verify a checksum in a constrained field. See Section 22.6.6 [Field Constraints],
page 147.

Chapter 23: The Standard Library 201

Some formats use simple additive checksums. Another common checksum is the Cyclic
Redundancy Checksum (CRC). The standard function crc32 calculates the 32 bit CRC defined
by ISO-3309.

fun crc32 = (byte[] buf) uint<32>: { ... }

This function returns the 32 bit CRC for the data contained in the array buf.

23.12 Dates and Times

Often a format encodes a date and time expressed as the number of seconds since midnight,
January 1st 1970. You could map these simply as integers. However, the standard library
provides two types POSIX_Time32 and POSIX_Time64 which include pretty-printers to display
the date in a human readable format. The definition is:

type POSIX_Timesize = struct

{

uint<size> seconds;

method _print = void:

{ ... }

}

where size is either 32 or 64. When pretty printing is enabled, a mapped value of these types
will display similar to

#<2019-Dec-12 8:54:56>

whereas when pretty printing is not enabled, this example would be displayed as:

POSIX_Time32 {seconds=1576140896U}

Note that timestamps of this type do not account for leap seconds and are agnostic towards
timezone.

Occasionally you might wish to print an unmapped timestamp value in a human readable
format. To do this, you can use the ptime function, which is defined as follows:

fun ptime = (uint<64> seconds) void:

{ ... }

This pickle also provides a type Timespec that can store Unix times to nanosecond precision,
and has the form:

type Timespec = struct

{

int<64> sec;

int<64> nsec;

};

The function gettimeofday uses the gettime builtin in order to construct an instance of
Timespec. For example:

(poke) gettimeofday

Timespec {

sec=1604918423L,

nsec=753492546L

}

(poke) ptime (gettimeofday.sec)

2020-Nov-9 10:40:36

Chapter 23: The Standard Library 202

23.13 Offset Functions

23.13.1 alignto

The alignto function has the prototype:

fun alignto = (uoff64 offset, uoff64 to) uoff64:

{ ... }

It returns an offset that is the result of aligning the given offset to the given alignment to.

23.14 Other Standard Library Functions

The Poke standard library also provides the following functions that do not fit into the previous
few categories:

23.14.1 GNU poke Version String Parsing Utilities

The Poke standard library provides utilities for parsing and comparing GNU poke versions, to
allow you to implement conditional code paths or to check prerequisites.

[Variable]string pk_version
Version string of the current instance of GNU poke.

Note that these functions are not generic to any version string, as they assume and verify
the version strings generated by the GNU poke build system.

The GNU poke version string that this family of functions accepts fit the following template:
‘X.Y[.Z][-BRANCH-NN][-gXDIGITS][-dirty]’. Individually, these components are:

‘X’ The major component of this GNU poke version. Mandatory.

‘Y’ The minor component of this GNU poke version. Mandatory.

‘Z’ The subminor component of this GNU poke version. Optional.

‘BRANCH’ A free-form string signifying the current branch a given GNU poke build comes
from. Optional. It has two special values:

‘maint’ For maintenance branches.

‘dev’ For the master development branch.

All values other than ‘dev’ are considered equal and lower than ‘dev’ by the com-
parison helper described below..

‘NN’ The number commits on ‘BRANCH’ since the ‘X.Y[.Z]’ tag. Present if and only if
‘BRANCH’ is present. This component is also called the offset.

‘XDIGITS’ The abbreviated commit hash this build was generated on. For the purposes of these
functions, it is optional, however, in practice, it can only appear when ‘BRANCH’ is
also present. Due to the ‘-g’ prefix, this component also makes a poke version string
appropriate for Git operations, for example: git show 3.0-dev-22-g2e092.

‘-dirty’ This suffix is added if the Git tree this GNU poke version was built from is dirty.

The standard library provides the following structured representation of GNU poke versions:

type Pk_Version =

struct

{

uint<8> major;

uint<8> minor;

uint<8> subminor;

Chapter 23: The Standard Library 203

string branch;

uint<32> offset;

string commit;

uint<8> has_branch_p;

uint<8> has_subminor_p;

uint<8> has_commit_p;

uint<8> dirty_p;

};

[Function]string Pk_Version.to_string ()
Method that returns the printed representation of a version.

[Function]Pk_Version pk_version_parse (string version)
Parses the string version into a new instance of Pk_Version, or raises E_inval if the string
is invalid.

The standard library also provides the following helper function:

[Function]int<32> pk_vercmp (any a, any b)
Returns a number greater than, equal to, or lower than zero if a compares greater than, equal
to or lower than b, respectively, as a GNU poke version.

The type of a and b must be either string or Pk_Version, otherwise, this function raises an
E_conv.

This function implements partial ordering, as it’s not possible to distinguish some version
numbers as greater or lower than each other, as some could be seen as “lateral” to each other.
For instance, consider the strings ‘3.0-a-11-gabcdef’ and ‘3.0-b-11-gabcdef’. They are
both 11 commits ahead of the 3.0 release, but they aren’t on the same lineage, and so, they
can’t be considered as greater or lower than each other. In cases like these, pk_vercmp will
attempt to compare commit numbers as a crude measure.

204

24 The Poke Virtual Machine

24.1 PVM Instructions

24.1.1 VM instructions

24.1.1.1 Instruction canary

Synopsys:

canary

This instruction installs a canary to mark the bottom of the stack, which is checked by the
‘exit’ instruction. To be most effective this should be executed before the stack is used for the
first time.

Stack: (--)

24.1.1.2 Instruction exit

Synopsys:

exit

Do some cleanup and finish execution of a PVM program. This checks the stack sentinel
installed by the ‘canary’ instruction.

Stack: (--)

24.1.1.3 Instruction pushend

Synopsys:

pushend

Push the current endianness on the stack. This endianness is part of the global state of the
PVM.

Stack: (-- INT)

24.1.1.4 Instruction popend

Synopsys:

popend

Pop a signed integer from the stack and make it the current endianness in the PVM. The
possible values for endianness are IOS ENDIAN LSB and IOS ENDIAN MSB.

Stack: (INT --)

24.1.1.5 Instruction pushob

Synopsys:

pushob

Push output base.

This instruction pushes a signed integer value with the output base that is used when printing
PVM values. Valid values are 2, 8, 10 and 16.

Stack: (-- INT)

Chapter 24: The Poke Virtual Machine 205

24.1.1.6 Instruction popob

Synopsys:

popob

Pop and set output base.

This instructions pops a signed integer from the stack and uses it to set the new output base
to be used when printing PVM values. Valid values are 2, 8, 10 and 16. If an invalid value is
provided then the instruction is a NOP.

Stack: (INT --)

24.1.1.7 Instruction pushom

Synopsys:

pushom

Push output mode.

This instruction pushes a signed integer value with the output mode that is used when
printing PVM values. Valid values are 0 for flat mode, and 1 for tree mode.

Stack: (-- INT)

24.1.1.8 Instruction popom

Synopsys:

popom

Pop and set output mode.

This instructions pops a signed integer from the stack and uses it to set the new output mode
to be used when printing PVM values. Valid values are 0 for flat mode and 1 for tree mode. If
an invalid value is provided then this instruction is a no-op.

Stack: (INT --)

24.1.1.9 Instruction pushoo

Synopsys:

pushoo

Push output offsets mode.

This instruction pushes a boolean encoded in a signed integer value indicating whether to
show offsets when printing PVM values.

Stack: (-- INT)

24.1.1.10 Instruction popoo

Synopsys:

popoo

Pop and set output offsets mode.

This instructions pops a boolean encoded in a signed integer from the stack and uses it to
set the new output offset mode to be used when printing PVM values.

Stack: (INT --)

Chapter 24: The Poke Virtual Machine 206

24.1.1.11 Instruction pushoi

Synopsys:

pushoi

Push output indentation mode.

This instructions pushes an integer to the stack with the current indentation step configured in
the VM. The indentation step determines how many white characters to use in each indentation
level when printing output.

Stack: (-- INT)

24.1.1.12 Instruction popoi

Synopsys:

popoi

Pop and set output indentation step mode.

This instructions pops an integer from the stack and uses it to set the current indentation
step in the VM. The indentation step determines how many white characters to use in each
indentation level when printing output.

Stack: (INT --)

24.1.1.13 Instruction pushod

Synopsys:

pushod

Push output depth.

This instruction pushes a signed integer indicating the depth to use when printing PVM
values.

Stack: (-- INT)

24.1.1.14 Instruction popod

Synopsys:

popod

Pop and set output depth.

This instructions pops a signed integer indicating the maximum depth included by the VM
when printing values.

Stack: (INT --)

24.1.1.15 Instruction pushoac

Synopsys:

pushoac

Push output array cutoff.

This instruction pushes a signed integer indicating the number of elements that the VM
includes in the printed representation of PVM array values.

Stack: (-- INT)

Chapter 24: The Poke Virtual Machine 207

24.1.1.16 Instruction popoac

Synopsys:

popoac

Pop and set output array cutoff.

This instructions pops a signed integer indicating the number of elements that the VM
includes in the printed representation of PVM array values.

Stack: (INT --)

24.1.1.17 Instruction pushopp

Synopsys:

pushopp

Push pretty-print usage.

This instruction pushes a signed integer indicating whether the VM is configured to use
pretty-printers.

Stack: (-- INT)

24.1.1.18 Instruction popopp

Synopsys:

popopp

Pop and set usage of pretty-printers.

This instructions pops a signed integer indicating whether to use pretty-printers when print-
ing values and sets it in the VM.

Stack: (INT --)

24.1.1.19 Instruction pushoc

Synopsys:

pushoc

Push the current output color to the stack, encoded as a RGB triplet.

Stack: (-- INT INT INT)

24.1.1.20 Instruction popoc

Synopsys:

popoc

Pop the RGB triplet at the top of the stack and use it to set the new terminal output color.

Stack: (INT INT INT --)

24.1.1.21 Instruction pushobc

Synopsys:

pushobc

Push the current output background color to the stack, encoded as a RGB triplet.

Stack: (-- INT INT INT)

Chapter 24: The Poke Virtual Machine 208

24.1.1.22 Instruction popobc

Synopsys:

popobc

Pop the RGB triplet at the top of the stack and use it to set the new terminal output
background color.

Stack: (INT INT INT --)

24.1.1.23 Instruction sync

Synopsys:

sync

Handle pending signals, and raise exceptions accordingly. This instruction should be emitted
in strategic places, such as before backwards jumps and at function prolog, to assure signals are
eventually attended to.

Stack: (--)

Exceptions: PVM_E_SIGNAL

24.1.1.24 Instruction pusharem

Synopsys:

pusharem

Push autoremap flag.

This instruction pushes a signed integer indicating whether the VM is in ‘autoremap’ mode.

Stack: (-- INT)

24.1.1.25 Instruction poparem

Synopsys:

poparem

Pop and set the autoremap flag.

This instruction pops a signed integer from the stack and sets it as the new value of the
‘autoremap’ flag.

Stack: (INT --)

24.1.2 IOS related instructions

24.1.2.1 Instruction open

Synopsys:

open

Open a new IO space. The handler string and a set of flags are passed on the stack. The
descriptor of the opened IOS is pushed to the stack as a signed integer.

If there is no other IO space opened when this instruction is executed, then the just opened
space becomes the current IO space.

If there is an error condition opening the IO space, a negative number indicating the condition
is pushed on the stack. Note that valid IOS descriptors are non-negative. The possible error
conditions are:

-1 for an unspecified error condition. -3 invalid flags specified -4 memory allocation failure.
-5 end of file -6 invalid argument passed to open -7 IO space already opened -8 Insufficient
permissions to perform the requested operation.

Stack: (STR ULONG -- INT)

Chapter 24: The Poke Virtual Machine 209

24.1.2.2 Instruction close

Synopsys:

close

Close an IO space. The descriptor of the space to close is provided on the stack as a signed
integer.

If the specified IO space doesn’t exist, this instruction pushes PVM E NO IOS. If the oper-
ation fails, it pushes PVM E IO. Otherwise, it pushes PVM NULL

Stack: (INT -- EXCEPTION|null)

24.1.2.3 Instruction flush

Synopsys:

flush

Flush an IO space. The descriptor of the space to flush, and the bit-offset up to which
perform the flushing are provided on the stack.

If the specified IO space doesn’t exist, this instruction pushes PVM E NO IOS. If the oper-
ation fails, it pushes PVM E IO. Otherwise, it pushes PVM NULL

Stack: (INT ULONG -- EXCEPTION|null)

24.1.2.4 Instruction pushios

Synopsys:

pushios

Push the descriptor of the current IO space on the stack, as a signed integer. If no IO space
is currently opened, push a negative number.

Stack: (-- INT)

24.1.2.5 Instruction popios

Synopsys:

popios

Pop an IO space descriptor from the stack and set it as the current IO space. If the specified
descriptor doesn’t identify an IO space, raise PVM E NO IOS.

Stack: (INT --)

Exceptions: PVM_E_NO_IOS

24.1.2.6 Instruction ioflags

Synopsys:

ioflags

Push an unsigned 64-bit integer with the flags of the given IO space on the stack. The IO
space is identified by a descriptor, which is a signed integer. If the given IO space doesn’t exist,
raise PVM E NO IOS.

Stack: (INT -- INT ULONG)

Exceptions: PVM_E_NO_IOS

Chapter 24: The Poke Virtual Machine 210

24.1.2.7 Instruction iosize

Synopsys:

iosize

Push the size of the given IO space on the stack, as an offset. The IO space is identified by a
descriptor, which is a signed integer. If the given IO space doesn’t exist, raise PVM E NO IOS.

Stack: (INT -- INT OFF)

Exceptions: PVM_E_NO_IOS

24.1.2.8 Instruction ionum

Synopsys:

ionum

Pushe the number of IO spaces on the stack.

Stack: (-- ULONG)

24.1.2.9 Instruction ioref

Synopsys:

ioref

Given an index ULONG, push the descriptor of the IO space on the stack as a signed integer.

If the provided index is out of bounds, then raise PVM E OUT OF BOUNDS.

Stack: (ULONG -- ULONG IOS)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.2.10 Instruction iohandler

Synopsys:

iohandler

Push the handler of the given IO space on the stack, as a string. The IO space is identified by a
descriptor, which is a signed integer. If the given IO space doesn’t exist, raise PVM E NO IOS.

Stack: (INT -- INT OFF)

Exceptions: PVM_E_NO_IOS

24.1.2.11 Instruction iogetb

Synopsys:

iogetb

Each IO space has a bias associated with it, which by default is 0 bits. This bias is applied
to the offset given to every read/write operation.

This instruction pushes the bias associated to the given IO space to the stack, as an offset.
If the given IO space doesn’t exist then the exception PVM E NO IOS is raised.

Stack: (INT - INT OFF)

Exceptions: PVM_E_NO_IOS

24.1.2.12 Instruction iosetb

Synopsys:

iosetb

Each IO space has a bias associated with it, which by default is 0 bits. This bias is applied
to the offset given to every read/write operation.

Chapter 24: The Poke Virtual Machine 211

This instruction sets the bias associated to the given IO space. The bias is specified as an
offset. If the given IO space doesn’t exist, the exception PVM E NO IOS is raised.

Stack: (OFF INT -- OFF)

Exceptions: PVM_E_NO_IOS

24.1.3 Function management instructions

24.1.3.1 Instruction call

Synopsys:

call

Call a closure on the stack, passing the specified arguments. After the execution of the
closure, control is transferred to the instruction immediately following the call instruction.

Stack: (ARG1 ... ARGN CLOSURE -- RETVAL)

24.1.3.2 Instruction prolog

Synopsys:

prolog

Prepare the PVM for the execution of a function. This instruction shall be the target of
every ‘call’ instruction and shall be the first instruction in every function body.

Stack: (--)

24.1.3.3 Instruction return

Synopsys:

return

Return from a function. A function can have many ‘return’ instructions.

Stack: (--)

24.1.4 Environment instructions

24.1.4.1 Instruction pushf

Synopsys:

pushf N

Push a new lexical frame. If the argument N is bigger than zero, it indicates the number of
entries in the frame. If N is 0, it means we don’t know how many entries will be stored in the
frame.

Stack: (--)

24.1.4.2 Instruction popf

Synopsys:

popf N

Pop N lexical frames.

Stack: (--)

24.1.4.3 Instruction pushvar

Synopsys:

pushvar BACK, OVER

Retrieve the value of a variable from the lexical environment and push it on the stack. The
lexical address of the variable is specified as arguments to the instruction.

Stack: (-- VAL)

Chapter 24: The Poke Virtual Machine 212

24.1.4.4 Instruction pushtopvar

Synopsys:

pushtopvar OVER

Retrieve the value of a variable from the top-level frame of the lexical environment and put
it on the stack. The OVER part of the lexical address of the variable is specified as an argument
to the instruction.

If the variable is not found then raise E INVAL.

Stack: (-- VAL)

24.1.4.5 Instruction popvar

Synopsys:

popvar BACK, OVER

Pop a value from the stack and set it as the value of a variable having the lexical address
specified in the arguments, in the current lexical environment.

Stack: (VAL --)

24.1.4.6 Instruction regvar

Synopsys:

regvar

Pop a value from the stack and use it as the value for a new variable in the current lexical
environment.

Stack: (VAL --)

24.1.4.7 Instruction duc

Synopsys:

duc

Make a copy of the closure at the top of the stack, and replace it.

Stack: (CLS -- CLS)

24.1.4.8 Instruction pec

Synopsys:

pec

Put the current lexical environment to the closure at the top of the stack.

Stack: (CLS -- CLS)

24.1.5 Printing Instructions

In the following instructions the meaning of the argument BASE is the following:

2 - print the number in binary. 8 - print the number in octal. 16 - print the number in
hexadecimal. Any other value - print the number in decimal.

24.1.5.1 Instruction printi

Synopsys:

printi BITS

Given a signed integer and a numeration base in the stack, print the integer to the terminal.

Stack: (INT INT --)

Chapter 24: The Poke Virtual Machine 213

24.1.5.2 Instruction printiu

Synopsys:

printiu BITS

Given an unsigned integer and a numeration base in the stack, print the integer to the
terminal.

Stack: (UINT INT --)

24.1.5.3 Instruction printl

Synopsys:

printl BITS

Given a long and a numeration base in the stack, print the integer to the terminal.

Stack: (LONG INT --)

24.1.5.4 Instruction printlu

Synopsys:

printlu BITS

Given an unsigned long and a numeration base in the stack, print the integer to the terminal.

Stack: (ULONG INT --)

24.1.5.5 Instruction prints

Synopsys:

prints

Print the string at the top of the stack.

Stack: (STR --)

24.1.5.6 Instruction beghl

Synopsys:

beghl

Begin an hyperlink, using the URL and ID on the stack.

Stack: (STR STR --)

24.1.5.7 Instruction endhl

Synopsys:

endhl

End the current hyperlink.

If no hyperlink is currently being generated, this instruction raises an exception.

Stack: (--)

Exceptions: PVM_E_GENERIC

24.1.5.8 Instruction begsc

Synopsys:

begsc

Begin the styling class whose name is found on the stack. This class will be in effect in
subsequent print operations until it is explicitly ended by a ‘endsc’ instruction.

Stack: (STR --)

Chapter 24: The Poke Virtual Machine 214

24.1.5.9 Instruction endsc

Synopsys:

endsc

End the styling class whose name is found on the stack. This class should have been previously
began by a ‘begsc’ instruction.

Stack: (STR --)

24.1.6 Format Instructions

In the following instructions the meaning of the argument BASE is the following:

2 - format the number in binary. 8 - format the number in octal. 16 - format the number in
hexadecimal. Any other value - format the number in decimal.

24.1.6.1 Instruction formati

Synopsys:

formati BITS

Given a signed integer and a numeration base in the stack, push the string representation to
the stack.

Stack: (INT INT -- STR)

24.1.6.2 Instruction formatiu

Synopsys:

formatiu BITS

Given an unsigned integer and a numeration base in the stack, push the string representation
to the stack.

Stack: (UINT INT -- STR)

24.1.6.3 Instruction formatl

Synopsys:

formatl BITS

Given a long and a numeration base in the stack, push the string representation to the stack.

Stack: (LONG INT -- STR)

24.1.6.4 Instruction formatlu

Synopsys:

formatlu BITS

Given an unsigned long and a numeration base in the stack, push the string representation
to the stack.

Stack: (ULONG INT -- STR)

24.1.6.5 Instruction formatf32

Synopsys:

formatf32 STYLE

Given a UINT (that should be interpreted as a 32-bit floating-point number), and a UINT
(as the conversion precision), push the string representation of the floating-point number with
specified precision.

The formatting style is given by a literal parameters. Style 0 corresponds to %f-tag which
converts the number in the style [-]ddd.ddd where the number of digits after the decimal-point

Chapter 24: The Poke Virtual Machine 215

character is the equal to the precision. Style 1 corresponds to %e-tag which converts the number
in the style [-]d.ddde+-dd (so called scientific notation). Precision for this style also means the
number of digits after the decimal-point character. Style 2 corresponds to %g-tag which choose
either %f style or %e based on the length of the repsentation. For this style, precision specify
the number of significant numbers.

Stack: (UINT UINT -- STR)

24.1.6.6 Instruction formatf64

Synopsys:

formatf64 STYLE

Given a ULONG (that should be interpreted as a 64-bit floating-point number), and a UINT
(as the conversion precision), push the string representation of the floating-point number with
specified precision. The formatting style is given by a literal parameters.

The formatting style is given by a literal parameters. Style 0 corresponds to %f-tag which
converts the number in the style [-]ddd.ddd where the number of digits after the decimal-point
character is the equal to the precision. Style 1 corresponds to %e-tag which converts the number
in the style [-]d.ddde+-dd (so called scientific notation). Precision for this style also means the
number of digits after the decimal-point character. Style 2 corresponds to %g-tag which choose
either %f style or %e based on the length of the repsentation. For this style, precision specify
the number of significant numbers.

Stack: (ULONG UINT -- STR)

24.1.7 Floating-point conversion instructions

24.1.7.1 Instruction stof

Synopsys:

stof

Given a string containing only a floating-point number, push the corresponding 32-bit
floating-point number to the stack, represented as a UINT. On conversion failure, push NULL.

Note that leading (not trailing) whitespaces will be ignored.

Stack: (STR -- UINT)

24.1.7.2 Instruction stod

Synopsys:

stod

Given a string containing only a floating-point number, push the corresponding 64-bit
floating-point number to the stack, represented as a ULONG. On conversion failure, push NULL.

Note that leading (not trailing) whitespaces will be ignored.

Stack: (STR -- ULONG)

24.1.8 Main stack manipulation instructions

24.1.8.1 Instruction push

Synopsys:

push VAL

Push the value given as an argument to the main stack.

Stack: (-- VAL)

Chapter 24: The Poke Virtual Machine 216

24.1.8.2 Instruction drop

Synopsys:

drop

Pop the value at the top of the main stack, and discard it.

Stack: (VAL --)

24.1.8.3 Instruction drop2

Synopsys:

drop2

Pop the two values at the top of the main stack, and discard them.

Stack: (VAL VAL --)

24.1.8.4 Instruction drop3

Synopsys:

drop3

Pop the three values at the top of the main stack, and discard them.

Stack: (VAL VAL VAL --)

24.1.8.5 Instruction drop4

Synopsys:

drop4

Pop the four values at the top of the stack, and discard them.

Stack: (VAL VAL VAL VAL --)

24.1.8.6 Instruction swap

Synopsys:

swap

Exchange the two elements at the top of the stack.

Stack: (A B -- B A)

24.1.8.7 Instruction nip

Synopsys:

nip

Discard the element at the under top of the main stack.

Stack: (A B -- B)

24.1.8.8 Instruction nip2

Synopsys:

nip2

Discard the two elements at the under top of the main stack.

Stack: (A B C -- C)

24.1.8.9 Instruction nip3

Synopsys:

nip3

Discard the three elements at the under top of the main stack.

Stack: (A B C D -- D)

Chapter 24: The Poke Virtual Machine 217

24.1.8.10 Instruction dup

Synopsys:

dup

Push a copy of the element at the top of the main stack.

Stack: (A -- A A)

24.1.8.11 Instruction over

Synopsys:

over

Push a copy of the element at the under top of the main stack.

Stack: (A B -- A B A)

24.1.8.12 Instruction oover

Synopsys:

oover

Push a copy of the element under the under top of the main stack.

Stack: (A B C -- A B C A)

24.1.8.13 Instruction rot

Synopsys:

rot

Rotate the three elements at the top of the main stack, clock-wise.

Stack: (A B C -- B C A)

24.1.8.14 Instruction nrot

Synopsys:

nrot

Rotate the three elements at the top of the stack, counter clock-wise.

Stack: (A B C -- C A B)

24.1.8.15 Instruction tuck

Synopsys:

tuck

Tuck a copy of the element at the top of the stack down two positions.

Stack: (A B -- B A B)

24.1.8.16 Instruction quake

Synopsys:

quake

Swap the two elements at the under top of the stack.

Stack: (A B C - B A C)

24.1.8.17 Instruction revn

Synopsys:

revn N

Reverse the N elements at the top of the stack.

Stack: (VAL... -- VAL...)

Chapter 24: The Poke Virtual Machine 218

24.1.8.18 Instruction push32

Synopsys:

push32 HI LO

Push the value passed as two arguments on the stack. This instruction is a workaround to a
limitation of Jitter.

Stack: (-- VAL)

24.1.9 Registers manipulation instructions

24.1.9.1 Instruction pushr

Synopsys:

pushr REGNO

Push the contents of the register REGNO on the stack.

Stack: (-- VAL)

24.1.9.2 Instruction popr

Synopsys:

popr REGNO

Pop the element at the top of the stack and put it in the register REGNO.

Stack: (VAL --)

24.1.9.3 Instruction setr

Synopsys:

setr REGNO

Set the element at the top of the stack to the value of the register REGNO.

Stack: (--)

24.1.10 Return stack manipulation instructions

24.1.10.1 Instruction saver

Synopsys:

saver REGNO

Push the contents of the register REGNO to the return stack.

Stack: (--) ReturnStack: (– VAL)

24.1.10.2 Instruction restorer

Synopsys:

restorer REGNO

Pop the element at the top of the return stack and put it in the register REGNO.

Stack: (--) ReturnStack: (VAL –)

24.1.10.3 Instruction tor

Synopsys:

tor

Pop an element from the stack and push it in the return stack.

Stack: (VAL --) ReturnStack: (– VAL)

Chapter 24: The Poke Virtual Machine 219

24.1.10.4 Instruction fromr

Synopsys:

fromr

Pop an element from the return stack and push it on the stack.

Stack: (-- VAL) ReturnStack: (VAL –)

24.1.10.5 Instruction atr

Synopsys:

atr

Push a copy of the element at the top of the return stack into the stack.

Stack: (-- VAL)

24.1.11 Integer overflow checking instructions.

The following instructions check for overflow conditions in signed integer operations.

24.1.11.1 Instruction addiof

Synopsys:

addiof

Push 1 on the stack if adding the given two signed integer values would overflow. Push 0 on
the stack otherwise.

Stack: (INT INT -- INT INT INT)

24.1.11.2 Instruction addlof

Synopsys:

addlof

Push 1 on the stack if adding the given two signed long values would overflow. Push 0 on
the stack otherwise.

Stack: (LONG LONG -- LONG LONG INT)

24.1.11.3 Instruction subiof

Synopsys:

subiof

Push 1 on the stack if subtracting the given two signed integer values would overflow. Push
0 on the stack otherwise.

Stack: (INT INT -- INT INT INT)

24.1.11.4 Instruction sublof

Synopsys:

sublof

Push 1 on the stack if subtracting the given two signed long values would overflow. Push 0
on the stack otherwise.

Stack: (LONG LONG -- LONG LONG INT)

Chapter 24: The Poke Virtual Machine 220

24.1.11.5 Instruction muliof

Synopsys:

muliof

Push 1 on the stack if multiplying the given two signed integer values would overflow. Push
0 on the stack otherwise.

Stack: (INT INT -- INT INT INT)

24.1.11.6 Instruction mullof

Synopsys:

mullof

Push 1 on the stack if multiplying the given two signed long values would overflow. Push 0
on the stack otherwise.

Stack: (LONG LONG -- LONG LONG INT)

24.1.11.7 Instruction diviof

Synopsys:

diviof

Push 1 on the stack if dividing the given two signed integer values would overflow. Push 0
on the stack otherwise.

Stack: (INT INT -- INT INT INT)

24.1.11.8 Instruction divlof

Synopsys:

divlof

Push 1 on the stack if dividing the given two signed long values would overflow. Push 0 on
the stack otherwise.

Stack: (LONG LONG -- LONG LONG INT)

24.1.11.9 Instruction modiof

Synopsys:

modiof

Push 1 on the stack if calculating the remainder of the given two signed integer values would
overflow. Push 0 on the stack otherwise.

Stack: (INT INT -- INT INT INT)

24.1.11.10 Instruction modlof

Synopsys:

modlof

Push 1 on the stack if calculating the remainder of the given two signed long values would
overflow. Push 0 on the stack otherwise.

Stack: (LONG LONG -- LONG LONG INT)

24.1.11.11 Instruction negiof

Synopsys:

negiof

Push 1 on the stack if calculating the negation of the given signed integer value would
overflow. Push 0 on the stack otherwise.

Stack: (INT -- INT INT)

Chapter 24: The Poke Virtual Machine 221

24.1.11.12 Instruction neglof

Synopsys:

neglof

Push 1 on the stack if calculating the negation of the given value would overflow. Push 0 on
the stack otherwise.

Stack: (LONG -- LONG INT)

24.1.11.13 Instruction powiof

Synopsys:

powiof

Push 1 on the stack if calculating the power of the first value by the second would overflow.
Push 0 on the stack otherwise.

Stack: (INT INT -- INT INT INT)

24.1.11.14 Instruction powlof

Synopsys:

powlof

Push 1 on the stack if calculating the power of the first value by the second would overflow.
Push 0 on the stack otherwise.

Stack: (LONG LONG -- LONG LONG INT)

24.1.12 Arithmetic instructions

The following instructions assume that both operands have the same size in bits.

24.1.12.1 Instruction addi

Synopsys:

addi

Push the result of adding the two integers at the top of the stack. If the operation would
result in overflow, raise PVM E OVERFLOW.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (INT INT -- INT INT INT)

Exceptions: PVM_E_OVERFLOW

24.1.12.2 Instruction addiu

Synopsys:

addiu

Push the result of adding the two unsigned integers at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.12.3 Instruction addl

Synopsys:

addl

Push the result of adding the two longs at the top of the stack. If the operation would result
in overflow, raise PVM E OVERFLOW.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Chapter 24: The Poke Virtual Machine 222

Stack: (LONG LONG -- LONG LONG LONG)

Exceptions: PVM_E_OVERFLOW

24.1.12.4 Instruction addlu

Synopsys:

addlu

Push the result of adding the two unsigned longs at the top of the stack.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

24.1.12.5 Instruction subi

Synopsys:

subi

Push the result of subtracting the two integers at the top of the stack.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (INT INT -- INT INT INT)

24.1.12.6 Instruction subiu

Synopsys:

subiu

Push the result of subtracting the two unsigned integers at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.12.7 Instruction subl

Synopsys:

subl

Push the result of subtracting the two longs at the top of the stack.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (LONG LONG -- LONG LONG LONG)

24.1.12.8 Instruction sublu

Synopsys:

sublu

Push the result of subtracting the two unsigned longs at the top of the stack.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

24.1.12.9 Instruction muli

Synopsys:

muli

Push the result of multiplying the two integers at the top of the stack.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (INT INT -- INT INT INT)

Chapter 24: The Poke Virtual Machine 223

24.1.12.10 Instruction muliu

Synopsys:

muliu

Push the result of multiplying the two unsigned integers at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.12.11 Instruction mull

Synopsys:

mull

Push the result of multiplying the two longs at the top of the stack.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (LONG LONG -- LONG LONG LONG)

24.1.12.12 Instruction mullu

Synopsys:

mullu

Push the result of multiplying the two unsigned longs at the top of the stack.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

24.1.12.13 Instruction divi

Synopsys:

divi

Push the result of the integer division of the two integers at the top of the stack. If the
denominator is zero, raise PVM E DIV BY ZERO.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Likewise, this instruction does NOT check for division by zero, so if it is attempted, the poke
process will be aborted.

Stack: (INT INT -- INT INT INT)

Exceptions: PVM_E_DIV_BY_ZERO

24.1.12.14 Instruction diviu

Synopsys:

diviu

Push the result of the integer division of the two unsigned integers at the top of the stack.
If the denominator is zero, raise PVM E DIV BY ZERO.

This instruction does NOT check for division by zero, so if it is attempted, the poke process
will be aborted.

Stack: (UINT UINT -- UINT UINT UINT)

Exceptions: PVM_E_DIV_BY_ZERO

Chapter 24: The Poke Virtual Machine 224

24.1.12.15 Instruction divl

Synopsys:

divl

Push the result of the integer division of the two longs at the top of the stack. If the
denominator is zero, raise PVM E DIV BY ZERO.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Likewise, this instruction does NOT check for division by zero, so if it is attempted, the poke
process will be aborted.

Stack: (LONG LONG -- LONG LONG LONG)

Exceptions: PVM_E_DIV_BY_ZERO

24.1.12.16 Instruction divlu

Synopsys:

divlu

Push the result of the integer division of the two unsigned longs at the top of the stack. If
the denominator is zero, raise PVM E DIV BY ZERO.

This instruction does NOT check for division by zero, so if it is attempted, the poke process
will be aborted.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

Exceptions: PVM_E_DIV_BY_ZERO

24.1.12.17 Instruction modi

Synopsys:

modi

Push the result of the modulus of the two integers at the top of the stack. If the denominator
is zero, raise PVM E DIV BY ZERO.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Likewise, this instruction does NOT check for division by zero, so if it is attempted, the poke
process will be aborted.

Stack: (INT INT -- INT INT INT)

Exceptions: PVM_E_DIV_BY_ZERO

24.1.12.18 Instruction modiu

Synopsys:

modiu

Push the result of the modulus of the two unsigned integers at the top of the stack. If the
denominator is zero, raise PVM E DIV BY ZERO.

This instruction does NOT check for division by zero, so if it is attempted, the poke process
will be aborted.

Stack: (UINT UINT -- UINT UINT UINT)

Exceptions: PVM_E_DIV_BY_ZERO

Chapter 24: The Poke Virtual Machine 225

24.1.12.19 Instruction modl

Synopsys:

modl

Push the result of the modulus of the two longs at the top of the stack. If the denominator
is zero, raise PVM E DIV BY ZERO.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

This instruction does NOT check for division by zero, so if it is attempted, the poke process
will be aborted.

Stack: (LONG LONG -- LONG LONG LONG)

Exceptions: PVM_E_DIV_BY_ZERO

24.1.12.20 Instruction modlu

Synopsys:

modlu

Push the result of the modulus of the two unsigned longs at the top of the stack. If the
denominator is zero, raise PVM E DIV BY ZERO.

This instruction does NOT check for division by zero, so if it is attempted, the poke process
will be aborted.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

Exceptions: PVM_E_DIV_BY_ZERO

24.1.12.21 Instruction negi

Synopsys:

negi

Push the result of the negation of the integer at the top of the stack.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (INT -- INT INT)

24.1.12.22 Instruction negiu

Synopsys:

negiu

Push the result of the negation of the unsigned integer at the top of the stack.

Stack: (UINT -- UINT UINT UINT)

24.1.12.23 Instruction negl

Synopsys:

negl

Push the result of the negation of the long at the top of the stack.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (LONG -- LONG LONG)

Chapter 24: The Poke Virtual Machine 226

24.1.12.24 Instruction neglu

Synopsys:

neglu

Push the result of the negation of the unsigned long at the top of the stack.

Stack: (ULONG -- ULONG ULONG)

24.1.12.25 Instruction powi

Synopsys:

powi

Perform the exponentiation of the integer at the under top of the stack. The exponent is the
unsigned integer at the top of the stack. If the exponent is 0, the result is 1.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (INT UINT -- INT UINT INT)

24.1.12.26 Instruction powiu

Synopsys:

powiu

Perform the exponentiation of the unsigned integer at the under top of the stack. The
exponent is the unsigned integer at the top of the stack. If the exponent is 0, the result is 1.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.12.27 Instruction powl

Synopsys:

powl

Perform the exponentiation of the long at the under top of the stack. The exponent is the
unsigned integer at the top of the stack. If the exponent is 0, the result is 1.

Note that this instruction does NOT check for signed overflow, and in case it occurs, the
result contents are UB.

Stack: (LONG UINT -- LONG UINT LONG)

24.1.12.28 Instruction powlu

Synopsys:

powlu

Perform the exponentiation of the unsigned long at the under top of the stack. The exponent
is the unsigned integer at the top of the stack. If the exponent is 0, the result is 1.

Stack: (ULONG UINT -- ULONG UINT ULONG)

24.1.13 Relational instructions

24.1.13.1 Instruction eqi

Synopsys:

eqi

Push 1 on the stack if the two integers at the top of the stack are equal. Otherwise push 0.

Stack: (INT INT -- INT INT INT)

Chapter 24: The Poke Virtual Machine 227

24.1.13.2 Instruction eqiu

Synopsys:

eqiu

Push 1 on the stack if the two unsigned integers at the top of the stack are equal. Otherwise
push 0.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.13.3 Instruction eql

Synopsys:

eql

Push 1 on the stack if the two longs at the top of the stack are equal. Otherwise push 0.

Stack: (LONG LONG -- LONG LONG INT)

24.1.13.4 Instruction eqlu

Synopsys:

eqlu

Push 1 on the stack if the two unsigned longs at the top of the stack are equal. Otherwise
push 0.

Stack: (ULONG ULONG -- ULONG ULONG INT)

24.1.13.5 Instruction eqs

Synopsys:

eqs

Push 1 on the stack if the two strings at the top of the stack are equal. Otherwise push 0.

Stack: (STR STR -- STR STR INT)

24.1.13.6 Instruction nei

Synopsys:

nei

Push 1 on the stack if the two integers at the top of the stack are not equal. Otherwise push
0.

Stack: (INT INT -- INT INT INT)

24.1.13.7 Instruction neiu

Synopsys:

neiu

Push 1 on the stack if the two unsigned integers at the top of the stack are not equal.
Otherwise push 0.

Stack: (UINT UINT -- UINT UINT INT)

24.1.13.8 Instruction nel

Synopsys:

nel

Push 1 on the stack if the two longs at the top of the stack are not equal. Otherwise push 0.

Stack: (LONG LONG -- LONG LONG INT)

Chapter 24: The Poke Virtual Machine 228

24.1.13.9 Instruction nelu

Synopsys:

nelu

Push 1 on the stack if the two unsigned longs at the top of the stack are not equal. Otherwise
push 0.

Stack: (ULONG ULONG -- ULONG ULONG INT)

24.1.13.10 Instruction nes

Synopsys:

nes

Push 1 on the stack if the two strings at the top of the stack are not equal. Otherwise push
0.

Stack: (STR STR -- STR STR INT)

24.1.13.11 Instruction nn

Synopsys:

nn

Push 0 on the stack if the value at the top of the stack equals PVM NULL. Otherwise push
1.

Stack: (VAL -- VAL INT)

24.1.13.12 Instruction nnn

Synopsys:

nnn

Push 1 on the stack if the value at the top of the stack equals PVM NULL. Otherwise push
0.

Stack: (VAL -- VAL INT)

24.1.13.13 Instruction lti

Synopsys:

lti

Push 1 on the stack if the integer at the under top is less that the integer at the top. Otherwise
push 0.

Stack: (INT INT -- INT INT INT)

24.1.13.14 Instruction ltiu

Synopsys:

ltiu

Push 1 on the stack if the unsigned integer at the under top is less that the unsigned integer
at the top. Otherwise push 0.

Stack: (UINT INT -- UINT UINT INT)

24.1.13.15 Instruction ltl

Synopsys:

ltl

Push 1 on the stack if the long at the under top is less that the long at the top. Otherwise
push 0.

Stack: (LONG LONG -- LONG LONG INT)

Chapter 24: The Poke Virtual Machine 229

24.1.13.16 Instruction ltlu

Synopsys:

ltlu

Push 1 on the stack if the unsigned long at the under top is less that the unsigned long at
the top. Otherwise push 0.

Stack: (ULONG ULONG -- ULONG ULONG INT)

24.1.13.17 Instruction lei

Synopsys:

lei

Push 1 on the stack if the integer at the under top is less or equal that the integer at the
top. Otherwise push 0.

Stack: (INT INT -- INT INT INT)

24.1.13.18 Instruction leiu

Synopsys:

leiu

Push 1 on the stack if the unsigned integer at the under top is less or equal that the unsigned
integer at the top. Otherwise push 0.

Stack: (UINT UINT -- UINT UINT INT)

24.1.13.19 Instruction lel

Synopsys:

lel

Push 1 on the stack if the long at the under top is less or equal that the long at the top.
Otherwise push 0.

Stack: (LONG LONG -- LONG LONG INT)

24.1.13.20 Instruction lelu

Synopsys:

lelu

Push 1 on the stack if the unsigned long at the under top is less or equal that the unsigned
long at the top. Otherwise push 0.

Stack: (ULONG ULONG -- ULONG ULONG INT)

24.1.13.21 Instruction gti

Synopsys:

gti

Push 1 on the stack if the integer at the under top is greater than the integer at the top.
Otherwise push 0.

Stack: (INT INT -- INT INT INT)

24.1.13.22 Instruction gtiu

Synopsys:

gtiu

Push 1 on the stack if the unsigned integer at the under top is greater than the unsigned
integer at the top. Otherwise push 0.

Stack: (UINT UINT -- UINT UINT INT)

Chapter 24: The Poke Virtual Machine 230

24.1.13.23 Instruction gtl

Synopsys:

gtl

Push 1 on the stack if the long at the under top is greater than the long at the top. Otherwise
push 0.

Stack: (LONG LONG -- LONG LONG INT)

24.1.13.24 Instruction gtlu

Synopsys:

gtlu

Push 1 on the stack if the unsigned long at the under top is greater than the unsigned long
at the top. Otherwise push 0.

Stack: (LONG LONG -- LONG LONG INT)

24.1.13.25 Instruction gei

Synopsys:

gei

Push 1 on the stack if the integer at the under top is greater or equal than the integer at the
top. Otherwise push 0.

Stack: (INT INT -- INT INT INT)

24.1.13.26 Instruction geiu

Synopsys:

geiu

Push 1 on the stack if the unsigned integer at the under top is greater or equal than the
unsigned integer at the top. Otherwise push 0.

Stack: (UINT UINT -- UINT UINT INT)

24.1.13.27 Instruction gel

Synopsys:

gel

Push 1 on the stack if the long at the under top is greater or equal than the long at the top.
Otherwise push 0.

Stack: (LONG LONG -- LONG LONG INT)

24.1.13.28 Instruction gelu

Synopsys:

gelu

Push 1 on the stack if the unsigned long at the under top is greater or equal than the unsigned
long at the top. Otherwise push 0.

Stack: (ULONG ULONG -- ULONG ULONG INT)

24.1.13.29 Instruction lts

Synopsys:

lts

Push 1 on the stack if the string at the under top is less than the string at the top, in
lexicographic order. Otherwise push 0.

Stack: (STR STR -- STR STR INT)

Chapter 24: The Poke Virtual Machine 231

24.1.13.30 Instruction gts

Synopsys:

gts

Push 1 on the stack if the string at the under top is greater than the string at the top, in
lexicographic order. Otherwise push 0.

Stack: (STR STR -- STR STR INT)

24.1.13.31 Instruction ges

Synopsys:

ges

Push 1 on the stack if the string at the under top is greater or equal than the string at the
top, in lexicographic order. Otherwise push 0.

Stack: (STR STR -- STR STR INT)

24.1.13.32 Instruction les

Synopsys:

les

Push 1 on the stack if the string at the under top is less or equal than the string at the top,
in lexicographic order. Otherwise push 0.

Stack: (STR STR -- STR STR INT)

24.1.13.33 Instruction eqc

Synopsys:

eqc

Push 1 on the stack if the two closures at the top of the stack are equal. Otherwise push 0.

Stack: (CLS CLS -- CLS CLS INT)

24.1.13.34 Instruction nec

Synopsys:

nec

Push 1 on the stack if the two closures at the top of the stack are not equal. Otherwise push
0.

Stack: (CLS CLS -- CLS CLS INT)

24.1.14 Concatenation instructions

24.1.14.1 Instruction sconc

Synopsys:

sconc

Push the concatenation of the two strings at the top of the stack.

Stack: (STR STR -- STR STR STR)

24.1.15 Logical instructions

Chapter 24: The Poke Virtual Machine 232

24.1.15.1 Instruction and

Synopsys:

and

Push the logical and of the two elements at the top of the stack.

Stack: (INT INT -- INT INT INT)

24.1.15.2 Instruction or

Synopsys:

or

Push the logical or of the two elements at the top of the stack.

Stack: (INT INT -- INT INT INT)

24.1.15.3 Instruction not

Synopsys:

not

Push the logical not of the element at the top of the stack.

Stack: (INT -- INT INT)

24.1.16 Bitwise instructions

24.1.16.1 Instruction bxori

Synopsys:

bxori

Push the bitwise exclusive or of the two integers at the top of the stack.

Stack: (INT INT -- INT INT INT)

24.1.16.2 Instruction bxoriu

Synopsys:

bxoriu

Push the bitwise exclusive or of the two unsigned integers at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.16.3 Instruction bxorl

Synopsys:

bxorl

Push the bitwise exclusive or of the two longs at the top of the stack.

Stack: (LONG LONG -- LONG LONG LONG)

24.1.16.4 Instruction bxorlu

Synopsys:

bxorlu

Push the bitwise exclusive or of the two unsigned longs at the top of the stack.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

Chapter 24: The Poke Virtual Machine 233

24.1.16.5 Instruction bori

Synopsys:

bori

Push the bitwise or of the two integers at the top of the stack.

Stack: (INT INT -- INT INT INT)

24.1.16.6 Instruction boriu

Synopsys:

boriu

Push the bitwise or of the two unsigned integers at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.16.7 Instruction borl

Synopsys:

borl

Push the bitwise or of the two longs at the top of the stack.

Stack: (LONG LONG -- LONG LONG LONG)

24.1.16.8 Instruction borlu

Synopsys:

borlu

Push the bitwise or of the two longs at the top of the stack.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

24.1.16.9 Instruction bandi

Synopsys:

bandi

Push the bitwise and of the two integers at the top of the stack.

Stack: (INT INT -- INT INT INT)

24.1.16.10 Instruction bandiu

Synopsys:

bandiu

Push the bitwise and of the two unsigned integers at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.16.11 Instruction bandl

Synopsys:

bandl

Push the bitwise and of the two longs at the top of the stack.

Stack: (LONG LONG -- LONG LONG LONG)

24.1.16.12 Instruction bandlu

Synopsys:

bandlu

Push the bitwise and of the two unsigned longs at the top of the stack.

Stack: (ULONG ULONG -- ULONG ULONG ULONG)

Chapter 24: The Poke Virtual Machine 234

24.1.16.13 Instruction bnoti

Synopsys:

bnoti

Push the bitwise not of the integer at the top of the stack.

Stack: (INT -- INT INT INT)

24.1.16.14 Instruction bnotiu

Synopsys:

bnotiu

Push the bitwise not of the unsigned integer at the top of the stack.

Stack: (UINT -- UINT UINT)

24.1.16.15 Instruction bnotl

Synopsys:

bnotl

Push the bitwise not of the long at the top of the stack.

Stack: (LONG -- LONG LONG)

24.1.16.16 Instruction bnotlu

Synopsys:

bnotlu

Push the bitwise not of the unsigned long at the top of the stack.

Stack: (ULONG -- ULONG ULONG)

24.1.17 Shift instructions

24.1.17.1 Instruction bsli

Synopsys:

bsli

Left-shift the integer at the under top of the stack the number of bits indicated by the
unsigned int at the top of the stack.

If the bit count is equal or bigger than the size of the left operand, then UB happens.

Stack: (INT UINT -- INT UINT INT)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.17.2 Instruction bsliu

Synopsys:

bsliu

Left-shift the unsigned integer at the under top of the stack the number of bits indicated by
the unsigned int at the top of the stack.

If the bit count is equal or bigger than the size of the left operand, then UB happens.

Stack: (UINT UINT -- UINT UINT UINT)

Exceptions: PVM_E_OUT_OF_BOUNDS

Chapter 24: The Poke Virtual Machine 235

24.1.17.3 Instruction bsll

Synopsys:

bsll

Left-shift the long at the under top of the stack the number of bits indicated by the unsigned
int at the top of the stack.

If the bit count is equal or bigger than the size of the left operand, then UB happens.

Stack: (LONG UINT -- LONG UINT LONG)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.17.4 Instruction bsllu

Synopsys:

bsllu

Left-shift the unsigned long at the under top of the stack the number of bits indicated by
the unsigned int at the top of the stack.

If the bit count is equal or bigger than the size of the left operand, then UB happens.

Stack: (ULONG UINT -- ULONG UINT ULONG)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.17.5 Instruction bsri

Synopsys:

bsri

Right-shift the integer at the under top of the stack the number of tis indicated by the
unsigned int at the top of the stack.

Stack: (INT UINT -- INT UINT INT)

24.1.17.6 Instruction bsriu

Synopsys:

bsriu

Right-shift the unsigned integer at the under top of the stack the number of tis indicated by
the unsigned int at the top of the stack.

Stack: (UINT UINT -- UINT UINT UINT)

24.1.17.7 Instruction bsrl

Synopsys:

bsrl

Right-shift the long at the under top of the stack the number of tis indicated by the unsigned
int at the top of the stack.

Stack: (LONG UINT -- LONG UINT LONG)

24.1.17.8 Instruction bsrlu

Synopsys:

bsrlu

Right-shift the unsigned long at the under top of the stack the number of tis indicated by
the unsigned int at the top of the stack.

Stack: (ULONG UINT -- ULONG UINT ULONG)

Chapter 24: The Poke Virtual Machine 236

24.1.18 Compare-and-swap instructions

24.1.18.1 Instruction swapgti

Synopsys:

swapgti

Swap the two integers at the top of the stack if the element at the under-top is greater than
the element at the top.

Stack: (INT INT -- INT INT)

24.1.18.2 Instruction swapgtiu

Synopsys:

swapgtiu

Swap the two unsigned integers at the top of the stack if the element at the under-top is
greater than the element at the top.

Stack: (UINT UINT -- UINT UINT)

24.1.18.3 Instruction swapgtl

Synopsys:

swapgtl

Swap the two longs at the top of the stack if the element at the under-top is greater than
the element at the top.

Stack: (LONG LONG -- LONG LONG)

24.1.18.4 Instruction swapgtlu

Synopsys:

swapgtlu

Swap the two unsigned longs at the top of the stack if the element at the under-top is greater
than the element at the top.

Stack: (ULONG ULONG -- ULONG ULONG)

24.1.19 Branch instructions

24.1.19.1 Instruction ba

Synopsys:

ba LABEL

Branch unconditionally to the given LABEL.

Stack: (--)

24.1.19.2 Instruction bn

Synopsys:

bn LABEL

Branch to the given LABEL if the value at the top of the stack is PVM NULL.

Stack: (VAL -- VAL)

Chapter 24: The Poke Virtual Machine 237

24.1.19.3 Instruction bnn

Synopsys:

bnn LABEL

Branch to the given LABEL if the value at the top of the stack is not PVM NULL.

Stack: (VAL -- VAL)

24.1.19.4 Instruction bzi

Synopsys:

bzi LABEL

Branch to the given LABEL if the integer at the top of the stack is zero.

Stack: (INT -- INT)

24.1.19.5 Instruction bziu

Synopsys:

bziu LABEL

Branch to the given LABEL if the unsigned integer at the top of the stack is zero.

Stack: (UINT -- UINT)

24.1.19.6 Instruction bzl

Synopsys:

bzl LABEL

Branch to the given LABEL if the long at the top of the stack is zero.

Stack: (LONG -- LONG)

24.1.19.7 Instruction bzlu

Synopsys:

bzlu LABEL

Branch to the given LABEL if the unsigned long at the top of the stack is zero.

Stack: (ULONG -- ULONG)

24.1.19.8 Instruction bnzi

Synopsys:

bnzi LABEL

Branch to the given LABEL if the integer at the top of the stack is nonzero.

Stack: (INT -- INT)

24.1.19.9 Instruction bnziu

Synopsys:

bnziu LABEL

Branch to the given LABEL if the unsigned integer at the top of the stack is nonzero.

Stack: (UINT -- UINT)

24.1.19.10 Instruction bnzl

Synopsys:

bnzl LABEL

Branch to the given LABEL if the long at the top of the stack is nonzero.

Stack: (LONG -- LONG)

Chapter 24: The Poke Virtual Machine 238

24.1.19.11 Instruction bnzlu

Synopsys:

bnzlu LABEL

Branch to the given LABEL if the unsigned long at the top of the stack is nonzero.

Stack: (ULONG -- ULONG)

24.1.20 Conversion instructions

24.1.20.1 Instruction ctos

Synopsys:

ctos

Convert the character encoded as an unsigned integer at the top of the stack to a string that
contains just that character.

Stack: (UINT -- UINT STR)

24.1.20.2 Instruction itoi

Synopsys:

itoi NBITS

Convert the integer at the top of the stack to an integer featuring NBITS bits.

NBITS can be any number from 1 to 32.

Stack: (INT -- INT INT)

24.1.20.3 Instruction itoiu

Synopsys:

itoiu NBITS

Convert the integer at the top of the stack to an unsigned integer featuring NBITS bits.

NBITS can be any number from 1 to 32.

Stack: (INT -- INT UINT)

24.1.20.4 Instruction itol

Synopsys:

itol NBITS

Convert the integer at the top of the stack to a long featuring NBITS bits.

NBITS can be any number from 1 to 64.

Stack: (INT -- INT LONG)

24.1.20.5 Instruction itolu

Synopsys:

itolu NBITS

Convert the integer at the top of the stack to an unsigned long featuring NBITS bits.

NBITS can be any number from 1 to 64.

Stack: (INT -- INT ULONG)

Chapter 24: The Poke Virtual Machine 239

24.1.20.6 Instruction iutoi

Synopsys:

iutoi NBITS

Convert the unsigned integer at the top of the stack to an integer featuring NBITS bits.

NBITS can be any number from 1 to 32.

Stack: (UINT -- UINT INT)

24.1.20.7 Instruction iutoiu

Synopsys:

iutoiu NBITS

Convert the unsigned integer at the top of the stack to an unsigned integer featuring NBITS
bits.

NBITS can be any number from 1 to 32.

Stack: (UINT -- UINT UINT)

24.1.20.8 Instruction iutol

Synopsys:

iutol NBITS

Convert the unsigned integer at the top of the stack to a long featuring NBITS bits.

NBITS can be any number from 1 to 64.

Stack: (UINT -- UINT LONG)

24.1.20.9 Instruction iutolu

Synopsys:

iutolu NBITS

Convert the unsigned integer at the top of the stack to an unsigned long featuring NBITS
bits.

NBITS can be any number from 1 to 64.

Stack: (UINT -- UINT ULONG)

24.1.20.10 Instruction ltoi

Synopsys:

ltoi NBITS

Convert the long at the top of the stack to an integer featuring NBITS bits.

NBITS can be any number from 1 to 32.

Stack: (LONG -- LONG INT)

24.1.20.11 Instruction ltoiu

Synopsys:

ltoiu NBITS

Convert the long at the top of the stack to an unsigned integer featuring NBITS bits.

NBITS can be any number from 1 to 32.

Stack: (LONG -- LONG UINT)

Chapter 24: The Poke Virtual Machine 240

24.1.20.12 Instruction ltol

Synopsys:

ltol NBITS

Convert the long at the top of the stack to a long featuring NBITS bits.

NBITS can be any number from 1 to 64.

Stack: (LONG -- LONG LONG)

24.1.20.13 Instruction ltolu

Synopsys:

ltolu NBITS

Convert the long at the top of the stack to an unsigned long featuring NBITS bits.

NBITS can be any number from 1 to 64.

Stack: (LONG -- LONG ULONG)

24.1.20.14 Instruction lutoi

Synopsys:

lutoi NBITS

Convert the unsigned long at the top of the stack to an integer featuring NBITS bits.

NBITS can be any number from 1 to 32.

Stack: (ULONG -- ULONG INT)

24.1.20.15 Instruction lutoiu

Synopsys:

lutoiu NBITS

Convert the unsigned long at the top of the stack to an unsigned integer featuring NBITS
bits.

NBITS can be any number from 1 to 32.

Stack: (ULONG -- ULONG UINT)

24.1.20.16 Instruction lutol

Synopsys:

lutol NBITS

Convert the unsigned long at the top of the stack to a long featuring NBITS bits.

Stack: (ULONG -- ULONG LONG)

24.1.20.17 Instruction lutolu

Synopsys:

lutolu NBITS

Convert the unsigned long at the top of the stack to an unsigned long featuring NBITS bits.

Stack: (ULONG -- ULONG ULONG)

24.1.21 String instructions

Chapter 24: The Poke Virtual Machine 241

24.1.21.1 Instruction strref

Synopsys:

strref

Given a string and an unsigned long at the top of the stack, push an unsigned integer with
the code of the character that occupies that position in the string, on the stack.

The index is zero-based. If it is less than 0 or exceeds the length of the string, then
PVM E OUT OF BOUNDS is raised.

Stack: (STR ULONG -- STR ULONG UINT)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.21.2 Instruction strset

Synopsys:

strset

Given a string STR, an index FROM and a string NEWSTR, copy the content of NEWSTR
to STR at index FROM.

Index is zero-based.

If FROM >= the size of the string, or if FROM+len(NEWSTR) > the size of the string, raise
the PVM E OUT OF BOUNDS exception.

Stack: (STR ULONG NEWSTR -- STR)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.21.3 Instruction substr

Synopsys:

substr

Given a string and two indices FROM and TO conforming a semi-open interval [FROM,TO),
push the substring enclosed by that interval.

Both indexes are zero-based.

If FROM >= the size of the string, or if TO > the size of the string, or if FROM >= TO,
raise the PVM E OUT OF BOUNDS exception.

Stack: (STR ULONG(from) ULONG(to) -- STR ULONG(from) ULONG(to) STR)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.21.4 Instruction muls

Synopsys:

muls

Given a string and an unsigned long on the stack, push a new string value whose value is the
concatenation of the argument string applied to itself as many times as the unsigned long. If
the second argument to muls is 0 then the result of the operation is the empty string.

Stack: (STR ULONG -- STR ULONG STR)

24.1.21.5 Instruction sprops

Synopsys:

sprops

Given a string STR, set the styling class of the substring with length LEN from index IDX
to CLASS.

Stack: (STR IDX LEN CLASS -- STR)

Chapter 24: The Poke Virtual Machine 242

24.1.21.6 Instruction sproph

Synopsys:

sproph

Given a string STR, set the hyperlink property (which characterized by a URL and an ID)
of the substring with length LEN from index IDX.

Stack: (STR IDX LEN URL ID -- STR)

24.1.21.7 Instruction spropc

Synopsys:

spropc

Given a string on the stack, push the copy of the string with all properties cleared.

Stack: (STR -- STR)

24.1.22 Closure instructions

24.1.22.1 Instruction cgetn

Synopsys:

cgetn

Push the name of the given closure value, or PVM NULL if the closure doesn’t have a name.

Stack: (CLS -- CLS STR|null)

24.1.23 Array instructions

24.1.23.1 Instruction mka

Synopsys:

mka

Make a new empty array value.

TYP is the type of the new array.

NELEM is a hint on how many elements to use to initialize the array value. This is to avoid
allocating memory that will never be used. Use 0UL when the number of elements in the array
are not known in advance; this will make the PVM to choose a reasonable default.

Stack: (TYP ULONG(nelem) -- ARR)

24.1.23.2 Instruction ains

Synopsys:

ains

Insert a new element VAL, at the end of the array ARR, making it grow.

If IDX is less than the current size of the array, the value is stored in the referred argument.

If IDX is equal or bigger than the current size of the array, the same element is replicated in
the previous elements.

Examples:

a = [a1, a2, a3]

[a1, a2, a3] 2 VAL ains -> INVAL exception [a1, a2, a3] 3 VAL ains -> [a1, a2, a3, VAL] [a1,
a2, a3] 5 VAL ains -> [a1, a2, a3, VAL, VAL, VAL]

Stack: (ARR IDX VAL -- ARR)

Exceptions: PVM_E_INVAL

Chapter 24: The Poke Virtual Machine 243

24.1.23.3 Instruction arem

Synopsys:

arem

Remove an element from an array at the specified index, making it schrink.

If IDX doesn’t correspond to an element in the array, raise PVM E OUT OF BOUNDS.
This always happens if the array is empty.

Stack: (ARR IDX -- ARR) Exception: PVM E OUT OF BOUNDS

24.1.23.4 Instruction aset

Synopsys:

aset

Set the value with index ULONG in the array ARR to have the value VAL. The index in
ULONG should be in range, since this instruction is not checked.

Stack: (ARR ULONG VAL -- ARR)

24.1.23.5 Instruction aref

Synopsys:

aref

Given an array ARR and an index ULONG, push the element of the array occupying that
position on the stack.

If the provided index is out of bounds, then raise PVM E OUT OF BOUNDS.

Stack: (ARR ULONG -- ARR ULONG VAL)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.23.6 Instruction arefo

Synopsys:

arefo

Given an array ARR and an index ULONG, push the offset of the element occupying that
position in the array.

If the provided index is out of bounds, then raise PVM E OUT OF BOUNDS.

Stack: (ARR ULONG -- ARR ULONG OFF)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.24 Struct instructions

24.1.24.1 Instruction mksct

Synopsys:

mksct

Given an offset, a list of fields, a list of methods and a struct type, create a struct value and
push it on the stack.

Each field is specified as a triplet [OFF STR VAL] where OFF is the offset of field, STR the
name of the field or PVM NULL if the field is anonymous, and VAL is a value.

Each method is specified as a tuple [STR VAL] where STR is the name of the method and
VAL is the closure value corresponding to the method.

Stack: (OFF [OFF STR VAL]... [STR VAL]... ULONG ULONG TYP -- SCT)

Chapter 24: The Poke Virtual Machine 244

24.1.24.2 Instruction sset

Synopsys:

sset

Given a struct, a field name and a value, replace the value of the referred struct field with the
given value. If the struct does not have a field with the given name, then raise PVM E ELEM.

Stack: (SCT STR VAL -- SCT)

Exceptions: PVM_E_ELEM

24.1.24.3 Instruction sseti

Synopsys:

sseti

Given a struct, a field index and a value, replace the value of the referred struct field with
the given value. If the given index does not refer to a struct field, then raise PVM E ELEM.

Stack: (SCT IDX VAL -- SCT)

Exceptions: PVM_E_ELEM

24.1.24.4 Instruction sref

Synopsys:

sref

Given a struct and a field name, push the value contained in the referred struct field on the
stack. If the struct does not have a field with the given name, or if the field is absent from the
struct value then raise PVM E ELEM.

Stack: (SCT STR -- SCT STR VAL)

Exceptions: PVM_E_ELEM

24.1.24.5 Instruction srefo

Synopsys:

srefo

Given a struct and a field name, push the bit-offset of the referred field on the stack. If the
struct does not have a field with the given name, or if the field is absent from the struct value
then raise PVM E ELEM.

Stack: (SCT STR -- SCT STR BOFF)

Exceptions: PVM_E_ELEM

24.1.24.6 Instruction srefmnt

Synopsys:

srefmnt

Given a struct and a method name, push the closure value corresponding to that method on
the stack. If the struct does not have a method with the given name then push PVM NULL.

Stack: (SCT STR - SCT STR CLS)

24.1.24.7 Instruction srefnt

Synopsys:

srefnt

Given a struct and a field name, push the value contained in the struct field on the stack.
If the struct does not have a field with the given name, or if the field is absent from the struct
value then push PVM NULL.

Stack: (SCT STR -- SCT STR VAL)

Chapter 24: The Poke Virtual Machine 245

24.1.24.8 Instruction srefi

Synopsys:

srefi

Given a struct and an index, push the value of the field occupying the position spec-
ified by the index in the given struct. If the struct doesn’t have that many fields, raise
PVM E OUT OF BOUNDS.

Stack: (SCT ULONG -- SCT ULONG VAL)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.24.9 Instruction srefia

Synopsys:

srefia

Given a struct and an index, push 1 if the field occupying the position specified by the index
in the given struct is absent. Push 0 otherwise. If the struct doesn’t have that many fields, raise
PVM E OUT OF BOUNDS.

Stack: (SCT ULONG -- SCT ULONG INT)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.24.10 Instruction srefio

Synopsys:

srefio

Given a struct and an index, push the offset of the field occupying the position spec-
ified by the index in the given struct. If the struct doesn’t have that many fields, raise
PVM E OUT OF BOUNDS.

Stack: (SCT ULONG -- SCT ULONG BOFF)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.24.11 Instruction srefin

Synopsys:

srefin

Given a struct and an index, push the name of the field occupying the position specified by
the index in the given struct. If the field is anonymous, push PVM NULL. If the struct doesn’t
have that many fields, raise PVM E OUT OF BOUNDS.

Stack: (SCT ULONG -- SCT ULONG STR)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.24.12 Instruction smodi

Synopsys:

smodi

Given a struct and an index, push the modified flags of the field occupying the position
specified by the index in the given struct. If the struct doesn’t have that many fields, raise
PVM E OUT OF BOUNDS.

Stack: (SCT ULONG -- SCT ULONG BOOL)

Exceptions: PVM_E_OUT_OF_BOUNDS

24.1.25 Offset Instructions

Chapter 24: The Poke Virtual Machine 246

24.1.25.1 Instruction mko

Synopsys:

mko

Given an integral magnitude VAL and an offset type, make an offset value of that type and
push it on the stack.

Stack: (VAL TYP -- OFF)

24.1.25.2 Instruction mkoq

Synopsys:

mkoq

Given an integral magnitude VAL and an unit in an ULONG, make an offset type and create
an offset value with that type.

Stack: (VAL ULONG -- OFF)

24.1.25.3 Instruction ogetm

Synopsys:

ogetm

Given an offset OFF, push its magnitude on the stack.

Stack: (OFF -- OFF VAL)

24.1.25.4 Instruction osetm

Synopsys:

osetm

Given an offset OFF and an integral value VAL, make it the offset’s magnitude.

Stack: (OFF VAL -- OFF)

24.1.25.5 Instruction ogetu

Synopsys:

ogetu

Given an offset OFF, push its unit on the stack.

Stack: (OFF -- OFF ULONG)

24.1.25.6 Instruction ogetbt

Synopsys:

ogetbt

Given an offset OFF, push its base type on the stack.

Stack: (OFF -- OFF TYP)

24.1.26 Instructions to handle mapped values

24.1.26.1 Instruction mm

Synopsys:

mm

Given a value, push 1 on the stack if the value is mapped. Push 0 otherwise.

Stack: (VAL -- VAL INT)

Chapter 24: The Poke Virtual Machine 247

24.1.26.2 Instruction map

Synopsys:

map

Given a value, mark it as as mapped. If the value can’t be mapped then this is a no-operation.

Stack: (VAL -- VAL)

24.1.26.3 Instruction unmap

Synopsys:

unmap

Given a value, mark it as as not mapped. If the value can’t be mapped then this is a
no-operation.

Stack: (VAL -- VAL)

24.1.26.4 Instruction reloc

Synopsys:

reloc

Given a value, a IO space expressed in an ulong, and a bit-offset expressed in an ulong,
relocate the value to the given bit-offset at the given IO space.

If the given value is not map-able then raise PVM E INVAL.

Stack: (VAL ULONG ULONG -- VAL ULONG ULONG)

Exceptions: PVM_E_INVAL

24.1.26.5 Instruction ureloc

Synopsys:

ureloc

Given a value, undo the last reloc performed on the value.

If the given value is not map-able then raise PVM E INVAL.

Stack: (VAL -- VAL)

Exceptions: PVM_E_INVAL

24.1.26.6 Instruction mgets

Synopsys:

mgets

Given a value, push a boolean indicating whether the value is strict. If the given value is not
map-able then push false, i.e. 0.

Stack: (VAL -- VAL INT)

24.1.26.7 Instruction msets

Synopsys:

msets

Given a value and a boolean, set the strictness of the value to the given boolean. If the value
is not map-able this is a no-operation.

Stack: (VAL INT -- VAL)

Chapter 24: The Poke Virtual Machine 248

24.1.26.8 Instruction mgeto

Synopsys:

mgeto

Given a map-able value, push its bit-offset on the stack as an unsigned long. If the given
value is not map-able then push PVM NULL.

Stack: (VAL -- VAL ULONG)

24.1.26.9 Instruction mseto

Synopsys:

mseto

Given a map-able value an a bit-offset, set its offset to the value. If the given value is not
map-able, then the offset is ignored.

Stack: (VAL ULONG -- VAL)

24.1.26.10 Instruction mgetios

Synopsys:

mgetios

Given a map-able value, push its associated IO space on the stack. If the given value is not
map-able, then push PVM NULL.

Stack: (VAL -- VAL INT)

24.1.26.11 Instruction msetios

Synopsys:

msetios

Given a map-able value and an IOS descriptor, set it as its associated IO space. If the IOS
descriptor is PVM NULL then it uses the current IO space. If the given value is not map-able
then the IO space is ignored.

Stack: (VAL INT -- VAL)

24.1.26.12 Instruction mgetm

Synopsys:

mgetm

Given a map-able value, push its mapper closure on the stack. If the given value is not
map-able, then push PVM NULL.

Stack: (VAL -- VAL CLS)

24.1.26.13 Instruction msetm

Synopsys:

msetm

Given a map-able value and a closure, set it as its mapper. If the given value is not map-able
then the closure is ignored.

Stack: (VAL CLS -- VAL)

Chapter 24: The Poke Virtual Machine 249

24.1.26.14 Instruction mgetw

Synopsys:

mgetw

Given a map-able value, push its writer closure on the stack. If the given value is not
map-able, then push PVM NULL.

Stack: (VAL -- VAL CLS)

24.1.26.15 Instruction msetw

Synopsys:

msetw

Given a map-able value and a closure, set it as its writer. If the given value is not map-able
then the closure is ignored.

Stack: (VAL CLS -- VAL)

24.1.26.16 Instruction mgetsel

Synopsys:

mgetsel

Given a map-able value in the TOS, push the number of elements to which its mapping is
bounded to. If the value is not mapped, or if it is not bounded by number of elements, push
PVM NULL.

Note that only array values can have mappings bounded by number of elements.

Stack: (VAL -- VAL ULONG)

24.1.26.17 Instruction msetsel

Synopsys:

msetsel

Given a map-able value and an unsigned long, set it as the mapping bound by number of
elements. If the value is not map-able the unsigned long is ignored.

Note that only array values can have mappings bounded by number of elements.

Stack: (VAL ULONG -- VAL)

24.1.26.18 Instruction mgetsiz

Synopsys:

mgetsiz

Given a map-able value in the TOS, push its mapping size-bound as a bit-offset. If the value
is not map-able, or if it is not bounded by size, push PVM NULL.

Note that only array values can have mappings bounded by size.

Stack: (VAL -- VAL ULONG)

24.1.26.19 Instruction msetsiz

Synopsys:

msetsiz

Given a map-able value and a bit-offset, set it as the mapping size-bound. If the value is not
map-able, the bit-offset is ignored.

Note that only array values can have mappings bounded by size.

Stack: (VAL ULONG -- VAL)

Chapter 24: The Poke Virtual Machine 250

24.1.27 Type related instructions

24.1.27.1 Instruction isa

Synopsys:

isa

Given a value and a type, push 1 on the stack if the value is of the given type. Push 0
otherwise.

Stack: (VAL TYPE -- TYPE VAL INT)

24.1.27.2 Instruction typof

Synopsys:

typof

Given a value that is not itself a type, push its type on the stack. Given a value that is a
type, push the value on the stack.

Stack: (VAL -- VAL TYPE)

24.1.27.3 Instruction isty

Synopsys:

isty

Given a value, push 1 on the stack if it is a PVM type. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.4 Instruction tyisi

Synopsys:

tyisi

Given a type, push 1 on the stack if it is an int. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.5 Instruction tyisiu

Synopsys:

tyisiu

Given a type, push 1 on the stack if it is an uint. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.6 Instruction tyisl

Synopsys:

tyisl

Given a type, push 1 on the stack if it is a long. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.7 Instruction tyislu

Synopsys:

tyislu

Given a type, push 1 on the stack if it is an ulong. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

Chapter 24: The Poke Virtual Machine 251

24.1.27.8 Instruction tyiso

Synopsys:

tyiso

Given a type, push 1 on the stack if it is an offset. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.9 Instruction tyiss

Synopsys:

tyiss

Given a type, push 1 on the stack if it is a string. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.10 Instruction tyisa

Synopsys:

tyisa

Given a type, push 1 on the stack if it is an array. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.11 Instruction tyisc

Synopsys:

tyisc

Given a type, push 1 on the stack if it is a closure. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.12 Instruction tyissct

Synopsys:

tyissct

Given a type, push 1 on the stack if it is a struct. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.13 Instruction tyisv

Synopsys:

tyisv ()

Given a type, push 1 on the stack if it is a void. Push 0 otherwise.

Stack: (TYPE -- TYPE INT)

24.1.27.14 Instruction mktyv

Synopsys:

mktyv

Build a "void" type and push it on the stack.

Stack: (-- TYPE)

Chapter 24: The Poke Virtual Machine 252

24.1.27.15 Instruction mktyi

Synopsys:

mktyi

Given an unsigned long denoting a bit width, and an unsigned int denoting signedness (0 is
unsigned, 1 is signed), build a an integral type with these features and push it on the stack.

Stack: (ULONG UINT -- TYPE)

24.1.27.16 Instruction tyigetsz

Synopsys:

tyigetsz

Given an integral type, push its size (in bits) to the stack.

Stack: (ITYPE -- ITYPE ULONG)

24.1.27.17 Instruction tyigetsg

Synopsys:

tyigetsg

Given an integral type, push its sign to the stack. 0 means unsigned and 1 means signed.

Stack: (ITYPE -- ITYPE INT)

24.1.27.18 Instruction mktys

Synopsys:

mktys

Push a string type on the stack.

Stack: (-- TYPE)

24.1.27.19 Instruction mktyo

Synopsys:

mktyo

Given a base integral type and an ulong denoting an offset unit (multiple of the base unit)
construct an offset type having these features, and push it on the stack.

Stack: (TYPE ULONG -- TYPE)

24.1.27.20 Instruction tyogetm

Synopsys:

tyogetm

Given an offset type, push type of magnitude to the stack.

Stack : (OTYPE – OTYPE ITYPE)

24.1.27.21 Instruction tyogetu

Synopsys:

tyogetu

Given an offset type, push unit value to the stack.

Stack : (OTYPE – OTYPE ULONG)

Chapter 24: The Poke Virtual Machine 253

24.1.27.22 Instruction tyogetrt

Synopsys:

tyogetrt

Given an offset type, push the referred type to the stack. This can be PVM NULL if the
offset type isn’t a reference.

Stack: (OTYPE -- OTYPE TYPE)

24.1.27.23 Instruction tyosetrt

Synopsys:

tyosetrt

Given an offset type and a referred type, make the offset type a referring type. The referred
type can be PVM NULL. In this case the resulting offset type is not a referring offset type.

Stack: (OTYPE TYPE -- OTYPE)

24.1.27.24 Instruction mktya

Synopsys:

mktya

Given an elements type and a bounder closure, build an array type having these features and
push it on the stack. The bounder closure can return either PVM NULL, or an integer, or an
offset as the boundary of the array type.

Stack: (TYPE BOUNDER -- TYPE)

24.1.27.25 Instruction tyagett

Synopsys:

tyagett

Given an array type, push the type of its elements on the stack.

Stack: (TYPE -- TYPE TYPE)

24.1.27.26 Instruction tyagetb

Synopsys:

tyagetb

Given an array type, push its bound on the stack.

Stack: (TYPE -- TYPE (ULONG|NULL))

24.1.27.27 Instruction tyasetb

Synopsys:

tyasetb

Given an array ARR and a closure BOUND, set the later as the array’s bounder function.
This is a function that, once executed with no arguments, returns the size of the array or null.

Stack: (TYPE BOUND -- TYPE)

24.1.27.28 Instruction mktyc

Synopsys:

mktyc

Given a list of argument types, a return type and a number of arguments, build a closure
type and push it on the stack.

Stack: (TYPE... TYPE ULONG -- TYPE)

Chapter 24: The Poke Virtual Machine 254

24.1.27.29 Instruction mktysct

Synopsys:

mktysct

Given a list of field descriptors, a number of fields and a struct type name, build a struct
type and push it on the stack.

Each field descriptor has the form [STRING TYPE] and contains the name of the field and
its type.

Stack: ([STRING TYPE]... ULONG STR -- TYPE)

24.1.27.30 Instruction tysctgetc

Synopsys:

tysctgetc

Given a struct type, push its constructor closure to the stack. If no constructor closure is
installed in the type, push PVM NULL.

Stack: (TYP -- TYP CLS|null)

24.1.27.31 Instruction tysctsetc

Synopsys:

tysctsetc

Given a struct type and a closure, install it as the type’s constructor.

Stack: (TYP CLS -- TYP)

24.1.27.32 Instruction tysctgetn

Synopsys:

tysctgetn

Given a struct type, push its name to the stack. If the struct type is not named push
PVM NULL.

Stack: (TYP -- SCT STR)

24.1.27.33 Instruction tysctgetnf

Synopsys:

tysctgetnf

Given a struct type, push its number of fields to the stack.

Stack: (SCT -- SCT ULONG)

24.1.27.34 Instruction tysctgetfn

Synopsys:

tysctgetfn

Given a struct type and an index, push the field name to the stack. If the field is not named
push PVM NULL.

Stack: (SCT ULONG -- SCT ULONG STR)

24.1.27.35 Instruction tysctgetft

Synopsys:

tysctgetft

Given a struct type and an index, push the field type to the stack.

Stack: (SCT ULONG -- SCT ULONG TYP)

Chapter 24: The Poke Virtual Machine 255

24.1.28 IO instructions

24.1.28.1 Instruction write

Synopsys:

write

If the value at the TOS is mapped, then write it to its associated IO space. Otherwise, this
is a no-op.

Stack: (VAL -- VAL)

Exceptions: PVM_E_IOS_FULL, PVM_E_CONSTRAINT_ERROR

24.1.28.2 Instruction peeki

Synopsys:

peeki NENC,ENDIAN,BITS

Given an IOS descriptor and a bit-offset, peek an integer value of width BITS bits. The
negative encoding and endianness to be used are specified in the instruction arguments.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [INT] EXCEPTION|null)

24.1.28.3 Instruction peekiu

Synopsys:

peekiu ENDIAN,BITS

Given an IOS descriptor and a bit-offset, peek an unsigned integer value of width BITS bits.
The endianness to be used is specified in the instruction arguments.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [INT] EXCEPTION|null)

24.1.28.4 Instruction peekl

Synopsys:

peekl NENC,ENDIAN,BITS

Given an IOS descriptor and a bit-offset, peek a long value of width BITS bits. The negative
encoding and endianness to be used are specified in the instruction arguments.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [LONG] EXCEPTION|null)

24.1.28.5 Instruction peeklu

Synopsys:

peeklu ENDIAN,BITS

Given an IOS descriptor and a bit-offset, peek an unsigned long value of width BITS bits.
The endianness to be used is specified in the instruction arguments.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [ULONG] EXCEPTION|null)

Chapter 24: The Poke Virtual Machine 256

24.1.28.6 Instruction peekdi

Synopsys:

peekdi BITS

Given an IOS descriptor and a bit-offset, peek an integer value of width BITS bits. Use the
default endianness and negative encoding.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [INT] EXCEPTION|null)

24.1.28.7 Instruction peekdiu

Synopsys:

peekdiu BITS

Given an IOS descriptor and a bit-offset, peek an unsigned integer value of width BITS bits.
Use the default endianness.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [UINT] EXCEPTION|null)

24.1.28.8 Instruction peekdl

Synopsys:

peekdl BITS

Given an IOS descriptor and a bit-offset, peek a long value of width BITS bits. Use the
default endianness and negative encoding.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [LONG] EXCEPTION|null)

24.1.28.9 Instruction peekdlu

Synopsys:

peekdlu BITS

Given an IOS descriptor and a bit-offset, peek an unsigned long value of width BITS bits.
Use the default endianness.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [ULONG] EXCEPTION|null)

24.1.28.10 Instruction pokei

Synopsys:

pokei NENC,ENDIAN,BITS

Given an IOS descriptor, a bit-offset and an integer value of BITS bits, poke it. Use the
negative encoding and endianness specified in the instruction arguments.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG INT -- EXCEPTION|null)

Chapter 24: The Poke Virtual Machine 257

24.1.28.11 Instruction pokeiu

Synopsys:

pokeiu ENDIAN,BITS

Given an IOS descriptor, a bit-offset and an unsigned integer value of BITS bits, poke it.
Use the endianness specified in the instruction arguments.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG INT -- EXCEPTION|null)

24.1.28.12 Instruction pokel

Synopsys:

pokel NENC,ENDIAN,BITS

Given an IOS descriptor, a bit-offset and a long value of BITS bits, poke it. Use the negative
encoding and endianness specified in the instruction arguments.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG LONG -- EXCEPTION|null)

24.1.28.13 Instruction pokelu

Synopsys:

pokelu ENDIAN,BITS

Given an IOS descriptor, a bit-offset and an unsigned long value of BITS bits, poke it. Use
the endianness specified in the instruction arguments.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG ULONG -- EXCEPTION|null)

24.1.28.14 Instruction pokedi

Synopsys:

pokedi BITS

Given an IOS descriptor, a bit-offset and an integer of BITS bits, poke it. Use the default
negative encoding and endianness.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG INT -- EXCEPTION|null)

24.1.28.15 Instruction pokediu

Synopsys:

pokediu BITS

Given an IOS descriptor, a bit-offset and an unsigned integer of BITS bits, poke it. Use the
default endianness.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG UINT -- EXCEPTION|null)

Chapter 24: The Poke Virtual Machine 258

24.1.28.16 Instruction pokedl

Synopsys:

pokedl BITS

Given an IOS descriptor, a bit-offset and a long of BITS bits, poke it. Use the default
negative encoding and endianness.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG LONG -- EXCEPTION|null)

24.1.28.17 Instruction pokedlu

Synopsys:

pokedlu BITS

Given an IOS descriptor, a bit-offset and an unsigned long of BITS bits, poke it. Use the
default endianness.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG ULONG -- EXCEPTION|null)

24.1.28.18 Instruction peeks

Synopsys:

peeks

Given an IOS descriptor and a bit-offset, peek a string.

If there is a problem performing the operation, this function pushes an exception in the stack.
Otherwise, it pushes the peeked value and PVM NULL.

Stack: (INT ULONG -- [STR] EXCEPTION|null)

24.1.28.19 Instruction pokes

Synopsys:

pokes

Given an IOS descriptor, a bit-offset and a string, poke it.

In case of an error, this instruction pushes an exception describing the error condition. Oth-
erwise it pushes PVM NULL.

Stack: (INT ULONG STR --)

24.1.29 Exceptions handling instructions

24.1.29.1 Instruction pushe

Synopsys:

pushe LABEL

Given an Exception struct in the stack, push a handler for it on the exceptions stack. An
exception code 0 means any exception.

Stack: (EXCEPTION --)

Exception Stack: (-- EXCEPTION_HANDLER)

Chapter 24: The Poke Virtual Machine 259

24.1.29.2 Instruction pope

Synopsys:

pope

Pop an exception handler from the exceptions stack.

Stack: (--)

Exception Stack: (EXCEPTION_HANDLER --)

24.1.29.3 Instruction raise

Synopsys:

raise

Raise the given exception.

Stack: (EXCEPTION --)

Exception Stack: (--)

24.1.29.4 Instruction popexite

Synopsys:

popexite

Pops the exception on the stack and sets it in the VM.

Stack: (EXCEPTION --)

Exception Stack: (--)

24.1.30 Debugging Instructions

24.1.30.1 Instruction strace

Synopsys:

strace DEPTH

Print a debugging trace with the elements of the top of the stack. The number of elements
to print is specified in DEPTH. A depth of zero means to print the whole stack.

Stack: (--)

24.1.30.2 Instruction rtrace

Synopsys:

rtrace DEPTH

Print a debugging call trace. The number of elements to print is specified in DEPTH. A
depth of zero means to print the whole call trace.

Stack: (--)

24.1.30.3 Instruction disas

Synopsys:

disas

Print out the disassembling of the program executed by the closure in the top of the stack.

Stack: (CLS -- CLS)

Chapter 24: The Poke Virtual Machine 260

24.1.30.4 Instruction note

Synopsys:

note VALUE

This instruction is intended to be used to insert annotations that help to understand disas-
semblies. Most of the times VALUE is a string.

Semantically, this instruction does nothing.

Stack: (--)

24.1.30.5 Instruction vmdisp

Synopsys:

vmdisp

Pushes the current dispatching strategy of current VM to the stack.

Stack: (-- STR)

24.1.31 System Interaction Instructions

24.1.31.1 Instruction getenv

Synopsys:

getenv

This instruction gets the name of an environment variable on the stack and pushes the value
of the corresponding environment variable. If no variable with the given name is defined on the
environment, then push PVM NULL.

Stack: (STR -- STR STR)

24.1.32 Miscellaneous Instructions

24.1.32.1 Instruction nop

Synopsys:

nop

Do nothing.

Stack: (--)

24.1.32.2 Instruction rand

Synopsys:

rand

Push a pseudo-random integer to the stack.

If the argument is 0U then it is ignored. Otherwise it is used to set the seed for a new
sequence of pseudo-random numbers.

Stack: (UINT -- INT)

24.1.32.3 Instruction time

Synopsys:

time

Push the current system time to the stack in the form of two long elements containing the
number of seconds and nanoseconds since the epoch.

Stack: (-- LONG(sec) LONG(nsec))

Chapter 24: The Poke Virtual Machine 261

24.1.32.4 Instruction sleep

Synopsys:

sleep

Sleep for a given number of seconds and nanoseconds.

If the provided number of nanoseconds are not in the range 0 to 999999999 or the number
of provided seconds is negative, pushes -1.

If there is any other error performing the operation then push -2.

EINTR is treated as no error currently.

Stack: (LONG LONG -- LONG LONG INT)

24.1.32.5 Instruction siz

Synopsys:

siz

Given a value, push its size as a bit-offset. By convention, the following PVM values have
size zero: type, closure, null

Stack: (VAL -- VAL ULONG)

24.1.32.6 Instruction sel

Synopsys:

sel

Given a value, push its length as an unsigned long.

The length of an array is the number of values contained in it. The length of a struct is the
number of fields contained in it. The length of a string is the number of characters contained in
it. The length of any other value is 1.

Stack: (VAL -- VAL ULONG)

262

Appendix A Table of ASCII Codes

Oct Dec Hex Char
000 0 00 NUL ’\0’ (null character)
001 1 01 SOH (start of heading)
002 2 02 STX (start of text)
003 3 03 ETX (end of text)
004 4 04 EOT (end of transmission)
005 5 05 ENQ (enquiry)
006 6 06 ACK (acknowledge)
007 7 07 BEL ’\a’ (bell)
010 8 08 BS ’\b’ (backspace)
011 9 09 HT ’\t’ (horizontal tab)
012 10 0A LF ’\n’ (new line)
013 11 0B VT ’\v’ (vertical tab)
014 12 0C FF ’\f’ (form feed)
015 13 0D CR ’\r’ (carriage ret)
016 14 0E SO (shift out)
017 15 0F SI (shift in)
020 16 10 DLE (data link escape)
021 17 11 DC1 (device control 1)
022 18 12 DC2 (device control 2)
023 19 13 DC3 (device control 3)
024 20 14 DC4 (device control 4)
025 21 15 NAK (negative ack.)
026 22 16 SYN (synchronous idle)
027 23 17 ETB (end of trans. blk)
030 24 18 CAN (cancel)
031 25 19 EM (end of medium)
032 26 1A SUB (substitute)
033 27 1B ESC (escape)
034 28 1C FS (file separator)
035 29 1D GS (group separator)
036 30 1E RS (record separator)
037 31 1F US (unit separator)
040 32 20 SPACE
041 33 21 !
042 34 22 "

043 35 23 #
044 36 24 $
045 37 25 %
046 38 26 &
047 39 27 ’
050 40 28 (
051 41 29)
052 42 2A *
053 43 2B +

054 44 2C ,
055 45 2D -
056 46 2E .
057 47 2F /
060 48 30 0

Appendix A: Table of ASCII Codes 263

061 49 31 1
062 50 32 2
063 51 33 3
064 52 34 4
065 53 35 5
066 54 36 6
067 55 37 7
070 56 38 8
071 57 39 9
072 58 3A :
073 59 3B ;
074 60 3C <

075 61 3D =
076 62 3E >

077 63 3F ?
100 64 40 @
101 65 41 A
102 66 42 B
103 67 43 C
104 68 44 D
105 69 45 E
106 70 46 F
107 71 47 G
110 72 48 H
111 73 49 I
112 74 4A J
113 75 4B K
114 76 4C L
115 77 4D M
116 78 4E N
117 79 4F O
120 80 50 P
121 81 51 Q
122 82 52 R
123 83 53 S
124 84 54 T
125 85 55 U
126 86 56 V
127 87 57 W
130 88 58 X
131 89 59 Y
132 90 5A Z
133 91 5B [
134 92 5C \ ’\\’
135 93 5D]
136 94 5E ^

137 95 5F
140 96 60 ‘
141 97 61 a
142 98 62 b
143 99 63 c
144 100 64 d

Appendix A: Table of ASCII Codes 264

145 101 65 e
146 102 66 f
147 103 67 g
150 104 68 h
151 105 69 i
152 106 6A j
153 107 6B k
154 108 6C l
155 109 6D m
156 110 6E n
157 111 6F o
160 112 70 p
161 113 71 q
162 114 72 r
163 115 73 s
164 116 74 t
165 117 75 u
166 118 76 v
167 119 77 w
170 120 78 x
171 121 79 y
172 122 7A z
173 123 7B {
174 124 7C |

175 125 7D }
176 126 7E ~

177 127 7F DEL

265

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008, 2021 Free Software
Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

http://fsf.org/

Appendix B: GNU Free Documentation License 266

A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover

Appendix B: GNU Free Documentation License 267

Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given

Appendix B: GNU Free Documentation License 268

on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or

Appendix B: GNU Free Documentation License 269

publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first

Appendix B: GNU Free Documentation License 270

time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 271

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

272

Appendix C Indices

C.1 Concept Index

? . 167

.

.close . 116

.doc . 117

.editor . 117

.exit . 121

.file . 115

.info . 117

.ios . 116

.load . 52, 115

.mem . 115

.nbd . 116

.pokerc . 5, 15, 97

.proc . 116

.quit . 121

.set . 118

.source . 115

.sub . 116

.vm . 120

:
: . 167

^
^L . 190

__FILE__ . 193
__LINE__ . 193

@
@ . 178

A
addition . 133
alignment . 64
AND . 130
any, the any type . 163
arguments . 7, 169
arithmetic . 130
array functions . 197
arrays . 137
arrays, trimming . 49
ASCII . 32
asm, expression . 171
asm, statement . 171
assembler . 171
assert . 186
assignment . 165

atoi . 196
attributes, array attributes . 143
attributes, function attributes 171
attributes, integer attributes . 131
attributes, offset . 134
attributes, string attributes . 137
attributes, struct attributes . 161

B
base, argument in strtoi . 196
big endian . 20
binary . 127, 188
binary files . 12
bitsize . 127
bitwise operators . 130
boolean operators . 130
boolean values . 128
break . 167, 168, 185

C
calling, function calls . 169
casting, integration, integrate, arrays 139
casts . 23, 129, 133
catos . 195
character . 32
character set . 32
character, locating in a string . 197
characters . 128
checksum . 200
close . 176
closures . 138
coercions . 40
command files . 8
commands . 7
commands, customizing . 15
commands, passing arguments . 15
comments . 189
comparing, arrays . 141
comparing, structs . 146
comparison . 129
complement . 130
compound statements . 166
concatenation, bitwise . 130
concatenation, strings . 136
conditional expressions . 167
conditional statements . 167
constraints . 147
constructing, arrays . 140
continue . 167, 168
conversion functions . 195
conversions . 40
converting, arrays to strings . 195
converting, strings to arrays . 195
converting, strings to integers 195, 196
copy . 124

Appendix C: Indices 273

CRC . 200

D
date . 201
decimal . 127, 188
declarations, function declarations 168
deflate . 29
digits separator . 127
disassembler . 120
dispatch . 121
division . 134
doc . 117
dot-commands . 6
dump . 122, 169

E
eBPF . 172
editor . 117
ELF . 132, 147, 173
end of file . 180, 184, 185
endianness . 20, 171
errors . 6
escape sequence . 34, 128
exceptions . 136, 141, 183
exclusive OR . 130
executing command files . 115
exit . 121
expressions . 6
extract . 125

F
fields, anonymous . 144
fields, computed . 160
file name . 193
flags . 7
flow control . 167
flush . 176
for . 168
for-in . 168
form feed . 190
formatted output . 188
fun . 168
function types . 170
functions . 168

G
get_ios . 176
gettimeofday . 201
gibibits . 195
gibibytes . 195
gigabits . 195
gigabytes . 195
global settings . 118

H
hexadecimal . 127, 188
history, session history . 6

I
inclusive OR . 130
indexing, into arrays . 141
indexing, into strings . 136
initialization file . 15
integer literals . 127
integers . 127
integral structs . 151
integral types . 194
integral unions . 156
invoking . 4
IO devices . 27
IO space . 115, 116, 117, 174
IO spaces . 27
ioflags . 177
iohandler . 177
iolist . 176
IOS hooks . 177
iosearch . 176
iosize . 177
isa operator . 163

K
kibibits . 195
kibibytes . 195
kilobits . 133, 134, 194
kilobytes . 131, 194

L
Latin-1 . 32
license, GNU Free Documentation License 265
line number . 193
little endian . 20
load . 190
load path . 97
loading files . 52
location . 193
loops . 167
ltos . 196
ltrim . 197

M
magnitude . 131, 133
mapped values . 45
mapping . 174, 178
matrices . 137
mebibits . 195
mebibytes . 195
megabits . 195
megabytes . 195
minus . 130
modules . 190
modulus . 134
MP3 . 104
multiplication . 134

N
negation . 131
negative encoding . 22

Appendix C: Indices 274

O
octal . 127, 188
offset . 131
offset algebra . 133
offset types . 194
OFFSET . 151
one complement . 22
opening files . 115, 174
opening memory buffers . 115
opening NBD buffers . 116
openproc . 175
openset . 177
opensub . 175
OR . 130
output . 187

P
padding . 64
pickle . 4
pinned structs . 151
Pk_Version . 202
Poke . 4
poke . 4
polymorphism . 163
POSIX_Time32 . 201
pretty printers, fields . 159
pretty printers, structs . 159
print . 187
printf . 188
profiler . 121
ptime . 201

Q
qsort . 200
quick sort . 200
quit . 121
quitting . 121

R
rabbit herd . 30
raise . 185
readline . 5
remap . 183
REPL . 5
reverse . 197
rtrim . 197

S
save . 124
scrabble . 125
scripts . 8
sdiff . 125
separator, digits separator . 127
set_ios . 176
shebang, #! . 8
shifting . 130
side effects . 168
sign promotion . 130
signedness . 128, 129, 130, 131
size of variables . 127

sorting . 200
source code encoding . 127
statements . 6
statements, compound statements 166
stoca . 195
stod . 197
stof . 196
strchr . 197
string functions . 197
string, tokenizing . 197
String_Tokenizer . 198
strings . 135
strings, formatting . 137
strrchr . 197
strtoi . 195
strtok . 197
struct fields . 157
structs . 144
styled output . 5, 97, 189
subtraction . 133

T
tags, file ID tags . 115, 116
tags, format tags . 188
ternary conditional operator . 167
text files . 12
time . 201
Timespec . 201
tracing . 193
truncation . 40
try-catch . 185
try-until . 185
two complement . 22
type . 50, 162
typeof . 163
types . 162
types, function types . 170
types, integral types . 194
types, offset types . 194

U
unbounded arrays . 138
Unicode . 32
unions . 155
united values . 131
units . 194
unmap . 183
utf-8 . 32

V
variables . 117
variadic functions . 169
version comparison . 202
version format . 202
version parsing . 202
virtual machine . 120

Appendix C: Indices 275

W

while . 167

whitespace, trimming . 197
with_cur_ios . 199
with_temp_ios . 199

C.2 PVM Instruction Index

A
addi . 221
addiof . 219
addiu . 221
addl . 221
addlof . 219
addlu . 222
ains . 242
and . 232
aref . 243
arefo . 243
arem . 243
aset . 243
atr . 219

B
ba . 236
bandi . 233
bandiu . 233
bandl . 233
bandlu . 233
beghl . 213
begsc . 213
bn . 236
bnn . 237
bnoti . 234
bnotiu . 234
bnotl . 234
bnotlu . 234
bnzi . 237
bnziu . 237
bnzl . 237
bnzlu . 238
bori . 233
boriu . 233
borl . 233
borlu . 233
bsli . 234
bsliu . 234
bsll . 235
bsllu . 235
bsri . 235
bsriu . 235
bsrl . 235
bsrlu . 235
bxori . 232
bxoriu . 232
bxorl . 232
bxorlu . 232
bzi . 237
bziu . 237
bzl . 237
bzlu . 237

C
call . 211
canary . 204
cgetn . 242
close . 209
ctos . 238

D
disas . 259
divi . 223
diviof . 220
diviu . 223
divl . 224
divlof . 220
divlu . 224
drop . 216
drop2 . 216
drop3 . 216
drop4 . 216
duc . 212
dup . 217

E
endhl . 213
endsc . 214
eqc . 231
eqi . 226
eqiu . 227
eql . 227
eqlu . 227
eqs . 227
exit . 204

F
flush . 209
formatf32 . 214
formatf64 . 215
formati . 214
formatiu . 214
formatl . 214
formatlu . 214
fromr . 219

Appendix C: Indices 276

G
gei . 230
geiu . 230
gel . 230
gelu . 230
ges . 231
getenv . 260
gti . 229
gtiu . 229
gtl . 230
gtlu . 230
gts . 231

I
ioflags . 209
iogetb . 210
iohandler . 210
ionum . 210
ioref . 210
iosetb . 210
iosize . 210
isa . 250
isty . 250
itoi . 238
itoiu . 238
itol . 238
itolu . 238
iutoi . 239
iutoiu . 239
iutol . 239
iutolu . 239

L
lei . 229
leiu . 229
lel . 229
lelu . 229
les . 231
lti . 228
ltiu . 228
ltl . 228
ltlu . 229
ltoi . 239
ltoiu . 239
ltol . 240
ltolu . 240
lts . 230
lutoi . 240
lutoiu . 240
lutol . 240
lutolu . 240

M
map . 247
mgetios . 248
mgetm . 248
mgeto . 248
mgets . 247
mgetsel . 249
mgetsiz . 249
mgetw . 249
mka . 242
mko . 246
mkoq . 246
mksct . 243
mktya . 253
mktyc . 253
mktyi . 252
mktyo . 252
mktys . 252
mktysct . 254
mktyv . 251
mm . 246
modi . 224
modiof . 220
modiu . 224
modl . 225
modlof . 220
modlu . 225
msetios . 248
msetm . 248
mseto . 248
msets . 247
msetsel . 249
msetsiz . 249
msetw . 249
muli . 222
muliof . 220
muliu . 223
mull . 223
mullof . 220
mullu . 223
muls . 241

N
nec . 231
negi . 225
negiof . 220
negiu . 225
negl . 225
neglof . 221
neglu . 226
nei . 227
neiu . 227
nel . 227
nelu . 228
nes . 228
nip . 216
nip2 . 216
nip3 . 216
nn . 228
nnn . 228
nop . 260
not . 232
note . 260

Appendix C: Indices 277

nrot . 217

O
ogetbt . 246
ogetm . 246
ogetu . 246
oover . 217
open . 208
or . 232
osetm . 246
over . 217

P
pec . 212
peekdi . 256
peekdiu . 256
peekdl . 256
peekdlu . 256
peeki . 255
peekiu . 255
peekl . 255
peeklu . 255
peeks . 258
pokedi . 257
pokediu . 257
pokedl . 258
pokedlu . 258
pokei . 256
pokeiu . 257
pokel . 257
pokelu . 257
pokes . 258
poparem . 208
pope . 259
popend . 204
popexite . 259
popf . 211
popios . 209
popoac . 207
popob . 205
popobc . 208
popoc . 207
popod . 206
popoi . 206
popom . 205
popoo . 205
popopp . 207
popr . 218
popvar . 212
powi . 226
powiof . 221
powiu . 226
powl . 226
powlof . 221
powlu . 226
printi . 212
printiu . 213
printl . 213
printlu . 213
prints . 213
prolog . 211
push . 215
push32 . 218

pusharem . 208
pushe . 258
pushend . 204
pushf . 211
pushios . 209
pushoac . 206
pushob . 204
pushobc . 207
pushoc . 207
pushod . 206
pushoi . 206
pushom . 205
pushoo . 205
pushopp . 207
pushr . 218
pushtopvar . 212
pushvar . 211

Q
quake . 217

R
raise . 259
rand . 260
regvar . 212
reloc . 247
restorer . 218
return . 211
revn . 217
rot . 217
rtrace . 259

S
saver . 218
sconc . 231
sel . 261
setr . 218
siz . 261
sleep . 261
smodi . 245
spropc . 242
sproph . 242
sprops . 241
sref . 244
srefi . 245
srefia . 245
srefin . 245
srefio . 245
srefmnt . 244
srefnt . 244
srefo . 244
sset . 244
sseti . 244
stod . 215
stof . 215
strace . 259
strref . 241
strset . 241
subi . 222
subiof . 219
subiu . 222

Appendix C: Indices 278

subl . 222
sublof . 219
sublu . 222
substr . 241
swap . 216
swapgti . 236
swapgtiu . 236
swapgtl . 236
swapgtlu . 236
sync . 208

T
time . 260
tor . 218
tuck . 217
tyagetb . 253
tyagett . 253
tyasetb . 253
tyigetsg . 252
tyigetsz . 252
tyisa . 251
tyisc . 251
tyisi . 250
tyisiu . 250
tyisl . 250
tyislu . 250
tyiso . 251

tyiss . 251
tyissct . 251
tyisv . 251
tyogetm . 252
tyogetrt . 253
tyogetu . 252
tyosetrt . 253
typof . 250
tysctgetc . 254
tysctgetfn . 254
tysctgetft . 254
tysctgetn . 254
tysctgetnf . 254
tysctsetc . 254

U
unmap . 247
ureloc . 247

V
vmdisp . 260

W
write . 255

	1 Introduction
	Motivation
	Decode-Compute-Encode
	Describe-Compute

	Nomenclature
	Invoking poke
	Commanding poke
	The REPL
	Evaluation
	Commands and Dot-Commands
	Dot-Commands
	Commands

	Command Files
	Scripts

	2 Setting Up
	Setting up Hyperlinks
	Make sure your poke speaks hyperlinks
	Use a terminal emulator that supports hyperlinks
	Get and install the app-client utility
	GNOME Terminal

	Simple Init File

	3 Basic Editing
	Binary Files
	Files as IO Spaces
	Dumping File Contents
	Poking Bytes
	Values and Variables
	From Bytes to Integers
	Big and Little Endians
	Negative Integers
	Negative Encodings
	Signed Integers
	Mixing Signed and Unsigned Integers

	Weird Integers
	Incomplete Bytes
	Quantum Bytenics
	Signed Weird Numbers

	Unaligned Integers
	Integers of Different Sizes
	Offsets and Sizes
	Buffers as IO Spaces
	Copying Bytes
	Saving Buffers in Files
	Character Sets
	From Bytes to Characters
	Character Literals
	Classifying Characters
	Non-printable Characters

	ASCII Strings
	String Values
	Poking Strings
	From Characters to Strings

	From Strings to Characters
	Strings are not Arrays

	4 Structuring Data
	The SBM Format
	Images as Maps of Pixels
	SBM header
	SBM data

	Poking a SBM Image
	P is for poke
	Preparing the Canvas
	Poking the Header
	Poking the Pixels
	Poking Lines
	Poking Images
	Saving the Image

	Modifying SBM Images
	Reading a SBM File
	Painting Pixels
	Cropping the R
	Shortening and Shifting Lines
	Updating the Header
	Saving the Result

	Defining Types
	Naming your Own Abstractions
	Abstracting the Structure of Entities

	Pickles
	poke Commands versus Poke Constructions
	Poke Files
	Pickling Abstractions
	Exploring Pickles
	Startup

	Poking Structs
	Heterogeneous Related Data
	Mapping Structs
	Modifying Mapped Structs

	How Structs are Built
	Variables in Structs
	Functions in Structs
	Struct Methods
	Padding and Alignment
	Esoteric and exoteric padding
	Reserved fields
	Payloads
	Aligning struct fields
	Padding array elements

	Dealing with Alternatives
	BSON
	Unions are Tagged

	Structured Integers
	Working with Incorrect Data

	5 Maps and Map-files
	Editing using Variables
	poke Maps
	Loading Maps
	Multiple Maps
	Auto-map
	Constructing Maps
	Predefined Maps

	6 Writing Pickles
	Pretty-printers
	Convention for pretty-printed Output
	Pretty Printing Optional Fields

	Setters and Getters

	7 Writing Binary Utilities
	Poke Scripts
	Command-Line Arguments
	Exiting from Scripts
	Loading pickles as Modules
	elfextractor
	Filters
	Stream IO Spaces
	Reading from Streams
	Writing to Streams
	pk-strings

	8 Configuration
	.pokerc
	Load Path
	Styling

	9 IOS
	ios_dump_bytes
	ios_copy_bytes
	ios_save_bytes

	10 Data Encodings
	base64

	11 Time
	POSIX Time

	12 Colors
	The Color Registry
	RGB24 Encoding

	13 Audio
	MP3
	ID3V1 Tags
	Song Genres
	The ID3V1_Tag Type

	14 Object Formats
	ELF
	Dwarf

	15 Programs
	argp

	16 poked
	17 pokefmt
	18 Programming Emacs Modes
	poke-mode
	poke-map-mode
	poke-ras-mode

	19 Vim Syntax Highlighting
	poke.vim

	20 Dot-Commands
	.load
	.source
	.file
	.mem
	.nbd
	.proc
	.sub
	.ios
	.close
	.doc
	.editor
	.info
	.set
	.vm
	.vm disassemble
	.vm profile
	.vm dispatch

	.exit
	.quit

	21 Commands
	dump
	Information dump shows
	Presentation options for dump

	copy
	save
	sdiff
	extract
	scrabble

	22 The Poke Language
	Source Code Encoding
	Integers
	Integer Literals
	The digits separator _
	Types of integer literals

	Characters
	Booleans
	Integer Types
	Casting Integers
	Relational Operators
	Arithmetic Operators
	Bitwise Operators
	Boolean Operators
	Integer Attributes

	Offsets
	Offset Literals
	Offset Units
	Named Units
	Arbitrary Units
	Types as Units

	Offset Types
	Casting Offsets
	Offset Operations
	Addition and subtraction
	Multiplication by a scalar
	Division
	Division by an integer
	Modulus

	Offset Attributes

	Strings
	String Literals
	String Types
	String Indexing
	String Concatenation
	String Attributes
	String Formatting

	Arrays
	Array Literals
	Array Types
	Writing unbounded array literals
	Array boundaries and closures

	Casting Arrays
	Array Constructors
	Array Comparison
	Array Indexing
	Indexing an array by number of element
	Indexing an array by offset of element

	Array Trimming
	Array Elements
	Array Concatenation
	Array Attributes
	Arrays as Stacks

	Structs
	Struct Types
	Struct Constructors
	Struct Comparison
	Field Endianness
	Accessing Fields
	Field Constraints
	Field Initializers
	Field Labels
	Pinned Structs
	The OFFSET variable
	Integral Structs
	Unions
	Union Constructors
	Integral Unions
	Optional Fields
	Casting Structs
	Declarations in Structs
	Methods
	Struct Pretty Printers
	Computed Fields
	Struct Attributes

	Types
	type
	The any Type
	The isa Operator
	typeof

	Assignments
	Simple Assignments
	Bit Assignments

	Compound Statements
	Conditionals
	if-else
	Conditional Expressions

	Loops
	while
	for
	for-in

	Expression Statements
	Functions
	Function Declarations
	Optional Arguments
	Variadic Functions
	Calling Functions
	Function Types
	Lambdas
	Function Comparison
	Function Attributes

	Assembler
	Endianness
	.set endian
	Endian in Fields
	Endian built-ins

	Mapping
	IO Spaces
	open
	opensub
	openproc
	close
	flush
	get_ios
	set_ios
	iosearch
	iolist
	openset
	iosize
	iohandler
	ioflags
	IO Space Hooks

	The Map Operator
	Mapping Simple Types
	Mapping Structs
	Mapping Arrays
	Array maps bounded by number of elements
	Array maps bounded by size
	Unbounded array maps
	Mapped bounds in bounded arrays

	Mapping Functions
	Non-strict Mapping
	Auto-Remapping
	Unmapping

	Exception Handling
	Exceptions
	try-catch
	try-until
	raise
	exception-predicate
	assert

	Terminal
	Terminal Colors
	Terminal Styling
	Terminal Hyperlinks

	Printing
	print
	printf

	Comments
	Multi-line comments
	Single line comments
	Vertical separator

	Modules
	System
	getenv
	rand

	VM
	vm_obase
	vm_set_obase
	vm_opprint
	vm_set_opprint
	vm_oacutoff
	vm_set_oacutoff
	vm_odepth
	vm_set_odepth
	vm_oindent
	vm_set_oindent
	vm_omaps
	vm_set_omaps
	vm_omode
	vm_set_omode
	vm_autoremap
	vm_set_autoremap

	Debugging
	__LINE__ and __FILE__
	strace
	rtrace

	23 The Standard Library
	Standard Integral Types
	Standard Offset Types
	Standard Units
	Conversion Functions
	catos
	stoca
	strtoi
	atoi
	ltos
	stof
	stod

	Array Functions
	reverse

	String Functions
	ltrim
	rtrim
	strchr
	strrchr
	strtok

	Character Functions
	Values Functions
	eoffset

	IO Space Functions
	with_cur_ios
	with_temp_ios

	Sorting Functions
	qsort

	CRC Functions
	Dates and Times
	Offset Functions
	alignto

	Other Standard Library Functions
	GNU poke Version String Parsing Utilities

	24 The Poke Virtual Machine
	PVM Instructions
	VM instructions
	Instruction canary
	Instruction exit
	Instruction pushend
	Instruction popend
	Instruction pushob
	Instruction popob
	Instruction pushom
	Instruction popom
	Instruction pushoo
	Instruction popoo
	Instruction pushoi
	Instruction popoi
	Instruction pushod
	Instruction popod
	Instruction pushoac
	Instruction popoac
	Instruction pushopp
	Instruction popopp
	Instruction pushoc
	Instruction popoc
	Instruction pushobc
	Instruction popobc
	Instruction sync
	Instruction pusharem
	Instruction poparem

	IOS related instructions
	Instruction open
	Instruction close
	Instruction flush
	Instruction pushios
	Instruction popios
	Instruction ioflags
	Instruction iosize
	Instruction ionum
	Instruction ioref
	Instruction iohandler
	Instruction iogetb
	Instruction iosetb

	Function management instructions
	Instruction call
	Instruction prolog
	Instruction return

	Environment instructions
	Instruction pushf
	Instruction popf
	Instruction pushvar
	Instruction pushtopvar
	Instruction popvar
	Instruction regvar
	Instruction duc
	Instruction pec

	Printing Instructions
	Instruction printi
	Instruction printiu
	Instruction printl
	Instruction printlu
	Instruction prints
	Instruction beghl
	Instruction endhl
	Instruction begsc
	Instruction endsc

	Format Instructions
	Instruction formati
	Instruction formatiu
	Instruction formatl
	Instruction formatlu
	Instruction formatf32
	Instruction formatf64

	Floating-point conversion instructions
	Instruction stof
	Instruction stod

	Main stack manipulation instructions
	Instruction push
	Instruction drop
	Instruction drop2
	Instruction drop3
	Instruction drop4
	Instruction swap
	Instruction nip
	Instruction nip2
	Instruction nip3
	Instruction dup
	Instruction over
	Instruction oover
	Instruction rot
	Instruction nrot
	Instruction tuck
	Instruction quake
	Instruction revn
	Instruction push32

	Registers manipulation instructions
	Instruction pushr
	Instruction popr
	Instruction setr

	Return stack manipulation instructions
	Instruction saver
	Instruction restorer
	Instruction tor
	Instruction fromr
	Instruction atr

	Integer overflow checking instructions.
	Instruction addiof
	Instruction addlof
	Instruction subiof
	Instruction sublof
	Instruction muliof
	Instruction mullof
	Instruction diviof
	Instruction divlof
	Instruction modiof
	Instruction modlof
	Instruction negiof
	Instruction neglof
	Instruction powiof
	Instruction powlof

	Arithmetic instructions
	Instruction addi
	Instruction addiu
	Instruction addl
	Instruction addlu
	Instruction subi
	Instruction subiu
	Instruction subl
	Instruction sublu
	Instruction muli
	Instruction muliu
	Instruction mull
	Instruction mullu
	Instruction divi
	Instruction diviu
	Instruction divl
	Instruction divlu
	Instruction modi
	Instruction modiu
	Instruction modl
	Instruction modlu
	Instruction negi
	Instruction negiu
	Instruction negl
	Instruction neglu
	Instruction powi
	Instruction powiu
	Instruction powl
	Instruction powlu

	Relational instructions
	Instruction eqi
	Instruction eqiu
	Instruction eql
	Instruction eqlu
	Instruction eqs
	Instruction nei
	Instruction neiu
	Instruction nel
	Instruction nelu
	Instruction nes
	Instruction nn
	Instruction nnn
	Instruction lti
	Instruction ltiu
	Instruction ltl
	Instruction ltlu
	Instruction lei
	Instruction leiu
	Instruction lel
	Instruction lelu
	Instruction gti
	Instruction gtiu
	Instruction gtl
	Instruction gtlu
	Instruction gei
	Instruction geiu
	Instruction gel
	Instruction gelu
	Instruction lts
	Instruction gts
	Instruction ges
	Instruction les
	Instruction eqc
	Instruction nec

	Concatenation instructions
	Instruction sconc

	Logical instructions
	Instruction and
	Instruction or
	Instruction not

	Bitwise instructions
	Instruction bxori
	Instruction bxoriu
	Instruction bxorl
	Instruction bxorlu
	Instruction bori
	Instruction boriu
	Instruction borl
	Instruction borlu
	Instruction bandi
	Instruction bandiu
	Instruction bandl
	Instruction bandlu
	Instruction bnoti
	Instruction bnotiu
	Instruction bnotl
	Instruction bnotlu

	Shift instructions
	Instruction bsli
	Instruction bsliu
	Instruction bsll
	Instruction bsllu
	Instruction bsri
	Instruction bsriu
	Instruction bsrl
	Instruction bsrlu

	Compare-and-swap instructions
	Instruction swapgti
	Instruction swapgtiu
	Instruction swapgtl
	Instruction swapgtlu

	Branch instructions
	Instruction ba
	Instruction bn
	Instruction bnn
	Instruction bzi
	Instruction bziu
	Instruction bzl
	Instruction bzlu
	Instruction bnzi
	Instruction bnziu
	Instruction bnzl
	Instruction bnzlu

	Conversion instructions
	Instruction ctos
	Instruction itoi
	Instruction itoiu
	Instruction itol
	Instruction itolu
	Instruction iutoi
	Instruction iutoiu
	Instruction iutol
	Instruction iutolu
	Instruction ltoi
	Instruction ltoiu
	Instruction ltol
	Instruction ltolu
	Instruction lutoi
	Instruction lutoiu
	Instruction lutol
	Instruction lutolu

	String instructions
	Instruction strref
	Instruction strset
	Instruction substr
	Instruction muls
	Instruction sprops
	Instruction sproph
	Instruction spropc

	Closure instructions
	Instruction cgetn

	Array instructions
	Instruction mka
	Instruction ains
	Instruction arem
	Instruction aset
	Instruction aref
	Instruction arefo

	Struct instructions
	Instruction mksct
	Instruction sset
	Instruction sseti
	Instruction sref
	Instruction srefo
	Instruction srefmnt
	Instruction srefnt
	Instruction srefi
	Instruction srefia
	Instruction srefio
	Instruction srefin
	Instruction smodi

	Offset Instructions
	Instruction mko
	Instruction mkoq
	Instruction ogetm
	Instruction osetm
	Instruction ogetu
	Instruction ogetbt

	Instructions to handle mapped values
	Instruction mm
	Instruction map
	Instruction unmap
	Instruction reloc
	Instruction ureloc
	Instruction mgets
	Instruction msets
	Instruction mgeto
	Instruction mseto
	Instruction mgetios
	Instruction msetios
	Instruction mgetm
	Instruction msetm
	Instruction mgetw
	Instruction msetw
	Instruction mgetsel
	Instruction msetsel
	Instruction mgetsiz
	Instruction msetsiz

	Type related instructions
	Instruction isa
	Instruction typof
	Instruction isty
	Instruction tyisi
	Instruction tyisiu
	Instruction tyisl
	Instruction tyislu
	Instruction tyiso
	Instruction tyiss
	Instruction tyisa
	Instruction tyisc
	Instruction tyissct
	Instruction tyisv
	Instruction mktyv
	Instruction mktyi
	Instruction tyigetsz
	Instruction tyigetsg
	Instruction mktys
	Instruction mktyo
	Instruction tyogetm
	Instruction tyogetu
	Instruction tyogetrt
	Instruction tyosetrt
	Instruction mktya
	Instruction tyagett
	Instruction tyagetb
	Instruction tyasetb
	Instruction mktyc
	Instruction mktysct
	Instruction tysctgetc
	Instruction tysctsetc
	Instruction tysctgetn
	Instruction tysctgetnf
	Instruction tysctgetfn
	Instruction tysctgetft

	IO instructions
	Instruction write
	Instruction peeki
	Instruction peekiu
	Instruction peekl
	Instruction peeklu
	Instruction peekdi
	Instruction peekdiu
	Instruction peekdl
	Instruction peekdlu
	Instruction pokei
	Instruction pokeiu
	Instruction pokel
	Instruction pokelu
	Instruction pokedi
	Instruction pokediu
	Instruction pokedl
	Instruction pokedlu
	Instruction peeks
	Instruction pokes

	Exceptions handling instructions
	Instruction pushe
	Instruction pope
	Instruction raise
	Instruction popexite

	Debugging Instructions
	Instruction strace
	Instruction rtrace
	Instruction disas
	Instruction note
	Instruction vmdisp

	System Interaction Instructions
	Instruction getenv

	Miscellaneous Instructions
	Instruction nop
	Instruction rand
	Instruction time
	Instruction sleep
	Instruction siz
	Instruction sel

	A Table of ASCII Codes
	B GNU Free Documentation License
	C Indices
	Concept Index
	PVM Instruction Index

