GNU poke Manual

for version 3.0-dev-278-g2320-dirty, 2 November 2023

by Jose E. Marchesi et al.




This manual describes GNU poke (version 3.0-dev-278-g2320-dirty, 2 November 2023).
Copyright (©) 2019, 2020, 2021, 2022, 2023 The poke authors.

You can redistribute it and/or modify this manual under the terms of the GNU
General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.



Table of Contents

1 Introduction........... ... .. .. . 2
1.1 MoOtIVation . . ... e 2
1.1.1 Decode-Compute-Encode. . ....... ... e 2
1.1.2 Describe-Compute . ... ... 3
1.2 Nomenclature. ... ... 4
1.3 InvoKing PoKe. . ..ottt e 4
1.4 Commanding POKE . .. ...ttt 5
1.4.1 The REPL . ... 5
1.4.2 Evaluation . ... ... 6
1.4.3 Commands and Dot-Commands. ..., 6
1.4.3.1 Dot-Commands . .. .....uuntt ettt e e e 6
1.4.3.2 Commands. ... ...ttt 7

1.4.4 Command Files. ... ... e e 8

I 5 S T3 011~ 8

2 Setting Up ... 10
2.1 Setting up Hyperlinks. .. ... o 10
2.1.1 Make sure your poke speaks hyperlinks............ .. ... ... ... 10
2.1.2 Use a terminal emulator that supports hyperlinks ............................. 10
2.1.3 Get and install the app-client utility ............c . i 10
2.1.4 GNOME Terminal . ... ... e e 10
2.2 Simple Init File. .. ..o 11
3 Basic Editing ................. 12
3.1 Binary Files . ..o 12
3.2 Files a8 IO SPaces . ..ottt et e 12
3.3 Dumping File Contents . ..... ..o e 14
3.4 Poking Bytes ... ... 16
3.5 Values and Variables ........ ... 17
3.6 From Bytes to Integers .. ... e 18
3.7 Bigand Little Endians ..........oo i 20
3.8 Negative Integers .. ..o 22
3.8.1 Negative Encodings . .........ouuiii i e 22
3.8.2 Signed Integers . ... ... e 22
3.8.3 Mixing Signed and Unsigned Integers ......... ..o, 23
3.9 Weird Integers. .. ... 23
3.9.1 Incomplete Bytes ... ..o 24
3.9.2 Quantum Bytenics. . ... 26
3.9.3 Signed Weird Numbers. ... ... 26
3.10 Unaligned Integers. ... ... e 27
3.11 Integers of Different Sizes..... ... 28
3.12 Offsets and SIZeS . . ..ot 28
3.13 Buffers as IO Spaces . .. ...t 30
3.14 Copying Bytes. ... 31
3.15 Saving Buffers in Files. . ... .o 32
3.16 Character SetS ... ...t 32

3.17 From Bytes to Characters ............ . e 33



ii

3.17.1 Character Literals ........oo i e 33
3.17.2 Classifying Characters .. ... ...ttt 33
3.17.3 Non-printable Characters ...... ... e 34
B8 ASCIT SEIINES - - v v ettt e e e e e e e e e 34
3.18.1 String Values .. ..o 34
3.18.2 PoKing Strings. .. ..ooit 35
3.18.3 From Characters t0 Strings ...... ..ot 36
3.19 From Strings to Characters ... ... ... e 36
3.20 SErings are NOt ATTAYS . ...ttt et et e e 37
Structuring Data ............ . ... .. ... 38
4.1 The SBM Formatb. ... ... e 38
4.1.1 Images as Maps of Pixels ... 38
4.1.2 SBM header ... ..o.nni i 38
4.1.3 SBM data .. oot 39
4.2 Poking a SBM Image . ... 39
4.2.1 P s for poke. ... 39
4.2.2 Preparing the Canvas.........coouuiiii i e 39
4.2.3 Poking the Header . ........ i 40
4.2.4 Poking the Pixels .. ... 40
4.2.5 Poking Lines. . ... 42
4.2.6 Poking Images . .. ...t e 43
4.2.7 Saving the Image .. ... ... 43
4.3 Modifying SBM Images. .. ..ottt 44
4.3.1 Reading a SBM File ... i 44
4.3.2 Painting Pixels ... ... 44
4.3.3 Cropping the R. .. ..o 48
4.3.4 Shortening and Shifting Lines......... ... i 49
4.3.5 Updating the Header ... i e 49
4.3.6 Saving the Result . ... ... i 50
4.4 Defining TyPes . oot 50
4.4.1 Naming your Own AbStractions......... ...ttt 50
4.4.2 Abstracting the Structure of Entities.......... ... oo i 50
4.5 PicKIes . oo 51
4.5.1 poke Commands versus Poke Constructions ................ccooiiiiiiieiiinn.. 51
4.5.2 Poke Files . ..o 51
4.5.3 Pickling AbStractions ... ..........ouini i 52
4.5.4 Exploring Pickles . ... ..o 53
5 5 T 1 7= |03 55
4.6 POKING STIUCES ..ottt e 55
4.6.1 Heterogeneous Related Data ......... ..o 55
4.6.2 Mapping StrlCtS . . ..o e 95
4.6.3 Modifying Mapped StructS. . .....ouunrte i i 56
4.7 How Structs are Built .. ... 56
4.8 Variables In Structs. ... ... 57
4.9  Functions in Structs . ... ... 58
4.10 Struct Methods. ... ..o 60
4.11 Padding and Alignment. .......... ..o 64
4.11.1 Esoteric and exoteric padding...........c..oooiiiiiiiiiiii 64
4.11.2 Reserved flelds. .. ... 64

4.11.3 Payloads ... 65



iii

4.11.4 Aligning struct fields. . ... 67
4.11.5 Padding array elements . ...........oooi it 68

4.12 Dealing with Alternatives. ... . ..o e 69
40121 BSON . 69
4.12.2 Unions are Tagged ... ... e 71

4.13 Structured INtegers . ... ...t 72
4.14 Working with Incorrect Data ......... . i 74

5 Maps and Map-files ........ ... ... 77
5.1 Editing using Variables . ... 77
0.2 POKE M aDS. oottt e 78
5.3 Loading Maps .. ..ot 79
5.4 Multiple Maps. . ..o e 81
DD AUBO-TIAD « oottt e e e 83
5.6 Constructing Maps . . .. oo ittt e 83
5.7 Predefined Maps. ... ... 84

6 Writing Pickles ....... ... 85
6.1 Pretty-printers. ... .o e 85
6.1.1 Convention for pretty-printed Output ........... ... i i, 85

6.1.2 Pretty Printing Optional Fields .......... ... 86

6.2 Setters and Getters . ... ... 88

7 Writing Binary Utilities..................... ... .............. 90
7.1 POKE SCriptS . v vt 90
7.2 Command-Line ATguments . ... ...ttt 90
7.3 Exiting from Scripts . ... .. ... e 91
7.4 Loading pickles as Modules .. ...ttt e 91
7.5 lfeXtraCtOr . . .ttt 92
7.6 FIlEers . o e 94
7.6.1 Stream [O SpPaces. . ...ttt e 95

7.6.2 Reading from Streams . ... e 95

7.6.3 Writing t0 SEreams . ... ..ot e 96

T.6.4 PR-SETINES. .ot 96

B POKETC . 97
9 Load Path...... ... . . 98
10 Styling . ... 99
11 Changing the Prompt ........... ... ... ... ... ... . ...... 100
12 TOS . 101
12.1 10s_dump_Dytes. . ..o 101
12.2 10S_COPY_DYEES . . ..ottt 101

12.3 10S_SaVE DY TES . ..\ttt e 102



v

13 Data Encodings.................. . i 103
13,1 DASEOA . oottt 103
14 Time ... ... 104
14.1 POSIX TaIe . o oot e e e e e 104
15 Colors. . ... 105
15.1 The Color Registry . ... e e 105
15.2 RGB24 ENcoding. . ... ...ouiiiiii e et e 105
16 Audio.... ... .. o 107
16,1 M P oo 107
16.1.1 IDBV L Lo ottt et e e 107

16.1. 1.1 SONEG GENTES . . . v ettt ettt e e e e e e e e e 107

16.1.1.2 The ID3VI1_Tag Type. . ..oooiti i e 107

17 Object Formats ............ ... ... ... ... ... ............... 109
17 L B L 109
17,2 DWaAT . oo 109
18 Programs........ ... ... 110
N R <y o T A 110
19 poked . ... ... 112
20 pokefmt ...... ... . . 114
21 Programming Emacs Modes ............................... 116
21.1 POKE-TNOAE . ..ot 116
21.2 poke-map-OAe . . ..ot 116
21.3 POKe-TAS-NOAE. . . ..ottt 116
22 Vim Syntax Highlighting................................... 117
221 POKE . VA o oottt e 117
23 Dot-Commands ................... ... 118
23] d0AA . 118
DS 30 1o 1 o o - S 118
23.3 LAl 118
234 eI . .o 118
23,0 I .. 119

2 TG o o o P 119
23T U . 119
23 8 A0 i e 119
23,0 LCLOS . 119

2300 LdOC . 120



2311 L it Or . 120
2312 LADE O . it e e 120
2318 BB i 121
7 T s 1 123
23.14.1 .vmdisassemble. ... ..ot 123
23.14.2 .vmprofile ... 124
23.14.3 VI QISPAtCh . ..t 124
23,10 L COmMPAler o 124
23.15.1 .compiler @ast . ...t 124
2306 LA .t e 124
2317 QUAT . 124
24 Commands .............uu 125
241 QUMD « et 125
24.1.1 Information dump shows ........ ..o 125
24.1.2 Presentation options for dump......... ... i 126
2 LDy « e et 127
2.3 SAVE .t 127
244 SAAE T . 128
24D BT A . .ttt 128
24.6 SCTADDLE ...ttt e 128
25 The Poke Language............ . ... ... 130
25.1 Source Code Encoding ....... ..o 130
25,2 IIbegerS . et 130
25.2.1 Integer Literals. ... ... 130
25.2.1.1 The digits separator _ ....... ... e 130
25.2.1.2 Types of integer literals........ ... i i 130
25.2.2  CRharacters . ... .u et 131
25.2.3  BOOIlEANS . . ..t 131
25.2.4  Integer TYPeS ..ot 131
25.2.5  Casting INtegers . .. ...t 132
25.2.6 Relational Operators .. ........oouuitiii e 132
25.2.7  Arithmetic Operators. .. ... ... e 133
25.2.8  Bitwise OPerators .. ......uuuuiit 133
25.2.9 Boolean Operators .. .........outtei e e 133
25.2.10 Integer Attributes .. ... ... e 134
25.3  OfFSEtS « oo 134
25.3.1 Offset Literals . ... ... 134
25.3.2 OfFSet Ut . . oo ottt e e et e 134
25.3.2.1 Named Units . ...t e 135
25.3.2.2 Arbitrary UnitS. ...t 135
25.3.2.3 Types as Units ... .ooi e e 135
25.3.3 OfFSet TyPes. o vttt e 136
25.3.4 Casting OffSets . . ..ot 136
25.3.5 Offset Operations. . ... ...t 136
25.3.5.1 Addition and subtraction ............... . i 136
25.3.5.2 Multiplication by a scalar....... ... .o i 137
25.3.5.3 DIVISION . .ot vttt 137
25.3.5.4 Division by an integer ..........co i e 137

25.3.5.0 Modulus. . ..o 137



vi

25.3.6 Offset Attributes ... ... 137
2D ST IS .+« ettt e 138
25.4.1 String Literals. ... ..o 138
25.4.2 SETING TYPES ettt e 139
25.4.3 String Indexing . . . ...ttt 139
25.4.4 String Concatenation ..............uiiii i 139
25.4.5 String Attributes . ... 140
25.4.6 String Formatting ........... o i 140
2D D AT Ay S o o 140
25.5.1  Array Literals . ... ..o 140
25.5.2  ATTaY Ty PeS. ettt 141
25.5.2.1 Writing unbounded array literals........... .. ... ... L. 141
25.5.2.2 Array boundaries and closures ......... ... oo i 141
25.5.3  Casting ATTAYS . . .ot uv ettt ettt et e et e e e e 142
25.5.4  Array Constructors. ... ...ttt e 143
25.5.5  Array COmpPariSOm. . . ...ttt et 144
25.5.6  Array Indexing . ..........oiiii 144
25.5.6.1 Indexing an array by number of element............ ... ... ... .. ... ..., 144
25.5.6.2 Indexing an array by offset of element............. ... ... ...l 144
25.5.7  Array Trimming. . ... ..ot 145
25.5.8 Array Elements. . ... 145
25.5.9  Array Concatenation .......... ...t 146
25.5.10 Array Attributes .. ... 146
25.5.11 Arrays as StacKs. ... ... 147
25,6  SETUCHS . .ttt 147
25.6.1  StrUCt Ty Pes . o v ettt 147
25.6.2  Struct ConstruCtors .. ...ttt e 148
25.6.3  Struct COmPAariSOM . .. ...ttt e ettt e 149
25.6.4 Field Endianness ... ......cooutiii e 149
25.6.5  Accessing Fields. . ... ..o 150
25.6.6 Field Constraints. ... .....ouuuiteie i e 150
25.6.7 Field Initializers . ... ...t e 151
25.6.8 Field Labels. ... ..o e 152
25.6.9 Pinned Structs .. ... ... 154
25.6.10 The OFFSET variable........ ..o e 154
25.6.11 Integral Structs. . ... ..ottt e 154
25.6.12 UNIONIS . . ottt ettt e e 159
25.6.13 Union ConstriCtOrS. . ..ottt ettt et e 159
25.6.14 Integral Unions. ... .......oiiit i e 160
25.6.15 Optional Fields. . ... 160
25.6.16 Casting StITCHS . . .« v u vttt et e 162
25.6.17 Declarations in Structs . .......ooo et 163
25.6.18 Methods . ... 163
25.6.19 Struct Pretty Printers.... ... ..o 163
25.6.20 Computed Fields .. ... ... e 164
25.6.21 Struct Attributes. . ... 165
5 T A U oY 166
5 0 v« T PP 166
25.7.2 The any Type ..o e 166
25.7.3 The isa Operator ... ... e 167
2D, T4 BYPEOT ot 167

25.8  ASSIGNIMENTS . . ..ot 169



vil

25.8.1 Simple ASSINMENtS . .. ...t 169
25.8.2 Bit ASSIgNMENtS . . ...ttt 169
25.9 Compound Statements . . ... ... ...t e 170
25.10 Conditionals . ... ...t e 170
20,101 A medSe .ttt 170
25.10.2 Conditional EXpPressions . ... .......ueueeeeniiiiii i 170
D25 U0 B N 57 Yo o 170
25, 101 WRA L ettt e 171
D5 T I e PP 171
20,113 FOr—am. . e e 171
25.12 Expression Statements .. .........oo i e 171
25.13 FUNCHIONS . .o 172
25.13.1 Function Declarations .. ... 172
25.13.2 Optional Arguments. ...... ... 172
25.13.3 Variadic Functions. ........ ... e 173
25.13.4 Calling Functions. . ......... .t e 173
25.13.5 Function Types. ... ... 173
25.13.6 Lambdas . ... ... 174
25.13.7 Function CompariSOmn . ... ... ...ttt e e 174
25.13.8 Function Attributes ...... ... . 174
25.14 Assembler. ... ..o 174
25.15 Endianmess . . ..o 175
25.15.1 .set endiam ...t 175
25.15.2 Endian in Fields. ... 175
25.15.3 Endian built-ins . .. ..o 175
D5 B0 Y P o 3 ' 178
25.16.1 TO SPACES . v v ve ettt et e e e 178
25.16.1.1  OPem ..o 178
25.16.1.2  0pensuUD. ... . 179
25.16.1.3  OPEIPTOC. . .ttt 179
20.16. 1.4 CLOS « ettt ettt 179
25.16.1.5  FIUSh ..ttt 179
25.16.1.6 get _d0S. .. .. 180
25.16.1.7  SEt _d0S .ttt 180
25.16.1.8  10SEATCH. ..ttt 180
25.16.1.9  Z0LASt ettt 180
25.16.1.10 0opensSet . ..ot 180
25.16.1.11 20SIzZe . ittt 180
25.16.1.12 d0handler ... ..ottt e 180
25.16.1.13 Z0flags ..ottt 181
25.16.1.14 TO Space HOOKS . . ..ot e e 181
25.16.2 The Map Operator ... ....oouuu it 181
25.16.3 Mapping Simple Types . ..o 182
25.16.4 Mapping SErUCES . ... oottt e 183
25.16.5 Mapping ArTays . .. ...ttt 183
25.16.5.1 Array maps bounded by number of elements ............... ... ... ... 183
25.16.5.2 Array maps bounded by size......... ... i 183
25.16.5.3 Unbounded array maps . ... ....oenuuet et et 185
25.16.5.4 Mapped bounds in bounded arrays.......... ..., 185
25.16.6 Mapping Functions . ......... ..o e 186
25.16.7 Non-strict Mapping. ... ...couoimiiimii e 186

25.16.8 Auto-Remapping ........ ..o 186



viii

25.16.9 UnNMAapPPINg. .« « oottt et ettt e e 187
25.17 Exception Handling .. ... 187
25.17.1 EXCEPUIONS . . oottt ettt e 187
25.17.2 try—catCh . o 188
25.17.3 try—until ..o 188
2D 174 Tadse oot 189
25.17.5 exception-predicate . ... ...t e 189
2D0.17.60 @SSETt .ottt e 190
25.18 Terminal . . ... 190
25.18.1 Terminal Colors .. ... ... e 190
25.18.2 Terminal Styling ........ ..o 190
25.18.3 Terminal Hyperlinks. ... i 191
25.19 Printing. ... ..o 191
25.19.1 PrAmE ettt 191
25.19.2 pramtE .. 191
25.20 COMIMENES . . . .ttt ettt ettt e e et e e e e e e 193
25.20.1 Multi-line comments. . ... ... 193
25.20.2 Single line COMMENTS . .. ...ttt 193
25.20.3 Vertical separator . ... ... ... e 193
25.21 MoOdUles. . . ..ot e 193
20,22 Sy S eI, ittt e e e e 194
25.22.1 getenV. . e 194
25.22.2 TANd ... 194
20,23 VM L 194
25.23. 1 VI _ODaS .ttt ittt e 194
25.23.2 VI _SET _0DaSE .t ittt e 194
25.23.3 VI _OPPTIME .. 195
25.23.4  Vm_Set_opPPTint ... ... 195
25.23.5  vm_oacutoff ... 195
25.23.6  vm_set_o0acutoff .. ... 195
25.23.7 VI 0dePth . oottt 195
25.23.8 vm_set_0depthl .. ... 195
25.23.9  VI_oindent ... ... 195
25.23.10 vm_Set _0Indent ... ...ttt e 195
25.23.11 VIL_OMAPDS . o vttt et e e e e e 196
25.23.12 VI _ St _OmMaAPS . .ttt ettt e 196
25.23.13 VI_OMOAE . . oottt 196
25.23.14 VI_S@T _0MOAE . . oottt e 196
25.23.15 VI_@UtOT@MAD . . ..ottt ittt 196
25.23.16 VIm_Set_autoremap .. ... ...ttt 196
25.24 DebUGEZING . . ..ottt 196
25.24.1 __LINE__ and __FILE ...ttt ittt e 196
25.24.2 U ACE . .\ttt 197
25.24.3 TULACE . .. e 197
26 The Standard Library .................. ... ... ... ... ....... 198
26.1 Standard Integral Types. . ... ... e 198
26.2  Standard Offset Types .. ...t 198
26.3  Standard Units. ....... ..o e 198
26.4 Conversion Functions. ....... ... e 199

26. 4.1 Cat O ottt 199



ix

26.4.2 ST OCA « o 199
26.4.3 ST B 0L+ttt e 199
26.4.4 BB0T « it 200
26.4.0 LB OS ¢ttt e 200
26.4.0 STOL oot e 200
26.4.7 STOA oot 201
26.5  Array FUnctions. . ..........o o 201
20.5. ] T OVET SO . ottt ettt 201
26.6  String FUnctions ... ...t e 201
26.6.1 LBTam .o et 201
26.6.2 TETAM ..o 201
26.6.3 STTChT ..o 201
20.6.4 STITChT . . 201
20.6.0 SET ST . ot 201
26.6.6 STIEOK ..ttt ittt e 202
26.7 Character FUNCHIONS . . . ..ottt e 203
26.8  Values FUNCEIONS . . . ... 203
20.8.1 @0 st . 203
26.9 IO Space Functions. .. ... ... 203
26.9.1 With CUT _ 108 ... i e e 203
26.9.2 with_temp_108. ... ... i 204
26.10 Sorting FUnctions . ...t 204
26.10.1 g0t .o 204
26.11 CRC FUNCHIONS . . . .ttt et e e e e e e e 205
26.12 Dates and Times . ... ...ttt 205
26.13 Offset FUNCHIONS. . . ..o 206
26.13.1 alignto .. ..ot 206
26.14 Other Standard Library Functions......... ... i 206
26.14.1 GNU poke Version String Parsing Utilities.............. ... oo, 206
27 The Poke Virtual Machine................................. 208
27.1 PVM INStructions . ... ..vve ettt e e 208
27.1.1 VM Instructions . . .o o. et e 208
27.1.1.1  InStruction Canary .............eeeonnit ittt 208
27.1.1.2 Instruction eXib..........cooiiiiiii i 208
27.1.1.3 Instruction pushend ......... ... . 208
27.1.1.4  Instruction popend . ... 208
27.1.1.5 Instruction pushob........ ... 208
27.1.1.6  Instruction popob ...... .. 209
27.1.1.7 Instruction pushom........... .. e 209
27.1.1.8  Instruction POPOIML. ... ...ttt tt ittt 209
27.1.1.9 Instruction pushoo.......... i 209
27.1.1.10 Instruction POPOO0 . ...t 209
27.1.1.11 Instruction pushoi...........coiiiiiiii et 210
27.1.1.12 Instruction POPOi. ... ..ouuut 210
27.1.1.13 Imstruction pushod ......... . 210
27.1.1.14 Instruction popod .........cooiiiiii i e 210
27.1.1.15 Instruction pushoac........ ... 210
27.1.1.16 Instruction POPOAC. . ... vvt ittt et e 211
27.1.1.17 Instruction pushopp .......oouiii e 211

27.1.1.18 InStruction POPOPD -« .« v vvett ettt e 211



27.1.1.19 Instruction pushocC. ...t e 211
27.1.1.20 Instruction POPOC. . ..ot 211
27.1.1.21 Imstruction pushobc ... i 211
27.1.1.22 Instruction popobe ... .ooiii i 212
27.1.1.23 InStruction SYIC ... ...vuett ittt e 212
27.1.1.24 Instruction pusharem .............oiiiiiiiiiii i 212
27.1.1.25 Instruction POPAreI . .. ...ttt e 212
27.1.2 TOS related InStructions .. .......oouet it e 212
27.1.2.1  Instruction OPeN. ... ...uttitii i e 212
27.1.2.2 Instruction close. ....... ..o 213
27.1.2.3 Instruction flush....... . i 213
27.1.2.4 Instruction pushios ..........c..o i e 213
27.1.2.5  Instruction PoPios . ... ...uuuiiii i e 213
27.1.2.6 Instruction ioflags ... e 213
27.1.2.7 Instruction 10S1Z€ ... ......oouiiiin i e 214
27.1.2.8 Instruction 10NUmM ...t 214
27.1.2.9 Instruction ioref ......... .. .. 214
27.1.2.10 Instruction iohandler ............. .. . i 214
27.1.2.11 Instruction iogeth. ... ... 214
27.1.2.12 Instruction iosetb. . ... 214
27.1.3 Function management instructions.......... ..o 215
27.1.3.1 Instruction call ... ... o e 215
27.1.3.2 Instruction prolog........ ..o 215
27.1.3.3 Instruction return. ... ... ..ottt e 215
27.1.4 Environment instructions.......... ...t i e 215
27.1.4.1 Instruction pushf ........ . . . . 215
27.1.4.2 Instruction popf .. ... 215
27.1.4.3 Instruction pushvar....... ... ... i i 215
27.1.4.4 Instruction pushtopvar........ ... .. i 216
27.1.4.5 InsStruction POPVAT . ..o vttt ettt 216
27.1.4.6 Instruction regvar. ... .......o.uuuiii i 216
27.1.4.7 Instruction duc . ... ...t 216
27.1.4.8 InStTUCtION PEC . .. vttt e 216
27.1.5 Printing Instructions .. ... e 216
27.1.5.1 Imstruction printi..........ccooiiiiiii i 216
27.1.5.2 Instruction printitn....... ... .o i 217
27.1.5.3 Imstruction printl.... ... . i 217
27.1.5.4 Instruction printlu. ... ... i e 217
27.1.5.5 Instruction prints.........cooi i e 217
27.1.5.6 Instruction beghl ... ... .. 217
27.1.5.7 Instruction endhl . ... ... ... e 217
27.1.5.8 Instruction begsc ..... ... 217
27.1.5.9 InsStruction €ndSC ... ......ouiiiiii i e 218
27.1.6  Format Instructions ..........ccooiiiii i 218
27.1.6.1 Instruction formati........ ... .. i 218
27.1.6.2 Instruction formatitl. ... e 218
27.1.6.3 Instruction formatl ..... ... ... . . 218
27.1.6.4 Instruction formatlu....... ... ... .. i e 218
27.1.6.5 Instruction formatf32 ... ... .. . 218
27.1.6.6 Instruction formatf64 ...... ... ... 219
27.1.7 Floating-point conversion instructions.............. ... 219

27.1.7.1 Instruction stof . .. ...t 219



xi

27.1.7.2 Instruction Stod ..... ... 219
27.1.8 Main stack manipulation instructions............ .. ... i 219
27.1.8.1 Imstruction push........ .o e 219
27.1.8.2 Instruction drop ........ ... 220
27.1.8.3 Instruction drop2........ ..ot 220
27.1.8.4 Instruction drop3d..........oiiiiiii e 220
27.1.8.5  Instruction dropd . .......cooiiiii e 220
27.1.8.6  InStruction SWap ... ......tuttttt e 220
27.1.8.7 Instruction mip ......ooii e 220
27.1.8.8 Instruction nip2 ........cooiiiiii i e 220
27.1.8.9 Instruction nipd . ... ...ttt e 220
27.1.8.10 Instruction dup ... ......oeiiiimi i e 221
27.1.8.11 INStruction OVET .. ...ttt e e e 221
27.1.8.12 INStrUCtION OOVET . ..o\ttt e e e et 221
27.1.8.13 Instruction rot. ... ...t e 221
27.1.8.14 Instruction Nrot .. ... ...t 221
27.1.8.15 Instruction tuck ....... ..o 221
27.1.8.16 Instruction quake. .........ooiiii i 221
27.1.8.17 INStrUCtION TEVIL . . oottt e e e e e 221
27.1.8.18 Instruction push32....... ... 222
27.1.9 Registers manipulation instructions............ ... ... i 222
27.1.9.1 Imstruction pushr........... i 222
27.1.9.2 Instruction POPT . .o 222
27.1.9.3 InStruction Setr ... ...t e 222
27.1.10 Return stack manipulation instructions ............ ... ... .. i 222
27.1.10.1 InStruction SAVEI. . ... ... ...ttt e 222
27.1.10.2 InStruction reStorer . . ... ..ot e e e 222
27.1.10.3 InStruction tOr. . ...t 222
27.1.10.4 Instruction frOmr . ...... ...ttt e 223
27.1.10.5 Imstruction atr. . ... ... i 223
27.1.11 Integer overflow checking instructions. ........... ... ..o ., 223
27.1.11.1 Instruction addiof ........... i 223
27.1.11.2 Instruction addlof . ... ... ... i 223
27.1.11.3 Instruction subiof....... ... ... 223
27.1.11.4 Instruction sublof....... ... ... e 223
27.1.11.5 Instruction muliof . ... 224
27.1.11.6 Instruction mullof . ... ... ... 224
27.1.11.7 Instruction diviof........ ... i 224
27.1.11.8 Instruction divlof...... ... ... e 224
27.1.11.9 Instruction modiof......... ..o 224
27.1.11.10 Instruction modlof. ... ... i 224
27.1.11.11 Imstruction negiof...... ..o 224
27.1.11.12 Imstruction neglof. .. ... 225
27.1.11.13 Imstruction powiof. ... ... .. 225
27.1.11.14 Instruction powlof. ... ... ... i 225
27.1.12 Arithmetic InStructions . ... ..ottt 225
27.1.12.1 Instruction addi........ ... 225
27.1.12.2 Instruction additl........ ...t 225
27.1.12.3 Instruction addl........ .. 225
27.1.12.4 Instruction addlu........... . i e 226
27.1.12.5 Instruction SUDL . ...t 226

27.1.12.6  Instruction SUbIU . ... ...ttt e 226



xil

27.1.12.7 Instruction subl ......... ... 226
27.1.12.8 Instruction sublu....... ... 226
27.1.12.9 Instruction muli. ... ... oo 226
27.1.12.10 Instruction mulitl.........o i 227
27.1.12.11 Instruction mull . ...... .. . 227
27.1.12.12 Instruction mullu. ... ... ... 227
27.1.12.13 Instruction divi.... ...t 227
27.1.12.14 Instruction divil ....... ..ot e 227
27.1.12.15 Instruction divl........ ... 228
27.1.12.16 Instruction divlu ....... ... 228
27.1.12.17 Instruction modi ...t 228
27.1.12.18 Instruction modit . .......ouiini i 228
27.1.12.19 Instruction modl .. ... .. ... 229
27.1.12.20 Instruction modlu ....... ..ot 229
27.1.12.21 Instruction Negi ... ...t 229
27.1.12.22 Instruction NeZiUl . .....oouut ittt e 229
27.1.12.23 Instruction negl..... ... e 229
27.1.12.24 Instruction neglu...... ... i 230
27.1.12.25 InsStruction POWI. ... ....oeeeuiinin e 230
27.1.12.26 Instruction POWIT. .. ...ovuinn e 230
27.1.12.27 Instruction powl. .. ... e 230
27.1.12.28 Instruction powlu. ... ..o e 230
27.1.13 Relational InStructions. . ... ..ot e e 230
27.1.13.1  InsStruction €qi.........ouuennitit e 230
27.1.13.2 Instruction eqitl ........counnunut e 231
27.1.13.3 Instruction eql. ...t 231
27.1.13.4 Instruction eqlu ..... ..o 231
27.1.13.5 InStruction €qs .. ......ouuiiin i e 231
27.1.13.6  InStruction Mel. ... ... ...t 231
27.1.13.7 InStruction MEIU .. ...ttt e e e 231
27.1.13.8 Instruction mel. ... ... .. i 231
27.1.13.9 Instruction nelu ....... ... .o 232
27.1.13.10 InStrUuCtion TS . ..ottt e e e 232
27.1.13.11 InStruction TN . .. ...ttt e e e e e 232
27.1.13.12 InStruction NI . .. ...ttt e 232
27.1.13.13 Instruction 1t . ... ..o 232
27.1.13.14 Instruction 1tiu. ... .o 232
27.1.13.15 Instruction Itl . ... 232
27.1.13.16 Instruction Itlu....... ... .o i 233
27.1.13.17 Instruction lei. .. ... ... 233
27.1.13.18 Instruction leit. ... ... 233
27.1.13.19 Instruction lel .. ... ... o 233
27.1.13.20 Instruction lelu. ..... ... 233
27.1.13.21 Instruction @bi..........ooiiiiimiii i e 233
27.1.13.22 Instruction gbitl........ooiii i e 233
27.1.13.23 Instruction gtl. ... ..o i 234
27.1.13.24 Instruction gtlu..... ... .. o i 234
27.1.13.25 Instruction @ei........ ...ttt 234
27.1.13.26 InsStruction eIt ... ..ottt 234
27.1.13.27 Instruction gel. ... ... ..o 234
27.1.13.28 Instruction gelu ... ... 234
27.1.13.29 Instruction 16S. ... 234



xiii

27.1.13.30 Instruction bS. . ....coouiiii i e 235
27.1.13.31 Instruction s .. ... ..ottt e 235
27.1.13.32 Instruction les. ... ... 235
27.1.13.33 InStruction €qC .. ... ...oouiiiiii e 235
27.1.13.34 InStruCtion TMEC . . ..ottt e e e 235
27.1.14 Concatenation INStruCtIONS .. ...ttt e 235
27.1.14.1 INStruction SCOIIC . . .. v ittt e e e e e e 235
27.1.15 Logical Instructions. .. ... ...t e 235
27.1.15.1 Instruction and . ............o it 236
27.1.15.2 InStIrUCtION O . .o\ttt e e e e e e 236
27.1.15.3 Instruction Not ... ..o i 236
27.1.16 Bitwise INStructions ... ..ottt 236
27.1.16.1 Instruction bDXoOri.............iiii 236
27.1.16.2 Instruction bXOIiU . ....... ...ttt i 236
27.1.16.3 Instruction bxorl ........ ... 236
27.1.16.4 Instruction bxorlu . ....... ... .. 236
27.1.16.5 Instruction bori ... ... i 237
27.1.16.6 Instruction DOTit . ... ... 237
27.1.16.7 Instruction borl ....... ... 237
27.1.16.8 Instruction borlu ........ ... 237
27.1.16.9 Instruction bandi............ ..o 237
27.1.16.10 Instruction bandit......... ..ot 237
27.1.16.11 Instruction bandl........ ... ... . 237
27.1.16.12 Instruction bandlu............c oo 237
27.1.16.13 Instruction bnoti.............iiiiiii e 238
27.1.16.14 Instruction bnotit......... ... 238
27.1.16.15 Instruction bnotl...... ... ... i 238
27.1.16.16 Instruction bnotlu....... ... .o e 238
27.1.17 Shift INStIUCTIONS . . . . oot 238
27.1.17.1 Instruction bsli. ... ... o 238
27.1.17.2 Instruction bSliU. ..o 238
27.1.17.3 Instruction bsll ... ... 239
27.1.17.4 Instruction bsllu. ... ... 239
27.1.17.5 Instruction DSIi. . ... ...t 239
27.1.17.6 Instruction DSIiU. .. ...t 239
27.1.17.7 Instruction bsrl. ... ..o 239
27.1.17.8 Instruction bsrlu. ... .o 239
27.1.18 Compare-and-swap instructions. ..., 240
27.1.18.1 Instruction SWapgGti.........uutetiiie i 240
27.1.18.2 Instruction SWapgtill. . .....counnnu e 240
27.1.18.3 Instruction swapgtl. ... ... ... 240
27.1.18.4 Instruction swapgtlu....... ..o 240
27.1.19 Branch InStructionsS. . ........coo it 240
27.1.19.1 Instruction ba . ....... ...t 240
27.1.19.2 Instruction bi........ ... i 240
27.1.19.3 Instruction bnm........ ... i 241
27.1.19.4 Instruction Dzi. .. ...t 241
27.1.19.5 Instruction bzitl ... ... 241
27.1.19.6 Instruction bzl. .. ... ... .. o 241
27.1.19.7 Instruction bzlu ....... ... 241
27.1.19.8 Instruction bnzi....... ... 241

27.1.19.9 Instruction bnzit ... ... 241



Xiv

27.1.19.10 Instruction bnzl ... ... 241
27.1.19.11 Instruction bnzlu .. ... ..o 242
27.1.20 Conversion INStIUCHIONS . .« .ottt e e e e 242
27.1.20.1 InStruction ClOS. . ......iiii 242
27.1.20.2 Instruction 1605 ... ... ...t 242
27.1.20.3  Instruction itOIW. ... ...t 242
27.1.20.4 Instruction itol ... ... ... 242
27.1.20.5 Instruction itOlU. .. ... ..o 242
27.1.20.6 InStruction 1UtOl....... ..ot e 243
27.1.20.7 Instruction iUboIU. . ... ..ot 243
27.1.20.8 Instruction iutol........ ... i 243
27.1.20.9 Instruction iutolu. . ... ... 243
27.1.20.10 Instruction 1601 .. ... ..o 243
27.1.20.11 Instruction ItoIu. ... ..ottt 243
27.1.20.12 Instruction l1tol....... ... 244
27.1.20.13 Instruction ltolu....... ... i 244
27.1.20.14 Instruction Iutoi............iiiii 244
27.1.20.15 Instruction lutoiu. . ... ... 244
27.1.20.16 Instruction lutol......... ... i 244
27.1.20.17 Instruction lutolu. ....... ..o 244
27.1.21 String INStIUCTIONS . . ..ttt ettt e e e e e e e 244
27.1.21.1 Instruction Strref ... ... ... 245
27.1.21.2 Instruction Strset ...... ... 245
27.1.21.3 Instruction Substr .. ... ... o i 245
27.1.21.4 Instruction mulS........ ..o 245
27.1.21.5 InsStruction SProPS . ...ttt e e 245
27.1.21.6 Instruction sproph..........o i e 246
27.1.21.7 InStruction SPrOPC ... un ettt 246
27.1.22 Closure INStIUCTIONS . . . ..ottt ettt e e e e 246
27.1.22.1 Instruction CEetm ... ....oouiiiii e 246
27.1.23 Array InStructions . . ......o.ti it 246
27.1.23.1 Instruction mKka ... ... 246
27.1.23.2 InStruction ainS. ... ...ttt e e e 246
27.1.23.3 InStruction arem. ... ...ttt e e 247
27.1.23.4 Instruction aseb. . ... ...t 247
27.1.23.5 Instruction arefl. ... ... ... 247
27.1.23.6 Instruction arefo. ....... ... 247
27.1.24 Struct INSETUCEIONS . . oo\ttt et et e e e e 247
27.1.24.1 Instruction mKSCh. ... ... ..o 247
27.1.24.2 Instruction SSet. .. ...t 248
27.1.24.3 Instruction SSeti..........uiiiiii i 248
27.1.24.4 Instruction sref. . ... ... 248
27.1.24.5 Instruction Srefo........ .o 248
27.1.24.6 Instruction srefmmnt . ....... ... .o 248
27.1.24.7 Instruction srefnit....... ... 248
27.1.24.8 Instruction Srefl .. ... ...t 249
27.1.24.9 Instruction Srefla .. ......cooiiii i 249
27.1.24.10 Instruction STeflo .. ...ttt 249
27.1.24.11 Instruction Srefin . ...... ...t 249
27.1.24.12 Instruction Smodi............ i 249
27.1.25 Offset InStructions. ... ..ot 249

27.1.25.1 Instruction mKoO . ... .o 250



XV

27.1.25.2 Instruction mkoq ..o 250
27.1.25.3 Instruction ogetmi. ... ..o 250
27.1.25.4 Instruction 0Setm. .. ... e 250
27.1.25.5 Instruction ogetu . ...t e 250
27.1.25.6 Instruction ogetbt ... ... ..o i 250
27.1.26 Instructions to handle mapped values............. .. ... 250
27.1.26.1 Instruction Mmi. ... ... ...ttt 250
27.1.26.2 Instruction mMap ... ......oouiiiiiii e 251
27.1.26.3 Instruction UnmMap . ... .......ueeiitetntnnii i 251
27.1.26.4 Instruction reloC. ...t 251
27.1.26.5 Instruction ureloc ........ ... i 251
27.1.26.6 Instruction mgets. ..... ..o 251
27.1.26.7 Instruction mSetS. .......oouiiii i e 251
27.1.26.8 Instruction mgeto ....... ...t 252
27.1.26.9 Instruction MSEtO. ... ..ottt 252
27.1.26.10 Instruction mgetios. ... ......ouuiiiiiii e 252
27.1.26.11 Instruction mMSEtios . ... ......ouiumiiii e 252
27.1.26.12 Instruction mgetm. ...... ... 252
27.1.26.13 Instruction mSetmi........ouiinnnt e 252
27.1.26.14 Instruction MEetW ... ..o e 253
27.1.26.15 Instruction mSetw .. ... ...t 253
27.1.26.16 Instruction mgetsel...... ... .o i 253
27.1.26.17 Instruction msetsel ...... ... e 253
27.1.26.18 Instruction MEetSizZ . .......uuuiitet ittt 253
27.1.26.19 Instruction mSetSiZ ........ouviinnn e 253
27.1.27 Type related INstructions . ...... ...t 254
27.1.27.1  InStruction iSa. ... ......ooouiiiiiii e 254
27.1.27.2 Instruction typof .. ... ... 254
27.1.27.3 Instruction ISty .......c.oooiiimii i e 254
27.1.27.4 Instruction tyisi....... ... e 254
27.1.27.5 Instruction tyisit. ..o e 254
27.1.27.6 Instruction tyisl....... ... 254
27.1.27.7 Instruction tyislu...... ... 254
27.1.27.8  Instruction tyiSO. ... ....coeiiiiinim i e 255
27.1.27.9 Instruction tyiSs . ... .o 255
27.1.27.10 Instruction tyisa..........ueoiiii i e 255
27.1.27.11 Instruction tyiSC........cuoiiii i e 255
27.1.27.12 Instruction tyiSSCt .. .. ...t 255
27.1.27.13 Instruction tyiSv. ... ...uuute e e e 255
27.1.27.14 Instruction mKbyv ... 255
27.1.27.15 Instruction mKkbyi.. ... 256
27.1.27.16 Instruction tyigetsz.... ... 256
27.1.27.17 Instruction tyigetsg. .. ...ccoviiiiiii i e 256
27.1.27.18 Instruction mKbys .. ..o e 256
27.1.27.19 Instruction mKtyo ...... ..o 256
27.1.27.20 Instruction tyogetm ........ ..o 256
27.1.27.21 Instruction tyogetu ... ... ..o 256
27.1.27.22 Instruction tyogetrt. ... ... 257
27.1.27.23 Instruction tyosetrt. ... ..o e 257
27.1.27.24 Instruction mktya ...... ..o 257
27.1.27.25 Instruction tyagett ... 257
27.1.27.26 Instruction tyagetb ... ... ..o i 257



xvi

27.1.27.27 Instruction tyasetb ... 257
27.1.27.28 Instruction mKbyc ..... ..o 257
27.1.27.29 Instruction mktysct. ... 258
27.1.27.30 Instruction tysctgetc. .. ... 258
27.1.27.31 Instruction tySCtsetC........ooinu i 258
27.1.27.32 Instruction tysctgetn ..... ... 258
27.1.27.33 Instruction tysctgetnf. ... ... ... i 258
27.1.27.34 Instruction tysctgetfn........ ..o 258
27.1.27.35 Instruction tysctgetft ... ... 258
27.1.28 TO Instructions . . .. ..o e 259
27.1.28.1 Imstruction Write ..... ... .. 259
27.1.28.2 Instruction peeki ..........o i 259
27.1.28.3 Imstruction peekiu..... ... ... 259
27.1.28.4 Imstruction peeKl .. ... ... 259
27.1.28.5 Imstruction peeklu........ i 259
27.1.28.6 Instruction peekdi....... ... 260
27.1.28.7 Instruction peekdiu........ ..o 260
27.1.28.8 Imstruction peekdl..... ... ... 260
27.1.28.9 Instruction peekdlu....... ..o i 260
27.1.28.10 Instruction poKei........ ..o 260
27.1.28.11 Instruction poKeit . ...t e 261
27.1.28.12 Instruction pokel .. ... ... 261
27.1.28.13 Instruction pokelu..... ... .. i 261
27.1.28.14 Instruction pokedi........ ... e 261
27.1.28.15 Instruction pokediu....... ... 261
27.1.28.16 Instruction pokedl....... ... ... 262
27.1.28.17 Instruction pokedlu.........ccoiiiiiiii 262
27.1.28.18 Instruction peeks . ...... ... 262
27.1.28.19 Instruction poKes.........coouuiiiii e 262
27.1.29 Exceptions handling instructions............ ..., 262
27.1.29.1 Instruction pushe. ..........oo i e 262
27.1.29.2 InStruCtion POPE . . .. v vttt ettt et e 263
27.1.29.3 Instruction TalSe . ...... ...ttt 263
27.1.29.4 Instruction POPEeXite . ... ......oitiiiimiii e 263
27.1.30 Debugging InStructions . ......... ...t 263
27.1.30.1 Instruction Strace. ... .. .....oueeiiiiiii e 263
27.1.30.2 Instruction Itrace. ... ......ouuuiiiin e 263
27.1.30.3 Instruction disas...........ccoooiiiiiiiiiii i 263
27.1.30.4 Instruction NOTE ... .....ooiiiiiii i e 264
27.1.30.5 Instruction vimdiSp ..... ...ttt 264
27.1.31 System Interaction Instructions.......... ... ... i, 264
27.1.31.1 Instruction getenv ............ooiuuiiiim e 264
27.1.32 Miscellaneous Instructions . . ..... ... e 264
27.1.32.1 InStruction NOP . ... v vttt ittt ettt e 264
27.1.32.2 Instruction rand . ... e 264
27.1.32.3 Instruction time ...........co i e 264
27.1.32.4 Instruction Sleep. ... ... e 265
27.1.32.5 Instruction SiZ.........ouuuunii e 265
27.1.32.6 Instruction sel........ ..o e 265

Appendix A Table of ASCII Codes........................... 266



xvii

Appendix B GNU Free Documentation License............. 269
Appendix C Indices............ ... .. ... . . . . i 276
C.1 Concept INdex . . ..o e 276

C.2 PVM Instruction Index ... ..o 279



GNU poke is an interactive, extensible editor for binary data. Not limited to editing basic
entities such as bits and bytes, it provides a full-fledged procedural, interactive programming
language designed to describe data structures and to operate on them.

This manual describes the poke binary data editor as well as the Poke language.



1 Introduction

1.1 Motivation

The main purpose of GNU poke is to manipulate structured binary data in terms of abstractions
provided by the user. The Poke type definitions can be seen as a sort of declarative specifications
for decoding and encoding procedures. The user specifies the structure of the data to be ma-
nipulated, and poke uses that information to automagically decode and encode the data. Under
this perspective, struct types correspond to sequences of instructions, array types to repetitions
or loops, union types to alternatives or conditionals, and so on.

1.1.1 Decode-Compute-Encode

Computing with data whose form is not the most convenient way to be manipulated, like is often
the case in unstructured binary data, requires performing a preliminary step that transforms the
data into a more convenient representation, usually featuring a higher level of abstraction. This
step is known in computer jargon as unmarshalling, when the data is fetch from some storage
or transmission media or, more generally, decoding.

Once the computation has been performed, the result should be transformed back to the
low-level representation to be stored or transmitted. This is performed in a closing step known
as marshalling or, more generally, encoding.

Consider the following C program whose purpose is to read a 32-bit signed integer from a
byte-oriented storage media at a given offset, multiply it by two, and store the result at the
same offset.

void double_number (int fd, off_t offset, int endian)
{

int number, i;

unsigned char b[4];

/* Decode. */
lseek (fd, offset, SEEK_SET);
for (i = 0; i < 4; ++1i)

read (fd, &bl[il, 1);

if (endian == BIG)

number = b[0] << 24 | b[1] << 16 | b[2] << 8 | b[3];
else

number = b[3] << 24 | b[2] << 16 | b[1] << 8 | b[0];

/* Compute. */
number = number * 2;

/* Encode. */
if (endian == BIG)

{
b[0] = (number >> 24) & Oxff;
b[1] = (number >> 16) & Oxff;
b[2] = (number >> 8) & Oxff;
b[3] = number & Oxff;

}

else

{
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b[3] = (number >> 24) & Oxff;
b[2] = (number >> 16) & Oxff;
b[1] = (number >> 8) & Oxff;
b[0] = number & Oxff;

}

lseek (fd, offset, SEEK_SET);
for (i = 0; i < 4; ++i)
write (fd, &b[il, 1);
}

As we can see, decoding takes care of fetching the data from the storage in simple units,
bytes. Then it mounts the more abstract entity on which the computation will be performed,
in this case a signed 32-bit integer. Considerations like endianness, negative encoding (which is
assumed to be two’s complement in this example and handled automatically by C) and error
conditions (omitted in this example for clarity) should be handled properly.

Conversely, encoding turns the signed 32-bit integer into a sequence of bytes and then writes
them out to the storage at the desired offset. Again, this requires taking endianness into account
and handling error conditions.

This example may look simplistic and artificial, and it is, but too often the computation
proper (like multiplying the integer by two) is way more straightforward than the decoding and
encoding of the data used for the computation.

Generally speaking, decoding and encoding binary data is laborious and error prone. Think
about sequences of elements, variable-length and clever compact encodings, elements not aligned
to byte boundaries, the always bug-prone endianness, and a long etc. Dirty business, sometimes
risky, and always boring.

1.1.2 Describe-Compute

This is where poke comes into play. Basically, it allows you to describe the characteristics of the
data you want to compute on, and then decodes and encodes it for you, taking care of the gory
details. That way you can concentrate your energy on the fun part: computing on the data at
your pleasure.

Of course, you are still required to provide a description of the data. In the Poke language,
these descriptions take the form of type definitions, which are declarative: you specify what you
want, and poke extracts the how from that.

For example, consider the following Poke type definition:

type Packet =

struct

{
uint<16> magic == Oxef;
uint<32> size;
byte[size] data @ 8#B;

}

This tells poke that, in order to decode a Packet, it should perform the following procedure
(a similar procedure is implied for encoding):

— Read two bytes from the IO space, mount them into an unsigned 16-bit integer using
whatever current endianness, and put it in magic. If this unsigned 16-bit integer doesn’t
equal to Oxef, then stop and emit a “data integrity” error.

— Read four bytes, mount them into an unsigned 32-bit integer using the same endianness,
and put it in size.
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— Seek the 1O space to advance 16 bits.
— Do size times:
— Read one byte and mount it into an unsigned 8-bit integer.

— Put the integer in the proper place in the data array.

If during this procedure an end of file is encountered, or some other erroneous condition
happens, an appropriate error is raised.

In the procedure sketched above we find a sequence of operations, implied by the struct type,
and a loop, implied by the array type. As we shall see later in this book, it is also possible to
decode conditionally. Union types are used for that purpose.

1.2 Nomenclature

GNU poke is a new program and it introduces many new concepts. It is a good idea to clarify
how we call things in the poke community. Unless everyone uses the same nomenclature to refer
to pokish thingies, it is gonna get very confusing very soon!

First of all we have poke, the program. Since “poke” is a very common English word, when
the context is not clear we either use the full denomination GNU poke, or quote the word using
some other notation.

Then we have Poke, with upper case P, which is the name of the domain-specific programming
language implemented by poke, the program.

This distinction is important. For example, when people talk about “poke programmers” they
refer to the group of people hacking GNU poke. When they talk about “Poke programmers”
they refer to the people who write programs using the Poke programming language.

Finally, a pickle is a Poke source file containing definitions of types, variables, functions,
etc, that conceptually apply to some definite domain. For example, elf.pk is a pickle that
provides facilities to poke ELF object files. Pickles are not necessarily related to file formats: a
set of functions to work with bit patterns, for example, could be implemented in a pickle named
bitpatterns.pk.

We hope this helps to clarify things.

1.3 Invoking poke
Synopsis:
poke [option...] [file]l

The following options are available.

(_17

‘--load=file’
Load the given file as a Poke program. Any number of ‘-1’ options can be specified,
and they are loaded in the given order.

‘-L file’ Load the given file as a Poke program and exit. The rest of the command-line is
not processed by poke, and is available to the Poke script in the argv variable.
This is commonly used along with a shebang (see Section 1.4.5 [Scripts|, page 8) to
implement Poke scripts.

Commanding poke from the command line:
‘e’
‘~-command=cmd’
Execute the given command. Any number of ‘-c’ options can be specified, and they

are executed in the given order.
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‘g
‘~-source=file’
Load file as a command file. Any number of ‘-s’ options may be specified, and they

are loaded in the given order. See Section 1.4.4 [Command Files], page 8.
Styling text output:

‘-—color=how’
Whether to use styled output, and how. Valid options for how are ‘yes’, ‘no’, ‘auto’,
‘html’ and ‘test’.

‘-—style-dark’
Use the default style that works better for dark backgrounds. This is the default.

‘-—style-bright’
Use the default style that works better for bright backgrounds.

‘-—style=file’
Use file as the CSS to use for styling poke, instead of the default style.

Other options:
-q
-—-no—-init-file
Do not load the ~/.pokerc init file.

--no-auto-map
Do not load map-files automatically when poke opens 10 spaces.

--no-hserver
Do not run the terminal hyperlinks server.

--no-stdtypes
Do not define standard Poke types (such as int, char, etc) in the Poke incremental
compiler.

--quiet  Be as terse as possible.
--help Print a help message and exit.

--version
Show version and exit.

The following environment variables, if set, are used by poke:

POKE_LOAD_PATH
List of file paths separated by the colon characters (:) which is prepended to the
load_path when poke starts.

1.4 Commanding poke

GNU poke is primarily an interactive editor that works in the command line. However, it is also
possible to use it in a non-interactive way. This chapter documents both possibilities.

1.4.1 The REPL

If poke is invoked with an interactive TTY connected to the standard input, it greets you with
a welcome message, licensing information and such, and finally a prompt that looks like:

(poke)
At this point, the program is ready to be commanded. You are expected to introduce a line
and press enter. At that point poke will examine the command, notify you if there is some
error condition, process the line and maybe displaying something in the terminal.
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Repeatedly typing complex commands can be tiresome. To help you, poke uses the readline
library See GNU Readline Library. This provides shortcuts and simple keystrokes to repeat
previous commands with or without modification, fast selection of file names and entries from
other multiple choice contexts, and navigation within a command and among previous com-
mands. When the REPL starts, the history of your previous sessions are loaded from the file
.poke_history located in your home directory (if it exists).

There are several kinds of lines that can be provided in the REPL:
e A dot-command invocation, that starts with a dot character (.).
e A command invocation.

e A Poke statement.

e A Poke expression.

These are explained in the following sections.

1.4.2 Evaluation

You can evaluate a Poke statement by typing it at the REPL’s prompt. Only a single statement,
including expression statements (see Section 25.12 [Expression Statements], page 171) and com-
pound statements (see Section 25.9 [Compound Statements], page 170), can be evaluated this
way. It needs not be terminated by a semicolon.

When an expression is evaluated, the result of the evaluation is printed back to you. For
example:

(poke) 23

23

(poke) [1,2,3]

[1,2,3]

(poke) Packet @ 0#B

Packet {i=1179403647,j=65794L}

When a statement other than an expression statement is executed in the REPL no result is
printed, but of course the statement can print on its own:

(poke) fun do_foo = void: {}
(poke) do_foo
(poke) for (i in [1,2,3]) printf "elem %i32d\n", i;
elem 1
elem 2
elem 3
If there is an error compiling the line, you are notified with a nice error message, showing
the location of the error. For example:
(poke) [1,2,3 + "foo"]
<stdin>:1:6: error: invalid operands in expression
[1,2,3 + "foo"];

1.4.3 Commands and Dot-Commands

There are two kinds of commands in poke: the dot-commands, which are written in C and have
their own conventions for handling sub-commands and passing arguments and flags, and normal
commands, which are written in Poke.

1.4.3.1 Dot-Commands

Dot-commands are so called because their names start with the dot character (.). They can
feature subcommands. Example:
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(poke) .vm disassemble expression int[] @ O#B
(poke) .vm disassemble function (dump)

When there is no ambiguity, the command name and the subcommands can be shortened to
prefixes. The commands above can also be written as:

(poke) .vm dis e int[] @ O#B
(poke) .vm dis f (dump)

Some commands also get flags, which are one-letter indicators that can be appended to the
command name (including subcommands) after a slash character (/). For example, the .vm
disassembler commands accept a n flag to indicate we want a native disassemble. We can pass
it as follows:

(poke) .vm disassemble expression/n int[] @ O#B
(poke) .vm disassemble function/n (dump)

If a dot-command accepts more than one argument, they are separated using comma char-
acters (,). Spaces are generally ignored.

1.4.3.2 Commands

Regular poke commands are written in Poke and use different conventions. The name of com-
mands follow the same rules as normal Poke identifiers, and do not start with a dot character.

An example is the dump command:

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 £700 0100 0000 0000 0000 0000 0000 ................
00000020: 0000 0000 0000 0000 8001 0000 0000 0000 ................
00000030: 0000 0000 4000 0000 0000 4000 0800 0700 ....Q@..... Q.....
00000040: 1800 0000 0000 0000 0000 0000 0000 0000 ................
00000050: 7900 0000 0000 0000 b701 0000 9a02 0000 y...............
00000060: 7b10 0000 0000 0000 1800 0000 0000 0000 {...............
00000070: 0000 0000 0000 0000 7900 0000 0000 0000 ........ Veeuunonn

After the name of the command, arguments can be specified by name, like this:

(poke) dump :from O#B :size 8#B

(poke) dump :from O#B :size 8#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£f45 4c46 0201 0100 .ELF....

The dump command is discussed in greater detail below (see Section 24.1 [dump], page 125).
The order of arguments is irrelevant in principle:

(poke) dump :from O#B :size 8#B :ascii O :ruler O
00000000: 7£45 4c46 0201 0100
(poke) dump :ruler O :from O#B :size 8#B :ascii O
00000000: 7£45 4c46 0201 0100

However, beware side effects while computing the values you pass as the arguments! The
expressions themselves are evaluated from left to right (according to the order of declaration in
the signature).

Which arguments are accepted, and their kind, depend on the specific command.

Note that the idea is to restrict the number of dot-commands to the absolutely minimum.
Most of the command-like functionality provided in poke shall be implemented as regular com-
mands.
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1.4.4 Command Files

Command files contain poke commands. A poke command may be a dot command, a Poke
statement or a Poke expression. Lines starting with # are comments will be ignored. However
a comment must start at the beginning of a line. Here is an example of a script:

# The following two lines are dot commands
.load my-pickle.pk
.set obase 16

# The following line is a Poke statement
dump :size 0x100#B :from Ox10#B

# The following line is a Poke expression statement without any side effect.
# Consequently it is valid, but rather useless.
4==
A command file contains commands, not Poke code. This means it gets read line by line and
commands cannot occupy more than one line. Hence the following is a valid command file:

type foo = struct {int this; int that;}

but this is not valid as a command file (although it is a valid Poke statement) and will provoke
an error:

type foo = struct
{

int this;

int that;

}

Command files can be loaded at startup using the -s command line option (see Section 1.3
[Invoking poke], page 4). The ~/.pokerc startup file is also an example of a poke command file
(see Chapter 8 [pokerc|, page 97).

1.4.5 Scripts

Following the example of Guile Scheme, the Poke syntax includes support for multi-line com-
ments using the #! and !'# delimiters. This, along with the -L command line option, allows to
write Poke scripts and execute them in the command line like if they were normal programs.
Example of a script:

#!/usr/bin/poke -L
T#

print "Hello world!\n";

The resulting script can process command-line options by accessing the argv array. The
following Poke script prints its arguments:

#!/usr/bin/poke -L
#

for (arg in argv)
printf ("Argument: %s\n", arg);
If you want to pass additional flags to the poke command, you need to use a slightly different
kind of shebang;:
#!/usr/bin/env sh
exec poke -L "$0" "$@"
T#
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load elf;
open (argv[0]);
printf ("%v\n", E1f64_Ehdr @ 0#B);
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2 Setting Up

2.1 Setting up Hyperlinks

GNU poke uses terminal hyperlinks in order to improve the interactive usage of the tool: clicking
on terminal hyperlinks requests poke to execute certain actions. This is used to implement
buttons and other interactive goodies.

Many terminal emulators support terminal hyperlinks. However, we are using a very simple
protocol called app:// that is not supported (yet) on GNU/Linux distros. Fortunately, it is
very easy to set your system to use this protocol, and this chapter shows you how.

2.1.1 Make sure your poke speaks hyperlinks

The first step in having an hyperlinks-capable poke is to make sure to have a recent enough
version of libtextstyle when building poke. If your poke can emit hyperlinks you will see a
message like this when running it on the terminal:

hserver listening in port 43713.

2.1.2 Use a terminal emulator that supports hyperlinks

Gnome Terminal has support for displaying hyperlinks as do many other emula-
tors that rely on VTE. Check the list at https://gist.github.com/egmontkob/
eb114294efbcdbadb1944c9f3cbbfeda#supporting-apps for a mostly up-to-date,
non-exhaustive list of emulators that support printing hyperlinks.

2.1.3 Get and install the app-client utility

Since app:// is a new URI protocol that we designed, common terminal emulators don’t know
what to do when they encounter such a URI. To work around this problem we use the XDG
Desktop Specification and a little C utility called app-client, which can be found at https://
gitlab.com/darnir/hyperlink-app-client.

By setting app-client as the default handler for app:// URIs, the terminal emulator does
not need to understand the syntax or semantics of the app:// protocol. It ofloads the handling
of the URI entirely to app-client. In order to use this, first download and install app-client:

$ git clone https://gitlab.com/darnir/hyperlink-app-client
$ cd hyperlink-app-client

$ make

$ sudo make install

This is enough for any utility (like terminals) that use xdg-open to do the right thing with

hyperlinks. However, certain terminals require additional setup. See below if that is your case.

2.1.4 GNOME Terminal

Gnome Terminal doesn’t use xdg-open to start the applications. Instead, it parses the
mimeapps.1list file manually to find the right application.

Edit your mimeapps.1list, it is usually located at $H0ME/ . local/share/applications/mimeapps.list,|]
but it might also be at $XDG_CONFIG_DIR/mimeapps.list, and add the following line to it:

x-scheme-handler/app=app-client.desktop

This let’s Gnome Terminal know how to open app:// links.


https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda#supporting-apps
https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda#supporting-apps
https://gitlab.com/darnir/hyperlink-app-client
https://gitlab.com/darnir/hyperlink-app-client
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2.2 Simple Init File

GNU poke is a spartan program that tries to be as simple as possible by default, without fancy
displays. Therefore, before exploring poke you may want to configure it minimally. This section
contains a few recommendations in that respect.

First we must say that poke reads a per-user configuration from the ~/.pokerc file. See
Chapter 8 [pokerc], page 97.

We recommend new users to set the following options:

.set endian little

.set omode tree

.set oacutoff 5

.set pretty-print yes

.set pager yes
.set endian little will make poke to use little-endian by default when accessing 1O spaces,
such as files or memory buffers. See Section 3.7 [Big and Little Endians], page 20.

.set omode tree will make poke to format composite data structures, such as arrays and
struct, in several lines in a nice tree-like format. By default the program will format these values
in a single line (what we call the “plain” output mode) which can be difficult to read.

.set oacutoff 5 will make poke to output at most five elements in array values, followed by
a dieresis .. ..

.set pretty-print yes will make poke to use pretty-printers when printing out values of
struct types that have a pretty-printer defined for them. You can recognize pretty-printed
values because, by convention, they are emitted between #< and > markers, like for example
#<1eb128:1234>. If you see a pretty-printed value and you need to look at its internal structure,
you can disable pretty-printing using a .set pretty-print no dot-command at any time. See
Section 6.1 [Pretty-printers|, page 85.

.set pager yes will make poke to page the output of commands that emit output larger
than the visible terminal. This of course only has an effect when running poke interactively.

These options are fully explained later in this manual. See Section 23.13 [set command],
page 121.
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3 Basic Editing

In this chapter you will learn how to shuffle binary data around with poke, in terms of funda-
mental predefined entities: bits, bytes, integers, and the like.

3.1 Binary Files

GNU poke is an editor for binary files. Right, so what is a binary file? Strictly speaking, every
file in a computer’s file system is binary. This is because, in a very fundamental level, files are
just sequences of bytes.

Colloquially, however, it is very common to talk about “binary files” as opposed to “text
files”. In this informal meaning, a text file is basically a file composed, mostly, of bytes (and
byte sequences) that can be translated into printable characters in some character set, such as

ASCII, EBCDIC or Unicode. It follows that binary files would then be files composed, mostly,
of bytes not intended to be interpreted as encoded characters.

Some text files contain non-printable characters, such as form feed characters, and many
binary files contain printable strings, such as a string table in an ELF object file. That is
why we used the word “mostly” in the definitions above. In practice, however, the distinction
is almost always clear and there is common consensus on whether a given file format can be
considered as a binary format, or not.

GNU poke can edit any file, and as we shall see, it provides some nice features to manipulate
sequences of bytes interpreted as character strings. However, it is called a “binary editor”
because it is especially designed to be particularly useful editing binary files, in the sense of the
term defined above.

In this chapter, we will be using ELF object files as the experiment subject in most of
the examples. ELF files are good for this purpose, because they are eminently binary, highly
structured, and still strings play a role in them, encoding names of entities like sections and
symbols. You don’t need to have a perfect knowledge of the ELF format in order to follow the
examples, but being familiarized with the concept of object file formats should surely help.

You will need to install the ELF pickle. You can get it at https://jemarch.net/poke-elf.

Obtaining a simple ELF object file is easy, if you have a C compiler installed:

$ echo 'int foo () { return 0; }' | gcc -c -xc -o foo.o -

The command above compiles a very simple ELF object file that contains the compiled form
of a little dummy function. This object file will be our companion for a while, and will be the
subject of much analysis and abuse, as we poke it.

3.2 Files as IO Spaces

Now that we have a binary file (foo.0) it is time to open it with poke. There are two ways to
do that.

One way is to pass the name of the file in the poke invocation. The program will start, open
the file, and present you with the REPL, like in:

$ poke foo.o

[...]

(poke)

The other way is to fire up poke without arguments, and then use the .file dot-command

to open the file:

$ poke

[...]

(poke) .file foo.o


https://jemarch.net/poke-elf
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The current I0S is now ~./foo.o'.

(poke)
Note how poke replies to the dot-command, stating that the current IOS is now the file we
opened.

You may be wondering, what is this IOS thing? It is an acronym for Input/Output Space,
often written 10 Space. This is the denomination used to refer to the entities being edited with
poke. In this case the IO space being edited is a file, but we will see that is not always the case:
poke can also edit other entities such as memory buffers and remote block-oriented devices over
the network. For now, let’s keep in mind that IOS, or 10 space, refers to the file being edited.

And why “current”? GNU poke is capable of editing several files (more generally, several 10
spaces) simultaneously. At any time, one of these files is the “current one”. In our case, the
current 10 space is the file foo.o, since it is the only file poke knows about:

(poke) .info ios
Id Type Mode Bias Size Name
* 0 FILE rw 0x00000000#B 0x00000398#B ./foo.0

The command .info ios gives us information about all the 10 spaces that are currently
open. The first column tells us a positive integer that identifies the IOS. This IO space identifier
is unique at any given time. In this example, the id corresponding to foo.o is 0. The second
column tells us the type of 10 space. The third column tells us that foo.o allows both reading
and writing. The fourth column tells us the size of the file, in hexadecimal. The fifth column is
the name of the IO space; in this case, it is the path to the file being edited.

You may wonder what is that weird suffix #B. It is a unit, and tells us that the size 0x398 is
measured in bytes, i.e. the size of foo.o is 0x398 bytes (or, in decimal, 920 bytes.)

Finally, the asterisk character at the left of the entry for foo.o identifies it as the current 10
space. To see this more clearly, let’s open another file:

(poke) .file bar.o

The current IOS is now ~./bar.o'.

(poke) .info ios
Id Type Mode Bias Size Name

* 1 FILE rw 0x00000000#B 0x00000398#B ./bar.o
0 FILE rw 0x00000000#B 0x00000398#B ./foo.0

Ah, there we have both foo.o and bar.o. Now the current IO space (the entry featuring
the asterisk at the left) is the file that we just opened, bar.o. This is because poke always sets
the most recently open file as the current one. We can switch back to foo.o using yet another
dot-command, .ios, which gets an IO space as an argument:

(poke) .ios O
The current IOS is now ~./foo.o'.
(poke) .info ios
Id Type Mode Bias Size Name
1 FILE rw 0x00000000#B 0x00000398#B ./bar.o
* 0 FILE rw 0x00000000#B 0x00000398#B ./foo0.0

We are back to foo.o. Since we are not really interested in bar.o, let’s close it:

(poke) .close 1
(poke) .info ios
Id Type Mode Bias Size Name
* 0 FILE rw 0x00000000#B 0x00000398#B ./foo.0

Note how in the examples above we used the IO space identifiers (0 and 1) in order to refer
to them. This can be inconvenient, as these ids are not memorable at all. Fortunately it is also
possible to refer to an 10 space by name using the $<name> construct, like this:
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(poke) .ios $<./foo.o>
The current I0S is now ~./foo.o0'.
(poke) .close $<./bar.o>

Note that the $<name> construct in lenient in the sense that it will accept any non-empty sub
string that identifies an existing 10 space in an unambiguous way. This is useful in order to
avoid having to write annoying paths. For example:

(poke) .file /bin/1s

(poke) .file /bin/cat

(poke) .ios $<1s>

The current I0S is now ~/bin/ls’'.

Auto completion also works. Try it!

3.3 Dumping File Contents

Data stored in modern computers, in both volatile memory and persistent files, is fundamentally
a sequence of entities called bytes. The bytes can be addressed by its position in the sequence,
starting with zero:

to— - Fom— do—— - T S +

| byte 0 | byte 1 | byte 2 | | byte N |
e e e R +

Each byte has capacity to store a little unsigned integer in the range 0. .255. Therefore, the 10
spaces that we edit with poke (like the file foo.0) can be seen as a sequence of little numbers,
like depicted in the figure above.

GNU poke provides a command whose purpose is to display the values of these bytes: dump!
. It is called like that because it dumps ranges of bytes to the terminal, allowing the user to
inspect them.

So let’s use our first poke command! Fire up poke, open the file foo.o as explained above,
and execute the dump command:

(poke) dump
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 £700 0102 0000 0000 0000 0000 0000 ................
00000020: 0102 0000 0000 0000 9801 0000 0000 0000 ................
00000030: 0000 0000 4000 0000 0000 4000 0800 0700 ..............
00000040: 2564 0a00 0000 0000 0000 0000 0000 0000 %d..............
00000050: b702 0000 0100 0000 1801 0000 0000 0000 ................
00000060: 0000 0000 0000 0000 8510 0000 ffff ffff ................
00000070: b700 0000 0000 0000 9500 0000 0000 0000 ................
(poke)

What are we looking at?

The first line of the output, starting with 76543210, is a ruler. It is there to help us to
visually determine the location (or offset) of the data.

The rest of the lines show the values of the bytes that are stored in the file, 16 bytes per line.
The first column in these data lines shows the offset, in hexadecimal and measured in number
of bytes, from which the row of data starts. For example, the offset of the first byte shown in
the third data line has offset 0x20 in the file, the second byte has offset 0x21, and so on. Note
how the data rows show the values of the individual bytes, in hexadecimal. Generally speaking,

1 Note that this is not a dot-command like .file, .ios or .close: dump does not start with a dot! We will see
later how dot-commands differ from “normal commands” like dump, but for now, let’s ignore the distinction.
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when dealing with bytes (and binary data in general) it is useful to manipulate magnitudes in
hexadecimal, or octal. This is because it is easy to group digits in these bases to little groups
of bits (four and three respectively) in the equivalent binary representation. In this case, each
couple of hexadecimal digits denote the value of a single byte?. For example, the value of the
first byte in the third data row is 0x01, the value of the second byte 0x02, and so on.

Using the ruler and the column of offsets, locating bytes in the data is very easy. Let’s say
for example we are interested in the byte at offset 0x68: we use the first column to quickly find
the row starting at 0x60, and the ruler to find the column marked with 88. Cross column and
row and. .. voila! The byte in question has the value 0x85. The reverse process is just as easy.
What is the offset of the first 0x40 in the file? Try it!

The section at the right of the output is the ASCII output. It shows the row of bytes at
the left interpreted as ASCII characters. Non-printable characters are shown as . to avoid
scrambling the terminal, and yes, there is actually way to customize what character to use, so
they are not confused from real ASCII dot characters (0x2e) :P In this particular dump we can
see that near the beginning of the file there are three bytes whose value, if interpreted as ASCII
characters, conform the string “ELF”. As we shall see, this is part of the ELF magic number.
Again, the ruler is very useful to locate the byte corresponding to some character in the ASCII
section, or the other way around. What is the value of the byte corresponding to the F in ELF?
Try it!

Something to notice in the dump output above is that these are not, by any mean, the complete
contents of the file foo.o. The .info ios dot-command informed us in the last section that
foo.o contains 920 bytes, of which the dump command only showed us... 0x80 bytes, or 128
bytes in decimal.

dump is certainly capable of showing more (and less) than 128 bytes. We can ask dump
to display some given amount of data by specifying its size using a command argument. For
example:

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 £700 0102 0000 0000 0000 0000 0000 ................
00000020: 0102 0000 0000 0000 9801 0000 0000 0000 ................
00000030: 0000 0000 4000 0000 0000 4000 0800 0700 ..............

The command above asks poke to “dump 64 bytes”. In this example :size is the name of
the argument, and 64#B is the argument’s value. Again, the suffix #B tells poke we want to
dump 64 bytes, not 64 kilobits nor 64 potatoes.

Another interesting aspect of our first dump (ahem) is that the dumped bytes start from the
beginning of the file, i.e. the offset of the first byte is 0x0. Certainly there should be other areas
of the file with interesting contents for us to inspect. To that purpose, we can use yet another
option, :from:

(poke) dump :size 64#B :from 128#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000080: 1400 0000 0000 0000 0000 0000 0000 0000 ................
00000090: 0000 0000 0000 0000 0000 0000 0000 0000 ................
000000a0: 0000 0000 0300 0100 0000 0000 0000 0000 ................
000000b0: 0000 0000 0000 0000 0000 0000 0300 0300 ................

The command above asks poke to “dump 64 bytes starting at 128 bytes from the beginning
of the file”. Note how the first row of bytes start at offset 0x80, i.e. 128 in decimal.

2 Do not be fooled by the fact dump shows the hexadecimal digits in groups of four: this is just a visual aid and,
as we shall see, it is possible to change the grouping by passing arguments to dump.
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Passing options to commands is easy and natural, but we may find ourselves passing the
same values again and again to certain command options. For example, if the default size of
dump of 128 bytes is not what you prefer, because you have a particularly tall monitor, or you
are one of these people using sub-atomic sized fonts, it can be tiresome and error-prone to pass
:size to dump every time you use it. Fortunately, the default size can be customized by setting
a global variable:

(poke) pk_dump_size = 160#B

This tells poke to set 160 bytes as the new value for the pk_dump_size variable. This is a global
variable that the dump command uses to determine how much data to show if the user doesn’t
specify an explicit value with the :size option. Many other commands use the same strategy
in order to alter their default behavior, not just dump.

And now that we are talking about that, it is also cumbersome to have to set the default
size used by dump every time we run poke. But no problem, just set the variable in a file called
.pokerc in your home directory, like this:

pk_dump_size = 160#B

Every time poke starts, it reads ~/.pokerc and executes the commands contained in it. See
Chapter 8 [pokerc|, page 97.

The dump command is very flexible, and accepts a lot of options and customization variables
that we won’t be covering in this chapter. For a complete description of the command, see
Section 24.1 [dump], page 125.

3.4 Poking Bytes

Let’s look again at the first bytes of the file foo.o:

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 £700 0102 0000 0000 0000 0000 0000 ................
00000020: 0102 0000 0000 0000 9801 0000 0000 0000 ................
00000030: 0000 0000 4000 0000 0000 4000 0800 0700 ..............

At this point we know how to use the ruler to localize specific bytes just by looking at the
displayed data. If we wanted to operate on the values of some given bytes, we could look at
the dump and type the values in the REPL. For example, if we wanted to add the values of the
bytes at offsets 0x2 and 0x4, we could look at the dump and then type:

(poke) Ox4c + 0x02
Ox4e

GNU poke supports many operators that take integers as arguments, to perform arithmetic,
relational, logical and bit-wise operations on them (see Section 25.2 [Integers], page 130). Since
bytes are no more (and no less) than little unsigned integers, we can use these operators to
perform calculations on bytes.

For example, this is how we would calculate whether the highest bit in the second byte in
foo.o is set:

(poke) 0x45 & 0x80
0

Note how booleans are encoded in Poke as integers, 0 meaning false, any other value meaning
true.

Looking at the output of dump and writing the desired byte value in the prompt is cumber-
some. Fortunately, there is a much more convenient way to access the value of a byte, given its
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offset in the file: it is called mapping a byte value. This operation is implemented by a binary
operator, called the map operator.

This is how it works. Assuming we were interested in the byte at 64 bytes from the beginning
of the file, this is how we would refer to it (or “map” it):

(poke) byte @ 64#B
37UB

This application of the map operator tells poke to map a byte at the offset 64 bytes. It can be
read as “byte at 64 bytes”. Note how poke replies with the value 37UB. The suffix UB means
“unsigned byte”, and is an indication for the user about the nature of the preceding number: it
is unsigned, and it occupies a byte when stored.

As we can see in this example, poke uses decimal by default when showing values in the REPL.
We already noted how it is usually better to work in hexadecimal when dealing with byte values.
Fortunately, we can change the numeration base used by poke when printing numbers, using
the .set obase (“set output base”) dot-command as this:

(poke) .set obase 16
After this, we can map the byte again, this time getting the result expressed in hexadecimal:

(poke) byte @ 64#B
0x25UB

Again, you may find it useful to add the .set obase 16 command to your .pokerc file, if you
want the customization to be persistent between poke invocations.

Going back to the example of calculating whether the highest bit in the second byte in foo.o
is set, this is how we would do it with a map:

(poke) (byte @ 2#B) & 0x80
0

Turns out the answer is no.
The map operator can also be used at the left side of an assignment operator:
(poke) byte @ 0x28#B = Oxff

Which reads “assign Oxff to the byte at offset Ox4a bytes”. Dumping again, we can verify that
the byte actually changed:

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 £700 0102 0000 0000 0000 0000 0000 ................
00000020: 0102 0000 0000 0000 f££f01 0000 0000 0000 ................
00000030: 0000 0000 4000 0000 0000 4000 0800 0700 ..............

Does this mean that foo.o changed accordingly, in disk? The answer is yes. poke always
commits changes immediately to the file being edited. This, that is an useful feature, can also
be a bit tricky if you forget about it, leading to data corruption, so please be careful.

Incidentally, altering the byte at offset 0x28 most probably have caused foo.o to stop being
a valid ELF file, but since we are just editing bytes (and not ELF structures) we actually don’t
care much.

3.5 Values and Variables

Up to now we have worked with byte values, either writing them in the REPL or mapping them
at the current 1O space. Often it is useful to save values under meaningful names, and access
to them by name. In poke we do that by storing the values in variables.

Before being used, variables shall be defined using the var construction. Let’s get the byte
at offset 64 bytes and save it in a variable called foo:

(poke) var foo = byte Q@ 64#B
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This defines a new variable (foo) and initializes it to the value of the byte at offset 64 bytes.
This results on foo to hold the value 37.

Once defined, we can get the value of a variable by just giving its name to poke:
(poke) foo
37UB
Several variables can be defined in a single var declaration. Each definition is separated by a
comma. This is equivalent of issuing several vars:
(poke) var a = 10, b = 20
In general, a variable containing a byte value can be used in any context where the contained
value would be expected. If we wanted to check the highest bit in the byte value stored in foo
we would do:
(poke) foo & 0x80
0x0
Assigning a value to a variable makes the value the new contents of the variable. For example,
we can increase the value of foo by one like this:
(poke) foo = foo + 1
At this point, an important question is: when we change the value of the variable foo, are
we also changing the value of the byte stored in foo.o at offset 64 bytes? The answer is no.
This is because when we do the mapping:
(poke) var foo = byte @ 64#B
The value stored in foo is a copy of the value returned by the map operator @. You can imagine
the variable as a storage cell located somewhere in poke’s memory. After the assignment above
is executed there are two copies of the byte value 0x25: one in foo.o at offset 64 bytes, and the
other in the variable foo.
It follows that if we wanted to increase the byte in the file, we would need to do something
like:
(poke) var foo = byte @ 64#B
(poke) foo = foo + 1
(poke) byte @ 64#B = foo
Or, more succinctly, omitting the usage of a variable:
(poke) byte @ 64#B = (byte @ 64#B) + 1
Or, even more succinctly:
(poke) (byte @ 64#B) += 1

Note how we have to use parenthesis around the map at the right hand side, because the map
operator @ has less precedence than the plus operator +.

3.6 From Bytes to Integers

The bytes we have been working with are unsigned whole numbers (or integers) in the range
0..255. We saw how poke sees the contents of the files as a sequence of bytes, and how each
byte can be addressed using an offset. Mapping bytes using the map operator @ gives us these
values, which are denoted in poke with literals like 10UB or 0x0aUB.

This very limited range of values have consequences when it comes to do arithmetic with
bytes. Suppose for example we wanted to calculate the average of the first three byte values
stored in foo.o. We could do something like:

(poke) a0 = byte @ O#B
(poke) al = byte @ 1#B
(poke) a2 = byte @ 2#B
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(poke) a0

0x7£fUB

(poke) al

0x45UB

(poke) a2

0x4cUB

(poke) (a0 + al + a2) / 3UB
5UB

That is obviously the wrong answer. What happened? Let’s do it step by step. First, we add
the first two bytes:

(poke) a0 + al
0xc4UB

Which is all right. Oxc4 is 0x7f plus 0x45. But, let’s add now the third byte:

(poke) a0 + al + a2
0x10UB

That’s no good. Adding the value of the third byte (0x4c) we overflow the range of valid values
for a byte value. The calculation went banana at this point.

Another obvious problem is that we surely will want to store integers bigger than 255 in our
files. Clearly we need a way to encode them somehow, and since all we have in a file are bytes,
the integers will have to be composed of them.

Integers bigger than 255 can be encoded by interpreting consecutive byte values in a certain
way. First, let’s consider a single byte. If we print a byte value using binary rather than decimal
or hexadecimal, we will observe that eight bits are what it takes to encode the numbers between
0 and Oxff (255) using a natural binary encoding:

(poke) .set obase 2
(poke) OUB
0ObO0000000UB

(poke) OxFFUB
Ob11111111UB

This is the reason why people say bytes are “composed” of eight bits, or that the width of
a byte is eight bits. But this way of talking doesn’t really reflect the view that the operating
system has of devices like files or memory buffers: both disk and memory controllers provide
and consume bytes, i.e. little unsigned numbers in the range 0..255. At that level, bytes are
indivisible. We will see later that poke provides ways to work on the “sub-byte” level, but that
is just really an artifact to make our life easier: underneath, all that goes in and out are bytes.

Anyhow, if we were to “concatenate” the binary representation of two consecutive bytes,
we would end with a much bigger range of possible numbers, in the range 0b00000000_
00000000..0b11111111_111111113, or 0x0000. .0xffff in hexadecimal. poke provides a bit-

concatenation operator ::: that does exactly that:
(poke) 0x1UB
0b00000001UB
(poke) 0x1UB ::: 0x1UB
0b0000000100000001UH

Note how the suffix of the resulting number is now UH. This indicates that the number is no
longer a byte value: it is too big for that. The H in this new suffix means “half”, and it is a
traditional way to call an integer that is encoded using two bytes, or 16 bits.

3 poke allows to insert underscore characters _ anywhere in number literals. The only purpose of these characters
is to improve readability, and they are totally ignored by poke, i.e. they do not alter the value of the number.
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So, using our method of encoding bigger numbers concatenating bytes, what would be the
“half” integer composed of two bytes at the beginning of foo.o0?

(poke) .set obase 16
(poke) (byte @ O#B):::(byte @ 1#B)
0x7£45UH

Now, let’s go back to the syntax we used to map a byte value. In the invocation of the map
operator byte @ O#B the operand at the left (in this case byte) tells the operator what kind of
value to map. This is called a type specifier; byte is the type specifier for a single byte value,
and byte[3] is the type specifier for a group of three byte values arranged in an array.

As it happens, byte is a synonym for another slightly more interesting type specifier:
uint<8>. You can probably infer the meaning already: a byte is an unsigned integer which
is 8 bits big. We can of course use this alternate specifier in a mapping operation, achieving
exactly the same result than if we were using byte:

(poke) uint<8> @ O#B
0x7£fUB

You may be wondering: is it possible to use a similar type specifier for mapping bigger
integers, like these “halves” that are composed of two bytes? Yeah, it is indeed possible:

(poke) uint<16> @ O#B
0x7f45UH

Mapping an unsigned integer of 16-bits at the offset 0 gives us an unsigned “half” value, as
expected.

You can easily build bigger and bigger numbers concatenating more and more bytes. Three
bytes? sure:

(poke) uint<24> @ O#B
(uint<24>) 0x7f454c

Note that in this case poke uses a prefix instead of a suffix to indicate that the given value is
24-bits long. This is because only a limited number of suffixes (which are more concise and more
readable than the prefix form) are available, corresponding to common or typical widths.

Four bytes?

(poke) uint<32> @ O#B
0x7£454c46U

Certain integer widths are so often used that easier-to-type synonyms for their type specifiers
are provided. We already know byte for uint<8>. Similarly, ushort is a synonym for uint<16>,
uint is a synonym for uint<32> and ulong is a synonym for uint<64>. Try them!

GNU poke supports integers up to eight bytes, i.e. up to 64-bits. This may change in the
future, as we are planning to support arbitrarily large integers.

3.7 Big and Little Endians

When talking about whole numbers (integers) we should distinguish between their value (such
as 123) and their written form that we would use when writing the number on a piece of paper,
such as 123.

The written form of a number is composed of digits, arranged in certain order. We all know
that the ordering of the digits in the written form of a number is important: if we write 123
we are referring to a different value than if we write 321. The mathematical reason for this is
that depending on the position they occupy in the written form, each digit contributes with a
different “weight” to the total value of the number. This is always the case, regardless of the
numerical base used to denote the number.
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For example, the value of the number 123 (whose written form is 123) is calculated as
1¥10°2+2%10°1+3%10°0. If we swap the last two digits in the written form of the number,
132, we have 1*1072+3*10~1+2%1070, which results in a different value: 132. When we con-
sider other numerical bases, the bases in the polynomial change accordingly, but the correspon-
dence between written form and value stands: for example, the value of 0x123 is calculated as
1%16°2+2%x1671+3%1670.

The “higher” a digit is in the polynomial, the more significant it is, i.e. the more weight it
has on the value of the number where it appears. In the written number 123, for example, the
digit 1 is the most significant digit of the number, and the digit 3 is the least significant digit.

This distinction between the written form of a number and its value is very important. Just
like in certain languages letters are read right-to-left (Arabic) or even down-to-up (Japanese) we
could certainly conceive a language in which the digits of numbers were arranged from right-to-
left instead of left-to-right. In such a language the written representation of 123 would be 321,
not 123. In other words: the least significant digit would come first, not last, in the written
form of the number.

Now when it comes to store numbers in computers, rather than writing them on a paper, the
role of the paper is played by the computer’s memory, be it ephemeral (like RAM) or persistent
(like a spinning hard disk or a Flash memory), which is organized as a sequence of bytes. Since
we are composing numbers with bytes, it makes sense to have each byte to play the role of a
digit in the written form of the bigger number. Since bytes can have values from 0 to 255, the
base is 256. But what is the “written form” for our byte-composed numbers?

In the last section we tried to compose bigger integers by concatenating bytes together and
interpreting the result. In doing so, we assumed (quite naturally) that in the written form of
the resulting integer the bytes are ordered in the same order than they appear in the file, i.e. we
assume that the written form of the number b1*256~2+b2*256~1+b3*256°0 would be b1b2b3,
where b1, b2 and b3 are bytes. In other words, given a written form b1b2b3, bl would be the
most significant byte (digit) and b3 would be the least significant byte (digit). In our world
of 10 spaces, the “written form” is the disposition of the bytes in the IO space (file, memory
buffer, etc) being edited.

That interpretation of the written form is exactly what the bit-concatenation operator im-
plements:

(poke) dump :from O#B :size 3#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 7£45 4c .EL

(poke) var bl = byte @ O#B

(poke) var b2 = byte @ 1#B

(poke) var b3 = byte @ 2#B

(poke) bl:::b2:::b3

(uint<24>) 0x7f454c

However, much like in certain human languages the written form is read from right to left,

some computers also read numbers from right to left in their “written form”. Actually, turns
out that most modern computers do it like that. This means that, in these computers, given
the written form bib2b3 (i.e. given a file where bl comes first, followed by b2 and then b3)
the most significant byte is b3 and the least significant byte is bl. Therefore, the value of the
number would be b3*256~2+b2*256~1+b3*25670.

So, given the written form of a bigger number b1b2b3 (i.e. some ordering of bytes implied by
the file they are stored in) there are at least two ways to interpret them to calculate the value
of the number. When the written form is read from left to right, we talk about a big endian
interpretation. When the written form is read from right to left, we talk about a little endian
interpretation.
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Given the first three bytes in foo.o, we can determine the value of the integer composed of
these three bytes in both interpretations:
(poke) bl:::b2:::b3
(uint<24>) 0x7f454c
(poke) b3:::b2:::bl
(uint<24>) 0x4c457f
Remember how the type specifier byte is just a synonym of uint<8>, and how we can use
type specifiers like uint<24> and uint<32> to map bigger integers? When we do that, like in:

(poke) uint<24> @ O#B
(uint<24>) 0x7f454c
Poke should somehow decide what kind of interpretation to use, i.e. how to read the “written
form” of the number. As you can see from the example, poke uses the left-to-right interpretation,
or big-endian, by default. But you can change it using a new dot-command: .set endian:
(poke) .set endian little
(poke) uint<24> @ O#B
(uint<24>) 0x4c457f
The currently used interpretation (also called endianness) is shown if you invoke the dot-
command without an argument?:

(poke) .set endian
little

Different systems use different endianness. Into a given system, it is to be expected that
most files will be encoded following the same conventions. Therefore poke provides you a way
to set the endianness to whatever endianness is in the system. You do it this way:

(poke) .set endian host

3.8 Negative Integers

3.8.1 Negative Encodings

Up to this point we have worked with unsigned integers, i.e. whole numbers which are zero
or bigger than zero. Much like it happened with endianness, the interpretation of the value of
several bytes as a negative number depends on the specific interpretation.

In computing there are two main ways to interpret the values of a group of bytes as a negative
number: one’s complement and two’s complement.

At the moment GNU poke supports the two complement interpretation, which is really
ubiquitous and is the negative encoding used by the vast majority of modern computers and
operating systems.

We may consider adding support for one’s complement in the future, but only if there are
real needs that would justify the effort (which wouldn’t be a small one ;)).

3.8.2 Signed Integers
Unsigned values are never negative. For example:

(poke) OUB - 1UB
0xffUB

Instead of getting a -1, we get the result of an unsigned underflow, which is the biggest possible
value for an unsigned integer of size 8 bits: 0xff.

4 This also applies to the other .set commands
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When using type specifiers like uint<8> or uint<16> in a map, we get unsigned values such as
0UB. We need other type specifiers to map signed values. These look like int<8> and int<16>.

For example, let’s map a signed 16-bit value from foo.o:

(poke) .set obase 10
(poke) int<16> @ O#B
28515H

Note how the suffix of the value is now H and not UH. This means that the value is signed! But
in this case the mapped integer is still positive, so let’s try to get an actual negative value:

(poke) var h = int<16> @ O#B
(poke) h - h - 1H
-1H

3.8.3 Mixing Signed and Unsigned Integers
Adding two signed integers gives you a signed integer:

(poke) 1 + 2
3

Likewise, adding two unsigned integers results in an unsigned integer:

(poke) 1U + 2U
3U

But, what happens if we mix signed and unsigned values in an expression? Is the result signed,
or unsigned? Let’s find out:

(poke) 1U + 2
3U

Looks like combining an unsigned value with a signed value gives us an unsigned value. This
actually applies to all the operators that work on integer values: multiplication, division, expo-
nentiation, etc.

What actually happens is that the signed operand is converted to an unsigned value before
executing the expression. You can also convert signed values into unsigned values (and vice-
versa) using cast constructions:

(poke) 2 as uint<32>
2U

Therefore, the expression 1U + 2 is equivalent to 1U + 2 as uint<32>:

(poke) 1U + 2 as uint<32>
3U

You may be wondering: why not doing it the other way around? Why not converting the
unsigned operand into a signed value and then operate? The reason is that, given an integer of
some particular size, the positive range that you can store in it is bigger when interpreted as an
unsigned integer than when interpreted as a signed integer. Therefore, converting signed into
unsigned before operating reduces the risk of positive overflow, which by the way is not allowed
in poke. This of course assumes that we, as users, will be working with positive numbers more
often than with negative numbers, but that is a reasonable assumption to do, as it is often the
case!

3.9 Weird Integers

Up to this point we have been playing with integers that are built using a whole number of
bytes. However, we have seen that the type specifier for an integer has the form int<N> or
uint<N> for signed and unsigned variants, where N is the width of the integer, in bits. We have
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used bit-sizes that are multiple of 8, which is the size of a byte. So, why is this so? Why is N
not measured in bytes instead?

The reason is that poke is not limited to integers composed of a whole number of bytes. You
can actually have integers composed of any number of bits, between 1 and 64. So yes, int<3>
is a type specifier for signed 3-bit integers, and uint<17> is a type specifier for unsigned 17-bit
integers.

We call integers like this weird integers.

The vast majority of programming languages do not provide any support for weird integers.
In the few cases they do, it is often in a very limited and specific way, like bitmap fields in C
structs. Such constructions are often vague, obscure, and often their semantics depend on the
specific implementation of the language, and/or the characteristics of the system where you run
your program.

In poke, on the contrary, weird numbers are first class citizens, and they don’t differ in any
way from “normal” integers which are composed of a whole number of bytes. Their interpretation
is also well defined, and they keep the same semantics regardless of the characteristics of the
computer on which poke is running.

3.9.1 Incomplete Bytes

Let’s consider first weird numbers that span for more than one byte. For example, an unsigned
integer of 12 bits. Let’s visualize the written form of this number, i.e. the sequence of its
constituent bytes as they appear in the underlying 10 space:

byte 0 | byte 1
fommmm fomm et
EEEEEEEER R |
fommm R
| uint<12> [

All right, the first byte is used in its entirely, but only half of the second byte is used to conform
the value of the number. The other half of the second byte has no influence of the value of the
12 bits number.

Now, we talk about the “second half of the byte”, but what do that means exactly? We
know that bytes in memory and files (bytes in IO spaces) are indivisible at the system level:
bytes are read and written one at a time, as little integers in the range 0. .255. However, we can
create the useful fiction that each byte is composed by bits, which are the digits in the binary
representation of the byte value.

So, we can look at a byte as composed of a group of eight bits, like this:
byte

Note how we decided to number the bits in descending order from left to right. This is because
these bits correspond to the base of the polynomial equivalent to the binary value of the byte, i.e.
the value of the byte is b7*277+b6*2~6+b5*2"5+b4*2"4+b3*2"3+b2*2"2+b1*2"1+b0*270. In
other words: at the bit level poke always uses a big endian interpretation, and the bit that “comes
first” in this imaginary stream of bits is the most significant bit in the binary representation
of the number. Please note that this is just a convention imposed by the poke authors: the
opposite could have been chosen, but it would have been a bit confusing, as we would have to
picture binary numbers in reverse order!

With this new way of looking at bytes, we can now visualize what we mean exactly with the
“first half” and “second half” of the trailing byte, in our 12 bits unsigned number:

byte 0 | byte 1
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Fmm Fomm Fomm +

| a7 a6 a5 a4 a3 a2 al a0 b7 b6 b5 b4 : |
S By S, TR S, TR +

I uint<12> |

Thus the first half of byte 1 is the sequence of bits b7 b6 b5 b4. The second half, which is not
pictured since it doesn’t contribute to the value of the number, would be b3 b2 b1 bO.

So what would be the value of the 12-bit integer? Exactly like with non-weird numbers, this
depends on the current selected endianness, which determines the ordering of bytes.

If the current endianness is big, then byte 0 provides the most significant bits of the result
number, and the used portion of byte 1 provides the least significant bits of the result number:

Ob a7 a6 ab a4 a3 a2 al a0 b7 b6 b5 b4

However, if the current selected endianness is little, then the used portion of byte 1 provides
the most significant bits of the result number, and byte 0 provides the least significant bits of
the result number:

Ob b7 b6 b5 b4 a7 a6 ab a4 a3 a2 al a0

Let’s see this in action. Let’s take a look to the value of the first two bytes in foo.o, in
binary:

(poke) .set obase 2
(poke) byte @ O#B
0Ob01111111UB

(poke) byte @ 1#B
0b01000101UB

Looking at these bytes as sequences of bits, we have:

byte @ O#B | byte @ 1#B

I uint<12> |
Let’s map our weird number at offset 0 bytes, using big endian:

(poke) .set endian big
(poke) uint<12> @ O#B
(uint<12>) 0b011111110100

That matches what we explained before: the most significant bits of the unsigned 12 bits number
come from the byte at offset 0, i.e. 01111111, whereas the least significant bits come from the
byte at offset 1, i.e. 0100.

Now let’s map it using little endian:

(poke) uint<12> @ O#B
(uint<12>) 0b010001111111

This time the most significant bits of the unsigned 12 bits number come from the byte at offset
1, i.e. 0100, whereas the least significant bits come from the byte at offset 0, i.e. 01111111.

An important thing to note is that non-weird numbers, i.e. numbers built with a whole
number of bytes, are basically a particular case of weird numbers where the last byte in the
written form (in the IO space) provides all its bits. The rules are exactly the same in all cases,
which makes it easy to obtain predictable and natural results when building integers using poke.
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3.9.2 Quantum Bytenics

The second kind of weird numbers are integers using less than 8 bits. These “sub-byte” numbers
do not use all the bits of their containing byte. Consider for example the written form of an
unsigned integer of size 5 bits:

byte
o -t
[::::0] |
o -t
uint<5>

Now let’s view the byte as a sequence of bits:

| uint<5> |

What is the value of this number? Applying the general rules for building integers from bytes,
we can easily see that regardless of the current endianness the value, in binary, is:

Ob b7 b6 b5 b4 b3
Let’s see this in poke:

(poke) .set obase 2
(poke) .set endian big
(poke) byte @ O#B
0Ob01111111UB

(poke) uint<5> @ O#B
(uint<5>) 0bO1111

(poke) .set endian little
(poke) uint<b5> @ O#B
(uint<5>) 0b0O1111

3.9.3 Signed Weird Numbers

In the section discussing negative integers, we saw how the difference between a signed number
and an unsigned number is basically a different interpretation of the most significant bit. Exactly
the same applies to weird numbers.

Let’s summon our unsigned 12-bit integer at the beginning of the file foo.o:

(poke) .set endian big
(poke) uint<i2> @ O#B
(uint<12>) 0b011111110100

The most significant bit of the resulting value (not of its written form) indicates that this number
would be positive if we were mapping the corresponding signed value. Let’s see:

(poke) int<12> @ O#B
(int<12>) 0b010001111111
(poke) .set obase 10
(poke) int<12> @ O#B
(int<12>) 1151

Let’s make it a bit more interesting, and change the value of the first byte in the file so we
get a negative number:

(poke) .set obase 2
(poke) byte @ O#B = Ob1111_1111
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(poke) int<12> @ O#B
(int<12>) 0b111111110100
(poke) .set obase 10
(poke) int<12> @ O#B
(int<12>) -12

Now, let’s switch to little endian:

(poke) .set endian little
(poke) .set obase 2
(poke) int<12> @ O#B
(int<12>) 0b010011111111
(poke) .set obase 10
(poke) int<12> O#B
(int<12>) 1279

3.10 Unaligned Integers

We have mentioned above that the data stored in computers, that we edit with poke, is arranged
as a sequence of bytes. The entities we edit with poke (that we call IO devices) are presented
to us as IO spaces. Up to now, we have accessed this IO space in terms of bytes, in commands
like dump :from 32#B and in expressions like 2UB + byte @ O#B. We said that mapped integers
are built from bytes read from the IO space.

However, the 10 space that poke offers to us is actually a space of bits, not a space of bytes,
and the poke values are mapped on this space of bits. The following figure shows this:

poke values | uint<16> @ 2#b I
——————————— | |
I0 space [bIblblbIbIblblblbIbIbIbIbIDIDILIbIBIDIDIDIbIDIDLI
——————————— | | | |
I0 device | byte0 | bytel | byte2 |

The main consequence of this, that you can see in the figure above, is that we can use offsets in
mapping operations that are not aligned to bytes. You can specify an offset in bits, instead of
bytes, using the #b suffix instead of #B. Little b means bits, and big B means bytes.

Let’s map an unaligned 16 bit unsigned integer in foo.o:

(poke) dump :from O#B :size 3#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£45 4c .EL
(poke) .set obase 2
(poke) byte @ O#B
0b01111111UB
(poke) byte @ 1#B
0b01000101UB
(poke) byte @ 2#B
0b01001100UB
(poke) .set endian big
(poke) uint<16> @ 2#b
0b1111110100010101UH
Graphically:
poke values I uint<16> @ 2#b
----------- | |
I0 space [ol1]1l1l111]21]1l0lLl0lOlOlLIOlLlOfLIOlOlL|L]O]lO]
----------- | | | |



Chapter 3: Basic Editing 28

I0 device | 0x7f | 0x45 | Ox4c |

These three levels of abstractions make it very easy and natural to work with unaligned data.
Imagine for example that you are poking packages in a network protocol that is bit-oriented.
This means that the packages will generally not be aligned to byte boundaries, but still the
payload stored in the packages contains integers of several sizes. Other conventional binary
editors or programming languages, that are almost always byte oriented, would require us to
“unpack” the network data to a different, byte oriented, representation before messing with it.
poke, on the contrary, allows you to directly map these integers as if they were aligned to byte
boundaries, and work with them.

However, when one tries to determine the correspondence between a given poke value and
the underlying bytes in the 10 device, things can get complicated. This is particularly true when
we map what we called “weird numbers”, i.e. numbers with partial bytes. As we saw, the rules
to build these numbers were expressed in terms of bytes.

In order to ease the visualization of the process used to build integer values (especially if
they are weird numbers, i.e. integers with partial bytes) one can imagine an additional layer of
“virtual bytes” above the space of bits provided by the IO space. Graphically:

poke values | uint<16> @ 2#b |
\_l;;;l_l;;_l_);;es : virt. bytel |  virt. byte2 :
;6_;;;;_“ IOI1:1|1|1|1|1|1|O|1:OIOIOI1|0|1|O|1:0|O|1|1|O|O|
0aeice | owr | oas | owe |

It is very important to understand that the IO space is an abstraction provided by poke. The
underlying file, or memory buffer, or whatever, is actually a sequence of bytes; poke translates
the operations on integers, bits, bytes, etc into the corresponding byte operations, and this
translation is far from trivial. Fortunately, we can let poke do the dirty job for us, and abstract
ourselves from that complexity.

3.11 Integers of Different Sizes

When integer values of different sizes are passed to an arithmetic or relational operator, the
“smaller” operand gets converted into the size of the “bigger” operand. For example:

(poke) 1H + 2

3
The operands are of size 16-bit and 32-bit respectively, and the result is a 32-bit integer. This
is equivalent to:

(poke) 1H as int<32> + 2
3

3.12 Offsets and Sizes

Early in the design of what is becoming GNU poke I was struck by a problem that, to my surprise,
would prove not easy to fix in a satisfactory way: would I make a byte-oriented program, or a
bit-oriented program? Considering that the program in question was nothing less than an editor
for binary data, this was no petty dilemma.

Since the very beginning I had a pretty clear idea of what I wanted to achieve: a binary editor
that would be capable of editing user defined data structures, besides mere bytes and bits. I also
knew I needed some sort of domain specific language to describe these structures and operate
on them. How that language would look like, and what kind of abstractions it would provide,
however, was not clear to me. Not at all.
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So once I sketched an initial language design, barely something very similar to C structs, 1
was determined to not continue with the poke implementation until I had described as many
as binary formats in my language as possible. That, I reckoned, was the only way to make
sure the implemented language would be expressive, complete and useful enough to fulfil my
requirements.

The first formats I implemented using my immature little language included ELF, FLV, MP3,
BSON. .. all of them describing structures based on whole bytes. Even when they try to be
compact, it is always by packing bit-fields in elements that are, invariably, sized as a multiple
of bytes. Consequently, the language 1 was evolving became byte oriented as well. No doubt
also influenced by my C inheritance, I would think of bit-fields either as a sort of second class
citizen, or as mere results of shifting and masking.

This worked well. The language evolved to be able to express many different aspects of these
formats in a very nice way, like variable-length data and holes in structures.

Consider the following definition, which is not valid in today’s Poke:

type Data =
struct
{
byte magic;
byte count;
byte dstart;

byte[count] data @ dstart;
};

The data starts with a byte that is a magic number. Then the size of the data stored, in
bytes, and then the data itself. This data, however, doesn’t start right after dstart: it starts at
dstart, which is expressed as an offset, in bytes, since the beginning of the Data. I conceived
struct field labels to be any expression evaluating to an integer, which would be interpreted as
a number of bytes, obviously.

Then, one day, it was the turn for IETF RFC1951, which is the specification of the DEFLATE
algorithm and associated file format. Oh dear. Near the beginning of the spec document it can
be read:

This document does not address the issue of the order in which bits of a byte are
transmitted on a bit-sequential medium, since the final data format described here
is byte- rather than bit-oriented. However, we describe the compressed block format
in below, as a sequence of data elements of various bit lengths, not a sequence of
bytes.

Then it goes on describing rules to pack the DEFLATE elements into bytes. I was appalled,
and certainly sort of deflated as well. The purpose of my program was precisely to edit binary
in terms of the data elements described by a format. And in this case, these data elements came
in all sort of bit lengths and alignments. This can be seen in the following RFC1951 excerpt,
that describes the header of a compressed block:

Each block of compressed data begins with 3 header bits containing the following
data:

first bit BFINAL
next 2 bits BTYPE

Note that the header bits do not necessarily begin on a byte boundary, since a block
does not necessarily occupy an integral number of bytes.

At this point I understood that my little language on the works would never be capable to
describe the DEFLATE structures naturally: C-like bit-fields, masking and shifting, all based
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on byte-oriented containers and boundaries, would never provide the slickness I wanted for my
editor. I mean, just use C and get done with it.

This pissed me off. Undoubtedly other formats and protocols would be impacted in a similar
way. Even when most formats are byte oriented, what am I supposed to tell to the people
hacking bit-oriented stuff? “Sorry pal, this is not supported, this program is not for you”? No
way, I thought, not on my watch.

The obvious solution for the problem, is to be general. In this case, to express every offset
and every memory size in bits instead of bytes. While this obviously gives the language max-
imum expressiveness power, and is ideal for expressing the few bit-oriented formats, it has the
disadvantage of being very inconvenient for most situations.

To see how annoying this is, let’s revisit the little BitData structure we saw above. In a
bit-oriented description language, we would need to write something like:

type BitData =
struct
{
byte magic;
byte count;
byte dstart;

byte[count] data @ dstart * 8;
3

Yeah. .. exactly. The * and 8 keys in the keyboards of the poke users would wear out very
fast, not to mention their patience as well. Also, should I provide both sizeof and bitsizeof
operators? Nasty.

I am very fond of the maxim “Never write a program you would never use yourself”5, so I
resigned myself to make GNU poke byte oriented, and to provide as many facilities for operating
on bit-fields as possible.

Fortunately, I have smart friends. . .

During one of the Rabbit Herd’s Hacking Weekends® I shared my frustration and struggle
with the other rabbits, and we came to realize that offsets and data sizes in Poke should not be
pure magnitudes or mere integer values: they should be united. They should have units.

It makes full sense when you come to think about it. For a program like poke, it is only
natural to talk about different memory units, like bits, bytes, kilobytes, megabits, and so on.
Bits and bytes are just two common units.

The syntax that we eventually used to denote united values is to specify the magnitude part,
a hash ('#' character, and then the unit. For example, the size “three bytes” is expressed as
3#B, and “three bits” as 3#b.

Apart from allowing me to express values in different units, this approach also has other
benefits as we will see shortly.

I'm really grateful to Bruno Haible, Luca Saiu and Nacho Gonzalez for putting me on the
right track.

3.13 Buffers as 10 Spaces

We have mentioned already that files are not the only entities that can be edited using poke.
Remember the dot-command .file that opened a file as an 10 space?

(poke) .file foo.o

5 Actually it is Lord Vetinari’s “Never build a dungeon you can’t get out of.” but the point is the same.
6 http://wuw.jemarch.net/rhhw
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The current I0S is now ~./foo.o'.
(poke) .info ios

Id Type Mode Bias Size Name
* 0 FILE rw 0x00000000#B 0x000004c8#B ./foo.o0
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Memory buffers can be created using a similar dot-command, .mem:

(poke) .mem foo
The current I0S is now

(poke) .info ios
Id Type Mode Bias Size Name
* 1 MEMORY 0x00000000#B 0x00001000#B
0 FILE rw 0x00000000#B 0x000004c8#B

“xfoox'.

*foox
./fo

0.0

Note how the name of the buffer is built by prepending and appending asterisks. Therefore,
the name of the buffer created by the command .mem foo is *foo*. Note also that the new
buffer is created with a default size of 0x1000 bytes, or 4096 bytes. The contents of the buffer

are zeroed:

(poke) dump

76543210

00000000:
00000010:
00000020:
00000030:
00000040:
00000050
00000060
00000070:

0011
0000
0000
0000
0000
0000
0000
0000
0000

2233
0000
0000
0000
0000
0000
0000
0000
0000

4455
0000
0000
0000
0000
0000
0000
0000
0000

6677
0000
0000
0000
0000
0000
0000
0000
0000

8899
0000
0000
0000
0000
0000
0000
0000
0000

aabb
0000
0000
0000
0000
0000
0000
0000
0000

ccdd
0000
0000
0000
0000
0000
0000
0000
0000

eeff
0000
0000
0000
0000
0000
0000
0000
0000

0123456789ABCDEF

Memory buffer IO spaces grow automatically when a value is mapped beyond their current
size. This is very useful when populating newly created buffers. However, for security reasons,
there is a limit: the IO spaces are only allow to grow 4096 bytes at a time.

When it comes to map values, there is absolutely no difference between an 10 space backed
by a file and an IO space backed by a memory buffer. Exactly the same rules apply in both

cases.

3.14 Copying Bytes

Memory buffer IO spaces are cheap, and they are often used as “scratch” areas.

Suppose for example we want to experiment with the ELF header of foo.o. We could open

it in poke:

(poke) .file foo.o
The current I0S is now ~./foo.o'.

The header of an ELF file comprises the first 64 bytes in the file:

(poke) dump :size 64#B
0011 2233 4455 6677 8899 aabb
7£45 4c46 0201 0100 0000 0000
0100 3e00 0100 0000 0000 0000
0000 0000 0000 0000 0802 0000
0000 0000 4000 0000 0000 4000

76543210

00000000:
00000010:
00000020:
00000030:

ccdd
0000
0000
0000
0b00

eeff
0000
0000
0000
0a00

0123456789ABCDEF

We know that as soon as we poke something on an IO space, the underlying file is immediately
modified. So if we start playing with foo.o’s header, we may corrupt the file. We could of course
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make a copy of foo.o and work on the copy, but it is much better to create a memory IO space
and copy the ELF header there:

(poke) .mem scratch

The current IOS is now “*scratchx*'.

(poke) copy :from_ios O :from O#B :size 64#B

(poke) dump :size 64#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 7£45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0100 3e00 0100 0000 0000 0000 0000 0000 ..>.............
00000020: 0000 0000 0000 0000 0802 0000 0000 0000 ................
00000030: 0000 0000 4000 0000 0000 4000 0bOO 0a00 ..............

The command copy above copies 64 bytes starting at byte 0 from the IO with id 0 (the file
foo.0) to the current IO space (the buffer *scratchx).

Once we are done working with the copy of the ELF header, and satisfied, we can copy it
back to the file and close the memory 10 space:

(poke) copy :from O#B :size 64#B :to_ios 0
(poke) .close
The current I0S is now ~./foo.o'.

Note how the command arguments :from_ios and :to_ios are assumed to be the current 10
space if they are not explicitly specified in the command invocation. For detailed information
on the copy command, see Section 24.2 [copy], page 127.

3.15 Saving Buffers in Files

Another useful command when working with buffer IO spaces (and in general, with any IO
space) is save. Let’s say we want to save a copy of the header of an ELF file in another file. We
could do it the pokeish way:

$ poke foo.o

[...]
(poke) save :from O#B :size 64#B :file "header.dat"

The command above saves the first 64 bytes in the current IO space (which is backed by the file
foo.0) into a new file header.dat in the current working directory.

Let’s now consider again the scenario where we are using a memory 10 space as a scratch
area. It is late in the night and we are tired, so we would like to save the contents of the scratch
buffer to a file, so we can continue our work tomorrow. This is how we would do that:

(poke) .info ios
Id Type Mode Bias Size Name
* 1 MEMORY 0x00000000#B 0x00001000#B *scratchx*
0 FILE rw 0x00000000#B 0x000f£4241#B ./foo.0
(poke) save :from O#B :size iosize (1) :file "scratch.dat"

Here we used the built-in function iosize, that given an IO space identifier returns its size.

3.16 Character Sets

Computers understand text as a sequence of codes, which are numbers identifying some partic-
ular character. A character can represent things like letters, digits, ideograms, word separators,
religious symbols, etc. Collections of character codes are called character sets.

Some character sets try to cover one or a few similar written languages. This is the case of
ASCII and ISO Latin-1, for example. These character sets are small, i.e. just a few hundred
codes.
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Other character sets are much more ambitious. This is the case of Unicode, that tries to cover
the entire totality of human languages in the globe, including the fictitious ones, like klingon.
Unicode is a really big character set.

In order to store character codes in a computer’s memory, or a file, we need to encode each
character code in one or more bytes. The number of bytes needed to encode a given character
code depends on the range of codes in the containing set.

ASCII, for example, defines 128 character codes: a single byte is enough to encode every
possible ASCII character. It is very easy to encode ASCII.

Unicode, on the contrary, defines many thousand of character codes, and has room for many
more: we would need 31 bits in order to encode any conceivable Unicode character code. How-
ever, it would be wasteful to use that many bits per character: most used character codes tend
to be in lower regions of the code space. For example, the code corresponding to the Latin
letter 'a' is a fairly small number, whereas the codes corresponding to the Klingon alphabet
are really big numbers. Consequently, some systems opt to just encode a subset of Unicode, like
the first 16 bits of the Unicode space, which is called the Basic Multilingual Plane, and contains
all the characters that most people will ever need. There are also variable-length encodings of
Unicode, that try to use as less bytes as possible to encode any given code. A particularly clever
encoding of Unicode, designed by Rob Pike, is backwards compatible with the ASCII encoding,
i.e. it encodes all the ASCII codes in one byte each, and the values of these byte are the same
than in ASCII. This clever encoding is called UTF-8.

3.17 From Bytes to Characters

3.17.1 Character Literals

poke has built-in support for ASCII, and its simple encoding: each ASCII code is encoded using
one byte. Let’s see:

(poke) 'a'

0x61UB
We presented poke with the character a, and it answered with its corresponding code in the

ASCII character set, which is 0x61. In fact, ’a’ and 0x61UB are just two ways to write exactly
the same byte value in poke:

(poke) 'a' == 0x61UB
1

(poke) 'a' + 1
0x62U

In order to make this more explicit, poke provides yet another synonym for the type specifier
uint<8>: char.

3.17.2 Classifying Characters

When working with characters it is very useful to have some acquaintance of the ASCII character
set, which is designed in a very clever way with the goal of easing certain code calculations. See
Appendix A [Table of ASCII Codes]|, page 266, for a table of ASCII codes in different numeration
bases.

Consider for example the problem of determining whether a byte we map from an IO space
is a digit. Looking at the ASCI table, we observe that digits all have consecutive codes, so we
can do:

(poke) var b = byte @ 23#B
(poke) b >= '0' && b <= '9'
1
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Now that we know that b is a digit, how could we calculate its digit value? If we look at
the ASCII table again, we will find that the character codes for digits are not only consecutive:

they are also ordered in ascending order 0, 1, ... Therefore, we can do:
(poke) b
0x37UB
(poke) b - '0'
7UB

b contains the ASCII code 0x37UB, which corresponds to the character 7, which is a digit.

How would we check whether b is a letter? Looking at the ASCII table, we find that lower-
case letters are encoded consecutively, and the same applies to upper-case letters. This leads to
repeat the trick again:

(poke) (b >= 'a' && b <= 'z') || (b >= 'A'" && b <= 'Z")
0

3.17.3 Non-printable Characters

Not all ASCII code are printable using the glyph that are usually supported in terminals. If
you look at the table in Appendix A [Table of ASCII Codes|, page 266, you will find codes for
characters described as “start of text”, “vertical tab”, and so on.

These character codes, which are commonly known as non-printable characters, can be rep-
resented in poke using its octal code:
(poke) '\002'
0x2UB
This is of course no different than using 2UB directly, but in some contexts the “character like”
notation may be desirable, to stress the fact that the byte value is used as an ASCII character.

Some of the non-printable characters also have alternative notations. This includes new-line
and horizontal tab:

(poke) '\n'
0xaUB
(poke) '\t'
0x9UB

These \ constructions in character literals are called escape sequences. See Section 25.2.2 [Char-
acters], page 131, for a complete list of allowed escapes in character literals.

3.18 ASCII Strings

3.18.1 String Values

Now that we know how to manipulate ASCII codes in poke, we may wonder how can we combine
them to conform words or, more generally, strings of ASCII characters.

GNU poke has support for native ASCII string values. The characters conforming the string
are written between " and " characters, like in:

(poke) "word"
n WOI‘d“

Note, and this is important, that string values are as atomic as integer values: they are not
really composite values. The fact that "word" contains an r at position 3 is like the fact that
the value 123 contains a digit 2 at position 2.

Like in character literals, poke strings support several escape sequences that help to denote
non-printed characters, such as new lines and horizontal tabs. See Section 25.4.1 [String Literals],
page 138.
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3.18.2 Poking Strings

Let’s start with a fresh memory buffer IOS *scratch*:

(poke) .mem scratch
The current I0OS is now ~*scratchx'.
(poke) dump :size 48#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000010: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
If we wanted to, somehow, store the word word in this IO space, encoded in ASCII, we could
proceed as:
(poke) char @ Ox12#B = 'w'
(poke) char @ 0x13#B = 'o'
(poke) char @ O0x14#B = 'r'
(poke) char @ Ox15#B = '4d'
(poke) dump :size 48#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000010: 0000 776f 7264 0000 0000 0000 0000 0000 ..word..........
00000020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
This worked. The ASCII part of the dump output, which interprets the bytes as ASCII, clearly
shows the word word at the offset where we poked the character values. However, we can do
better: string values can be mapped themselves.

String values use the type specifier string. As any other kind of value in poke, they can be
mapped from an IO space:

(poke) string @ Ox12#B

"word"
Clearly that is the string resulting from the concatenation of the character values that we poked
before.

The question now is: how did poke know that the last character of the string was the d at
offset 0x15#B? The fact the character code 0 (also known as the NULL character) at offset
0x16#B is non-printable, doesn’t imply it is not part of the ASCII character set. Clearly, we
have to pick an ASCII code and reserve it to mark the end of strings. Like the C programming
language, and countless formats and systems do, poke uses the NULL character to delimit
strings.

Now consider this:

(poke) "word"'length

4UL

(poke) "word"'size

40UL#b
Using the length and size attributes, poke tells us that the length of the string "word" is 4
characters, but the size of the string value is 40 bits, or 5 bytes. Why this discrepancy? The
size value attribute tells how much storage space a given value required once mapped to an 10
space, and in the case of strings it should count the space occupied by the terminating NULL
character.

Poking string values on the 10 space is as straightforward as poking integers:

(poke) string @ 0x22#B = "WORD"

(poke) dump :size 48#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
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00000000: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000010: 0000 776f 7264 0000 0000 0000 0000 0000 ..word..........
00000020: 0000 574f 5244 0000 0000 0000 0000 0000 ..WORD..........

3.18.3 From Characters to Strings

Strings can be concatenated using the string-concatenation + operators:

(poke) "foo" + "bar"
"foobar"

The string resulting from the operation above has length 6 characters, and size 7 bytes. The
terminating NULL character of "foo" is lost in the operation. This is easily seen:

(poke) "foo"'size + "bar"'size
0x40UL#Db

(poke) ("foo" + "bar")'size
0x38UL#b

The string concatenation operator requires two strings. Therefore, if we wanted to append a
character to a string, we would get an error:

(poke) "Putin" + 'a'
<stdin>:1:1: error: invalid operands in expression
"Putin" + 'a';

It is possible to transform a character value (i.e. a byte value) into a string composed of that
character using a cast:

(poke) 'a' as string
lla"

Using that cast, we can now append:

(poke) "Putin" + 'a' as string
"Putina"

3.19 From Strings to Characters

Despite being atomic values, poke strings can be indexed in order to retrieve individual charac-
ters:

(poke) "word"[2]
0x72UB

Note how the indexing is zero-based, i.e. the first position in the string is referred as [0], the
second position with [1], and so on.

If you specify a negative index, or an index that is too big, you will get an error:

(poke) "word"[-1]

<stdin>:1:8: error: index is out of bounds of string
"word" [-1];

(poke) "word"[5]

<stdin>:1:8: error: index is out of bounds of string
"word" [5] ;



Chapter 3: Basic Editing 37

3.20 Strings are not Arrays

Arrays are collections of homogeneous data organized in a sequence. We have already seen
(briefly) arrays of bytes, which use the type specifier byte[].

Similarly, it is possible to arrange characters (which are basically little numbers) in an array,
like in:
(poke) [lat , b s 'C']
[0x61UB, 0x62UB, 0x63UB]
However, the array above is not equivalent to the string "abc". The later is a simple value,
whereas an array is a composite value, and also is implicitly terminated with a NULL character,
i.e. a 0 byte.

The Poke standard library provides a couple of utility functions to convert between string
values and character arrays: catos and stoca.

catos gets an array of characters and returns an equivalent string. For example:
(poke) catos (['a','b','c'])
"abC"

stoca gets a string and an array and sets the element of the array to the characters composing
the string. For example:

(poke) stoca("abc")
[0x61UB, 0x62UB, 0x63UB]
(poke) var a = char[3] ()
(poke) stoca ("abc", a)
(poke) a

[0x61UB, 0x62UB, 0x63UB]
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4 Structuring Data

In the previous chapter we learned how to manipulate pre-defined entities like bytes, integers
and strings. One of the big points of poke, however, is that it allows you to define your own
data abstractions, and to operate in term of them. This is achieved by defining data structures.

4.1 The SBM Format

4.1.1 Images as Maps of Pixels

There are two main ways to store two-dimensional images in computers.

One is to explicitly store the different pixels that compose the image. In these bitmaps, the
pixels are arranged sequentially and implicitly organized into lines. A header typically provides
information to determine how many pixels fit in each line:

<--- line_width --->
| pixel | pixel | ... | pixel | pixel | ... |
| line 1 | line 2 |

Several properties have to be encoded for each pixel, depending on the sophistication of the
image: for monochrome images each pixel can be just either switched on or off, so a single bit
could be used to encode each pixel (this is the origin of the term “bitmap”). When color is
added, a bit is no longer sufficient: the color of the pixel shall be encoded in some way, typically
using a color schema such as RGB, that requires triplet of little integers to be encoded. If
transparency is to be supported, the degree of transparency of the pixel shall also be encoded
somehow.

The other way to store an image is to store a functional description of the “painted” parts
of the image. This functional description usually contains instructions like “paint a line of
thickness 1 and color red from the coordinate 10,20 to coordinate 10,40”. Once executed with
certain parameters (like the desired resolution) the functional description generates a bitmap.
Image formats using this approach are commonly known as vectorial formats.

When it comes to bitmaps, there are a plethora of different formats out there (bmp, jpg,
png) competing in terms of capabilities such as higher color depths, better resolution, support
for transparency (alpha channels), higher compression level, and the like. These capabilities
greatly complicate these formats, but ultimately any bitmap can be reduced to a sequence of
pixels, which can be further structured in terms of lines.

We don’t know enough poke yet to handle the complications of these real-life bitmap formats,
so in subsequent sections we introduce a very simple format for bitmaps, the Stupid BitMap
format, or simply SBM, that we will use for learning purposes.

But please do not feel disappointed: later in this book, when we become more proficient
pokers, we will be messing with these shiny complex formats as well :)

4.1.2 SBM header

A SBM file starts with a header that contains a “magic number” composed of the three bytes ’S’
(0x53UB), 'B’ (0x42UB) and "M’ (0x4dUB). The next two bytes indicate the number of pixels
per line, and the number of lines, respectively. In summary:

SBM header
Fm—m—— - e e o e +
[ 's* | 'B'" | 'M'" | ppl | lines |
to————- to————- to——— fo——— o +

byte0 bytel byte2 byte3 byted

Here ppl stands for pixels-per-line. The encoding of these fields implies that the bigger image
that can be encoded in SBM has dimensions 255x255.
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4.1.3 SBM data

Albeit stupid, SBM is a colorful format. It supports more than a million colors, encoding each
color in what is known as RGB24. In RGB24, each color is encoded using three little integers,
specifying the amount of red, green and blue that, added together, compose the color.

The name RGB24 comes from the fact that each color is encoded using three bytes, or 24
bits. Therefore, each pixel in a SBM image is encoded using three consecutive bytes:

SBM pixel
S S S +
| Red | Green | Blue |
S S S +

byte0 bytel Dbyte2

Each byte in this encoding determines the amount of the base color (red, green or blue) that
compose the color. We will talk more about these components later.

4.2 Poking a SBM Image

4.2.1 P is for poke

Let’s compose our first SBM image, using poke. The image we want to encode is the very simple
rendering of the letter P shown in the figure below.

ol 1121314]|
do——bm— b ——+

ol Ix 11 | |
S N O L R B
20 =1 x|
I I S T N
41 b= 0
51 =1 1 1 |
61 =1 1 | |

The image has seven lines, and there are five pixels per line, i.e. the dimension of the image
in pixels is 5x7. Also, the pixels denoted by asterisks are red, whereas the pixels denoted
with empty spaces are white. In other words, our image uses a red foreground over a white
background. The “painted” pixels are called foreground pixels, the non painted pixels are called
background pixels.

4.2.2 Preparing the Canvas

The first thing we need is some suitable IO space where to encode the image. Let’s fire up poke
and create a memory buffer:

$ poke

[...]

(poke) .mem image

The current IOS is now ~“*imagex*'.

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000010: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000040: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000050: 0000 0000 0000 0000 0000 0000 0000 0000 ................
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00000060: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00000070: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Freshly created memory 10 spaces are 4096 bytes long, and that’s big enough for our little image.
If we wanted to work with more data, remember that memory 10 spaces will grow automagically
when poked past their size.

4.2.3 Poking the Header

The first three bytes of the header of a SBM file contains the magic number that identifies the
file as a SBM bitmap. We can poke these bytes very easily:

(poke) byte @ O#B = 'S'
(poke) byte @ 1#B = 'B'
(poke) byte @ 2#B = 'M'

The next couple of bytes encode the dimensions of the bitmap, in this case 5x7:

(poke) byte @ 3#B = 5
(poke) byte @ 4#B = 7

There is something worth noting in this last mapping. Even though we were poking bytes
(passing the byte type specifier to the map operators) we specified the 32-bit signed integers
5 and 7 instead of 5UB and 7UB. When poke finds a situation like this, where certain kind of
integers are expected but other kind are provided, it converts the value from the provided type
to the expected type. This conversion may result in truncation (think about converting, say
Oxfff to an unsigned byte, whose maximum possible value is 0xff) but certainly not in the case
at hands.

The final header looks like:

(poke) dump :size 16#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 5342 4405 0700 0000 0000 0000 0000 0000 SBM.............

4.2.4 Poking the Pixels

Now that we have written a SBM header, we have to encode the sequence of pixels composing
the image.

Recall that every pixel is encoded using three bytes, that conform a RGB24 color. We have
two kinds of pixels in our image: white pixels, and red pixels. In RGB24 white is encoded as
(255,255,255). Pure red is encoded as (255,0,0), but to make things more interesting we will
be using a nicer tomato-like red (255,99,71).

Therefore, poking a white pixel at some offset offset would involve the following operations:

(poke) byte @ offset = 255
(poke) byte @ offset+1#B = 255
(poke) byte @ offset+2#B = 255

Likewise, the operations to poke a tomato pixel would look like:

(poke) byte @ offset = 255
(poke) byte @ offset+1#B = 99
(poke) byte @ offset+2#B = 71

To ease things a bit, we can define variables with the color components for both foreground and
background pixels:

(poke) wvar bgl = 255
(poke) var bg2 = 255
(poke) var bg3 = 255
(poke) var fgl = 255
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99
71

Then to poke a foreground pixel would involve doing:

(poke) byte @ offset = fgl
(poke) byte @ offset+1#B = fg2
(poke) byte @ offset+2#B = fg3

At this point, you may feel that the prospect of mapping the pixels of our image is not very
appealing, considering we have 5x7 = 35 pixels in our image. We will need to poke 35 * 3 =
105 bytes. We may feel tempted to, somehow, use a bigger integer to “encapsulate” the bytes.
Using the bit-concatenation operator, we could do something like:

255UB: : : 255UB: : : 255UB
255UB:::99UB:::71UB

(poke) var fg2
(poke) var fg3

(poke) var bg

(poke) var fg

(poke) bg

(uint<24>) Oxffffff

(poke) fg

(uint<24>) 0xff6347
This encodes each color with a 24-bit unsigned integer. When looking at the hexadecimal values
of bg and fg above, note that 0xff = 255, 0x63 = 99 and 0x47 = 71. Each byte seems to be
in the right position in the 24-bit containing number. Now, poking a pixel at some given offset
should be as easy as issuing just one map operation, right? Let’s see, using some arbitrary offset
10#B:

(poke) uint<24> @ 10#B = fg

(poke) dump :from 10#B :size 4#B

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

0000000a: 4763 ££00 Ge. .

If your current endianness is little (i.e. you are running on a x86 system or similar) you will get
the dump above. The bytes are reversed, and consequently the resulting pixel has the wrong
color. Our little trick didn’t work :(

So are we doomed to poke three bytes for each pixel we want to poke in our image? No, not
really. The Poke language provides a construction oriented to alleviate cases like this, where
several similar elements are to be “encapsulated” in a container. These constructions are called
arrays.

Using array values, we can define the foreground and background colors like this:
(poke) var bga = [255UB, 255UB, 255UB]
(poke) var fga = [255UB, 99UB, 71UBI]
All the elements on an array should be of the same kind, i.e. of the same type. Therefore, this
is not allowed:
(poke) [1,"foo"]
<stdin>:1:1: error: array initializers should be of the same type
[1,"foo"];

Given an array value, it is possible to query for the number of values contained in it (called
elements) by using the 'length value attribute. For example:

(poke) bga'length
3UL

Tells us that the array value stored in the variable bga has three elements.

How can we poke an array value? We know that the map operator accepts two operands:
a type specifier and the value to map. The type specifier of an array of three bytes is denoted
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as byte[3]. Therefore, we can again try to poke a foreground pixel at offset 10#B, this time
using fga:
(poke) byte[3] @ 10#B = fga
(poke) dump :from 10#B :size 4#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
0000000a: f£f63 4700 .cG.

This time, the bytes were written in the right order. This is because array elements are
always written using their “written” ordering, with no mind to endianness. We can also map a
pixel from a given offset:

(poke) byte[3] @ 10#B
[255UB,99UB, 71UB]

4.2.5 Poking Lines

At this point, we could encode the 40 pixels composing the image, by issuing the same number
of pokes of byte[3] arrays. However, we can simplify the task even further.

Our pixels are arrays of bytes, denoted by the type specifier byte[3]. Similarly, we could
conceive arrays of 32-bit signed integers, denoted by int[3], or arrays of bits, denoted by
uint<1>[3]. But, is it possible to have arrays of other arrays? Yes, it is:

(poke) [[1,2],[3,4]1]
The value above is an array of two arrays of two integers each. If we wanted to map such an
array, what would be the type specifier we would need to use? It would be int [2] [2], which
should be read from right-to-left as “array of two arrays of two integers”. Let’s map one from
an arbitrary offset in our IO space:

(poke) int[2][2] @ 100#B

([0,0],[0,0]]

Consider again the sequence of pixels composing the image. Using the information we have
in the SBM header, we can group the pixels in the sequence into “lines”. In our example image,
each line contains 5 pixels. It would be natural to express each line as a sequence of pixels. The
first line in our image would be:

(poke) var 10 = [bga,fga,fga,bga,bgal
(poke) 10
[[255UB,255UB, 255UB] , [255UB,99UB,71UB] , . . .]

Let’s complete the image lines:

(poke) var 10
(poke) var 11

[bga,fga,bga,fga,bgal
[bga,fga,bga,fga,bgal

(poke) var 12 = [bga,fga,fga,bga,bgal

(poke) var 13 = [bga,fga,bga,bga,bgal

(poke) var 14 = 13

(poke) var 15 = 14
Note how we exploited the fact that the three last lines of our image are identical, to avoid to
write the same array thrice. Array values can be assigned, and in general manipulated, like any
other kind of value, such as integers or strings.

At this point, we could poke the pixels line-by-line. What would be the type specifier for a
line? A line is an array of five arrays of 3 bytes each, so the type specifier would be byte [3] [5].
Let’s do that:

(poke) byte[3][5] @ 5#B = 10

(poke) byte[3][5] @ 10#B = 11
(poke) byte[3][5] @ 165#B = 12
(poke) byte[3][5] @ 20#B = 13
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(poke) byte[3][5] @ 25#B = 14
(poke) byte[3][5] @ 30#B = 15
(poke) byte[3][5] @ 35#B = 16

Not bad, we went from poking 105 bytes in the IO space to poking six lines. But we can still
do better. ..

4.2.6 Poking Images

When we poked the lines at the end of the previous section, we had to increase the offset in
every map operation. This is inconvenient.

In the same way that a sequence of bytes can be abstracted in a line, a sequence of lines
can be abstracted in an image. It follows that we can look at the image data as an array of
lines. But lines are themselves arrays of arrays... no matter, there is no limit on the number
of arrays-of levels that you can nest.

So, let’s define our image as an array of the lines defined above:

(poke) var image_data = [10,11,12,13,14,15]
(poke) image_data
[[[255UB,255UB, 255UB] , [255UB, 99UB, 71UB] , [255UB,99UB,71UB] ...]...]

What would be the type specifier for an image? It would be an array of seven arrays of five
arrays of three bytes each, in other words byte[3] [5] [7]. Let’s poke the pixels:

(poke) bytel[3]1[5][6] @ 5#B = image_data

This is an example of how abstraction can simplify the handling of binary data: we switched
from manipulating bytes to manipulate higher abstractions such as colors, lines and images. We
achieved that by structuring the data in a way that reflects these abstractions. That’s the way
of the Poker.

4.2.7 Saving the Image

Now that we have completed the SBM image in our buffer *imagex, it is time to save it to disk.
For that, we can use the save command we are already familiar with.

We know that the SBM image starts at offset 0#B, but what is the size of its entire binary
representation? The header is easy: it spans for 5 bytes. The size of the sequence of pixels can
be derived from the pixels per line byte, and the number of lines byte. We know that each pixel
occupies 3 bytes, so calculating. . .

(poke) var ppl = byte @ 3#B
(poke) var lines = byte @ 4#B
(poke) save :from O#B :size 5#B + ppl#B * lines :file "p.sbm"

Note how we expressed “ppl bytes” as ppl#B. This is the same than expressing “10 bytes” as
10#B. We will talk more about these united values later.

There is another way of getting the size of the stream of pixels. Recall that we have the
entire set of pixels, structured as lines, stored in the variable image_data. Given an array, it is
possible to query for its size using the 'size attribute:

(poke) .set obase 10
(poke) [1,2,3]'size
96UL#Db

The above indicates that the size of the array of the three integers 1, 2 and 3 is 96 bits. Using
that attribute, we can also obtain the size of the pixels in the image:

(poke) image_data'size
720UL#b
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And we can use it in the save command:
(poke) save :from O#B :size 5#B + image_data'size :file "p.sbm"

Using either strategy, at this point a file named p . sbm should have been written in the current
working directory, containing our “P is for poke” image. Keep that file around, because we will
be poking it further!

4.3 Modifying SBM Images

4.3.1 Reading a SBM File

Let’s open with poke the cute image we created in the last section, p.sbm:

$ poke p.sbm

[...]

(poke) dump

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 5342 4405 O7ff ffff ff63 47ff 6347 ffff SBM...... cG.cG..
00000010: ffff ffff ffff ffff 6347 ffff ffff 6347 ........ cG....cG
00000020: ffff ffff ffff ff63 47ff ffff ££f63 47ff ....... cG....cG.
00000030: ffff ffff ffff 6347 £f63 47ff ffff ffff ...... cG.cG.....
00000040: ffff ffff f£f63 47ff ffff ffff ffff £fff ..... cG.........
00000050: ffff ffff 6347 ffff ffff ffff ffff ffff ....cG..........
00000060: ffff ff63 47ff ffff ffff ffff ffff L.cGo

You can see the P in the ASCII column, right? If it wasn’t for the header, it would be pictured
almost straight. This is because dump shows 16 bytes per row, and our image has lines that are
15 bytes long. This is a happy coincidence: you definitely shouldn’t expect to see ASCII art in
the dump output of SBM files in general! :)

Now let’s read the image’s metadata from the header: pixels per line and how many lines
are contained in the image:

(poke) var ppl = byte @ 3#B

(poke) ppl

5UB

(poke) var lines = byte @ 4#B

(poke) lines

7UB
All right, our image is 7x5. Knowing that each pixel occupies three bytes, and that each line
contains ppl pixels, and that we have lines lines, we can map the entire image data using an
array type specifier:

(poke) var image_data = byte[3] [ppl] [1ines] @ 5#B

(poke) image_data

[[[255UB,255UB,255UB] , [255UB,99UB,71UB], ...]...]

4.3.2 Painting Pixels

The “P is for poke” slogan was so successful and widely appraised that the recutils! chaps
wanted to do a similar campaign “R is for recutils”. For that purpose, they asked us for a
tomato-colored SBM image with an R in it.

Our creative department got at it, and after a lot of work they came with the following
design:

ol 11 2131]4]|

1 http://www.gnu.org /s /recutils
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Fom—m—

ol Ix1x1 | |
A N O R R B
20 =1 =1 |
I I S T R
41 I+l x|
51 =1 =1 |
61 I x 1 | =1 |

Observe that this design really looks like our P (so much for a creative department). The
bitmap has exactly the same dimensions, and difference are just three pixels, that pass from
being background pixels to foreground pixels.

Therefore, it makes sense to read our p.sbm and use it as a base, completing the missing
pixels. We saw in the last section how to read a SBM image. This time, however, we will copy
the image first to a memory 10 space to avoid overwriting p. sbm:

$ poke p.sbm
[...]
(poke) .mem scratch
The current IO0OS is now ~*scratchx*'.
(poke) .info ios

Id Type Mode Bias Size Name
* 1 MEMORY 0x00000000#B 0x00001000#B *scratchx

0 FILE rw 0x00000000#B 0x0000006e#B ./p.sbm
(poke) copy :from_ios O :from O#B :to O#B :size iosize (0)
(poke) dump
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 5342 4405 O7ff ffff ff63 47ff 6347 ffff SBM...... cG.cG..
00000010: ffff ffff ffff ffff 6347 ffff ffff 6347 ........ cG....cG
00000020: ffff ffff ffff f£f63 47ff ffff ££f63 47ff ....... cG....cG.
00000030: ffff ffff ffff 6347 f£f63 47ff ffff ffff ...... cG.cG.....
00000040: ffff ffff ff63 47ff ffff ffff ffff £fff ..... cG...... ...
00000050: ffff ffff 6347 ffff ffff ffff f£fff £fff ....cG..........
00000060: ffff ff63 47ff ffff ffff ffff £fff 0000 ...cG...........
00000070: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Good. Now let’s map the contents of the image, both header information and the sequence of
pixels:

(poke) var ppl = byte @ 3#B

(poke) var lines = byte @ 4#B

(poke) var image_data = byte[3] [ppl] [1ines] @ 5#B

Let’s modify the image. Since the dimensions of the new image are exactly the same, the header
remains the same. It is the pixel sequence that is different. We basically need to turn the pixels
at coordinates (4,2), (5,3) and (6,3) from background pixels to foreground pixels.

Remember how we would change the value of some integer in the IO space? First, we would
map it into a variable, change the value, and then poke it back to the IO space. Something like
this:

(poke) var n = int @ offset

(poke) n =n + 1

(poke) int @ offset = n
This three-steps process is necessary because in the n = n + 1 above we are modifying the value
of the variable n, not the integer actually stored at offset offset in the current 1O space. Therefore
we have to explicitly poke it back if we want the 1O space to be updated as well.
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Array values (and, as we shall see, other “composited” values) are different: when they are
the result of the application of the map operator, the resulting values are mapped themselves.

When a Poke value is mapped, updating their elements have a side effect: the area corre-
sponding to the updated element, in whatever 10 space it is mapped on, is updated as well!

Why is this? The map operator, regardless of the kind of value it is mapping, always returns
a copy of the value found stored in the IO space. We already saw how this worked with integers.
However, in Poke values are copied around using a mechanism called “shared value”. This means
that when a composite value like an array is copied, its elements are shared by both the original
value and the new value.

We can depict this graphically for better understanding. A Poke array like:
(poke) var a = [1,2,3]

is stored in memory like this:

If we make a copy of the array in another variable b:
(poke) var b = a

we get
+

al1l]2]3] bl 11213
+

Note how each of the integer elements has been copied to the new value. The resulting two
arrays can then be modified independently:

(poke) all] =5

resulting in:

However, consider the following array whose elements are also arrays:
(poke) var a = [[1,2],[3,4],[5,6]]

This array is stored in memory like this:

+
|
|
|

+
|
|
|

+

If now we make a copy of the same array into another variable b:

(poke) var b = a
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The elements of the array are copied “by shared value”, i.e.

+
|
|
|

+
|
|
|

+

Fommmm e 112 |-———=—=—-—- +
tm——t———t

The elements are indeed shared between the original array and the copy! If now we modify any
of the shared values, this will be reflected in both containing values:

(poke) al1][1] =9

(poke) a

(f1,2],[3,9],[5,6]]

(poke) b

(f1,21,(3,9],[5,6]]

or graphically:

Fommm |11 2 |- +
+———t———1

Back to our image, it follows that if we wanted to change the color of some SBM pixel stored
at offset offset, we would do this:

(poke) var a = byte[3] @ offset

(poke) al1] = 10
There is no need to poke the array back explicitly: the side effect of assigning 10 to a[l] is that
the byte at offset offset+1 is poked.

Generally speaking, mapped values can be handled in exactly the same way than non-mapped
values. This is actually a very central concept in poke. However, it is possible to check whether
a given value is mapped or not using the 'mapped attribute.

As we said, simple values such as integers and strings are never mapped, regardless of where
they come from. Both ppl and lines are integers, therefore:

(poke) ppl'mapped
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0
(poke) lines'mapped
0
However, image_data is an array that was the result of the application of a map operator, so:

(poke) image_data'mapped

1
When a value is mapped, you can ask for the offset where it is mapped, and the 10 space where
it is mapped, using the attributes 'offset and 'ios respectively. Therefore:

(poke) image_data'ios

1

(poke) image_data'offset

40UL#b

In other words, image_data is mapped in the IO space with id 1 (the *scratch* buffer) at
offset 40 bits, or 5 bytes. We already knew that, because we mapped the image data ourselves,
but in other situations these attributes are most useful. We shall see how later.

Well, at this point it should be clear how to paint pixels. First, let’s define our background
and foreground pixels:

[255UB, 255UB, 255UB]
[255UB, 99UB, 71UB]

Then, we just update the pixels in the image data using the right coordinates:

(poke) var bga
(poke) var fga

(poke) image_datal4][2] = fga
(poke) image_data[5][3] = fga
(poke) image_datal[6][3] = fga

(poke) dump
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF

00000000: 5342 4d05 O07ff ffff ff63 47ff 6347 ffff SBM...... cG.cG..
00000010: ffff ffff ffff ffff 6347 ffff ffff 6347 ........ cG....cG
00000020: ffff ffff ffff ff63 47ff ffff f£f63 47ff ....... cG....cG.
00000030: ffff ffff ffff 6347 f££f63 47ff ffff ffff ...... cG.cG.....
00000040: ffff ffff ff63 47ff 6347 ffff ffff ffff ..... cG.cG......
00000050: ffff ffff 6347 ffff ffff 6347 ffff ffff ....cG....cG....
00000060: ffff ff63 47ff ffff f£f63 47ff ffff 0000 ...cG....cG.....

00000070: 0000 0000 0000 0000 0000 0000 0000 0000 ................

4.3.3 Cropping the R

Looking at our new image, we realize that the first and the last column are all background
pixels. We are aware that the recutils project is always short of resources, so we would like to
modify the image to remove these columns, cropping it so it looks like this:

o1l 11 2]
to——t——————+
0l * 1 *| I
1] % | I I
2| * | I I
3 x| * | I
4 | * | * | I
51 * | | = |
6 | *x | | = |

In order to perform this operation we need to rework the stream of pixels to reflect the desired
result, and then to update the header metadata accordingly.
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4.3.4 Shortening and Shifting Lines

Let’s think in term of lines. In the original image, each line has 5 pixels, that we can enumerate
as:
s T e |
line | pO | p1 | p2 | p3 | p4 |
e e T S

What we want is to crop out the first and the last column, so the resulting line would look like:
mm e m

line | p1 | p2 | p3 |
s T

Let’s get the first line from the original image_data:

(poke) var 10 = image_datal[0]
(poke) 10
[ [255UB, 255UB, 255UB] , [255UB,99UB, 71UB], . . .]

We could create the corresponding cropped line, by doing something like this:
(poke) wvar cl0 = [10[1],10[2],10[3]]

And the same for the other lines. However, Poke provides a better way to easily obtain sub
portions of arrays. It is called trimming. Given an array like the line 10, we can obtain the
desired portion of it by issuing:

(poke) 10[1:4]

[[255UB,99UB, 71UB], [255UB,99UB, 71UB] ]

Note how the limits of the semi-open interval specified in the trim reflect array indexes, and
hence they are 0 based. Also, the left limit is closed and the right limit is open. The result of
an array trimming is always another array, which may be empty:

(poke) 10[1:3]
[[255UB,99UB, 71UB] ]

Armed with this new operation, we can very easily mount the sequence of pixels for our
cropped image:

(poke) var 10 = image_datal[0]
(poke) var 11 = image_datal[1]
(poke) var 12 = image_datal[2]
(poke) var 13 = image_datal[3]
(poke) var 14 = image_datal4]
(poke) var 15 = image_datal[5]

And then update the lines in the mapped image data:

(poke) image_data[0] = 10[1:4]
(poke) image_data[0] = 11[1:4]
(poke) image_datal[1] = 12[1:4]
(poke) image_data[2] = 13[1:4]
(poke) image_datal[3] = 14[1:4]
(poke) image_data[4] = 15[1:4]

4.3.5 Updating the Header
The last step is to update the header to reflect the new dimensions of the image:

(poke) byte[] @ O#B = ['S','B','M']
(poke) byte @ 3#B
(poke) byte @ 4#B

1
~N w |



Chapter 4: Structuring Data 50

And we are done. Note how this time we wrote the magic bytes as an array, to save some
typing and silly manual offset arithmetic. You may have noticed that the type specifier we used
this time in the map is byte[] instead of byte[3]. This type specifier denotes an array of any
number of bytes, which certainly includes arrays of three bytes, like in the example.

4.3.6 Saving the Result

And finally, let’s write out the new file as r.sbm:

(poke) save :from O#B :size 5#B + image_data'size :file "r.sbm"

4.4 Defining Types

4.4.1 Naming your Own Abstractions

During the process of creating and manipulating SBM files we soon started talking about things
like lines, pixel sequences, pixels, colors, and so on. What is more, very naturally we started
thinking in terms of these entities: let’s drop this or that line, or let’s change the green component
of this pixel.

Consider for example RGB colors. We know that each color is defined by three levels of light:
red, green and blue. These components are also called color beams. Since each color beam has
a range of 0 to 255, many formats, like SBM, use bytes to encode them.

Therefore, in the previous sections we used the type specifier byte when we needed to map
RGB color beams, like in:

(poke) byte[3] @ 5#B

Recall that the mapping operation above means “map three bytes at the offset 5 bytes in the
current [0 space”. But what we really want is to map color beams, not bytes!

Poke provides a way to assign names to type specifiers:
(poke) type RGB_Color_Beam = byte

The definition above tells poke that a RGB color beam is composed of a byte, i.e. an unsigned
8-bit integer. Any type specifier can be used at the right side of the assignment sign, and also
names of already defined types. From this point on, we can map in terms of color beams:

(poke) RGB_Color_Beam[3] @ 5#B
Meaning “map three RGB color beams at the offset 5 in the current 10 space”.
Once a type is defined, the name can be used anywhere where a type specifier is expected.

By the way, we mentioned many times how byte is a synonym for uint<8>, int is a synonym
for int<32> and so on. These synonyms are actually result of type definitions that are in the
poke standard library. This library is loaded by poke at startup time.

4.4.2 Abstracting the Structure of Entities

Since we didn’t know better, during our work with SBM images we had to remember how these
entities were constructed from more simple entities such as bits and bytes, every time we needed
to map them, or to poke them. For example, if we wanted to map a pixel at some particular
offset, we had to issue the following command:
(poke) var pixel = byte[3] @ 5#B
Now that we made poke aware of what a RGB color beam is, we can rewrite the above as:
(poke) var pixel = RGB_Color_Beam[3] @ 5#B

This is better, but still adoleces from a big problem: what if at some point the SBM pixels get
expanded to also have a transparency index, stored in a fourth byte? If that ever happens (and
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will happen later in this book) then we would need to remember it before issuing commands
like:

(poke) var image_data = RGB_Color_Beam[4] [ppl] [1ines] @ 5#B

To avoid this problem, we define yet another type, this time describing the structure of a

SBM pixel:

(poke) type SBM_Pixel = RGB_Color_Beam[3]
And then we can define image_data as a table of SBM pixels, instead of as a table of triplets
of RGB color beams:

(poke) var image_data = SBM_Pixel[ppl] [lines] @ 5#B

This later definition doesn’t need to be changed if we change the definition of what a SBM
pixel is. This is called encapsulation and is a very useful abstraction in computing.

4.5 Pickles

4.5.1 poke Commands versus Poke Constructions

In Section 1.2 [Nomenclature|, page 4, we mentioned that poke, the program, implements a
domain specific programming language called Poke, with a big p. In the examples so far we
have already used the Poke language, somewhat extensively, while interacting with the program
using the REPL.

For example, in:
(poke) 10 + 2
12

We are giving poke a Poke expression 10 + 2 to be evaluated. Once the expression is evaluated,
the REPL prints the resulting value for us.

Similarly, when we define a variable or a type with var and type respectively, we are providing
poke definitions to be evaluated. When we assign a value to a variable we are actually providing
a Poke statement to be executed.

So the REPL accepts poke commands, some of which happen to be Poke expressions, def-
initions or statements. But we also have used dot-commands like .file or .info. These
dot-commands are not part of the Poke programming language.

Every time we insert a line in the REPL and hit enter, poke recognizes the nature of the
line, and then does the right thing. If the line is recognized as a Poke expression, for example,
the Poke compiler is used to compile the statement into a routine, that is executed by the Poke
Virtual Machine. The resulting value is then printed for the benefit of the user.

4.5.2 Poke Files

Poke programs are basically a collection of definitions and statements, which most often than
not are stored in files, which avoids the need to type them again and again. By convention, we
use the .pk file extension when naming files containing Poke programs.

Remember how we defined the foreground and background pixels for p.sbm in the REPL?

[255UB, 255UB, 255UB]
[255UB, 99UB, 71UB]
Where bga is a white pixel and fga is a tomato colored pixel. We could write these definitions
in a file colors.pk like this:
var white = [255UB, 255UB, 255UB];
var tomato = [255UB, 99UB, 71UB];

Note that variable definitions in Poke are terminated by a semicolon (;) character, but we didn’t
need to specify them when we issued the definitions in the REPL. This is because poke adds

(poke) var bga
(poke) var fga
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the trailing semicolon for us when it detects a Poke construction requiring it is introduced in
the REPL.

Another difference is that Poke constructions can span for multiple lines, like in most program-
ming languages. For example, we could have the following variable definition in a file:
var matrix = [[10, 20, 30],
[40, 50, 60],
[70, 80, 9011;
Once we have written our colors.pk file, how can we make poke aware of it? A possibility
is to use the load construction:
(poke) load colors

Assuming a file named colors.pk exists in the current working directory, poke will load it and
evaluate its contents. After this, we can use the colors:

(poke) tomato

[0xffUB,0x63UB,0x47UB]
Before, we would need to define these colors every time we would like to poke SBM files or,
in fact, any RGB24 data. Now we just have to load the file colors.pk and use the variables
defined there.

If you try to load a file whose name contains a dash character (=) you will get an error

message:

(poke) load my-colors

<stdin>:1:8: error: syntax error, unexpected '-', expecting ';'

load my-colors;
This is because the argument to load is interpreted as a Poke identifier, and dash characters
are not allowed in identifiers. To alleviate this problem, you can also specify the name of the
file to load encoded in a string, line in:

(poke) load "my-colors.pk"

If you use this form of load, however, you are required to specify the complete name of the file,
including the .pk file extension.

Since loading files is such a common operation, poke provides a dot-command .load that
does auto-completion:

(poke) .load my-colors.pk
Which is equivalent to load "my-colors.pk".

Since load is part of the Poke language, it can also be used in Poke programs stored in files.
We will explore this later.

4.5.3 Pickling Abstractions

In the last section we defined a couple of RGB colors white and tomato in a file called colors. pk.
If we keep adding colors to the file, we may end with a nice collection of colors that are available
to us at any time, by just loading the file.

Since there are many ways to understand the notion of “color”, and also many ways to
implement these many notions, it would be better to be more precise and call our file rgb24 . pk,
since the notion of color we are using is of that RGB24. While are at it, let’s also rename the
variables to reflect the fact they denote not just any kind of colors, but RGB24 colors:

var rgb24_white = [255UB, 255UB, 255UB];
var rgb24_tomato = [255UB, 99UB, 71UB];

At this point, we can also add the definitions of a couple of types to our rgb24.pk:
type RGB_Color_Beam = byte;
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type RGB24_Color = RGB_Color_Beam[3];

var rgb24_white = [255UB, 255UB, 255UB];
var rgb24_tomato = [255UB, 99UB, 71UB];

Any time we want to manipulate RGB24 colors we can just load the file rgb24 .pk and use these
types and variables.

In poke parlance we call files like the above, that contain definitions of conceptually re-
lated entities, pickles. Pickles can be very simple, like the rgb24.pk sketched above, or fairly
complicated like dwarf . pk.

It is common for pickles to 1load other pickles. For example, if we were to write a SBM pickle,
we would load the RGB24 pickle from it:

load rgb24;

[... SBM definitions ...]
This way, when we load sbm from the repl, the dependencies get loaded as well.

GNU poke includes several already written pickles for commonly used file formats, and other
domains. The load construction knows where these pickles are installed, so in order to load the
pickle to manipulate ELF files, for example, all you have to do is to:

(poke) load elf

4.5.4 Exploring Pickles

As we have seen, a pickle provides Poke variables, types and functions related to some definite
domain. Let’s say we are interested in editing an ELF file. We know that GNU poke comes
with a pre-installed pickle named elf.pk. We can load it like this:
(poke) load elf
By convention, the entities provided by a pickle foo.pk are usually prefixed like:
— Variables, units and functions are prefixed with foo_.

— Types are prefixed with Foo_.

Therefore, once the pickle is loaded we can use the .info dot-command in order to get a
glimpse of the functionality provided by the pickle. See Section 23.12 [info command], page 120.
Example:

(poke) .info variables elf

Name Declared at
elf_stb_names elf-common.pk:53
elf_stt_names elf-common.pk:72
elf_stv_names  elf-common.pk:84

The above tells us that the elf.pk pickle provides these three variables. Types are way more
interesting:

(poke) .info types E1f64

Name Declared at
E1f64_Ehdr elf-64.pk:184
Elfe4_0ff elf-64.pk:26
E1f64_SectionFlags elf-64.pk:130
E1f64_Shdr elf-64.pk:1562
E1f64_RellInfo elf-64.pk:36
E1f64_Chdr elf-64.pk:85
E1f64_Rela elf-64.pk:61

E1f64_Phdr elf-64.pk:169
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E1f64_Sxword elf-64.pk:24
E1f64_Sym elf-64.pk:71
E1f64_Rel elf-64.pk:45
Elf64_File elf-64.pk:207
E1f64_Addr elf-64.pk:25
E1f64_Group elf-64.pk:121
E1f64_Dyn elf-64.pk:98
E1f64_Xword elf-64.pk:23

We immediately notice the E1f64_File. Looks like what we would need to map in order to
access the entire ELF data in some given 10 space (like a file.) We can ask for more details
about it:

(poke) .info type E1f64_File

Class: struct

Name : E1f64_File

Complete: no

Fields:
Name Type
ehdr E1f64_Ehdr
shdr E1f64_Shdr[]
phdr E1f64_Phdr[]

Methods:
Name Type
get_section_name (offset<Elf_Word,8>)string
get_symbol_name (E1f64_Shdr, ,offset<Elf_Word,8>)string
get_sections_by_name (string)E1f64_Shdr[]
get_sections_by_type (E1f_Word)E1f64_Shdr[]
section_name_p (string)int
get_string (offset<Elf_Word,8>)string
get_group_signature (E1f64_Shdr)string
get_group_signatures O string(]
get_section_group (string)E1f64_Shdr[]

We see that an E1f64_File has three fields, and the nature of these files: a header ehdr, an
array of section headers shdr and an array of program headers phdr.

The type description above also lists the methods defined in the type. Looking at the method
name and its type is very usually revealing enough to use it. For example, we see that get_
sections_by_name returns an array of section headers, characterized by some given section
name:

(poke) var elf = E1f64_File @ O#B
(poke) elf.get_sections_by_name (".text")
[E1£f64_Shdr {
sh_name=0x1bU#B,
sh_type=0x1U,
sh_flags=#<ALLOC,EXECINSTR>,
sh_addr=0x0UL#B,
sh_offset=0x40UL#B,
sh_size=0xbUL#B,
sh_1ink=0x0U,
sh_info=0x0U,
sh_addralign=0x1UL,
sh_entsize=0x0UL#b
H
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Ultimately, of course the best way to see what a pickle provides is to go read its source code.

4.5.5 Startup

When poke starts it loads the file .pokerc located in our home directory, if it exists. This
initialization file contains poke commands, one per line.

If we wanted to get some Poke file loaded at startup, we could do it by adding a load command
to our .pokerc. For example:

# My poke configuration - jemarch

[...]
.load ~/.poke.d/mydefs.pk

4.6 Poking Structs

4.6.1 Heterogeneous Related Data
Let’s recap the structure of the header of a Stupid BitMap:

SBM header
Fm————— S S Fm—————— Fm—————— +
[ 's* | 'B'" | 'M' | ppl | lines |
R R e ————— ————— +

byte0 bytel byte2 Dbyte3 byted

The header is composed of five fields, which actually compose three different logical fields: a
magic number, the number of pixels per line, and the number of lines.

We could of course abstract the header using an array of five bytes, like this:
type SBM_Header = bytel[5];

However, this would not capture the properties of the fields themselves, which would need
to be remembered by the user: which of these five bytes correspond to the magic number? Is
the pixels per line number signed or unsigned? etc.

Poke provides a much better way to abstract collections of heterogeneous data: struct types.
Using a struct type we can abstract the SBM header like this:

type SBM_Header =
struct
{
byte[3] magic;
uint<8> ppl;
uint<8> lines;

}

Note how the struct has three named fields: magic, ppl and lines. magic is an array of
three bytes, while ppl and lines are both unsigned integers.

4.6.2 Mapping Structs

Once defined, struct types can be referred by name. For example, we can map the SBM header
at the beginning of our file p.sbm like this:

(poke) SBM_Header @ O#B
SBM_Header {
magic=[0x53UB, 0x42UB, 0x4dUB] ,
ppl=0x5UB,
1lines=0x7UB
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The value resulting from the mapping is a struct value. The fields of struct values are accessed
using the familiar dot-notation:

(poke) var header = SBM_Header @ O#B
(poke) header.ppl * header.lines
35UB

The total number of pixels in the image is 35. Note how both header.ppl and header.lines
are indeed unsigned byte values, and thus the result of the multiplication is also an unsigned
byte. This could be problematic if the image contained more than 255 pixels, but this can be
prevented by using a cast:

(poke) header.ppl as uint * header.lines
35U

Now the second operand header.lines is promoted to a 32-bit unsigned value before the mul-
tiplication is performed. Consequently, the result of the operation is also 32-bit wide (note the
suffix of the result.)

4.6.3 Modifying Mapped Structs

Remember when we wanted to crop a SBM image by removing the first and last row? We
updated the header in a byte by byte manner, like this:

(poke) byte @ 3#B = 3
(poke) byte @ 4#B = 7
Now that we have the header mapped in a variable, updating it is much more easy and conve-

nient. The dot-notation is used to update the contents of a struct field, by placing it at the left
hand side of an assignment:

(poke) header.ppl = 3

(poke) header.lines = 7

This updates the pixel per line and the number of lines, in the IO space:

(poke) dump :size 5#B
76543210 0011 2233 4455 6677 8899 aabb ccdd eeff 0123456789ABCDEF
00000000: 5342 4d03 07 SBM. .

4.7 How Structs are Built

First we need to define some structure to use as an example. Let’s say we are interesting in
poking Packets, as defined by the Packet Specification 1.2 published by the Packet Foundation
(none less).

In a nutshell, each Packet starts with a byte whose value is always Oxab, followed by a
byte that defines the size of the payload. A stream of bytes conforming the payload follows,
themselves followed by another stream of the same number of bytes with “control” values.

We could translate this description into the following Poke struct type definition:

type Packet =

struct

{
byte magic == Oxab;
byte size;
byte[size] payload;
byte[size] control;

+

There are some details described by the fictitious Packet Specification 1.2 that are not covered
in this simple definition, but we will be attending to that later in this manual.
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So, given the definition of a struct type like Packet, there are only two ways to build a struct
value in Poke.

One is to map it from some IO space. This is achieved using the map operator:
(poke) Packet @ 12#B

Packet {
magic == Oxab,
size = 2,
payload = [0x12UB,0x30UB],
control = [0x1UB,0x1UB]
}

The expression above maps a Packet starting at offset 12 bytes, in the current IO space. See
the Poke manual for more details on using the map operator.

The second way to build a struct value is to _construct_ one, specifying the value to some,
all or none of its fields. It looks like this:

(poke) Packet {size = 2, payload = [1UB,2UB]}

Packet {
magic == Oxab,
size = 2,
payload = [0x1UB,0x2UB],
control = [0xOUB,0xO0UB]
}

In either case, building a struct involves to determine the value of all the fields of the struct,
one by one. The order in which the struct fields are built is determined by the order of appearance
of the fields in the type description.

In our example, the value of magic is determined first, then size, payload and finally
control. This is the reason why we can refer to the values of previous fields when defining
fields, such as in the size of the payload array above, but not the other way around: by the time
payload is mapped or constructed, the value of size, has already been mapped or constructed.

What happens behind the curtains is that when poke finds the definition of a struct type, like
Packet, it compiles two functions from it: a mapper function, and a constructor function. The
mapper function gets as arguments the 10 space and the offset from which to map the struct
value, whereas the constructor function gets the template specifying the initial values for some,
or all of the fields; reasonable default values (like zeroes) are used for fields for which no initial
values have been specified.

These functions, mapper and constructor, are invoked to create fresh values when a map
operator @ or a struct constructor is used in a Poke program, or at the poke prompt.

4.8 Variables in Structs
Fields are not the only entity that can appear in the definition of a struct type.

Suppose that after reading more carefully the Packet Specification 1.2 (that spans for several
thousand of pages) we realize that the field size doesn’t really store the number of bytes of the
payload and control arrays, like we thought initially. Or not exactly: the Packet Foundation
says that if size has the special value 0xff, then the size is zero.

We could of course do something like this:

type Packet =
struct
{
byte magic == Oxab;
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byte size;

bytel[size == O0xff 7 0 : size] payload;
byte[size == 0xff 7 O : size] control;
};
However, we can avoid replicating code by using a variable instead:

type Packet =

struct
{
byte magic == Oxab;
byte size;
var real_size = (size == Oxff ? 0 : size);

byte[real_size] payload;
byte[real_size] control;
+
Note how the variable can be used after it gets defined. In the underlying process of mapping
or constructing the struct, the variable is incorporated into the lexical environment. Once
defined, it can be used in constraint expressions, array sizes, and the like. We will see more
about this later.

Incidentally, it is of course possible to use global variables as well. For example:

var packet_special = Oxff;
type Packet =

struct
{
byte magic == Oxab;
byte size;
var real_size = (size == packet_special 7 0 : size);

byte[real_size] payload;
bytel[real_size] control;
3
In this case, the global packet_special gets captured in the lexical environment of the
struct type (in reality in the lexical environment of the implicitly created mapper and construc-
tor functions) in a way that if you later modify packet_special the new value will be used
when mapping/constructing new values of type Packet. Which is really cool, but let’s not get
distracted from the main topic... :)

4.9 Functions in Structs
Further reading of the Packet Specification 1.2 reveals that each Packet has an additional crc
field. The content of this field is derived from both the payload bytes and the control bytes.

But this is no vulgar CRC we are talking about. On the contrary, it is a special function
developed by the CRC Foundation in partnership with the Packet Foundation, called superCRC
(patented, TM).

Fortunately, the CRC Foundation distributes a pickle supercrc.pk, that provides a
calculate_crc function with the following spec:

fun calculate_crc = (bytel[] data, bytel[] control) int:
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So let’s use the function like this in our type, after loading the supercrc pickle:

load supercrc;

type Packet =

struct
{
byte magic == Oxab;
byte size;
var real_size = (size == Oxff 7 0 : size);

byte[real_size] payload;
byte[real_size] control;

int crc = calculate_crc (payload, control);
};

However, there is a caveat: it happens that the calculation of the CRC may involve arithmetic
and division, so the CRC Foundation warns us that the calculate_crc function may raise
E_div_by_zero. However, the Packet 1.2 Specification tells us that in these situations, the crc
field of the packet should contain zero. If we used the type above, any exception raised by
calculate_crc would be propagated by the mapper/constructor:

(poke) Packet @ 12#B
unhandled division by zero exception

A solution is to use a function that takes care of the extra needed logic, wrapping calcu-
late_crc:

load supercrc;

type Packet =
struct

{
byte magic == Oxab;
byte size;

var real_size = (size == Oxff 7 0 : size);

byte[real_size] payload;
byte[real_size] control;

fun corrected_crc = int:

{

try return calculate_crc (payload, control);
catch if E_div_by_zero { return 0; }
}

int crc == corrected_crc;
};

Again, note how the function is accessible after its definition. Note as well how both fields
and variables and other functions can be used in the function body. There is no difference to
define variables and functions in struct types than to define them inside other functions or in
the top-level environment: the same lexical rules apply.



Chapter 4: Structuring Data 60

4.10 Struct Methods

At this point you may be thinking something on the line of “hey, since variables and functions
are also members of the struct, I should be able to access them the same way than fields, right?”.

So you will want to do:

(poke) var p = Packet 12#B
(poke) p.real_size
(poke) p.corrected_crc

But sorry, this won’t work.

To understand why, think about the struct building process we sketched above. The mapper
and constructor functions are derived/compiled from the struct type. You can imagine them to
have prototypes like:

Packet_mapper (IOspace, offset) -> Packet value
Packet_constructor (template) -> Packet value

You can also picture the fields, variables and functions in the struct type specification as
being defined inside the bodies of Packet_mapper and Packet_constructor, as their contents get
mapped/constructed. For example, let’s see what the mapper does:

Packet_mapper:

. Map a byte, put it in a local “magic'.

. Map a byte, put it in a local “size'.

. Calculate the real size, put it in a local “real_size'.

. Map an array of real_size bytes, put it in a local “payload'.

. Map an array of real_size bytes, put it in a local “control'.

. Compile a function, put it in a local “corrected_crc'.

. map a byte, call the function in the local "“corrected_crc',
complain if the values are not the same, otherwise put the
mapped byte in a local “crc'.

. Build a struct value with the values from the locals “magic',
“size', “payload', “control' and “crc', and return it.

The pseudo-code for the constructor would be almost identical. Just replace "map a byte"
with “construct a byte”.

So you see, both the values for the mapped fields and the values for the variables and functions
defined inside the struct type end as locals of the mapping process, but only the values of the
fields are actually put in the struct value that is returned in the last step.

This is where methods come in the picture. A method looks very similar to a function, but
it is not quite the same thing. Let me show you an example:

load supercrc;

type Packet =

struct
{
byte magic == Oxab;
byte size;
var real_size = (size == Oxff ? 0 : size);

byte[real_size] payload;
byte[real_size] control;
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fun corrected_crc = int:

{
try return calculate_crc (payload, control);
catch if E_div_by_zero { return 0; }

}

int crc = corrected_crc;

method c_crc = int:

{
return corrected_crc;
}
+
We have added a method c_crc to our Packet struct type, that just returns the corrected
superCRC (patented, TM) of a packet. This can be invoked using dot-notation, once a Packet
value is mapped/constructed:
(poke) var p = Packet 12#B
(poke) p.c_crc
Oxdeadbeef
Now, the important bit here is that the method returns the corrected crc of a Packet. That’s

it, it actually operates on a Packet value. This Packet value gets implicitly passed as an argument
whenever a method is invoked.

We can visualize this with the following “pseudo Poke”:

method c_crc = (Packet SELF) int:
{

return SELF.corrected_crc;

¥

Fortunately, poke takes care to recognize when you are referring to fields of this implicit
struct value, and does The Right Thing(TM) for you. This includes calling other methods:

method foo = void: { ... }
method bar = void:
{
[...]
foo;
}

The corresponding “pseudo-poke” being:

method bar = (Packet SELF) void:
{

[...]

SELF.foo ();
}

It is also possible to define methods that modify the contents of struct fields, no problem:

var packet_special = Oxff;

type Packet =
struct
{
byte magic == Oxab;
byte size;
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[...]
method set_size = (byte s) void:
{
if (s == 0)
size = packet_special;
else
size = s;
3

3
This is what is commonly known as a setter. Note, incidentally, how a method can also use
regular variables. The Poke compiler knows when to generate a store in a normal variable such
as packet_special, and when to generate a set to a SELF field.
Given the different nature of the variables, functions and methods, there are a couple of
restrictions:

e Functions can’t set fields defined in the struct type.
This will be rejected by the compiler:

type Foo =
struct
{
int field;
fun wrong = void: { field = 10; }
};
Remember the construction/mapping process. When a function accesses a field of the
struct type like in the example above, it is not doing one of these pseudo SELF.field = 10.
Instead, it is simply updating the value of the local created in this step in Foo_mapper:

Foo_mapper:

. Map an int, put it in a local “field'.
[...]
Setting that local would impact the mapping of the subsequent fields if they refer to field
(for example, in their constraint expression) but it wouldn’t actually alter the value of the
field field in the struct value that is created and returned from the mapper!

This is very confusing, so we just disallow this with a compiler error “invalid assignment to
struct field”, for your own sanity 8-)

e Methods can’t be used in field constraint expressions, nor in variables or functions defined
in a struct type.

How could they be? The field constraint expressions, the initialization expressions of
variables, and the functions defined in struct types are all executed as part of the map-
per/constructor and, at that time, there is no struct value yet to pass to the method.

If you try to do this, the compiler will greet you with an “invalid reference to struct method”
message.

Something to keep in mind about methods is that they can destroy the integrity of the data
stored in a struct. Consider for example the following struct type:

type Packet =
struct
{
byte magic == Oxab;
byte size : size <= 4096;
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[...]
method set_size = (byte s) void:
{
if (s == 0)
size = packet_special;
else
size = s;
3

};
Observe how this new version of Packet has an additional constraint that specifies size should
not exceed 4096. However, when the method set_size is executed the constraints are not
checked again. This is useful at times, but can also lead to unintended data corruption.

A solution for this problem is to make methods aware of the restrictions. Like in this case:

type Packet =
struct
{
var MAXSIZE = 4096;

byte magic == Oxab;
byte size : size <= MAXSIZE;

[...]
method set_size = (byte s) void:
{

if (s == 0)

size = packet_special;
else if (s > MAXSIZE)
raise E_inval;
else
size = s;
}
};
Note how we use a variable MAXSIZE in order to avoid hard-coding 4096 twice in the struct
definition.

Occasionally it is useful to access to additional properties of a containing struct or union in
a method, other than its fields. For this purpose it is possible to refer explicitly to the struct
using the SELF keyword. Note that the value referred has type any.

For example, this is how we could print the name of the current alternative in a pretty-printer
for an union:

type Foo =
union int<32>

{
int<32> One == 1;
int<32> Two == 2;
method _print = void:
{

printf ("%s (%v)", SELF'ename (0), SELF'elem (0));

}

}s
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4.11 Padding and Alignment

It is often the case in binary formats that certain elements are separated by some data that
is not really used for any meaningful purpose other than occupy that space. The reason for
keeping that space varies from case to case; sometimes to reserve it for future use, sometimes
to make sure that the following data is aligned to some particular alignment. This is known as
padding. There are several ways to implement padding in GNU poke. This article shows these
techniques and discusses their advantages and disadvantages.

4.11.1 Esoteric and exoteric padding

Padding is the technique of keeping some amount of space between two different elements in
some data stream. GNU poke provides two different ways to express sequences of data elements:
the fields of a struct type, which are defined one after the other, and elements in an array.

We call adding space between two struct fields esoteric (or internal) padding.
We call adding space between two array elements exoteric (or external) padding.

The following sections contain examples of the two kinds of padding and how to better handle
them in Poke.

4.11.2 Reserved fields

People designing binary encoded formats tend to be cautious and try to avoid future backward
incompatibilities by keeping some unused fields that are reserved for future use. This is the first
kind of padding we will be looking at, and is particularly common in structures like headers.

See for example the header used to characterize compressed section contents in ELF files:

type E1f64_Chdr =
struct
{
E1lf_Word ch_type;
E1lf_Word ch_reserved;
offset<Elf64_Xword,B> ch_size;
offset<E1f64_Xword,B> ch_addralign;
+;
where the ch_reserved field is reserved for future use. When the time comes the space
occupied by that field (32 bits in this case) will be used to hold additional data in the form of
one or more fields. The idea is that implementations of the older formats will still work.

The most obvious way to handle this in Poke is using a named field like ch_reserved above.
This field will be decoded/encoded by poke when constructing/mapping/writing struct values
of this type, and will be available to the user as chdr.ch_reserved.

Sometimes reserved space is required to be filled with certain data values, such as zeroes.
This may be to simplify things, or to force data producers to initialize the memory in order to
avoid potential leaking of sensible information. In these cases we can use Poke initial values:

type E1f64_Chdr =

struct

{
E1f_Word ch_type;
Elf_Word ch_reserved == 0;
offset<E1f64_Xword,B> ch_size;
offset<E1f64_Xword,B> ch_addralign;

+

This will make poke to check that ch_reserved is zero when constructing or mapping headers
for compressed sections raising a constraint violation exception otherwise. It will also make poke
to make sure ch_reserved to 0 when constructing E1£64_Chdr struct values:
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(poke) E1f64_Chdr { ch_reserved = 23 }
unhandled constraint violation exception

An alternative way to characterize reserved space in Poke is to use anonymous fields. For
example:

type E1f64_Chdr =
struct
{
E1lf_Word ch_type;
E1f_Word;
offset<E1f64_Xword,B> ch_size;
offset<E1lf64_Xword,B> ch_addralign;
3
Using Poke anonymous fields to implement reserved fields has at least two advantages. First,
the user cannot anymore temper with the data in the reserved space in an easy way, i.e. chdr.ch_
reserved = 666 is no longer valid. Second, the printed representation of anonymous struct fields
is more compact and denotes better than the involved space is not to be messed with:

(poke) E1f64_Chdr {}
E1f64_Chdr {
ch_type=0x0U,
0x0U,
ch_size=0x0UL#B,
ch_addralign=0x0UL#B
3

A disadvantage of using anonymous fields is that you cannot specify constraint expressions
for them, nor initial values. At some point we will probably add syntax to declare certain struct
fields as read-only.

At this point, it is important to note that anonymous fields are still encoded/decoded by
poke every time the struct value is mapped or written, exactly like regular fields. Therefore
using them doesn’t pose any advantage in terms of performance.

4.11.3 Payloads

The reserved fields discussed in the previous section are most often discrete units like words,
double-words, and the like, they are usually of some fixed size, and they are used to delimit
some space that is not to be used.

Another kind of padding happens when an entity contains space to be used to store some
kind of payload whose contents are not determined. This would be such an example:

type Packet =
struct
{
offset<uint<32>,B> payload_size;
byte [payload_size] payload;
int flags;
3
In this example we are using a payload field which is an array of bytes. The size of the
payload is determined by the packet header, and the contents are not determined. Of course
this assumes that the payload sizes are divisible in whole bytes; a bit-oriented format may need
to use an array of bits instead.

This approach of using a byte (or bit) array like in the example above has the advantage of
providing a field with the bytes (or bits) to the user, for inspection and modification:

(poke) packet.payload
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[23UB, ...]
(poke) packet.payload[0] = 0

The user can still map whatever payload structure in that space using the attributes of a
mapped Packet. For example, if the packet contains an array of ULEB128 numbers, we could
do:

(poke) var numbers = ULEB128[packet.payload'size] @ packet.payload'offset

But this approach has a disadvantage: every time the packet structure is mapped or written
the entire payload array gets decoded and encoded. If the payloads are big enough (think about
the data blocks of a file described by a file system i-node for example) this can be a big problem
in terms of performance.

Another problem of using byte (or bit) arrays for payloads is that the printed representation
of the struct values include the contents of the arrays, and most often the user won’t be interested
in seeing that:

(poke) Packet { payload_size = 23#B }
Packet {
payload_size=0x17U#B,
payload=[0x0UB, 0xOUB,0x0UB, 0x0UB, 0x0UB, .. .],
flags=0x0
}
Another alternative is to implement the padding implied by a payload using field labels:

type Packet =
struct
{
offset<uint<32>,B> payload_size;
int flags @ OFFSET + payload_size;
3
Note how a payload field no longer exists in the struct type, and the field flags is defined
to start at offset OFFSET + payload_size. This way no explicit array is encoded/decoded when
manipulating Packet values:

(poke) .set omaps yes
(poke) Packet { payload_size = 500#Mb }
Packet {
payload_size=62500000U#B @ OUL#b,
flags=0 @ 4000000032UL#b
} @ OUL#b

In this example we used the omaps option, which asks poke to print the offsets of the fields.
The offset of flags is 4000000032 bits, or 500 megabytes:

(poke) 4000000032UL #b/#MB
500UL

Mapping this new Packet involves reading and decoding five bytes, for the payload_size
and flags only. This is clearly much faster and avoids unneeded IO.

However you may be wondering, if there is no explicit payload field, how to access the
payload space? A way is to define a method to the struct to provide the payload attributes:

type Packet =
struct
{
offset<uint<32>,B> payload_size;:
var payload_offset = OFFSET;
int flags @ OFFSET + payload_size;



Chapter 4: Structuring Data 67

method get_payload_offset = off64:
{
return payload_offset;
}
3
Note how we captured the offset of the payload using a variable in the strict type definition.

Returning OFFSET in get_payload_offset wouldn’t work for obvious reasons: in the body of
the method OFFSET evaluates to the end of flags in this case.

Using this method you can easily access the payload (again as an array of ULEB128 numbers)
like this:

var numbers = ULEB128[packet.payload_size @ packet.get_payload_offset

Finally, using labels for this purpose makes the printed representation of the struct values
more readable by not including the payload bytes in it:

(poke) Packet {}

Packet {
payload_size=0x0U#B,
flags=0x0

}

4.11.4 Aligning struct fields

Another kind of esoteric padding happens when certain fields in entities are required to be
aligned to some particular alignment. For example, suppose that the flags field in the packets
used in the previous sections is required to always be aligned to 4 bytes regardless of the size of
the payload. This would be a common requirement if the format is intended to be implemented
in systems where data is to be accessed using its “natural” alignment.

Using explicit fields for both the payload and the additional padding, we could come with:

type Packet =

struct

{
offset<uint<32>,B> payload_size;
byte [payload_size] payload;
byte[alignto (OFFSET, 4#B)] padding;
int flags;

3

Where alignto is a little function defined in the Poke standard library, like this:

fun alignto = (uoff64 offset, uoff64 to) uoff64:
{

return (to - (offset % to)) % to;
}

Alternatively, using the labels approach (which is generally better as we discussed in the last
section) the definition would become:

type Packet =
struct
{
offset<uint<32>,B> payload_size;:
var payload_offset = OFFSET;
int flags @ OFFSET + payload_size + alignto (payload_size, 4#B);
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method get_payload_offset = off64:
{

return payload_offset;
}
};
In this case, the payload space is still completely characterized by the payload_size field
and the get_payload_offset method.

4.11.5 Padding array elements

Up to now all the examples of padding we have shown are in the category of esoteric or internal
padding, i.e. it was intended to add space between fields of some particular entity.

However, sometimes we want to specify some padding between the elements of a sequence of
entities. In Poke this basically means an array.

Suppose we have a simple file system that is conformed by a sequence of inodes. The contents
of the file system have the following form:

e +
| inode |
e +
data :
o +
[ inode |
e +
data :
e +

That’s it, each inode describes a block of data of variable size that immediately follows. Then
more pairs of inode-data follow until the end of the device. However, a requirement is that each
inode has to be aligned to 128 bytes.

Let’s start by writing a simple type definition for the inodes:

type Inode =
struct
{
string filename;
int perms;
offset<uint<32>,B> data_size;
};
This definition is simple enough, but it doesn’t allow us to just map an array of inodes like
this:
(poke) Inode[] O#B
We could of course add the data and padding explicitly to the inode structure:

type Inode =
struct
{
string filename;
int perms;
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offset<uint<32>,B> data_size;

byte[data_size] data;

bytel[alignto (data_size, 128#B)] padding;
};

Then we could just map Inode[] @ 0#B and we would the get expected result.

But this is not a good idea. On one hand because, as we know, this would imply mapping
the full file system data byte by byte, and that would be very very slow. On the other hand,
because the data is not part of the inode, conceptually speaking.

A better solution is to use this idiom:

type Inode =
struct

{
string filename;
int perms;
offset<uint<32>,B> data_size;

byte[0] @ OFFSET + data_size + alignto (data_size, 128#B);
+
This uses an anonymous field at the end of the struct type, of size zero, located at exactly
the offset where the data plus padding would end in the version with explicit fields.
This later solution is fast and still allows us to get an array of inodes reflecting the whole file
system with:
(poke) var inodes = Inode[] @ O#B

Like in the previous sections, a method =get_data_offset= can be added to the struct type
in order to allow accessing the data blocks corresponding to a given inode.

4.12 Dealing with Alternatives

4.12.1 BSON

BSON? is a binary encoding for JSON documents. The top-level entity described by the spec
is the document, which contains the total size of the document, a sequence of elements, and a
trailing null byte.

We can describe the above in Poke with the following type definition:
type BSON_Doc =
struct

{

offset<int<32>,B> size;

BSON_Elem[size - size'size - 1#B] elements;

byte endmark : endmark == 0x0;

};
BSON elements come in different kinds, which correspond to the different types of JSON

entities: 32-bit integers, 64-bit integers, strings, arrays, timestamps, and so on. Every element

starts with a tag, which is a 8-bit unsigned integer that identifies it’s kind, and a name encoded

as a NULL-terminated string. What comes next depends on the kind of element.

The following Poke type definition describes a subset of BSON elements, namely integers,
big integers and strings:
type BSON_Elem =

2 http://bsonspec.org/spec.html
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struct

{
byte tag;
string name;

union

{
int32 integer32 : tag == 0x10;
int64 integer64 : tag == 0x12;
BSON_String str : tag == 0x02;
} value;
+
The union in BSON_Elem corresponds to the variable part. When poke decodes an union, it
tries to decode each alternative (union field) in turn. The first alternative that is successfully
decoded without raising a constraint violation exception is the chosen one. If no alternative can
be decoded, a constraint violation exception is raised.
To see this process in action, let’s use the BSON corresponding to the following little JSON
document:

{
"name" : "Jose E. Marchesi",
"age" : 40,
"big" : 1076543210012345

}

Let’s take a look to the different elements:

(poke) .load bson.pk
(poke) var d = BSON_Doc O#B
(poke) d.elements'length
0x3UL
(poke) d.elements[0]
BSON_Elem {
tag=0x2UB,
name="name",
value=struct {
str=BSON_String {
size=0x11,
value="Jose E. Marchesi",
chars=[0x4aUB, 0x6fUB, 0x73UB, 0x65UB. . .]
}
}
}
(poke) d.elements[1]
BSON_Elem {
tag=0x10UB,
name="age",
value=struct {
integer32=0x27

}
}
(poke) d.elements[2]
BSON_Elem {

tag=0x12UB,
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name="big",
value=struct {
integer64=0x3d31c3f9e3ebIL
3
3

Note how unions decode 